Science.gov

Sample records for hazardous waste shipment

  1. Hazardous waste shipment data collection from DOE sites

    SciTech Connect

    Page, L.A.; Kirkpatrick, T.D.; Stevens, L.

    1992-12-31

    Past practices at the US Department of Energy (DOE) sites for offsite release of hazardous waste are being reviewed to determine if radioactively contaminated hazardous wastes were released to commercial treatment, storage, and disposal facilities. Records indicating the presence of radioactivity in waste shipped to and treated at a commercial incineration facility led to a ban on offsite hazardous waste shipments and investigation of past practices for offsite release of hazardous waste from the DOE sites. A House of Representatives Interior and Insular Affairs Committee oversight hearing on potentially contaminated waste shipments to commercial facilities concluded that the main issue was the lack of a uniform national standard to govern disposal of mixed waste.

  2. Hazardous waste shipment data collection from DOE sites

    SciTech Connect

    Page, L.A.; Kirkpatrick, T.D. ); Stevens, L. )

    1992-01-01

    Past practices at the US Department of Energy (DOE) sites for offsite release of hazardous waste are being reviewed to determine if radioactively contaminated hazardous wastes were released to commercial treatment, storage, and disposal facilities. Records indicating the presence of radioactivity in waste shipped to and treated at a commercial incineration facility led to a ban on offsite hazardous waste shipments and investigation of past practices for offsite release of hazardous waste from the DOE sites. A House of Representatives Interior and Insular Affairs Committee oversight hearing on potentially contaminated waste shipments to commercial facilities concluded that the main issue was the lack of a uniform national standard to govern disposal of mixed waste.

  3. Argonne National Laboratory, east hazardous waste shipment data validation

    SciTech Connect

    Casey, C.; Graden, C.; Coveleskie, A.

    1995-09-01

    At the request of EM-331, the Radioactive Waste Technical Support Program (TSP) is conducting an evaluation of data regarding past hazardous waste shipments from DOE sites to commercial TSDFs. The intent of the evaluation is to find out if, from 1984 to 1991, DOE sites could have shipped hazardous waste contaminated with DOE-added radioactivity to commercial TSDFs not licensed to receive radioactive material. A team visited Argonne National Laboratory, East (ANL-E) to find out if any data existed that would help to make such a determination at ANL-E. The team was unable to find any relevant data. The team interviewed personnel who worked in waste management at the time. All stated that ANL-E did not sample and analyze hazardous waste shipments for radioactivity. Waste generators at ANL-E relied on process knowledge to decide that their waste was not radioactive. Also, any item leaving a building where radioisotopes were used was surveyed using hand-held instrumentation. If radioactivity above the criteria in DOE Order 5400.5 was found, the item was considered radioactive. The only documentation still available is the paperwork filled out by the waste generator and initialed by a health physics technician to show no contamination was found. The team concludes that, since all waste shipped offsite was subjected at least once to health physics instrumentation scans, the waste shipped from ANL-E from 1984 to 1991 may be considered clean.

  4. Savannah River Site offsite hazardous waste shipment data validation report. Revision 1

    SciTech Connect

    Casey, C.; Kudera, D.E.; Page, L.A.; Rohe, M.J.

    1995-05-01

    The objective of this data validation is to verify that waste shipments reported in response to the US Department of Energy Headquarters data request are properly categorized according to DOE-HQ definitions. This report documents all findings and actions resulting from the independent review of the Savannah River Site data submittal, and provides a summary of the SRS data submittal and data validation strategy. The overall hazardous waste management and offsite release process from 1987--1991 is documented, along with an identification and description of the hazardous waste generation facilities. SRS did not ship any hazardous waste offsite before 1987. Sampling and analysis and surface surveying procedures and techniques used in determining offsite releasability of the shipments are also described in this report. SRS reported 150 manifested waste shipments from 1984 to 1991 that included 4,755 drums or lab packs and 13 tankers. Of these waste items, this report categorizes 4,251 as clean (including 12 tankers), 326 as likely clean, 138 as likely radioactive, and 55 as radioactive (including one tanker). Although outside the original scope of this report, 14 manifests from 1992 and 1993 are included, covering 393 drums or lab packs and seven tankers. From the 1992--1993 shipments, 58 drums or lab packs are categorized as radioactive and 16 drums are categorized as likely radioactive. The remainder are categorized as clean.

  5. 75 FR 1235 - Revisions to the Requirements for: Transboundary Shipments of Hazardous Wastes Between OECD...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-08

    ... Code of Federal Regulations. EPA U.S. Environmental Protection Agency. FR Federal Register. HSWA..., 1996 (61 FR 16289). Since that time, the OECD has made a number of changes to the waste shipment regime... SLABs are managed, please see Sections II.B.1 and II.B.2 of the proposed rule (73 FR 58393). 2. How...

  6. Hazardous Waste

    MedlinePlus

    ... you throw these substances away, they become hazardous waste. Some hazardous wastes come from products in our homes. Our garbage can include such hazardous wastes as old batteries, bug spray cans and paint ...

  7. Hazardous waste tracking issues

    SciTech Connect

    Marvin, R. )

    1993-08-01

    The concept of cradle-to-grave oversight of hazardous waste was established in 1976 under RCRA. Since then, the multicopy Uniform Hazardous Waste Manifest has been a key component in the federal tracking system. The manifests ensure that generators, transporters and TSDFs maintain documentation of hazardous waste shipments. To a large extent, the tracking system has served its intended purpose; nevertheless, certain shortcomings exist. Anyone involved in shipping hazardous waste should be aware of the system's weaknesses and take appropriate measures to compensate for them.

  8. 49 CFR 174.3 - Unacceptable hazardous materials shipments.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Unacceptable hazardous materials shipments. 174.3... General Requirements § 174.3 Unacceptable hazardous materials shipments. No person may accept for transportation or transport by rail any shipment of hazardous material that is not in conformance with...

  9. 49 CFR 176.3 - Unacceptable hazardous materials shipments.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Unacceptable hazardous materials shipments. 176.3... General § 176.3 Unacceptable hazardous materials shipments. (a) A carrier may not transport by vessel any shipment of a hazardous material that is not prepared for transportation in accordance with parts 172...

  10. 49 CFR 174.3 - Unacceptable hazardous materials shipments.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Unacceptable hazardous materials shipments. 174.3... General Requirements § 174.3 Unacceptable hazardous materials shipments. No person may accept for transportation or transport by rail any shipment of hazardous material that is not in conformance with...

  11. 49 CFR 175.3 - Unacceptable hazardous materials shipments.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Unacceptable hazardous materials shipments. 175.3... General Information and Regulations § 175.3 Unacceptable hazardous materials shipments. A hazardous material that is not prepared for shipment in accordance with this subchapter may not be offered...

  12. 49 CFR 175.3 - Unacceptable hazardous materials shipments.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Unacceptable hazardous materials shipments. 175.3... General Information and Regulations § 175.3 Unacceptable hazardous materials shipments. A hazardous material that is not prepared for shipment in accordance with this subchapter may not be offered...

  13. 49 CFR 176.3 - Unacceptable hazardous materials shipments.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Unacceptable hazardous materials shipments. 176.3... General § 176.3 Unacceptable hazardous materials shipments. (a) A carrier may not transport by vessel any shipment of a hazardous material that is not prepared for transportation in accordance with parts 172...

  14. Hazardous Waste

    MedlinePlus

    ... wastes come from products in our homes. Our garbage can include such hazardous wastes as old batteries, ... drain, flush them, or put them in the garbage. See if you can donate or recycle. Many ...

  15. 40 CFR 273.19 - Tracking universal waste shipments.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Tracking universal waste shipments... Universal Waste § 273.19 Tracking universal waste shipments. A small quantity handler of universal waste is not required to keep records of shipments of universal waste....

  16. 49 CFR 171.3 - Hazardous waste.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... have identification numbers which must be displayed on hazardous waste manifests. See 40 CFR parts 262...: In 40 CFR part 263, the EPA sets forth requirements for the cleanup of releases of hazardous wastes. ..., AND DEFINITIONS Applicability, General Requirements, and North American Shipments § 171.3...

  17. 49 CFR 171.3 - Hazardous waste.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... have identification numbers which must be displayed on hazardous waste manifests. See 40 CFR parts 262...: In 40 CFR part 263, the EPA sets forth requirements for the cleanup of releases of hazardous wastes. ..., AND DEFINITIONS Applicability, General Requirements, and North American Shipments § 171.3...

  18. 49 CFR 171.3 - Hazardous waste.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... have identification numbers which must be displayed on hazardous waste manifests. See 40 CFR parts 262...: In 40 CFR part 263, the EPA sets forth requirements for the cleanup of releases of hazardous wastes. ..., AND DEFINITIONS Applicability, General Requirements, and North American Shipments § 171.3...

  19. 49 CFR 171.3 - Hazardous waste.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... have identification numbers which must be displayed on hazardous waste manifests. See 40 CFR parts 262...: In 40 CFR part 263, the EPA sets forth requirements for the cleanup of releases of hazardous wastes. ..., AND DEFINITIONS Applicability, General Requirements, and North American Shipments § 171.3...

  20. 49 CFR 176.3 - Unacceptable hazardous materials shipments.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Unacceptable hazardous materials shipments. 176.3 Section 176.3 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS CARRIAGE BY VESSEL General § 176.3 Unacceptable...

  1. 49 CFR 177.801 - Unacceptable hazardous materials shipments.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Unacceptable hazardous materials shipments. 177.801 Section 177.801 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS CARRIAGE BY PUBLIC HIGHWAY General Information...

  2. 49 CFR 175.3 - Unacceptable hazardous materials shipments.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Unacceptable hazardous materials shipments. 175.3 Section 175.3 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS CARRIAGE BY AIRCRAFT General Information and Regulations...

  3. 49 CFR 174.3 - Unacceptable hazardous materials shipments.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Unacceptable hazardous materials shipments. 174.3 Section 174.3 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS CARRIAGE BY RAIL General Requirements § 174.3...

  4. 49 CFR 177.801 - Unacceptable hazardous materials shipments.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Unacceptable hazardous materials shipments. 177.801 Section 177.801 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS... PUBLIC HIGHWAY General Information and Regulations § 177.801 Unacceptable hazardous materials...

  5. 40 CFR 273.19 - Tracking universal waste shipments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Tracking universal waste shipments... WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Small Quantity Handlers of Universal Waste § 273.19 Tracking universal waste shipments. A small quantity handler of universal waste...

  6. Action on Hazardous Wastes.

    ERIC Educational Resources Information Center

    EPA Journal, 1979

    1979-01-01

    U.S. EPA is gearing up to investigate about 300 hazardous waste dump sites per year that could pose an imminent health hazard. Prosecutions are expected to result from the priority effort at investigating illegal hazardous waste disposal. (RE)

  7. 40 CFR 273.62 - Tracking universal waste shipments.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Tracking universal waste shipments. 273.62 Section 273.62 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Destination Facilities § 273.62 Tracking universal waste shipments. (a)...

  8. 40 CFR 273.62 - Tracking universal waste shipments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Tracking universal waste shipments. 273.62 Section 273.62 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Destination Facilities § 273.62 Tracking universal waste shipments. (a)...

  9. 25 CFR 170.904 - Who responds to an accident involving a radioactive or hazardous materials shipment?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Who responds to an accident involving a radioactive or hazardous materials shipment? 170.904 Section 170.904 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN RESERVATION ROADS PROGRAM Miscellaneous Provisions Hazardous and Nuclear Waste Transportation § 170.904 Who...

  10. 25 CFR 170.904 - Who responds to an accident involving a radioactive or hazardous materials shipment?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Who responds to an accident involving a radioactive or hazardous materials shipment? 170.904 Section 170.904 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN RESERVATION ROADS PROGRAM Miscellaneous Provisions Hazardous and Nuclear Waste Transportation § 170.904...

  11. 25 CFR 170.904 - Who responds to an accident involving a radioactive or hazardous materials shipment?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Who responds to an accident involving a radioactive or hazardous materials shipment? 170.904 Section 170.904 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN RESERVATION ROADS PROGRAM Miscellaneous Provisions Hazardous and Nuclear Waste Transportation § 170.904...

  12. 25 CFR 170.904 - Who responds to an accident involving a radioactive or hazardous materials shipment?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Who responds to an accident involving a radioactive or hazardous materials shipment? 170.904 Section 170.904 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN RESERVATION ROADS PROGRAM Miscellaneous Provisions Hazardous and Nuclear Waste Transportation § 170.904...

  13. 25 CFR 170.904 - Who responds to an accident involving a radioactive or hazardous materials shipment?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Who responds to an accident involving a radioactive or hazardous materials shipment? 170.904 Section 170.904 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN RESERVATION ROADS PROGRAM Miscellaneous Provisions Hazardous and Nuclear Waste Transportation § 170.904...

  14. Minimizing hazardous waste

    SciTech Connect

    DeClue, S.C.

    1996-06-01

    Hazardous waste minimization is a broad term often associated with pollution prevention, saving the environment or protecting Mother Earth. Some associate hazardous waste minimization with saving money. Thousands of hazardous materials are used in processes every day, but when these hazardous materials become hazardous wastes, dollars must be spent for disposal. When hazardous waste is reduced, an organization will spend less money on hazardous waste disposal. In 1993, Fort Bragg reduced its hazardous waste generation by over 100,000 pounds and spent nearly $90,000 less on hazardous waste disposal costs than in 1992. Fort Bragg generates a variety of wastes: Vehicle maintenance wastes such as antifreeze, oil, grease and solvents; helicopter maintenance wastes, including solvents, adhesives, lubricants and paints; communication operation wastes such as lithium, magnesium, mercury and nickel-cadmium batteries; chemical defense wastes detection, decontamination, and protective mask filters. The Hazardous Waste Office has the responsibility to properly identify, characterize, classify and dispose of these waste items in accordance with US Environmental Protection Agency (EPA) and US Department of Transportation (DOT) regulations.

  15. 40 CFR 273.19 - Tracking universal waste shipments.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Small Quantity Handlers of Universal Waste § 273.19 Tracking universal waste shipments. A small quantity handler of universal waste is... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Tracking universal waste...

  16. 40 CFR 273.19 - Tracking universal waste shipments.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Small Quantity Handlers of Universal Waste § 273.19 Tracking universal waste shipments. A small quantity handler of universal waste is... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Tracking universal waste...

  17. 40 CFR 273.19 - Tracking universal waste shipments.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Small Quantity Handlers of Universal Waste § 273.19 Tracking universal waste shipments. A small quantity handler of universal waste is... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Tracking universal waste...

  18. Hazardous Waste Roundup

    ERIC Educational Resources Information Center

    Farenga, Stephen J.; Joyce, Beverly A.; Ness, Daniel

    2004-01-01

    According to the Environmental Protection Agency (EPA), Americans generate approximately 1.6 million tons of hazardous household waste every year. When most people think of hazardous waste, they generally think of materials used in construction, the defense industry, mining, manufacturing, and agriculture. Few people think of hazardous substances…

  19. The tracking of high level waste shipments-TRANSCOM system

    SciTech Connect

    Johnson, P.E.; Joy, D.S.; Pope, R.B.

    1995-12-31

    The TRANSCOM (transportation tracking and communication) system is the U.S. Department of Energy`s (DOE`s) real-time system for tracking shipments of spent fuel, high-level wastes, and other high-visibility shipments of radioactive material. The TRANSCOM system has been operational since 1988. The system was used during FY1993 to track almost 100 shipments within the US.DOE complex, and it is accessed weekly by 10 to 20 users.

  20. HAZARDOUS WASTE DESTRUCTION

    EPA Science Inventory

    The paper profiles the current status of hazardous waste thermal destruction in the United States, including facilities and wastes typically handled. The results of extensive EPA-sponsored performance tests are presented for incinerators, industrial boilers, and industrial proces...

  1. 40 CFR 273.39 - Tracking universal waste shipments.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... universal waste was sent; (2) The quantity of each type of universal waste received (e.g., batteries... universal waste sent (e.g., batteries, pesticides, thermostats); (3) The date the shipment of universal... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Tracking universal waste...

  2. 40 CFR 273.39 - Tracking universal waste shipments.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... universal waste was sent; (2) The quantity of each type of universal waste received (e.g., batteries... universal waste sent (e.g., batteries, pesticides, thermostats); (3) The date the shipment of universal... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Tracking universal waste...

  3. 40 CFR 273.62 - Tracking universal waste shipments.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of each type of universal waste received (e.g., batteries, pesticides, thermostats); (3) The date of... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Tracking universal waste shipments... WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Destination Facilities §...

  4. 40 CFR 273.39 - Tracking universal waste shipments.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Tracking universal waste shipments. 273.39 Section 273.39 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Large Quantity Handlers of Universal Waste § 273.39 Tracking universal...

  5. 40 CFR 273.62 - Tracking universal waste shipments.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of each type of universal waste received (e.g., batteries, pesticides, thermostats); (3) The date of... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Tracking universal waste shipments... WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Destination Facilities §...

  6. 40 CFR 273.39 - Tracking universal waste shipments.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... universal waste was sent; (2) The quantity of each type of universal waste received (e.g., batteries... universal waste sent (e.g., batteries, pesticides, thermostats); (3) The date the shipment of universal... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Tracking universal waste...

  7. 40 CFR 273.62 - Tracking universal waste shipments.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of each type of universal waste received (e.g., batteries, pesticides, thermostats); (3) The date of... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Tracking universal waste shipments... WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Destination Facilities §...

  8. 40 CFR 273.39 - Tracking universal waste shipments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... universal waste was sent; (2) The quantity of each type of universal waste received (e.g., batteries... universal waste sent (e.g., batteries, pesticides, thermostats); (3) The date the shipment of universal... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Tracking universal waste...

  9. Hazardous Wastes from Homes.

    ERIC Educational Resources Information Center

    Lord, John

    The management of waste materials has become more complex with the increase in human population and the development of new substances. This illustrated booklet traces the history of waste management and provides guidelines for individuals and communities in disposing of certain hazardous wastes safely. It addresses such topics as: (1) how people…

  10. 1st Quarter Transportation Report FY 2015: Radioactive Waste Shipments to and from the Nevada National Security Site (NNSS)

    SciTech Connect

    Gregory, Louis

    2015-02-20

    This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of radioactive waste shipments to and from the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. There were no shipments sent for offsite treatment and returned to the NNSS this quarter. This report summarizes the 1st quarter of Fiscal Year (FY) 2015 low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) shipments. Tabular summaries are provided which include the following: Sources of and carriers for LLW and MLLW shipments to and from the NNSS; Number and external volume of LLW and MLLW shipments; Highway routes used by carriers; and Incident/accident data applicable to LLW and MLLW shipments. In this report shipments are accounted for upon arrival at the NNSS, while disposal volumes are accounted for upon waste burial. The disposal volumes presented in this report include minor volumes of non-radioactive classified waste/material that were approved for disposal (non-radioactive classified or nonradioactive classified hazardous). Volume reports showing cubic feet generated using the Low-Level Waste Information System may vary slightly due to rounding conventions for volumetric conversions from cubic meters to cubic feet.

  11. Developing hazardous waste programs

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Developing a fully operational hazardous waste regulatory system requires at least 10 to 15 years—even in countries with strong legal and bureaucratic institutions, according to a report on "The Evolution of Hazardous Waste Programs," which was funded by Resources for the Future (RFF) and the World Bank's South Asia Environment Group, and issued on June 4.The report, which compares the experiences of how four developed and four developing countries have created hazardous waste programs, indicates that hazardous waste issues usually do not become a pressing environmental issue until after countries have dealt with more direct threats to public health, such as contaminated drinking water and air pollution. The countries examined include Indonesia, Thailand, Germany, and the United States.

  12. Key regulatory drivers affecting shipments of mixed transuranic waste from Los Alamos National Laboratory to the Waste Isolation Pilot Plant

    SciTech Connect

    Schumann, P.B.; Bacigalupa, G.A.; Kosiewicz, S.T.; Sinkule, B.J.

    1997-02-01

    A number of key regulatory drivers affect the nature, scope, and timing of Los Alamos National Laboratory`s (LANL`s) plans for mixed transuranic (MTRU) waste shipments to the Waste Isolation Pilot Plant (WIPP), which are planned to commence as soon as possible following WIPP`s currently anticipated November, 1997 opening date. This paper provides an overview of some of the key drivers at LANL, particularly emphasizing those associated with the hazardous waste component of LANL`s MTRU waste (MTRU, like any mixed waste, contains both a radioactive and a hazardous waste component). The key drivers discussed here derive from the federal Resource Conservation and Recovery Act (RCRA) and its amendments, including the Federal Facility Compliance Act (FFCAU), and from the New Mexico Hazardous Waste Act (NMHWA). These statutory provisions are enforced through three major mechanisms: facility RCRA permits; the New Mexico Hazardous Waste Management Regulations, set forth in the New Mexico Administrative Code, Title 20, Chapter 4, Part 1: and compliance orders issued to enforce these requirements. General requirements in all three categories will apply to MTRU waste management and characterization activities at both WIPP and LANL. In addition, LANL is subject to facility-specific requirements in its RCRA hazardous waste facility permit, permit conditions as currently proposed in RCRA Part B permit applications presently being reviewed by the New Mexico Environment Department (NNED), and facility-specific compliance orders related to MTRU waste management. Likewise, permitting and compliance-related requirements specific to WIPP indirectly affect LANL`s characterization, packaging, record-keeping, and transportation requirements for MTRU waste. LANL must comply with this evolving set of regulatory requirements to begin shipments of MTRU waste to WIPP in a timely fashion.

  13. Pipe overpack container for trasuranic waste storage and shipment

    DOEpatents

    Geinitz, Richard R.; Thorp, Donald T.; Rivera, Michael A.

    1999-01-01

    A Pipe Overpack Container for transuranic waste storage and shipment. The system consists of a vented pipe component which is positioned in a vented, insulated 55 gallon steel drum. Both the vented pipe component and the insulated drum are capable of being secured to prevent the contents from leaving the vessel. The vented pipe component is constructed of 1/4 inch stainless steel to provide radiation shielding. Thus, allowing shipment having high Americium-241 content. Several Pipe Overpack Containers are then positioned in a type B, Nuclear Regulatory Commission (NRC) approved, container. In the current embodiment, a TRUPACT-II container was employed and a maximum of fourteen Pipe Overpack Containers were placed in the TRUPACT-II. The combination received NRC approval for the shipment and storage of transuranic waste.

  14. Hazardous Waste: Cleanup and Prevention.

    ERIC Educational Resources Information Center

    Vandas, Steve; Cronin, Nancy L.

    1996-01-01

    Discusses hazardous waste, waste disposal, unsafe exposure, movement of hazardous waste, and the Superfund clean-up process that consists of site discovery, site assessment, clean-up method selection, site clean up, and site maintenance. Argues that proper disposal of hazardous waste is everybody's responsibility. (JRH)

  15. PERMITTING HAZARDOUS WASTE INCINERATORS

    EPA Science Inventory

    This publication is a compilation of information presented at a seminar series designed to address the issues that affect the issuance of hazardous waste incineration permits and to improve the overall understanding of trial burn testing. pecifically, the document provides guidan...

  16. Hazardous Waste: Cleanup and Prevention.

    ERIC Educational Resources Information Center

    Vandas, Steve; Cronin, Nancy L.

    1996-01-01

    Describes the Superfund, a federal cleanup program created in response to growing public concern over the health and environmental risks posed by hazardous waste sites. Discusses sources, disposal, and movement and risk of hazardous waste. (JRH)

  17. 49 CFR 173.12 - Exceptions for shipment of waste materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... required in § 172.324 of this subchapter. (e) Segregation requirements. Waste materials packaged according... 49 Transportation 2 2014-10-01 2014-10-01 false Exceptions for shipment of waste materials. 173.12...-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS General § 173.12 Exceptions for shipment of...

  18. 49 CFR 173.12 - Exceptions for shipment of waste materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... required in § 172.324 of this subchapter. (e) Segregation requirements. Waste materials packaged according... 49 Transportation 2 2013-10-01 2013-10-01 false Exceptions for shipment of waste materials. 173.12...-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS General § 173.12 Exceptions for shipment of...

  19. 49 CFR 173.12 - Exceptions for shipment of waste materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... subchapter and marked as required in § 172.324 of this subchapter. (e) Segregation requirements. Waste... 49 Transportation 2 2012-10-01 2012-10-01 false Exceptions for shipment of waste materials. 173.12...-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS General § 173.12 Exceptions for shipment of...

  20. 49 CFR 173.12 - Exceptions for shipment of waste materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... subchapter and marked as required in § 172.324 of this subchapter. (e) Segregation requirements. Waste... 49 Transportation 2 2010-10-01 2010-10-01 false Exceptions for shipment of waste materials. 173.12...-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS General § 173.12 Exceptions for shipment of...

  1. 49 CFR 173.12 - Exceptions for shipment of waste materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... subchapter and marked as required in § 172.324 of this subchapter. (e) Segregation requirements. Waste... 49 Transportation 2 2011-10-01 2011-10-01 false Exceptions for shipment of waste materials. 173.12...-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS General § 173.12 Exceptions for shipment of...

  2. 10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... nuclear waste contained in the shipment, as specified in the regulations of DOT in 49 CFR 172.202 and 172... 10 Energy 2 2010-01-01 2010-01-01 false Advance notification of shipment of irradiated reactor... notification of shipment of irradiated reactor fuel and nuclear waste. (a) As specified in paragraphs (b),...

  3. 77 FR 12228 - Idaho: Proposed Authorization of State Hazardous Waste Management Program; Revision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    ... Definition of Solid Waste (73 FR 64668, October 30, 2008); Academic Laboratories Generator Standards, Alternative Standards for Hazardous Waste Determination and Accumulation (73 FR 72912, December 1, 2008... Shipments of Spend Lead-Acid Batteries (75 FR 1236, January 8, 2010); Hazardous Waste Technical...

  4. Incineration of hazardous wastes.

    PubMed

    Gannon, T; Ansbro, A R; Burns, R P

    1991-10-01

    Glaxo has practiced incineration of liquid and gaseous wastes for over twenty years and currently operate eleven liquid and gas incinerators in the United Kingdom and Singapore. The liquid incinerators burn, as their main streams, those solvents that cannot be recovered and recycled within the processes. The early installations were for readily combustible solvents only. However, there has been a progressive move into the destruction of more difficult and hazardous wastes, with the consequential requirements for more sophisticated technology, in the belief that the responsible destruction of waste should be tackled near to its source. The eventual aim is to be self-sufficient in this area of waste management. The incineration of hazardous liquid and gaseous waste has presented a series of design, operational and monitoring problems into account which have all been successfully overcome. The solutions take into account the environmental consequences of the operations from both liquid and gaseous emissions. In order to ensure minimal environmental impact and safe operation the best practicable technology is employed. Environmental assessment forms part of the process development and permitting procedures. PMID:24233930

  5. DEFINITION OF A HAZARDOUS WASTE

    EPA Science Inventory

    The USEPA has promulagated regulation establishing the criteria and characteristics of hazardous waste. The criteria established include the following factors: (1) the waste is associated with an identified waste stream or contains constituents which are identified in listings in...

  6. 10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... shipment, as specified in the regulations of DOT in 49 CFR 172.202 and 172.203(d); (3) The point of origin... 10 Energy 2 2014-01-01 2014-01-01 false Advance notification of shipment of irradiated reactor... notification of shipment of irradiated reactor fuel and nuclear waste. (a)(1) As specified in paragraphs...

  7. 10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... regulations of DOT in 49 CFR 172.202 and 172.203(d); (3) The point of origin of the shipment and the 7-day... 10 Energy 2 2011-01-01 2011-01-01 false Advance notification of shipment of irradiated reactor... notification of shipment of irradiated reactor fuel and nuclear waste. (a) As specified in paragraphs (b),...

  8. 10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... shipment, as specified in the regulations of DOT in 49 CFR 172.202 and 172.203(d); (3) The point of origin... 10 Energy 2 2013-01-01 2013-01-01 false Advance notification of shipment of irradiated reactor... notification of shipment of irradiated reactor fuel and nuclear waste. (a)(1) As specified in paragraphs...

  9. ACCELERATING HANFORD TRANSURANC (TRU) WASTE CERTIFICATION & SHIPMENT FROM 2 PER YEAR TO 12 PER MONTH

    SciTech Connect

    MCDONALD, K.M.

    2005-01-20

    The Department of Energy's site at Hanford has significantly accelerated the characterization of transuranic (TRU) waste and its subsequent shipment to the Waste Isolation Pilot Plant (WIPP)--from a total of two shipments in fiscal year 2002 to twelve shipments per month. The challenges encountered and experience gained in achieving this acceleration provide valuable lessons that can be used by others in the waste industry. Lessons learned as well as estimates of cost savings and schedule benefits are described. At the start of the acceleration effort, three separate facilities managed by multiple organizations characterized and handled the drums. To consolidate the majority of these activities under one organization and in one facility required RCRA permit and safety basis modifications. and a myriad of construction activities--but all with very visible benefit. Transferring drums between the separate facilities involved multiple organizations, and required meeting a complex set of transportation and safety basis requirements. Consolidating characterization activities into a single facility greatly simplified this process, realizing very significant operational efficiencies. Drums stockpiled in buildings for future processing previously were stored with recognition of physical, chemical, and radiological hazards, but without consideration for future processing. Drums are now stored using a modular approach so that feed for characterization processing takes drums from the accessible module face rather than randomly throughout the storage building. This approach makes drum handling more efficient, minimizes the potential for worker injuries, and supports the principles of ''as low as reasonably achievable'' (ALARA) exposure from the waste. Sampling the headspace gas of the TRU waste packages was a major bottleneck in the characterization process, and hence an obstacle to acceleration. Sampling rates were improved by a combination of insulating and heating a waste

  10. Hazardous Wastes--New Developments.

    ERIC Educational Resources Information Center

    Rogers, Harvey W.

    1979-01-01

    The need for effective disposal of hazardous medical and pathological wastes is discussed and the results of a test of five different models of incinerators in disposing of such wastes is presented. (MJB)

  11. The highway and railroad operating environments for hazardous shipments in the U.S.-safer in the '90s?

    SciTech Connect

    Saricks, C. L.; Tompkins, M. M.

    2000-04-01

    This paper seeks to illuminate the status of transportation safety and risk for large-quantity shipments of spent commercial reactor fuel and mixed and hazardous wastes by examining road and rail accident and vehicular travel data from the mid-1990s. Of special interest are the effect of speed limit changes on controlled-access expressways (chiefly the Interstate Highway System) and the possible effect of season-to-season climatic variation on road transport. We found that improvements in railroad technology and infrastructure have created a safer overall operating environment for railroad freight shipments. We also found recent evidence of an increase in accident rates of heavy combination trucks in states that have raised highway speed limits. Finally, cold weather increases road transport risk, while conditions associated with higher ambient temperatures do not. This last finding is in contrast to rail transport, for which the literature associates both hot and cold temperature extremes with higher accident rates.

  12. Hanford Site annual dangerous waste report: Volume 1, Part 1, Generator dangerous waste report, dangerous waste

    SciTech Connect

    1994-12-31

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation.

  13. Characterization of mixed waste for shipment to TSD Facilities Program

    SciTech Connect

    Chandler, K.; Goyal, K.

    1995-12-31

    In compliance with the Federal Facilities Compliance Agreement, Los Alamos National Laboratory (LANL) is striving to ship its low-level mixed waste (LLMW) off-site for treatment and disposal. In order to ship LLMW off site to a commercial facility, LANL must request exemption from the DOE Order 5820.2A requirement that LLMW be shipped only to Department of Energy facilities. Because the process of obtaining the required information and approvals for a mixed waste shipment campaign can be very expensive, time consuming, and frustrating, a well-planned program is necessary to ensure that the elements for the exemption request package are completed successfully the first time. LANL has developed such a program, which is cost- effective, quality-driven, and compliance-based. This program encompasses selecting a qualified analytical laboratory, developing a quality project-specific sampling plan, properly sampling liquid and solid wastes, validating analytical data, documenting the waste characterization and decision processes, and maintaining quality records. The products of the program are containers of waste that meet the off-site facility`s waste acceptance criteria, a quality exemption request package, documentation supporting waste characterization, and overall quality assurance for the process. The primary goal of the program is to provide an avenue for documenting decisions, procedures, and data pertinent to characterizing waste and preparing it for off-site treatment or disposal.

  14. Elimination of the hazards from hazardous wastes.

    PubMed Central

    Gloyna, E F; Taylor, R D

    1978-01-01

    The "hazard" associated with a waste essentially controls the overall engineering approach to finding suitable alternatives for solving potential disposal problems. It should be recognized that all factors affecting environmental equilibrium must be considered, including product sales, process design, financing, pre- and end-of-pipe treatment, residuals management, and ultimate bioaccumulation of residuals. To meet this challenge, a systems approach to waste treatment and residuals disposal provides a logical approach, but this management concept requires a thorough understanding of the important physical and chemical aspects of the problem, as well as many social implications of the resulting decisions. Thus waste management within a plant necessarily involves process control, pretreatment and end-of-pipe treatment. Further, it follows that residuals management from a disposal point-of-view must ultimately embrace what is called the "multi-barrier concept." In essence, hazard elimination occurs in varying degrees during each phase of a properly engineered system. PMID:738249

  15. Hazardous waste: cleanup and prevention

    USGS Publications Warehouse

    Vandas, Stephen; Cronin, Nancy L.; Farrar, Frank, (artist); Serrano, Guillermo Eliezer Ávila, (translator); Yajimovich, Oscar Efraín González; Muñoz, Aurora R.; Rivera, María del C.

    1996-01-01

    Our lifestyles are supported by complex Industrial activities that produce many different chemicals and chemical wastes. The Industries that produce our clothing, cars, medicines, paper, food, fuels, steel, plastics, and electric components use and discard thousands of chemicals every year. At home we may use lawn chemicals, solvents, disinfectants, cleaners, and auto products to Improve our quality of life. A chemical that presents a threat or unreasonable risk to people or the environment Is a hazardous material. When a hazardous material can no longer be used, It becomes a hazardous waste. Hazardous wastes come from a variety of sources, from both present and past activities. Impacts to human health and the environment can result from Improper handling and disposal of hazardous waste.

  16. Method of recycling hazardous waste

    SciTech Connect

    1999-11-11

    The production of primary metal from ores has long been a necessary, but environmentally devastating process. Over the past 20 years, in an effort to lessen environmental impacts, the metal processing industry has developed methods for recovering metal values from certain hazardous wastes. However, these processes leave residual molten slag that requires disposal in hazardous waste landfills. A new process recovers valuable metals, metal alloys, and metal oxides from hazardous wastes, such as electric arc furnace (EAF) dust from steel mills, mill scale, spent aluminum pot liners, and wastewater treatment sludge from electroplating. At the same time, the process does not create residual waste for disposal. This new method uses all wastes from metal production processes. These hazardous materials are converted to three valuable products - mineral wool, zinc oxide, and high-grade iron.

  17. Shipment and Disposal of Solidified Organic Waste (Waste Type IV) to the Waste Isolation Pilot Plant (WIPP)

    SciTech Connect

    D'Amico, E. L; Edmiston, D. R.; O'Leary, G. A.; Rivera, M. A.; Steward, D. M.

    2006-07-01

    In April of 2005, the last shipment of transuranic (TRU) waste from the Rocky Flats Environmental Technology Site to the WIPP was completed. With the completion of this shipment, all transuranic waste generated and stored at Rocky Flats was successfully removed from the site and shipped to and disposed of at the WIPP. Some of the last waste to be shipped and disposed of at the WIPP was waste consisting of solidified organic liquids that is identified as Waste Type IV in the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC) document. Waste Type IV waste typically has a composition, and associated characteristics, that make it significantly more difficult to ship and dispose of than other Waste Types, especially with respect to gas generation. This paper provides an overview of the experience gained at Rocky Flats for management, transportation and disposal of Type IV waste at WIPP, particularly with respect to gas generation testing. (authors)

  18. Costs of Building Waste Facilities; Price Per Shipment to Recoup Costs

    Energy Science and Technology Software Center (ESTSC)

    1993-05-14

    The Automated Pricing Schedule is a computer model for evaluating the economics of developing, operating, and closing a low-level radioactive waste disposal site. It provides pricing for individual shipments based on the characteristics of the shipment, and calculates a disposal fee to be charged for each shipment to recover the costs of the facility. It includes a sensitivity analysis module to evaluate the effect of varying the parameters of the model.

  19. Radioactive waste shipments to Hanford Retrievable Storage from the General Electric Vallecitos Nuclear Center, Pleasanton, California

    SciTech Connect

    Vejvoda, E.J.; Pottmeyer, J.A.; DeLorenzo, D.S.; Weyns-Rollosson, M.I.; Duncan, D.R.

    1993-10-01

    During the next two decades the transuranic (TRU) wastes now stored in the burial trenches and storage facilities at the Hanford Site are to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant near Carlsbad, New Mexico for final disposal. Approximately 3.8% of the TRU waste to be retrieved for shipment to WIPP was generated at the General Electric (GE) Vallecitos Nuclear Center (VNC) in Pleasanton, California and shipped to the Hanford Site for storage. The purpose of this report is to characterize these radioactive solid wastes using process knowledge, existing records, and oral history interviews. The waste was generated almost exclusively from the activities, of the Plutonium Fuels Development Laboratory and the Plutonium Analytical Laboratory. Section 2.0 provides further details of the VNC physical plant, facility operations, facility history, and current status. The solid radioactive wastes were associated with two US Atomic Energy Commission/US Department of Energy reactor programs -- the Fast Ceramic Reactor (FCR) program, and the Fast Flux Test Reactor (FFTR) program. These programs involved the fabrication and testing of fuel assemblies that utilized plutonium in an oxide form. The types and estimated quantities of waste resulting from these programs are discussed in detail in Section 3.0. A detailed discussion of the packaging and handling procedures used for the VNC radioactive wastes shipped to the Hanford Site is provided in Section 4.0. Section 5.0 provides an in-depth look at this waste including the following: weight and volume of the waste, container types and numbers, physical description of the waste, radiological components, hazardous constituents, and current storage/disposal locations.

  20. Hanford Site annual dangerous waste report: Volume 1, Part 2, Generator dangerous waste report, dangerous waste

    SciTech Connect

    1994-12-31

    This report contains information on hazardous materials at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation.

  1. Portable sensor for hazardous waste

    SciTech Connect

    Piper, L.G.; Fraser, M.E.; Davis, S.J.

    1995-10-01

    We are beginning the second phase of a three and a half year program designed to develop a portable monitor for sensitive hazardous waste detection. The ultimate goal of the program is to develop our concept to the prototype instrument level. Our monitor will be a compact, portable instrument that will allow real-time, in situ, monitoring of hazardous wastes. This instrument will be able to provide the means for rapid field screening of hazardous waste sites to map the areas of greatest contamination. Remediation efforts can then focus on these areas. Further, our instrument can show whether cleanup technologies are successful at reducing hazardous materials concentrations below regulated levels, and will provide feedback to allow changes in remediation operations, if necessary, to enhance their efficacy.

  2. 10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... regulations of DOT in 49 CFR 172.202 and 172.203(d); (3) The point of origin of the shipment and the 7-day... 10 Energy 2 2012-01-01 2012-01-01 false Advance notification of shipment of irradiated reactor fuel and nuclear waste. 71.97 Section 71.97 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED)...

  3. MEETING HAZARDOUS WASTE REQUIREMENTS FOR METAL FINISHERS

    EPA Science Inventory

    This document provides information on the regulations affecting hazardous wastes discharged by metal finishers. opics included are: impact of RCRA regulations on both small and large generators; "delisting" of a specific facility waste from hazardous waste regulation; land dispos...

  4. Hazardous solid waste from agriculture.

    PubMed Central

    Loehr, R C

    1978-01-01

    Large quantities of food processing, crop, forestry, and animal solid wastes are generated in the United States each year. The major components of these wastes are biodegradable. However, they also contain components such as nitrogen, human and animal pathogens, medicinals, feed additives, salts, and certain metals, that under uncontrolled conditions can be detrimental to aquatic, plant, animal, or human life. The most common method of disposal of these wastes is application to the land. Thus the major pathways for transmission of hazards are from and through the soil. Use of these wastes as animal feed also can be a pathway. While at this time there are no crises associated with hazardous materials in agricultural solid wastes, the potential for problems should not be underestimated. Manpower and financial support should be provided to obtain more detailed information in this area, esepcially to better delineate transport and dispersal and to determine and evaluate risks. PMID:367770

  5. Packaging and transportation manual. Chapter on the packaging and transportation of hazardous and radioactive waste

    SciTech Connect

    1998-03-01

    The purpose of this chapter is to outline the requirements that Los Alamos National Laboratory employees and contractors must follow when they package and ship hazardous and radioactive waste. This chapter is applied to on-site, intra-Laboratory, and off-site transportation of hazardous and radioactive waste. The chapter contains sections on definitions, responsibilities, written procedures, authorized packaging, quality assurance, documentation for waste shipments, loading and tiedown of waste shipments, on-site routing, packaging and transportation assessment and oversight program, nonconformance reporting, training of personnel, emergency response information, and incident and occurrence reporting. Appendices provide additional detail, references, and guidance on packaging for hazardous and radioactive waste, and guidance for the on-site transport of these wastes.

  6. RCRA hazardous waste contingency plans

    SciTech Connect

    Wagner, T.P. )

    1991-10-01

    This paper reports that the Resource Conservation and Recovery Act (RCRA) requires hazardous waste treatment, storage and disposal facilities (TSDFs) to prepare a contingency plan. The plan is a blueprint for emergency response, and must be designed to minimize health and environmental hazards resulting from fires, explosions or other unplanned hazardous releases. Hazardous waste contingency plans often are neglected and considered an unnecessary regulatory exercise by facility operators. However, an effective contingency plan is a valuable tool for reducing liability, protecting workers and the community, and avoiding costly shutdowns. The requirement under Title III of the Superfund Amendments and Reauthorization Act (SARA) that regulated facilities report to EPA annually on releases to the environment has caused regulators to renew emphasis on the importance of RCRA contingency plans. However, regulatory agencies historically have provided insufficient information on the elements of an adequate contingency plan. Nevertheless, facility operators seriously should consider going beyond minimum regulatory requirements and create a comprehensive contingency plan.

  7. Biological treatment of hazardous waste

    SciTech Connect

    Lewandowski, G.A.; Filippi, L.J. de

    1998-12-01

    This reference book is intended for individuals interested in or involved with the treatment of hazardous wastes using biological/biochemical processes. Composed of 13 chapters, it covers a wide variety of topics ranging from engineering design to hydrogeologic factors. The first four chapters are devoted to a description of several different types of bioreactors. Chapter 5 discusses the biofiltration of volatile organic compounds. Chapters 6 through 9 discuss specific biological, biochemical, physical, and engineering factors that affect bioremediation of hazardous wastes. Chapter 10 is a very good discussion of successful bioremediation of pentachlorophenol contamination under laboratory and field conditions, and excellent references are provided. The next chapter discusses the natural biodegradation of PCB-contaminated sediments in the Hudson River in New York state. Chapter 12 takes an excellent look at the bioremediation capability of anaerobic organisms. The final chapter discusses composting of hazardous waste.

  8. Financial assistance to States and tribes to support emergency preparedness and response and the safe transportation of hazardous shipments

    SciTech Connect

    Bradbury, J.A.; Jones, M.L.

    1995-01-01

    This report identifies and summarizes existing sources of financial assistance to States and Indian tribes in preparing and responding to transportation emergencies and ensuring the safe transportation of hazardous shipments through their jurisdictions. The report has been prepared as an information resource for the US Department of Energy`s Office of Environmental Restoration and Waste Management, Office of Transportation, Emergency Management and Analytical Services. The report discusses funding programs administered by the following Federal agencies: Federal Emergency Management Agency; Department of Transportation; the Environmental Protection Agency; and the Department of Energy. Also included is a summary of fees assessed by some States on carriers of hazardous materials and hazardous waste. The discussion of programs is supplemented by an Appendix that provides a series of tables summarizing funding sources and amounts. The report includes several conclusions concerning the level of funding provided to Indian tribes, the relative ranking of funding sources and the variation among States in overall revenues for emergency response and safe transportation.

  9. Hazardous waste management

    SciTech Connect

    Dawson, G.W.; Mercer, B.W.

    1986-01-01

    This is a reference work designed to guide the chemist to solutions to problems of waste disposal. It has chapters on incineration, ocean dumping and underground injection, landfill disposal, transportation, abandoned sites, regulation, etc. A group of 12 appendices provide a lot of useful information for quick reference.

  10. 40 CFR 194.8 - Approval process for waste shipment from waste generator sites for disposal at the WIPP.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-CERTIFICATION OF THE WASTE ISOLATION PILOT PLANT'S COMPLIANCE WITH THE 40 CFR PART 191 DISPOSAL REGULATIONS General Provisions § 194.8 Approval process for waste shipment from waste generator sites for disposal at... from waste generator sites for disposal at the WIPP. 194.8 Section 194.8 Protection of...

  11. 40 CFR 194.8 - Approval process for waste shipment from waste generator sites for disposal at the WIPP.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-CERTIFICATION OF THE WASTE ISOLATION PILOT PLANT'S COMPLIANCE WITH THE 40 CFR PART 191 DISPOSAL REGULATIONS General Provisions § 194.8 Approval process for waste shipment from waste generator sites for disposal at... from waste generator sites for disposal at the WIPP. 194.8 Section 194.8 Protection of...

  12. 40 CFR 194.8 - Approval process for waste shipment from waste generator sites for disposal at the WIPP.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-CERTIFICATION OF THE WASTE ISOLATION PILOT PLANT'S COMPLIANCE WITH THE 40 CFR PART 191 DISPOSAL REGULATIONS General Provisions § 194.8 Approval process for waste shipment from waste generator sites for disposal at... from waste generator sites for disposal at the WIPP. 194.8 Section 194.8 Protection of...

  13. 40 CFR 194.8 - Approval process for waste shipment from waste generator sites for disposal at the WIPP.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-CERTIFICATION OF THE WASTE ISOLATION PILOT PLANT'S COMPLIANCE WITH THE 40 CFR PART 191 DISPOSAL REGULATIONS General Provisions § 194.8 Approval process for waste shipment from waste generator sites for disposal at... from waste generator sites for disposal at the WIPP. 194.8 Section 194.8 Protection of...

  14. 40 CFR 194.8 - Approval process for waste shipment from waste generator sites for disposal at the WIPP.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-CERTIFICATION OF THE WASTE ISOLATION PILOT PLANT'S COMPLIANCE WITH THE 40 CFR PART 191 DISPOSAL REGULATIONS General Provisions § 194.8 Approval process for waste shipment from waste generator sites for disposal at... from waste generator sites for disposal at the WIPP. 194.8 Section 194.8 Protection of...

  15. NAVAJO NATION HAZARDOUS WASTE SITES

    EPA Science Inventory

    This point coverage represents the locations of hazardous waste sites on the Navajo Nation Indian Reservation. The point locations were delineated on 1:24,000 scale US Geological Survey (USGS) topographic maps by staff from the Navajo Nation EPA, Resource Conservation & Reco...

  16. HAZARDOUS WASTE DEGRADATION BY WOOD DEGRADING FUNGI

    EPA Science Inventory

    The persistence and toxicity of many hazardous waste constituents indicates that the environment has limited capacity to degrade such materials. he competence and presence of degrading organisms significantly effects our ability to treat and detoxify these hazardous waste chemica...

  17. ANALYSIS OF GEOTHERMAL WASTES FOR HAZARDOUS COMPONENTS

    EPA Science Inventory

    Regulations governing the disposal of hazardous wastes led to an assessment for geothermal solid wastes for potentially hazardous properties. Samples were collected from three active geothermal sites in the western United States: The Geysers, Imperial Valley, and northwestern Nev...

  18. Annual Transportation Report for Radioactive Waste Shipments to and from the Nevada Test Site

    SciTech Connect

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2009-02-01

    In February 1997, the U.S. Department of Energy (DOE), Nevada Operations Office (now known as the Nevada Site Office) issued the Mitigation Action Plan which addressed potential impacts described in the “Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada” (DOE/EIS 0243). The U.S. Department of Energy, Nevada Operations Office committed to several actions, including the preparation of an annual report, which summarizes waste shipments to and from the Nevada Test Site (NTS) Radioactive Waste Management Site (RWMS) at Area 5 and Area 3. No shipments were disposed of at Area 3 in fiscal year (FY) 2008. This document satisfies requirements regarding low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) transported to or from the NTS during FY 2008. No transuranic (TRU) waste shipments were made from or to the NTS during FY 2008.

  19. 49 CFR 171.3 - Hazardous waste.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... have identification numbers which must be displayed on hazardous waste manifests. See 40 CFR parts 262...: In 40 CFR part 263, the EPA sets forth requirements for the cleanup of releases of hazardous wastes. ... 49 Transportation 2 2010-10-01 2010-10-01 false Hazardous waste. 171.3 Section...

  20. ALTERNATIVE TREATMENT METHODS FOR HAZARDOUS WASTES

    EPA Science Inventory

    The five-year schedule for the minimization and restrictions on the disposal of hazardous wastes onto the land is described. Two major items are causing a shift in the way hazardous wastes are managed in the United States. Because of liability for hazardous wastes, companies are ...

  1. 77 FR 43002 - Hazardous Waste Management System: Identification and Listing of Hazardous Waste Amendment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-23

    ... AGENCY 40 CFR Part 261 Hazardous Waste Management System: Identification and Listing of Hazardous Waste... changes to appendix IX of part 261 are effective July 23, 2012. The Hazardous and Solid Waste Amendments... Environmental protection, Hazardous waste, Recycling, and Reporting and recordkeeping requirements....

  2. 4th Quarter Transportation Report FY 2014: Radioactive Waste Shipments to and from the Nevada National Security Site (NNSS)

    SciTech Connect

    Gregory, Louis

    2014-12-02

    This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of radioactive waste shipments to and from the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. There were no shipments sent for offsite treatment and returned to the NNSS this quarter. There was one shipment of two drums sent for offsite treatment and disposal. This report summarizes the 4th quarter of Fiscal Year (FY) 2014 low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) shipments. This report also includes annual summaries for FY 2014.

  3. Planning for hazardous waste management.

    PubMed

    Rhoades, R F

    1982-01-01

    Various responsibilities and issues must be considered when becoming involved in the management of hazardous wastes. A basic understanding of the problem and control methodologies including the regulatory provisions of the Resource Conservation and Recovery act (RCRA) is necessary in order to begin the initial phase of the planning process. The roles of industry, the public and the federal government are discussed as well as various management options which can be pursued by state and local authorities. Special attention is focused on the issues of site selection, existing and abandoned sites and the application of "Superfund," disposition of exempt waste quantities and emergency response. PMID:10257564

  4. 75 FR 58346 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ... AGENCY 40 CFR Part 261 Hazardous Waste Management System; Identification and Listing of Hazardous Waste...) certain solid wastes generated by its Longview, Texas, facility from the lists of hazardous wastes. EPA... petitioned waste on human health and the environment. DATES: Comments must be received on or before...

  5. Portable sensor for hazardous waste

    SciTech Connect

    Piper, L.G.; Hunter, A.J.R.; Fraser, M.E.; Davis, S.J.

    1996-12-31

    We are part-way through the second phase of a 4-year program designed to develop a portable monitor for sensitive hazardous waste detection. The ultimate goal of the program is to develop our concept to the prototype instrument level. Our monitor will be a compact, portable instrument that will allow real-time, in situ, monitoring of hazardous wastes. This instrument will be able to provide the means for rapid field screening of hazardous waste sites to map the areas of greatest contamination. Remediation efforts can then focus on these areas. Our analysis approach is to excite atomic and molecular fluorescence by the technique of active nitrogen energy transfer (ANET). The active nitrogen is made in a dielectric-barrier (D-B) discharge in nitrogen at atmospheric pressure. Only a few emission lines or bands are excited for each hazardous species, so spectral resolution requirements are greatly simplified over those of other spectroscopic techniques. The D-B discharge is compact, 1 to 2 cm in diameter and 1 to 10 cm long. Furthermore, the discharge power requirements are quite modest, so that the unit can be powered by batteries. Thus an instrument based on ANET can readily be made portable. Our results indicate that ANET is a very sensitive technique for monitoring heavy metals and chlorinated hydrocarbons. We have demonstrated an overall detection sensitivity for most species that is at or below ppb levels. ANET alone, however, appears to be most successful in treating hazardous species that have been atomized. We are therefore developing a hybrid technique which combines a miniature, solid-state laser for sample collection and vaporization with ANET for subsequent detection. This approach requires no special sample preparation, can operate continuously, and lends itself well to compact packaging.

  6. 40 CFR 271.12 - Requirements for hazardous waste management facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... shall have standards for hazardous waste management facilities which are equivalent to 40 CFR parts 264... reporting. States that choose to receive electronic documents must include the requirements of 40 CFR Part 3... address referenced in 40 CFR 264.71(a)(3) and 265.71(a)(3), to indicate the receipt of a shipment...

  7. 40 CFR 271.12 - Requirements for hazardous waste management facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... shall have standards for hazardous waste management facilities which are equivalent to 40 CFR parts 264... reporting. States that choose to receive electronic documents must include the requirements of 40 CFR Part 3... address referenced in 40 CFR 264.71(a)(3) and 265.71(a)(3), to indicate the receipt of a shipment...

  8. 40 CFR 271.12 - Requirements for hazardous waste management facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... shall have standards for hazardous waste management facilities which are equivalent to 40 CFR parts 264... reporting. States that choose to receive electronic documents must include the requirements of 40 CFR Part 3... address referenced in 40 CFR 264.71(a)(3) and 265.71(a)(3), to indicate the receipt of a shipment...

  9. Garbage imperialism: health implications of dumping hazardous wastes in Third World countries.

    PubMed

    Stebbins, K R

    1992-11-01

    This paper calls for studies of the potential health implications of today's hazardous waste disposal practices, and suggests that such studies are urgently needed in Third World countries where industrial nations are increasingly dumping their unwanted waste materials. The United States produces enormous quantities of hazardous waste each year, and approximately 1,200 "priority hazardous waste sites" presently threaten the nation's health. Because of environmental regulations, landfill closings, and citizen opposition to local waste facilities, industrialized countries are increasingly disposing of their problematic materials by shipping them to the Third World, where they pose substantial threats to human health and the environment. From a political economy perspective, this paper suggests that global health would be better served by reducing hazardous waste production, encouraging reusing and recycling, and restricting or banning international shipment of toxic wastes. PMID:1300412

  10. Waste minimization via destruction of hazardous organics

    SciTech Connect

    Austin, L.R.

    1991-01-01

    Los Alamos National Laboratory is developing technologies that are capable of destroying hazardous organics, that is, converting them basically to water and carbon dioxide. If these technologies were incorporated into the main processing operation where the waste is produced, then the volume and toxicity of the hazardous or mix hazardous waste generated would be significantly reduced. This presentation will briefly discuss some of the waste treatment technologies under development at Los Alamos National Laboratory focused on destroying hazardous organics.

  11. Ecotoxicological characterization of hazardous wastes.

    PubMed

    Wilke, B-M; Riepert, F; Koch, Christine; Kühne, T

    2008-06-01

    In Europe hazardous wastes are classified by 14 criteria including ecotoxicity (H 14). Standardized methods originally developed for chemical and soil testing were adapted for the ecotoxicological characterization of wastes including leachate and solid phase tests. A consensus on which tests should be recommended as mandatory is still missing. Up to now, only a guidance on how to proceed with the preparation of waste materials has been standardized by CEN as EN 14735. In this study, tests including higher plants, earthworms, collembolans, microorganisms, duckweed and luminescent bacteria were selected to characterize the ecotoxicological potential of a boiler slag, a dried sewage sludge, a thin sludge and a waste petrol. In general, the instructions given in EN 14735 were suitable for all wastes used. The evaluation of the different test systems by determining the LC/EC(50) or NOEC-values revealed that the collembolan reproduction and the duckweed frond numbers were the most sensitive endpoints. For a final classification and ranking of wastes the Toxicity Classification System (TCS) using EC/LC(50) values seems to be appropriate. PMID:17996938

  12. Status and use of the Rocky Flats Environmental Technology Site Pipe Overpack Container for TRU waste storage and shipments

    SciTech Connect

    Thorp, D.T.; Geinitz, R.R.; Rivera, M.A.

    1998-03-03

    The Pipe Overpack Container was designed to optimize shipments of high plutonium content transuranic waste from Rocky Flats Environmental Technology Site (RFETS) to Waste Isolation Pilot Plant (WIPP). The container was approved for use in the TRUPACT-II shipping container by the Nuclear Regulatory Commission in February 1997. The container optimizes shipments to WIPP by increasing the TRUPACT-II criticality limit from 325 fissile grams equivalent (FGE) to 2,800 FGE and provides additional shielding for handling wastes with high americium-241 (Am-241) content. The container was subsequently evaluated and approved for storage of highly dispersible TRU wastes and residues at RFETS. Thermal evaluation of the container shows that the container will mitigate the impact of a worst case thermal event from reactive or potentially pyrophoric materials. These materials contain hazards postulated by the Defense Nuclear Facilities Safety Board for interim storage. Packaging these reactive or potentially pyrophoric residues in the container without stabilizing the materials is under consideration at RFETS. The design, testing, and evaluations used in the approvals, and the current status of the container usage, will be discussed.

  13. Hazardous waste management in the Pacific basin

    SciTech Connect

    Cirillo, R.R.; Chiu, S.; Chun, K.C.; Conzelmann, G.; Carpenter, R.A.; Indriyanto, S.H.

    1994-11-01

    Hazardous waste control activities in Asia and the Pacific have been reviewed. The review includes China (mainland, Hong Kong, and Taiwan), Indonesia, Korea, Malaysia, Papua New Guinea, the Philippines, Singapore, and Thailand. It covers the sources of hazardous waste, the government structure for dealing with hazardous waste, and current hazardous waste control activities in each country. In addition, the hazardous waste program activities of US government agencies, US private-sector organizations, and international organizations are reviewed. The objective of these reviews is to provide a comprehensive picture of the current hazardous waste problems and the waste management approaches being used to address them so that new program activities can be designed more efficiently.

  14. Apparatus for incinerating hazardous waste

    DOEpatents

    Chang, Robert C. W.

    1994-01-01

    An apparatus for incinerating wastes, including an incinerator having a combustion chamber, a fluidtight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC (about 1" WC) higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes.

  15. Apparatus for incinerating hazardous waste

    DOEpatents

    Chang, R.C.W.

    1994-12-20

    An apparatus is described for incinerating wastes, including an incinerator having a combustion chamber, a fluid-tight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes. 1 figure.

  16. Cities cooperate on household hazardous waste collection

    SciTech Connect

    Yost, K.D. )

    1994-03-01

    This article describes a household hazardous waste collection project. The project resulted from Missouri solid waste regulations and the recognition of five suburban cities of St. Louis that there was a need to provide residents with an environmentally sound method of disposing of household hazardous waste. The project was 90 percent funded by a state grant.

  17. Energy and solid/hazardous waste

    SciTech Connect

    1981-12-01

    This report addresses the past and potential future solid and hazardous waste impacts from energy development, and summarizes the major environmental, legislation applicable to solid and hazardous waste generation and disposal. A glossary of terms and acronyms used to describe and measure solid waste impacts of energy development is included. (PSB)

  18. TREATMENT OF REACTIVE WASTES AT HAZARDOUS WASTE LANDFILLS

    EPA Science Inventory

    This report is intended to provide an information base for personnel accepting hazardous waste at existing disposal sites, or performing remedial action at uncontrolled waste sites, to make the appropriate decisions regarding the disposition of reactive wastes. It emphasizes simp...

  19. Hazardous waste: 1998 Regulatory and judicial developments

    SciTech Connect

    Henry, M.E.; Wright, W.G. Jr.

    1998-12-31

    Every year, owners and operators of facilities generating, transporting, treating, storing, or disposing of hazardous waste, or persons held liable for past hazardous waste management practice through EPA`s Superfund program, are affected by changes in the application and interpretation of hazardous waste regulation. This paper will summarize the significant 1997 hazardous waste regulatory developments, including changes and additions to land disposal restrictions and treatment standards, hazardous waste determination procedures, used oil management practices. This paper will also summarize key judicial decisions addressing expanded definitions of solid and hazardous waste, activities constituting disposal, and circumstances constituting imminent and substantial endangerment. Finally, this paper will summarize new EPA Superfund guidance documents and judicial decisions addressing issues of liability and defenses to liability under Superfund.

  20. Nuclear hazardous waste cost control management

    SciTech Connect

    Selg, R.A.

    1991-05-09

    The effects of the waste content of glass waste forms on Savannah River high-level waste disposal costs are currently under study to adjust the glass frit content to optimize the glass waste loadings and therefore significantly reduce the overall waste disposal cost. Changes in waste content affect onsite Defense Waste Changes in waste contents affect onsite Defense Waste Processing Facility (DWPF) costs as well as offsite shipping and repository emplacement charges. A nominal 1% increase over the 28 wt% waste loading of DWPF glass would reduce disposal costs by about $50 million for Savannah River wastes generated to the year 2000. Optimization of the glass waste forms to be produced in the SWPF is being supported by economic evaluations of the impact of the forms on waste disposal costs. Glass compositions are specified for acceptable melt processing and durability characteristics, with economic effects tracked by the number of waste canisters produced. This paper presents an evaluation of the effects of variations in waste content of the glass waste forms on the overall cost of the disposal, including offsite shipment and repository emplacement, of the Savannah River high-level wastes.

  1. Are nuclear shipments really safe?

    PubMed

    Brobst, W A

    1975-01-01

    The transportation of nuclear materials is on the increase. Although nuclear shipments are only a very small fraction of the Nation's hazardous materials shipments, they attract a great deal of public attention. Shipments of spent nuclear fuel and nuclear wastes are a particular concern. One of the many fears that people have about nuclear energy is the possibility that a nuclear shipment might somehow go awry and cause a serious public hazard. Primarily, they are worried that a shipment of spent reactor fuel or highly radioactive waste could be involved in serious rail or highway accident and dump its contents all over the countryside. Is that really possible? How safe are those shipments? How many are there? What do they look like? Are the packages tested? These and other questions are answered in this paper. Since public risk is the product of the consequences of an accident and its probability, both aspects are presented so that each of us can make up his own mind whether the risk from nuclear shipments is acceptable. PMID:1193025

  2. Improving Tamper Detection for Hazardous Waste Security

    SciTech Connect

    Johnston, R. G.; Garcia, A. R. E.; Pacheco, N.; Martinez, R. K.; Martinez, D. D.; Trujillo, S. J.; Lopez, L. N.

    2003-02-26

    Since September 11, waste managers are increasingly expected to provide effective security for their hazardous wastes. Tamper-indicating seals can help. This paper discusses seals, and offers recommendations for how to choose and use them.

  3. THERMODYNAMIC FUNDAMENTALS USED IN HAZARDOUS WASTE INCINERATION

    EPA Science Inventory

    Thermodynamics is the basic foundation of many engineeringpractices. nvironmental engineering is no exception, it is usingthermodynamic principles in many applications. n particular,those who are involved in the incineration of various wastes suchas hazardous and municipal wastes...

  4. Hanford Site annual dangerous waste report: Volume 3, Part 1, Waste Management Facility report, dangerous waste

    SciTech Connect

    1994-12-31

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation, and amount of waste.

  5. Hazardous waste operational plan for site 300

    SciTech Connect

    Roberts, R.S.

    1982-02-12

    This plan outlines the procedures and operations used at LLNL's Site 300 for the management of the hazardous waste generated. This waste consists primarily of depleted uranium (a by-product of U-235 enrichment), beryllium, small quantities of analytical chemicals, industrial type waste such as solvents, cleaning acids, photographic chemicals, etc., and explosives. This plan details the operations generating this waste, the proper handling of this material and the procedures used to treat or dispose of the hazardous waste. A considerable amount of information found in this plan was extracted from the Site 300 Safety and Operational Manual written by Site 300 Facility personnel and the Hazards Control Department.

  6. The hazardous waste scene in India

    SciTech Connect

    Subrahmanyam, P.V.R.; Bhinde, A.D.; Sundaresan, B.B.

    1983-03-01

    India has made significant advances in the manufacture of basic organic chemicals, dyes, fertilizers, pesticides, drugs, and so forth during the last three decades, resulting in increased generation of hazardous wastes. Presently, these wastes are being indiscriminately disposed of into fallow land in the public domain. Legislation to control air and water pollution has not covered hazardous waste disposal. The magnitude of hazardous waste generation in general and the problems posed by such wastes from pesticide, dyes, and other industries are identified, and available data are presented and discussed.

  7. Automating Risk Assessments of Hazardous Material Shipments for Transportation Routes and Mode Selection

    SciTech Connect

    Barbara H. Dolphin; William D. RIchins; Stephen R. Novascone

    2010-10-01

    The METEOR project at Idaho National Laboratory (INL) successfully addresses the difficult problem in risk assessment analyses of combining the results from bounding deterministic simulation results with probabilistic (Monte Carlo) risk assessment techniques. This paper describes a software suite designed to perform sensitivity and cost/benefit analyses on selected transportation routes and vehicles to minimize risk associated with the shipment of hazardous materials. METEOR uses Monte Carlo techniques to estimate the probability of an accidental release of a hazardous substance along a proposed transportation route. A METEOR user selects the mode of transportation, origin and destination points, and charts the route using interactive graphics. Inputs to METEOR (many selections built in) include crash rates for the specific aircraft, soil/rock type and population densities over the proposed route, and bounding limits for potential accident types (velocity, temperature, etc.). New vehicle, materials, and location data are added when available. If the risk estimates are unacceptable, the risks associated with alternate transportation modes or routes can be quickly evaluated and compared. Systematic optimizing methods will provide the user with the route and vehicle selection identified with the lowest risk of hazardous material release. The effects of a selected range of potential accidents such as vehicle impact, fire, fuel explosions, excessive containment pressure, flooding, etc. are evaluated primarily using hydrocodes capable of accurately simulating the material response of critical containment components. Bounding conditions that represent credible accidents (i.e; for an impact event, velocity, orientations, and soil conditions) are used as input parameters to the hydrocode models yielding correlation functions relating accident parameters to component damage. The Monte Carlo algorithms use random number generators to make selections at the various decision

  8. Hazardous waste management and pollution prevention

    SciTech Connect

    Chiu, Shen-yann.

    1992-01-01

    The management of hazardous wastes is one of the most critical environmental issues that faces many developing countries. It is one of the areas where institutional control and treatment and disposal technology has not kept pace with economic development. This paper reviews the development of hazardous waste management methods over the past decades, and provides the information on the status and trends of hazardous waste management strategy in selected western nations. Several issues pertinent to hazardous waste management will be reviewed, including: (1) definition of hazard; (2) why are we concerned with hazardous wastes; (3) aspects of hazardous waste management system; and (4) prioritization of hazardous waste management options. Due to regulatory and economic pressure on hazardous waste management, pollution prevention has become a very important environmental strategy in many developed countries. In many developed countries, industry is increasingly considering such alternative approaches, and finding many opportunities for their cost effective implementation. This paper provides a review of the status and trends of pollution prevention in selected western nations.

  9. Hazardous waste management and pollution prevention

    SciTech Connect

    Chiu, Shen-yann

    1992-03-01

    The management of hazardous wastes is one of the most critical environmental issues that faces many developing countries. It is one of the areas where institutional control and treatment and disposal technology has not kept pace with economic development. This paper reviews the development of hazardous waste management methods over the past decades, and provides the information on the status and trends of hazardous waste management strategy in selected western nations. Several issues pertinent to hazardous waste management will be reviewed, including: (1) definition of hazard; (2) why are we concerned with hazardous wastes; (3) aspects of hazardous waste management system; and (4) prioritization of hazardous waste management options. Due to regulatory and economic pressure on hazardous waste management, pollution prevention has become a very important environmental strategy in many developed countries. In many developed countries, industry is increasingly considering such alternative approaches, and finding many opportunities for their cost effective implementation. This paper provides a review of the status and trends of pollution prevention in selected western nations.

  10. ANNUAL TRANSPORTATION REPORT FY 2007, Radioactive Waste Shipments to and from the Nevada Test Site (NTS)

    SciTech Connect

    DOE NNSA NEVADA SITE OFFICE

    2007-12-01

    In February 1997, the U.S. Department of Energy, Nevada Operations Office (now known as the Nevada Site Office) issued the Mitigation Action Plan which addressed potential impacts described in the “Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada” (DOE/EIS 0243). The U.S. Department of Energy, Nevada Operations Office committed to several actions, including the preparation of an annual report, which summarizes waste shipments to and from the Nevada Test Site Radioactive Waste Management Site at Area 5. No shipments were disposed of at Area 3 in fiscal year 2007. This document satisfies requirements regarding low-level radioactive waste and mixed low-level radioactive waste transported to or from the NTS during fiscal year 2007.

  11. Vitrification of hazardous and radioactive wastes

    SciTech Connect

    Bickford, D.F.; Schumacher, R.

    1995-12-31

    Vitrification offers many attractive waste stabilization options. Versatility of waste compositions, as well as the inherent durability of a glass waste form, have made vitrification the treatment of choice for high-level radioactive wastes. Adapting the technology to other hazardous and radioactive waste streams will provide an environmentally acceptable solution to many of the waste challenges that face the public today. This document reviews various types and technologies involved in vitrification.

  12. 40 CFR 261.32 - Hazardous wastes from specific sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... citations affecting § 261.32, see the List of CFR Sections Affected, which appears in the Finding Aids... WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE Lists of Hazardous Wastes § 261.32... and EPA hazardous waste No. Hazardous waste Hazard code Wood preservation: K001 Bottom sediment...

  13. 40 CFR 261.32 - Hazardous wastes from specific sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... citations affecting § 261.32, see the List of CFR Sections Affected, which appears in the Finding Aids... WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE Lists of Hazardous Wastes § 261.32... and EPA hazardous waste No. Hazardous waste Hazard code Wood preservation: K001 Bottom sediment...

  14. 40 CFR 261.32 - Hazardous wastes from specific sources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... citations affecting § 261.32, see the List of CFR Sections Affected, which appears in the Finding Aids... WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE Lists of Hazardous Wastes § 261.32... and EPA hazardous waste No. Hazardous waste Hazard code Wood preservation: K001 Bottom sediment...

  15. HANDBOOK: HAZARDOUS WASTE INCINERATION MEASUREMENT GUIDANCE

    EPA Science Inventory

    This publication, Volume III of the Hazardous Waste Incineration Guidance Series, contains general guidance to permit writers in reviewing hazardous waste incineration permit applications and trial burn plans. he handbook is a how-to document dealing with how incineration measure...

  16. Hazardous Waste Handling Should be Defined

    ERIC Educational Resources Information Center

    Steigman, Harry

    1972-01-01

    An examination of the handling, storage and disposition of hazardous wastes from municipal and industrial sources, with a plea for the development of a uniform national hazardous waste code or listing that would be acceptable and useful to all state and federal agencies. (LK)

  17. 76 FR 76677 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Exclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-08

    ... AGENCY 40 CFR Part 261 Hazardous Waste Management System; Identification and Listing of Hazardous Waste... the potential impact of the petitioned waste on human health and the environment. The EPA's proposed decision to grant the petition is based on an evaluation of waste-specific information provided by...

  18. 75 FR 60689 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-01

    ... Refinery (Beaumont Refinery) to exclude (or delist) a certain solid waste generated by its Beaumont, Texas... AGENCY 40 CFR Part 261 Hazardous Waste Management System; Identification and Listing of Hazardous Waste... 3.0 in the evaluation of the impact of the petitioned waste on human health and the...

  19. Hazardous waste database: Waste management policy implications for the US Department of Energy`s Environmental Restoration and Waste Management Programmatic Environmental Impact Statement

    SciTech Connect

    Lazaro, M.A.; Policastro, A.J.; Antonopoulos, A.A.; Hartmann, H.M.; Koebnick, B.; Dovel, M.; Stoll, P.W.

    1994-03-01

    The hazardous waste risk assessment modeling (HaWRAM) database is being developed to analyze the risk from treatment technology operations and potential transportation accidents associated with the hazardous waste management alternatives. These alternatives are being assessed in the Department of Energy`s Environmental Restoration and Waste Management Programmatic Environmental Impact Statement (EM PEIS). To support the risk analysis, the current database contains complexwide detailed information on hazardous waste shipments from 45 Department of Energy installations during FY 1992. The database is currently being supplemented with newly acquired data. This enhancement will improve database information on operational hazardous waste generation rates, and the level and type of current on-site treatment at Department of Energy installations.

  20. Hazardous waste. A North Carolina dilemma.

    PubMed

    Davis, T G

    1992-07-01

    North Carolina, along with the rest of the nation, faces a number of dilemmas regarding management of hazardous waste: 1. North Carolina businesses and industries generate a lot of hazardous waste, but the state lacks the capacity to manage it. For many, it has been acceptable to ship the waste to other states for treatment, storage, and disposal. Some of the receiving states have indicated that they are no longer willing to serve as the "dumping ground" for North Carolina. 2. North Carolina, along with the EPA, has identified a number of hazardous waste sites now listed on the NPL. However, the state was excluded from its regional agreement with Alabama, South Carolina, Kentucky, and Tennessee in January 1991, meaning that Superfund monies may be withdrawn and that cleanup won't be completed at these sites. 3. Every year the country produces at least 260 million tons of hazardous waste--more than one ton for every man, woman, and child. Those opposed to constructing hazardous waste treatment facilities charge that businesses and industries should reduce their hazardous waste to zero or near zero, and they charge that the state is not doing enough to encourage waste reduction. North Carolina's hazardous waste regulations already require programs to minimize the amounts of waste generated by industries, but for most industrial processes, it is impossible to reduce the generation of waste to zero. However, industries must continue to reduce their waste through source reduction and recycling. Hazardous waste and toxic materials do pose a risk to human health and the environment unless properly managed.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1630504

  1. The Disposal of Hazardous Wastes.

    ERIC Educational Resources Information Center

    Barnhart, Benjamin J.

    1978-01-01

    The highlights of a symposium held in October, 1977 spotlight some problems and solutions. Topics include wastes from coal technologies, radioactive wastes, and industrial and agricultural wastes. (BB)

  2. 3rd Quarter Transportation Report FY 2014: Radioactive Waste Shipments to and from the Nevada National Security Site (NNSS)

    SciTech Connect

    Gregory, Louis

    2014-09-20

    This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of radioactive waste shipments to the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. There were no shipments sent for offsite treatment and returned to the NNSS this quarter. This report summarizes the 3rd quarter of Fiscal Year (FY) 2014 low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) shipments. This report also includes annual summaries for FY 2014 in Tables 4 and 5. Tabular summaries are provided which include the following: Sources of and carriers for LLW and MLLW shipments to and from the NNSS; Number and external volume of LLW and MLLW shipments; Highway routes used by carriers; and Incident/accident data applicable to LLW and MLLW shipments. In this report shipments are accounted for upon arrival at the NNSS, while disposal volumes are accounted for upon waste burial. The disposal volumes presented in this report do not include minor volumes of non-radioactive materials that were approved for disposal. Volume reports showing cubic feet generated using the Low-Level Waste Information System may vary slightly due to differing rounding conventions.

  3. Requirements for shipment of DOE radioactive mixed waste

    SciTech Connect

    Gablin, K.; No, Hyo; Herman, J.

    1993-08-01

    There are several sources of radioactive mixed waste (RMW) at Argonne National Laboratory which, in the past, were collected at waste tanks and/or sludge tanks. They were eventually pumped out by special pumps and processed in an evaporator located in the waste operations area in Building No. 306. Some of this radioactive mixed waste represents pure elementary mercury. These cleaning tanks must be manually cleaned up because the RMW material was too dense to pump with the equipment in use. The four tanks being discussed in this report are located in Building No. 306. They are the Acid Waste Tank, IMOX/FLOC Tanks, Evaporation Feed Tanks, and Waste Storage Tanks. All of these tanks are characterized and handled separately. This paper discusses the process and the requirements for characterization and the associated paperwork for Argonne Waste to be shipped to Westinghouse Hanford Company for storage.

  4. Hazardous waste status of discarded electronic cigarettes

    SciTech Connect

    Krause, Max J.; Townsend, Timothy G.

    2015-05-15

    Highlights: • Electronic cigarettes were tested using TCLP and WET. • Several electronic cigarette products leached lead at hazardous waste levels. • Lead was the only element that exceeded hazardous waste concentration thresholds. • Nicotine solution may cause hazardous waste classification when discarded unused. - Abstract: The potential for disposable electronic cigarettes (e-cigarettes) to be classified as hazardous waste was investigated. The Toxicity Characteristic Leaching Procedure (TCLP) was performed on 23 disposable e-cigarettes in a preliminary survey of metal leaching. Based on these results, four e-cigarette products were selected for replicate analysis by TCLP and the California Waste Extraction Test (WET). Lead was measured in leachate as high as 50 mg/L by WET and 40 mg/L by TCLP. Regulatory thresholds were exceeded by two of 15 products tested in total. Therefore, some e-cigarettes would be toxicity characteristic (TC) hazardous waste but a majority would not. When disposed in the unused form, e-cigarettes containing nicotine juice would be commercial chemical products (CCP) and would, in the United States (US), be considered a listed hazardous waste (P075). While household waste is exempt from hazardous waste regulation, there are many instances in which such waste would be subject to regulation. Manufactures and retailers with unused or expired e-cigarettes or nicotine juice solution would be required to manage these as hazardous waste upon disposal. Current regulations and policies regarding the availability of nicotine-containing e-cigarettes worldwide were reviewed. Despite their small size, disposable e-cigarettes are consumed and discarded much more quickly than typical electronics, which may become a growing concern for waste managers.

  5. Hazardous and radioactive waste incineration studies

    NASA Astrophysics Data System (ADS)

    Vavruska, J. S.; Stretz, L. A.; Borduin, L. C.

    Development and demonstration of a transuranic (TRU) waste volume-reduction process is described. A production-scale controlled air incinerator using commercially available equipment and technology was modified for solid radioactive waste service. This unit successfully demonstrated the volume reduction of transuranic (TRU) waste with an average TRU content of about 20 nCi/g. The same incinerator and offgas treatment system is being modified further to evaluate the destruction of hazardous liquid wastes such as polychlorinated biphenyls (PCBs) and hazardous solid wastes such as pentachlorophenol (PCP)-treated wood.

  6. ASSESSMENT OF HAZARDOUS WASTES FOR GENOTOXICITY

    EPA Science Inventory

    The authors have evaluated a group of short-term bioassays to identify those that may be suitable for screening large numbers of diverse hazardous industrial wastes for genotoxicity. Fifteen wastes (and dichloromethane extracts of these wastes) from a variety of manufacturing pro...

  7. 75 FR 57686 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste Amendment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-22

    ... Cord, Scottsburg (64 FR 3869, January 26, 1999). On April 22, 2010, the Agency was notified that..., 2010. The Hazardous and Solid Waste Amendments of 1984 amended section 3010 of the Resource... AGENCY 40 CFR Part 261 Hazardous Waste Management System; Identification and Listing of Hazardous...

  8. 40 CFR 261.32 - Hazardous wastes from specific sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Hazardous wastes from specific sources. 261.32 Section 261.32 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE Lists of Hazardous Wastes § 261.32 Hazardous wastes from specific sources....

  9. Hanford Site Hazardous waste determination report for transuranic debris waste streams NPFPDL2A

    SciTech Connect

    WINTERHALDER, J.A.

    1999-09-29

    This hazardous waste determination report (Report) describes the process and information used on the Hanford Site to determine that waste stream number NPFPDLZA, consisting of 30 containers of contact-handled transuranic debris waste, is not hazardous waste regulated by the Resource Conservation and Recovery Act (RCRA) or the New Mexico Hazardous Waste Act. For a waste to be hazardous under these statutes, the waste either must be specifically listed as a hazardous waste, or exhibit one or more of the characteristics of a hazardous waste, Le., ignitability, corrosivity, reactivity, or toxicity. Waste stream NPFPDLZA was generated, packaged, and placed into storage between 1993 and 1997. Extensive knowledge of the waste generating process, facility operational history, and administrative controls and operating procedures in effect at the time of generation, supported the initial nonhazardous waste determination. Because of the extent and reliability of information pertaining to this waste type, and the total volume of waste in the debris matrix parameter category, the Hanford Site is focusing initial efforts on this and similar waste streams for the first shipment to the Waste Isolation Pilot Plant (WIPP). RCRA regulations authorize hazardous waste determinations to be made either by using approved sampling and analysis methods or by applying knowledge of the waste in light of the materials or the process(es) used. This latter approach typically is referred to as process knowledge. The Transuranic Waste Characterization Quality Assurance Program Plan (CAO-94-1010) for WIPP refers to acceptable knowledge in essentially the same terms; acceptable knowledge as used throughout this Report is synonymous with the term process knowledge. The 30 containers addressed in this Report were characterized by the following methods: Acceptable knowledge; Nondestructive examination using real-time radiography; Visual examination; and Headspace gas sampling and analysis. The initial

  10. 75 FR 51671 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Exclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-23

    ... sludge from the list of hazardous wastes under 40 CFR 261.31 and 261.32 (see 70 FR 41358). EPA is... also eligible for exclusion and remain hazardous wastes until excluded. See 66 FR 27266 (May 16, 2001... Tokusen's petitioned waste. EPA applied the Delisting Risk Assessment Software (DRAS) described in 65...

  11. Environmental Hazards of Nuclear Wastes

    ERIC Educational Resources Information Center

    Micklin, Philip P.

    1974-01-01

    Present methods for storage of radioactive wastes produced at nuclear power facilities are described. Problems arising from present waste management are discussed and potential solutions explored. (JP)

  12. HANDBOOK ON TREATMENT OF HAZARDOUS WASTE LEACHATE

    EPA Science Inventory

    Various treatment processes were evaluated for their applicability and effectiveness in treating leachate from hazardous waste land disposal facilities. These technologies include activated sludge treatment, air stripping, carbon adsorption, flow equalization, granular media filt...

  13. GEOSTATISTICAL SAMPLING DESIGNS FOR HAZARDOUS WASTE SITES

    EPA Science Inventory

    This chapter discusses field sampling design for environmental sites and hazardous waste sites with respect to random variable sampling theory, Gy's sampling theory, and geostatistical (kriging) sampling theory. The literature often presents these sampling methods as an adversari...

  14. A Program on Hazardous Waste Management.

    ERIC Educational Resources Information Center

    Kummler, Ralph H.; And Others

    1989-01-01

    Provides an overview of the "Hazardous Waste Management Graduate Certificate" program at Wayne State University. Describes four required courses and nine optional courses. Discusses the development of a Master program and the curriculum of the Master program. (YP)

  15. Evaluation of nuclear facility decommissioning projects: Summary status report: Three Mile Island Unit 2. Radioactive waste and laundry shipments

    SciTech Connect

    Doerge, D. H.; Haffner, D. R.

    1988-06-01

    This document summarizes information concerning radioactive waste and laundry shipments from the Three Mile Island Nuclear Station Unit 2 to radioactive waste disposal sites and to protective clothing decontamination facilities (laundries) since the loss of coolant accident experienced on March 28, 1979. Data were collected from radioactive shipment records, summarized, and placed in a computerized data information retrieval/manipulation system which permits extraction of specific information. This report covers the period of April 9, 1979 through April 19, 1987. Included in this report are: waste disposal site locations, dose rates, curie content, waste description, container type and number, volumes and weights. This information is presented in two major categories: protective clothing (laundry) and radioactive waste. Each of the waste shipment reports is in chronological order.

  16. Hazards assessment for the Hazardous Waste Storage Facility

    SciTech Connect

    Knudsen, J.K.; Calley, M.B.

    1994-04-01

    This report documents the hazards assessment for the Hazardous Waste Storage Facility (HWSF) located at the Idaho National Engineering Laboratory. The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. The hazards assessment identifies and analyzes hazards that are significant enough to warrant consideration in a facility`s operational emergency management program. The area surrounding HWSF, the buildings and structures at HWSF, and the processes used at HWSF are described in this report. All nonradiological hazardous materials at the HWSF were identified (radiological hazardous materials are not stored at HWSF) and screened against threshold quantities according to DOE Order 5500.3A guidance. Two of the identified hazardous materials exceeded their specified threshold quantity. This report discusses the potential release scenarios and consequences associated with an accidental release for each of the two identified hazardous materials, lead and mercury. Emergency considerations, such as emergency planning zones, emergency classes, protective actions, and emergency action levels, are also discussed based on the analysis of potential consequences. Evaluation of the potential consequences indicated that the highest emergency class for operational emergencies at the HWSF would be a Site Area Emergency.

  17. Hazardous waste disposal and the clinical laboratory.

    PubMed

    Armbruster, D A

    1990-01-01

    Negligent, unregulated hazardous waste management has resulted in real and potential threats to public health and safety. The federal government has responded with laws and regulations aimed at the producers of hazardous waste, including clinical laboratories. Clinical laboratory managers must understand how the requirements apply to their facilities and how to comply with them, or risk violating the law. The Resources Conservation and Recovery Act (RCRA) imposes controls on hazardous waste management through the Code of Federal Regulations (CFR). The Environmental Protection Agency (EPA) and the Department of Transportation (DOT) regulate these activities through 40 CFR and 49 CFR, respectively. 49 CFR specifies the characteristics of hazardous waste and lists more than 400 toxic chemicals, including several commonly used in clinical laboratories. Laboratories must conduct chemical inventories to determine if they should obtain an EPA identification number as a hazardous waste generator. Most clinical laboratories can operate satellite accumulation points and accumulate, store, transport, and dispose of waste in accordance with EPA and DOT regulations. Regulations pertaining to infectious waste, sure to affect many clinical laboratories, are being developed now by the EPA. The tracking system mandated by the federal government can be supplemented by state and local authorities and poses a significant regulatory challenge to clinical laboratory managers. PMID:10104718

  18. Health effects of hazardous waste.

    PubMed

    Dearwent, Steve M; Mumtaz, M Moiz; Godfrey, Gail; Sinks, Thomas; Falk, Henry

    2006-09-01

    Since 1995, the Agency for Toxic Substances and Disease Registry (ATSDR) has evaluated environmental contaminants and human health risks at nearly 3000 sites. Hazardous substances at these sites include newly emerging problems as well as historically identified threats. ATSDR classifies sites according to the degree of hazard they represent to the public. Less than 1% of the sites investigated are considered urgent public health hazards where chemical or physical hazards are at levels that could cause an immediate threat to life or health. Approximately 20% of sites have a potential for long-term human exposures above acceptable risk levels. At almost 40% of sites, hazardous substances do not represent a public health hazard. Completed exposure pathways for contaminants in air, water, and soil have been reported at approximately 30% of evaluated sites. The most common contaminants of concern at these sites include heavy metals, volatile organic compounds, and polychlorinated biphenyls. This article reviews ATSDR's ongoing work by examining the historic hazard of lead, the contemporary hazard of asbestos, and the emerging issue of perchlorate contamination. PMID:17119223

  19. BIOLOGICAL TREATMENT OF HAZARDOUS AQUEOUS WASTES

    EPA Science Inventory

    Studies have been conducted with a rotating biological contractor (RBC) to evaluate the treatability of leachates from the Stringfellow and New Lyme hazardous waste sites. The leachates were transported from the waste sites to Cincinnati at the United States Environmental Protect...

  20. Fall Protection Procedures for Sealing Bulk Waste Shipments by Rail Cars at Formerly Utilized Sites Remedial Action Program (FUSRAP) Sites - 13509

    SciTech Connect

    Boyle, J.D.; Fort, E. Joseph; Lorenz, William; Mills, Andy

    2013-07-01

    Rail-cars loaded with radioactive materials must be closed and fastened to comply with United States Department of Transportation (DOT) requirements before they shipped. Securing waste shipments in a manner that meets these regulations typically results in the use of a sealable rail-car liner. Workers accessing the tops of the 2.74 m high rail-cars to seal and inspect liners for compliance prior to shipment may be exposed to a fall hazard. Relatively recent revisions to the Fall Protection requirements in the Safety and Health Requirements Manual (EM385-1-1, U.S. Army Corps of Engineers) have necessitated modifications to the fall protection systems previously employed for rail-car loading at Formerly Utilized Sites Remedial Action Program (FUSRAP) sites. In response these projects have developed site-specific procedures to protect workers and maintain compliance with the improved fall protection regulations. (authors)

  1. 76 FR 36480 - Hazardous Waste Manifest Printing Specifications Correction Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-22

    ... Subjects in 40 CFR Part 262 Environmental protection, Exports, Hazardous materials transportation... AGENCY 40 CFR Part 262 Hazardous Waste Manifest Printing Specifications Correction Rule AGENCY... proposing a minor change to the Resource Conservation and Recovery Act (RCRA) hazardous waste...

  2. 76 FR 72311 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Exclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-23

    ...The Environmental Protection Agency (EPA) is granting a petition submitted by Eastman Chemical Corporation--Texas Operations (Eastman Chemical) to exclude from hazardous waste control (or delist) a certain solid waste. This final rule responds to the petition submitted by Eastman Chemical to delist three waste streams generated from its rotary kiln incinerator (RKI). These waste streams are......

  3. Vitrification of hazardous and mixed wastes

    SciTech Connect

    Jantzen, C.M.; Pickett, J.B. ); Ramsey, W.G. . Dept. of Ceramic Engineering)

    1992-01-01

    Solidification of hazardous/mixed wastes into glass is being examined at the Savannah River Site. The first hazardous/mixed wastes glassified at SRS have been (1) incinerator and (2) nickel plating line (F006) wastes. Solidification of incinerator blowdown and mixtures of incinerator blowdown and incinerator bottom kiln ash have been achieved in Soda (Na[sub 2]O) - Lime (CaO) - Silica (SiO[sub 2]) glass (SLS) at waste loadings of up to 50 wt%. Solidification of nickel-plating line waste sludges containing depleted uranium have also been achieved in both SLS and borosilicate glasses at waste loadings of 75 wt%. This corresponds to volume reductions of 97% and 81%, respectively. Further studies will examine glassification of: ion exchange zeolites, inorganic filter media, asbestos, glass fiber filters, contaminated soil, cementitious, or other materials in need of remediation.

  4. Vitrification of hazardous and mixed wastes

    SciTech Connect

    Jantzen, C.M.; Pickett, J.B.; Ramsey, W.G.

    1992-10-01

    Solidification of hazardous/mixed wastes into glass is being examined at the Savannah River Site. The first hazardous/mixed wastes glassified at SRS have been (1) incinerator and (2) nickel plating line (F006) wastes. Solidification of incinerator blowdown and mixtures of incinerator blowdown and incinerator bottom kiln ash have been achieved in Soda (Na{sub 2}O) - Lime (CaO) - Silica (SiO{sub 2}) glass (SLS) at waste loadings of up to 50 wt%. Solidification of nickel-plating line waste sludges containing depleted uranium have also been achieved in both SLS and borosilicate glasses at waste loadings of 75 wt%. This corresponds to volume reductions of 97% and 81%, respectively. Further studies will examine glassification of: ion exchange zeolites, inorganic filter media, asbestos, glass fiber filters, contaminated soil, cementitious, or other materials in need of remediation.

  5. Hazard ranking systems for chemical wastes and chemical waste sites. Hazardous waste ranking systems

    SciTech Connect

    Waters, R.D.; Parker, F.L.; Crutcher, M.R.

    1991-12-31

    Hazardous materials and substances have always existed in the environment. Mankind has evolved to live with some degree of exposure to toxic materials. Until recently the risk has been from natural toxins or natural background radiation. While rapid technological advances over the past few decades have improved the lifestyle of our society, they have also dramatically increased the availability, volume and types of synthetic and natural hazardous materials. Many of their effects are as yet uncertain. Products and manufacturing by-products that no longer serve a useful purpose are deemed wastes. For some waste products land disposal will always be their ultimate fate. Hazardous substances are often included in the waste products. One needs to classify wastes by degree of hazard (risk). Risk (degree of probability of loss) is usually defined for risk assessment as probability of an occurrence times the consequences of the occurrence. Perhaps even more important than the definition of risk is the choice of a risk management strategy. The choice of strategy will be strongly influenced by the decision criteria used. Those decision criteria could be utility (the greatest happiness of the greatest number), rights or technology based or some combination of the three. It is necessary to make such choices about the definition of risks and criteria for management. It is clear that these are social (i.e., political) and value choices and science has little to say on this matter. This is another example of what Alvin Weinberg has named Transcience where the subject matter is scientific and technical but the choices are social, political and moral. This paper shall deal only with the scientific and technical aspects of the hazardous waste problem to create a hazardous substances classification system.

  6. Remote vacuum compaction of compressible hazardous waste

    DOEpatents

    Coyne, Martin J.; Fiscus, Gregory M.; Sammel, Alfred G.

    1998-01-01

    A system for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut.

  7. Remote vacuum compaction of compressible hazardous waste

    DOEpatents

    Coyne, M.J.; Fiscus, G.M.; Sammel, A.G.

    1998-10-06

    A system is described for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut. 8 figs.

  8. Remote vacuum compaction of compressible hazardous waste

    SciTech Connect

    Coyne, M.J.; Fiscus, G.M.; Sammel, A.G.

    1996-12-31

    A system is described for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut.

  9. International perspectives on hazardous waste management

    SciTech Connect

    Forester, W.S.

    1987-01-01

    In 1984, the International Solid Wastes and Public Cleansing Association (I.S.W.A.) approved the formation of an international working group on hazardous wastes. This book contains the edited final reports of the twelve national organisations which formed this working group. Also included is a review and assessment of various national policies and programs for waste management, together with recommendations and suggested strategies for the future.

  10. Vadose zone monitoring for hazardous waste sites

    SciTech Connect

    Everett, L.G.

    1984-01-01

    This book is a review and evaluation of vadose (unsaturated) zone monitoring. It describes the applicability of selected monitoring methods to hazardous waste disposal sites. Topics covered include: geohydrologic framework of the vadose zone; premonitoring of storage at disposal sites; premonitoring of water movement at disposal sites; active and abandoned site monitoring methods; waste source pollutant characterization; geohydrologic settings for waste disposals and conceptual vadose zone monitoring descriptions.

  11. 40 CFR 261.3 - Definition of hazardous waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Definition of hazardous waste. 261.3 Section 261.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE General § 261.3 Definition of hazardous waste. (a) A solid waste, as defined in § 261.2, is...

  12. 40 CFR 261.3 - Definition of hazardous waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Definition of hazardous waste. 261.3 Section 261.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE General § 261.3 Definition of hazardous waste. (a) A solid waste, as defined in § 261.2, is...

  13. Household hazardous waste management: a review.

    PubMed

    Inglezakis, Vassilis J; Moustakas, Konstantinos

    2015-03-01

    This paper deals with the waste stream of household hazardous waste (HHW) presenting existing management systems, legislation overview and other relevant quantitative and qualitative information. European Union legislation and international management schemes are summarized and presented in a concise manner by the use of diagrams in order to provide crucial information on HHW. Furthermore, sources and types, numerical figures about generation, collection and relevant management costs are within the scope of the present paper. The review shows that the term used to refer to hazardous waste generated in households is not clearly defined in legislation, while there is absence of specific acts regulating the management of HHW. The lack of obligation to segregate HHW from the household waste and the different terminology used makes it difficult to determine the quantities and composition of this waste stream, while its generation amount is relatively small and, therefore, is commonly overlooked in waste statistics. The paper aims to cover the gap in the related literature on a subject that is included within the crucial waste management challenges at world level, considering that HHW can also have impact on other waste streams by altering the redox conditions or causing direct reactions with other non hazardous waste substances. PMID:25528172

  14. Hazardous waste treatment and environmental remediation research

    SciTech Connect

    Not Available

    1989-09-29

    Los Alamos National Laboratory (LANL) is currently evaluating hazardous waste treatment and environmental remediation technologies in existence and under development to determine applicability to remediation needs of the DOE facilities under the Albuquerque Operations Office and to determine areas of research need. To assist LANL is this effort, Science Applications International Corporation (SAIC) conducted an assessment of technologies and monitoring methods that have been demonstrated or are under development. The focus of this assessment is to: (1) identify existing technologies for hazardous waste treatment and environmental remediation of old waste sites; (2) identify technologies under development and the status of the technology; (3) assess new technologies that need development to provide adequate hazardous waste treatment and remedial action technologies for DOD and DOE sites; and (4) identify hazardous waste and remediation problems for environmental research and development. There are currently numerous research and development activities underway nationwide relating to environmental contaminants and the remediation of waste sites. To perform this effort, SAIC evaluated current technologies and monitoring methods development programs in EPA, DOD, and DOE, as these are the primary agencies through which developmental methods are being demonstrated. This report presents this evaluation and provides recommendations as to pertinent research needs or activities to address waste site contamination problems. The review and assessment have been conducted at a programmatic level; site-specific and contaminant-specific evaluations are being performed by LANL staff as a separate, related activity.

  15. Annual Report - FY 2002, Radioactive Waste Shipments To and From the Nevada Test Site

    SciTech Connect

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2003-01-01

    In February 1997, the U.S. Department of Energy, Nevada Operations Office issued the Mitigation Action Plan which addressed potential impacts described in the ''Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada'' (DOE/EIS 0243). The U.S. Department of Energy, Nevada Operations Office committed to several actions, including the preparation of an annual report, which summarizes waste shipments to and from the Nevada Test Site (NTS) Radioactive Waste Management Sites (RWMSs) at Area 3 and Area 5. This document satisfies requirements with regard to low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) transported to or from the NTS during fiscal year (FY) 2002.

  16. Annual Report - FY 2001, Radioactive Waste Shipments To and From the Nevada Test Site, February 2002

    SciTech Connect

    U.S. Department of Energy, National Nuclear Security Administration, Nevada Operations Office

    2002-02-01

    In February 1997, the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office (NNSA/NV) issued the Mitigation Action Plan which addressed potential impacts described in the ''Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada'' (DOE/EIS 0243). NNSA/NV committed to several actions, including the preparation of an annual report, which summarizes waste shipments to and from the Nevada Test Site (NTS) Radioactive Waste Management Sites (RWMSs) at Area 3 and Area 5. This document satisfies requirements with regard to low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) transported to or from the NTS during fiscal year (FY 2001).

  17. Annual Transportation Report for Radioactive Waste Shipments to and from the Nevada Test Site, Fiscal Year 2005

    SciTech Connect

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2005-12-01

    In February 1997, the U.S. Department of Energy, Nevada Operations Office issued the Mitigation Action Plan which addressed potential impacts described in the ''Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada'' (DOE/EIS 0243). The U.S. Department of Energy, Nevada Operations Office committed to several actions, including the preparation of an annual report, which summarizes waste shipments to and from the Nevada Test Site (NTS) Radioactive Waste Management Sites (RWMSs) at Area 3 and Area 5. This document satisfies requirements with regard to low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) transported to or from the NTS during fiscal year (FY) 2005. In addition, this document provides shipment, volume, and route information on transuranic (TRU) waste shipped from the NTS to the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. This outbound shipping campaign commenced in FY 2004. This report has been prepared in accordance with the specifications contained in Section 4.1.1 (Commitments) of the ''NTS Environmental Impact Statement, Mitigation Action Plan'' (February 1997). Tabular summaries are provided which include the following data: (1) Sources of and carriers for LLW and MLLW shipments to or from the NTS; (2) Number and external volume of LLW and MLLW shipments; (3) Identification of highway routes used by carriers; and (4) Incident/accident data applicable to LLW and MLLW shipments.

  18. 76 FR 55846 - Hazardous Waste Management System: Identification and Listing of Hazardous Waste: Carbon Dioxide...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-09

    ... Listing of Hazardous Waste: Carbon Dioxide (CO2) Streams in Geologic Sequestration Activities AGENCY...) to conditionally exclude carbon dioxide (CO 2 ) streams that are hazardous from the definition of... Recovery Act (RCRA) to conditionally exclude carbon dioxide (CO 2 ) streams that are hazardous from...

  19. Unified hazardous waste and hazardous materials management regulatory program

    SciTech Connect

    Neese, K.J. )

    1994-04-01

    The administration and regulation of hazardous wastes and materials in the state of California has for many years been overseen by a number of regulatory agencies that have jurisdiction to undertake or compel cleanup. The jurisdiction and authority of each of these agencies differ, as do their philosophical underpinnings, in terms of protection of human health and the environment versus protection of groundwater resources. In 1993, Senate Bill 1082 was enacted to require the Secretary for Environmental Protection, by January 1, 1996, to adopt implementing regulations and implement a unified hazardous materials management regulatory program to consolidate the administration of specific statutory requirements for the regulation of hazardous wastes and minerals. All aspects of the unified program related to the adoption and interpretation of statewide standards and requirements will be the responsibility under existing law. For example, for underground storage tanks, that agency shall be the state Water Resources Control Board. The Department of Toxic Substances Control shall have the sole responsibility for the determination of whether a waste is hazardous or nonhazardous. Those aspects of the unified program related to the application of statewide standards to particular facilities, including the grant of authorizations, the issuance of permits, the review of reports and plans, and the enforcement of those standards and requirements against particular facilities, will be the responsibility of the certified unified program agency.

  20. Certification plan transuranic waste: Hazardous Waste Handling Facility

    SciTech Connect

    Not Available

    1992-06-01

    The purpose of this plan is to describe the organization and methodology for the certification of transuranic (TRU) waste handled in the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory (LBL). The plan incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Quality Assurance Implementing Management Plan (QAIMP) for the HWBF; and a list of the current and planned implementing procedures used in waste certification.

  1. The toxicologic hazard of superfund hazardous-waste sites.

    PubMed

    Johnson, B L; DeRosa, C

    1997-01-01

    Uncontrolled hazardous-waste sites are a major environmental and public health concern in the United States and elsewhere. The remediation of and public health responses to these sites is mandated by the federal Superfund statute. Approximately 40,000 uncontrolled waste sites have been reported to U.S. federal agencies. About 1,300 of these sites constitute the current National Priorities List (NPL) of sites for remediation. Findings from a national database on NPL sites show approximately 40% present completed exposure pathways, although this figure rose to 80% in 1996. Data from 1992 through 1996 indicate that 46% of sites are a hazard to public health. Thirty substances are found at 6% or more of sites with completed pathways. Eighteen of the substances are known human carcinogens or reasonably anticipated to be carcinogenic. Many of the 30 substances also possess systemic toxicity. The high percentage of sites with completed exposure pathways and the toxicity potential of substances in these pathways show that uncontrolled hazardous-waste sites are a major environmental threat to human health. Findings from the United States' experience in responding to uncontrolled waste sites are relevant to other countries as they address similar environmental and public health concerns. PMID:9553998

  2. Improving tamper detection for hazardous waste security

    SciTech Connect

    Johnston, R. G.; Garcia, A. R. E.; Pacheco, A. N.; Trujillo, S. J.; Martinez, R. K.; Martinez, D. D.; Lopez, L. N.

    2002-01-01

    After September 11, waste managers are increasingly expected to provide improved levels of security for the hazardous materials in their charge. Many low-level wastes that previously had minimal or no security must now be well protected, while high-level wastes require even greater levels of security than previously employed. This demand for improved security comes, in many cases, without waste managers being provided the necessary additional funding, personnel, or security expertise. Contributing to the problem is the fact that--at least in our experience--waste managers often fail to appreciate certain types of security vulnerabilities. They frequently overlook or underestimate the security risks associated with disgruntled or compromised insiders, or the potential legal and political liabilities associated with nonexistent or ineffective security. Also frequently overlooked are potential threats from waste management critics who could resort to sabotage, vandalism, or civil disobedience for purposes of discrediting a waste management program.

  3. E-waste hazard: The impending challenge

    PubMed Central

    Pinto, Violet N.

    2008-01-01

    Electronic waste or e-waste is one of the rapidly growing problems of the world. E-waste comprises of a multitude of components, some containing toxic substances that can have an adverse impact on human health and the environment if not handled properly. In India, e-waste management assumes greater significance not only due to the generation of its own e-waste but also because of the dumping of e-waste from developed countries. This is coupled with India's lack of appropriate infrastructure and procedures for its disposal and recycling. This review article provides a concise overview of India's current e-waste scenario, namely magnitude of the problem, environmental and health hazards, current disposal and recycling operations, existing legal framework, organizations working on this issue and recommendations for action. PMID:20040981

  4. Microwave remediation of hazardous and radioactive wastes

    SciTech Connect

    Wicks, G.G.

    2000-04-28

    A team from the Westinghouse Savannah River Technology Center (WSRC - a DOE Laboratory), and the University of Florida (UF - academia), has been active for about a decade in development of microwave technology for specialized waste management applications. This interaction has resulted in the development of unique equipment and uses of microwave energy for a variety of important applications for remediation of hazardous and radioactive wastes. Discussed are results of this unique technology for processing of electronic circuitry and components, medical wastes, discarded tires, and transuranic radioactive wastes.

  5. COMBUSTION TECHNOLOGIES FOR HAZARDOUS WASTE

    EPA Science Inventory

    The article describes basic incineration technology. Terminology is defined and EPA's regulations stated. The universe of incinerated and incinerable waste is described. Technology descriptions are provided for liquid injection incineration, rotary kiln incineration, at-sea incin...

  6. Hazardous waste regulations: an interpretive guide

    SciTech Connect

    Mallow, A.

    1981-01-01

    Compliance with hazardous-waste laws has been made difficult by new, lengthy, and complicated Environmental Protection Agency regulations. This book analyzes and reorganizes the 150 pages of three-column regulations, clarifying all aspects of the requirements. Paralleling the related sections of the law (Subtitle C of the Resources Act), the book begins with an overview of the law and regulations and an identification and listing of hazardous wastes. There are guidelines for authorized state programs along with notification requirements for those in hazardous-waste activities. A checklist format, using five different scenarios offers a practical approach to analyzing the unique requirements for generators and transporters as well as owners and operators. 3 figures.

  7. Hazardous and Mixed Waste Transportation Program

    SciTech Connect

    Hohnstreiter, G. F.; Glass, R. E.; McAllaster, M. E.; Nigrey, P. J.; Trennel, A. J.; Yoshimura, H. R.

    1991-01-01

    Sandia National Laboratories (SNL) has developed a program to address the packaging needs associated with the transport of hazardous and mixed waste during the United States' Department of Energy (DOE) remediation efforts. The program addresses the technology needs associated with the transport of materials which have components that are radioactive and chemically hazardous. The mixed waste transportation activities focus on on-site specific applications of technology to the transport of hazardous and mixed wastes. These activities were identified at a series of DOE-sponsored workshops. These activities will be composed of the following: (1) packaging concepts, (2) chemical compatibility studies, and (3) systems studies. This paper will address activities in each of these areas.

  8. Overweight truck shipments to nuclear waste repositories: legal, political, administrative and operational considerations

    SciTech Connect

    Not Available

    1986-03-01

    This report, prepared for the Chicago Operations Office and the Office of Civilian Radioactive Waste Management (OCRWM) of the US Department of Energy (DOE), identifies and analyzes legal, political, administrative, and operational issues that could affect an OCRWM decision to develop an overweight truck cask fleet for the commercial nuclear waste repository program. It also provides information required by DOE on vehicle size-and-weight administration and regulation, pertinent to nuclear waste shipments. Current legal-weight truck casks have a payload of one pressurized-water reactor spent fuel element or two boiling-water reactor spent fuel elements (1 PWR/2 BWR). For the requirements of the 1960s and 1970s, casks were designed with massive shielding to accommodate 6-month-old spent fuel; the gross vehicle weight was limited to 73,280 pounds. Spent fuel to be moved in the 1990s will have aged five years or more. Gross vehicle weight limitation for the Interstate highway system has been increased to 80,000 pounds. These changes allow the design of 25-ton legal-weight truck casks with payloads of 2 PWR/5 BWR. These changes may also allow the development of a 40-ton overweight truck cask with a payload of 4 PWR/10 BWR. Such overweight casks will result in significantly fewer highway shipments compared with legal-weight casks, with potential reductions in transport-related repository risks and costs. These advantages must be weighed against a number of institutional issues surrounding such overweight shipments before a substantial commitment is made to develop an overweight truck cask fleet. This report discusses these issues in detail and provides recommended actions to DOE.

  9. Encapsulation of hazardous wastes into agglomerates

    SciTech Connect

    Guloy, A.

    1992-01-28

    The objective of this study was to investigate the feasibility of using the cementitious properties and agglomeration characteristics of coal conversion byproducts to encapsulate and immobilize hazardous waste materials. The intention was to establish an economical way of co-utilization and co-disposal of wastes. In addition, it may aid in the eradication of air pollution problems associated with the fine-powdery nature of fly ash. Encapsulation into agglomerates is a novel approach of treating toxic waste. Although encapsulation itself is not a new concept, existing methods employ high-cost resins that render them economically unfeasible. In this investigation, the toxic waste was contained in a concrete-like matrix whereby fly ash and other cementitious waste materials were utilized. The method incorporates the principles of solidification, stabilization and agglomeration. Another aspect of the study is the evaluation of the agglomeration as possible lightweight aggregates. Since fly ash is commercially used as an aggregate, it would be interesting to study the effect of incorporating toxic wastes in the strength development of the granules. In the investigation, the fly ash self-cementation process was applied to electroplating sludges as the toxic waste. The process hoped to provide a basis for delisting of the waste as hazardous and, thereby greatly minimize the cost of its disposal. Owing to the stringent regulatory requirements for hauling and disposal of hazardous waste, the cost of disposal is significant. The current practice for disposal is solidifying the waste with portland cement and dumping the hardened material in the landfill where the cost varies between $700--950/ton. Partially replacing portland cement with fly ash in concrete has proven beneficial, therefore applying the same principles in the treatment of toxic waste looked very promising.

  10. Hazardous chemical and radioactive wastes at Hanford

    SciTech Connect

    Keller, J.F.; Stewart, T.L.

    1991-07-01

    The Hanford Site was established in 1944 to produce plutonium for defense. During the past four decades, a number of reactors, processing facilities, and waste management facilities have been built at Hanford for plutonium production. Generally, Hanford`s 100 Area was dedicated to reactor operation; the 200 Area to fuel reprocessing, plutonium recovery, and waste management; and the 300 Area to fuel fabrication and research and development. Wastes generated from these operations included highly radioactive liquid wastes, which were discharged to single- and double-shell tanks; solid wastes, including both transuranic (TRU) and low-level wastes, which were buried or discharged to caissons; and waste water containing low- to intermediate-level radioactivity, which was discharged to the soil column via near-surface liquid disposal units such as cribs, ponds, and retention basins. Virtually all of the wastes contained hazardous chemical as well as radioactive constituents. This paper will focus on the hazardous chemical components of the radioactive mixed waste generated by plutonium production at Hanford. The processes, chemicals used, methods of disposition, fate in the environment, and actions being taken to clean up this legacy are described by location.

  11. Hazardous chemical and radioactive wastes at Hanford

    SciTech Connect

    Keller, J.F.; Stewart, T.L.

    1991-07-01

    The Hanford Site was established in 1944 to produce plutonium for defense. During the past four decades, a number of reactors, processing facilities, and waste management facilities have been built at Hanford for plutonium production. Generally, Hanford's 100 Area was dedicated to reactor operation; the 200 Area to fuel reprocessing, plutonium recovery, and waste management; and the 300 Area to fuel fabrication and research and development. Wastes generated from these operations included highly radioactive liquid wastes, which were discharged to single- and double-shell tanks; solid wastes, including both transuranic (TRU) and low-level wastes, which were buried or discharged to caissons; and waste water containing low- to intermediate-level radioactivity, which was discharged to the soil column via near-surface liquid disposal units such as cribs, ponds, and retention basins. Virtually all of the wastes contained hazardous chemical as well as radioactive constituents. This paper will focus on the hazardous chemical components of the radioactive mixed waste generated by plutonium production at Hanford. The processes, chemicals used, methods of disposition, fate in the environment, and actions being taken to clean up this legacy are described by location.

  12. 75 FR 58315 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Direct Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ...EPA is proposing to grant a petition submitted by Eastman Chemical Company-Texas Operations (Eastman) to exclude (or delist) certain solid wastes generated by its Longview, Texas, facility from the lists of hazardous wastes. EPA used the Delisting Risk Assessment Software (DRAS) Version 3.0 in the evaluation of the impact of the petitioned waste on human health and the...

  13. Tougher standards for burning hazardous waste

    SciTech Connect

    Valenti, M.

    1993-08-01

    This article reports that tighter emission standards for hazardous waste combustion proposed by the EPA may require design changes that could alter the economics of hazardous waste incineration in the US. A recent draft strategy for the combustion of hazardous waste by the Environmental Protection Agency (EPA) in Washington, DC, has sent tremors through the two major types of combustors of industrial wastes: commercial incinerators and cement kilns. It is too early to predict what new environmental regulations will result from this proposal, but the ability of competitive combustors to meet them will likely determine their survival. The two emissions standards specified in the draft strategy announced in May by EPA administrator Carol Browner limit the particulate emissions from hazardous waste incinerators to 0.015 grain per dry standard cubic foot, less than one-fifth the 0.08 grain now permitted. Control of dioxins spells an even sharper change in EPA strategy, for these must be held to under 30 nanograms per dry standard cubic meter. Currently, there are no overall dioxin limits, only site-specific boundaries calculated on a risk-assessment basis for boilers and industrial furnaces (BIF) that have the potential to emit large amounts of dioxins and furans.

  14. 40 CFR 264.344 - Hazardous waste incinerator permits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Incinerators § 264.344 Hazardous waste incinerator permits. (a) The owner or operator of a... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Hazardous waste incinerator...

  15. 40 CFR 264.344 - Hazardous waste incinerator permits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Hazardous waste incinerator permits... WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Incinerators § 264.344 Hazardous waste incinerator permits. (a) The owner or operator of...

  16. 40 CFR 264.344 - Hazardous waste incinerator permits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Hazardous waste incinerator permits... WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Incinerators § 264.344 Hazardous waste incinerator permits. (a) The owner or operator of...

  17. 40 CFR 264.344 - Hazardous waste incinerator permits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Hazardous waste incinerator permits... WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Incinerators § 264.344 Hazardous waste incinerator permits. (a) The owner or operator of...

  18. 40 CFR 264.344 - Hazardous waste incinerator permits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Hazardous waste incinerator permits... WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Incinerators § 264.344 Hazardous waste incinerator permits. (a) The owner or operator of...

  19. Ground freezing for containment of hazardous waste

    SciTech Connect

    Sayles, F.N.; Iskandar, I.K.

    1998-07-01

    The freezing of ground for the containment of subsurface hazardous waste is a promising method that is environmentally friendly and offers a safe alternative to other methods of waste retention in many cases. The frozen soil method offers two concepts for retaining waste. One concept is to freeze the entire waste area into a solid block of frozen soil thus locking the waste in situ. For small areas where the contaminated soil does not include vessels that would rupture from frost action, this concept may be simpler to install. A second concept, of course, is to create a frozen soil barrier to confine the waste within prescribed unfrozen soil boundaries; initial research in this area was funded by EPA, Cincinnati, OH, and the Army Corps of Engineers. The paper discusses advantages and limitations, a case study from Oak Ridge, TN, and a mesh generation program that simulates the cryogenic technology.

  20. Certification Plan, low-level waste Hazardous Waste Handling Facility

    SciTech Connect

    Albert, R.

    1992-06-30

    The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. This plan provides guidance from the HWHF to waste generators, waste handlers, and the Waste Certification Specialist to enable them to conduct their activities and carry out their responsibilities in a manner that complies with the requirements of WHC-WAC. Waste generators have the primary responsibility for the proper characterization of LLW. The Waste Certification Specialist verifies and certifies that LBL LLW is characterized, handled, and shipped in accordance with the requirements of WHC-WAC. Certification is the governing process in which LBL personnel conduct their waste generating and waste handling activities in such a manner that the Waste Certification Specialist can verify that the requirements of WHC-WAC are met.

  1. Hazardous Waste Certification Plan: Hazardous Waste Handling Facility, Lawrence Berkeley Laboratory

    SciTech Connect

    Not Available

    1992-02-01

    The purpose of this plan is to describe the organization and methodology for the certification of hazardous waste (HW) handled in the Lawrence Berkeley Laboratory (LBL) Hazardous Waste Handling Facility (HWHF). The plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end- product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; and executive summary of the Quality Assurance Program Plan (QAPP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. The plan provides guidance from the HWHF to waste generators, waste handlers, and the Systems Group Manager to enable them to conduct their activities and carry out their responsibilities in a manner that complies with several requirements of the Federal Resource Conservation and Resource Recovery Act (RCRA), the Federal Department of Transportation (DOT), and the State of California, Code of Regulations (CCR), Title 22.

  2. CHARACTERIZATION OF HAZARDOUS WASTE INCINERATION RESIDUALS

    EPA Science Inventory

    The purpose of the study was to provide data on the quantities and characteristics of solid and liquid discharges from hazardous waste incineration facilities. A total of 10 facilities were sampled comprising major incineration designs and flue gas treatment devices. All inlet an...

  3. FIELD EXPERIENCE IN SAMPLING HAZARDOUS WASTE INCINERATORS

    EPA Science Inventory

    This paper is for presentation at the 77th annual meeting of the Air Pollution Control Association, June 24-29, 1984. The paper contains much useful, pragmatic information gained through numerous hazardous waste incinerator trial burn-type investigations performed for EPA by the ...

  4. PROTOCOL FOR BIOASSESSMENT OF HAZARDOUS WASTE SITES

    EPA Science Inventory

    The bioassessment protocol is one of several tools, including chemical analysis and field study, that can be used to characterize the potential environmental risk associated with hazardous waste sites. The protocol can be applied to priority ranking for deciding the need for clea...

  5. POLYETHYLENE ENCAPSULATES FOR HAZARDOUS WASTE DRUMS

    EPA Science Inventory

    This capsule report summarizes studies of the use of polyethylene (P.E.) for encapsulating drums of hazardous wastes. Flat PE sheet is welded to roto moded PE containers which forms the encapsulates. Plastic pipe welding art was used, but the prototype welding apparatus required ...

  6. Legislative aspects of hazardous waste management.

    PubMed

    Friedman, M

    1983-02-01

    In the fall of 1976 Congress enacted the Resource Conservation and Recovery Act, commonly referred to as RCRA. The objective of the statute is to create an orderly system for the generation, handling and disposal of hazardous waste by means of a comprehensive tracking and record keeping mechanism. RCRA does not regulate directly by statute so much as it delegates rule making authority to the U.S. Environmental Protection Agency. Pursuant to its mandate to develop regulations in accordance with the broad criteria of RCRA, EPA has published extensive regulations. These regulations address hazardous waste generation, transportation, treatment, storage and handling and its final disposal. The statute also offers remedies available to both EPA and the public at large to ensure enforcement of the provisions of RCRA and the EPA regulations. Additionally, it sets guidelines for states to implement their own hazardous waste management programs. This article is intended to introduce this complicated statutory/regulatory package to scientists and health professionals. It outlines the provisions of RCRA and the EPA regulations, abbreviates early judicial decisions interpreting these provisions and sets forth a brief description of various state approaches to hazardous waste management. PMID:6825630

  7. Legislative aspects of hazardous waste management.

    PubMed Central

    Friedman, M

    1983-01-01

    In the fall of 1976 Congress enacted the Resource Conservation and Recovery Act, commonly referred to as RCRA. The objective of the statute is to create an orderly system for the generation, handling and disposal of hazardous waste by means of a comprehensive tracking and record keeping mechanism. RCRA does not regulate directly by statute so much as it delegates rule making authority to the U.S. Environmental Protection Agency. Pursuant to its mandate to develop regulations in accordance with the broad criteria of RCRA, EPA has published extensive regulations. These regulations address hazardous waste generation, transportation, treatment, storage and handling and its final disposal. The statute also offers remedies available to both EPA and the public at large to ensure enforcement of the provisions of RCRA and the EPA regulations. Additionally, it sets guidelines for states to implement their own hazardous waste management programs. This article is intended to introduce this complicated statutory/regulatory package to scientists and health professionals. It outlines the provisions of RCRA and the EPA regulations, abbreviates early judicial decisions interpreting these provisions and sets forth a brief description of various state approaches to hazardous waste management. PMID:6825630

  8. A generic hazardous waste management training program

    SciTech Connect

    Carter, R.J.; Karnofsky, B.

    1988-01-01

    The main purpose of this training program element is to familiarize personnel involved in hazardous waste management with the goals of RCRA and how they are to be achieved. These goals include: to protect health and the environment; to conserve valuable material and energy resources; to prohibit future open dumping on the land; to assure that hazardous waste management practices are conducted in a manner which protects human health and the environment; to insure that hazardous waste is properly managed thereby reducing the need for corrective actions in the future; to establish a national policy to reduce or eliminate the generation of hazardous waste, wherever feasible. Another objective of this progam element is to present a brief overview of the RCRA regulations and how they are implemented/enforced by the Environmental Protection Agency (EPA) and each of the fifty states. This element also discusses where the RCRA regulations are published and how they are updated. In addition it details who is responsible for compliance with the regulations. Finally, this part of the training program provides an overview of the activities and materials that are regulated. 1 ref.

  9. HAZARDOUS WASTE DECONTAMINATION WITH PLASMA REACTORS

    EPA Science Inventory

    The use of electrical energy in the form of plasma has been considered as a potentially efficient means of decontaminating hazardous waste, although to date only a few attempts have been made to do so. There are a number of relative advantages and some potential disadvantages to...

  10. Management of uncontrolled hazardous waste sites

    SciTech Connect

    Not Available

    1985-01-01

    This book is a compilation of papers presented at a conference on the management of uncontrolled hazardous waste sites. Papers were presented in the following topics: federal and state programs; sampling and monitoring; leaking tanks; in-situ treatment; site remediation; banner technology; storage/disposal; endangerment assessment; risk assessment techniques; and research and development.

  11. Navigating the Hazardous Waste Management Maze.

    ERIC Educational Resources Information Center

    Voelkle, James P.

    1997-01-01

    Hazardous waste management is a continual process. Administrators should maintain good relations with state agencies and the Environmental Protection Agency and use them as resources. Contacts with businesses and professional groups as well as forming coalitions with neighboring districts are ways to share information and expenses. (MLF)

  12. Vadose zone monitoring for hazardous waste sites

    SciTech Connect

    Everett, L.G.; Wilson, L.G.; Hoylman, E.W.

    1983-10-01

    This book describes the applicability of vadose zone monitoring techniques to hazardous waste site investigations. More than 70 different sampling and nonsampling vadose zone monitoring techniques are described in terms of their advantages and disadvantages. Physical, chemical, geologic, topographic, geohydrologic, and climatic constraints for vadose zone monitoring are quantitatively determined. Vadose zone monitoring techniques are categorized for premonitoring, active, and postclosure site assessments. Waste disposal methods are categorized for piles, landfills, impoundments, and land treatment. Conceptual vadose zone monitoring approaches are developed for specific waste disposal method categories.

  13. BOILERS COFIRING HAZARDOUS WASTE: EFFECTS OF HYSTERESIS ON PERFORMANCE MEASUREMENTS

    EPA Science Inventory

    The Hazardous Waste Engineering Research Laboratory (HWERL) has conducted full scale and pilot scale boiler testing to determine hazardous waste destruction and removal efficiencies (DRE's) and other associated boiler performance parameters during the last five years. The effort ...

  14. 75 FR 73972 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Removal of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-30

    ... Company--Texas Operations, published on September 24, 2010, 75 FR 58315. We stated in that direct final... which will be based on the parallel proposed rule also published on September 24, 2010, 75 FR 58346. As... AGENCY 40 CFR Part 261 Hazardous Waste Management System; Identification and Listing of Hazardous...

  15. 76 FR 59960 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Withdrawal of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-28

    ... notice removes the proposed rule published in 76 FR 5110 (January 28, 2011) for public review and comment... Landfill (Gulf West) located in Anahuac, TX, published on January 28, 2011 (76 FR 5110). EPA subsequently... AGENCY 40 CFR Part 261 Hazardous Waste Management System; Identification and Listing of Hazardous...

  16. Method and apparatus for incinerating hazardous waste

    DOEpatents

    Korenberg, Jacob

    1990-01-01

    An incineration apparatus and method for disposal of infectious hazardous waste including a fluidized bed reactor containing a bed of granular material. The reactor includes a first chamber, a second chamber, and a vertical partition separating the first and second chambers. A pressurized stream of air is supplied to the reactor at a sufficient velocity to fluidize the granular material in both the first and second chambers. Waste materials to be incinerated are fed into the first chamber of the fluidized bed, the fine waste materials being initially incinerated in the first chamber and subsequently circulated over the partition to the second chamber wherein further incineration occurs. Coarse waste materials are removed from the first chamber, comminuted, and recirculated to the second chamber for further incineration. Any partially incinerated waste materials and ash from the bottom of the second chamber are removed and recirculated to the second chamber for further incineration. This process is repeated until all infectious hazardous waste has been completely incinerated.

  17. Decision analysis for INEL hazardous waste storage

    SciTech Connect

    Page, L.A.; Roach, J.A.

    1994-01-01

    In mid-November 1993, the Idaho National Engineering Laboratory (INEL) Waste Reduction Operations Complex (WROC) Manager requested that the INEL Hazardous Waste Type Manager perform a decision analysis to determine whether or not a new Hazardous Waste Storage Facility (HWSF) was needed to store INEL hazardous waste (HW). In response to this request, a team was formed to perform a decision analysis for recommending the best configuration for storage of INEL HW. Personnel who participated in the decision analysis are listed in Appendix B. The results of the analysis indicate that the existing HWSF is not the best configuration for storage of INEL HW. The analysis detailed in Appendix C concludes that the best HW storage configuration would be to modify and use a portion of the Waste Experimental Reduction Facility (WERF) Waste Storage Building (WWSB), PBF-623 (Alternative 3). This facility was constructed in 1991 to serve as a waste staging facility for WERF incineration. The modifications include an extension of the current Room 105 across the south end of the WWSB and installing heating, ventilation, and bay curbing, which would provide approximately 1,600 ft{sup 2} of isolated HW storage area. Negotiations with the State to discuss aisle space requirements along with modifications to WWSB operating procedures are also necessary. The process to begin utilizing the WWSB for HW storage includes planned closure of the HWSF, modification to the WWSB, and relocation of the HW inventory. The cost to modify the WWSB can be funded by a reallocation of funding currently identified to correct HWSF deficiencies.

  18. 49 CFR 172.205 - Hazardous waste manifest.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) hazardous waste manifest (manifest) is prepared in accordance with 40 CFR 262.20 and is signed, carried, and... in accordance with 40 CFR 263.22. (5) Before accepting hazardous waste from a rail transporter, a non.... (h) A hazardous waste manifest required by 40 CFR part 262, containing all of the...

  19. 49 CFR 172.205 - Hazardous waste manifest.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) hazardous waste manifest (manifest) is prepared in accordance with 40 CFR 262.20 and is signed, carried, and... in accordance with 40 CFR 263.22. (5) Before accepting hazardous waste from a rail transporter, a non.... (h) A hazardous waste manifest required by 40 CFR part 262, containing all of the...

  20. 49 CFR 172.205 - Hazardous waste manifest.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) hazardous waste manifest (manifest) is prepared in accordance with 40 CFR 262.20 and is signed, carried, and... in accordance with 40 CFR 263.22. (5) Before accepting hazardous waste from a rail transporter, a non.... (h) A hazardous waste manifest required by 40 CFR part 262, containing all of the...

  1. 49 CFR 172.205 - Hazardous waste manifest.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) hazardous waste manifest (manifest) is prepared in accordance with 40 CFR 262.20 and is signed, carried, and... in accordance with 40 CFR 263.22. (5) Before accepting hazardous waste from a rail transporter, a non.... (h) A hazardous waste manifest required by 40 CFR part 262, containing all of the...

  2. 49 CFR 172.205 - Hazardous waste manifest.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) hazardous waste manifest (manifest) is prepared in accordance with 40 CFR 262.20 and is signed, carried, and... in accordance with 40 CFR 263.22. (5) Before accepting hazardous waste from a rail transporter, a non.... (h) A hazardous waste manifest required by 40 CFR part 262, containing all of the...

  3. 40 CFR 279.21 - Hazardous waste mixing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Generators § 279.21 Hazardous waste mixing. (a) Mixtures of used oil and hazardous waste must be managed in accordance with § 279.10(b). (b) The... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Hazardous waste mixing. 279.21...

  4. 40 CFR 279.21 - Hazardous waste mixing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Generators § 279.21 Hazardous waste mixing. (a) Mixtures of used oil and hazardous waste must be managed in accordance with § 279.10(b). (b) The... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Hazardous waste mixing. 279.21...

  5. 40 CFR 279.21 - Hazardous waste mixing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Generators § 279.21 Hazardous waste mixing. (a) Mixtures of used oil and hazardous waste must be managed in accordance with § 279.10(b). (b) The... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Hazardous waste mixing. 279.21...

  6. Hazardous waste minimization report for CY 1986

    SciTech Connect

    Kendrick, C.M.

    1990-12-01

    Oak Ridge National Laboratory (ORNL) is a multipurpose research and development facility. Its primary role is the support of energy technology through applied research and engineering development and scientific research in basic and physical sciences. ORNL also is a valuable resource in the solution of problems of national importance, such as nuclear and chemical waste management. In addition, useful radioactive and stable isotopes which are unavailable from the private sector are produced at ORNL. As a result of these activities, hazardous, radioactive, and mixed wastes are generated at ORNL. A formal hazardous waste minimization program for ORNL was launched in mid 1985 in response to the requirements of Section 3002 of the Resource Conservation and Recovery Act (RCRA). During 1986, a task plan was developed. The six major tasks include: planning and implementation of a laboratory-wide chemical inventory and the subsequent distribution, treatment, storage, and/or disposal (TSD) of unneeded chemicals; establishment and implementation of a distribution system for surplus chemicals to other (internal and external) organizations; training and communication functions necessary to inform and motivate laboratory personnel; evaluation of current procurement and tracking systems for hazardous materials and recommendation and implementation of improvements; systematic review of applicable current and proposed ORNL procedures and ongoing and proposed activities for waste volume and/or toxicity reduction potential; and establishment of criteria by which to measure progress and reporting of significant achievements. 8 refs., 1 fig., 5 tabs.

  7. Waste management facilities cost information for hazardous waste. Revision 1

    SciTech Connect

    Shropshire, D.; Sherick, M.; Biagi, C.

    1995-06-01

    This report contains preconceptual designs and planning level life-cycle cost estimates for managing hazardous waste. The report`s information on treatment, storage, and disposal modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the US Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report.

  8. 76 FR 5110 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-28

    ...EPA is proposing to grant a petition submitted by Gulf West Landfill, TX, LP. (Gulf West) to exclude (or delist) the landfill leachate generated by Gulf West in Anahuac, Texas from the lists of hazardous wastes. EPA used the Delisting Risk Assessment Software (DRAS) Version 3.0 in the evaluation of the impact of the petitioned waste on human health and the...

  9. 76 FR 4823 - Hazardous Waste Management System; Identifying and Listing Hazardous Waste Exclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-27

    ... permitted, licensed, or registered by a State to manage industrial solid waste. The rule also imposes... original listing criteria, as well as the additional factors required by the Hazardous and Solid Waste... rule (75 FR 67919). EPA considered all comments received, and for reasons stated in both the...

  10. 77 FR 56558 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-13

    ... for IBM, EPA proposed, on July 16, 2012 (77 FR 41720), to exclude the waste from the lists of... authorization to delist federal listed wastes. See 58 FR 26243 (May 3, 1993). Instead, the Vermont Hazardous... Under Executive Order 12866, ``Regulatory Planning and Review'' (58 FR 51735, October 4, 1993),...

  11. Hazard ranking systems for chemical wastes and chemical waste sites

    SciTech Connect

    Waters, R.D.; Parker, F.L. ); Crutcher, M.R. and Associates, Inc., Columbia, IL )

    1991-01-01

    Hazardous materials and substances have always existed in the environment. Mankind has evolved to live with some degree of exposure to toxic materials. Until recently the risk has been from natural toxins or natural background radiation. While rapid technological advances over the past few decades have improved the lifestyle of our society, they have also dramatically increased the availability, volume and types of synthetic and natural hazardous materials. Many of their effects are as yet uncertain. Products and manufacturing by-products that no longer serve a useful purpose are deemed wastes. For some waste products land disposal will always be their ultimate fate. Hazardous substances are often included in the waste products. One needs to classify wastes by degree of hazard (risk). Risk (degree of probability of loss) is usually defined for risk assessment as probability of an occurrence times the consequences of the occurrence. Perhaps even more important than the definition of risk is the choice of a risk management strategy. The choice of strategy will be strongly influenced by the decision criteria used. Those decision criteria could be utility (the greatest happiness of the greatest number), rights or technology based or some combination of the three. It is necessary to make such choices about the definition of risks and criteria for management. It is clear that these are social (i.e., political) and value choices and science has little to say on this matter. This is another example of what Alvin Weinberg has named Transcience where the subject matter is scientific and technical but the choices are social, political and moral. This paper shall deal only with the scientific and technical aspects of the hazardous waste problem to create a hazardous substances classification system.

  12. Improvements to enforcement of multilateral environmental agreements to control international shipments of chemicals and wastes.

    PubMed

    Liu, Ning; Somboon, Vira; Wun'gaeo, Surichai; Middleton, Carl; Tingsabadh, Charit; Limjirakan, Sangchan

    2016-06-01

    Illegal trade in hazardous waste and harmful chemicals has caused severe damage on human health and the environment, and brought big challenges to countries to meet their commitments to related multilateral environmental agreements. Synergy-building, like organising law enforcement operations, is critical to address illegal trade in waste and chemicals, and further improve the effectiveness of environmental enforcement. This article discusses how and why law enforcement operations can help countries to implement chemical and waste-related multilateral environmental agreements in a more efficient and effective way. The research explores key barriers and factors for organising law enforcement operations, and recommends methods to improve law enforcement operations to address illegal trade in hazardous waste and harmful chemicals. PMID:27118737

  13. Managing hazardous waste in the laboratory.

    PubMed

    Hotaling, Mary

    2006-01-01

    This article offers an introduction to the federal U.S. Environmental Protection Agency (EPA) regulations as they relate to hazardous wastes generated by clinical and anatomic pathology laboratories. Traditionally, the EPA has targeted "heavy" industries such as manufacturing for compliance auditing, but it recently turned an eye toward health-care facilities since they are identified as important sources of hazardous waste generation. Enforcement of EPA regulations within health-care facilities presents the challenge of a new labyrinth of definitions, rules, and compliance methods for laboratorians who have already made it through other regulatory agency mazes, including the Joint Commission on Accreditation of Healthcare Organizations (JCAHO) standards, the College of American Pathologists (CAP) checklists, and the Occupational Safety and Health Administration (OSHA) standards. PMID:17005096

  14. Frozen soil barriers for hazardous waste confinement

    SciTech Connect

    Dash, J.G.; Leger, R.; Fu, H.Y.

    1997-12-31

    Laboratory and full field measurements have demonstrated the effectiveness of artificial ground freezing for the containment of subsurface hazardous and radioactive wastes. Bench tests and a field demonstration have shown that cryogenic barriers are impenetrable to aqueous and non aqueous liquids. As a result of the successful tests the US Department of Energy has designated frozen ground barriers as one of its top ten remediation technologies.

  15. Assessment of hazardous wastes for genotoxicity

    SciTech Connect

    DeMarini, D.M.; Houk, V.S.

    1987-09-01

    The authors have evaluated a group of short-term bioassays to identify those that may be suitable for screening large numbers of diverse hazardous industrial wastes for genotoxicity. Fifteen wastes (and dichloromethane extracts of these wastes) from a variety of manufacturing processes were tested for mutagenicity in Salmonella typhimurium strains TA98 and TA100 with and without Aroclor 1254-induced rat-liver S9. Ten of these wastes were fed by gavage to F-344 male rats, and the raw urines were assayed for mutagenicity in the presence of beta-glucuronidase in strain TA98 with S9. Six of these urines were extracted by C18/methanol elution, incubated with beta-glucuronidase, and evaluated in strain TA98 with S9 and beta-glucuronidase. Fourteen of the wastes were examined for their ability to induce prophage lambda in Escherichia coli in a microsuspension assay. A second set of wastes, consisting of four industrial wastes, were evaluated in Salmonella and in a series of mammalian cell assays to measure mutagenicity, cytogenetic effects, and transformation.

  16. Staged mold for encapsulating hazardous wastes

    DOEpatents

    Unger, Samuel L.; Telles, Rodney W.; Lubowitz, Hyman R.

    1988-01-01

    A staged mold for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

  17. Staged mold for encapsulating hazardous wastes

    DOEpatents

    Unger, Samuel L.; Telles, Rodney W.; Lubowitz, Hyman R.

    1990-01-01

    A staged mold for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

  18. Evaluating the quality and effectiveness of hazardous waste training programs

    SciTech Connect

    Kolpa, R.L.; Haffenden, R.A.; Weaver, M.A.

    1996-05-01

    An installation`s compliance with Resource Conservation and Recovery Act (RCRA) hazardous waste regulations is strongly dependent on the knowledge, skill, and behavior of all individuals involved in the generation and management of hazardous waste. Recognizing this, Headquarters Air Force Materiel Command (HQ/AFMC) determined that an in-depth evaluation of hazardous waste training programs at each AFMC installation was an appropriate element in assessing the overall effectiveness of installation hazardous waste management programs in preventing noncompliant conditions. Consequently, pursuant to its authority under Air Force Instruction (AFI) 32-7042, Solid and Hazardous Waste Compliance (May 12, 1994) to support and maintain hazardous waste training, HQ/AFMC directed Argonne National Laboratory to undertake the Hazardous Waste Training Initiative. This paper summarizes the methodology employed in performing the evaluation and presents the initiative`s salient conclusions.

  19. Report to Congress: management of hazardous wastes from educational institutions

    SciTech Connect

    Not Available

    1989-04-01

    The EPA has studied and evaluated the problems associated with managing hazardous wastes generated by educational institutions. This report is factual in nature. EPA was not directed by the law to develop recommendations for regulatory or statutory changes. The report identifies the statutory and regulatory requirements for educational institutions to manage hazardous waste, examines current hazardous-waste-management practices at such institutions, identifies the hazardous-waste-management problems encountered by them, and concludes by identifying possible ways for educational institutions to improve hazardous-waste management. The report primarily focuses on hazardous waste generated by universities, colleges, high schools, and vocational schools. The findings of the report can also apply to waste generated at facilities providing adult education and programs of education of less than 2 years' duration, because factors affecting the management of such waste would be similar for all levels and categories of educational institutions.

  20. Expediting the commercial disposal option: Low-level radioactive waste shipments from the Mound Plant

    SciTech Connect

    Rice, S.; Rothman, R.

    1995-12-31

    In April, Envirocare of Utah, Inc., successfully commenced operation of its mixed waste treatment operation. A mixed waste which was (a) radioactive, (b) listed as a hazardous waste under the Resource Conservation and Recovery Act (RCRA), and (c) prohibited from land disposal was treated using Envirocare`s full-scale Mixed Waste Treatment Facility. The treatment system involved application of chemical fixation/stabilization technologies to reduce the leachability of the waste to meet applicable concentration-based RCRA treatment standards. In 1988, Envirocare became the first licensed facility for the disposal of naturally occurring radioactive material. In 1990, Envirocare received a RCRA Part B permit for commercial mixed waste storage and disposal. In 1994, Envirocare was awarded a contract for the disposal of DOE mixed wastes. Envirocare`s RCRA Part B permit allows for the receipt, storage, treatment, and disposal of mixed wastes that do not meet the land-disposal treatment standards of 40 CFR (Code of Federal Regulations) 268. Envirocare has successfully received, managed, and disposed of naturally occurring radioactive material, low-activity radioactive waste, and mixed waste from government and private generators.

  1. Minnesota Mining and Manufacturing Company's hazardous waste program.

    PubMed Central

    Van Noordwyk, H J; Santoro, M A

    1978-01-01

    This paper discusses the present hazardous waste program of 3M Company (Minnesota Mining and Manufacturing Company). 3M's definition of hazardous waste and the company's position on hazardous waste disposal are first considered. The company position is that wherever and whenever the disposal of a waste material threatens the environment or public safety, then that waste should be considered a hazardous waste and treated accordingly in terms of its handling and ultimate disposal. The generation of hazardous wastes and the differentiation of "hazardous" and "nonhazardous" wastes are described next. Handling of hazardous wastes from their generation to their disposal is then covered. This includes a definition of internal 3M terminology and a description of the hazard rating system used by the company. Finally, 3M disposal practices are presented. It is 3M's position that thermal destruction of hazardous wastes, where appropriate, is the best method for their disposal. With this in mind, 3M has constructed incineration facilities throughout the country. The rotary kiln incinerator at the 3M Chemolite plant in Cottage Grove, Minnesota is briefly described. Disposal of certain hazardous wastes in controlled secure land disposal sites is then briefly discussed. PMID:738241

  2. RFID technology for hazardous waste management and tracking.

    PubMed

    Namen, Anderson Amendoeira; Brasil, Felipe da Costa; Abrunhosa, Jorge José Gouveia; Abrunhosa, Glaucia Gomes Silva; Tarré, Ricardo Martinez; Marques, Flávio José Garcia

    2014-09-01

    The illegal dumping of hazardous waste is one of the most concerning occurrences related to illegal waste activities. The waste management process is quite vulnerable, especially when it comes to assuring the right destination for the delivery of the hazardous waste. The purpose of this paper is to present a new system design and prototype for applying the RFID technology so as to guarantee the correct destination for the hazardous waste delivery. The aim of this innovative approach, compared with other studies that employ the same technology to the waste disposal process, is to focus on the certification that the hazardous waste will be delivered to the right destination site and that no inappropriate disposal will occur in the transportation stage. These studies were carried out based on data collected during visits to two hazardous waste producer companies in Brazil, where the material transportation and delivery to a company in charge of the waste disposal were closely monitored. PMID:24879751

  3. Chemical fixation increases options for hazardous waste treatment

    SciTech Connect

    Indelicato, G.J.; Tipton, G.A.

    1996-05-01

    The Hazardous and Solid Waste Amendments (HSWA) to the Resource Conservation and Recovery Act (RCRA) govern the manner in which hazardous materials are managed. Disposing RCRA hazardous wastes on or in the land is no longer an accepted remedial option. This land disposal restriction requires that all listed and characteristic hazardous wastes must be treated according to specified standards before they are disposed. These treatment standards define technologies and concentration limits. Hazardous wastes that do not meet the standards are prohibited from being disposed on land, such as in landfills, surface impoundments, land treatment units, injection wells, and mines or caves.

  4. Medical aspects of the hazardous waste problem.

    PubMed

    Ozonoff, D

    1982-12-01

    Although no one knows exactly how much toxic material continues to be released into our environment, most observers believe the amount is substantial. In the last few years, in the state of Massachusetts alone, 22 communities have had their municipal water supplies seriously compromised by chemical contamination, (1) causing alarm and dismay among water users. Nation-wide, public concern has reached the point that in some opinion polls, hazardous waste ranks second only behind inflation as a cause of serious worry. Despite widespread anxiety, shared by public health officials, few studies have shown conclusive evidence of health consequences from toxic materials in the environment. Even in the case of such gross contamination as in the Love Canal area of Niagara Falls, New York, health effects have been difficult to establish. (2) This is partly due to intrusion of the adversary process in cases where liability is involved; it is also a result, however, of inherent technical problems that plague any determination of health hazard. This paper reviews some of these problems, considers some current risk assessment approaches, and touches on medicolegal and regulatory aspects of the hazardous waste problem. PMID:7165025

  5. Medical aspects of the hazardous waste problem

    SciTech Connect

    Ozonoff, D.

    1982-12-01

    Although no one knows exactly how much toxic material continues to be released into our environment, most observers believe the amount is substantial. In the last few years, in the state of Massachusetts alone, 22 communities have had their municipal water supplies seriously compromised by chemical contamination, causing alarm and dismay among water users. Nation-wide, public concern has reached the point that in some opinion polls, hazardous waste ranks second only behind inflation as a cause of serious worry. Despite widespread anxiety, shared by public health officials, few studies have shown conclusive evidence of health consequences from toxic materials in the environment. Even in the case of such gross contamination as in the Love Canal area of Niagara Falls, New York, health effects have been difficult to establish. This is partly due to intrusion of the adversary process in cases where liability is involved; it is also a result, however, of inherent technical problems that plague any determination of health hazard. This paper reviews some of these problems, considers some current risk assessment approaches, and touches on medicolegal and regulatory aspects of the hazardous waste problem.

  6. 30 CFR 47.53 - Alternative for hazardous waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Alternative for hazardous waste. 47.53 Section 47.53 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING HAZARD COMMUNICATION (HazCom) Material Safety Data Sheets (MSDS) § 47.53 Alternative for hazardous waste. If the mine produces or uses...

  7. 30 CFR 47.53 - Alternative for hazardous waste.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Alternative for hazardous waste. 47.53 Section 47.53 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING HAZARD COMMUNICATION (HazCom) Material Safety Data Sheets (MSDS) § 47.53 Alternative for hazardous waste. If the mine produces or uses...

  8. 30 CFR 47.53 - Alternative for hazardous waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Alternative for hazardous waste. 47.53 Section 47.53 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING HAZARD COMMUNICATION (HazCom) Material Safety Data Sheets (MSDS) § 47.53 Alternative for hazardous waste. If the mine produces or uses...

  9. 30 CFR 47.53 - Alternative for hazardous waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Alternative for hazardous waste. 47.53 Section 47.53 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING HAZARD COMMUNICATION (HazCom) Material Safety Data Sheets (MSDS) § 47.53 Alternative for hazardous waste. If the mine produces or uses...

  10. Evaluation of health effects from hazardous waste sites

    SciTech Connect

    Andelman, J.B.; Underhill, D.W.

    1986-01-01

    This information and data for evaluating health effects from hazardous waste sites stems from the efforts of specialists representing leading research centers, hospitals, universities, government agencies and includes consultant as well as corporate viewpoints. The work evolved from the Fourth Annual Symposium on Environmental Epidemiology sponsored by the Center for Environmental Epidemiology at the University of Pittsburgh and the U.S. EPA. Contents-One: Scope of the Hazardous Wastes Problems. Evaluating Health Effects at Hazardous Waste Sites. Historical Perspective on Waste Disposal. Two: Assessment of Exposure to Hazardous Wastes. Chemical Emissions Assessment for Hazardous Waste Sites. Assessing Pathways to Human Populations. Methods of Defining Human Exposures. Three: Determining Human Health Effects. Health Risks of Concern. Expectations and Limitations of Human Health Studies and Risk Assessment. Four: Case Studies. Love Canal. Hardeman County, Tennessee. Cannonsburg, Pennsylvania. Five: Defining Health Risks at Waste Sites. Engineering Perspectives from an Industrial Viewpoint. Role of Public Groups. Integration of Governmental Resources in Assessment of Hazards.