Science.gov

Sample records for hazardous waste disposal

  1. Hazardous waste disposal and underground construction law

    SciTech Connect

    Cushman, R.F.; Ficken, B.W.

    1987-01-01

    This book is a guide to solving the problems that arise in underground construction. A substantial portion of the book is dedicated exclusively to the most significant source of contractor liability to arise in recent decades - liability for the handling of hazardous waste. The section on hazardous waste disposal and cleanup is an up-to-date treatment of the legal aspects of this subject.

  2. The Disposal of Hazardous Wastes.

    ERIC Educational Resources Information Center

    Barnhart, Benjamin J.

    1978-01-01

    The highlights of a symposium held in October, 1977 spotlight some problems and solutions. Topics include wastes from coal technologies, radioactive wastes, and industrial and agricultural wastes. (BB)

  3. Method for disposing of hazardous wastes

    DOEpatents

    Burton, Frederick G.; Cataldo, Dominic A.; Cline, John F.; Skiens, W. Eugene

    1995-01-01

    A method and system for long-term control of root growth without killing the plants bearing those roots involves incorporating a 2,6-dinitroaniline in a polymer and disposing the polymer in an area in which root control is desired. This results in controlled release of the substituted aniline herbicide over a period of many years. Herbicides of this class have the property of preventing root elongation without translocating into other parts of the plant. The herbicide may be encapsulated in the polymer or mixed with it. The polymer-herbicide mixture may be formed into pellets, sheets, pipe gaskets, pipes for carrying water, or various other forms. The invention may be applied to other protection of buried hazardous wastes, protection of underground pipes, prevention of root intrusion beneath slabs, the dwarfing of trees or shrubs and other applications. The preferred herbicide is 4-difluoromethyl-N,N-dipropyl- 2,6-dinitro-aniline, commonly known as trifluralin.

  4. QUANTIFICATION OF MUNICIPAL DISPOSAL METHODS FOR INDUSTRIALLY GENERATED HAZARDOUS WASTES

    EPA Science Inventory

    Estimations of the amounts of industrial hazardous wastes being disposed of according to various methods of disposal were generated for significant portions of the five following SIC codes: 28, Chemical and Allied Products; 29, Petroleum Refining and Related Industries; 30, Rubbe...

  5. ENVIRONMENTALLY SOUND DISPOSAL OF RADIOACTIVE MATERIALS AT A RCRA HAZARDOUS WASTE DISPOSAL FACILITY

    SciTech Connect

    Romano, Stephen; Welling, Steven; Bell, Simon

    2003-02-27

    The use of hazardous waste disposal facilities permitted under the Resource Conservation and Recovery Act (''RCRA'') to dispose of low concentration and exempt radioactive materials is a cost-effective option for government and industry waste generators. The hazardous and PCB waste disposal facility operated by US Ecology Idaho, Inc. near Grand View, Idaho provides environmentally sound disposal services to both government and private industry waste generators. The Idaho facility is a major recipient of U.S. Army Corps of Engineers FUSRAP program waste and received permit approval to receive an expanded range of radioactive materials in 2001. The site has disposed of more than 300,000 tons of radioactive materials from the federal government during the past five years. This paper presents the capabilities of the Grand View, Idaho hazardous waste facility to accept radioactive materials, site-specific acceptance criteria and performance assessment, radiological safety and environmental monitoring program information.

  6. A conflict model for the international hazardous waste disposal dispute.

    PubMed

    Hu, Kaixian; Hipel, Keith W; Fang, Liping

    2009-12-15

    A multi-stage conflict model is developed to analyze international hazardous waste disposal disputes. More specifically, the ongoing toxic waste conflicts are divided into two stages consisting of the dumping prevention and dispute resolution stages. The modeling and analyses, based on the methodology of graph model for conflict resolution (GMCR), are used in both stages in order to grasp the structure and implications of a given conflict from a strategic viewpoint. Furthermore, a specific case study is investigated for the Ivory Coast hazardous waste conflict. In addition to the stability analysis, sensitivity and attitude analyses are conducted to capture various strategic features of this type of complicated dispute. PMID:19665299

  7. Monitoring potential neurotoxic effects of hazardous waste disposal

    PubMed Central

    Schaumburg, Herbert H.; Spencer, Peter S.; Arezzo, Joseph C.

    1983-01-01

    This report reviews neurotoxicological principles relevant to situations of hazardous waste disposal. Some of the diagnostic techniques currently used for field assessment of nervous system dysfunction are critically evaluated. These include nerve conduction velocity, evoked potentials, neuropsychological testing and use of the Optacon. PMID:6825636

  8. Regulating the disposal of cigarette butts as toxic hazardous waste.

    PubMed

    Barnes, Richard L

    2011-05-01

    The trillions of cigarette butts generated each year throughout the world pose a significant challenge for disposal regulations, primarily because there are millions of points of disposal, along with the necessity to segregate, collect and dispose of the butts in a safe manner, and cigarette butts are toxic, hazardous waste. There are some hazardous waste laws, such as those covering used tyres and automobile batteries, in which the retailer is responsible for the proper disposal of the waste, but most post-consumer waste disposal is the responsibility of the consumer. Concepts such as extended producer responsibility (EPR) are being used for some post-consumer waste to pass the responsibility and cost for recycling or disposal to the manufacturer of the product. In total, 32 states in the US have passed EPR laws covering auto switches, batteries, carpet, cell phones, electronics, fluorescent lighting, mercury thermostats, paint and pesticide containers, and these could be models for cigarette waste legislation. A broader concept of producer stewardship includes EPR, but adds the consumer and the retailer into the regulation. The State of Maine considered a comprehensive product stewardship law in 2010 that is a much better model than EPR. By using either EPR or the Maine model, the tobacco industry will be required to cover the cost of collecting and disposing of cigarette butt waste. Additional requirements included in the Maine model are needed for consumers and businesses to complete the network that will be necessary to maximise the segregation and collection of cigarette butts to protect the environment. PMID:21504925

  9. Regulating the disposal of cigarette butts as toxic hazardous waste

    PubMed Central

    2011-01-01

    The trillions of cigarette butts generated each year throughout the world pose a significant challenge for disposal regulations, primarily because there are millions of points of disposal, along with the necessity to segregate, collect and dispose of the butts in a safe manner, and cigarette butts are toxic, hazardous waste. There are some hazardous waste laws, such as those covering used tyres and automobile batteries, in which the retailer is responsible for the proper disposal of the waste, but most post-consumer waste disposal is the responsibility of the consumer. Concepts such as extended producer responsibility (EPR) are being used for some post-consumer waste to pass the responsibility and cost for recycling or disposal to the manufacturer of the product. In total, 32 states in the US have passed EPR laws covering auto switches, batteries, carpet, cell phones, electronics, fluorescent lighting, mercury thermostats, paint and pesticide containers, and these could be models for cigarette waste legislation. A broader concept of producer stewardship includes EPR, but adds the consumer and the retailer into the regulation. The State of Maine considered a comprehensive product stewardship law in 2010 that is a much better model than EPR. By using either EPR or the Maine model, the tobacco industry will be required to cover the cost of collecting and disposing of cigarette butt waste. Additional requirements included in the Maine model are needed for consumers and businesses to complete the network that will be necessary to maximise the segregation and collection of cigarette butts to protect the environment. PMID:21504925

  10. COST COMPARISONS OF TREATMENT AND DISPOSAL ALTERNATIVES FOR HAZARDOUS WASTES. VOLUME II. APPENDICES

    EPA Science Inventory

    Treatment and disposal alternatives and costs for hazardous wastes from the organic chemicals, inorganic chemicals, and electroplating and metal finishing industries are evaluated. The 16 treatment and 5 disposal technologies were based on applicability to the industry categories...

  11. Toward Hazardless Waste: A Guide for Safe Use and Disposal of Hazardous Household Products.

    ERIC Educational Resources Information Center

    Toteff, Sally; Zehner, Cheri

    This guide is designed to help individuals make responsible decisions about safe use and disposal of household products. It consists of eight sections dealing with: (1) hazardous chemicals in the home, how hazaradous products become hazardous waste, and whether a hazardous waste problem exists in Puget Sound; (2) which household wastes are

  12. Toward Hazardless Waste: A Guide for Safe Use and Disposal of Hazardous Household Products.

    ERIC Educational Resources Information Center

    Toteff, Sally; Zehner, Cheri

    This guide is designed to help individuals make responsible decisions about safe use and disposal of household products. It consists of eight sections dealing with: (1) hazardous chemicals in the home, how hazaradous products become hazardous waste, and whether a hazardous waste problem exists in Puget Sound; (2) which household wastes are…

  13. Hazard analysis of technologies for disposing explosive waste.

    PubMed

    Duijm, Nijs Jan

    2002-03-01

    Hazards are identified for six different techniques for disposing decommissioned ammunition. Use has been made of functional modelling as a basis for hazard identification. Risk levels are estimated based on general accident rates in the chemical industry. The disposal techniques are "open burning" (OB), "open detonation" (OD), "closed detonation" (CD), "fluidised bed combustion" (FBC), "rotary kiln (RK) incineration", "mobile incineration". Closed detonation leads to most hazards and highest risk, followed by open burning and open detonation. The other three techniques are considerably safer. Risk due to transport is included in the analysis. Transport risk is not negligible for fluidised bed combustion and rotary kiln incineration at centrally located sites. PMID:11827717

  14. Liquid household hazardous wastes in the United States: Identification, disposal, and management plan

    NASA Astrophysics Data System (ADS)

    Robertson, David K.; Akagha, Jude; Belasco, Jon; Bullis, Jane; Byrne, Gloria; di Patria, Joan; Fisher, Wayne; Fonzino, James; Hsu, Jeffrey; Merchan, Lucy; Oster, David; Rosenberg, Jon; von Aulock, Sabine; Vroeginday, Barry

    1987-11-01

    Present methods of disposal of today's hazardous household chemicals in the United States are frequently not acceptable because of pathways to groundwater, surface water, and the atmosphere. This report identifies potentially hazardous liquid waste in the household, notes current disposal practices, and recommends an improved management plan that utilizes consumer education, manufacturer cooperation, and governmental intervention. Laws requiring uniform disposal labeling on packaging are critical. Local, county, and state governments must be encouraged to coordinate the necessary infrastructure. Managing hazardous household wastes now will mitigate potential disposal problems.

  15. LINERS FOR SANITARY LANDFILLS AND CHEMICAL AND HAZARDOUS WASTE DISPOSAL SITES

    EPA Science Inventory

    This report lists addresses of sanitary landfills and chemical and hazardous waste disposal sites and holding ponds with some form of impermeable lining. Liners included are polyethylene, polyvinyl chloride, Hypalon R, ethylene propylene diene monomer, butyl rubber, conventional ...

  16. EVALUATION OF AIR EMISSIONS FROM HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES

    EPA Science Inventory

    This study has examined the fugitive air emissions from landfills, surface impoundments, storage tanks, containers (drums), solvent recovery processes, and land treatment technologies at hazardous waste disposal facilities (HWDF's). The main objective of this study was to develop...

  17. Waste disposal by hydrofracture and application of the technology to the management of hazardous wastes

    SciTech Connect

    Stow, S.H.; Haase, C.S.; Weeren, H.O.

    1985-01-01

    A unique disposal method, involving hydrofracturing, has been used for management of liquid low-level radioactive wastes at Oak Ridge National Laboratory (ORNL). Wastes are mixed with cement and other solids and injected along bedding plane fractures into highly impermeable shale at a depth of 300 m forming a grout sheet. The process has operated successfully for 20 years and may be applicable to disposal of hazardous wastes. The cement grout represents the primary barrier for immobilization of the wastes; the hydrologically isolated injection horizon represents a secondary barrier. At ORNL work has been conducted to characterize the geology of the disposal site and to determine its relationship to the injection process. The site is structurally quite complex. Research has also been conducted on the development of methods for monitoring the extent and orientation of the grout sheets; these methods include gamma-ray logging of cased observation wells, leveling surveys of benchmarks, tiltmeter surveys, and microseismic arrays. These methods, some of which need further development, offer promise for real-time and post-injection monitoring. Initial suggestions are offered for possible application of the technology to hazardous waste management and technical and regulatory areas needing attention are addressed. 11 refs., 1 fig.

  18. Household Hazardous Waste Disposal Project. Summary Report. Metro Toxicant Program Report No. 1A.

    ERIC Educational Resources Information Center

    Ridgley, Susan M.; Galvin, David V.

    The Household Hazardous Waste Disposal Project was established as an interagency effort to reduce the level of toxicants entering the environment by developing a control plan for the safe disposal of small quantities of household chemicals. This summary report provides an overview of the aspects of this problem that were examined, and the steps

  19. Household Hazardous Waste Disposal Project. Summary Report. Metro Toxicant Program Report No. 1A.

    ERIC Educational Resources Information Center

    Ridgley, Susan M.; Galvin, David V.

    The Household Hazardous Waste Disposal Project was established as an interagency effort to reduce the level of toxicants entering the environment by developing a control plan for the safe disposal of small quantities of household chemicals. This summary report provides an overview of the aspects of this problem that were examined, and the steps…

  20. Chemical Hazards and Waste Disposal Safety and Health. Module SH-46. Safety and Health.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on chemical hazards and waste disposal is one of 50 modules concerned with job safety and health. This module presents the principles of safe chemical handling and provides an overview of the hazards associated with different types of chemicals. Following the introduction, 13 objectives (each keyed to a page in the text) the…

  1. Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Facility

    SciTech Connect

    Lisa Harvego; Mike Lehto

    2010-02-01

    The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

  2. Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect

    Lisa Harvego; Mike Lehto

    2010-10-01

    The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

  3. Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Facility

    SciTech Connect

    Lisa Harvego; Mike Lehto

    2010-05-01

    The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

  4. Using MCDA and GIS for hazardous waste landfill siting considering land scarcity for waste disposal

    SciTech Connect

    Feo, Giovanni De; Gisi, Sabino De

    2014-11-15

    Highlights: • Wasting land for the siting of hazardous waste landfills must be avoided. • The siting procedure is based on a land use map of potentially suitable areas. • All the waste facilities of the management system are simultaneously considered. • A case study is developed considering two multi-criteria techniques. • An innovative criteria weighting tool (PSW) is used in combination with the AHP. - Abstract: The main aim of this study was to develop a procedure that minimizes the wasting of space for the siting of hazardous waste landfills as part of a solid waste management system. We wanted to tackle the shortage of land for waste disposal that is a serious and growing problem in most large urban regions. The procedure combines a multi-criteria decision analysis (MCDA) approach with a geographical information system (GIS). The GIS was utilised to obtain an initial screening in order to eliminate unsuitable areas, whereas the MCDA was developed to select the most suitable sites. The novelty of the proposed siting procedure is the introduction of a new screening phase before the macro-siting step aimed at producing a “land use map of potentially suitable areas” for the siting of solid waste facilities which simultaneously takes into consideration all plant types. The issue of obtaining sites evaluations of a specific facility was coupled with the issue of not wasting land appropriate to facilitate other types of waste management options. In the developed case study, the use of an innovative criteria weighting tool (the “Priority Scale”) in combination with the Analytic Hierarchy Process was useful to easier define the priorities of the evaluation criteria in comparison with other classic methods such as the Paired Comparison Technique in combination with the Simple Additive Weighting method.

  5. Action on Hazardous Wastes.

    ERIC Educational Resources Information Center

    EPA Journal, 1979

    1979-01-01

    U.S. EPA is gearing up to investigate about 300 hazardous waste dump sites per year that could pose an imminent health hazard. Prosecutions are expected to result from the priority effort at investigating illegal hazardous waste disposal. (RE)

  6. Using MCDA and GIS for hazardous waste landfill siting considering land scarcity for waste disposal.

    PubMed

    De Feo, Giovanni; De Gisi, Sabino

    2014-11-01

    The main aim of this study was to develop a procedure that minimizes the wasting of space for the siting of hazardous waste landfills as part of a solid waste management system. We wanted to tackle the shortage of land for waste disposal that is a serious and growing problem in most large urban regions. The procedure combines a multi-criteria decision analysis (MCDA) approach with a geographical information system (GIS). The GIS was utilised to obtain an initial screening in order to eliminate unsuitable areas, whereas the MCDA was developed to select the most suitable sites. The novelty of the proposed siting procedure is the introduction of a new screening phase before the macro-siting step aimed at producing a "land use map of potentially suitable areas" for the siting of solid waste facilities which simultaneously takes into consideration all plant types. The issue of obtaining sites evaluations of a specific facility was coupled with the issue of not wasting land appropriate to facilitate other types of waste management options. In the developed case study, the use of an innovative criteria weighting tool (the "Priority Scale") in combination with the Analytic Hierarchy Process was useful to easier define the priorities of the evaluation criteria in comparison with other classic methods such as the Paired Comparison Technique in combination with the Simple Additive Weighting method. PMID:25002369

  7. Grout formulation for disposal of low-level and hazardous waste streams containing fluoride

    DOEpatents

    McDaniel, E.W.; Sams, T.L.; Tallent, O.K.

    1987-06-02

    A composition and related process for disposal of hazardous waste streams containing fluoride in cement-based materials is disclosed. the presence of fluoride in cement-based materials is disclosed. The presence of fluoride in waste materials acts as a set retarder and as a result, prevents cement-based grouts from setting. This problem is overcome by the present invention wherein calcium hydroxide is incorporated into the dry-solid portion of the grout mix. The calcium hydroxide renders the fluoride insoluble, allowing the grout to set up and immobilize all hazardous constituents of concern. 4 tabs.

  8. Small mammal populations at hazardous waste disposal sites near Houston, Texas, USA

    USGS Publications Warehouse

    Robbins, C.S.

    1990-01-01

    Small mammals were trapped, tagged and recaptured in 0?45 ha plots at six hazardous industrial waste disposal sites to determine if populations, body mass and age structures were different from paired control site plots. Low numbers of six species of small mammals were captured on industrial waste sites or control sites. Only populations of hispid cotton rats at industrial waste sites and control sites were large enough for comparisons. Overall population numbers, age structure, and body mass of adult male and female cotton rats were similar at industrial waste sites and control sites. Populations of small mammals (particularly hispid cotton rats) may not suffice as indicators of environments with hazardous industrial waste contamination.

  9. Hazardous Waste

    MedlinePlus

    ... you throw these substances away, they become hazardous waste. Some hazardous wastes come from products in our homes. Our garbage can include such hazardous wastes as old batteries, bug spray cans and paint ...

  10. SLEUTH (Strategies and Lessons to Eliminate Unused Toxicants: Help!). Educational Activities on the Disposal of Household Hazardous Waste. Household Hazardous Waste Disposal Project. Metro Toxicant Program Report No. 1D.

    ERIC Educational Resources Information Center

    Dyckman, Claire; And Others

    This teaching unit is part of the final report of the Household Hazardous Waste Disposal Project. It consists of activities presented in an introduction and three sections. The introduction contains an activity for students in grades 4-12 which defines terms and concepts for understanding household hazardous wastes. Section I provides activities…

  11. The newest achievements of studies on the reutilization, treatment, and disposal technology of hazardous wastes

    SciTech Connect

    Liu Peizhe

    1996-12-31

    From 1991 to 1996, key studies on the reutilization, treatment, and disposal technology of hazardous wastes have been incorporated into the national plan for environmental protection science and technology. At present, the research achievements have been accomplished, have passed national approval, and have been accepted. The author of this paper, as leader of the national group for this research work, expounds the newest achievements of the studies involving four parts: (1) the reutilization technology of electroplating sludge, including the ion-exchange process for recovering the sludge and waste liquor for producing chromium tanning agent and extracting chromium and colloidal protein from tanning waste residue; on the recovery of heavy metals from the electroplating waste liquor with microbic purification; on the demonstration project of producing modified plastics from the sludge and the waste plastics; and on the demonstration of the recovery of heavy metals from waste electroplating sludge by using the ammonia-leaching process; (2) the demonstrative research of reutilization technology of chromium waste residues, including production of self-melting ore and smelting of chromium-containing pig iron, and of pyrolytic detoxification of the residue with cyclone furnace; (3) the incineration technology of hazardous wastes with successful results of the industrial incinerator system for polychlorinated biphenyls; and (4) the safety landfill technology for disposal of hazardous wastes, with a complete set of technology for pretreatment, selection of the site, development of the antipercolating materials, and design and construction of the landfill. Only a part of the achievements is introduced in this paper, most of which has been built and is being operated for demonstration to further spreading application and accumulate experience. 6 refs., 7 figs., 6 tabs.

  12. H.R. 4984: A Bill to amend the Solid Waste Disposal Act to regulate the use of hazardous waste as fuel for energy recovery, the operation of cement kilns that burn hazardous waste as fuel, the disposal of cement kiln dust waste, and related activities. Introduced in the House of Representatives, One Hundred Third Congress, Second Session, August 18, 1994

    SciTech Connect

    1994-12-31

    The report H.R. 4984 is a bill to amend the Solid Waste Disposal Act to regulate the use of hazardous waste as fuel for energy recovery, the operation of cement kilns that burn hazardous waste as fuel, the disposal of cement kiln dust waste. The proposed legislative text is provided.

  13. LABORATORY INVESTIGATION OF RESIDUAL LIQUID ORGANICS FROM SPILLS, LEAKS, AND THE DISPOSAL OF HAZARDOUS WASTES IN GROUNDWATER

    EPA Science Inventory

    Organic liquids that are essentially immiscible with water migrate through the subsurface under the influence of capillary, viscous, and buoyancy forces. These liquids originate from the improper disposal of hazardous wastes, and the spills and leaks of petroleum hydrocarbons a...

  14. Hazard Classification of the Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect

    Boyd D. Christensen

    2012-05-01

    The Battelle Energy Alliance (BEA) at the Idaho National Laboratory (INL) is constructing a new facility to replace remote-handled low-level radioactive waste disposal capability for INL and Naval Reactors Facility operations. Current disposal capability at the Radioactive Waste Management Complex (RWMC) will continue until the facility is full or closed for remediation (estimated at approximately fiscal year 2015). Development of a new onsite disposal facility is the highest ranked alternative and will provide RH-LLW disposal capability and will ensure continuity of operations that generate RH-LLW for the foreseeable future. As a part of establishing a safety basis for facility operations, the facility will be categorized according to DOE-STD-1027-92. This classification is important in determining the scope of analyses performed in the safety basis and will also dictate operational requirements of the completed facility. This paper discusses the issues affecting hazard classification in this nuclear facility and impacts of the final hazard categorization.

  15. Environmentally sound disposal of wastes: Multipurpose offshore islands offer safekeeping, continuous monitoring of hazardous, nuclear wastes

    SciTech Connect

    Tengelsen, W.E.

    1995-05-01

    Solid wastes have become a health threat to all municipalities and safe disposal costs are increasing for coastal cities. Onland dumps have become a continuing source of pollution, existing landfill sites should be eliminated. Ocean dumping is rules out because of the threat to aquatic resources but pollutants deep-sixed in the past should be isolated from the ocean environment before they further harm the aquatic food chain. And there are still no totally satisfactory solutions for nuclear waste disposal, especially for high-level wastes. A practical answer to our waste disposal problem is to build waterproof storage vault islands offshore to safely contain all past and futuer solid wastes so they would not mix with the ocean waters. Contaminated dredged spoil and construction materials can be safely included, in turn providing free shielding for nuclear waste stored in special vault chambers. Offshore islands can be built to ride out erthquakes and the ocean`s waters provide a stable temperature environment. Building modular structures in large quantities reduces per-unit costs; implementing these islands creates quality jobs and an economic stimulus. The island`s tops become valuable waterfront property for commercial, institutional, educational, infrastructural, and recreational uses; tenants and users provide the revenues that make this island concept self-supporting.

  16. Transport and transportation pathways of hazardous chemicals from solid waste disposal.

    PubMed Central

    Van Hook, R I

    1978-01-01

    To evaluate the impact of hazardous chemicals in solid wastes on man and other organisms, it is necessary to have information about amounts of chemical present, extent of exposure, and chemical toxicity. This paper addresses the question of organism exposure by considering the major physical and biological transport pathways and the physicochemical and biochemical transformations that may occur in sediments, soils, and water. Disposal of solid wastes in both terrestrial and oceanic environments is considered. Atmospheric transport is considered for emissions from incineration of solid wastes and for wind resuspension of particulates from surface waste deposits. Solid wastes deposited in terrestrial environments are subject to leaching by surface and ground waters. Leachates may then be transported to other surface waters and drinking water aquifers through hydrologic transport. Leachates also interact with natural organic matter, clays, and microorganisms in soils and sediments. These interactions may render chemical constituents in leachates more or less mobile, possibly change chemical and physical forms, and alter their biological activity. Oceanic waste disposal practices result in migration through diffusion and ocean currents. Surface area-to-volume ratios play a major role in the initial distributions of chemicals in the aquatic environment. Sediments serve as major sources and sinks of chemical contaminants. Food chain transport in both aquatic and terrestrial environments results in the movement of hazardous chemicals from lower to higher positions in the food web. Bioconcentration is observed in both terrestrial and aquatic food chains with certain elements and synthetic organics. Bioconcentration factors tend to be higher for synthetic organics, and higher in aquatic than in terrestrial systems. Biodilution is not atypical in terrestrial environments. Synergistic and antagonistic actions are common occurrences among chemical contaminants and can be particularly important toxicity considerations in aquatic environments receiving runoff from several terrestrial sources. PMID:367772

  17. Transport and transportation pathways of hazardous chemicals from solid waste disposal.

    PubMed

    Van Hook, R I

    1978-12-01

    To evaluate the impact of hazardous chemicals in solid wastes on man and other organisms, it is necessary to have information about amounts of chemical present, extent of exposure, and chemical toxicity. This paper addresses the question of organism exposure by considering the major physical and biological transport pathways and the physicochemical and biochemical transformations that may occur in sediments, soils, and water. Disposal of solid wastes in both terrestrial and oceanic environments is considered. Atmospheric transport is considered for emissions from incineration of solid wastes and for wind resuspension of particulates from surface waste deposits. Solid wastes deposited in terrestrial environments are subject to leaching by surface and ground waters. Leachates may then be transported to other surface waters and drinking water aquifers through hydrologic transport. Leachates also interact with natural organic matter, clays, and microorganisms in soils and sediments. These interactions may render chemical constituents in leachates more or less mobile, possibly change chemical and physical forms, and alter their biological activity. Oceanic waste disposal practices result in migration through diffusion and ocean currents. Surface area-to-volume ratios play a major role in the initial distributions of chemicals in the aquatic environment. Sediments serve as major sources and sinks of chemical contaminants. Food chain transport in both aquatic and terrestrial environments results in the movement of hazardous chemicals from lower to higher positions in the food web. Bioconcentration is observed in both terrestrial and aquatic food chains with certain elements and synthetic organics. Bioconcentration factors tend to be higher for synthetic organics, and higher in aquatic than in terrestrial systems. Biodilution is not atypical in terrestrial environments. Synergistic and antagonistic actions are common occurrences among chemical contaminants and can be particularly important toxicity considerations in aquatic environments receiving runoff from several terrestrial sources. PMID:367772

  18. Waste disposal package

    DOEpatents

    Smith, M.J.

    1985-06-19

    This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

  19. CHARACTERIZATION OF DEFENSE NUCLEAR WASTE USING HAZARDOUS WASTE GUIDANCE. APPLICATIONS TO HANFORD SITE ACCELERATED HIGH-LEVEL WASTE TREATMENT AND DISPOSAL MISSION0

    SciTech Connect

    Hamel, William; Huffman, Lori; Lerchen, Megan; Wiemers, Karyn

    2003-02-27

    Federal hazardous waste regulations were developed for management of industrial waste. These same regulations are also applicable for much of the nation's defense nuclear wastes. At the U.S. Department of Energy's (DOE) Hanford Site in southeast Washington State, one of the nation's largest inventories of nuclear waste remains in storage in large underground tanks. The waste's regulatory designation and its composition and form constrain acceptable treatment and disposal options. Obtaining detailed knowledge of the tank waste composition presents a significant portion of the many challenges in meeting the regulatory-driven treatment and disposal requirements for this waste. Key in applying the hazardous waste regulations to defense nuclear wastes is defining the appropriate and achievable quality for waste feed characterization data and the supporting evidence demonstrating that applicable requirements have been met at the time of disposal. Application of a performance-based approach to demonstrating achievable quality standards will be discussed in the context of the accelerated high-level waste treatment and disposal mission at the Hanford Site.

  20. 40 CFR 257.5 - Disposal standards for owners/operators of non-municipal non-hazardous waste disposal units that...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... defined in 40 CFR 261.5. Non-municipal non-hazardous waste disposal units that meet the requirements of... permit program for 40 CFR part 257, subpart B and 40 CFR part 258 regulated facilities. Uppermost aquifer... Quantity Generator (CESQG) waste. 257.5 Section 257.5 Protection of Environment ENVIRONMENTAL...

  1. 40 CFR 257.5 - Disposal standards for owners/operators of non-municipal non-hazardous waste disposal units that...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... defined in 40 CFR 261.5. Non-municipal non-hazardous waste disposal units that meet the requirements of... permit program for 40 CFR part 257, subpart B and 40 CFR part 258 regulated facilities. Uppermost aquifer... Quantity Generator (CESQG) waste. 257.5 Section 257.5 Protection of Environment ENVIRONMENTAL...

  2. 40 CFR 257.5 - Disposal standards for owners/operators of non-municipal non-hazardous waste disposal units that...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... defined in 40 CFR 261.5. Non-municipal non-hazardous waste disposal units that meet the requirements of... permit program for 40 CFR part 257, subpart B and 40 CFR part 258 regulated facilities. Uppermost aquifer... Quantity Generator (CESQG) waste. 257.5 Section 257.5 Protection of Environment ENVIRONMENTAL...

  3. 40 CFR 257.5 - Disposal standards for owners/operators of non-municipal non-hazardous waste disposal units that...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... defined in 40 CFR 261.5. Non-municipal non-hazardous waste disposal units that meet the requirements of... permit program for 40 CFR part 257, subpart B and 40 CFR part 258 regulated facilities. Uppermost aquifer... Quantity Generator (CESQG) waste. 257.5 Section 257.5 Protection of Environment ENVIRONMENTAL...

  4. Control technology assessment of hazardous waste disposal operations in chemicals manufacturing: indepth survey report of Tennessee Eastman Company, Kingsport, Tennessee

    SciTech Connect

    Anastas, M.

    1984-01-01

    An in depth survey was conducted to assess control technology at the hazardous waste disposal operations of Tennessee Eastman Company (SIC-2800), Kingsport, Tennessee in November 1982. Personal and general air samples were analyzed for organic solvents at various sites. Low concentrations of acetic acid (64197), toluene (108883), and acetone (67641) were detected. The design of the incineration facility contained features for the prevention of spills and leaks, fires, and explosions. The features consisted of interlocks and alarms, specialized instrumentation and equipment that detected leaks and spills of liquid wastes, general ventilation in solid wastes storage area, a kiln overpressure relief vent, and a safety belt for workers disposing of fiberglass and sample bottles. Workers at the kiln routinely maintained records on all hazardous wastes that were stored or disposed of. Record

  5. 40 CFR Appendix Vii to Part 268 - LDR Effective Dates of Surface Disposed Prohibited Hazardous Wastes

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-disposed elemental phosphorus processing wastes May 26, 2000. D004 Newly identified D004 and mineral processing wastes Aug. 24, 1998. D004 Mixed radioactive/newly identified D004 or mineral processing wastes May 26, 2000 D005 Newly identified D005 and mineral processing wastes Aug. 24, 1998. D005...

  6. 40 CFR Appendix Vii to Part 268 - LDR Effective Dates of Surface Disposed Prohibited Hazardous Wastes

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-disposed elemental phosphorus processing wastes May 26, 2000. D004 Newly identified D004 and mineral processing wastes Aug. 24, 1998. D004 Mixed radioactive/newly identified D004 or mineral processing wastes May 26, 2000 D005 Newly identified D005 and mineral processing wastes Aug. 24, 1998. D005...

  7. 40 CFR Appendix Vii to Part 268 - LDR Effective Dates of Surface Disposed Prohibited Hazardous Wastes

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-disposed elemental phosphorus processing wastes May 26, 2000. D004 Newly identified D004 and mineral processing wastes Aug. 24, 1998. D004 Mixed radioactive/newly identified D004 or mineral processing wastes May 26, 2000 D005 Newly identified D005 and mineral processing wastes Aug. 24, 1998. D005...

  8. Hazardous Wastes--New Developments.

    ERIC Educational Resources Information Center

    Rogers, Harvey W.

    1979-01-01

    The need for effective disposal of hazardous medical and pathological wastes is discussed and the results of a test of five different models of incinerators in disposing of such wastes is presented. (MJB)

  9. Scoping evaluation of the technical capabilities of DOE sites for disposal of hazardous metals in mixed low-level waste

    SciTech Connect

    Gruebel, M.M.; Waters, R.D.; Langkopf, B.S.

    1997-05-01

    A team of analysts designed and conducted a scoping evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of the hazardous metals in mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Eight hazardous metals were evaluated: arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver. The analysis considered transport only through the groundwater pathway. The results are reported as site-specific estimates of maximum concentrations of each hazardous metal in treated mixed low-level waste that do not exceed the performance measures established for the analysis. Also reported are site-specific estimates of travel times of each hazardous metal to the point of compliance.

  10. Nuclear Waste Disposal

    SciTech Connect

    Gee, Glendon W.; Meyer, Philip D.; Ward, Andy L.

    2005-01-12

    Nuclear wastes are by-products of nuclear weapons production and nuclear power generation, plus residuals of radioactive materials used by industry, medicine, agriculture, and academia. Their distinctive nature and potential hazard make nuclear wastes not only the most dangerous waste ever created by mankind, but also one of the most controversial and regulated with respect to disposal. Nuclear waste issues, related to uncertainties in geologic disposal and long-term protection, combined with potential misuse by terrorist groups, have created uneasiness and fear in the general public and remain stumbling blocks for further development of a nuclear industry in a world that may soon be facing a global energy crisis.

  11. U.S. EPA'S STRATEGY FOR GROUND WATER QUALITY MONITORING AT HAZARDOUS WASTE LAND DISPOSAL FACILITIES LOCATED IN KARST TERRANES

    EPA Science Inventory

    Ground water monitoring of hazardous waste land disposal units by a network of wells is ineffective when located in karstic terranes. The U.S. Environmental Protection Agency (EPA) is currently proposing to modify its current ground water quality monitoring requirement of one upg...

  12. 40 CFR 257.5 - Disposal standards for owners/operators of non-municipal non-hazardous waste disposal units that...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CFR 261.5. Non-municipal non-hazardous waste disposal units that meet the requirements of this section... administrative officer of the lead state agency responsible for implementing the state permit program for 40 CFR part 257, subpart B and 40 CFR part 258 regulated facilities. Uppermost aquifer means the...

  13. Earth reencounter probabilities for aborted space disposal of hazardous nuclear waste

    NASA Technical Reports Server (NTRS)

    Friedlander, A. L.; Feingold, H.

    1977-01-01

    A quantitative assessment is made of the long-term risk of earth reencounter and reentry associated with aborted disposal of hazardous material in the space environment. Numerical results are presented for 10 candidate disposal options covering a broad spectrum of disposal destinations and deployment propulsion systems. Based on representative models of system failure, the probability that a single payload will return and collide with earth within a period of 250,000 years is found to lie in the range .0002-.006. Proportionately smaller risk attaches to shorter time intervals. Risk-critical factors related to trajectory geometry and system reliability are identified as possible mechanisms of hazard reduction.

  14. Hazardous Wastes from Homes.

    ERIC Educational Resources Information Center

    Lord, John

    The management of waste materials has become more complex with the increase in human population and the development of new substances. This illustrated booklet traces the history of waste management and provides guidelines for individuals and communities in disposing of certain hazardous wastes safely. It addresses such topics as: (1) how people

  15. Hazardous Wastes from Homes.

    ERIC Educational Resources Information Center

    Lord, John

    The management of waste materials has become more complex with the increase in human population and the development of new substances. This illustrated booklet traces the history of waste management and provides guidelines for individuals and communities in disposing of certain hazardous wastes safely. It addresses such topics as: (1) how people…

  16. CHARACTERIZATION OF TREATMENT RESIDUES FROM HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES

    EPA Science Inventory

    To implement the Congressionally mandated land disposal prohibitions of the 1984 amendments to the Resource Conservation and Recovery Act (RCRA), EPA must determine whether adequate treatment technologies exist, what wastes can be treated and how effectively, what residues and en...

  17. Transport and fate of organic wastes in groundwater at the Stringfellow hazardous waste disposal site, southern California

    USGS Publications Warehouse

    Leenheer, J.A.; Hsu, J.; Barber, L.B.

    2001-01-01

    In January 1999, wastewater influent and effluent from the pretreatment plant at the Stringfellow hazardous waste disposal site were sampled along with groundwater at six locations along the groundwater contaminant plume. The objectives of this sampling and study were to identify at the compound class level the unidentified 40-60% of wastewater organic contaminants, and to determine what organic compound classes were being removed by the wastewater pretreatment plant, and what organic compound classes persisted during subsurface waste migration. The unidentified organic wastes are primarily chlorinated aromatic sulfonic acids derived from wastes from DDT manufacture. Trace amounts of EDTA and NTA organic complexing agents were discovered along with carboxylate metabolites of the common alkylphenolpolyethoxylate plasticizers and nonionic surfactants. The wastewater pretreatment plant removed most of the aromatic chlorinated sulfonic acids that have hydrophobic neutral properties, but the p-chlorobenzenesulfonic acid which is the primary waste constituent passed through the pretreatment plant and was discharged in the treated wastewaters transported to an industrial sewer. During migration in groundwater, p-chlorobenzenesulfonic acid is removed by natural remediation processes. Wastewater organic contaminants have decreased 3- to 45-fold in the groundwater from 1985 to 1999 as a result of site remediation and natural remediation processes. The chlorinated aromatic sulfonic acids with hydrophobic neutral properties persist and have migrated into groundwater that underlies the adjacent residential community. Copyright ?? 2001 .

  18. HAZARDOUS WASTE LANDFILL RESEARCH

    EPA Science Inventory

    The hazardous waste land disposal research program is collecting data necessary to support implementation of disposal guidelines mandated by the 'Resource Conservation and Recovery Act of 1976' (RCRA) PL 94-580. This program relating to the categorical area of landfills, surface ...

  19. History and geophysical description of hazardous waste disposal Area A: Technical Area 21

    SciTech Connect

    Gerety, M.; Nyhan, J.; Oliver, R.

    1989-10-01

    Los Alamos National Laboratory has been disposing of a variety of radioactive and hazardous wastes in pits and trenches around Los Alamos since 1944. The Area A site history and engineering drawings presented in this report, along with the geophysical results, demonstrate that much of the historical information merely indicates what was originally planned for the site and does not represent the final distribution of material. This report demonstrates that geophysical remote sensing can determine pit and trench geometry, accurately locate material, and determine the physical properties of sites and buried material. The geophysical techniques illustrated in this report are magnetics, electromagnetics, resistivity, radar, and self-potential. Each of the techniques has its own merit; combining the techniques is the only way to obtain an accurate image of the site and its properties. At Area A, geophysical measurements were definitive in locating and characterizing all known targets as well as discovering several undocumented ones. With these data, we can safely perform necessary remedial activities such as monitoring, drilling, and relocating material without the fear of breaching an unknown or misplaced storage facility. Furthermore, these data are obtained remotely and without disrupting the ground surface. 20 refs., 58 figs.

  20. Health effects of hazardous chemical waste disposal sites in New Jersey and in the United States: a review

    SciTech Connect

    Najem, G.R.; Cappadona, J.L. )

    1991-11-01

    The hazardous chemical waste disposal issue is a widespread problem. Large quantities of chemical wastes have been produced by the chemical industries in the past forty years. Estimates now number disposal sites in the United States at least 30,000. The public and scientists have grown increasingly concerned about the effects of these waste disposal sites not only on the environment, but also on the human body. In this article, we review the number of hazardous chemical waste disposal sites (HCWDS), their construction, difficulties in defining their contents, and the establishment of the Superfund Act. We then discuss various studies in the literature that have attempted to define adverse health effects of HCWDS, particularly those examining Love Canal and sites in New Jersey. In our conclusions, we note the difficulties in establishing direct causal links between HCWDS and dangerous health effects. We suggest that more epidemiological studies are needed, with improved methodology for gathering complete data and studying large samples. Both positive and negative findings of epidemiological studies are important. Positive results will substantiate an association of health effects with HCWDS. Negative results may reduce the concerns of people living near HCWDS. Future investigators need sufficient information about HCWDS materials, possible routes of exposure, and measurements of exposure, as well as sufficient statistical power to detect even modest associations of health effects with HCWDS exposure.71 references.

  1. Health effects of hazardous chemical waste disposal sites in New Jersey and in the United States: a review.

    PubMed

    Najem, G R; Cappadona, J L

    1991-01-01

    The hazardous chemical waste disposal issue is a widespread problem. Large quantities of chemical wastes have been produced by the chemical industries in the past forty years. Estimates now number disposal sites in the United States at least 30,000. The public and scientists have grown increasingly concerned about the effects of these waste disposal sites not only on the environment, but also on the human body. In this article, we review the number of hazardous chemical waste disposal sites (HCWDS), their construction, difficulties in defining their contents, and the establishment of the Superfund Act. We then discuss various studies in the literature that have attempted to define adverse health effects of HCWDS, particularly those examining Love Canal and sites in New Jersey. In our conclusions, we note the difficulties in establishing direct causal links between HCWDS and dangerous health effects. We suggest that more epidemiological studies are needed, with improved methodology for gathering complete data and studying large samples. Both positive and negative findings of epidemiological studies are important. Positive results will substantiate an association of health effects with HCWDS. Negative results may reduce the concerns of people living near HCWDS. Future investigators need sufficient information about HCWDS materials, possible routes of exposure, and measurements of exposure, as well as sufficient statistical power to detect even modest associations of health effects with HCWDS exposure. PMID:1790043

  2. H. R. 2670: A bill to amend the Solid Waste Disposal Act to regulate ash from municipal solid waste incinerators as a hazardous waste, introduced in the US House of Representatives, One Hundred Second Congress, First Session, June 18, 1991

    SciTech Connect

    Not Available

    1991-01-01

    This bill was introduced into the US House of Representatives on June 18, 1991 to amend the Solid Waste disposal Act to regulate ash from municipal solid waste incinerators as a hazardous waste. When garbage is burned, toxic materials are concentrated in the ash. If the ash is disposed of in a landfill, these toxic materials can contaminate the ground water or surface water by leaching toxic materials from the ash. In addition, disposing of contaminated ash improperly can pose a health hazard. New authority is provided for regulating incinerator ash as a hazardous waste.

  3. REVISION AND UPDATE OF METHODOLOGY FOR ASSESSING EXPOSURE AND RISK FROM LAND DISPOSAL OF HAZARDOUS WASTES

    EPA Science Inventory

    As a result of their regulatory reform efforts, the Office of Solid Waste (OS) has recently (11/99) introduced a new open-architecture, multimedia, multi-pathway, and multi-receptor exposure and risk assessment methodology designed to support their Hazardous Waste Identification ...

  4. 40 CFR 264.555 - Disposal of CAMU-eligible wastes in permitted hazardous waste landfills.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements of 40 CFR 268.7(a)(4); off-site facilities treating CAMU-eligible wastes to comply with this... meeting the requirements of RCRA 40 CFR part 268, if the conditions in paragraphs (a)(1) through (3) of... threat at the remediation site. (3) The landfill receiving the CAMU-eligible waste must have a...

  5. 40 CFR 264.555 - Disposal of CAMU-eligible wastes in permitted hazardous waste landfills.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements of 40 CFR 268.7(a)(4); off-site facilities treating CAMU-eligible wastes to comply with this... meeting the requirements of RCRA 40 CFR part 268, if the conditions in paragraphs (a)(1) through (3) of... threat at the remediation site. (3) The landfill receiving the CAMU-eligible waste must have a...

  6. 40 CFR 264.555 - Disposal of CAMU-eligible wastes in permitted hazardous waste landfills.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... that he or she has chosen not to object, the facility may not receive the waste, notwithstanding 40 CFR... requirements of 40 CFR 268.7(a)(4); off-site facilities treating CAMU-eligible wastes to comply with this... meeting the requirements of RCRA 40 CFR part 268, if the conditions in paragraphs (a)(1) through (3)...

  7. 40 CFR 264.555 - Disposal of CAMU-eligible wastes in permitted hazardous waste landfills.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... that he or she has chosen not to object, the facility may not receive the waste, notwithstanding 40 CFR... requirements of 40 CFR 268.7(a)(4); off-site facilities treating CAMU-eligible wastes to comply with this... meeting the requirements of RCRA 40 CFR part 268, if the conditions in paragraphs (a)(1) through (3)...

  8. 40 CFR 264.555 - Disposal of CAMU-eligible wastes in permitted hazardous waste landfills.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... that he or she has chosen not to object, the facility may not receive the waste, notwithstanding 40 CFR... requirements of 40 CFR 268.7(a)(4); off-site facilities treating CAMU-eligible wastes to comply with this... meeting the requirements of RCRA 40 CFR part 268, if the conditions in paragraphs (a)(1) through (3)...

  9. Chemical Waste Management and Disposal.

    ERIC Educational Resources Information Center

    Armour, Margaret-Ann

    1988-01-01

    Describes simple, efficient techniques for treating hazardous chemicals so that nontoxic and nonhazardous residues are formed. Discusses general rules for management of waste chemicals from school laboratories and general techniques for the disposal of waste or surplus chemicals. Lists specific disposal reactions. (CW)

  10. LAND DISPOSAL, REMEDIAL ACTION, INCINERATION AND TREATMENT OF HAZARDOUS WASTE. PROCEEDINGS OF THE ANNUAL RESEARCH SYNPOSIUM (14TH) HELD AT CINCINNATI, OHIO, MAY 9-11, 1988

    EPA Science Inventory

    The purpose of the Symposium was to present the latest significant research findings from ongoing and recently completed projects funded by the Risk Reduction Engineering Laboratory (RREL). These Proceedings are organized in four sections: Session A, Hazardous Waste Land Disposal...

  11. UNCERTAINTY AND SENSITIVITY ANALYSES FOR INTEGRATED HUMAN HEALTH AND ECOLOGICAL RISK ASSESSMENT OF HAZARDOUS WASTE DISPOSAL

    EPA Science Inventory

    While there is a high potential for exposure of humans and ecosystems to chemicals released from hazardous waste sites, the degree to which this potential is realized is often uncertain. Conceptually divided among parameter, model, and modeler uncertainties imparted during simula...

  12. PERFORMANCE ASSESSMENT OF INCINERATORS AND HIGH TEMPERATURE INDUSTRIAL PROCESSES DISPOSING HAZARDOUS WASTE IN THE UNITED STATES

    EPA Science Inventory

    Since 1982, the U.S. Environmental Protection Agency (EPA) has been conducting performance assessments of hazardous waste thermal destruction facilities in the United States. The principal objective of these tests has been to characterize emissions and determine if these faciliti...

  13. ENVIRONMENTAL IMPACTS ASSOCIATED WITH STORAGE, TREATMENT, AND DISPOSAL OF SOLID RADIOACTIVE AND CHEMICALLY HAZARDOUS WASTE AT THE HANFORD SITE, RICHLAND, WASHINGTON

    SciTech Connect

    Johnson, Wayne L.; Nelson, Iral C.; Payson, David R.; Rhoads, Kathleen

    2004-03-01

    The Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement (HSW EIS) provides environmental and technical information concerning U.S. Department of Energy (DOE) proposed waste management practices for certain solid radioactive wastes at the Hanford Site through the year 2046. The HSW EIS covers four primary aspects of waste management at Hanford storage, treatment, transportation, and disposal. It also addresses four types of solid waste low-level waste, mixed low-level waste that contains both radioactive and chemically hazardous constituents, immobilized low-activity waste from processing Hanford tank waste, and transuranic waste. The HSW EIS was prepared to assist DOE in determining which specific Hanford Site facilities will continue to be used, will be modified, or need to be constructed, to safely treat, store, and dispose of these wastes.

  14. Waste disposal options report. Volume 1

    SciTech Connect

    Russell, N.E.; McDonald, T.G.; Banaee, J.; Barnes, C.M.; Fish, L.W.; Losinski, S.J.; Peterson, H.K.; Sterbentz, J.W.; Wenzel, D.R.

    1998-02-01

    This report summarizes the potential options for the processing and disposal of mixed waste generated by reprocessing spent nuclear fuel at the Idaho Chemical Processing Plant. It compares the proposed waste-immobilization processes, quantifies and characterizes the resulting waste forms, identifies potential disposal sites and their primary acceptance criteria, and addresses disposal issues for hazardous waste.

  15. Chrome-bearing hazardous waste

    SciTech Connect

    Marvin, C.G. )

    1993-06-01

    HSWA (Hazardous and Solid Waste Amendments) established statutory deadlines for prohibition of land disposal of three categories of waste which EPA has labeled the first-third, second-third, and third-third. Effective November 8, 1986, the statute prohibits the land disposal (except by deep-well injection) of dioxin-containing hazardous wastes and solvent-containing hazardous wastes (first-third rule wastes). Effective July 8, 1987, the statue prohibits disposal (except deep-well injection) for the second-third listing of hazardous wastes, called the California list. The third-third listing of hazardous wastes includes other scheduled and newly identified wastes considered hazardous under 400 CFR, 268.12. Third-third wastes can be disposed if respective treatment standards established by EPA are met. The focus of this paper is one particular waste on the third-third list, that is, land disposal restrictions for D007 chrome waste. The 200-plus page Final Rule for third-third waste was approved by EPA May 8, 1990, and was published in the June 1, 1990, Federal Register.

  16. Approach to the vadose zone monitoring in hazardous and solid waste disposal facilities

    NASA Astrophysics Data System (ADS)

    Twardowska, Irena

    2004-03-01

    In the solid waste (SW)disposal sites, in particular at the unlined facilities, at the remediated or newly-constructed units equipped with novel protective/reactive permeable barriers or at lined facilities with leachate collection systems that are prone to failure, the vadose zone monitoring should comprise besides the natural soil layer beneath the landfill, also the anthropogenic vadose zone, i.e. the waste layer and pore solutions in the landfill. The vadose zone screening along the vertical profile of SW facilities with use of direct invasive soil-core and soil-pore liquid techniques shows vertical downward redistribution of inorganic (macroconstituents and heavy metals) and organic (PAHs) contaminant loads in water infiltrating through the waste layer. These loads can make ground water down-gradient of the dump unfit for any use. To avoid damage of protective/reactive permeable barriers and liners, an installation of stationary monitoring systems along the waste layer profile during the construction of a landfill, which are amenable to generate accurate data and information in a near-real time should be considered including:(i) permanent samplers of pore solution, with a periodic pump-induced transport of collected solution to the surface, preferably with instant field measurements;(ii)chemical sensors with continuous registration of critical parameters. These techniques would definitely provide an early alert in case when the chemical composition of pore solution percolating downward the waste profile shows unfavorable transformations, which indicate an excessive contaminant load approaching ground water. The problems concerning invasive and stationary monitoring of the vadose zone in SW disposal facilities will be discussed at the background of results of monitoring data and properties of permeable protective/reactive barriers considered for use.

  17. Household hazardous waste disposal project. Metro toxicant program report number 1a. Summary report. Final report 1981-82

    SciTech Connect

    Ridgley, S.M.; Galvin, D.V.

    1982-08-01

    The Household Hazardous Waste Disposal Project was an interagency effort to reduce the amount of toxicants entering the environment by developing a control plan for the safe disposal of small quantities of household chemicals. This Summary provides an overview of this problem and the steps taken to develop the control plan. The legal framework controlling the contents, labelling, and disposal of household toxic substances is reviewed in some detail. A brief examination of the contents, health effects, and environmental fate of four classes of consumer products (pesticides, paint products, household cleaners, and automotive products) is provided. The literature was reviewed for studies which document the potential for environmental contamination from disposal of these consumer products through landfilling, septic tank, or sewerage system disposal. A synopsis is provided of the surveys and pilot project that were conducted in the local Seattle metropolitan area. Finally, the elements of the regional control plan are described along with recommendations for future action. Similar programs around the country are noted and contacts provided.

  18. Editor's Page: Management of Hazardous Wastes.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1980

    1980-01-01

    Discussed is the problem of management of hazardous waste disposal. Included are various federal laws and congressional kills pertinent to the problem of hazardous waste disposal. Suggested is cooperation between government and the chemical industry to work for a comprehensive solution to waste disposal. (DS)

  19. HAZWDDD (Hazardous Waste Development, Demonstration, and Disposal): An exercise in corporate planning

    SciTech Connect

    McGinnis, C.P.; Pechin, W.H.

    1988-01-01

    Both Energy Systems corporate management and US Department of Energy's Oak Ridge Operations Office (DOE-ORO) management have recognized the seriousness of these problems and have established several programs to determine acceptable courses of action. A plan has been developed for low-level radioactive waste (LLW), and an active dialogue pertaining to LLW is maintained with the state and federal regulators. During 1986, DOE-ORO and Energy Systems identified the need for a plan to address hazardous and mixed wastes. Each installation supports the concept of HAZWDDD through funding and the development of individual HAZWDDD implementation plans. A corporate plan is being developed to integrate the issues discussed in the five installation plans. This paper describes the approach taken in collecting the necessary information for the plan, some of the techniques used in analyzing the information provided, preliminary data that have been collected in preparation of this plan, the identification of common concerns and issues, and the integration of this information into a corporate approach to mixed and hazardous waste management. 1 fig., 5 tabs.

  20. Coping with a community stressor: a proposed hazardous waste disposal facility

    SciTech Connect

    Bachrach, K.M.

    1983-01-01

    This study examined a number of factors believed to influence community involvement. Residents of a rural community near Phoenix, Arizona, where a hazardous waste facility had been proposed to built, were interviewed at home in August 1982. Most residents were chosen at random (n = 70) while a smaller number (n = 29) were selected because of known involvement in activities regarding the hazardous waste facility. Residents who perceived the facility as a threat to their health, safety, and general well-being employed a number of coping strategies. Strategies to change or alter the source of stress, problem-focused coping, were associated with greater community involvement. Strategies to regulate one's emotional response to stress, emotion-focused coping, were associated with less community involvement. Increased self-efficacy and sense of community led to increased community involvement. Both measures indirectly influenced community involvement through different modes of coping. Self-efficacy was negatively related to emotion-focused coping while sense of community was positively related to problem-focused coping. Increased demoralization was associated with decreased self-efficacy, increased emotion-focused coping, and decreased community involvement. The results suggest that the psychologically most fragile residents are underrepresented in community activities, and that the use of high levels of emotion-focused coping may have been maladaptive.

  1. Public health investigations of hazardous organic chemical waste disposal in the United States.

    PubMed Central

    Levine, R; Chitwood, D D

    1985-01-01

    Despite marked national concern, the number of published public health investigations of organic chemical hazardous wastes is small. Moreover, the extant literature provides little or no convincing evidence, either positive or negative, as to the question whether waste sites are harmful to human health. In this review, available literature is characterized as to time, place, and person. The majority of studies began 2 years or more after the end of exposure and 10 years after the start of exposure. Vast geographic areas of exposure have never been investigated. The number of study subjects evaluated has generally been too small to detect rare but important effects. The most common determinant of sites chosen for investigation has been the concern of local citizen groups. Several hypotheses are advanced to explain this pattern: methodologic and logistic difficulties; extensive litigation surrounding many waste sites; governmental reorganization which transferred environmental health from public health authority in the 1970s; and the presence of forces which have worked to block active community diagnosis. PMID:4085445

  2. Public health investigations of hazardous organic chemical waste disposal in the United States.

    PubMed

    Levine, R; Chitwood, D D

    1985-10-01

    Despite marked national concern, the number of published public health investigations of organic chemical hazardous wastes is small. Moreover, the extant literature provides little or no convincing evidence, either positive or negative, as to the question whether waste sites are harmful to human health. In this review, available literature is characterized as to time, place, and person. The majority of studies began 2 years or more after the end of exposure and 10 years after the start of exposure. Vast geographic areas of exposure have never been investigated. The number of study subjects evaluated has generally been too small to detect rare but important effects. The most common determinant of sites chosen for investigation has been the concern of local citizen groups. Several hypotheses are advanced to explain this pattern: methodologic and logistic difficulties; extensive litigation surrounding many waste sites; governmental reorganization which transferred environmental health from public health authority in the 1970s; and the presence of forces which have worked to block active community diagnosis. PMID:4085445

  3. ANALYSIS OF GEOTHERMAL WASTES FOR HAZARDOUS COMPONENTS

    EPA Science Inventory

    Regulations governing the disposal of hazardous wastes led to an assessment for geothermal solid wastes for potentially hazardous properties. Samples were collected from three active geothermal sites in the western United States: The Geysers, Imperial Valley, and northwestern Nev...

  4. Organizational approach to estimating public resistance at proposed disposal sites for radioactive and hazardous wastes

    SciTech Connect

    Payne, B.A.

    1982-01-01

    This paper was intended to present an organizational approach to predicting collective action and then to apply that approach to the issue of siting of a nuclear or other hazardous waste repository. Borrowing largely from two previously developed models (one by Perry et al. at Battelle's Human Affairs Research Center and one by Charles Tilly), I developed a theoretical model. Indicators were identified for many of the variables, but they are not easily measured, requiring a number of decisions on thresholds which were not clarified in the paper. What remains is further discussion of these measurement problems, evaluation of the confirmation status of the propositions, and empirical tests of the model. In the meantime, however, the discussion should provide assessors of public resistance with a theoretical basis for their thinking and a guide to some revealing indicators of the potential for collective action.

  5. Preliminary investigation on the suitablity of using fiber reinforced concrete in the construction of a hazardous waste disposal vessel

    SciTech Connect

    Ramey, M.R.; Daie-e, G.

    1988-07-01

    There are certain hazardous wastes that must be contained in an extremely secure vessel for transportation and disposal. The vessel, among other things, must be able to withstand relatively large impacts without rupturing. Such containment vessels therefore must be able to absorb substantial amounts of energy during an impact and still perform their function. One of the impacts that the vessel must withstand is a 30-foot fall onto an unyielding surface. For some disposal scenarios it is proposed to encase the waste in a steel enclosure which is to be surrounded by a thick layer of concrete which, in turn, is encased by a relatively thin steel shell. Tests on concrete in compression and flexure, including static, dynamic and impact tests, have shown that low modulus concretes tend to behave in a less brittle manner than higher modulus concretes. Tests also show that fiber reinforced concretes have significantly greater ductility, crack propagation resistance and toughness than conventional concretes. Since it is known that concrete is a reasonably brittle material, it is necessary to do impact tests on sample containment structures consisting of thin-walled metal containers having closed ends which are filled with concrete, grout, or fiber reinforced concrete. This report presents the results of simple tests aimed at observing the behavior of sample containment structures subjected to impacts due to a fall from 30 feet. 8 figs., 4 tabs.

  6. Elimination of the hazards from hazardous wastes.

    PubMed Central

    Gloyna, E F; Taylor, R D

    1978-01-01

    The "hazard" associated with a waste essentially controls the overall engineering approach to finding suitable alternatives for solving potential disposal problems. It should be recognized that all factors affecting environmental equilibrium must be considered, including product sales, process design, financing, pre- and end-of-pipe treatment, residuals management, and ultimate bioaccumulation of residuals. To meet this challenge, a systems approach to waste treatment and residuals disposal provides a logical approach, but this management concept requires a thorough understanding of the important physical and chemical aspects of the problem, as well as many social implications of the resulting decisions. Thus waste management within a plant necessarily involves process control, pretreatment and end-of-pipe treatment. Further, it follows that residuals management from a disposal point-of-view must ultimately embrace what is called the "multi-barrier concept." In essence, hazard elimination occurs in varying degrees during each phase of a properly engineered system. PMID:738249

  7. Deep sea waste disposal

    SciTech Connect

    Kester, D.R.; Burt, W.V.; Capuzzo, J.M.; Park, P.K.; Ketchum, B.W.; Duedall, I.W.

    1985-01-01

    The book presents papers on the marine disposal of wastes. Topics considered include incineration at sea, the modelling and biological effects of industrial wastes, microbial studies of ocean dumping, deep-sea mining wastes, the chemical analysis of ferromanganese nodules, and economic aspects of deep-sea disposal.

  8. Nearshore waste disposal

    SciTech Connect

    Ketchum, B.H.; Capuzzo, J.M.; Burt, W.V.; Duedall, I.W.; Park, P.K.; Kester, D.R.

    1985-01-01

    This book presents papers on the marine disposal of wastes. Topics considered include the impact of waste disposal in nearshore environments, bioavailability and the effects of heavy metals in marine deposits, bioaccumulation of polynuclear aromatic hydrocarbons dams, hydrocarbons in Southern California municipal wastes and their input to coastal waters, geochemical processes, and physical processes.

  9. LAND DISPOSAL OF HAZARDOUS WASTE. PROCEEDINGS OF THE ANNUAL RESEARCH SYMPOSIUM (11TH) HELD AT CINCINNATI, OHIO ON APRIL 29-MAY 1, 1985

    EPA Science Inventory

    The Eleventh Annual Research Symposium on land disposal, remedial action, incineration and treatment of hazardous waste was held in Cincinnati, OH April 29 through May 1, 1985. The purpose of the Symposium was to present the latest significant research findings of ongoing and rec...

  10. LAND DISPOSAL OF HAZARDOUS WASTE. PROCEEDINGS OF THE ANNUAL RESEARCH SYMPOSIUM (10TH) AT FT. MITCHELL, KENTUCKY HELD ON APRIL 3-5, 1984

    EPA Science Inventory

    The Tenth Annual Research Symposium on land disposal, remedial action, incineration and treatment of hazardous waste was held in Fort Mitchell, Kentucky April 3 through 5, 1984. The purpose of the Symposium was to present the latest significant research findings of ongoing and re...

  11. Method of recycling hazardous waste

    SciTech Connect

    1999-11-11

    The production of primary metal from ores has long been a necessary, but environmentally devastating process. Over the past 20 years, in an effort to lessen environmental impacts, the metal processing industry has developed methods for recovering metal values from certain hazardous wastes. However, these processes leave residual molten slag that requires disposal in hazardous waste landfills. A new process recovers valuable metals, metal alloys, and metal oxides from hazardous wastes, such as electric arc furnace (EAF) dust from steel mills, mill scale, spent aluminum pot liners, and wastewater treatment sludge from electroplating. At the same time, the process does not create residual waste for disposal. This new method uses all wastes from metal production processes. These hazardous materials are converted to three valuable products - mineral wool, zinc oxide, and high-grade iron.

  12. Participation in a Household Hazardous Waste Collection Drive and "Before" and "After" Public Knowledge and Disposal Practices: Champaign County.

    ERIC Educational Resources Information Center

    Liebert, Roland J.

    The extent to which households use, store, and dispose of hazardous materials has become a matter of increasing concern but has been rarely assessed. This report provides an assessment of the first household hazardous materials publicity campaign and collection event held in Illinois. The report describes survey results concerning the state of…

  13. PRETREATMENT OF HAZARDOUS WASTE

    EPA Science Inventory

    The report describes the waste applicability and performance characteristics of hazardous waste pretreatment processes. Pretreatment processes are those unit operations which must often be carried out on hazardous wastes to make them amenable to subsequent materials or energy rec...

  14. TREATMENT OF REACTIVE WASTES AT HAZARDOUS WASTE LANDFILLS

    EPA Science Inventory

    This report is intended to provide an information base for personnel accepting hazardous waste at existing disposal sites, or performing remedial action at uncontrolled waste sites, to make the appropriate decisions regarding the disposition of reactive wastes. It emphasizes simp...

  15. Household hazardous waste disposal project. Metro toxicant program report number 1c. Public opinions and actions. Final report 1981-82

    SciTech Connect

    Galvin, D.V.; Guss, L.; Leraas, J.L.

    1982-08-01

    As part of Metro's Household Hazardous Waste Disposal Project, a pilot study was conducted in the Seattle area to determine public awareness of and attitudes about the issues of toxic/hazardous substances in the home and their safe disposal. Metro also wished to determine actual response to a collection program in a brief, neighborhood test. An initial telephone survey was conducted in the Seattle metropolitan area and the test neighborhood. A three-week collection project for pesticides, solvents, and used motor oil was run in the 4000 household neighborhood in February, 1982, followed by a telephone survey to help interpret project results. This report describes the preparation, procedures, and findings of the surveys and pilot study. Recommendations have been developed for a regional education and collection system for household hazardous wastes in the Seattle/King County area.

  16. Toxicants in Consumer Products. Household Hazardous Waste Disposal Project. Metro Toxicant Program No. 1B.

    ERIC Educational Resources Information Center

    Ridgley, Susan M.

    Four general product classes (pesticides, paint products, household cleaners, and automotive products) are reviewed in this document. Each product class is described, and several aspects of the problem associated with product use or disposal are examined, including estimates of volumes used and environmental impacts. Technical data on the specific…

  17. Hazardous waste management.

    PubMed

    Schaefer, M E

    1991-04-01

    The management of waste in the dental office is dictated by the federal, state, and local ordinances in force in the locale in which the office is located. The dentist must first determine what the laws require and then implement the changes in waste management into the office setting. The local component society of the ADA often provides such information; otherwise, the health department of the government branch having jurisdiction over the office locale will either have the information or know where to find it. Once it has been established what constitutes hazardous waste, the next steps are to contain it, store it, and finally dispose of it according to the information gained from the authorities. Storage of sharps should be accomplished in "hard-walled, leak-proof containers," usually red, which can be closed securely when they have been filled, and which are located as close to the point of use as possible. Solid waste should usually be contained in red bags, which are then bagged in a second bag when full or in a hard-walled container. Waste may then be hauled away for disposal by a qualified company that keeps the required records of the waste from the time it leaves the office until final disposal by incineration or burial in an approved landfill. The company chosen to do the hauling should be able to demonstrate that they have appropriate insurance to indemnify your office in the event of a problem while they have the waste in their possession.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2032582

  18. 75 FR 65482 - Approval of a Petition for Exemption From Hazardous Waste Disposal Injection Restrictions to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-25

    ... degree of certainty, that there will be no migration of hazardous constituents out of the injection zone... permeable sedimentary rocks, which provide additional protection from fluid migration into drinking water... that date, provided that a new and complete no-migration petition is received at EPA, Region 5, by...

  19. 75 FR 30392 - Approval of a Petition for Exemption from Hazardous Waste Disposal Injection Restrictions to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-01

    ... certainty, that there will be no migration of hazardous constituents out of the injection zone or into an... fluid migration out of the injection zone within 10,000 years, as required under 40 CFR part 148. The... migration into drinking water sources. EPA issued a draft decision, which described the reasons for...

  20. 77 FR 50622 - Land Disposal Restrictions: Site-Specific Treatment Variance for Hazardous Selenium-Bearing Waste...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-22

    ... evaluated in establishing the treatment standard (51 FR 40576, November 7, 1986) .\\1\\ For such wastes, EPA... properties and solubility curves (62 FR 26041, May 12, 1997). The current treatment standard for a waste... generated and land disposed (59 FR 47980, September 19, 1994). The Agency also stated that it believed...

  1. Radium bearing waste disposal

    SciTech Connect

    Tope, W.G.; Nixon, D.A.; Smith, M.L.; Stone, T.J.; Vogel, R.A.; Schofield, W.D.

    1995-07-01

    Fernald radium bearing ore residue waste, stored within Silos 1 and 2 (K-65) and Silo 3, will be vitrified for disposal at the Nevada Test Site (NTS). A comprehensive, parametric evaluation of waste form, packaging, and transportation alternatives was completed to identify the most cost-effective approach. The impacts of waste loading, waste form, regulatory requirements, NTS waste acceptance criteria, as-low-as-reasonably-achievable principles, and material handling costs were factored into the recommended approach.

  2. Vadose zone monitoring for hazardous waste sites

    SciTech Connect

    Everett, L.G.

    1984-01-01

    This book is a review and evaluation of vadose (unsaturated) zone monitoring. It describes the applicability of selected monitoring methods to hazardous waste disposal sites. Topics covered include: geohydrologic framework of the vadose zone; premonitoring of storage at disposal sites; premonitoring of water movement at disposal sites; active and abandoned site monitoring methods; waste source pollutant characterization; geohydrologic settings for waste disposals and conceptual vadose zone monitoring descriptions.

  3. Hazardous waste: cleanup and prevention

    USGS Publications Warehouse

    Vandas, Stephen; Cronin, Nancy L.; Farrar, Frank, (artist); Serrano, Guillermo Eliezer Ávila, (translator); Yajimovich, Oscar Efraín González; Muñoz, Aurora R.; Rivera, María del C.

    1996-01-01

    Our lifestyles are supported by complex Industrial activities that produce many different chemicals and chemical wastes. The Industries that produce our clothing, cars, medicines, paper, food, fuels, steel, plastics, and electric components use and discard thousands of chemicals every year. At home we may use lawn chemicals, solvents, disinfectants, cleaners, and auto products to Improve our quality of life. A chemical that presents a threat or unreasonable risk to people or the environment Is a hazardous material. When a hazardous material can no longer be used, It becomes a hazardous waste. Hazardous wastes come from a variety of sources, from both present and past activities. Impacts to human health and the environment can result from Improper handling and disposal of hazardous waste.

  4. Waste Management and Disposal for Artists and Schools.

    ERIC Educational Resources Information Center

    Babin, Angela; McCann, Michael

    Artists, art teachers, and students need to understand the problems associated with disposing of waste materials, some of which may be hazardous. The waste products of art projects, even if non-hazardous, also use up space in overloaded landfills. The Environmental Protection Agency (EPA) sets forth guidelines for disposing of hazardous wastes.…

  5. 40 CFR Appendix Vii to Part 268 - LDR Effective Dates of Surface Disposed Prohibited Hazardous Wastes

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... All Aug. 8, 1990. P096 All Aug. 8, 1990. P097 All June 8, 1989. P098 All June 8, 1989. P099 (silver... Aug. 8, 1990. P104 (silver) Wastewater Aug. 8, 1990. P104 All others June 8, 1989. P105 All Aug. 8... recovery of metals; as well as all inorganic solids debris contaminated with D004-D011 wastes, and all...

  6. Volcanic hazards: Perspectives from eruption prediction to risk assessment for disposal of radioactive waste

    SciTech Connect

    Crowe, B.

    1980-12-31

    This document summarizes an oral presentation that described the potential for volcanic activity at the proposed Yucca Mountain, Texas repository site. Yucca Mountain is located in a broad zone of volcanic activity known as the Death Valley-Pancake Ridge volcanic zone. The probability estimate for the likelihood that some future volcanic event will intersect a buried repository at Yucca Mountain is low. Additionally, the radiological consequences of penetration of a repository by basaltic magma followed by eruption of the magma at the surface are limited. The combination of low probability and limited consequence suggests that the risk posed by waste storage at this site is low. (TEM)

  7. Energy and solid/hazardous waste

    SciTech Connect

    1981-12-01

    This report addresses the past and potential future solid and hazardous waste impacts from energy development, and summarizes the major environmental, legislation applicable to solid and hazardous waste generation and disposal. A glossary of terms and acronyms used to describe and measure solid waste impacts of energy development is included. (PSB)

  8. Radioactive waste disposal package

    DOEpatents

    Lampe, Robert F.

    1986-01-01

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  9. Recovering resources from hazardous wastes

    SciTech Connect

    Mattheis, A.

    1987-05-01

    This article describes the recycling of hazardous wastes as performed by Heritage Environmental Services, a consortium of twenty companies involved in aggregate, petroleum refining and marketing, road construction, and asphalt emulsion manufacturing. Topics considered in the article include the wastewater plant, marketing end products, the transportation arm, the laboratory subsidiary, research and consulting, the disposal facility, and finding services for customers.

  10. Small hazardous waste generators in developing countries: use of stabilization/solidification process as an economic tool for metal wastewater treatment and appropriate sludge disposal.

    PubMed

    Silva, Marcos A R; Mater, Luciana; Souza-Sierra, Maria M; Corrêa, Albertina X R; Sperb, Rafael; Radetski, Claudemir M

    2007-08-25

    The aim of this study was to propose a profitable destination for an industrial sludge that can cover the wastewater treatment costs of small waste generators. Optimized stabilization/solidification technology was used to treat hazardous waste from an electroplating industry that is currently released untreated to the environment. The stabilized/solidified (S/S) waste product was used as a raw material to build concrete blocks, to be sold as pavement blocks or used in roadbeds and/or parking lots. The quality of the blocks containing a mixture of cement, lime, clay and waste was evaluated by means of leaching and solubility tests according to the current Brazilian waste regulations. Results showed very low metal leachability and solubility of the block constituents, indicating a low environmental impact. Concerning economic benefits from the S/S process and reuse of the resultant product, the cost of untreated heavy metal-containing sludge disposal to landfill is usually on the order of US$ 150-200 per tonne of waste, while 1tonne of concrete roadbed blocks (with 25% of S/S waste constitution) has a value of around US$ 100. The results of this work showed that the cement, clay and lime-based process of stabilization/solidification of hazardous waste sludge is sufficiently effective and economically viable to stimulate the treatment of wastewater from small industrial waste generators. PMID:17331640

  11. Hazardous Waste Roundup

    ERIC Educational Resources Information Center

    Farenga, Stephen J.; Joyce, Beverly A.; Ness, Daniel

    2004-01-01

    According to the Environmental Protection Agency (EPA), Americans generate approximately 1.6 million tons of hazardous household waste every year. When most people think of hazardous waste, they generally think of materials used in construction, the defense industry, mining, manufacturing, and agriculture. Few people think of hazardous substances…

  12. Municipal solid wastes and their disposal.

    PubMed Central

    Stone, R

    1978-01-01

    A brief overview is given of the sources, characteristics, and toxic constituents of municipal solid wastes. Several methods are presented for handling, treating, and disposal of solid wastes. Monitoring the landfill site is necessary; there has been a trend to recognize that municipal solid wastes may be hazardous and to provide separate secure handling, treatment, and disposal for their dangerous constituents. Under current state and Federal regulations, permits are being required to assure that proper handling of conventional solid wastes and more hazardous constituents are carefully managed. PMID:738240

  13. Chestnut Ridge Sediment Disposal Basin (D-025): Summary of closure under Rules Governing Hazardous Waste Management in Tennessee

    SciTech Connect

    Stone, J.E.

    1989-07-01

    On February 29, 1988, the Revised Closure Plan for Chestnut Ridge Sediment Disposal Basin,'' Y/TS-390 (Reference 1) was submitted to the United States Department of Energy (DOE) for review and transmittal to the Tennessee Department of Health and Environment (TDHE). The closure activities described in the closure plan have been performed. The purpose of this document is to summarize the closure activities for the Chestnut Ridge Sediment Disposal (CRSDB). The closure of CRSDB is a final closure. The Chestnut Ridge Sediment Disposal Basin (CRSDB), Unit D-025, was an unlined, man-made sediment disposal facility on Chestnut Ridge, south of New Hope Pond (NHP). The CRSDB was constructed during 1972--73 for the disposal of sediments hydraulically dredged from NHP. It was designed to hold approximately 30,000 cubic yards of sediments. Since 1973, the basin had been used for the periodic disposal of sediments excavated from NHP and its appurtenant structures. NHP has previously received discharges form RCRA-related waste streams. 19 refs., 3 figs., 1 tab.

  14. Hazardous solid waste from agriculture.

    PubMed Central

    Loehr, R C

    1978-01-01

    Large quantities of food processing, crop, forestry, and animal solid wastes are generated in the United States each year. The major components of these wastes are biodegradable. However, they also contain components such as nitrogen, human and animal pathogens, medicinals, feed additives, salts, and certain metals, that under uncontrolled conditions can be detrimental to aquatic, plant, animal, or human life. The most common method of disposal of these wastes is application to the land. Thus the major pathways for transmission of hazards are from and through the soil. Use of these wastes as animal feed also can be a pathway. While at this time there are no crises associated with hazardous materials in agricultural solid wastes, the potential for problems should not be underestimated. Manpower and financial support should be provided to obtain more detailed information in this area, esepcially to better delineate transport and dispersal and to determine and evaluate risks. PMID:367770

  15. Radioactive waste material disposal

    DOEpatents

    Forsberg, Charles W.; Beahm, Edward C.; Parker, George W.

    1995-01-01

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

  16. Radioactive waste material disposal

    DOEpatents

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1995-10-24

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide. 3 figs.

  17. HANDBOOK ON TREATMENT OF HAZARDOUS WASTE LEACHATE

    EPA Science Inventory

    Various treatment processes were evaluated for their applicability and effectiveness in treating leachate from hazardous waste land disposal facilities. These technologies include activated sludge treatment, air stripping, carbon adsorption, flow equalization, granular media filt...

  18. S. 1643: This Act may be cited as the International Hazardous Waste Disposal and Enforcement Act of 1991, introduced in the United States Senate, One Hundred Second Congress, First Session, August 2, 1991

    SciTech Connect

    Not Available

    1991-01-01

    This bill was introduced into the Senate of the United States on August 2, 1991 to amend the Solid Waste Disposal Act to make improvements in the regulation of exports of hazardous and additional wastes. Separate sections of this legislation discuss the following: Prohibition of hazardous and additional waste exports and imports; Exceptions to prohibition; Requirements for exports; Requirements for imports; Operating permits; Authorities of the president; Report by the president; Enforcement strategy; Fees; and Federal enforcement.

  19. Proposed HWIR alters waste treatment, disposal options

    SciTech Connect

    Hill, M.; Robinson, C.

    1996-04-01

    In what it has called its most important change to the hazardous waste rules since 1980, the Environmental Protection Agency has proposed the Hazardous Waste Identification Rule for process wastes that currently are regulated by the hazardous waste provisions in the Resource Conservation and Recovery Act, or RCRA Subtitle C. The rule addresses wastes that EPA has individually listed as hazardous, as well as wastes that are mixed with, derived from or contain listed hazardous wastes. The HWIR sets constituent-specific exit levels that would let low-risk process wastes escape the rigorous regulations of Subtitle C. EPA also proposes changes to RCRA`s land disposal restrictions so that some wastes that currently must be treated according to strict universal treatment standards may not have to be treated at all -- or could be treated in a less expensive manner -- before disposal. The proposed rule is important to virtually every company that is subject to RCRA`s hazardous waste regulations and raises many issues on which companies may want to comment.

  20. INCINERATOR AND KILN CAPACITY FOR HAZARDOUS WASTE TREATMENT

    EPA Science Inventory

    Estimates of incinerator and cement kiln capacities for hazardous waste treatment are required to evaluate the impacts of banning land disposal of hazardous wastes. RCRA Part B permit applications were reviewed to obtain information about incinerator design capacity, utilization ...

  1. Chemical fixation increases options for hazardous waste treatment

    SciTech Connect

    Indelicato, G.J.; Tipton, G.A.

    1996-05-01

    The Hazardous and Solid Waste Amendments (HSWA) to the Resource Conservation and Recovery Act (RCRA) govern the manner in which hazardous materials are managed. Disposing RCRA hazardous wastes on or in the land is no longer an accepted remedial option. This land disposal restriction requires that all listed and characteristic hazardous wastes must be treated according to specified standards before they are disposed. These treatment standards define technologies and concentration limits. Hazardous wastes that do not meet the standards are prohibited from being disposed on land, such as in landfills, surface impoundments, land treatment units, injection wells, and mines or caves.

  2. Hazardous waste status of discarded electronic cigarettes.

    PubMed

    Krause, Max J; Townsend, Timothy G

    2015-05-01

    The potential for disposable electronic cigarettes (e-cigarettes) to be classified as hazardous waste was investigated. The Toxicity Characteristic Leaching Procedure (TCLP) was performed on 23 disposable e-cigarettes in a preliminary survey of metal leaching. Based on these results, four e-cigarette products were selected for replicate analysis by TCLP and the California Waste Extraction Test (WET). Lead was measured in leachate as high as 50mg/L by WET and 40mg/L by TCLP. Regulatory thresholds were exceeded by two of 15 products tested in total. Therefore, some e-cigarettes would be toxicity characteristic (TC) hazardous waste but a majority would not. When disposed in the unused form, e-cigarettes containing nicotine juice would be commercial chemical products (CCP) and would, in the United States (US), be considered a listed hazardous waste (P075). While household waste is exempt from hazardous waste regulation, there are many instances in which such waste would be subject to regulation. Manufactures and retailers with unused or expired e-cigarettes or nicotine juice solution would be required to manage these as hazardous waste upon disposal. Current regulations and policies regarding the availability of nicotine-containing e-cigarettes worldwide were reviewed. Despite their small size, disposable e-cigarettes are consumed and discarded much more quickly than typical electronics, which may become a growing concern for waste managers. PMID:25746178

  3. Hazardous waste status of discarded electronic cigarettes

    SciTech Connect

    Krause, Max J.; Townsend, Timothy G.

    2015-05-15

    Highlights: • Electronic cigarettes were tested using TCLP and WET. • Several electronic cigarette products leached lead at hazardous waste levels. • Lead was the only element that exceeded hazardous waste concentration thresholds. • Nicotine solution may cause hazardous waste classification when discarded unused. - Abstract: The potential for disposable electronic cigarettes (e-cigarettes) to be classified as hazardous waste was investigated. The Toxicity Characteristic Leaching Procedure (TCLP) was performed on 23 disposable e-cigarettes in a preliminary survey of metal leaching. Based on these results, four e-cigarette products were selected for replicate analysis by TCLP and the California Waste Extraction Test (WET). Lead was measured in leachate as high as 50 mg/L by WET and 40 mg/L by TCLP. Regulatory thresholds were exceeded by two of 15 products tested in total. Therefore, some e-cigarettes would be toxicity characteristic (TC) hazardous waste but a majority would not. When disposed in the unused form, e-cigarettes containing nicotine juice would be commercial chemical products (CCP) and would, in the United States (US), be considered a listed hazardous waste (P075). While household waste is exempt from hazardous waste regulation, there are many instances in which such waste would be subject to regulation. Manufactures and retailers with unused or expired e-cigarettes or nicotine juice solution would be required to manage these as hazardous waste upon disposal. Current regulations and policies regarding the availability of nicotine-containing e-cigarettes worldwide were reviewed. Despite their small size, disposable e-cigarettes are consumed and discarded much more quickly than typical electronics, which may become a growing concern for waste managers.

  4. Minnesota Mining and Manufacturing Company's hazardous waste program.

    PubMed

    Van Noordwyk, H J; Santoro, M A

    1978-12-01

    This paper discusses the present hazardous waste program of 3M Company (Minnesota Mining and Manufacturing Company). 3M's definition of hazardous waste and the company's position on hazardous waste disposal are first considered. The company position is that wherever and whenever the disposal of a waste material threatens the environment or public safety, then that waste should be considered a hazardous waste and treated accordingly in terms of its handling and ultimate disposal. The generation of hazardous wastes and the differentiation of "hazardous" and "nonhazardous" wastes are described next. Handling of hazardous wastes from their generation to their disposal is then covered. This includes a definition of internal 3M terminology and a description of the hazard rating system used by the company. Finally, 3M disposal practices are presented. It is 3M's position that thermal destruction of hazardous wastes, where appropriate, is the best method for their disposal. With this in mind, 3M has constructed incineration facilities throughout the country. The rotary kiln incinerator at the 3M Chemolite plant in Cottage Grove, Minnesota is briefly described. Disposal of certain hazardous wastes in controlled secure land disposal sites is then briefly discussed. PMID:738241

  5. Minnesota Mining and Manufacturing Company's hazardous waste program.

    PubMed Central

    Van Noordwyk, H J; Santoro, M A

    1978-01-01

    This paper discusses the present hazardous waste program of 3M Company (Minnesota Mining and Manufacturing Company). 3M's definition of hazardous waste and the company's position on hazardous waste disposal are first considered. The company position is that wherever and whenever the disposal of a waste material threatens the environment or public safety, then that waste should be considered a hazardous waste and treated accordingly in terms of its handling and ultimate disposal. The generation of hazardous wastes and the differentiation of "hazardous" and "nonhazardous" wastes are described next. Handling of hazardous wastes from their generation to their disposal is then covered. This includes a definition of internal 3M terminology and a description of the hazard rating system used by the company. Finally, 3M disposal practices are presented. It is 3M's position that thermal destruction of hazardous wastes, where appropriate, is the best method for their disposal. With this in mind, 3M has constructed incineration facilities throughout the country. The rotary kiln incinerator at the 3M Chemolite plant in Cottage Grove, Minnesota is briefly described. Disposal of certain hazardous wastes in controlled secure land disposal sites is then briefly discussed. PMID:738241

  6. Hazardous waste management

    SciTech Connect

    Dawson, G.W.; Mercer, B.W.

    1986-01-01

    This is a reference work designed to guide the chemist to solutions to problems of waste disposal. It has chapters on incineration, ocean dumping and underground injection, landfill disposal, transportation, abandoned sites, regulation, etc. A group of 12 appendices provide a lot of useful information for quick reference.

  7. Environmental restoration waste materials co-disposal

    SciTech Connect

    Phillips, S.J.; Alexander, R.G.; England, J.L.; Kirdendall, J.R.; Raney, E.A.; Stewart, W.E.; Dagan, E.B.; Holt, R.G.

    1993-09-01

    Co-disposal of radioactive and hazardous waste is a highly efficient and cost-saving technology. The technology used for final treatment of soil-washing size fractionization operations is being demonstrated on simulated waste. Treated material (wasterock) is used to stabilize and isolate retired underground waste disposal structures or is used to construct landfills or equivalent surface or subsurface structures. Prototype equipment is under development as well as undergoing standardized testing protocols to prequalify treated waste materials. Polymer and hydraulic cement solidification agents are currently used for geotechnical demonstration activities.

  8. Co-disposal of mixed waste materials

    SciTech Connect

    Phillips, S.J.; Alexander, R.G.; Crane, P.J.; England, J.L.; Kemp, C.J.; Stewart, W.E.

    1993-08-01

    Co-disposal of process waste streams with hazardous and radioactive materials in landfills results in large, use-efficiencies waste minimization and considerable cost savings. Wasterock, produced from nuclear and chemical process waste streams, is segregated, treated, tested to ensure regulatory compliance, and then is placed in mixed waste landfills, burial trenches, or existing environmental restoration sites. Large geotechnical unit operations are used to pretreat, stabilize, transport, and emplace wasterock into landfill or equivalent subsurface structures. Prototype system components currently are being developed for demonstration of co-disposal.

  9. 40 CFR 264.344 - Hazardous waste incinerator permits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Hazardous waste incinerator permits... WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Incinerators § 264.344 Hazardous waste incinerator permits. (a) The owner or operator of...

  10. 40 CFR 264.344 - Hazardous waste incinerator permits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Hazardous waste incinerator permits... WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Incinerators § 264.344 Hazardous waste incinerator permits. (a) The owner or operator of...

  11. 40 CFR 264.344 - Hazardous waste incinerator permits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Hazardous waste incinerator permits... WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Incinerators § 264.344 Hazardous waste incinerator permits. (a) The owner or operator of...

  12. 40 CFR 264.344 - Hazardous waste incinerator permits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Hazardous waste incinerator permits... WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Incinerators § 264.344 Hazardous waste incinerator permits. (a) The owner or operator of...

  13. 40 CFR 264.344 - Hazardous waste incinerator permits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Hazardous waste incinerator permits... WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Incinerators § 264.344 Hazardous waste incinerator permits. (a) The owner or operator of...

  14. Hazardous waste operational plan for site 300

    SciTech Connect

    Roberts, R.S.

    1982-02-12

    This plan outlines the procedures and operations used at LLNL's Site 300 for the management of the hazardous waste generated. This waste consists primarily of depleted uranium (a by-product of U-235 enrichment), beryllium, small quantities of analytical chemicals, industrial type waste such as solvents, cleaning acids, photographic chemicals, etc., and explosives. This plan details the operations generating this waste, the proper handling of this material and the procedures used to treat or dispose of the hazardous waste. A considerable amount of information found in this plan was extracted from the Site 300 Safety and Operational Manual written by Site 300 Facility personnel and the Hazards Control Department.

  15. Protecting the hazardous waste worker

    SciTech Connect

    Roughton, J.

    1995-06-01

    Due to the serious safety and health risk posed by hazardous waste, the Occupational Safety and Health Administration (OSHA) issued the Hazardous Waste Operation and Emergency Response (HAZWOPER) standard (29 CFR 1910.120)in March 1990. The most recent protection action is related to 29 CFR 1926.65, the standards that protect hazardous waste workers. As a basis for compliance with the standards, all requirements of Title 29 CFR Parts 1910, General OSHA Guidelines and 1926 Construction Standard apply. If there is any conflict or overlap of the standards, the provision most protective of the employees` safety and health must be implemented. OSHA has issued monetary penalties in the past, but many employers regarded the relatively low dollar amounts as a cost of doing business. In the Omnibus Budget Rehabilitation Act of 1990, Congress increased the maximum penalties for violations by seven times. Also, OSHA previously assessed one penalty for all similar violations at a facility. Under the new, formalized egregious penalty OSHA can cite separate violations and penalize for each violation in flagrant cases. HAZWOPER applies to employees involved in cleanup operations at uncontrolled hazardous waste sites; corrective actions involving cleanup operations at Resource Conservation and Recovery Act (RCRA) sites; voluntary cleanup operations recognized by any government body as uncontrolled hazardous waste sites; routine operations at hazardous waste treatment, storage and disposal (TSD) facilities or portion of the facility regulated under 40 CFR Parts 264 and 265 pursuant to RCRA; and emergency response operations involving a release or substantial threat of release of a hazardous substance.

  16. Space disposal of nuclear wastes

    NASA Technical Reports Server (NTRS)

    Priest, C. C.; Nixon, R. F.; Rice, E. E.

    1980-01-01

    The DOE has been studying several options for nuclear waste disposal, among them space disposal, which NASA has been assessing. Attention is given to space disposal destinations noting that a circular heliocentric orbit about halfway between Earth and Venus is the reference option in space disposal studies. Discussion also covers the waste form, showing that parameters to be considered include high waste loading, high thermal conductivity, thermochemical stability, resistance to leaching, fabrication, resistance to oxidation and to thermal shock. Finally, the Space Shuttle nuclear waste disposal mission profile is presented.

  17. BIOREMEDIATION OF HAZARDOUS WASTES

    EPA Science Inventory

    In 1987, the U.S. Environmental Protection Agency's (EPA) Office of Research and Development (ORD) initiated the Biosystems Technology Development Program to anticipate and address research needs in managing our nation's hazardous waste. The Agency believes that bioremediation of...

  18. Innovative hazardous waste treatment technology

    SciTech Connect

    Freeman, H.M.; Sferra, P.R. . Hazardous Waste Engineering Research Lab.)

    1990-01-01

    This book contains information about the latest developments in destroying hazardous wastes by incineration or pyrolysis. Topics include: hydrogenation and reuse of hazardous organic wastes; catalytic incineration of gaseous wastes; oxygen enhancement of hazardous waste incineration; and thermal fixation of hazardous metal sludges in an alumina-silicate matrix.

  19. Fate of high loads of ammonia in a pond and wetland downstream from a hazardous waste disposal site.

    PubMed

    Cutrofello, Michele; Durant, John L

    2007-07-01

    Halls Brook (eastern Massachusetts, USA) is a significant source of total dissolved ammonia (sum of NH(3) and NH(4)(+); (NH(3))(T)) to the Aberjona River, a water body listed for NH(3) impairment on the Clean Water Act section 303(d) list. We hypothesized (1) that (NH(3))(T) in Halls Brook derived from a hazardous waste site via groundwater discharging to a two-basin pond that feeds the brook; and (2) that transport of (NH(3))(T) to the Aberjona River was controlled by lacustrine and wetland processes. To test these hypotheses we measured (NH(3))(T) levels in the brook, the pond, and a wetlands directly downstream of the pond during both dry and wet weather over a ten month period. In addition, we analyzed sediment cores and nitrogen isotopes, and performed mass balance calculations. Groundwater discharge from beneath the hazardous waste site was the major source of (NH(3))(T) (20-67 kg d(-1)) and salinity to the north basin of the pond. The salty bottom waters of the north basin were anoxic on all sampling dates, and exhibited relatively stable (NH(3))(T) concentrations between 200 and 600 mg Nl(-1). These levels were >100-times higher than typical background levels, and 8-24-times above the acute effects level for (NH(3))(T) toxicity. Bottom waters from the north basin continuously spill over into the south basin contributing approximately 50% of the (NH(3))(T) load entering this basin. The remainder comes from Halls Brook, which receives (NH(3))(T) loadings from as yet unknown sources upstream. During storm events up to 50% of the mass of (NH(3))(T) was flushed from the south basin and into the wetlands. The wetlands acted as a (NH(3))(T) sink in dry weather in the growing season and a discharge-dependent (NH(3))(T) source to the Aberjona River during rainstorms. PMID:17346773

  20. Development of improved risk assessment tools for prioritizing hazardous and radioactive-mixed waste disposal sites. [Atmospheric and overland pathways

    SciTech Connect

    Whelan, G.; Steelman, B.L.

    1984-10-01

    It is the intent of all environmental regulations to minimize the risks to man and his environment that arise from a regulated activity. Because lower levels of risk are generally accompanied by higher environmental control costs, optimum management is achieved by balancing risks and costs. Currently, the US Environmental Protection Agency employs the Hazard Ranking System (HRS) to evaluate the environmental risks associated with inactive hazardous waste sites for the purpose of establishing the National Priorities List. Recently, investigators modified the HRS to more realistically evaluate the risks posed by radioactive waste constituents. Although results from applying the modified HRS will be useful for comparing the priority of DOE sites to non-DOE sites, the methodology is still overly subjective. To provide DOE with a better management tool for prioritizing funding allocations for further site investigations and possible remediations, Pacific Northwest Laboratory is developing a more objective, scientifically based, risk assessment methodology called the Remedial Action Priority System (RAPS). This methodology will be developed using empirically, analytically, and semianalytically based mathematical algorithms to predict the potential for contaminant migration from a site to receptors of concern using pathways analyses. Four major pathways for contaminant migration will be considered in the RAPS methodology: groundwater, overland, surface water, and atmospheric. Using the predictions of contaminant transport, simplified exposure assessments will be performed for receptors of interest. The risks associated with the sites will then be calculated relative to other sites for each pathway and for all pathways together. The RAPS methodology will require minimum user knowledge of risk assessment and the least possible amount of input data, and is being designed to operate on a personal computer. 17 references, 3 figures, 1 table.

  1. Laboratory Waste Disposal Manual. Revised Edition.

    ERIC Educational Resources Information Center

    Stephenson, F. G., Ed.

    This manual is designed to provide laboratory personnel with information about chemical hazards and ways of disposing of chemical wastes with minimum contamination of the environment. The manual contains a reference chart section which has alphabetical listings of some 1200 chemical substances with information on the health, fire and reactivity…

  2. Strategic planning for waste management: Characterization of chemically and radioactively hazardous waste and treatment, storage, and disposal capabilities for diverse and varied multisite operations

    SciTech Connect

    Jolley, R.L.; Rivera, A.L.; Fox, E.C.; Hyfantis, G.J.; McBrayer, J.F.

    1988-01-01

    Information about current and projected waste generation as well as available treatment, storage, and disposal (TSD) capabilities and needs is crucial for effective, efficient, and safe waste management. This is especially true for large corporations that are responsible for multisite operations involving diverse and complex industrial processes. Such information is necessary not only for day-to-day operations, but also for strategic planning to ensure safe future performance. This paper reports on some methods developed and successfully applied to obtain requisite information and to assist waste management planning at the corporate level in a nationwide system of laboratories and industries. Waste generation and TSD capabilities at selected US Department of Energy (DOE) sites were studied. 1 ref., 2 tabs.

  3. Mixed waste characterization, treatment & disposal focus area

    SciTech Connect

    1996-08-01

    The mission of the Mixed Waste Characterization, Treatment, and Disposal Focus Area (referred to as the Mixed Waste Focus Area or MWFA) is to provide treatment systems capable of treating DOE`s mixed waste in partnership with users, and with continual participation of stakeholders, tribal governments, and regulators. The MWFA deals with the problem of eliminating mixed waste from current and future storage in the DOE complex. Mixed waste is waste that contains both hazardous chemical components, subject to the requirements of the Resource Conservation and Recovery Act (RCRA), and radioactive components, subject to the requirements of the Atomic Energy Act. The radioactive components include transuranic (TRU) and low-level waste (LLW). TRU waste primarily comes from the reprocessing of spent fuel and the use of plutonium in the fabrication of nuclear weapons. LLW includes radioactive waste other than uranium mill tailings, TRU, and high-level waste, including spent fuel.

  4. Special Report: Hazardous Wastes in Academic Labs.

    ERIC Educational Resources Information Center

    Sanders, Howard J.

    1986-01-01

    Topics and issues related to toxic wastes in academic laboratories are addressed, pointing out that colleges/universities are making efforts to dispose of hazardous wastes safely to comply with tougher federal regulations. University sites on the Environmental Protection Agency Superfund National Priorities List, costs, and use of lab packs are…

  5. HAZARDOUS WASTE FACILITIES, NEUSE RIVER WATERSHED, NC

    EPA Science Inventory

    Locations of treatment, storage, and disposal facilities (TSDFs). These facilities are regulated under the requirements of the Resource Conservation and Recovery Act (RCRA), and must have a RCRA permit issued by the Division of Waste Management, Hazardous Waste Section to operat...

  6. Resource Conservation and Recovery Act (RCRA) contingency plan for hazardous waste treatment, storage, and disposal units at the Oak Ridge Y-12 Plant

    SciTech Connect

    Not Available

    1994-08-01

    The Y-12 RCRA Contingency Plan will be continually reviewed and revised if any of the following occur: the facility permit is revised, the plan is inadequate in an emergency, the procedures can be improved, the operations of the facility change in a way that alters the plan, the emergency coordinator changes, or the emergency equipment list changes. Copies of the Y-12 Emergency Management Plan are available at the Plant Shift Superintendent`s Office and the Emergency Management Office. This document serves to supplement the Y-12 Emergency Management Plan to be appropriate for all RCRA hazardous waste treatment, storage, or disposal units. The 90-day accumulation areas at the Y-12 Plant have a separate contingency supplement as required by RCRA and are separate from this supplement.

  7. Nuclear waste disposal in space

    NASA Technical Reports Server (NTRS)

    Burns, R. E.; Causey, W. E.; Galloway, W. E.; Nelson, R. W.

    1978-01-01

    Work on nuclear waste disposal in space conducted by the George C. Marshall Space Flight Center, National Aeronautics and Space Administration, and contractors are reported. From the aggregate studies, it is concluded that space disposal of nuclear waste is technically feasible.

  8. Hazardous waste management and pollution prevention

    SciTech Connect

    Chiu, Shen-yann.

    1992-01-01

    The management of hazardous wastes is one of the most critical environmental issues that faces many developing countries. It is one of the areas where institutional control and treatment and disposal technology has not kept pace with economic development. This paper reviews the development of hazardous waste management methods over the past decades, and provides the information on the status and trends of hazardous waste management strategy in selected western nations. Several issues pertinent to hazardous waste management will be reviewed, including: (1) definition of hazard; (2) why are we concerned with hazardous wastes; (3) aspects of hazardous waste management system; and (4) prioritization of hazardous waste management options. Due to regulatory and economic pressure on hazardous waste management, pollution prevention has become a very important environmental strategy in many developed countries. In many developed countries, industry is increasingly considering such alternative approaches, and finding many opportunities for their cost effective implementation. This paper provides a review of the status and trends of pollution prevention in selected western nations.

  9. Hazardous waste management and pollution prevention

    SciTech Connect

    Chiu, Shen-yann

    1992-03-01

    The management of hazardous wastes is one of the most critical environmental issues that faces many developing countries. It is one of the areas where institutional control and treatment and disposal technology has not kept pace with economic development. This paper reviews the development of hazardous waste management methods over the past decades, and provides the information on the status and trends of hazardous waste management strategy in selected western nations. Several issues pertinent to hazardous waste management will be reviewed, including: (1) definition of hazard; (2) why are we concerned with hazardous wastes; (3) aspects of hazardous waste management system; and (4) prioritization of hazardous waste management options. Due to regulatory and economic pressure on hazardous waste management, pollution prevention has become a very important environmental strategy in many developed countries. In many developed countries, industry is increasingly considering such alternative approaches, and finding many opportunities for their cost effective implementation. This paper provides a review of the status and trends of pollution prevention in selected western nations.

  10. 75 FR 58315 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Direct Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ... hazardous wastes until excluded. See 66 FR 27266 (May 16, 2001). III. EPA's Evaluation of the Waste... Company at 62 FR 37694 (July 14, 1997) and 62 FR 63458 (December 1, 1997) where the delisted waste leached... disposal scenario for Eastman's RKI scrubber water blowdown. EPA applied the DRAS described in 65 FR...

  11. INNOVATIVE THERMAL PROCESSES FOR HAZARDOUS WASTE TREATMENT AND DESTRUCTION

    EPA Science Inventory

    As the land disposal of untreated hazardous wastes has continued to fall into disfavor in North America, increasing attention is being given to alternative hazardous waste treatment and disposal technologies. This increased attention and the public and private support resulting f...

  12. Hazardous waste incineration in industrial processes: cement and lime kilns

    SciTech Connect

    Mournighan, R.E.; Peters, J.A.; Branscome, M.R.; Freeman, H.

    1985-07-01

    With more liquid wastes due to be banned from land disposal facilities, expanding hazardous waste incineration capacity becomes increasingly important. At the same time, industrial plants are increasingly seeking to find new sources of lower cost fuel, specifically from the disposal of hazardous wastes with heating value. The Hazardous Waste Engineering Research Laboratory (HWERL) is currently evaluating the disposal of hazardous wastes in a wide range of industrial processes. The effort includes sampling stack emissions at cement, lime and aggregate plants, asphalt plants and blast furnaces, which use waste as a supplemental fuel. This research program is an essential part of EPA's determination of the overall environmental impact of various disposal options available to industry. This paper summarizes the results of the HWERL program of monitoring emissions from cement and lime kilns burning hazardous wastes as fuel.

  13. RFID technology for hazardous waste management and tracking.

    PubMed

    Namen, Anderson Amendoeira; Brasil, Felipe da Costa; Abrunhosa, Jorge José Gouveia; Abrunhosa, Glaucia Gomes Silva; Tarré, Ricardo Martinez; Marques, Flávio José Garcia

    2014-09-01

    The illegal dumping of hazardous waste is one of the most concerning occurrences related to illegal waste activities. The waste management process is quite vulnerable, especially when it comes to assuring the right destination for the delivery of the hazardous waste. The purpose of this paper is to present a new system design and prototype for applying the RFID technology so as to guarantee the correct destination for the hazardous waste delivery. The aim of this innovative approach, compared with other studies that employ the same technology to the waste disposal process, is to focus on the certification that the hazardous waste will be delivered to the right destination site and that no inappropriate disposal will occur in the transportation stage. These studies were carried out based on data collected during visits to two hazardous waste producer companies in Brazil, where the material transportation and delivery to a company in charge of the waste disposal were closely monitored. PMID:24879751

  14. Technology transfer in hazardous waste management

    SciTech Connect

    Drucker, H.

    1989-01-01

    Hazardous waste is a growing problem in all parts of the world. Industrialized countries have had to deal with the treatment and disposal of hazardous wastes for many years. The newly industrializing countries of the world are now faced with immediate problems of waste handling. The developing nations of the world are looking at increasing quantities of hazardous waste generation as they move toward higher levels of industrialization. Available data are included on hazardous waste generation in Asia and the Pacific as a function of Gross Domestic Product (GDP). Although there are many inconsistencies in the data (inconsistent hazardous waste definitions, inconsistent reporting of wastes, etc.) there is definite indication that a growing economy tends to lead toward larger quantities of hazardous waste generation. In developing countries the industrial sector is growing at a faster rate than in the industrialized countries. In 1965 industry accounted for 29% of GDP in the developing countries of the world. In 1987 this had grown to 37% of GDP. In contrast, industry accounted for 40% of GDP in 1965 in industrialized countries and dropped to 35% in 1987. This growth in industrial activity in the developing countries brings an increase in the need to handle hazardous wastes. Although hazardous wastes are ubiquitous, the control of hazardous wastes varies. The number of regulatory options used by various countries in Asia and the Pacific to control wastes are included. It is evident that the industrialized countries, with a longer history of having to deal with hazardous wastes, have found the need to use more mechanisms to control them. 2 refs., 2 figs.

  15. PERMITTING HAZARDOUS WASTE INCINERATORS

    EPA Science Inventory

    This publication is a compilation of information presented at a seminar series designed to address the issues that affect the issuance of hazardous waste incineration permits and to improve the overall understanding of trial burn testing. pecifically, the document provides guidan...

  16. Strategies of industrial and hazardous waste management. 2. edition

    SciTech Connect

    Nemerow, N.L.; Agardy, F.P.

    1998-12-31

    The book describes all significant types of industrial waste and their varied effects on the environment. It provides thorough coverage of the treatment and disposal methods of all significant industrial and hazardous waste.

  17. HAZARDOUS WASTE TREATMENT RESEARCH - U.S. ENVIRONMENTAL PROTECTION AGENCY

    EPA Science Inventory

    Treatment and thermal destruction are becoming the most viable methods for disposing of hazardous wastes. Wastes can be destroyed through a variety of treatment methods and in incinerators, boilers, kilns, and other high temperature industrial processes. The destruction of these ...

  18. MEASUREMENT OF HYDROLYSIS RATE CONSTANTS FOR EVALUATION OF HAZARDOUS WASTE LAND DISPOSAL. VOLUME 1. DATA ON 32 CHEMICALS

    EPA Science Inventory

    To provide input data for a mathematical model to estimate potential groundwater contamination from chemicals in land disposal sites, hydrolysis rate constants were determined for 26 regulated chemicals under carefully controlled conditions. Hydrolysis rates were measured under s...

  19. MEASUREMENT OF HYDROLYSIS RATE CONSTANTS FOR EVALUATION OF HAZARDOUS WASTE LAND DISPOSAL. VOLUME 2. DATA ON 54 CHEMICALS

    EPA Science Inventory

    To provide input data for a mathematical model to estimate potential groundwater contamination from chemicals in land disposal sites, hydrolysis rate constants were determined for 31 regulated chemicals under carefully controlled conditions. Hydrolysis rates were measured under s...

  20. MEASUREMENT OF HYDROLYSIS RATE CONSTANTS FOR EVALUATION OF HAZARDOUS WASTE LAND DISPOSAL. VOLUME 3. DATA ON 70 CHEMICALS

    EPA Science Inventory

    To provide input data for a mathematical model to estimate potential groundwater contamination from chemicals in land disposal sites, hydrolysis rate constants were measured for 70 regulated chemicals under carefully controlled conditions. Hydrolysis rates were measured under ste...

  1. Study on anaerobic treatment of hazardous steel-mill waste rolling oil (SmWRO) for multi-benefit disposal route.

    PubMed

    Ma, Huanhuan; Li, Zifu; Yin, Fubin; Kao, William; Yin, Yi; Bai, Xiaofeng

    2014-01-01

    Steel-mill waste rolling oil (SmWRO) is considered as hazardous substance with high treatment and disposal fees. Anaerobic process could not only transform the hazardous substance into activated sludge, but also generate valuable biogas. This study aimed at studying the biochemical methane potential of SmWRO under inoculum to substrate VS ratios (ISRs) of 0.25, 0.5, 1, 1.5, 2 and 3 using septic tank sludge as inoculum in mesophilic and thermophilic conditions, with blank tests for control. Specific biogas yield (mL/g VS(added)), net biogas yield (mL/g VS(removed)) and VS removal were analyzed. The ANOVA results indicated great influence of ISR and temperature on studied parameters. ISR of 1.5 at 55°C and ISR of 1.5 and 2 at 35°C were suggested with the highest specific biogas yield (262-265 and 303mL/g VS(added)). Kinetic analysis showed that Gompertz model fit the experimental data best with the least RMSE and largest R(2). PMID:24212130

  2. Encapsulation of hazardous wastes into agglomerates

    SciTech Connect

    Guloy, A.

    1992-01-28

    The objective of this study was to investigate the feasibility of using the cementitious properties and agglomeration characteristics of coal conversion byproducts to encapsulate and immobilize hazardous waste materials. The intention was to establish an economical way of co-utilization and co-disposal of wastes. In addition, it may aid in the eradication of air pollution problems associated with the fine-powdery nature of fly ash. Encapsulation into agglomerates is a novel approach of treating toxic waste. Although encapsulation itself is not a new concept, existing methods employ high-cost resins that render them economically unfeasible. In this investigation, the toxic waste was contained in a concrete-like matrix whereby fly ash and other cementitious waste materials were utilized. The method incorporates the principles of solidification, stabilization and agglomeration. Another aspect of the study is the evaluation of the agglomeration as possible lightweight aggregates. Since fly ash is commercially used as an aggregate, it would be interesting to study the effect of incorporating toxic wastes in the strength development of the granules. In the investigation, the fly ash self-cementation process was applied to electroplating sludges as the toxic waste. The process hoped to provide a basis for delisting of the waste as hazardous and, thereby greatly minimize the cost of its disposal. Owing to the stringent regulatory requirements for hauling and disposal of hazardous waste, the cost of disposal is significant. The current practice for disposal is solidifying the waste with portland cement and dumping the hardened material in the landfill where the cost varies between $700--950/ton. Partially replacing portland cement with fly ash in concrete has proven beneficial, therefore applying the same principles in the treatment of toxic waste looked very promising.

  3. HANDBOOK FOR REMEDIAL ACTION AT WASTE DISPOSAL SITES

    EPA Science Inventory

    This handbook is directed toward technical personnel in federal, state, regional, and municipal agencies involved in the cleanup of hazardous waste disposal sites, industrial surface impoundments, and municipal, industrial, and combined landfills. It contains a summary of the flo...

  4. Chemical Handling and Waste Disposal Issues at Liberal Arts.

    ERIC Educational Resources Information Center

    Gannaway, Susan P.

    1990-01-01

    Findings from a survey of 20 liberal arts colleges which did not have graduate programs in chemistry are presented. Discussed are regulations, actions taken and costs of academic laboratories regarding the disposal of hazardous waste. (CW)

  5. Incineration of hazardous wastes.

    PubMed

    Gannon, T; Ansbro, A R; Burns, R P

    1991-10-01

    Glaxo has practiced incineration of liquid and gaseous wastes for over twenty years and currently operate eleven liquid and gas incinerators in the United Kingdom and Singapore. The liquid incinerators burn, as their main streams, those solvents that cannot be recovered and recycled within the processes. The early installations were for readily combustible solvents only. However, there has been a progressive move into the destruction of more difficult and hazardous wastes, with the consequential requirements for more sophisticated technology, in the belief that the responsible destruction of waste should be tackled near to its source. The eventual aim is to be self-sufficient in this area of waste management. The incineration of hazardous liquid and gaseous waste has presented a series of design, operational and monitoring problems into account which have all been successfully overcome. The solutions take into account the environmental consequences of the operations from both liquid and gaseous emissions. In order to ensure minimal environmental impact and safe operation the best practicable technology is employed. Environmental assessment forms part of the process development and permitting procedures. PMID:24233930

  6. Optimization of Waste Disposal - 13338

    SciTech Connect

    Shephard, E.; Walter, N.; Downey, H.; Collopy, P.; Conant, J.

    2013-07-01

    From 2009 through 2011, remediation of areas of a former fuel cycle facility used for government contract work was conducted. Remediation efforts were focused on building demolition, underground pipeline removal, contaminated soil removal and removal of contaminated sediments from portions of an on-site stream. Prior to conducting the remediation field effort, planning and preparation for remediation (including strategic planning for waste characterization and disposal) was conducted during the design phase. During the remediation field effort, waste characterization and disposal practices were continuously reviewed and refined to optimize waste disposal practices. This paper discusses strategic planning for waste characterization and disposal that was employed in the design phase, and continuously reviewed and refined to optimize efficiency. (authors)

  7. Hazardous waste. A North Carolina dilemma.

    PubMed

    Davis, T G

    1992-07-01

    North Carolina, along with the rest of the nation, faces a number of dilemmas regarding management of hazardous waste: 1. North Carolina businesses and industries generate a lot of hazardous waste, but the state lacks the capacity to manage it. For many, it has been acceptable to ship the waste to other states for treatment, storage, and disposal. Some of the receiving states have indicated that they are no longer willing to serve as the "dumping ground" for North Carolina. 2. North Carolina, along with the EPA, has identified a number of hazardous waste sites now listed on the NPL. However, the state was excluded from its regional agreement with Alabama, South Carolina, Kentucky, and Tennessee in January 1991, meaning that Superfund monies may be withdrawn and that cleanup won't be completed at these sites. 3. Every year the country produces at least 260 million tons of hazardous waste--more than one ton for every man, woman, and child. Those opposed to constructing hazardous waste treatment facilities charge that businesses and industries should reduce their hazardous waste to zero or near zero, and they charge that the state is not doing enough to encourage waste reduction. North Carolina's hazardous waste regulations already require programs to minimize the amounts of waste generated by industries, but for most industrial processes, it is impossible to reduce the generation of waste to zero. However, industries must continue to reduce their waste through source reduction and recycling. Hazardous waste and toxic materials do pose a risk to human health and the environment unless properly managed.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1630504

  8. Vadose zone monitoring for hazardous waste sites

    SciTech Connect

    Everett, L.G.; Wilson, L.G.; Hoylman, E.W.

    1983-10-01

    This book describes the applicability of vadose zone monitoring techniques to hazardous waste site investigations. More than 70 different sampling and nonsampling vadose zone monitoring techniques are described in terms of their advantages and disadvantages. Physical, chemical, geologic, topographic, geohydrologic, and climatic constraints for vadose zone monitoring are quantitatively determined. Vadose zone monitoring techniques are categorized for premonitoring, active, and postclosure site assessments. Waste disposal methods are categorized for piles, landfills, impoundments, and land treatment. Conceptual vadose zone monitoring approaches are developed for specific waste disposal method categories.

  9. 40 CFR 265.316 - Disposal of small containers of hazardous waste in overpacked drums (lab packs).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... regulations (49 CFR parts 173, 178 and 179), if those regulations specify a particular inside container for... shipping container (49 CFR parts 178 and 179) of no more than 416-liter (110 gallon) capacity and.... (f) Such disposal is in compliance with the requirements of 40 CFR part 268. Persons who...

  10. 40 CFR 265.316 - Disposal of small containers of hazardous waste in overpacked drums (lab packs).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... regulations (49 CFR parts 173, 178 and 179), if those regulations specify a particular inside container for... shipping container (49 CFR parts 178 and 179) of no more than 416-liter (110 gallon) capacity and.... (f) Such disposal is in compliance with the requirements of 40 CFR part 268. Persons who...

  11. 40 CFR 265.316 - Disposal of small containers of hazardous waste in overpacked drums (lab packs).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... regulations (49 CFR parts 173, 178 and 179), if those regulations specify a particular inside container for... shipping container (49 CFR parts 178 and 179) of no more than 416-liter (110 gallon) capacity and.... (f) Such disposal is in compliance with the requirements of 40 CFR part 268. Persons who...

  12. 40 CFR 265.316 - Disposal of small containers of hazardous waste in overpacked drums (lab packs).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... regulations (49 CFR parts 173, 178 and 179), if those regulations specify a particular inside container for... shipping container (49 CFR parts 178 and 179) of no more than 416-liter (110 gallon) capacity and.... (f) Such disposal is in compliance with the requirements of 40 CFR part 268. Persons who...

  13. 40 CFR 265.316 - Disposal of small containers of hazardous waste in overpacked drums (lab packs).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... regulations (49 CFR parts 173, 178 and 179), if those regulations specify a particular inside container for... shipping container (49 CFR parts 178 and 179) of no more than 416-liter (110 gallon) capacity and.... (f) Such disposal is in compliance with the requirements of 40 CFR part 268. Persons who...

  14. HOUSEHOLD HAZARDOUS WASTE CHARACTERIZATION STUDY FOR PALM BEACH COUNTY, FLORIDA: A MITE PROGRAM EVALUATION

    EPA Science Inventory

    The objectives of the Household hazardous Waste Characterization Study (the HHW Study) were to quantify the annual household hazardous waste (HHW) tonnages disposed in Palm Beach County, Florida's (the county) residential solid waste (characterized in this study as municipal soli...

  15. ESTIMATING LEACHATE PRODUCTION FROM CLOSED HAZARDOUS WASTE LANDFILLS

    EPA Science Inventory

    Hazardous wastes disposed of in landfills may continue to drain for several years after site closure. The report presents suitable analytical methods for predicting the flow of leachate to underdrains from closed hazardous waste landfills. Leachate sources include waste fluids as...

  16. DEFINITION OF A HAZARDOUS WASTE

    EPA Science Inventory

    The USEPA has promulagated regulation establishing the criteria and characteristics of hazardous waste. The criteria established include the following factors: (1) the waste is associated with an identified waste stream or contains constituents which are identified in listings in...

  17. E-waste hazard: The impending challenge

    PubMed Central

    Pinto, Violet N.

    2008-01-01

    Electronic waste or e-waste is one of the rapidly growing problems of the world. E-waste comprises of a multitude of components, some containing toxic substances that can have an adverse impact on human health and the environment if not handled properly. In India, e-waste management assumes greater significance not only due to the generation of its own e-waste but also because of the dumping of e-waste from developed countries. This is coupled with India's lack of appropriate infrastructure and procedures for its disposal and recycling. This review article provides a concise overview of India's current e-waste scenario, namely magnitude of the problem, environmental and health hazards, current disposal and recycling operations, existing legal framework, organizations working on this issue and recommendations for action. PMID:20040981

  18. Tank Waste Disposal Program redefinition

    SciTech Connect

    Grygiel, M.L.; Augustine, C.A.; Cahill, M.A.; Garfield, J.S.; Johnson, M.E.; Kupfer, M.J.; Meyer, G.A.; Roecker, J.H.; Holton, L.K.; Hunter, V.L.; Triplett, M.B.

    1991-10-01

    The record of decision (ROD) (DOE 1988) on the Final Environmental Impact Statement, Hanford Defense High-Level, Transuranic and Tank Wastes, Hanford Site, Richland Washington identifies the method for disposal of double-shell tank waste and cesium and strontium capsules at the Hanford Site. The ROD also identifies the need for additional evaluations before a final decision is made on the disposal of single-shell tank waste. This document presents the results of systematic evaluation of the present technical circumstances, alternatives, and regulatory requirements in light of the values of the leaders and constitutents of the program. It recommends a three-phased approach for disposing of tank wastes. This approach allows mature technologies to be applied to the treatment of well-understood waste forms in the near term, while providing time for the development and deployment of successively more advanced pretreatment technologies. The advanced technologies will accelerate disposal by reducing the volume of waste to be vitrified. This document also recommends integration of the double-and single-shell tank waste disposal programs, provides a target schedule for implementation of the selected approach, and describes the essential elements of a program to be baselined in 1992.

  19. Wood waste disposal in illinois

    SciTech Connect

    Not Available

    1991-03-01

    The state of Illinois is actively involved in preserving the state's natural resources and protecting the health of Illinois citizens by planning for the most environmentally acceptable solid waste management procedures possible. The Illinois Solid Waste Management Act establishes a preferred hierarchy of methods for dealing with solid waste: volume reduction at the source, recycling and reuse, combustion with energy recovery, combustion for volume reduction, and disposal in landfills. Effective July 1, 1990, the state of Illinois banned the landfill disposal of landscape waste (grass, leaves, brush, tree trimmings, etc.). Composting has become the preferred method to dispose of these wastes and at the same time return valuable organic material to the Illinois soils from which it came. Alternatives to landfill disposal are certainly possible for many other components of Illinois' waste stream. The report from the Illinois Department of Energy and Natural Resources is in response to Public Act 86-207 effective January 1, 1991, which requires the department to study the feasibility of requiring that wood and sawdust from construction waste, demolition projects, sawmills, or other projects or industries where wood is used in a large amount be shredded and composted, and that such wood be prohibited from being disposed of in a landfill.

  20. FFTF disposable solid waste cask

    SciTech Connect

    Thomson, J. D.; Goetsch, S. D.

    1983-01-01

    Disposal of radioactive waste from the Fast Flux Test Facility (FFTF) will utilize a Disposable Solid Waste Cask (DSWC) for the transport and burial of irradiated stainless steel and inconel materials. Retrievability coupled with the desire for minimal facilities and labor costs at the disposal site identified the need for the DSWC. Design requirements for this system were patterned after Type B packages as outlined in 10 CFR 71 with a few exceptions based on site and payload requirements. A summary of the design basis, supporting analytical methods and fabrication practices developed to deploy the DSWC is provided in this paper.

  1. The management of household hazardous waste in the United Kingdom.

    PubMed

    Slack, R J; Gronow, J R; Voulvoulis, N

    2009-01-01

    Waste legislation in the United Kingdom (UK) implements European Union (EU) Directives and Regulations. However, the term used to refer to hazardous waste generated in household or municipal situations, household hazardous waste (HHW), does not occur in UK, or EU, legislation. The EU's Hazardous Waste Directive and European Waste Catalogue are the principal legislation influencing HHW, although the waste categories described are difficult to interpret. Other legislation also have impacts on HHW definition and disposal, some of which will alter current HHW disposal practices, leading to a variety of potential consequences. This paper discusses the issues affecting the management of HHW in the UK, including the apparent absence of a HHW-specific regulatory structure. Policy and regulatory measures that influence HHW management before disposal and after disposal are considered, with particular emphasis placed on disposal to landfill. PMID:18423843

  2. Management of hazardous medical waste in Croatia

    SciTech Connect

    Marinkovic, Natalija Vitale, Ksenija; Holcer, Natasa Janev; Dzakula, Aleksandar; Pavic, Tomo

    2008-07-01

    This article provides a review of hazardous medical waste production and its management in Croatia. Even though Croatian regulations define all steps in the waste management chain, implementation of those steps is one of the country's greatest issues. Improper practice is evident from the point of waste production to final disposal. The biggest producers of hazardous medical waste are hospitals that do not implement existing legislation, due to the lack of education and funds. Information on quantities, type and flow of medical waste are inadequate, as is sanitary control. We propose an integrated approach to medical waste management based on a hierarchical structure from the point of generation to its disposal. Priority is given to the reduction of the amounts and potential for harm. Where this is not possible, management includes reduction by sorting and separating, pretreatment on site, safe transportation, final treatment and sanitary disposal. Preferred methods should be the least harmful for human health and the environment. Integrated medical waste management could greatly reduce quantities and consequently financial strains. Landfilling is the predominant route of disposal in Croatia, although the authors believe that incineration is the most appropriate method. In a country such as Croatia, a number of small incinerators would be the most economical solution.

  3. 40 CFR 264.316 - Disposal of small containers of hazardous waste in overpacked drums (lab packs).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CFR parts 173, 178, and 179), if those regulations specify a particular inside container for the waste... container (49 CFR parts 178 and 179) of no more than 416-liter (110 gallon) capacity and surrounded by, at a... in 40 CFR 268.42(c)(1) may use fiber drums in place of metal outer containers. Such fiber drums...

  4. 40 CFR 264.316 - Disposal of small containers of hazardous waste in overpacked drums (lab packs).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CFR parts 173, 178, and 179), if those regulations specify a particular inside container for the waste... container (49 CFR parts 178 and 179) of no more than 416-liter (110 gallon) capacity and surrounded by, at a... in 40 CFR 268.42(c)(1) may use fiber drums in place of metal outer containers. Such fiber drums...

  5. 40 CFR 264.316 - Disposal of small containers of hazardous waste in overpacked drums (lab packs).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CFR parts 173, 178, and 179), if those regulations specify a particular inside container for the waste... container (49 CFR parts 178 and 179) of no more than 416-liter (110 gallon) capacity and surrounded by, at a... in 40 CFR 268.42(c)(1) may use fiber drums in place of metal outer containers. Such fiber drums...

  6. 40 CFR 264.316 - Disposal of small containers of hazardous waste in overpacked drums (lab packs).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CFR parts 173, 178, and 179), if those regulations specify a particular inside container for the waste... container (49 CFR parts 178 and 179) of no more than 416-liter (110 gallon) capacity and surrounded by, at a... in 40 CFR 268.42(c)(1) may use fiber drums in place of metal outer containers. Such fiber drums...

  7. 40 CFR 264.316 - Disposal of small containers of hazardous waste in overpacked drums (lab packs).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CFR parts 173, 178, and 179), if those regulations specify a particular inside container for the waste... container (49 CFR parts 178 and 179) of no more than 416-liter (110 gallon) capacity and surrounded by, at a... in 40 CFR 268.42(c)(1) may use fiber drums in place of metal outer containers. Such fiber drums...

  8. Optimizing High Level Waste Disposal

    SciTech Connect

    Dirk Gombert

    2005-09-01

    If society is ever to reap the potential benefits of nuclear energy, technologists must close the fuel-cycle completely. A closed cycle equates to a continued supply of fuel and safe reactors, but also reliable and comprehensive closure of waste issues. High level waste (HLW) disposal in borosilicate glass (BSG) is based on 1970s era evaluations. This host matrix is very adaptable to sequestering a wide variety of radionuclides found in raffinates from spent fuel reprocessing. However, it is now known that the current system is far from optimal for disposal of the diverse HLW streams, and proven alternatives are available to reduce costs by billions of dollars. The basis for HLW disposal should be reassessed to consider extensive waste form and process technology research and development efforts, which have been conducted by the United States Department of Energy (USDOE), international agencies and the private sector. Matching the waste form to the waste chemistry and using currently available technology could increase the waste content in waste forms to 50% or more and double processing rates. Optimization of the HLW disposal system would accelerate HLW disposition and increase repository capacity. This does not necessarily require developing new waste forms, the emphasis should be on qualifying existing matrices to demonstrate protection equal to or better than the baseline glass performance. Also, this proposed effort does not necessarily require developing new technology concepts. The emphasis is on demonstrating existing technology that is clearly better (reliability, productivity, cost) than current technology, and justifying its use in future facilities or retrofitted facilities. Higher waste processing and disposal efficiency can be realized by performing the engineering analyses and trade-studies necessary to select the most efficient methods for processing the full spectrum of wastes across the nuclear complex. This paper will describe technologies being evaluated at Idaho National Laboratory and the facilities we’ve designed to evaluate options and support optimization.

  9. 75 FR 35127 - Hazardous and Solid Waste Management System; Identification and Listing of Special Wastes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-21

    ... Protection Agency 40 CFR Parts 257, 261, 264 et al. Hazardous and Solid Waste Management System... Solid Waste Management System; Identification and Listing of Special Wastes; Disposal of Coal Combustion... exempt from the hazardous waste regulations under Section 3001(b)(3)(A) of RCRA. However, EPA...

  10. Developments in management and technology of waste reduction and disposal.

    PubMed

    Rushbrook, Philip

    2006-09-01

    Scandals and public dangers from the mismanagement and poor disposal of hazardous wastes during the 1960s and 1970s awakened the modern-day environmental movement. Influential publications such as "Silent Spring" and high-profile disposal failures, for example, Love Canal and Lekkerkerk, focused attention on the use of chemicals in everyday life and the potential dangers from inappropriate disposal. This attention has not abated and developments, invariably increasing expectations and tightening requirements, continue to be implemented. Waste, as a surrogate for environmental improvement, is a topic where elected representatives and administrations continually want to do more. This article will chart the recent changes in hazardous waste management emanating from the European Union legislation, now being implemented in Member States across the continent. These developments widen the range of discarded materials regarded as "hazardous," prohibit the use of specific chemicals, prohibit the use of waste management options, shift the emphasis from risk-based treatment and disposal to inclusive lists, and incorporate waste producers into more stringent regulatory regimes. The impact of the changes is also intended to provide renewed impetus for waste reduction. Under an environmental control system where only certainty is tolerated, the opportunities for innovation within the industry and the waste treatment and disposal sector will be explored. A challenging analysis will be offered on the impact of this regulation-led approach to the nature and sustainability of hazardous waste treatment and disposal in the future. PMID:17119227

  11. USE OF SORBENT MATERIALS FOR TREATING HAZARDOUS WASTES

    EPA Science Inventory

    The Department of Defense (DoD) spends millions of dollars each year to dispose of hazardous liquid wastes from military facilities. The Defense Logistics Agency (DLA) alone spent $23 million during fiscal year 1994 to dispose of64 million pounds of liquid hazardous materials. T...

  12. Safety in the Chemical Laboratory: Contracts to Dispose of Laboratory Waste.

    ERIC Educational Resources Information Center

    Fischer, Kenneth E.

    1985-01-01

    Presents a sample contract for disposing of hazardous wastes in an environmentally sound, timely manner in accordance with all federal, state, and local requirements. Addresses situations where hazardous waste must be disposed of outside the laboratory and where alternate disposal methods are not feasible. (JN)

  13. Hazardous and toxic waste management in Botswana: practices and challenges.

    PubMed

    Mmereki, Daniel; Li, Baizhan; Meng, Liu

    2014-12-01

    Hazardous and toxic waste is a complex waste category because of its inherent chemical and physical characteristics. It demands for environmentally sound technologies and know-how as well as clean technologies that simultaneously manage and dispose it in an environmentally friendly way. Nevertheless, Botswana lacks a system covering all the critical steps from importation to final disposal or processing of hazardous and toxic waste owing to limited follow-up of the sources and types of hazardous and toxic waste, lack of modern and specialised treatment/disposal facilities, technical know-how, technically skilled manpower, funds and capabilities of local institutions to take lead in waste management. Therefore, because of a lack of an integrated system, there are challenges such as lack of cooperation among all the stakeholders about the safe management of hazardous and toxic waste. Furthermore, Botswana does not have a systematic regulatory framework regarding monitoring and hazardous and toxic waste management. In addition to the absence of a systematic regulatory framework, inadequate public awareness and dissemination of information about hazardous and toxic waste management, slower progress to phase-out persistent and bio-accumulative waste, and lack of reliable and accurate information on hazardous and toxic waste generation, sources and composition have caused critical challenges to effective hazardous and toxic waste management. It is, therefore, important to examine the status of hazardous and toxic waste as a waste stream in Botswana. By default; this mini-review article presents an overview of the current status of hazardous and toxic waste management and introduces the main challenges in hazardous and toxic waste management. Moreover, the article proposes the best applicable strategies to achieve effective hazardous and toxic waste management in the future. PMID:25432741

  14. GUIDE TO TREATMENT TECHNOLOGIES FOR HAZARDOUS WASTES AT SUPERFUND SITES

    EPA Science Inventory

    Over the past fewyears, it has become increasinsly evident that land disposal of hazardous wastes is at least only a temporary solution for much of the wastes present at Superfund sites. The need for more Iong-term, permanent "treatment solutions as alternatives to land disposal ...

  15. EMERGING TECHNOLOGIES FOR THE CONTROL OF HAZARDOUS WASTES

    EPA Science Inventory

    Investigations were conducted of new and emerging technologies for the disposal of hazardous wastes. These methods involve new technologies or a recent variation of an established one. In addition, a questionnaire survey was made of potential users of hazardous waste information....

  16. MEASUREMENTS AND MODELS FOR HAZARDOUS CHEMICAL AND MIXED WASTES

    EPA Science Inventory

    Mixed hazardous and low-level radioactive wastes are in storage at DOE sites around the United States, awaiting treatment and disposal. These hazardous chemical wastes contain many components in multiple phases, presenting very difficult handling and treatment problems. These was...

  17. Disposal of NORM waste in salt caverns

    SciTech Connect

    Veil, J.A.; Smith, K.P.; Tomasko, D.; Elcock, D.; Blunt, D.; Williams, G.P.

    1998-07-01

    Some types of oil and gas production and processing wastes contain naturally occurring radioactive materials (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, there are no fatal flaws that would prevent a state regulatory agency from approving cavern disposal of NORM. On the basis of the costs charged by caverns currently used for disposal of nonhazardous oil field waste (NOW), NORM waste disposal caverns could be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.

  18. Restoring hazardous waste sites

    SciTech Connect

    Nicholson, S.A.; Safaya, N.M.

    1993-06-01

    We urgently need to address ecological considerations in the pre-and post-remediation and reclamation of hazardous waste sites (HWS). It is an opportune time for integrating ecological information with the remediation measures that will be needed at many western semiarid sites. Ecological monitoring of HWS must beocme an integral part of remediation. Greater interagency cooperation and information exchange should expedite these goals. This approach will provide better environmental protection and prove to be more cost-effective and socially acceptable in the long run than the purely engineering approaches. It is therefore essential that agencies andorganizations involved in HWS cleanup allocate adequate technical and monetary resources for determining ecological impacts, processes, and changes at HWS. 16 refs.

  19. Hazardous Wastes. Two Games for Teaching about the Problem. Environmental Communications Activities. Bulletin 703.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Cooperative Extension Service.

    Two games are presented which demonstrate the complexity of the hazardous waste problem through an introduction to the: (1) economics of waste disposal; (2) legislation surrounding waste disposal; (3) necessity to handle wastes with care; (4) damages to the environmental and human health resulting from improper disposal; (5) correct ways to…

  20. Oil field waste disposal costs at commercial disposal facilities

    SciTech Connect

    Veil, J.A.

    1997-10-01

    The exploration and production segment of the U.S. oil and gas industry generates millions of barrels of nonhazardous oil field wastes annually. In most cases, operators can dispose of their oil fields wastes at a lower cost on-site than off site and, thus, will choose on-site disposal. However, a significant quantity of oil field wastes are still sent to off-site commercial facilities for disposal. This paper provides information on the availability of commercial disposal companies in different states, the treatment and disposal methods they employ, and how much they charge. There appear to be two major off-site disposal trends. Numerous commercial disposal companies that handle oil field wastes exclusively are located in nine oil-and gas-producing states. They use the same disposal methods as those used for on-site disposal. In addition, the Railroad Commission of Texas has issued permits to allow several salt caverns to be used for disposal of oil field wastes. Twenty-two other oil- and gas-producing states contain few or no disposal companies dedicated to oil and gas industry waste. The only off-site commercial disposal companies available handle general industrial wastes or are sanitary landfills. In those states, operators needing to dispose of oil field wastes off-site must send them to a local landfill or out of state. The cost of off-site commercial disposal varies substantially, depending on the disposal method used, the state in which the disposal company is located, and the degree of competition in the area.

  1. Avoiding the Hazards of Hazardous Waste.

    ERIC Educational Resources Information Center

    Hiller, Richard

    1996-01-01

    Under a 1980 law, colleges and universities can be liable for cleanup of hazardous waste on properties, in companies, and related to stocks they invest in or are given. College planners should establish clear policy concerning gifts, investigate gifts, distance university from business purposes, sell real estate gifts quickly, consult a risk…

  2. 45 CFR 671.12 - Waste disposal.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 3 2013-10-01 2013-10-01 false Waste disposal. 671.12 Section 671.12 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION WASTE REGULATION Waste Management § 671.12 Waste disposal. (a)(1) The following wastes shall be removed from...

  3. 45 CFR 671.12 - Waste disposal.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 3 2010-10-01 2010-10-01 false Waste disposal. 671.12 Section 671.12 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION WASTE REGULATION Waste Management § 671.12 Waste disposal. (a)(1) The following wastes shall be removed from...

  4. 45 CFR 671.12 - Waste disposal.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 3 2014-10-01 2014-10-01 false Waste disposal. 671.12 Section 671.12 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION WASTE REGULATION Waste Management § 671.12 Waste disposal. (a)(1) The following wastes shall be removed from...

  5. 45 CFR 671.12 - Waste disposal.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 3 2012-10-01 2012-10-01 false Waste disposal. 671.12 Section 671.12 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION WASTE REGULATION Waste Management § 671.12 Waste disposal. (a)(1) The following wastes shall be removed from...

  6. 45 CFR 671.12 - Waste disposal.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 3 2011-10-01 2011-10-01 false Waste disposal. 671.12 Section 671.12 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION WASTE REGULATION Waste Management § 671.12 Waste disposal. (a)(1) The following wastes shall be removed from...

  7. Hazardous waste shipment data collection from DOE sites

    SciTech Connect

    Page, L.A.; Kirkpatrick, T.D.; Stevens, L.

    1992-12-31

    Past practices at the US Department of Energy (DOE) sites for offsite release of hazardous waste are being reviewed to determine if radioactively contaminated hazardous wastes were released to commercial treatment, storage, and disposal facilities. Records indicating the presence of radioactivity in waste shipped to and treated at a commercial incineration facility led to a ban on offsite hazardous waste shipments and investigation of past practices for offsite release of hazardous waste from the DOE sites. A House of Representatives Interior and Insular Affairs Committee oversight hearing on potentially contaminated waste shipments to commercial facilities concluded that the main issue was the lack of a uniform national standard to govern disposal of mixed waste.

  8. Hazardous waste shipment data collection from DOE sites

    SciTech Connect

    Page, L.A.; Kirkpatrick, T.D. ); Stevens, L. )

    1992-01-01

    Past practices at the US Department of Energy (DOE) sites for offsite release of hazardous waste are being reviewed to determine if radioactively contaminated hazardous wastes were released to commercial treatment, storage, and disposal facilities. Records indicating the presence of radioactivity in waste shipped to and treated at a commercial incineration facility led to a ban on offsite hazardous waste shipments and investigation of past practices for offsite release of hazardous waste from the DOE sites. A House of Representatives Interior and Insular Affairs Committee oversight hearing on potentially contaminated waste shipments to commercial facilities concluded that the main issue was the lack of a uniform national standard to govern disposal of mixed waste.

  9. Hazardous healthcare waste management in the Kingdom of Bahrain

    SciTech Connect

    Mohamed, L.F. Ebrahim, S.A.; Al-Thukair, A.A.

    2009-08-15

    Hazardous healthcare waste has become an environmental concern for many developing countries including the Kingdom of Bahrain. There have been several significant obstacles facing the Kingdom in dealing with this issue including; limited documentation regarding generation, handling, management, and disposal of waste. This in turn hinders efforts to plan better healthcare waste management. In this paper, hazardous waste management status in the Kingdom has been investigated through an extensive survey carried out on selected public and private healthcare premises. Hazardous waste management practices including: waste generation, segregation, storage, collection, transportation, treatment, and disposal were determined. The results of this study along with key findings are discussed and summarized. In addition; several effective recommendations and improvements of hazardous waste management are suggested.

  10. Safer Transportation and Disposal of Remote Handled Transuranic Waste - 12033

    SciTech Connect

    Rojas, Vicente; Timm, Christopher M.; Fox, Jerry V.

    2012-07-01

    Since disposal of remote handled (RH) transuranic (TRU) waste at the Waste Isolation Pilot Plant (WIPP) began in 2007, the Department of Energy (DOE) has had difficulty meeting the plans and schedule for disposing this waste. PECOS Management Services, Inc. (PECOS) assessed the feasibility of proposed alternate RH-TRU mixed waste containerisation concepts that would enhance the transportation rate of RH-TRU waste to WIPP and increase the utilization of available WIPP space capacity for RH-TRU waste disposal by either replacing or augmenting current and proposed disposal methods. In addition engineering and operational analyses were conducted that addressed concerns regarding criticality, heat release, and worker exposure to radiation. The results of the analyses showed that the concept, development, and use of a concrete pipe based design for an RH-TRU waste shipping and disposal container could be potentially advantageous for disposing a substantial quantity of RHTRU waste at WIPP in the same manner as contact-handled RH waste. Additionally, this new disposal method would eliminate the hazard associated with repackaging this waste in other containers without the requirement for NRC approval for a new shipping container. (authors)

  11. Legislative aspects of hazardous waste management.

    PubMed Central

    Friedman, M

    1983-01-01

    In the fall of 1976 Congress enacted the Resource Conservation and Recovery Act, commonly referred to as RCRA. The objective of the statute is to create an orderly system for the generation, handling and disposal of hazardous waste by means of a comprehensive tracking and record keeping mechanism. RCRA does not regulate directly by statute so much as it delegates rule making authority to the U.S. Environmental Protection Agency. Pursuant to its mandate to develop regulations in accordance with the broad criteria of RCRA, EPA has published extensive regulations. These regulations address hazardous waste generation, transportation, treatment, storage and handling and its final disposal. The statute also offers remedies available to both EPA and the public at large to ensure enforcement of the provisions of RCRA and the EPA regulations. Additionally, it sets guidelines for states to implement their own hazardous waste management programs. This article is intended to introduce this complicated statutory/regulatory package to scientists and health professionals. It outlines the provisions of RCRA and the EPA regulations, abbreviates early judicial decisions interpreting these provisions and sets forth a brief description of various state approaches to hazardous waste management. PMID:6825630

  12. Waste Disposal in the Laboratory: Teaching Responsibility and Safety.

    ERIC Educational Resources Information Center

    Allen, Ralph O.

    1983-01-01

    Discusses the generation, collection, and disposal of hazardous and other wastes in the chemistry laboratory. Offers suggestions related to these three areas to provide a safe teaching environment, including minimizing amounts of reagents used (and potentially wasted) by scaling down experiments. (JN)

  13. Evaluation of health effects from hazardous waste sites

    SciTech Connect

    Andelman, J.B.; Underhill, D.W.

    1986-01-01

    This information and data for evaluating health effects from hazardous waste sites stems from the efforts of specialists representing leading research centers, hospitals, universities, government agencies and includes consultant as well as corporate viewpoints. The work evolved from the Fourth Annual Symposium on Environmental Epidemiology sponsored by the Center for Environmental Epidemiology at the University of Pittsburgh and the U.S. EPA. Contents-One: Scope of the Hazardous Wastes Problems. Evaluating Health Effects at Hazardous Waste Sites. Historical Perspective on Waste Disposal. Two: Assessment of Exposure to Hazardous Wastes. Chemical Emissions Assessment for Hazardous Waste Sites. Assessing Pathways to Human Populations. Methods of Defining Human Exposures. Three: Determining Human Health Effects. Health Risks of Concern. Expectations and Limitations of Human Health Studies and Risk Assessment. Four: Case Studies. Love Canal. Hardeman County, Tennessee. Cannonsburg, Pennsylvania. Five: Defining Health Risks at Waste Sites. Engineering Perspectives from an Industrial Viewpoint. Role of Public Groups. Integration of Governmental Resources in Assessment of Hazards.

  14. Concept for Underground Disposal of Nuclear Waste

    NASA Technical Reports Server (NTRS)

    Bowyer, J. M.

    1987-01-01

    Packaged waste placed in empty oil-shale mines. Concept for disposal of nuclear waste economically synergistic with earlier proposal concerning backfilling of oil-shale mines. New disposal concept superior to earlier schemes for disposal in hard-rock and salt mines because less uncertainty about ability of oil-shale mine to contain waste safely for millenium.

  15. Participatory management of waste disposal.

    PubMed

    Noosorn, Narongsak

    2005-05-01

    The general objective of this study was to develop a sustainable waste disposal management model in Yom riverside communities by creating a sense of ownership in the project among the villagers and encourage the community to identify problems based on their socio-cultural background. The participatory approach was applied in developing a continual learning process between the researcher and stakeholders. The Tub Phueng community of Si Samrong, Sukhothai Province was selected as the location for this study. From the population of 240 households in the area, 40 stakeholders were selected to be on the research team. The team found that the waste in this community was comprised of 4 categories: 1. Occupation: discarded insecticide containers used for farming activities; 2. Consumption: plastic bags and wrappers form pre-packed foods; 3. Traditional activities: after holding ceremonies and festivities, the waste was dumped in the river; and 4. Environmental hygiene: waste water from washing, bathing, toileting, cooking and cleaning was directly drained into the Yom River. The sustainable waste disposal model developed to manage these problems included building simple waste-water treatment wells, digging garbage holes, prosecuting people who throw garbage into the river, withdrawing privileges from people who throw garbage into the river, and establishing a garbage center. Most of the villagers were satisfied with the proposed model, looked forward to the expected positive changes, and thought this kind of solution would be easy to put into practice. PMID:16124458

  16. Hazard ranking systems for chemical wastes and chemical waste sites. Hazardous waste ranking systems

    SciTech Connect

    Waters, R.D.; Parker, F.L.; Crutcher, M.R.

    1991-12-31

    Hazardous materials and substances have always existed in the environment. Mankind has evolved to live with some degree of exposure to toxic materials. Until recently the risk has been from natural toxins or natural background radiation. While rapid technological advances over the past few decades have improved the lifestyle of our society, they have also dramatically increased the availability, volume and types of synthetic and natural hazardous materials. Many of their effects are as yet uncertain. Products and manufacturing by-products that no longer serve a useful purpose are deemed wastes. For some waste products land disposal will always be their ultimate fate. Hazardous substances are often included in the waste products. One needs to classify wastes by degree of hazard (risk). Risk (degree of probability of loss) is usually defined for risk assessment as probability of an occurrence times the consequences of the occurrence. Perhaps even more important than the definition of risk is the choice of a risk management strategy. The choice of strategy will be strongly influenced by the decision criteria used. Those decision criteria could be utility (the greatest happiness of the greatest number), rights or technology based or some combination of the three. It is necessary to make such choices about the definition of risks and criteria for management. It is clear that these are social (i.e., political) and value choices and science has little to say on this matter. This is another example of what Alvin Weinberg has named Transcience where the subject matter is scientific and technical but the choices are social, political and moral. This paper shall deal only with the scientific and technical aspects of the hazardous waste problem to create a hazardous substances classification system.

  17. The current status of hazardous solid waste management.

    PubMed Central

    Kaufman, H B

    1978-01-01

    Growth of the population and of industrialization, and substandard disposal of the increased waste products thus generated, have resulted in numerous documented cases of harm to human, plant, and animal health. The Resource Conservation and Recovery Act (1976), its stated goals, and its intended means of implementation, are discussed relative to hazardous waste problems. Subtitle C of this Act, and the authority granted by it to the U.S. Environmental Protection Agency, are explained. Standards and regulations have been imposed upon those responsible for generating and transporting hazardous wastes, to ensure the ultimate safe disposal of such wastes in environmentally suitable, properly licensed facilities. PMID:738237

  18. Waste management and the land disposal restriction storage prohibition

    SciTech Connect

    1992-05-01

    RCRA Sect. 3004(j) prohibits storage of wastes that have been prohibited from land disposal, unless that storage is for the purpose of accumulating sufficient quantities of hazardous wastes to facilitate proper recovery, treatment, or disposal. This requirement was incorporated as part of the Land Disposal Restriction (LDR) regulations. Under the LDR storage prohibition, facilities may only store restricted wastes in containers and tanks. As stated in the Third LDR rule, storage of prohibited waste is only allowed in non-land based storage units since land-based storage is a form of disposal. The EPA has recognized that generators and storers of radioactive mixed waste (RMW) may find it impossible to comply with storage prohibition in cases where no available treatment capacity exists. Additionally, under the current regulatory interpretation, there is no provision that would allow for storage of wastes for which treatment capacity and capability are not available, even where capacity is legitimately being developed. Under the LDR program, restricted wastes that are disposed of, or placed into storage before an LDR effective date, are not subject to the LDR requirements. However, if such wastes are removed from a storage or disposal site after the effective date, such wastes would be subject to LDR requirements. The purpose of this information brief is to clarify what waste management practices constitute removal from storage.

  19. Hazardous chemical and radioactive wastes at Hanford

    SciTech Connect

    Keller, J.F.; Stewart, T.L.

    1991-07-01

    The Hanford Site was established in 1944 to produce plutonium for defense. During the past four decades, a number of reactors, processing facilities, and waste management facilities have been built at Hanford for plutonium production. Generally, Hanford's 100 Area was dedicated to reactor operation; the 200 Area to fuel reprocessing, plutonium recovery, and waste management; and the 300 Area to fuel fabrication and research and development. Wastes generated from these operations included highly radioactive liquid wastes, which were discharged to single- and double-shell tanks; solid wastes, including both transuranic (TRU) and low-level wastes, which were buried or discharged to caissons; and waste water containing low- to intermediate-level radioactivity, which was discharged to the soil column via near-surface liquid disposal units such as cribs, ponds, and retention basins. Virtually all of the wastes contained hazardous chemical as well as radioactive constituents. This paper will focus on the hazardous chemical components of the radioactive mixed waste generated by plutonium production at Hanford. The processes, chemicals used, methods of disposition, fate in the environment, and actions being taken to clean up this legacy are described by location.

  20. Hazardous chemical and radioactive wastes at Hanford

    SciTech Connect

    Keller, J.F.; Stewart, T.L.

    1991-07-01

    The Hanford Site was established in 1944 to produce plutonium for defense. During the past four decades, a number of reactors, processing facilities, and waste management facilities have been built at Hanford for plutonium production. Generally, Hanford`s 100 Area was dedicated to reactor operation; the 200 Area to fuel reprocessing, plutonium recovery, and waste management; and the 300 Area to fuel fabrication and research and development. Wastes generated from these operations included highly radioactive liquid wastes, which were discharged to single- and double-shell tanks; solid wastes, including both transuranic (TRU) and low-level wastes, which were buried or discharged to caissons; and waste water containing low- to intermediate-level radioactivity, which was discharged to the soil column via near-surface liquid disposal units such as cribs, ponds, and retention basins. Virtually all of the wastes contained hazardous chemical as well as radioactive constituents. This paper will focus on the hazardous chemical components of the radioactive mixed waste generated by plutonium production at Hanford. The processes, chemicals used, methods of disposition, fate in the environment, and actions being taken to clean up this legacy are described by location.

  1. Portable sensor for hazardous waste

    SciTech Connect

    Piper, L.G.

    1994-12-31

    Objective was to develop a field-portable monitor for sensitive hazardous waste detection using active nitrogen energy transfer (ANET) excitation of atomic and molecular fluorescence (active nitrogen is made in a dielectric-barrier discharge in nitrogen). It should provide rapid field screening of hazardous waste sites to map areas of greatest contamination. Results indicate that ANET is very sensitive for monitoring heavy metals (Hg, Se) and hydrocarbons; furthermore, chlorinated hydrocarbons can be distinguished from nonchlorinated ones. Sensitivity is at ppB levels for sampling in air. ANET appears ideal for on-line monitoring of toxic heavy metal levels at building sites, hazardous waste land fills, in combustor flues, and of chlorinated hydrocarbon levels at building sites and hazardous waste dumps.

  2. ORNL grouting technologies for immobilizing hazardous wastes

    SciTech Connect

    Dole, L.R.; Trauger, D.B.

    1983-01-01

    The Cement and Concrete Applications Group at the Oak Ridge National Laboratory (ORNL) has developed versatile and inexpensive processes to solidify large quantities of hazardous liquids, sludges, and solids. By using standard off the shelf processing equipment, these batch or continuous processes are compatible with a wide range of disposal methods, such as above-ground storage, shallow-land burial, deep geological disposal, sea-bed dumping, and bulk in-situ solidification. Because of their economic advantages, these latter bulk in-situ disposal scenarios have received the most development. ORNL's experience has shown that tailored cement-based formulas can be developed which tolerate wide fluctuations in waste feed compositions and still maintain mixing properties that are compatible with standard equipment. In addition to cements, these grouts contain pozzolans, clays and other additives to control the flow properties, set-times, phase separations and impacts of waste stream fluctuation. The cements, fly ashes and other grout components are readily available in bulk quantities and the solids-blends typically cost less than $0.05 to 0.15 per waste gallon. Depending on the disposal scenario, total disposal costs (material, capital, and operating) can be as low as $0.10 to 0.50 per gallon.

  3. Hazardous waste lawsuits, stockholder returns, and deterrence

    SciTech Connect

    Muoghalu, M.I. ); Robison, H.D. ); Glascock, J.L. )

    1990-10-01

    For the RCRA and Superfund Acts, the publicly announced desired effects are the protection of the public and natural resources from, and ultimate cleanup of, hazardous waste materials. If the regulations are working, firms are being deterred from illegal disposal of wastes. If not, the regulations are providing only illusions of improved safety, while the public actually faces a never ending process of site discovery and cleanup. While not addressed in previous empirical literature, the deterrent effects of the RCRA and Superfund Acts are the focus of this paper. The deterrent effects of the RCRA and Superfund Acts stem from the potential for suits against responsible parties seeking an end to violations, site cleanup, and reimbursement for expenditures and damages. This paper measures the impact of hazardous waste mismanagement lawsuits on stockholder returns. Specifically, the standard event-study method is used to directly measure the abnormal losses suffered by stockholders associated with lawsuit filings and settlements between 1977 and 1986.

  4. Nondestructive remote sensing of hazardous waste sites

    SciTech Connect

    Weil, G.J.; Graf, R.J.

    1994-12-31

    In the past government and private industry have produced hazardous waste in ever increasing quantities. These untold millions of tons of environmentally dangerous wastes have been disposed of by undocumented burial, simple carelessness and purposeful abandonment. Society has recently dictated that before new construction may be initiated, these wastes must be found and cleaned up. The first step is to locate these undocumented waste depositories. The non-contact, nondestructive, remote sensing techniques, of Computer Enhanced Infrared Thermography and Ground Penetrating Radar, may be used to detect buried waste sites, buried tanks/pits, and tank/pit leak plumes. These technologies may be used from mobile vehicles, helicopters or man-portable systems and are able to cover tens of acres per day depending upon the system fusion method used. This relatively new combination of technologies, win be described in theory, by procedure and the use of case studies based upon successful projects.

  5. TREATMENT OF AQUEOUS METAL AND CYANIDE BEARING HAZARDOUS WASTES

    EPA Science Inventory

    With the reauthorization of the Resource Conservation and Recovery Act (RCRA) and the concurrent restrictions on land disposal of hazardous wastes, the U.S. Environmental Protection Agency is assessing technologies that can be substituted for, or precursors to land disposal. The ...

  6. Idaho CERCLA Disposal Facility Complex Waste Acceptance Criteria

    SciTech Connect

    W. Mahlon Heileson

    2006-10-01

    The Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility (ICDF) has been designed to accept CERCLA waste generated within the Idaho National Laboratory. Hazardous, mixed, low-level, and Toxic Substance Control Act waste will be accepted for disposal at the ICDF. The purpose of this document is to provide criteria for the quantities of radioactive and/or hazardous constituents allowable in waste streams designated for disposal at ICDF. This ICDF Complex Waste Acceptance Criteria is divided into four section: (1) ICDF Complex; (2) Landfill; (3) Evaporation Pond: and (4) Staging, Storage, Sizing, and Treatment Facility (SSSTF). The ICDF Complex section contains the compliance details, which are the same for all areas of the ICDF. Corresponding sections contain details specific to the landfill, evaporation pond, and the SSSTF. This document specifies chemical and radiological constituent acceptance criteria for waste that will be disposed of at ICDF. Compliance with the requirements of this document ensures protection of human health and the environment, including the Snake River Plain Aquifer. Waste placed in the ICDF landfill and evaporation pond must not cause groundwater in the Snake River Plain Aquifer to exceed maximum contaminant levels, a hazard index of 1, or 10-4 cumulative risk levels. The defined waste acceptance criteria concentrations are compared to the design inventory concentrations. The purpose of this comparison is to show that there is an acceptable uncertainty margin based on the actual constituent concentrations anticipated for disposal at the ICDF. Implementation of this Waste Acceptance Criteria document will ensure compliance with the Final Report of Decision for the Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13. For waste to be received, it must meet the waste acceptance criteria for the specific disposal/treatment unit (on-Site or off-Site) for which it is destined.

  7. Radiation dose assessment methodology and preliminary dose estimates to support US Department of Energy radiation control criteria for regulated treatment and disposal of hazardous wastes and materials

    SciTech Connect

    Aaberg, R.L.; Baker, D.A.; Rhoads, K.; Jarvis, M.F.; Kennedy, W.E. Jr.

    1995-07-01

    This report provides unit dose to concentration levels that may be used to develop control criteria for radionuclide activity in hazardous waste; if implemented, these criteria would be developed to provide an adequate level of public and worker health protection, for wastes regulated under U.S, Environmental Protection Agency (EPA) requirements (as derived from the Resource Conservation and Recovery Act [RCRA] and/or the Toxic Substances Control Act [TSCA]). Thus, DOE and the US Nuclear Regulatory Commission can fulfill their obligation to protect the public from radiation by ensuring that such wastes are appropriately managed, while simultaneously reducing the current level of dual regulation. In terms of health protection, dual regulation of very small quantities of radionuclides provides no benefit.

  8. Effects from past solid waste disposal practices.

    PubMed Central

    Johnson, L J; Daniel, D E; Abeele, W V; Ledbetter, J O; Hansen, W R

    1978-01-01

    This paper reviews documented environmental effects experience from the disposal of solid waste materials in the U.S. Selected case histories are discussed that illustrate waste migration and its actual or potential effects on human or environmental health. Principal conclusions resulting from this review were: solid waste materials do migrate beyond the geometric confines of the initial placement location; environmental effects have been experienced from disposal of municipal, agricultural, and toxic chemical wastes; and utilization of presently known science and engineering principles in sitting and operating solid waste disposal facilities would make a significant improvement in the containment capability of shallow land disposal facilities. PMID:367769

  9. 10 CFR 850.32 - Waste disposal.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Waste disposal. 850.32 Section 850.32 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.32 Waste disposal. (a) The responsible employer must control the generation of beryllium-containing waste, and...

  10. 10 CFR 850.32 - Waste disposal.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Waste disposal. 850.32 Section 850.32 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.32 Waste disposal. (a) The responsible employer must control the generation of beryllium-containing waste, and...

  11. 10 CFR 850.32 - Waste disposal.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Waste disposal. 850.32 Section 850.32 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.32 Waste disposal. (a) The responsible employer must control the generation of beryllium-containing waste, and...

  12. 10 CFR 850.32 - Waste disposal.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Waste disposal. 850.32 Section 850.32 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.32 Waste disposal. (a) The responsible employer must control the generation of beryllium-containing waste, and...

  13. 10 CFR 850.32 - Waste disposal.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Waste disposal. 850.32 Section 850.32 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.32 Waste disposal. (a) The responsible employer must control the generation of beryllium-containing waste, and...

  14. Disposal requirements for PCB waste

    SciTech Connect

    1994-12-01

    Polychlorinated biphenyls (PCBs) are a class of organic chemicals that had become widely used in industrial applications due to their practical physical and chemical properties. Historical uses of PCBs include dielectric fluids (used in utility transformers, capacitors, etc.), hydraulic fluids, and other applications requiring stable, fire-retardant materials. Due to findings that PCBs may cause adverse health effects and due to their persistence and accumulation in the environment, the Toxic Substances Control Act (TSCA), enacted on october 11, 1976, banned the manufacture of PCBs after 1978 [Section 6(e)]. The first PCB regulations, promulgated at 40 CFR Part 761, were finalized on February 17, 1978. These PCB regulations include requirements specifying disposal methods and marking (labeling) procedures, and controlling PCB use. To assist the Department of Energy (DOE) in its efforts to comply with the TSCA statute and implementing regulations, the Office of Environmental Guidance has prepared the document ``Guidance on the Management of Polychlorinated Biphenyls (PCBs).`` That document explains the requirements specified in the statute and regulations for managing PCBs including PCB use, storage, transport, and disposal. PCB materials that are no longer in use and have been declared a waste must be disposed of according to the requirements found at 40 CFR 761.60. These requirements establish disposal options for a multitude of PCB materials including soil and debris, liquid PCBs, sludges and slurries, containers, transformers, capacitors, hydraulic machines, and other electrical equipment. This Information Brief supplements the PCB guidance document by responding to common questions concerning disposal requirements for PCBs. It is one of a series of Information Briefs pertinent to PCB management issues.

  15. MEETING HAZARDOUS WASTE REQUIREMENTS FOR METAL FINISHERS

    EPA Science Inventory

    This document provides information on the regulations affecting hazardous wastes discharged by metal finishers. opics included are: impact of RCRA regulations on both small and large generators; "delisting" of a specific facility waste from hazardous waste regulation; land dispos...

  16. RCRA Part A Permit Application for Waste Management Activities at the Nevada Test Site, Part B Permit Application Hazardous Waste Storage Unit, Nevada Test Site, and Part B Permit Application - Explosives Ordnance Disposal Unit (EODU)

    SciTech Connect

    NSTec Environmental Programs

    2010-06-17

    The Area 5 Hazardous Waste Storage Unit (HWSU) was established to support testing, research, and remediation activities at the Nevada Test Site (NTS), a large-quantity generator of hazardous waste. The HWSU, located adjacent to the Area 5 Radioactive Waste Management Site (RWMS), is a prefabricated, rigid steel-framed, roofed shelter used to store hazardous nonradioactive waste generated on the NTS. No offsite generated wastes are managed at the HWSU. Waste managed at the HWSU includes the following categories: Flammables/Combustibles; Acid Corrosives; Alkali Corrosives; Oxidizers/Reactives; Toxics/Poisons; and Other Regulated Materials (ORMs). A list of the regulated waste codes accepted for storage at the HWSU is provided in Section B.2. Hazardous wastes stored at the HWSU are stored in U.S. Department of Transportation (DOT) compliant containers, compatible with the stored waste. Waste transfer (between containers) is not allowed at the HWSU and containers remain closed at all times. Containers are stored on secondary containment pallets and the unit is inspected monthly. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational Resource Conservation and Recovery Act (RCRA) units at the NTS and their respective regulatory status.

  17. 76 FR 36879 - Minnesota: Final Authorization of State Hazardous Waste Management Program Revision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-23

    ..., 1991 (56 FR 41164) Liners and Leak Detection Systems for Hazardous Waste Land Disposal Units, Checklist 100, January 29, 1992 (57 FR 3462) Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Toxicity Characteristic; Corrections, Checklist 108, July 10, 1992 (57 FR 30657)...

  18. HAZARDOUS WASTE INCINERATION IN INDUSTRIAL PROCESSES: CEMENT AND LIME KILNS

    EPA Science Inventory

    With more liquid wastes due to be banned from land disposal facilities, expanding hazardous waste incineration capacity becomes increasingly important. At the same time, industrial plants are increasingly seeking to find new sources of lower cost fuel, specifically from the dispo...

  19. Method and apparatus for incinerating hazardous waste

    DOEpatents

    Korenberg, Jacob

    1990-01-01

    An incineration apparatus and method for disposal of infectious hazardous waste including a fluidized bed reactor containing a bed of granular material. The reactor includes a first chamber, a second chamber, and a vertical partition separating the first and second chambers. A pressurized stream of air is supplied to the reactor at a sufficient velocity to fluidize the granular material in both the first and second chambers. Waste materials to be incinerated are fed into the first chamber of the fluidized bed, the fine waste materials being initially incinerated in the first chamber and subsequently circulated over the partition to the second chamber wherein further incineration occurs. Coarse waste materials are removed from the first chamber, comminuted, and recirculated to the second chamber for further incineration. Any partially incinerated waste materials and ash from the bottom of the second chamber are removed and recirculated to the second chamber for further incineration. This process is repeated until all infectious hazardous waste has been completely incinerated.

  20. Radioactive waste disposal in simulated peat bog repositories

    SciTech Connect

    Schell, W.R.; Massey, C.D.

    1987-01-01

    The Low Level Radioactive Waste Policy Act of 1980 and the Low Level Radioactive Waste Policy Amendments Act of 1985 have required state governments to be responsible for providing low-level waste (LLW) disposal facilities in their respective areas. Questions are (a) is the technology sufficiently advanced to ensure that radioactive wastes can be stored for 300 to 1000 yr without entering into any uncontrolled area. (b) since actual experience does not exist for nuclear waste disposal over this time period, can the mathematical models developed be tested and verified using unequivocal data. (c) how can the public perception of the problem be addressed and the potential risk assessment of the hazards be communicated. To address the technical problems of nuclear waste disposal in the acid precipitation regions of the Northern Hemisphere, a project was initiated in 1984 to evaluate an alternative method of nuclear waste disposal that may not rely completely on engineered barriers to protect the public. Certain natural biogeochemical systems have been retaining deposited materials since the last Ice Age (12,000 to 15,000 yr). It is the authors belief that the biogeochemical system of wetlands and peat bogs may provide an example of an analogue for a nuclear waste repository system that can be tested and verified over a sufficient time period, at least for the LLW disposal problem.

  1. Hazardous waste minimization report for CY 1986

    SciTech Connect

    Kendrick, C.M.

    1990-12-01

    Oak Ridge National Laboratory (ORNL) is a multipurpose research and development facility. Its primary role is the support of energy technology through applied research and engineering development and scientific research in basic and physical sciences. ORNL also is a valuable resource in the solution of problems of national importance, such as nuclear and chemical waste management. In addition, useful radioactive and stable isotopes which are unavailable from the private sector are produced at ORNL. As a result of these activities, hazardous, radioactive, and mixed wastes are generated at ORNL. A formal hazardous waste minimization program for ORNL was launched in mid 1985 in response to the requirements of Section 3002 of the Resource Conservation and Recovery Act (RCRA). During 1986, a task plan was developed. The six major tasks include: planning and implementation of a laboratory-wide chemical inventory and the subsequent distribution, treatment, storage, and/or disposal (TSD) of unneeded chemicals; establishment and implementation of a distribution system for surplus chemicals to other (internal and external) organizations; training and communication functions necessary to inform and motivate laboratory personnel; evaluation of current procurement and tracking systems for hazardous materials and recommendation and implementation of improvements; systematic review of applicable current and proposed ORNL procedures and ongoing and proposed activities for waste volume and/or toxicity reduction potential; and establishment of criteria by which to measure progress and reporting of significant achievements. 8 refs., 1 fig., 5 tabs.

  2. Hazardous waste treatment facility and skid-mounted treatment systems at Los Alamos

    SciTech Connect

    Lussiez, G.W.; Zygmunt, S.J.

    1993-05-01

    To centralize treatment, storage, and staging areas for hazardous wastes, Los Alamos National Laboratory has designed a 12,000-ft{sup 2} hazardous waste treatment facility. The facility will house a treatment room for each of four kinds of wastes: nonradioactive characteristic wastes, nonradioactive listed wastes radioactive characteristic wastes, and radioactive listed wastes. The facility will be used for repacking labpacks, bulking small organic waste volumes, processing scintillation vials, treating reactives such as lithium hydride and pyrophoric uranium, treating contaminated solids such as barium sand, and treating plating wastes. The treated wastes will then be appropriately disposed of. This report describes the integral features of the hazardous waste treatment facility.

  3. Local governments take on hazardous waste collection

    SciTech Connect

    Spencer, R.L.

    1989-03-01

    Diversion of toxic chemicals from solid waste disposal facilities is one major reason communities conduct collection programs for Household Hazardous Wastes (HHW). By keeping wastes like old cans of paint thinner, pesticides, waste oil and car batteries, out of the trash collection, the hypothesis is that leachate, air emissions and compost quality will be improved. While special HHW collection days are the most common technique used by local communities, there are varied perspectives and issues about the effort which include; low average participation rates, high cost of collection, liability of sponsoring communities, and environmental benefits from diverting a small portion of waste from the solid waste facility. The major benefits are clearly educational. As community recycling programs and material reclamation facilities develop, the public is becoming increasingly aware of the presence of HHW in their waste stream. This is a natural spinoff of source separation. The increased interest in solid waste composting facilities is also forcing communities to evaluate ways of producing compost with acceptable levels of contaminants.

  4. HAZARDOUS WASTE IDENTIFICATION

    EPA Science Inventory

    This research is in direct support of the regulatory reform efforts under the Hazarous Waste Identification (HWIR) and is related to the development of national "exit levels" based on sound scientific data and models. Research focuses on developing a systems approach to modelin...

  5. Nuclear waste disposal educational forum

    SciTech Connect

    Not Available

    1982-10-18

    In keeping with a mandate from the US Congress to provide opportunities for consumer education and information and to seek consumer input on national issues, the Department of Energy's Office of Consumer Affairs held a three-hour educational forum on the proposed nuclear waste disposal legislation. Nearly one hundred representatives of consumer, public interest, civic and environmental organizations were invited to attend. Consumer affairs professionals of utility companies across the country were also invited to attend the forum. The following six papers were presented: historical perspectives; status of legislation (Senate); status of legislation (House of Representatives); impact on the legislation on electric utilities; impact of the legislation on consumers; implementing the legislation. All six papers have been abstracted and indexed for the Energy Data Base.

  6. Waste disposal options report. Volume 2

    SciTech Connect

    Russell, N.E.; McDonald, T.G.; Banaee, J.; Barnes, C.M.; Fish, L.W.; Losinski, S.J.; Peterson, H.K.; Sterbentz, J.W.; Wenzel, D.R.

    1998-02-01

    Volume 2 contains the following topical sections: estimates of feed and waste volumes, compositions, and properties; evaluation of radionuclide inventory for Zr calcine; evaluation of radionuclide inventory for Al calcine; determination of k{sub eff} for high level waste canisters in various configurations; review of ceramic silicone foam for radioactive waste disposal; epoxides for low-level radioactive waste disposal; evaluation of several neutralization cases in processing calcine and sodium-bearing waste; background information for EFEs, dose rates, watts/canister, and PE-curies; waste disposal options assumptions; update of radiation field definition and thermal generation rates for calcine process packages of various geometries-HKP-26-97; and standard criteria of candidate repositories and environmental regulations for the treatment and disposal of ICPP radioactive mixed wastes.

  7. Hazard ranking systems for chemical wastes and chemical waste sites

    SciTech Connect

    Waters, R.D.; Parker, F.L. ); Crutcher, M.R. and Associates, Inc., Columbia, IL )

    1991-01-01

    Hazardous materials and substances have always existed in the environment. Mankind has evolved to live with some degree of exposure to toxic materials. Until recently the risk has been from natural toxins or natural background radiation. While rapid technological advances over the past few decades have improved the lifestyle of our society, they have also dramatically increased the availability, volume and types of synthetic and natural hazardous materials. Many of their effects are as yet uncertain. Products and manufacturing by-products that no longer serve a useful purpose are deemed wastes. For some waste products land disposal will always be their ultimate fate. Hazardous substances are often included in the waste products. One needs to classify wastes by degree of hazard (risk). Risk (degree of probability of loss) is usually defined for risk assessment as probability of an occurrence times the consequences of the occurrence. Perhaps even more important than the definition of risk is the choice of a risk management strategy. The choice of strategy will be strongly influenced by the decision criteria used. Those decision criteria could be utility (the greatest happiness of the greatest number), rights or technology based or some combination of the three. It is necessary to make such choices about the definition of risks and criteria for management. It is clear that these are social (i.e., political) and value choices and science has little to say on this matter. This is another example of what Alvin Weinberg has named Transcience where the subject matter is scientific and technical but the choices are social, political and moral. This paper shall deal only with the scientific and technical aspects of the hazardous waste problem to create a hazardous substances classification system.

  8. Aerosol can waste disposal device

    DOEpatents

    O'Brien, Michael D.; Klapperick, Robert L.; Bell, Chris

    1993-01-01

    Disclosed is a device for removing gases and liquid from containers. The ice punctures the bottom of a container for purposes of exhausting gases and liquid from the container without their escaping into the atmosphere. The device includes an inner cup or cylinder having a top portion with an open end for receiving a container and a bottom portion which may be fastened to a disposal or waste container in a substantially leak-proof manner. A piercing device is mounted in the lower portion of the inner cylinder for puncturing the can bottom placed in the inner cylinder. An outer cylinder having an open end and a closed end fits over the top portion of the inner cylinder in telescoping engagement. A force exerted on the closed end of the outer cylinder urges the bottom of a can in the inner cylinder into engagement with the piercing device in the bottom of the inner cylinder to form an opening in the can bottom, thereby permitting the contents of the can to enter the disposal container.

  9. Aerosol can waste disposal device

    DOEpatents

    O'Brien, M.D.; Klapperick, R.L.; Bell, C.

    1993-12-21

    Disclosed is a device for removing gases and liquid from containers. The device punctures the bottom of a container for purposes of exhausting gases and liquid from the container without their escaping into the atmosphere. The device includes an inner cup or cylinder having a top portion with an open end for receiving a container and a bottom portion which may be fastened to a disposal or waste container in a substantially leak-proof manner. A piercing device is mounted in the lower portion of the inner cylinder for puncturing the can bottom placed in the inner cylinder. An outer cylinder having an open end and a closed end fits over the top portion of the inner cylinder in telescoping engagement. A force exerted on the closed end of the outer cylinder urges the bottom of a can in the inner cylinder into engagement with the piercing device in the bottom of the inner cylinder to form an opening in the can bottom, thereby permitting the contents of the can to enter the disposal container. 7 figures.

  10. NAVAJO NATION HAZARDOUS WASTE SITES

    EPA Science Inventory

    This point coverage represents the locations of hazardous waste sites on the Navajo Nation Indian Reservation. The point locations were delineated on 1:24,000 scale US Geological Survey (USGS) topographic maps by staff from the Navajo Nation EPA, Resource Conservation & Reco...

  11. THERMAL DESTRUCTION OF HAZARDOUS WASTE

    EPA Science Inventory

    Since 1982, the U.S. Environmental Protection Agency (EPA) has been conducting performance assessments of hazardous waste thermal destruction facilities in the United States. The principal objective of these tests has been to characterize emissions and determine if these faciliti...

  12. Disposal of liquid radioactive wastes through wells or shafts

    SciTech Connect

    Perkins, B.L.

    1982-01-01

    This report describes disposal of liquids and, in some cases, suitable solids and/or entrapped gases, through: (1) well injection into deep permeable strata, bounded by impermeable layers; (2) grout injection into an impermeable host rock, forming fractures in which the waste solidifies; and (3) slurrying into excavated subsurface cavities. Radioactive materials are presently being disposed of worldwide using all three techniques. However, it would appear that if the techniques were verified as posing minimum hazards to the environment and suitable site-specific host rock were identified, these disposal techniques could be more widely used.

  13. HAZARDOUS WASTE TREATMENT RESEARCH - U.S. ENVIRONMENTAL PROTECTION AGENCY (UPDATE)

    EPA Science Inventory

    Treatment and thermal destruction are becoming the most viable methods for disposing of hazardous wastes. Wastes can be destroyed through a variety of treatment methods and in incinerators, boilers, kilns, and other high temperature industrial processes. The destruction of these ...

  14. Integrating waste management with Job Hazard analysis

    SciTech Connect

    2007-07-01

    The web-based Automated Job Hazard Analysis (AJHA) system is a tool designed to help capture and communicate the results of the hazard review and mitigation process for specific work activities. In Fluor Hanford's day-to-day work planning and execution process, AJHA has become the focal point for integrating Integrated Safety Management (ISM) through industrial health and safety principles; environmental safety measures; and involvement by workers, subject-matter experts and management. This paper illustrates how AJHA has become a key element in involving waste-management and environmental-control professionals in planning and executing work. To support implementing requirements for waste management and environmental compliance within the core function and guiding principles of an integrated safety management system (ISMS), Fluor Hanford has developed the a computer-based application called the 'Automated Job Hazard Analysis' (AJHA), into the work management process. This web-based software tool helps integrate the knowledge of site workers, subject-matter experts, and safety principles and requirements established in standards, and regulations. AJHA facilitates a process of work site review, hazard identification, analysis, and the determination of specific work controls. The AJHA application provides a well-organized job hazard analysis report including training and staffing requirements, prerequisite actions, notifications, and specific work controls listed for each sub-task determined for the job. AJHA lists common hazards addressed in the U.S. Occupational, Safety, and Health Administration (OSHA) federal codes; and State regulations such as the Washington Industrial Safety and Health Administration (WISHA). AJHA also lists extraordinary hazards that are unique to a particular industry sector, such as radiological hazards and waste management. The work-planning team evaluates the scope of work and reviews the work site to identify potential hazards. Hazards relevant to the work activity being analyzed are selected from the listing provided in AJHA. The work team can also enter one-time hazards unique to the work activity. Because AJHA is web based, it can be taken into the field during site walk-downs using wireless or cell- phone technologies. Once hazards are selected, AJHA automatically lists mandatory and optional controls, based on the referenced codes and good work practices. The hazards selected may also require that additional specific analysis be performed, focusing on the unique characteristics of the job being analyzed. For example, the physical characteristics, packaging, handling, and disposal requirements for a specific waste type. The work team then evaluates the identified hazards and related controls and adds details as needed for the specific work activity being analyzed. The selection of relevant hazards also triggers required reviews by subject-matter experts (SMEs) and the on-line completion of necessary forms and permits. The details of the hazard analysis are reviewed on line or in a work- team group setting. SME approvals are entered on-line and are published in the job hazard analysis report. (authors)

  15. EU landfill waste acceptance criteria and EU Hazardous Waste Directive compliance testing of incinerated sewage sludge ash.

    PubMed

    Donatello, S; Tyrer, M; Cheeseman, C R

    2010-01-01

    A hazardous waste assessment has been completed on ash samples obtained from seven sewage sludge incinerators operating in the UK, using the methods recommended in the EU Hazardous Waste Directive. Using these methods, the assumed speciation of zinc (Zn) ultimately determines if the samples are hazardous due to ecotoxicity hazard. Leaching test results showed that two of the seven sewage sludge ash samples would require disposal in a hazardous waste landfill because they exceed EU landfill waste acceptance criteria for stabilised non-reactive hazardous waste cells for soluble selenium (Se). Because Zn cannot be proven to exist predominantly as a phosphate or oxide in the ashes, it is recommended they be considered as non-hazardous waste. However leaching test results demonstrate that these ashes cannot be considered as inert waste, and this has significant implications for the management, disposal and re-use of sewage sludge ash. PMID:19833496

  16. Staged mold for encapsulating hazardous wastes

    DOEpatents

    Unger, Samuel L.; Telles, Rodney W.; Lubowitz, Hyman R.

    1990-01-01

    A staged mold for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

  17. Staged mold for encapsulating hazardous wastes

    DOEpatents

    Unger, Samuel L.; Telles, Rodney W.; Lubowitz, Hyman R.

    1988-01-01

    A staged mold for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

  18. HAZARDOUS WASTE DEGRADATION BY WOOD DEGRADING FUNGI

    EPA Science Inventory

    The persistence and toxicity of many hazardous waste constituents indicates that the environment has limited capacity to degrade such materials. he competence and presence of degrading organisms significantly effects our ability to treat and detoxify these hazardous waste chemica...

  19. Management and disposal of waste from sites contaminated by radioactivity

    NASA Astrophysics Data System (ADS)

    Roberts, Carlyle J.

    1998-06-01

    Various methods of managing and disposing of wastes generated by decontamination and decommissioning (D & D) activities are described. This review of current waste management practices includes a description of waste minimization and volume reduction techniques and their applicability to various categories of radwaste. The importance of the physical properties of the radiation and radioactivity in determining the methodology of choice throughout the D & D process is stressed. The subject is introduced by a survey of the common types of radioactive contamination that must be managed and the more important hazards associated with each type. Comparisons are made among high level, transuranic, low level, and radioactive mixed waste, and technologically-enhanced, naturally-occurring radioactive material (TENORM). The development of appropriate clean-up criteria for each category of contaminated waste is described with the aid of examples drawn from actual practice. This includes a discussion of the application of pathway analysis to the derivation of residual radioactive material guidelines. The choice between interim storage and permanent disposal of radioactive wastes is addressed. Approaches to permanent disposal of each category of radioactive waste are described and illustrated with examples of facilities that have been constructed or are planned for implementation in the near future. Actual experience at older, existing, low-level waste disposal facilities is discussed briefly.

  20. Phytoremediation of hazardous wastes

    SciTech Connect

    McCutcheon, S.C.; Wolfe, N.L.; Carreria, L.H.; Ou, T.Y.

    1995-11-01

    A new and innovative approach to phytoremediation (the use of plants to degrade hazardous contaminants) was developed. The new approach to phytoremediation involves rigorous pathway analyses, mass balance determinations, and identification of specific enzymes that break down trinitrotoluene (TNT), other explosives (RDX and HMX), nitrobenzene, and chlorinated solvents (e.g., TCE and PCE) (EPA 1994). As a good example, TNT is completely and rapidly degraded by nitroreductase and laccase enzymes. The aromatic ring is broken and the carbon in the ring fragments is incorporated into new plant fiber, as part of the natural lignification process. Half lives for TNT degradation approach 1 hr or less under ideal laboratory conditions. Continuous-flow pilot studies indicate that scale up residence times in created wetlands may be two to three times longer than in laboratory batch studies. The use of created wetlands and land farming techniques guided by rigorous field biochemistry and ecology promises to be a vital part of a newly evolving field, ecological engineering.

  1. Household hazardous waste data for the UK by direct sampling.

    PubMed

    Slack, Rebecca J; Bonin, Michael; Gronow, Jan R; Van Santen, Anton; Voulvoulis, Nikolaos

    2007-04-01

    The amount of household hazardous waste (HHW) disposed of in the United Kingdom (UK) requires assessment. This paper describes a direct analysis study carried out in three areas in southeast England involving over 500 households. Each participating householder was provided with a special bin in which to place items corresponding to a list of HHW. The amount of waste collected was split into nine broad categories: batteries, home maintenance (DIY), vehicle upkeep, pesticides, pet care, pharmaceuticals, photographic chemicals, household cleaners, and printer cartridges. Over 1 T of waste was collected from the sample households over a 32-week period, which would correspond to an estimated 51,000 T if extrapolated to the UK population for the same period or over 7,000 T per month. Details of likely disposal routes adopted by householders were also sought, demonstrating the different pathways selected for different waste categories. Co-disposal with residual household waste dominated for waste batteries and veterinary medicines, hence avoiding classification as hazardous waste under new UK waste regulations. The information can be used to set a baseline for the management of HHW and provides information for an environmental risk assessment of the disposal of such wastes to landfill. PMID:17438817

  2. Hazardous Waste and You. A Teacher's Guide.

    ERIC Educational Resources Information Center

    Ontario Waste Management Corp., Toronto.

    This teaching guide provides an interactive introduction to hazardous waste, with particular emphasis on personal responsibility and action. Nine lessons engage advanced grade 10 and grade 11-12 science students in group discussions and actions that help them develop awareness of hazardous waste, understanding of the hazardous waste situation in…

  3. 49 CFR 171.3 - Hazardous waste.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... have identification numbers which must be displayed on hazardous waste manifests. See 40 CFR parts 262...: In 40 CFR part 263, the EPA sets forth requirements for the cleanup of releases of hazardous wastes. ... 49 Transportation 2 2012-10-01 2012-10-01 false Hazardous waste. 171.3 Section...

  4. 49 CFR 171.3 - Hazardous waste.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... have identification numbers which must be displayed on hazardous waste manifests. See 40 CFR parts 262...: In 40 CFR part 263, the EPA sets forth requirements for the cleanup of releases of hazardous wastes. ... 49 Transportation 2 2011-10-01 2011-10-01 false Hazardous waste. 171.3 Section...

  5. 49 CFR 171.3 - Hazardous waste.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... have identification numbers which must be displayed on hazardous waste manifests. See 40 CFR parts 262...: In 40 CFR part 263, the EPA sets forth requirements for the cleanup of releases of hazardous wastes. ... 49 Transportation 2 2013-10-01 2013-10-01 false Hazardous waste. 171.3 Section...

  6. 49 CFR 171.3 - Hazardous waste.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... have identification numbers which must be displayed on hazardous waste manifests. See 40 CFR parts 262...: In 40 CFR part 263, the EPA sets forth requirements for the cleanup of releases of hazardous wastes. ... 49 Transportation 2 2010-10-01 2010-10-01 false Hazardous waste. 171.3 Section...

  7. 49 CFR 171.3 - Hazardous waste.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... have identification numbers which must be displayed on hazardous waste manifests. See 40 CFR parts 262...: In 40 CFR part 263, the EPA sets forth requirements for the cleanup of releases of hazardous wastes. ... 49 Transportation 2 2014-10-01 2014-10-01 false Hazardous waste. 171.3 Section...

  8. 77 FR 43002 - Hazardous Waste Management System: Identification and Listing of Hazardous Waste Amendment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-23

    ... AGENCY 40 CFR Part 261 Hazardous Waste Management System: Identification and Listing of Hazardous Waste... changes to appendix IX of part 261 are effective July 23, 2012. The Hazardous and Solid Waste Amendments... Environmental protection, Hazardous waste, Recycling, and Reporting and recordkeeping requirements....

  9. Final Hazard Categorization for the Remediation of the 116-C-3 Chemical Waste Tanks

    SciTech Connect

    T. M. Blakley; W. D. Schofield

    2007-09-10

    This final hazard categorization (FHC) document examines the hazards, identifies appropriate controls to manage the hazards, and documents the commitments for the 116-C-3 Chemical Waste Tanks Remediation Project. The remediation activities analyzed in this FHC are based on recommended treatment and disposal alternatives described in the Engineering Evaluation for the Remediation to the 116-C-3 Chemical Waste Tanks (BHI 2005e).

  10. 75 FR 17332 - Idaho: Incorporation by Reference of Approved State Hazardous Waste Management Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-06

    ... under the Solid Waste Disposal Act, commonly referred to as the Resource Conversation and Recovery Act... issued under the authority of sections 2002(a), 3006 and 7004(b) of the Solid Waste and Disposal Act, as... AGENCY 40 CFR Part 272 Idaho: Incorporation by Reference of Approved State Hazardous Waste...

  11. 76 FR 26681 - Wisconsin: Incorporation by Reference of Approved State Hazardous Waste Management Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-09

    ... the Solid Waste Disposal Act, commonly referred to as the Resource Conversation and Recovery Act (RCRA... sections 2002(a), 3006 and 7004(b) of the Solid Waste and Disposal Act, as amended, 42 U.S.C. 6912(a), 6926... AGENCY 40 CFR Part 272 Wisconsin: Incorporation by Reference of Approved State Hazardous Waste...

  12. 77 FR 46994 - Oklahoma: Incorporation by Reference of State Hazardous Waste Management Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-07

    ... under the Solid Waste Disposal Act, commonly referred to as the Resource Conversation and Recovery Act...(b) of the Solid Waste Disposal Act, as amended, 42 U.S.C. 6912(a), 6926, and 6974(b). Dated: July 5... AGENCY 40 CFR Part 272 Oklahoma: Incorporation by Reference of State Hazardous Waste Management...

  13. Integrating Total Quality Management (TQM) and hazardous waste management

    SciTech Connect

    Kirk, N.

    1993-11-01

    The Resource Conservation and Recovery Act (RCRA) of 1976 and its subsequent amendments have had a dramatic impact on hazardous waste management for business and industry. The complexity of this law and the penalties for noncompliance have made it one of the most challenging regulatory programs undertaken by the Environmental Protection Agency (EPA). The fundamentals of RCRA include ``cradle to grave`` management of hazardous waste, covering generators, transporters, and treatment, storage, and disposal facilities. The regulations also address extensive definitions and listing/identification mechanisms for hazardous waste along with a tracking system. Treatment is favored over disposal and emphasis is on ``front-end`` treatment such as waste minimization and pollution prevention. A study of large corporations such as Xerox, 3M, and Dow Chemical, as well as the public sector, has shown that well known and successful hazardous waste management programs emphasize pollution prevention and employment of techniques such as proactive environmental management, environmentally conscious manufacturing, and source reduction. Nearly all successful hazardous waste programs include some aspects of Total Quality Management, which begins with a strong commitment from top management. Hazardous waste management at the Rocky Flats Plant is further complicated by the dominance of ``mixed waste`` at the facility. The mixed waste stems from the original mission of the facility, which was production of nuclear weapons components for the Department of Energy (DOE). A Quality Assurance Program based on the criterion in DOE Order 5700.6C has been implemented at Rocky Flats. All of the elements of the Quality Assurance Program play a role in hazardous waste management. Perhaps one of the biggest waste management problems facing the Rocky Flats Plant is cleaning up contamination from a forty year mission which focused on production of nuclear weapon components.

  14. Treatability study of aqueous, land disposal restricted mixed wastes

    SciTech Connect

    Haefner, D.R.

    1992-12-01

    Treatment studies have been completed on two aqueous waste streams at the Mixed Waste Storage Facility that are classified as land disposal restricted. Both wastes had mercury and lead as characteristic hazardous constituents. Samples from one of these wastes, composed of mercury and lead sulfide particles along with dissolved mercury and lead, was successfully treated by decanting, filtering, and ion exchanging. The effluent water had an average level of 0.003 and 0.025 mg/L of mercury and lead, respectively. These values are well below the targeted RCRA limits of 0.2 mg/L mercury and 5.0 mg/L lead. An acidic stream, containing the same hazardous metals, was also successfully treated using a treatment process of precipitation, filtering, and then ion exchange. Treatment of another waste was not completely successful, presumably because of the interference of a chelating agent.

  15. 36 CFR 13.1118 - Solid waste disposal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal. 13.1118... Provisions § 13.1118 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site...

  16. 36 CFR 13.1604 - Solid waste disposal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal. 13.1604... Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located within...

  17. 36 CFR 13.1008 - Solid waste disposal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal. 13.1008... § 13.1008 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may...

  18. 36 CFR 13.1912 - Solid waste disposal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal. 13.1912....1912 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be...

  19. 36 CFR 13.1604 - Solid waste disposal.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Solid waste disposal. 13.1604... Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located within...

  20. 36 CFR 13.1604 - Solid waste disposal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1604... Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located within...

  1. 36 CFR 13.1008 - Solid waste disposal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1008... § 13.1008 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may...

  2. 36 CFR 13.1118 - Solid waste disposal.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Solid waste disposal. 13.1118... Provisions § 13.1118 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site...

  3. 36 CFR 13.1912 - Solid waste disposal.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Solid waste disposal. 13.1912....1912 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be...

  4. 36 CFR 13.1008 - Solid waste disposal.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Solid waste disposal. 13.1008... § 13.1008 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may...

  5. 36 CFR 13.1118 - Solid waste disposal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1118... Provisions § 13.1118 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site...

  6. 36 CFR 13.1118 - Solid waste disposal.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Solid waste disposal. 13.1118... Provisions § 13.1118 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site...

  7. 36 CFR 13.1604 - Solid waste disposal.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Solid waste disposal. 13.1604... Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located within...

  8. 36 CFR 13.1912 - Solid waste disposal.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Solid waste disposal. 13.1912....1912 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be...

  9. 36 CFR 13.1604 - Solid waste disposal.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Solid waste disposal. 13.1604... Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located within...

  10. 36 CFR 13.1118 - Solid waste disposal.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Solid waste disposal. 13.1118... Provisions § 13.1118 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site...

  11. 36 CFR 13.1912 - Solid waste disposal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1912....1912 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be...

  12. 36 CFR 13.1008 - Solid waste disposal.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Solid waste disposal. 13.1008... § 13.1008 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may...

  13. 36 CFR 13.1008 - Solid waste disposal.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Solid waste disposal. 13.1008... § 13.1008 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may...

  14. 36 CFR 13.1912 - Solid waste disposal.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Solid waste disposal. 13.1912....1912 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be...

  15. Unreviewed Disposal Question Evaluation: Waste Disposal In Engineered Trench #3

    SciTech Connect

    Hamm, L. L.; Smith, F. G. III; Flach, G. P.; Hiergesell, R. A.; Butcher, B. T.

    2013-07-29

    Because Engineered Trench #3 (ET#3) will be placed in the location previously designated for Slit Trench #12 (ST#12), Solid Waste Management (SWM) requested that the Savannah River National Laboratory (SRNL) determine if the ST#12 limits could be employed as surrogate disposal limits for ET#3 operations. SRNL documented in this Unreviewed Disposal Question Evaluation (UDQE) that the use of ST#12 limits as surrogates for the new ET#3 disposal unit will provide reasonable assurance that Department of Energy (DOE) 435.1 performance objectives and measures (USDOE, 1999) will be protected. Therefore new ET#3 inventory limits as determined by a Special Analysis (SA) are not required.

  16. Portable sensor for hazardous waste

    SciTech Connect

    Piper, L.G.; Hunter, A.J.R.; Fraser, M.E.; Davis, S.J.

    1996-12-31

    We are part-way through the second phase of a 4-year program designed to develop a portable monitor for sensitive hazardous waste detection. The ultimate goal of the program is to develop our concept to the prototype instrument level. Our monitor will be a compact, portable instrument that will allow real-time, in situ, monitoring of hazardous wastes. This instrument will be able to provide the means for rapid field screening of hazardous waste sites to map the areas of greatest contamination. Remediation efforts can then focus on these areas. Our analysis approach is to excite atomic and molecular fluorescence by the technique of active nitrogen energy transfer (ANET). The active nitrogen is made in a dielectric-barrier (D-B) discharge in nitrogen at atmospheric pressure. Only a few emission lines or bands are excited for each hazardous species, so spectral resolution requirements are greatly simplified over those of other spectroscopic techniques. The D-B discharge is compact, 1 to 2 cm in diameter and 1 to 10 cm long. Furthermore, the discharge power requirements are quite modest, so that the unit can be powered by batteries. Thus an instrument based on ANET can readily be made portable. Our results indicate that ANET is a very sensitive technique for monitoring heavy metals and chlorinated hydrocarbons. We have demonstrated an overall detection sensitivity for most species that is at or below ppb levels. ANET alone, however, appears to be most successful in treating hazardous species that have been atomized. We are therefore developing a hybrid technique which combines a miniature, solid-state laser for sample collection and vaporization with ANET for subsequent detection. This approach requires no special sample preparation, can operate continuously, and lends itself well to compact packaging.

  17. 75 FR 58346 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ... AGENCY 40 CFR Part 261 Hazardous Waste Management System; Identification and Listing of Hazardous Waste...) certain solid wastes generated by its Longview, Texas, facility from the lists of hazardous wastes. EPA... petitioned waste on human health and the environment. DATES: Comments must be received on or before...

  18. Training for hazardous waste workers

    SciTech Connect

    Favel, K.

    1990-10-26

    This implementation plan describes the system and provides the information and schedules that are necessary to comply with the Department of Energy (DOE) Albuquerque Operations Office (AL) Memorandum, Reference EPD dated September 11, 1990, Training for Hazardous Waste Workers. The memo establishes the need for identifying employees requiring environmental training, ensuring that the training is received, and meeting documentation and recordkeeping requirements for the training.

  19. Control technology assessment of hazardous waste disposal operations in chemicals manufacturing: at 3M Company Chemolite incinerator, Cottage Grove, Minnesota, indepth survey report

    SciTech Connect

    Anastas, M.

    1984-01-01

    Environmental and breathing zone samples were analyzed for organic solvents and total hydrocarbons at the Chemolite incinerator at 3M Company (SIC-2800), Cottage Grove, Minnesota in September 1982. Engineering controls in the pump room and on the drum feed system were investigated. Concentrations of all solvents and total hydrocarbons were below all relevant standards or the limits of detection. General and local exhaust ventilation were used to suppress air contaminant concentrations in the pump room. The ventilation system supplied fresh air at the rate of 15 room changes per hour. General dilution ventilation was the primary control on the drum feed system. A carbon-dioxide injection system and overhead vent were used to minimize potential fire and explosion hazards. Grounding devices were installed on liquid waste feed lines to prevent the occurrence of sparks caused by flowing liquids. Hard hats, safety glasses, company provided uniforms, and safety shoes were routinely worn at the incineration site. Rubber suits, face shields, and half face respirators were worn when corrosive materials were handled. The company had intensive training and education programs. Only minor injuries occurred during the 11 year history of the facility.

  20. Portable sensor for hazardous waste

    SciTech Connect

    Piper, L.G.; Fraser, M.E.; Davis, S.J.

    1995-12-01

    We are beginning the second phase of a three and a half year program designed to develop a portable monitor for sensitive hazardous waste detection. The ultimate goal of the program is to develop our concept to the prototype instrument level. Our monitor will be a compact, portable instrument that will allow real-time, in situ, monitoring of hazardous wastes. Further, our instrument can show whether cleanup technologies are successful at reducing hazardous materials concentrations below regulated levels, and will provide feedback to allow changes in remediation operations, if necessary, to enhance their efficacy. Our approach is to excite atomic and molecular fluorescence by the technique of active nitrogen energy transfer (ANET). The active nitrogen is made in a dielectric-barrier (D-B) discharge in nitrogen at atmospheric pressure. Only a few emission lines or bands are excited for each hazardous species, so spectral resolution requirements are greatly simplified over those of other spectroscopic techniques. The dielectric-barrier discharge is compact, 1 to 2 cm in diameter and 1 to 10 cm long. During the first phase of the program we demonstrated that a variety of hazardous species could be detected by the technique of active nitrogen energy transfer (ANET) excitation of atomic and molecular fluorescence. Species investigated included heavy metals, Hg, Cr, and Se, both chlorinated and non-chlorinated organics, and uranyl compounds. For most of these species we demonstrated sensitivity limits for their detection at parts per billion (ppb) levels. Our principal goals for this second phase of the program are to develop and breadboard test instrument components and to design a prototype instrument suitable for construction and evaluation in the final phase of the program. A secondary goal is to extend the ANET technology to encompass a greater number of hazardous species, primarily additional heavy metals and radionuclides.

  1. 77 FR 65314 - Missouri: Final Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-26

    ...The Solid Waste Disposal Act, as amended, commonly referred to as the Resource Conservation and Recovery Act (RCRA), allows the Environmental Protection Agency (EPA) to authorize states to operate their hazardous waste management programs in lieu of the Federal program. Missouri has applied to EPA for final authorization of the changes to its hazardous waste program under RCRA. EPA has......

  2. 75 FR 81187 - South Dakota: Final Authorization of State Hazardous Waste Management Program Revision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-27

    ...The Solid Waste Disposal Act, as amended, commonly referred to as the Resource Conservation and Recovery Act (RCRA), allows the Environmental Protection Agency (EPA) to authorize states to operate their hazardous waste management programs in lieu of the federal program. South Dakota has applied to EPA for final authorization of the changes to its hazardous waste program under RCRA. EPA has......

  3. HOUSEHOLD HAZARDOUS WASTE CHARACTERIZATION STUDY FOR PALM BEACH COUNTY, FLORIDA - A MITE PROGRAM EVALUATION

    EPA Science Inventory

    The objectives of the Household Hazardous Waste Characterization Study (the HHW Study) were to: 1) Quantity the annual household hazardous waste (HHW) tonnages disposed in Palm Beach County Florida’s (the County) residential solid waste (characterized in this study as municipal s...

  4. 77 FR 29275 - Oklahoma: Incorporation by Reference of State Hazardous Waste Management Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-17

    ... under the Solid Waste Disposal Act, commonly referred to as the Resource Conversation and Recovery Act... AGENCY 40 CFR Part 272 Oklahoma: Incorporation by Reference of State Hazardous Waste Management Program... in the regulations entitled ``Approved State Hazardous Waste Management Programs'',...

  5. HOUSEHOLD HAZARDOUS WASTE CHARACTERIZATION STUDY FOR PALM BEACH COUNTY, FLORIDA - A MITE PROGRAM EVALUATION

    EPA Science Inventory

    The objectives of the Household Hazardous Waste Characterization Study (the HHW Study) were to: 1) Quantity the annual household hazardous waste (HHW) tonnages disposed in Palm Beach County Floridas (the County) residential solid waste (characterized in this study as municipal s...

  6. Stability of disposal rooms during waste retrieval

    SciTech Connect

    Brandshaug, T.

    1989-03-01

    This report presents the results of a numerical analysis to determine the stability of waste disposal rooms for vertical and horizontal emplacement during the period of waste retrieval. It is assumed that waste retrieval starts 50 years after the initial emplacement of the waste, and that access to and retrieval of the waste containers take place through the disposal rooms. It is further assumed that the disposal rooms are not back-filled. Convective cooling of the disposal rooms in preparation for waste retrieval is included in the analysis. Conditions and parameters used were taken from the Nevada Nuclear Waste Storage Investigation (NNWSI) Project Site Characterization Plan Conceptual Design Report (MacDougall et al., 1987). Thermal results are presented which illustrate the heat transfer response of the rock adjacent to the disposal rooms. Mechanical results are presented which illustrate the predicted distribution of stress, joint slip, and room deformations for the period of time investigated. Under the assumption that the host rock can be classified as ``fair to good`` using the Geomechanics Classification System (Bieniawski, 1974), only light ground support would appear to be necessary for the disposal rooms to remain stable. 23 refs., 28 figs., 2 tabs.

  7. 75 FR 41121 - Hazardous and Solid Waste Management System; Identification and Listing of Special Wastes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-15

    ... 21, 2010 (75 FR 35128). Additional information on the proposed rule can be found at http://www.epa... AGENCY 40 CFR Parts 257, 261, 264, 265, 268, 271 and 302 RIN 2050-AE81 Hazardous and Solid Waste Management System; Identification and Listing of Special Wastes; Disposal of Coal Combustion Residuals...

  8. Preliminary Safety Design Report for Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect

    Timothy Solack; Carol Mason

    2012-03-01

    A new onsite, remote-handled low-level waste disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled low-level waste disposal for remote-handled low-level waste from the Idaho National Laboratory and for nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled low-level waste in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This preliminary safety design report supports the design of a proposed onsite remote-handled low-level waste disposal facility by providing an initial nuclear facility hazard categorization, by discussing site characteristics that impact accident analysis, by providing the facility and process information necessary to support the hazard analysis, by identifying and evaluating potential hazards for processes associated with onsite handling and disposal of remote-handled low-level waste, and by discussing the need for safety features that will become part of the facility design.

  9. MOVEMENT OF SELECTED METALS, ASBESTOS, AND CYANIDE IN SOIL: APPLICATIONS TO WASTE DISPOSAL PROBLEMS

    EPA Science Inventory

    This report presents information on movement of selected hazardous substances in soil which can be applied to problems of selecting and operating land disposal sites for wastes containing arsenic, asbestos, beryllium, cadmium, chromium, copper, cyanide, iron, lead, mercury, selen...

  10. MULTIMED, THE MULTIMEDIA EXPOSURE ASSESSMENT MODEL FOR EVALUATING THE LAND DISPOSAL OF WASTES - MODEL THEORY

    EPA Science Inventory

    The MULTIMED computer model simulates the transport and transformation of contaminants released from a hazardous waste disposal facility into the multimedia environment. elease to air and soil, including the unsaturated and saturated zones, and possible interception of the subsur...

  11. AVOIDING FAILURE OF LEACHATE COLLECTION SYSTEMS AT HAZARDOUS WASTE LANDFILLS

    EPA Science Inventory

    Failure of leachate collection systems is expected to be a problem in the operation of hazardous waste disposal facilities, just as failure of drainage systems has been a problem at agricultural sites. The principal failure mechanisms include sedimentation, clogging by biological...

  12. IN SITU RESTORATION TECHNIQUES FOR AQUIFERS CONTAMINATED WITH HAZARDOUS WASTES

    EPA Science Inventory

    Improper disposal of hazardous wastes is a threat to the nation's ground water supply. Methods which prevent contamination are probably the most effective techniques to protect ground water. Once contamination problems occur, there are a number of in situ techniques that can be u...

  13. Children's Understandings Related to Hazardous Household Items and Waste

    ERIC Educational Resources Information Center

    Malandrakis, George N.

    2008-01-01

    This study focuses on children's understanding of hazardous household items (HHI) and waste (HHW). Children from grades 4, 5 and 6 (n=173) participated in a questionnaire and interview research design. The results indicate that: (a) on a daily basis the children used HHI and disposed of HHW, (b) the children did not realize the danger of these…

  14. Household Hazardous Waste and Automotive Products: A Pennsylvania Survey.

    ERIC Educational Resources Information Center

    Shorten, Charles V.; And Others

    1995-01-01

    A significant fraction of household hazardous waste (HHW) is generated by home mechanics who use such products as motor oil, cleaners and solvents, and batteries. This survey assessed the following aspects: (1) perceptions of their health-related effects; (2) perceptions of their pollution potential; and (3) their use and disposal. (LZ)

  15. Household Hazardous Waste: Assessing Public Attitudes and Awareness.

    ERIC Educational Resources Information Center

    Scudder, Karen; Blehm, Kenneth D.

    1991-01-01

    Residents of Larimer County, Colorado, were surveyed to determine their level of awareness and attitudes concerning the disposal of household waste. Results indicated that approximately 40 percent of the population were unable to identify hazardous products within their homes and nearly 70 percent were unaware of the potential environmental…

  16. SECURING CONTAINERIZED HAZARDOUS WASTES WITH WELDED POLYETHYLENE ENCAPSULATES

    EPA Science Inventory

    Full-scale encapsulation of 208-liter (55-gal) drums was studied as a means for managing corroding containers of hazardous wastes in the field and rendering them suitable for transport and safe deposit within a final disposal site such as a landfill. Polyethylene (PE) receivers w...

  17. Household Hazardous Waste: Everyone's Problem--Everyone's Solution.

    ERIC Educational Resources Information Center

    Evenson, Linda

    1985-01-01

    Examines the household hazardous waste problem, addressing several areas related to regulation, disposal, and control. Also gives a list of safer alternatives for household cleaners/disinfectants, paint products, and pesticides. Indicates that individuals can collectively make a difference in public exposure by changing purchases and practices.…

  18. Hurricane Andrew: Impact on hazardous waste management

    SciTech Connect

    Kastury, S.N. )

    1993-03-01

    On August 24, 1992, Hurricane Andrew struck the eastern coast of South Florida with winds of 140 mph approximately and a storm surge of 15 ft. The Florida Department of Environmental Regulation finds that the Hurricane Andrew caused a widespread damage throughout Dade and Collier County as well as in Broward and Monroe County and has also greatly harmed the environment. The Department has issued an emergency final order No. 92-1476 on August 26, 1992 to address the environmental cleanup and prevent any further spills of contaminants within the emergency area. The order authorizes the local government officials to designate certain locations in areas remote from habitation for the open burning in air certain incinerators of hurricane generated yard trash and construction and demolition debris. The Department staff has assisted the county and FEMA staff in establishing procedures for Hazardous Waste Management, Waste Segregation and disposal and emergency responses. Local governments have issued these burn permits to public agencies including FDOT and Corps of Engineering (COE). Several case studies will be discussed on the Hazardous Waste Management at this presentation.

  19. Nondestructive remote sensing of hazardous waste sites

    SciTech Connect

    Weil, G.J.

    1995-12-31

    In the past, government and private industry have produced hazardous waste in ever increasing quantities. These untold millions of tons of environmentally dangerous wastes have been disposed of by undocumented burial, simple carelessness and purposeful abandonment. Society has recently dictated that before new construction may be initiated, these wastes must be found and cleaned up. The first step is to locate these undocumented waste depositories. The non-contact, nondestructive, remote sensing techniques, of Computer Enhanced Infrared Thermography and Ground Penetrating Radar, can be used to detect buried waste sites, buried tanks/pits, and tank/pit leak plumes. These technologies may be used from mobile vehicles, aerial platforms or man-portable systems and are able to cover tens or hundreds of acres per day when used in a combined format which includes rapid survey techniques, manual and automated data analysis. This relatively new combination of technologies, will be described by procedure and the use of case studies based upon over 10 years of successful projects.

  20. Assessment for the management of NORM wastes in conventional hazardous and nonhazardous waste landfills.

    PubMed

    Mora, Juan C; Baeza, Antonio; Robles, Beatriz; Sanz, Javier

    2016-06-01

    Naturally Occurring Radioactive Materials (NORM) wastes are generated in huge quantities in several industries and their management has been carried out under considerations of industrial non-radioactive wastes, before the concern on the radioactivity content was included in the legislation. Therefore these wastes were conditioned using conventional methods and the waste disposals were designed to isolate toxic elements from the environment for long periods of time. Spanish regulation for these conventional toxic waste disposals includes conditions that assure adequate isolation to minimize the impact of the wastes to the environment in present and future conditions. After 1996 the radiological impact of the management of NORM wastes is considered and all the aspects related with natural radiations and the radiological control regarding the management of residues from NORM industries were developed in the new regulation. One option to be assessed is the disposal of NORM wastes in hazardous and non-hazardous waste disposals, as was done before this new regulation. This work analyses the management of NORM wastes in these landfills to derive the masses that can be disposed without considerable radiological impact. Generic dose assessments were carried out under highly conservative hypothesis and a discussion on the uncertainty and variability sources was included to provide consistency to the calculations. PMID:26921509

  1. Nuclear hazardous waste cost control management

    SciTech Connect

    Selg, R.A.

    1991-05-09

    The effects of the waste content of glass waste forms on Savannah River high-level waste disposal costs are currently under study to adjust the glass frit content to optimize the glass waste loadings and therefore significantly reduce the overall waste disposal cost. Changes in waste content affect onsite Defense Waste Changes in waste contents affect onsite Defense Waste Processing Facility (DWPF) costs as well as offsite shipping and repository emplacement charges. A nominal 1% increase over the 28 wt% waste loading of DWPF glass would reduce disposal costs by about $50 million for Savannah River wastes generated to the year 2000. Optimization of the glass waste forms to be produced in the SWPF is being supported by economic evaluations of the impact of the forms on waste disposal costs. Glass compositions are specified for acceptable melt processing and durability characteristics, with economic effects tracked by the number of waste canisters produced. This paper presents an evaluation of the effects of variations in waste content of the glass waste forms on the overall cost of the disposal, including offsite shipment and repository emplacement, of the Savannah River high-level wastes.

  2. Low-level waste disposal - Grout issue and alternative waste form technology

    SciTech Connect

    Epstein, J.L.; Westski, J.H. Jr.

    1993-02-01

    Based on the Record of Decision (1) for the Hanford Defense Waste Environmental Impact Statement (HDW-EIS) (2), the US Department of Energy (DOE) is planning to dispose of the low-level fraction of double-shell tank (DST) waste by solidifying the liquid waste as a cement-based grout placed in near-surface, reinforced, lined concrete vaults at the Hanford Site. In 1989, the Hanford Grout Disposal Program (HGDP) completed a full-scale demonstration campaign by successfully grouting 3,800 cubic meters (1 million gallons) of low radioactivity, nonhazardous, phosphate/sulfate waste (PSW), mainly decontamination solution from N Reactor. The HGDP is now preparing for restart of the facility to grout a higher level activity, mixed waste double-shell slurry feed (DSSF). This greater radionuclide and hazardous waste content has resulted in a number of issues confronting the disposal system and the program. This paper will present a brief summary of the Grout Treatment Facility`s components and features and will provide a status of the HGDP, concentrating on the major issues and challenges resulting from the higher radionuclide and hazardous content of the waste. The following major issues will be discussed: Formulation (cementitious mix) development; the Performance Assessment (PA) (3) to show compliance of the disposal system to long-term environmental protection objectives; and the impacts of grouting on waste volume projections and tank space needs.

  3. Sources and management of hazardous waste in Papua New Guinea

    SciTech Connect

    Singh, K.

    1996-12-31

    Papua New Guinea (PNG) has considerable mineral wealth, especially in gold and copper. Large-scale mining takes place, and these activities are the source of most of PNG`s hazardous waste. Most people live in small farming communities throughout the region. Those living adjacent to mining areas have experienced some negative impacts from river ecosystem damage and erosion of their lands. Industry is centered mainly in urban areas and Generates waste composed of various products. Agricultural products, pesticide residues, and chemicals used for preserving timber and other forestry products also produce hazardous waste. Most municipal waste comes from domestic and commercial premises; it consists mainly of combustibles, noncombustibles, and other wastes. Hospitals generate pathogenic organisms, radioactive materials, and chemical and pharmaceutical laboratory waste. Little is known about the actual treatment of waste before disposal in PNG. Traditional low-cost waste disposal methods are usually practiced, such as use of landfills; storage in surface impoundments; and disposal in public sewers, rivers, and the sea. Indiscriminate burning of domestic waste in backyards is also commonly practiced in urban and rural areas. 10 refs., 4 tabs.

  4. TREATMENT TECHNOLOGIES FOR HAZARDOUS WASTES. PART 4. A REVIEW OF ALTERNATIVE TREATMENT PROCESSES FOR METAL BEARING HAZARDOUS WASTE STREAMS

    EPA Science Inventory

    The United States Congress and the U.S. Environmental Protection Agency (EPA) believe that treatment and recovery techniques should be given maximum priority when considering methods for managing the Nation's generated hazardous waste. A prohibition for the disposal of certain ca...

  5. 30 CFR 816.89 - Disposal of noncoal mine wastes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Disposal of noncoal mine wastes. 816.89 Section... ACTIVITIES § 816.89 Disposal of noncoal mine wastes. (a) Noncoal mine wastes including, but not limited to... disposal of noncoal mine wastes shall be in a designated disposal site in the permit area or a...

  6. 30 CFR 816.89 - Disposal of noncoal mine wastes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Disposal of noncoal mine wastes. 816.89 Section... ACTIVITIES § 816.89 Disposal of noncoal mine wastes. (a) Noncoal mine wastes including, but not limited to... disposal of noncoal mine wastes shall be in a designated disposal site in the permit area or a...

  7. 30 CFR 817.89 - Disposal of noncoal mine wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Disposal of noncoal mine wastes. 817.89 Section... ACTIVITIES § 817.89 Disposal of noncoal mine wastes. (a) Noncoal mine wastes including, but not limited to... disposal of noncoal mine wastes shall be in a designated disposal site in the permit area or a...

  8. 30 CFR 816.89 - Disposal of noncoal mine wastes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Disposal of noncoal mine wastes. 816.89 Section... ACTIVITIES § 816.89 Disposal of noncoal mine wastes. (a) Noncoal mine wastes including, but not limited to... disposal of noncoal mine wastes shall be in a designated disposal site in the permit area or a...

  9. 30 CFR 817.89 - Disposal of noncoal mine wastes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Disposal of noncoal mine wastes. 817.89 Section... ACTIVITIES § 817.89 Disposal of noncoal mine wastes. (a) Noncoal mine wastes including, but not limited to... disposal of noncoal mine wastes shall be in a designated disposal site in the permit area or a...

  10. 30 CFR 817.89 - Disposal of noncoal mine wastes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Disposal of noncoal mine wastes. 817.89 Section... ACTIVITIES § 817.89 Disposal of noncoal mine wastes. (a) Noncoal mine wastes including, but not limited to... disposal of noncoal mine wastes shall be in a designated disposal site in the permit area or a...

  11. 30 CFR 816.89 - Disposal of noncoal mine wastes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Disposal of noncoal mine wastes. 816.89 Section... ACTIVITIES § 816.89 Disposal of noncoal mine wastes. (a) Noncoal mine wastes including, but not limited to... disposal of noncoal mine wastes shall be in a designated disposal site in the permit area or a...

  12. 30 CFR 816.89 - Disposal of noncoal mine wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Disposal of noncoal mine wastes. 816.89 Section... ACTIVITIES § 816.89 Disposal of noncoal mine wastes. (a) Noncoal mine wastes including, but not limited to... disposal of noncoal mine wastes shall be in a designated disposal site in the permit area or a...

  13. 30 CFR 817.89 - Disposal of noncoal mine wastes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Disposal of noncoal mine wastes. 817.89 Section... ACTIVITIES § 817.89 Disposal of noncoal mine wastes. (a) Noncoal mine wastes including, but not limited to... disposal of noncoal mine wastes shall be in a designated disposal site in the permit area or a...

  14. 30 CFR 817.89 - Disposal of noncoal mine wastes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Disposal of noncoal mine wastes. 817.89 Section... ACTIVITIES § 817.89 Disposal of noncoal mine wastes. (a) Noncoal mine wastes including, but not limited to... disposal of noncoal mine wastes shall be in a designated disposal site in the permit area or a...

  15. Hazardous waste management in the Pacific basin

    SciTech Connect

    Cirillo, R.R.; Chiu, S.; Chun, K.C.; Conzelmann, G.; Carpenter, R.A.; Indriyanto, S.H.

    1994-11-01

    Hazardous waste control activities in Asia and the Pacific have been reviewed. The review includes China (mainland, Hong Kong, and Taiwan), Indonesia, Korea, Malaysia, Papua New Guinea, the Philippines, Singapore, and Thailand. It covers the sources of hazardous waste, the government structure for dealing with hazardous waste, and current hazardous waste control activities in each country. In addition, the hazardous waste program activities of US government agencies, US private-sector organizations, and international organizations are reviewed. The objective of these reviews is to provide a comprehensive picture of the current hazardous waste problems and the waste management approaches being used to address them so that new program activities can be designed more efficiently.

  16. Safety evaluation for packaging (onsite) disposable solid waste cask

    SciTech Connect

    Flanagan, B.D., Westinghouse Hanford

    1996-12-20

    This safety evaluation for packaging (SEP) evaluates and documents the ability of the Disposable Solid Waste Cask (DSWC) to meet the packaging requirements of HNF-CM-2-14, Hazardous Material Packaging and Shipping, for the onsite transfer of special form, highway route controlled quantity, Type B fissile radioactive material. This SEP evaluates five shipments of DSWCs used for the transport and storage of Fast Flux Test Facility unirradiated fuel to the Plutonium Finishing Plant Protected Area.

  17. Apparatus for incinerating hazardous waste

    SciTech Connect

    Chang, Robert C. W.

    1994-01-01

    An apparatus for incinerating wastes, including an incinerator having a combustion chamber, a fluidtight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC (about 1" WC) higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes.

  18. Apparatus for incinerating hazardous waste

    SciTech Connect

    Chang, R.C.W.

    1994-12-20

    An apparatus is described for incinerating wastes, including an incinerator having a combustion chamber, a fluid-tight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes. 1 figure.

  19. 75 FR 57686 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste Amendment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-22

    ... Cord, Scottsburg (64 FR 3869, January 26, 1999). On April 22, 2010, the Agency was notified that... AGENCY 40 CFR Part 261 Hazardous Waste Management System; Identification and Listing of Hazardous Waste... specific waste from a particular generating facility should not be regulated as a hazardous waste. Based...

  20. 75 FR 60689 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-01

    ... AGENCY 40 CFR Part 261 Hazardous Waste Management System; Identification and Listing of Hazardous Waste... Refinery (Beaumont Refinery) to exclude (or delist) a certain solid waste generated by its Beaumont, Texas, facility from the lists of hazardous wastes. EPA used the Delisting Risk Assessment Software (DRAS)...

  1. Radiological hazards of alpha-contaminated waste

    SciTech Connect

    Rodgers, J.C.

    1982-01-01

    The radiological hazards of alpha-contaminated wastes are discussed in this overview in terms of two components of hazard: radiobiological hazard, and radioecological hazard. Radiobiological hazard refers to human uptake of alpha-emitters by inhalation and ingestion, and the resultant dose to critical organs of the body. Radioecological hazard refers to the processes of release from buried wastes, transport in the environment, and translocation to man through the food chain. Besides detailing the sources and magnitude of hazards, this brief review identifies the uncertainties in their estimation, and implications for the regulatory process.

  2. System for Odorless Disposal of Human Waste

    NASA Technical Reports Server (NTRS)

    Jennings, Dave; Lewis, Tod

    1987-01-01

    Conceptual system provides clean, hygienic storage. Disposal system stores human wastes compactly. Releases no odor or bacteria and requires no dangerous chemicals or unpleasant handling. Stabilizes waste by natural process of biodegradation in which microbial activity eventually ceases and ordors and bacteria reduced to easily contained levels. Simple and reliable and needs little maintenance.

  3. Toxic Overload: The Waste Disposal Dilemma.

    ERIC Educational Resources Information Center

    Knox, Robert J.

    1991-01-01

    The role of the Environmental Protection Agency as ombudsman concerning waste disposal is examined with respect to both the current options of source reduction and recycling as pollution prevention, and alternative approaches that expand upon these current options, particularly with respect to toxic and medical waste. (JJK)

  4. TOXICOLOGICAL IMPLICATIONS OF REMEDIATING HAZARDOUS WASTES

    EPA Science Inventory

    Section 121 of the amendments (1986) to the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (SUPERFUND) calls for hazardous waste site remediations that will permanently and significantly reduce the volume, toxicity, or mobility of hazardous substance...

  5. Surveying household hazardous waste generation and collection trends in Arizona

    SciTech Connect

    Wolf, A.M.A.; Kettler, L.E.; Leahy, J.F.; Spitz, A.H.

    1997-03-01

    Residents of Maricopa County, Arizona were surveyed using a computerized survey instrument to assess purchases of household hazardous materials (HHM), disposal practices for household hazardous waste (HHW), attitudes regarding the environmental and health effects of HHW and preferred disposal and funding methods. The study results indicate that the residents of Maricopa County are purchasing large quantities of HHM and may be improperly disposing of pesticides, cleaners, paint products, antifreeze and batteries. The majority of the residents had heard of the term HHW and thought that HHW could cause pollution or health problems. Residents prefer a permanent collection site less than five miles away that is funded by a tax on products, at the time of sale, as a disposal option. The results from Maricopa County, a county without a permanent collection facility, were compared to survey and actual results from Pima County, Arizona which has had collection events since 1986 and a permanent facility since 1990.

  6. APPLICATION OF A SIMPLE SHORT-TERM BIOASSAY FOR THE IDENTIFICATION OF GENOTOXINS FROM HAZARDOUS WASTES

    EPA Science Inventory

    The proper disposal of hazardous wastes currently generated and clean up of waste disposal sites of the past are challenges facing regulatory agencies in the industrialized nations. he estimation of levels of toxicity is an essential step in prioritizing industrial effluents and ...

  7. Disposal of Hanford site tank wastes

    SciTech Connect

    Kupfer, M.J.

    1993-09-01

    Between 1943 and 1986, 149 single-shell tanks (SSTs) and 28 double-shell tanks (DSTs) were built and used to store radioactive wastes generated during reprocessing of irradiated uranium metal fuel elements at the U.S. Department of Energy (DOE) Hanford Site in Southeastern Washington state. The 149 SSTs, located in 12 separate areas (tank farms) in the 200 East and 200 West areas, currently contain about 1.4 {times} 10{sup 5} m{sup 3} of solid and liquid wastes. Wastes in the SSTs contain about 5.7 {times} 10{sup 18} Bq (170 MCi) of various radionuclides including {sup 90}Sr, {sup 99}Tc, {sup 137}Cs, and transuranium (TRU) elements. The 28 DSTs also located in the 200 East and West areas contain about 9 {times} 10{sup 4} m{sup 3} of liquid (mainly) and solid wastes; approximately 4 {times} 10{sup 18}Bq (90 MCi) of radionuclides are stored in the DSTs. Important characteristics and features of the various types of SST and DST wastes are described in this paper. However, the principal focus of this paper is on the evolving strategy for final disposal of both the SST and DST wastes. Also provided is a chronology which lists key events and dates in the development of strategies for disposal of Hanford Site tank wastes. One of these strategies involves pretreatment of retrieved tank wastes to separate them into a small volume of high-level radioactive waste requiring, after vitrification, disposal in a deep geologic repository and a large volume of low-level radioactive waste which can be safely disposed of in near-surface facilities at the Hanford Site. The last section of this paper lists and describes some of the pretreatment procedures and processes being considered for removal of important radionuclides from retrieved tank wastes.

  8. Locating hazardous waste facilities: The influence of NIMBY beliefs

    SciTech Connect

    Groothuis, P.A.; Miller, G. )

    1994-07-01

    The [open quote]Not-In-My-Backyard[close quote] (NIMBY) syndrome is analyzed in economic decision making. Belief statements that reflect specific NIMBY concerns are subjected to factor analysis and the structure reveals two dimensions: tolerance and avoidance. Tolerance reflects an acceptance of rational economic arguments regarding the siting of a hazardous waste facility and avoidance reflects a more personal fear-of-consequences. Analysis identifies demographic characteristics of individuals likely to exhibit these two beliefs. These beliefs also are shown to influence the acceptance of a hazardous waste disposal facility in ones neighborhood when compensation is offered.

  9. Slag from hazardous waste incineration: reduction of heavy metal leaching.

    PubMed

    Reich, Jens

    2003-04-01

    Hazardous waste incineration (HWI) in rotary kilns and the disposal of the residues on landfills play an important role in German waste treatment. In order to reduce costs by disposal on cheaper landfill sites still applying to landfill regulations the leaching behaviour of HWI-slag should be improved further. In a new process-integrated approach hazardous waste is mixed with limestone, which initiates chemical reactions with heavy metals in the rotary kiln yielding new compounds of different solubility. These reactions were observed after treatment at 1200 degrees C combined with fusion processes, at 930 degrees C they also occurred without fusion to the major part. For that purpose HWI-slag/limestone mixtures are thermally treated and then examined by elution tests. A minimum of overall heavy metal leaching was determined at CaO-contents between 15 and 20% after sintering at the average temperature at HWI. PMID:12739725

  10. Hazardous solid waste from domestic wastewater treatment plants.

    PubMed Central

    Harrington, W M

    1978-01-01

    The treatment of liquid wastes in municipal sewage treatment plants creates significant quantities of solid residue for disposal. The potential hazard from these wastes requires that their characteristics be determined accurately to develop environmentally sound management criteria. It is readily recognized that the sludge characteristics vary with the type and degree of industrial activity within a wastewater collection system and that these characteristics play a significant role in determining whether the material has potential for beneficial reuse or if it must be directed to final disposal. This paper offers an overview of past and present practices of sewage sludge disposal, an indication of quantities produced, and experience with beneficial reuse. An estimated range of costs involved, expected environmental effects and potential for continued use is offered for each disposal or reuse system discussed. PMID:738239

  11. THERMODYNAMIC FUNDAMENTALS USED IN HAZARDOUS WASTE INCINERATION

    EPA Science Inventory

    Thermodynamics is the basic foundation of many engineeringpractices. nvironmental engineering is no exception, it is usingthermodynamic principles in many applications. n particular,those who are involved in the incineration of various wastes suchas hazardous and municipal wastes...

  12. Improving Tamper Detection for Hazardous Waste Security

    SciTech Connect

    Johnston, R. G.; Garcia, A. R. E.; Pacheco, N.; Martinez, R. K.; Martinez, D. D.; Trujillo, S. J.; Lopez, L. N.

    2003-02-26

    Since September 11, waste managers are increasingly expected to provide effective security for their hazardous wastes. Tamper-indicating seals can help. This paper discusses seals, and offers recommendations for how to choose and use them.

  13. The disposal of nuclear waste in space

    NASA Technical Reports Server (NTRS)

    Burns, R. E.

    1978-01-01

    The important problem of disposal of nuclear waste in space is addressed. A prior study proposed carrying only actinide wastes to space, but the present study assumes that all actinides and all fission products are to be carried to space. It is shown that nuclear waste in the calcine (oxide) form can be packaged in a container designed to provide thermal control, radiation shielding, mechanical containment, and an abort reentry thermal protection system. This package can be transported to orbit via the Space Shuttle. A second Space Shuttle delivers an oxygen-hydrogen orbit transfer vehicle to a rendezvous compatible orbit and the mated OTV and waste package are sent to the preferred destination. Preferred locations are either a lunar crater or a solar orbit. Shuttle traffic densities (which vary in time) are given and the safety of space disposal of wastes discussed.

  14. 10 CFR 20.2005 - Disposal of specific wastes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Disposal of specific wastes. 20.2005 Section 20.2005 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Waste Disposal § 20.2005 Disposal of specific wastes. (a) A licensee may dispose of the following licensed material as if it...

  15. 10 CFR 20.2005 - Disposal of specific wastes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Disposal of specific wastes. 20.2005 Section 20.2005 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Waste Disposal § 20.2005 Disposal of specific wastes. (a) A licensee may dispose of the following licensed material as if it...

  16. 10 CFR 20.2005 - Disposal of specific wastes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Disposal of specific wastes. 20.2005 Section 20.2005 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Waste Disposal § 20.2005 Disposal of specific wastes. (a) A licensee may dispose of the following licensed material as if it...

  17. 10 CFR 20.2005 - Disposal of specific wastes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Disposal of specific wastes. 20.2005 Section 20.2005 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Waste Disposal § 20.2005 Disposal of specific wastes. (a) A licensee may dispose of the following licensed material as if it...

  18. 10 CFR 20.2005 - Disposal of specific wastes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Disposal of specific wastes. 20.2005 Section 20.2005 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Waste Disposal § 20.2005 Disposal of specific wastes. (a) A licensee may dispose of the following licensed material as if it...

  19. 77 FR 3224 - New Mexico: Incorporation by Reference of State Hazardous Waste Management Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-23

    ... proposes to codify in the regulations entitled ``Approved State Hazardous Waste Management Programs,'' New... will enforce under the Solid Waste Disposal Act, commonly referred to as the Resource Conversation and... AGENCY 40 CFR Parts 271 and 272 New Mexico: Incorporation by Reference of State Hazardous...

  20. Future trends which will influence waste disposal.

    PubMed Central

    Wolman, A

    1978-01-01

    The disposal and management of solid wastes are ancient problems. The evolution of practices naturally changed as populations grew and sites for disposal became less acceptable. The central search was for easy disposal at minimum costs. The methods changed from indiscriminate dumping to sanitary landfill, feeding to swine, reduction, incineration, and various forms of re-use and recycling. Virtually all procedures have disabilities and rising costs. Many methods once abandoned are being rediscovered. Promises for so-called innovations outstrip accomplishments. Markets for salvage vary widely or disappear completely. The search for conserving materials and energy at minimum cost must go on forever. PMID:570105

  1. EVALUATION OF THE APPLICABILITY OF SUBSIDENCE MODELS TO HAZARDOUS WASTE SITES

    EPA Science Inventory

    EPA has discovered a number of uncontrolled hazardous waste sites in close proximity to abandoned underground mines. Further, several Resource Conservation and Recovery Act permit applications have been received for treatment, storage, or disposal facilities located in areas wher...

  2. UNCONTROLLED/UNREGULATED HAZARDOUS WASTE SITES (FORMERLY SUPERFUND), NEUSE RIVER WATERSHED, NC

    EPA Science Inventory

    The North Carolina Department of Environment, Health, and Natural Resources, Divison of Waste Management, Superfund Section in cooperation with the North Carolina Center for Geographic Information and Analysis developed the digital Hazardous Substance Disposal Sites data to enhan...

  3. GEOSYNTHETIC DESIGN GUIDANCE FOR HAZARDOUS WASTE LANDFILL CELLS AND SURFACE IMPOUNDMENTS

    EPA Science Inventory

    The report provides guidance design procedures for the use of geosynthetic materials in hazardous waste land disposal cells. Primary geosynthetic components include flexible membrane liners (FML) used to limit the flow of leachate, and leachate collection and removal systems (LCR...

  4. Integrated management of hazardous waste generated from community sources in Thailand

    SciTech Connect

    Yodnane, P.; Spaeder, D.J.

    1999-07-01

    A system for the collection, transport, disposal and recycling of hazardous waste was developed as part of an overall master plan for the management of hazardous waste generated from community sources in Thailand. Results of a waste generation survey conducted as part of the study indicated that over 300 million kilograms per year of hazardous waste is generated from non-industrial, community sources such as automotive repair shops, gas stations, hospitals, farms, and households in Thailand. Hazardous waste from community sources consists primarily of used oils, lead-acid and dry cell batteries, cleaning chemicals, pesticides, medical wastes, solvents and fuels. Most of this waste was found to be mismanaged by codisposing with municipal waste in burning, unlined dumps, dumping directly to land or water courses, dumping into sewers, or recycling improperly, all of which pose serious threats to human health and the environment. The survey data on waste generation quantities and data from a reconnaissance survey of the conditions and operations of 86 existing waste disposal facilities was incorporated into a nationwide Geographic Information System (GIS) database. Based on this data, problems associated with hazardous waste were identified and needs for waste management systems were tabulated. A system was developed for ranking geographic regions according to hazardous waste management problems and needs, in order to prioritize implementation of waste management programs. The data were also used in developing solutions for hazardous waste management, which addressed methods for storing, collecting, transporting, disposing, and recycling the waste. It was recommended that centralized waste management facilities be utilized which included hazardous waste and medical waste incinerators, waste stabilization units, and secure landfills.

  5. Vitrification of hazardous and radioactive wastes

    SciTech Connect

    Bickford, D.F.; Schumacher, R.

    1995-12-31

    Vitrification offers many attractive waste stabilization options. Versatility of waste compositions, as well as the inherent durability of a glass waste form, have made vitrification the treatment of choice for high-level radioactive wastes. Adapting the technology to other hazardous and radioactive waste streams will provide an environmentally acceptable solution to many of the waste challenges that face the public today. This document reviews various types and technologies involved in vitrification.

  6. 40 CFR 261.11 - Criteria for listing hazardous waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Criteria for listing hazardous waste... WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE Criteria for Identifying the Characteristics of Hazardous Waste and for Listing Hazardous Waste § 261.11 Criteria for listing hazardous...

  7. 40 CFR 261.11 - Criteria for listing hazardous waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Criteria for listing hazardous waste... WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE Criteria for Identifying the Characteristics of Hazardous Waste and for Listing Hazardous Waste § 261.11 Criteria for listing hazardous...

  8. 40 CFR 261.11 - Criteria for listing hazardous waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Criteria for listing hazardous waste... WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE Criteria for Identifying the Characteristics of Hazardous Waste and for Listing Hazardous Waste § 261.11 Criteria for listing hazardous...

  9. 43 CFR 3596.2 - Disposal of waste.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Disposal of waste. 3596.2 Section 3596.2... OPERATIONS Waste From Mining or Milling § 3596.2 Disposal of waste. The operator/lessee shall dispose of all wastes resulting from the mining, reduction, concentration or separation of mineral substances...

  10. 43 CFR 3596.2 - Disposal of waste.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Disposal of waste. 3596.2 Section 3596.2... OPERATIONS Waste From Mining or Milling § 3596.2 Disposal of waste. The operator/lessee shall dispose of all wastes resulting from the mining, reduction, concentration or separation of mineral substances...

  11. 43 CFR 3596.2 - Disposal of waste.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Disposal of waste. 3596.2 Section 3596.2... OPERATIONS Waste From Mining or Milling § 3596.2 Disposal of waste. The operator/lessee shall dispose of all wastes resulting from the mining, reduction, concentration or separation of mineral substances...

  12. 43 CFR 3596.2 - Disposal of waste.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Disposal of waste. 3596.2 Section 3596.2... OPERATIONS Waste From Mining or Milling § 3596.2 Disposal of waste. The operator/lessee shall dispose of all wastes resulting from the mining, reduction, concentration or separation of mineral substances...

  13. Groundwater Contamination From Hazardous Wastes

    NASA Astrophysics Data System (ADS)

    Anderson, Mary P.

    Preparation of a good introductory textbook on groundwater contamination is a challenge, since it requires treating a complex topic in a scientifically rigorous way while maintaining an introductory level. Of necessity, tradeoffs must be made to achieve this objective and brevity as well. Another difficulty arises because research into the fate of chemicals in the subsurface is a relatively new and evolving area. The authors of this book note that, In the investigation and analysis of a groundwater pollution problem involving hazardous wastes, there is no established method or procedure. Despite this handicap, the authors do succeed in demonstrating that although any given case of contamination is unique, it is possible to identify common attributes and outline a general framework for monitoring and remedial action.

  14. HANDBOOK: HAZARDOUS WASTE INCINERATION MEASUREMENT GUIDANCE

    EPA Science Inventory

    This publication, Volume III of the Hazardous Waste Incineration Guidance Series, contains general guidance to permit writers in reviewing hazardous waste incineration permit applications and trial burn plans. he handbook is a how-to document dealing with how incineration measure...

  15. Hazardous Waste Handling Should be Defined

    ERIC Educational Resources Information Center

    Steigman, Harry

    1972-01-01

    An examination of the handling, storage and disposition of hazardous wastes from municipal and industrial sources, with a plea for the development of a uniform national hazardous waste code or listing that would be acceptable and useful to all state and federal agencies. (LK)

  16. Waste-to-energy: Benefits beyond waste disposal

    SciTech Connect

    Charles, M.A.; Kiser, J.V.L. )

    1995-01-01

    More than 125 waste-to-energy plants operate in North America, providing dependable waste disposal for thousands of communities. But the benefits of waste-to-energy plants go beyond getting rid of the garbage. Here's a look at some of the economic, environmental, and societal benefits that waste-to-energy projects have brought to their communities. The reasons vary considerably as to why communities have selected waste-to-energy as a part of their waste management systems. Common on the lists in many communities are a variety of benefits beyond dependable waste disposal. A look at experiences in four communities reveals environmental, economic, energy, and societal benefits that the projects provide to the communities they serve.

  17. LEGACY NONCONFORMANCE ISSUE IN SOLID WASTE DISPOSAL

    SciTech Connect

    ROGERS, C.A.

    2002-12-16

    Beginning in 1968 waste from sectioning, sampling, and assaying of reactor fuels was sent to underground burial caissons in the 200-W Area of the Hanford Plant in Richland, Washington. In 2002 a review of inventory records revealed that criticality safety storage limits had been exceeded. This prompted declaration of a Criticality Prevention Specification nonconformance. The corrective action illustrates the difficulties in demonstrating compliance to fissile material limits decades after waste disposal.

  18. Resource Conservation and Recovery Act (RCRA) General Contingency Plan for Hazardous Waste Treatment, Storage, and Disposal Units at the Oak Ridge Y-12 Plant

    SciTech Connect

    1999-04-01

    This contingency plan provides a description of the Y-12 plant and its waste units and prescribes control procedures and emergency response procedures. It lists emergency and spill response equipment, provides information on coordination agreements with local agencies, and describes the evacuation plan and reporting requirements.

  19. What was leaking from a hazardous-waste dump

    SciTech Connect

    Hites, R.A.

    1988-05-15

    The city of Niagara Falls, N.Y., is the home of several toxic waste disposal sites, the most famous of which is Love Canal. Although less well known, the Hyde Park dump is equally noxious. This hazardous-waste dump was operated by the Hooker Chemical Company from about 1953 to 1975. Approximately 55,000 tons of halogenated waste were buried at this site, which is just north of the city. The Hyde Park dump is drained by Bloody Run Creek. Ronald A. Hites of Indiana University outlines the steps taken to identify the structures of organic compounds leaking from the Hyde Park dump.

  20. Radiological hazards of TENORM in the wasted petroleum pipes.

    PubMed

    Abo-Elmagd, M; Soliman, H A; Salman, Kh A; El-Masry, N M

    2010-01-01

    Disposal petroleum pipes containing sludge and scale as a technically enhanced natural occurring radioactive material (TENORM) leads to internal and external radiation hazards and then a significant radiation dose to the workers. In order to contribute to a future waste management policy related to the presence of TENORM in the disposal sites of wasted petroleum pipes, scale and sludge as TENORM wastes are collected form these disposal pipes for radiometric analysis. These pipes are imported from onshore oilfields at south Sinai governorate, Egypt. The highest mean (226)Ra and (228)Ra concentrations of 519 and 50 kBq/kg respectively, were measured in scale samples. Sludge lies within the normal range of radium concentration. The average absorbed dose caused by the exposure to the wasted pipes equal to 4.09 microGy h(-1) from sludge and 262 microGy h(-1) from scale. This is much higher than the acceptable level of 0.059 microGy h(-1). Due to radon inhalation, important radon related parameters are calculated which advantage in internal dose calculation. Fairly good correlation between real radium content and radon exhalation rate for sludge samples is obtained. The hazards from sludge come from its high emanation power for radon which equal to 3.83%. The obtained results demonstrate the need of screening oil residues for their radionuclide content in order to decide about their final disposal. PMID:19782444

  1. Space Station tethered waste disposal

    NASA Technical Reports Server (NTRS)

    Rupp, Charles C.

    1988-01-01

    The Shuttle Transportation System (STS) launches more payload to the Space Station than can be returned creating an accumulation of waste. Several methods of deorbiting the waste are compared including an OMV, solid rocket motors, and a tether system. The use of tethers is shown to offer the unique potential of having a net savings in STS launch requirement. Tether technology is being developed which can satisfy the deorbit requirements but additional effort is required in waste processing, packaging, and container design. The first step in developing this capability is already underway in the Small Expendable Deployer System program. A developmental flight test of a tether initiated recovery system is seen as the second step in the evolution of this capability.

  2. Specialized Disposal Sites for Different Reprocessing Plant Wastes

    SciTech Connect

    Forsberg, Charles W.; Driscoll, Michael J.

    2007-07-01

    Once-through fuel cycles have one waste form: spent nuclear fuel (SNF). In contrast, the reprocessed SNF yields multiple wastes with different chemical, physical, and radionuclide characteristics. The different characteristics of each waste imply that there are potential cost and performance benefits to developing different disposal sites that match the disposal requirements of different waste. Disposal sites as defined herein may be located in different geologies or in a single repository containing multiple sections, each with different characteristics. The paper describes disposal options for specific wastes and the potential for a waste management system that better couples various reprocessing plant wastes with disposal facilities. (authors)

  3. Guidelines for generators of hazardous chemical waste at LBL and guidelines for generators of radioactive and mixed waste at LBL

    SciTech Connect

    Not Available

    1991-09-01

    In part one of this document the Governing Documents and Definitions sections provide general guidelines and regulations applying to the handling of hazardous chemical wastes. The remaining sections provide details on how you can prepare your waste properly for transport and disposal. They are correlated with the steps you must take to properly prepare your waste for pickup. The purpose of the second part of this document is to provide the acceptance criteria for the transfer of radioactive and mixed waste to LBL's Hazardous Waste Handling Facility (HWHF). These guidelines describe how you, as a generator of radioactive or mixed waste, can meet LBL's acceptance criteria for radioactive and mixed waste.

  4. Radioactive Waste Disposal in Thick Unsaturated Zones

    NASA Astrophysics Data System (ADS)

    Winograd, Isaac J.

    1981-06-01

    Portions of the Great Basin are undergoing crustal extension and have unsaturated zones as much as 600 meters thick. These areas contain multiple natural barriers capable of isolating solidified toxic wastes from the biosphere for tens of thousands to perhaps hundreds of thousands of years. An example of the potential utilization of such arid zone environments for toxic waste isolation is the burial of transuranic radioactive wastes at relatively shallow depths (15 to 100 meters) in Sedan Crater, Yucca Flat, Nevada. The volume of this man-made crater is several times that of the projected volume of such wastes to the year 2000. Disposal in Sedan Crater could be accomplished at a savings on the order of 0.5 billion, in comparison with current schemes for burial of such wastes in mined repositories at depths of 600 to 900 meters, and with an apparently equal likelihood of waste isolation from the biosphere.

  5. Radioactive waste disposal in thick unsaturated zones.

    PubMed

    Winogard, I J

    1981-06-26

    Portions of the Great Basin are undergoing crustal extension and have unsaturated zones as much as 600 meters thick. These areas contain multiple natural barriers capable of isolating solidified toxic wastes from the biosphere for tens of thousands to perhaps hundreds of thousands of years. An example of the potential utilization of such arid zone environments for toxic waste isolatic is the burial of transuranic radioactive wastes at relatively shallow depths (15 to 100 meters) in Sedan Crater, Yucca Flat, Nevada. The volume of this man-made crater is several times that of the projected volume of such wastes to the year 2000. Disposal in Sedan Crater could be accomplished at a savings on the order of $0.5 billion, in comparison with current schemes for burial of such wastes in mined repositories at depths of 600 to 900 meters, and with an apparently equal likelihood of waste isolation from the biosphere. PMID:17790523

  6. DISPOSAL OF FLUE-GAS-CLEANING WASTES

    EPA Science Inventory

    The article describes current commercial and emerging technology for disposal of wastes from flue gas cleaning (FGC) systems for coal-fired power plants. Over 80 million metric tons/yr (dry) of coal ash and desulfurization solids are expected to be produced by the 1980's. Althoug...

  7. Low level tank waste disposal study

    SciTech Connect

    Mullally, J.A.

    1994-09-29

    Westinghouse Hanford Company (WHC) contracted a team consisting of Los Alamos Technical Associates (LATA), British Nuclear Fuel Laboratories (BNFL), Southwest Research Institute (SwRI), and TRW through the Tank Waste Remediation System (TWRS) Technical Support Contract to conduct a study on several areas concerning vitrification and disposal of low-level-waste (LLW). The purpose of the study was to investigate how several parameters could be specified to achieve full compliance with regulations. The most restrictive regulation governing this disposal activity is the National Primary Drinking Water Act which sets the limits of exposure to 4 mrem per year for a person drinking two liters of ground water daily. To fully comply, this constraint would be met independently of the passage of time. In addition, another key factor in the investigation was the capability to retrieve the disposed waste during the first 50 years as specified in Department of Energy (DOE) Order 5820.2A. The objective of the project was to develop a strategy for effective long-term disposal of the low-level waste at the Hanford site.

  8. 78 FR 46447 - Conditional Exclusions From Solid Waste and Hazardous Waste for Solvent-Contaminated Wipes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-31

    ... Rates EPA Environmental Protection Agency FR Federal Register HSWA Hazardous and Solid Waste Amendments... respective annual market share of 88 percent for reusable wipes and 12 percent for disposable wipes (68 FR... of the Common Sense Initiative (CSI) for the printing industry (59 FR 27295). The CSI...

  9. Disposal of hazardous materials from TxDOT activities. Final report, September 1992-August 1994

    SciTech Connect

    Stallard, M.; Corapcioglu, M.Y.; Beavers, T.; Beck, B.; Mehevec, A.

    1994-11-01

    The process of purchasing, storing, handling and disposal of hazardous waste is demanding. The Texas Department of Transportation deals with many such compounds every day in performing its duty of maintaining over 70,000 miles of Texas roadway. With the new demands being placed on all users of hazardous materials by the new EPA guidelines, procedures must be enacted to ensure TxDOT`s compliance with these ever-changing regulations. The placement of full-time safety and hazardous materials coordinators in each district office will help to ensure that employees follow reporting procedures and use disposal guidelines. The report will discuss these actions and others that might help TxDOT in this task.

  10. Hazardous waste inventory, characteristics, generation, and facility assessment for treatment, storage, and disposal alternatives considered in the U.S. Department of Energy Waste Management Programmatic Environmental Impact Statement

    SciTech Connect

    Lazaro, M.A.; Antonopoulos, A.A.; Esposito, M.P.; Policastro, A.J.

    1996-12-01

    This report focuses on the generation of hazardous waste (HW) and the treatment of HW being generated by routine US Department of Energy (DOE) facility operations. The wastes to be considered are managed by the DOE Waste Management (WM) Division (WM HW). The waste streams are to be sent to WM operations throughout the DOE complex under four management alternatives: No Action, Decentralization, Regionalized 1, and Regionalized 2. On-site and off-site capabilities for treatment are examined for each alternative. This report (1) summarizes the HW inventories and generated amounts resulting from WM activities, focusing on the largest DOE HW generators; (2) presents estimates of the annual amounts shipped off-site, as well as the amounts treated by various treatment technology groups; (3) describes the existing and planned treatment and storage capabilities of the largest HW-generating DOE installations, as well as the use of commercial treatment facilities by DOE sites; (4) presents applicable technologies (destruction of organics, deactivation/neutralization of waste, removal/recovery of organics, and aqueous liquid treatment); and (5) describes the four alternatives for consideration for future HW management, and for each alternative provides the HW loads and the approach used to estimate the source term for routine treatment operations. In addition, potential air emissions, liquid effluents, and solid residuals associated with each alternative are presented. This report is supplemented with an addendum that includes detailed information related to HW inventory, characteristics, generation, and facility assessment for the treatment alternatives. The addendum also presents source terms, emission rates, and throughput totals by alternative and treatment installation.

  11. Vitrification: Destroying and immobilizing hazardous wastes

    SciTech Connect

    Chapman, C.C.; Peters, R.D.; Perez, J.M.

    1994-04-01

    Researchers at the US Department of Energy`s Pacific Northwest Laboratory (PNL) have led the development of vitrification a versatile adaptable process that transforms waste solutions, slurries, moist powder and/or dry solids into a chemically durable glass form. The glass form can be safely disposed or used for other purposes, such as construction material if non-radioactive. The feed used in the process can be either combustible or non-combustible. Organic compounds are decomposed in the melters` plenum, while the inorganic residue melts into a molten glass pool. The glass produced by this process is a chemically durable material comparable to natural obsidian. Its properties typically allow it to pass the EPA Toxicity (TCLP) test as non-hazardous. To date, no glass produced by vitrification has failed the TCLP test. Vitrification is thus an ideal method of treating DOE`s mixed waste because of its ability to destroy organic compounds and bind toxic or radioactive elements. This article provides an overview of the technology.

  12. Nuclear waste disposal: Gambling on Yucca Mountain

    SciTech Connect

    Ginsburg, S.

    1995-05-01

    This document describes the historical aspects of nuclear energy ,nuclear weapons usage, and development of the nuclear bureaucracy in the United States, and discusses the selection and siting of Yucca Mountain, Nevada for a federal nuclear waste repository. Litigation regarding the site selection and resulting battles in the political arena and in the Nevada State Legislature are also presented. Alternative radioactive waste disposal options, risk assessments of the Yucca Mountain site, and logistics regarding the transportation and storage of nuclear waste are also presented. This document also contains an extensive bibliography.

  13. COMPILATION OF DISPOSABLE SOLID WASTE CASK EVALUATIONS

    SciTech Connect

    THIELGES, J.R.; CHASTAIN, S.A.

    2007-06-21

    The Disposable Solid Waste Cask (DSWC) is a shielded cask capable of transporting, storing, and disposing of six non-fuel core components or approximately 27 cubic feet of radioactive solid waste. Five existing DSWCs are candidates for use in storing and disposing of non-fuel core components and radioactive solid waste from the Interim Examination and Maintenance Cell, ultimately shipping them to the 200 West Area disposal site for burial. A series of inspections, studies, analyses, and modifications were performed to ensure that these casks can be used to safely ship solid waste. These inspections, studies, analyses, and modifications are summarized and attached in this report. Visual inspection of the casks interiors provided information with respect to condition of the casks inner liners. Because water was allowed to enter the casks for varying lengths of time, condition of the cask liner pipe to bottom plate weld was of concern. Based on the visual inspection and a corrosion study, it was concluded that four of the five casks can be used from a corrosion standpoint. Only DSWC S/N-004 would need additional inspection and analysis to determine its usefulness. The five remaining DSWCs underwent some modification to prepare them for use. The existing cask lifting inserts were found to be corroded and deemed unusable. New lifting anchor bolts were installed to replace the existing anchors. Alternate lift lugs were fabricated for use with the new lifting anchor bolts. The cask tiedown frame was modified to facilitate adjustment of the cask tiedowns. As a result of the above mentioned inspections, studies, analysis, and modifications, four of the five existing casks can be used to store and transport waste from the Interim Examination and Maintenance Cell to the disposal site for burial. The fifth cask, DSWC S/N-004, would require further inspections before it could be used.

  14. Waste isolation pilot plant disposal room model

    SciTech Connect

    Butcher, B.M.

    1997-08-01

    This paper describes development of the conceptual and mathematical models for the part of the Waste Isolation Pilot Plant (WIPP) repository performance assessment that is concerned with what happens to the waste over long times after the repository is decommissioned. These models, collectively referred to as the {open_quotes}Disposal Room Model,{close_quotes} describe the repository closure process during which deformation of the surrounding salt consolidates the waste. First, the relationship of repository closure to demonstration of compliance with the Environmental Protection Agency (EPA) standard (40 CFR 191 Appendix C) and how sensitive performance results are to it are examined. Next, a detailed description is provided of the elements of the disposal region, and properties selected for the salt, waste, and other potential disposal features such as backfill. Included in the discussion is an explanation of how the various models were developed over time. Other aspects of closure analysis, such as the waste flow model and method of analysis, are also described. Finally, the closure predictions used in the final performance assessment analysis for the WIPP Compliance Certification Application are summarized.

  15. Investigation of separation, treatment, and recycling options for hazardous paint blast media waste. Final report

    SciTech Connect

    Boy, J.H.; Race, T.D.; Reinbold, K.A.

    1996-02-01

    U.S. Army depot depaint operations generate over 4 million kg per year of contaminated paint blast media wastes. The objective of this work was to investigate technologies that might significantly mitigate this Army hazardous waste disposal problem. Most of the technologies investigated either failed to meet acceptable TCLP levels for hazardous metals content, or failed to meet Army disposal requirements. However, based on a review of several commercially available services, it is recommended that Army depot depaint operations consider processing hazardous blast media waste through properly regulated contractors that offer safe, effective, and economical stabilization, fixation, and recycling technologies.

  16. Project report for the commercial disposal of mixed low-level waste debris

    SciTech Connect

    Andrews, G.; Balls, V.; Shea, T.; Thiesen, T.

    1994-05-01

    This report summarizes the basis for the commercial disposal of Idaho National Engineering Laboratory (INEL) mixed low-level waste (MLLW) debris and the associated activities. Mixed waste is radioactive waste plus hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). The critical factors for this project were DOE 5820.2A exemption, contracting mechanism, NEPA documentation, sampling and analysis, time limitation and transportation of waste. This report also will provide a guide or a starting place for future use of Envirocare of Utah or other private sector disposal/treatment facilities, and the lessons learned during this project.

  17. The safe disposal of radioactive wastes

    PubMed Central

    Kenny, A. W.

    1956-01-01

    A comprehensive review is given of the principles and problems involved in the safe disposal of radioactive wastes. The first part is devoted to a study of the basic facts of radioactivity and of nuclear fission, the characteristics of radioisotopes, the effects of ionizing radiations, and the maximum permissible levels of radioactivity for workers and for the general public. In the second part, the author describes the different types of radioactive waste—reactor wastes and wastes arising from the use of radioisotopes in hospitals and in industry—and discusses the application of the maximum permissible levels of radioactivity to their disposal and treatment, illustrating his discussion with an account of the methods practised at the principal atomic energy establishments. PMID:13374534

  18. Nuclear-waste disposal in geologic repositories

    SciTech Connect

    Isherwood, D.

    1982-08-02

    Deep geologic repositories are being widely studied as the most favored method of disposal of nuclear waste. Scientists search for repository sites in salt, basalt, tuff and granite that are geologically and hydrologically suitable. The systematic evaluation of the safety and reliability of deep geologic disposal centers around the concept of interacting multiple barriers. The simplest element to describe of the geologic barrier is the physical isolation of the waste in a remote region at some depth within the rock unit. Of greater complexity is the hydrologic barrier which is determined by the waste dilution factors and groundwater flow rates. The least understood is the geochemical barrier, identified as a series of waste/water/rock interactions involving sorption, membrane filtration, precipitation and complexing. In addition to the natural barriers are the engineered barriers, which include the waste form and waste package. The relative effectiveness of these barriers to provide long-term isolation of nuclear waste from the human environment is being assessed through the use of analytical and numerical models. The data used in the models is generally adequate for parameter sensitivity studies which bound the uncertainties in the release and transport predictions; however, much of the data comes from laboratory testing, and the problem of correlating laboratory and field measurements has not been resolved. Although safety assessments based on generic sites have been useful in the past for developing site selection criteria, site-specific studies are needed to judge the suitability of a particular host rock and its environment.

  19. Mathematical-statistical models of generated hazardous hospital solid waste.

    PubMed

    Awad, A R; Obeidat, M; Al-Shareef, M

    2004-01-01

    This research work was carried out under the assumption that wastes generated from hospitals in Irbid, Jordan were hazardous. The hazardous and non-hazardous wastes generated from the different divisions in the three hospitals under consideration were not separated during collection process. Three hospitals, Princess Basma hospital (public), Princess Bade'ah hospital (teaching), and Ibn Al-Nafis hospital (private) in Irbid were selected for this study. The research work took into account the amounts of solid waste accumulated from each division and also determined the total amount generated from each hospital. The generation rates were determined (kilogram per patient, per day; kilogram per bed, per day) for the three hospitals. These generation rates were compared with similar hospitals in Europe. The evaluation suggested that the current situation regarding the management of these wastes in the three studied hospitals needs revision as these hospitals do not follow methods of waste disposals that would reduce risk to human health and the environment practiced in developed countries. Statistical analysis was carried out to develop models for the prediction of the quantity of waste generated at each hospital (public, teaching, private). In these models number of patients, beds, and type of hospital were revealed to be significant factors on quantity of waste generated. Multiple regressions were also used to estimate the quantities of wastes generated from similar divisions in the three hospitals (surgery, internal diseases, and maternity). PMID:15027816

  20. ASSESSMENT OF HAZARDOUS WASTES FOR GENOTOXICITY

    EPA Science Inventory

    The authors have evaluated a group of short-term bioassays to identify those that may be suitable for screening large numbers of diverse hazardous industrial wastes for genotoxicity. Fifteen wastes (and dichloromethane extracts of these wastes) from a variety of manufacturing pro...

  1. Hazardous-Waste Data Management System extract tape. Data file

    SciTech Connect

    Not Available

    1991-03-15

    The file contains data compiled for the Resource Conservation and Recovery Act, using the Hazardous Waste Data Management System (HWDMS) database. Notification of Regulated Waste Activity, EPA Form 8700-12 was used to collect the data. The file was updated with information compiled from the Application for a Hazardous Waste Permit-Part A, EPA form 8700-23. The data includes each facility name, EPA Identification number, addresses, owner and operator information, facility contact name and phone number. The data also indicate whether a facility is a generator, treatment/storer/disposer, and/or transporter of hazardous waste. Also included is a listing of wastes handled, taken from 40CFR Pt. 261, SIC codes, Permit Process Codes, Permit Issuance data, and non-sensitive compliance and enforcement data. Data is included for all Regions and states except for Mississippi, which has already been implemented in RCRIS. PLEASE NOTE: The computer tape product consists of two separate tape files: the Hazardous Waste Data Management System (HWDMS) database, and the Resource Conservation and Recovery Information System (RCRIS) database. RCRIS is replacing HWDMS as the official RCRA notification database. During the first year of RCRIS implementation, both systems will be operational. As a state converts to RCRIS from HWDMS, the HWDMS data for that state is archived; the current plan is to archive all data that is stored in HWDMS by the end of 1991. In order to have a complete record of all RCRA notification data, the User must have both tapes.

  2. Optimal evaluation of infectious medical waste disposal companies using the fuzzy analytic hierarchy process

    SciTech Connect

    Ho, Chao Chung

    2011-07-15

    Ever since Taiwan's National Health Insurance implemented the diagnosis-related groups payment system in January 2010, hospital income has declined. Therefore, to meet their medical waste disposal needs, hospitals seek suppliers that provide high-quality services at a low cost. The enactment of the Waste Disposal Act in 1974 had facilitated some improvement in the management of waste disposal. However, since the implementation of the National Health Insurance program, the amount of medical waste from disposable medical products has been increasing. Further, of all the hazardous waste types, the amount of infectious medical waste has increased at the fastest rate. This is because of the increase in the number of items considered as infectious waste by the Environmental Protection Administration. The present study used two important findings from previous studies to determine the critical evaluation criteria for selecting infectious medical waste disposal firms. It employed the fuzzy analytic hierarchy process to set the objective weights of the evaluation criteria and select the optimal infectious medical waste disposal firm through calculation and sorting. The aim was to propose a method of evaluation with which medical and health care institutions could objectively and systematically choose appropriate infectious medical waste disposal firms.

  3. 76 FR 55846 - Hazardous Waste Management System: Identification and Listing of Hazardous Waste: Carbon Dioxide...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-09

    ... definition of hazardous waste, provided these hazardous CO 2 streams meet certain conditions. 76 FR 48073... to the proposed rule. See Section VII.B. of the preamble (Paperwork Reduction Act). 76 FR at 48090-91... AGENCY 40 CFR Parts 260 and 261 RIN 2050-AG60 Hazardous Waste Management System: Identification...

  4. 40 CFR 761.62 - Disposal of PCB bulk product waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... landfill unit shall be cleaned up in accordance with § 761.61. (4)(i) Any person disposing off-site of PCB... under § 761.70. (2) In a chemical waste landfill approved under § 761.75. (3) In a hazardous waste landfill permitted by EPA under section 3004 of RCRA, or by a State authorized under section 3006 of...

  5. 40 CFR 761.62 - Disposal of PCB bulk product waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... landfill unit shall be cleaned up in accordance with § 761.61. (4)(i) Any person disposing off-site of PCB... under § 761.70. (2) In a chemical waste landfill approved under § 761.75. (3) In a hazardous waste landfill permitted by EPA under section 3004 of RCRA, or by a State authorized under section 3006 of...

  6. 40 CFR 761.62 - Disposal of PCB bulk product waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... landfill cover or roadbed. Bulk product waste described in paragraph (b)(1) of this section may be disposed of: (1) As daily landfill cover as long as the daily cover remains in the landfill and is not... under § 761.70. (2) In a chemical waste landfill approved under § 761.75. (3) In a hazardous...

  7. 49 CFR 228.327 - Waste collection and disposal.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Waste collection and disposal. 228.327 Section 228... § 228.327 Waste collection and disposal. (a) General disposal requirements. All sweepings, solid or liquid wastes, refuse, and garbage in a camp must be removed in such a manner as to avoid creating...

  8. 77 FR 14307 - Water and Waste Disposal Loans and Grants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    ...; ] DEPARTMENT OF AGRICULTURE Rural Utilities Service 7 CFR 1777 RIN 0572-AC26 Water and Waste Disposal Loans and... (RUS) proposes to amend the regulations pertaining to the Section 306C Water and Waste Disposal (WWD) Loans and Grants program, which provides water and waste disposal facilities and services to...

  9. 29 CFR 1926.252 - Disposal of waste materials.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Disposal of waste materials. 1926.252 Section 1926.252..., Use, and Disposal § 1926.252 Disposal of waste materials. (a) Whenever materials are dropped more than... above. (c) All scrap lumber, waste material, and rubbish shall be removed from the immediate work...

  10. 49 CFR 228.327 - Waste collection and disposal.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Waste collection and disposal. 228.327 Section 228... § 228.327 Waste collection and disposal. (a) General disposal requirements. All sweepings, solid or liquid wastes, refuse, and garbage in a camp must be removed in such a manner as to avoid creating...

  11. 29 CFR 1926.252 - Disposal of waste materials.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Disposal of waste materials. 1926.252 Section 1926.252..., Use, and Disposal § 1926.252 Disposal of waste materials. (a) Whenever materials are dropped more than... above. (c) All scrap lumber, waste material, and rubbish shall be removed from the immediate work...

  12. 49 CFR 228.327 - Waste collection and disposal.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Waste collection and disposal. 228.327 Section 228... § 228.327 Waste collection and disposal. (a) General disposal requirements. All sweepings, solid or liquid wastes, refuse, and garbage in a camp must be removed in such a manner as to avoid creating...

  13. 29 CFR 1926.252 - Disposal of waste materials.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Disposal of waste materials. 1926.252 Section 1926.252..., Use, and Disposal § 1926.252 Disposal of waste materials. (a) Whenever materials are dropped more than... above. (c) All scrap lumber, waste material, and rubbish shall be removed from the immediate work...

  14. 29 CFR 1926.252 - Disposal of waste materials.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Disposal of waste materials. 1926.252 Section 1926.252..., Use, and Disposal § 1926.252 Disposal of waste materials. (a) Whenever materials are dropped more than... above. (c) All scrap lumber, waste material, and rubbish shall be removed from the immediate work...

  15. Municipal solid waste disposal in Portugal

    SciTech Connect

    Magrinho, Alexandre; Didelet, Filipe; Semiao, Viriato . E-mail: ViriatoSemiao@ist.utl.pt

    2006-07-01

    In recent years municipal solid waste (MSW) disposal has been one of the most important environmental problems for all of the Portuguese regions. The basic principles of MSW management in Portugal are: (1) prevention or reduction, (2) reuse, (3) recovery (e.g., recycling, incineration with heat recovery), and (4) polluter-pay principle. A brief history of legislative trends in waste management is provided herein as background for current waste management and recycling activities. The paper also presents and discusses the municipal solid waste management in Portugal and is based primarily on a national inquiry carried out in 2003 and directed to the MSW management entities. Additionally, the MSW responsibility and management structure in Portugal is presented, together with the present situation of production, collection, recycling, treatment and elimination of MSW. Results showed that 96% of MSW was collected mixed (4% was separately collected) and that 68% was disposed of in landfill, 21% was incinerated at waste-to-energy plants, 8% was treated at organic waste recovery plants and 3% was delivered to sorting. The average generation rate of MSW was 1.32 kg/capita/day.

  16. Analysis of low-level wastes. Review of hazardous waste regulations and identification of radioactive mixed wastes. Final report

    SciTech Connect

    Bowerman, B.S.; Kempf, C.R.; MacKenzie, D.R.; Siskind, B.; Piciulo, P.L.

    1985-12-01

    Regulations governing the management and disposal of hazardous wastes have been promulgated by the US Environmental Protection Agency under authority of the Resource Conservation and Recovery Act. These were reviewed and compared with the available information on the properties and characteristics of low-level radioactive wastes (LLW). In addition, a survey was carried out to establish a data base on the nature and composition of LLW in order to determine whether some LLW streams could also be considered hazardous as defined in 40 CFR Part 261. For the survey, an attempt was made to obtain data on the greatest volume of LLW; hence, as many large LLW generators as possible were contacted. The list of 238 generators contacted was based on information obtained from NRC and other sources. The data base was compiled from completed questionnaires which were returned by 97 reactor and non-reactor facilities. The waste volumes reported by these respondents corresponded to approximately 29% of all LLW disposed of in 1984. The analysis of the survey results indicated that three broad categories of LLW may be radioactive mixed wastes. They include: waste containing organic liquids, disposed of by all types of generators; wastes containing lead metal, i.e., discarded shielding or lead containers; wastes containing chromates, i.e., nuclear power plant process wastes where chromates are used as corrosion inhibitors. Certain wastes, specific to particular generators, were identified as potential mixed wastes as well. 8 figs., 48 tabs.

  17. TREATMENT TECHNOLOGIES FOR HAZARDOUS WASTES. PART 3. TREATMENT TECHNOLOGIES FOR CORROSIVE HAZARDOUS WASTES

    EPA Science Inventory

    In the paper, the authors present generation and treatment information for corrosive hazardous wastes (EPA Hazardous Waste Codes D002 and K062). The authors discuss the state of the art for several treatment trains used to process specific types of corrosive waste. Treatment trai...

  18. 75 FR 51671 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Exclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-23

    ... sludge from the list of hazardous wastes under 40 CFR 261.31 and 261.32 (see 70 FR 41358). EPA is... also eligible for exclusion and remain hazardous wastes until excluded. See 66 FR 27266 (May 16, 2001... Tokusen's petitioned waste. EPA applied the Delisting Risk Assessment Software (DRAS) described in 65...

  19. Environmental Hazards of Nuclear Wastes

    ERIC Educational Resources Information Center

    Micklin, Philip P.

    1974-01-01

    Present methods for storage of radioactive wastes produced at nuclear power facilities are described. Problems arising from present waste management are discussed and potential solutions explored. (JP)

  20. Pareto frontier analyses based decision making tool for transportation of hazardous waste.

    PubMed

    Das, Arup; Mazumder, T N; Gupta, A K

    2012-08-15

    Transportation of hazardous wastes through a region poses immense threat on the development along its road network. The risk to the population, exposed to such activities, has been documented in the past. However, a comprehensive framework for routing hazardous wastes has often been overlooked. A regional Hazardous Waste Management scheme should incorporate a comprehensive framework for hazardous waste transportation. This framework would incorporate the various stakeholders involved in decision making. Hence, a multi-objective approach is required to safeguard the interest of all the concerned stakeholders. The objective of this study is to design a methodology for routing of hazardous wastes between the generating units and the disposal facilities through a capacity constrained network. The proposed methodology uses posteriori method with multi-objective approach to find non-dominated solutions for the system consisting of multiple origins and destinations. A case study of transportation of hazardous wastes in Kolkata Metropolitan Area has also been provided to elucidate the methodology. PMID:22673061

  1. Hazard and consequence analysis for waste emplacement at the Waste Isolation Pilot Plant

    SciTech Connect

    Gerstner, D.M.; Clayton, S.G.; Farrell, R.F.; McCormick, J.A.; Ortiz, C.; Standiford, D.L.

    1996-05-01

    The Carlsbad Area Office established and analyzed the safety bases for the design and operations as documented in the WIPP Safety Analysis Report (SAR). Additional independent efforts are currently underway to assess the hazards associated with the long-term (10,000 year) isolation period as required by 40 CFR 191. The structure of the WIPP SAR is unique due to the hazards involved, and the agreement between the State of New Mexico and the DOE regarding SAR content and format. However, the hazards and accident analysis philosophy as contained in DOE-STD-3009-94 was followed as closely as possible, while adhering to state agreements. Hazards associated with WIPP waste receipt, emplacement, and disposal operations were systematically identified using a modified Hazard and Operability Study (HAZOP) technique. The WIPP HAZOP assessed the potential internal, external, and natural phenomena events that can cause the identified hazards to develop into accidents. The hazard assessment identified deviations from the intended design and operation of the waste handling system, analyzed potential accident consequences to the public and workers, estimated likelihood of occurrence, and evaluated associated preventative and mitigative features. It was concluded from the assessment that the proposed WIPP waste emplacement operations and design are sufficient to ensure safety of the public, workers, and environment, over the 35 year disposal phase.

  2. The Groundwater Geochemistry of Waste Disposal Facilities

    NASA Astrophysics Data System (ADS)

    Bjerg, P. L.; Albrechtsen, H.-J.; Kjeldsen, P.; Christensen, T. H.; Cozzarelli, I. M.

    2003-12-01

    Landfills of solid waste are abundant sources of groundwater pollution. The potential for generatingstrongly contaminated leachate from landfill waste is very substantial. Even for small landfills the timescale can be measured in decades or centuries. This indicates that waste dumps with no measures to control leachate entrance into the groundwater may constitute a source of groundwater contamination long after dumping has ceased. In addition to these dumps, engineered landfills with liners and leachate collection systems may also constitute a source of groundwater contamination due to inadequate design, construction, and maintenance, resulting in the leakage of leachate.Landfills may pose several environmental problems (explosion hazards, vegetation damage, dust and air emissions, etc.), but groundwater pollution by leachate is considered to be the most important one and the focus of this chapter. Landfills differ significantly depending on the waste they receive: mineral waste landfills for combustion ashes, hazardous waste landfills, specific industrial landfills serving a single industry, or municipal waste landfills receiving a mixture of municipal waste, construction, and demolition waste, waste from small industries and minor quantities of hazardous waste. The latter type of landfill (termed "old landfills" in this chapter) is very common all over the world. Municipal landfills are characterized by a high content of organic waste that affects the biogeochemical processes in the landfill body and the generation of strongly anaerobic leachate with a high content of dissolved organic carbon, salts, ammonium, and organic compounds and metals released from the waste.This chapter describes the biogeochemistry of a landfill leachate plume as it emerges from the bottom of a landfill and migrates in an aquifer. The landfill hydrology, source composition, and spreading of contaminants are described in introductory sections. The focus of this chapter is on investigating the biogeochemical processes associated with the natural attenuation of organic contaminants in a leachate plume. Studies have shown that microbial processes and geochemical conditions change over time and distance in contaminant plumes, resulting in different rates of degradation (biotic and abiotic). The availability of electron acceptors, such as iron oxides or dissolved sulfate, is an important factor for evaluating the efficacy and sustainability of natural attenuation as a remedy for leachate plumes. Understanding the complex environments developing in leachate plumes is important in assessing the risk to groundwater resources and for developing cost-effective remediation strategies.

  3. Deserts as dumps? The disposal of hazardous materials in arid ecosystems

    SciTech Connect

    Reith, C.C.; Thomson, B.M.

    1992-12-31

    Public distaste for the waste by-products of our industrial society, coupled with exponential growth of governmental waste regulations, has created an entirely new industry-the management of waste. How players in this new industry (manufacturers, scientists, law-makers, and voters) manage the issues will determine, ultimately, the growth or decline of major sectors of our society. This book focuses on disposal of hazardous chemical and radioactive wastes, specifically in and climates. The postulate (somewhat misleadingly posed as a question in the book`s title) is that deserts have inherent advantages as landfill sites because of low rainfall, high rates of evapotranspiration, slower biotic processes, and low population. An unstated but frequently recurring theme is the frightening knowledge gap in many of the disciplines involved in storing these dangerous wastes for indefinite periods.

  4. 40 CFR 264.317 - Special requirements for hazardous wastes FO20, FO21, FO22, FO23, FO26, and FO27.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Landfills § 264.317 Special requirements for... treatment, design, or monitoring requirements. (b) The Regional Administrator may determine that...

  5. 40 CFR 264.317 - Special requirements for hazardous wastes FO20, FO21, FO22, FO23, FO26, and FO27.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Landfills § 264.317 Special requirements for... treatment, design, or monitoring requirements. (b) The Regional Administrator may determine that...

  6. GEOSTATISTICAL SAMPLING DESIGNS FOR HAZARDOUS WASTE SITES

    EPA Science Inventory

    This chapter discusses field sampling design for environmental sites and hazardous waste sites with respect to random variable sampling theory, Gy's sampling theory, and geostatistical (kriging) sampling theory. The literature often presents these sampling methods as an adversari...

  7. A Program on Hazardous Waste Management.

    ERIC Educational Resources Information Center

    Kummler, Ralph H.; And Others

    1989-01-01

    Provides an overview of the "Hazardous Waste Management Graduate Certificate" program at Wayne State University. Describes four required courses and nine optional courses. Discusses the development of a Master program and the curriculum of the Master program. (YP)

  8. CHARACTERIZING SOILS FOR HAZARDOUS WASTE SITE ASSESSMENTS

    EPA Science Inventory

    This paper provides a review and justification of the minimum data needed to characterize soils for hazardous waste site assessments and to comply with the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). Scientists and managers within the regulatory...

  9. A perspective of hazardous waste and mixed waste treatment technology at the Savannah River Site

    SciTech Connect

    England, J.L.; Venkatesh, S.; Bailey, L.L.; Langton, C.A.; Hay, M.S.; Stevens, C.B.; Carroll, S.J.

    1991-01-01

    Treatment technologies for the preparation and treatment of heavy metal mixed wastes, contaminated soils, and mixed mercury wastes are being considered at the Savannah River Site (SRS), a DOE nuclear material processing facility operated by Westinghouse Savannah River Company (WSRC). The proposed treatment technologies to be included at the Hazardous Waste/Mixed Waste Treatment Building at SRS are based on the regulatory requirements, projected waste volumes, existing technology, cost effectiveness, and project schedule. Waste sorting and size reduction are the initial step in the treatment process. After sorting/size reduction the wastes would go to the next applicable treatment module. For solid heavy metal mixed wastes the proposed treatment is macroencapsulation using a thermoplastic polymer. This process reduces the leachability of hazardous constituents from the waste and allows easy verification of the coating integrity. Stabilization and solidification in a cement matrix will treat a wide variety of wastes (i.e. soils, decontamination water). Some pretreatments may be required (i.e. Ph adjustment) before stabilization. Other pretreatments such as soil washing can reduce the amount of waste to be stabilized. Radioactive contaminated mercury waste at the SRS comes in numerous forms (i.e. process equipment, soils, and lab waste) with the required treatment of high mercury wastes being roasting/retorting and recovery. Any unrecyclable radioactive contaminated elemental mercury would be amalgamated, utilizing a batch system, before disposal.

  10. A perspective of hazardous waste and mixed waste treatment technology at the Savannah River Site

    SciTech Connect

    England, J.L.; Venkatesh, S.; Bailey, L.L.; Langton, C.A.; Hay, M.S.; Stevens, C.B.; Carroll, S.J.

    1991-12-31

    Treatment technologies for the preparation and treatment of heavy metal mixed wastes, contaminated soils, and mixed mercury wastes are being considered at the Savannah River Site (SRS), a DOE nuclear material processing facility operated by Westinghouse Savannah River Company (WSRC). The proposed treatment technologies to be included at the Hazardous Waste/Mixed Waste Treatment Building at SRS are based on the regulatory requirements, projected waste volumes, existing technology, cost effectiveness, and project schedule. Waste sorting and size reduction are the initial step in the treatment process. After sorting/size reduction the wastes would go to the next applicable treatment module. For solid heavy metal mixed wastes the proposed treatment is macroencapsulation using a thermoplastic polymer. This process reduces the leachability of hazardous constituents from the waste and allows easy verification of the coating integrity. Stabilization and solidification in a cement matrix will treat a wide variety of wastes (i.e. soils, decontamination water). Some pretreatments may be required (i.e. Ph adjustment) before stabilization. Other pretreatments such as soil washing can reduce the amount of waste to be stabilized. Radioactive contaminated mercury waste at the SRS comes in numerous forms (i.e. process equipment, soils, and lab waste) with the required treatment of high mercury wastes being roasting/retorting and recovery. Any unrecyclable radioactive contaminated elemental mercury would be amalgamated, utilizing a batch system, before disposal.

  11. Hazards assessment for the Hazardous Waste Storage Facility

    SciTech Connect

    Knudsen, J.K.; Calley, M.B.

    1994-04-01

    This report documents the hazards assessment for the Hazardous Waste Storage Facility (HWSF) located at the Idaho National Engineering Laboratory. The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. The hazards assessment identifies and analyzes hazards that are significant enough to warrant consideration in a facility`s operational emergency management program. The area surrounding HWSF, the buildings and structures at HWSF, and the processes used at HWSF are described in this report. All nonradiological hazardous materials at the HWSF were identified (radiological hazardous materials are not stored at HWSF) and screened against threshold quantities according to DOE Order 5500.3A guidance. Two of the identified hazardous materials exceeded their specified threshold quantity. This report discusses the potential release scenarios and consequences associated with an accidental release for each of the two identified hazardous materials, lead and mercury. Emergency considerations, such as emergency planning zones, emergency classes, protective actions, and emergency action levels, are also discussed based on the analysis of potential consequences. Evaluation of the potential consequences indicated that the highest emergency class for operational emergencies at the HWSF would be a Site Area Emergency.

  12. Decontamination and disposal of PCB wastes.

    PubMed Central

    Johnston, L E

    1985-01-01

    Decontamination and disposal processes for PCB wastes are reviewed. Processes are classed as incineration, chemical reaction or decontamination. Incineration technologies are not limited to the rigorous high temperature but include those where innovations in use of oxident, heat transfer and residue recycle are made. Chemical processes include the sodium processes, radiant energy processes and low temperature oxidations. Typical processing rates and associated costs are provided where possible. PMID:3928363

  13. Decontamination and disposal of PCB wastes.

    PubMed

    Johnston, L E

    1985-05-01

    Decontamination and disposal processes for PCB wastes are reviewed. Processes are classed as incineration, chemical reaction or decontamination. Incineration technologies are not limited to the rigorous high temperature but include those where innovations in use of oxident, heat transfer and residue recycle are made. Chemical processes include the sodium processes, radiant energy processes and low temperature oxidations. Typical processing rates and associated costs are provided where possible. PMID:3928363

  14. Dust control at hazardous-waste sites. Handbook

    SciTech Connect

    Rosbury, K.D.

    1985-11-01

    Spills, waste disposal, and various industrial operations can result in the contamination of land surfaces with toxic chemicals. Soil particles from these areas can be entrained into the air, transported offsite via the wind, and result in human exposure by direct inhalation. Indirect exposure could result if particulates are deposited in agricultural fields, pastures, or waterways and enter the human food chain. The purpose of the handbook is to assist hazardous waste site managers in: identifying sources of fugitive dust; and controlling fugitive dust.

  15. Electrochemical treatment of mixed and hazardous waste

    SciTech Connect

    Dziewinski, J.; Marczak, S.; Smith, W.; Nuttall, E.

    1995-12-31

    Los Alamos National Laboratory (LANL) and The University of New Mexico are jointly developing an electrochemical process for treating hazardous and radioactive wastes. The wastes treatable by the process include toxic metal solutions, cyanide solutions, and various organic wastes that may contain chlorinated organic compounds. The main component of the process is a stack of electrolytic cells with peripheral equipment such as a rectifier, feed system, tanks with feed and treated solutions, and a gas-venting system. During the treatment, toxic metals are deposited on the cathode, cyanides are oxidized on the anode, and organic compounds are anodically oxidized by direct or mediated electrooxidation, depending on their type. Bench scale experimental studies have confirmed the feasibility of applying electrochemical systems to processing of a great variety of hazardous and mixed wastes. The operating parameters have been defined for different waste compositions using surrogate wastes. Mixed wastes are currently treated at bench scale as part of the treatability study.

  16. HAZARDOUS WASTE LANDFILL RESEARCH: U.S.E.P.A. (UNITED STATES ENVIRONMENTAL PROTECTION AGENCY) PROGRAM

    EPA Science Inventory

    The hazardous waste land disposal research program is collecting data necessary to support implementation of disposal guidelines mandated by the 'Resource Conservation and Recovery Act of 1976' (RCRA) PL 94-580. This program relating to the categorical areas of landfills, surface...

  17. Development of land disposal restrictions for military chemical agent-associated waste

    SciTech Connect

    Kimmell, T.A.; Anderson, A.W.; Rosenblatt, D.H.

    1997-04-01

    In July 1988, the State of Utah, Department of Solid and Hazardous Waste (DSHW) listed certain military chemical agents as hazardous waste, as well as residues resulting from the demilitarization, treatment, and testing of these chemicals. These materials are listed as hazardous waste in Utah, but are not listed as hazardous wastes under the Federal Resource Conservation and Recovery Act (RCRA), the primary law governing management of hazardous waste in the United States. Pursuant to the 1984 Hazardous and Solid Waste Amendments (HSWA) to RCRA, the U.S. Environmental Protection Agency (EPA) has established Land Disposal Restriction (LDR) treatment standards for most categories of hazardous wastes. However, considering that EPA has not listed chemical agent-associated wastes as hazardous waste under RCRA, LDR treatment standards have not been established specifically for these wastes. In February 1995, the DSHW announced a regulatory initiative to develop LDRs for chemical agent-associated wastes and solicited data and information from the U.S. Army to support a rulemaking effort. The Army`s Chemical and Biological Defense Command (CBDCOM) was designated the lead agency for the Army to assist the DSHW in developing the rule. CBDCOM established the U.S. Army Land Disposal Restrictions Utah Group (LDRUG) and initiated a project with Argonne National Laboratory to support the LDRUG. The focus is on providing the state with accurate and up-to-date data and information to support the rulemaking and the establishment of LDRs. The purpose of this paper is to review the general direction of the proposed rule and to discuss overall progress. Potential impacts of the imposition of LDRs on the management of agent-associated wastes are also reviewed.

  18. Stabilization and disposal of Argonne-West low-level mixed wastes in ceramicrete waste forms.

    SciTech Connect

    Barber, D. B.; Singh, D.; Strain, R. V.; Tlustochowicz, M.; Wagh, A. S.

    1998-02-17

    The technology of room-temperature-setting phosphate ceramics or Ceramicrete{trademark} technology, developed at Argonne National Laboratory (ANL)-East is being used to treat and dispose of low-level mixed wastes through the Department of Energy complex. During the past year, Ceramicrete{trademark} technology was implemented for field application at ANL-West. Debris wastes were treated and stabilized: (a) Hg-contaminated low-level radioactive crushed light bulbs and (b) low-level radioactive Pb-lined gloves (part of the MWIR {number_sign} AW-W002 waste stream). In addition to hazardous metals, these wastes are contaminated with low-level fission products. Initially, bench-scale waste forms with simulated and actual waste streams were fabricated by acid-base reactions between mixtures of magnesium oxide powders and an acid phosphate solution, and the wastes. Size reduction of Pb-lined plastic glove waste was accomplished by cryofractionation. The Ceramicrete{trademark} process produces dense, hard ceramic waste forms. Toxicity Characteristic Leaching Procedure (TCLP) results showed excellent stabilization of both Hg and Pb in the waste forms. The principal advantage of this technology is that immobilization of contaminants is the result of both chemical stabilization and subsequent microencapsulation of the reaction products. Based on bench-scale studies, Ceramicrete{trademark} technology has been implemented in the fabrication of 5-gal waste forms at ANL-West. Approximately 35 kg of real waste has been treated. The TCLP is being conducted on the samples from the 5-gal waste forms. It is expected that because the waste forms pass the limits set by the EPAs Universal Treatment Standard, they will be sent to a radioactive-waste disposal facility.

  19. Conceptual Design Report: Nevada Test Site Mixed Waste Disposal Facility Project

    SciTech Connect

    NSTec Environmental Management

    2009-01-31

    Environmental cleanup of contaminated nuclear weapons manufacturing and test sites generates radioactive waste that must be disposed. Site cleanup activities throughout the U.S. Department of Energy (DOE) complex are projected to continue through 2050. Some of this waste is mixed waste (MW), containing both hazardous and radioactive components. In addition, there is a need for MW disposal from other mission activities. The Waste Management Programmatic Environmental Impact Statement Record of Decision designates the Nevada Test Site (NTS) as a regional MW disposal site. The NTS has a facility that is permitted to dispose of onsite- and offsite-generated MW until November 30, 2010. There is not a DOE waste management facility that is currently permitted to dispose of offsite-generated MW after 2010, jeopardizing the DOE environmental cleanup mission and other MW-generating mission-related activities. A mission needs document (CD-0) has been prepared for a newly permitted MW disposal facility at the NTS that would provide the needed capability to support DOE's environmental cleanup mission and other MW-generating mission-related activities. This report presents a conceptual engineering design for a MW facility that is fully compliant with Resource Conservation and Recovery Act (RCRA) and DOE O 435.1, 'Radioactive Waste Management'. The facility, which will be located within the Area 5 Radioactive Waste Management Site (RWMS) at the NTS, will provide an approximately 20,000-cubic yard waste disposal capacity. The facility will be licensed by the Nevada Division of Environmental Protection (NDEP).

  20. Disposal and degradation of pesticide waste.

    PubMed

    Felsot, Allan S; Racke, Kenneth D; Hamilton, Denis J

    2003-01-01

    Generation of pesticide waste is inevitable during every agricultural operation from storage to use and equipment cleanup. Large-scale pesticide manufacturers can afford sophisticated recovery, treatment, and cleanup techniques. Small-scale pesticide users, for example, single farms or small application businesses, struggle with both past waste problems, including contaminated soils, and disposal of unused product and equipment rinsewater. Many of these problems have arisen as a result of inability to properly handle spills during, equipment loading and rinsewater generated after application. Small-scale facilities also face continued problems of wastewater handling. Old, obsolete pesticide stocks are a vexing problem in numerous developing countries. Pesticide waste is characterized by high concentrations of a diversity of chemicals and associated adjuvants. Dissipation of chemicals at elevated concentrations is much slower than at lower concentrations, in part because of microbial toxicity and mass transfer limitations. High concentrations of pesticides may also move faster to lower soil depths, especially when pore water becomes saturated wish a compound. Thus, if pesticide waste is not properly disposed of, groundwater and surface water contamination become probable. The Waste Management Hierarchy developed as an Australian Code of Practice can serve as a guide for development of a sound waste management plan. In order of desirability, the course of actions include waste avoidance, waste reduction, waste recycling, waste treatment, and waste disposal. Proper management of pesticide stocks, including adequate storage conditions, good inventory practices, and regular turnover of products,. will contribute to waste avoidance and reduction over the long-term. Farmers can also choose to use registered materials that have the lowest recommended application rates or are applied in the least volume of water. Wastewater that is generated during equipment rinsing can be recycled by spraying it onto cropland, thus avoiding a soil contamination problem. If it is not feasible to spray out rinsates, then water treatment becomes necessary. However, for small waste generators, practical technology is still too experimental and not easily implemented on an individual farm or at a small application business. Nevertheless, research has been quite active in application of advanced oxidation processes (UV/ozonation: photoassisted Fenton reaction: photocatalysis using TiO2). Obsolete pesticide stocks in developing countries are being packaged and shipped to developed countries for incineration. Contaminated soil can also be incinerated, but this is not practical nor affordable for small waste generators. Chemical degradation of chlorinated hydrocarbon pesticides may be amenable to dechlorination by alkali polyethylene glycol treatment, but further study is needed to make the technique practical for small waste generators. Contaminated soils may be amenable to cleanup by one of several biological treatment methods, including composting, landfarming, and bioaugmentation/ biostimulation. Composting and landfarming (which may be used in combination with biostimulation) may be the most practical of the biological methods that is immediately ready for implementation by small-scale pesticide waste generators. PMID:12666819

  1. 75 FR 13066 - Hazardous Waste Technical Corrections and Clarifications Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-18

    ... AGENCY 40 CFR Parts 260, 261, 262, 263, 264, 265, 266, 268, and 270 RIN 2050-AG52 Hazardous Waste... technical changes that would correct or clarify several parts of the hazardous waste regulations that relate to hazardous waste identification, manifesting, the hazardous waste generator requirements,...

  2. DOSE ASSESSMENTS FROM THE DISPOSAL OF LOW-ACTIVITY WASTES IN RCRA-C DISPOSAL CELLS

    EPA Science Inventory

    Modeling the long-term performance of the RCRA-C disposal cell and potential doses to off-site receptors is used to derive maximum radionuclide specific concentrations in the wastes that would enable these wastes to be disposed of safely using the RCRA-C disposal cell technology....

  3. Chemical hazard evaluation of material disposal area (MDA) B closure project

    SciTech Connect

    Laul, Jagdish C

    2010-04-19

    TA-21, MDA-B (NES) is the 'contaminated dump,' landfill with radionuclides and chemicals from process waste disposed in 1940s. This paper focuses on chemical hazard categorization and hazard evaluation of chemicals of concern (e.g., peroxide, beryllium). About 170 chemicals were disposed in the landfill. Chemicals included products, unused and residual chemicals, spent, waste chemicals, non-flammable oils, mineral oil, etc. MDA-B was considered a High hazard site. However, based on historical records and best engineering judgment, the chemical contents are probably at best 5% of the chemical inventory. Many chemicals probably have oxidized, degraded or evaporated for volatile elements due to some fire and limited shelf-life over 60 yrs, which made it possible to downgrade from High to Low chemical hazard site. Knowing the site history and physical and chemical properties are very important in characterizing a NES site. Public site boundary is only 20 m, which is a major concern. Chemicals of concern during remediation are peroxide that can cause potential explosion and beryllium exposure due to chronic beryllium disease (CBD). These can be prevented or mitigated using engineering control (EC) and safety management program (SMP) to protect the involved workers and public.

  4. Hazardous Educational Waste Collections in Illinois.

    ERIC Educational Resources Information Center

    Illinois State Environmental Protection Agency, Springfield.

    This report presents the status of programs designed to manage hazardous educational waste collections in secondary schools in the state of Illinois. Laboratory wastes, expired chemicals, unstable compounds, and toxic or flammable materials are accounted for in this document. The report contains an executive summary, a review of Illinois statutes…

  5. BIOLOGICAL TREATMENT OF HAZARDOUS AQUEOUS WASTES

    EPA Science Inventory

    Studies have been conducted with a rotating biological contractor (RBC) to evaluate the treatability of leachates from the Stringfellow and New Lyme hazardous waste sites. The leachates were transported from the waste sites to Cincinnati at the United States Environmental Protect...

  6. Processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, Vitaly T.; Ivanov, Alexander V.; Filippov, Eugene A.

    1998-05-12

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

  7. Processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

    1998-05-12

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

  8. Application of a hazard assessment research strategy to the ocean disposal of a dredged material: Overview

    SciTech Connect

    Gentile, J.H.; Pesch, G.G.; Dillon, T.M.

    1989-01-01

    Under the Marine Protection, Research and Sanctuaries Act the U.S. Environmental Protection Agency (EPA) has responsibility for establishing and applying criteria for reviewing and evaluating permits for dumping wastes into the ocean, and the U.S. Army Corps of Engineers (COE) has responsibility for issuing permits for the disposal of dredged material into the ocean. After several years of operational experience, the EPA and the COE have reexamined the strengths and weaknesses of the permit program and the general state of the art in sediment testing for the evaluation of the disposal of dredged material into the marine environment. The chapter describes a predictive hazard assessment strategy and decision rationale for disposal that can be used as the basis for revisions both in the ocean dumping regulations and in the permitting program.

  9. Vitrification of hazardous and mixed wastes

    SciTech Connect

    Jantzen, C.M.; Pickett, J.B.; Ramsey, W.G.

    1992-10-01

    Solidification of hazardous/mixed wastes into glass is being examined at the Savannah River Site. The first hazardous/mixed wastes glassified at SRS have been (1) incinerator and (2) nickel plating line (F006) wastes. Solidification of incinerator blowdown and mixtures of incinerator blowdown and incinerator bottom kiln ash have been achieved in Soda (Na{sub 2}O) - Lime (CaO) - Silica (SiO{sub 2}) glass (SLS) at waste loadings of up to 50 wt%. Solidification of nickel-plating line waste sludges containing depleted uranium have also been achieved in both SLS and borosilicate glasses at waste loadings of 75 wt%. This corresponds to volume reductions of 97% and 81%, respectively. Further studies will examine glassification of: ion exchange zeolites, inorganic filter media, asbestos, glass fiber filters, contaminated soil, cementitious, or other materials in need of remediation.

  10. Vitrification of hazardous and mixed wastes

    SciTech Connect

    Jantzen, C.M.; Pickett, J.B. ); Ramsey, W.G. . Dept. of Ceramic Engineering)

    1992-01-01

    Solidification of hazardous/mixed wastes into glass is being examined at the Savannah River Site. The first hazardous/mixed wastes glassified at SRS have been (1) incinerator and (2) nickel plating line (F006) wastes. Solidification of incinerator blowdown and mixtures of incinerator blowdown and incinerator bottom kiln ash have been achieved in Soda (Na[sub 2]O) - Lime (CaO) - Silica (SiO[sub 2]) glass (SLS) at waste loadings of up to 50 wt%. Solidification of nickel-plating line waste sludges containing depleted uranium have also been achieved in both SLS and borosilicate glasses at waste loadings of 75 wt%. This corresponds to volume reductions of 97% and 81%, respectively. Further studies will examine glassification of: ion exchange zeolites, inorganic filter media, asbestos, glass fiber filters, contaminated soil, cementitious, or other materials in need of remediation.

  11. Wastewater characterization and hazardous waste survey, Hickam AFB, HI

    SciTech Connect

    Binovi, R.D.; Tetla, R.A.; Slavich, F.E.

    1987-01-01

    The US Air Force Occupational and Environmental Health Laboratory characterized the industrial wastewater in the Hickam AFB sewers and conducted a hazardous waste survey. The scope of the survey included characterizing the major industrial wastewater discharges from the base and determining if applicable discharge standards were being violated. A total of 23 sampling sites were evaluated including 10 lift stations and 10 oil/water separators. The hazardous waste survey included visiting 44 shops to determine chemical usage and hazardous materials management practices including collection, storage, disposal practices and accumulation points. Seawater infiltration of the sewer was found to cause chloride concentration limitations to be exceeded at four locations. Seawater was also a contributor to high chemical oxygen demand (COD) concentrations. The COD limitation was exceeded at 11 locations. The photographic wastewater from building 2045 exceeded the limits for chlorides, sulfides, phenols, silver, and chromium. Recommendations from the study include: (1) determine where the seawater is infiltrating the sewers and take action to reduce the chloride level to below the limit; (2) install a pretreatment plant for the 548 RTG photographic wastewater; (3) develop a comprehensive waste analysis plan; (4) increase hazardous waste monitoring; (5) service the silver recovery cartridge at 548 RTG. 13 refs., 13 figs., 7 tabs.

  12. Remote vacuum compaction of compressible hazardous waste

    DOEpatents

    Coyne, M.J.; Fiscus, G.M.; Sammel, A.G.

    1998-10-06

    A system is described for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut. 8 figs.

  13. Remote vacuum compaction of compressible hazardous waste

    DOEpatents

    Coyne, Martin J.; Fiscus, Gregory M.; Sammel, Alfred G.

    1998-01-01

    A system for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut.

  14. 50 CFR 27.94 - Disposal of waste.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 9 2013-10-01 2013-10-01 false Disposal of waste. 27.94 Section 27.94... NATIONAL WILDLIFE REFUGE SYSTEM PROHIBITED ACTS Other Disturbing Violations § 27.94 Disposal of waste. (a) The littering, disposing, or dumping in any manner of garbage, refuse sewage, sludge, earth, rocks,...

  15. Radioactive waste disposal fees-Methodology for calculation

    NASA Astrophysics Data System (ADS)

    Bemš, Július; Králík, Tomáš; Kubančák, Ján; Vašíček, Jiří; Starý, Oldřich

    2014-11-01

    This paper summarizes the methodological approach used for calculation of fee for low- and intermediate-level radioactive waste disposal and for spent fuel disposal. The methodology itself is based on simulation of cash flows related to the operation of system for waste disposal. The paper includes demonstration of methodology application on the conditions of the Czech Republic.

  16. 41 CFR 50-204.29 - Waste disposal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Waste disposal. 50-204.29 Section 50-204.29 Public Contracts and Property Management Other Provisions Relating to Public Contracts... Radiation Standards § 50-204.29 Waste disposal. No employer shall dispose of radioactive material except...

  17. 41 CFR 50-204.29 - Waste disposal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 1 2011-07-01 2009-07-01 true Waste disposal. 50-204.29 Section 50-204.29 Public Contracts and Property Management Other Provisions Relating to Public Contracts... Radiation Standards § 50-204.29 Waste disposal. No employer shall dispose of radioactive material except...

  18. 41 CFR 50-204.29 - Waste disposal.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 41 Public Contracts and Property Management 1 2014-07-01 2014-07-01 false Waste disposal. 50-204.29 Section 50-204.29 Public Contracts and Property Management Other Provisions Relating to Public... Radiation Standards § 50-204.29 Waste disposal. No employer shall dispose of radioactive material except...

  19. 41 CFR 50-204.29 - Waste disposal.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 1 2013-07-01 2013-07-01 false Waste disposal. 50-204.29 Section 50-204.29 Public Contracts and Property Management Other Provisions Relating to Public... Radiation Standards § 50-204.29 Waste disposal. No employer shall dispose of radioactive material except...

  20. 41 CFR 50-204.29 - Waste disposal.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 41 Public Contracts and Property Management 1 2012-07-01 2009-07-01 true Waste disposal. 50-204.29 Section 50-204.29 Public Contracts and Property Management Other Provisions Relating to Public Contracts... Radiation Standards § 50-204.29 Waste disposal. No employer shall dispose of radioactive material except...

  1. Moisture monitoring in waste disposal surface barriers.

    PubMed

    Brandelik, Alex; Huebner, Christof

    2003-05-01

    Surface barriers for waste disposal sites should prevent waste water and gas emission into the environment. It is necessary to assess their proper operation by monitoring the water regime of the containment. A set of three new water content measuring devices has been developed that provide an economical solution for monitoring the moisture distribution and water dynamic. They will give an early warning service if the barrier system is at risk of being damaged. The cryo soil moisture sensor 'LUMBRICUS' is an in situ self-calibrating absolute water content measuring device. It measures moisture profiles at spot locations down to 2.5 m depth with an accuracy of better than 1.5% and a depth resolution of 0.03 m. The sensor inherently measures density changes and initial cracks of shrinking materials like clay minerals. The large area soil moisture sensor 'TAUPE' is a moisture sensitive electric cable network to be buried in the mineral barrier material of the cover. A report will be given with results and experiences on an exemplary installation at the Waste Disposal Facility Karlsruhe-West. 800 m2 of the barrier construction have been continuously monitored since December 1997. Volumetric water content differences of 1.5% have been detected and localised within 4 m. This device is already installed in two other waste disposal sites. A modified 'TAUPE' was constructed for the control of tunnels and river dams as well. Thin sheet moisture sensor 'FORMI' is specifically designed for moisture measurements in liners like bentonite, textile and plastic. Due to its flexibility it follows the curvature of the liner. The sensor measures independently from neighbouring materials and can be matched to a wide range of different thickness of the material. The sensors are patented in several countries. PMID:12733809

  2. International perspectives on hazardous waste management

    SciTech Connect

    Forester, W.S.

    1987-01-01

    In 1984, the International Solid Wastes and Public Cleansing Association (I.S.W.A.) approved the formation of an international working group on hazardous wastes. This book contains the edited final reports of the twelve national organisations which formed this working group. Also included is a review and assessment of various national policies and programs for waste management, together with recommendations and suggested strategies for the future.

  3. Regional and urban solid waste disposal. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1997-02-01

    The bibliography contains citations concerning regional and urban solid waste disposal and recycling technology. Citations discuss methods and facilities for the treatment of municipal, industrial, household, and medical wastes. Topics include incineration, landfills, treatment of hazardous materials, composting techniques, waste utilization, and open dumps. Also discussed are pollution regulations, laws and legal aspects, facility design, and markets for composts.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  4. Regional and urban solid waste disposal. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1995-10-01

    The bibliography contains citations concerning regional and urban solid waste disposal and recycling technology. Citations discuss methods and facilities for the treatment of municipal, industrial, household, and medical wastes. Topics include incineration, landfills, treatment of hazardous materials, composting techniques, waste utilization, and open dumps. Also discussed are pollution regulations, laws and legal aspects, facility design, and markets for composts.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  5. Hazardous-Waste Data Management System (HWDMS) extract tape. Data file

    SciTech Connect

    Not Available

    1990-09-30

    The file contains data compiled for the Resource Conservation Recovery Act. Notification of Regulated Waste Activity, EPA Form 8700-12 was used to collect the data. The file was updated with information compiled from the Application for a Hazardous Waste Permit-Part A, EPA Form 8700-23. Hazardous Waste Data Management System (HWDMS) contains data on approximately 4,700 treatment, storage and disposal facilities (TSDs), approximately 20,000 transporters and approximately 276,000 large and small quantity generators. The data indicate whether a facility is a generator, treatment/storer/disposer, and/or transporter of hazardous waste. Information stored in the database includes: A listing of code numbers of waste handled taken from 40CFR Part 261, Facility Name, EPA Identification Number, Addresses, Owner and Operator Information, Facility Contact Name and Phone Number, SIC Codes, RCRA Waste Codes handled, Permit Process Codes and Permit Issuance Data.

  6. An effective waste management process for segregation and disposal of legacy mixed waste at Sandia National Laboratories/New Mexico

    SciTech Connect

    Hallman, A.K.; Meyer, D.; Rellergert, C.A.; Schriner, J.A.

    1998-04-01

    Sandia National Laboratories/New Mexico (SNL/NM) is a research and development facility that generates many highly diverse, low-volume mixed waste streams. Under the Federal Facility Compliance Act, SNL/NM must treat its mixed waste in storage to meet the Land Disposal Restrictions treatment standards. Since 1989, approximately 70 cubic meters (2,500 cubic feet) of heterogeneous, poorly characterized and inventoried mixed waste was placed in storage that could not be treated as specified in the SNL/NM Site Treatment Plan. A process was created to sort the legacy waste into sixteen well-defined, properly characterized, and accurately inventoried mixed waste streams (Treatability Groups) and two low-level waste streams ready for treatment or disposal. From June 1995 through September 1996, the entire volume of this stored mixed waste was sorted and inventoried. This process was planned to meet the technical requirements of the sorting operation and to identify and address the hazards this operation presented. The operations were routinely adapted to safely and efficiently handle a variety of waste matrices, hazards, and radiological conditions. This flexibility was accomplished through administrative and physical controls integrated into the sorting operations. Many Department of Energy facilities are currently facing the prospect of sorting, characterizing, and treating a large inventory of mixed waste. The process described in this report is a proven method for preparing a diverse, heterogeneous mixed waste volume into segregated, characterized, inventoried, and documented waste streams ready for treatment or disposal.

  7. Household hazardous waste management: a review.

    PubMed

    Inglezakis, Vassilis J; Moustakas, Konstantinos

    2015-03-01

    This paper deals with the waste stream of household hazardous waste (HHW) presenting existing management systems, legislation overview and other relevant quantitative and qualitative information. European Union legislation and international management schemes are summarized and presented in a concise manner by the use of diagrams in order to provide crucial information on HHW. Furthermore, sources and types, numerical figures about generation, collection and relevant management costs are within the scope of the present paper. The review shows that the term used to refer to hazardous waste generated in households is not clearly defined in legislation, while there is absence of specific acts regulating the management of HHW. The lack of obligation to segregate HHW from the household waste and the different terminology used makes it difficult to determine the quantities and composition of this waste stream, while its generation amount is relatively small and, therefore, is commonly overlooked in waste statistics. The paper aims to cover the gap in the related literature on a subject that is included within the crucial waste management challenges at world level, considering that HHW can also have impact on other waste streams by altering the redox conditions or causing direct reactions with other non hazardous waste substances. PMID:25528172

  8. Hazardous waste treatment and environmental remediation research

    SciTech Connect

    Not Available

    1989-09-29

    Los Alamos National Laboratory (LANL) is currently evaluating hazardous waste treatment and environmental remediation technologies in existence and under development to determine applicability to remediation needs of the DOE facilities under the Albuquerque Operations Office and to determine areas of research need. To assist LANL is this effort, Science Applications International Corporation (SAIC) conducted an assessment of technologies and monitoring methods that have been demonstrated or are under development. The focus of this assessment is to: (1) identify existing technologies for hazardous waste treatment and environmental remediation of old waste sites; (2) identify technologies under development and the status of the technology; (3) assess new technologies that need development to provide adequate hazardous waste treatment and remedial action technologies for DOD and DOE sites; and (4) identify hazardous waste and remediation problems for environmental research and development. There are currently numerous research and development activities underway nationwide relating to environmental contaminants and the remediation of waste sites. To perform this effort, SAIC evaluated current technologies and monitoring methods development programs in EPA, DOD, and DOE, as these are the primary agencies through which developmental methods are being demonstrated. This report presents this evaluation and provides recommendations as to pertinent research needs or activities to address waste site contamination problems. The review and assessment have been conducted at a programmatic level; site-specific and contaminant-specific evaluations are being performed by LANL staff as a separate, related activity.

  9. 75 FR 71559 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Withdrawal of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-24

    ... AGENCY 40 CFR Part 261 Hazardous Waste Management System; Identification and Listing of Hazardous Waste..., 2010. DATES: Effective November 24, 2010, EPA withdraws the direct final exclusion published at 75 FR...Mobil Refining and Supply Company--Beaumont Refinery, published on October 1, 2010, 75 FR 60632....

  10. 75 FR 73972 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Removal of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-30

    ... AGENCY 40 CFR Part 261 Hazardous Waste Management System; Identification and Listing of Hazardous Waste... Company--Texas Operations, published on September 24, 2010, 75 FR 58315. We stated in that direct final... which will be based on the parallel proposed rule also published on September 24, 2010, 75 FR 58346....

  11. Method for acid oxidation of radioactive, hazardous, and mixed organic waste materials

    DOEpatents

    Pierce, Robert A.; Smith, James R.; Ramsey, William G.; Cicero-Herman, Connie A.; Bickford, Dennis F.

    1999-01-01

    The present invention is directed to a process for reducing the volume of low level radioactive and mixed waste to enable the waste to be more economically stored in a suitable repository, and for placing the waste into a form suitable for permanent disposal. The invention involves a process for preparing radioactive, hazardous, or mixed waste for storage by contacting the waste starting material containing at least one organic carbon-containing compound and at least one radioactive or hazardous waste component with nitric acid and phosphoric acid simultaneously at a contacting temperature in the range of about 140.degree. C. to about 210 .degree. C. for a period of time sufficient to oxidize at least a portion of the organic carbon-containing compound to gaseous products, thereby producing a residual concentrated waste product containing substantially all of said radioactive or inorganic hazardous waste component; and immobilizing the residual concentrated waste product in a solid phosphate-based ceramic or glass form.

  12. Unified hazardous waste and hazardous materials management regulatory program

    SciTech Connect

    Neese, K.J. )

    1994-04-01

    The administration and regulation of hazardous wastes and materials in the state of California has for many years been overseen by a number of regulatory agencies that have jurisdiction to undertake or compel cleanup. The jurisdiction and authority of each of these agencies differ, as do their philosophical underpinnings, in terms of protection of human health and the environment versus protection of groundwater resources. In 1993, Senate Bill 1082 was enacted to require the Secretary for Environmental Protection, by January 1, 1996, to adopt implementing regulations and implement a unified hazardous materials management regulatory program to consolidate the administration of specific statutory requirements for the regulation of hazardous wastes and minerals. All aspects of the unified program related to the adoption and interpretation of statewide standards and requirements will be the responsibility under existing law. For example, for underground storage tanks, that agency shall be the state Water Resources Control Board. The Department of Toxic Substances Control shall have the sole responsibility for the determination of whether a waste is hazardous or nonhazardous. Those aspects of the unified program related to the application of statewide standards to particular facilities, including the grant of authorizations, the issuance of permits, the review of reports and plans, and the enforcement of those standards and requirements against particular facilities, will be the responsibility of the certified unified program agency.

  13. Criteria and Processes for the Certification of Non-Radioactive Hazardous and Non-Hazardous Wastes

    SciTech Connect

    Dominick, J

    2008-12-18

    This document details Lawrence Livermore National Laboratory's (LLNL) criteria and processes for determining if potentially volumetrically contaminated or potentially surface contaminated wastes are to be managed as material containing residual radioactivity or as non-radioactive. This document updates and replaces UCRL-AR-109662, Criteria and Procedures for the Certification of Nonradioactive Hazardous Waste (Reference 1), also known as 'The Moratorium', and follows the guidance found in the U.S. Department of Energy (DOE) document, Performance Objective for Certification of Non-Radioactive Hazardous Waste (Reference 2). The 1992 Moratorium document (UCRL-AR-109662) is three volumes and 703 pages. The first volume provides an overview of the certification process and lists the key radioanalytical methods and their associated Limits of Sensitivities. Volumes Two and Three contain supporting documents and include over 30 operating procedures, QA plans, training documents and organizational charts that describe the hazardous and radioactive waste management system in place in 1992. This current document is intended to update the previous Moratorium documents and to serve as the top-tier LLNL institutional Moratorium document. The 1992 Moratorium document was restricted to certification of Resource Conservation and Recovery Act (RCRA), State and Toxic Substances Control Act (TSCA) hazardous waste from Radioactive Material Management Areas (RMMA). This still remains the primary focus of the Moratorium; however, this document increases the scope to allow use of this methodology to certify other LLNL wastes and materials destined for off-site disposal, transfer, and re-use including non-hazardous wastes and wastes generated outside of RMMAs with the potential for DOE added radioactivity. The LLNL organization that authorizes off-site transfer/disposal of a material or waste stream is responsible for implementing the requirements of this document. The LLNL Radioactive and Hazardous Waste Management (RHWM) organization is responsible for the review and maintenance of this document. It should be noted that the DOE metal recycling moratorium is still in effect and is implemented as outlined in reference 17 when metals are being dispositioned for disposal/re-use/recycling off-site. This document follows the same methodology as described in the previously approved 1992 Moratorium document. Generator knowledge and certification are the primary means of characterization. Sampling and analysis are used when there is insufficient knowledge of a waste to determine if it contains added radioactivity. Table 1 (page 12) presents a list of LLNL's analytical methods for evaluating volumetrically contaminated waste and updates the reasonably achievable analytical-method-specific Minimum Detectable Concentrations (MDCs) for various matrices. Results from sampling and analysis are compared against the maximum MDCs for the given analytical method and the sample specific MDC to determine if the sample contains DOE added volumetric radioactivity. The evaluation of an item that has a physical form, and history of use, such that accessible surfaces may be potentially contaminated, is based on DOE Order 5400.5 (Reference 3), and its associated implementation guidance document DOE G 441.1-XX, Control and Release of Property with Residual Radioactive Material (Reference 4). The guidance document was made available for use via DOE Memorandum (Reference 5). Waste and materials containing residual radioactivity transferred off-site must meet the receiving facilities Waste Acceptance Criteria (if applicable) and be in compliance with other applicable federal or state requirements.

  14. MOBILITY AND DEGRADATION OF RESIDUES AT HAZARDOUS WASTE LAND TREATMENT SITES AT CLOSURE

    EPA Science Inventory

    Soil treatment systems that are designed and managed based on a knowledge of soil-waste interactions may represent a significant technology for simultaneous treatment and ultimate disposal of selected hazardous wastes in an environmentally acceptable manner. hese soil treatment s...

  15. 50 CFR 27.94 - Disposal of waste.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 9 2014-10-01 2014-10-01 false Disposal of waste. 27.94 Section 27.94... NATIONAL WILDLIFE REFUGE SYSTEM PROHIBITED ACTS Other Disturbing Violations § 27.94 Disposal of waste. (a... manager, or the draining or dumping of oil, acids, pesticide wastes, poisons, or any other types...

  16. 50 CFR 27.94 - Disposal of waste.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Disposal of waste. 27.94 Section 27.94... NATIONAL WILDLIFE REFUGE SYSTEM PROHIBITED ACTS Other Disturbing Violations § 27.94 Disposal of waste. (a... manager, or the draining or dumping of oil, acids, pesticide wastes, poisons, or any other types...

  17. 21 CFR 1250.75 - Disposal of human wastes.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Disposal of human wastes. 1250.75 Section 1250.75... SANITATION Servicing Areas for Land and Air Conveyances § 1250.75 Disposal of human wastes. (a) At servicing... so conducted as to avoid contamination of such areas and stations by human wastes. (b) Toilet...

  18. 21 CFR 1250.75 - Disposal of human wastes.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Disposal of human wastes. 1250.75 Section 1250.75... SANITATION Servicing Areas for Land and Air Conveyances § 1250.75 Disposal of human wastes. (a) At servicing... so conducted as to avoid contamination of such areas and stations by human wastes. (b) Toilet...

  19. 21 CFR 1250.75 - Disposal of human wastes.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Disposal of human wastes. 1250.75 Section 1250.75... SANITATION Servicing Areas for Land and Air Conveyances § 1250.75 Disposal of human wastes. (a) At servicing... so conducted as to avoid contamination of such areas and stations by human wastes. (b) Toilet...

  20. 50 CFR 27.94 - Disposal of waste.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 8 2011-10-01 2011-10-01 false Disposal of waste. 27.94 Section 27.94... NATIONAL WILDLIFE REFUGE SYSTEM PROHIBITED ACTS Other Disturbing Violations § 27.94 Disposal of waste. (a... manager, or the draining or dumping of oil, acids, pesticide wastes, poisons, or any other types...

  1. 21 CFR 1250.75 - Disposal of human wastes.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Disposal of human wastes. 1250.75 Section 1250.75... SANITATION Servicing Areas for Land and Air Conveyances § 1250.75 Disposal of human wastes. (a) At servicing... so conducted as to avoid contamination of such areas and stations by human wastes. (b) Toilet...

  2. 50 CFR 27.94 - Disposal of waste.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 9 2012-10-01 2012-10-01 false Disposal of waste. 27.94 Section 27.94... NATIONAL WILDLIFE REFUGE SYSTEM PROHIBITED ACTS Other Disturbing Violations § 27.94 Disposal of waste. (a... manager, or the draining or dumping of oil, acids, pesticide wastes, poisons, or any other types...

  3. Thermochemical data for nuclear waste disposal

    SciTech Connect

    Phillips, S.L.

    1984-05-01

    Thermochemical data for nuclear waste disposal are compiled. The resulting data base consists of enthalpy, entropy and heat capacity of formation, and Debye-Huckel coefficients of selected substances for about 25 elements. Values of the data are combined with intrinsic equilibrium constants at 25/sup 0/C and zero ionic strength to calculate equilibrium quotients to 350/sup 0/C and 3 ionic strength. PuSO/sub 4//sup 2 +/, UOH/sup 3 +/ and UO/sub 2/CO/sub 3/(aq) are given as examples.

  4. Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes

    DOEpatents

    Kalb, P.D.; Colombo, P.

    1999-07-20

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogeneous molten matrix. The molten matrix may be directed in a clean'' polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment. 2 figs.

  5. Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes

    DOEpatents

    Kalb, Paul D.; Colombo, Peter

    1998-03-24

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogenous molten matrix. The molten matrix may be directed in a "clean" polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment.

  6. Composition and process for the encapsulation and stabilization of radioactive hazardous and mixed wastes

    DOEpatents

    Kalb, P.D.; Colombo, P.

    1997-07-15

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogeneous molten matrix. The molten matrix may be directed in a ``clean`` polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment. 2 figs.

  7. Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes

    DOEpatents

    Kalb, Paul D.; Colombo, Peter

    1999-07-20

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogenous molten matrix. The molten matrix may be directed in a "clean" polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment.

  8. Composition and process for the encapsulation and stabilization of radioactive hazardous and mixed wastes

    DOEpatents

    Kalb, Paul D.; Colombo, Peter

    1997-01-01

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogenous molten matrix. The molten matrix may be directed in a "clean" polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment.

  9. Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes

    DOEpatents

    Kalb, P.D.; Colombo, P.

    1998-03-24

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogeneous molten matrix. The molten matrix may be directed in a ``clean`` polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment. 2 figs.

  10. Certification plan transuranic waste: Hazardous Waste Handling Facility

    SciTech Connect

    Not Available

    1992-06-01

    The purpose of this plan is to describe the organization and methodology for the certification of transuranic (TRU) waste handled in the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory (LBL). The plan incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Quality Assurance Implementing Management Plan (QAIMP) for the HWBF; and a list of the current and planned implementing procedures used in waste certification.

  11. 10 CFR 20.2108 - Records of waste disposal.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... waste disposal. (a) Each licensee shall maintain records of the disposal of licensed materials made under §§ 20.2002, 20.2003, 20.2004, 20.2005, 10 CFR part 61 and disposal by burial in soil, including... 10 Energy 1 2014-01-01 2014-01-01 false Records of waste disposal. 20.2108 Section 20.2108...

  12. 10 CFR 20.2108 - Records of waste disposal.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... waste disposal. (a) Each licensee shall maintain records of the disposal of licensed materials made under §§ 20.2002, 20.2003, 20.2004, 20.2005, 10 CFR part 61 and disposal by burial in soil, including... 10 Energy 1 2010-01-01 2010-01-01 false Records of waste disposal. 20.2108 Section 20.2108...

  13. 10 CFR 20.2108 - Records of waste disposal.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... waste disposal. (a) Each licensee shall maintain records of the disposal of licensed materials made under §§ 20.2002, 20.2003, 20.2004, 20.2005, 10 CFR part 61 and disposal by burial in soil, including... 10 Energy 1 2011-01-01 2011-01-01 false Records of waste disposal. 20.2108 Section 20.2108...

  14. 10 CFR 20.2108 - Records of waste disposal.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... waste disposal. (a) Each licensee shall maintain records of the disposal of licensed materials made under §§ 20.2002, 20.2003, 20.2004, 20.2005, 10 CFR part 61 and disposal by burial in soil, including... 10 Energy 1 2013-01-01 2013-01-01 false Records of waste disposal. 20.2108 Section 20.2108...

  15. 10 CFR 20.2108 - Records of waste disposal.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... waste disposal. (a) Each licensee shall maintain records of the disposal of licensed materials made under §§ 20.2002, 20.2003, 20.2004, 20.2005, 10 CFR part 61 and disposal by burial in soil, including... 10 Energy 1 2012-01-01 2012-01-01 false Records of waste disposal. 20.2108 Section 20.2108...

  16. Conceptual Safety Design Report for the Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect

    Boyd D. Christensen

    2010-05-01

    A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal for remote-handled LLW from the Idaho National Laboratory and for spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This conceptual safety design report supports the design of a proposed onsite remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization, by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW, by evaluating consequences of postulated accidents, and by discussing the need for safety features that will become part of the facility design.

  17. Conceptual Safety Design Report for the Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect

    Boyd D. Christensen

    2010-02-01

    A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal for remote-handled LLW from the Idaho National Laboratory and for spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This conceptual safety design report supports the design of a proposed onsite remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization, by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW, by evaluating consequences of postulated accidents, and by discussing the need for safety features that will become part of the facility design.

  18. Challenges in disposing of anthrax waste.

    PubMed

    Lesperance, Ann M; Stein, Steve; Upton, Jaki F; Toomey, Chris

    2011-09-01

    Disasters often create large amounts of waste that must be managed as part of both immediate response and long-term recovery. While many federal, state, and local agencies have debris management plans, these plans often do not address chemical, biological, and radiological contamination. The Interagency Biological Restoration Demonstration's (IBRD) purpose was to holistically assess all aspects of an anthrax incident and assist in the development of a plan for long-term recovery. In the case of wide-area anthrax contamination and the follow-on response and recovery activities, a significant amount of material would require decontamination and disposal. Accordingly, IBRD facilitated the development of debris management plans to address contaminated waste through a series of interviews and workshops with local, state, and federal representatives. The outcome of these discussions was the identification of 3 primary topical areas that must be addressed: planning, unresolved research questions, and resolving regulatory issues. PMID:21882972

  19. Challenges in Disposing of Anthrax Waste

    SciTech Connect

    Lesperance, Ann M.; Stein, Steven L.; Upton, Jaki F.; Toomey, Christopher

    2011-09-01

    Disasters often create large amounts of waste that must be managed as part of both immediate response and long-term recovery. While many federal, state, and local agencies have debris management plans, these plans often do not address chemical, biological, and radiological contamination. The Interagency Biological Restoration Demonstration’s (IBRD) purpose was to holistically assess all aspects of an anthrax incident and assist the development of a plan for long-term recovery. In the case of wide-area anthrax contamination and the follow-on response and recovery activities, a significant amount of material will require decontamination and disposal. Accordingly, IBRD facilitated the development of debris management plans to address contaminated waste through a series of interviews and workshops with local, state, and federal representatives. The outcome of these discussion was the identification of three primary topical areas that must be addressed: 1) Planning; 2) Unresolved research questions, and resolving regulatory issues.

  20. Microwave remediation of hazardous and radioactive wastes

    SciTech Connect

    Wicks, G.G.

    2000-04-28

    A team from the Westinghouse Savannah River Technology Center (WSRC - a DOE Laboratory), and the University of Florida (UF - academia), has been active for about a decade in development of microwave technology for specialized waste management applications. This interaction has resulted in the development of unique equipment and uses of microwave energy for a variety of important applications for remediation of hazardous and radioactive wastes. Discussed are results of this unique technology for processing of electronic circuitry and components, medical wastes, discarded tires, and transuranic radioactive wastes.