Science.gov

Sample records for hazardous waste landfill

  1. ESTIMATING LEACHATE PRODUCTION FROM CLOSED HAZARDOUS WASTE LANDFILLS

    EPA Science Inventory

    Hazardous wastes disposed of in landfills may continue to drain for several years after site closure. The report presents suitable analytical methods for predicting the flow of leachate to underdrains from closed hazardous waste landfills. Leachate sources include waste fluids as...

  2. PREDICTION/MITIGATION OF SUBSIDENCE DAMAGE TO HAZARDOUS WASTE LANDFILL COVERS

    EPA Science Inventory

    Characteristics of Resource Conservation and Recovery Act hazardous waste landfills and of landfilled hazardous wastes have been described to permit development of models and other analytical techniques for predicting, reducing, and preventing landfill settlement and related cove...

  3. Household hazardous waste in municipal landfills: contaminants in leachate.

    PubMed

    Slack, R J; Gronow, J R; Voulvoulis, N

    2005-01-20

    Household hazardous waste (HHW) includes waste from a number of household products such as paint, garden pesticides, pharmaceuticals, photographic chemicals, certain detergents, personal care products, fluorescent tubes, waste oil, heavy metal-containing batteries, wood treated with dangerous substances, waste electronic and electrical equipment and discarded CFC-containing equipment. Data on the amounts of HHW discarded are very limited and are hampered by insufficient definitions of what constitutes HHW. Consequently, the risks associated with the disposal of HHW to landfill have not been fully elucidated. This work has focused on the assessment of data concerning the presence of hazardous chemicals in leachates as evidence of the disposal of HHW in municipal landfills. Evidence is sought from a number of sources on the occurrence in landfill leachates of hazardous components (heavy metals and xenobiotic organic compounds [XOC]) from household products and the possible disposal-to-emissions pathways occurring within landfills. This review demonstrates that a broad range of xenobiotic compounds occurring in leachate can be linked to HHW but further work is required to assess whether such compounds pose a risk to the environment and human health as a result of leakage/seepage or through treatment and discharge. PMID:15626384

  4. TREATMENT OF REACTIVE WASTES AT HAZARDOUS WASTE LANDFILLS

    EPA Science Inventory

    This report is intended to provide an information base for personnel accepting hazardous waste at existing disposal sites, or performing remedial action at uncontrolled waste sites, to make the appropriate decisions regarding the disposition of reactive wastes. It emphasizes simp...

  5. 40 CFR 264.555 - Disposal of CAMU-eligible wastes in permitted hazardous waste landfills.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Disposal of CAMU-eligible wastes in permitted hazardous waste landfills. 264.555 Section 264.555 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...

  6. Remote sensing investigations at a hazardous-waste landfill

    USGS Publications Warehouse

    Stohr, C.; Su, W.-J.; DuMontelle, P.B.; Griffin, R.A.

    1987-01-01

    In 1976 state licensed landfilling of industrial chemicals was begun above an abandoned, underground coal mine in Illinois. Five years later organic chemical pollutants were discovered in a monitoring well, suggesting migration 100 to 1000 times faster than predicted by laboratory tests. Remote sensing contributed to the determination of the causes of faster-than-predicted pollutant migration at the hazardous-waste landfill. Aerial and satellite imagery were employed to supplement field studies of local surface and groundwater hydrology, and to chronicle site history. Drainage impediments and depressions in the trench covers collected runoff, allowing rapid recharge of surface waters to some burial trenches. These features can be more effectively identified by photointerpretation than by conventional field reconnaissance. A ground-based, post-sunset survey of the trench covers that showed that a distinction between depressions which hold moisture at the surface from freely-draining depressions which permit rapid recharge to the burial trenches could be made using thermal infrared imagery.In 1976 state licensed landfilling of industrial chemicals was begun above an abandoned, underground coal mine in Illinois. Five years later organic chemical pollutants were discovered in a monitoring well, suggesting migration 100 to 1000 times faster than predicted by laboratory tests. Remote sensing contributed to the determination of the causes of faster-than-predicted pollutant migration at the hazardous-waste landfill. Aerial and satellite imagery were employed to supplement field studies of local surface and groundwater hydrology, and to chronicle site history. Drainage impediments and depressions in the trench covers collected runoff, allowing rapid recharge of surface waters to some burial trenches.

  7. LINERS FOR SANITARY LANDFILLS AND CHEMICAL AND HAZARDOUS WASTE DISPOSAL SITES

    EPA Science Inventory

    This report lists addresses of sanitary landfills and chemical and hazardous waste disposal sites and holding ponds with some form of impermeable lining. Liners included are polyethylene, polyvinyl chloride, Hypalon R, ethylene propylene diene monomer, butyl rubber, conventional ...

  8. Geotechnical hazards associated with closed municipal solid waste landfill sites

    NASA Astrophysics Data System (ADS)

    Powrie, W.; Richards, D.; Beaven, R.

    2015-09-01

    As pressure for new infrastructure and development grows, it is inevitable that building projects will encounter some of the c20,000 closed former solid waste landfills in the UK, many of which will have accepted municipal solid wastes (MSW). Construction on or across these sites brings a special set of geohazards associated with the potential for large and difficult to predict settlements, gas (and odour) release or generation, contaminated leachate and the breach of containment systems and other environmental controls. The presentation will discuss these issues with reference to recent research into understanding and predicting settlements in municipal solid waste landfills; assessing the total, current and residual gas potential of biodegradable wastes; the role of the hydraulic regime in the flushing of contaminants from the waste and the quality of leachate; and the need or otherwise for the long term integrity of engineered barriers and controls.

  9. FEASIBILITY OF IN SITU SOLIDIFICATION/STABILIZATION OF LANDFILLED HAZARDOUS WASTES

    EPA Science Inventory

    This report discusses the feasibility of solidifying or stabilizing hazardous industrial wastes that are already in place at a landfill. Solidification methods considered include (1) incorporating the waste into solids, (2) fusing the waste with soil, and (3) isolating the waste ...

  10. A RULE-BASED SYSTEM FOR EVALUATING FINAL COVERS FOR HAZARDOUS WASTE LANDFILLS

    EPA Science Inventory

    This chapter examines how rules are used as a knowledge representation formalism in the domain of hazardous waste management. A specific example from this domain involves performance evaluation of final covers used to close hazardous waste landfills. Final cover design and associ...

  11. Assessment for the management of NORM wastes in conventional hazardous and nonhazardous waste landfills.

    PubMed

    Mora, Juan C; Baeza, Antonio; Robles, Beatriz; Sanz, Javier

    2016-06-01

    Naturally Occurring Radioactive Materials (NORM) wastes are generated in huge quantities in several industries and their management has been carried out under considerations of industrial non-radioactive wastes, before the concern on the radioactivity content was included in the legislation. Therefore these wastes were conditioned using conventional methods and the waste disposals were designed to isolate toxic elements from the environment for long periods of time. Spanish regulation for these conventional toxic waste disposals includes conditions that assure adequate isolation to minimize the impact of the wastes to the environment in present and future conditions. After 1996 the radiological impact of the management of NORM wastes is considered and all the aspects related with natural radiations and the radiological control regarding the management of residues from NORM industries were developed in the new regulation. One option to be assessed is the disposal of NORM wastes in hazardous and non-hazardous waste disposals, as was done before this new regulation. This work analyses the management of NORM wastes in these landfills to derive the masses that can be disposed without considerable radiological impact. Generic dose assessments were carried out under highly conservative hypothesis and a discussion on the uncertainty and variability sources was included to provide consistency to the calculations. PMID:26921509

  12. Using MCDA and GIS for hazardous waste landfill siting considering land scarcity for waste disposal

    SciTech Connect

    Feo, Giovanni De; Gisi, Sabino De

    2014-11-15

    Highlights: • Wasting land for the siting of hazardous waste landfills must be avoided. • The siting procedure is based on a land use map of potentially suitable areas. • All the waste facilities of the management system are simultaneously considered. • A case study is developed considering two multi-criteria techniques. • An innovative criteria weighting tool (PSW) is used in combination with the AHP. - Abstract: The main aim of this study was to develop a procedure that minimizes the wasting of space for the siting of hazardous waste landfills as part of a solid waste management system. We wanted to tackle the shortage of land for waste disposal that is a serious and growing problem in most large urban regions. The procedure combines a multi-criteria decision analysis (MCDA) approach with a geographical information system (GIS). The GIS was utilised to obtain an initial screening in order to eliminate unsuitable areas, whereas the MCDA was developed to select the most suitable sites. The novelty of the proposed siting procedure is the introduction of a new screening phase before the macro-siting step aimed at producing a “land use map of potentially suitable areas” for the siting of solid waste facilities which simultaneously takes into consideration all plant types. The issue of obtaining sites evaluations of a specific facility was coupled with the issue of not wasting land appropriate to facilitate other types of waste management options. In the developed case study, the use of an innovative criteria weighting tool (the “Priority Scale”) in combination with the Analytic Hierarchy Process was useful to easier define the priorities of the evaluation criteria in comparison with other classic methods such as the Paired Comparison Technique in combination with the Simple Additive Weighting method.

  13. AVOIDING FAILURE OF LEACHATE COLLECTION SYSTEMS AT HAZARDOUS WASTE LANDFILLS

    EPA Science Inventory

    Failure of leachate collection systems is expected to be a problem in the operation of hazardous waste disposal facilities, just as failure of drainage systems has been a problem at agricultural sites. The principal failure mechanisms include sedimentation, clogging by biological...

  14. Results of Hazardous and Mixed Waste Excavation from the Chemical Waste Landfill

    SciTech Connect

    Young, S. G.; Schofield, D. P.; Kwiecinski, D.; Edgmon, C. L.; Methvin, R.

    2002-02-27

    This paper describes the results of the excavation of a 1.9-acre hazardous and mixed waste landfill operated for 23 years at Sandia National Laboratories, Albuquerque, New Mexico. Excavation of the landfill was completed in 2 1/2 years without a single serious accident or injury. Approximately 50,000 cubic yards of soil contaminated with volatile and semi-volatile organics, metals, polychlorinated biphenyl compounds, and radioactive constituents was removed. In addition, over 400 cubic yards of buried debris was removed, including bulk debris, unknown chemicals, compressed gas cylinders, thermal and chemical batteries, explosive and ordnance debris, pyrophoric materials and biohazardous waste. Removal of these wastes included negotiation of multiple regulations and guidances encompassed in the Resource Conservation and Recovery Act (RCRA), the Toxic Substances Control Act (TSCA), and risk assessment methodology. RCRA concepts that were addressed include the area of contamination, permit modification, emergency treatment provision, and listed waste designation. These regulatory decisions enabled the project to overcome logistical and programmatic needs such as increased operational area, the ability to implement process improvements while maintaining a record of decisions and approvals.

  15. Using MCDA and GIS for hazardous waste landfill siting considering land scarcity for waste disposal.

    PubMed

    De Feo, Giovanni; De Gisi, Sabino

    2014-11-01

    The main aim of this study was to develop a procedure that minimizes the wasting of space for the siting of hazardous waste landfills as part of a solid waste management system. We wanted to tackle the shortage of land for waste disposal that is a serious and growing problem in most large urban regions. The procedure combines a multi-criteria decision analysis (MCDA) approach with a geographical information system (GIS). The GIS was utilised to obtain an initial screening in order to eliminate unsuitable areas, whereas the MCDA was developed to select the most suitable sites. The novelty of the proposed siting procedure is the introduction of a new screening phase before the macro-siting step aimed at producing a "land use map of potentially suitable areas" for the siting of solid waste facilities which simultaneously takes into consideration all plant types. The issue of obtaining sites evaluations of a specific facility was coupled with the issue of not wasting land appropriate to facilitate other types of waste management options. In the developed case study, the use of an innovative criteria weighting tool (the "Priority Scale") in combination with the Analytic Hierarchy Process was useful to easier define the priorities of the evaluation criteria in comparison with other classic methods such as the Paired Comparison Technique in combination with the Simple Additive Weighting method. PMID:25002369

  16. REQUIREMENTS FOR HAZARDOUS WASTE LANDFILL DESIGN, CONSTRUCTION AND CLOSURE

    EPA Science Inventory

    This publication contains edited versions of the material presented at ten Technology Transfer seminars conducted in 1988 on this subject. Sections are included on design of clay and flexible membrane liners, leachate collector systems, and landfill covers. Construction quality a...

  17. Hazardous materials in Fresh Kills landfill

    SciTech Connect

    Hirschhorn, J.S.

    1997-12-31

    No environmental monitoring and corrective action programs can pinpoint multiple locations of hazardous materials the total amount of them in a large landfill. Yet the consequences of hazardous materials in MSW landfills are considerable, in terms of public health concerns, environmental damage, and cleanup costs. In this paper a rough estimation is made of how much hazardous material may have been disposed in Fresh Kills landfill in Staten Island, New York. The logic and methods could be used for other MSW landfills. Fresh Kills has frequently been described as the world`s largest MSW landfill. While records of hazardous waste disposal at Fresh Kills over nearly 50 years of operation certainly do not exist, no reasonable person would argue with the conclusion that large quantities of hazardous waste surely have been disposed at Fresh Kills, both legally and illegally. This study found that at least 2 million tons of hazardous wastes and substances have been disposed at Fresh Kills since 1948. Major sources are: household hazardous waste, commercial RCRA hazardous waste, incinerator ash, and commercial non-RCRA hazardous waste, governmental RCRA hazardous waste. Illegal disposal of hazardous waste surely has contributed even more. This is a sufficient amount to cause serious environmental contamination and releases, especially from such a landfill without an engineered liner system, for example. This figure is roughly 1% of the total amount of waste disposed in Fresh Kills since 1948, probably at least 200 million tons.

  18. FLORIDA HAZARDOUS WASTE AND SANITARY LANDFILL REPORT, COUNTY DATA. GENERATOR DATA AND CHARACTERISTICS OF SANITARY LANDFILLS. PART 2. COUNTIES: BROWARD, CALHOUN, CHARLOTTE, CITRUS, CLAY, COLLIER

    EPA Science Inventory

    The report provides data on the use of sanitary landfills (Subtitle D facilities) for hazardous waste disposal in Florida by small quantity generators. It consists of eleven parts including a part called Study Area Data which contains the data aggregated across the counties cover...

  19. Birth weight reduction associated with residence near a hazardous waste landfill.

    PubMed Central

    Berry, M; Bove, F

    1997-01-01

    We examined the relationship between birth weight and mother's residence near a hazardous waste landfill. Twenty-five years of birth certificates (1961-1985) were collected for four towns. Births were grouped into five 5-year periods corresponding to hypothesized exposure periods (1971-1975 having the greatest potential for exposure). From 1971 to 1975, term births (37-44 weeks gestation) to parents living closest to the landfill (Area 1A) had a statistically significant lower average birth weight (192 g) and a statistically significant higher proportion of low birth weight [odds ratio (OR) = 5.1; 95% confidence interval (CI), 2.1-12.3] than the control population. Average term birth weights in Area 1A rebounded by about 332 g after 1975. Parallel results were found for all births (gestational age > 27 weeks) in Area 1A during 1971-1975. Area 1A infants had twice the risk of prematurity (OR = 2.1; 95 CI, 1.0-4.4) during 1971-1975 compared to the control group. The results indicate a significant impact to infants born to residents living near the landfill during the period postulated as having the greatest potential for exposure. The magnitude of the effect is in the range of birth weight reduction due to cigarette smoking during pregnancy. Images Figure 1. Figure 2. PMID:9347901

  20. Hydrogeology and water quality near a solid- and hazardous-waste landfill, Northwood, Ohio

    USGS Publications Warehouse

    De Roche, J.T.; Breen, K.J.

    1989-01-01

    Hydrogeology and water quality of ground water and selected streams were evaluated near a landfill in northwestern Ohio. The landfill is used for codisposal of solid and hazardous waste. Water-level and geologic data were collected from 36 wells and 3 surface-water sites during the period November 1983 to November 1985. Water-quality samples were collected from 18 wells and 3 surface-water sites this during this same period. The primary aquifers in the area are the Greenfield Dolomite and underlying Lockport Dolomite of Silurian age. These bedrock carbonates are overlain by two clay tills of Wisconsin age. The tills are capped by a glacial lake clay. The tills generally are saturated, but do not yield sufficient water to be considered an aquifer. Two wells in the study area yield water, in part, from discontinuous deposits of outwash sand and gravel at the lower till-bedrock interface. Regional ground-water flow is from southwest to northeast; local flow is influenced by a ground-water mound centered under the northernmost cells of the landfill. Water levels in wells penetrating refuse within the landfill and the presence of leachate seeps indicate that the refuse is saturated. Head relations among the landfill, till, and dolomite aquifer indicate a vertical component of flow downward from the landfill to the dolomite aquifer. Water levels near the landfill fluctuate as much as 14 feet per year, in contrast to fluctuations of less than 3 feet per year in wells upgradient landfill. Ground waters from wells completed in the dolomite aquifer and glacial till were found to have major-iron concentrations controlled, in large part, by reaction with calcite, dolomite, and other minerals in the aquifer. Only minor departures from equilibrium mineral saturation were noted for ground water, except in wells affected by cement/grout contamination. Molal ratios of calcuim:magnesium in ground water suggest a similar chemical evolution of waters throughout the dolomite aquifer in

  1. Hazardous waste site assessment: Inactive landfill, Site 300, Lawrence Livermore National Laboratory

    SciTech Connect

    Not Available

    1985-01-01

    This report presents the results of an investigation of an inactive landfill (Pit 6) at Lawrence Livermore National Laboratory's (LLNL) Site 300. The primary objectives were to: collect and review background information pertaining to past waste disposal practices and previous environmental characterization studies; conduct a geophysical survey of the landfill area to locate the buried wastes; conduct a hydrogeologic investigation to provide additional data on the rate and direction of groundwater flow, the extent of any groundwater contamination, and to investigate the connection, if any, of the shallow groundwater beneath the landfill with the local drinking water supply; conduct a risk assessment to identify the degree of threat posed by the landfill to the public health and environment; compile a preliminary list of feasible long-term remedial action alternatives for the landfill; and develop a list of recommendations for any interim measures necessary at the landfill should the long-term remedial action plan be needed.

  2. Integrating multi-criteria decision analysis for a GIS-based hazardous waste landfill sitting in Kurdistan Province, western Iran

    SciTech Connect

    Sharifi, Mozafar Hadidi, Mosslem Vessali, Elahe Mosstafakhani, Parasto Taheri, Kamal Shahoie, Saber Khodamoradpour, Mehran

    2009-10-15

    The evaluation of a hazardous waste disposal site is a complicated process because it requires data from diverse social and environmental fields. These data often involve processing of a significant amount of spatial information which can be used by GIS as an important tool for land use suitability analysis. This paper presents a multi-criteria decision analysis alongside with a geospatial analysis for the selection of hazardous waste landfill sites in Kurdistan Province, western Iran. The study employs a two-stage analysis to provide a spatial decision support system for hazardous waste management in a typically under developed region. The purpose of GIS was to perform an initial screening process to eliminate unsuitable land followed by utilization of a multi-criteria decision analysis (MCDA) to identify the most suitable sites using the information provided by the regional experts with reference to new chosen criteria. Using 21 exclusionary criteria, as input layers, masked maps were prepared. Creating various intermediate or analysis map layers a final overlay map was obtained representing areas for hazardous waste landfill sites. In order to evaluate different landfill sites produced by the overlaying a landfill suitability index system was developed representing cumulative effects of relative importance (weights) and suitability values of 14 non-exclusionary criteria including several criteria resulting from field observation. Using this suitability index 15 different sites were visited and based on the numerical evaluation provided by MCDA most suitable sites were determined.

  3. [Simulation on contamination forecast and control of groundwater in a certain hazardous waste landfill].

    PubMed

    Ma, Zhi-Fei; An, Da; Jiang, Yong-Hai; Xi, Bei-Dou; Li, Ding-Long; Zhang, Jin-Bao; Yang, Yu

    2012-01-01

    On the basis of site investigation and data collection of a certain hazardous waste landfill, the groundwater flow and solute transport coupled models were established by applying Visual Modflow software, which was used to conduct a numerical simulation that forecast the transport process of Cr6+ in groundwater and the effects of three control measures (ground-harden, leakage-proof barriers and drainage ditches) of contaminants transport after leachate leakage happened in impermeable layer of the landfill. The results show that the contamination plume of Cr6+ transports with groundwater flow direction, the contamination rang would reach the pool's boundary in 10 years, and the distance of contamination transport is 1 450 m. But the diffusion range of contamination plume would not be obviously expanded between 10 and 20 years. While the ground is hardened, the contamination plume would not reach the pool's boundary in 20 years. When the leakage-proof barrier is set in the bottom of water table aquifer, the concentration of Cr6+ is higher than that the leakage-proof barrier is unset, but the result is just opposite when setting the leakage-proof barrier in the bottom of underlying aquifer. The range of contamination plume is effectively controlled by setting drainage ditches that water discharge is 2 642 m3 x d(-1), which makes the monitoring wells would not be contaminated in 20 years. Moreover, combining the ground-harden with drainage ditches can get the best effect in controlling contaminants diffusion, and meanwhile, the drainage ditches' daily discharge is reduced to 1 878 m3 x d(-1). Therefore, it is suggested that the control measure combining the ground-harden with drainage ditches should apply to prevent contamination diffusion in groundwater when leachate leakage have happened in impermeable layer of the landfill. PMID:22452190

  4. How residents cope with living near a hazardous waste landfill: an example of substantive theorizing.

    PubMed

    Wandersman, A; Hallman, W; Berman, S

    1989-10-01

    It is hard to be a community or environmental psychologist and not be interested in newspaper stories on global warming, oil spills, or toxic wastes in your own backyard. To the general public, these issues tend to be viewed as environmental, technological, toxicological, or governmental, but not psychological. As psychologists, we see many ways in which psychology does play a role in understanding these events. We have been engaged in a study of residents living near a hazardous waste landfill in which many subdisciplines of psychology have played an illuminating role. Wicker's (this issue) article on substantive theorizing outlines an approach to theory and research that helps communicate the structure and process of doing research on a complex area. We use his article to help us describe key aspects of our research that are not usually discussed in research articles. We believe that the type of research Wicker describes occurs more often than people realize. Unfortunately, however, journal conventions cause investigators to omit discussions of substantive theorizing aspects of their work. We hope that reading this article increases your understanding of substantive theorizing and our research as much as writing it increased our own. PMID:2627023

  5. HAZARDOUS WASTE LANDFILL RESEARCH, USEPA (UNITED STATES ENVIRONMENTAL PROTECTION AGENCY) PROGRAM

    EPA Science Inventory

    The Land Pollution Control Division (LPCD), Hazardous Waste Engineering Research Lab. (HWERL), U.S. Environmental Protection Agency, in Cincinnati, Ohio, has responsibility for research in solid and hazardous waste management with respect to land disposal of wastes. To fulfill th...

  6. Aspergillus fumigatus and mesophilic moulds in air in the surrounding environment downwind of non-hazardous waste landfill sites.

    PubMed

    Schlosser, Olivier; Robert, Samuel; Debeaupuis, Catherine

    2016-05-01

    Non-hazardous waste landfilling has the potential to release biological agents into the air, notably mould spores. Some species, such as Aspergillus fumigatus, may be a cause of concern for at-risk nearby residents. However, air concentration in the surrounding environment of non-hazardous waste landfill sites is poorly documented. An extensive sampling programme was designed to investigate the relationship between culturable mesophilic moulds and A. fumigatus concentrations in air and distance downwind of non-hazardous waste landfill sites. On-site and off-site repeated measurements were performed at four landfill sites during cold and warm seasons. A high-flow air-sampler device was selected so as to allow peak concentration measurement. Linear mixed-effects models were used to explain variability in the concentrations in air over time and across sites, seasons, instantaneous meteorological conditions and discharged waste tonnage. Concentrations of mesophilic moulds and A. fumigatus at off-site upwind sampling locations were compared with concentrations at each of the downwind sampling locations. At the tipping face location, peak concentration reached 480,000CFUm(-3) for mesophilic moulds and 9300CFUm(-3) for A. fumigatus. Compared with upwind background levels, these concentrations were, on average, approximately 20 and 40 times higher respectively. A steep decline in the concentration of both mesophilic moulds and A. fumigatus was observed between the tipping face location and the downwind property boundary (reduction by 77% and 84% respectively), followed by a low decline leading to a 90% and 94% reduction in concentration at 200m from the property boundary and beyond. With the 200m and 500m downwind sampling point values added together, the 97.5th percentile of concentration was 6013CFUm(-3) and 87CFUm(-3) for mesophilic moulds and A. fumigatus, respectively. Other determining factors were the discharged waste tonnage, the season, instantaneous temperature

  7. Hazardous Waste

    MedlinePlus

    ... you throw these substances away, they become hazardous waste. Some hazardous wastes come from products in our homes. Our garbage can include such hazardous wastes as old batteries, bug spray cans and paint ...

  8. Environmental risks of municipal non-hazardous waste landfilling and incineration. Technical report summary

    SciTech Connect

    1999-11-01

    To obtain up-to-date information on the potential environmental and human health impacts of the incineration and landfilling options for municipal waste disposal, the Ontario Ministry of the Environment conducted a series of technical risk assessments of two generic disposal facilities: A large-scale incinerator and a modern landfill, each with a similar disposal capacity of 6.6 million tonnes over 20 years. Part 1 of this report summarizes the results of the assessments in terms of human health effects and effects on the aquatic environment. Part 2 summarizes the main assumptions, methods, and conclusions of the full technical studies for the two risk assessments, including effects on human health, the aquatic environment, and the terrestrial environment.

  9. Environmental risks of municipal non-hazardous waste landfilling and incineration. Technical report summary

    SciTech Connect

    Not Available

    1999-01-01

    To obtain up-to-date information on the potential environmental and human health impacts of the incineration and landfilling options for municipal waste disposal, the Ontario Ministry of the Environment conducted a series of technical risk assessments of two generic disposal facilities: A large-scale incinerator and a modern landfill, each with a similar disposal capacity of 6.6 million tonnes over 20 years. Part 1 of this report summarizes the results of the assessments in terms of human health effects and effects on the aquatic environment. Part 2 summarizes the main assumptions, methods, and conclusions of the full technical studies for the two risk assessments, including effects on human health, the aquatic environment, and the terrestrial environment.

  10. Mixed Waste Landfill Integrated Demonstration; Technology summary

    SciTech Connect

    1994-02-01

    The mission of the Mixed Waste Landfill Integrated Demonstration (MWLID) is to demonstrate, in contaminated sites, new technologies for clean-up of chemical and mixed waste landfills that are representative of many sites throughout the DOE Complex and the nation. When implemented, these new technologies promise to characterize and remediate the contaminated landfill sites across the country that resulted from past waste disposal practices. Characterization and remediation technologies are aimed at making clean-up less expensive, safer, and more effective than current techniques. This will be done by emphasizing in-situ technologies. Most important, MWLID`s success will be shared with other Federal, state, and local governments, and private companies that face the important task of waste site remediation. MWLID will demonstrate technologies at two existing landfills. Sandia National Laboratories` Chemical Waste Landfill received hazardous (chemical) waste from the Laboratory from 1962 to 1985, and the Mixed-Waste Landfill received hazardous and radioactive wastes (mixed wastes) over a twenty-nine year period (1959-1988) from various Sandia nuclear research programs. Both landfills are now closed. Originally, however, the sites were selected because of Albuquerque`s and climate and the thick layer of alluvial deposits that overlay groundwater approximately 480 feet below the landfills. This thick layer of ``dry`` soils, gravel, and clays promised to be a natural barrier between the landfills and groundwater.

  11. 40 CFR 264.555 - Disposal of CAMU-eligible wastes in permitted hazardous waste landfills.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... that he or she has chosen not to object, the facility may not receive the waste, notwithstanding 40 CFR... section only, the “design of the CAMU” in 40 CFR 264.552(e)(4)(v)(E) means design of the permitted... meeting the requirements of RCRA 40 CFR part 268, if the conditions in paragraphs (a)(1) through (3)...

  12. 40 CFR 264.555 - Disposal of CAMU-eligible wastes in permitted hazardous waste landfills.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... that he or she has chosen not to object, the facility may not receive the waste, notwithstanding 40 CFR... section only, the “design of the CAMU” in 40 CFR 264.552(e)(4)(v)(E) means design of the permitted... meeting the requirements of RCRA 40 CFR part 268, if the conditions in paragraphs (a)(1) through (3)...

  13. 40 CFR 264.555 - Disposal of CAMU-eligible wastes in permitted hazardous waste landfills.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... that he or she has chosen not to object, the facility may not receive the waste, notwithstanding 40 CFR... section only, the “design of the CAMU” in 40 CFR 264.552(e)(4)(v)(E) means design of the permitted... meeting the requirements of RCRA 40 CFR part 268, if the conditions in paragraphs (a)(1) through (3)...

  14. 40 CFR 264.555 - Disposal of CAMU-eligible wastes in permitted hazardous waste landfills.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... that he or she has chosen not to object, the facility may not receive the waste, notwithstanding 40 CFR... section only, the “design of the CAMU” in 40 CFR 264.552(e)(4)(v)(E) means design of the permitted... meeting the requirements of RCRA 40 CFR part 268, if the conditions in paragraphs (a)(1) through (3)...

  15. GEOTECHNICAL ASPECTS OF BOTTOM SEALING EXISTING HAZARDOUS WASTE LANDFILLS BY INJECTION GROUTING

    EPA Science Inventory

    Preliminary results are given of compatibility testing for various grouts with selected hazardous wastes. The testing is a part of an ongoing project to determine the geotechnical feasibility of utilizing selected grouts and state-of-the-art techniques in the bottom sealing of ex...

  16. Reduction of COD in leachate from a hazardous waste landfill adjacent to a coke-making facility

    SciTech Connect

    Banerjee, K.; O`Toole, T.J.

    1995-12-01

    A hazardous waste landfill adjacent to a coke manufacturing facility was in operation between July 1990 and December 1991. A system was constructed to collect and treat the leachate from the landfill prior to discharge to the river. Occasionally, the discharge from the treatment facility exceeded the permit limitations for Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), and Total Organic Carbon (TOC). The objectives of this study were to determine treatment methods which would enable compliance with the applicable discharge limits; to establish the desired operating conditions of the process; and to investigate the effect of various parameters such as pH, catalyst dosage, and reaction time on the COD destruction efficiency. The characteristics of the landfill leachate in question were significantly variable in terms of chemical composition. A review of the influent quality data suggests that the COD concentration ranges between 80 and 390 mg/l. The oxidation processes using Fenton`s reagent or a combination of UV/hydrogen peroxide/catalyst are capable of reducing the COD concentration of the leachate below the discharge limitation of 35 mg/l. The estimated capital cost associated with the Fenton`s reagent process is approximately $525,000, and the annual operating and maintenance cost is $560,000. The estimated capital cost for the UV/hydrogen peroxide/catalyst treatment system is $565,000. The annual operating and maintenance cost of this process would be approximately $430,000.

  17. State of the art design: A closure system for the largest hazardous waste landfill at the Savannah River Site

    SciTech Connect

    Bartlett, S.F.; Serrato, M.G.; McMullin, S.R.

    1992-12-31

    This paper discusses the cover system proposed for a 55-acre, hazardous waste closure of the sanitary landfill at the Savannah River Site, near Aiken, South Carolina. The proposed cover system has been designed to accommodate a significant amount of post-closure settlement while maintaining a permeability of 1 {times} 10{sup {minus}7} cm/s or less throughout its 30-year, regulatory lifetime. A composite cover consisting of a geomembrane (GM) underlain by a geosynthetic clay liner (GCL) was selected because of its extremely low permeability, ability to elongate without tearing, and capacity to ``self-heal`` if punctured. These characteristics will enable the cover system to accommodate differential settlement without cracking or tearing, this providing long-term protection with minimal maintenance. Also, to improve the ability of the cover system to span voids that may develop in the underlying waste, a geogrid has been included in the foundation layer. A gas vent layer has been included to allow for the safe collection and venting of landfill gases.

  18. State of the art design: A closure system for the largest hazardous waste landfill at the Savannah River Site

    SciTech Connect

    Bartlett, S.F.; Serrato, M.G.; McMullin, S.R.

    1992-01-01

    This paper discusses the cover system proposed for a 55-acre, hazardous waste closure of the sanitary landfill at the Savannah River Site, near Aiken, South Carolina. The proposed cover system has been designed to accommodate a significant amount of post-closure settlement while maintaining a permeability of 1 [times] 10[sup [minus]7] cm/s or less throughout its 30-year, regulatory lifetime. A composite cover consisting of a geomembrane (GM) underlain by a geosynthetic clay liner (GCL) was selected because of its extremely low permeability, ability to elongate without tearing, and capacity to self-heal'' if punctured. These characteristics will enable the cover system to accommodate differential settlement without cracking or tearing, this providing long-term protection with minimal maintenance. Also, to improve the ability of the cover system to span voids that may develop in the underlying waste, a geogrid has been included in the foundation layer. A gas vent layer has been included to allow for the safe collection and venting of landfill gases.

  19. FLORIDA HAZARDOUS WASTE AND SANITARY LANDFILL REPORT, COUNTY DATA. GENERATOR DATA AND CHARACTERISTICS OF SANITARY LANDFILLS. PART 9. COUNTIES: POLK, PUTNAM, ST. JOHNS, ST. LUCIE, SANTA ROSA, SARASOTA, SEMINOLE

    EPA Science Inventory

    The report provides data on the use of sanitary landfills (Subtitle D facilities) for hazardous waste disposal in Florida by small quantity generators. It consists of eleven parts including a part called Study Area Data which contains the data aggregated across the counties cover...

  20. MEASUREMENT OF FUGITIVE ATMOSPHERIC EMISSIONS OF POLYCHLORINATED BIPHENYLS FROM HAZARDOUS WASTE LANDFILLS

    EPA Science Inventory

    Four landfills known to contain large quantities of polychlorinated biphenyls (PCBs) were monitored for atmospheric emissions: Three of these were uncontrolled and contained large numbers of electrical capacitors, many of which were scattered on the surface and leaking PCB askare...

  1. Hazardous Waste

    MedlinePlus

    ... wastes come from products in our homes. Our garbage can include such hazardous wastes as old batteries, ... drain, flush them, or put them in the garbage. See if you can donate or recycle. Many ...

  2. Predictive modeling of hazardous waste landfill total above-ground biomass using passive optical and LIDAR remotely sensed data

    NASA Astrophysics Data System (ADS)

    Hadley, Brian Christopher

    This dissertation assessed remotely sensed data and geospatial modeling technique(s) to map the spatial distribution of total above-ground biomass present on the surface of the Savannah River National Laboratory's (SRNL) Mixed Waste Management Facility (MWMF) hazardous waste landfill. Ordinary least squares (OLS) regression, regression kriging, and tree-structured regression were employed to model the empirical relationship between in-situ measured Bahia (Paspalum notatum Flugge) and Centipede [Eremochloa ophiuroides (Munro) Hack.] grass biomass against an assortment of explanatory variables extracted from fine spatial resolution passive optical and LIDAR remotely sensed data. Explanatory variables included: (1) discrete channels of visible, near-infrared (NIR), and short-wave infrared (SWIR) reflectance, (2) spectral vegetation indices (SVI), (3) spectral mixture analysis (SMA) modeled fractions, (4) narrow-band derivative-based vegetation indices, and (5) LIDAR derived topographic variables (i.e. elevation, slope, and aspect). Results showed that a linear combination of the first- (1DZ_DGVI), second- (2DZ_DGVI), and third-derivative of green vegetation indices (3DZ_DGVI) calculated from hyperspectral data recorded over the 400--960 nm wavelengths of the electromagnetic spectrum explained the largest percentage of statistical variation (R2 = 0.5184) in the total above-ground biomass measurements. In general, the topographic variables did not correlate well with the MWMF biomass data, accounting for less than five percent of the statistical variation. It was concluded that tree-structured regression represented the optimum geospatial modeling technique due to a combination of model performance and efficiency/flexibility factors.

  3. Landfills as sinks for (hazardous) substances.

    PubMed

    Scharff, Heijo

    2012-12-01

    The primary goal of waste regulations is to protect human health and the environment. This requires the removal from the material cycle of those materials that cannot be processed without harm. Policies to promote recycling hold a risk that pollutants are dispersed. Materials have an environmental impact during their entire life cycle from extraction through production, consumption and recycling to disposal. Essentially there are only two routes for pollutants that cannot be rendered harmless: storage in sinks or dispersion into the environment. Many sinks do not contain substances absolutely, but result in slow dispersion. Dispersion leads to exposure and impact to human health and the environment. It is therefore important to assess the impact of the release to the environment. Based on various sources this paper discusses important material flows and their potential impact. This is compared with the intentions and achievements of European environmental and resource policy. The polluter pays principle is being implemented in Europe, but lags behind implementation of waste management regulations. As long as producers are allowed to add hazardous substances to their products and don't take their products back, it is in society's best interest to carefully consider whether recycling or storage in a sink is the better solution. This requires further development of life-cycle assessment tools and harmonization of regulations. In many cases the sink is unavoidable. Landfills as sinks will be needed in the future. Fail-safe design and construction as well as sustainable management of landfills must be further developed. PMID:23129607

  4. Validation of an in situ solidification/stabilization technique for hazardous barium and cyanide waste for safe disposal into a secured landfill.

    PubMed

    Vaidya, Rucha; Kodam, Kisan; Ghole, Vikram; Surya Mohan Rao, K

    2010-09-01

    The aim of the present study was to devise and validate an appropriate treatment process for disposal of hazardous barium and cyanide waste into a landfill at a Common Hazardous Waste Treatment Storage Disposal Facility (CHWTSDF). The waste was generated during the process of hardening of steel components and contains cyanide (reactive) and barium (toxic) as major contaminants. In the present study chemical fixation of the contaminants was carried out. The cyanide was treated by alkali chlorination with calcium hypochlorite and barium by precipitation with sodium sulfate as barium sulfate. The pretreated mixture was then solidified and stabilized by binding with a combination of slag cement, ordinary Portland cement and fly ash, molded into blocks (5 x 5 x 5 cm) and cured for a period of 3, 7 and 28 days. The final experiments were conducted with 18 recipe mixtures of waste + additive:binder (W:B) ratios. The W:B ratios were taken as 80:20, 70:30 and 50:50. The optimum proportions of additives and binders were finalized on the basis of the criteria of unconfined compressive strength and leachability. The leachability studies were conducted using the Toxicity Characteristic Leaching Procedure. The blocks were analyzed for various physical and leachable chemical parameters at the end of each curing period. Based on the results of the analysis, two recipe mixtures, with compositions - 50% of [waste + (120 g Ca(OCl)(2) + 290 g Na(2)SO(4)) kg(-1) of waste] + 50% of binders, were validated for in situ stabilization into a secured landfill of CHWTSDF. PMID:20430516

  5. TREATMENT OF HAZARDOUS LANDFILL LEACHATES AND CONTAMINATED GROUNDWATER

    EPA Science Inventory

    The objectives of the Cooperative Agreement were to assess the actual application of separate or combined biological and physical/chemical treatment techniques to high-strength hazardous dumpsite or landfill leachates, extractable wastes and spills, or sludges. our types of real-...

  6. Environmental compatibility of closed landfills - assessing future pollution hazards.

    PubMed

    Laner, David; Fellner, Johann; Brunner, Paul H

    2011-01-01

    Municipal solid waste landfills need to be managed after closure. This so-called aftercare comprises the treatment and monitoring of residual emissions as well as the maintenance and control of landfill elements. The measures can be terminated when a landfill does not pose a threat to the environment any more. Consequently, the evaluation of landfill environmental compatibility includes an estimation of future pollution hazards as well as an assessment of the vulnerability of the affected environment. An approach to assess future emission rates is presented and discussed in view of long-term environmental compatibility. The suggested method consists (a) of a continuous model to predict emissions under the assumption of constant landfill conditions, and (b) different scenarios to evaluate the effects of changing conditions within and around the landfill. The model takes into account the actual status of the landfill, hence different methods to gain information about landfill characteristics have to be applied. Finally, assumptions, uncertainties, and limitations of the methodology are discussed, and the need for future research is outlined. PMID:21068055

  7. Municipal Solid Waste Landfills Harbor Distinct Microbiomes.

    PubMed

    Stamps, Blake W; Lyles, Christopher N; Suflita, Joseph M; Masoner, Jason R; Cozzarelli, Isabelle M; Kolpin, Dana W; Stevenson, Bradley S

    2016-01-01

    Landfills are the final repository for most of the discarded material from human society and its "built environments." Microorganisms subsequently degrade this discarded material in the landfill, releasing gases (largely CH4 and CO2) and a complex mixture of soluble chemical compounds in leachate. Characterization of "landfill microbiomes" and their comparison across several landfills should allow the identification of environmental or operational properties that influence the composition of these microbiomes and potentially their biodegradation capabilities. To this end, the composition of landfill microbiomes was characterized as part of an ongoing USGS national survey studying the chemical composition of leachates from 19 non-hazardous landfills across 16 states in the continental U.S. The landfills varied in parameters such as size, waste composition, management strategy, geography, and climate zone. The diversity and composition of bacterial and archaeal populations in leachate samples were characterized by 16S rRNA gene sequence analysis, and compared against a variety of physical and chemical parameters in an attempt to identify their impact on selection. Members of the Epsilonproteobacteria, Gammaproteobacteria, Clostridia, and candidate division OP3 were the most abundant. The distribution of the observed phylogenetic diversity could best be explained by a combination of variables and was correlated most strongly with the concentrations of chloride and barium, rate of evapotranspiration, age of waste, and the number of detected household chemicals. This study illustrates how leachate microbiomes are distinct from those of other natural or built environments, and sheds light on the major selective forces responsible for this microbial diversity. PMID:27148222

  8. Municipal Solid Waste Landfills Harbor Distinct Microbiomes

    PubMed Central

    Stamps, Blake W.; Lyles, Christopher N.; Suflita, Joseph M.; Masoner, Jason R.; Cozzarelli, Isabelle M.; Kolpin, Dana W.; Stevenson, Bradley S.

    2016-01-01

    Landfills are the final repository for most of the discarded material from human society and its “built environments.” Microorganisms subsequently degrade this discarded material in the landfill, releasing gases (largely CH4 and CO2) and a complex mixture of soluble chemical compounds in leachate. Characterization of “landfill microbiomes” and their comparison across several landfills should allow the identification of environmental or operational properties that influence the composition of these microbiomes and potentially their biodegradation capabilities. To this end, the composition of landfill microbiomes was characterized as part of an ongoing USGS national survey studying the chemical composition of leachates from 19 non-hazardous landfills across 16 states in the continental U.S. The landfills varied in parameters such as size, waste composition, management strategy, geography, and climate zone. The diversity and composition of bacterial and archaeal populations in leachate samples were characterized by 16S rRNA gene sequence analysis, and compared against a variety of physical and chemical parameters in an attempt to identify their impact on selection. Members of the Epsilonproteobacteria, Gammaproteobacteria, Clostridia, and candidate division OP3 were the most abundant. The distribution of the observed phylogenetic diversity could best be explained by a combination of variables and was correlated most strongly with the concentrations of chloride and barium, rate of evapotranspiration, age of waste, and the number of detected household chemicals. This study illustrates how leachate microbiomes are distinct from those of other natural or built environments, and sheds light on the major selective forces responsible for this microbial diversity. PMID:27148222

  9. Hazardous pollutants in class II landfills

    SciTech Connect

    Wood, J.A.; Porter, M.L.

    1987-05-01

    Class II landfills accept nontoxic municipal trash. Their gaseous emissions were originally assumed to be relatively free of hazardous substances. However, one Class II site in Southern California was found to be emitting enough vinyl chloride to exceed the California Air Quality Standard of 10 ppb for a 24-hour average in surrounding neighborhood. This paper presents a summary of the results of the analysis of landfill gas from over 20 additional Class II landfills. Ambient air surveys were conducted around five of the landfills. About 90% of the landfills contained measurable amounts of vinyl chloride and/or benzene. The concentrations exceeded 1 ppm in about half of the sites studied. Vinyl chloride is produced in situ by the action of bacteria on chlorinated solvents, and can be found in landfills that have been closed for over 30 years. The relative amounts of methane and vinyl chloride vary so much within a single landfill that methane measurements cannot be used as a surrogate for vinyl chloride.

  10. Method of recycling hazardous waste

    SciTech Connect

    1999-11-11

    The production of primary metal from ores has long been a necessary, but environmentally devastating process. Over the past 20 years, in an effort to lessen environmental impacts, the metal processing industry has developed methods for recovering metal values from certain hazardous wastes. However, these processes leave residual molten slag that requires disposal in hazardous waste landfills. A new process recovers valuable metals, metal alloys, and metal oxides from hazardous wastes, such as electric arc furnace (EAF) dust from steel mills, mill scale, spent aluminum pot liners, and wastewater treatment sludge from electroplating. At the same time, the process does not create residual waste for disposal. This new method uses all wastes from metal production processes. These hazardous materials are converted to three valuable products - mineral wool, zinc oxide, and high-grade iron.

  11. 76 FR 5110 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-28

    ...EPA is proposing to grant a petition submitted by Gulf West Landfill, TX, LP. (Gulf West) to exclude (or delist) the landfill leachate generated by Gulf West in Anahuac, Texas from the lists of hazardous wastes. EPA used the Delisting Risk Assessment Software (DRAS) Version 3.0 in the evaluation of the impact of the petitioned waste on human health and the...

  12. Action on Hazardous Wastes.

    ERIC Educational Resources Information Center

    EPA Journal, 1979

    1979-01-01

    U.S. EPA is gearing up to investigate about 300 hazardous waste dump sites per year that could pose an imminent health hazard. Prosecutions are expected to result from the priority effort at investigating illegal hazardous waste disposal. (RE)

  13. Hazards assessment for the INEL Landfill Complex

    SciTech Connect

    Knudsen, J.K.; Calley, M.B.

    1994-02-01

    This report documents the hazards assessment for the INEL Landfill Complex (LC) located at the Idaho National Engineering Laboratory, which is operated by EG&G Idaho, Inc., for the US Department of Energy (DOE). The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. DOE Order 5500.3A requires that a facility-specific hazards assessment be performed to provide the technical basis for facility emergency planning efforts. This hazards assessment was conducted in accordance with DOE Headquarters and the DOE Idaho Operations Office (DOE-ID) guidance to comply with DOE Order 5500.3A. The hazards assessment identifies and analyzes the hazards that are significant enough to warrant consideration in a facility`s operational emergency management program. The area surrounding the LC, the buildings and structures at the LC, and the processes that are used at the LC are described in this report. All hazardous materials, both radiological and nonradiological, at the LC were identified and screened against threshold quantities according to DOE Order 5500.3A guidance. Asbestos at the Asbestos Pit was the only hazardous material that exceeded its specified threshold quantity. However, the type of asbestos received and the packaging practices used are believed to limit the potential for an airborne release of asbestos fibers. Therefore, in accordance with DOE Order 5500.3A guidance, no further hazardous material characterization or analysis was required for this hazards assessment.

  14. Construction and operation of an industrial solid waste landfill at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    SciTech Connect

    1995-10-01

    The US Department of Energy (DOE), Office of Waste Management, proposes to construct and operate a solid waste landfill within the boundary of the Portsmouth Gaseous Diffusion Plant (PORTS), Piketon, Ohio. The purpose of the proposed action is to provide PORTS with additional landfill capacity for non-hazardous and asbestos wastes. The proposed action is needed to support continued operation of PORTS, which generates non-hazardous wastes on a daily basis and asbestos wastes intermittently. Three alternatives are evaluated in this environmental assessment (EA): the proposed action (construction and operation of the X-737 landfill), no-action, and offsite shipment of industrial solid wastes for disposal.

  15. Minimizing hazardous waste

    SciTech Connect

    DeClue, S.C.

    1996-06-01

    Hazardous waste minimization is a broad term often associated with pollution prevention, saving the environment or protecting Mother Earth. Some associate hazardous waste minimization with saving money. Thousands of hazardous materials are used in processes every day, but when these hazardous materials become hazardous wastes, dollars must be spent for disposal. When hazardous waste is reduced, an organization will spend less money on hazardous waste disposal. In 1993, Fort Bragg reduced its hazardous waste generation by over 100,000 pounds and spent nearly $90,000 less on hazardous waste disposal costs than in 1992. Fort Bragg generates a variety of wastes: Vehicle maintenance wastes such as antifreeze, oil, grease and solvents; helicopter maintenance wastes, including solvents, adhesives, lubricants and paints; communication operation wastes such as lithium, magnesium, mercury and nickel-cadmium batteries; chemical defense wastes detection, decontamination, and protective mask filters. The Hazardous Waste Office has the responsibility to properly identify, characterize, classify and dispose of these waste items in accordance with US Environmental Protection Agency (EPA) and US Department of Transportation (DOT) regulations.

  16. Risk mitigation methodology for solid waste landfills. Doctoral thesis

    SciTech Connect

    Nixon, W.B.

    1995-05-01

    Several recent models have attempted to simulate or assess the probability and consequences of the leakage of aqueous contaminant leakage from solid waste landfills. These models incorporate common factors, including climatological and geological characteristics. Each model, however, employs a unique approach to the problem, assigns different relative weights to factors, and relies upon extrapolated small-scale experimental data and/or subjective judgment in predicting the full-scale landfill failure mechanisms leading to contaminant migration. As a result, no two models are likely to equally assess a given landfill, and no one model has been validated as a predictor of long-term performance. The United States Air Force maintains a database for characterization of potential hazardous waste sites. Records include more than 500 landfills, providing such information as waste, soil, aquifer, monitoring location data, and the results of sample testing. Through analysis of this information, nearly 300 landfills were assessed to have sufficiently, partially, or inadequately contained hazardous constituents of the wastes placed within them.

  17. Hazardous Waste Roundup

    ERIC Educational Resources Information Center

    Farenga, Stephen J.; Joyce, Beverly A.; Ness, Daniel

    2004-01-01

    According to the Environmental Protection Agency (EPA), Americans generate approximately 1.6 million tons of hazardous household waste every year. When most people think of hazardous waste, they generally think of materials used in construction, the defense industry, mining, manufacturing, and agriculture. Few people think of hazardous substances…

  18. Field survey of enteric viruses in solid waste landfill leachates.

    PubMed Central

    Sobsey, M D

    1978-01-01

    Because municipal solid waste may contain fecal material from a variety of sources, there is concern that the leachate discharged from some solid waste landfills may contain enteric pathogens, including enteric viruses. In this study, 22 leachate samples from 21 different landfills in the United States and Canada were examined for enteric viruses. The sites represented a broad range of conditions for solid waste landfills and the leachate samples ranged from 10.3 to 18 liters in volume. Enteric viruses were found in only one of the 22 leachate samples examined. Two viruses, identified as poliovirus types 1 and 3, were found in an 11.8 liter sample obtained from a site where solid waste landfill practice was deficient. The low levels of enteric viruses detected in field samples of raw leachate and the opportunities for further reductions in the virus concentration of leachates by such processes as thermal inactivation, removal by soil and dilution in ground and surface waters, suggest that leachates from properly operated solid waste landfills do not constitute an environmental or public health hazard due to enteric viruses. PMID:28677

  19. 76 FR 59960 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Withdrawal of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-28

    ... notice removes the proposed rule published in 76 FR 5110 (January 28, 2011) for public review and comment... Landfill (Gulf West) located in Anahuac, TX, published on January 28, 2011 (76 FR 5110). EPA subsequently... AGENCY 40 CFR Part 261 Hazardous Waste Management System; Identification and Listing of Hazardous...

  20. Washing of waste prior to landfilling.

    PubMed

    Cossu, Raffaello; Lai, Tiziana

    2012-05-01

    The main impact produced by landfills is represented by the release of leachate emissions. Waste washing treatment has been investigated to evaluate its efficiency in reducing the waste leaching fraction prior to landfilling. The results of laboratory-scale washing tests applied to several significant residues from integrated management of solid waste are presented in this study, specifically: non-recyclable plastics from source separation, mechanical-biological treated municipal solid waste and a special waste, automotive shredded residues. Results obtained demonstrate that washing treatment contributes towards combating the environmental impacts of raw wastes. Accordingly, a leachate production model was applied, leading to the consideration that the concentrations of chemical oxygen demand (COD) and total Kjeldahl nitrogen (TKN), parameters of fundamental importance in the characterization of landfill leachate, from a landfill containing washed wastes, are comparable to those that would only be reached between 90 and 220years later in the presence of raw wastes. The findings obtained demonstrated that washing of waste may represent an effective means of reducing the leachable fraction resulting in a consequent decrease in landfill emissions. Further studies on pilot scale are needed to assess the potential for full-scale application of this treatment. PMID:22245736

  1. Hazardous waste tracking issues

    SciTech Connect

    Marvin, R. )

    1993-08-01

    The concept of cradle-to-grave oversight of hazardous waste was established in 1976 under RCRA. Since then, the multicopy Uniform Hazardous Waste Manifest has been a key component in the federal tracking system. The manifests ensure that generators, transporters and TSDFs maintain documentation of hazardous waste shipments. To a large extent, the tracking system has served its intended purpose; nevertheless, certain shortcomings exist. Anyone involved in shipping hazardous waste should be aware of the system's weaknesses and take appropriate measures to compensate for them.

  2. Hazardous waste management

    SciTech Connect

    Dawson, G.W.; Mercer, B.W.

    1986-01-01

    This is a reference work designed to guide the chemist to solutions to problems of waste disposal. It has chapters on incineration, ocean dumping and underground injection, landfill disposal, transportation, abandoned sites, regulation, etc. A group of 12 appendices provide a lot of useful information for quick reference.

  3. HAZARDOUS WASTE DESTRUCTION

    EPA Science Inventory

    The paper profiles the current status of hazardous waste thermal destruction in the United States, including facilities and wastes typically handled. The results of extensive EPA-sponsored performance tests are presented for incinerators, industrial boilers, and industrial proces...

  4. 40 CFR 258.20 - Procedures for excluding the receipt of hazardous waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., regulated hazardous waste means a solid waste that is a hazardous waste, as defined in 40 CFR 261.3, that is not excluded from regulation as a hazardous waste under 40 CFR 261.4(b) or was not generated by a... (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.20...

  5. Stabilizing Waste Materials for Landfills

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1977

    1977-01-01

    The test procedures used to evaluate the suitability of landfilled materials of varying stability and to determine the leachate from such materials are reviewed. A process for stabilizing a mixture of sulfur dioxide sludge, fly ash, and bottom ash with lime and other additives for deposition in landfills is detailed. (BT)

  6. Hazardous Wastes from Homes.

    ERIC Educational Resources Information Center

    Lord, John

    The management of waste materials has become more complex with the increase in human population and the development of new substances. This illustrated booklet traces the history of waste management and provides guidelines for individuals and communities in disposing of certain hazardous wastes safely. It addresses such topics as: (1) how people…

  7. Environmental diagnosis methodology for municipal waste landfills.

    PubMed

    Calvo, F; Moreno, B; Zamorano, M; Szanto, M

    2005-01-01

    A large number of countries are involved in a process of transformation with regard to the management of municipal solid waste. This process is a consequence of environmental requirements that occasionally materialise in legislation, such as the European Council Directive 31/99/EC on waste release in the European Union. In some cases, the remediation of old landfills can be carried out in compliance with environmental requirements; in other cases, it is necessary to proceed with the closure of the landfill and to assimilate it into its own environment. In both cases, it is necessary to undertake a diagnosis and characterisation of the impacted areas in order to develop an adequate action plan. This study presents a new methodology by which environmental diagnosis of landfill sites may be carried out. The methodology involves the formulation of a series of environmental indeces which provide information concerning the potential environmental problems of the landfills and the particular impact on different environmental elements, as well as information related to location, design and operation. On the basis of these results, it would be possible to draw up action plans for the remediation or closure of the landfill site. By applying the methodology to several landfills in a specific area, it would be possible to prioritize the order of actions required. PMID:15905084

  8. Developing hazardous waste programs

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Developing a fully operational hazardous waste regulatory system requires at least 10 to 15 years—even in countries with strong legal and bureaucratic institutions, according to a report on "The Evolution of Hazardous Waste Programs," which was funded by Resources for the Future (RFF) and the World Bank's South Asia Environment Group, and issued on June 4.The report, which compares the experiences of how four developed and four developing countries have created hazardous waste programs, indicates that hazardous waste issues usually do not become a pressing environmental issue until after countries have dealt with more direct threats to public health, such as contaminated drinking water and air pollution. The countries examined include Indonesia, Thailand, Germany, and the United States.

  9. MICROBIAL AND BIOCHEMICAL CHARACTERISTICS OF FRESHLY LANDFILLED WASTE: COMPARISONS TO LANDFILLED WASTES OF DIFFERENT AGES

    EPA Science Inventory

    A cooperative research and development agreement was initiated between U.S. EPA and Waste Management Inc. for a multi-year study of landfill bioreactors at the Outer Loop Landfill in Louisville, KY. As part of the agreement a research project is underway to study the microbiolog...

  10. Physical and chemical methods for the characterization of hazardous wastes

    NASA Astrophysics Data System (ADS)

    Francis, C. W.; Maskarinec, M. P.; Lee, D. W.

    Numerous test methods have been proposed and developed to evaluate the hazards associated with handling and disposal of wastes in landfills. The major concern is the leaching of toxic constituents from the wastes. The fate of hazardous constituents in landfilled wastes is highly dependent on the physical and chemical characteristics of the waste. Thus, the primary objective in the selection of waste characterization procedures should be focused on those methods that gauge the fate of the waste's hazardous constituents in a specific landfill environment. Waste characterization in the United States has centered around the characteristics of ignitability, corrosivity, reactivity, and toxicity. The strategy employed in the development of most regulatory waste characterization procedures has been a pass or fail approach, usually tied to some form of a mismanagement scenario for that waste. For example, USEPA has chosen the disposal of a waste in a municipal waste landfill as a mismanagement scenario for the development of the waste leaching tests to determine the toxicity characteristic. Many wastes, such as large-volume utility wastes or mining wastes, are not disposed of in municipal waste landfills. As a consequence, more effort is needed in the development of waste leaching tests that determine the long-term leaching characteristics of that waste in the landfill environment in which the waste is to be disposed. Waste leaching models also need to be developed and tested as to their ability to simulate actual disposal environments. These models need to be compared with laboratory leaching tests, and, if practical, coupled with groundwater transport models.

  11. Hazard ranking of landfills using fuzzy composite programming

    SciTech Connect

    Hagemeister, M.E.; Jones, D.D.; Woldt, W.E.

    1996-04-01

    The environmental and health risks posed by unregulated landfills are concerns that must be addressed. These concerns have been highlighted with the recent reauthorization of the Resource Conservation and Recovery Act (RCRA) Subtitle D, which requires the closure of all unregulated landfills by October 1993. Most communities with unregulated landfills do not have the financial resources to conduct full-scale risk assessments. This paper proposes the use of a multicriteria assessment system as a tool for screening and prioritizing unregulated disposal sites according to their level of environmental and health hazard. This multicriteria assessment system uses a technique termed composite programming and allows for the use of imprecise information through fuzzy set theory. Using this methodology in landfill hazard assessment allows for the consideration of uncertainty associated with parameters that impact the hazard assessment. Additionally, the user can specify hazards that are most detrimental. The complexity of input parameters (first level indicators) were selected to minimize the time required to collect and/or analyze site-specific data. The result obtained in the assessment is a fuzzy number that indicates the most likely range of hazard and the largest likely range of hazard relative to the best and worst case scenarios. A case study, in which this method is applied to a small rural landfill, is presented to illustrate the methodology.

  12. Surface emission of landfill gas from solid waste landfill

    NASA Astrophysics Data System (ADS)

    Park, Jin-Won; Shin, Ho-Chul

    The surface emission of landfill gas (LFG) was studied to estimate the amount of LFG efflux from solid waste landfills using an air flux chamber. LFG efflux increased as atmospheric temperature increased during the day, and the same pattern for the surface emission was observed for the change of seasons. LFG efflux rate decreased from summer through winter. The average LFG efflux rates of winter, spring and summer were 0.1584, 0.3013 and 0.8597 m 3 m -2 h -1 respectively. The total amount of surface emission was calculated based on the seasonal LFG efflux rate and the landfill surface area. From the estimates of LFG generation, it is expected that about 30% of the generated LFG may be released through the surface without extraction process. As forced extraction with a blower proceeded, the extraction well pressure decreased from 1100 to -100 mm H 2O, and the LFG surface efflux decreased markedly above 80%. Thus, the utilization of LFG by forced extraction would be the good solution for global warming and air pollution by LFG.

  13. Health hazard evaluation report HETA 93-0696-2395, Hardy Road Landfill, Akron, Ohio

    SciTech Connect

    Esswein, E.J.; Tubbs, R.L.

    1994-03-01

    In response to a request from management at the City of Akron and the Akron City Employees Local 1360, a study was made regarding potential exposures of employees to toxic dusts from empty containers and packaging materials landfilled at the Hardy Road Landfill. The landfill accepts wood, paper, plastic and metal from businesses and residences; industrial solid waste byproducts such as foundry sand, rubber scrap, and nonuseable materials; exempt solid wastes such as construction debris and incinerator ash waste from an energy recycle station. Hearing protective devices were used. Full shift air sampling for asbestos, respirable dust, respirable silica, and metals indicated that three equipment operators were exposed to excess levels of respirable silica. Half mask respirators were available for use at the discretion of the employees. The authors conclude that a health hazard existed due to exposure to respirable silica. Workers were also exposed to noise. The authors recommend that comprehensive hearing conservation and respiratory protection programs be instituted.

  14. Chemical fixation increases options for hazardous waste treatment

    SciTech Connect

    Indelicato, G.J.; Tipton, G.A.

    1996-05-01

    The Hazardous and Solid Waste Amendments (HSWA) to the Resource Conservation and Recovery Act (RCRA) govern the manner in which hazardous materials are managed. Disposing RCRA hazardous wastes on or in the land is no longer an accepted remedial option. This land disposal restriction requires that all listed and characteristic hazardous wastes must be treated according to specified standards before they are disposed. These treatment standards define technologies and concentration limits. Hazardous wastes that do not meet the standards are prohibited from being disposed on land, such as in landfills, surface impoundments, land treatment units, injection wells, and mines or caves.

  15. Engineered Municipal Waste Landfills: Climate Significance, Benefits, and some Landfill "Geophysics"

    NASA Astrophysics Data System (ADS)

    Augenstein, D.; Yazdani, R.

    2002-12-01

    Municipal Solid Waste (MSW) landfills have unique features: Wastes worldwide emit biogenic methane to the atmosphere of magnitude comparable to the total atmospheric buildup between 1980 and 1990. Carbon sequestered in landfills is large in geologic terms Management of decomposition in landfilled waste is desirable: (a) Control of waste decomposition and methane promises over tenfold cheaper greenhouse gas abatement compared to most other greenhouse gas abatement strategies. This is due in part to carbon sequestration and landfill gas energy offset of fossil fuel consumption (b) Landfill gas energy potential worldwide, is up to 1% of world energy. Use of landfill gas conserves a resource otherwise wasted (c) Monetary benefits of landfill life extension from decomposition and rapid volume reduction can be quite attractive This is a benefit for the US, where landfills are increasingly difficult and expensive to site. (d) Landfills containing mixed waste can be significant sources of atmospheric and groundwater pollutants needing control. Control is possible from advancing landfill management approaches (e) The stabilization of waste lessens pollutant risk and needs for costly long-term landfill aftercare. Greater control of landfill decomposition has been advocated in the form of "controlled" or "bioreactor" landfills. (SWANA, 1999; Reinhart and Townsend, 1996). Field trials are encouraging by several environmental/monetary criteria. Control of moisture and temperature have given fivefold or more acceleration of methane generation (Augenstein et al, 1998, 2000). There has been rapid volume loss of the landfilled waste as well, with conversion of waste organics to gas. Many trials over years have shown potential for abatement of pollutants in landfill leachate. Demonstration work by the solid waste management community attests to the benefits potential. Increasing field demonstrations, have been accompanied by observation and/or solution of several issues. As noted

  16. Vadose zone monitoring for hazardous waste sites

    SciTech Connect

    Everett, L.G.; Wilson, L.G.; Hoylman, E.W.

    1983-10-01

    This book describes the applicability of vadose zone monitoring techniques to hazardous waste site investigations. More than 70 different sampling and nonsampling vadose zone monitoring techniques are described in terms of their advantages and disadvantages. Physical, chemical, geologic, topographic, geohydrologic, and climatic constraints for vadose zone monitoring are quantitatively determined. Vadose zone monitoring techniques are categorized for premonitoring, active, and postclosure site assessments. Waste disposal methods are categorized for piles, landfills, impoundments, and land treatment. Conceptual vadose zone monitoring approaches are developed for specific waste disposal method categories.

  17. Hazardous Waste: Cleanup and Prevention.

    ERIC Educational Resources Information Center

    Vandas, Steve; Cronin, Nancy L.

    1996-01-01

    Discusses hazardous waste, waste disposal, unsafe exposure, movement of hazardous waste, and the Superfund clean-up process that consists of site discovery, site assessment, clean-up method selection, site clean up, and site maintenance. Argues that proper disposal of hazardous waste is everybody's responsibility. (JRH)

  18. Waste management health risk assessment: A case study of a solid waste landfill in South Italy

    SciTech Connect

    Davoli, E.; Fattore, E.; Paiano, V.; Colombo, A.; Palmiotto, M.; Rossi, A.N.; Il Grande, M.; Fanelli, R.

    2010-08-15

    An integrated risk assessment study has been performed in an area within 5 km from a landfill that accepts non hazardous waste. The risk assessment was based on measured emissions and maximum chronic population exposure, for both children and adults, to contaminated air, some foods and soil. The toxic effects assessed were limited to the main known carcinogenic compounds emitted from landfills coming both from landfill gas torch combustion (e.g., dioxins, furans and polycyclic aromatic hydrocarbons, PAHs) and from diffusive emissions (vinyl chloride monomer, VCM). Risk assessment has been performed both for carcinogenic and non-carcinogenic effects. Results indicate that cancer and non-cancer effects risk (hazard index, HI) are largely below the values accepted from the main international agencies (e.g., WHO, US EPA) and national legislation ( and ).

  19. Industrial Waste Landfill IV upgrade package

    SciTech Connect

    Not Available

    1994-03-29

    The Y-12 Plant, K-25 Site, and ORNL are managed by DOE`s Operating Contractor (OC), Martin Marietta Energy Systems, Inc. (Energy Systems) for DOE. Operation associated with the facilities by the Operating Contractor and subcontractors, DOE contractors and the DOE Federal Building result in the generation of industrial solid wastes as well as construction/demolition wastes. Due to the waste streams mentioned, the Y-12 Industrial Waste Landfill IV (IWLF-IV) was developed for the disposal of solid industrial waste in accordance to Rule 1200-1-7, Regulations Governing Solid Waste Processing and Disposal in Tennessee. This revised operating document is a part of a request for modification to the existing Y-12 IWLF-IV to comply with revised regulation (Rule Chapters 1200-1-7-.01 through 1200-1-7-.08) in order to provide future disposal space for the ORR, Subcontractors, and the DOE Federal Building. This revised operating manual also reflects approved modifications that have been made over the years since the original landfill permit approval. The drawings referred to in this manual are included in Drawings section of the package. IWLF-IV is a Tennessee Department of Environmental and Conservation/Division of Solid Waste Management (TDEC/DSWM) Class 11 disposal unit.

  20. PERMITTING HAZARDOUS WASTE INCINERATORS

    EPA Science Inventory

    This publication is a compilation of information presented at a seminar series designed to address the issues that affect the issuance of hazardous waste incineration permits and to improve the overall understanding of trial burn testing. pecifically, the document provides guidan...

  1. Assessment of internal condition of waste in a roofed landfill.

    PubMed

    Zhang, Xin; Matsuto, Toshihiko

    2013-01-01

    Recently, roofed landfills have been gaining popularity in Japan. Roofed landfills have several advantages over non-roofed landfills such as eliminating the visibility of waste and reducing the spread of offensive odours. This study examined the moisture balance and aeration conditions, which promote waste stabilisation, in a roofed landfill that included organic waste such as food waste. Moisture balance was estimated using waste characterization and the total amount of landfilled waste. Internal conditions were estimated based on the composition, flux, and temperature of the landfill gas. Finally, in situ aeration was performed to determine the integrity of the semi-aerobic structure of the landfill. With the effects of rainfall excluded, only 15% of the moisture held by the waste was discharged as leachate. The majority of the moisture remained in the waste layer, but was less than the optimal moisture level for biodegradation, indicating that an appropriate water spray should be administered. To assess waste degradation in this semi-aerobic landfill, the concentration and flow rate of landfill gas were measured and an in situ aeration test was performed. The results revealed that aerobic biodegradation had not occurred because of the unsatisfactory design and operation of the landfill. PMID:22989405

  2. Hazardous Waste: Cleanup and Prevention.

    ERIC Educational Resources Information Center

    Vandas, Steve; Cronin, Nancy L.

    1996-01-01

    Describes the Superfund, a federal cleanup program created in response to growing public concern over the health and environmental risks posed by hazardous waste sites. Discusses sources, disposal, and movement and risk of hazardous waste. (JRH)

  3. SERVICE LIFE OF GEOSYNTHETICS IN HAZARDOUS WASTE MANAGEMENT FACILITIES

    EPA Science Inventory

    The potential service life of synthetic polymer materials (geosynthetics) is of immediate importance in all countries where municipal solid waste and hazardous waste landfills are lined with these materials because of the need to know more about the aging characteristics and the ...

  4. Proceedings of the seventeenth mid-Atlantic industrial waste conference on toxic and hazardous wastes

    SciTech Connect

    Kugelman, I.J.

    1985-01-01

    This book presents the papers given at a conference on hazardous and toxic materials. Topics considered at the conference included methane production using anaerobic fluidized beds, thermal sludge conditioning, phosphorus removal, cooling tower water treatment, groundwater modeling, dry fly ash landfills, resource recovery, industrial wastes, the assessment of waste disposal sites utilizing expert systems, and the agricultural use of industrial wastes.

  5. Space monitoring of municipal solid waste landfills in Kazakhstan

    NASA Astrophysics Data System (ADS)

    Skakova, Olga; Shagarova, Lyudmila

    Municipal solid waste (MSW) landfills are special facilities designed for waste isolation and disposal ensuring sanitary and epidemiological safety of population. A solid waste landfill is a complex object with its own specific features. Modern remote-sensing methods are an indispensable source of information for the analysis of space images of solid waste landfills in Kazakhstan. Space monitoring of solid waste landfills includes the following tasks: 1. Identification and mapping of landfill areas according to the data of remote earth sensing. 2. Studying of energy and structural characteristics of landfills based on remote sensing data. 3. Analysis of the state of landfills based on a comparison of current and archive remote sensing data. Space monitoring of territories of municipal solid waste landfills uses modern computer technologies. They include satellite imagery combined with sub-satellite research, as well as other sources of information used for identification and mapping of landfill territories. Investigation of municipal solid waste landfills requires targeted survey of landfill areas, remote sensing using operational and archival data including theoretical foundations of physical optics and statistical data. Processing of digital satellite information uses methods of pattern recognition, automated image processing and correlation analysis. Based on spectral energy and textural characteristics of municipal solid waste landfills obtained by remote sensing methods, the technology of space monitoring of landfill areas, including landfill recognition and characterization of solid waste landfills from remote observations was developed. Monitoring of MSW landfills uses satellite images of ultrahigh and medium spatial resolution. Medium-resolution images are used to determine temperature, vegetation cover and soil degradation. High-resolution images are used to detect landfills, to determine forms of soil degradation, to calculate geometrical parameters, and

  6. Incineration of hazardous wastes.

    PubMed

    Gannon, T; Ansbro, A R; Burns, R P

    1991-10-01

    Glaxo has practiced incineration of liquid and gaseous wastes for over twenty years and currently operate eleven liquid and gas incinerators in the United Kingdom and Singapore. The liquid incinerators burn, as their main streams, those solvents that cannot be recovered and recycled within the processes. The early installations were for readily combustible solvents only. However, there has been a progressive move into the destruction of more difficult and hazardous wastes, with the consequential requirements for more sophisticated technology, in the belief that the responsible destruction of waste should be tackled near to its source. The eventual aim is to be self-sufficient in this area of waste management. The incineration of hazardous liquid and gaseous waste has presented a series of design, operational and monitoring problems into account which have all been successfully overcome. The solutions take into account the environmental consequences of the operations from both liquid and gaseous emissions. In order to ensure minimal environmental impact and safe operation the best practicable technology is employed. Environmental assessment forms part of the process development and permitting procedures. PMID:24233930

  7. DEFINITION OF A HAZARDOUS WASTE

    EPA Science Inventory

    The USEPA has promulagated regulation establishing the criteria and characteristics of hazardous waste. The criteria established include the following factors: (1) the waste is associated with an identified waste stream or contains constituents which are identified in listings in...

  8. Life cycle assessment (LCA) of solid waste management strategies in Tehran: landfill and composting plus landfill.

    PubMed

    Abduli, M A; Naghib, Abolghasem; Yonesi, Mansoor; Akbari, Ali

    2011-07-01

    As circumstances of operating and maintenance activities for landfilling and composting in Tehran metropolis differ from those of cities in developed countries, it was concluded to have an environmental impact comparison between the current solid waste management (MSW) strategies: (1) landfill, and (2) composting plus landfill. Life cycle assessment (LCA) was used to compare these scenarios for MSW in Tehran, Iran. The Eco-Indicator 99 is applied as an impact assessment method considering surplus energy, climate change, acidification, respiratory effect, carcinogenesis, ecotoxicity and ozone layer depletion points of aspects. One ton of municipal solid waste of Tehran was selected as the functional unit. According to the comparisons, the composting plus landfill scenario causes less damage to human health in comparison to landfill scenario. However, its damages to both mineral and fossil resources as well as ecosystem quality are higher than the landfill scenario. Thus, the composting plus landfill scenario had a higher environmental impact than landfill scenario. However, an integrated waste management will ultimately be the most efficient approach in terms of both environmental and economic benefits. In this paper, a cost evaluation shows that the unit cost per ton of waste for the scenarios is 15.28 and 26.40 US$, respectively. Results show landfill scenario as the preferable option both in environmental and economic aspects for Tehran in the current situation. PMID:20924666

  9. Characterization of landfill gas composition at the Fresh Kills municipal solid-waste landfill

    SciTech Connect

    Eklund, B.; Anderson, E.P.; Walker, B.L.; Burrows, D.B.

    1998-08-01

    The most common disposal method in the US for municipal solid waste (MSW) is burial in landfills. Until recently, air emissions from these landfills were not regulated. Under the New Source Performance Standards and Emission Guidelines for MSW landfills, MSW operators are required to determine the nonmethane organic gas generation rate of their landfill through modeling and/or measurements. This paper summarizes speciated nonmethane organic compound (NMOC) measurement data collected during an intensive, short-term field program. Over 250 separate landfill gas samples were collected from emission sources at the Fresh Kills landfill in New York City and analyzed for approximately 150 different analytes. The average total NMOC value for the landfill was 438 ppmv (as hexane) versus the regulatory default value of 4,000 ppmv (as hexane). Over 70 individual volatile organic compounds (VOCs) were detected and quantified in the landfill gas samples. The typical gas composition for this landfill was determined as well as estimates of the spatial, temporal, and measurement variability in the gas composition. The data for NMOC show that the gas composition within the landfill is equivalent to the composition of the gas exiting the landfill through passive vents and through the soil cover.

  10. Encapsulation of hazardous wastes into agglomerates

    SciTech Connect

    Guloy, A.

    1992-01-28

    The objective of this study was to investigate the feasibility of using the cementitious properties and agglomeration characteristics of coal conversion byproducts to encapsulate and immobilize hazardous waste materials. The intention was to establish an economical way of co-utilization and co-disposal of wastes. In addition, it may aid in the eradication of air pollution problems associated with the fine-powdery nature of fly ash. Encapsulation into agglomerates is a novel approach of treating toxic waste. Although encapsulation itself is not a new concept, existing methods employ high-cost resins that render them economically unfeasible. In this investigation, the toxic waste was contained in a concrete-like matrix whereby fly ash and other cementitious waste materials were utilized. The method incorporates the principles of solidification, stabilization and agglomeration. Another aspect of the study is the evaluation of the agglomeration as possible lightweight aggregates. Since fly ash is commercially used as an aggregate, it would be interesting to study the effect of incorporating toxic wastes in the strength development of the granules. In the investigation, the fly ash self-cementation process was applied to electroplating sludges as the toxic waste. The process hoped to provide a basis for delisting of the waste as hazardous and, thereby greatly minimize the cost of its disposal. Owing to the stringent regulatory requirements for hauling and disposal of hazardous waste, the cost of disposal is significant. The current practice for disposal is solidifying the waste with portland cement and dumping the hardened material in the landfill where the cost varies between $700--950/ton. Partially replacing portland cement with fly ash in concrete has proven beneficial, therefore applying the same principles in the treatment of toxic waste looked very promising.

  11. Hazardous Wastes--New Developments.

    ERIC Educational Resources Information Center

    Rogers, Harvey W.

    1979-01-01

    The need for effective disposal of hazardous medical and pathological wastes is discussed and the results of a test of five different models of incinerators in disposing of such wastes is presented. (MJB)

  12. FIELD TEST MEASUREMENTS AT FIVE MUNICIPAL SOLID WASTE LANDFILLS WITH LANDFILL GAS CONTROL TECHNOLOGY--FINAL REPORT

    EPA Science Inventory

    Research was conducted to evaluate landfill gas emissions at five municipal solid waste landfills which have modern control technology for landfill gas emissions. Comprehensive testing was conducted on the raw landfill gas and the combustion outlet exhaust. The project had two ...

  13. SECURING CONTAINERIZED HAZARDOUS WASTES WITH WELDED POLYETHYLENE ENCAPSULATES

    EPA Science Inventory

    Full-scale encapsulation of 208-liter (55-gal) drums was studied as a means for managing corroding containers of hazardous wastes in the field and rendering them suitable for transport and safe deposit within a final disposal site such as a landfill. Polyethylene (PE) receivers w...

  14. Capping as an alternative for remediating radioactive and mixed waste landfills

    SciTech Connect

    Hakonson, T.E.

    1994-03-01

    This report describes some of the regulatory and technical issues concerning the use of capping as a containment strategy for radioactive and hazardous waste. Capping alternatives for closure of landfills is not just an engineering problem, but rather involves complex physical, biological, and chemical processes requiring a multidisciplinary approach to develop designs that will work over the long haul and are cost-effective. Much of the information has been distilled from regulatory and guidance documents and a compilation of research activities on waste disposal, contaminant transport processes, and technology development for landfills that has been conducted over the last 21 years.

  15. Performance of bioreactor landfill with waste mined from a dumpsite.

    PubMed

    Karthikeyan, Obuli P; Swati, M; Nagendran, R; Joseph, Kurian

    2007-12-01

    Emissions from landfills via leachate and gas are influenced by state and stability of the organic matter in the solid waste and the environmental conditions within the landfill. This paper describes a modified, ecologically sound waste treatment technique, where municipal solid waste is anaerobically treated in a lysimeter-scale landfill bioreactor with leachate recirculation to enhance organic degradation. The results demonstrate a substantial decrease in organic matter (BOD 99%, COD 88% and TOC 81%) and a clear decrease in nutrient concentrations especially ammonia (85%) over a period of 1 year with leachate recirculation. PMID:17457683

  16. 40 CFR 264.317 - Special requirements for hazardous wastes FO20, FO21, FO22, FO23, FO26, and FO27.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Landfills § 264.317 Special requirements for... treatment, design, or monitoring requirements. (b) The Regional Administrator may determine that...

  17. 40 CFR 264.317 - Special requirements for hazardous wastes FO20, FO21, FO22, FO23, FO26, and FO27.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Landfills § 264.317 Special requirements for... treatment, design, or monitoring requirements. (b) The Regional Administrator may determine that...

  18. EVALUATION OF MUNICIPAL SOLID WASTE LANDFILL COVER DESIGNS

    EPA Science Inventory

    The HELP (Hydrologic Evaluation of Landfill Performance) Model was used to evaluate the hydrologic behavior of a series of one-, two-, and three-layer cover designs for municipal solid waste landfill cover designs were chosen to isolate the effects of features such as surface veg...

  19. USE OF MUNICIPAL SOLID WASTE LANDFILLS AS BIOCHEMICAL REACTORS

    EPA Science Inventory

    Municipal solid waste (MSW) from the nation is managed predominantly in anitary landfills. ue to the physical, chemical and biological makeup f he aste he landfill acts as a biochemical reactor and degrades the organic matter. urrent practices are to use covers and liners as engi...

  20. Elimination of the hazards from hazardous wastes.

    PubMed Central

    Gloyna, E F; Taylor, R D

    1978-01-01

    The "hazard" associated with a waste essentially controls the overall engineering approach to finding suitable alternatives for solving potential disposal problems. It should be recognized that all factors affecting environmental equilibrium must be considered, including product sales, process design, financing, pre- and end-of-pipe treatment, residuals management, and ultimate bioaccumulation of residuals. To meet this challenge, a systems approach to waste treatment and residuals disposal provides a logical approach, but this management concept requires a thorough understanding of the important physical and chemical aspects of the problem, as well as many social implications of the resulting decisions. Thus waste management within a plant necessarily involves process control, pretreatment and end-of-pipe treatment. Further, it follows that residuals management from a disposal point-of-view must ultimately embrace what is called the "multi-barrier concept." In essence, hazard elimination occurs in varying degrees during each phase of a properly engineered system. PMID:738249

  1. Bioreactor landfill technology in municipal solid waste treatment: an overview.

    PubMed

    Kumar, Sunil; Chiemchaisri, Chart; Mudhoo, Ackmez

    2011-03-01

    In recent years, due to an advance in knowledge of landfill behaviour and decomposition processes of municipal solid waste, there has been a strong thrust to upgrade existing landfill technologies for optimizing these degradation processes and thereafter harness a maximum of the useful bioavailable matter in the form of higher landfill gas generation rates. Operating landfills as bioreactors for enhancing the stabilization of wastes is one such technology option that has been recently investigated and has already been in use in many countries. A few full-scale implementations of this novel technology are gaining momentum in landfill research and development activities. The publication of bioreactor landfill research has resulted in a wide pool of knowledge and useful engineering data. This review covers leachate recirculation and stabilization, nitrogen transformation and corresponding extensive laboratory- and pilot-scale research, the bioreactor landfill concept, the benefits to be derived from this bioreactor landfill technology, and the design and operational issues and research trends that form the basis of applied landfill research. PMID:20578971

  2. Hazardous waste: cleanup and prevention

    USGS Publications Warehouse

    Vandas, Stephen; Cronin, Nancy L.; Farrar, Frank, (artist); Serrano, Guillermo Eliezer Ávila, (translator); Yajimovich, Oscar Efraín González; Muñoz, Aurora R.; Rivera, María del C.

    1996-01-01

    Our lifestyles are supported by complex Industrial activities that produce many different chemicals and chemical wastes. The Industries that produce our clothing, cars, medicines, paper, food, fuels, steel, plastics, and electric components use and discard thousands of chemicals every year. At home we may use lawn chemicals, solvents, disinfectants, cleaners, and auto products to Improve our quality of life. A chemical that presents a threat or unreasonable risk to people or the environment Is a hazardous material. When a hazardous material can no longer be used, It becomes a hazardous waste. Hazardous wastes come from a variety of sources, from both present and past activities. Impacts to human health and the environment can result from Improper handling and disposal of hazardous waste.

  3. GUIDANCE FOR LANDFILLING WASTE IN ECONOMICALLY DEVELOPING COUNTRIES

    EPA Science Inventory

    The report offers guidance on all aspects of the planning, design, and implementation of landfills in economically developing countries. The intended audience includes municipal officials, solid waste managers, engineers, and planners. The report's 18 chapters include critical ...

  4. GUIDANCE AVAILABLE FOR LANDFILLING WASTE IN ECONOMICALLY DEVELOPING COUNTRIES

    EPA Science Inventory

    The paper provides a brief summary of a report that offers guidance on all aspects of the planning, design, and implementation of landfills in economically developing countries. The intended audience includes municipal officials, solid waste managers, engineers, and planners. T...

  5. 40 CFR 60.752 - Standards for air emissions from municipal solid waste landfills.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... municipal solid waste landfills. 60.752 Section 60.752 Protection of Environment ENVIRONMENTAL PROTECTION... of Performance for Municipal Solid Waste Landfills § 60.752 Standards for air emissions from municipal solid waste landfills. (a) Each owner or operator of an MSW landfill having a design capacity...

  6. 40 CFR 60.752 - Standards for air emissions from municipal solid waste landfills.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... municipal solid waste landfills. 60.752 Section 60.752 Protection of Environment ENVIRONMENTAL PROTECTION... of Performance for Municipal Solid Waste Landfills § 60.752 Standards for air emissions from municipal solid waste landfills. (a) Each owner or operator of an MSW landfill having a design capacity...

  7. 40 CFR 60.752 - Standards for air emissions from municipal solid waste landfills.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... municipal solid waste landfills. 60.752 Section 60.752 Protection of Environment ENVIRONMENTAL PROTECTION... of Performance for Municipal Solid Waste Landfills § 60.752 Standards for air emissions from municipal solid waste landfills. (a) Each owner or operator of an MSW landfill having a design capacity...

  8. 40 CFR 60.752 - Standards for air emissions from municipal solid waste landfills.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... municipal solid waste landfills. 60.752 Section 60.752 Protection of Environment ENVIRONMENTAL PROTECTION... of Performance for Municipal Solid Waste Landfills § 60.752 Standards for air emissions from municipal solid waste landfills. (a) Each owner or operator of an MSW landfill having a design capacity...

  9. Household hazardous waste and conditionally exempt small-quantity generators

    SciTech Connect

    Wray, T.K.

    1993-02-01

    Each year, US consumers buy millions of pounds of paint, disinfectant, toilet bowl cleaner; furniture polish, drain cleaner, bleach and other products designed to beautify and clean their homes. Many do-it-yourselfers also buy automotive supplies, such as brake fluid, batteries, starting fluid, oil and antifreeze. Unused portions of these products often find their way into local landfills as household hazardous waste (HHW). Untreated, these wastes represent a possible threat to landfill employees, and a potential source of groundwater and surface water contamination. Recognizing the potential hazards posed by these materials, most states have established HHW management programs. California, Florida, Minnesota, Washington and New Jersey have well-established programs serving state residents and conditionally exempt small-quantity generators (CESQGs). CESQGs are commercial facilities that generate less than 100 kilograms (220 pounds) of hazardous waste per calendar month. RCRA established the statutory framework for identifying and managing hazardous wastes. However, household waste, including HHW, a specifically is excluded from regulation as a hazardous waste under 40 CFR 261.4(b)(1). Therefore, there are no current federal regulations governing HHW. Implementing and enforcing pollution legislation aimed at private citizens is a complex, if not impossible, task.

  10. Attenuation of heavy metal leaching from hazardous wastes by co-disposal of wastes

    SciTech Connect

    Bae, Wookeun; Shin, Eung Bai; Lee, Kil Chul; Kim, Jae Hyung

    1996-12-31

    The potential hazard of landfill wastes was previously evaluated by examining the extraction procedures for individual waste, although various wastes were co-disposed of in actual landfills. This paper investigates the reduction of extraction-procedure toxicity by co-disposing various combinations of two wastes. When two wastes are mixed homogeneously, the extraction of heavy metals from the waste mixture is critically affected by the extract pH. Thus, co-disposal wastes will have a resultant pH between the pH values of its constituent. The lower the resultant pH, the lower the concentrations of heavy metals in the extract. When these wastes are extracted sequentially, the latter extracted waste has a stronger influence on the final concentration of heavy metals in the extract. Small-scale lysimeter experiments confirm that when heavy-metal-bearing leachates Generated from hazardous-waste lysimeters are passed through a nonhazardous-waste lysimeter filled with compost, briquette ash, or refuse-incineration ashes, the heavy-metal concentration in the final leachates decreases significantly. Thus, the heavy-metal leaching could be attenuated if a less extraction-procedure-toxic waste were placed at the bottom of a landfill. 3 refs., 4 figs., 5 tabs.

  11. Implications of variable waste placement conditions for MSW landfills.

    PubMed

    Cox, Jason T; Yesiller, Nazli; Hanson, James L

    2015-12-01

    This investigation was conducted to evaluate the influence of waste placement practices on the engineering response of municipal solid waste (MSW) landfills. Waste placement conditions were varied by moisture addition to the wastes at the time of disposal. Tests were conducted at a California landfill in test plots (residential component of incoming wastes) and full-scale active face (all incoming wastes including residential, commercial, and self-delivered components). The short-term effects of moisture addition were assessed by investigating compaction characteristics and moisture distribution and the long-term effects by estimating settlement characteristics of the variably placed wastes. In addition, effects on engineering properties including hydraulic conductivity and shear strength, as well as economic aspects were investigated. The unit weight of the wastes increased with moisture addition to a maximum value and then decreased with further moisture addition. At the optimum moisture conditions, 68% more waste could be placed in the same landfill volume compared to the baseline conditions. Moisture addition raised the volumetric moisture content of the wastes to the range 33-42%, consistent with values at and above field capacity. Moisture transfer occurred between consecutive layers of compacted wastes and a moisture addition schedule of 2 days of as-received conditions and 1 day of moisture addition was recommended. Settlement of wastes was estimated to increase with moisture addition, with a 34% increase at optimum moisture compared to as-received conditions. Overall, moisture addition during compaction increased unit weight, the amount of incoming wastes disposed in a given landfill volume, biological activity potential, and predicted settlement. The combined effects have significant environmental and economic implications for landfill operations. PMID:26350400

  12. USE OF FLEXIBLE MEMBRANE LINERS IN HAZARDOUS AND NONHAZARDOUS LANDFILLS

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) was mandated by the U.S. Congress to develop standards for the management of both hazardous and nonhazardous waste in a manner that would protect human health and the environment. esearch and experience indicate that a properly desig...

  13. Mixed waste landfill cell construction at energy solutions LLC: a regulator's perspective

    SciTech Connect

    Lukes, G.C.; Willoughby, O.H.

    2007-07-01

    A small percentage of the property that EnergySolutions' (formerly Envirocare) operates at Clive, Utah is permitted by the State of Utah as a treatment, storage and disposal facility for mixed waste. Mixed Waste is defined as a hazardous waste (Title 40 Code of Federal Regulations Part 261.3) that also has a radioactive component. Typically, the waste EnergySolutions receives at its mixed waste facility is contaminated with heavy metals and organic compounds while also contaminated with radioactivity. For EnergySolutions, the largest generator of mixed waste is the United States Department of Energy. However, EnergySolutions also accepts a wide variety of mixed waste from other generators. For many wastes, EnergySolutions goes through the process of characterization and acceptance (if appropriate) of the waste, treating the waste (if necessary), confirmation that the waste meets Land Disposal Restriction, and disposal of the waste in its mixed waste landfill cell (MWLC). EnergySolutions originally received its State-issued Part B (RCRA) permit in 1990. The Permit allows a mixed waste landfill cell footprint that covers roughly 10 hectares and includes 20 individual 'sumps'. EnergySolutions chose to build small segments of the landfill cell as waste receipts dictated. Nearly 16 years later, EnergySolutions has just completed its Phase V construction project. 18 of the 20 sumps in the original design have been constructed. The last two sumps are anticipated to be its Phase VI construction project. Further expansion of its mixed waste disposal landfill capacity beyond the current design would require a permit modification request and approval by the Executive Secretary of the Utah Solid and Hazardous Waste Control Board. Construction of the landfill cell is governed by the Construction Quality Assurance/Quality Control manual of its State-issued Permit. The construction of each sump is made up of (from the bottom up): a foundation; three feet of engineered clay

  14. Portable sensor for hazardous waste

    SciTech Connect

    Piper, L.G.; Fraser, M.E.; Davis, S.J.

    1995-10-01

    We are beginning the second phase of a three and a half year program designed to develop a portable monitor for sensitive hazardous waste detection. The ultimate goal of the program is to develop our concept to the prototype instrument level. Our monitor will be a compact, portable instrument that will allow real-time, in situ, monitoring of hazardous wastes. This instrument will be able to provide the means for rapid field screening of hazardous waste sites to map the areas of greatest contamination. Remediation efforts can then focus on these areas. Further, our instrument can show whether cleanup technologies are successful at reducing hazardous materials concentrations below regulated levels, and will provide feedback to allow changes in remediation operations, if necessary, to enhance their efficacy.

  15. 40 CFR 258.20 - Procedures for excluding the receipt of hazardous waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Procedures for excluding the receipt of hazardous waste. 258.20 Section 258.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.20 Procedures for excluding the receipt of...

  16. Landfill disposal systems

    PubMed Central

    Slimak, Karen M.

    1978-01-01

    The current status of landfill disposal of hazardous wastes in the United States is indicated by presenting descriptions of six operating landfills. These landfills illustrate the variety of techniques that exist in landfill disposal of hazardous wastes. Although some landfills more effectively isolate hazardous waste than others, all landfills must deal with the following problems. Leachate from hazardous waste landfills is generally highly polluted. Most landfills attempt to contain leachate at the site and prevent its discharge to surface or groundwaters. To retain leachate within a disposal area, subsurface barriers of materials such as concrete, asphalt, butyl rubber, vinyl, and clay are used. It is difficult to assure that these materials can seal a landfill indefinitely. When a subsurface barrier fails, the leachate enters the groundwater in a concentrated, narrow band which may bypass monitoring wells. Once a subsurface barrier has failed, repairs are time-consuming and costly, since the waste above the repair site may have to be removed. The central problem in landfill disposal is leachate control. Recent emphasis has been on developing subsurface barriers to contain the wastes and any leachate. Future emphasis should also be on techniques for removing water from hazardous wastes before they are placed in landfills, and on methods for preventing contact of the wastes with water during and after disposal operations. When leachate is eliminated, the problems of monitoring, and subsurface barrier failure and repair can be addressed, and a waste can be effectively isolated. A surface seal landfill design is recommended for maintaining the dry state of solid hazardous wastes and for controlling leachate. Any impervious liner is utilized over the top of the landfill to prevent surface water from seeping into the waste. The surface barrier is also the site where monitoring and maintenance activities are focused. Barrier failure can be detected by visual

  17. Landfill disposal systems.

    PubMed

    Slimak, K M

    1978-12-01

    The current status of landfill disposal of hazardous wastes in the United States is indicated by presenting descriptions of six operating landfills. These landfills illustrate the variety of techniques that exist in landfill disposal of hazardous wastes. Although some landfills more effectively isolate hazardous waste than others, all landfills must deal with the following problems. Leachate from hazardous waste landfills is generally highly polluted. Most landfills attempt to contain leachate at the site and prevent its discharge to surface or groundwaters. To retain leachate within a disposal area, subsurface barriers of materials such as concrete, asphalt, butyl rubber, vinyl, and clay are used. It is difficult to assure that these materials can seal a landfill indefinitely. When a subsurface barrier fails, the leachate enters the groundwater in a concentrated, narrow band which may bypass monitoring wells. Once a subsurface barrier has failed, repairs are time-consuming and costly, since the waste above the repair site may have to be removed. The central problem in landfill disposal is leachate control. Recent emphasis has been on developing subsurface barriers to contain the wastes and any leachate. Future emphasis should also be on techniques for removing water from hazardous wastes before they are placed in landfills, and on methods for preventing contact of the wastes with water during and after disposal operations. When leachate is eliminated, the problems of monitoring, and subsurface barrier failure and repair can be addressed, and a waste can be effectively isolated.A surface seal landfill design is recommended for maintaining the dry state of solid hazardous wastes and for controlling leachate. Any impervious liner is utilized over the top of the landfill to prevent surface water from seeping into the waste. The surface barrier is also the site where monitoring and maintenance activities are focused. Barrier failure can be detected by visual

  18. Post-closure care of engineered municipal solid waste landfills.

    PubMed

    Bagchi, Amalendu; Bhattacharya, Abhik

    2015-03-01

    Post-closure care is divided into perpetual care (PPC) and long-term care (LTC). Guidelines for post-closure care and associated costs are important for engineered municipal solid waste (MSW) landfills. In many states in the USA, landfill owners are required to set aside funds for 30-40 years of LTC. Currently there are no guidelines for PPC, which is also required. We undertook a pilot study, using two landfills (note: average landfill capacity 2.5 million MT MSW waste) in Wisconsin, to establish an approach for estimating the LTC period using field data and PPC funding need. Statistical analysis of time versus concentration data of selected leachate parameters showed that the concentration of most parameters is expected to be at or below the preventive action limit of groundwater and leachate volume will be very low, within 40 years of the LTC period. The gas extraction system may need to be continued for more than 100 years. Due to lack of data no conclusion could be made regarding adequacy of the LTC period for the groundwater monitoring system. The final cover must be maintained for perpetuity. The pilot study shows that although technology is available, the financial liability of maintaining a 'Dry Tomb' design for landfills is significantly higher than commonly perceived. The paper will help landfill professionals to estimate realistic post-closure funding and to develop field-based policies for LTC and PPC of engineered MSW landfills. PMID:25687915

  19. Hazardous waste management system standards for owners and operators of hazardous waste treatment, storage, and disposal facilities and EPA administered permit programs; hazardous waste permit program. Environmental Protection Agency. Interim final amendments to rule.

    PubMed

    1982-02-25

    On May 19, 1980, EPA promulgated regulations applicable to owners and operators of hazardous waste treatment, storage, and disposal facilities which prohibited the landfill disposal of most containerized liquid waste or waste containing free liquid on and after November 19, 1981. Further on June 29, 1981, EPA amended its hazardous waste management regulations so as to extend the compliance date of the restriction on the landfill disposal of containerized liquid ignitable wastes to coincide with the compliance data of the general restriction on landfill disposal of liquids. The Agency is today extending the compliance date on both these requirements until May 26, 1982, and, in a separate action, is proposing amendments to these restrictions. This extension of compliance dates is provided for the sole purpose of allowing time to complete the rulemaking action on today's proposed amendments. The Agency is also today exempting from the requirements of the hazardous waste management regulations, the acts of adding absorbent material to hazardous waste in containers and adding hazardous waste to absorbent material in a container, at the time waste is first placed in the container, in order to reduce the free liquids in a container. PMID:10254379

  20. Handbook of industrial and hazardous wastes treatment. 2nd ed.

    SciTech Connect

    Lawrence Wang; Yung-Tse Hung; Howard Lo; Constantine Yapijakis

    2004-06-15

    This expanded Second Edition offers 32 chapters of industry- and waste-specific analyses and treatment methods for industrial and hazardous waste materials - from explosive wastes to landfill leachate to wastes produced by the pharmaceutical and food industries. Key additional chapters cover means of monitoring waste on site, pollution prevention, and site remediation. Including a timely evaluation of the role of biotechnology in contemporary industrial waste management, the Handbook reveals sound approaches and sophisticated technologies for treating: textile, rubber, and timber wastes; dairy, meat, and seafood industry wastes; bakery and soft drink wastes; palm and olive oil wastes; pesticide and livestock wastes; pulp and paper wastes; phosphate wastes; detergent wastes; photographic wastes; refinery and metal plating wastes; and power industry wastes. This final chapter, entitled 'Treatment of power industry wastes' by Lawrence K. Wang, analyses the stream electric power generation industry, where combustion of fossil fuels coal, oil, gas, supplies heat to produce stream, used then to generate mechanical energy in turbines, subsequently converted to electricity. Wastes include waste waters from cooling water systems, ash handling systems, wet-scrubber air pollution control systems, and boiler blowdown. Wastewaters are characterized and waste treatment by physical and chemical systems to remove pollutants is presented. Plant-specific examples are provided.

  1. MEETING HAZARDOUS WASTE REQUIREMENTS FOR METAL FINISHERS

    EPA Science Inventory

    This document provides information on the regulations affecting hazardous wastes discharged by metal finishers. opics included are: impact of RCRA regulations on both small and large generators; "delisting" of a specific facility waste from hazardous waste regulation; land dispos...

  2. Hazardous solid waste from agriculture.

    PubMed Central

    Loehr, R C

    1978-01-01

    Large quantities of food processing, crop, forestry, and animal solid wastes are generated in the United States each year. The major components of these wastes are biodegradable. However, they also contain components such as nitrogen, human and animal pathogens, medicinals, feed additives, salts, and certain metals, that under uncontrolled conditions can be detrimental to aquatic, plant, animal, or human life. The most common method of disposal of these wastes is application to the land. Thus the major pathways for transmission of hazards are from and through the soil. Use of these wastes as animal feed also can be a pathway. While at this time there are no crises associated with hazardous materials in agricultural solid wastes, the potential for problems should not be underestimated. Manpower and financial support should be provided to obtain more detailed information in this area, esepcially to better delineate transport and dispersal and to determine and evaluate risks. PMID:367770

  3. RCRA hazardous waste contingency plans

    SciTech Connect

    Wagner, T.P. )

    1991-10-01

    This paper reports that the Resource Conservation and Recovery Act (RCRA) requires hazardous waste treatment, storage and disposal facilities (TSDFs) to prepare a contingency plan. The plan is a blueprint for emergency response, and must be designed to minimize health and environmental hazards resulting from fires, explosions or other unplanned hazardous releases. Hazardous waste contingency plans often are neglected and considered an unnecessary regulatory exercise by facility operators. However, an effective contingency plan is a valuable tool for reducing liability, protecting workers and the community, and avoiding costly shutdowns. The requirement under Title III of the Superfund Amendments and Reauthorization Act (SARA) that regulated facilities report to EPA annually on releases to the environment has caused regulators to renew emphasis on the importance of RCRA contingency plans. However, regulatory agencies historically have provided insufficient information on the elements of an adequate contingency plan. Nevertheless, facility operators seriously should consider going beyond minimum regulatory requirements and create a comprehensive contingency plan.

  4. Biological treatment of hazardous waste

    SciTech Connect

    Lewandowski, G.A.; Filippi, L.J. de

    1998-12-01

    This reference book is intended for individuals interested in or involved with the treatment of hazardous wastes using biological/biochemical processes. Composed of 13 chapters, it covers a wide variety of topics ranging from engineering design to hydrogeologic factors. The first four chapters are devoted to a description of several different types of bioreactors. Chapter 5 discusses the biofiltration of volatile organic compounds. Chapters 6 through 9 discuss specific biological, biochemical, physical, and engineering factors that affect bioremediation of hazardous wastes. Chapter 10 is a very good discussion of successful bioremediation of pentachlorophenol contamination under laboratory and field conditions, and excellent references are provided. The next chapter discusses the natural biodegradation of PCB-contaminated sediments in the Hudson River in New York state. Chapter 12 takes an excellent look at the bioremediation capability of anaerobic organisms. The final chapter discusses composting of hazardous waste.

  5. Characterization of thermal properties of municipal solid waste landfills.

    PubMed

    Faitli, József; Magyar, Tamás; Erdélyi, Attila; Murányi, Attila

    2015-02-01

    Municipal waste landfills represent not only a source of landfill gases, but a source of thermal energy as well. The heat in landfills is generated by physical, chemical and microbiological processes. The goal of our study was to characterize the thermal properties of municipal solid waste (MSW) samples of the given landfill. A new apparatus was designed and constructed to measure heat flow. A systematic test series of 17 discrete measurements was carried out with municipal waste samples of 1.0-1.7 m(3). The thermal conductivity, heat diffusivity and specific heat capacity of the samples were determined. Analysing the results of the sampling and our experiments it was realized that the theoretical fundaments should be clarified. Two theories were developed for the serial and for the parallel heat flow in three phase disperse systems. The serial and parallel models resulted in different theoretical estimations. The measured thermal conductivity and heat diffusivity were better characterized by the parallel heat flow estimations. The results show that heat can flow parallel in solid, liquid and gas phases. Characterization of thermal properties serves to establish the fundament of heat extraction from municipal waste landfills. PMID:25464944

  6. 40 CFR 60.33c - Emission guidelines for municipal solid waste landfill emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... waste landfill emissions. 60.33c Section 60.33c Protection of Environment ENVIRONMENTAL PROTECTION... Guidelines and Compliance Times for Municipal Solid Waste Landfills § 60.33c Emission guidelines for municipal solid waste landfill emissions. (a) For approval, a State plan shall include control of...

  7. 75 FR 53268 - Adequacy of New Hampshire Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ... AGENCY 40 CFR Parts 239 and 258 Adequacy of New Hampshire Municipal Solid Waste Landfill Permit Program... approve New Hampshire's modification of its approved Municipal Solid Waste Landfill Program. On March 22... be issued to certain municipal solid waste landfills by approved states. On June 28, 2010...

  8. 77 FR 65875 - Adequacy of Arizona Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-31

    ... AGENCY Adequacy of Arizona Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... determination to approve a modification to Arizona's municipal solid waste landfill (MSWLF) permit program to... amending the municipal solid waste landfill criteria at 40 CFR 258.4 to allow for Research,...

  9. 76 FR 9772 - Adequacy of Arizona Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-22

    ... AGENCY Adequacy of Arizona Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... municipal solid waste landfill (MSWLF) permit program to allow the State to issue research, development, and.... Background On March 22, 2004, EPA issued a final rule amending the municipal solid waste landfill criteria...

  10. 78 FR 20073 - Adequacy of Oregon's Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ... AGENCY 40 CFR Parts 239 and 258 Adequacy of Oregon's Municipal Solid Waste Landfill Permit Program AGENCY... modification to the State of Oregon's approved Municipal Solid Waste Landfill Program. On March 22, 2004, EPA... certain municipal solid waste landfills by approved states. On June 14, 2012, Oregon submitted...

  11. 78 FR 5350 - Adequacy of Massachusetts Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-25

    ... AGENCY 40 CFR Parts 239 and 258 Adequacy of Massachusetts Municipal Solid Waste Landfill Permit Program... approve Massachusetts's modification of its approved Municipal Solid Waste Landfill Program. On March 22... be issued to certain municipal solid waste landfills by approved states. On December 7,...

  12. 75 FR 53220 - Adequacy of New Hampshire Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ... AGENCY 40 CFR Parts 239 and 258 Adequacy of New Hampshire Municipal Solid Waste Landfill Permit Program... modification to New Hampshire's approved municipal solid waste landfill (MSWLF) program. The approved... March 22, 2004, EPA issued a final rule amending the municipal solid waste landfill criteria in 40...

  13. 78 FR 20035 - Adequacy of Oregon Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ... AGENCY 40 CFR Parts 239 and 258 Adequacy of Oregon Municipal Solid Waste Landfill Permit Program AGENCY... to the State of Oregon's approved Municipal Solid Waste Landfill (MSWLF) permit program. The approved... regulations allowing RD&D Permits to be issued to certain municipal solid waste landfills by approved...

  14. Estimation method for national methane emission from solid waste landfills

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Gaikwad, S. A.; Shekdar, A. V.; Kshirsagar, P. S.; Singh, R. N.

    In keeping with the global efforts on inventorisation of methane emission, municipal solid waste (MSW) landfills are recognised as one of the major sources of anthropogenic emissions generated from human activities. In India, most of the solid wastes are disposed of by landfilling in low-lying areas located in and around the urban centres resulting in generation of large quantities of biogas containing a sizeable proportion of methane. After a critical review of literature on the methodology for estimation of methane emissions, the default methodology has been used in estimation following the IPCC guidelines 1996. However, as the default methodology assumes that all potential methane is emitted in the year of waste deposition, a triangular model for biogas from landfill has been proposed and the results are compared. The methodology proposed for methane emissions from landfills based on a triangular model is more realistic and can very well be used in estimation on global basis. Methane emissions from MSW landfills for the year AD 1980-1999 have been estimated which could be used in computing national inventories of methane emission.

  15. From dumping to sanitary landfills - solid waste management in Israel

    SciTech Connect

    Nissim, I. . E-mail: ilan@sviva.gov.il; Shohat, T.; Inbar, Y.

    2005-07-01

    To address the problem of solid waste in Israel, the Ministry of the Environment has formulated a policy based on integrated waste management. The policy calls for reduction of waste at source, reuse, recycling (including composting), waste-to-energy technologies, and landfilling. Due to the implementation of this policy, all the large dumps were closed, state-of-the art landfills were built, and recovery rates have increased from 3% in the beginning of the 1990s to almost 20% in 2003. More than 95% of the municipal solid waste is disposed and treated in an environmentally sound manner - in comparison to a mere 10% just a decade ago. The policy was implemented utilizing both enforcement and financial support ('stick and carrot' approach)

  16. Short mechanical biological treatment of municipal solid waste allows landfill impact reduction saving waste energy content.

    PubMed

    Scaglia, Barbara; Salati, Silvia; Di Gregorio, Alessandra; Carrera, Alberto; Tambone, Fulvia; Adani, Fabrizio

    2013-09-01

    The aim of this work was to evaluate the effects of full scale MBT process (28 d) in removing inhibition condition for successive biogas (ABP) production in landfill and in reducing total waste impact. For this purpose the organic fraction of MSW was treated in a full-scale MBT plant and successively incubated vs. untreated waste, in simulated landfills for one year. Results showed that untreated landfilled-waste gave a total ABP reduction that was null. On the contrary MBT process reduced ABP of 44%, but successive incubation for one year in landfill gave a total ABP reduction of 86%. This ABP reduction corresponded to a MBT process of 22 weeks length, according to the predictive regression developed for ABP reduction vs. MBT-time. Therefore short MBT allowed reducing landfill impact, preserving energy content (ABP) to be produced successively by bioreactor technology since pre-treatment avoided process inhibition because of partial waste biostabilization. PMID:23792663

  17. NAVAJO NATION HAZARDOUS WASTE SITES

    EPA Science Inventory

    This point coverage represents the locations of hazardous waste sites on the Navajo Nation Indian Reservation. The point locations were delineated on 1:24,000 scale US Geological Survey (USGS) topographic maps by staff from the Navajo Nation EPA, Resource Conservation & Reco...

  18. Applicability of leachates originating from solid-waste landfills for irrigation in landfill restoration projects.

    PubMed

    Erdogan, Reyhan; Zaimoglu, Zeynep; Sucu, M Yavuz; Budak, Fuat; Kekec, Secil

    2008-09-01

    Since, landfill areas are still the most widely used solid waste disposal method across the world, leachate generated from landfills should be given importance. Leachate of landfills exerts environmental risks mostly on surface and groundwater with its high pollutant content, which may cause unbearable water quality. This leads to the obligation for decontamination and remediation program to be taken into progress for the landfill area. Among a number of alternatives to cope with leachate, one is to employ the technology of phytoremediation. The main objective of this study was to determine the N accumulation ratios and the effects of landfill leachate in diluted proportions of chosen ratios (as 1/1, 1/2, 1/4, 0), on the growth and development of Cynodon dactylon, Stenotaphrum secundatum, Paspalum notatum, Pennisetum clandestinum, Mentha piperita, Rosmarinus officinalis, Nerium oleander, Pelargonium peltatum and Kochia scoparia species. In order to simulate the actual conditions of the landfill, soil covering the landfill is taken and used as medium for the trials. The study showed that S. secundatum, K. scoparia and N. oleander species had an impressive survival rate of 100%, being irrigated with pure leachate, while the others' survival rates were between 0 to 35% under the same conditions. As expected, application of leachate to the plants caused an increase in the accumulation of N, in the upper parts of all plants except P. peltatum. The highest N content increase was observed at S. Secundatum set, accumulating 3.70 times higher than its control set, whereas P. clandestinum value was 3.41 times of its control set. PMID:19295082

  19. HAZARDOUS WASTE DEGRADATION BY WOOD DEGRADING FUNGI

    EPA Science Inventory

    The persistence and toxicity of many hazardous waste constituents indicates that the environment has limited capacity to degrade such materials. he competence and presence of degrading organisms significantly effects our ability to treat and detoxify these hazardous waste chemica...

  20. ANALYSIS OF GEOTHERMAL WASTES FOR HAZARDOUS COMPONENTS

    EPA Science Inventory

    Regulations governing the disposal of hazardous wastes led to an assessment for geothermal solid wastes for potentially hazardous properties. Samples were collected from three active geothermal sites in the western United States: The Geysers, Imperial Valley, and northwestern Nev...

  1. Searching for Solutions. A Citizen's Guide to Hazardous Waste Management in Ohio.

    ERIC Educational Resources Information Center

    Clapham, Pete, Comp.

    This guide was developed to promote responsible hazardous waste management by Ohio citizens, citizens who are interested in upgrading operations of existing waste facilities, oppose the development of any new landfills, and those who promote the establishment of modern, efficient facilities. Information is presented in six chapters. The hazardous…

  2. THE USEPA'S LANDFILL RESEARCH AND REGULATORY STRATEGY

    EPA Science Inventory

    The priorities and initiatives of Environmental Protection Agency's landfill research and regulatory program over the next five years will be described. This will include municipal solid waste landfills as well as abandoned hazardous waste landfills.

    Regarding municipals s...

  3. DESIGN AND CONSTRUCTION OF COVERS FOR SOLID WASTE LANDFILLS

    EPA Science Inventory

    The report provides guidelines in selection, design, and construction of cover for management of municipal, industrial, and hazardous solid wastes (with the exception of radioactive waste). Natural soils as cover are the principal subject; however, synthetic membranes, chemicals,...

  4. ALTERNATIVE TREATMENT METHODS FOR HAZARDOUS WASTES

    EPA Science Inventory

    The five-year schedule for the minimization and restrictions on the disposal of hazardous wastes onto the land is described. Two major items are causing a shift in the way hazardous wastes are managed in the United States. Because of liability for hazardous wastes, companies are ...

  5. 49 CFR 171.3 - Hazardous waste.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... have identification numbers which must be displayed on hazardous waste manifests. See 40 CFR parts 262...: In 40 CFR part 263, the EPA sets forth requirements for the cleanup of releases of hazardous wastes. ... 49 Transportation 2 2010-10-01 2010-10-01 false Hazardous waste. 171.3 Section...

  6. Influence of a municipal solid waste landfill in the surrounding environment: toxicological risk and odor nuisance effects.

    PubMed

    Palmiotto, Marinella; Fattore, Elena; Paiano, Viviana; Celeste, Giorgio; Colombo, Andrea; Davoli, Enrico

    2014-07-01

    The large amounts of treated waste materials and the complex biological and physicochemical processes make the areas in the proximity of landfills vulnerable not only to emissions of potential toxic compounds but also to nuisance such as odor pollution. All these factors have a dramatic impact in the local environment producing environmental quality degradation. Most of the human health problems come from the landfill gas, from its non-methanic volatile organic compounds and from hazardous air pollutants. In addition several odorants are released during landfill operations and uncontrolled emissions. In this work we present an integrated risk assessment for emissions of hazard compounds and odor nuisance, to describe environmental quality in the landfill proximity. The study was based on sampling campaigns to acquire emission data for polychlorinated dibenzo-p-dioxins and dibenzofurans, dioxin-like polychlorobiphenyls, polycyclic aromatic hydrocarbons, benzene and vinyl chloride monomer and odor. All concentration values in the emissions from the landfill were measured and used in an air dispersion model to estimate maximum concentrations and depositions in correspondence to five sensitive receptors located in proximity of the landfill. Results for the different scenarios and cancer and non-cancer effects always showed risk estimates which were orders of magnitude below those accepted from the main international agencies (WHO, US EPA). Odor pollution was significant for a limited downwind area near the landfill appearing to be a significant risk factor of the damage to the local environment. PMID:24685488

  7. 77 FR 43002 - Hazardous Waste Management System: Identification and Listing of Hazardous Waste Amendment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-23

    ... AGENCY 40 CFR Part 261 Hazardous Waste Management System: Identification and Listing of Hazardous Waste... changes to appendix IX of part 261 are effective July 23, 2012. The Hazardous and Solid Waste Amendments... Environmental protection, Hazardous waste, Recycling, and Reporting and recordkeeping requirements....

  8. Forest products decomposition in municipal solid waste landfills

    SciTech Connect

    Barlaz, Morton A. . E-mail: barlaz@eos.ncsu.edu

    2006-07-01

    Cellulose and hemicellulose are present in paper and wood products and are the dominant biodegradable polymers in municipal waste. While their conversion to methane in landfills is well documented, there is little information on the rate and extent of decomposition of individual waste components, particularly under field conditions. Such information is important for the landfill carbon balance as methane is a greenhouse gas that may be recovered and converted to a CO{sub 2}-neutral source of energy, while non-degraded cellulose and hemicellulose are sequestered. This paper presents a critical review of research on the decomposition of cellulosic wastes in landfills and identifies additional work that is needed to quantify the ultimate extent of decomposition of individual waste components. Cellulose to lignin ratios as low as 0.01-0.02 have been measured for well decomposed refuse, with corresponding lignin concentrations of over 80% due to the depletion of cellulose and resulting enrichment of lignin. Only a few studies have even tried to address the decomposition of specific waste components at field-scale. Long-term controlled field experiments with supporting laboratory work will be required to measure the ultimate extent of decomposition of individual waste components.

  9. Planning for hazardous waste management.

    PubMed

    Rhoades, R F

    1982-01-01

    Various responsibilities and issues must be considered when becoming involved in the management of hazardous wastes. A basic understanding of the problem and control methodologies including the regulatory provisions of the Resource Conservation and Recovery act (RCRA) is necessary in order to begin the initial phase of the planning process. The roles of industry, the public and the federal government are discussed as well as various management options which can be pursued by state and local authorities. Special attention is focused on the issues of site selection, existing and abandoned sites and the application of "Superfund," disposition of exempt waste quantities and emergency response. PMID:10257564

  10. 75 FR 58346 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ... AGENCY 40 CFR Part 261 Hazardous Waste Management System; Identification and Listing of Hazardous Waste...) certain solid wastes generated by its Longview, Texas, facility from the lists of hazardous wastes. EPA... petitioned waste on human health and the environment. DATES: Comments must be received on or before...

  11. Portable sensor for hazardous waste

    SciTech Connect

    Piper, L.G.; Hunter, A.J.R.; Fraser, M.E.; Davis, S.J.

    1996-12-31

    We are part-way through the second phase of a 4-year program designed to develop a portable monitor for sensitive hazardous waste detection. The ultimate goal of the program is to develop our concept to the prototype instrument level. Our monitor will be a compact, portable instrument that will allow real-time, in situ, monitoring of hazardous wastes. This instrument will be able to provide the means for rapid field screening of hazardous waste sites to map the areas of greatest contamination. Remediation efforts can then focus on these areas. Our analysis approach is to excite atomic and molecular fluorescence by the technique of active nitrogen energy transfer (ANET). The active nitrogen is made in a dielectric-barrier (D-B) discharge in nitrogen at atmospheric pressure. Only a few emission lines or bands are excited for each hazardous species, so spectral resolution requirements are greatly simplified over those of other spectroscopic techniques. The D-B discharge is compact, 1 to 2 cm in diameter and 1 to 10 cm long. Furthermore, the discharge power requirements are quite modest, so that the unit can be powered by batteries. Thus an instrument based on ANET can readily be made portable. Our results indicate that ANET is a very sensitive technique for monitoring heavy metals and chlorinated hydrocarbons. We have demonstrated an overall detection sensitivity for most species that is at or below ppb levels. ANET alone, however, appears to be most successful in treating hazardous species that have been atomized. We are therefore developing a hybrid technique which combines a miniature, solid-state laser for sample collection and vaporization with ANET for subsequent detection. This approach requires no special sample preparation, can operate continuously, and lends itself well to compact packaging.

  12. Mutagenic activity of the leachate of municipal solid waste landfill.

    PubMed

    Omura, M; Inamasu, T; Ishinishi, N

    1992-12-01

    Organic concentrates were recovered using XAD-2/8 resin adsorption from the leachates of municipal solid waste landfills and their mutagenic activities were tested for 8 months using the Ames Salmonella/microsome assay. Highly polluted leachates (COD and BOD > or = 40 mg/l) generally had equal or higher mutagenic activities than lightly polluted leachates (COD and BOD < 40 mg/l). But there was no clear difference in mutagenicity per amount of concentrate between the two leachates. These results suggest that the mutagenic activity of landfill leachate is decided to some degree by the organic concentration in the leachate. The mutagenic activities detected even in lightly polluted leachates were not so low as those of various kind of surface waters ever reported. It is suggested that it is important to investigate the mutagenic activity of the leachate for evaluation of the impact of landfill leachate on the environment. PMID:1282208

  13. Municipal solid waste landfill siting using intelligent system

    SciTech Connect

    Al-Jarrah, Omar . E-mail: aljarrah@just.edu.jo; Abu-Qdais, Hani . E-mail: hqdais@just.edu.jo

    2006-07-01

    Historically, landfills have been the dominant alternative for the ultimate disposal of municipal solid waste. This paper addresses the problem of siting a new landfill using an intelligent system based on fuzzy inference. The proposed system can accommodate new information on the landfill site selection by updating its knowledge base. Several factors are considered in the siting process including topography and geology, natural resources, socio-cultural aspects, and economy and safety. The system will rank sites on a scale of 0-100%, with 100% being the most appropriate one. A weighting system is used for all of the considered factors. The results from testing the system using different sites show the effectiveness of the system in the selection process.

  14. WASTE STABILIZATION FUNDAMENTALS FOR BIOREACTOR LANDFILLS

    EPA Science Inventory

    Waste stabilization is the process where putrescible waste is biodegraded by microorganisms resulting in an end-product being a relatively inert substrate (e.g., like compost). When exposed to moisture, biologically stabilized waste should not produce substantial quantitie...

  15. Waste minimization via destruction of hazardous organics

    SciTech Connect

    Austin, L.R.

    1991-01-01

    Los Alamos National Laboratory is developing technologies that are capable of destroying hazardous organics, that is, converting them basically to water and carbon dioxide. If these technologies were incorporated into the main processing operation where the waste is produced, then the volume and toxicity of the hazardous or mix hazardous waste generated would be significantly reduced. This presentation will briefly discuss some of the waste treatment technologies under development at Los Alamos National Laboratory focused on destroying hazardous organics.

  16. Ecotoxicological characterization of hazardous wastes.

    PubMed

    Wilke, B-M; Riepert, F; Koch, Christine; Kühne, T

    2008-06-01

    In Europe hazardous wastes are classified by 14 criteria including ecotoxicity (H 14). Standardized methods originally developed for chemical and soil testing were adapted for the ecotoxicological characterization of wastes including leachate and solid phase tests. A consensus on which tests should be recommended as mandatory is still missing. Up to now, only a guidance on how to proceed with the preparation of waste materials has been standardized by CEN as EN 14735. In this study, tests including higher plants, earthworms, collembolans, microorganisms, duckweed and luminescent bacteria were selected to characterize the ecotoxicological potential of a boiler slag, a dried sewage sludge, a thin sludge and a waste petrol. In general, the instructions given in EN 14735 were suitable for all wastes used. The evaluation of the different test systems by determining the LC/EC(50) or NOEC-values revealed that the collembolan reproduction and the duckweed frond numbers were the most sensitive endpoints. For a final classification and ranking of wastes the Toxicity Classification System (TCS) using EC/LC(50) values seems to be appropriate. PMID:17996938

  17. Toxicity Assessment of Contaminated Soils of Solid Domestic Waste Landfill

    NASA Astrophysics Data System (ADS)

    Pasko, O. A.; Mochalova, T. N.

    2014-08-01

    The paper delivers the analysis of an 18-year dynamic pattern of land pollutants concentration in the soils of a solid domestic waste landfill. It also presents the composition of the contaminated soils from different areas of the waste landfill during its operating period. The authors calculate the concentrations of the following pollutants: chrome, nickel, tin, vanadium, lead, cuprum, zinc, cobalt, beryllium, barium, yttrium, cadmium, arsenic, germanium, nitrate ions and petrochemicals and determine a consistent pattern of their spatial distribution within the waste landfill area as well as the dynamic pattern of their concentration. Test-objects are used in experiments to make an integral assessment of the polluted soil's impact on living organisms. It was discovered that the soil samples of an animal burial site are characterized by acute toxicity while the area of open waste dumping is the most dangerous in terms of a number of pollutants. This contradiction can be attributed to the synergetic effect of the polluted soil, which accounts for the regularities described by other researchers.

  18. Landfill taxes and Enhanced Waste Management: Combining valuable practices with respect to future waste streams.

    PubMed

    Hoogmartens, Rob; Eyckmans, Johan; Van Passel, Steven

    2016-09-01

    Both landfill taxes and Enhanced Waste Management (EWM) practices can mitigate the scarcity issue of landfill capacity by respectively reducing landfilled waste volumes and valorising future waste streams. However, high landfill taxes might erode incentives for EWM, even though EWM creates value by valorising waste. Concentrating on Flanders (Belgium), the paper applies dynamic optimisation modelling techniques to analyse how landfill taxation and EWM can reinforce each other and how taxation schemes can be adjusted in order to foster sustainable and welfare maximising ways of processing future waste streams. Based on the Flemish simulation results, insights are offered that are generally applicable in international waste and resource management policy. As shown, the optimal Flemish landfill tax that optimises welfare in the no EWM scenario is higher than the one in the EWM scenario (93 against €50/ton). This difference should create incentives for applying EWM and is driven by the positive external effects that are generated by EWM practices. In Flanders, as the current landfill tax is slightly lower than these optimal levels, the choice that can be made is to further increase taxation levels or show complete commitment to EWM. A first generally applicable insight that was found points to the fact that it is not necessarily the case that the higher the landfill tax, the more effective waste management improvements can be realised. Other insights are about providing sufficient incentives for applying EMW practices and formulating appropriate pleas in support of technological development. By these insights, this paper should provide relevant information that can assist in triggering the transition towards a resource-efficient, circular economy in Europe. PMID:27067099

  19. Hazardous waste management in the Pacific basin

    SciTech Connect

    Cirillo, R.R.; Chiu, S.; Chun, K.C.; Conzelmann, G.; Carpenter, R.A.; Indriyanto, S.H.

    1994-11-01

    Hazardous waste control activities in Asia and the Pacific have been reviewed. The review includes China (mainland, Hong Kong, and Taiwan), Indonesia, Korea, Malaysia, Papua New Guinea, the Philippines, Singapore, and Thailand. It covers the sources of hazardous waste, the government structure for dealing with hazardous waste, and current hazardous waste control activities in each country. In addition, the hazardous waste program activities of US government agencies, US private-sector organizations, and international organizations are reviewed. The objective of these reviews is to provide a comprehensive picture of the current hazardous waste problems and the waste management approaches being used to address them so that new program activities can be designed more efficiently.

  20. Household hazardous waste data for the UK by direct sampling.

    PubMed

    Slack, Rebecca J; Bonin, Michael; Gronow, Jan R; Van Santen, Anton; Voulvoulis, Nikolaos

    2007-04-01

    The amount of household hazardous waste (HHW) disposed of in the United Kingdom (UK) requires assessment. This paper describes a direct analysis study carried out in three areas in southeast England involving over 500 households. Each participating householder was provided with a special bin in which to place items corresponding to a list of HHW. The amount of waste collected was split into nine broad categories: batteries, home maintenance (DIY), vehicle upkeep, pesticides, pet care, pharmaceuticals, photographic chemicals, household cleaners, and printer cartridges. Over 1 T of waste was collected from the sample households over a 32-week period, which would correspond to an estimated 51,000 T if extrapolated to the UK population for the same period or over 7,000 T per month. Details of likely disposal routes adopted by householders were also sought, demonstrating the different pathways selected for different waste categories. Co-disposal with residual household waste dominated for waste batteries and veterinary medicines, hence avoiding classification as hazardous waste under new UK waste regulations. The information can be used to set a baseline for the management of HHW and provides information for an environmental risk assessment of the disposal of such wastes to landfill. PMID:17438817

  1. Sources and management of hazardous waste in Papua New Guinea

    SciTech Connect

    Singh, K.

    1996-12-31

    Papua New Guinea (PNG) has considerable mineral wealth, especially in gold and copper. Large-scale mining takes place, and these activities are the source of most of PNG`s hazardous waste. Most people live in small farming communities throughout the region. Those living adjacent to mining areas have experienced some negative impacts from river ecosystem damage and erosion of their lands. Industry is centered mainly in urban areas and Generates waste composed of various products. Agricultural products, pesticide residues, and chemicals used for preserving timber and other forestry products also produce hazardous waste. Most municipal waste comes from domestic and commercial premises; it consists mainly of combustibles, noncombustibles, and other wastes. Hospitals generate pathogenic organisms, radioactive materials, and chemical and pharmaceutical laboratory waste. Little is known about the actual treatment of waste before disposal in PNG. Traditional low-cost waste disposal methods are usually practiced, such as use of landfills; storage in surface impoundments; and disposal in public sewers, rivers, and the sea. Indiscriminate burning of domestic waste in backyards is also commonly practiced in urban and rural areas. 10 refs., 4 tabs.

  2. Apparatus for incinerating hazardous waste

    DOEpatents

    Chang, Robert C. W.

    1994-01-01

    An apparatus for incinerating wastes, including an incinerator having a combustion chamber, a fluidtight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC (about 1" WC) higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes.

  3. Apparatus for incinerating hazardous waste

    DOEpatents

    Chang, R.C.W.

    1994-12-20

    An apparatus is described for incinerating wastes, including an incinerator having a combustion chamber, a fluid-tight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes. 1 figure.

  4. Morbidity and mortality of people who live close to municipal waste landfills: a multisite cohort study

    PubMed Central

    Mataloni, Francesca; Badaloni, Chiara; Golini, Martina Nicole; Bolignano, Andrea; Bucci, Simone; Sozzi, Roberto; Forastiere, Francesco; Davoli, Marina; Ancona, Carla

    2016-01-01

    Background: The evidence on the health effects related to residing close to landfills is controversial. Nine landfills for municipal waste have been operating in the Lazio region (Central Italy) for several decades. We evaluated the potential health effects associated with contamination from landfills using the estimated concentration of hydrogen sulphide (H2S) as exposure. Methods: A cohort of residents within 5 km of landfills was enrolled (subjects resident on 1 January 1996 and those who subsequently moved into the areas until 2008) and followed for mortality and hospitalizations until 31 December 2012. Assessment of exposure to the landfill (H2S as a tracer) was performed for each subject at enrolment, using a Lagrangian dispersion model. Information on several confounders was available (gender, age, socioeconomic position, outdoor PM10 concentration, and distance from busy roads and industries). Cox regression analysis was performed [Hazard Ratios (HRs), 95% confidence intervals (CIs)]. Results: The cohort included 242 409 individuals. H2S exposure was associated with mortality from lung cancer and respiratory diseases (e.g. HR for increment of 1 ng/m3 H2S: 1.10, 95% CI 1.02–1.19; HR 1.09, 95% CI 1.00–1.19, respectively). There were also associations between H2S and hospitalization for respiratory diseases (HR = 1.02, 95% CI 1.00–1.03), especially acute respiratory infections among children (0–14 years) (HR = 1.06, 95% CI 1.02–1.11). Conclusions: Exposure to H2S, a tracer of airborne contamination from landfills, was associated with lung cancer mortality as well as with mortality and morbidity for respiratory diseases. The link with respiratory disease is plausible and coherent with previous studies, whereas the association with lung cancer deserves confirmation. PMID:27222499

  5. Landfill mining: Resource potential of Austrian landfills--Evaluation and quality assessment of recovered municipal solid waste by chemical analyses.

    PubMed

    Wolfsberger, Tanja; Aldrian, Alexia; Sarc, Renato; Hermann, Robert; Höllen, Daniel; Budischowsky, Andreas; Zöscher, Andreas; Ragoßnig, Arne; Pomberger, Roland

    2015-11-01

    Since the need for raw materials in countries undergoing industrialisation (like China) is rising, the availability of metal and fossil fuel energy resources (like ores or coal) has changed in recent years. Landfill sites can contain considerable amounts of recyclables and energy-recoverable materials, therefore, landfill mining is an option for exploiting dumped secondary raw materials, saving primary sources. For the purposes of this article, two sanitary landfill sites have been chosen for obtaining actual data to determine the resource potential of Austrian landfills. To evaluate how pretreating waste before disposal affects the resource potential of landfills, the first landfill site has been selected because it has received untreated waste, whereas mechanically-biologically treated waste was dumped in the second. The scope of this investigation comprised: (1) waste characterisation by sorting analyses of recovered waste; and (2) chemical analyses of specific waste fractions for quality assessment regarding potential energy recovery by using it as solid recovered fuels. The content of eight heavy metals and the net calorific values were determined for the chemical characterisation tests. PMID:26347181

  6. Universal waste management standards finalized for three categories of hazardous waste

    SciTech Connect

    1995-07-01

    EPA recently finalized less stringent management standards for certain widely generated hazardous wastes in order to (1) lessen the regulatory burden on handlers and transporters of such wastes, and (2) encourage currently unregulated generators of these wastes to participate in collection/recycling programs. The new regulations apply only to batteries, recalled and unused pesticides, and mercury-containing thermostats, which the agency is referring to as {open_quotes}universal wastes.{close_quotes} EPA is hoping that the less burdensome provisions will reduce the amount of these wastes sent to municipal waste landfills/incinerators and other non-hazardous waste management systems. The management standards for importing, handling, transporting, treating or recycling, and exporting universal wastes are incorporated into a new Part 273 under Title 40 of the Code of Federal Regulations. The new regulations include a mechanism for petitioning EPA to add other wastes (such as spent fluorescent lamps) to the universal waste program in the future; criteria that additional hazardous wastes would have to meet are also specified. 1 tab.

  7. Cities cooperate on household hazardous waste collection

    SciTech Connect

    Yost, K.D. )

    1994-03-01

    This article describes a household hazardous waste collection project. The project resulted from Missouri solid waste regulations and the recognition of five suburban cities of St. Louis that there was a need to provide residents with an environmentally sound method of disposing of household hazardous waste. The project was 90 percent funded by a state grant.

  8. Energy and solid/hazardous waste

    SciTech Connect

    1981-12-01

    This report addresses the past and potential future solid and hazardous waste impacts from energy development, and summarizes the major environmental, legislation applicable to solid and hazardous waste generation and disposal. A glossary of terms and acronyms used to describe and measure solid waste impacts of energy development is included. (PSB)

  9. Hazardous waste: 1998 Regulatory and judicial developments

    SciTech Connect

    Henry, M.E.; Wright, W.G. Jr.

    1998-12-31

    Every year, owners and operators of facilities generating, transporting, treating, storing, or disposing of hazardous waste, or persons held liable for past hazardous waste management practice through EPA`s Superfund program, are affected by changes in the application and interpretation of hazardous waste regulation. This paper will summarize the significant 1997 hazardous waste regulatory developments, including changes and additions to land disposal restrictions and treatment standards, hazardous waste determination procedures, used oil management practices. This paper will also summarize key judicial decisions addressing expanded definitions of solid and hazardous waste, activities constituting disposal, and circumstances constituting imminent and substantial endangerment. Finally, this paper will summarize new EPA Superfund guidance documents and judicial decisions addressing issues of liability and defenses to liability under Superfund.

  10. Garbage imperialism: health implications of dumping hazardous wastes in Third World countries.

    PubMed

    Stebbins, K R

    1992-11-01

    This paper calls for studies of the potential health implications of today's hazardous waste disposal practices, and suggests that such studies are urgently needed in Third World countries where industrial nations are increasingly dumping their unwanted waste materials. The United States produces enormous quantities of hazardous waste each year, and approximately 1,200 "priority hazardous waste sites" presently threaten the nation's health. Because of environmental regulations, landfill closings, and citizen opposition to local waste facilities, industrialized countries are increasingly disposing of their problematic materials by shipping them to the Third World, where they pose substantial threats to human health and the environment. From a political economy perspective, this paper suggests that global health would be better served by reducing hazardous waste production, encouraging reusing and recycling, and restricting or banning international shipment of toxic wastes. PMID:1300412

  11. 40 CFR 258.16 - Closure of existing municipal solid waste landfill units.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Location Restrictions § 258.16 Closure of existing municipal solid waste landfill units. (a) Existing MSWLF units that cannot make the... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Closure of existing municipal...

  12. 40 CFR 62.14353 - Standards for municipal solid waste landfill emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Standards for municipal solid waste... POLLUTANTS Federal Plan Requirements for Municipal Solid Waste Landfills That Commenced Construction Prior to... municipal solid waste landfill emissions. (a) The owner or operator of a designated facility having a...

  13. 40 CFR 62.14353 - Standards for municipal solid waste landfill emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Standards for municipal solid waste... POLLUTANTS Federal Plan Requirements for Municipal Solid Waste Landfills That Commenced Construction Prior to... municipal solid waste landfill emissions. (a) The owner or operator of a designated facility having a...

  14. 40 CFR 258.16 - Closure of existing municipal solid waste landfill units.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Closure of existing municipal solid waste landfill units. 258.16 Section 258.16 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Location Restrictions § 258.16 Closure of existing municipal solid...

  15. 40 CFR 258.16 - Closure of existing municipal solid waste landfill units.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Closure of existing municipal solid... (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Location Restrictions § 258.16 Closure of existing municipal solid waste landfill units. (a) Existing MSWLF units that cannot make...

  16. 40 CFR 258.16 - Closure of existing municipal solid waste landfill units.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Closure of existing municipal solid... (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Location Restrictions § 258.16 Closure of existing municipal solid waste landfill units. (a) Existing MSWLF units that cannot make...

  17. 40 CFR 258.16 - Closure of existing municipal solid waste landfill units.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Closure of existing municipal solid... (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Location Restrictions § 258.16 Closure of existing municipal solid waste landfill units. (a) Existing MSWLF units that cannot make...

  18. 76 FR 303 - Alaska: Adequacy of Alaska's Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-04

    ... AGENCY 40 CFR Parts 239 and 258 Alaska: Adequacy of Alaska's Municipal Solid Waste Landfill Permit... proposes to approve Alaska's modification of its approved Municipal Solid Waste Landfill (MSWLF) permit... Domenic Calabro, Office of Air, Waste, and Toxics, U.S. EPA, Region 10, 1200 Sixth Avenue, Suite...

  19. Modeling the economics of landfilling organic processing waste streams

    NASA Astrophysics Data System (ADS)

    Rosentrater, Kurt A.

    2005-11-01

    As manufacturing industries become more cognizant of the ecological effects that their firms have on the surrounding environment, their waste streams are increasingly becoming viewed not only as materials in need of disposal, but also as resources that can be reused, recycled, or reprocessed into valuable products. Within the food processing sector are many examples of various liquid, sludge, and solid biological and organic waste streams that require remediation. Alternative disposal methods for food and other bio-organic manufacturing waste streams are increasingly being investigated. Direct shipping, blending, extrusion, pelleting, and drying are commonly used to produce finished human food, animal feed, industrial products, and components ready for further manufacture. Landfilling, the traditional approach to waste remediation, however, should not be dismissed entirely. It does provide a baseline to which all other recycling and reprocessing options should be compared. This paper discusses the implementation of a computer model designed to examine the economics of landfilling bio-organic processing waste streams. Not only are these results applicable to food processing operations, but any industrial or manufacturing firm would benefit from examining the trends discussed here.

  20. Landfills: Engineering Design for Waste Control

    ERIC Educational Resources Information Center

    Deck, Anita; Grubbs, Michael E.

    2016-01-01

    It is becoming increasingly important to consider the waste humans produce and options for reducing the impact it has on the environment. Allowing students the opportunities to research potential solutions and present their ideas results in an educated citizenry that considers consequences of technological advances. Throughout the course of a…

  1. Improving Tamper Detection for Hazardous Waste Security

    SciTech Connect

    Johnston, R. G.; Garcia, A. R. E.; Pacheco, N.; Martinez, R. K.; Martinez, D. D.; Trujillo, S. J.; Lopez, L. N.

    2003-02-26

    Since September 11, waste managers are increasingly expected to provide effective security for their hazardous wastes. Tamper-indicating seals can help. This paper discusses seals, and offers recommendations for how to choose and use them.

  2. THERMODYNAMIC FUNDAMENTALS USED IN HAZARDOUS WASTE INCINERATION

    EPA Science Inventory

    Thermodynamics is the basic foundation of many engineeringpractices. nvironmental engineering is no exception, it is usingthermodynamic principles in many applications. n particular,those who are involved in the incineration of various wastes suchas hazardous and municipal wastes...

  3. Modelling biogas production of solid waste: application of the BGP model to a synthetic landfill

    NASA Astrophysics Data System (ADS)

    Rodrigo-Ilarri, Javier; Segura-Sobrino, Francisco

    2013-04-01

    Production of biogas as a result of the decomposition of organic matter included on solid waste landfills is still an issue to be understood. Reports on this matter are rarely included on the engineering construction projects of solid waste landfills despite it can be an issue of critical importance while operating the landfill and after its closure. This paper presents an application of BGP (Bio-Gas-Production) model to a synthetic landfill. The evolution in time of the concentrations of the different chemical compounds of biogas is studied. Results obtained show the impact on the air quality of different management alternatives which are usually performed in real landfills.

  4. Coal tar-containing asphalt - resource or hazardous waste?

    SciTech Connect

    Andersson-Skold, Y.; Andersson, K.; Lind, B.; Claesson, A.; Larsson, L.; Suer, P.; Jacobson, T.

    2007-09-30

    Coal tar was used in Sweden for the production of asphalt and for the drenching of stabilization gravel until 1973. The tar has high concentrations of polycyclic aromatic hydrocarbons (PAH), some of which may be strongly carcinogenic. Approximately 20 million tonnes of tar-containing asphalt is present in the public roads in Sweden. Used asphalt from rebuilding can be classified as hazardous waste according to the Swedish Waste Act. The cost of treating the material removed as hazardous waste can be very high due to the large amount that has to be treated, and the total environmental benefit is unclear. The transport of used asphalt to landfill or combustion will affect other environmental targets. The present project, based on three case studies of road projects in Sweden, evaluates the consequences of four scenarios for handling the material: reuse, landfill, biological treatment, and incineration. The results show that reuse of the coal tar-containing materials in new road construction is the most favorable alternative in terms of cost, material use, land use, energy consumption, and air emissions.

  5. A successful petition to delist a hazardous waste

    SciTech Connect

    Finch, A.J.; Cormier, S.L.

    1997-12-31

    The prospect of a favorable ruling in an effort to have a hazardous waste delisted is remote, and few have been granted. This paper recounts the successful procedure used to have materials from a hazardous waste site delisted. Other property owners with sites affected with hazardous wastes will find the methodology discussed here instructive if they are contemplating a delisting petition. The regulatory agency with jurisdiction was the Michigan Department of Environmental Quality through its Waste Management Division (MDEQ WMD). The state has accepted authority for this function from the USEPA. The materials from discontinued electroplating operations were considered hazardous based on their contact with a listed F006 waste sludge generated from the electroplating operations. The sludge had been stored in surface impoundments. To initiate the delisting procedure, the requirements of a USEPA document were followed: Petition to Delist Hazardous Wastes, a Guidance Manual. The MDEQ WMD sanctioned the use of this guidance. This document is issued by the Office of Solid Waste. In observing the guidance, the following actions were taken: (1) Collection of soil samples from the area proposed for delisting; (2) Evaluation of data and the feasibility of preparing a delisting petition; (3) Development of the petition. In developing the details of the petition, the data from the site were scrutinized. Analytical results of metals in the soil samples were compared with pre-established maximum allowable concentrations that had been calculated in a closure plan. These values were also compared with delisting levels calculated by USEPA`s Composite Model for Landfills (EPACML). The data indicated that the levels of chemical constituents were below the appropriate regulatory criteria. Therefore, the petition was launched. This paper discusses their effective procedure and contents of each section of the delisting petition.

  6. Simulating settlement during waste placement at a landfill with waste lifts placed under frozen conditions.

    PubMed

    Van Geel, Paul J; Murray, Kathleen E

    2015-12-01

    Twelve instrument bundles were placed within two waste profiles as waste was placed in an operating landfill in Ste. Sophie, Quebec, Canada. The settlement data were simulated using a three-component model to account for primary or instantaneous compression, secondary compression or mechanical creep and biodegradation induced settlement. The regressed model parameters from the first waste layer were able to predict the settlement of the remaining four waste layers with good agreement. The model parameters were compared to values published in the literature. A MSW landfill scenario referenced in the literature was used to illustrate how the parameter values from the different studies predicted settlement. The parameters determined in this study and other studies with total waste heights between 15 and 60 m provided similar estimates of total settlement in the long term while the settlement rates and relative magnitudes of the three components varied. The parameters determined based on studies with total waste heights less than 15m resulted in larger secondary compression indices and lower biodegradation induced settlements. When these were applied to a MSW landfill scenario with a total waste height of 30 m, the settlement was overestimated and provided unrealistic values. This study concludes that more field studies are needed to measure waste settlement during the filling stage of landfill operations and more field data are needed to assess different settlement models and their respective parameters. PMID:26323204

  7. Hazardous waste operational plan for site 300

    SciTech Connect

    Roberts, R.S.

    1982-02-12

    This plan outlines the procedures and operations used at LLNL's Site 300 for the management of the hazardous waste generated. This waste consists primarily of depleted uranium (a by-product of U-235 enrichment), beryllium, small quantities of analytical chemicals, industrial type waste such as solvents, cleaning acids, photographic chemicals, etc., and explosives. This plan details the operations generating this waste, the proper handling of this material and the procedures used to treat or dispose of the hazardous waste. A considerable amount of information found in this plan was extracted from the Site 300 Safety and Operational Manual written by Site 300 Facility personnel and the Hazards Control Department.

  8. The hazardous waste scene in India

    SciTech Connect

    Subrahmanyam, P.V.R.; Bhinde, A.D.; Sundaresan, B.B.

    1983-03-01

    India has made significant advances in the manufacture of basic organic chemicals, dyes, fertilizers, pesticides, drugs, and so forth during the last three decades, resulting in increased generation of hazardous wastes. Presently, these wastes are being indiscriminately disposed of into fallow land in the public domain. Legislation to control air and water pollution has not covered hazardous waste disposal. The magnitude of hazardous waste generation in general and the problems posed by such wastes from pesticide, dyes, and other industries are identified, and available data are presented and discussed.

  9. Resource Conservation and Recovery Act (RCRA): Hazardous wastes. (Latest citations from the NTIS database). Published Search

    SciTech Connect

    Not Available

    1993-07-01

    The bibliography contains citations concerning the Resource Conservation and Recovery Act (RCRA). Citations cover the handling of hazardous waste, facility investigation, and updates and reviews of selected provisions of the act. Groundwater monitoring, landfill design, liner systems, and incineration standards are among the topics discussed. (Contains 250 citations and includes a subject term index and title list.)

  10. Solid waste landfills under the Resource Conservation and Recovery Act Subtitle D

    SciTech Connect

    1995-11-01

    This document provides guidance for meeting: (1) Guidelines for the Land Disposal of Solid Waste (40 CFR 241); (2) Criteria for Classification of Solid Waste Disposal Facilities and Practices (40 CFR 257); and (3) Criteria for Municipal Solid Waste Landfills (MSWLFs) (40 CFR Part 258). Revisions to 40 CFR 257 and a new Part 258 were published in the Federal Register (56 FR 50978, 10/9/91). The Guidelines for the Land Disposal of Solid Waste set requirements and recommended procedures to ensure that the design, construction, and operation of land disposal sites is done in a manner that will protect human health and the environment. These regulations are applicable to MSWLFs and non-MSWLFs (e.g., landfills used only for the disposal of demolition debris, commercial waste, and/or industrial waste). These guidelines are not applicable to the, land disposal of hazardous, agricultural, and/or mining wastes. These criteria are to be used under the Resource Conservation and Recovery Act (RCRA) in determining which solid waste disposal facilities pose a reasonable possibility of adversely affecting human health or the environment. Facilities failing to satisfy these criteria will be considered to be open dumps which are prohibited under Section 4005 of RCRA. The Criteria for MSWLFs are applicable only to MSWLFs, including those MSWLFs in which sewage sludge is co-disposed with household waste. Based on specific criteria, certain MSWLFs are exempt from some, or all, of the regulations of 40 CFR 258. MSWLFs that fail to satisfy the criteria specified in 40 CFR 258 are also considered open dumps for the purposes of Section 4005 of RCRA. Through the use of a series of interrelated flow diagrams, this guidance document directs the reader to each design, operation, maintenance, and closure activity that must be performed for MSWLFs and non-MSWLFs.

  11. Mixed waste landfill annual groundwater monitoring report April 2005.

    SciTech Connect

    Lyon, Mark L.; Goering, Timothy James (GRAM, Inc., Albuquerque, NM)

    2006-01-01

    Annual groundwater sampling was conducted at the Sandia National Laboratories' Mixed Waste Landfill (MWL) in April 2005. Seven monitoring wells were sampled using a Bennett{trademark} pump in accordance with the April 2005 Mini-Sampling and Analysis Plan for the MWL (SNL/NM 2005). The samples were analyzed off site at General Engineering Laboratories, Inc. for a broad suite of radiochemical and chemical parameters, and the results are presented in this report. Sample splits were also collected from several of the wells by the New Mexico Environment Department U.S. Department of Energy Oversight Bureau; however, the split sample results are not included in this report. The results of the April 2005 annual groundwater monitoring conducted at the MWL showed constituent concentrations within the historical ranges for the site and indicated no evidence of groundwater contamination from the landfill.

  12. Hazardous waste management and pollution prevention

    SciTech Connect

    Chiu, Shen-yann.

    1992-01-01

    The management of hazardous wastes is one of the most critical environmental issues that faces many developing countries. It is one of the areas where institutional control and treatment and disposal technology has not kept pace with economic development. This paper reviews the development of hazardous waste management methods over the past decades, and provides the information on the status and trends of hazardous waste management strategy in selected western nations. Several issues pertinent to hazardous waste management will be reviewed, including: (1) definition of hazard; (2) why are we concerned with hazardous wastes; (3) aspects of hazardous waste management system; and (4) prioritization of hazardous waste management options. Due to regulatory and economic pressure on hazardous waste management, pollution prevention has become a very important environmental strategy in many developed countries. In many developed countries, industry is increasingly considering such alternative approaches, and finding many opportunities for their cost effective implementation. This paper provides a review of the status and trends of pollution prevention in selected western nations.

  13. Hazardous waste management and pollution prevention

    SciTech Connect

    Chiu, Shen-yann

    1992-03-01

    The management of hazardous wastes is one of the most critical environmental issues that faces many developing countries. It is one of the areas where institutional control and treatment and disposal technology has not kept pace with economic development. This paper reviews the development of hazardous waste management methods over the past decades, and provides the information on the status and trends of hazardous waste management strategy in selected western nations. Several issues pertinent to hazardous waste management will be reviewed, including: (1) definition of hazard; (2) why are we concerned with hazardous wastes; (3) aspects of hazardous waste management system; and (4) prioritization of hazardous waste management options. Due to regulatory and economic pressure on hazardous waste management, pollution prevention has become a very important environmental strategy in many developed countries. In many developed countries, industry is increasingly considering such alternative approaches, and finding many opportunities for their cost effective implementation. This paper provides a review of the status and trends of pollution prevention in selected western nations.

  14. Vitrification of hazardous and radioactive wastes

    SciTech Connect

    Bickford, D.F.; Schumacher, R.

    1995-12-31

    Vitrification offers many attractive waste stabilization options. Versatility of waste compositions, as well as the inherent durability of a glass waste form, have made vitrification the treatment of choice for high-level radioactive wastes. Adapting the technology to other hazardous and radioactive waste streams will provide an environmentally acceptable solution to many of the waste challenges that face the public today. This document reviews various types and technologies involved in vitrification.

  15. Groundwater Monitoring Plan for the Solid Waste Landfill

    SciTech Connect

    JW Lindberg; CJ Chou

    2000-12-14

    The Solid Waste Landfill (SWL) is regulated by the Washington State Department of Ecology under WAC 173-304. Between 1973 and 1976, the landfill received primarily paper waste and construction debris, but it also received asbestos, sewage, and catch tank liquid waste. Groundwater monitoring results indicate the SWL has contaminated groundwater with volatile organic compounds and possibly metals at levels that exceed regulatory limits. DynCorp, Tri-Cities, Inc. operates the facility under an interim closure plan (final closure plan will be released shortly). Pacific Northwest National Laboratory (PNNL) monitors groundwater at the site. This monitoring plan includes well and constituent lists, and summarizes sampling, analytical, and quality control requirements. Changes from the previous monitoring plan include elimination of two radionuclides from the analyte list and some minor changes in the statistical analysis. Existing wells in the current monitoring network only monitor the uppermost portion of the upper-most aquifer. Therefore, two new downgradient wells and one existing upgradient well are proposed to determine whether groundwater waste constituents have reached the lower portion of the uppermost aquifer. The proposed well network includes three upgradient wells and ten downgradient wells. The wells will be sampled quarterly for 14 analytes required by WAC 173-304-490 plus volatile organic compounds and filtered arsenic as site-specific analytes.

  16. Modelling of environmental impacts of solid waste landfilling within the life-cycle analysis program EASEWASTE

    SciTech Connect

    Kirkeby, Janus T.; Birgisdottir, Harpa; Bhander, Gurbakash Singh; Hauschild, Michael; Christensen, Thomas H.

    2007-07-01

    A new computer-based life-cycle assessment model (EASEWASTE) has been developed to evaluate resource and environmental consequences of solid waste management systems. This paper describes the landfilling sub-model used in the life-cycle assessment program EASEWASTE, and examines some of the implications of this sub-model. All quantities and concentrations of leachate and landfill gas can be modified by the user in order to bring them in agreement with the actual landfill that is assessed by the model. All emissions, except the generation of landfill gas, are process specific. The landfill gas generation is calculated on the basis of organic matter in the landfilled waste. A landfill assessment example is provided. For this example, the normalised environmental effects of landfill gas on global warming and photochemical smog are much greater than the environmental effects for landfill leachate or for landfill construction. A sensitivity analysis for this example indicates that the overall environmental impact is sensitive to the gas collection efficiency and the use of the gas, but not to the amount of leachate generated, or the amount of soil or liner material used in construction. The landfill model can be used for evaluating different technologies with different liners, gas and leachate collection efficiencies, and to compare the environmental consequences of landfilling with alternative waste treatment options such as incineration or anaerobic digestion.

  17. Modelling of environmental impacts of solid waste landfilling within the life-cycle analysis program EASEWASTE.

    PubMed

    Kirkeby, Janus T; Birgisdottir, Harpa; Bhander, Gurbakash Singh; Hauschild, Michael; Christensen, Thomas H

    2007-01-01

    A new computer-based life-cycle assessment model (EASEWASTE) has been developed to evaluate resource and environmental consequences of solid waste management systems. This paper describes the landfilling sub-model used in the life-cycle assessment program EASEWASTE, and examines some of the implications of this sub-model. All quantities and concentrations of leachate and landfill gas can be modified by the user in order to bring them in agreement with the actual landfill that is assessed by the model. All emissions, except the generation of landfill gas, are process specific. The landfill gas generation is calculated on the basis of organic matter in the landfilled waste. A landfill assessment example is provided. For this example, the normalised environmental effects of landfill gas on global warming and photochemical smog are much greater than the environmental effects for landfill leachate or for landfill construction. A sensitivity analysis for this example indicates that the overall environmental impact is sensitive to the gas collection efficiency and the use of the gas, but not to the amount of leachate generated, or the amount of soil or liner material used in construction. The landfill model can be used for evaluating different technologies with different liners, gas and leachate collection efficiencies, and to compare the environmental consequences of landfilling with alternative waste treatment options such as incineration or anaerobic digestion. PMID:17382531

  18. 40 CFR 261.32 - Hazardous wastes from specific sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... citations affecting § 261.32, see the List of CFR Sections Affected, which appears in the Finding Aids... WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE Lists of Hazardous Wastes § 261.32... and EPA hazardous waste No. Hazardous waste Hazard code Wood preservation: K001 Bottom sediment...

  19. 40 CFR 261.32 - Hazardous wastes from specific sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... citations affecting § 261.32, see the List of CFR Sections Affected, which appears in the Finding Aids... WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE Lists of Hazardous Wastes § 261.32... and EPA hazardous waste No. Hazardous waste Hazard code Wood preservation: K001 Bottom sediment...

  20. 40 CFR 261.32 - Hazardous wastes from specific sources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... citations affecting § 261.32, see the List of CFR Sections Affected, which appears in the Finding Aids... WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE Lists of Hazardous Wastes § 261.32... and EPA hazardous waste No. Hazardous waste Hazard code Wood preservation: K001 Bottom sediment...

  1. LANDFILL CONTAINMENT AND COVER SYSTEMS

    EPA Science Inventory

    The U.S. Environmental Protection Agency through its research and field experiences has developed control strategies for hazardous and municipal solid waste landfills and surface impoundments. hese control strategies include liner and cover systems. he liner systems include doubl...

  2. Evaluation Of Landfill Gas Decay Constant For Municipal Solid Waste Landfills Operated As Bioreactors

    EPA Science Inventory

    Prediction of the rate of gas production from bioreactor landfills is important to optimize energy recovery and to estimate greenhouse gas emissions. Landfill gas (LFG) composition and flow rate were monitored for four years for a conventional and two bioreactor landfill landfil...

  3. HANDBOOK: HAZARDOUS WASTE INCINERATION MEASUREMENT GUIDANCE

    EPA Science Inventory

    This publication, Volume III of the Hazardous Waste Incineration Guidance Series, contains general guidance to permit writers in reviewing hazardous waste incineration permit applications and trial burn plans. he handbook is a how-to document dealing with how incineration measure...

  4. 49 CFR 171.3 - Hazardous waste.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... have identification numbers which must be displayed on hazardous waste manifests. See 40 CFR parts 262...: In 40 CFR part 263, the EPA sets forth requirements for the cleanup of releases of hazardous wastes. ..., AND DEFINITIONS Applicability, General Requirements, and North American Shipments § 171.3...

  5. 49 CFR 171.3 - Hazardous waste.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... have identification numbers which must be displayed on hazardous waste manifests. See 40 CFR parts 262...: In 40 CFR part 263, the EPA sets forth requirements for the cleanup of releases of hazardous wastes. ..., AND DEFINITIONS Applicability, General Requirements, and North American Shipments § 171.3...

  6. 49 CFR 171.3 - Hazardous waste.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... have identification numbers which must be displayed on hazardous waste manifests. See 40 CFR parts 262...: In 40 CFR part 263, the EPA sets forth requirements for the cleanup of releases of hazardous wastes. ..., AND DEFINITIONS Applicability, General Requirements, and North American Shipments § 171.3...

  7. 49 CFR 171.3 - Hazardous waste.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... have identification numbers which must be displayed on hazardous waste manifests. See 40 CFR parts 262...: In 40 CFR part 263, the EPA sets forth requirements for the cleanup of releases of hazardous wastes. ..., AND DEFINITIONS Applicability, General Requirements, and North American Shipments § 171.3...

  8. Hazardous Waste Handling Should be Defined

    ERIC Educational Resources Information Center

    Steigman, Harry

    1972-01-01

    An examination of the handling, storage and disposition of hazardous wastes from municipal and industrial sources, with a plea for the development of a uniform national hazardous waste code or listing that would be acceptable and useful to all state and federal agencies. (LK)

  9. 76 FR 76677 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Exclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-08

    ... AGENCY 40 CFR Part 261 Hazardous Waste Management System; Identification and Listing of Hazardous Waste... the potential impact of the petitioned waste on human health and the environment. The EPA's proposed decision to grant the petition is based on an evaluation of waste-specific information provided by...

  10. 75 FR 60689 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-01

    ... Refinery (Beaumont Refinery) to exclude (or delist) a certain solid waste generated by its Beaumont, Texas... AGENCY 40 CFR Part 261 Hazardous Waste Management System; Identification and Listing of Hazardous Waste... 3.0 in the evaluation of the impact of the petitioned waste on human health and the...

  11. Codisposal of oil wastes with Domestic solid wastes in landfills: leaching and persistence of oil

    SciTech Connect

    Barber, C.; Bull, S.C.; Johnson, R.G.; Maris, P.J.

    1983-03-01

    Controlled landfill offers a possible alternative for the disposal of oily wastes, and research has been carried out to assess the impact of these practices using laboratory simulations and a site study. These studies showed that oil emulsions were rapidly broken down to free oil and an associated aqueous phase in the landfill. The oil was readily sorbed by domestic waste solids, whereas the aqueous phase was flushed out with leachate. Concentrations of oil in leachate were, in most cases, similar to those found in leachate from domestic wastes only. It was probable that under anaerobic conditions in the fill, oil was not significantly degraded by microorganisms, small losses of oil being mainly due to leaching. It is concluded that water pollution (surface or groundwater) from the disposal of small volumes of oily wastes with domestic wastes will not be significantly greater than pollution by leachates from domestic wastes only.

  12. Contribution of individual waste fractions to the environmental impacts from landfilling of municipal solid waste.

    PubMed

    Manfredi, Simone; Tonini, Davide; Christensen, Thomas H

    2010-03-01

    A number of LCA-based studies have reported on the environmental performance of landfilling of mixed waste, but little is known about the relative contributions of individual waste fractions to the overall impact potentials estimated for the mixed waste. In this paper, an empirical model has been used to estimate the emissions to the environment from landfilling of individual waste fractions. By means of the LCA-model EASEWASTE, the emissions estimated have been used to quantify how much of the overall impact potential for each impact category is to be attributed to the individual waste fractions. Impact potentials are estimated for 1 tonne of mixed waste disposed off in a conventional landfill with bottom liner, leachate collection and treatment and gas collection and utilization for electricity generation. All the environmental aspects are accounted for 100 years after disposal and several impact categories have been considered, including standard categories, toxicity-related categories and groundwater contamination. Amongst the standard and toxicity-related categories, the highest potential impact is estimated for human toxicity via soil (HTs; 12 mPE/tonne). This is mostly caused by leaching of heavy metals from ashes (e.g. residues from roads cleaning and vacuum cleaning bags), batteries, paper and metals. On the other hand, substantial net environmental savings are estimated for the categories Global Warming (GW; -31 mPE/tonne) and Eco-Toxicity in water chronic (ETwc; -53 mPE/tonne). These savings are mostly determined by the waste fractions characterized by a high content of biogenic carbon (paper, organics, other combustible waste). These savings are due to emissions from energy generation avoided by landfill gas utilization, and by the storage of biogenic carbon in the landfill due to incomplete waste degradation. PMID:19854039

  13. Hazardous waste. A North Carolina dilemma.

    PubMed

    Davis, T G

    1992-07-01

    North Carolina, along with the rest of the nation, faces a number of dilemmas regarding management of hazardous waste: 1. North Carolina businesses and industries generate a lot of hazardous waste, but the state lacks the capacity to manage it. For many, it has been acceptable to ship the waste to other states for treatment, storage, and disposal. Some of the receiving states have indicated that they are no longer willing to serve as the "dumping ground" for North Carolina. 2. North Carolina, along with the EPA, has identified a number of hazardous waste sites now listed on the NPL. However, the state was excluded from its regional agreement with Alabama, South Carolina, Kentucky, and Tennessee in January 1991, meaning that Superfund monies may be withdrawn and that cleanup won't be completed at these sites. 3. Every year the country produces at least 260 million tons of hazardous waste--more than one ton for every man, woman, and child. Those opposed to constructing hazardous waste treatment facilities charge that businesses and industries should reduce their hazardous waste to zero or near zero, and they charge that the state is not doing enough to encourage waste reduction. North Carolina's hazardous waste regulations already require programs to minimize the amounts of waste generated by industries, but for most industrial processes, it is impossible to reduce the generation of waste to zero. However, industries must continue to reduce their waste through source reduction and recycling. Hazardous waste and toxic materials do pose a risk to human health and the environment unless properly managed.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1630504

  14. The Disposal of Hazardous Wastes.

    ERIC Educational Resources Information Center

    Barnhart, Benjamin J.

    1978-01-01

    The highlights of a symposium held in October, 1977 spotlight some problems and solutions. Topics include wastes from coal technologies, radioactive wastes, and industrial and agricultural wastes. (BB)

  15. Assessing the disposal of wastes containing NORM in nonhazardous waste landfills

    SciTech Connect

    Smith, K. P.; Blunt, D. L.; Williams, G. P.; Arnish, J. J.; Pfingston, M. R.; Herbert, J.

    1999-11-22

    In the past few years, many states have established specific regulations for the management of petroleum industry wastes containing naturally occurring radioactive material (NORM) above specified thresholds. These regulations have limited the number of disposal options available for NORM-containing wastes, thereby increasing the related waste management costs. In view of the increasing economic burden associated with NORM management, industry and regulators are interested in identifying cost-effective disposal alternatives that still provide adequate protection of human health and the environment. One such alternative being considered is the disposal of NORM-containing wastes in landfills permitted to accept only nonhazardous wastes. The disposal of petroleum industry wastes containing radium-226 and lead-210 above regulated levels in nonhazardous landfills was modeled to evaluate the potential radiological doses and associated health risks to workers and the general public. A variety of scenarios were considered to evaluate the effects associated with the operational phase (i.e., during landfill operations) and future use of the landfill property. Doses were calculated for the maximally exposed receptor for each scenario. This paper presents the results of that study and some conclusions and recommendations drawn from it.

  16. Comparative lysimeters studies for landfill leachate characterization and settlement variation in partly sorted municipal solid waste and fully sorted organic wastes.

    PubMed

    Khan, A S; Narulkar, S M

    2010-04-01

    About three-quarters of the countries and territories around the world use crude 'open dumping' method of disposal for municipal solid waste (MSW) which is the easiest and cheapest method of removing waste from the immediate environment but it creates serious environmental problems like groundwater contamination and air pollution. Land-filling is considered to be the most cost-effective method for solid waste disposal in developing countries if adequate sites are available. Bioreactor landfill is a promising biotechnological option for faster stabilization of municipal solid waste. The bioreactor landfill provides control and process optimization, primarily through the addition ofleachate or other liquid amendments. In the present study, Lysimeter experiments were carried out for the comparison of leachate characterization and settlement variation of "MSW except recyclable and domestic hazardous wastes" and "organic waste" to know the bioreactor feasibility in Indian context, because in India organic content of the solid waste is more due to consumption of unprocessed food items. Three Lysimeters under different operational conditions have been experimented for leachate characterization and settlement variation of the wastes. The results indicate the faster decay of pollutants in bioreactor in comparison to open dumps. The trend indicating the decay of pollutants elements in the produced leachate is encouraging. PMID:21114117

  17. Perpetual landfilling through aeration of the waste mass; lessons from test cells in Georgia (USA).

    PubMed

    Read, A D; Hudgins, M; Phillips, P

    2001-01-01

    Municipal solid waste (MSW) landfills worldwide are experiencing the consequences of conventional landfilling techniques, whereby anaerobic conditions are created within the landfilled waste. Under anaerobic conditions within a landfill site slow stabilization of the waste mass occurs, producing methane, (an explosive 'green house' gas) and leachate (which can pollute groundwater) over long periods of time. As a potential solution, it was demonstrated that the aerobic degradation of MSW within a landfill can significantly increase the rate of waste decomposition and settlement, decrease the methane production and leachate leaving the system, and potentially increase the operational life of the site. Readily integrated into the existing landfill infrastructure, this approach can safely and cost-effectively convert a MSW landfill from anaerobic to aerobic degradation processes, thereby effectively composting much of the organic portions (one of the potentially polluting elements in a conventional landfill site) of the waste. This paper summarizes the successful results of two separate aerobic landfill projects located in Georgia (USA) and discusses the potential economic and environmental impacts to worldwide solid waste management practices. PMID:11530917

  18. Hazardous waste status of discarded electronic cigarettes

    SciTech Connect

    Krause, Max J.; Townsend, Timothy G.

    2015-05-15

    Highlights: • Electronic cigarettes were tested using TCLP and WET. • Several electronic cigarette products leached lead at hazardous waste levels. • Lead was the only element that exceeded hazardous waste concentration thresholds. • Nicotine solution may cause hazardous waste classification when discarded unused. - Abstract: The potential for disposable electronic cigarettes (e-cigarettes) to be classified as hazardous waste was investigated. The Toxicity Characteristic Leaching Procedure (TCLP) was performed on 23 disposable e-cigarettes in a preliminary survey of metal leaching. Based on these results, four e-cigarette products were selected for replicate analysis by TCLP and the California Waste Extraction Test (WET). Lead was measured in leachate as high as 50 mg/L by WET and 40 mg/L by TCLP. Regulatory thresholds were exceeded by two of 15 products tested in total. Therefore, some e-cigarettes would be toxicity characteristic (TC) hazardous waste but a majority would not. When disposed in the unused form, e-cigarettes containing nicotine juice would be commercial chemical products (CCP) and would, in the United States (US), be considered a listed hazardous waste (P075). While household waste is exempt from hazardous waste regulation, there are many instances in which such waste would be subject to regulation. Manufactures and retailers with unused or expired e-cigarettes or nicotine juice solution would be required to manage these as hazardous waste upon disposal. Current regulations and policies regarding the availability of nicotine-containing e-cigarettes worldwide were reviewed. Despite their small size, disposable e-cigarettes are consumed and discarded much more quickly than typical electronics, which may become a growing concern for waste managers.

  19. 40 CFR 60.33c - Emission guidelines for municipal solid waste landfill emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Emission guidelines for municipal solid... Guidelines and Compliance Times for Municipal Solid Waste Landfills § 60.33c Emission guidelines for municipal solid waste landfill emissions. (a) For approval, a State plan shall include control of...

  20. 40 CFR 60.33c - Emission guidelines for municipal solid waste landfill emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Emission guidelines for municipal solid... Guidelines and Compliance Times for Municipal Solid Waste Landfills § 60.33c Emission guidelines for municipal solid waste landfill emissions. (a) For approval, a State plan shall include control of...

  1. 40 CFR 60.33c - Emission guidelines for municipal solid waste landfill emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Emission guidelines for municipal solid... Guidelines and Compliance Times for Municipal Solid Waste Landfills § 60.33c Emission guidelines for municipal solid waste landfill emissions. (a) For approval, a State plan shall include control of...

  2. 78 FR 5288 - Adequacy of Massachusetts Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-25

    ... AGENCY 40 CFR Parts 239 and 258 Adequacy of Massachusetts Municipal Solid Waste Landfill Permit Program... modification to Massachusetts's approved municipal solid waste landfill (MSWLF) program. The approved... INFORMATION: A. Background On March 22, 2004, EPA issued a final rule amending the municipal solid...

  3. 76 FR 270 - Alaska: Adequacy of Alaska Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-04

    ...: I. Background On March 22, 2004, EPA issued a final rule (69 FR 13242) amending the Municipal Solid... AGENCY 40 CFR Parts 239 and 258 Alaska: Adequacy of Alaska Municipal Solid Waste Landfill Permit Program... modification to Alaska's approved Municipal Solid Waste Landfill (MSWLF) permit program. The...

  4. Characterization of household hazardous waste from Marin County, California, and New Orleans, Louisiana

    SciTech Connect

    Rathje, W.L.; Wilson, D.C.; Lambou, V.W.; Herndon, R.C.

    1987-09-01

    There is a growing concern that certain constituents of common household products, that are discarded in residential garbage, may be potentially harmful to human health and the environment by adversely affecting the quality of ground and surface water. A survey of hazardous wastes in residential garbage from Marin County, California, and New Orleans, Louisiana, was conducted in order to determine the amount and characteristics of such wastes that are entering municipal landfills. The results of the survey indicate that approximately 642 metric tons of hazardous waste are discarded per year for the New Orleans study area and approximately 259 metric tons are discarded per year for the Marin County study area. Even though the percent of hazardous household waste in the garbage discarded in both study areas was less than 1%, it represents a significant quantity of hazardous waste because of the large volume of garbage involved.

  5. Solid waste management in Croatia in response to the European Landfill Directive.

    PubMed

    Stanic-Maruna, Ira; Fellner, Johann

    2012-08-01

    The European Landfill Directive 99/31/EC represents the most influential piece of waste legislation on the management of municipal solid waste. In addition to technical standards regarding the design and location of landfills, it calls for a decrease in the amount of biodegradable waste landfilled. In order to meet the reduction targets set in the Landfill Directive, national solid waste strategies need to be changed. This article outlines the impact of the Landfill Directive on the Croatian waste management strategy and discusses the key challenges of its implementation. In addition, three scenarios of future waste management (mechanical biological pre-treatment, waste-to-energy and landfilling) have been investigated and evaluated regarding environmental impacts and affordability. The results of the analysis show that Croatia has transposed the said Directive into its own legislation in an exemplary way. The developed national waste management strategy foresees the set up of a separate collection of recyclables, waste pre-treatment of MSW, as well as the upgrading of existing disposal sites to sanitary landfills. However, the practical progress of carrying out provisions implemented on paper is lagging behind. Concerning the investigated scenarios the results of the evaluation indicate that mechanical biological pre-treatment in conjunction with separate collection of recyclables appears to be the most feasible option (in terms of economic and ecologic parameters). This result is in line with the proposed national waste management strategy. PMID:22615201

  6. Hazardous and radioactive waste incineration studies

    NASA Astrophysics Data System (ADS)

    Vavruska, J. S.; Stretz, L. A.; Borduin, L. C.

    Development and demonstration of a transuranic (TRU) waste volume-reduction process is described. A production-scale controlled air incinerator using commercially available equipment and technology was modified for solid radioactive waste service. This unit successfully demonstrated the volume reduction of transuranic (TRU) waste with an average TRU content of about 20 nCi/g. The same incinerator and offgas treatment system is being modified further to evaluate the destruction of hazardous liquid wastes such as polychlorinated biphenyls (PCBs) and hazardous solid wastes such as pentachlorophenol (PCP)-treated wood.

  7. ASSESSMENT OF HAZARDOUS WASTES FOR GENOTOXICITY

    EPA Science Inventory

    The authors have evaluated a group of short-term bioassays to identify those that may be suitable for screening large numbers of diverse hazardous industrial wastes for genotoxicity. Fifteen wastes (and dichloromethane extracts of these wastes) from a variety of manufacturing pro...

  8. Environmental assessment for the construction, operation, and closure of the solid waste landfill at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect

    1995-03-01

    DOE has prepared an environmental assessment (EA) for the proposed construction, operation, and closure of a Solid Waste Landfill (SWL) that would be designed in accordance with Commonwealth of Kentucky landfill regulations (401 Kentucky Administrative Regulations Chapters 47 and 48 and Kentucky Revised Statutes 224.855). PGDP produces approximately 7,200 cubic yards per year of non-hazardous, non-radioactive solid waste currently being disposed of in a transitional contained (residential) landfill cell (Cell No. 3). New Kentucky landfill regulations mandate that all existing landfills be upgraded to meet the requirements of the new regulations or stop receiving wastes by June 30, 1995. Cell No. 3 must stop receiving wastes at that time and be closed and capped within 180 days after final receipt of wastes. The proposed SWL would occupy 25 acres of a 60-acre site immediately north of the existing PGDP landfill (Cell No. 3). The EA evaluated the potential environmental consequences of the proposed action and reasonable alternative actions. Based on the analysis in the EA, DOE has determined that the proposed action does not constitute a major Federal action which will significantly affect the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA), 42 USC 4321 et seq. Therefore, it is determined that an environmental impact statement will not be prepared, and DOE is issuing this FONSI.

  9. 75 FR 57686 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste Amendment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-22

    ... Cord, Scottsburg (64 FR 3869, January 26, 1999). On April 22, 2010, the Agency was notified that..., 2010. The Hazardous and Solid Waste Amendments of 1984 amended section 3010 of the Resource... AGENCY 40 CFR Part 261 Hazardous Waste Management System; Identification and Listing of Hazardous...

  10. 40 CFR 261.32 - Hazardous wastes from specific sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Hazardous wastes from specific sources. 261.32 Section 261.32 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE Lists of Hazardous Wastes § 261.32 Hazardous wastes from specific sources....

  11. The environmental comparison of landfilling vs. incineration of MSW accounting for waste diversion.

    PubMed

    Assamoi, Bernadette; Lawryshyn, Yuri

    2012-05-01

    This study evaluates the environmental performance and discounted costs of the incineration and landfilling of municipal solid waste that is ready for the final disposal while accounting for existing waste diversion initiatives, using the life cycle assessment (LCA) methodology. Parameters such as changing waste generation quantities, diversion rates and waste composition were also considered. Two scenarios were assessed in this study on how to treat the waste that remains after diversion. The first scenario is the status quo, where the entire residual waste was landfilled whereas in the second scenario approximately 50% of the residual waste was incinerated while the remainder is landfilled. Electricity was produced in each scenario. Data from the City of Toronto was used to undertake this study. Results showed that the waste diversion initiatives were more effective in reducing the organic portion of the waste, in turn, reducing the net electricity production of the landfill while increasing the net electricity production of the incinerator. Therefore, the scenario that incorporated incineration performed better environmentally and contributed overall to a significant reduction in greenhouse gas emissions because of the displacement of power plant emissions; however, at a noticeably higher cost. Although landfilling proves to be the better financial option, it is for the shorter term. The landfill option would require the need of a replacement landfill much sooner. The financial and environmental effects of this expenditure have yet to be considered. PMID:22099926

  12. DECONTAMINATION OF HAZARDOUS WASTE SUBSTANCES FROM SPILLS AND UNCONTROLLED WASTE SITES BY RADIO FREQUENCY IN SITU HEATING

    EPA Science Inventory

    The radio frequency (RF) heating process can be used to volumetrically heat and thus decontaminate uncontrolled landfills and hazardous substances from spills. After the landfills are heated, decontamination of the hazardous substances occurs due to thermal decomposition, vaporiz...

  13. 75 FR 51671 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Exclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-23

    ... sludge from the list of hazardous wastes under 40 CFR 261.31 and 261.32 (see 70 FR 41358). EPA is... also eligible for exclusion and remain hazardous wastes until excluded. See 66 FR 27266 (May 16, 2001... Tokusen's petitioned waste. EPA applied the Delisting Risk Assessment Software (DRAS) described in 65...

  14. Environmental Hazards of Nuclear Wastes

    ERIC Educational Resources Information Center

    Micklin, Philip P.

    1974-01-01

    Present methods for storage of radioactive wastes produced at nuclear power facilities are described. Problems arising from present waste management are discussed and potential solutions explored. (JP)

  15. Waste management in the Irkutsk Region, Siberia, Russia: environmental assessment of current practice focusing on landfilling.

    PubMed

    Starostina, Vlada; Damgaard, Anders; Rechberger, Helmut; Christensen, Thomas H

    2014-05-01

    The municipal waste management system of the region of Irkutsk is described and a life cycle assessment (LCA) performed to assess the environmental performance of the system. Annually about 500 000 tons of waste are managed. The waste originates from three sources: household waste (27%), commercial waste (23%) and office & institutional waste (44%). Other waste of unknown composition constitutes 6%. Only 3% of the waste is recycled; 97% of the municipal waste is disposed of at the old Alexandrovsky landfill. The environmental impact from the current system is dominated by the landfill, which has no gas or leachate collection system. The global warming contribution is due to the emission of methane of the order of 420 000 tons CO2-equivalents per year. Collection and transport of the waste are insignificant compared with impacts from the landfill. As the old landfill runs out of capacity in a few years, the LCA modelling showed that introduction of a new and modern landfill with gas and leachate collection could improve the performance of the waste management system significantly. Collection of landfill gas and utilization for 30 years for electricity production (gas turbine) would reduce the global warming completely and result in a net saving of 100 000 CO2-equivalents per year due to storage of biogenic carbon in the landfill beyond 100 years. Considering other first-order degradation rates for the landfilled organic matter did not overtly affect the results, while assumptions about the top cover oxidation of methane significantly affected the results. This shows the importance of controlling the gas escape from the landfill. PMID:24692457

  16. Analysis of a landfill gas to energy system at the municipal solid waste landfill in Gaziantep, Turkey.

    PubMed

    Tercan, Safak Hengirmen; Cabalar, Ali Firat; Yaman, Gokhan

    2015-08-01

    This paper presents an analysis of the electricity generation from municipal solid waste (MSW), via landfill gas valorization technology, at the landfill of Gaziantep City, Turkey. Rapid increase in population, and industrial developments, throughout the world including Turkey results in larger amount of waste materials generated, increased need for energy, and adverse affects on the environment and human health. Turkey plans to produce 1/3 of its electricity demand using renewable energy sources by the year of 2023. It is recommended to use each year around 25 million tonnes of the MSW generated nationwide for a renewable energy supply. In this study, a concise summary of current status of electricity generation from a MSW landfill gas plant (via biogas harnessing) located in Gaziantep City was analyzed as a case study. PMID:26211632

  17. The environmental comparison of landfilling vs. incineration of MSW accounting for waste diversion

    SciTech Connect

    Assamoi, Bernadette; Lawryshyn, Yuri

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Residential waste diversion initiatives are more successful with organic waste. Black-Right-Pointing-Pointer Using a incineration to manage part of the waste is better environmentally. Black-Right-Pointing-Pointer Incineration leads to more power plant emission offsets. Black-Right-Pointing-Pointer Landfilling all of the waste would be preferred financially. - Abstract: This study evaluates the environmental performance and discounted costs of the incineration and landfilling of municipal solid waste that is ready for the final disposal while accounting for existing waste diversion initiatives, using the life cycle assessment (LCA) methodology. Parameters such as changing waste generation quantities, diversion rates and waste composition were also considered. Two scenarios were assessed in this study on how to treat the waste that remains after diversion. The first scenario is the status quo, where the entire residual waste was landfilled whereas in the second scenario approximately 50% of the residual waste was incinerated while the remainder is landfilled. Electricity was produced in each scenario. Data from the City of Toronto was used to undertake this study. Results showed that the waste diversion initiatives were more effective in reducing the organic portion of the waste, in turn, reducing the net electricity production of the landfill while increasing the net electricity production of the incinerator. Therefore, the scenario that incorporated incineration performed better environmentally and contributed overall to a significant reduction in greenhouse gas emissions because of the displacement of power plant emissions; however, at a noticeably higher cost. Although landfilling proves to be the better financial option, it is for the shorter term. The landfill option would require the need of a replacement landfill much sooner. The financial and environmental effects of this expenditure have yet to be considered.

  18. GEOSTATISTICAL SAMPLING DESIGNS FOR HAZARDOUS WASTE SITES

    EPA Science Inventory

    This chapter discusses field sampling design for environmental sites and hazardous waste sites with respect to random variable sampling theory, Gy's sampling theory, and geostatistical (kriging) sampling theory. The literature often presents these sampling methods as an adversari...

  19. HANDBOOK ON TREATMENT OF HAZARDOUS WASTE LEACHATE

    EPA Science Inventory

    Various treatment processes were evaluated for their applicability and effectiveness in treating leachate from hazardous waste land disposal facilities. These technologies include activated sludge treatment, air stripping, carbon adsorption, flow equalization, granular media filt...

  20. A Program on Hazardous Waste Management.

    ERIC Educational Resources Information Center

    Kummler, Ralph H.; And Others

    1989-01-01

    Provides an overview of the "Hazardous Waste Management Graduate Certificate" program at Wayne State University. Describes four required courses and nine optional courses. Discusses the development of a Master program and the curriculum of the Master program. (YP)

  1. Geophysical investigation at Hazardous Waste Management Site 16, Radford Army Ammunition Plant Radford, Virginia. Final report

    SciTech Connect

    Llopis, J.L.; Sjostrom, K.J.

    1989-09-01

    This report describes procedural details and test results of a geophysical investigation conducted at Hazardous Waste Management Site-16 (HWMS-16), Radford Army Ammunition Plant, Va. The geophysical investigation, part of a comprehensive ground-water assessment program, was conducted to obtain subsurface information regarding HWMS-16, thus aiding in determining the most optimal locations for future monitoring wells. The two geophysical methods used in this investigation were electromagnetic (EM) induction and seismic refraction. A number of anomalous areas including a suspected sinkhole were discerned at HWMS-16. Also, the EM method proved to be effective in delineating the boundaries of covered and leveled-off landfill cells and distinguishing landfill cells used for the disposal of household waste from those used for the disposal of hazardous waste.

  2. Hazards assessment for the Hazardous Waste Storage Facility

    SciTech Connect

    Knudsen, J.K.; Calley, M.B.

    1994-04-01

    This report documents the hazards assessment for the Hazardous Waste Storage Facility (HWSF) located at the Idaho National Engineering Laboratory. The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. The hazards assessment identifies and analyzes hazards that are significant enough to warrant consideration in a facility`s operational emergency management program. The area surrounding HWSF, the buildings and structures at HWSF, and the processes used at HWSF are described in this report. All nonradiological hazardous materials at the HWSF were identified (radiological hazardous materials are not stored at HWSF) and screened against threshold quantities according to DOE Order 5500.3A guidance. Two of the identified hazardous materials exceeded their specified threshold quantity. This report discusses the potential release scenarios and consequences associated with an accidental release for each of the two identified hazardous materials, lead and mercury. Emergency considerations, such as emergency planning zones, emergency classes, protective actions, and emergency action levels, are also discussed based on the analysis of potential consequences. Evaluation of the potential consequences indicated that the highest emergency class for operational emergencies at the HWSF would be a Site Area Emergency.

  3. Ecological investigation of a hazardous waste site, Warner Robins, Georgia

    SciTech Connect

    Wade, M.; Billig, P.

    1993-05-01

    Landfill No. 4 and the sludge lagoon at Robins Air Force Base, Warner Robins, Georgia, were added to the United States Environmental Protection Agency (EPA) National Priorities List in 1987 because of highpotential for contaminant migration. Warner Robins is located approximately 90 miles southeast of Atlanta. In 1990 CH2M HILL conducted a Remedial Investigation at the base that recommended that further ecological assessment investigations be conducted (CH2M HILL 1990). The subject paper is the result of this recommendation. The ecological study was carried out by the Hazardous Waste Remedial Actions Program (HAZWRAP)Division of Martin Marietta Energy Systems, Inc., working jointly with its subcontractor CDM (CDM 1992a). The primary area of investigation (Zone 1) included the sludge lagoon, Landfill No. 4, the wetland area east of the landfill and west of Hannah Road (including two sewage treatment ponds), and the area between Hannah Road and Horse Creek (Fig. 1). The bottomland forest wetlands of Zone 1 extend from the landfill east to Horse Creek. Surface water and groundwater flow across Zone 1 is generally in an easterly direction toward Horse Creek. Horse Creek is a south-flowing tributary of the Ocmulgee River Floodplain. The objective of the study was to perform a quantitative analysis of ecological risk associated with the ecosystems present in Zone 1. This investigation was unique because the assessment was to be based upon many measurement endpoints resulting in both location-specific data and data that would assess the condition of the overall ecosystem. The study was segregated into five distinct field investigations: hydrology, surface water and sediment, aquatic biology, wetlands ecology, and wildlife biology.

  4. Site hydrogeologic/geotechnical characterization report for Site B new municipal solid waste landfill

    SciTech Connect

    Reynolds, R.; Nowacki, P.

    1991-04-01

    This Site Hydrogeologic/Geotechnical Characterization Report (SHCR) presents the results of a comprehensive study conducted on a proposed solid waste landfill site, identified herein as Site B, at the Savannah River Site (SRS). This report is intended to satisfy all requirements of the South Carolina Department of Health and Environmental Control (SCDHEC) with regard to landfill siting requirements and ground water and environmental protection. In addition, this report provides substantial geotechnical data pertinent to the landfill design process.

  5. Hazardous waste disposal and the clinical laboratory.

    PubMed

    Armbruster, D A

    1990-01-01

    Negligent, unregulated hazardous waste management has resulted in real and potential threats to public health and safety. The federal government has responded with laws and regulations aimed at the producers of hazardous waste, including clinical laboratories. Clinical laboratory managers must understand how the requirements apply to their facilities and how to comply with them, or risk violating the law. The Resources Conservation and Recovery Act (RCRA) imposes controls on hazardous waste management through the Code of Federal Regulations (CFR). The Environmental Protection Agency (EPA) and the Department of Transportation (DOT) regulate these activities through 40 CFR and 49 CFR, respectively. 49 CFR specifies the characteristics of hazardous waste and lists more than 400 toxic chemicals, including several commonly used in clinical laboratories. Laboratories must conduct chemical inventories to determine if they should obtain an EPA identification number as a hazardous waste generator. Most clinical laboratories can operate satellite accumulation points and accumulate, store, transport, and dispose of waste in accordance with EPA and DOT regulations. Regulations pertaining to infectious waste, sure to affect many clinical laboratories, are being developed now by the EPA. The tracking system mandated by the federal government can be supplemented by state and local authorities and poses a significant regulatory challenge to clinical laboratory managers. PMID:10104718

  6. Air emissions assessment and air quality permitting for a municipal waste landfill treating municipal sewage sludge

    SciTech Connect

    Koehler, J.

    1998-12-31

    This paper presents a case study into the air quality permitting of a municipal solid waste (MSW) landfill in the San Francisco Bay Area undergoing a proposed expansion in operations to increase the life of the landfill. The operations of this facility include MSW landfilling, the treatment and disposal of municipal sewage sludge, the aeration of petroleum-contaminated soils, the construction of a new on-site plant to manufacture soil amendment products from waste wood and other organic material diverted from the landfill, and the installation of a vaporator to create steam from leachate for injection into the landfill gas flare. The emissions assessment for each project component relied upon interpretation of source tests from similar operations, incorporation of on-site measurements into emissions models and mass balances, and use of AP-42 procedures for emissions sources such as wind-blown dust, material handling and transfer operations, and fugitive landfill gas. Air permitting issues included best available control technology (BACT), emission offset thresholds, new source performance standards (NSPS), potential air toxics health risk impacts, and compliance with federal Title V operating permit requirements. With the increasing difficulties of siting new landfills, increasing pressures to reduce the rate of waste placement into existing landfills, and expanding regulatory requirements on landfill operations, experiences similar to those described in this paper are likely to increase in the future as permitting scenarios become more complex.

  7. BIOLOGICAL TREATMENT OF HAZARDOUS AQUEOUS WASTES

    EPA Science Inventory

    Studies have been conducted with a rotating biological contractor (RBC) to evaluate the treatability of leachates from the Stringfellow and New Lyme hazardous waste sites. The leachates were transported from the waste sites to Cincinnati at the United States Environmental Protect...

  8. Health effects of hazardous waste.

    PubMed

    Dearwent, Steve M; Mumtaz, M Moiz; Godfrey, Gail; Sinks, Thomas; Falk, Henry

    2006-09-01

    Since 1995, the Agency for Toxic Substances and Disease Registry (ATSDR) has evaluated environmental contaminants and human health risks at nearly 3000 sites. Hazardous substances at these sites include newly emerging problems as well as historically identified threats. ATSDR classifies sites according to the degree of hazard they represent to the public. Less than 1% of the sites investigated are considered urgent public health hazards where chemical or physical hazards are at levels that could cause an immediate threat to life or health. Approximately 20% of sites have a potential for long-term human exposures above acceptable risk levels. At almost 40% of sites, hazardous substances do not represent a public health hazard. Completed exposure pathways for contaminants in air, water, and soil have been reported at approximately 30% of evaluated sites. The most common contaminants of concern at these sites include heavy metals, volatile organic compounds, and polychlorinated biphenyls. This article reviews ATSDR's ongoing work by examining the historic hazard of lead, the contemporary hazard of asbestos, and the emerging issue of perchlorate contamination. PMID:17119223

  9. 76 FR 36480 - Hazardous Waste Manifest Printing Specifications Correction Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-22

    ... Subjects in 40 CFR Part 262 Environmental protection, Exports, Hazardous materials transportation... AGENCY 40 CFR Part 262 Hazardous Waste Manifest Printing Specifications Correction Rule AGENCY... proposing a minor change to the Resource Conservation and Recovery Act (RCRA) hazardous waste...

  10. One-dimensional Seismic Analysis of a Solid-Waste Landfill

    SciTech Connect

    Castelli, Francesco; Lentini, Valentina; Maugeri, Michele

    2008-07-08

    Analysis of the seismic performance of solid waste landfill follows generally the same procedures for the design of embankment dams, even if the methods and safety requirements should be different. The characterization of waste properties for seismic design is difficult due the heterogeneity of the material, requiring the procurement of large samples. The dynamic characteristics of solid waste materials play an important role on the seismic response of landfill, and it also is important to assess the dynamic shear strengths of liner materials due the effect of inertial forces in the refuse mass. In the paper the numerical results of a dynamic analysis are reported and analysed to determine the reliability of the common practice of using 1D analysis to evaluate the seismic response of a municipal solid-waste landfill. Numerical results indicate that the seismic response of a landfill can vary significantly due to reasonable variations of waste properties, fill heights, site conditions, and design rock motions.

  11. 76 FR 72311 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Exclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-23

    ...The Environmental Protection Agency (EPA) is granting a petition submitted by Eastman Chemical Corporation--Texas Operations (Eastman Chemical) to exclude from hazardous waste control (or delist) a certain solid waste. This final rule responds to the petition submitted by Eastman Chemical to delist three waste streams generated from its rotary kiln incinerator (RKI). These waste streams are......

  12. Vitrification of hazardous and mixed wastes

    SciTech Connect

    Jantzen, C.M.; Pickett, J.B. ); Ramsey, W.G. . Dept. of Ceramic Engineering)

    1992-01-01

    Solidification of hazardous/mixed wastes into glass is being examined at the Savannah River Site. The first hazardous/mixed wastes glassified at SRS have been (1) incinerator and (2) nickel plating line (F006) wastes. Solidification of incinerator blowdown and mixtures of incinerator blowdown and incinerator bottom kiln ash have been achieved in Soda (Na[sub 2]O) - Lime (CaO) - Silica (SiO[sub 2]) glass (SLS) at waste loadings of up to 50 wt%. Solidification of nickel-plating line waste sludges containing depleted uranium have also been achieved in both SLS and borosilicate glasses at waste loadings of 75 wt%. This corresponds to volume reductions of 97% and 81%, respectively. Further studies will examine glassification of: ion exchange zeolites, inorganic filter media, asbestos, glass fiber filters, contaminated soil, cementitious, or other materials in need of remediation.

  13. Vitrification of hazardous and mixed wastes

    SciTech Connect

    Jantzen, C.M.; Pickett, J.B.; Ramsey, W.G.

    1992-10-01

    Solidification of hazardous/mixed wastes into glass is being examined at the Savannah River Site. The first hazardous/mixed wastes glassified at SRS have been (1) incinerator and (2) nickel plating line (F006) wastes. Solidification of incinerator blowdown and mixtures of incinerator blowdown and incinerator bottom kiln ash have been achieved in Soda (Na{sub 2}O) - Lime (CaO) - Silica (SiO{sub 2}) glass (SLS) at waste loadings of up to 50 wt%. Solidification of nickel-plating line waste sludges containing depleted uranium have also been achieved in both SLS and borosilicate glasses at waste loadings of 75 wt%. This corresponds to volume reductions of 97% and 81%, respectively. Further studies will examine glassification of: ion exchange zeolites, inorganic filter media, asbestos, glass fiber filters, contaminated soil, cementitious, or other materials in need of remediation.

  14. RCRA SUBTITLE D (258): SEISMIC DESIGN GUIDANCE FOR MUNICIPAL SOLID WASTE LANDFILL FACILITIES

    EPA Science Inventory

    On October 9, 1993, the new RCRA Subtitle D regulation (40CFR Part 258) went into effect. hese regulations are applicable to landfills reclining solid waste (MSW) and establish minimum Federal criteria for the siting, design, operations, and closure of MSW landfills. hese regulat...

  15. RCRA SUBTITLE D (258): SEISMIC DESIGN GUIDANCE FOR MUNICIPAL SOLID WASTE LANDFILL FACILITIES

    EPA Science Inventory

    On October 9, 1993, the new RCRA Subtitle D regulations (40 CFR Part 258) went into effect. These regulations are applicable to landfills receiving municipal solid waste (MSW) and establish minimum Federal criteria for the siting, design, operation, and closure of MSW landfills....

  16. Quantifying Methane Abatement Efficiency at Three Municipal Solid Waste Landfills; Final Report

    EPA Science Inventory

    Measurements were conducted at three municipal solid waste landfills to compare fugitive methane emissions from the landfill cells to the quantity of collected gas (i.e., gas collection efficiency). The measurements were conducted over a multi-week sampling campaign using EPA Oth...

  17. Hazard ranking systems for chemical wastes and chemical waste sites. Hazardous waste ranking systems

    SciTech Connect

    Waters, R.D.; Parker, F.L.; Crutcher, M.R.

    1991-12-31

    Hazardous materials and substances have always existed in the environment. Mankind has evolved to live with some degree of exposure to toxic materials. Until recently the risk has been from natural toxins or natural background radiation. While rapid technological advances over the past few decades have improved the lifestyle of our society, they have also dramatically increased the availability, volume and types of synthetic and natural hazardous materials. Many of their effects are as yet uncertain. Products and manufacturing by-products that no longer serve a useful purpose are deemed wastes. For some waste products land disposal will always be their ultimate fate. Hazardous substances are often included in the waste products. One needs to classify wastes by degree of hazard (risk). Risk (degree of probability of loss) is usually defined for risk assessment as probability of an occurrence times the consequences of the occurrence. Perhaps even more important than the definition of risk is the choice of a risk management strategy. The choice of strategy will be strongly influenced by the decision criteria used. Those decision criteria could be utility (the greatest happiness of the greatest number), rights or technology based or some combination of the three. It is necessary to make such choices about the definition of risks and criteria for management. It is clear that these are social (i.e., political) and value choices and science has little to say on this matter. This is another example of what Alvin Weinberg has named Transcience where the subject matter is scientific and technical but the choices are social, political and moral. This paper shall deal only with the scientific and technical aspects of the hazardous waste problem to create a hazardous substances classification system.

  18. Remote vacuum compaction of compressible hazardous waste

    DOEpatents

    Coyne, Martin J.; Fiscus, Gregory M.; Sammel, Alfred G.

    1998-01-01

    A system for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut.

  19. Remote vacuum compaction of compressible hazardous waste

    SciTech Connect

    Coyne, M.J.; Fiscus, G.M.; Sammel, A.G.

    1996-12-31

    A system is described for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut.

  20. Remote vacuum compaction of compressible hazardous waste

    DOEpatents

    Coyne, M.J.; Fiscus, G.M.; Sammel, A.G.

    1998-10-06

    A system is described for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut. 8 figs.

  1. Vadose zone monitoring for hazardous waste sites

    SciTech Connect

    Everett, L.G.

    1984-01-01

    This book is a review and evaluation of vadose (unsaturated) zone monitoring. It describes the applicability of selected monitoring methods to hazardous waste disposal sites. Topics covered include: geohydrologic framework of the vadose zone; premonitoring of storage at disposal sites; premonitoring of water movement at disposal sites; active and abandoned site monitoring methods; waste source pollutant characterization; geohydrologic settings for waste disposals and conceptual vadose zone monitoring descriptions.

  2. International perspectives on hazardous waste management

    SciTech Connect

    Forester, W.S.

    1987-01-01

    In 1984, the International Solid Wastes and Public Cleansing Association (I.S.W.A.) approved the formation of an international working group on hazardous wastes. This book contains the edited final reports of the twelve national organisations which formed this working group. Also included is a review and assessment of various national policies and programs for waste management, together with recommendations and suggested strategies for the future.

  3. Superfund at work: Hazardous waste cleanup efforts nationwide, Spring 1993 (Powersville site profile, Peach County, Georgia)

    SciTech Connect

    Not Available

    1993-01-01

    The US Environmental Protection Agency (EPA) encountered much more than a municipal landfill at the Powersville site in Peach County, Georgia. Contamination from improperly dumped hazardous wastes and pesticides tainted an old quarry used for household garbage. Chemicals migrating into area ground water threatened local drinking water supplies. To address these issues, EPA's Superfund program designed a cleanup strategy that included: negotiating with the county and chemical companies to contain the hazardous wastes on site underneath a protective cover; investigating reports of drinking water contamination and extending municipal water lines to affected residents; and conducting a tailored community relations program to inform and educate residents about the site.

  4. 40 CFR 261.3 - Definition of hazardous waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Definition of hazardous waste. 261.3 Section 261.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE General § 261.3 Definition of hazardous waste. (a) A solid waste, as defined in § 261.2, is...

  5. 40 CFR 261.3 - Definition of hazardous waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Definition of hazardous waste. 261.3 Section 261.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE General § 261.3 Definition of hazardous waste. (a) A solid waste, as defined in § 261.2, is...

  6. Geomorphic and hydrologic assessment of erosion hazards at the Norman municipal landfill, Canadian River floodplain, Central Oklahoma

    USGS Publications Warehouse

    Curtis, J.A.; Whitney, J.W.

    2003-01-01

    The Norman, Oklahoma, municipal landfill closed in 1985 after 63 years of operation, because it was identified as a point source of hazardous leachate composed of organic and inorganic compounds. The landfill is located on the floodplain of the Canadian River, a sand-bed river characterized by erodible channel boundaries and by large variation in mean monthly discharges. In 1986, floodwaters eroded riprap protection at the southern end of the landfill and penetrated the landfill's clay cap, thereby exposing the landfill contents. The impact of this moderate-magnitude flood event (Q12) was the catalyst to investigate erosion hazards at the Norman landfill. This geomorphic investigation analyzed floodplain geomorphology and historical channel changes, flood-frequency distributions, an erosion threshold, the geomorphic effectiveness of discharge events, and other factors that influence erosion hazards at the landfill site. The erosion hazard at the Norman landfill is a function of the location of the landfill with respect to the channel thalweg, erosional resistance of the channel margins, magnitude and duration of discrete discharge events, channel form and hydraulic geometry, and cumulative effects related to a series of discharge events. Based on current climatic conditions and historical channel changes, a minimum erosion threshold is set at bankfull discharge (Q = 572 m3/s). The annual probability of exceeding this threshold is 0.53. In addition, this analysis indicates that peak stream power is less informative than total energy expenditures when estimating the erosion potential or geomorphic effectiveness of discrete discharge events. On the Canadian River, long-duration, moderate-magnitude floods can have larger total energy expenditures than shorter-duration, high-magnitude floods and therefore represent the most serious erosion hazard to floodplain structures.

  7. Biogeochemical transformations of mercury in solid waste landfills and pathways for release.

    PubMed

    Lee, Sung-Woo; Lowry, Gregory V; Hsu-Kim, Heileen

    2016-02-01

    Mercury (Hg) is present in a variety of solid wastes including industrial wastes, household products, consumer electronics, and medical wastes, some of which can be disposed in conventional landfills. The presence of this neurotoxic metal in landfills is a concern due to the potential for it to leach or volatilize from the landfill and impact local ecosystems. The objective of this review is to describe general practices for the disposal of mercury-bearing solid wastes, summarize previous studies on the release of mercury from landfills, and delineate the expected transformations of Hg within landfill environments that would influence transport of Hg via landfill gas and leachate. A few studies have documented the emissions of Hg as landfill gas, primarily as gaseous elemental Hg(0) and smaller amounts as methylated Hg species. Much less is known regarding the release of Hg in leachate. Landfill conditions are unique from other subsurface environments in that they can contain water with very high conductivity and organic carbon concentration. Landfills also experience large changes in redox potential (and the associated microbial community) that greatly influence Hg speciation, transformations, and mobilization potential. Generally, Hg is not likely to persist in large quantities as dissolved species, since Hg(0) tends to evolve in the gas phase and divalent Hg(ii) sorbs strongly to particulate phases including organic carbon and sulfides. However, Hg(ii) has the potential to associate with or form colloidal particles that can be mobilized in porous media under high organic carbon conditions. Moreover, the anaerobic conditions within landfills can foster the growth of microorganisms that produced monomethyl- and dimethyl-Hg species, the forms of mercury with high potential for bioaccumulation. Much advancement has recently been made in the mercury biogeochemistry research field, and this study seeks to incorporate these findings for landfill settings. PMID:26745831

  8. Household hazardous waste management: a review.

    PubMed

    Inglezakis, Vassilis J; Moustakas, Konstantinos

    2015-03-01

    This paper deals with the waste stream of household hazardous waste (HHW) presenting existing management systems, legislation overview and other relevant quantitative and qualitative information. European Union legislation and international management schemes are summarized and presented in a concise manner by the use of diagrams in order to provide crucial information on HHW. Furthermore, sources and types, numerical figures about generation, collection and relevant management costs are within the scope of the present paper. The review shows that the term used to refer to hazardous waste generated in households is not clearly defined in legislation, while there is absence of specific acts regulating the management of HHW. The lack of obligation to segregate HHW from the household waste and the different terminology used makes it difficult to determine the quantities and composition of this waste stream, while its generation amount is relatively small and, therefore, is commonly overlooked in waste statistics. The paper aims to cover the gap in the related literature on a subject that is included within the crucial waste management challenges at world level, considering that HHW can also have impact on other waste streams by altering the redox conditions or causing direct reactions with other non hazardous waste substances. PMID:25528172

  9. Hazardous waste treatment and environmental remediation research

    SciTech Connect

    Not Available

    1989-09-29

    Los Alamos National Laboratory (LANL) is currently evaluating hazardous waste treatment and environmental remediation technologies in existence and under development to determine applicability to remediation needs of the DOE facilities under the Albuquerque Operations Office and to determine areas of research need. To assist LANL is this effort, Science Applications International Corporation (SAIC) conducted an assessment of technologies and monitoring methods that have been demonstrated or are under development. The focus of this assessment is to: (1) identify existing technologies for hazardous waste treatment and environmental remediation of old waste sites; (2) identify technologies under development and the status of the technology; (3) assess new technologies that need development to provide adequate hazardous waste treatment and remedial action technologies for DOD and DOE sites; and (4) identify hazardous waste and remediation problems for environmental research and development. There are currently numerous research and development activities underway nationwide relating to environmental contaminants and the remediation of waste sites. To perform this effort, SAIC evaluated current technologies and monitoring methods development programs in EPA, DOD, and DOE, as these are the primary agencies through which developmental methods are being demonstrated. This report presents this evaluation and provides recommendations as to pertinent research needs or activities to address waste site contamination problems. The review and assessment have been conducted at a programmatic level; site-specific and contaminant-specific evaluations are being performed by LANL staff as a separate, related activity.

  10. Life-cycle inventory and impact evaluation of mining municipal solid waste landfills.

    PubMed

    Jain, Pradeep; Powell, Jon T; Smith, Justin L; Townsend, Timothy G; Tolaymat, Thabet

    2014-01-01

    Recent research and policy directives have emerged with a focus on sustainable management of waste materials, and the mining of old landfills represents an opportunity to meet sustainability goals by reducing the release of liquid- and gas-phase contaminants into the environment, recovering land for more productive use, and recovering energy from the landfilled materials. The emissions associated with the landfill mining process (waste excavation, screening, and on-site transportation) were inventoried on the basis of diesel fuel consumption data from two full-scale mining projects (1.3-1.5 L/in-place m(3) of landfill space mined) and unit emissions (mass per liter of diesel consumption) from heavy equipment typically deployed for mining landfills. An analytical framework was developed and used in an assessment of the life-cycle environmental impacts of a few end-use management options for materials deposited and mined from an unlined landfill. The results showed that substantial greenhouse gas emission reductions can be realized in both the waste relocation and materials and energy recovery scenarios compared to a "do nothing" case. The recovery of metal components from landfilled waste was found to have the greatest benefit across nearly all impact categories evaluated, while emissions associated with heavy equipment to mine the waste itself were found to be negligible compared to the benefits that mining provided. PMID:24512420

  11. Estimates of solid waste disposal rates and reduction targets for landfill gas emissions

    NASA Astrophysics Data System (ADS)

    Powell, Jon T.; Townsend, Timothy G.; Zimmerman, Julie B.

    2016-02-01

    Landfill disposal of municipal solid waste represents one of the largest anthropogenic global methane emission sources, and recent policy approaches have targeted significant reductions of these emissions to combat climate change in the US (ref. ). The efficacy of active gas collection systems in the US was examined by analysing performance data, including fire occurrence, from more than 850 landfills. A generalized linear model showed that the operating status of a landfill--open and actively receiving waste or closed--was the most significant predictor of collection system performance. Gas collection systems at closed landfills were statistically significantly more efficient (p < 0.001) and on average 17 percentage points more efficient than those at open landfills, but open landfills were found to represent 91% of all landfill methane emissions. These results demonstrate the clear need to target open landfills to achieve significant near-term methane emission reductions. This observation is underscored by landfill disposal rates in the US significantly exceeding previously reported national estimates, with this study reporting 262 million tonnes in the year 2012 compared with 122 million tonnes in 2012 as estimated by the US Environmental Protection Agency.

  12. 76 FR 55846 - Hazardous Waste Management System: Identification and Listing of Hazardous Waste: Carbon Dioxide...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-09

    ... Listing of Hazardous Waste: Carbon Dioxide (CO2) Streams in Geologic Sequestration Activities AGENCY...) to conditionally exclude carbon dioxide (CO 2 ) streams that are hazardous from the definition of... Recovery Act (RCRA) to conditionally exclude carbon dioxide (CO 2 ) streams that are hazardous from...

  13. Cost savings associated with landfilling wastes containing very low levels of uranium

    SciTech Connect

    Boggs, C.J.; Shaddoan, W.T.

    1996-03-01

    The Paducah Gaseous Diffusion Plant (PGDP) has operated captive landfills (both residential and construction/demolition debris) in accordance with the Commonwealth of Kentucky regulations since the early 1980s. Typical waste streams allowed in these landfills include nonhazardous industrial and municipal solid waste (such as paper, plastic, cardboard, cafeteria waste, clothing, wood, asbestos, fly ash, metals, and construction debris). In July 1992, the U.S. Environmental Protection Agency issued new requirements for the disposal of sanitary wastes in a {open_quotes}contained landfill.{close_quotes} These requirements were promulgated in the 401 Kentucky Administrative Record Chapters 47 and 48 that became effective 30 June 1995. The requirements for a new contained landfill include a synthetic liner made of high-density polyethylene in addition to the traditional 1-meter (3-foot) clay liner and a leachate collection system. A new landfill at Paducah would accept waste streams similar to those that have been accepted in the past. The permit for the previously existing landfills did not include radioactivity limits; instead, these levels were administratively controlled. Typically, if radioactivity was detected above background levels, the waste was classified as low-level waste (LLW), which would be sent off-site for disposal.

  14. [Nitrous oxide emissions from municipal solid waste landfills and its measuring methodology: a review].

    PubMed

    Jia, Ming-Sheng; Wang, Xiao-Jun; Chen, Shao-Hua

    2014-06-01

    Nitrous oxide (N2O) is one of three major greenhouse gases and the dominant ozone-depleting substance. Landfilling is the major approach for the treatment and disposal of municipal solid waste (MSW), while MSW landfills can be an important anthropogenic source for N2O emissions. Measurements at lab-scale and full-scale landfills have demonstrated that N2O can be emitted in substantial amounts in MSW landfills; however, a large variation in reported emission values exists. Currently, the mechanisms of N2O production and emission in landfills and its contribution to global warming are still lack of sufficient studies. Meanwhile, obtaining reliable N2O fluxes data in landfills remains a question with existing in-situ measurement techniques. This paper summarized relevant literature data on this issue and analyzed the potential production and emission mechanisms of N2O in traditional anaerobic sanitary landfill by dividing it into the MSW buried and the cover soil. The corresponding mechanisms in nitrogen removal bioreactor landfills were analyzed. Finally, the applicability of existing in-situ approaches measuring N2O fluxes in landfills, such as chamber and micrometeorological methods, was discussed and areas in which further research concerning N2O emissions in landfills was urgently required were proposed as well. PMID:25223043

  15. Unified hazardous waste and hazardous materials management regulatory program

    SciTech Connect

    Neese, K.J. )

    1994-04-01

    The administration and regulation of hazardous wastes and materials in the state of California has for many years been overseen by a number of regulatory agencies that have jurisdiction to undertake or compel cleanup. The jurisdiction and authority of each of these agencies differ, as do their philosophical underpinnings, in terms of protection of human health and the environment versus protection of groundwater resources. In 1993, Senate Bill 1082 was enacted to require the Secretary for Environmental Protection, by January 1, 1996, to adopt implementing regulations and implement a unified hazardous materials management regulatory program to consolidate the administration of specific statutory requirements for the regulation of hazardous wastes and minerals. All aspects of the unified program related to the adoption and interpretation of statewide standards and requirements will be the responsibility under existing law. For example, for underground storage tanks, that agency shall be the state Water Resources Control Board. The Department of Toxic Substances Control shall have the sole responsibility for the determination of whether a waste is hazardous or nonhazardous. Those aspects of the unified program related to the application of statewide standards to particular facilities, including the grant of authorizations, the issuance of permits, the review of reports and plans, and the enforcement of those standards and requirements against particular facilities, will be the responsibility of the certified unified program agency.

  16. Certification plan transuranic waste: Hazardous Waste Handling Facility

    SciTech Connect

    Not Available

    1992-06-01

    The purpose of this plan is to describe the organization and methodology for the certification of transuranic (TRU) waste handled in the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory (LBL). The plan incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Quality Assurance Implementing Management Plan (QAIMP) for the HWBF; and a list of the current and planned implementing procedures used in waste certification.

  17. Study on detecting leachate leakage of municipal solid waste landfill site.

    PubMed

    Liu, Jiangang; Cao, Xianxian; Ai, Yingbo; Zhou, Dongdong; Han, Qiting

    2015-06-01

    The article studies the detection of the leakage passage of leachate in a waste landfill dam. The leachate of waste landfill has its own features, like high conductivity, high chroma and an increasing temperature, also, the horizontal flow velocity of groundwater on the leakage site increases. This article proposes a comprehensive tracing method to identify the leakage site of an impermeable membrane by using these features. This method has been applied to determine two leakage sites of the Yahu municipal solid waste landfill site in Pingshan District, Shenzhen, China, which shows that there are two leachate leakage passages in the waste landfill dam A between NZK-2 and NZK-3, and between NZK-6 and NZK-7. PMID:25911065

  18. The toxicologic hazard of superfund hazardous-waste sites.

    PubMed

    Johnson, B L; DeRosa, C

    1997-01-01

    Uncontrolled hazardous-waste sites are a major environmental and public health concern in the United States and elsewhere. The remediation of and public health responses to these sites is mandated by the federal Superfund statute. Approximately 40,000 uncontrolled waste sites have been reported to U.S. federal agencies. About 1,300 of these sites constitute the current National Priorities List (NPL) of sites for remediation. Findings from a national database on NPL sites show approximately 40% present completed exposure pathways, although this figure rose to 80% in 1996. Data from 1992 through 1996 indicate that 46% of sites are a hazard to public health. Thirty substances are found at 6% or more of sites with completed pathways. Eighteen of the substances are known human carcinogens or reasonably anticipated to be carcinogenic. Many of the 30 substances also possess systemic toxicity. The high percentage of sites with completed exposure pathways and the toxicity potential of substances in these pathways show that uncontrolled hazardous-waste sites are a major environmental threat to human health. Findings from the United States' experience in responding to uncontrolled waste sites are relevant to other countries as they address similar environmental and public health concerns. PMID:9553998

  19. Quarterly Groundwater Report for the Solid Waste Landfill October - December 2006

    SciTech Connect

    Lindberg, Jon W.

    2007-04-13

    This report provides information on groundwater monitoring at the Solid Waste Landfill during the quarterly time period October through December 2006. Conditions remain very similar to those reported in the previous quarterly report. Four background threshold values, two WAC 173-200 Groundwater Quality Criteria, and one WAC 246-290-310 maximum contaminant level were exceeded. The results that exceed applicable limits are consistent with the type of waste disposed to the landfill.

  20. Ground-water monitoring compliance plan for the Hanford Site Solid Waste Landfill

    SciTech Connect

    Fruland, R.M.

    1986-10-01

    Washington state regulations required that solid waste landfill facilities have ground-water monitoring programs in place by May 27, 1987. This document describes the well locations, installation, characterization studies and sampling and analysis plan to be followed in implementing the ground-water monitoring program at the Hanford Site Solid Waste Landfill (SWL). It is based on Washington Administrative Code WAC 173-304-490. 11 refs., 19 figs., 4 tabs.

  1. LEACHATE CLOGGING ASSESSMENT OF GEOTEXTILE AND SOIL LANDFILL FILTERS

    EPA Science Inventory

    The liquids management strategy for any municipal or hazardous waste landfill requires a knowledgeable design strategy for the leachate collection system located at the base of the waste mass. Such leachate collection systems generally consist of sumps, perforated pipes, drainag...

  2. Improving tamper detection for hazardous waste security

    SciTech Connect

    Johnston, R. G.; Garcia, A. R. E.; Pacheco, A. N.; Trujillo, S. J.; Martinez, R. K.; Martinez, D. D.; Lopez, L. N.

    2002-01-01

    After September 11, waste managers are increasingly expected to provide improved levels of security for the hazardous materials in their charge. Many low-level wastes that previously had minimal or no security must now be well protected, while high-level wastes require even greater levels of security than previously employed. This demand for improved security comes, in many cases, without waste managers being provided the necessary additional funding, personnel, or security expertise. Contributing to the problem is the fact that--at least in our experience--waste managers often fail to appreciate certain types of security vulnerabilities. They frequently overlook or underestimate the security risks associated with disgruntled or compromised insiders, or the potential legal and political liabilities associated with nonexistent or ineffective security. Also frequently overlooked are potential threats from waste management critics who could resort to sabotage, vandalism, or civil disobedience for purposes of discrediting a waste management program.

  3. E-waste hazard: The impending challenge

    PubMed Central

    Pinto, Violet N.

    2008-01-01

    Electronic waste or e-waste is one of the rapidly growing problems of the world. E-waste comprises of a multitude of components, some containing toxic substances that can have an adverse impact on human health and the environment if not handled properly. In India, e-waste management assumes greater significance not only due to the generation of its own e-waste but also because of the dumping of e-waste from developed countries. This is coupled with India's lack of appropriate infrastructure and procedures for its disposal and recycling. This review article provides a concise overview of India's current e-waste scenario, namely magnitude of the problem, environmental and health hazards, current disposal and recycling operations, existing legal framework, organizations working on this issue and recommendations for action. PMID:20040981

  4. Microwave remediation of hazardous and radioactive wastes

    SciTech Connect

    Wicks, G.G.

    2000-04-28

    A team from the Westinghouse Savannah River Technology Center (WSRC - a DOE Laboratory), and the University of Florida (UF - academia), has been active for about a decade in development of microwave technology for specialized waste management applications. This interaction has resulted in the development of unique equipment and uses of microwave energy for a variety of important applications for remediation of hazardous and radioactive wastes. Discussed are results of this unique technology for processing of electronic circuitry and components, medical wastes, discarded tires, and transuranic radioactive wastes.

  5. COMBUSTION TECHNOLOGIES FOR HAZARDOUS WASTE

    EPA Science Inventory

    The article describes basic incineration technology. Terminology is defined and EPA's regulations stated. The universe of incinerated and incinerable waste is described. Technology descriptions are provided for liquid injection incineration, rotary kiln incineration, at-sea incin...

  6. Hazardous and Mixed Waste Transportation Program

    SciTech Connect

    Hohnstreiter, G. F.; Glass, R. E.; McAllaster, M. E.; Nigrey, P. J.; Trennel, A. J.; Yoshimura, H. R.

    1991-01-01

    Sandia National Laboratories (SNL) has developed a program to address the packaging needs associated with the transport of hazardous and mixed waste during the United States' Department of Energy (DOE) remediation efforts. The program addresses the technology needs associated with the transport of materials which have components that are radioactive and chemically hazardous. The mixed waste transportation activities focus on on-site specific applications of technology to the transport of hazardous and mixed wastes. These activities were identified at a series of DOE-sponsored workshops. These activities will be composed of the following: (1) packaging concepts, (2) chemical compatibility studies, and (3) systems studies. This paper will address activities in each of these areas.

  7. Hazardous waste regulations: an interpretive guide

    SciTech Connect

    Mallow, A.

    1981-01-01

    Compliance with hazardous-waste laws has been made difficult by new, lengthy, and complicated Environmental Protection Agency regulations. This book analyzes and reorganizes the 150 pages of three-column regulations, clarifying all aspects of the requirements. Paralleling the related sections of the law (Subtitle C of the Resources Act), the book begins with an overview of the law and regulations and an identification and listing of hazardous wastes. There are guidelines for authorized state programs along with notification requirements for those in hazardous-waste activities. A checklist format, using five different scenarios offers a practical approach to analyzing the unique requirements for generators and transporters as well as owners and operators. 3 figures.

  8. Stochastic modelling of landfill leachate and biogas production incorporating waste heterogeneity. Model formulation and uncertainty analysis.

    PubMed

    Zacharof, A I; Butler, A P

    2004-01-01

    A mathematical model simulating the hydrological and biochemical processes occurring in landfilled waste is presented and demonstrated. The model combines biochemical and hydrological models into an integrated representation of the landfill environment. Waste decomposition is modelled using traditional biochemical waste decomposition pathways combined with a simplified methodology for representing the rate of decomposition. Water flow through the waste is represented using a statistical velocity model capable of representing the effects of waste heterogeneity on leachate flow through the waste. Given the limitations in data capture from landfill sites, significant emphasis is placed on improving parameter identification and reducing parameter requirements. A sensitivity analysis is performed, highlighting the model's response to changes in input variables. A model test run is also presented, demonstrating the model capabilities. A parameter perturbation model sensitivity analysis was also performed. This has been able to show that although the model is sensitive to certain key parameters, its overall intuitive response provides a good basis for making reasonable predictions of the future state of the landfill system. Finally, due to the high uncertainty associated with landfill data, a tool for handling input data uncertainty is incorporated in the model's structure. It is concluded that the model can be used as a reasonable tool for modelling landfill processes and that further work should be undertaken to assess the model's performance. PMID:15120429

  9. Significance analysis of the leachate level in a solid waste landfill in a coastal zone using total water balance and slope stability alternatives

    SciTech Connect

    Koo, Ja-Kong; Do, Nam-Young

    1996-12-31

    The K site near Seoul began landfilling in 1992. The landfilled wastes include municipal solid waste (66.4%), construction residues (20.4%), water and wastewater sludges (trace levels), and hazardous waste (trace levels). The water content of the municipal solid waste is very high (47.3%); as a result, the leachate level (average E.L.) of the landfill, the design value of which is 7.0 m, was measured at 10.3 m in January 1995 and is increasing. The increase of leachate level in the landfill site causes a problem with slope stability. The leachate level at each disposal stage divided by the intermediate cover layer was calculated with the HELP (Hydrologic Evaluation of Landfill Performance) model and calibrated with the data measured from February 1993 to June 1995. Also, the hydraulic conductivities of the waste layer and the intermediate cover layer in each stage were calibrated continuously with HELP model analysis. To verify these results, the total water balance in the landfill site was calculated using the infiltration rate calculated from HELP modeling. The leachate level was E.L. 10.0 m, which was close to the measured leachate level. To estimate the change of the leachate level in the future, the total water balances with different leachate discharge rates of 3,000, 3,500, and 5,000 m{sup 3}/day were analyzed. When the leachate discharge rate was 5,000 ton/day and the initial water content was decreased below 25%, the average leachate level was 10.8 m. This result satisfies the safety factor requirements (=1.3) for landfill slope stability. 4 refs., 8 figs., 1 tab.

  10. Mutagenicity assays of leachate from domestic waste landfills in Japan: The establishment of a protocol for measuring mutagenicity levels of leachate

    SciTech Connect

    Omura, Minoru; Inamasu, Takeo, Ishinishi, Noburu )

    1991-04-01

    In modern society, production of industrial and domestic waste is increasing so much that waste disposal has become a serious problem in many countries in terms of both difficulty in obtaining a location for waste disposal and concern for the hazardous effects upon the human-environmental system. In Japan, combustible waste is burned in an incinerator and the cinders are buried in landfills together with incombustible waste. These buried substances are degraded by soil bacteria and the physico-chemical milieu existing underground. This requires a great deal of time. However, leachate from the waste landfill is unceasingly dispersed into the environment throughout the degradation period. It is known that leachate contains various kinds of chemicals both organic and inorganic, resulting from the degradation process. Leachate should therefore be examined from the point of view of both environmental pollution and hazardous effects on human health. In an attempt to evaluate the mutagenicity of leachate, the authors endeavored to establish some methods. They developed a protocol for the preconcentration of mutagens in the leachate and for the examination of the mutagenicity of leachate obtained from waste landfills in Japan using the Salmonella typhimurium/mammalian-microsome system (Ames test).

  11. Hazardous chemical and radioactive wastes at Hanford

    SciTech Connect

    Keller, J.F.; Stewart, T.L.

    1991-07-01

    The Hanford Site was established in 1944 to produce plutonium for defense. During the past four decades, a number of reactors, processing facilities, and waste management facilities have been built at Hanford for plutonium production. Generally, Hanford`s 100 Area was dedicated to reactor operation; the 200 Area to fuel reprocessing, plutonium recovery, and waste management; and the 300 Area to fuel fabrication and research and development. Wastes generated from these operations included highly radioactive liquid wastes, which were discharged to single- and double-shell tanks; solid wastes, including both transuranic (TRU) and low-level wastes, which were buried or discharged to caissons; and waste water containing low- to intermediate-level radioactivity, which was discharged to the soil column via near-surface liquid disposal units such as cribs, ponds, and retention basins. Virtually all of the wastes contained hazardous chemical as well as radioactive constituents. This paper will focus on the hazardous chemical components of the radioactive mixed waste generated by plutonium production at Hanford. The processes, chemicals used, methods of disposition, fate in the environment, and actions being taken to clean up this legacy are described by location.

  12. Hazardous chemical and radioactive wastes at Hanford

    SciTech Connect

    Keller, J.F.; Stewart, T.L.

    1991-07-01

    The Hanford Site was established in 1944 to produce plutonium for defense. During the past four decades, a number of reactors, processing facilities, and waste management facilities have been built at Hanford for plutonium production. Generally, Hanford's 100 Area was dedicated to reactor operation; the 200 Area to fuel reprocessing, plutonium recovery, and waste management; and the 300 Area to fuel fabrication and research and development. Wastes generated from these operations included highly radioactive liquid wastes, which were discharged to single- and double-shell tanks; solid wastes, including both transuranic (TRU) and low-level wastes, which were buried or discharged to caissons; and waste water containing low- to intermediate-level radioactivity, which was discharged to the soil column via near-surface liquid disposal units such as cribs, ponds, and retention basins. Virtually all of the wastes contained hazardous chemical as well as radioactive constituents. This paper will focus on the hazardous chemical components of the radioactive mixed waste generated by plutonium production at Hanford. The processes, chemicals used, methods of disposition, fate in the environment, and actions being taken to clean up this legacy are described by location.

  13. Resource Conservation and Recovery Act (RCRA): Hazardous wastes. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    Not Available

    1993-11-01

    The bibliography contains citations concerning the Resource Conservation and Recovery Act (RCRA). Citations cover the handling of hazardous waste, facility investigation, and updates and reviews of selected provisions of the act. Groundwater monitoring, landfill design, liner systems, and incineration standards are among the topics discussed. (Contains 250 citations and includes a subject term index and title list.)

  14. Resource Conservation and Recovery Act (RCRA): Hazardous wastes. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1996-03-01

    The bibliography contains citations concerning the Resource Conservation and Recovery Act (RCRA). Citations cover the handling of hazardous waste, facility investigation, and updates and reviews of selected provisions of the act. Groundwater monitoring, landfill design, liner systems, and incineration standards are among the topics discussed. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  15. Evaluating the biochemical methane potential (BMP) of low-organic waste at Danish landfills.

    PubMed

    Mou, Zishen; Scheutz, Charlotte; Kjeldsen, Peter

    2014-11-01

    The biochemical methane potential (BMP) is an essential parameter when using first order decay (FOD) landfill gas (LFG) generation models to estimate methane (CH4) generation from landfills. Different categories of waste (mixed, shredder and sludge waste) with a low-organic content and temporarily stored combustible waste were sampled from four Danish landfills. The waste was characterized in terms of physical characteristics (TS, VS, TC and TOC) and the BMP was analyzed in batch tests. The experiment was set up in triplicate, including blank and control tests. Waste samples were incubated at 55°C for more than 60 days, with continuous monitoring of the cumulative CH4 generation. Results showed that samples of mixed waste and shredder waste had similar BMP results, which was in the range of 5.4-9.1 kg CH4/ton waste (wet weight) on average. As a calculated consequence, their degradable organic carbon content (DOCC) was in the range of 0.44-0.70% of total weight (wet waste). Numeric values of both parameters were much lower than values of traditional municipal solid waste (MSW), as well as default numeric values in current FOD models. The sludge waste and temporarily stored combustible waste showed BMP values of 51.8-69.6 and 106.6-117.3 kg CH4/ton waste on average, respectively, and DOCC values of 3.84-5.12% and 7.96-8.74% of total weight. The same category of waste from different Danish landfills did not show significant variation. This research studied the BMP of Danish low-organic waste for the first time, which is important and valuable for using current FOD LFG generation models to estimate realistic CH4 emissions from modern landfills receiving low-organic waste. PMID:25106120

  16. Estimating methane emissions from landfills based on rainfall, ambient temperature, and waste composition: The CLEEN model.

    PubMed

    Karanjekar, Richa V; Bhatt, Arpita; Altouqui, Said; Jangikhatoonabad, Neda; Durai, Vennila; Sattler, Melanie L; Hossain, M D Sahadat; Chen, Victoria

    2015-12-01

    Accurately estimating landfill methane emissions is important for quantifying a landfill's greenhouse gas emissions and power generation potential. Current models, including LandGEM and IPCC, often greatly simplify treatment of factors like rainfall and ambient temperature, which can substantially impact gas production. The newly developed Capturing Landfill Emissions for Energy Needs (CLEEN) model aims to improve landfill methane generation estimates, but still require inputs that are fairly easy to obtain: waste composition, annual rainfall, and ambient temperature. To develop the model, methane generation was measured from 27 laboratory scale landfill reactors, with varying waste compositions (ranging from 0% to 100%); average rainfall rates of 2, 6, and 12 mm/day; and temperatures of 20, 30, and 37°C, according to a statistical experimental design. Refuse components considered were the major biodegradable wastes, food, paper, yard/wood, and textile, as well as inert inorganic waste. Based on the data collected, a multiple linear regression equation (R(2)=0.75) was developed to predict first-order methane generation rate constant values k as functions of waste composition, annual rainfall, and temperature. Because, laboratory methane generation rates exceed field rates, a second scale-up regression equation for k was developed using actual gas-recovery data from 11 landfills in high-income countries with conventional operation. The Capturing Landfill Emissions for Energy Needs (CLEEN) model was developed by incorporating both regression equations into the first-order decay based model for estimating methane generation rates from landfills. CLEEN model values were compared to actual field data from 6 US landfills, and to estimates from LandGEM and IPCC. For 4 of the 6 cases, CLEEN model estimates were the closest to actual. PMID:26346020

  17. 75 FR 58315 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Direct Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ...EPA is proposing to grant a petition submitted by Eastman Chemical Company-Texas Operations (Eastman) to exclude (or delist) certain solid wastes generated by its Longview, Texas, facility from the lists of hazardous wastes. EPA used the Delisting Risk Assessment Software (DRAS) Version 3.0 in the evaluation of the impact of the petitioned waste on human health and the...

  18. H. R. 2670: A bill to amend the Solid Waste Disposal Act to regulate ash from municipal solid waste incinerators as a hazardous waste, introduced in the US House of Representatives, One Hundred Second Congress, First Session, June 18, 1991

    SciTech Connect

    Not Available

    1991-01-01

    This bill was introduced into the US House of Representatives on June 18, 1991 to amend the Solid Waste disposal Act to regulate ash from municipal solid waste incinerators as a hazardous waste. When garbage is burned, toxic materials are concentrated in the ash. If the ash is disposed of in a landfill, these toxic materials can contaminate the ground water or surface water by leaching toxic materials from the ash. In addition, disposing of contaminated ash improperly can pose a health hazard. New authority is provided for regulating incinerator ash as a hazardous waste.

  19. Coal combustion waste management at landfills and surface impoundments 1994-2004.

    SciTech Connect

    Elcock, D.; Ranek, N. L.; Environmental Science Division

    2006-09-08

    On May 22, 2000, as required by Congress in its 1980 Amendments to the Resource Conservation and Recovery Act (RCRA), the U.S. Environmental Protection Agency (EPA) issued a Regulatory Determination on Wastes from the Combustion of Fossil Fuels. On the basis of information contained in its 1999 Report to Congress: Wastes from the Combustion of Fossil Fuels, the EPA concluded that coal combustion wastes (CCWs), also known as coal combustion by-products (CCBs), did not warrant regulation under Subtitle C of RCRA, and it retained the existing hazardous waste exemption for these materials under RCRA Section 3001(b)(3)(C). However, the EPA also determined that national regulations under Subtitle D of RCRA were warranted for CCWs that are disposed of in landfills or surface impoundments. The EPA made this determination in part on the basis of its findings that 'present disposal practices are such that, in 1995, these wastes were being managed in 40 percent to 70 percent of landfills and surface impoundments without reasonable controls in place, particularly in the area of groundwater monitoring; and while there have been substantive improvements in state regulatory programs, we have also identified gaps in State oversight' (EPA 2000). The 1999 Report to Congress (RTC), however, may not have reflected the changes in CCW disposal practices that occurred since the cutoff date (1995) of its database and subsequent developments. The U.S. Department of Energy (DOE) and the EPA discussed this issue and decided to conduct a joint DOE/EPA study to collect new information on the recent CCW management practices by the power industry. It was agreed that such information would provide a perspective on the chronological adoption of control measures in CCW units based on State regulations. A team of experts from the EPA, industry, and DOE (with support from Argonne National Laboratory) was established to develop a mutually acceptable approach for collecting and analyzing data on CCW

  20. Tougher standards for burning hazardous waste

    SciTech Connect

    Valenti, M.

    1993-08-01

    This article reports that tighter emission standards for hazardous waste combustion proposed by the EPA may require design changes that could alter the economics of hazardous waste incineration in the US. A recent draft strategy for the combustion of hazardous waste by the Environmental Protection Agency (EPA) in Washington, DC, has sent tremors through the two major types of combustors of industrial wastes: commercial incinerators and cement kilns. It is too early to predict what new environmental regulations will result from this proposal, but the ability of competitive combustors to meet them will likely determine their survival. The two emissions standards specified in the draft strategy announced in May by EPA administrator Carol Browner limit the particulate emissions from hazardous waste incinerators to 0.015 grain per dry standard cubic foot, less than one-fifth the 0.08 grain now permitted. Control of dioxins spells an even sharper change in EPA strategy, for these must be held to under 30 nanograms per dry standard cubic meter. Currently, there are no overall dioxin limits, only site-specific boundaries calculated on a risk-assessment basis for boilers and industrial furnaces (BIF) that have the potential to emit large amounts of dioxins and furans.

  1. 40 CFR 264.344 - Hazardous waste incinerator permits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Incinerators § 264.344 Hazardous waste incinerator permits. (a) The owner or operator of a... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Hazardous waste incinerator...

  2. 40 CFR 264.344 - Hazardous waste incinerator permits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Hazardous waste incinerator permits... WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Incinerators § 264.344 Hazardous waste incinerator permits. (a) The owner or operator of...

  3. 40 CFR 264.344 - Hazardous waste incinerator permits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Hazardous waste incinerator permits... WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Incinerators § 264.344 Hazardous waste incinerator permits. (a) The owner or operator of...

  4. 40 CFR 264.344 - Hazardous waste incinerator permits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Hazardous waste incinerator permits... WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Incinerators § 264.344 Hazardous waste incinerator permits. (a) The owner or operator of...

  5. 40 CFR 264.344 - Hazardous waste incinerator permits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Hazardous waste incinerator permits... WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Incinerators § 264.344 Hazardous waste incinerator permits. (a) The owner or operator of...

  6. Ground freezing for containment of hazardous waste

    SciTech Connect

    Sayles, F.N.; Iskandar, I.K.

    1998-07-01

    The freezing of ground for the containment of subsurface hazardous waste is a promising method that is environmentally friendly and offers a safe alternative to other methods of waste retention in many cases. The frozen soil method offers two concepts for retaining waste. One concept is to freeze the entire waste area into a solid block of frozen soil thus locking the waste in situ. For small areas where the contaminated soil does not include vessels that would rupture from frost action, this concept may be simpler to install. A second concept, of course, is to create a frozen soil barrier to confine the waste within prescribed unfrozen soil boundaries; initial research in this area was funded by EPA, Cincinnati, OH, and the Army Corps of Engineers. The paper discusses advantages and limitations, a case study from Oak Ridge, TN, and a mesh generation program that simulates the cryogenic technology.

  7. Does industrial waste taxation contribute to reduction of landfilled waste? Dynamic panel analysis considering industrial waste category in Japan.

    PubMed

    Sasao, Toshiaki

    2014-11-01

    Waste taxes, such as landfill and incineration taxes, have emerged as a popular option in developed countries to promote the 3Rs (reduce, reuse, and recycle). However, few studies have examined the effectiveness of waste taxes. In addition, quite a few studies have considered both dynamic relationships among dependent variables and unobserved individual heterogeneity among the jurisdictions. If dependent variables are persistent, omitted variables cause a bias, or common characteristics exist across the jurisdictions that have introduced waste taxes, the standard fixed effects model may lead to biased estimation results and misunderstood causal relationships. In addition, most existing studies have examined waste in terms of total amounts rather than by categories. Even if significant reductions in total waste amounts are not observed, some reduction within each category may, nevertheless, become evident. Therefore, this study analyzes the effects of industrial waste taxation on quantities of waste in landfill in Japan by applying the bias-corrected least-squares dummy variable (LSDVC) estimators; the general method of moments (difference GMM); and the system GMM. In addition, the study investigates effect differences attributable to industrial waste categories and taxation types. This paper shows that industrial waste taxes in Japan have minimal, significant effects on the reduction of final disposal amounts thus far, considering dynamic relationships and waste categories. PMID:25154913

  8. Certification Plan, low-level waste Hazardous Waste Handling Facility

    SciTech Connect

    Albert, R.

    1992-06-30

    The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. This plan provides guidance from the HWHF to waste generators, waste handlers, and the Waste Certification Specialist to enable them to conduct their activities and carry out their responsibilities in a manner that complies with the requirements of WHC-WAC. Waste generators have the primary responsibility for the proper characterization of LLW. The Waste Certification Specialist verifies and certifies that LBL LLW is characterized, handled, and shipped in accordance with the requirements of WHC-WAC. Certification is the governing process in which LBL personnel conduct their waste generating and waste handling activities in such a manner that the Waste Certification Specialist can verify that the requirements of WHC-WAC are met.

  9. A review of groundwater contamination near municipal solid waste landfill sites in China.

    PubMed

    Han, Zhiyong; Ma, Haining; Shi, Guozhong; He, Li; Wei, Luoyu; Shi, Qingqing

    2016-11-01

    Landfills are the most widely used method for municipal solid waste (MSW) disposal method in China. However, these facilities have caused serious groundwater contamination due to the leakage of leachate. This study, analyzed 32 scientific papers, a field survey and an environmental assessment report related to groundwater contamination caused by landfills in China. The groundwater quality in the vicinity of landfills was assessed as "very bad" by a comprehensive score (FI) of 7.85 by the Grading Method in China. Variety of pollutants consisting of 96 groundwater pollutants, 3 organic matter indicators, 2 visual pollutants and 6 aggregative pollutants had been detected in the various studies. Twenty-two kinds of pollutants were considered to be dominant. According to the Kruskal-Wallis test and the median test, groundwater contamination differed significantly between regions in China, but there were no significant differences between dry season and wet season measurements, except for some pollutants in a few landfill sites. Generally, the groundwater contamination appeared in the initial landfill stage after five years and peaked some years afterward. In this stage, the Nemerow Index (PI) of groundwater increased exponentially as landfill age increased at some sites, but afterwards decreased exponentially with increasing age at others. After 25years, the groundwater contamination was very low at selected landfills. The PI values of landfills decreased exponentially as the pollutant migration distance increased. Therefore, the groundwater contamination mainly appeared within 1000m of a landfill and most of serious groundwater contamination occurred within 200m. The results not only indicate that the groundwater contamination near MSW landfills should be a concern, but also are valuable to remediate the groundwater contamination near MSW landfills and to prevent the MSW landfill from secondary pollutions, especially for developing countries considering the similar

  10. Interim status standards for owners and operators of hazardous waste treatment, storage, and disposal facilities: Environmental Protection Agency. Proposed amendments to rule.

    PubMed

    1982-02-25

    On May 19, 1980, EPA promulgated regulations, applicable to owners and operators of hazardous waste treatment, storage, and disposal facilities during interim status, which prohibited the landfill disposal of most containerized liquid waste or waste containing free liquid on and after November 19, 1981. As a result of issues raised by the regulated community with respect to this prohibition, the Agency is today proposing an amendment to this regulation to allow some containers holding free liquids to be disposed of in a landfill, in some circumstances. In a separate action in today's federal Register, EPA is providing a 90-day extension (from today's date) of the compliance date for the prohibition of landfill disposal of containerized liquid waste and the restrictions on the landfill disposal of liquid ignitable waste to allow time to complete this rulemaking action and to avoid immediately imposing requirements that might be changed as a result of this rulemaking action. PMID:10254380

  11. Hazardous Waste Certification Plan: Hazardous Waste Handling Facility, Lawrence Berkeley Laboratory

    SciTech Connect

    Not Available

    1992-02-01

    The purpose of this plan is to describe the organization and methodology for the certification of hazardous waste (HW) handled in the Lawrence Berkeley Laboratory (LBL) Hazardous Waste Handling Facility (HWHF). The plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end- product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; and executive summary of the Quality Assurance Program Plan (QAPP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. The plan provides guidance from the HWHF to waste generators, waste handlers, and the Systems Group Manager to enable them to conduct their activities and carry out their responsibilities in a manner that complies with several requirements of the Federal Resource Conservation and Resource Recovery Act (RCRA), the Federal Department of Transportation (DOT), and the State of California, Code of Regulations (CCR), Title 22.

  12. Phytostabilization of a landfill containing coal combustion waste.

    SciTech Connect

    Barton, Christopher; Marx, Donald; Adriano, Domy; Koo, Bon Jun; Newman, Lee; Czapka, Stephen; Blake, John

    2005-12-01

    The establishment of a vegetative cover to enhance evapotranspiration and control runoff and drainage was examined as a method for stabilizing a landfill containing coal combustion waste. Suitable plant species and pretreatment techniques in the form of amendments, tilling, and chemical stabilization were evaluated. A randomized plot design consisting of three subsurface treatments (blocks) and five surface amendments (treatments) was implemented. The three blocks included (1) ripping and compost amended, (2) ripping only, and (3) control. Surface treatments included (1) topsoil, (2) fly ash, (3) compost, (4) apatite, and (5) control. Inoculated loblolly (Pinus taeda) and Virginia (Pinus virginiana) pine trees were planted on each plot. After three growing seasons, certain treatments were shown to be favorable for the establishment of vegetation on the basin. Seedlings located on block A developed a rooting system that penetrated into the basin media without significant adverse effects to the plant. However, seedlings on blocks B and C displayed poor rooting conditions and high mortality, regardless of surface treatment. Pore-water samples from lysimeters in block C were characterized by high acidity, Fe, Mn, Al, sulfate, and traceelement concentrations. Water-quality characteristics of the topsoil plots in block A, however, conformed to regulatory protocols. A decrease in soil-moisture content was observed in the rooting zone of plots that were successfully revegetated, which suggests that the trees, in combination with the surface treatments, influenced the water balance by facilitating water loss through transpiration and thereby reducing the likelihood of unwanted surface runoff and/or drainage effluent.

  13. Mechanism of H2S removal during landfill stabilization in waste biocover soil, an alterative landfill cover.

    PubMed

    He, Ruo; Xia, Fang-Fang; Bai, Yun; Wang, Jing; Shen, Dong-Sheng

    2012-05-30

    Hydrogen sulfide (H(2)S) is one of the primary contributors to odors at landfills. The mechanism of waste biocover soil (WBS) for H(2)S removal was investigated in simulated landfill systems with the contrast experiment of a landfill cover soil (LCS). The H(2)S removal efficiency was higher than 90% regardless of the WBS or LCS covers. The input of landfill gas (LFG) could stimulate the growth of aerobic heterotrophic bacteria, actinomycete, sulfate-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB) in the WBS cover, while that caused a decrease of 1-2 orders of magnitude in the populations of actinomycete and fungi in the bottom layer of the LCS cover. As H(2)S inputted, the sulfide content in the WBS cover increased and reached the maximum on day 30. In the LCS cover, the highest soil sulfide content was exhibited in the bottom layer during the whole experiment. After exposure to LFG, the lower pH value and higher sulfate content were observed in the top layer of the WBS cover, while there was not a significant difference in different layers of the LCS cover. The results indicated a more rapid biotransformation between sulfide and sulfate occurred in the WBS cover compared to the LCS. PMID:22459970

  14. A generic hazardous waste management training program

    SciTech Connect

    Carter, R.J.; Karnofsky, B.

    1988-01-01

    The main purpose of this training program element is to familiarize personnel involved in hazardous waste management with the goals of RCRA and how they are to be achieved. These goals include: to protect health and the environment; to conserve valuable material and energy resources; to prohibit future open dumping on the land; to assure that hazardous waste management practices are conducted in a manner which protects human health and the environment; to insure that hazardous waste is properly managed thereby reducing the need for corrective actions in the future; to establish a national policy to reduce or eliminate the generation of hazardous waste, wherever feasible. Another objective of this progam element is to present a brief overview of the RCRA regulations and how they are implemented/enforced by the Environmental Protection Agency (EPA) and each of the fifty states. This element also discusses where the RCRA regulations are published and how they are updated. In addition it details who is responsible for compliance with the regulations. Finally, this part of the training program provides an overview of the activities and materials that are regulated. 1 ref.

  15. HAZARDOUS WASTE DECONTAMINATION WITH PLASMA REACTORS

    EPA Science Inventory

    The use of electrical energy in the form of plasma has been considered as a potentially efficient means of decontaminating hazardous waste, although to date only a few attempts have been made to do so. There are a number of relative advantages and some potential disadvantages to...

  16. Management of uncontrolled hazardous waste sites

    SciTech Connect

    Not Available

    1985-01-01

    This book is a compilation of papers presented at a conference on the management of uncontrolled hazardous waste sites. Papers were presented in the following topics: federal and state programs; sampling and monitoring; leaking tanks; in-situ treatment; site remediation; banner technology; storage/disposal; endangerment assessment; risk assessment techniques; and research and development.

  17. FIELD EXPERIENCE IN SAMPLING HAZARDOUS WASTE INCINERATORS

    EPA Science Inventory

    This paper is for presentation at the 77th annual meeting of the Air Pollution Control Association, June 24-29, 1984. The paper contains much useful, pragmatic information gained through numerous hazardous waste incinerator trial burn-type investigations performed for EPA by the ...

  18. PROTOCOL FOR BIOASSESSMENT OF HAZARDOUS WASTE SITES

    EPA Science Inventory

    The bioassessment protocol is one of several tools, including chemical analysis and field study, that can be used to characterize the potential environmental risk associated with hazardous waste sites. The protocol can be applied to priority ranking for deciding the need for clea...

  19. POLYETHYLENE ENCAPSULATES FOR HAZARDOUS WASTE DRUMS

    EPA Science Inventory

    This capsule report summarizes studies of the use of polyethylene (P.E.) for encapsulating drums of hazardous wastes. Flat PE sheet is welded to roto moded PE containers which forms the encapsulates. Plastic pipe welding art was used, but the prototype welding apparatus required ...

  20. Legislative aspects of hazardous waste management.

    PubMed

    Friedman, M

    1983-02-01

    In the fall of 1976 Congress enacted the Resource Conservation and Recovery Act, commonly referred to as RCRA. The objective of the statute is to create an orderly system for the generation, handling and disposal of hazardous waste by means of a comprehensive tracking and record keeping mechanism. RCRA does not regulate directly by statute so much as it delegates rule making authority to the U.S. Environmental Protection Agency. Pursuant to its mandate to develop regulations in accordance with the broad criteria of RCRA, EPA has published extensive regulations. These regulations address hazardous waste generation, transportation, treatment, storage and handling and its final disposal. The statute also offers remedies available to both EPA and the public at large to ensure enforcement of the provisions of RCRA and the EPA regulations. Additionally, it sets guidelines for states to implement their own hazardous waste management programs. This article is intended to introduce this complicated statutory/regulatory package to scientists and health professionals. It outlines the provisions of RCRA and the EPA regulations, abbreviates early judicial decisions interpreting these provisions and sets forth a brief description of various state approaches to hazardous waste management. PMID:6825630

  1. Navigating the Hazardous Waste Management Maze.

    ERIC Educational Resources Information Center

    Voelkle, James P.

    1997-01-01

    Hazardous waste management is a continual process. Administrators should maintain good relations with state agencies and the Environmental Protection Agency and use them as resources. Contacts with businesses and professional groups as well as forming coalitions with neighboring districts are ways to share information and expenses. (MLF)

  2. CHARACTERIZATION OF HAZARDOUS WASTE INCINERATION RESIDUALS

    EPA Science Inventory

    The purpose of the study was to provide data on the quantities and characteristics of solid and liquid discharges from hazardous waste incineration facilities. A total of 10 facilities were sampled comprising major incineration designs and flue gas treatment devices. All inlet an...

  3. Legislative aspects of hazardous waste management.

    PubMed Central

    Friedman, M

    1983-01-01

    In the fall of 1976 Congress enacted the Resource Conservation and Recovery Act, commonly referred to as RCRA. The objective of the statute is to create an orderly system for the generation, handling and disposal of hazardous waste by means of a comprehensive tracking and record keeping mechanism. RCRA does not regulate directly by statute so much as it delegates rule making authority to the U.S. Environmental Protection Agency. Pursuant to its mandate to develop regulations in accordance with the broad criteria of RCRA, EPA has published extensive regulations. These regulations address hazardous waste generation, transportation, treatment, storage and handling and its final disposal. The statute also offers remedies available to both EPA and the public at large to ensure enforcement of the provisions of RCRA and the EPA regulations. Additionally, it sets guidelines for states to implement their own hazardous waste management programs. This article is intended to introduce this complicated statutory/regulatory package to scientists and health professionals. It outlines the provisions of RCRA and the EPA regulations, abbreviates early judicial decisions interpreting these provisions and sets forth a brief description of various state approaches to hazardous waste management. PMID:6825630

  4. 2002 Hyperspectral Analysis of Hazardous Waste Sites on the Savannah River Site

    SciTech Connect

    Gladden, J.B.

    2003-08-28

    Hazardous waste site inspection is a labor intensive, time consuming job, performed primarily on the ground using visual inspection and instrumentation. It is an expensive process to continually monitor hazardous waste and/or landfill sites to determine if they are maintaining their integrity. In certain instances, it may be possible to monitor aspects of the hazardous waste sites and landfills remotely. The utilization of multispectral data was suggested for the mapping of clays and iron oxides associated with contaminated groundwater, vegetation stress, and methane gas emissions (which require longer wavelength detectors). The Savannah River Site (SRS) near Aiken, S.C. is a United States Department of Energy facility operated by the Westinghouse Savannah River Company. For decades the SRS was responsible for developing weapons grade plutonium and other materials for the nation's nuclear defense. Hazardous waste was generated during this process. Waste storage site inspection is a particularly important issue at the SRS because there are over 100 hazardous waste sites scattered throughout the 300 mile complex making it difficult to continually monitor all of the facilities. The goal is to use remote sensing technology to identify surface anomalies on the hazardous waste sites as early as possible so that remedial work can take place rapidly to maintain the integrity of the storage sites. The anomalous areas are then targeted for intensive in situ human examination and measurement. During the 1990s, many of the hazardous waste sites were capped with protective layers of polyethelene sheeting and soil, and planted with bahia grass and/or centipede grass. This research investigated hyperspectral remote sensing technology to determine if it can be used to measure accurately and monitor possible indicators of change on vegetated hazardous waste sites. Specifically, it evaluated the usefulness of hyperspectral remote sensing to assess the condition of vegetation on clay

  5. Specific model for the estimation of methane emission from municipal solid waste landfills in India.

    PubMed

    Kumar, Sunil; Nimchuk, Nick; Kumar, Rakesh; Zietsman, Josias; Ramani, Tara; Spiegelman, Clifford; Kenney, Megan

    2016-09-01

    The landfill gas (LFG) model is a tool for measuring methane (CH4) generation rates and total CH4 emissions from a particular landfill. These models also have various applications including the sizing of the LFG collection system, evaluating the benefits of gas recovery projects, and measuring and controlling gaseous emissions. This research paper describes the development of a landfill model designed specifically for Indian climatic conditions and the landfill's waste characteristics. CH4, carbon dioxide (CO2), oxygen (O2) and temperature were considered as the prime factor for the development of this model. The developed model was validated for three landfill sites in India: Shillong, Kolkata, and Jaipur. The autocorrelation coefficient for the model was 0.915, while the R(2) value was 0.429. PMID:27343450

  6. VEGETATIVE COVERS FOR WASTE CONTAINMENT

    EPA Science Inventory

    Disposal of municipal ahd hazardous waste in the United States is primarily accomplished by containment in lined and capped landfills. Evapotranspiration cover systems offer an alternative to conventional landfill cap systems. These covers work on completely different principles ...

  7. The Excavation and Remediation of the Sandia National Laboratories Chemical Waste Landfill

    SciTech Connect

    KWIECINSKI,DANIEL ALBERT; METHVIN,RHONDA KAY; SCHOFIELD,DONALD P.; YOUNG,SHARISSA G.

    1999-11-23

    The Chemical Waste Landfill (CWL) at Sandia National Laboratories/New Mexico (SNL/NM) is a 1.9-acre disposal site that was used for the disposal of chemical wastes generated by many of SNL/NM research laboratories from 1962 until 1985. These laboratories were primarily involved in the design, research and development of non-nuclear components of nuclear weapons and the waste generated by these labs included small quantities of a wide assortment of chemical products. A Resource Conservation and Recovery Act (RCRA) Closure Plan for the Chemical Waste Landfill was approved by the New Mexico Environment Department (NMED) in 1992. Subsequent site characterization activities identified the presence of significant amounts of chromium in the soil as far as 80 feet below ground surface (fbgs) and the delineation of a solvent plume in the vadose zone that extends to groundwater approximately 500 fbgs. Trichloroethylene (TCE) was detected in some groundwater samples at concentrations slightly above the drinking water limit of 5 parts per billion. In 1997 an active vapor extraction system reduced the size of the TCE vapor plume and for the last six quarterly sampling events groundwater samples have not detected TCE above the drinking water standard. A source term removal, being conducted as a Voluntary Corrective Measure (VCM), began in September 1998 and is expected to take up to two years. Four distinct disposal areas were identified from historical data and the contents of disposal pits and trenches in these areas, in addition to much of the highly contaminated soil surrounding the disposal cells, are currently being excavated. Buried waste and debris are expected to extend to a depth of 12 to 15 fbgs. Excavation will focus on the removal of buried debris and contaminated soil in a sequential, area by area manner and will proceed to whatever depth is required in order to remove all pit contents. Up to 50,000 cubic yards of soil and debris will be removed and managed during

  8. Mixed waste storage facility CDR review, Paducah Gaseous Diffusion Plant; Solid waste landfill CDR review, Paducah Gaseous Diffusion Plant

    SciTech Connect

    1998-08-01

    This report consists of two papers reviewing the waste storage facility and the landfill projects proposed for the Paducah Gaseous Diffusion Plant complex. The first paper is a review of DOE`s conceptual design report for a mixed waste storage facility. This evaluation is to review the necessity of constructing a separate mixed waste storage facility. The structure is to be capable of receiving, weighing, sampling and the interim storage of wastes for a five year period beginning in 1996. The estimated cost is assessed at approximately $18 million. The review is to help comprehend and decide whether a new storage building is a feasible approach to the PGDP mixed waste storage problem or should some alternate approach be considered. The second paper reviews DOE`s conceptual design report for a solid waste landfill. This solid waste landfill evaluation is to compare costs and the necessity to provide a new landfill that would meet State of Kentucky regulations. The assessment considered funding for a ten year storage facility, but includes a review of other facility needs such as a radiation detection building, compactor/baler machinery, material handling equipment, along with other personnel and equipment storage buildings at a cost of approximately $4.1 million. The review is to help discern whether a landfill only or the addition of compaction equipment is prudent.

  9. BOILERS COFIRING HAZARDOUS WASTE: EFFECTS OF HYSTERESIS ON PERFORMANCE MEASUREMENTS

    EPA Science Inventory

    The Hazardous Waste Engineering Research Laboratory (HWERL) has conducted full scale and pilot scale boiler testing to determine hazardous waste destruction and removal efficiencies (DRE's) and other associated boiler performance parameters during the last five years. The effort ...

  10. BIOLEACH: Coupled modeling of leachate and biogas production on solid waste landfills

    NASA Astrophysics Data System (ADS)

    Rodrigo-Clavero, Maria-Elena; Rodrigo-Ilarri, Javier

    2015-04-01

    One of the most important factors to address when performing the environmental impact assessment of urban solid waste landfills is to evaluate the leachate production. Leachate management (collection and treatment) is also one of the most relevant economical aspects to take into account during the landfill life. Leachate is formed as a solution of biological and chemical components during operational and post-operational phases on urban solid waste landfills as a combination of different processes that involve water gains and looses inside the solid waste mass. Infiltration of external water coming from precipitation is the most important component on this water balance. However, anaerobic waste decomposition and biogas formation processes play also a role on the balance as water-consuming processes. The production of leachate one biogas is therefore a coupled process. Biogas production models usually consider optimal conditions of water content on the solid waste mass. However, real conditions during the operational phase of the landfill may greatly differ from these optimal conditions. In this work, the first results obtained to predict both the leachate and the biogas production as a single coupled phenomenon on real solid waste landfills are shown. The model is applied on a synthetic case considering typical climatological conditions of Mediterranean catchments.

  11. Appendix E: Research papers. Analysis of landfills with historic airphotos

    NASA Technical Reports Server (NTRS)

    Liang, T.; Philipson, W. R. (Principal Investigator); Erb, T. L.; Teng, W. L.

    1980-01-01

    The nature of landfill-related information that can be derived from existing, or historic, aerial photographs, is reviewed. This information can be used for conducting temporal assessments of landfill existence, land use and land cover, and the physical environment. As such, analysis of low cost, readily available aerial photographs can provide important, objective input to landfill inventories, assessing contamination or health hazards, planning corrective measures, planning waste collection and facilities, and developing on inactive landfills.

  12. Evaluating the methane generation rate constant (k value) of low-organic waste at Danish landfills.

    PubMed

    Mou, Zishen; Scheutz, Charlotte; Kjeldsen, Peter

    2015-01-01

    The methane (CH4) generation rate constant (k value, yr(-1)) is an essential parameter when using first-order decay (FOD) landfill gas (LFG) generation models to estimate CH4 generation from landfills. Four categories of waste (street cleansing, mixed bulky, shredder, and sludge waste) with a low-organic content, as well as temporarily stored combustible waste, were sampled from four Danish landfills. Anaerobic degradation experiments were set up in duplicate for all waste samples and incubated for 405 days, while the cumulative CH4 generation was continuously monitored. Applying FOD equations to the experimental results, half-life time values (t½, yr) and k values of various waste categories were determined. In general, similar waste categories obtained from different Danish landfills showed similar results. Sludge waste had the highest k values, which were in the range 0.156-0.189 yr(-1). The combustible and street cleansing waste showed k values of 0.023-0.027 yr(-1) and 0.073-0.083 yr(-1), respectively. The lowest k values were obtained for mixed bulky and shredder wastes ranging from 0.013 to 0.017 yr(-1). Most low-organic waste samples showed lower k values in comparison to the default numeric values in current FOD models (e.g., IPCC, LandGEM, and Afvalzorg). Compared with the k values reported in the literature, this research determined low-organic waste for the first time via reliable large-scale and long-term experiments. The degradation parameters provided in this study are valuable when using FOD LFG generation models to estimate CH4 generation from modern landfills that receive only low-organic waste. PMID:25453319

  13. 75 FR 73972 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Removal of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-30

    ... Company--Texas Operations, published on September 24, 2010, 75 FR 58315. We stated in that direct final... which will be based on the parallel proposed rule also published on September 24, 2010, 75 FR 58346. As... AGENCY 40 CFR Part 261 Hazardous Waste Management System; Identification and Listing of Hazardous...

  14. Occupational Hearing Loss among Chinese Municipal Solid Waste Landfill Workers: A Cross-Sectional Study

    PubMed Central

    Liu, Yuewei; Wang, Haijiao; Weng, Shaofan; Su, Wenjin; Wang, Xin; Guo, Yanfei; Yu, Dan; Du, Lili; Zhou, Ting; Chen, Weihong; Shi, Tingming

    2015-01-01

    Background Occupational hearing loss is an increasingly prevalent occupational condition worldwide, and has been reported to occur in a wide range of workplaces; however, its prevalence among workers from municipal solid waste landfills (MSWLs) remains less clear. This study aimed to investigate the occupational hearing loss among Chinese MSWL workers. Methods A cross-sectional study of 247 workers from 4 Chinese MSWLs was conducted. Noise and total volatile organic compounds (TVOCs) levels at worksites were determined. We conducted hearing examinations to determine hearing thresholds. A worker was identified as having hearing loss if the mean threshold at 2000, 3000 and 4000 Hz in either ear was equal to or greater than 25 dB. Prevalence of occupational hearing loss was then evaluated. Using unconditional Logistic regression models, we estimated the odds ratios (ORs) of MSWL work associated with hearing loss. Results According to the job title for each worker, the study subjects were divided into 3 groups, including group 1 of 63 workers without MSWL occupational hazards exposure (control group), group 2 of 84 workers with a few or short-period MSWL occupational hazards exposure, and group 3 of 100 workers with continuous MSWL occupational hazards exposure. Both noise and TVOCs levels were significantly higher at worksites for group 3. Significantly poorer hearing thresholds at frequencies of 2000, 3000 and 4000 Hz were found in group 3, compared with that in group 1 and group 2. The overall prevalence rate of hearing loss was 23. 5%, with the highest in group 3 (36.0%). The OR of MSWL work associated with hearing loss was 3.39 (95% confidence interval [CI]: 1.28-8.96). Conclusion The results of this study suggest significantly higher prevalence of hearing loss among MSWL workers. Further studies are needed to explore possible exposure-response relationship between MSWL occupational hazards exposure and hearing loss. PMID:26042421

  15. Bacterial community diversity in municipal waste landfill sites.

    PubMed

    Song, Liyan; Wang, Yangqing; Tang, Wei; Lei, Yu

    2015-09-01

    Little is known about the bacterial diversity of landfills and how environmental factors impact the diversity. In this study, PCR-based 454 pyrosequencing was used to investigate the bacterial communities of ten landfill leachate samples from five landfill sites in China. A total of 137 K useable sequences from the V3-V6 regions of the 16S rRNA gene were retrieved from 205 K reads. These sequences revealed the presence of a large number of operational taxonomic units (OTUs) in the landfills (709-1599 OTUs per sample). The most predominant bacterial representatives in the landfills investigated, regardless of geographic area, included Gammaproteobacteria, Firmicutes, and Bacteroidetes. The phyla Fusobacteria and Tenericutes were also found for the first time to be predominant in the landfills. The phylum Fusobacteria predominated (51.5 and 48.8%) in two semi-arid landfills, and the phylum Tenericutes dominated (30.6%) at one humid, subtropical landfill. Further, a large number of Pseudomonas was detected in most samples, comprising the dominant group and accounting for 40.9 to 92.4% of the total abundance. Principal component analysis (PCA) and cluster analysis based on OTU abundance showed that the abundant taxa separated the bacterial community. Canonical correlation analysis (CCA) suggested that precipitation and landfilling age significantly impact on the bacterial community structure. The bacterial community function (e.g., cellulolytic bacteria, sulfate-reducing bacteria (SRB), sulfate-oxidizing bacteria, and xenobiotic organic compound (XOC)-degrading bacteria) was also diverse, but the pattern is unclear. PMID:25981996

  16. Method and apparatus for incinerating hazardous waste

    DOEpatents

    Korenberg, Jacob

    1990-01-01

    An incineration apparatus and method for disposal of infectious hazardous waste including a fluidized bed reactor containing a bed of granular material. The reactor includes a first chamber, a second chamber, and a vertical partition separating the first and second chambers. A pressurized stream of air is supplied to the reactor at a sufficient velocity to fluidize the granular material in both the first and second chambers. Waste materials to be incinerated are fed into the first chamber of the fluidized bed, the fine waste materials being initially incinerated in the first chamber and subsequently circulated over the partition to the second chamber wherein further incineration occurs. Coarse waste materials are removed from the first chamber, comminuted, and recirculated to the second chamber for further incineration. Any partially incinerated waste materials and ash from the bottom of the second chamber are removed and recirculated to the second chamber for further incineration. This process is repeated until all infectious hazardous waste has been completely incinerated.

  17. Invisible threat: Odors and landfill gas from construction and demolition waste

    SciTech Connect

    Flynn, B.E.

    1998-01-01

    It once was thought that construction and demolition (C and D) waste used as clean fill and landfill cover would generate little or no gas or odors. Previous experience with municipal solid waste (MSW) traditionally generated odors of a few parts per million (ppm) up to maybe 100 ppm of hydrogen sulfide (H{sub 2}S) in the landfill gas formed. However, people are slowly becoming aware of the tremendous amount of sulfide generated by the latest C and D waste processing practices. C and D waste can generate up to 20,000--30,000 ppm (2--3%) average concentrations of H{sub 2}S. The hottest wells have been measured with as much as 8% H{sub 2}S in the landfill gas.

  18. Decision analysis for INEL hazardous waste storage

    SciTech Connect

    Page, L.A.; Roach, J.A.

    1994-01-01

    In mid-November 1993, the Idaho National Engineering Laboratory (INEL) Waste Reduction Operations Complex (WROC) Manager requested that the INEL Hazardous Waste Type Manager perform a decision analysis to determine whether or not a new Hazardous Waste Storage Facility (HWSF) was needed to store INEL hazardous waste (HW). In response to this request, a team was formed to perform a decision analysis for recommending the best configuration for storage of INEL HW. Personnel who participated in the decision analysis are listed in Appendix B. The results of the analysis indicate that the existing HWSF is not the best configuration for storage of INEL HW. The analysis detailed in Appendix C concludes that the best HW storage configuration would be to modify and use a portion of the Waste Experimental Reduction Facility (WERF) Waste Storage Building (WWSB), PBF-623 (Alternative 3). This facility was constructed in 1991 to serve as a waste staging facility for WERF incineration. The modifications include an extension of the current Room 105 across the south end of the WWSB and installing heating, ventilation, and bay curbing, which would provide approximately 1,600 ft{sup 2} of isolated HW storage area. Negotiations with the State to discuss aisle space requirements along with modifications to WWSB operating procedures are also necessary. The process to begin utilizing the WWSB for HW storage includes planned closure of the HWSF, modification to the WWSB, and relocation of the HW inventory. The cost to modify the WWSB can be funded by a reallocation of funding currently identified to correct HWSF deficiencies.

  19. 49 CFR 172.205 - Hazardous waste manifest.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) hazardous waste manifest (manifest) is prepared in accordance with 40 CFR 262.20 and is signed, carried, and... in accordance with 40 CFR 263.22. (5) Before accepting hazardous waste from a rail transporter, a non.... (h) A hazardous waste manifest required by 40 CFR part 262, containing all of the...

  20. 49 CFR 172.205 - Hazardous waste manifest.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) hazardous waste manifest (manifest) is prepared in accordance with 40 CFR 262.20 and is signed, carried, and... in accordance with 40 CFR 263.22. (5) Before accepting hazardous waste from a rail transporter, a non.... (h) A hazardous waste manifest required by 40 CFR part 262, containing all of the...

  1. 49 CFR 172.205 - Hazardous waste manifest.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) hazardous waste manifest (manifest) is prepared in accordance with 40 CFR 262.20 and is signed, carried, and... in accordance with 40 CFR 263.22. (5) Before accepting hazardous waste from a rail transporter, a non.... (h) A hazardous waste manifest required by 40 CFR part 262, containing all of the...

  2. 49 CFR 172.205 - Hazardous waste manifest.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) hazardous waste manifest (manifest) is prepared in accordance with 40 CFR 262.20 and is signed, carried, and... in accordance with 40 CFR 263.22. (5) Before accepting hazardous waste from a rail transporter, a non.... (h) A hazardous waste manifest required by 40 CFR part 262, containing all of the...

  3. 49 CFR 172.205 - Hazardous waste manifest.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) hazardous waste manifest (manifest) is prepared in accordance with 40 CFR 262.20 and is signed, carried, and... in accordance with 40 CFR 263.22. (5) Before accepting hazardous waste from a rail transporter, a non.... (h) A hazardous waste manifest required by 40 CFR part 262, containing all of the...

  4. 40 CFR 279.21 - Hazardous waste mixing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Generators § 279.21 Hazardous waste mixing. (a) Mixtures of used oil and hazardous waste must be managed in accordance with § 279.10(b). (b) The... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Hazardous waste mixing. 279.21...

  5. 40 CFR 279.21 - Hazardous waste mixing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Generators § 279.21 Hazardous waste mixing. (a) Mixtures of used oil and hazardous waste must be managed in accordance with § 279.10(b). (b) The... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Hazardous waste mixing. 279.21...

  6. 40 CFR 279.21 - Hazardous waste mixing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Generators § 279.21 Hazardous waste mixing. (a) Mixtures of used oil and hazardous waste must be managed in accordance with § 279.10(b). (b) The... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Hazardous waste mixing. 279.21...

  7. Hazardous waste minimization report for CY 1986

    SciTech Connect

    Kendrick, C.M.

    1990-12-01

    Oak Ridge National Laboratory (ORNL) is a multipurpose research and development facility. Its primary role is the support of energy technology through applied research and engineering development and scientific research in basic and physical sciences. ORNL also is a valuable resource in the solution of problems of national importance, such as nuclear and chemical waste management. In addition, useful radioactive and stable isotopes which are unavailable from the private sector are produced at ORNL. As a result of these activities, hazardous, radioactive, and mixed wastes are generated at ORNL. A formal hazardous waste minimization program for ORNL was launched in mid 1985 in response to the requirements of Section 3002 of the Resource Conservation and Recovery Act (RCRA). During 1986, a task plan was developed. The six major tasks include: planning and implementation of a laboratory-wide chemical inventory and the subsequent distribution, treatment, storage, and/or disposal (TSD) of unneeded chemicals; establishment and implementation of a distribution system for surplus chemicals to other (internal and external) organizations; training and communication functions necessary to inform and motivate laboratory personnel; evaluation of current procurement and tracking systems for hazardous materials and recommendation and implementation of improvements; systematic review of applicable current and proposed ORNL procedures and ongoing and proposed activities for waste volume and/or toxicity reduction potential; and establishment of criteria by which to measure progress and reporting of significant achievements. 8 refs., 1 fig., 5 tabs.

  8. Manganese recovery from secondary resources: a green process for carbothermal reduction and leaching of manganese bearing hazardous waste.

    PubMed

    Chandra, Navin; Amritphale, S S; Pal, Deepti

    2011-02-15

    During the hydrometallurgical extraction of zinc by electrowinning process, a hazardous solid waste called anode mud is generated. It contains large quantity of manganese oxides (55-80%) and lead dioxide (6-16%). Due to the presence of a large quantity of lead, the anode mud waste is considered hazardous and has to be disposed of in secure landfills, which is costly, wastes available manganese and valuable land resources. For recovery of manganese content of anode mud, a process comprising of carbothermal treatment using low density oil (LDO) followed by sulphuric acid leaching is developed. PMID:21115220

  9. Geophysical experiments for the pre-reclamation assessment of industrial and municipal waste landfills

    NASA Astrophysics Data System (ADS)

    Balia, R.; Littarru, B.

    2010-03-01

    Two examples of combined application of geophysical techniques for the pre-reclamation study of old waste landfills in Sardinia, Italy, are illustrated. The first one concerned a mine tailings basin and the second one a municipal solid waste landfill; both disposal sites date back to the 1970-80s. The gravity, shallow reflection, resistivity and induced polarization methods were employed in different combinations at the two sites, and in both cases useful information on the landfill's geometry has been obtained. The gravity method proved effective for locating the boundaries of the landfill and the shallow reflection seismic technique proved effective for the precise imaging of the landfill's bottom; conversely the electrical techniques, though widely employed for studying waste landfills, provided mainly qualitative and debatable results. The overall effectiveness of the surveys has been highly improved through the combined use of different techniques, whose individual responses, being strongly dependent on their specific basic physical characteristic and the complexity of the situation to be studied, did not show the same effectiveness at the two places.

  10. Waste management facilities cost information for hazardous waste. Revision 1

    SciTech Connect

    Shropshire, D.; Sherick, M.; Biagi, C.

    1995-06-01

    This report contains preconceptual designs and planning level life-cycle cost estimates for managing hazardous waste. The report`s information on treatment, storage, and disposal modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the US Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report.

  11. 77 FR 56558 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-13

    ... for IBM, EPA proposed, on July 16, 2012 (77 FR 41720), to exclude the waste from the lists of... authorization to delist federal listed wastes. See 58 FR 26243 (May 3, 1993). Instead, the Vermont Hazardous... Under Executive Order 12866, ``Regulatory Planning and Review'' (58 FR 51735, October 4, 1993),...

  12. 76 FR 4823 - Hazardous Waste Management System; Identifying and Listing Hazardous Waste Exclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-27

    ... permitted, licensed, or registered by a State to manage industrial solid waste. The rule also imposes... original listing criteria, as well as the additional factors required by the Hazardous and Solid Waste... rule (75 FR 67919). EPA considered all comments received, and for reasons stated in both the...

  13. Hazard ranking systems for chemical wastes and chemical waste sites

    SciTech Connect

    Waters, R.D.; Parker, F.L. ); Crutcher, M.R. and Associates, Inc., Columbia, IL )

    1991-01-01

    Hazardous materials and substances have always existed in the environment. Mankind has evolved to live with some degree of exposure to toxic materials. Until recently the risk has been from natural toxins or natural background radiation. While rapid technological advances over the past few decades have improved the lifestyle of our society, they have also dramatically increased the availability, volume and types of synthetic and natural hazardous materials. Many of their effects are as yet uncertain. Products and manufacturing by-products that no longer serve a useful purpose are deemed wastes. For some waste products land disposal will always be their ultimate fate. Hazardous substances are often included in the waste products. One needs to classify wastes by degree of hazard (risk). Risk (degree of probability of loss) is usually defined for risk assessment as probability of an occurrence times the consequences of the occurrence. Perhaps even more important than the definition of risk is the choice of a risk management strategy. The choice of strategy will be strongly influenced by the decision criteria used. Those decision criteria could be utility (the greatest happiness of the greatest number), rights or technology based or some combination of the three. It is necessary to make such choices about the definition of risks and criteria for management. It is clear that these are social (i.e., political) and value choices and science has little to say on this matter. This is another example of what Alvin Weinberg has named Transcience where the subject matter is scientific and technical but the choices are social, political and moral. This paper shall deal only with the scientific and technical aspects of the hazardous waste problem to create a hazardous substances classification system.

  14. Chemical hazards associated with treatment of waste electrical and electronic equipment

    SciTech Connect

    Tsydenova, Oyuna; Bengtsson, Magnus

    2011-01-15

    This review paper summarizes the existing knowledge on the chemical hazards associated with recycling and other end-of-life treatment options of waste electrical and electronic equipment (e-waste). The hazards arise from the presence of heavy metals (e.g., mercury, cadmium, lead, etc.), flame retardants (e.g., pentabromophenol, polybrominated diphenyl ethers (PBDEs), tetrabromobisphenol-A (TBBPA), etc.) and other potentially harmful substances in e-waste. If improperly managed, the substances may pose significant human and environmental health risks. The review describes the potentially hazardous content of e-waste, examines the existing e-waste management practices and presents scientific data on human exposure to chemicals, workplace and environmental pollution associated with the three major e-waste management options, i.e., recycling, incineration and landfilling. The existing e-waste management practices and associated hazards are reviewed separately for developed and developing countries. Finally, based on this review, the paper identifies gaps in the existing knowledge and makes some recommendations for future research.

  15. Municipal Solid Waste Management: Recycling, Resource Recovery, and Landfills. LC Science Tracer Bullet.

    ERIC Educational Resources Information Center

    Meikle, Teresa, Comp.

    Municipal solid waste refers to waste materials generated by residential, commercial, and institutional sources, and consists predominantly of paper, glass, metals, plastics, and food and yard waste. Within the definition of the Solid Waste Disposal Act, municipal solid waste does not include sewage sludge or hazardous waste. The three main…

  16. Assessment of the mineral industry NORM/TENORM disposal in hazardous landfills.

    PubMed

    Pontedeiro, E M; Heilbron, P F L; Cotta, R M

    2007-01-31

    The main objective of this paper is to describe the assessment methodology utilised in Brazil, to foresee the performance of industrial landfills to disposal solid wastes containing natural radionuclides arising from milling and metallurgical installations that process ores containing NORM. An integrated methodology is utilized and issues as risk, exposure pathways and the plausible scenarios in which the contaminant can migrate and reach the environment and human beings are addressed. A specific example of the procedure is described and results are presented for actual situations. The model consists of an engineered depository constructed of earthen materials which minimise costs and maintain integrity over long-term. In order to define the landfill characteristics and the potential consequences to the environment, an impact analysis is carried out, considering the engineering aspects of the waste deposit and the exposure pathways by which the contaminant can migrate and reach the environment and human beings. Analytical solutions are used in the computer program in order to obtain fast results. PMID:16621246

  17. Managing hazardous waste in the laboratory.

    PubMed

    Hotaling, Mary

    2006-01-01

    This article offers an introduction to the federal U.S. Environmental Protection Agency (EPA) regulations as they relate to hazardous wastes generated by clinical and anatomic pathology laboratories. Traditionally, the EPA has targeted "heavy" industries such as manufacturing for compliance auditing, but it recently turned an eye toward health-care facilities since they are identified as important sources of hazardous waste generation. Enforcement of EPA regulations within health-care facilities presents the challenge of a new labyrinth of definitions, rules, and compliance methods for laboratorians who have already made it through other regulatory agency mazes, including the Joint Commission on Accreditation of Healthcare Organizations (JCAHO) standards, the College of American Pathologists (CAP) checklists, and the Occupational Safety and Health Administration (OSHA) standards. PMID:17005096

  18. The newest achievements of studies on the reutilization, treatment, and disposal technology of hazardous wastes

    SciTech Connect

    Liu Peizhe

    1996-12-31

    From 1991 to 1996, key studies on the reutilization, treatment, and disposal technology of hazardous wastes have been incorporated into the national plan for environmental protection science and technology. At present, the research achievements have been accomplished, have passed national approval, and have been accepted. The author of this paper, as leader of the national group for this research work, expounds the newest achievements of the studies involving four parts: (1) the reutilization technology of electroplating sludge, including the ion-exchange process for recovering the sludge and waste liquor for producing chromium tanning agent and extracting chromium and colloidal protein from tanning waste residue; on the recovery of heavy metals from the electroplating waste liquor with microbic purification; on the demonstration project of producing modified plastics from the sludge and the waste plastics; and on the demonstration of the recovery of heavy metals from waste electroplating sludge by using the ammonia-leaching process; (2) the demonstrative research of reutilization technology of chromium waste residues, including production of self-melting ore and smelting of chromium-containing pig iron, and of pyrolytic detoxification of the residue with cyclone furnace; (3) the incineration technology of hazardous wastes with successful results of the industrial incinerator system for polychlorinated biphenyls; and (4) the safety landfill technology for disposal of hazardous wastes, with a complete set of technology for pretreatment, selection of the site, development of the antipercolating materials, and design and construction of the landfill. Only a part of the achievements is introduced in this paper, most of which has been built and is being operated for demonstration to further spreading application and accumulate experience. 6 refs., 7 figs., 6 tabs.

  19. Data Summary of Municipal Solid Waste Management Alternatives. Volume VIII: Appendix F - Landfills

    SciTech Connect

    1992-10-01

    While the preceding appendices have focused on the thermochemical approaches to managing municipal solid waste (MSW), this appendix and those that follow on composting and anaerobic digestion address more of the bioconversion process technologies. Landfilling is the historical baseline MSW management option central to every community's solid waste management plan. It generally encompasses shredfills, balefills, landfill gas recovery, and landfill mining. While landfilling is virtually universal in use, it continues to undergo intense scrutiny by the public and regulators alike. Most recently, the US Environmental Protection Agency (EPA) issued its final rule on criteria for designing, operating, monitoring, and closing municipal solid waste landfills. While the Federal government has established nationwide standards and will assist the States in planning and developing their own practices, the States and local governments will carry out the actual planning and direct implementation. The States will also be authorized to devise programs to deal with their specific conditions and needs. While the main body of this appendix and corresponding research was originally prepared in July of 1991, references to the new RCRA Subtitle D, Part 258 EPA regulations have been included in this resubmission (908). By virtue of timing, this appendix is, necessarily, a transition'' document, combining basic landfill design and operation information as well as reference to new regulatory requirements. Given the speed with which landfill practices are and will be changing, the reader is encouraged to refer to Part 258 for additional details. As States set additional requirements and schedules and owners and operators of MSW landfills seek to comply, additional guidance and technical information, including case studies, will likely become available in the literature.

  20. Data summary of municipal solid waste management alternatives. Volume 8, Appendix F, Landfills

    SciTech Connect

    1992-10-01

    While the preceding appendices have focused on the thermochemical approaches to managing municipal solid waste (MSW), this appendix and those that follow on composting and anaerobic digestion address more of the bioconversion process technologies. Landfilling is the historical baseline MSW management option central to every community`s solid waste management plan. It generally encompasses shredfills, balefills, landfill gas recovery, and landfill mining. While landfilling is virtually universal in use, it continues to undergo intense scrutiny by the public and regulators alike. Most recently, the US Environmental Protection Agency (EPA) issued its final rule on criteria for designing, operating, monitoring, and closing municipal solid waste landfills. While the Federal government has established nationwide standards and will assist the States in planning and developing their own practices, the States and local governments will carry out the actual planning and direct implementation. The States will also be authorized to devise programs to deal with their specific conditions and needs. While the main body of this appendix and corresponding research was originally prepared in July of 1991, references to the new RCRA Subtitle D, Part 258 EPA regulations have been included in this resubmission (908). By virtue of timing, this appendix is, necessarily, a ``transition`` document, combining basic landfill design and operation information as well as reference to new regulatory requirements. Given the speed with which landfill practices are and will be changing, the reader is encouraged to refer to Part 258 for additional details. As States set additional requirements and schedules and owners and operators of MSW landfills seek to comply, additional guidance and technical information, including case studies, will likely become available in the literature.

  1. Frozen soil barriers for hazardous waste confinement

    SciTech Connect

    Dash, J.G.; Leger, R.; Fu, H.Y.

    1997-12-31

    Laboratory and full field measurements have demonstrated the effectiveness of artificial ground freezing for the containment of subsurface hazardous and radioactive wastes. Bench tests and a field demonstration have shown that cryogenic barriers are impenetrable to aqueous and non aqueous liquids. As a result of the successful tests the US Department of Energy has designated frozen ground barriers as one of its top ten remediation technologies.

  2. Assessment of hazardous wastes for genotoxicity

    SciTech Connect

    DeMarini, D.M.; Houk, V.S.

    1987-09-01

    The authors have evaluated a group of short-term bioassays to identify those that may be suitable for screening large numbers of diverse hazardous industrial wastes for genotoxicity. Fifteen wastes (and dichloromethane extracts of these wastes) from a variety of manufacturing processes were tested for mutagenicity in Salmonella typhimurium strains TA98 and TA100 with and without Aroclor 1254-induced rat-liver S9. Ten of these wastes were fed by gavage to F-344 male rats, and the raw urines were assayed for mutagenicity in the presence of beta-glucuronidase in strain TA98 with S9. Six of these urines were extracted by C18/methanol elution, incubated with beta-glucuronidase, and evaluated in strain TA98 with S9 and beta-glucuronidase. Fourteen of the wastes were examined for their ability to induce prophage lambda in Escherichia coli in a microsuspension assay. A second set of wastes, consisting of four industrial wastes, were evaluated in Salmonella and in a series of mammalian cell assays to measure mutagenicity, cytogenetic effects, and transformation.

  3. Assessing the leaching of hazardous metals from pharmaceutical wastes and their ashes.

    PubMed

    Gerassimidou, Spyridoula; Komilis, Dimitrios

    2015-02-01

    The purpose of this research was the determination of the leaching potential of eight hazardous metals from expired pharmaceutical wastes and their ashes obtained after simulated incineration. A standardized leaching test (EN 14429) was used to assess leaching over a range of pH and comparison with the limits included in Decision 2003/33/EC was done at liquid/solid ratio 10. The goal was to assess the environmental impacts of pharmaceutical wastes after different disposal techniques (direct landfilling, incineration). A 3-year old composite sample of expired pharmaceutical wastes (drugs) was obtained and was separated into solid and liquid drugs. The packaging from each type of drug was also removed and tested separately, whilst the solid drugs and their packaging were incinerated at 900°C. Leaching tests on all solid substrates (solid drugs, packaging, ashed drugs, ashed packaging) were performed over a wide range of pH. The experiments showed that ashed drugs leached the highest amounts of all metals, except iron, and should be disposed of to a hazardous waste landfill, since Cd, Ni, and Pb exceeded the corresponding limits. Raw expired drugs, raw and ashed packaging did not exceed the pertinent limit values and could be, thus, disposed of directly to a non-hazardous waste landfill. In all experiments, the highest leaching potential (>90% of the total metal content) was measured at acidic pHs (<4). The leachable concentration of all metals increased as pH decreased, whilst Zn observed a small re-dissolution in the alkaline range. PMID:25649407

  4. Staged mold for encapsulating hazardous wastes

    DOEpatents

    Unger, Samuel L.; Telles, Rodney W.; Lubowitz, Hyman R.

    1988-01-01

    A staged mold for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

  5. Staged mold for encapsulating hazardous wastes

    DOEpatents

    Unger, Samuel L.; Telles, Rodney W.; Lubowitz, Hyman R.

    1990-01-01

    A staged mold for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

  6. Sensitivity analysis of the waste composition and water content parameters on the biogas production models on solid waste landfills

    NASA Astrophysics Data System (ADS)

    Rodrigo-Ilarri, Javier; Segura-Sobrino, Francisco; Rodrigo-Clavero, Maria-Elena

    2014-05-01

    Landfills are commonly used as the final deposit of urban solid waste. Despite the waste is previously processed on a treatment plant, the final amount of organic matter which reaches the landfill is large however. The biodegradation of this organic matter forms a mixture of greenhouse gases (essentially Methane and Carbon-Dioxide as well as Ammonia and Hydrogen Sulfide). From the environmental point of view, solid waste landfills are therefore considered to be one of the main greenhouse gas sources. Different mathematical models are usually applied to predict the amount of biogas produced on real landfills. The waste chemical composition and the availability of water in the solid waste appear to be the main parameters of these models. Results obtained when performing a sensitivity analysis over the biogas production model parameters under real conditions are shown. The importance of a proper characterizacion of the waste as well as the necessity of improving the understanding of the behaviour and development of the water on the unsaturated mass of waste are emphasized.

  7. Evaluating the quality and effectiveness of hazardous waste training programs

    SciTech Connect

    Kolpa, R.L.; Haffenden, R.A.; Weaver, M.A.

    1996-05-01

    An installation`s compliance with Resource Conservation and Recovery Act (RCRA) hazardous waste regulations is strongly dependent on the knowledge, skill, and behavior of all individuals involved in the generation and management of hazardous waste. Recognizing this, Headquarters Air Force Materiel Command (HQ/AFMC) determined that an in-depth evaluation of hazardous waste training programs at each AFMC installation was an appropriate element in assessing the overall effectiveness of installation hazardous waste management programs in preventing noncompliant conditions. Consequently, pursuant to its authority under Air Force Instruction (AFI) 32-7042, Solid and Hazardous Waste Compliance (May 12, 1994) to support and maintain hazardous waste training, HQ/AFMC directed Argonne National Laboratory to undertake the Hazardous Waste Training Initiative. This paper summarizes the methodology employed in performing the evaluation and presents the initiative`s salient conclusions.

  8. A framework for assessment and characterisation of municipal solid waste landfill leachate: an application to the Turbhe landfill, Navi Mumbai, India.

    PubMed

    Mishra, Harshit; Rathod, Merwan; Karmakar, Subhankar; Kumar, Rakesh

    2016-06-01

    Rapid industrialisation, growing population and changing lifestyles are the root causes for the generation of huge amounts of solid waste in developing countries. In India, disposal of municipal solid waste (MSW) through open dumping is the most common waste disposal method. Unfortunately, leachate generation from landfill is high due to the prolonged and prominent monsoon season in India. As leachate generation rate is high in most of the tropical countries, long-term and extensive monitoring efforts are expected to evaluate actual environmental pollution potential due to leachate contamination. However, the leachate characterisation involves a comprehensive process, which has numerous shortcomings and uncertainties possibly due to the complex nature of landfilling process, heterogeneous waste characteristics, widely varying hydrologic conditions and selection of analytes. In order to develop a sustainable MSW management strategy for protecting the surface and ground water resources, particularly from MSW landfill leachate contamination, assessment and characterisation of leachate are necessary. Numerous studies have been conducted in the past to characterise leachate quality from various municipal landfills; unfortunately, none of these propose a framework or protocol. The present study proposes a generic framework for municipal landfill leachate assessment and characterisation. The proposed framework can be applied to design any type of landfill leachate quality monitoring programme and also to facilitate improved leachate treatment activities. A landfill site located at Turbhe, Navi Mumbai, India, which had not been investigated earlier, has been selected as a case study. The proposed framework has been demonstrated on the Turbhe landfill site which is a comparatively new and the only sanitary landfill in Navi Mumbai. PMID:27194233

  9. Assessment and analysis of industrial liquid waste and sludge disposal at unlined landfill sites in arid climate

    SciTech Connect

    Al Yaqout, Anwar F

    2003-07-01

    Municipal solid waste disposal sites in arid countries such as Kuwait receive various types of waste materials like sewage sludge, chemical waste and other debris. Large amounts of leachate are expected to be generated due to the improper disposal of industrial wastewater, sewage sludge and chemical wastes with municipal solid waste at landfill sites even though the rainwater is scarce. Almost 95% of all solid waste generated in Kuwait during the last 10 years was dumped in five unlined landfills. The sites accepting liquid waste consist of old sand quarries that do not follow any specific engineering guidelines. With the current practice, contamination of the ground water table is possible due to the close location of the water table beneath the bottom of the waste disposal sites. This study determined the percentage of industrial liquid waste and sludge of the total waste dumped at the landfill sites, analyzed the chemical characteristics of liquid waste stream and contaminated water at disposal sites, and finally evaluated the possible risk posed by the continuous dumping of such wastes at the unlined landfills. Statistical analysis has been performed on the disposal and characterization of industrial wastewater and sludge at five active landfill sites. The chemical analysis shows that all the industrial wastes and sludge have high concentrations of COD, suspended solids, and heavy metals. Results show that from 1993 to 2000, 5.14{+-}1.13 million t of total wastes were disposed per year in all active landfill sites in Kuwait. The share of industrial liquid and sludge waste was 1.85{+-}0.19 million t representing 37.22{+-}6.85% of total waste disposed in all landfill sites. Such wastes contribute to landfill leachate which pollutes groundwater and may enter the food chain causing adverse health effects. Lined evaporation ponds are suggested as an economical and safe solution for industrial wastewater and sludge disposal in the arid climate of Kuwait.

  10. Mercury air-borne emissions from 5 municipal solid waste landfills in Guiyang and Wuhan, China

    NASA Astrophysics Data System (ADS)

    Li, Z. G.; Feng, X.; Li, P.; Liang, L.; Tang, S. L.; Wang, S. F.; Fu, X. W.; Qiu, G. L.; Shang, L. H.

    2010-01-01

    A detailed study on atmospheric mercury emissions from municipal solid waste (MSW) landfills in China is necessary to understand mercury behavior in this source category, simply because China disposes of bulk MSW by landfilling and a large quantity of mercury enters into landfills. Between 2003 and 2006, mercury airborne emissions through different pathways, as well as mercury speciation in landfill gas (LFG) were measured at 5 MSW landfills in Guiyang and Wuhan, China. The results showed that mercury content in the substrate fundamentally affected the magnitude of mercury emissions, resulting in the highest emission rate (as high as 57 651 ng Hg m-2 h-1) at the working face and in un-covered waste areas, and the lowest measured at soil covers and vegetation areas (less than 20 ng Hg m-2 h-1). Meteorological parameters, especially solar radiation, influenced the diurnal pattern of mercury surface-air emissions. Total gaseous mercury (TGM) in LFG varied from 2.0 to 1406.0 ng m-3, monomethyl mercury (MMHg) and dimethyl mercury (DMHg) in LFG averaged at 1.93 and 9.21 ng m-3, and accounted for 0.51% and 1.79% of the TGM in the LFG, respectively. Total mercury emitted from the five landfills ranged from 17 to 3285 g yr-1, with the highest from the working face, then soil covering, and finally the vent pipes.

  11. Stable isotope signatures for characterising the biological stability of landfilled municipal solid waste

    SciTech Connect

    Wimmer, Bernhard; Hrad, Marlies; Huber-Humer, Marion; Watzinger, Andrea; Wyhlidal, Stefan; Reichenauer, Thomas G.

    2013-10-15

    Highlights: ► The isotopic signature of δ{sup 13}C-DIC of leachates is linked to the reactivity of MSW. ► Isotopic signatures of leachates depend on aerobic/anaerobic conditions in landfills. ► In situ aeration of landfills can be monitored by isotope analysis in leachate. ► The isotopic analysis of leachates can be used for assessing the stability of MSW. ► δ{sup 13}C-DIC of leachates helps to define the duration of landfill aftercare. - Abstract: Stable isotopic signatures of landfill leachates are influenced by processes within municipal solid waste (MSW) landfills mainly depending on the aerobic/anaerobic phase of the landfill. We investigated the isotopic signatures of δ{sup 13}C, δ{sup 2}H and δ{sup 18}O of different leachates from lab-scale experiments, lysimeter experiments and a landfill under in situ aeration. In the laboratory, columns filled with MSW of different age and reactivity were percolated under aerobic and anaerobic conditions. In landfill simulation reactors, waste of a 25 year old landfill was kept under aerobic and anaerobic conditions. The lysimeter facility was filled with mechanically shredded fresh waste. After starting of the methane production the waste in the lysimeter containments was aerated in situ. Leachate and gas composition were monitored continuously. In addition the seepage water of an old landfill was collected and analysed periodically before and during an in situ aeration. We found significant differences in the δ{sup 13}C-value of the dissolved inorganic carbon (δ{sup 13}C-DIC) of the leachate between aerobic and anaerobic waste material. During aerobic degradation, the signature of δ{sup 13}C-DIC was mainly dependent on the isotopic composition of the organic matter in the waste, resulting in a δ{sup 13}C-DIC of −20‰ to −25‰. The production of methane under anaerobic conditions caused an increase in δ{sup 13}C-DIC up to values of +10‰ and higher depending on the actual reactivity of the MSW

  12. Report to Congress: management of hazardous wastes from educational institutions

    SciTech Connect

    Not Available

    1989-04-01

    The EPA has studied and evaluated the problems associated with managing hazardous wastes generated by educational institutions. This report is factual in nature. EPA was not directed by the law to develop recommendations for regulatory or statutory changes. The report identifies the statutory and regulatory requirements for educational institutions to manage hazardous waste, examines current hazardous-waste-management practices at such institutions, identifies the hazardous-waste-management problems encountered by them, and concludes by identifying possible ways for educational institutions to improve hazardous-waste management. The report primarily focuses on hazardous waste generated by universities, colleges, high schools, and vocational schools. The findings of the report can also apply to waste generated at facilities providing adult education and programs of education of less than 2 years' duration, because factors affecting the management of such waste would be similar for all levels and categories of educational institutions.

  13. Epiphytic lichens as indicators of environmental quality around a municipal solid waste landfill (C Italy).

    PubMed

    Paoli, Luca; Grassi, Alice; Vannini, Andrea; Maslaňáková, Ivana; Bil'ová, Ivana; Bačkor, Martin; Corsini, Adelmo; Loppi, Stefano

    2015-08-01

    Epiphytic lichens have been used as indicators of environmental quality around a municipal solid waste landfill in C Italy. An integrated approach, using the diversity of epiphytic lichens, as well as element bioaccumulation and physiological parameters in the lichen Flavoparmelia caperata (L.) Hale was applied along a transect from the facility. The results highlighted the biological effects of air pollution around the landfill. The Index of Lichen Diversity (ILD) increased and the content of heavy metals (Cr, Cd, Cu, Fe, Ni and Zn) decreased with distance from the landfill. Clear stress signals were observed in lichens growing in front of the facility, i.e. discoloration, necrosis, membrane lipid peroxidation, lower ergosterol content, higher dehydrogenase activity. Decreased photosynthetic efficiency, altered chlorophyll integrity and production of secondary metabolites were also found. The results suggested that lichens can be profitably used as bioindicators of environmental quality around landfills. PMID:25987289

  14. Quarterly Groundwater Report for the Solid Waste Landfill July - September 2006

    SciTech Connect

    Lindberg, Jon W.

    2007-02-19

    This report provides information on groundwater monitoring at the Solid Waste Landfill during the quarterly time period July to September 2006. Conditions remain very similar to those reported in the previous quarterly report. Six background threshold values, one WAC 173-200 Groundwater Quality Criterion, and one WAC 246-290-310 Maximum Contaminant Level were exceeded. The results that exceed applicable limits are consistent with the type of waste disposed to the landfill including sewage and chlorinated hydrocarbons from either the sewage or the 1100 Area heavy equipment garage and bus shop.

  15. Adaptive sampling strategy support for the unlined chromic acid pit, chemical waste landfill, Sandia National Laboratories, Albuquerque, New Mexico

    SciTech Connect

    Johnson, R.L.

    1993-11-01

    Adaptive sampling programs offer substantial savings in time and money when assessing hazardous waste sites. Key to some of these savings is the ability to adapt a sampling program to the real-time data generated by an adaptive sampling program. This paper presents a two-prong approach to supporting adaptive sampling programs: a specialized object-oriented database/geographical information system (SitePlanner{trademark} ) for data fusion, management, and display and combined Bayesian/geostatistical methods (PLUME) for contamination-extent estimation and sample location selection. This approach is applied in a retrospective study of a subsurface chromium plume at Sandia National Laboratories` chemical waste landfill. Retrospective analyses suggest the potential for characterization cost savings on the order of 60% through a reduction in the number of sampling programs, total number of soil boreholes, and number of samples analyzed from each borehole.

  16. Identification of Cellulose Breaking Bacteria in Landfill Samples for Organic Waste Management

    NASA Astrophysics Data System (ADS)

    Chan, P. M.; Leung, F. C.

    2015-12-01

    According to the Hong Kong Environmental Protection Department, the citizens of Hong Kong disposes 13,500 tonnes of waste to the landfill everyday. Out of the 13,500 tonnes, 3600 tonnes consist of organic waste. Furthermore, due to the limited supply of land for landfills in Hong Kong, it is estimated that landfills will be full by about 2020. Currently, organic wastes at landfills undergo anaerobic respiration, where methane gas, one of the most harmful green house gases, will be released. The management of such waste is a pressing issue, as possible solutions must be presented in this crucial period of time. The Independent Schools Foundation Academy introduced their very own method to manage the waste produced by the students. With an approximate of 1500 students on campus, the school produces 27 metric tonnes of food waste each academic year. The installation of the rocket food composter provides an alternate method of disposable of organic waste the school produces, for the aerobic environment allows for different by-products to be produced, namely compost that can be used for organic farming by the primary school students and subsequently carbon dioxide, a less harmful greenhouse gas. This research is an extension on the current work, as another natural factor is considered. It evaluates the microorganism community present in leachate samples collected from the North East New Territories Landfill, for the bacteria in the area exhibits special characteristics in the process of decomposition. Through the sequencing and analysis of the genome of the bacteria, the identification of the bacteria might lead to a break through on the current issue. Some bacteria demonstrate the ability to degrade lignin cellulose, or assist in the production of methane gas in aerobic respirations. These characteristics can hopefully be utilized in the future in waste managements across the globe.

  17. Quantification of regional leachate variance from municipal solid waste landfills in China.

    PubMed

    Yang, Na; Damgaard, Anders; Kjeldsen, Peter; Shao, Li-Ming; He, Pin-Jing

    2015-12-01

    The quantity of leachate is crucial when assessing pollution emanating from municipal landfills. In most cases, existing leachate quantification measures only take into account one source - precipitation, which resulted in serious underestimation in China due to its waste properties: high moisture contents. To overcome this problem, a new estimation method was established considering two sources: (1) precipitation infiltrated throughout waste layers, which was simulated with the HELP model, (2) water squeezed out of the waste itself, which was theoretically calculated using actual data of Chinese waste. The two sources depended on climate conditions and waste characteristics, respectively, which both varied in different regions. In this study, 31 Chinese cities were investigated and classified into three geographic regions according to landfill leachate generation performance: northwestern China (China-NW) with semi-arid and temperate climate and waste moisture content of about 46.0%, northern China (China-N) with semi-humid and temperate climate and waste moisture content of about 58.2%, and southern China (China-S) with humid and sub-tropical/tropical climate and waste moisture content of about 58.2%. In China-NW, accumulated leachate amounts were very low and mainly the result of waste degradation, implying on-site spraying/irrigation or recirculation may be an economic approach to treatment. In China-N, water squeezed out of waste by compaction totaled 22-45% of overall leachate amounts in the first 40 years, so decreasing the initial moisture content of waste arriving at landfills could reduce leachate generation. In China-S, the leachate generated by infiltrated precipitation after HDPE geomembranes in top cover started failing, contributed more than 60% of the overall amounts over 100 years of landfilling. Therefore, the quality and placing of HDPE geomembranes in the top cover should be controlled strictly for the purpose of mitigation leachate generation

  18. Minnesota Mining and Manufacturing Company's hazardous waste program.

    PubMed Central

    Van Noordwyk, H J; Santoro, M A

    1978-01-01

    This paper discusses the present hazardous waste program of 3M Company (Minnesota Mining and Manufacturing Company). 3M's definition of hazardous waste and the company's position on hazardous waste disposal are first considered. The company position is that wherever and whenever the disposal of a waste material threatens the environment or public safety, then that waste should be considered a hazardous waste and treated accordingly in terms of its handling and ultimate disposal. The generation of hazardous wastes and the differentiation of "hazardous" and "nonhazardous" wastes are described next. Handling of hazardous wastes from their generation to their disposal is then covered. This includes a definition of internal 3M terminology and a description of the hazard rating system used by the company. Finally, 3M disposal practices are presented. It is 3M's position that thermal destruction of hazardous wastes, where appropriate, is the best method for their disposal. With this in mind, 3M has constructed incineration facilities throughout the country. The rotary kiln incinerator at the 3M Chemolite plant in Cottage Grove, Minnesota is briefly described. Disposal of certain hazardous wastes in controlled secure land disposal sites is then briefly discussed. PMID:738241

  19. RFID technology for hazardous waste management and tracking.

    PubMed

    Namen, Anderson Amendoeira; Brasil, Felipe da Costa; Abrunhosa, Jorge José Gouveia; Abrunhosa, Glaucia Gomes Silva; Tarré, Ricardo Martinez; Marques, Flávio José Garcia

    2014-09-01

    The illegal dumping of hazardous waste is one of the most concerning occurrences related to illegal waste activities. The waste management process is quite vulnerable, especially when it comes to assuring the right destination for the delivery of the hazardous waste. The purpose of this paper is to present a new system design and prototype for applying the RFID technology so as to guarantee the correct destination for the hazardous waste delivery. The aim of this innovative approach, compared with other studies that employ the same technology to the waste disposal process, is to focus on the certification that the hazardous waste will be delivered to the right destination site and that no inappropriate disposal will occur in the transportation stage. These studies were carried out based on data collected during visits to two hazardous waste producer companies in Brazil, where the material transportation and delivery to a company in charge of the waste disposal were closely monitored. PMID:24879751

  20. Hazardous Waste Control and Enforcement Act of 1983. Hearings before the Subcommittee on Commerce, Transportation, and Tourism of the Committee on Energy and Commerce, House of Representatives, Ninety-Eighth Congress, First Session, March 22 and 24, 1983

    SciTech Connect

    Not Available

    1983-01-01

    The testimony of 43 witnesses form environmental agencies and private organizations, industry, recyclers, and other interested parties at this two-day hearing brought a variety of views on whether Congress should tighten loopholes in the hazardous waste law. The responsibility for the problems experienced at Times Beach, Missouri and at Baltimore's Monument Street landfill is placed on the practices allowed by these loopholes. In addition to several case studies, witnesses discussed steps needed to eliminate the land disposal of hazardous wastes. Specific issues included landfill standards, hazardous waste enforcement, and the polluted streams that are not listed under current regulations. (DCK)

  1. Mining the Midden: A Facility for Dynamic Waste Harvesting at the Cedar Hills Regional Landfill

    NASA Astrophysics Data System (ADS)

    Allan, Aaron

    Mining the Midden intends to re-frame the sanitary landfill as a new typology of public land containing an embodied energy of cultural and material value. By reconnecting the public with the landfill and seriously exposing its layers of history and then digesting both mined and new waste within an industrial facility of materials recovery and plasma gasification technology waste-to-energy plant. The sequence of experience for a public visitor begins where the waste is transformed to energy and flows in the opposite direction of the trash through the facility and then into the active landfill mining operation which is the large site component of the project. The mine is flanked by the visitor path, which is suspended from the soldier piles of the excavation system and allows the visitor to interpret along the 1/3 mile path their personal connection to the waste stream and the consumption patterns which drive our waste. Interpretation results from multi-sensory experience of the open mine and its connection to the processing structure as one hovers above, through moments of seeing through structural glass lagging directly into the sectional cut of the landfill, and through cultural artifacts harvested by landfill archaeologists which are displayed in rhythm with the structure and lagging. The culmination of the prescribed path is a narrow cut which frames the view of Mt. Rainier in the distance and opens up a visual connection with the remaining majority of the landfill which have up to this point been blocked by the small mountain of trash which they just walked up and through. This thesis intends that by confronting people with the juxtapositions of 2 potentially destructive mounds or mountains, and how we as a culture value and protect land while we simultaneously dump our rubbish on other lands, this experience will make the visitor more conscious of ones personal contribution to our culture of disposable commodities.

  2. Mixed waste landfill corrective measures study final report Sandia National Laboratories, Albuquerque, New Mexico.

    SciTech Connect

    Peace, Gerald L.; Goering, Timothy James

    2004-03-01

    The Mixed Waste Landfill occupies 2.6 acres in the north-central portion of Technical Area 3 at Sandia National Laboratories, Albuquerque, New Mexico. The landfill accepted low-level radioactive and mixed waste from March 1959 to December 1988. This report represents the Corrective Measures Study that has been conducted for the Mixed Waste Landfill. The purpose of the study was to identify, develop, and evaluate corrective measures alternatives and recommend the corrective measure(s) to be taken at the site. Based upon detailed evaluation and risk assessment using guidance provided by the U.S. Environmental Protection Agency and the New Mexico Environment Department, the U.S. Department of Energy and Sandia National Laboratories recommend that a vegetative soil cover be deployed as the preferred corrective measure for the Mixed Waste Landfill. The cover would be of sufficient thickness to store precipitation, minimize infiltration and deep percolation, support a healthy vegetative community, and perform with minimal maintenance by emulating the natural analogue ecosystem. There would be no intrusive remedial activities at the site and therefore no potential for exposure to the waste. This alternative poses minimal risk to site workers implementing institutional controls associated with long-term environmental monitoring as well as routine maintenance and surveillance of the site.

  3. Medical aspects of the hazardous waste problem.

    PubMed

    Ozonoff, D

    1982-12-01

    Although no one knows exactly how much toxic material continues to be released into our environment, most observers believe the amount is substantial. In the last few years, in the state of Massachusetts alone, 22 communities have had their municipal water supplies seriously compromised by chemical contamination, (1) causing alarm and dismay among water users. Nation-wide, public concern has reached the point that in some opinion polls, hazardous waste ranks second only behind inflation as a cause of serious worry. Despite widespread anxiety, shared by public health officials, few studies have shown conclusive evidence of health consequences from toxic materials in the environment. Even in the case of such gross contamination as in the Love Canal area of Niagara Falls, New York, health effects have been difficult to establish. (2) This is partly due to intrusion of the adversary process in cases where liability is involved; it is also a result, however, of inherent technical problems that plague any determination of health hazard. This paper reviews some of these problems, considers some current risk assessment approaches, and touches on medicolegal and regulatory aspects of the hazardous waste problem. PMID:7165025

  4. Medical aspects of the hazardous waste problem

    SciTech Connect

    Ozonoff, D.

    1982-12-01

    Although no one knows exactly how much toxic material continues to be released into our environment, most observers believe the amount is substantial. In the last few years, in the state of Massachusetts alone, 22 communities have had their municipal water supplies seriously compromised by chemical contamination, causing alarm and dismay among water users. Nation-wide, public concern has reached the point that in some opinion polls, hazardous waste ranks second only behind inflation as a cause of serious worry. Despite widespread anxiety, shared by public health officials, few studies have shown conclusive evidence of health consequences from toxic materials in the environment. Even in the case of such gross contamination as in the Love Canal area of Niagara Falls, New York, health effects have been difficult to establish. This is partly due to intrusion of the adversary process in cases where liability is involved; it is also a result, however, of inherent technical problems that plague any determination of health hazard. This paper reviews some of these problems, considers some current risk assessment approaches, and touches on medicolegal and regulatory aspects of the hazardous waste problem.

  5. 30 CFR 47.53 - Alternative for hazardous waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Alternative for hazardous waste. 47.53 Section 47.53 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING HAZARD COMMUNICATION (HazCom) Material Safety Data Sheets (MSDS) § 47.53 Alternative for hazardous waste. If the mine produces or uses...

  6. 30 CFR 47.53 - Alternative for hazardous waste.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Alternative for hazardous waste. 47.53 Section 47.53 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING HAZARD COMMUNICATION (HazCom) Material Safety Data Sheets (MSDS) § 47.53 Alternative for hazardous waste. If the mine produces or uses...

  7. 30 CFR 47.53 - Alternative for hazardous waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Alternative for hazardous waste. 47.53 Section 47.53 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING HAZARD COMMUNICATION (HazCom) Material Safety Data Sheets (MSDS) § 47.53 Alternative for hazardous waste. If the mine produces or uses...

  8. 30 CFR 47.53 - Alternative for hazardous waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Alternative for hazardous waste. 47.53 Section 47.53 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING HAZARD COMMUNICATION (HazCom) Material Safety Data Sheets (MSDS) § 47.53 Alternative for hazardous waste. If the mine produces or uses...

  9. Evaluation of health effects from hazardous waste sites

    SciTech Connect

    Andelman, J.B.; Underhill, D.W.

    1986-01-01

    This information and data for evaluating health effects from hazardous waste sites stems from the efforts of specialists representing leading research centers, hospitals, universities, government agencies and includes consultant as well as corporate viewpoints. The work evolved from the Fourth Annual Symposium on Environmental Epidemiology sponsored by the Center for Environmental Epidemiology at the University of Pittsburgh and the U.S. EPA. Contents-One: Scope of the Hazardous Wastes Problems. Evaluating Health Effects at Hazardous Waste Sites. Historical Perspective on Waste Disposal. Two: Assessment of Exposure to Hazardous Wastes. Chemical Emissions Assessment for Hazardous Waste Sites. Assessing Pathways to Human Populations. Methods of Defining Human Exposures. Three: Determining Human Health Effects. Health Risks of Concern. Expectations and Limitations of Human Health Studies and Risk Assessment. Four: Case Studies. Love Canal. Hardeman County, Tennessee. Cannonsburg, Pennsylvania. Five: Defining Health Risks at Waste Sites. Engineering Perspectives from an Industrial Viewpoint. Role of Public Groups. Integration of Governmental Resources in Assessment of Hazards.

  10. Hazardous waste: its impact on human health in Europe.

    PubMed

    Wyes, H W

    1997-01-01

    Hazardous waste management is of great concern to the nations of Europe. The European public, like that in North America, expresses great concern that hazardous waste is impacting individual health and degrades the environment. The level of resources and degree of hazardous waste problems varies widely throughout Europe. In particular, the Central and Eastern European countries face enormous challenges in trying to solve their waste problems. Progress in managing the hazardous waste burden is evident in Europe, but cooperation across the nations of Europe will be essential to assure success. PMID:9200783

  11. SURVIVABILITY OF BIOLOGICAL WARFARE AGENTS IN MUNICIPAL SOLID WASTE LANDFILLS

    EPA Science Inventory

    To tests and provide a comprehensive, integrated list of survival rates of biological warfare agents' survival of landfill conditions.
    Research into the permanence of the final disposal contaminated building debris of the inactivated or active agent of terrorism is being exam...

  12. Hazardous-waste analysis plan for LLNL operations

    SciTech Connect

    Roberts, R.S.

    1982-02-12

    The Lawrence Livermore National Laboratory is involved in many facets of research ranging from nuclear weapons research to advanced Biomedical studies. Approximately 80% of all programs at LLNL generate hazardous waste in one form or another. Aside from producing waste from industrial type operations (oils, solvents, bottom sludges, etc.) many unique and toxic wastes are generated such as phosgene, dioxin (TCDD), radioactive wastes and high explosives. One key to any successful waste management program must address the following: proper identification of the waste, safe handling procedures and proper storage containers and areas. This section of the Waste Management Plan will address methodologies used for the Analysis of Hazardous Waste. In addition to the wastes defined in 40 CFR 261, LLNL and Site 300 also generate radioactive waste not specifically covered by RCRA. However, for completeness, the Waste Analysis Plan will address all hazardous waste.

  13. Shedding a new light on hazardous waste

    SciTech Connect

    Reece, N.

    1991-02-01

    The sun's ability to detoxify waterborne chemicals has long been known; polluted streams, for example, become cleaner as they flow through sunlit areas. Solar detoxification harnesses this natural degradation process for beneficial ends, producing simple, nonhazardous substances from hazardous organic chemicals. Solar detoxification systems now being developed break down these chemicals without using the fossil fuels required by conventional technologies. Sunlight destroys hazardous waste because of the distinctive properties of photons, the packets of energy that make up sunlight. Low-energy photons add thermal energy that will heat toxic chemicals; high-energy photons add the energy needed to break the chemical bonds of these chemicals. The detoxification process discussed here takes advantage of this latter group of photons found in the ultraviolet portion of the solar spectrum. 4 figs.

  14. A sensitivity analysis of hazardous waste disposal site climatic and soil design parameters using HELP3

    SciTech Connect

    Adelman, D.D.; Stansbury, J.

    1997-12-31

    The Resource Conservation and Recovery Act (RCRA) Subtitle C, Comprehensive Environmental Response, Compensation, And Liability Act (CERCLA), and subsequent amendments have formed a comprehensive framework to deal with hazardous wastes on the national level. Key to this waste management is guidance on design (e.g., cover and bottom leachate control systems) of hazardous waste landfills. The objective of this research was to investigate the sensitivity of leachate volume at hazardous waste disposal sites to climatic, soil cover, and vegetative cover (Leaf Area Index) conditions. The computer model HELP3 which has the capability to simulate double bottom liner systems as called for in hazardous waste disposal sites was used in the analysis. HELP3 was used to model 54 combinations of climatic conditions, disposal site soil surface curve numbers, and leaf area index values to investigate how sensitive disposal site leachate volume was to these three variables. Results showed that leachate volume from the bottom double liner system was not sensitive to these parameters. However, the cover liner system leachate volume was quite sensitive to climatic conditions and less sensitive to Leaf Area Index and curve number values. Since humid locations had considerably more cover liner system leachate volume than and locations, different design standards may be appropriate for humid conditions than for and conditions.

  15. Mixed waste removal from a hazardous waste storage tank

    SciTech Connect

    Geber, K.R.

    1993-06-01

    The spent fuel transfer canal at the Oak Ridge Graphite Reactor was found to be leaking 400 gallons of water per day into the surrounding soil. Sampling of the sediment layer on the floor of the canal to determine the environmental impact of the leak identified significant radiological contamination and elevated levels of cadmium and lead which are hazardous under the Resource Conservation and Recovery Act (RCRA). Under RCRA regulations and Rules of Tennessee Department of Environment and Conservation, the canal was considered a hazardous waste storage tank. This paper describes elements of the radiological control program established in support of a fast-track RCRA closure plan that involved underwater mapping of the radiation fields, vacuuming, and ultra-filtration techniques that were successfully used to remove the mixed waste sediments and close the canal in a method compliant with state and federal regulations.

  16. Leachates draining from controlled municipal solid waste landfill: Detailed geochemical characterization and toxicity tests.

    PubMed

    Mavakala, Bienvenu K; Le Faucheur, Séverine; Mulaji, Crispin K; Laffite, Amandine; Devarajan, Naresh; Biey, Emmanuel M; Giuliani, Gregory; Otamonga, Jean-Paul; Kabatusuila, Prosper; Mpiana, Pius T; Poté, John

    2016-09-01

    Management of municipal solid wastes in many countries consists of waste disposal into landfill without treatment or selective collection of solid waste fractions including plastics, paper, glass, metals, electronic waste, and organic fraction leading to the unsolved problem of contamination of numerous ecosystems such as air, soil, surface, and ground water. Knowledge of leachate composition is critical in risk assessment of long-term impact of landfills on human health and the environment as well as for prevention of negative outcomes. The research presented in this paper investigates the seasonal variation of draining leachate composition and resulting toxicity as well as the contamination status of soil/sediment from lagoon basins receiving leachates from landfill in Mpasa, a suburb of Kinshasa in the Democratic Republic of the Congo. Samples were collected during the dry and rainy seasons and analyzed for pH, electrical conductivity, dissolved oxygen, soluble ions, toxic metals, and were then subjected to toxicity tests. Results highlight the significant seasonal difference in leachate physicochemical composition. Affected soil/sediment showed higher values for toxic metals than leachates, indicating the possibility of using lagoon system for the purification of landfill leachates, especially for organic matter and heavy metal sedimentation. However, the ecotoxicity tests demonstrated that leachates are still a significant source of toxicity for terrestrial and benthic organisms. Therefore, landfill leachates should not be discarded into the environment (soil or surface water) without prior treatment. Interest in the use of macrophytes in lagoon system is growing and toxic metal retention in lagoon basin receiving systems needs to be fully investigated in the future. This study presents useful tools for evaluating landfill leachate quality and risk in lagoon systems which can be applied to similar environmental compartments. PMID:27177465

  17. Characterizing soils for hazardous waste site assessments.

    PubMed

    Breckenridge, R P; Keck, J F; Williams, J R

    1994-04-01

    This paper provides a review and justification of the minimum data needed to characterize soils for hazardous waste site assessments and to comply with the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). Scientists and managers within the regulatory agency and the liable party need to know what are the important soil characteristics needed to make decisions about risk assessment, what areas need remediation and what remediation options are available. If all parties involved in characterizing a hazardous waste site can agree on the required soils data set prior to starting a site investigation, data can be collected in a more efficient and less costly manner. Having the proper data will aid in reaching decisions on how to address concerns at, and close-out, hazardous waste sites.This paper was prepared to address two specific concerns related to soil characterization for CERCLA remedial response. The first concern is the applicability of traditional soil classification methods to CERCLA soil characterization. The second is the identification of soil characterization data type required for CERCLA risk assessment and analysis of remedial alternatives. These concerns are related, in that the Data Quality Objective (DQO) process addresses both. The DQO process was developed in part to assist CERCLA decision-makers in identifying the data types, data quality, and data quantity required to support decisions that must be made during the remedial investigation/feasibility study (RI/FS) process. Data Quality Objectives for Remedial Response Activities: Development Process (US EPA, 1987a) is a guidebook on developing DQOs. This process as it relates to CERCLA soil characterization is discussed in the Data Quality Objective Section of this paper. PMID:24213742

  18. Characterization of hazardous-waste incineration residuals

    SciTech Connect

    Van Buren, D.; Poe, G.; Castaldini, C.

    1987-03-01

    The purpose of the study was to provide data on the quantities and characteristics of solid and liquid discharges from hazardous-waste-incineration facilities. A total of 10 facilities were sampled comprising major incineration designs and flue-gas-treatment devices. All inlet and outlet liquid and solid streams were sampled and subjected to extensive analyses for organic and inorganic pollutant concentrations. Laboratory analyses for solid discharge streams also included leachate evaluations using standard EPA toxicity tests for metals and a draft TCLP toxicity procedure for volatile and semivolatile organics and metals. Monitored data on incinerator facility operation were then used to determine the discharge rates of detected pollutants.

  19. Influence of a Municipal Waste Landfill on the Spatial Distribution of Mercury in the Environment

    PubMed Central

    Gworek, Barbara; Dmuchowski, Wojciech; Gozdowski, Dariusz; Koda, Eugeniusz; Osiecka, Renata; Borzyszkowski, Jan

    2015-01-01

    The study investigations were focused on assessing the influence of a 35-year-old municipal waste landfill on environmental mercury pollution. The total Hg content was determined in the soil profile, groundwater, and the plants (Solidago virgaurea and Poaceae sp.) in the landfill area. Environmental pollution near the landfill was relatively low. The topsoil layer, groundwater and the leaves of Solidago virgaurea and Poaceae sp. contained 19–271 μg kg-1, 0.36–3.01 μg l-1, 19–66 μg kg-1 and 8–29 μg kg-1 of Hg, respectively. The total Hg content in the soil decreased with the depth. The results are presented as pollution maps of the landfill area based on the total Hg content in the soil, groundwater and plants. Statistical analysis revealed the lack of correlation between the total Hg content in the soil and plants, but a relationship between the total concentration of Hg in groundwater and soil was shown. The landfill is not a direct source of pollution in the area. The type of land morphology did not influence the pollution level. Construction of bentonite cut-off wall bypassing MSW landfill reduces the risk of mercury release into ground-water environment. PMID:26176607

  20. REVIEW OF LINER AND CAP REGULATIONS FOR LANDFILLS

    EPA Science Inventory

    The U.S. Environmental Protection Agency through its research and field experiences has developed control strategies for hazardous and municipal solid waste landfills and surface impoundments. hese control strategies include liner and cover systems. he liner systems include doubl...

  1. Destroying LLW and hazardous waste on-site with the synthetica steam detoxifier

    SciTech Connect

    Galloway, T.R.; Depetris, S.S.

    1994-12-31

    The amount of hazardous waste and low level waste generated in the country is growing at a steady rate, yet the options for effectively dealing with these waste streams are becoming fewer and fewer. In this paper we discuss a new technology that holds considerable promise for dealing with LLW and hazardous waste. The Synthetica{reg_sign} Detoxifier (STD) does not use air combustion and has no flame - quite different from incineration. It carries out hazardous waste destruction by very high temperature steam reforming (i.e., 2000 to 2700{degrees}F), and is only 4 ft x 6 ft x 7.5 ft in size. Vent gases are carbon dioxide and water. Destruction and removal efficiencies (DREs) exceed 99.99% for even the most refractory organics. The capacity is from 2 to 5 drums per day, or a ton per day, depending on the type of waste being processed. The STD combined with a Heated Shredder Evaporator feed system has shown considerable success reducing the mass and volume of low level waste (up to 50 fold reduction). A list of some of the many waste streams that have been processed with the STD are presented. The STD, with its low-risk operation, small size and the fact that it is not an incinerator greatly simplifies siting and permitting in today`s environment. User advantages are that it eliminates risky transportation of hazardous and low-level wastes and terminates their liability with their generated waste for a fixed cost. Costs are less than half that for incineration of landfilling.

  2. 40 CFR 60.33c - Emission guidelines for municipal solid waste landfill emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Emission guidelines for municipal solid waste landfill emissions. 60.33c Section 60.33c Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for...

  3. 40 CFR 60.752 - Standards for air emissions from municipal solid waste landfills.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards for air emissions from municipal solid waste landfills. 60.752 Section 60.752 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Municipal Solid...

  4. PERMANENCE OF BIOLOGICAL AND CHEMICAL WARFARE AGENTS IN MUNICIPAL SOLID WASTE LANDFILL LEACHATES

    EPA Science Inventory

    The objective of this work is to permit EPA/ORD's National Homeland Security Research Center (NHSRC) and Edgewood Chemical Biological Center to collaborate together to test the permanence of biological and chemical warfare agents in municipal solid waste landfills. Research into ...

  5. ECONOMICS OF DISPOSAL OF LIME/LIMESTONE SCRUBBING WASTES: SURFACE MINE DISPOSAL AND DRAVO LANDFILL PROCESSES

    EPA Science Inventory

    The report gives results of economic evaluations of flyash and limestone scrubbing waste disposal in a surface mine and in a landfill after treatment with a Dravo Lime Co. chemical additive. For the base case (new 500 MW midwestern plant burning 3.5% S, 16% ash, 10,500 Btu/lb coa...

  6. Analysis of Indirect Emissions Benefits of Wind, Landfill Gas, and Municipal Solid Waste Generation

    EPA Science Inventory

    Techniques are introduced to calculate the hourly indirect emissions benefits of three types of green power resources: wind energy, municipal solid waste (MSW) combustion, and landfill gas (LFG) combustion. These techniques are applied to each of the U.S. EPA's eGRID subregions i...

  7. Estimating pollutant removal requirements for landfills in the UK: I. Benchmark study and characteristics of waste treatment technologies.

    PubMed

    Hall, D H; Drury, D; Gronow, J R; Rosevear, A; Pollard, S J T; Smith, R

    2006-12-01

    Introduction of the EU Landfill Directive is having a significant impact on waste management in the UK and in other member states that have relied on landfilling. This paper considers the length of the aftercare period required by the municipal solid waste streams that the UK will most probably generate following implementation of the Landfill Directive. Data were derived from literature to identify properties of residues from the most likely treatment processes and the probable management times these residues will require within the landfill environment were then modelled. Results suggest that for chloride the relevant water quality standard (250 mg l(-1)) will be achieved with a management period of 40 years and for lead (0.1 mg I(-1)), 240 years. This has considerable implications for the sustainability of landfill and suggests that current timescales for aftercare of landfills may be inadequate. PMID:17285936

  8. Slope failures in municipal solid waste dumps and landfills: a review.

    PubMed

    Blight, Geoffrey

    2008-10-01

    Between 1977 and 2005 six large-scale failures of municipal solid waste dumps and landfills have been recorded in the technical literature. The volumes of waste mobilized in the failures varied from 10-12 000 m(3) in a failure that killed nearly 300 people to 1.5 million m(3) in a failure that caused no deaths or injuries. Of the six failures, four occurred in dumps that, as far as is known, had not been subjected to any prior technical investigation of their shear stability. The remaining two failures occurred in engineer-designed landfills, one of which practised leachate recirculation, and the other co-disposed of liquid waste along with solid waste. The paper reviews, describes and analyses the failures and summarizes their causes. PMID:18927064

  9. Recovery Act: Brea California Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    SciTech Connect

    Galowitz, Stephen

    2012-12-31

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Olinda Landfill near Brea, California. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting Project reflected a cost effective balance of the following specific sub-objectives: • Meeting the environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas • Utilizing proven and reliable technology and equipment • Maximizing electrical efficiency • Maximizing electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Olinda Landfill • Maximizing equipment uptime • Minimizing water consumption • Minimizing post-combustion emissions • The Project produced and will produce a myriad of beneficial impacts. o The Project created 360 FTE construction and manufacturing jobs and 15 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. o By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). o The Project will annually produce 280,320 MWh’s of clean energy o By destroying the methane in the landfill gas, the Project will generate CO2 equivalent reductions of 164,938 tons annually. The completed facility produces 27.4 MWnet and operates 24 hours a day, seven days a week.

  10. Landfill site selection for municipal solid wastes in mountainous areas with landslide susceptibility.

    PubMed

    Eskandari, Mahnaz; Homaee, Mehdi; Falamaki, Amin

    2016-06-01

    Several cities across the world are located in mountainous and landslide prone areas. Any landfill siting without considering landslide susceptibility in such regions may impose additional environmental adversity. This study was aimed to propose a practical method for selecting waste disposal site that accounts for landslide exposure. The proposed method was applied to a city which is highly proneness to landslide due to its geology, morphology, and climatic conditions. First, information on the previously occurred landslides of the region was collected. Based on this information, proper landslide causative factors were selected and their thematic maps were prepared. Factors' classes were then standardized in 0-1 domain, and thematic layers were weighted by using analytical hierarchy process (AHP). The landslide susceptibility map was prepared afterwards. Unsuitable areas for landfill location were masked in GIS environment by Boolean method, retaining sufficient areas for further evaluation. Nine remaining alternatives were selected through comprehensive field visits and were ranked by using AHP. Consequently, 17 factors in three environmental, economical, and social perspectives were employed. Sensitivity analyses were performed to assess the stability of the alternatives ranking with respect to variations in criterion weights. Based on the obtained landslide susceptible map, nearly 36 % of the entire region is proneness to landslide. The prepared Boolean map indicates that potential areas for landfill construction cover 11 % of the whole region. The results further indicated that if landslide susceptible areas are not considered in landfill site selection, the potential landfill sites would become more than twice. It can be concluded that if any of these landslide prone sites are selected for landfilling, further environmental disaster would be terminated in the future. It can be further concluded that the proposed method could reasonably well be adjusted to

  11. Metal loss from treated wood products in contact with municipal solid waste landfill leachate.

    PubMed

    Dubey, Brajesh; Townsend, Timothy; Solo-Gabriele, Helena

    2010-03-15

    The research presented in this paper evaluates the potential impact of municipal solid waste (MSW) landfill leachate quality on the loss of metals from discarded treated wood during disposal. The loss of arsenic (As), chromium (Cr), copper (Cu), and boron (B) from several types of pressure-treated wood (CCA: chromated copper arsenate, ACQ: alkaline copper quaternary, CBA: copper boron azole, and DOT: disodium octaborate tetrahydrate) using leachate collected from 26 MSW landfills in Florida was examined. The toxicity characteristic leaching procedure (TCLP), the synthetic precipitation leaching procedure (SPLP), and California's waste extraction test (WET) were also performed. The results suggested that loss of preservative components was influenced by leachate chemistry. Copper loss from CCA-, ACQ- and CBA-treated wood was similar in magnitude when in contact with landfill leachates compared to synthetic TCLP and SPLP solutions. Ammonia was found as one of the major parameters influencing the leaching of Cu from treated wood when leached with MSW landfill leachates. The results suggest that disposal of ACQ- and CBA-treated wood in substantial quantity in MSW landfills may elevate the Cu concentration in the leachate; this could be of potential concern, especially for a bioreactor MSW landfill in which relatively higher ammonia concentrations in leachate have been reported in recent literature. For the As, Cr and B the concentrations observed with the landfill leachate as the leaching solutions were over a range from some sample showing the concentrations below and some showing above the observed value from corresponding SPLP and TCLP tests. In general the WET test showed the highest concentrations. PMID:19910117

  12. PROTECTING HEALTH AND SAFETY AT HAZARDOUS WASTE SITES: AN OVERVIEW

    EPA Science Inventory

    Cleanup operations at inactive hazardous waste sites are now underway throughout the country. Thousands of workers are involved in the national effort. Because of the potential hazards inherent in such operations, an interagency committee, consisting of the National Institute for...

  13. Modelling of biogas extraction at an Italian landfill accepting mechanically and biologically treated municipal solid waste.

    PubMed

    Calabrò, Paolo S; Orsi, Sirio; Gentili, Emiliano; Carlo, Meoni

    2011-12-01

    This paper presents the results of the modelling of the biogas extraction in a full-scale Italian landfill by the USEPA LandGEM model and the Andreottola-Cossu approach. The landfill chosen for this research ('Il Fossetto' plant, Monsummano Terme, Italy) had accepted mixed municipal raw waste for about 15 years. In the year 2003 a mechanical biological treatment (MBT) was implemented and starting from the end of the year 2006, the recirculation in the landfill of the concentrated leachate coming from the internal membrane leachate treatment plant was put into practice. The USEPA LandGEM model and the Andreottola-Cossu approach were chosen since they require only input data routinely acquired during landfill management (waste amount and composition) and allow a simplified calibration, therefore they are potentially useful for practical purposes such as landfill gas management. The results given by the models are compared with measured data and analysed in order to verify the impact of MBT on biogas production; moreover, the possible effects of the recirculation of the concentrated leachate are discussed. The results clearly show how both models can adequately fit measured data even after MBT implementation. Model performance was significantly reduced for the period after the beginning of recirculation of concentrated leachate when the probable inhibition of methane production, due to the competition between methanogens and sulfate-reducing bacteria, significantly influenced the biogas production and composition. PMID:21930528

  14. Study of aquatic macroinvertebrate communities exposed to buckeye reclamation landfill drainage wastes

    SciTech Connect

    Klemm, D.J.; Thoeny, W.T.; McCarthy, H.W.

    1995-12-31

    The Buckeye Reclamation Landfill (BRL), a Superfund site, incorporates approximately 50 acres of a 658 acre tract of land. The BRL consists of past underground mining voids, including some surface-mined lands, and mine refuse piles from processed bituminous coal. The area was subsequently used as a nonhazardous public and municipal solid waste landfill, and industrial sludge and liquid wastes were also deposited in an impoundment in the northern section of the landfill. The entire landfill area was completely covered with soil and revegetated in the late 1980`s and early 1990`s. The BRL produces acidic and highly mineralized drainage causing a widespread problem of serious mine drainage pollution in the watershed. A study was undertaken to assess the exposure of pollutants to the macroinvertebrate assemblages and to determine the extent of pollution of the BRL watershed. Samples were collected from ten sites in 1995. Nine systematic and spatial transect samples were taken at each collection site for macroinverbrates with a 595 {micro}m mesh, modified kick net from riffle/run and glide/pool habitats of streams above and below the BRL watershed. All macroinverbrates were identified to the lowest taxonomic level possible. The levels for total Zn ranged from 22--604 {micro}g/L; pH ranged from 4.4 to 8.1. The data distinguished the exposed sites receiving landfill leachates and sedimentation runoff from the less impacted sites.

  15. Enhanced methane recovery by food waste leachate injection into a landfill in Korea.

    PubMed

    Behera, Shishir Kumar; Kim, Dong-Hoon; Shin, Hang-Sik; Cho, Si-Kyung; Yoon, Seok-Pyo; Park, Hung-Suck

    2011-01-01

    The current food waste leachate (FWL) disposal practice in Korea warrants urgent attention and necessary action to develop an innovative and sustainable disposal strategy, which is both environmentally friendly and economically beneficial. In this study, methane production by FWL injection into a municipal solid waste landfill with landfill gas (LFG) recovery facility was evaluated for a period of more than 4 months. With the target of recovering LFG with methane content ~50%, optimum LFG extraction rate was decided by a trial and error approach during the field investigation in five different phases. The results showed that, upon FWL injection, LFG extraction rate of ~20 m(3)/h was reasonable to recover LFG with methane content ~58%. Considering the estimated methane production potential of 31.7 m(3) CH(4) per ton of FWL, methane recovery from the landfill was enhanced by 14%. The scientific findings of this short-term investigation indicates that FWL can be injected into the existing sanitary landfills to tackle the present issue and such landfills with efficient liner and gas collection facility can be utilized as absolute and sustainable environmental infrastructures. PMID:21621994

  16. Potentially hazardous waste produced at home

    PubMed Central

    2013-01-01

    Background The purpose of this study was to identify the sources of waste generation household consisting of biological material and to investigate the knowledge presented by those responsible for the generation of waste in the home environment on the potential health risk human and environmental. Method It is a quantitative survey performed in Parque Capuava, Santo André (SP). The questionnaire was administered by the community employers and nursing students during the consultation with nursing supervision through interview question/answer. The exclusion criteria were patients who were not in the area served by the Basic Health Unit which covers the area of Pq Capuava. The sample was consisted of 99 persons and the data collection a questionnaire was used. Results We observed that 63.3% of people said to use disposables, with the majority (58.7%) of these use the public collection as the final destination of these materials. It was reported that 73.7% of those surveyed reported having knowledge about the risk of disease transmission. Public awareness of the importance of proper packaging and disposal of potentially hazardous household waste may contribute significantly to the preservation of human and environmental health and this procedure can be performed and supervised by professional nurses. Conclusion We suggest implementation of workshops for community health workers and the general population in order to enhance their knowledge about the storage and disposal of potentially infectious waste generated at home, thereby reducing the potential risk of disease transmission by improper management. PMID:23806043

  17. In-plant management of hazardous waste

    SciTech Connect

    Hall, M.W.; Howell, W.L. Jr. |

    1995-12-31

    One of the earliest sustainable technologies for the management of hazardous industrial wastes, and one of the most successful, is {open_quotes}In-Plant Control{close_quotes} Waste elimination, reuse and/or minimization can encourage improved utilization of resources, decreased environmental degradation and increased profits at individual industrial product ion sites, or within an industry. For new facilities and industries, putting such programs in place is relatively easy. Experience has shown, however, that this may be more difficult to initiate in existing facilities, especially in older and heavier industries. This task can be made easier by promoting a mutually respectful partnership between production and environmental interests within the facility or industry. This permits {open_quotes}common sense{close_quotes} thinking and a cooperative, proactive strategy for securing an appropriate balance between economic growth, environmental protection and social responsibility. Case studies are presented wherein a phased, incremental in-plant system for waste management was developed and employed to good effect, using a model that entailed {open_quotes}Consciousness, Commitment, Training, Recognition, Re-engineering and Continuous Improvement{close_quotes} to promote waste minimization or elimination.

  18. 77 FR 58315 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Exclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    ... lists of hazardous wastes under 40 CFR 261.31 and 261.32 (see 73 FR 54760). EPA is finalizing the..., ``Regulatory Planning and Review'' (58 FR 51735, October 4, 1993), this rule is not of general applicability..., ``Federalism,'' (64 FR 43255, August 10, 1999). Thus, Executive Order 13132 does not apply to this...

  19. Town of Hague landfill reclamation study: Research ways to increase waste heating value and reduce waste volume. Final report

    SciTech Connect

    Salerni, E.

    1997-01-01

    Monitored composing was studied as a method for reducing the quantity of waste requiring disposed from a landfill reclamation project. After each of two re-screening steps, composted {open_quotes}soil{close_quotes} from a single long windrow of varying depths and moisture content was subjected to analytical testing to determine its suitability to remain as backfill in a reclaimed landfill site. The remaining uncomposted waste was combusted at a waste-to-energy facility to determine if Btu values were improved. Results indicate that a full-scale composting operation could result in a net decrease of approximately 11 percent in disposal costs. The Btu value of the reclaimed waste was calculated to be 4,500 to 5,000 Btu/lb. The feasibility of composting reclaimed waste at other landfill reclamation projects will depend upon site-specific technical and economic factors, including size and nature of the organic fraction of the waste mass, local processing costs, and the cost of waste disposal alternatives.

  20. Environmental assessment of solid waste landfilling technologies by means of LCA-modeling.

    PubMed

    Manfredi, Simone; Christensen, Thomas H

    2009-01-01

    By using life cycle assessment (LCA) modeling, this paper compares the environmental performance of six landfilling technologies (open dump, conventional landfill with flares, conventional landfill with energy recovery, standard bioreactor landfill, flushing bioreactor landfill and semi-aerobic landfill) and assesses the influence of the active operations practiced on these performances. The environmental assessments have been performed by means of the LCA-based tool EASEWASTE, whereby the functional unit utilized for the LCA is "landfilling of 1ton of wet household waste in a 10m deep landfill for 100 years". The assessment criteria include standard categories (global warming, nutrient enrichment, ozone depletion, photo-chemical ozone formation and acidification), toxicity-related categories (human toxicity and ecotoxicity) and impact on spoiled groundwater resources. Results demonstrate that it is crucially important to ensure the highest collection efficiency of landfill gas and leachate since a poor capture compromises the overall environmental performance. Once gas and leachate are collected and treated, the potential impacts in the standard environmental categories and on spoiled groundwater resources significantly decrease, although at the same time specific emissions from gas treatment lead to increased impact potentials in the toxicity-related categories. Gas utilization for energy recovery leads to saved emissions and avoided impact potentials in several environmental categories. Measures should be taken to prevent leachate infiltration to groundwater and it is essential to collect and treat the generated leachate. The bioreactor technologies recirculate the collected leachate to enhance the waste degradation process. This allows the gas collection period to be reduced from 40 to 15 years, although it does not lead to noticeable environmental benefits when considering a 100 years LCA-perspective. In order to more comprehensively understand the influence

  1. Hazardous waste incineration in industrial processes: cement and lime kilns

    SciTech Connect

    Mournighan, R.E.; Peters, J.A.; Branscome, M.R.; Freeman, H.

    1985-07-01

    With more liquid wastes due to be banned from land disposal facilities, expanding hazardous waste incineration capacity becomes increasingly important. At the same time, industrial plants are increasingly seeking to find new sources of lower cost fuel, specifically from the disposal of hazardous wastes with heating value. The Hazardous Waste Engineering Research Laboratory (HWERL) is currently evaluating the disposal of hazardous wastes in a wide range of industrial processes. The effort includes sampling stack emissions at cement, lime and aggregate plants, asphalt plants and blast furnaces, which use waste as a supplemental fuel. This research program is an essential part of EPA's determination of the overall environmental impact of various disposal options available to industry. This paper summarizes the results of the HWERL program of monitoring emissions from cement and lime kilns burning hazardous wastes as fuel.

  2. Study on the law of heavy metal leaching in municipal solid waste landfill.

    PubMed

    Liu, Hui-Hu; Sang, Shu-Xun

    2010-06-01

    Comparative leaching experiments were carried out using leaching medium with different pH to municipal solid waste in the landfill columns in order to investigate the mobility of heavy metals. The leachate pH and oxidation-reduction potential were measured by oxidation-reduction potential analyzer; the contents of heavy metals were measured by inductively coupled plasma mass spectrometry. It is very different in leaching concentrations of heavy metals; the dynamic leaching of heavy metals decreased with the rise of the leaching amount on the whole. Acid leaching medium had definite influence on the leaching of heavy metals in the early landfill, but it had the obvious inhibition effect on the leaching in the middle and late period of landfill; the neutral and alkaline leaching medium are more beneficial to the leaching of heavy metals. Due to the influence of the environment of landfill, the differences of the results in cumulative leaching amount, leaching rate, and leaching intensity of heavy metals are very big. The calculation results of the release rates of heavy metals prove that the orders of the release rates are not identical under different leaching conditions. Acid rain made heavy metals migrate from municipal solid waste to soil and detain in soil more easily; approached neutral and alkaline leaching mediums are more beneficial to leaching of heavy metals in the municipal solid waste and soil with leachate. The field verification of experimental data showed that the law of heavy metal leaching in municipal solid waste revealed by the experiment has a good consistency with the data obtained by municipal solid waste landfill. PMID:19466573

  3. Bio-pretreatment of municipal solid waste prior to landfilling and its kinetics.

    PubMed

    Mahar, Rasool Bux; Liu, Jianguo; Li, Huan; Nie, Yongfeng

    2009-06-01

    The conventional landfilling does not promote sustainable waste management due to uncontrolled emissions which potentially degrade the environment. Pretreatment of municipal solid waste prior to landfilling significantly enhances waste stabilization, reduces the emissions and provides many advantages. Therefore, pretreatment of municipal solid waste methods were investigated. The major objectives of biological pretreatment are to degrade most easily degradable organic matters of MSW in a short duration under controlled conditions so as to produce desired quality for landfill. To investigate the suitable pretreatment method prior to landfilling for developing countries four pretreatment simulators were developed in the laboratory: (i) anaerobic simulator (R(1)), (ii) aerobic pretreatment simulator by natural convection of air (R(2)), (iii) aerobic pretreatment simulator by natural convection of air with leachate recirculation (R(3)) and (iv) forced aeration and leachate recirculation (R(4)). During the pretreatment organic matter, elemental composition, i.e., carbon, hydrogen, nitrogen and settlement were determined for bench scale experiments. A two-component kinetic model is proposed for the biodegradation of organic matter. Biodegradation kinetic constants were determined for readily and slowly degradable organic matter. The biodegradation of organic matter efficiency in terms of kinetic rate constants for the pretreatment simulators was observed as R(4) > R(3) > R(2) > R(1). Biodegradation rate constants for readily degradable matter in simulators R(4) and R(3) were 0.225 and 0.222 per day. R(3) and R(4) simulators were more effective in reducing methane emissions about 45% and 55%, respectively, as compared to anaerobic simulator R(1). Pretreatment of MSW, by natural convection of air with leachate recirculation R(3) is sustainable method to reduce the emissions and to stabilize the waste prior to landfilling. PMID:18923914

  4. Commercial innovative technologies for hazardous waste

    SciTech Connect

    Cudahy, J.J.

    1998-12-31

    A number of innovative technologies have been developed since the late 1980`s for the treatment of Resource Conservation and Recovery Act (RCRA) hazardous wastes. The development of these technologies has been encouraged by the Environmental Protection Agency (EPA), the Department of Energy (DOE) and the Department of Defense (DOD). As part of the Superfund Innovative Technology Evaluation program, the EPA has evaluated some of these technologies for the treatment of soils contaminated with RCRA hazardous constituents. The DOE has extensively studied and evaluated these technologies for the treatment of mixed (RCRA plus radioactive) waste. The DOD has also studied these technologies for the chemical demilitarization of chemical warfare agents. The following five innovative technologies have been demonstrated on a full-scale commercial basis: (1) Eco Logic Gas Phase Chemical Reduction Reactor; (2) GTS Duratek Electric, Joule-Heated Glass Melter; (3) Molten Metals Catalytic Extraction Process; (4) Retech Plasma Arc Centrifugal Treatment Process; and (5) Scientific Ecology Group (SEG) Steam Reforming Process. The technology experience and performance of these innovative technologies will be discussed.

  5. Quantification of parameters influencing methane generation due to biodegradation of municipal solid waste in landfills and laboratory experiments.

    PubMed

    Fei, Xunchang; Zekkos, Dimitrios; Raskin, Lutgarde

    2016-09-01

    The energy conversion potential of municipal solid waste (MSW) disposed of in landfills remains largely untapped because of the slow and variable rate of biogas generation, delayed and inefficient biogas collection, leakage of biogas, and landfill practices and infrastructure that are not geared toward energy recovery. A database consisting of methane (CH4) generation data, the major constituent of biogas, from 49 laboratory experiments and field monitoring data from 57 landfills was developed. Three CH4 generation parameters, i.e., waste decay rate (k), CH4 generation potential (L0), and time until maximum CH4 generation rate (tmax), were calculated for each dataset using U.S. EPA's Landfill Gas Emission Model (LandGEM). Factors influencing the derived parameters in laboratory experiments and landfills were investigated using multi-linear regression analysis. Total weight of waste (W) was correlated with biodegradation conditions through a ranked classification scheme. k increased with increasing percentage of readily biodegradable waste (Br0 (%)) and waste temperature, and reduced with increasing W, an indicator of less favorable biodegradation conditions. The values of k obtained in the laboratory were commonly significantly higher than those in landfills and those recommended by LandGEM. The mean value of L0 was 98 and 88L CH4/kg waste for laboratory and field studies, respectively, but was significantly affected by waste composition with ranges from 10 to 300L CH4/kg. tmax increased with increasing percentage of biodegradable waste (B0) and W. The values of tmax in landfills were higher than those in laboratory experiments or those based on LandGEM's recommended parameters. Enhancing biodegradation conditions in landfill cells has a greater impact on improving k and tmax than increasing B0. Optimizing the B0 and Br0 values of landfilled waste increases L0 and reduces tmax. PMID:26525969

  6. Fire hazards analysis of transuranic waste storage and assay facility

    SciTech Connect

    Busching, K.R., Westinghouse Hanford

    1996-07-31

    This document analyzes the fire hazards associated with operations at the Central Waste Complex. It provides the analysis and recommendations necessary to ensure compliance with applicable fire codes.

  7. Operating limit study for the proposed solid waste landfill at Paducah Gaseous Diffusion Plant

    SciTech Connect

    Lee, D.W.; Wang, J.C.; Kocher, D.C.

    1995-06-01

    A proposed solid waste landfill at Paducah Gaseous Diffusion Plant (PGDP) would accept wastes generated during normal operations that are identified as non-radioactive. These wastes may include small amounts of radioactive material from incidental contamination during plant operations. A site-specific analysis of the new solid waste landfill is presented to determine a proposed operating limit that will allow for waste disposal operations to occur such that protection of public health and the environment from the presence of incidentally contaminated waste materials can be assured. Performance objectives for disposal were defined from existing regulatory guidance to establish reasonable dose limits for protection of public health and the environment. Waste concentration limits were determined consistent with these performance objectives for the protection of off-site individuals and inadvertent intruders who might be directly exposed to disposed wastes. Exposures of off-site individuals were estimated using a conservative, site-specific model of the groundwater transport of contamination from the wastes. Direct intrusion was analyzed using an agricultural homesteader scenario. The most limiting concentrations from direct intrusion or groundwater transport were used to establish the concentration limits for radionuclides likely to be present in PGDP wastes.

  8. Environmental state and buffering properties of underground hydrosphere in waste landfill site of the largest petrochemical companies in Europe

    NASA Astrophysics Data System (ADS)

    Musin, R. Kh; Kurlyanov, N. A.; Kalkamanova, Z. G.; Korotchenko, T. V.

    2016-03-01

    The article examines the waste landfill site of PJSC “Nizhnekamskneftekhim” built 1982. Particular attention is paid to the volume of disposed wastes and peculiarities of landfill operation. It has been revealed that the landfill negatively impacts groundwater. The increase in groundwater level and contamination degree is dependent on recharge from infiltration of precipitation that interacts with the waste in the landfill cells. Groundwater contamination follows the longitudinal distribution pattern, with maximum intensity reaching in the nearest area of the landfill. With increasing distance, concentration of all pollutants sharply reduces. Within three kilometers away from the landfill, groundwater turns to its background values indicating its quality. The landfill discharges oil, phenols, formaldehyde, benzol, toluene, xylene, ethylbenzene, and iron and, to a lesser extent, sulfates, chlorides and barium into the underground hydrosphere. The overlimiting concentrations of other components are caused by intensive leaching from the rocks by aggressive carbonic acid water. The concentrations of hydrocarbonates can reach 8 g/l in the groundwater within the landfill and its nearest area, however, under natural conditions, they do not exceed 0.4 g/l. This is only possible in a case of partial activity of carbon dioxide associated with destruction of organic matter disposed in the landfill. One of the processes that play an important role in groundwater quality recovery is mixing of contaminated groundwater with infiltrating precipitation.

  9. The effects of daily cover soils on shear strength of municipal solid waste in bioreactor landfills.

    PubMed

    Hossain, Md Sahadat; Haque, Mohamed A

    2009-05-01

    Bioreactor landfills are operated to enhance refuse decomposition, gas production, and waste stabilization. The major aspect of bioreactor landfill operation is the recirculation of collected leachate back through the refuse mass. Due to the accelerated decomposition and settlement of solid waste, bioreactor landfills are gaining popularity as an alternative to the conventional landfill. The addition or recirculation of leachate to accelerate the waste decomposition changes the geotechnical characteristics of waste mass. The daily cover soils, usually up to 20-30% of total MSW volumes in the landfill, may also influence the decomposition and shear strength behavior of MSW. The objective of this paper is to study the effects of daily covers soils on the shear strength properties of municipal solid waste (MSW) in bioreactor landfills with time and decomposition. Two sets of laboratory-scale bioreactor landfills were simulated in a laboratory, and samples were prepared to represent different phases of decomposition. The state of decomposition was quantified by methane yield, pH, and volatile organic content (VOC). Due to decomposition, the matrix structure of the degradable solid waste component was broken down and contributed to a significant decrease in the reinforcing effect of MSW. However, the daily cover soil, a non-degradable constituent of MSW, remains constant. Therefore, the interaction between daily cover soil particles and MSW particles will affect shear strength behavior. A number of triaxial tests were performed to evaluate the shear strength of MSW. The test results indicated that the shear strength of MSW was affected by the presence of cover soils. The friction angle of MSW with the presence of cover soil is higher than the friction angle of MSW without any cover soils. The friction angle of MSW increased from 27 degrees to 30 degrees due to the presence of cover soils for Phase 1 samples. The increased strength was attributed to the friction nature

  10. Quantification of landfill methane using modified Intergovernmental Panel on Climate Change's waste model and error function analysis.

    PubMed

    Govindan, Siva Shangari; Agamuthu, P

    2014-10-01

    Waste management can be regarded as a cross-cutting environmental 'mega-issue'. Sound waste management practices support the provision of basic needs for general health, such as clean air, clean water and safe supply of food. In addition, climate change mitigation efforts can be achieved through reduction of greenhouse gas emissions from waste management operations, such as landfills. Landfills generate landfill gas, especially methane, as a result of anaerobic degradation of the degradable components of municipal solid waste. Evaluating the mode of generation and collection of landfill gas has posted a challenge over time. Scientifically, landfill gas generation rates are presently estimated using numerical models. In this study the Intergovernmental Panel on Climate Change's Waste Model is used to estimate the methane generated from a Malaysian sanitary landfill. Key parameters of the model, which are the decay rate and degradable organic carbon, are analysed in two different approaches; the bulk waste approach and waste composition approach. The model is later validated using error function analysis and optimum decay rate, and degradable organic carbon for both approaches were also obtained. The best fitting values for the bulk waste approach are a decay rate of 0.08 y(-1) and degradable organic carbon value of 0.12; and for the waste composition approach the decay rate was found to be 0.09 y(-1) and degradable organic carbon value of 0.08. From this validation exercise, the estimated error was reduced by 81% and 69% for the bulk waste and waste composition approach, respectively. In conclusion, this type of modelling could constitute a sensible starting point for landfills to introduce careful planning for efficient gas recovery in individual landfills. PMID:25323145

  11. Evaluation of prospective hazardous waste treatment technologies for use in processing low-level mixed wastes at Rocky Flats

    SciTech Connect

    McGlochlin, S.C.; Harder, R.V.; Jensen, R.T.; Pettis, S.A.; Roggenthen, D.K.

    1990-09-18

    Several technologies for destroying or decontaminating hazardous wastes were evaluated (during early 1988) as potential processes for treating low-level mixed wastes destined for destruction in the Fluidized Bed Incinerator. The processes that showed promise were retained for further consideration and placed into one (or more) of three categories based on projected availability: short, intermediate, and long-term. Three potential short-term options were identified for managing low-level mixed wastes generated or stored at the Rocky Flats Plant (operated by Rockwell International in 1988). These options are: (1) Continue storing at Rocky Flats, (2) Ship to Nevada Test Site for landfill disposal, or (3) Ship to the Idaho National Engineering Laboratory for incineration in the Waste Experimental Reduction Facility. The third option is preferable because the wastes will be destroyed. Idaho National Engineering Laboratory has received interim status for processing solid and liquid low-level mixed wastes. However, low-level mixed wastes will continue to be stored at Rocky Flats until the Department of Energy approval is received to ship to the Nevada Test Site or Idaho National Engineering Laboratory. Potential intermediate and long-term processes were identified; however, these processes should be combined into complete waste treatment systems'' that may serve as alternatives to the Fluidized Bed Incinerator. Waste treatment systems will be the subject of later work. 59 refs., 2 figs.

  12. HANDBOOK: VITRIFICATION TECHNOLOGIES FOR TREATMENT OF HAZARDOUS AND RADIOACTIVE WASTE

    EPA Science Inventory

    The applications and limitations of vitrification technologies for treating hazardous and radioactive waste are presented. everal subgroups of vitrifications technologies exist. iscussions of glass structure, applicable waste types, off gas treatment, testing and evaluation proce...

  13. Transformation of a landfill covering amended with municipal waste compost, Perugia, Italy.

    PubMed

    Businelli, Mario; Calandra, Rolando; Pagliai, Marcello; Businelli, Daniela; Gigliotti, Giovanni; Grasselli, Olga; Said-Pullicino, Daniel; Leccese, Angelo

    2007-01-01

    This research deals with the transformation of an anthropomorphous landfill covering composed of a fill soil mixed with mechanically separated municipal waste compost. The study site was a municipal landfill near Perugia, Italy. Throughout the years, waste disposal in the landfill was performed by burial in horizontal layers, each one representing a yearly disposal. The external front of the landfill thus represented the yearly disposal over a 10-yr period starting in 1993. Temporal changes in the anthropomorphous soil over this period were studied by examining and describing soil profiles, and by collecting and analyzing soil samples from the 1993, 1994, 1997, and 2001 disposals. The samples were subjected to a series of physical, chemical, and biochemical analyses. The results obtained suggest that over a 10-yr period the top layer gained a pedological structure (subangular blocky and/or crumb) giving rise to an A horizon. Improved soil structure was confirmed by an increase in macroporosity, particularly for pores larger than 50 microm, measured by image analysis of soil thin sections. Total extractable carbon showed an increase in the content of humic substances, evidenced by parameters of humification. Enzymatic activities in the A and C1 horizons were also indicative of soil evolution and may serve as a valid indicator for monitoring the evolution of anthropogenic soils containing municipal waste compost. PMID:17215234

  14. Hazardous waste and environmental trade: China`s issues

    SciTech Connect

    Ma Jiang

    1996-12-31

    By presenting some case studies, this paper analyzes China`s situation with regard to hazardous waste: its environmental trade, treatment, and management. The paper describes China`s experiences with the environmental trade of hazardous waste in both the internal and international market. Regulations for managing the import of waste are discussed, as are China`s major approaches to the trading of hazardous waste both at home and overseas. The major reasons for setting up the Asian-Pacific Regional Training Center for Technology Transfer and Environmental Sound Management of Wastes in China and the activities involved in this effort are also described. 1 tab.

  15. Background Information Document for Updating AP42 Section 2.4 for Estimating Emissions from Municipal Solid Waste Landfills

    EPA Science Inventory

    This revised draft document was prepared for U.S. EPA's Office of Research and Development, and describes the data analysis undertaken to update the Municipal Solid Waste (MSW) Landfill section of AP-42. This 2008 update includes the addition of data from 62 landfill gas emission...

  16. ORNL grouting technologies for immobilizing hazardous wastes

    SciTech Connect

    Dole, L.R.; Trauger, D.B.

    1983-01-01

    The Cement and Concrete Applications Group at the Oak Ridge National Laboratory (ORNL) has developed versatile and inexpensive processes to solidify large quantities of hazardous liquids, sludges, and solids. By using standard off the shelf processing equipment, these batch or continuous processes are compatible with a wide range of disposal methods, such as above-ground storage, shallow-land burial, deep geological disposal, sea-bed dumping, and bulk in-situ solidification. Because of their economic advantages, these latter bulk in-situ disposal scenarios have received the most development. ORNL's experience has shown that tailored cement-based formulas can be developed which tolerate wide fluctuations in waste feed compositions and still maintain mixing properties that are compatible with standard equipment. In addition to cements, these grouts contain pozzolans, clays and other additives to control the flow properties, set-times, phase separations and impacts of waste stream fluctuation. The cements, fly ashes and other grout components are readily available in bulk quantities and the solids-blends typically cost less than $0.05 to 0.15 per waste gallon. Depending on the disposal scenario, total disposal costs (material, capital, and operating) can be as low as $0.10 to 0.50 per gallon.

  17. Effects of ageing on elution behaviour of nitrogenous compounds in disposed wastes from landfill sites.

    PubMed

    Nishio, Takayuki

    2014-01-01

    Comparative studies of elution and cation exchange capacity (CEC) tests were applied to aged and fresh municipal and industrial solid wastes to examine the effects of ageing on the long-term elution behaviour of nitrogen on leachate in municipal and industrial solid waste landfill sites. Nitrogen in the leachate gradually eluted as organic nitrogen, but not upon transformation of organic nitrogen to elutable inorganic nitrogen compounds in the solid waste. Ammonium in the solid waste, retained similar to its interaction with clay minerals in soil, elutes when exposed to leachate by being replaced with highly concentrated cations or loses its positive charge in high pH in the leachate, which percolates down from the upper layer of the disposed waste. The quantity of ammonium adsorbed into the aged wastes through CEC measurement process by replacement with ammonium acetate was higher than that onto the fresh wastes. That difference in quantities can serve as an index of the ability of the solid waste to withhold ammonium in the leachate that percolates down the landfill layer. Those results demonstrate that ammonification of organic nitrogen in the waste is not the crucial step of the elution of nitrogenous compounds into leachate. PMID:25145199

  18. Consumption patterns and household hazardous solid waste generation in an urban settlement in México.

    PubMed

    Otoniel, Buenrostro Delgado; Liliana, Márquez-Benavides; Francelia, Pinette Gaona

    2008-01-01

    Mexico is currently facing a crisis in the waste management field. Some efforts have just commenced in urban and in rural settlements, e.g., conversion of open dumps into landfills, a relatively small composting culture, and implementation of source separation and plastic recycling strategies. Nonetheless, the high heterogeneity of components in the waste, many of these with hazardous properties, present the municipal collection services with serious problems, due to the risks to the health of the workers and to the impacts to the environment as a result of the inadequate disposition of these wastes. A generation study in the domestic sector was undertaken with the aim of finding out the composition and the generation rate of household hazardous waste (HHW) produced at residences. Simultaneously to the generation study, a socioeconomic survey was applied to determine the influence of income level on the production of HHW. Results from the solid waste generation analysis indicated that approximately 1.6% of the waste stream consists of HHW. Correspondingly, it was estimated that in Morelia, a total amount of 442ton/day of domestic waste are produced, including 7.1ton of HHW per day. Furthermore, the overall amount of HHW is not directly related to income level, although particular byproducts do correlate. However, an important difference was observed, as the brands and the presentation sizes of goods and products used in each socioeconomic stratum varied. PMID:18573653

  19. Consumption patterns and household hazardous solid waste generation in an urban settlement in Mexico

    SciTech Connect

    Delgado Otoniel, Buenrostro

    2008-07-01

    Mexico is currently facing a crisis in the waste management field. Some efforts have just commenced in urban and in rural settlements, e.g., conversion of open dumps into landfills, a relatively small composting culture, and implementation of source separation and plastic recycling strategies. Nonetheless, the high heterogeneity of components in the waste, many of these with hazardous properties, present the municipal collection services with serious problems, due to the risks to the health of the workers and to the impacts to the environment as a result of the inadequate disposition of these wastes. A generation study in the domestic sector was undertaken with the aim of finding out the composition and the generation rate of household hazardous waste (HHW) produced at residences. Simultaneously to the generation study, a socioeconomic survey was applied to determine the influence of income level on the production of HHW. Results from the solid waste generation analysis indicated that approximately 1.6% of the waste stream consists of HHW. Correspondingly, it was estimated that in Morelia, a total amount of 442 ton/day of domestic waste are produced, including 7.1 ton of HHW per day. Furthermore, the overall amount of HHW is not directly related to income level, although particular byproducts do correlate. However, an important difference was observed, as the brands and the presentation sizes of goods and products used in each socioeconomic stratum varied.

  20. Recovery Act: Johnston Rhode Island Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    SciTech Connect

    Galowitz, Stephen

    2013-06-30

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Central Landfill in Johnston, Rhode Island. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting project reflected a cost effective balance of the following specific sub-objectives. 1) Meet environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas. 2) Utilize proven and reliable technology and equipment. 3) Maximize electrical efficiency. 4) Maximize electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Central Landfill. 5) Maximize equipment uptime. 6) Minimize water consumption. 7) Minimize post-combustion emissions. To achieve the Project Objective the project consisted of several components. 1) The landfill gas collection system was modified and upgraded. 2) A State-of-the Art gas clean up and compression facility was constructed. 3) A high pressure pipeline was constructed to convey cleaned landfill gas from the clean-up and compression facility to the power plant. 4) A combined cycle electric generating facility was constructed consisting of combustion turbine generator sets, heat recovery steam generators and a steam turbine. 5) The voltage of the electricity produced was increased at a newly constructed transformer/substation and the electricity was delivered to the local transmission system. The Project produced a myriad of beneficial impacts. 1) The Project created 453 FTE construction and manufacturing jobs and 25 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. 2) By combining state-of-the-art gas clean up systems with post combustion emissions control

  1. Constructed wetlands for municipal solid waste landfill leachate treatment. Final report

    SciTech Connect

    Peverly, J.; Sanford, W.E.; Steenhuis, T.S.

    1993-11-01

    In 1989, the US Geological Survey and Cornell University, in cooperation with the New York State Energy Research and Development Authority and the Tompkins County Solid Waste Department, began a three-year study at a municipal solid-waste landfill near Ithaca, New York, to test the effectiveness of leachate treatment with constructed wetlands and to examine the associated treatment processes. Specific objectives of the study were to examine: treatment efficiency as function of substrate composition and grain size, degree of plant growth, and seasonal changes in evapotranspiration rates and microbial activity; effects of leachate and plant growth on the hydraulic characteristics of the substrate; and chemical, biological, and physical processes by which nutrients, metals, and organic compounds are removed from leachate as it flows through the substrate. A parallel study at a municipal solid-waste landfill near Fenton, New York was conducted by researchers at Cornell University, Ithaca College, and Hawk Engineering (Trautmann and others, 1989). Results are described.

  2. Review of treatment for hazardous-waste streams (Chapter 21). Book chapter

    SciTech Connect

    Grosse, D.W.

    1991-01-01

    The publication will examine some of the practices being used or considered for use at on-site or commercial hazardous waste treatment, storage and disposal facilities (TSDF). Options for managing hazardous wastes containing heavy metals and/or cyanide compounds involve conventional treatment processes, recycle/reuse applications and waste minimization. Some of the technologies to be reviewed in this section include: precipitation applications such as hydroxide (e.g. lime, magnesium and iron oxyhydroxide), sulfide and carbonate systems; reduction techniques employing chromium, mercury and selenium reducing agents; adsorption/selection techniques using activated carbon ion exchange and hydrous solids; stabilization/fixation with discussion on applications, interferences and landfill design; cyanide destruction, including chemical oxidation (e.g. alkaline chlorination, ozonation/photolysis), electrolytic decompostion and incineration; and pollution prevention measures such as source reduction, recycling and reuse. Each of these options will be described in terms of effectiveness of treatment in removing the hazardous constituents of interest and characterization of the generated treatment residuals or in the case of waste minimization practices, the degree to which the constituents of concern are eliminated at the point of waste generation.

  3. Evaluation of methane oxidation activity in waste biocover soil during landfill stabilization.

    PubMed

    He, Ruo; Wang, Jing; Xia, Fang-Fang; Mao, Li-Juan; Shen, Dong-Sheng

    2012-10-01

    Biocover soil has been demonstrated to have high CH(4) oxidation capacity and is considered as a good alternative cover material to mitigate CH(4) emission from landfills, yet the response of CH(4) oxidation activity of biocover soils to the variation of CH(4) loading during landfill stabilization is poorly understood. Compared with a landfill cover soil (LCS) collected from Hangzhou Tianziling landfill cell, the development of CH(4) oxidation activity of waste biocover soil (WBS) was investigated using simulated landfill systems in this study. Although a fluctuation of influent CH(4) flux occurred during landfill stabilization, the WBS covers showed a high CH(4) removal efficiency of 94-96% during the entire experiment. In the LCS covers, the CH(4) removal efficiencies varied with the fluctuation of CH(4) influent flux, even negative ones occurred due to the storage of CH(4) in the soil porosities after the high CH(4) influent flux of ~137 gm(-2) d(-1). The lower concentrations of O(2) and CH(4) as well as the higher concentration of CO(2) were observed in the WBS covers than those in the LCS covers. The highest CH(4) oxidation rates of the two types of soil covers both occurred in the bottom layer (20-30 cm). Compared to the LCS, the WBS showed higher CH(4) oxidation activity and methane monooxygenase activity over the course of the experiment. Overall, this study indicated the WBS worked well for the fluctuation of CH(4) influent flux during landfill stabilization. PMID:22776254

  4. Seismic characterization and dynamic site response of a municipal solid waste landfill in Bangalore, India.

    PubMed

    Anbazhagan, P; SivakumarBabu, G L; Lakshmikanthan, P; VivekAnand, K S

    2016-03-01

    Seismic design of landfills requires an understanding of the dynamic properties of municipal solid waste (MSW) and the dynamic site response of landfill waste during seismic events. The dynamic response of the Mavallipura landfill situated in Bangalore, India, is investigated using field measurements, laboratory studies and recorded ground motions from the intraplate region. The dynamic shear modulus values for the MSW were established on the basis of field measurements of shear wave velocities. Cyclic triaxial testing was performed on reconstituted MSW samples and the shear modulus reduction and damping characteristics of MSW were studied. Ten ground motions were selected based on regional seismicity and site response parameters have been obtained considering one-dimensional non-linear analysis in the DEEPSOIL program. The surface spectral response varied from 0.6 to 2 g and persisted only for a period of 1 s for most of the ground motions. The maximum peak ground acceleration (PGA) obtained was 0.5 g and the minimum and maximum amplifications are 1.35 and 4.05. Amplification of the base acceleration was observed at the top surface of the landfill underlined by a composite soil layer and bedrock for all ground motions. Dynamic seismic properties with amplification and site response parameters for MSW landfill in Bangalore, India, are presented in this paper. This study shows that MSW has less shear stiffness and more amplification due to loose filling and damping, which need to be accounted for seismic design of MSW landfills in India. PMID:26759434

  5. Hydrologic studies of multilayered landfill covers for closure of waste landfills at Los Alamos, New Mexico

    SciTech Connect

    Nyhan, J.W.; Langhorst, G.J.; Martin, C.E.; Martinez, J.L.; Schofield, T.G.

    1993-06-01

    The Los Alamos National Laboratory examined water balance relationships for four different landfill cover designs containing engineered barriers. These field experiments were performed at Los Alamos, New Mexico, USA, in 1.0- by 10.0-m plots with downhill slopes of 5, 10, 15 and 25%. Field measurements of seepage, precipitation, interflow, runoff, and soil water content were collected in each of the 16 plots representing four slopes each with four cover designs: Conventional, EPA, Loam Capillary Barrier and Clay Loam Capillary Barrier. A seepage collection system was installed beneath each cover design to evaluate the influence of slope length on seepage using a series of four metal pans filled with medium gravel that were placed end-to-end in the bottom of each field plot. An automated waterflow datalogging system was used to collect hourly seepage, interflow and runoff data and consisted of 100 100-liter tanks, each of which was equipped with an ultrasonic liquid-level sensor and a motor-operated ball valve used to drain the tank. Soil water content was routinely monitored every six hours at each of 212 locations throughout the 16 plots with time domain reflectrometry (TDR) techniques using an automated and multiplexed measurement system.

  6. Hazardous-waste reduction: Naval Air Station Oceana

    SciTech Connect

    Clarkson, E.A.

    1991-06-01

    This is a project to research Naval Air Station (NAS) Oceana's present operations in the area of hazardous waste controls from processing to disposal. The research project was generated in response to NAS Oceana's requirement to meet and implement OPNAVINST 4110.2 (dated 20 June 89). Areas of concern include waste management, regulatory compliance, and waste reduction. Waste reduction is seen as one key way to help NAS Oceana (and other naval bases) improve waste management by reducing liability, operational cost, disposal costs and environmental, health, and safety issues. The Resource Conservation and Recovery Act places strict controls on the storage, treatment and disposal of hazardous waste. Presently, NAS Oceana has a disposal plan that is operational and complies with all associated regulations. This study addresses hazardous waste minimization through hazardous material reduction.

  7. Hazardous waste shipment data collection from DOE sites

    SciTech Connect

    Page, L.A.; Kirkpatrick, T.D.; Stevens, L.

    1992-12-31

    Past practices at the US Department of Energy (DOE) sites for offsite release of hazardous waste are being reviewed to determine if radioactively contaminated hazardous wastes were released to commercial treatment, storage, and disposal facilities. Records indicating the presence of radioactivity in waste shipped to and treated at a commercial incineration facility led to a ban on offsite hazardous waste shipments and investigation of past practices for offsite release of hazardous waste from the DOE sites. A House of Representatives Interior and Insular Affairs Committee oversight hearing on potentially contaminated waste shipments to commercial facilities concluded that the main issue was the lack of a uniform national standard to govern disposal of mixed waste.

  8. Hazardous waste shipment data collection from DOE sites

    SciTech Connect

    Page, L.A.; Kirkpatrick, T.D. ); Stevens, L. )

    1992-01-01

    Past practices at the US Department of Energy (DOE) sites for offsite release of hazardous waste are being reviewed to determine if radioactively contaminated hazardous wastes were released to commercial treatment, storage, and disposal facilities. Records indicating the presence of radioactivity in waste shipped to and treated at a commercial incineration facility led to a ban on offsite hazardous waste shipments and investigation of past practices for offsite release of hazardous waste from the DOE sites. A House of Representatives Interior and Insular Affairs Committee oversight hearing on potentially contaminated waste shipments to commercial facilities concluded that the main issue was the lack of a uniform national standard to govern disposal of mixed waste.

  9. Tracking quicksilver: estimation of mercury waste from consumer products and subsequent verification by analysis of soil, water, sediment, and plant samples from the Cebu City, Philippines, landfill.

    PubMed

    Buagas, Dale Jo B; Megraso, Cristi Cesar F; Namata, John Darwin O; Lim, Patrick John Y; Gatus, Karen P; Cañete, Aloysius M L

    2015-03-01

    Source attribution of mercury (Hg) is critical for policy development to minimize the impact of Hg in wastes. Mercury content of consumer products and its subsequent release into the waste stream of Cebu City, Philippines, is estimated through surveys that employed validated, enumerator-administered questionnaires. Initially, a citywide survey (n = 1636) indicates that each household annually generates 1.07 ppm Hg (i.e., mg Hg/kg waste) and that linear and compact fluorescent lamps (17.2 %) and thermometers (52.1 %) are the major sources of Hg. A subsequent survey (n = 372) in the vicinity of the city's municipal solid waste landfill shows that residents in the area annually generate 0.38 ppm Hg per household, which is less than the citywide mean; surprisingly though, less affluent respondents living closer to the landfill site reported more Hg from thermometers and sphygmomanometers. Analysis of collected soil (0.238 ppm), leachate water (6.5 ppb), sediment (0.109 ppm), and three plants (0.393 to 0.695 ppm) shows no significant variation throughout five stations in and around the landfill site, although the period of collection is significant for soil (P = 0.001) and Cenchrus echinatus (P = 0.016). Detected Hg in the landfill is considerably less than the annual estimated release, indicating that there is minimal accumulation of Hg in the soil or in plants. As a result of this project, a policy brief has been provided to the Cebu City council in aid of hazardous waste legislation. PMID:25712628

  10. Partnering approach facilitates hazardous waste cleanup

    SciTech Connect

    Marini, R.C.; Gates, S.R.; Tunnicliffe, P.W.

    1994-12-31

    The court dockets are overflowing with lawsuits filed by parties involved in environmental restoration (hazardous waste site cleanup) projects. And it seems that no one is free from potential liability these days. Among other common litigation scenarios, remedial action contractors are suing their clients, the owners; employees and other site workers are suing their employers, the remedial action contractors; and owners are suing their designers, the engineers. In the search for viable solutions to the litigation-riddled environmental cleanup business, several options are emerging. Among them, the design/build, or turnkey approach has become common, as has the less well known, but increasingly popular partnering concept, in which the owner, engineer, and constructor form an alliance that allows them to work in concert toward common goals and under shared and properly assigned risks.

  11. Method for disposing of hazardous wastes

    SciTech Connect

    Burton, Frederick G.; Cataldo, Dominic A.; Cline, John F.; Skiens, W. Eugene

    1995-01-01

    A method and system for long-term control of root growth without killing the plants bearing those roots involves incorporating a 2,6-dinitroaniline in a polymer and disposing the polymer in an area in which root control is desired. This results in controlled release of the substituted aniline herbicide over a period of many years. Herbicides of this class have the property of preventing root elongation without translocating into other parts of the plant. The herbicide may be encapsulated in the polymer or mixed with it. The polymer-herbicide mixture may be formed into pellets, sheets, pipe gaskets, pipes for carrying water, or various other forms. The invention may be applied to other protection of buried hazardous wastes, protection of underground pipes, prevention of root intrusion beneath slabs, the dwarfing of trees or shrubs and other applications. The preferred herbicide is 4-difluoromethyl-N,N-dipropyl- 2,6-dinitro-aniline, commonly known as trifluralin.

  12. Controlled Landfill Project in Yolo County, California for Environmental Benefits of Waste Stabilization and Minimization of Greenhouse Gas Emissions

    NASA Astrophysics Data System (ADS)

    Yazdani, R.; Augenstein, D.; Kieffer, J.; Cohen, K.

    2003-12-01

    The Department of Public Works of Yolo County, California, USA has been testing an advanced approach to landfill bioreactors, controlled (or "enhanced") landfilling, at its Yolo County Central Landfill site near Davis, CA, since 1994. Overall objectives have been the management of waste landfilling for: (1) rapid completion of total gas generation; (2) maximum, high-efficiency gas capture; (3) waste volume reduction; and (4) maximum greenhouse gas and carbon sequestration benefits. Methane generation is controlled and enhanced through carefully managed moisture additions, and by taking advantage of landfill temperature elevation. The generated landfill methane, an important greenhouse gas, is recovered with high efficiency through extraction from a porous recovery layer beneath a surface geomembrane cover. Instrumentation included a total of 56 moisture and 15 temperature sensors in the two cells, gas flow monitoring by positive displacement gas meters, and accurate quantification of liquid inputs and outputs. Gas composition, waste volume reduction, base hydrostatic head, and a range of environmental compliance parameters has been monitored since 1995. Partitioning gas tracer tests using the injection of two gases at dilute concentrations in the landfill have also been initiated to compute the fraction of pore space occupied by water between the points of tracer injection and tracer measurement. There has been rapid waste volume reduction in the enhanced cell that corresponds to the solids' reduction to gas. Monitoring is planned for the next several years, until stabilization parameters are determined complete. Encouraging performance is indicated by: (1) sensor data; (2) gas generation results; (3) data from landfill cores; and (4) decomposition-related indicators including rapid volume reduction. When data are synthesized, project results have attractive implications for new approaches to landfill management. Over seven-years, methane recoveries have averaged

  13. Choice of noxious facilities: case of a solid waste incinerator versus a sanitary landfill in Malaysia.

    PubMed

    Othman, Jamal; Khee, Pek Chuen

    2014-05-01

    A choice experiment analysis was conducted to estimate the preference for specific waste disposal technologies in Malaysia. The study found that there were no significant differences between the choice of a sanitary landfill or an incinerator. What matters is whether any disposal technology would lead to obvious social benefits. A waste disposal plan which is well linked or integrated with the community will ensure its acceptance. Local authorities will be challenged to identify solid waste disposal sites that are technically appropriate and also socially desirable. PMID:24595362

  14. The municipal solid waste landfill as a source of ozone-depleting substances in the United States and United Kingdom

    NASA Astrophysics Data System (ADS)

    Hodson, E. L.; Martin, D.; Prinn, R. G.

    2009-10-01

    This study provides observation-based national estimates of CFC-11, CFC-12, CFC-113, and 1,1,1-trichloroethane emissions for the United States (US) and United Kingdom (UK) from municipal solid waste (MSW) landfills. The scarcity of national estimates has lead to the assumption that a significant fraction of the lingering ozone-depleting substance (ODS) emissions, which have been detected in industrialized countries, could be emitted from landfills. Spatial coverage was achieved through sampling at seven landfills in Massachusetts and through data provided by nine UK landfills. Linear least square regressions of recovered ODS vs. CH4 were used in combination with national estimates of landfill CH4 emissions to estimate 2006 national US and UK ODS landfill emissions. The ODS landfill emission estimates were then compared to recent estimates of total US and UK ODS emissions. US ODS landfill emissions were 0.4%-0.9% (0.006-0.09 Gg/year) of total US emissions. UK ODS landfill emission estimates were 1% (0.008 Gg/year) and 6% (0.03 Gg/year) of total UK CFC-11 and CFC-12 emissions, respectively. This indicates that landfills are only a minor source of lingering ODS emissions in the US, but may be more significant for CFC-12 emissions in the UK. The implications are that the majority of current ODS emissions in industrialized countries are likely coming from equipment still in use.

  15. The municipal solid waste landfill as a source of ozone-depleting substances in the United States and United Kingdom

    NASA Astrophysics Data System (ADS)

    Hodson, E. L.; Martin, D.; Prinn, R. G.

    2010-02-01

    This study provides observation-based national estimates of CFC-11, CFC-12, CFC-113, and 1,1,1-trichloroethane emissions for the United States (US) and United Kingdom (UK) from municipal solid waste (MSW) landfills. The scarcity of national estimates has lead to the assumption that a significant fraction of the lingering ozone-depleting substance (ODS) emissions, which have been detected in industrialized countries, could be emitted from landfills. Spatial coverage was achieved through sampling at seven landfills in Massachusetts and through data provided by nine UK landfills. Linear least square regressions of recovered ODS vs. CH4 were used in combination with national estimates of landfill CH4 emissions to estimate 2006 national US and UK ODS landfill emissions. The ODS landfill emission estimates were then compared to recent estimates of total US and UK ODS emissions. US ODS landfill emissions are 0.4%-1% (0.006-0.09 Gg/year) of total US emissions. UK ODS landfill emission estimates are 1% (0.008 Gg/year) and 6% (0.03 Gg/year) of total UK CFC-11 and CFC-12 emissions, respectively. This indicates that landfills are only a minor source of lingering ODS emissions in the US, but may be more significant for CFC-12 emissions in the UK. The implication is that the majority of current ODS emissions in industrialized countries is likely coming from equipment still in use.

  16. INNOVATIVE THERMAL PROCESSES FOR HAZARDOUS WASTE TREATMENT AND DESTRUCTION

    EPA Science Inventory

    As the land disposal of untreated hazardous wastes has continued to fall into disfavor in North America, increasing attention is being given to alternative hazardous waste treatment and disposal technologies. This increased attention and the public and private support resulting f...

  17. SEMINAR PUBLICATION: OPERATIONAL PARAMETERS FOR HAZARDOUS WASTE COMBUSTION DEVICES

    EPA Science Inventory

    The information in the document is based on presentations at the EPA-sponsored seminar series on Operational Parameters for Hazardous Waste Combustion Devices. This series consisted of five seminars held in 1992. Hazardous waste combustion devices are regulated under the Resource...

  18. DESIGN AND DEVELOPMENT OF A HAZARDOUS WASTE REACTIVITY TESTING PROTOCOL

    EPA Science Inventory

    A test protocol to determine the gross chemical composition of waste materials has been developed for use at uncontrolled hazardous waste sites. Included is a field test kit, flow diagrams, a descriptive manual and a mixing device to observe the effects of mixing two hazardous wa...

  19. Fire hazards analysis for solid waste burial grounds

    SciTech Connect

    McDonald, K.M.

    1995-09-28

    This document comprises the fire hazards analysis for the solid waste burial grounds, including TRU trenches, low-level burial grounds, radioactive mixed waste trenches, etc. It analyzes fire potential, and fire damage potential for these facilities. Fire scenarios may be utilized in future safety analysis work, or for increasing the understanding of where hazards may exist in the present operation.

  20. MEASUREMENTS AND MODELS FOR HAZARDOUS CHEMICAL AND MIXED WASTES

    EPA Science Inventory

    Mixed hazardous and low-level radioactive wastes are in storage at DOE sites around the United States, awaiting treatment and disposal. These hazardous chemical wastes contain many components in multiple phases, presenting very difficult handling and treatment problems. These was...

  1. 40 CFR 262.60 - Imports of hazardous waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Imports of Hazardous Waste § 262.60 Imports... except that: (1) In place of the generator's name, address and EPA identification number, the name and address of the foreign generator and the importer's name, address and EPA identification number must...

  2. 40 CFR 262.60 - Imports of hazardous waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Imports of Hazardous Waste § 262.60 Imports... except that: (1) In place of the generator's name, address and EPA identification number, the name and address of the foreign generator and the importer's name, address and EPA identification number must...

  3. 40 CFR 262.60 - Imports of hazardous waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Imports of Hazardous Waste § 262.60 Imports... except that: (1) In place of the generator's name, address and EPA identification number, the name and address of the foreign generator and the importer's name, address and EPA identification number must...

  4. 40 CFR 262.60 - Imports of hazardous waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Imports of Hazardous Waste § 262.60 Imports... except that: (1) In place of the generator's name, address and EPA identification number, the name and address of the foreign generator and the importer's name, address and EPA identification number must...

  5. 40 CFR 262.60 - Imports of hazardous waste.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Imports of Hazardous Waste § 262.60 Imports... except that: (1) In place of the generator's name, address and EPA identification number, the name and address of the foreign generator and the importer's name, address and EPA identification number must...

  6. HAZ-ED Classroom Activities for Understanding Hazardous Waste.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC.

    The Federal Superfund Program investigates and cleans up hazardous waste sites throughout the United States. Part of this program is devoted to informing the public and involving people in the process of cleaning up hazardous waste sites from beginning to end. The Haz-Ed program was developed to assist the Environmental Protection Agency's (EPA)…

  7. Quantity of RCRA Hazardous Waste Generated and Managed

    EPA Science Inventory

    This indicator describes the tonnage of Resource Conservation and Recovery Act (RCRA) hazardous waste generated and managed in the United States every two years between 2001 and 2009. It also describes the tonnage of hazardous waste disposed to land by disposal practice. This ...

  8. A METHOD FOR DETERMINING THE COMPATIBILITY OF HAZARDOUS WASTES

    EPA Science Inventory

    This report describes a method for determining the compatibility of the binary combinations of hazardous wastes. The method consists of two main parts, namely: (1) the step-by-step compatibility analysis procedures, and (2) the hazardous wastes compatibility chart. The key elemen...

  9. An investigation of carbon release rate via leachate from an industrial solid waste landfill.

    PubMed

    Kim, Hee Jong; Matsuto, Toshihiko; Tojo, Yasumasa

    2011-06-01

    Long-term behaviour of leachate pollutants is a key factor to estimate time and cost required for the leachate treatment in landfills. Estimating carbon release via leachate can be a good way by which to understand the long-term behaviour, however, most studies have had a timeline of only several months or years. In this study, a release rate of carbon via leachate for 20 years was estimated at an industrial solid waste landfill. The total carbon content in dumped waste was estimated based on combustible contents determined by collecting samples from other industrial landfills and pretreatment facilities, and carbon contents in literature values. Leachate quantity data, which were not recorded for the first ten years, were estimated using a macro-moisture balance model including the effect of snow melt. Because leachate quantity and quality at each site were only measured after leachates were mixed, the quantity at each site was calculated by assuming infiltration rates with and without final cover. Results indicated that less than 2% of total input carbon was released from each site via leachate regardless of landfill age. PMID:20855352

  10. GIS-based approach for optimized siting of municipal solid waste landfill

    SciTech Connect

    Sumathi, V.R. Natesan, Usha; Sarkar, Chinmoy

    2008-11-15

    The exponential rise in the urban population of the developing countries in the past few decades and the resulting accelerated urbanization phenomenon has brought to the fore the necessity to develop environmentally sustainable and efficient waste management systems. Sanitary landfill constitutes one of the primary methods of municipal solid waste disposal. Optimized siting decisions have gained considerable importance in order to ensure minimum damage to the various environmental sub-components as well as reduce the stigma associated with the residents living in its vicinity, thereby enhancing the overall sustainability associated with the life cycle of a landfill. This paper addresses the siting of a new landfill using a multi-criteria decision analysis (MCDA) and overlay analysis using a geographic information system (GIS). The proposed system can accommodate new information on the landfill site selection by updating its knowledge base. Several factors are considered in the siting process including geology, water supply resources, land use, sensitive sites, air quality and groundwater quality. Weightings were assigned to each criterion depending upon their relative importance and ratings in accordance with the relative magnitude of impact. The results from testing the system using different sites show the effectiveness of the system in the selection process.

  11. GIS-based approach for optimized siting of municipal solid waste landfill.

    PubMed

    Sumathi, V R; Natesan, Usha; Sarkar, Chinmoy

    2008-11-01

    The exponential rise in the urban population of the developing countries in the past few decades and the resulting accelerated urbanization phenomenon has brought to the fore the necessity to develop environmentally sustainable and efficient waste management systems. Sanitary landfill constitutes one of the primary methods of municipal solid waste disposal. Optimized siting decisions have gained considerable importance in order to ensure minimum damage to the various environmental sub-components as well as reduce the stigma associated with the residents living in its vicinity, thereby enhancing the overall sustainability associated with the life cycle of a landfill. This paper addresses the siting of a new landfill using a multi-criteria decision analysis (MCDA) and overlay analysis using a geographic information system (GIS). The proposed system can accommodate new information on the landfill site selection by updating its knowledge base. Several factors are considered in the siting process including geology, water supply resources, land use, sensitive sites, air quality and groundwater quality. Weightings were assigned to each criterion depending upon their relative importance and ratings in accordance with the relative magnitude of impact. The results from testing the system using different sites show the effectiveness of the system in the selection process. PMID:18060759

  12. Characterizing the biotransformation of sulfur-containing wastes in simulated landfill reactors.

    PubMed

    Sun, Wenjie; Sun, Mei; Barlaz, Morton A

    2016-07-01

    Landfills that accept municipal solid waste (MSW) in the U.S. may also accept a number of sulfur-containing wastes including residues from coal or MSW combustion, and construction and demolition (C&D) waste. Under anaerobic conditions that dominate landfills, microbially mediated processes can convert sulfate to hydrogen sulfide (H2S). The presence of H2S in landfill gas is problematic for several reasons including its low odor threshold, human toxicity, and corrosive nature. The objective of this study was to develop and demonstrate a laboratory-scale reactor method to measure the H2S production potential of a range of sulfur-containing wastes. The H2S production potential was measured in 8-L reactors that were filled with a mixture of the target waste, newsprint as a source of organic carbon required for microbial sulfate reduction, and leachate from decomposed residential MSW as an inoculum. Reactors were operated with and without N2 sparging through the reactors, which was designed to reduce H2S accumulation and toxicity. Both H2S and CH4 yields were consistently higher in reactors that were sparged with N2 although the magnitude of the effect varied. The laboratory-measured first order decay rate constants for H2S and CH4 production were used to estimate constants that were applicable in landfills. The estimated constants ranged from 0.11yr(-1) for C&D fines to 0.38yr(-1) for a mixed fly ash and bottom ash from MSW combustion. PMID:26860424

  13. Waste Encapsulation and Storage Facility (WESF) Hazards Assessment

    SciTech Connect

    COVEY, L.I.

    2000-11-28

    This report documents the hazards assessment for the Waste Encapsulation and Storage Facility (WESF) located on the U.S. Department of Energy (DOE) Hanford Site. This hazards assessment was conducted to provide the emergency planning technical basis for WESF. DOE Orders require an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification.

  14. 75 FR 31716 - Hazardous Waste Technical Corrections and Clarifications Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-04

    ... Final rule entitled, Hazardous Waste Technical Corrections and Clarifications Rule (75 FR 12989). This...-HSWA RCRA authority and the authority of the Hazardous Materials Transportation Act: 40 CFR 262.23, 40...) under the federal hazardous materials transportation laws, the manifest changes will be...

  15. Vitrification: Destroying and immobilizing hazardous wastes

    SciTech Connect

    Chapman, C.C.; Peters, R.D.; Perez, J.M.

    1994-04-01

    Researchers at the US Department of Energy`s Pacific Northwest Laboratory (PNL) have led the development of vitrification a versatile adaptable process that transforms waste solutions, slurries, moist powder and/or dry solids into a chemically durable glass form. The glass form can be safely disposed or used for other purposes, such as construction material if non-radioactive. The feed used in the process can be either combustible or non-combustible. Organic compounds are decomposed in the melters` plenum, while the inorganic residue melts into a molten glass pool. The glass produced by this process is a chemically durable material comparable to natural obsidian. Its properties typically allow it to pass the EPA Toxicity (TCLP) test as non-hazardous. To date, no glass produced by vitrification has failed the TCLP test. Vitrification is thus an ideal method of treating DOE`s mixed waste because of its ability to destroy organic compounds and bind toxic or radioactive elements. This article provides an overview of the technology.

  16. Treatment of mechanically sorted organic waste by bioreactor landfill: Experimental results and preliminary comparative impact assessment with biostabilization and conventional landfill.

    PubMed

    Di Maria, Francesco; Micale, Caterina; Sisani, Luciano; Rotondi, Luca

    2016-09-01

    Treatment and disposal of the mechanically sorted organic fraction (MSOF) of municipal solid waste using a full-scale hybrid bioreactor landfill was experimentally analyzed. A preliminary life cycle assessment was used to compare the hybrid bioreactor landfill with the conventional scheme based on aerobic biostabilization plus landfill. The main findings showed that hybrid bioreactor landfill was able to achieve a dynamic respiration index (DRI)<1000 mgO2/(kgVSh) in 20weeks, on average. Landfill gas (LFG) generation with CH4 concentration >55% v/v started within 140days from MSOF disposal, allowing prompt energy recovery and higher collection efficiency. With the exception of fresh water eutrophication with the bioreactor scenario there was a reduction of the impact categories by about 30% compared to the conventional scheme. Such environmental improvement was mainly a consequence of the reduction of direct and indirect emissions from conventional aerobic biostabilization and of the lower amount of gaseous loses from the bioreactor landfill. PMID:27026496

  17. Pinellas Plant contingency plan for the hazardous waste management facility

    SciTech Connect

    1988-04-01

    Subpart D of Part 264 (264.50 through .56) of the Resource Conservation and Recovery Act (RCRA) regulations require that each facility maintain a contingency plan detailing procedures to {open_quotes}minimize hazards to human health or the environment from fires, explosions, or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water.{close_quotes}

  18. Greenhouse gas emissions during MSW landfilling in China: influence of waste characteristics and LFG treatment measures.

    PubMed

    Yang, Na; Zhang, Hua; Shao, Li-Ming; Lü, Fan; He, Pin-Jing

    2013-11-15

    Reducing greenhouse gas (GHG) emissions from municipal solid waste (MSW) treatment can be highly cost-effective in terms of GHG mitigation. This study investigated GHG emissions during MSW landfilling in China under four existing scenarios and in terms of seven different categories: waste collection and transportation, landfill management, leachate treatment, fugitive CH4 (FM) emissions, substitution of electricity production, carbon sequestration and N2O and CO emissions. GHG emissions from simple sanitary landfilling technology where no landfill gas (LFG) extraction took place (Scenario 1) were higher (641-998 kg CO2-eq·t(-1)ww) than those from open dump (Scenario 0, 480-734 kg CO2-eq·t(-1)ww). This was due to the strictly anaerobic conditions in Scenario 1. LFG collection and treatment reduced GHG emissions to 448-684 kg CO2-eq·t(-1)ww in Scenario 2 (with LFG flare) and 214-277 kg CO2-eq·t(-1)ww in Scenario 3 (using LFG for electricity production). Amongst the seven categories, FM was the predominant contributor to GHG emissions. Global sensitivity analysis demonstrated that the parameters associated with waste characteristics (i.e. CH4 potential and carbon sequestered faction) and LFG management (i.e. LFG collection efficiency and CH4 oxidation efficiency) were of great importance. A further learning on the MSW in China indicated that water content and dry matter content of food waste were the basic factors affecting GHG emissions. Source separation of food waste, as well as increasing the incineration ratio of mixed collected MSW, could effectively mitigate the overall GHG emissions from landfilling in a specific city. To increase the LFG collection and CH4 oxidation efficiencies could considerably reduce GHG emissions on the landfill site level. While, the improvement in the LFG utilization measures had an insignificant impact as long as the LFG is recovered for energy generation. PMID:24018116

  19. A PRELIMINARY EXPERIMENT ON DENITRIFICATION OF WASTE LANDFILL LEACHATE

    NASA Astrophysics Data System (ADS)

    Wada, Nariaki; Nakamichi, Tamihiro; Yagi, Masahiro; Matsumoto, Toshihide; Kugimiya, Akikazu; Michioku, Kohji

    A laboratory experiment on denitrification was carried out in order to reduce nitrogen load from municipal landfill leachate. Nitrogen was efficiently removed by feeding sludge of the leachate pond into the tanks, which could activate denitrification bacteria. Although inorganic reducing agent such as iron powder was not able to make the whole water mass anoxic, denitrification took place by supplying organic matters such as methanol, hydrogen feeding agent, etc.. It is considered that small amount of anoxic water film produced on surfaces of container and carriers might contribute to denitrification, although the bulk water is kept aerobic. It is found that organic matters contained in the leachate is so insufficient that nitrification liquid circulation does not work well for denitrification.

  20. Pollution due to hazardous glass waste.

    PubMed

    Pant, Deepak; Singh, Pooja

    2014-02-01

    Pollution resulting from hazardous glass (HG) is widespread across the globe, both in terms of quantity and associated health risks. In waste cathode ray tube (CRT) and fluorescent lamp glass, mercury and lead are present as the major pollutants. The current review discusses the issues related to quantity and associated risk from the pollutant present in HG and proposes the chemical, biological, thermal, hybrid, and nanotechniques for its management. The hybrid is one of the upcoming research models involving the compatible combination of two or more techniques for better and efficient remediation. Thermal mercury desorption starts at 100 °C but for efficient removal, the temperature should be >460 °C. Involvement of solar energy for this purpose makes the research more viable and ecofriendly. Nanoparticles such as Fe, Se, Cu, Ni, Zn, Ag, and WS2 alone or with its formulation can immobilize heavy metals present in HG by involving a redox mechanism. Straight-line equation from year-wise sale can provide future sale data in comparison with lifespan which gives future pollutant approximation. Waste compact fluorescent lamps units projected for the year 2015 is 9,300,000,000 units and can emit nearly 9,300 kg of mercury. On the other hand, CRT monitors have been continuously replaced by more improved versions like liquid crystal display and plasma display panel resulting in the production of more waste. Worldwide CRT production was 83,300,000 units in 2002 and can approximately release 83,000 metric tons of lead. PMID:24281678

  1. Landfill stabilization focus area: Technology summary

    SciTech Connect

    1995-06-01

    Landfills within the DOE Complex as of 1990 are estimated to contain 3 million cubic meters of buried waste. The DOE facilities where the waste is predominantly located are at Hanford, the Savannah River Site (SRS), the Idaho National Engineering Laboratory (INEL), the Los Alamos National Laboratory (LANL), the Oak Ridge Reservation (ORR), the Nevada Test Site (NTS), and the Rocky Flats Plant (RFP). Landfills include buried waste, whether on pads or in trenches, sumps, ponds, pits, cribs, heaps and piles, auger holes, caissons, and sanitary landfills. Approximately half of all DOE buried waste was disposed of before 1970. Disposal regulations at that time permitted the commingling of various types of waste (i.e., transuranic, low-level radioactive, hazardous). As a result, much of the buried waste throughout the DOE Complex is presently believed to be contaminated with both hazardous and radioactive materials. DOE buried waste typically includes transuranic-contaminated radioactive waste (TRU), low-level radioactive waste (LLW), hazardous waste per 40 CFR 26 1, greater-than-class-C waste per CFR 61 55 (GTCC), mixed TRU waste, and mixed LLW. The mission of the Landfill Stabilization Focus Area is to develop, demonstrate, and deliver safer,more cost-effective and efficient technologies which satisfy DOE site needs for the remediation and management of landfills. The LSFA is structured into five technology areas to meet the landfill remediation and management needs across the DOE complex. These technology areas are: assessment, retrieval, treatment, containment, and stabilization. Technical tasks in each of these areas are reviewed.

  2. Evaluation and comparison of selected household hazardous waste collection facilities

    SciTech Connect

    Burke, M; Brogan, J.A.; Sepanski, L.M.

    1990-05-01

    In 1988 the City of Seattle's Office for Long-range Planning and the Solid Waste Utility implemented a permanent household hazardous waste collection program in an effort to decrease hazardous waste disposal in municipal solid and liquid waste streams. A detailed description of this program may be found in Household Hazardous Waste: Implementation of a Permanent Collection Facility,'' published by the Urban Consortium Energy Task Force. An integral part of Seattle's Household Hazardous Waste collection effort is a three part evaluation strategy that includes: an assessment of the effectiveness of the permanent facility; a comparison of the city's facility with other HHW collection programs; and a user survey to evaluate customer satisfaction and compare the Seattle and King County collection approaches. This evaluation strategy was conducted during Year 10 of the Urban Consortium Energy Task Force, and its results are document in this report. Several different collection programs were compared during the evaluation. 22 refs., 23 figs., 25 tabs.

  3. Cap and trade schemes on waste management: A case study of the Landfill Allowance Trading Scheme (LATS) in England

    SciTech Connect

    Calaf-Forn, Maria; Roca, Jordi; Puig-Ventosa, Ignasi

    2014-05-01

    Highlights: • LATS has been effective to achieve a reduction of the amount of landfilled waste. • LATS has been one of the few environmental instruments for waste management with a cap and trade methodology. • LATS has achieved to increase recycling of the biodegradable and other waste fractions. - Abstract: The Landfill Allowance Trading Scheme (LATS) is one of the main instruments used in England to enforce the landfill diversion targets established in the Directive 1999/31/EC of the European Parliament and of the Council of 26 April 1999 on the landfill of waste (Landfill Directive). Through the LATS, biodegradable municipal waste (BMW) allowances for landfilling are allocated to each local authority, otherwise known as waste disposal authorities (WDAs). The quantity of landfill allowances received is expected to decrease continuously from 2005/06 to 2019/20 so as to meet the objectives of the Landfill Directive. To achieve their commitments, WDAs can exchange, buy, sell or transfer allowances among each other, or may re-profile their own allocation through banking and/or borrowing. Despite the goals for the first seven years – which included two target years (2005/06 and 2009/10) – being widely achieved (the average allocation of allowances per WDA was 22.9% higher than those finally used), market activity among WDAs was high and prices were not very stable. Results in terms of waste reduction and recycling levels have been satisfactory. The reduction of BMW landfilled (in percentage) was higher during the first seven years of the LATS period (2005/06–2011/12) (around 7% annually) than during the previous period (2001/02–2004/05) (4.2% annually). Since 2008, the significance of the LATS diminished because of an increase in the rate of the UK Landfill Tax. The LATS was suppressed after the 2012/13 target year, before what it was initially scheduled. The purpose of this paper is to describe the particularities of the LATS, analyse its performance as

  4. Hazardous waste in Mexico: Just how much is there?

    SciTech Connect

    Wood, H.

    1994-12-31

    Mexico will probably follow the same basic regulatory path that was followed in the US, but at a faster pace to achieve equivalent protection of the environment. The redefinition of hazardous waste currently underway in both US and Mexico will require more stringent controls and less latitude in the available technology for disposal or recycling. Mexico`s General Law of Ecological Equilibrium and Environmental Protection became effective March 1, 1988. It surpassed most preceding regulations and decrees regarding hazardous wastes generated in, imported to, or exported from Mexico. The law is comprehensive and unifies various environmental statutes. An earlier Presidential decree continues to regulate certain hazardous materials not considered to be hazardous wastes by the new regulations. The new hazardous waste regulations govern the following activities: management of hazardous wastes; permitting of generators and transporters; and permitting of the construction and operation of facilities for the treatment, storage, or disposal of hazardous wastes. The environmental laws which address hazardous waste issues in Mexico were enacted in 1988 and new technical regulations have recently been added. Most of these laws and regulations have been inspired by US law and environmental experience.

  5. Overview of hazardous-waste regulation at federal facilities

    SciTech Connect

    Tanzman, E.; LaBrie, B.; Lerner, K.

    1982-05-01

    This report is organized in a fashion that is intended to explain the legal duties imposed on officials responsible for hazardous waste at each stage of its existence. Section 2 describes federal hazardous waste laws, explaining the legal meaning of hazardous waste and the protective measures that are required to be taken by its generators, transporters, and storers. In addition, penalties for violation of the standards are summarized, and a special discussion is presented of so-called imminent hazard provisions for handling hazardous waste that immediately threatens public health and safety. Although the focus of Sec. 2 is on RCRA, which is the principal federal law regulating hazardous waste, other federal statutes are discussed as appropriate. Section 3 covers state regulation of hazardous waste. First, Sec. 3 explains the system of state enforcement of the federal RCRA requirements on hazardous waste within their borders. Second, Sec. 3 discusses two peculiar provisions of RCRA that appear to permit states to regulate federal facilities more strictly than RCRA otherwise would require.

  6. Possible interactions between recirculated landfill leachate and the stabilized organic fraction of municipal solid waste.

    PubMed

    Calabrò, Paolo S; Mancini, Giuseppe

    2012-05-01

    The stabilized organic fraction of municipal solid waste (SOFMSW) is a product of the mechanical/biological treatment (MBT) of mixed municipal solid waste (MMSW). SOFMSW is considered a 'grey' compost and the presence of pollutants (particularly heavy metals) and residual glass and plastic normally prevents agricultural use, making landfills the typical final destination for SOFMSW. Recirculation of leachate in landfills can be a cost-effective management option, but the long-term sustainability of such a practice must be verified. Column tests were carried out to examine the effect of SOFMSW on leachate recirculation. The results indicate that organic matter may be biologically degraded and metals (copper and zinc) are effectively entrapped through a combination of physical (adsorption), biological (bacterial sulfate reduction), and chemical (precipitation of metal sulfides) processes, while other chemicals (i.e. ammonia nitrogen and chloride) are essentially unaffected by filtration through SOFMSW. PMID:22351654

  7. Sulfide emissions from different areas of a municipal solid waste landfill in China.

    PubMed

    Yue, Dongbei; Han, Bing; Sun, Yue; Yang, Ting

    2014-06-01

    Degradation of municipal solid waste in landfills generates sulfide compounds, which are considered one of the main sources of odor emissions. Field sampling was conducted at surfaces of operating, inoperative, and soil-covered areas of a landfill site in northern China to characterize the sulfide compounds. The results showed that dimethyl disulfide dominated the sulfide compounds, accounting for up to 73.6% of the total detected sulfide. With the biggest odor concentration of 365, diethyl sulfide was the most significant sulfide compound. The estimated sulfide emission rates at surfaces of operating and soil-covered areas were similar, and the emission rate of dimethyl disulfide at Surface of Operating Area was up to 345.9 μg/m(3) h. Dimethyl disulfide could be released from the fresh waste, and its normalized concentration at 0.2 m beneath operating surface was 10.4 times that at 0.4 m. PMID:23948050

  8. Hazardous waste identification: A guide to changing regulations

    SciTech Connect

    Stults, R.G. )

    1993-03-01

    The Resource Conservation and Recovery Act (RCRA) was enacting in 1976 and amended in 1984 by the Hazardous and Solid Waste Amendments (HSWA). Since then, federal regulations have generated a profusion of terms to identify and describe hazardous wastes. Regulations that5 define and govern management of hazardous wastes are codified in Title 40 of the code of Federal Regulations, Protection of the environment''. Title 40 regulations are divided into chapters, subchapters and parts. To be defined as hazardous, a waste must satisfy the definition of solid waste any discharged material not specifically excluded from regulation or granted a regulatory variance by the EPA Administrator. Some wastes and other materials have been identified as non-hazardous and are listed in 40 CFR 261.4(a) and 261.4(b). Certain wastes that satisfy the definition of hazardous waste nevertheless are excluded from regulation as hazardous if they meet specific criteria. Definitions and criteria for their exclusion are found in 40 CFR 261.4(c)-(f) and 40 CFR 261.5.

  9. HAZARDOUS WASTE COMPLIANCE AND THE INFLUENCE OF FEDERAL INITIATIVES, STATE PROGRAMS, AND CORPORATE CHARACTERISTICS

    EPA Science Inventory

    To date there has been little empirical research on hazardous waste compliance. This project will provide evidence as to which factors influence compliance with hazardous waste regulations. This knowledge will benefit hazardous waste management by leading to improv...

  10. Landfill gas effects on groundwater samples at a municipal solid waste facility.

    PubMed

    Kerfoot, H B

    1994-11-01

    A study was performed to determine the source of low concentrations of volatile organic compounds (VOCs) detected in groundwater samples at a solid waste management facility. The affected wells were identified as hydraulically upgradient of an old unlined facility, but downgradient of a new clay-lined landfill. These monitoring wells are close to both sites. Subsurface landfill gas migration was identified after a low permeability cap was installed on the older site. Subsurface gas pressure was monitored to identify horizontal landfill gas migration. Monitoring well headspace gases were evaluated to identify depressed oxygen concentrations and methane because of landfill gas migration into the well. Monitoring well headspace gas VOC concentrations were compared to groundwater VOC concentrations to determine the direction of phase transfer. A ratio above 1.0 of the observed well headspace gas concentration of a VOC to the concentration that would be in equilibrium with the groundwater concentration indicates gas-to-water phase transfer within the well. For the major gas-phase and aqueous-phase VOC, cis-1,2-dichloroethene, gas-to-water phase transfer is clearly indicated from the data for two of the four wells. Fifteen other VOCs were detected in monitoring well headspace gases but not in groundwater samples from the four wells studied. Only one compound in one well was detected in the groundwater sample but not in the headspace gases, and only one compound in one well was detected in both matrices at concentrations that suggested water-to-gas phase transfer. This study suggests that if landfill gas is suspected as the source of detected VOCs, monitoring well construction and stratigraphy are important considerations when attempting to differentiate between groundwater contamination by landfill gas and contamination from other sources. PMID:15736343

  11. Aromatic compound emissions from municipal solid waste landfill: Emission factors and their impact on air pollution

    NASA Astrophysics Data System (ADS)

    Liu, Yanjun; Lu, Wenjing; Guo, Hanwen; Ming, Zhongyuan; Wang, Chi; Xu, Sai; Liu, Yanting; Wang, Hongtao

    2016-08-01

    Aromatic compounds (ACs) are major components of volatile organic compounds emitted from municipal solid waste (MSW) landfills. The ACs emissions from the working face of a landfill in Beijing were studied from 2014 to 2015 using a modified wind tunnel system. Emission factors (EFs) of fugitive ACs emissions from the working face of the landfill were proposed according to statistical analyses to cope with their uncertainty. And their impacts on air quality were assessed for the first time. Toluene was the dominant AC with an average emission rate of 38.8 ± 43.0 μg m-2 s-1 (at a sweeping velocity of 0.26 m s-1). An increasing trend in AC emission rates was observed from 12:00 to 18:00 and then peaked at 21:00 (314.3 μg m-2 s-1). The probability density functions (PDFs) of AC emission rates could be classified into three distributions: Gaussian, log-normal, and logistic. EFs of ACs from the working face of the landfill were proposed according to the 95th percentile cumulative emission rates and the wind effects on ACs emissions. The annual ozone formation and secondary organic aerosol formation potential caused by AC emissions from landfills in Beijing were estimated to be 8.86 × 105 kg year-1 and 3.46 × 104 kg year-1, respectively. Toluene, m + p-xylene, and 1,3,5-trimethylbenzene were the most significant contributors to air pollution. Although ACs pollutions from landfills accounts for less percentage (∼0.1%) compared with other anthropogenic sources, their fugitive emissions which cannot be controlled efficiently deserve more attention and further investigation.

  12. Gravimetric water distribution assessment from geoelectrical methods (ERT and EMI) in municipal solid waste landfill.

    PubMed

    Dumont, Gaël; Pilawski, Tamara; Dzaomuho-Lenieregue, Phidias; Hiligsmann, Serge; Delvigne, Frank; Thonart, Philippe; Robert, Tanguy; Nguyen, Frédéric; Hermans, Thomas

    2016-09-01

    The gravimetric water content of the waste material is a key parameter in waste biodegradation. Previous studies suggest a correlation between changes in water content and modification of electrical resistivity. This study, based on field work in Mont-Saint-Guibert landfill (Belgium), aimed, on one hand, at characterizing the relationship between gravimetric water content and electrical resistivity and on the other hand, at assessing geoelectrical methods as tools to characterize the gravimetric water distribution in a landfill. Using excavated waste samples obtained after drilling, we investigated the influences of the temperature, the liquid phase conductivity, the compaction and the water content on the electrical resistivity. Our results demonstrate that Archie's law and Campbell's law accurately describe these relationships in municipal solid waste (MSW). Next, we conducted a geophysical survey in situ using two techniques: borehole electromagnetics (EM) and electrical resistivity tomography (ERT). First, in order to validate the use of EM, EM values obtained in situ were compared to electrical resistivity of excavated waste samples from corresponding depths. The petrophysical laws were used to account for the change of environmental parameters (temperature and compaction). A rather good correlation was obtained between direct measurement on waste samples and borehole electromagnetic data. Second, ERT and EM were used to acquire a spatial distribution of the electrical resistivity. Then, using the petrophysical laws, this information was used to estimate the water content distribution. In summary, our results demonstrate that geoelectrical methods represent a pertinent approach to characterize spatial distribution of water content in municipal landfills when properly interpreted using ground truth data. These methods might therefore prove to be valuable tools in waste biodegradation optimization projects. PMID:26926783

  13. Interim status standards for owners and operators of hazardous waste treatment, storage, and disposal facilities--Environmental Protection Agency. Interim final rule and interim final amendments to rules and request for comments.

    PubMed

    1981-11-17

    The Environmental Protection Agency [EPA] has issued standards applicable to owners and operators of hazardous waste management facilities as required by the Resource Conservation and Recovery Act [RCRA]. One of these standards bans the disposal of most containerized liquid hazardous waste in landfills, effective November 19, 1981. As a result of reconsideration of this restriction, EPA is today promulgating an interim final rule to allow the disposal of small containers of liquid and solid hazardous waste in landfills provided that the wastes are placed in overpacked drums [lab packs] in the manner specified in today's rule. The purpose of today's rule is to provide an environmental sound disposal option for generators of small containers of hazardous wastes, such as laboratories. PMID:10253364

  14. Analysis of landfills with historic airphotos

    NASA Technical Reports Server (NTRS)

    Erb, T. L.; Philipson, W. R.; Teng, W. L.; Liang, T.

    1981-01-01

    An investigation is conducted regarding the value of existing aerial photographs for waste management, including landfill monitoring. The value of historic aerial photographs for documenting landfill boundaries is shown in a graph in which the expansion of an active landfill is traced over a 40-year period. Historic aerial photographs can also be analyzed to obtain general or detailed land-use and land-cover information. In addition, the photographs provide information regarding other elements of the physical environment, including geology, soils, and surface and subsurface drainage. The value of historic photos is discussed, taking into account applications for inventory, assessing contamination/health hazards, planning corrective measures, planning waste collection and facilities, developing inactive landfills, and research concerning improved land-filling operations.

  15. Characterization of solid waste disposed at Columbia Sanitary Landfill in Missouri.

    PubMed

    Zeng, Yinghui; Trauth, Kathleen M; Peyton, Robert L; Banerji, Shankha K

    2005-02-01

    Waste sorts were conducted during each of the four quarters (or seasons) of 1996 at the City of Columbia Sanitary Landfill. A detailed physical sampling protocol was outlined. Weight fractions of 32 waste components were quantified from all geographic areas that contribute to the Columbia Sanitary Landfill using a two-way stratification method, which accounted for variations in geographical regions and seasons. Comparisons of solid waste generated between locations and seasons were conducted at the 80% confidence level. The composition of the entire waste stream was 41% paper, 21% organic, 16% plastic, 6% metal, 3% glass and 13% other waste. Paper was the largest composition and glass was the smallest composition for all geographical regions. The result of this study was also compared with a 1987 Columbia, Missouri study conducted by EIERA (1987), with studies conducted in other states such as Minnesota, Wisconsin, Oregon and with national study conducted by the USEPA (USEPA 530-R-96-001, PB96-152 160. US Environmental Protection Agency, Office of Solid Waste, Washington, DC). The results of studies from other states are different from this study due to different local conditions, different methodologies and a different scope. There was a small (5%) increase in per capita weight from 1987 to 1996. The total per capita weight in the present study was 60% greater than the national per capita weight reported by the USEPA (1996) due to that the USEPA report excluded industrial, construction and certain commercial waste. The total per capita weight agrees with the national per capita weight for municipal waste reported by Tchobanoglous (1993), which included industrial, construction and commercial sources. The geographical and seasonal effects on the waste composition are evaluated and discussed. Statistical analysis indicates that waste characteristics are different among geographical regions and seasons. The potential for waste recovery and reduction is also discussed

  16. 2013 Los Alamos National Laboratory Hazardous Waste Minimization Report

    SciTech Connect

    Salzman, Sonja L.; English, Charles J.

    2015-08-24

    Waste minimization and pollution prevention are inherent goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE) and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program (a component of the overall Waste Minimization/Pollution Prevention [WMin/PP] Program) administered by the Environmental Stewardship Group (ENV-ES). This report also supports the waste minimization and pollution prevention goals of the Environmental Programs Directorate (EP) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. LANS was very successful in fiscal year (FY) 2013 (October 1-September 30) in WMin/PP efforts. Staff funded four projects specifically related to reduction of waste with hazardous constituents, and LANS won four national awards for pollution prevention efforts from the National Nuclear Security Administration (NNSA). In FY13, there was no hazardous, mixedtransuranic (MTRU), or mixed low-level (MLLW) remediation waste generated at the Laboratory. More hazardous waste, MTRU waste, and MLLW was generated in FY13 than in FY12, and the majority of the increase was related to MTRU processing or lab cleanouts. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.

  17. Comparison between landfill gas and waste incineration for power generation in Astana, Kazakhstan.

    PubMed

    Inglezakis, Vassilis J; Rojas-Solórzano, Luis; Kim, Jong; Aitbekova, Aisulu; Ismailova, Aizada

    2015-05-01

    The city of Astana, the capital of Kazakhstan, which has a population of 804,474, and has been experiencing rapid growth over the last 15 years, generates approximately 1.39 kg capita(-1) day(-1) of municipal solid waste (MSW). Nearly 700 tonnes of MSW are collected daily, of which 97% is disposed of at landfills. The newest landfill was built using modern technologies, including a landfill gas (LFG) collection system.The rapid growth of Astana demands more energy on its path to development, and the viability analysis of MSW to generate electricity is imperative. This paper presents a technical-economic pre-feasibility study comparing landfill including LFG utilization and waste incineration (WI) to produce electricity. The performance of LFG with a reciprocating engine and WI with steam turbine power technologies were compared through corresponding greenhouse gases (GHG) reduction, cost of energy production (CEP), benefit-cost ratio (BCR), net present value (NPV) and internal rate of return (IRR) from the analyses. Results demonstrate that in the city of Astana, WI has the potential to reduce more than 200,000 tonnes of GHG per year, while LFG could reduce slightly less than 40,000 tonnes. LFG offers a CEP 5.7% larger than WI, while the latter presents a BCR two times higher than LFG. WI technology analysis depicts a NPV exceeding 280% of the equity, while for LFG, the NPV is less than the equity, which indicates an expected remarkable financial return for the WI technology and a marginal and risky scenario for the LFG technology. Only existing landfill facilities with a LFG collection system in place may turn LFG into a viable project. PMID:25819927

  18. Stabilisation of biodried municipal solid waste fine fraction in landfill bioreactor.

    PubMed

    Grilli, Selene; Giordano, Andrea; Spagni, Alessandro

    2012-09-01

    The biodrying process of solid waste is a pre-treatment for the bio-stabilisation of the municipal solid waste. This study aims to investigate the fate of the municipal solid waste fine fraction (MSWFF) resulting from a biodrying treatment when disposed in landfills that are operated as bioreactors. Biodried MSWFF was apparently stable due to its low moisture content that slows down the microbial activity. The lab-scale anaerobic bioreactors demonstrated that a proper moisture content leads to a complete biodegradation of the organic matter contained in the biodried MSWFF. Using a pilot-scale landfill bioreactor (LBR), MSWFF stabilisation was achieved, suggesting that the leachate recirculation could be an effective approach to accomplish the anaerobic biodegradation and biostabilisation of biodried MSWFF after landfilling. The biostabilisation of the material resulting from the LBR treatment was confirmed using anaerobic and aerobic stability indices. All anaerobic and aerobic indices showed a stability increase of approximately 80% of the MSWFF after treatment in the LBR. The similar values of OD7 and BMP stability indices well agree with the relationship between the aerobic and anaerobic indices reported in literature. PMID:22633467

  19. Assessment of landfill reclamation and the effects of age on the combustion of recovered municipal solid waste

    SciTech Connect

    Forster, G A

    1995-01-01

    This report summarized the Lancaster county Solid Waste Management Authorities`s (LCSWMA)landfill reclamation activities, ongoing since 1991. All aspects have been analyzed from the manpower and equipment requirements at the landfill to the operational impacts felt at the LCSWMA Resource Recovery Facility (RRF) where the material is delivered for processing. Characteristics of the reclaimed refuse and soil recovered from trommeling operations are discussed as are results of air monitoring performed at the landfill excavation site and the RRF. The report also discusses the energy value of the reclaimed material and compares this value with those obtained for significantly older reclaimed waste streams. The effects of waste age on the air emissions and ash residue quality at the RRF are also provided. The report concludes by summarizing the project benefits and provides recommendations for other landfill reclamation operations and areas requiring further research.

  20. 40 CFR 261.3 - Definition of hazardous waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... waste was listed (in 40 CFR 261 appendix VII) of this part; and the constituents in the table “Treatment Standards for Hazardous Wastes” in 40 CFR 268.40 for which each waste has a treatment standard (i.e., Land... waste when it meets the eligibility criteria and conditions of 40 CFR part 266, Subpart N...