Science.gov

Sample records for hazardous waste generators

  1. Quantity of RCRA Hazardous Waste Generated and Managed

    EPA Science Inventory

    This indicator describes the tonnage of Resource Conservation and Recovery Act (RCRA) hazardous waste generated and managed in the United States every two years between 2001 and 2009. It also describes the tonnage of hazardous waste disposed to land by disposal practice. This ...

  2. Guidelines for generators of hazardous chemical waste at LBL and Guidelines for generators of radioactive and mixed waste at LBL

    SciTech Connect

    Not Available

    1991-07-01

    The purpose of this document is to provide the acceptance criteria for the transfer of hazardous chemical, radioactive, and mixed waste to Lawrence Berkeley Laboratory's (LBL) Hazardous Waste Handling Facility (HWHF). These guidelines describe how a generator of wastes can meet LBL's acceptance criteria for hazardous chemical, radioactive, and mixed waste. 9 figs.

  3. Household hazardous waste and conditionally exempt small-quantity generators

    SciTech Connect

    Wray, T.K.

    1993-02-01

    Each year, US consumers buy millions of pounds of paint, disinfectant, toilet bowl cleaner; furniture polish, drain cleaner, bleach and other products designed to beautify and clean their homes. Many do-it-yourselfers also buy automotive supplies, such as brake fluid, batteries, starting fluid, oil and antifreeze. Unused portions of these products often find their way into local landfills as household hazardous waste (HHW). Untreated, these wastes represent a possible threat to landfill employees, and a potential source of groundwater and surface water contamination. Recognizing the potential hazards posed by these materials, most states have established HHW management programs. California, Florida, Minnesota, Washington and New Jersey have well-established programs serving state residents and conditionally exempt small-quantity generators (CESQGs). CESQGs are commercial facilities that generate less than 100 kilograms (220 pounds) of hazardous waste per calendar month. RCRA established the statutory framework for identifying and managing hazardous wastes. However, household waste, including HHW, a specifically is excluded from regulation as a hazardous waste under 40 CFR 261.4(b)(1). Therefore, there are no current federal regulations governing HHW. Implementing and enforcing pollution legislation aimed at private citizens is a complex, if not impossible, task.

  4. QUANTIFICATION OF MUNICIPAL DISPOSAL METHODS FOR INDUSTRIALLY GENERATED HAZARDOUS WASTES

    EPA Science Inventory

    Estimations of the amounts of industrial hazardous wastes being disposed of according to various methods of disposal were generated for significant portions of the five following SIC codes: 28, Chemical and Allied Products; 29, Petroleum Refining and Related Industries; 30, Rubbe...

  5. Hazardous Waste Management for the Small Quantity Generator. Teacher Edition.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This instructional package for teaching about the regulations imposed on small quantity generators by the Environmental Protection Agency (EPA) under the Resource Conservation Recovery Act is organized around ll program objectives: students will be able to (l) determine a hazardous waste from lists or by identifying characteristics; (2) identify…

  6. Hazardous Waste

    MedlinePlus

    ... you throw these substances away, they become hazardous waste. Some hazardous wastes come from products in our homes. Our garbage can include such hazardous wastes as old batteries, bug spray cans and paint ...

  7. 75 FR 79328 - Technical Corrections to the Standards Applicable to Generators of Hazardous Waste; Alternative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-20

    ... AGENCY 40 CFR Part 262 Technical Corrections to the Standards Applicable to Generators of Hazardous Waste...: EPA is proposing six technical corrections to an alternative set of hazardous waste generator... requirements, but rather makes technical corrections to subpart K of the hazardous waste generator...

  8. SMALL-QUANTITY-GENERATOR HAZARDOUS-WASTE PRODUCTION AND MANAGEMENT IN FLORIDA

    EPA Science Inventory

    Data are presented on the production and management of hazardous waste by approximately 20,000 small-quantity hazardous-waste generators (SQ) in the state of Florida. RHWGs are generators that produce less than 1000 kg of hazardous waste in a calendar month. here were approximate...

  9. Methodologies for estimating one-time hazardous waste generation for capacity generation for capacity assurance planning

    SciTech Connect

    Tonn, B.; Hwang, Ho-Ling; Elliot, S.; Peretz, J.; Bohm, R.; Hendrucko, B.

    1994-04-01

    This report contains descriptions of methodologies to be used to estimate the one-time generation of hazardous waste associated with five different types of remediation programs: Superfund sites, RCRA Corrective Actions, Federal Facilities, Underground Storage Tanks, and State and Private Programs. Estimates of the amount of hazardous wastes generated from these sources to be shipped off-site to commercial hazardous waste treatment and disposal facilities will be made on a state by state basis for the years 1993, 1999, and 2013. In most cases, estimates will be made for the intervening years, also.

  10. Hazardous waste management system; standards applicable to generators of hazardous waste; state program requirements. Environmental Protection Agency. Final rule.

    PubMed

    1982-01-11

    On February 26, 1980 and May 19, 1980, under the Resource Conservation and Recovery Act (RCRA), the Environmental Protection Agency (EPA) published regulations establishing a system to manage hazardous waste. Those regulations allowed hazardous waste generators to accumulate hazardous waste on-site without obtaining a permit or meeting financial responsibility requirements if they shipped the waste off-site within 90 days. On November 19, 1980, the Agency published an interim final rule which expanded the scope of the provision to include generators who treat, store or dispose of hazardous waste on-site. The final rule published today retains this change. As a result of public comments, the Agency is making several changes to the interim final rule. These changes (1) Clarify that the provision is applicable to all generators, including those who accumulate hazardous waste for the purpose of use, reuse, recycling and reclamation, (2) remove the requirement for use of DOT containers, (3) revise the labelling and marking requirements for wastes accumulated in containers and tanks; and (4) allow an extension to the 90-day accumulation limit in certain circumstances. PMID:10253707

  11. Guidelines for generators of hazardous chemical waste at LBL and guidelines for generators of radioactive and mixed waste at LBL

    SciTech Connect

    Not Available

    1991-09-01

    In part one of this document the Governing Documents and Definitions sections provide general guidelines and regulations applying to the handling of hazardous chemical wastes. The remaining sections provide details on how you can prepare your waste properly for transport and disposal. They are correlated with the steps you must take to properly prepare your waste for pickup. The purpose of the second part of this document is to provide the acceptance criteria for the transfer of radioactive and mixed waste to LBL's Hazardous Waste Handling Facility (HWHF). These guidelines describe how you, as a generator of radioactive or mixed waste, can meet LBL's acceptance criteria for radioactive and mixed waste.

  12. Hazardous Waste

    MedlinePlus

    ... wastes come from products in our homes. Our garbage can include such hazardous wastes as old batteries, ... drain, flush them, or put them in the garbage. See if you can donate or recycle. Many ...

  13. 40 CFR 262.216 - Non-laboratory hazardous waste generated at an eligible academic entity.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... generator requirements of 40 CFR part 262, with respect to that hazardous waste; or (b) Remains subject to... generated at an eligible academic entity. 262.216 Section 262.216 Protection of Environment ENVIRONMENTAL... Laboratories Owned by Eligible Academic Entities § 262.216 Non-laboratory hazardous waste generated at...

  14. 40 CFR 262.216 - Non-laboratory hazardous waste generated at an eligible academic entity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... generator requirements of 40 CFR part 262, with respect to that hazardous waste; or (b) Remains subject to... generated at an eligible academic entity. 262.216 Section 262.216 Protection of Environment ENVIRONMENTAL... Laboratories Owned by Eligible Academic Entities § 262.216 Non-laboratory hazardous waste generated at...

  15. Minimizing hazardous waste

    SciTech Connect

    DeClue, S.C.

    1996-06-01

    Hazardous waste minimization is a broad term often associated with pollution prevention, saving the environment or protecting Mother Earth. Some associate hazardous waste minimization with saving money. Thousands of hazardous materials are used in processes every day, but when these hazardous materials become hazardous wastes, dollars must be spent for disposal. When hazardous waste is reduced, an organization will spend less money on hazardous waste disposal. In 1993, Fort Bragg reduced its hazardous waste generation by over 100,000 pounds and spent nearly $90,000 less on hazardous waste disposal costs than in 1992. Fort Bragg generates a variety of wastes: Vehicle maintenance wastes such as antifreeze, oil, grease and solvents; helicopter maintenance wastes, including solvents, adhesives, lubricants and paints; communication operation wastes such as lithium, magnesium, mercury and nickel-cadmium batteries; chemical defense wastes detection, decontamination, and protective mask filters. The Hazardous Waste Office has the responsibility to properly identify, characterize, classify and dispose of these waste items in accordance with US Environmental Protection Agency (EPA) and US Department of Transportation (DOT) regulations.

  16. Hazardous Waste Roundup

    ERIC Educational Resources Information Center

    Farenga, Stephen J.; Joyce, Beverly A.; Ness, Daniel

    2004-01-01

    According to the Environmental Protection Agency (EPA), Americans generate approximately 1.6 million tons of hazardous household waste every year. When most people think of hazardous waste, they generally think of materials used in construction, the defense industry, mining, manufacturing, and agriculture. Few people think of hazardous substances…

  17. Hazardous Wastes and the Consumer Connection. A Guide for Educators and Citizens Concerned with the Role of Consumers in the Generation of Hazardous Wastes.

    ERIC Educational Resources Information Center

    Assaff, Edith

    Many consumers do not see a strong connection between our lifestyles and buying decisions, and the amount of hazardous wastes generated in the United States. This guide was developed to be used by educators and citizens concerned with the role of consumers in the generation of hazardous wastes. It examines several products in terms of their…

  18. Surveying household hazardous waste generation and collection trends in Arizona

    SciTech Connect

    Wolf, A.M.A.; Kettler, L.E.; Leahy, J.F.; Spitz, A.H.

    1997-03-01

    Residents of Maricopa County, Arizona were surveyed using a computerized survey instrument to assess purchases of household hazardous materials (HHM), disposal practices for household hazardous waste (HHW), attitudes regarding the environmental and health effects of HHW and preferred disposal and funding methods. The study results indicate that the residents of Maricopa County are purchasing large quantities of HHM and may be improperly disposing of pesticides, cleaners, paint products, antifreeze and batteries. The majority of the residents had heard of the term HHW and thought that HHW could cause pollution or health problems. Residents prefer a permanent collection site less than five miles away that is funded by a tax on products, at the time of sale, as a disposal option. The results from Maricopa County, a county without a permanent collection facility, were compared to survey and actual results from Pima County, Arizona which has had collection events since 1986 and a permanent facility since 1990.

  19. Hazardous waste tracking issues

    SciTech Connect

    Marvin, R. )

    1993-08-01

    The concept of cradle-to-grave oversight of hazardous waste was established in 1976 under RCRA. Since then, the multicopy Uniform Hazardous Waste Manifest has been a key component in the federal tracking system. The manifests ensure that generators, transporters and TSDFs maintain documentation of hazardous waste shipments. To a large extent, the tracking system has served its intended purpose; nevertheless, certain shortcomings exist. Anyone involved in shipping hazardous waste should be aware of the system's weaknesses and take appropriate measures to compensate for them.

  20. The impact of regulatory compliance behavior on hazardous waste generation in European private healthcare facilities.

    PubMed

    Botelho, Anabela

    2013-10-01

    This study empirically evaluates whether the increasingly large numbers of private outpatient healthcare facilities (HCFs) within the European Union (EU) countries comply with the existing European waste legislation, and whether compliance with such legislation affects the fraction of healthcare waste (HCW) classified as hazardous. To that end, this study uses data collected by a large survey of more than 700 small private HCFs distributed throughout Portugal, a full member of the EU since 1986, where 50% of outpatient care is currently dominated by private operators. The collected data are then used to estimate a hurdle model, i.e. a statistical specification in which there are two processes: one is the process by which some HCFs generate zero or some positive fraction of hazardous HCW, and another is the process by which HCFs generate a specific positive fraction of hazardous HCW conditional on producing any. Taken together, the results show that although compliance with the law is far from ideal, it is the strongest factor influencing hazardous waste generation. In particular, it is found that higher compliance has a small and insignificant effect on the probability of generating (or reporting) positive amounts of hazardous waste, but it does have a large and significant effect on the fraction of hazardous waste produced, conditional on producing any, with a unit increase in the compliance rate leading to an estimated decrease in the fraction of hazardous HCW by 16.3 percentage points. PMID:23831780

  1. Estimating maquiladora hazardous waste generation on the U.S./Mexico border

    NASA Astrophysics Data System (ADS)

    Bowen, Mace M.; Kontuly, Thomas; Hepner, George F.

    1995-03-01

    Maquiladoras, manufacturing plants that primarily assemble foreign components for reexport, are located in concentrations along the northern frontier of the US/Mexico border. These plants process a wide variety of materials using modern industrial technologies within the context of developing world institutions and infrastructure. Hazardous waste generation by maquiladoras represents a critical environmental management issue because of the spatial concentration of these plants in border municipalities where the infrastructure for waste management is nonexistent or poor. These border municipalities contain rapidly increasing populations, which further stress their waste handling infrastructure capacities while exposing their populations to greater contaminant risks. Limited empirical knowledge exists concerning hazardous waste types and generation rates from maquiladorsas. There is no standard reporting method for waste generation or methodology for estimating generation rates at this time. This paper presents a method that can be used for the rapid assessment of hazardous waste generation. A first approximation of hazardous waste generation is produced for maquiladoras in the three municipalities of Nogales, Sonora, Mexicali, Baja California, and Cd. Juarez, Chihuahua, using the INVENT model developed by the World Bank. In addition, our intent is to evaluate the potential of the INVENT model for adaptation to the US/Mexico border industrial situation. The press of border industrial development, especially with the recent adoption of the NAFTA, make such assessments necessary as a basis for the environmental policy formulation and management needed in the immediate future.

  2. Management of household and small-quantity-generator hazardous waste in the United States

    SciTech Connect

    Duxbury, D.

    1989-12-01

    The International Solid Waste and Public Cleansing Association (ISWA), an international nongovernmental organization comprising twenty-seven national organizations of waste management professionals, conducted a survey to obtain information regarding household and small-quantity-generator hazardous wastes. The report presents the U.S. response to the survey. The questionnaire covered five different areas: (1) problems, (2) policy approach, (3) technical and organizational aspects, (4) case studies, and (5) treatment and disposal research and development. Comments were also invited. The appendices include the ISWA Questionnaire, a table and other information regarding State laws and regulations governing household hazardous waste, and a listing of the permanent household hazardous waste collection programs operating in 1988.

  3. Biennial reporting system (BRS) data: Generation and management of hazardous waste, 1997 final report

    SciTech Connect

    1999-05-01

    The product contains data compiled by the Biennial Reporting System (BRS) for the ``National Biennial RCRA Hazardous Waste Report (Based on 1997 data).'' The data were collected by states using the ``1997 National Hazardous Waste Report Instructions and Forms'' (EPA Form 8700-13-A/B), or the state's equivalent information source. Data submitted by states prior to December 31, 1997 are included. Data for reports protected by RCRA Confidential Business Information (CBI) claims are not included. These data are preliminary and will be replaced by the final data. The data contain information describing the RCRA wastes generated and/or managed during 1997 by RCRA Treatment, Storage and Disposal Facilities (TSDFs) and RCRA Large Quantity Generators (LQGs). Data are reported by sites meeting the LQG and/or TSDF definitions. Sites are identified by their EPA/RCRA identification number. Response codes match those of the ``1997 Hazardous Waste Report: Instructions and Forms'' (EPA Form 8700-13-A/B).

  4. Biennial Reporting System (BRS) data: Generation and management of hazardous waste, 1997 (preliminary)

    SciTech Connect

    Not Available

    1999-05-01

    The product contains data compiled by the Biennial Reporting System (BRS) for the National Biennial RCRA Hazardous Waste Report (Based on 1997 data). The data were collected by states using the 1997 National Hazardous Waste Report Instructions and Forms (EPA Form 8700-13-A/B), or the state's equivalent information source. Data submitted by states prior to December 31, 1997 are included. Data for reports protected by RCRA Confidential Business Information (CBI) claims are not included. These data are preliminary and will be replaced by the final data. The data contain information describing the RCRA wastes generated and/or managed during 1997 by RCRA Treatment, Storage and Disposal Facilities (TSDFs) and RCRA Large Quantity Generators (LQGs). Data are reported by sites meeting the LQG and/or TSDF definitions. Sites are identified by their EPA/RCRA identification number. Response codes match those of the 1997 Hazardous Waste Report: Instructions and Forms (EPA Form 8700-13-A/B).

  5. A pilot outreach program for small quantity generators of hazardous waste.

    PubMed

    Brown, M S; Kelley, B G; Gutensohn, J

    1988-10-01

    The Massachusetts Department of Environmental Management initiated a pilot project to improve compliance with hazardous waste regulations and management of hazardous wastes with auto body shops around the state. The program consisted of mass mailings, a series of workshops throughout the state, a coordinated inspection program by the state regulatory agency, and technology transfer. At the start of the program in January 1986, approximately 650 of the estimated 2,350 auto body shops in the state had notified EPA of their waste generating activities; by January 1987, approximately 1,200 shops had done so. Suggestions for improving program efforts include tailoring the outreach effort to the industry, government-sponsored research and development directed at the needs of small firms, mandatory participation in hazardous waste transportation programs, and better coordination by EPA of its information collection and distribution program. PMID:3421393

  6. Plasma destruction of North Carolina`s hazardous waste based on hazardous waste generated between the years of 1989 and 1992

    SciTech Connect

    Williams, D.L.

    1994-12-31

    The purpose of this research is to analyze the applicability of the plasma waste destruction technology to North Carolina hazardous waste streams. This study outlines the current regulations, existing technologies, and innovative technologies being considered as hazardous waste treatment alternatives. From this foundation, the study proceeds to identify the superiority of the plasma waste destruction technology. Specific areas of discussion include: temperature capabilities, waste residence time requirements, destruction removal efficiencies, operational efficiencies, economic issues, safety, and maintenance. This study finds the plasma destruction technology to be fully effective and superior to conventional facilities. The technology completely destroys hydrocarbons and can reduce the volume of many other hazardous wastes on the order of one part per million. The required residence time of waste in a plasma facility for effective destruction is a fraction of a second, while the rotary kiln incinerator maintains an average residence time of approximately 5 seconds. Also mass and heat balance calculations are performed to quantify the effectiveness and efficiency of this technology. It is found that one day`s average amount of hazardous waste generated in the state of North Carolina can be destroyed in approximately thirty seconds using a standard one megawatt power source. Yet, before this technology is adopted as North Carolina`s primary hazardous waste destruction technology, further study is needed so that all issues considered in this research can be conducted in great detail.

  7. Hazardous waste management system: standards applicable to generators of hazardous waste and standards applicable to owners and operators of hazardous waste treatment, storage, and disposal facilities--Environmental Protection Agency. Proposed rule.

    PubMed

    1982-10-12

    The Environmental Protection Agency (EPA) is today proposing amendments to its hazardous waste regulations under Subtitle C of the Resource Conservation and Recovery Act (RCRA). These amendments would replace the annual reporting requirements for hazardous waste generators and owners and operators of hazardous waste treatment, storage, ad disposal (TSD) facilities with a biennial survey of representative samples of those populations. This approach will provide verifiable data on a wider range of topics, better serve EPA's long term regulatory needs under RCRA, and reduce significantly the information burden on the regulated community. PMID:10258157

  8. Hazardous medical waste generation rates of different categories of health-care facilities.

    PubMed

    Komilis, Dimitrios; Fouki, Anastassia; Papadopoulos, Dimitrios

    2012-07-01

    Goal of this work was to calculate the hazardous medical waste unit generation rates (HMWUGR), in kg bed(-1)d(-1), using data from 132 health-care facilities in Greece. The calculations were based on the weights of the hazardous medical wastes that were regularly transferred to the sole medical waste incinerator in Athens over a 22-month period during years 2009 and 2010. The 132 health-care facilities were grouped into public and private ones, and, also, into seven sub-categories, namely: birth, cancer treatment, general, military, pediatric, psychiatric and university hospitals. Results showed that there is a large variability in the HMWUGR, even among hospitals of the same category. Average total HMWUGR varied from 0.012 kg bed(-1)d(-1), for the public psychiatric hospitals, to up to 0.72 kg bed(-1)d(-1), for the public university hospitals. Within the private hospitals, average HMWUGR ranged from 0.0012 kg bed(-1)d(-1), for the psychiatric clinics, to up to 0.49 kg bed(-1)d(-1), for the birth clinics. Based on non-parametric statistics, HMWUGR were statistically similar for the birth and general hospitals, in both the public and private sector. The private birth and general hospitals generated statistically more wastes compared to the corresponding public hospitals. The infectious/toxic and toxic medical wastes appear to be 10% and 50% of the total hazardous medical wastes generated by the public cancer treatment and university hospitals, respectively. PMID:22444895

  9. Consumption patterns and household hazardous solid waste generation in an urban settlement in México.

    PubMed

    Otoniel, Buenrostro Delgado; Liliana, Márquez-Benavides; Francelia, Pinette Gaona

    2008-01-01

    Mexico is currently facing a crisis in the waste management field. Some efforts have just commenced in urban and in rural settlements, e.g., conversion of open dumps into landfills, a relatively small composting culture, and implementation of source separation and plastic recycling strategies. Nonetheless, the high heterogeneity of components in the waste, many of these with hazardous properties, present the municipal collection services with serious problems, due to the risks to the health of the workers and to the impacts to the environment as a result of the inadequate disposition of these wastes. A generation study in the domestic sector was undertaken with the aim of finding out the composition and the generation rate of household hazardous waste (HHW) produced at residences. Simultaneously to the generation study, a socioeconomic survey was applied to determine the influence of income level on the production of HHW. Results from the solid waste generation analysis indicated that approximately 1.6% of the waste stream consists of HHW. Correspondingly, it was estimated that in Morelia, a total amount of 442ton/day of domestic waste are produced, including 7.1ton of HHW per day. Furthermore, the overall amount of HHW is not directly related to income level, although particular byproducts do correlate. However, an important difference was observed, as the brands and the presentation sizes of goods and products used in each socioeconomic stratum varied. PMID:18573653

  10. Consumption patterns and household hazardous solid waste generation in an urban settlement in Mexico

    SciTech Connect

    Delgado Otoniel, Buenrostro

    2008-07-01

    Mexico is currently facing a crisis in the waste management field. Some efforts have just commenced in urban and in rural settlements, e.g., conversion of open dumps into landfills, a relatively small composting culture, and implementation of source separation and plastic recycling strategies. Nonetheless, the high heterogeneity of components in the waste, many of these with hazardous properties, present the municipal collection services with serious problems, due to the risks to the health of the workers and to the impacts to the environment as a result of the inadequate disposition of these wastes. A generation study in the domestic sector was undertaken with the aim of finding out the composition and the generation rate of household hazardous waste (HHW) produced at residences. Simultaneously to the generation study, a socioeconomic survey was applied to determine the influence of income level on the production of HHW. Results from the solid waste generation analysis indicated that approximately 1.6% of the waste stream consists of HHW. Correspondingly, it was estimated that in Morelia, a total amount of 442 ton/day of domestic waste are produced, including 7.1 ton of HHW per day. Furthermore, the overall amount of HHW is not directly related to income level, although particular byproducts do correlate. However, an important difference was observed, as the brands and the presentation sizes of goods and products used in each socioeconomic stratum varied.

  11. Household hazardous wastes as a potential source of pollution: a generation study.

    PubMed

    Ojeda-Benítez, Sara; Aguilar-Virgen, Quetzalli; Taboada-González, Paul; Cruz-Sotelo, Samantha E

    2013-12-01

    Certain domestic wastes exhibit characteristics that render them dangerous, such as explosiveness, flammability, spontaneous combustion, reactivity, toxicity and corrosiveness. The lack of information about their generation and composition hinders the creation of special programs for their collection and treatment, making these wastes a potential threat to human health and the environment. We attempted to quantify the levels of hazardous household waste (HHW) generated in Mexicali, Mexico. The analysis considered three socioeconomic strata and eight categories. The sampling was undertaken on a house-by-house basis, and hypothesis testing was based on differences between two proportions for each of the eight categories. In this study, HHW comprised 3.49% of the total generated waste, which exceeded that reported in previous studies in Mexico. The greatest quantity of HHW was generated by the middle stratum; in the upper stratum, most packages were discarded with their contents remaining. Cleaning products represent 45.86% of the HHW generated. Statistical differences were not observed for only two categories among the three social strata. The scarcity of studies on HHW generation limits direct comparisons. Any decrease in waste generation within the middle social stratum will have a large effect on the total amount of waste generated, and decrease their impact on environmental and human health. PMID:24293231

  12. Action on Hazardous Wastes.

    ERIC Educational Resources Information Center

    EPA Journal, 1979

    1979-01-01

    U.S. EPA is gearing up to investigate about 300 hazardous waste dump sites per year that could pose an imminent health hazard. Prosecutions are expected to result from the priority effort at investigating illegal hazardous waste disposal. (RE)

  13. Toward Identifying the Next Generation of Superfund and Hazardous Waste Site Contaminants

    PubMed Central

    Ela, Wendell P.; Sedlak, David L.; Barlaz, Morton A.; Henry, Heather F.; Muir, Derek C.G.; Swackhamer, Deborah L.; Weber, Eric J.; Arnold, Robert G.; Ferguson, P. Lee; Field, Jennifer A.; Furlong, Edward T.; Giesy, John P.; Halden, Rolf U.; Henry, Tala; Hites, Ronald A.; Hornbuckle, Keri C.; Howard, Philip H.; Luthy, Richard G.; Meyer, Anita K.; Sáez, A. Eduardo; vom Saal, Frederick S.; Vulpe, Chris D.; Wiesner, Mark R.

    2011-01-01

    Background This commentary evolved from a workshop sponsored by the National Institute of Environmental Health Sciences titled “Superfund Contaminants: The Next Generation” held in Tucson, Arizona, in August 2009. All the authors were workshop participants. Objectives Our aim was to initiate a dynamic, adaptable process for identifying contaminants of emerging concern (CECs) that are likely to be found in future hazardous waste sites, and to identify the gaps in primary research that cause uncertainty in determining future hazardous waste site contaminants. Discussion Superfund-relevant CECs can be characterized by specific attributes: They are persistent, bioaccumulative, toxic, occur in large quantities, and have localized accumulation with a likelihood of exposure. Although still under development and incompletely applied, methods to quantify these attributes can assist in winnowing down the list of candidates from the universe of potential CECs. Unfortunately, significant research gaps exist in detection and quantification, environmental fate and transport, health and risk assessment, and site exploration and remediation for CECs. Addressing these gaps is prerequisite to a preventive approach to generating and managing hazardous waste sites. Conclusions A need exists for a carefully considered and orchestrated expansion of programmatic and research efforts to identify, evaluate, and manage CECs of hazardous waste site relevance, including developing an evolving list of priority CECs, intensifying the identification and monitoring of likely sites of present or future accumulation of CECs, and implementing efforts that focus on a holistic approach to prevention. PMID:21205582

  14. Guidelines for generators of hazardous chemical waste at LBL and guidelines for generators of radioactive and mixed waste at LBL. Revision 1

    SciTech Connect

    Not Available

    1991-09-01

    In part one of this document the Governing Documents and Definitions sections provide general guidelines and regulations applying to the handling of hazardous chemical wastes. The remaining sections provide details on how you can prepare your waste properly for transport and disposal. They are correlated with the steps you must take to properly prepare your waste for pickup. The purpose of the second part of this document is to provide the acceptance criteria for the transfer of radioactive and mixed waste to LBL`s Hazardous Waste Handling Facility (HWHF). These guidelines describe how you, as a generator of radioactive or mixed waste, can meet LBL`s acceptance criteria for radioactive and mixed waste.

  15. Hazardous medical waste generation rates of different categories of health-care facilities

    SciTech Connect

    Komilis, Dimitrios; Fouki, Anastassia; Papadopoulos, Dimitrios

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer We calculated hazardous medical waste generation rates (HMWGR) from 132 hospitals. Black-Right-Pointing-Pointer Based on a 22-month study period, HMWGR were highly skewed to the right. Black-Right-Pointing-Pointer The HMWGR varied from 0.00124 to 0.718 kg bed{sup -1} d{sup -1}. Black-Right-Pointing-Pointer A positive correlation existed between the HMWGR and the number of hospital beds. Black-Right-Pointing-Pointer We used non-parametric statistics to compare rates among hospital categories. - Abstract: Goal of this work was to calculate the hazardous medical waste unit generation rates (HMWUGR), in kg bed{sup -1} d{sup -1}, using data from 132 health-care facilities in Greece. The calculations were based on the weights of the hazardous medical wastes that were regularly transferred to the sole medical waste incinerator in Athens over a 22-month period during years 2009 and 2010. The 132 health-care facilities were grouped into public and private ones, and, also, into seven sub-categories, namely: birth, cancer treatment, general, military, pediatric, psychiatric and university hospitals. Results showed that there is a large variability in the HMWUGR, even among hospitals of the same category. Average total HMWUGR varied from 0.012 kg bed{sup -1} d{sup -1}, for the public psychiatric hospitals, to up to 0.72 kg bed{sup -1} d{sup -1}, for the public university hospitals. Within the private hospitals, average HMWUGR ranged from 0.0012 kg bed{sup -1} d{sup -1}, for the psychiatric clinics, to up to 0.49 kg bed{sup -1} d{sup -1}, for the birth clinics. Based on non-parametric statistics, HMWUGR were statistically similar for the birth and general hospitals, in both the public and private sector. The private birth and general hospitals generated statistically more wastes compared to the corresponding public hospitals. The infectious/toxic and toxic medical wastes appear to be 10% and 50% of the total hazardous medical wastes

  16. MEETING HAZARDOUS WASTE REQUIREMENTS FOR METAL FINISHERS

    EPA Science Inventory

    This document provides information on the regulations affecting hazardous wastes discharged by metal finishers. opics included are: impact of RCRA regulations on both small and large generators; "delisting" of a specific facility waste from hazardous waste regulation; land dispos...

  17. Payment Of the New Mexico Environment Department- Hazardous Waste Bureau Annual Business and Generation Fees Calendar Year 2011

    SciTech Connect

    Juarez, Catherine L.

    2012-08-31

    The purpose of this letter is to transmit to the New Mexico Environment Department-Hazardous Waste Bureau (NMED-HWB), the Los alamos National Laboratory (LANL) Annual Business and Generation Fees for calendar year 2011. These fees are required pursuant to the provisions of New Mexico Hazardous Waste Act, Chapter 74, Article 4, NMSA (as amended). The Laboratory's Fenton Hill Facility did not generate any hazardous waste during the entire year, and is not required to pay a fee for calendar year 2011. The enclosed fee represents the amount for a single facility owned by the Department of Energy and co-operated by the Los Alamos National Security, LLC (LANS).

  18. Guidelines for generators to meet HWHF acceptance requirements for hazardous, radioactive, and mixed wastes at Berkeley Lab. Revision 3

    SciTech Connect

    Albert, R.

    1996-06-01

    This document provides performance standards that one, as a generator of hazardous chemical, radioactive, or mixed wastes at the Berkeley Lab, must meet to manage their waste to protect Berkeley Lab staff and the environment, comply with waste regulations and ensure the continued safe operation of the workplace, have the waste transferred to the correct Waste Handling Facility, and enable the Environment, Health and Safety (EH and S) Division to properly pick up, manage, and ultimately send the waste off site for recycling, treatment, or disposal. If one uses and generates any of these wastes, one must establish a Satellite Accumulation Area and follow the guidelines in the appropriate section of this document. Topics include minimization of wastes, characterization of the wastes, containers, segregation, labeling, empty containers, and spill cleanup and reporting.

  19. HAZARDOUS WASTE DESTRUCTION

    EPA Science Inventory

    The paper profiles the current status of hazardous waste thermal destruction in the United States, including facilities and wastes typically handled. The results of extensive EPA-sponsored performance tests are presented for incinerators, industrial boilers, and industrial proces...

  20. 75 FR 58346 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ... AGENCY 40 CFR Part 261 Hazardous Waste Management System; Identification and Listing of Hazardous Waste...) certain solid wastes generated by its Longview, Texas, facility from the lists of hazardous wastes. EPA... petitioned waste on human health and the environment. DATES: Comments must be received on or before...

  1. Hazardous Wastes from Homes.

    ERIC Educational Resources Information Center

    Lord, John

    The management of waste materials has become more complex with the increase in human population and the development of new substances. This illustrated booklet traces the history of waste management and provides guidelines for individuals and communities in disposing of certain hazardous wastes safely. It addresses such topics as: (1) how people…

  2. Developing hazardous waste programs

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Developing a fully operational hazardous waste regulatory system requires at least 10 to 15 years—even in countries with strong legal and bureaucratic institutions, according to a report on "The Evolution of Hazardous Waste Programs," which was funded by Resources for the Future (RFF) and the World Bank's South Asia Environment Group, and issued on June 4.The report, which compares the experiences of how four developed and four developing countries have created hazardous waste programs, indicates that hazardous waste issues usually do not become a pressing environmental issue until after countries have dealt with more direct threats to public health, such as contaminated drinking water and air pollution. The countries examined include Indonesia, Thailand, Germany, and the United States.

  3. Towards identifying the next generation of superfund and hazardous waste site contaminants

    USGS Publications Warehouse

    Ela, Wendell P.; Sedlak, David L.; Barlaz, Morton A.; Henry, Heather F.; Muir, Derek C.G.; Swackhamer, Deborah L.; Weber, Eric J.; Arnold, Robert G.; Ferguson, P. Lee; Field, Jennifer A.; Furlong, Edward T.; Giesy, John P.; Halden, Rolf U.; Henry, Tala; Hites, Ronald A.; Hornbuckle, Keri C.; Howard, Philip H.; Luthy, Richard G.; Meyer, Anita K.; Saez, A. Eduardo; vom Saal, Frederick S.; Vulpe, Chris D.; Wiesner, Mark R.

    2011-01-01

    Conclusions A need exists for a carefully considered and orchestrated expansion of programmatic and research efforts to identify, evaluate, and manage CECs of hazardous waste site relevance, including developing an evolving list of priority CECs, intensifying the identification and monitoring of likely sites of present or future accumulation of CECs, and implementing efforts that focus on a holistic approach to prevention.

  4. Waste minimization via destruction of hazardous organics

    SciTech Connect

    Austin, L.R.

    1991-01-01

    Los Alamos National Laboratory is developing technologies that are capable of destroying hazardous organics, that is, converting them basically to water and carbon dioxide. If these technologies were incorporated into the main processing operation where the waste is produced, then the volume and toxicity of the hazardous or mix hazardous waste generated would be significantly reduced. This presentation will briefly discuss some of the waste treatment technologies under development at Los Alamos National Laboratory focused on destroying hazardous organics.

  5. Energy and solid/hazardous waste

    SciTech Connect

    1981-12-01

    This report addresses the past and potential future solid and hazardous waste impacts from energy development, and summarizes the major environmental, legislation applicable to solid and hazardous waste generation and disposal. A glossary of terms and acronyms used to describe and measure solid waste impacts of energy development is included. (PSB)

  6. Hazardous solid waste from agriculture.

    PubMed Central

    Loehr, R C

    1978-01-01

    Large quantities of food processing, crop, forestry, and animal solid wastes are generated in the United States each year. The major components of these wastes are biodegradable. However, they also contain components such as nitrogen, human and animal pathogens, medicinals, feed additives, salts, and certain metals, that under uncontrolled conditions can be detrimental to aquatic, plant, animal, or human life. The most common method of disposal of these wastes is application to the land. Thus the major pathways for transmission of hazards are from and through the soil. Use of these wastes as animal feed also can be a pathway. While at this time there are no crises associated with hazardous materials in agricultural solid wastes, the potential for problems should not be underestimated. Manpower and financial support should be provided to obtain more detailed information in this area, esepcially to better delineate transport and dispersal and to determine and evaluate risks. PMID:367770

  7. Biennial reporting system (BRS) data: Generation and management of hazardous waste, 1993 (on magnetic tape). Data file

    SciTech Connect

    1993-12-31

    The product contains data compiled by the Biennial Reporting System (BRS) for the `National Biennial RCRA Hazardous Waste Report (Based on 1993 data)`. The data were collected by states using the `1993 National Hazardous Waste Report Instructions and Forms` (EPA Form 8700-13-A/B) (Revised 08-93), or the state`s equivalent information source. Data submitted by states prior to December 31, 1994 are included. Data for reports protected by RCRA Confidential Business Information (CBI) claims are not included. These data are preliminary and will be replaced by the final data. The data contain information describing the RCRA wastes generated and/or managed during 1993 by RCRA Treatment, Storage and Disposal Facilities (TSDFs) and RCRA Large Quantity Generators (LQGs). Data are reported by sites meeting the LQG and/or TSDF definitions. Sites are identified by their EPA/RCRA identification number. Response codes match those of the `1993 Hazardous Waste Report: Instructions and Forms` (EPA Form 8700-13-A/B) (Revised 08-93).

  8. Biennial Reporting System (BRS) data: Generation and management of hazardous waste, 1993 (final data) (on magnetic tape). Data file

    SciTech Connect

    1993-12-31

    The product contains data compiled by the Biennial Reporting System (BRS) for the `National Biennial RCRA Hazardous Waste Report (Based on 1993 data)`. The data were collected by states using the `1993 National Hazardous Waste Report Instructions and Forms` (EPA Form 8700-13-A/B) (Revised 08-93), or the state`s equivalent information source. Data submitted by states prior to December 31, 1994 are included. Data for reports protected by RCRA Confidential Business Information (CBI) claims are not included. These data are preliminary and will be replaced by the final data. The data contain information describing the RCRA waste generated and/or managed during 1993 by RCRA Treatment, Storage and Disposal Facilities (TSDFs) and RCRA Large Quantity Generators (LQGs). Data are reported by sites meeting the LQG and/or TSDF definitions. Sites are identified by their EPA/RCRA identification number. Response codes match those of the `1993 Hazardous Waste Report: Instructions and Forms` (EPA Form 8700-13-A/B) (Revised 08-93).

  9. Hazardous Waste: Cleanup and Prevention.

    ERIC Educational Resources Information Center

    Vandas, Steve; Cronin, Nancy L.

    1996-01-01

    Discusses hazardous waste, waste disposal, unsafe exposure, movement of hazardous waste, and the Superfund clean-up process that consists of site discovery, site assessment, clean-up method selection, site clean up, and site maintenance. Argues that proper disposal of hazardous waste is everybody's responsibility. (JRH)

  10. The chemical characterization and possible reuses of hazardous wastes generated by the General Electric Silicone Products Division in Waterford, NY

    SciTech Connect

    Bradley, M.J.

    1993-01-01

    This research describes procedures used to characterize a listed solid hazardous waste from a silicone manufacturer and the investigation of possible industrial applications for the 25,000 tons of waste which is landfilled each year. This research illustrates procedures which could be used to characterize other solid wastes and approaches to studying possible applications for the waste rather than the typical modes of disposal. Samples taken at various stages in the waste water treatment process were characterized by loss on ignition at varying temperatures, chemical analyses including atomic absorption and X-ray fluorescence spectroscopies. Successful wet chemical methods were developed to analyze all types of wastes collected. The major component, amorphous silica, was present in all samples. Calcium carbonate and copper were also present in significant amounts. The characterization led to the investigation of reuse alternatives for some samples and the dismissal of others. Possible industrial applications investigated were copper recovery by bioleaching, using the material as a raw material for manufacturing glass, or in the cement and concrete industry. This research focused on the latter reuse possibility. Solids that contain over 70% amorphous silica and constituting 85% of the waste stream were tested as a partial replacement for or as an additive to cement in mortar and concrete. Appreciable improvements in compressive strength over the control after 28 days were achieved. Results of EPA leaching procedures showed the solids, mortar and concrete specimens to be well below the established limits for the regulated metals. The materials did not pose a hazard to the environment when used in this application. Several companies have submitted proposals to the silicone manufacturer for use of this material in their processes. The ability to utilize the bulk of the hazardous waste generated appears economically and environmentally feasible.

  11. 75 FR 60689 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-01

    ... Refinery (Beaumont Refinery) to exclude (or delist) a certain solid waste generated by its Beaumont, Texas... AGENCY 40 CFR Part 261 Hazardous Waste Management System; Identification and Listing of Hazardous Waste... 3.0 in the evaluation of the impact of the petitioned waste on human health and the...

  12. Hazardous waste operational plan for site 300

    SciTech Connect

    Roberts, R.S.

    1982-02-12

    This plan outlines the procedures and operations used at LLNL's Site 300 for the management of the hazardous waste generated. This waste consists primarily of depleted uranium (a by-product of U-235 enrichment), beryllium, small quantities of analytical chemicals, industrial type waste such as solvents, cleaning acids, photographic chemicals, etc., and explosives. This plan details the operations generating this waste, the proper handling of this material and the procedures used to treat or dispose of the hazardous waste. A considerable amount of information found in this plan was extracted from the Site 300 Safety and Operational Manual written by Site 300 Facility personnel and the Hazards Control Department.

  13. The hazardous waste scene in India

    SciTech Connect

    Subrahmanyam, P.V.R.; Bhinde, A.D.; Sundaresan, B.B.

    1983-03-01

    India has made significant advances in the manufacture of basic organic chemicals, dyes, fertilizers, pesticides, drugs, and so forth during the last three decades, resulting in increased generation of hazardous wastes. Presently, these wastes are being indiscriminately disposed of into fallow land in the public domain. Legislation to control air and water pollution has not covered hazardous waste disposal. The magnitude of hazardous waste generation in general and the problems posed by such wastes from pesticide, dyes, and other industries are identified, and available data are presented and discussed.

  14. PERMITTING HAZARDOUS WASTE INCINERATORS

    EPA Science Inventory

    This publication is a compilation of information presented at a seminar series designed to address the issues that affect the issuance of hazardous waste incineration permits and to improve the overall understanding of trial burn testing. pecifically, the document provides guidan...

  15. Hazardous Waste: Cleanup and Prevention.

    ERIC Educational Resources Information Center

    Vandas, Steve; Cronin, Nancy L.

    1996-01-01

    Describes the Superfund, a federal cleanup program created in response to growing public concern over the health and environmental risks posed by hazardous waste sites. Discusses sources, disposal, and movement and risk of hazardous waste. (JRH)

  16. Hazardous waste: 1998 Regulatory and judicial developments

    SciTech Connect

    Henry, M.E.; Wright, W.G. Jr.

    1998-12-31

    Every year, owners and operators of facilities generating, transporting, treating, storing, or disposing of hazardous waste, or persons held liable for past hazardous waste management practice through EPA`s Superfund program, are affected by changes in the application and interpretation of hazardous waste regulation. This paper will summarize the significant 1997 hazardous waste regulatory developments, including changes and additions to land disposal restrictions and treatment standards, hazardous waste determination procedures, used oil management practices. This paper will also summarize key judicial decisions addressing expanded definitions of solid and hazardous waste, activities constituting disposal, and circumstances constituting imminent and substantial endangerment. Finally, this paper will summarize new EPA Superfund guidance documents and judicial decisions addressing issues of liability and defenses to liability under Superfund.

  17. Radiological hazards of TENORM in precipitated calcium carbonate generated as waste at nitrophosphate fertilizer plant in Pakistan.

    PubMed

    Javied, Sabiha; Akhtar, Nasim; Tufail, M

    2011-08-15

    The NORM (naturally occurring radioactive material) in phosphate rock is transferred as TENORM (technologically enhanced naturally occurring radioactive material) to phosphatic fertilizers and to the waste generated by the chemical processes. The waste generated at the NP (nitrophosphate) fertilizer plant at Multan in Pakistan is PCC (precipitated calcium carbonate). Thirty samples of the PCC were collected from the heaps of the waste near the fertilizer plant. Activity concentrations of radionuclides in the waste samples were measured by using the technique of gamma ray spectrometry consisting of coaxial type HPGe (high purity germanium) detector coupled with a PC (personal computer) based MCA (multichannel analyzer) through a spectroscopy amplifier. Activity concentrations of (226)Ra, (232)Th and (40)K in the waste samples were determined to be 273 ± 23 (173-398), 32 ± 4 (26-39) and 56 ± 5 (46-66) Bq kg(-1) respectively. The activity concentration of (226)Ra in the PCC waste was found to be higher than that in naturally occurring calcium carbonate (limestone and marble) and in worldwide soil. Radiological hazard was estimated from indoor and outdoor exposure to gamma rays from the PCC. Indoor annual effective dose was higher than 1 mSv. Potential radiological pollution in the environment from TENORM in the PCC has also been addressed. PMID:21612862

  18. Hazardous and mixed waste generation at the DOE/ORO installations operated by Martin Marietta Energy Systems, Inc. , during calendar years 1987 and 1988

    SciTech Connect

    DePaoli, S.M.; Rivera, A.L.; Eisenhower, B.M.

    1990-09-01

    A program was known as the Hazardous Waste Development, Demonstration, and Disposal (HAZWDDD) Program and was formed to address several waste management issues with the main objective being to ensure that all Martin Marietta Energy Systems, Inc., (Energy Systems) treatment, storage, and disposal (TSD) needs for hazardous and mixed waste were identified and planned for properly. A data base was developed and maintained which contained information concerning all hazardous and mixed waste generated, stored, treated, and/or disposed at the five Energy Systems instal-lations during CY 1987. This document presents an update of the HAZWDDD data base for CY 1988. Summaries and figures concerning the data are presented in the body of the report, and a breakdown of the individual waste streams is presented in Appendix A. All five installations produce purely hazardous and mixed waste. The gaseous diffusion plants and Y-12 produce mixed waste contaminated primarily with uranium isotopes, while the mixed waste generated at Oak Ridge National Laboratory (ORNL) is contaminated with various radioisotopes. Generation rates of both hazardous and mixed waste are reported, and inventories of mixed waste are discussed. 18 refs., 9 figs., 5 tabs.

  19. Incineration of hazardous wastes.

    PubMed

    Gannon, T; Ansbro, A R; Burns, R P

    1991-10-01

    Glaxo has practiced incineration of liquid and gaseous wastes for over twenty years and currently operate eleven liquid and gas incinerators in the United Kingdom and Singapore. The liquid incinerators burn, as their main streams, those solvents that cannot be recovered and recycled within the processes. The early installations were for readily combustible solvents only. However, there has been a progressive move into the destruction of more difficult and hazardous wastes, with the consequential requirements for more sophisticated technology, in the belief that the responsible destruction of waste should be tackled near to its source. The eventual aim is to be self-sufficient in this area of waste management. The incineration of hazardous liquid and gaseous waste has presented a series of design, operational and monitoring problems into account which have all been successfully overcome. The solutions take into account the environmental consequences of the operations from both liquid and gaseous emissions. In order to ensure minimal environmental impact and safe operation the best practicable technology is employed. Environmental assessment forms part of the process development and permitting procedures. PMID:24233930

  20. DEFINITION OF A HAZARDOUS WASTE

    EPA Science Inventory

    The USEPA has promulagated regulation establishing the criteria and characteristics of hazardous waste. The criteria established include the following factors: (1) the waste is associated with an identified waste stream or contains constituents which are identified in listings in...

  1. Hazardous waste. A North Carolina dilemma.

    PubMed

    Davis, T G

    1992-07-01

    North Carolina, along with the rest of the nation, faces a number of dilemmas regarding management of hazardous waste: 1. North Carolina businesses and industries generate a lot of hazardous waste, but the state lacks the capacity to manage it. For many, it has been acceptable to ship the waste to other states for treatment, storage, and disposal. Some of the receiving states have indicated that they are no longer willing to serve as the "dumping ground" for North Carolina. 2. North Carolina, along with the EPA, has identified a number of hazardous waste sites now listed on the NPL. However, the state was excluded from its regional agreement with Alabama, South Carolina, Kentucky, and Tennessee in January 1991, meaning that Superfund monies may be withdrawn and that cleanup won't be completed at these sites. 3. Every year the country produces at least 260 million tons of hazardous waste--more than one ton for every man, woman, and child. Those opposed to constructing hazardous waste treatment facilities charge that businesses and industries should reduce their hazardous waste to zero or near zero, and they charge that the state is not doing enough to encourage waste reduction. North Carolina's hazardous waste regulations already require programs to minimize the amounts of waste generated by industries, but for most industrial processes, it is impossible to reduce the generation of waste to zero. However, industries must continue to reduce their waste through source reduction and recycling. Hazardous waste and toxic materials do pose a risk to human health and the environment unless properly managed.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1630504

  2. Hazardous Wastes--New Developments.

    ERIC Educational Resources Information Center

    Rogers, Harvey W.

    1979-01-01

    The need for effective disposal of hazardous medical and pathological wastes is discussed and the results of a test of five different models of incinerators in disposing of such wastes is presented. (MJB)

  3. 76 FR 72311 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Exclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-23

    ...The Environmental Protection Agency (EPA) is granting a petition submitted by Eastman Chemical Corporation--Texas Operations (Eastman Chemical) to exclude from hazardous waste control (or delist) a certain solid waste. This final rule responds to the petition submitted by Eastman Chemical to delist three waste streams generated from its rotary kiln incinerator (RKI). These waste streams are......

  4. MANAGEMENT OF HOUSEHOLD AND SMALL-QUANTITY-GENERATOR HAZARDOUS WASTE IN THE UNITED STATES

    EPA Science Inventory

    The International Solid Waste and Public Cleansing Association (ISWA), an international nongovernmental organization comprising twenty-seven national organizations of waste management professionals, conducted a survey to obtain information regarding household and small-quantity-g...

  5. 40 CFR 279.21 - Hazardous waste mixing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Generators § 279.21 Hazardous waste mixing. (a) Mixtures of used oil and hazardous waste must be managed in accordance with § 279.10(b). (b) The... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Hazardous waste mixing. 279.21...

  6. 40 CFR 279.21 - Hazardous waste mixing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Generators § 279.21 Hazardous waste mixing. (a) Mixtures of used oil and hazardous waste must be managed in accordance with § 279.10(b). (b) The... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Hazardous waste mixing. 279.21...

  7. 40 CFR 279.21 - Hazardous waste mixing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Generators § 279.21 Hazardous waste mixing. (a) Mixtures of used oil and hazardous waste must be managed in accordance with § 279.10(b). (b) The... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Hazardous waste mixing. 279.21...

  8. Elimination of the hazards from hazardous wastes.

    PubMed Central

    Gloyna, E F; Taylor, R D

    1978-01-01

    The "hazard" associated with a waste essentially controls the overall engineering approach to finding suitable alternatives for solving potential disposal problems. It should be recognized that all factors affecting environmental equilibrium must be considered, including product sales, process design, financing, pre- and end-of-pipe treatment, residuals management, and ultimate bioaccumulation of residuals. To meet this challenge, a systems approach to waste treatment and residuals disposal provides a logical approach, but this management concept requires a thorough understanding of the important physical and chemical aspects of the problem, as well as many social implications of the resulting decisions. Thus waste management within a plant necessarily involves process control, pretreatment and end-of-pipe treatment. Further, it follows that residuals management from a disposal point-of-view must ultimately embrace what is called the "multi-barrier concept." In essence, hazard elimination occurs in varying degrees during each phase of a properly engineered system. PMID:738249

  9. Hazardous waste: cleanup and prevention

    USGS Publications Warehouse

    Vandas, Stephen; Cronin, Nancy L.; Farrar, Frank, (artist); Serrano, Guillermo Eliezer Ávila, (translator); Yajimovich, Oscar Efraín González; Muñoz, Aurora R.; Rivera, María del C.

    1996-01-01

    Our lifestyles are supported by complex Industrial activities that produce many different chemicals and chemical wastes. The Industries that produce our clothing, cars, medicines, paper, food, fuels, steel, plastics, and electric components use and discard thousands of chemicals every year. At home we may use lawn chemicals, solvents, disinfectants, cleaners, and auto products to Improve our quality of life. A chemical that presents a threat or unreasonable risk to people or the environment Is a hazardous material. When a hazardous material can no longer be used, It becomes a hazardous waste. Hazardous wastes come from a variety of sources, from both present and past activities. Impacts to human health and the environment can result from Improper handling and disposal of hazardous waste.

  10. Method of recycling hazardous waste

    SciTech Connect

    1999-11-11

    The production of primary metal from ores has long been a necessary, but environmentally devastating process. Over the past 20 years, in an effort to lessen environmental impacts, the metal processing industry has developed methods for recovering metal values from certain hazardous wastes. However, these processes leave residual molten slag that requires disposal in hazardous waste landfills. A new process recovers valuable metals, metal alloys, and metal oxides from hazardous wastes, such as electric arc furnace (EAF) dust from steel mills, mill scale, spent aluminum pot liners, and wastewater treatment sludge from electroplating. At the same time, the process does not create residual waste for disposal. This new method uses all wastes from metal production processes. These hazardous materials are converted to three valuable products - mineral wool, zinc oxide, and high-grade iron.

  11. 75 FR 58315 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Direct Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ...EPA is proposing to grant a petition submitted by Eastman Chemical Company-Texas Operations (Eastman) to exclude (or delist) certain solid wastes generated by its Longview, Texas, facility from the lists of hazardous wastes. EPA used the Delisting Risk Assessment Software (DRAS) Version 3.0 in the evaluation of the impact of the petitioned waste on human health and the...

  12. Report to Congress: management of hazardous wastes from educational institutions

    SciTech Connect

    Not Available

    1989-04-01

    The EPA has studied and evaluated the problems associated with managing hazardous wastes generated by educational institutions. This report is factual in nature. EPA was not directed by the law to develop recommendations for regulatory or statutory changes. The report identifies the statutory and regulatory requirements for educational institutions to manage hazardous waste, examines current hazardous-waste-management practices at such institutions, identifies the hazardous-waste-management problems encountered by them, and concludes by identifying possible ways for educational institutions to improve hazardous-waste management. The report primarily focuses on hazardous waste generated by universities, colleges, high schools, and vocational schools. The findings of the report can also apply to waste generated at facilities providing adult education and programs of education of less than 2 years' duration, because factors affecting the management of such waste would be similar for all levels and categories of educational institutions.

  13. 40 CFR 271.10 - Requirements for generators of hazardous wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... program must cover all generators covered by 40 CFR part 262. States must require new generators to... those under 40 CFR 262.40 and 262.41. States must require that generators keep these records at least 3 years. States that choose to receive electronic documents must include the requirements of 40 CFR Part...

  14. 40 CFR 271.10 - Requirements for generators of hazardous wastes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... program must cover all generators covered by 40 CFR part 262. States must require new generators to... those under 40 CFR 262.40 and 262.41. States must require that generators keep these records at least 3 years. States that choose to receive electronic documents must include the requirements of 40 CFR Part...

  15. 40 CFR 271.10 - Requirements for generators of hazardous wastes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... program must cover all generators covered by 40 CFR part 262. States must require new generators to... those under 40 CFR 262.40 and 262.41. States must require that generators keep these records at least 3 years. States that choose to receive electronic documents must include the requirements of 40 CFR Part...

  16. 40 CFR 271.10 - Requirements for generators of hazardous wastes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... program must cover all generators covered by 40 CFR part 262. States must require new generators to... those under 40 CFR 262.40 and 262.41. States must require that generators keep these records at least 3 years. States that choose to receive electronic documents must include the requirements of 40 CFR Part...

  17. 40 CFR 271.10 - Requirements for generators of hazardous wastes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... program must cover all generators covered by 40 CFR part 262. States must require new generators to... those under 40 CFR 262.40 and 262.41. States must require that generators keep these records at least 3 years. States that choose to receive electronic documents must include the requirements of 40 CFR Part...

  18. FLORIDA HAZARDOUS WASTE AND SANITARY LANDFILL REPORT, COUNTY DATA. GENERATOR DATA AND CHARACTERISTICS OF SANITARY LANDFILLS. PART 2. COUNTIES: BROWARD, CALHOUN, CHARLOTTE, CITRUS, CLAY, COLLIER

    EPA Science Inventory

    The report provides data on the use of sanitary landfills (Subtitle D facilities) for hazardous waste disposal in Florida by small quantity generators. It consists of eleven parts including a part called Study Area Data which contains the data aggregated across the counties cover...

  19. Household hazardous waste management: a review.

    PubMed

    Inglezakis, Vassilis J; Moustakas, Konstantinos

    2015-03-01

    This paper deals with the waste stream of household hazardous waste (HHW) presenting existing management systems, legislation overview and other relevant quantitative and qualitative information. European Union legislation and international management schemes are summarized and presented in a concise manner by the use of diagrams in order to provide crucial information on HHW. Furthermore, sources and types, numerical figures about generation, collection and relevant management costs are within the scope of the present paper. The review shows that the term used to refer to hazardous waste generated in households is not clearly defined in legislation, while there is absence of specific acts regulating the management of HHW. The lack of obligation to segregate HHW from the household waste and the different terminology used makes it difficult to determine the quantities and composition of this waste stream, while its generation amount is relatively small and, therefore, is commonly overlooked in waste statistics. The paper aims to cover the gap in the related literature on a subject that is included within the crucial waste management challenges at world level, considering that HHW can also have impact on other waste streams by altering the redox conditions or causing direct reactions with other non hazardous waste substances. PMID:25528172

  20. Small hazardous waste generators in developing countries: use of stabilization/solidification process as an economic tool for metal wastewater treatment and appropriate sludge disposal.

    PubMed

    Silva, Marcos A R; Mater, Luciana; Souza-Sierra, Maria M; Corrêa, Albertina X R; Sperb, Rafael; Radetski, Claudemir M

    2007-08-25

    The aim of this study was to propose a profitable destination for an industrial sludge that can cover the wastewater treatment costs of small waste generators. Optimized stabilization/solidification technology was used to treat hazardous waste from an electroplating industry that is currently released untreated to the environment. The stabilized/solidified (S/S) waste product was used as a raw material to build concrete blocks, to be sold as pavement blocks or used in roadbeds and/or parking lots. The quality of the blocks containing a mixture of cement, lime, clay and waste was evaluated by means of leaching and solubility tests according to the current Brazilian waste regulations. Results showed very low metal leachability and solubility of the block constituents, indicating a low environmental impact. Concerning economic benefits from the S/S process and reuse of the resultant product, the cost of untreated heavy metal-containing sludge disposal to landfill is usually on the order of US$ 150-200 per tonne of waste, while 1tonne of concrete roadbed blocks (with 25% of S/S waste constitution) has a value of around US$ 100. The results of this work showed that the cement, clay and lime-based process of stabilization/solidification of hazardous waste sludge is sufficiently effective and economically viable to stimulate the treatment of wastewater from small industrial waste generators. PMID:17331640

  1. Remote vacuum compaction of compressible hazardous waste

    DOEpatents

    Coyne, Martin J.; Fiscus, Gregory M.; Sammel, Alfred G.

    1998-01-01

    A system for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut.

  2. Remote vacuum compaction of compressible hazardous waste

    DOEpatents

    Coyne, M.J.; Fiscus, G.M.; Sammel, A.G.

    1998-10-06

    A system is described for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut. 8 figs.

  3. Remote vacuum compaction of compressible hazardous waste

    SciTech Connect

    Coyne, M.J.; Fiscus, G.M.; Sammel, A.G.

    1996-12-31

    A system is described for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut.

  4. Hazardous solid wastes generated in the cleanup of air and water.

    PubMed

    Eisenbud, M

    1978-12-01

    Air and water pollution control programs sometimes result in production of solid wastes that are difficult to manage. The sludges from sewage treatment plants and flue gas scrubbers are two examples. In many coastal communities, there is no alternative to ocean dumpling of sewage sludges for the foreseeable future. The use of sludges as soil conditioners, their conversion to fuels by pyrolysis, and other alternatives are frequently mentioned options, but they have not been demonstrated to be practical on a large scale. The Federal requirement that ocean dumping be terminated by 1981 presents the large seaboard population centers with a dilemma, due to the absence of economically feasible alternative methods of disposal. Another major solid waste problem is arising from the Federal policy that requires flue gas desulfurization on practically all power plants. This policy, designed to reduce sulfur oxide emissions, will require that vast quantities of sludge be stored. Their environmental impact is as yet not fully evaluated. Commercial use of the sulfur or sulfates produced in these processes may be possible, but its practicability on a large scale remains to be demonstrated. PMID:738245

  5. Hazardous solid wastes generated in the cleanup of air and water.

    PubMed Central

    Eisenbud, M

    1978-01-01

    Air and water pollution control programs sometimes result in production of solid wastes that are difficult to manage. The sludges from sewage treatment plants and flue gas scrubbers are two examples. In many coastal communities, there is no alternative to ocean dumpling of sewage sludges for the foreseeable future. The use of sludges as soil conditioners, their conversion to fuels by pyrolysis, and other alternatives are frequently mentioned options, but they have not been demonstrated to be practical on a large scale. The Federal requirement that ocean dumping be terminated by 1981 presents the large seaboard population centers with a dilemma, due to the absence of economically feasible alternative methods of disposal. Another major solid waste problem is arising from the Federal policy that requires flue gas desulfurization on practically all power plants. This policy, designed to reduce sulfur oxide emissions, will require that vast quantities of sludge be stored. Their environmental impact is as yet not fully evaluated. Commercial use of the sulfur or sulfates produced in these processes may be possible, but its practicability on a large scale remains to be demonstrated. PMID:738245

  6. Hazardous waste disposal and the clinical laboratory.

    PubMed

    Armbruster, D A

    1990-01-01

    Negligent, unregulated hazardous waste management has resulted in real and potential threats to public health and safety. The federal government has responded with laws and regulations aimed at the producers of hazardous waste, including clinical laboratories. Clinical laboratory managers must understand how the requirements apply to their facilities and how to comply with them, or risk violating the law. The Resources Conservation and Recovery Act (RCRA) imposes controls on hazardous waste management through the Code of Federal Regulations (CFR). The Environmental Protection Agency (EPA) and the Department of Transportation (DOT) regulate these activities through 40 CFR and 49 CFR, respectively. 49 CFR specifies the characteristics of hazardous waste and lists more than 400 toxic chemicals, including several commonly used in clinical laboratories. Laboratories must conduct chemical inventories to determine if they should obtain an EPA identification number as a hazardous waste generator. Most clinical laboratories can operate satellite accumulation points and accumulate, store, transport, and dispose of waste in accordance with EPA and DOT regulations. Regulations pertaining to infectious waste, sure to affect many clinical laboratories, are being developed now by the EPA. The tracking system mandated by the federal government can be supplemented by state and local authorities and poses a significant regulatory challenge to clinical laboratory managers. PMID:10104718

  7. Portable sensor for hazardous waste

    SciTech Connect

    Piper, L.G.; Fraser, M.E.; Davis, S.J.

    1995-10-01

    We are beginning the second phase of a three and a half year program designed to develop a portable monitor for sensitive hazardous waste detection. The ultimate goal of the program is to develop our concept to the prototype instrument level. Our monitor will be a compact, portable instrument that will allow real-time, in situ, monitoring of hazardous wastes. This instrument will be able to provide the means for rapid field screening of hazardous waste sites to map the areas of greatest contamination. Remediation efforts can then focus on these areas. Further, our instrument can show whether cleanup technologies are successful at reducing hazardous materials concentrations below regulated levels, and will provide feedback to allow changes in remediation operations, if necessary, to enhance their efficacy.

  8. 40 CFR 262.60 - Imports of hazardous waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Imports of Hazardous Waste § 262.60 Imports... except that: (1) In place of the generator's name, address and EPA identification number, the name and address of the foreign generator and the importer's name, address and EPA identification number must...

  9. 40 CFR 262.60 - Imports of hazardous waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Imports of Hazardous Waste § 262.60 Imports... except that: (1) In place of the generator's name, address and EPA identification number, the name and address of the foreign generator and the importer's name, address and EPA identification number must...

  10. 40 CFR 262.60 - Imports of hazardous waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Imports of Hazardous Waste § 262.60 Imports... except that: (1) In place of the generator's name, address and EPA identification number, the name and address of the foreign generator and the importer's name, address and EPA identification number must...

  11. 40 CFR 262.60 - Imports of hazardous waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Imports of Hazardous Waste § 262.60 Imports... except that: (1) In place of the generator's name, address and EPA identification number, the name and address of the foreign generator and the importer's name, address and EPA identification number must...

  12. 40 CFR 262.60 - Imports of hazardous waste.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Imports of Hazardous Waste § 262.60 Imports... except that: (1) In place of the generator's name, address and EPA identification number, the name and address of the foreign generator and the importer's name, address and EPA identification number must...

  13. 40 CFR 261.5 - Special requirements for hazardous waste generated by conditionally exempt small quantity...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) When making the quantity determinations of this part and 40 CFR part 262, the generator must include... under 40 CFR 261.4(c) through (f), 261.6(a)(3), 261.7(a)(1), or 261.8; or (2) Is managed immediately... enclosed treatment facilities as defined in 40 CFR 260.10; or (3) Is recycled, without prior storage...

  14. 40 CFR 261.5 - Special requirements for hazardous waste generated by conditionally exempt small quantity...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) When making the quantity determinations of this part and 40 CFR part 262, the generator must include... under 40 CFR 261.4(c) through (f), 261.6(a)(3), 261.7(a)(1), or 261.8; or (2) Is managed immediately... enclosed treatment facilities as defined in 40 CFR 260.10; or (3) Is recycled, without prior storage...

  15. 40 CFR 261.5 - Special requirements for hazardous waste generated by conditionally exempt small quantity...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) When making the quantity determinations of this part and 40 CFR part 262, the generator must include... under 40 CFR 261.4(c) through (f), 261.6(a)(3), 261.7(a)(1), or 261.8; or (2) Is managed immediately... enclosed treatment facilities as defined in 40 CFR 260.10; or (3) Is recycled, without prior storage...

  16. 40 CFR 261.5 - Special requirements for hazardous waste generated by conditionally exempt small quantity...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) When making the quantity determinations of this part and 40 CFR part 262, the generator must include... under 40 CFR 261.4(c) through (f), 261.6(a)(3), 261.7(a)(1), or 261.8; or (2) Is managed immediately... enclosed treatment facilities as defined in 40 CFR 260.10; or (3) Is recycled, without prior storage...

  17. 40 CFR 261.5 - Special requirements for hazardous waste generated by conditionally exempt small quantity...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) When making the quantity determinations of this part and 40 CFR part 262, the generator must include... under 40 CFR 261.4(c) through (f), 261.6(a)(3), 261.7(a)(1), or 261.8; or (2) Is managed immediately... enclosed treatment facilities as defined in 40 CFR 260.10; or (3) Is recycled, without prior storage...

  18. Hazardous-waste analysis plan for LLNL operations

    SciTech Connect

    Roberts, R.S.

    1982-02-12

    The Lawrence Livermore National Laboratory is involved in many facets of research ranging from nuclear weapons research to advanced Biomedical studies. Approximately 80% of all programs at LLNL generate hazardous waste in one form or another. Aside from producing waste from industrial type operations (oils, solvents, bottom sludges, etc.) many unique and toxic wastes are generated such as phosgene, dioxin (TCDD), radioactive wastes and high explosives. One key to any successful waste management program must address the following: proper identification of the waste, safe handling procedures and proper storage containers and areas. This section of the Waste Management Plan will address methodologies used for the Analysis of Hazardous Waste. In addition to the wastes defined in 40 CFR 261, LLNL and Site 300 also generate radioactive waste not specifically covered by RCRA. However, for completeness, the Waste Analysis Plan will address all hazardous waste.

  19. Certification Plan, low-level waste Hazardous Waste Handling Facility

    SciTech Connect

    Albert, R.

    1992-06-30

    The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. This plan provides guidance from the HWHF to waste generators, waste handlers, and the Waste Certification Specialist to enable them to conduct their activities and carry out their responsibilities in a manner that complies with the requirements of WHC-WAC. Waste generators have the primary responsibility for the proper characterization of LLW. The Waste Certification Specialist verifies and certifies that LBL LLW is characterized, handled, and shipped in accordance with the requirements of WHC-WAC. Certification is the governing process in which LBL personnel conduct their waste generating and waste handling activities in such a manner that the Waste Certification Specialist can verify that the requirements of WHC-WAC are met.

  20. Evaluating the quality and effectiveness of hazardous waste training programs

    SciTech Connect

    Kolpa, R.L.; Haffenden, R.A.; Weaver, M.A.

    1996-05-01

    An installation`s compliance with Resource Conservation and Recovery Act (RCRA) hazardous waste regulations is strongly dependent on the knowledge, skill, and behavior of all individuals involved in the generation and management of hazardous waste. Recognizing this, Headquarters Air Force Materiel Command (HQ/AFMC) determined that an in-depth evaluation of hazardous waste training programs at each AFMC installation was an appropriate element in assessing the overall effectiveness of installation hazardous waste management programs in preventing noncompliant conditions. Consequently, pursuant to its authority under Air Force Instruction (AFI) 32-7042, Solid and Hazardous Waste Compliance (May 12, 1994) to support and maintain hazardous waste training, HQ/AFMC directed Argonne National Laboratory to undertake the Hazardous Waste Training Initiative. This paper summarizes the methodology employed in performing the evaluation and presents the initiative`s salient conclusions.

  1. Minnesota Mining and Manufacturing Company's hazardous waste program.

    PubMed Central

    Van Noordwyk, H J; Santoro, M A

    1978-01-01

    This paper discusses the present hazardous waste program of 3M Company (Minnesota Mining and Manufacturing Company). 3M's definition of hazardous waste and the company's position on hazardous waste disposal are first considered. The company position is that wherever and whenever the disposal of a waste material threatens the environment or public safety, then that waste should be considered a hazardous waste and treated accordingly in terms of its handling and ultimate disposal. The generation of hazardous wastes and the differentiation of "hazardous" and "nonhazardous" wastes are described next. Handling of hazardous wastes from their generation to their disposal is then covered. This includes a definition of internal 3M terminology and a description of the hazard rating system used by the company. Finally, 3M disposal practices are presented. It is 3M's position that thermal destruction of hazardous wastes, where appropriate, is the best method for their disposal. With this in mind, 3M has constructed incineration facilities throughout the country. The rotary kiln incinerator at the 3M Chemolite plant in Cottage Grove, Minnesota is briefly described. Disposal of certain hazardous wastes in controlled secure land disposal sites is then briefly discussed. PMID:738241

  2. Hazardous Waste Certification Plan: Hazardous Waste Handling Facility, Lawrence Berkeley Laboratory

    SciTech Connect

    Not Available

    1992-02-01

    The purpose of this plan is to describe the organization and methodology for the certification of hazardous waste (HW) handled in the Lawrence Berkeley Laboratory (LBL) Hazardous Waste Handling Facility (HWHF). The plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end- product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; and executive summary of the Quality Assurance Program Plan (QAPP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. The plan provides guidance from the HWHF to waste generators, waste handlers, and the Systems Group Manager to enable them to conduct their activities and carry out their responsibilities in a manner that complies with several requirements of the Federal Resource Conservation and Resource Recovery Act (RCRA), the Federal Department of Transportation (DOT), and the State of California, Code of Regulations (CCR), Title 22.

  3. RCRA hazardous waste contingency plans

    SciTech Connect

    Wagner, T.P. )

    1991-10-01

    This paper reports that the Resource Conservation and Recovery Act (RCRA) requires hazardous waste treatment, storage and disposal facilities (TSDFs) to prepare a contingency plan. The plan is a blueprint for emergency response, and must be designed to minimize health and environmental hazards resulting from fires, explosions or other unplanned hazardous releases. Hazardous waste contingency plans often are neglected and considered an unnecessary regulatory exercise by facility operators. However, an effective contingency plan is a valuable tool for reducing liability, protecting workers and the community, and avoiding costly shutdowns. The requirement under Title III of the Superfund Amendments and Reauthorization Act (SARA) that regulated facilities report to EPA annually on releases to the environment has caused regulators to renew emphasis on the importance of RCRA contingency plans. However, regulatory agencies historically have provided insufficient information on the elements of an adequate contingency plan. Nevertheless, facility operators seriously should consider going beyond minimum regulatory requirements and create a comprehensive contingency plan.

  4. Biological treatment of hazardous waste

    SciTech Connect

    Lewandowski, G.A.; Filippi, L.J. de

    1998-12-01

    This reference book is intended for individuals interested in or involved with the treatment of hazardous wastes using biological/biochemical processes. Composed of 13 chapters, it covers a wide variety of topics ranging from engineering design to hydrogeologic factors. The first four chapters are devoted to a description of several different types of bioreactors. Chapter 5 discusses the biofiltration of volatile organic compounds. Chapters 6 through 9 discuss specific biological, biochemical, physical, and engineering factors that affect bioremediation of hazardous wastes. Chapter 10 is a very good discussion of successful bioremediation of pentachlorophenol contamination under laboratory and field conditions, and excellent references are provided. The next chapter discusses the natural biodegradation of PCB-contaminated sediments in the Hudson River in New York state. Chapter 12 takes an excellent look at the bioremediation capability of anaerobic organisms. The final chapter discusses composting of hazardous waste.

  5. 76 FR 5110 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-28

    ...EPA is proposing to grant a petition submitted by Gulf West Landfill, TX, LP. (Gulf West) to exclude (or delist) the landfill leachate generated by Gulf West in Anahuac, Texas from the lists of hazardous wastes. EPA used the Delisting Risk Assessment Software (DRAS) Version 3.0 in the evaluation of the impact of the petitioned waste on human health and the...

  6. E-waste hazard: The impending challenge

    PubMed Central

    Pinto, Violet N.

    2008-01-01

    Electronic waste or e-waste is one of the rapidly growing problems of the world. E-waste comprises of a multitude of components, some containing toxic substances that can have an adverse impact on human health and the environment if not handled properly. In India, e-waste management assumes greater significance not only due to the generation of its own e-waste but also because of the dumping of e-waste from developed countries. This is coupled with India's lack of appropriate infrastructure and procedures for its disposal and recycling. This review article provides a concise overview of India's current e-waste scenario, namely magnitude of the problem, environmental and health hazards, current disposal and recycling operations, existing legal framework, organizations working on this issue and recommendations for action. PMID:20040981

  7. Hazardous chemical and radioactive wastes at Hanford

    SciTech Connect

    Keller, J.F.; Stewart, T.L.

    1991-07-01

    The Hanford Site was established in 1944 to produce plutonium for defense. During the past four decades, a number of reactors, processing facilities, and waste management facilities have been built at Hanford for plutonium production. Generally, Hanford`s 100 Area was dedicated to reactor operation; the 200 Area to fuel reprocessing, plutonium recovery, and waste management; and the 300 Area to fuel fabrication and research and development. Wastes generated from these operations included highly radioactive liquid wastes, which were discharged to single- and double-shell tanks; solid wastes, including both transuranic (TRU) and low-level wastes, which were buried or discharged to caissons; and waste water containing low- to intermediate-level radioactivity, which was discharged to the soil column via near-surface liquid disposal units such as cribs, ponds, and retention basins. Virtually all of the wastes contained hazardous chemical as well as radioactive constituents. This paper will focus on the hazardous chemical components of the radioactive mixed waste generated by plutonium production at Hanford. The processes, chemicals used, methods of disposition, fate in the environment, and actions being taken to clean up this legacy are described by location.

  8. Hazardous chemical and radioactive wastes at Hanford

    SciTech Connect

    Keller, J.F.; Stewart, T.L.

    1991-07-01

    The Hanford Site was established in 1944 to produce plutonium for defense. During the past four decades, a number of reactors, processing facilities, and waste management facilities have been built at Hanford for plutonium production. Generally, Hanford's 100 Area was dedicated to reactor operation; the 200 Area to fuel reprocessing, plutonium recovery, and waste management; and the 300 Area to fuel fabrication and research and development. Wastes generated from these operations included highly radioactive liquid wastes, which were discharged to single- and double-shell tanks; solid wastes, including both transuranic (TRU) and low-level wastes, which were buried or discharged to caissons; and waste water containing low- to intermediate-level radioactivity, which was discharged to the soil column via near-surface liquid disposal units such as cribs, ponds, and retention basins. Virtually all of the wastes contained hazardous chemical as well as radioactive constituents. This paper will focus on the hazardous chemical components of the radioactive mixed waste generated by plutonium production at Hanford. The processes, chemicals used, methods of disposition, fate in the environment, and actions being taken to clean up this legacy are described by location.

  9. Hazardous waste regulations: an interpretive guide

    SciTech Connect

    Mallow, A.

    1981-01-01

    Compliance with hazardous-waste laws has been made difficult by new, lengthy, and complicated Environmental Protection Agency regulations. This book analyzes and reorganizes the 150 pages of three-column regulations, clarifying all aspects of the requirements. Paralleling the related sections of the law (Subtitle C of the Resources Act), the book begins with an overview of the law and regulations and an identification and listing of hazardous wastes. There are guidelines for authorized state programs along with notification requirements for those in hazardous-waste activities. A checklist format, using five different scenarios offers a practical approach to analyzing the unique requirements for generators and transporters as well as owners and operators. 3 figures.

  10. 40 CFR 258.20 - Procedures for excluding the receipt of hazardous waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., regulated hazardous waste means a solid waste that is a hazardous waste, as defined in 40 CFR 261.3, that is not excluded from regulation as a hazardous waste under 40 CFR 261.4(b) or was not generated by a... (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.20...

  11. Hazardous waste management

    SciTech Connect

    Dawson, G.W.; Mercer, B.W.

    1986-01-01

    This is a reference work designed to guide the chemist to solutions to problems of waste disposal. It has chapters on incineration, ocean dumping and underground injection, landfill disposal, transportation, abandoned sites, regulation, etc. A group of 12 appendices provide a lot of useful information for quick reference.

  12. NAVAJO NATION HAZARDOUS WASTE SITES

    EPA Science Inventory

    This point coverage represents the locations of hazardous waste sites on the Navajo Nation Indian Reservation. The point locations were delineated on 1:24,000 scale US Geological Survey (USGS) topographic maps by staff from the Navajo Nation EPA, Resource Conservation & Reco...

  13. 1993 annual report of hazardous waste activities for the Oak Ridge K-25 site

    SciTech Connect

    Not Available

    1994-02-01

    This report is a detailed listing of all of the Hazardous Waste activities occurring at Martin Marietta`s K-25 site. Contained herein are hazardous waste notification forms, waste stream reports, generator fee forms and various TSDR reports.

  14. Ground freezing for containment of hazardous waste

    SciTech Connect

    Sayles, F.N.; Iskandar, I.K.

    1998-07-01

    The freezing of ground for the containment of subsurface hazardous waste is a promising method that is environmentally friendly and offers a safe alternative to other methods of waste retention in many cases. The frozen soil method offers two concepts for retaining waste. One concept is to freeze the entire waste area into a solid block of frozen soil thus locking the waste in situ. For small areas where the contaminated soil does not include vessels that would rupture from frost action, this concept may be simpler to install. A second concept, of course, is to create a frozen soil barrier to confine the waste within prescribed unfrozen soil boundaries; initial research in this area was funded by EPA, Cincinnati, OH, and the Army Corps of Engineers. The paper discusses advantages and limitations, a case study from Oak Ridge, TN, and a mesh generation program that simulates the cryogenic technology.

  15. HAZARDOUS WASTE DEGRADATION BY WOOD DEGRADING FUNGI

    EPA Science Inventory

    The persistence and toxicity of many hazardous waste constituents indicates that the environment has limited capacity to degrade such materials. he competence and presence of degrading organisms significantly effects our ability to treat and detoxify these hazardous waste chemica...

  16. ANALYSIS OF GEOTHERMAL WASTES FOR HAZARDOUS COMPONENTS

    EPA Science Inventory

    Regulations governing the disposal of hazardous wastes led to an assessment for geothermal solid wastes for potentially hazardous properties. Samples were collected from three active geothermal sites in the western United States: The Geysers, Imperial Valley, and northwestern Nev...

  17. Legislative aspects of hazardous waste management.

    PubMed

    Friedman, M

    1983-02-01

    In the fall of 1976 Congress enacted the Resource Conservation and Recovery Act, commonly referred to as RCRA. The objective of the statute is to create an orderly system for the generation, handling and disposal of hazardous waste by means of a comprehensive tracking and record keeping mechanism. RCRA does not regulate directly by statute so much as it delegates rule making authority to the U.S. Environmental Protection Agency. Pursuant to its mandate to develop regulations in accordance with the broad criteria of RCRA, EPA has published extensive regulations. These regulations address hazardous waste generation, transportation, treatment, storage and handling and its final disposal. The statute also offers remedies available to both EPA and the public at large to ensure enforcement of the provisions of RCRA and the EPA regulations. Additionally, it sets guidelines for states to implement their own hazardous waste management programs. This article is intended to introduce this complicated statutory/regulatory package to scientists and health professionals. It outlines the provisions of RCRA and the EPA regulations, abbreviates early judicial decisions interpreting these provisions and sets forth a brief description of various state approaches to hazardous waste management. PMID:6825630

  18. Legislative aspects of hazardous waste management.

    PubMed Central

    Friedman, M

    1983-01-01

    In the fall of 1976 Congress enacted the Resource Conservation and Recovery Act, commonly referred to as RCRA. The objective of the statute is to create an orderly system for the generation, handling and disposal of hazardous waste by means of a comprehensive tracking and record keeping mechanism. RCRA does not regulate directly by statute so much as it delegates rule making authority to the U.S. Environmental Protection Agency. Pursuant to its mandate to develop regulations in accordance with the broad criteria of RCRA, EPA has published extensive regulations. These regulations address hazardous waste generation, transportation, treatment, storage and handling and its final disposal. The statute also offers remedies available to both EPA and the public at large to ensure enforcement of the provisions of RCRA and the EPA regulations. Additionally, it sets guidelines for states to implement their own hazardous waste management programs. This article is intended to introduce this complicated statutory/regulatory package to scientists and health professionals. It outlines the provisions of RCRA and the EPA regulations, abbreviates early judicial decisions interpreting these provisions and sets forth a brief description of various state approaches to hazardous waste management. PMID:6825630

  19. 40 CFR 279.21 - Hazardous waste mixing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Generators § 279.21 Hazardous waste mixing... rebuttable presumption for used oil of § 279.10(b)(1)(ii) applies to used oil managed by generators....

  20. 40 CFR 279.21 - Hazardous waste mixing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Generators § 279.21 Hazardous waste mixing... rebuttable presumption for used oil of § 279.10(b)(1)(ii) applies to used oil managed by generators....

  1. 49 CFR 171.3 - Hazardous waste.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... have identification numbers which must be displayed on hazardous waste manifests. See 40 CFR parts 262...: In 40 CFR part 263, the EPA sets forth requirements for the cleanup of releases of hazardous wastes. ... 49 Transportation 2 2010-10-01 2010-10-01 false Hazardous waste. 171.3 Section...

  2. ALTERNATIVE TREATMENT METHODS FOR HAZARDOUS WASTES

    EPA Science Inventory

    The five-year schedule for the minimization and restrictions on the disposal of hazardous wastes onto the land is described. Two major items are causing a shift in the way hazardous wastes are managed in the United States. Because of liability for hazardous wastes, companies are ...

  3. 77 FR 43002 - Hazardous Waste Management System: Identification and Listing of Hazardous Waste Amendment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-23

    ... AGENCY 40 CFR Part 261 Hazardous Waste Management System: Identification and Listing of Hazardous Waste... changes to appendix IX of part 261 are effective July 23, 2012. The Hazardous and Solid Waste Amendments... Environmental protection, Hazardous waste, Recycling, and Reporting and recordkeeping requirements....

  4. 40 CFR 258.20 - Procedures for excluding the receipt of hazardous waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., regulated hazardous waste means a solid waste that is a hazardous waste, as defined in 40 CFR 261.3, that is not excluded from regulation as a hazardous waste under 40 CFR 261.4(b) or was not generated by a... as defined in part 261 of this chapter and polychlorinated biphenyls (PCB) wastes as defined in...

  5. 40 CFR 258.20 - Procedures for excluding the receipt of hazardous waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., regulated hazardous waste means a solid waste that is a hazardous waste, as defined in 40 CFR 261.3, that is not excluded from regulation as a hazardous waste under 40 CFR 261.4(b) or was not generated by a... as defined in part 261 of this chapter and polychlorinated biphenyls (PCB) wastes as defined in...

  6. Planning for hazardous waste management.

    PubMed

    Rhoades, R F

    1982-01-01

    Various responsibilities and issues must be considered when becoming involved in the management of hazardous wastes. A basic understanding of the problem and control methodologies including the regulatory provisions of the Resource Conservation and Recovery act (RCRA) is necessary in order to begin the initial phase of the planning process. The roles of industry, the public and the federal government are discussed as well as various management options which can be pursued by state and local authorities. Special attention is focused on the issues of site selection, existing and abandoned sites and the application of "Superfund," disposition of exempt waste quantities and emergency response. PMID:10257564

  7. A generic hazardous waste management training program

    SciTech Connect

    Carter, R.J.; Karnofsky, B.

    1988-01-01

    The main purpose of this training program element is to familiarize personnel involved in hazardous waste management with the goals of RCRA and how they are to be achieved. These goals include: to protect health and the environment; to conserve valuable material and energy resources; to prohibit future open dumping on the land; to assure that hazardous waste management practices are conducted in a manner which protects human health and the environment; to insure that hazardous waste is properly managed thereby reducing the need for corrective actions in the future; to establish a national policy to reduce or eliminate the generation of hazardous waste, wherever feasible. Another objective of this progam element is to present a brief overview of the RCRA regulations and how they are implemented/enforced by the Environmental Protection Agency (EPA) and each of the fifty states. This element also discusses where the RCRA regulations are published and how they are updated. In addition it details who is responsible for compliance with the regulations. Finally, this part of the training program provides an overview of the activities and materials that are regulated. 1 ref.

  8. Portable sensor for hazardous waste

    SciTech Connect

    Piper, L.G.; Hunter, A.J.R.; Fraser, M.E.; Davis, S.J.

    1996-12-31

    We are part-way through the second phase of a 4-year program designed to develop a portable monitor for sensitive hazardous waste detection. The ultimate goal of the program is to develop our concept to the prototype instrument level. Our monitor will be a compact, portable instrument that will allow real-time, in situ, monitoring of hazardous wastes. This instrument will be able to provide the means for rapid field screening of hazardous waste sites to map the areas of greatest contamination. Remediation efforts can then focus on these areas. Our analysis approach is to excite atomic and molecular fluorescence by the technique of active nitrogen energy transfer (ANET). The active nitrogen is made in a dielectric-barrier (D-B) discharge in nitrogen at atmospheric pressure. Only a few emission lines or bands are excited for each hazardous species, so spectral resolution requirements are greatly simplified over those of other spectroscopic techniques. The D-B discharge is compact, 1 to 2 cm in diameter and 1 to 10 cm long. Furthermore, the discharge power requirements are quite modest, so that the unit can be powered by batteries. Thus an instrument based on ANET can readily be made portable. Our results indicate that ANET is a very sensitive technique for monitoring heavy metals and chlorinated hydrocarbons. We have demonstrated an overall detection sensitivity for most species that is at or below ppb levels. ANET alone, however, appears to be most successful in treating hazardous species that have been atomized. We are therefore developing a hybrid technique which combines a miniature, solid-state laser for sample collection and vaporization with ANET for subsequent detection. This approach requires no special sample preparation, can operate continuously, and lends itself well to compact packaging.

  9. Managing hazardous waste in the laboratory.

    PubMed

    Hotaling, Mary

    2006-01-01

    This article offers an introduction to the federal U.S. Environmental Protection Agency (EPA) regulations as they relate to hazardous wastes generated by clinical and anatomic pathology laboratories. Traditionally, the EPA has targeted "heavy" industries such as manufacturing for compliance auditing, but it recently turned an eye toward health-care facilities since they are identified as important sources of hazardous waste generation. Enforcement of EPA regulations within health-care facilities presents the challenge of a new labyrinth of definitions, rules, and compliance methods for laboratorians who have already made it through other regulatory agency mazes, including the Joint Commission on Accreditation of Healthcare Organizations (JCAHO) standards, the College of American Pathologists (CAP) checklists, and the Occupational Safety and Health Administration (OSHA) standards. PMID:17005096

  10. Ecotoxicological characterization of hazardous wastes.

    PubMed

    Wilke, B-M; Riepert, F; Koch, Christine; Kühne, T

    2008-06-01

    In Europe hazardous wastes are classified by 14 criteria including ecotoxicity (H 14). Standardized methods originally developed for chemical and soil testing were adapted for the ecotoxicological characterization of wastes including leachate and solid phase tests. A consensus on which tests should be recommended as mandatory is still missing. Up to now, only a guidance on how to proceed with the preparation of waste materials has been standardized by CEN as EN 14735. In this study, tests including higher plants, earthworms, collembolans, microorganisms, duckweed and luminescent bacteria were selected to characterize the ecotoxicological potential of a boiler slag, a dried sewage sludge, a thin sludge and a waste petrol. In general, the instructions given in EN 14735 were suitable for all wastes used. The evaluation of the different test systems by determining the LC/EC(50) or NOEC-values revealed that the collembolan reproduction and the duckweed frond numbers were the most sensitive endpoints. For a final classification and ranking of wastes the Toxicity Classification System (TCS) using EC/LC(50) values seems to be appropriate. PMID:17996938

  11. Hazardous waste management in the Pacific basin

    SciTech Connect

    Cirillo, R.R.; Chiu, S.; Chun, K.C.; Conzelmann, G.; Carpenter, R.A.; Indriyanto, S.H.

    1994-11-01

    Hazardous waste control activities in Asia and the Pacific have been reviewed. The review includes China (mainland, Hong Kong, and Taiwan), Indonesia, Korea, Malaysia, Papua New Guinea, the Philippines, Singapore, and Thailand. It covers the sources of hazardous waste, the government structure for dealing with hazardous waste, and current hazardous waste control activities in each country. In addition, the hazardous waste program activities of US government agencies, US private-sector organizations, and international organizations are reviewed. The objective of these reviews is to provide a comprehensive picture of the current hazardous waste problems and the waste management approaches being used to address them so that new program activities can be designed more efficiently.

  12. Hazardous-waste reduction: Naval Air Station Oceana

    SciTech Connect

    Clarkson, E.A.

    1991-06-01

    This is a project to research Naval Air Station (NAS) Oceana's present operations in the area of hazardous waste controls from processing to disposal. The research project was generated in response to NAS Oceana's requirement to meet and implement OPNAVINST 4110.2 (dated 20 June 89). Areas of concern include waste management, regulatory compliance, and waste reduction. Waste reduction is seen as one key way to help NAS Oceana (and other naval bases) improve waste management by reducing liability, operational cost, disposal costs and environmental, health, and safety issues. The Resource Conservation and Recovery Act places strict controls on the storage, treatment and disposal of hazardous waste. Presently, NAS Oceana has a disposal plan that is operational and complies with all associated regulations. This study addresses hazardous waste minimization through hazardous material reduction.

  13. Apparatus for incinerating hazardous waste

    DOEpatents

    Chang, Robert C. W.

    1994-01-01

    An apparatus for incinerating wastes, including an incinerator having a combustion chamber, a fluidtight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC (about 1" WC) higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes.

  14. Apparatus for incinerating hazardous waste

    DOEpatents

    Chang, R.C.W.

    1994-12-20

    An apparatus is described for incinerating wastes, including an incinerator having a combustion chamber, a fluid-tight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes. 1 figure.

  15. Hazardous waste minimization report for CY 1986

    SciTech Connect

    Kendrick, C.M.

    1990-12-01

    Oak Ridge National Laboratory (ORNL) is a multipurpose research and development facility. Its primary role is the support of energy technology through applied research and engineering development and scientific research in basic and physical sciences. ORNL also is a valuable resource in the solution of problems of national importance, such as nuclear and chemical waste management. In addition, useful radioactive and stable isotopes which are unavailable from the private sector are produced at ORNL. As a result of these activities, hazardous, radioactive, and mixed wastes are generated at ORNL. A formal hazardous waste minimization program for ORNL was launched in mid 1985 in response to the requirements of Section 3002 of the Resource Conservation and Recovery Act (RCRA). During 1986, a task plan was developed. The six major tasks include: planning and implementation of a laboratory-wide chemical inventory and the subsequent distribution, treatment, storage, and/or disposal (TSD) of unneeded chemicals; establishment and implementation of a distribution system for surplus chemicals to other (internal and external) organizations; training and communication functions necessary to inform and motivate laboratory personnel; evaluation of current procurement and tracking systems for hazardous materials and recommendation and implementation of improvements; systematic review of applicable current and proposed ORNL procedures and ongoing and proposed activities for waste volume and/or toxicity reduction potential; and establishment of criteria by which to measure progress and reporting of significant achievements. 8 refs., 1 fig., 5 tabs.

  16. Cities cooperate on household hazardous waste collection

    SciTech Connect

    Yost, K.D. )

    1994-03-01

    This article describes a household hazardous waste collection project. The project resulted from Missouri solid waste regulations and the recognition of five suburban cities of St. Louis that there was a need to provide residents with an environmentally sound method of disposing of household hazardous waste. The project was 90 percent funded by a state grant.

  17. Standards Applicable to Generators of Hazardous Waste; Alternative Requirements for Hazardous Waste Determination and Accumulation of Unwanted Material at Laboratories Owned by Colleges and Universities and Other Eligible Academic Entities Formally Affiliated With Colleges and Universities. Final Rule. Federal Register, Environmental Protection Agency. 40 CFR Parts 261 and 262. Part II

    ERIC Educational Resources Information Center

    National Archives and Records Administration, 2008

    2008-01-01

    The Environmental Protection Agency (EPA or the Agency) is finalizing an alternative set of generator requirements applicable to laboratories owned by eligible academic entities, as defined in this final rule. The rule provides a flexible and protective set of regulations that address the specific nature of hazardous waste generation and…

  18. Waste acceptance criteria for closure generated waste

    SciTech Connect

    Not Available

    1992-05-01

    The PORTS Facility has been operating since 1954. The PORTS Facility is used to enrich uranium for nuclear navy applications and commercial nuclear reactors. The PORTS process uses molecular diffusion techniques to separate the U-235 isotope from the U-238 isotope. The PORTS Facility consists of a complex cascade of compressors and converters through which gaseous uranium hexafluoride feed is processed. The feed contains approximately 0.7 percent U-235 by weight while products contain from 4 to 97 percent U-235 by weight, depending on the final application. In general, the majority of the closure wastes generated at PORTS consists of personal protective equipment (PPE), rags, soils, decontamination solutions, and construction related debris. These hazardous wastes will be predominately characterized on the basis of process knowledge. PORTS assumes its conservative waste characterizations that are based on process knowledge are correct unless and until further investigation and/or analysis proves the constituents are not present or are present at concentrations below characteristic regulatory thresholds. Waste Acceptance Criteria for wastes generated by the closure of active and inactive RCRA facilities at PORTS has been developed. The criteria presented in this document govern the activities that are performed during the closure and subsequent generation of waste and relocation from the closure locations to the storage unit. These criteria are intended to ensure the proper handling, classification, processing, and storage of wastes in order to prevent hazardous waste release that may pose a threat to human health or the environment. Any wastes currently stored at each of the facilities that are to be closed will be transferred to the X-326 or X-7725 Storage Units. The waste transfers will be accomplished in accordance with the Container Transfer Plan.

  19. TREATMENT OF REACTIVE WASTES AT HAZARDOUS WASTE LANDFILLS

    EPA Science Inventory

    This report is intended to provide an information base for personnel accepting hazardous waste at existing disposal sites, or performing remedial action at uncontrolled waste sites, to make the appropriate decisions regarding the disposition of reactive wastes. It emphasizes simp...

  20. Hazardous waste in Mexico: Just how much is there?

    SciTech Connect

    Wood, H.

    1994-12-31

    Mexico will probably follow the same basic regulatory path that was followed in the US, but at a faster pace to achieve equivalent protection of the environment. The redefinition of hazardous waste currently underway in both US and Mexico will require more stringent controls and less latitude in the available technology for disposal or recycling. Mexico`s General Law of Ecological Equilibrium and Environmental Protection became effective March 1, 1988. It surpassed most preceding regulations and decrees regarding hazardous wastes generated in, imported to, or exported from Mexico. The law is comprehensive and unifies various environmental statutes. An earlier Presidential decree continues to regulate certain hazardous materials not considered to be hazardous wastes by the new regulations. The new hazardous waste regulations govern the following activities: management of hazardous wastes; permitting of generators and transporters; and permitting of the construction and operation of facilities for the treatment, storage, or disposal of hazardous wastes. The environmental laws which address hazardous waste issues in Mexico were enacted in 1988 and new technical regulations have recently been added. Most of these laws and regulations have been inspired by US law and environmental experience.

  1. The current status of hazardous solid waste management.

    PubMed

    Kaufman, H B

    1978-12-01

    Growth of the population and of industrialization, and substandard disposal of the increased waste products thus generated, have resulted in numerous documented cases of harm to human, plant, and animal health. The Resource Conservation and Recovery Act (1976), its stated goals, and its intended means of implementation, are discussed relative to hazardous waste problems. Subtitle C of this Act, and the authority granted by it to the U.S. Environmental Protection Agency, are explained. Standards and regulations have been imposed upon those responsible for generating and transporting hazardous wastes, to ensure the ultimate safe disposal of such wastes in environmentally suitable, properly licensed facilities. PMID:738237

  2. Improving Tamper Detection for Hazardous Waste Security

    SciTech Connect

    Johnston, R. G.; Garcia, A. R. E.; Pacheco, N.; Martinez, R. K.; Martinez, D. D.; Trujillo, S. J.; Lopez, L. N.

    2003-02-26

    Since September 11, waste managers are increasingly expected to provide effective security for their hazardous wastes. Tamper-indicating seals can help. This paper discusses seals, and offers recommendations for how to choose and use them.

  3. THERMODYNAMIC FUNDAMENTALS USED IN HAZARDOUS WASTE INCINERATION

    EPA Science Inventory

    Thermodynamics is the basic foundation of many engineeringpractices. nvironmental engineering is no exception, it is usingthermodynamic principles in many applications. n particular,those who are involved in the incineration of various wastes suchas hazardous and municipal wastes...

  4. Hazardous waste management and pollution prevention

    SciTech Connect

    Chiu, Shen-yann.

    1992-01-01

    The management of hazardous wastes is one of the most critical environmental issues that faces many developing countries. It is one of the areas where institutional control and treatment and disposal technology has not kept pace with economic development. This paper reviews the development of hazardous waste management methods over the past decades, and provides the information on the status and trends of hazardous waste management strategy in selected western nations. Several issues pertinent to hazardous waste management will be reviewed, including: (1) definition of hazard; (2) why are we concerned with hazardous wastes; (3) aspects of hazardous waste management system; and (4) prioritization of hazardous waste management options. Due to regulatory and economic pressure on hazardous waste management, pollution prevention has become a very important environmental strategy in many developed countries. In many developed countries, industry is increasingly considering such alternative approaches, and finding many opportunities for their cost effective implementation. This paper provides a review of the status and trends of pollution prevention in selected western nations.

  5. Hazardous waste management and pollution prevention

    SciTech Connect

    Chiu, Shen-yann

    1992-03-01

    The management of hazardous wastes is one of the most critical environmental issues that faces many developing countries. It is one of the areas where institutional control and treatment and disposal technology has not kept pace with economic development. This paper reviews the development of hazardous waste management methods over the past decades, and provides the information on the status and trends of hazardous waste management strategy in selected western nations. Several issues pertinent to hazardous waste management will be reviewed, including: (1) definition of hazard; (2) why are we concerned with hazardous wastes; (3) aspects of hazardous waste management system; and (4) prioritization of hazardous waste management options. Due to regulatory and economic pressure on hazardous waste management, pollution prevention has become a very important environmental strategy in many developed countries. In many developed countries, industry is increasingly considering such alternative approaches, and finding many opportunities for their cost effective implementation. This paper provides a review of the status and trends of pollution prevention in selected western nations.

  6. 40 CFR 258.20 - Procedures for excluding the receipt of hazardous waste.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... waste means a solid waste that is a hazardous waste, as defined in 40 CFR 261.3, that is not excluded from regulation as a hazardous waste under 40 CFR 261.4(b) or was not generated by a conditionally... in part 261 of this chapter and polychlorinated biphenyls (PCB) wastes as defined in part 761 of...

  7. 40 CFR 261.10 - Criteria for identifying the characteristics of hazardous waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE Criteria for... characteristic of hazardous waste in subpart C only upon determining that: (1) A solid waste that exhibits the... which is reasonably within the capability of generators of solid waste or private sector...

  8. 2013 Los Alamos National Laboratory Hazardous Waste Minimization Report

    SciTech Connect

    Salzman, Sonja L.; English, Charles J.

    2015-08-24

    Waste minimization and pollution prevention are inherent goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE) and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program (a component of the overall Waste Minimization/Pollution Prevention [WMin/PP] Program) administered by the Environmental Stewardship Group (ENV-ES). This report also supports the waste minimization and pollution prevention goals of the Environmental Programs Directorate (EP) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. LANS was very successful in fiscal year (FY) 2013 (October 1-September 30) in WMin/PP efforts. Staff funded four projects specifically related to reduction of waste with hazardous constituents, and LANS won four national awards for pollution prevention efforts from the National Nuclear Security Administration (NNSA). In FY13, there was no hazardous, mixedtransuranic (MTRU), or mixed low-level (MLLW) remediation waste generated at the Laboratory. More hazardous waste, MTRU waste, and MLLW was generated in FY13 than in FY12, and the majority of the increase was related to MTRU processing or lab cleanouts. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.

  9. Vitrification of hazardous and radioactive wastes

    SciTech Connect

    Bickford, D.F.; Schumacher, R.

    1995-12-31

    Vitrification offers many attractive waste stabilization options. Versatility of waste compositions, as well as the inherent durability of a glass waste form, have made vitrification the treatment of choice for high-level radioactive wastes. Adapting the technology to other hazardous and radioactive waste streams will provide an environmentally acceptable solution to many of the waste challenges that face the public today. This document reviews various types and technologies involved in vitrification.

  10. Overview of hazardous-waste regulation at federal facilities

    SciTech Connect

    Tanzman, E.; LaBrie, B.; Lerner, K.

    1982-05-01

    This report is organized in a fashion that is intended to explain the legal duties imposed on officials responsible for hazardous waste at each stage of its existence. Section 2 describes federal hazardous waste laws, explaining the legal meaning of hazardous waste and the protective measures that are required to be taken by its generators, transporters, and storers. In addition, penalties for violation of the standards are summarized, and a special discussion is presented of so-called imminent hazard provisions for handling hazardous waste that immediately threatens public health and safety. Although the focus of Sec. 2 is on RCRA, which is the principal federal law regulating hazardous waste, other federal statutes are discussed as appropriate. Section 3 covers state regulation of hazardous waste. First, Sec. 3 explains the system of state enforcement of the federal RCRA requirements on hazardous waste within their borders. Second, Sec. 3 discusses two peculiar provisions of RCRA that appear to permit states to regulate federal facilities more strictly than RCRA otherwise would require.

  11. 40 CFR 261.32 - Hazardous wastes from specific sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... citations affecting § 261.32, see the List of CFR Sections Affected, which appears in the Finding Aids... WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE Lists of Hazardous Wastes § 261.32... and EPA hazardous waste No. Hazardous waste Hazard code Wood preservation: K001 Bottom sediment...

  12. 40 CFR 261.32 - Hazardous wastes from specific sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... citations affecting § 261.32, see the List of CFR Sections Affected, which appears in the Finding Aids... WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE Lists of Hazardous Wastes § 261.32... and EPA hazardous waste No. Hazardous waste Hazard code Wood preservation: K001 Bottom sediment...

  13. 40 CFR 261.32 - Hazardous wastes from specific sources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... citations affecting § 261.32, see the List of CFR Sections Affected, which appears in the Finding Aids... WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE Lists of Hazardous Wastes § 261.32... and EPA hazardous waste No. Hazardous waste Hazard code Wood preservation: K001 Bottom sediment...

  14. Hazardous waste identification: A guide to changing regulations

    SciTech Connect

    Stults, R.G. )

    1993-03-01

    The Resource Conservation and Recovery Act (RCRA) was enacting in 1976 and amended in 1984 by the Hazardous and Solid Waste Amendments (HSWA). Since then, federal regulations have generated a profusion of terms to identify and describe hazardous wastes. Regulations that5 define and govern management of hazardous wastes are codified in Title 40 of the code of Federal Regulations, Protection of the environment''. Title 40 regulations are divided into chapters, subchapters and parts. To be defined as hazardous, a waste must satisfy the definition of solid waste any discharged material not specifically excluded from regulation or granted a regulatory variance by the EPA Administrator. Some wastes and other materials have been identified as non-hazardous and are listed in 40 CFR 261.4(a) and 261.4(b). Certain wastes that satisfy the definition of hazardous waste nevertheless are excluded from regulation as hazardous if they meet specific criteria. Definitions and criteria for their exclusion are found in 40 CFR 261.4(c)-(f) and 40 CFR 261.5.

  15. Handbook of industrial and hazardous wastes treatment. 2nd ed.

    SciTech Connect

    Lawrence Wang; Yung-Tse Hung; Howard Lo; Constantine Yapijakis

    2004-06-15

    This expanded Second Edition offers 32 chapters of industry- and waste-specific analyses and treatment methods for industrial and hazardous waste materials - from explosive wastes to landfill leachate to wastes produced by the pharmaceutical and food industries. Key additional chapters cover means of monitoring waste on site, pollution prevention, and site remediation. Including a timely evaluation of the role of biotechnology in contemporary industrial waste management, the Handbook reveals sound approaches and sophisticated technologies for treating: textile, rubber, and timber wastes; dairy, meat, and seafood industry wastes; bakery and soft drink wastes; palm and olive oil wastes; pesticide and livestock wastes; pulp and paper wastes; phosphate wastes; detergent wastes; photographic wastes; refinery and metal plating wastes; and power industry wastes. This final chapter, entitled 'Treatment of power industry wastes' by Lawrence K. Wang, analyses the stream electric power generation industry, where combustion of fossil fuels coal, oil, gas, supplies heat to produce stream, used then to generate mechanical energy in turbines, subsequently converted to electricity. Wastes include waste waters from cooling water systems, ash handling systems, wet-scrubber air pollution control systems, and boiler blowdown. Wastewaters are characterized and waste treatment by physical and chemical systems to remove pollutants is presented. Plant-specific examples are provided.

  16. Potentially hazardous waste produced at home

    PubMed Central

    2013-01-01

    Background The purpose of this study was to identify the sources of waste generation household consisting of biological material and to investigate the knowledge presented by those responsible for the generation of waste in the home environment on the potential health risk human and environmental. Method It is a quantitative survey performed in Parque Capuava, Santo André (SP). The questionnaire was administered by the community employers and nursing students during the consultation with nursing supervision through interview question/answer. The exclusion criteria were patients who were not in the area served by the Basic Health Unit which covers the area of Pq Capuava. The sample was consisted of 99 persons and the data collection a questionnaire was used. Results We observed that 63.3% of people said to use disposables, with the majority (58.7%) of these use the public collection as the final destination of these materials. It was reported that 73.7% of those surveyed reported having knowledge about the risk of disease transmission. Public awareness of the importance of proper packaging and disposal of potentially hazardous household waste may contribute significantly to the preservation of human and environmental health and this procedure can be performed and supervised by professional nurses. Conclusion We suggest implementation of workshops for community health workers and the general population in order to enhance their knowledge about the storage and disposal of potentially infectious waste generated at home, thereby reducing the potential risk of disease transmission by improper management. PMID:23806043

  17. 49 CFR 171.3 - Hazardous waste.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... have identification numbers which must be displayed on hazardous waste manifests. See 40 CFR parts 262...: In 40 CFR part 263, the EPA sets forth requirements for the cleanup of releases of hazardous wastes. ..., AND DEFINITIONS Applicability, General Requirements, and North American Shipments § 171.3...

  18. 49 CFR 171.3 - Hazardous waste.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... have identification numbers which must be displayed on hazardous waste manifests. See 40 CFR parts 262...: In 40 CFR part 263, the EPA sets forth requirements for the cleanup of releases of hazardous wastes. ..., AND DEFINITIONS Applicability, General Requirements, and North American Shipments § 171.3...

  19. 49 CFR 171.3 - Hazardous waste.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... have identification numbers which must be displayed on hazardous waste manifests. See 40 CFR parts 262...: In 40 CFR part 263, the EPA sets forth requirements for the cleanup of releases of hazardous wastes. ..., AND DEFINITIONS Applicability, General Requirements, and North American Shipments § 171.3...

  20. 49 CFR 171.3 - Hazardous waste.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... have identification numbers which must be displayed on hazardous waste manifests. See 40 CFR parts 262...: In 40 CFR part 263, the EPA sets forth requirements for the cleanup of releases of hazardous wastes. ..., AND DEFINITIONS Applicability, General Requirements, and North American Shipments § 171.3...

  1. HANDBOOK: HAZARDOUS WASTE INCINERATION MEASUREMENT GUIDANCE

    EPA Science Inventory

    This publication, Volume III of the Hazardous Waste Incineration Guidance Series, contains general guidance to permit writers in reviewing hazardous waste incineration permit applications and trial burn plans. he handbook is a how-to document dealing with how incineration measure...

  2. Hazardous Waste Handling Should be Defined

    ERIC Educational Resources Information Center

    Steigman, Harry

    1972-01-01

    An examination of the handling, storage and disposition of hazardous wastes from municipal and industrial sources, with a plea for the development of a uniform national hazardous waste code or listing that would be acceptable and useful to all state and federal agencies. (LK)

  3. 76 FR 76677 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Exclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-08

    ... AGENCY 40 CFR Part 261 Hazardous Waste Management System; Identification and Listing of Hazardous Waste... the potential impact of the petitioned waste on human health and the environment. The EPA's proposed decision to grant the petition is based on an evaluation of waste-specific information provided by...

  4. The Disposal of Hazardous Wastes.

    ERIC Educational Resources Information Center

    Barnhart, Benjamin J.

    1978-01-01

    The highlights of a symposium held in October, 1977 spotlight some problems and solutions. Topics include wastes from coal technologies, radioactive wastes, and industrial and agricultural wastes. (BB)

  5. Hazardous waste status of discarded electronic cigarettes

    SciTech Connect

    Krause, Max J.; Townsend, Timothy G.

    2015-05-15

    Highlights: • Electronic cigarettes were tested using TCLP and WET. • Several electronic cigarette products leached lead at hazardous waste levels. • Lead was the only element that exceeded hazardous waste concentration thresholds. • Nicotine solution may cause hazardous waste classification when discarded unused. - Abstract: The potential for disposable electronic cigarettes (e-cigarettes) to be classified as hazardous waste was investigated. The Toxicity Characteristic Leaching Procedure (TCLP) was performed on 23 disposable e-cigarettes in a preliminary survey of metal leaching. Based on these results, four e-cigarette products were selected for replicate analysis by TCLP and the California Waste Extraction Test (WET). Lead was measured in leachate as high as 50 mg/L by WET and 40 mg/L by TCLP. Regulatory thresholds were exceeded by two of 15 products tested in total. Therefore, some e-cigarettes would be toxicity characteristic (TC) hazardous waste but a majority would not. When disposed in the unused form, e-cigarettes containing nicotine juice would be commercial chemical products (CCP) and would, in the United States (US), be considered a listed hazardous waste (P075). While household waste is exempt from hazardous waste regulation, there are many instances in which such waste would be subject to regulation. Manufactures and retailers with unused or expired e-cigarettes or nicotine juice solution would be required to manage these as hazardous waste upon disposal. Current regulations and policies regarding the availability of nicotine-containing e-cigarettes worldwide were reviewed. Despite their small size, disposable e-cigarettes are consumed and discarded much more quickly than typical electronics, which may become a growing concern for waste managers.

  6. Hazardous Waste Management: A View to the New Century, 2001.

    ERIC Educational Resources Information Center

    Burton, Gwen

    Like many parts of the United States, Colorado is facing a significant hazardous waste problem. Radioactive and chemical wastes generated by the Rocky Flats Nuclear Plant, the toxic Lowry Land Fill Site, industrial dumps, and heavy land and air traffic contribute to water, land, and air pollution in the state. As part of a statewide response…

  7. Hazardous and radioactive waste incineration studies

    NASA Astrophysics Data System (ADS)

    Vavruska, J. S.; Stretz, L. A.; Borduin, L. C.

    Development and demonstration of a transuranic (TRU) waste volume-reduction process is described. A production-scale controlled air incinerator using commercially available equipment and technology was modified for solid radioactive waste service. This unit successfully demonstrated the volume reduction of transuranic (TRU) waste with an average TRU content of about 20 nCi/g. The same incinerator and offgas treatment system is being modified further to evaluate the destruction of hazardous liquid wastes such as polychlorinated biphenyls (PCBs) and hazardous solid wastes such as pentachlorophenol (PCP)-treated wood.

  8. ASSESSMENT OF HAZARDOUS WASTES FOR GENOTOXICITY

    EPA Science Inventory

    The authors have evaluated a group of short-term bioassays to identify those that may be suitable for screening large numbers of diverse hazardous industrial wastes for genotoxicity. Fifteen wastes (and dichloromethane extracts of these wastes) from a variety of manufacturing pro...

  9. 75 FR 57686 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste Amendment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-22

    ... Cord, Scottsburg (64 FR 3869, January 26, 1999). On April 22, 2010, the Agency was notified that..., 2010. The Hazardous and Solid Waste Amendments of 1984 amended section 3010 of the Resource... AGENCY 40 CFR Part 261 Hazardous Waste Management System; Identification and Listing of Hazardous...

  10. 40 CFR 261.32 - Hazardous wastes from specific sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Hazardous wastes from specific sources. 261.32 Section 261.32 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE Lists of Hazardous Wastes § 261.32 Hazardous wastes from specific sources....

  11. Integrating Total Quality Management (TQM) and hazardous waste management

    SciTech Connect

    Kirk, N.

    1993-11-01

    The Resource Conservation and Recovery Act (RCRA) of 1976 and its subsequent amendments have had a dramatic impact on hazardous waste management for business and industry. The complexity of this law and the penalties for noncompliance have made it one of the most challenging regulatory programs undertaken by the Environmental Protection Agency (EPA). The fundamentals of RCRA include ``cradle to grave`` management of hazardous waste, covering generators, transporters, and treatment, storage, and disposal facilities. The regulations also address extensive definitions and listing/identification mechanisms for hazardous waste along with a tracking system. Treatment is favored over disposal and emphasis is on ``front-end`` treatment such as waste minimization and pollution prevention. A study of large corporations such as Xerox, 3M, and Dow Chemical, as well as the public sector, has shown that well known and successful hazardous waste management programs emphasize pollution prevention and employment of techniques such as proactive environmental management, environmentally conscious manufacturing, and source reduction. Nearly all successful hazardous waste programs include some aspects of Total Quality Management, which begins with a strong commitment from top management. Hazardous waste management at the Rocky Flats Plant is further complicated by the dominance of ``mixed waste`` at the facility. The mixed waste stems from the original mission of the facility, which was production of nuclear weapons components for the Department of Energy (DOE). A Quality Assurance Program based on the criterion in DOE Order 5700.6C has been implemented at Rocky Flats. All of the elements of the Quality Assurance Program play a role in hazardous waste management. Perhaps one of the biggest waste management problems facing the Rocky Flats Plant is cleaning up contamination from a forty year mission which focused on production of nuclear weapon components.

  12. 40 CFR 262.106 - When must a hazardous waste determination be made?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE University Laboratories XL Project-Laboratory Environmental Management Standard § 262.106 When must a hazardous waste... accumulation area, each University must evaluate the laboratory wastes to determine whether they are...

  13. 40 CFR 262.215 - Unwanted material that is not solid or hazardous waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Alternative... Eligible Academic Entities § 262.215 Unwanted material that is not solid or hazardous waste. (a) If an unwanted material does not meet the definition of solid waste in § 261.2, it is no longer subject to...

  14. Hazardous waste inventory, characteristics, generation, and facility assessment for treatment, storage, and disposal alternatives considered in the U.S. Department of Energy Waste Management Programmatic Environmental Impact Statement

    SciTech Connect

    Lazaro, M.A.; Antonopoulos, A.A.; Esposito, M.P.; Policastro, A.J.

    1996-12-01

    This report focuses on the generation of hazardous waste (HW) and the treatment of HW being generated by routine US Department of Energy (DOE) facility operations. The wastes to be considered are managed by the DOE Waste Management (WM) Division (WM HW). The waste streams are to be sent to WM operations throughout the DOE complex under four management alternatives: No Action, Decentralization, Regionalized 1, and Regionalized 2. On-site and off-site capabilities for treatment are examined for each alternative. This report (1) summarizes the HW inventories and generated amounts resulting from WM activities, focusing on the largest DOE HW generators; (2) presents estimates of the annual amounts shipped off-site, as well as the amounts treated by various treatment technology groups; (3) describes the existing and planned treatment and storage capabilities of the largest HW-generating DOE installations, as well as the use of commercial treatment facilities by DOE sites; (4) presents applicable technologies (destruction of organics, deactivation/neutralization of waste, removal/recovery of organics, and aqueous liquid treatment); and (5) describes the four alternatives for consideration for future HW management, and for each alternative provides the HW loads and the approach used to estimate the source term for routine treatment operations. In addition, potential air emissions, liquid effluents, and solid residuals associated with each alternative are presented. This report is supplemented with an addendum that includes detailed information related to HW inventory, characteristics, generation, and facility assessment for the treatment alternatives. The addendum also presents source terms, emission rates, and throughput totals by alternative and treatment installation.

  15. 75 FR 51671 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Exclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-23

    ... sludge from the list of hazardous wastes under 40 CFR 261.31 and 261.32 (see 70 FR 41358). EPA is... also eligible for exclusion and remain hazardous wastes until excluded. See 66 FR 27266 (May 16, 2001... Tokusen's petitioned waste. EPA applied the Delisting Risk Assessment Software (DRAS) described in 65...

  16. Environmental Hazards of Nuclear Wastes

    ERIC Educational Resources Information Center

    Micklin, Philip P.

    1974-01-01

    Present methods for storage of radioactive wastes produced at nuclear power facilities are described. Problems arising from present waste management are discussed and potential solutions explored. (JP)

  17. HANDBOOK ON TREATMENT OF HAZARDOUS WASTE LEACHATE

    EPA Science Inventory

    Various treatment processes were evaluated for their applicability and effectiveness in treating leachate from hazardous waste land disposal facilities. These technologies include activated sludge treatment, air stripping, carbon adsorption, flow equalization, granular media filt...

  18. GEOSTATISTICAL SAMPLING DESIGNS FOR HAZARDOUS WASTE SITES

    EPA Science Inventory

    This chapter discusses field sampling design for environmental sites and hazardous waste sites with respect to random variable sampling theory, Gy's sampling theory, and geostatistical (kriging) sampling theory. The literature often presents these sampling methods as an adversari...

  19. A Program on Hazardous Waste Management.

    ERIC Educational Resources Information Center

    Kummler, Ralph H.; And Others

    1989-01-01

    Provides an overview of the "Hazardous Waste Management Graduate Certificate" program at Wayne State University. Describes four required courses and nine optional courses. Discusses the development of a Master program and the curriculum of the Master program. (YP)

  20. Argonne National Laboratory, east hazardous waste shipment data validation

    SciTech Connect

    Casey, C.; Graden, C.; Coveleskie, A.

    1995-09-01

    At the request of EM-331, the Radioactive Waste Technical Support Program (TSP) is conducting an evaluation of data regarding past hazardous waste shipments from DOE sites to commercial TSDFs. The intent of the evaluation is to find out if, from 1984 to 1991, DOE sites could have shipped hazardous waste contaminated with DOE-added radioactivity to commercial TSDFs not licensed to receive radioactive material. A team visited Argonne National Laboratory, East (ANL-E) to find out if any data existed that would help to make such a determination at ANL-E. The team was unable to find any relevant data. The team interviewed personnel who worked in waste management at the time. All stated that ANL-E did not sample and analyze hazardous waste shipments for radioactivity. Waste generators at ANL-E relied on process knowledge to decide that their waste was not radioactive. Also, any item leaving a building where radioisotopes were used was surveyed using hand-held instrumentation. If radioactivity above the criteria in DOE Order 5400.5 was found, the item was considered radioactive. The only documentation still available is the paperwork filled out by the waste generator and initialed by a health physics technician to show no contamination was found. The team concludes that, since all waste shipped offsite was subjected at least once to health physics instrumentation scans, the waste shipped from ANL-E from 1984 to 1991 may be considered clean.

  1. Hazards assessment for the Hazardous Waste Storage Facility

    SciTech Connect

    Knudsen, J.K.; Calley, M.B.

    1994-04-01

    This report documents the hazards assessment for the Hazardous Waste Storage Facility (HWSF) located at the Idaho National Engineering Laboratory. The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. The hazards assessment identifies and analyzes hazards that are significant enough to warrant consideration in a facility`s operational emergency management program. The area surrounding HWSF, the buildings and structures at HWSF, and the processes used at HWSF are described in this report. All nonradiological hazardous materials at the HWSF were identified (radiological hazardous materials are not stored at HWSF) and screened against threshold quantities according to DOE Order 5500.3A guidance. Two of the identified hazardous materials exceeded their specified threshold quantity. This report discusses the potential release scenarios and consequences associated with an accidental release for each of the two identified hazardous materials, lead and mercury. Emergency considerations, such as emergency planning zones, emergency classes, protective actions, and emergency action levels, are also discussed based on the analysis of potential consequences. Evaluation of the potential consequences indicated that the highest emergency class for operational emergencies at the HWSF would be a Site Area Emergency.

  2. FLORIDA HAZARDOUS WASTE AND SANITARY LANDFILL REPORT, COUNTY DATA. GENERATOR DATA AND CHARACTERISTICS OF SANITARY LANDFILLS. PART 9. COUNTIES: POLK, PUTNAM, ST. JOHNS, ST. LUCIE, SANTA ROSA, SARASOTA, SEMINOLE

    EPA Science Inventory

    The report provides data on the use of sanitary landfills (Subtitle D facilities) for hazardous waste disposal in Florida by small quantity generators. It consists of eleven parts including a part called Study Area Data which contains the data aggregated across the counties cover...

  3. Health effects of hazardous waste.

    PubMed

    Dearwent, Steve M; Mumtaz, M Moiz; Godfrey, Gail; Sinks, Thomas; Falk, Henry

    2006-09-01

    Since 1995, the Agency for Toxic Substances and Disease Registry (ATSDR) has evaluated environmental contaminants and human health risks at nearly 3000 sites. Hazardous substances at these sites include newly emerging problems as well as historically identified threats. ATSDR classifies sites according to the degree of hazard they represent to the public. Less than 1% of the sites investigated are considered urgent public health hazards where chemical or physical hazards are at levels that could cause an immediate threat to life or health. Approximately 20% of sites have a potential for long-term human exposures above acceptable risk levels. At almost 40% of sites, hazardous substances do not represent a public health hazard. Completed exposure pathways for contaminants in air, water, and soil have been reported at approximately 30% of evaluated sites. The most common contaminants of concern at these sites include heavy metals, volatile organic compounds, and polychlorinated biphenyls. This article reviews ATSDR's ongoing work by examining the historic hazard of lead, the contemporary hazard of asbestos, and the emerging issue of perchlorate contamination. PMID:17119223

  4. BIOLOGICAL TREATMENT OF HAZARDOUS AQUEOUS WASTES

    EPA Science Inventory

    Studies have been conducted with a rotating biological contractor (RBC) to evaluate the treatability of leachates from the Stringfellow and New Lyme hazardous waste sites. The leachates were transported from the waste sites to Cincinnati at the United States Environmental Protect...

  5. 76 FR 36480 - Hazardous Waste Manifest Printing Specifications Correction Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-22

    ... Subjects in 40 CFR Part 262 Environmental protection, Exports, Hazardous materials transportation... AGENCY 40 CFR Part 262 Hazardous Waste Manifest Printing Specifications Correction Rule AGENCY... proposing a minor change to the Resource Conservation and Recovery Act (RCRA) hazardous waste...

  6. Vitrification of hazardous and mixed wastes

    SciTech Connect

    Jantzen, C.M.; Pickett, J.B. ); Ramsey, W.G. . Dept. of Ceramic Engineering)

    1992-01-01

    Solidification of hazardous/mixed wastes into glass is being examined at the Savannah River Site. The first hazardous/mixed wastes glassified at SRS have been (1) incinerator and (2) nickel plating line (F006) wastes. Solidification of incinerator blowdown and mixtures of incinerator blowdown and incinerator bottom kiln ash have been achieved in Soda (Na[sub 2]O) - Lime (CaO) - Silica (SiO[sub 2]) glass (SLS) at waste loadings of up to 50 wt%. Solidification of nickel-plating line waste sludges containing depleted uranium have also been achieved in both SLS and borosilicate glasses at waste loadings of 75 wt%. This corresponds to volume reductions of 97% and 81%, respectively. Further studies will examine glassification of: ion exchange zeolites, inorganic filter media, asbestos, glass fiber filters, contaminated soil, cementitious, or other materials in need of remediation.

  7. Vitrification of hazardous and mixed wastes

    SciTech Connect

    Jantzen, C.M.; Pickett, J.B.; Ramsey, W.G.

    1992-10-01

    Solidification of hazardous/mixed wastes into glass is being examined at the Savannah River Site. The first hazardous/mixed wastes glassified at SRS have been (1) incinerator and (2) nickel plating line (F006) wastes. Solidification of incinerator blowdown and mixtures of incinerator blowdown and incinerator bottom kiln ash have been achieved in Soda (Na{sub 2}O) - Lime (CaO) - Silica (SiO{sub 2}) glass (SLS) at waste loadings of up to 50 wt%. Solidification of nickel-plating line waste sludges containing depleted uranium have also been achieved in both SLS and borosilicate glasses at waste loadings of 75 wt%. This corresponds to volume reductions of 97% and 81%, respectively. Further studies will examine glassification of: ion exchange zeolites, inorganic filter media, asbestos, glass fiber filters, contaminated soil, cementitious, or other materials in need of remediation.

  8. Hazard ranking systems for chemical wastes and chemical waste sites. Hazardous waste ranking systems

    SciTech Connect

    Waters, R.D.; Parker, F.L.; Crutcher, M.R.

    1991-12-31

    Hazardous materials and substances have always existed in the environment. Mankind has evolved to live with some degree of exposure to toxic materials. Until recently the risk has been from natural toxins or natural background radiation. While rapid technological advances over the past few decades have improved the lifestyle of our society, they have also dramatically increased the availability, volume and types of synthetic and natural hazardous materials. Many of their effects are as yet uncertain. Products and manufacturing by-products that no longer serve a useful purpose are deemed wastes. For some waste products land disposal will always be their ultimate fate. Hazardous substances are often included in the waste products. One needs to classify wastes by degree of hazard (risk). Risk (degree of probability of loss) is usually defined for risk assessment as probability of an occurrence times the consequences of the occurrence. Perhaps even more important than the definition of risk is the choice of a risk management strategy. The choice of strategy will be strongly influenced by the decision criteria used. Those decision criteria could be utility (the greatest happiness of the greatest number), rights or technology based or some combination of the three. It is necessary to make such choices about the definition of risks and criteria for management. It is clear that these are social (i.e., political) and value choices and science has little to say on this matter. This is another example of what Alvin Weinberg has named Transcience where the subject matter is scientific and technical but the choices are social, political and moral. This paper shall deal only with the scientific and technical aspects of the hazardous waste problem to create a hazardous substances classification system.

  9. International perspectives on hazardous waste management

    SciTech Connect

    Forester, W.S.

    1987-01-01

    In 1984, the International Solid Wastes and Public Cleansing Association (I.S.W.A.) approved the formation of an international working group on hazardous wastes. This book contains the edited final reports of the twelve national organisations which formed this working group. Also included is a review and assessment of various national policies and programs for waste management, together with recommendations and suggested strategies for the future.

  10. Vadose zone monitoring for hazardous waste sites

    SciTech Connect

    Everett, L.G.

    1984-01-01

    This book is a review and evaluation of vadose (unsaturated) zone monitoring. It describes the applicability of selected monitoring methods to hazardous waste disposal sites. Topics covered include: geohydrologic framework of the vadose zone; premonitoring of storage at disposal sites; premonitoring of water movement at disposal sites; active and abandoned site monitoring methods; waste source pollutant characterization; geohydrologic settings for waste disposals and conceptual vadose zone monitoring descriptions.

  11. 40 CFR 261.3 - Definition of hazardous waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Definition of hazardous waste. 261.3 Section 261.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE General § 261.3 Definition of hazardous waste. (a) A solid waste, as defined in § 261.2, is...

  12. 40 CFR 261.3 - Definition of hazardous waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Definition of hazardous waste. 261.3 Section 261.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE General § 261.3 Definition of hazardous waste. (a) A solid waste, as defined in § 261.2, is...

  13. Hazardous waste treatment and environmental remediation research

    SciTech Connect

    Not Available

    1989-09-29

    Los Alamos National Laboratory (LANL) is currently evaluating hazardous waste treatment and environmental remediation technologies in existence and under development to determine applicability to remediation needs of the DOE facilities under the Albuquerque Operations Office and to determine areas of research need. To assist LANL is this effort, Science Applications International Corporation (SAIC) conducted an assessment of technologies and monitoring methods that have been demonstrated or are under development. The focus of this assessment is to: (1) identify existing technologies for hazardous waste treatment and environmental remediation of old waste sites; (2) identify technologies under development and the status of the technology; (3) assess new technologies that need development to provide adequate hazardous waste treatment and remedial action technologies for DOD and DOE sites; and (4) identify hazardous waste and remediation problems for environmental research and development. There are currently numerous research and development activities underway nationwide relating to environmental contaminants and the remediation of waste sites. To perform this effort, SAIC evaluated current technologies and monitoring methods development programs in EPA, DOD, and DOE, as these are the primary agencies through which developmental methods are being demonstrated. This report presents this evaluation and provides recommendations as to pertinent research needs or activities to address waste site contamination problems. The review and assessment have been conducted at a programmatic level; site-specific and contaminant-specific evaluations are being performed by LANL staff as a separate, related activity.

  14. 76 FR 55846 - Hazardous Waste Management System: Identification and Listing of Hazardous Waste: Carbon Dioxide...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-09

    ... Listing of Hazardous Waste: Carbon Dioxide (CO2) Streams in Geologic Sequestration Activities AGENCY...) to conditionally exclude carbon dioxide (CO 2 ) streams that are hazardous from the definition of... Recovery Act (RCRA) to conditionally exclude carbon dioxide (CO 2 ) streams that are hazardous from...

  15. Unified hazardous waste and hazardous materials management regulatory program

    SciTech Connect

    Neese, K.J. )

    1994-04-01

    The administration and regulation of hazardous wastes and materials in the state of California has for many years been overseen by a number of regulatory agencies that have jurisdiction to undertake or compel cleanup. The jurisdiction and authority of each of these agencies differ, as do their philosophical underpinnings, in terms of protection of human health and the environment versus protection of groundwater resources. In 1993, Senate Bill 1082 was enacted to require the Secretary for Environmental Protection, by January 1, 1996, to adopt implementing regulations and implement a unified hazardous materials management regulatory program to consolidate the administration of specific statutory requirements for the regulation of hazardous wastes and minerals. All aspects of the unified program related to the adoption and interpretation of statewide standards and requirements will be the responsibility under existing law. For example, for underground storage tanks, that agency shall be the state Water Resources Control Board. The Department of Toxic Substances Control shall have the sole responsibility for the determination of whether a waste is hazardous or nonhazardous. Those aspects of the unified program related to the application of statewide standards to particular facilities, including the grant of authorizations, the issuance of permits, the review of reports and plans, and the enforcement of those standards and requirements against particular facilities, will be the responsibility of the certified unified program agency.

  16. Certification plan transuranic waste: Hazardous Waste Handling Facility

    SciTech Connect

    Not Available

    1992-06-01

    The purpose of this plan is to describe the organization and methodology for the certification of transuranic (TRU) waste handled in the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory (LBL). The plan incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Quality Assurance Implementing Management Plan (QAIMP) for the HWBF; and a list of the current and planned implementing procedures used in waste certification.

  17. 40 CFR 262.215 - Unwanted material that is not solid or hazardous waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Unwanted material that is not solid or... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Alternative... Eligible Academic Entities § 262.215 Unwanted material that is not solid or hazardous waste. (a) If...

  18. 40 CFR 262.215 - Unwanted material that is not solid or hazardous waste.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Unwanted material that is not solid or... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Alternative... Eligible Academic Entities § 262.215 Unwanted material that is not solid or hazardous waste. (a) If...

  19. 40 CFR 262.215 - Unwanted material that is not solid or hazardous waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Unwanted material that is not solid or... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Alternative... Eligible Academic Entities § 262.215 Unwanted material that is not solid or hazardous waste. (a) If...

  20. 40 CFR 262.215 - Unwanted material that is not solid or hazardous waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Unwanted material that is not solid or... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Alternative... Eligible Academic Entities § 262.215 Unwanted material that is not solid or hazardous waste. (a) If...

  1. 77 FR 12228 - Idaho: Proposed Authorization of State Hazardous Waste Management Program; Revision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    ... Definition of Solid Waste (73 FR 64668, October 30, 2008); Academic Laboratories Generator Standards, Alternative Standards for Hazardous Waste Determination and Accumulation (73 FR 72912, December 1, 2008... Shipments of Spend Lead-Acid Batteries (75 FR 1236, January 8, 2010); Hazardous Waste Technical...

  2. 40 CFR 262.106 - When must a hazardous waste determination be made?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false When must a hazardous waste determination be made? 262.106 Section 262.106 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE University Laboratories XL Project-Laboratory...

  3. The toxicologic hazard of superfund hazardous-waste sites.

    PubMed

    Johnson, B L; DeRosa, C

    1997-01-01

    Uncontrolled hazardous-waste sites are a major environmental and public health concern in the United States and elsewhere. The remediation of and public health responses to these sites is mandated by the federal Superfund statute. Approximately 40,000 uncontrolled waste sites have been reported to U.S. federal agencies. About 1,300 of these sites constitute the current National Priorities List (NPL) of sites for remediation. Findings from a national database on NPL sites show approximately 40% present completed exposure pathways, although this figure rose to 80% in 1996. Data from 1992 through 1996 indicate that 46% of sites are a hazard to public health. Thirty substances are found at 6% or more of sites with completed pathways. Eighteen of the substances are known human carcinogens or reasonably anticipated to be carcinogenic. Many of the 30 substances also possess systemic toxicity. The high percentage of sites with completed exposure pathways and the toxicity potential of substances in these pathways show that uncontrolled hazardous-waste sites are a major environmental threat to human health. Findings from the United States' experience in responding to uncontrolled waste sites are relevant to other countries as they address similar environmental and public health concerns. PMID:9553998

  4. Hazardous waste management in Chilean main industry: an overview.

    PubMed

    Navia, Rodrigo; Bezama, Alberto

    2008-10-01

    The new "Hazardous Waste Management Regulation" was published in the Official Newspaper of the Chilean Republic on 12 June 2003, being in force 365 days after its publication (i.e., 12 June 2004). During the next 180 days after its publication (i.e., until 12 December 2004), each industrial facility was obligated to present a "Hazardous Waste Management Plan" if the facility generates more than 12 ton/year hazardous wastes or more than 12 kg/year acute toxic wastes. Based on the Chilean industrial figures and this new regulation, hazardous waste management plans were carried out in three facilities of the most important sectors of Chilean industrial activity: a paper production plant, a Zn and Pb mine and a sawmill and wood remanufacturing facility. Hazardous wastes were identified, classified and quantified in all facilities. Used oil and oil-contaminated materials were determined to be the most important hazardous wastes generated. Minimization measures were implemented and re-use and recycling options were analyzed. The use of used oil as alternative fuel in high energy demanding facilities (i.e., cement facilities) and the re-refining of the used oil were found to be the most suitable options. In the Zn and Pb mine facility, the most important measure was the beginning of the study for using spent oils as raw material for the production of the explosives used for metals recovery from the rock. In Chile, there are three facilities producing alternative fuels from used oil, while two plants are nowadays re-refining oil to recycle it as hydraulic fluid in industry. In this sense, a proper and sustainable management of the used oil appears to be promissory. PMID:18337002

  5. USE OF PORTABLE INSTRUMENTATION FOR THE MONITORING OF FUGITIVE ORGANIC EMISSIONS FROM HAZARDOUS WASTE INCINERATORS

    EPA Science Inventory

    The report gives results of evaluations and tests of currently available portable instrumentation used to monitor fugitive organic emissions generated by the transfer and storage of liquid wastes during the operation of hazardous waste incinerators. Relevant current methodologies...

  6. Improving tamper detection for hazardous waste security

    SciTech Connect

    Johnston, R. G.; Garcia, A. R. E.; Pacheco, A. N.; Trujillo, S. J.; Martinez, R. K.; Martinez, D. D.; Lopez, L. N.

    2002-01-01

    After September 11, waste managers are increasingly expected to provide improved levels of security for the hazardous materials in their charge. Many low-level wastes that previously had minimal or no security must now be well protected, while high-level wastes require even greater levels of security than previously employed. This demand for improved security comes, in many cases, without waste managers being provided the necessary additional funding, personnel, or security expertise. Contributing to the problem is the fact that--at least in our experience--waste managers often fail to appreciate certain types of security vulnerabilities. They frequently overlook or underestimate the security risks associated with disgruntled or compromised insiders, or the potential legal and political liabilities associated with nonexistent or ineffective security. Also frequently overlooked are potential threats from waste management critics who could resort to sabotage, vandalism, or civil disobedience for purposes of discrediting a waste management program.

  7. Microwave remediation of hazardous and radioactive wastes

    SciTech Connect

    Wicks, G.G.

    2000-04-28

    A team from the Westinghouse Savannah River Technology Center (WSRC - a DOE Laboratory), and the University of Florida (UF - academia), has been active for about a decade in development of microwave technology for specialized waste management applications. This interaction has resulted in the development of unique equipment and uses of microwave energy for a variety of important applications for remediation of hazardous and radioactive wastes. Discussed are results of this unique technology for processing of electronic circuitry and components, medical wastes, discarded tires, and transuranic radioactive wastes.

  8. COMBUSTION TECHNOLOGIES FOR HAZARDOUS WASTE

    EPA Science Inventory

    The article describes basic incineration technology. Terminology is defined and EPA's regulations stated. The universe of incinerated and incinerable waste is described. Technology descriptions are provided for liquid injection incineration, rotary kiln incineration, at-sea incin...

  9. Hazardous and Mixed Waste Transportation Program

    SciTech Connect

    Hohnstreiter, G. F.; Glass, R. E.; McAllaster, M. E.; Nigrey, P. J.; Trennel, A. J.; Yoshimura, H. R.

    1991-01-01

    Sandia National Laboratories (SNL) has developed a program to address the packaging needs associated with the transport of hazardous and mixed waste during the United States' Department of Energy (DOE) remediation efforts. The program addresses the technology needs associated with the transport of materials which have components that are radioactive and chemically hazardous. The mixed waste transportation activities focus on on-site specific applications of technology to the transport of hazardous and mixed wastes. These activities were identified at a series of DOE-sponsored workshops. These activities will be composed of the following: (1) packaging concepts, (2) chemical compatibility studies, and (3) systems studies. This paper will address activities in each of these areas.

  10. USBI Booster Production Company's Hazardous Waste Management Program at the Kennedy Space Center, FL

    NASA Technical Reports Server (NTRS)

    Venuto, Charles

    1987-01-01

    In response to the hazardous-waste generating processes associated with the launch of the Space Shuttle, a hazardous waste management plan has been developed. It includes waste recycling, product substitution, waste treatment, and waste minimization at the source. Waste material resulting from the preparation of the nonmotor segments of the solid rocket boosters include waste paints (primer, topcoats), waste solvents (methylene chloride, freon, acetone, toluene), waste inorganic compounds (aluminum anodizing compound, fixer), and others. Ways in which these materials are contended with at the Kennedy Space Center are discussed.

  11. USBI Booster Production Company's Hazardous Waste Management Program at the Kennedy Space Center, FL

    NASA Astrophysics Data System (ADS)

    Venuto, Charles

    1987-05-01

    In response to the hazardous-waste generating processes associated with the launch of the Space Shuttle, a hazardous waste management plan has been developed. It includes waste recycling, product substitution, waste treatment, and waste minimization at the source. Waste material resulting from the preparation of the nonmotor segments of the solid rocket boosters include waste paints (primer, topcoats), waste solvents (methylene chloride, freon, acetone, toluene), waste inorganic compounds (aluminum anodizing compound, fixer), and others. Ways in which these materials are contended with at the Kennedy Space Center are discussed.

  12. Household Hazardous Waste and Automotive Products: A Pennsylvania Survey.

    ERIC Educational Resources Information Center

    Shorten, Charles V.; And Others

    1995-01-01

    A significant fraction of household hazardous waste (HHW) is generated by home mechanics who use such products as motor oil, cleaners and solvents, and batteries. This survey assessed the following aspects: (1) perceptions of their health-related effects; (2) perceptions of their pollution potential; and (3) their use and disposal. (LZ)

  13. Encapsulation of hazardous wastes into agglomerates

    SciTech Connect

    Guloy, A.

    1992-01-28

    The objective of this study was to investigate the feasibility of using the cementitious properties and agglomeration characteristics of coal conversion byproducts to encapsulate and immobilize hazardous waste materials. The intention was to establish an economical way of co-utilization and co-disposal of wastes. In addition, it may aid in the eradication of air pollution problems associated with the fine-powdery nature of fly ash. Encapsulation into agglomerates is a novel approach of treating toxic waste. Although encapsulation itself is not a new concept, existing methods employ high-cost resins that render them economically unfeasible. In this investigation, the toxic waste was contained in a concrete-like matrix whereby fly ash and other cementitious waste materials were utilized. The method incorporates the principles of solidification, stabilization and agglomeration. Another aspect of the study is the evaluation of the agglomeration as possible lightweight aggregates. Since fly ash is commercially used as an aggregate, it would be interesting to study the effect of incorporating toxic wastes in the strength development of the granules. In the investigation, the fly ash self-cementation process was applied to electroplating sludges as the toxic waste. The process hoped to provide a basis for delisting of the waste as hazardous and, thereby greatly minimize the cost of its disposal. Owing to the stringent regulatory requirements for hauling and disposal of hazardous waste, the cost of disposal is significant. The current practice for disposal is solidifying the waste with portland cement and dumping the hardened material in the landfill where the cost varies between $700--950/ton. Partially replacing portland cement with fly ash in concrete has proven beneficial, therefore applying the same principles in the treatment of toxic waste looked very promising.

  14. Sources and management of hazardous waste in Papua New Guinea

    SciTech Connect

    Singh, K.

    1996-12-31

    Papua New Guinea (PNG) has considerable mineral wealth, especially in gold and copper. Large-scale mining takes place, and these activities are the source of most of PNG`s hazardous waste. Most people live in small farming communities throughout the region. Those living adjacent to mining areas have experienced some negative impacts from river ecosystem damage and erosion of their lands. Industry is centered mainly in urban areas and Generates waste composed of various products. Agricultural products, pesticide residues, and chemicals used for preserving timber and other forestry products also produce hazardous waste. Most municipal waste comes from domestic and commercial premises; it consists mainly of combustibles, noncombustibles, and other wastes. Hospitals generate pathogenic organisms, radioactive materials, and chemical and pharmaceutical laboratory waste. Little is known about the actual treatment of waste before disposal in PNG. Traditional low-cost waste disposal methods are usually practiced, such as use of landfills; storage in surface impoundments; and disposal in public sewers, rivers, and the sea. Indiscriminate burning of domestic waste in backyards is also commonly practiced in urban and rural areas. 10 refs., 4 tabs.

  15. Nuclear hazardous waste cost control management

    SciTech Connect

    Selg, R.A.

    1991-05-09

    The effects of the waste content of glass waste forms on Savannah River high-level waste disposal costs are currently under study to adjust the glass frit content to optimize the glass waste loadings and therefore significantly reduce the overall waste disposal cost. Changes in waste content affect onsite Defense Waste Changes in waste contents affect onsite Defense Waste Processing Facility (DWPF) costs as well as offsite shipping and repository emplacement charges. A nominal 1% increase over the 28 wt% waste loading of DWPF glass would reduce disposal costs by about $50 million for Savannah River wastes generated to the year 2000. Optimization of the glass waste forms to be produced in the SWPF is being supported by economic evaluations of the impact of the forms on waste disposal costs. Glass compositions are specified for acceptable melt processing and durability characteristics, with economic effects tracked by the number of waste canisters produced. This paper presents an evaluation of the effects of variations in waste content of the glass waste forms on the overall cost of the disposal, including offsite shipment and repository emplacement, of the Savannah River high-level wastes.

  16. Tougher standards for burning hazardous waste

    SciTech Connect

    Valenti, M.

    1993-08-01

    This article reports that tighter emission standards for hazardous waste combustion proposed by the EPA may require design changes that could alter the economics of hazardous waste incineration in the US. A recent draft strategy for the combustion of hazardous waste by the Environmental Protection Agency (EPA) in Washington, DC, has sent tremors through the two major types of combustors of industrial wastes: commercial incinerators and cement kilns. It is too early to predict what new environmental regulations will result from this proposal, but the ability of competitive combustors to meet them will likely determine their survival. The two emissions standards specified in the draft strategy announced in May by EPA administrator Carol Browner limit the particulate emissions from hazardous waste incinerators to 0.015 grain per dry standard cubic foot, less than one-fifth the 0.08 grain now permitted. Control of dioxins spells an even sharper change in EPA strategy, for these must be held to under 30 nanograms per dry standard cubic meter. Currently, there are no overall dioxin limits, only site-specific boundaries calculated on a risk-assessment basis for boilers and industrial furnaces (BIF) that have the potential to emit large amounts of dioxins and furans.

  17. 40 CFR 264.344 - Hazardous waste incinerator permits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Incinerators § 264.344 Hazardous waste incinerator permits. (a) The owner or operator of a... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Hazardous waste incinerator...

  18. 40 CFR 264.344 - Hazardous waste incinerator permits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Hazardous waste incinerator permits... WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Incinerators § 264.344 Hazardous waste incinerator permits. (a) The owner or operator of...

  19. 40 CFR 264.344 - Hazardous waste incinerator permits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Hazardous waste incinerator permits... WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Incinerators § 264.344 Hazardous waste incinerator permits. (a) The owner or operator of...

  20. 40 CFR 264.344 - Hazardous waste incinerator permits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Hazardous waste incinerator permits... WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Incinerators § 264.344 Hazardous waste incinerator permits. (a) The owner or operator of...

  1. 40 CFR 264.344 - Hazardous waste incinerator permits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Hazardous waste incinerator permits... WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Incinerators § 264.344 Hazardous waste incinerator permits. (a) The owner or operator of...

  2. Universal waste management standards finalized for three categories of hazardous waste

    SciTech Connect

    1995-07-01

    EPA recently finalized less stringent management standards for certain widely generated hazardous wastes in order to (1) lessen the regulatory burden on handlers and transporters of such wastes, and (2) encourage currently unregulated generators of these wastes to participate in collection/recycling programs. The new regulations apply only to batteries, recalled and unused pesticides, and mercury-containing thermostats, which the agency is referring to as {open_quotes}universal wastes.{close_quotes} EPA is hoping that the less burdensome provisions will reduce the amount of these wastes sent to municipal waste landfills/incinerators and other non-hazardous waste management systems. The management standards for importing, handling, transporting, treating or recycling, and exporting universal wastes are incorporated into a new Part 273 under Title 40 of the Code of Federal Regulations. The new regulations include a mechanism for petitioning EPA to add other wastes (such as spent fluorescent lamps) to the universal waste program in the future; criteria that additional hazardous wastes would have to meet are also specified. 1 tab.

  3. Hazardous-Waste Data Management System extract tape. Data file

    SciTech Connect

    Not Available

    1991-03-15

    The file contains data compiled for the Resource Conservation and Recovery Act, using the Hazardous Waste Data Management System (HWDMS) database. Notification of Regulated Waste Activity, EPA Form 8700-12 was used to collect the data. The file was updated with information compiled from the Application for a Hazardous Waste Permit-Part A, EPA form 8700-23. The data includes each facility name, EPA Identification number, addresses, owner and operator information, facility contact name and phone number. The data also indicate whether a facility is a generator, treatment/storer/disposer, and/or transporter of hazardous waste. Also included is a listing of wastes handled, taken from 40CFR Pt. 261, SIC codes, Permit Process Codes, Permit Issuance data, and non-sensitive compliance and enforcement data. Data is included for all Regions and states except for Mississippi, which has already been implemented in RCRIS. PLEASE NOTE: The computer tape product consists of two separate tape files: the Hazardous Waste Data Management System (HWDMS) database, and the Resource Conservation and Recovery Information System (RCRIS) database. RCRIS is replacing HWDMS as the official RCRA notification database. During the first year of RCRIS implementation, both systems will be operational. As a state converts to RCRIS from HWDMS, the HWDMS data for that state is archived; the current plan is to archive all data that is stored in HWDMS by the end of 1991. In order to have a complete record of all RCRA notification data, the User must have both tapes.

  4. Hanford Site Hazardous waste determination report for transuranic debris waste streams NPFPDL2A

    SciTech Connect

    WINTERHALDER, J.A.

    1999-09-29

    This hazardous waste determination report (Report) describes the process and information used on the Hanford Site to determine that waste stream number NPFPDLZA, consisting of 30 containers of contact-handled transuranic debris waste, is not hazardous waste regulated by the Resource Conservation and Recovery Act (RCRA) or the New Mexico Hazardous Waste Act. For a waste to be hazardous under these statutes, the waste either must be specifically listed as a hazardous waste, or exhibit one or more of the characteristics of a hazardous waste, Le., ignitability, corrosivity, reactivity, or toxicity. Waste stream NPFPDLZA was generated, packaged, and placed into storage between 1993 and 1997. Extensive knowledge of the waste generating process, facility operational history, and administrative controls and operating procedures in effect at the time of generation, supported the initial nonhazardous waste determination. Because of the extent and reliability of information pertaining to this waste type, and the total volume of waste in the debris matrix parameter category, the Hanford Site is focusing initial efforts on this and similar waste streams for the first shipment to the Waste Isolation Pilot Plant (WIPP). RCRA regulations authorize hazardous waste determinations to be made either by using approved sampling and analysis methods or by applying knowledge of the waste in light of the materials or the process(es) used. This latter approach typically is referred to as process knowledge. The Transuranic Waste Characterization Quality Assurance Program Plan (CAO-94-1010) for WIPP refers to acceptable knowledge in essentially the same terms; acceptable knowledge as used throughout this Report is synonymous with the term process knowledge. The 30 containers addressed in this Report were characterized by the following methods: Acceptable knowledge; Nondestructive examination using real-time radiography; Visual examination; and Headspace gas sampling and analysis. The initial

  5. CHARACTERIZATION OF HAZARDOUS WASTE INCINERATION RESIDUALS

    EPA Science Inventory

    The purpose of the study was to provide data on the quantities and characteristics of solid and liquid discharges from hazardous waste incineration facilities. A total of 10 facilities were sampled comprising major incineration designs and flue gas treatment devices. All inlet an...

  6. FIELD EXPERIENCE IN SAMPLING HAZARDOUS WASTE INCINERATORS

    EPA Science Inventory

    This paper is for presentation at the 77th annual meeting of the Air Pollution Control Association, June 24-29, 1984. The paper contains much useful, pragmatic information gained through numerous hazardous waste incinerator trial burn-type investigations performed for EPA by the ...

  7. PROTOCOL FOR BIOASSESSMENT OF HAZARDOUS WASTE SITES

    EPA Science Inventory

    The bioassessment protocol is one of several tools, including chemical analysis and field study, that can be used to characterize the potential environmental risk associated with hazardous waste sites. The protocol can be applied to priority ranking for deciding the need for clea...

  8. POLYETHYLENE ENCAPSULATES FOR HAZARDOUS WASTE DRUMS

    EPA Science Inventory

    This capsule report summarizes studies of the use of polyethylene (P.E.) for encapsulating drums of hazardous wastes. Flat PE sheet is welded to roto moded PE containers which forms the encapsulates. Plastic pipe welding art was used, but the prototype welding apparatus required ...

  9. HAZARDOUS WASTE DECONTAMINATION WITH PLASMA REACTORS

    EPA Science Inventory

    The use of electrical energy in the form of plasma has been considered as a potentially efficient means of decontaminating hazardous waste, although to date only a few attempts have been made to do so. There are a number of relative advantages and some potential disadvantages to...

  10. Management of uncontrolled hazardous waste sites

    SciTech Connect

    Not Available

    1985-01-01

    This book is a compilation of papers presented at a conference on the management of uncontrolled hazardous waste sites. Papers were presented in the following topics: federal and state programs; sampling and monitoring; leaking tanks; in-situ treatment; site remediation; banner technology; storage/disposal; endangerment assessment; risk assessment techniques; and research and development.

  11. Navigating the Hazardous Waste Management Maze.

    ERIC Educational Resources Information Center

    Voelkle, James P.

    1997-01-01

    Hazardous waste management is a continual process. Administrators should maintain good relations with state agencies and the Environmental Protection Agency and use them as resources. Contacts with businesses and professional groups as well as forming coalitions with neighboring districts are ways to share information and expenses. (MLF)

  12. Vadose zone monitoring for hazardous waste sites

    SciTech Connect

    Everett, L.G.; Wilson, L.G.; Hoylman, E.W.

    1983-10-01

    This book describes the applicability of vadose zone monitoring techniques to hazardous waste site investigations. More than 70 different sampling and nonsampling vadose zone monitoring techniques are described in terms of their advantages and disadvantages. Physical, chemical, geologic, topographic, geohydrologic, and climatic constraints for vadose zone monitoring are quantitatively determined. Vadose zone monitoring techniques are categorized for premonitoring, active, and postclosure site assessments. Waste disposal methods are categorized for piles, landfills, impoundments, and land treatment. Conceptual vadose zone monitoring approaches are developed for specific waste disposal method categories.

  13. Hanford facility dangerous waste permit application, 325 hazardous waste treatment units. Revision 1

    SciTech Connect

    1997-07-01

    This report contains the Hanford Facility Dangerous Waste Permit Application for the 325 Hazardous Waste Treatment Units (325 HWTUs) which consist of the Shielded Analytical Laboratory, the 325 Building, and the 325 Collection/Loadout Station Tank. The 325 HWTUs receive, store, and treat dangerous waste generated by Hanford Facility programs. Routine dangerous and/or mixed waste treatment that will be conducted in the 325 HWTUs will include pH adjustment, ion exchange, carbon absorption, oxidation, reduction, waste concentration by evaporation, precipitation, filtration, solvent extraction, solids washing, phase separation, catalytic destruction, and solidification/stabilization.

  14. BOILERS COFIRING HAZARDOUS WASTE: EFFECTS OF HYSTERESIS ON PERFORMANCE MEASUREMENTS

    EPA Science Inventory

    The Hazardous Waste Engineering Research Laboratory (HWERL) has conducted full scale and pilot scale boiler testing to determine hazardous waste destruction and removal efficiencies (DRE's) and other associated boiler performance parameters during the last five years. The effort ...

  15. A successful petition to delist a hazardous waste

    SciTech Connect

    Finch, A.J.; Cormier, S.L.

    1997-12-31

    The prospect of a favorable ruling in an effort to have a hazardous waste delisted is remote, and few have been granted. This paper recounts the successful procedure used to have materials from a hazardous waste site delisted. Other property owners with sites affected with hazardous wastes will find the methodology discussed here instructive if they are contemplating a delisting petition. The regulatory agency with jurisdiction was the Michigan Department of Environmental Quality through its Waste Management Division (MDEQ WMD). The state has accepted authority for this function from the USEPA. The materials from discontinued electroplating operations were considered hazardous based on their contact with a listed F006 waste sludge generated from the electroplating operations. The sludge had been stored in surface impoundments. To initiate the delisting procedure, the requirements of a USEPA document were followed: Petition to Delist Hazardous Wastes, a Guidance Manual. The MDEQ WMD sanctioned the use of this guidance. This document is issued by the Office of Solid Waste. In observing the guidance, the following actions were taken: (1) Collection of soil samples from the area proposed for delisting; (2) Evaluation of data and the feasibility of preparing a delisting petition; (3) Development of the petition. In developing the details of the petition, the data from the site were scrutinized. Analytical results of metals in the soil samples were compared with pre-established maximum allowable concentrations that had been calculated in a closure plan. These values were also compared with delisting levels calculated by USEPA`s Composite Model for Landfills (EPACML). The data indicated that the levels of chemical constituents were below the appropriate regulatory criteria. Therefore, the petition was launched. This paper discusses their effective procedure and contents of each section of the delisting petition.

  16. 75 FR 73972 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Removal of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-30

    ... Company--Texas Operations, published on September 24, 2010, 75 FR 58315. We stated in that direct final... which will be based on the parallel proposed rule also published on September 24, 2010, 75 FR 58346. As... AGENCY 40 CFR Part 261 Hazardous Waste Management System; Identification and Listing of Hazardous...

  17. 76 FR 59960 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Withdrawal of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-28

    ... notice removes the proposed rule published in 76 FR 5110 (January 28, 2011) for public review and comment... Landfill (Gulf West) located in Anahuac, TX, published on January 28, 2011 (76 FR 5110). EPA subsequently... AGENCY 40 CFR Part 261 Hazardous Waste Management System; Identification and Listing of Hazardous...

  18. Method and apparatus for incinerating hazardous waste

    DOEpatents

    Korenberg, Jacob

    1990-01-01

    An incineration apparatus and method for disposal of infectious hazardous waste including a fluidized bed reactor containing a bed of granular material. The reactor includes a first chamber, a second chamber, and a vertical partition separating the first and second chambers. A pressurized stream of air is supplied to the reactor at a sufficient velocity to fluidize the granular material in both the first and second chambers. Waste materials to be incinerated are fed into the first chamber of the fluidized bed, the fine waste materials being initially incinerated in the first chamber and subsequently circulated over the partition to the second chamber wherein further incineration occurs. Coarse waste materials are removed from the first chamber, comminuted, and recirculated to the second chamber for further incineration. Any partially incinerated waste materials and ash from the bottom of the second chamber are removed and recirculated to the second chamber for further incineration. This process is repeated until all infectious hazardous waste has been completely incinerated.

  19. Decision analysis for INEL hazardous waste storage

    SciTech Connect

    Page, L.A.; Roach, J.A.

    1994-01-01

    In mid-November 1993, the Idaho National Engineering Laboratory (INEL) Waste Reduction Operations Complex (WROC) Manager requested that the INEL Hazardous Waste Type Manager perform a decision analysis to determine whether or not a new Hazardous Waste Storage Facility (HWSF) was needed to store INEL hazardous waste (HW). In response to this request, a team was formed to perform a decision analysis for recommending the best configuration for storage of INEL HW. Personnel who participated in the decision analysis are listed in Appendix B. The results of the analysis indicate that the existing HWSF is not the best configuration for storage of INEL HW. The analysis detailed in Appendix C concludes that the best HW storage configuration would be to modify and use a portion of the Waste Experimental Reduction Facility (WERF) Waste Storage Building (WWSB), PBF-623 (Alternative 3). This facility was constructed in 1991 to serve as a waste staging facility for WERF incineration. The modifications include an extension of the current Room 105 across the south end of the WWSB and installing heating, ventilation, and bay curbing, which would provide approximately 1,600 ft{sup 2} of isolated HW storage area. Negotiations with the State to discuss aisle space requirements along with modifications to WWSB operating procedures are also necessary. The process to begin utilizing the WWSB for HW storage includes planned closure of the HWSF, modification to the WWSB, and relocation of the HW inventory. The cost to modify the WWSB can be funded by a reallocation of funding currently identified to correct HWSF deficiencies.

  20. Annual report of waste generation and pollution prevention progress 1995

    SciTech Connect

    1997-02-01

    This fourth Annual Report presents and analyzes 1995 DOE complex-wide waste generation and pollution prevention activities at 40 reporting sites in 25 States, and trends DOE waste generation from 1991 through 1995. DOE has established a 50% reduction goal (relative to the 1993 baseline) for routine operations radioactive and hazardous waste generation, due by December 31, 1999. Routine operations waste generation decreased 37% from 1994 to 1995, and 43% overall from 1993--1995.

  1. 49 CFR 172.205 - Hazardous waste manifest.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) hazardous waste manifest (manifest) is prepared in accordance with 40 CFR 262.20 and is signed, carried, and... in accordance with 40 CFR 263.22. (5) Before accepting hazardous waste from a rail transporter, a non.... (h) A hazardous waste manifest required by 40 CFR part 262, containing all of the...

  2. 49 CFR 172.205 - Hazardous waste manifest.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) hazardous waste manifest (manifest) is prepared in accordance with 40 CFR 262.20 and is signed, carried, and... in accordance with 40 CFR 263.22. (5) Before accepting hazardous waste from a rail transporter, a non.... (h) A hazardous waste manifest required by 40 CFR part 262, containing all of the...

  3. 49 CFR 172.205 - Hazardous waste manifest.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) hazardous waste manifest (manifest) is prepared in accordance with 40 CFR 262.20 and is signed, carried, and... in accordance with 40 CFR 263.22. (5) Before accepting hazardous waste from a rail transporter, a non.... (h) A hazardous waste manifest required by 40 CFR part 262, containing all of the...

  4. 49 CFR 172.205 - Hazardous waste manifest.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) hazardous waste manifest (manifest) is prepared in accordance with 40 CFR 262.20 and is signed, carried, and... in accordance with 40 CFR 263.22. (5) Before accepting hazardous waste from a rail transporter, a non.... (h) A hazardous waste manifest required by 40 CFR part 262, containing all of the...

  5. 49 CFR 172.205 - Hazardous waste manifest.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) hazardous waste manifest (manifest) is prepared in accordance with 40 CFR 262.20 and is signed, carried, and... in accordance with 40 CFR 263.22. (5) Before accepting hazardous waste from a rail transporter, a non.... (h) A hazardous waste manifest required by 40 CFR part 262, containing all of the...

  6. Waste management facilities cost information for hazardous waste. Revision 1

    SciTech Connect

    Shropshire, D.; Sherick, M.; Biagi, C.

    1995-06-01

    This report contains preconceptual designs and planning level life-cycle cost estimates for managing hazardous waste. The report`s information on treatment, storage, and disposal modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the US Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report.

  7. 76 FR 4823 - Hazardous Waste Management System; Identifying and Listing Hazardous Waste Exclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-27

    ... permitted, licensed, or registered by a State to manage industrial solid waste. The rule also imposes... original listing criteria, as well as the additional factors required by the Hazardous and Solid Waste... rule (75 FR 67919). EPA considered all comments received, and for reasons stated in both the...

  8. 77 FR 56558 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-13

    ... for IBM, EPA proposed, on July 16, 2012 (77 FR 41720), to exclude the waste from the lists of... authorization to delist federal listed wastes. See 58 FR 26243 (May 3, 1993). Instead, the Vermont Hazardous... Under Executive Order 12866, ``Regulatory Planning and Review'' (58 FR 51735, October 4, 1993),...

  9. Hazard ranking systems for chemical wastes and chemical waste sites

    SciTech Connect

    Waters, R.D.; Parker, F.L. ); Crutcher, M.R. and Associates, Inc., Columbia, IL )

    1991-01-01

    Hazardous materials and substances have always existed in the environment. Mankind has evolved to live with some degree of exposure to toxic materials. Until recently the risk has been from natural toxins or natural background radiation. While rapid technological advances over the past few decades have improved the lifestyle of our society, they have also dramatically increased the availability, volume and types of synthetic and natural hazardous materials. Many of their effects are as yet uncertain. Products and manufacturing by-products that no longer serve a useful purpose are deemed wastes. For some waste products land disposal will always be their ultimate fate. Hazardous substances are often included in the waste products. One needs to classify wastes by degree of hazard (risk). Risk (degree of probability of loss) is usually defined for risk assessment as probability of an occurrence times the consequences of the occurrence. Perhaps even more important than the definition of risk is the choice of a risk management strategy. The choice of strategy will be strongly influenced by the decision criteria used. Those decision criteria could be utility (the greatest happiness of the greatest number), rights or technology based or some combination of the three. It is necessary to make such choices about the definition of risks and criteria for management. It is clear that these are social (i.e., political) and value choices and science has little to say on this matter. This is another example of what Alvin Weinberg has named Transcience where the subject matter is scientific and technical but the choices are social, political and moral. This paper shall deal only with the scientific and technical aspects of the hazardous waste problem to create a hazardous substances classification system.

  10. 76 FR 2618 - Minnesota: Final Authorization of State Hazardous Waste Management Program Revision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-14

    ..., 61 FR 7001.0150(3)(P)(3),( Facilities and Hazardous 59931. 4); 7001.0560(E); Waste Generators... February 11, 1985 (50 FR 3756) to implement the RCRA hazardous waste management program. We granted... Arc Furnace Dust 56 FR 41164. 7045.0214,3,E; (K061) Checklist 95. 7045.1390; Effective June 22,...