Science.gov

Sample records for hbb gene mutations

  1. Distinctive mutation spectrum of the HBB gene in an urban eastern Indian population.

    PubMed

    Sahoo, Subhransu Sekhar; Biswal, Sebaranjan; Dixit, Manjusha

    2014-01-01

    ABSTRACT Hemoglobinopathies such as β-thalassemia (β-thal) and sickle cell anemia (or Hb S [β6(A3)Glu→Val]) impose a major health burden in the Indian population. To determine the frequencies of the HBB gene mutations in eastern Indian populations and to compare with the available data, a comprehensive molecular analysis of the HBB gene was done in the normal Odisha State population. Using polymerase chain reaction (PCR), restriction fragment length polymorphism (RFLP), amplification refractory mutation system (ARMS) and DNA sequencing techniques, β-thal and sickle cell anemia mutations were characterized in 267 healthy individuals. Entire HBB gene sequencing showed 63 different mutations including 11 new ones. The predominant mutation HBB: c.9T > C was observed at a high frequency (19.57%) in the normal population. In the urban population of Odisha State, India, carrier frequency of hemoglobinopathies was found to be 18.48%, and for β-thal, the carrier rate was 14.13%, which is very high indeed. In the absence of a complete cure by any expensive treatment and drug administration, this information would be helpful for planning a population screening program and establishing prenatal diagnosis of β-thal in order to reduce the burden of such a genetic disease. PMID:24099628

  2. A Novel Mutation in the Promoter Region of the β-Globin Gene: HBB: c.-127G > C.

    PubMed

    Bilgen, Turker; Canatan, Duran; Delibas, Serpil; Keser, Ibrahim

    2016-08-01

    Novel β-globin gene mutations are still occasionally being reported, especially when evaluating milder phenotypes. We report here a novel putative mutation in the promoter region of the β-globin gene and assess its clinical implications. A family, parents and four siblings, with hematological and clinical features suspected of being β-globin gene mutation(s), were involved in this study. In addition to hematological and clinical evaluations of the whole family, molecular analyses of the β-globin gene were performed by direct sequencing. Sequencing of the β-globin gene revealed a novel genomic alteration in the regulatory region of the gene. This novel genomic alteration was defined as HBB: c.-127G > C according to the Human Genome Variation Society (HGVS) nomenclature. Two siblings were found to be carriers of the HBB: c.-127G > C mutation, while the other two siblings were carriers of the codon 8 (-AA) (HBB: c.25_26delAA) deletion of the β-globin gene. The mother was a compound heterozygote for the codon 8 and HBB: c.-127G > C mutations. Based on hematological and clinical evaluations, we conclude that this novel β-globin gene promoter region change would be associated with a mild phenotype of β-thalassemia (β-thal). PMID:27349616

  3. Generation of KCL035 research grade human embryonic stem cell line carrying a mutation in HBB gene.

    PubMed

    Hewitson, Heema; Wood, Victoria; Kadeva, Neli; Cornwell, Glenda; Codognotto, Stefano; Stephenson, Emma; Ilic, Dusko

    2016-03-01

    The KCL035 human embryonic stem cell line was derived from an embryo donated for research that carried a mutation in the HBB gene, which is linked to the β-thalassemia syndrome. The ICM was isolated using laser microsurgery and plated on γ-irradiated human foreskin fibroblasts. Both the derivation and cell line propagation were performed in an animal product-free environment. Pluripotent state and differentiation potential were confirmed by in vitro assays. PMID:27345970

  4. Compound heterozygous β+ β0 mutation of HBB gene leading to β-thalassemia major in a Gujarati family — A case study

    PubMed Central

    Chaudhary, Spandan; Dhawan, Dipali; Bagali, Prashanth G.; S.Chaudhary, Pooja; Chaudhary, Abhinav; Singh, Sanjay; Vudathala, Srinivas

    2016-01-01

    β-Thalassemia is a genetic disease characterized by reduced or non-functionality of β-globin gene expression, which is caused due to a number of variations and indels (insertions and deletions). In this case study, we have reported a rare occurrence of compound heterozygosity of two different variants, namely, HBBc.92G > C and HBBc.92 + 5G > C in maternal amniotic fluid sample. Prenatal β-thalassemia mutation detection in fetal DNA was carried out using nucleotide sequencing method. After analysis, the father was found to be heterozygous for HBBc.92G > C (Codon 30 (G > C)) mutation which is β0 type and the mother was heterozygous for HBBc.92 + 5G > C (IVS I-5 (G > C)) mutation which is β+ type. When amniotic fluid sample was analyzed for β-globin gene (HBB), we found the occurrence of heterozygous allelic pattern for aforesaid mutations. This compound heterozygous state of fetus sample was considered as β+/β0 category of β thalassemia which was clinically and genotypically interpreted as β-thalassemia major. Regular blood transfusions are required for the survival of thalassemia major patients hence prenatal diagnosis is imperative for timely patient management. Prenatal diagnosis helps the parents to know the thalassemic status of the fetus and enables an early decision on the pregnancy. In the present study, we have identified compound heterozygosity for β-thalassemia in the fetus which portrays the importance of prenatal screening. PMID:27134826

  5. Compound heterozygous β(+) β(0) mutation of HBB gene leading to β-thalassemia major in a Gujarati family - A case study.

    PubMed

    Chaudhary, Spandan; Dhawan, Dipali; Bagali, Prashanth G; S Chaudhary, Pooja; Chaudhary, Abhinav; Singh, Sanjay; Vudathala, Srinivas

    2016-06-01

    β-Thalassemia is a genetic disease characterized by reduced or non-functionality of β-globin gene expression, which is caused due to a number of variations and indels (insertions and deletions). In this case study, we have reported a rare occurrence of compound heterozygosity of two different variants, namely, HBBc.92G > C and HBBc.92 + 5G > C in maternal amniotic fluid sample. Prenatal β-thalassemia mutation detection in fetal DNA was carried out using nucleotide sequencing method. After analysis, the father was found to be heterozygous for HBBc.92G > C (Codon 30 (G > C)) mutation which is β(0) type and the mother was heterozygous for HBBc.92 + 5G > C (IVS I-5 (G > C)) mutation which is β(+) type. When amniotic fluid sample was analyzed for β-globin gene (HBB), we found the occurrence of heterozygous allelic pattern for aforesaid mutations. This compound heterozygous state of fetus sample was considered as β(+)/β(0) category of β thalassemia which was clinically and genotypically interpreted as β-thalassemia major. Regular blood transfusions are required for the survival of thalassemia major patients hence prenatal diagnosis is imperative for timely patient management. Prenatal diagnosis helps the parents to know the thalassemic status of the fetus and enables an early decision on the pregnancy. In the present study, we have identified compound heterozygosity for β-thalassemia in the fetus which portrays the importance of prenatal screening. PMID:27134826

  6. A novel β-globin gene mutation HBB.c.22 G>C produces a hemoglobin variant (Hb Vellore) mimicking HbS in HPLC.

    PubMed

    Edison, E S; Sathya, M; Rajkumar, S V; Nair, S C; Srivastava, A; Shaji, R V

    2012-10-01

    Hemoglobinopathies are highly prevalent in Indian population. DNA analysis to detect causative mutations is required for identifying rare hemoglobin variants or when hematological results are discordant with the clinical phenotype. In this report, we describe a novel hemoglobin variant caused by a mutation in beta-globin gene, Codon 7 GAG→CAG (Glu→Gln) that elutes in the position of sickle haemoglobin (HbS) in cation exchange high performance liquid chromatography. This report highlights possible diagnostic pitfalls in interpreting data solely based on haemoglobin analysis and usefulness of mutation screening in definitive diagnosis of hemoglobinopathies. PMID:22471768

  7. Identification of a Novel β-Globin Mutation (HBB: C.189_195delTCATGGC) in a Chinese Family.

    PubMed

    He, Sheng; Lin, Li; Wei, Yuan; Chen, Biyan; Yi, Shang; Chen, Qiuli; Qiu, XiaoXia; Wei, Hongwei; Li, Guojian; Zheng, Chenguang

    2016-08-01

    β-Thalassemia (β-thal) is one of the most common genetic disorders worldwide. Molecular characterization of β-thal is essential for prevention and understanding the biology of the disease. More and more rare and novel mutations are being reported. Here, we report a novel 7 bp deletion at codons 63-65 (HBB: c.189_195delTCATGGC) in exon 2 of the β-globin gene in a family from Guangxi Province, China. This novel mutation causes a shift in the normal reading frame of the β-globin coding sequence and created a stop codon at codon 87 in exon 2, which leads to a β(0)-thal phenotype. PMID:27492766

  8. Coinheritance of a novel mutation on the HBA1 gene: c.187delG (p.W62fsX66) [codon 62 (-G) (α1)] with the α212 patchwork allele and Hb S [β6(A3)Glu→Val, GAG>GTG; HBB: c.20A>T].

    PubMed

    Scheps, Karen G; De Paula, Silvia M; Bitsman, Alicia R; Freigeiro, Daniel H; Basack, F Nora; Pennesi, Sandra P; Varela, Viviana

    2013-01-01

    We describe a novel frameshift mutation on the HBA1 gene (c.187delG), causative of α-thalassemia (α-thal) in a Black Cuban family with multiple sequence variants in the HBA genes and the Hb S [β6(A3)Glu→Val, GAG>GTG; HBB: c.20A>T] mutation. The deletion of the first base of codon 62 resulted in a frameshift at amino acid 62 with a putative premature termination codon (PTC) at amino acid 66 on the same exon (p.W62fsX66), which most likely triggers nonsense mediated decay of the resulting mRNA. This study also presents the first report of the α212 patchwork allele in Latin America and the description of two new sequence variants in the HBA2 region (c.-614G>A in the promoter region and c.95+39 C>T on the first intron). PMID:23806041

  9. Deletion Mapping of Four Loci Defined by N-Ethyl-N-Nitrosourea-Induced Postimplantation-Lethal Mutations within the Pid-Hbb Region of Mouse Chromosome 7

    PubMed Central

    Rinchik, E. M.; Carpenter, D. A.; Long, C. L.

    1993-01-01

    As part of a long-term effort to refine the physical and functional maps of the Fes-Hbb region of mouse chromosome 7, four loci [l(7)1Rn, l(7)2Rn, l(7)3Rn, l(7)4Rn] defined by N-ethyl-N-nitrosourea (ENU)-induced, prenatally lethal mutations were mapped by means of trans complementation crosses to mice carrying lethal deletions of the mouse chromosome-7 albino (c) locus. Each locus was assigned to a defined subregion of the deletion map at the distal end of the Fes-Hbb interval. Of particular use for this mapping were preimplantation-lethal deletions having distal breakpoints localized between pid and Omp. Hemizygosity or homozygosity for each of the ENU-induced lethals was found to arrest development after uterine implantation; the specific time of postimplantation death varied, and depended on both the mutation itself and on whether it was hemizygous or homozygous. Based on their map positions outside of and distal to deletions that cause death at preimplantation stages, these ENU-induced mutations identify loci, necessary for postimplantation development, that could not have been discovered by phenotypic analyses of mice homozygous for any albino deletion. The mapping of these loci to specific genetic intervals defined by deletion breakpoints suggests a number of positional-cloning strategies for the molecular isolation of these genes. Phenotypic and genetic analyses of these mutations should provide useful information on the functional composition of the corresponding segment of the human genome (perhaps human 11q13.5). PMID:8307327

  10. Integrative Analysis of CRISPR/Cas9 Target Sites in the Human HBB Gene.

    PubMed

    Luo, Yumei; Zhu, Detu; Zhang, Zhizhuo; Chen, Yaoyong; Sun, Xiaofang

    2015-01-01

    Recently, the clustered regularly interspaced short palindromic repeats (CRISPR) system has emerged as a powerful customizable artificial nuclease to facilitate precise genetic correction for tissue regeneration and isogenic disease modeling. However, previous studies reported substantial off-target activities of CRISPR system in human cells, and the enormous putative off-target sites are labor-intensive to be validated experimentally, thus motivating bioinformatics methods for rational design of CRISPR system and prediction of its potential off-target effects. Here, we describe an integrative analytical process to identify specific CRISPR target sites in the human β-globin gene (HBB) and predict their off-target effects. Our method includes off-target analysis in both coding and noncoding regions, which was neglected by previous studies. It was found that the CRISPR target sites in the introns have fewer off-target sites in the coding regions than those in the exons. Remarkably, target sites containing certain transcriptional factor motif have enriched binding sites of relevant transcriptional factor in their off-target sets. We also found that the intron sites have fewer SNPs, which leads to less variation of CRISPR efficiency in different individuals during clinical applications. Our studies provide a standard analytical procedure to select specific CRISPR targets for genetic correction. PMID:25918715

  11. Integrative Analysis of CRISPR/Cas9 Target Sites in the Human HBB Gene

    PubMed Central

    Luo, Yumei; Zhang, Zhizhuo; Chen, Yaoyong; Sun, Xiaofang

    2015-01-01

    Recently, the clustered regularly interspaced short palindromic repeats (CRISPR) system has emerged as a powerful customizable artificial nuclease to facilitate precise genetic correction for tissue regeneration and isogenic disease modeling. However, previous studies reported substantial off-target activities of CRISPR system in human cells, and the enormous putative off-target sites are labor-intensive to be validated experimentally, thus motivating bioinformatics methods for rational design of CRISPR system and prediction of its potential off-target effects. Here, we describe an integrative analytical process to identify specific CRISPR target sites in the human β-globin gene (HBB) and predict their off-target effects. Our method includes off-target analysis in both coding and noncoding regions, which was neglected by previous studies. It was found that the CRISPR target sites in the introns have fewer off-target sites in the coding regions than those in the exons. Remarkably, target sites containing certain transcriptional factor motif have enriched binding sites of relevant transcriptional factor in their off-target sets. We also found that the intron sites have fewer SNPs, which leads to less variation of CRISPR efficiency in different individuals during clinical applications. Our studies provide a standard analytical procedure to select specific CRISPR targets for genetic correction. PMID:25918715

  12. A new hemoglobin variant: Hb Meylan [β73(E17)Asp → Phe; HBB: c.220G>T; c.221A>T] with a double base mutation at the same codon.

    PubMed

    Renoux, Céline; Feray, Cécile; Joly, Philippe; Zanella-Cleon, Isabelle; Garcia, Caroline; Lacan, Philippe; Couprie, Nicole; Francina, Alain

    2015-01-01

    We report a new β-globin chain variant: Hb Meylan [β73(E17)Asp → Phe; HBB: c.220G>T; c.221A>T]. The new variant results from a double nucleotide mutation at the same codon. The possible molecular mechanisms are discussed. PMID:25476778

  13. Simple, Efficient, and Cost-Effective Multiplex Genotyping with Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry of Hemoglobin Beta Gene Mutations

    PubMed Central

    Thongnoppakhun, Wanna; Jiemsup, Surasak; Yongkiettrakul, Suganya; Kanjanakorn, Chompunut; Limwongse, Chanin; Wilairat, Prapon; Vanasant, Anusorn; Rungroj, Nanyawan; Yenchitsomanus, Pa-thai

    2009-01-01

    A number of common mutations in the hemoglobin β (HBB) gene cause β-thalassemia, a monogenic disease with high prevalence in certain ethnic groups. As there are 30 HBB variants that cover more than 99.5% of HBB mutant alleles in the Thai population, an efficient and cost-effective screening method is required. Three panels of multiplex primer extensions, followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry were developed. The first panel simultaneously detected 21 of the most common HBB mutations, while the second panel screened nine additional mutations, plus seven of the first panel for confirmation; the third panel was used to confirm three HBB mutations, yielding a 9-Da mass difference that could not be clearly distinguished by the previous two panels. The protocol was both standardized using 40 samples of known genotypes and subsequently validated in 162 blind samples with 27 different genotypes (including a normal control), comprising heterozygous, compound heterozygous, and homozygous β-thalassemia. Results were in complete agreement with those from the genotyping results, conducted using three different methods overall. The method developed here permitted the detection of mutations missed using a single genotyping procedure. The procedure should serve as the method of choice for HBB genotyping due to its accuracy, sensitivity, and cost-effectiveness, and can be applied to studies of other gene variants that are potential disease biomarkers. PMID:19460936

  14. Trans-spliced Cas9 allows cleavage of HBB and CCR5 genes in human cells using compact expression cassettes.

    PubMed

    Fine, Eli J; Appleton, Caleb M; White, Douglas E; Brown, Matthew T; Deshmukh, Harshavardhan; Kemp, Melissa L; Bao, Gang

    2015-01-01

    CRISPR/Cas9 systems have been used in a wide variety of biological studies; however, the large size of CRISPR/Cas9 presents challenges in packaging it within adeno-associated viruses (AAVs) for clinical applications. We identified a two-cassette system expressing pieces of the S. pyogenes Cas9 (SpCas9) protein which splice together in cellula to form a functional protein capable of site-specific DNA cleavage. With specific CRISPR guide strands, we demonstrated the efficacy of this system in cleaving the HBB and CCR5 genes in human HEK-293T cells as a single Cas9 and as a pair of Cas9 nickases. The trans-spliced SpCas9 (tsSpCas9) displayed ~35% of the nuclease activity compared with the wild-type SpCas9 (wtSpCas9) at standard transfection doses, but had substantially decreased activity at lower dosing levels. The greatly reduced open reading frame length of the tsSpCas9 relative to wtSpCas9 potentially allows for more complex and longer genetic elements to be packaged into an AAV vector including tissue-specific promoters, multiplexed guide RNA expression, and effector domain fusions to SpCas9. For unknown reasons, the tsSpCas9 system did not work in all cell types tested. The use of protein trans-splicing may help facilitate exciting new avenues of research and therapeutic applications through AAV-based delivery of CRISPR/Cas9 systems. PMID:26126518

  15. Combining Single Strand Oligodeoxynucleotides and CRISPR/Cas9 to Correct Gene Mutations in β-Thalassemia-induced Pluripotent Stem Cells.

    PubMed

    Niu, Xiaohua; He, Wenyin; Song, Bing; Ou, Zhanhui; Fan, Di; Chen, Yuchang; Fan, Yong; Sun, Xiaofang

    2016-08-01

    β-Thalassemia (β-Thal) is one of the most common genetic diseases in the world. The generation of patient-specific β-Thal-induced pluripotent stem cells (iPSCs), correction of the disease-causing mutations in those cells, and then differentiation into hematopoietic stem cells offers a new therapeutic strategy for this disease. Here, we designed a CRISPR/Cas9 to specifically target the Homo sapiens hemoglobin β (HBB) gene CD41/42(-CTTT) mutation. We demonstrated that the combination of single strand oligodeoxynucleotides with CRISPR/Cas9 was capable of correcting the HBB gene CD41/42 mutation in β-Thal iPSCs. After applying a correction-specific PCR assay to purify the corrected clones followed by sequencing to confirm mutation correction, we verified that the purified clones retained full pluripotency and exhibited normal karyotyping. Additionally, whole-exome sequencing showed that the mutation load to the exomes was minimal after CRISPR/Cas9 targeting. Furthermore, the corrected iPSCs were selected for erythroblast differentiation and restored the expression of HBB protein compared with the parental iPSCs. This method provides an efficient and safe strategy to correct the HBB gene mutation in β-Thal iPSCs. PMID:27288406

  16. Thrombocytopenia and erythrocytosis in mice with a mutation in the gene encoding the hemoglobin β minor chain

    PubMed Central

    Kauppi, Maria; Hilton, Adrienne A.; Metcalf, Donald; Ng, Ashley P.; Hyland, Craig D.; Collinge, Janelle E.; Kile, Benjamin T.; Hilton, Douglas J.; Alexander, Warren S.

    2012-01-01

    Diverse mutations in the genes encoding hemoglobin (Hb) have been characterized in human disease. We describe here a mutation in the mouse Hbb-b2 gene, denoted Plt12, that precisely mimics the human hemoglobin Hotel Dieu variant. The mutation results in increased affinity of Hb for oxygen and Plt12 mutant mice exhibited reduced partial pressure of O2 in the blood, accompanied by erythrocytosis characterized by elevated erythropoietin levels and splenomegaly with excess erythropoiesis. Most homozygous Hbb-b2Plt12/Plt12 mice succumbed to early lethality associated with emphysema, cardiac abnormalities, and liver degeneration. Survivors displayed a marked thrombocytopenia without significant deficiencies in the numbers of megakaryocytes or megakaryocyte progenitor cells. The lifespan of platelets in the circulation of Hbb-b2Plt12/Plt12 mice was normal, and splenectomy did not correct the thrombocytopenia, suggesting that increased sequestration was unlikely to be a major contributor. These data, together with the observation that megakaryocytes in Hbb-b2Plt12/Plt12 mice appeared smaller and deficient in cytoplasm, support a model in which hypoxia causes thrombocytopenia as a consequence of an inability of megakaryocytes, once formed, to properly mature and produce sufficient platelets. The Plt12 mouse is a model of high O2-affinity hemoglobinopathy and provides insights into hematopoiesis under conditions of chronic hypoxia. PMID:22203977

  17. Thrombocytopenia and erythrocytosis in mice with a mutation in the gene encoding the hemoglobin β minor chain.

    PubMed

    Kauppi, Maria; Hilton, Adrienne A; Metcalf, Donald; Ng, Ashley P; Hyland, Craig D; Collinge, Janelle E; Kile, Benjamin T; Hilton, Douglas J; Alexander, Warren S

    2012-01-10

    Diverse mutations in the genes encoding hemoglobin (Hb) have been characterized in human disease. We describe here a mutation in the mouse Hbb-b2 gene, denoted Plt12, that precisely mimics the human hemoglobin Hotel Dieu variant. The mutation results in increased affinity of Hb for oxygen and Plt12 mutant mice exhibited reduced partial pressure of O(2) in the blood, accompanied by erythrocytosis characterized by elevated erythropoietin levels and splenomegaly with excess erythropoiesis. Most homozygous Hbb-b2(Plt12/Plt12) mice succumbed to early lethality associated with emphysema, cardiac abnormalities, and liver degeneration. Survivors displayed a marked thrombocytopenia without significant deficiencies in the numbers of megakaryocytes or megakaryocyte progenitor cells. The lifespan of platelets in the circulation of Hbb-b2(Plt12/Plt12) mice was normal, and splenectomy did not correct the thrombocytopenia, suggesting that increased sequestration was unlikely to be a major contributor. These data, together with the observation that megakaryocytes in Hbb-b2(Plt12/Plt12) mice appeared smaller and deficient in cytoplasm, support a model in which hypoxia causes thrombocytopenia as a consequence of an inability of megakaryocytes, once formed, to properly mature and produce sufficient platelets. The Plt12 mouse is a model of high O(2)-affinity hemoglobinopathy and provides insights into hematopoiesis under conditions of chronic hypoxia. PMID:22203977

  18. High Frequency of Hb E-Saskatoon (HBB: c.67G > A) in Brazilians: A New Genetic Origin?

    PubMed

    Wagner, Sandrine C; Lindenau, Juliana D; Castro, Simone M de; Santin, Ana Paula; Zaleski, Carina F; Azevedo, Laura A; Ribeiro Dos Santos, Ândrea K C; Dos Santos, Sidney E B; Hutz, Mara H

    2016-08-01

    Hb E-Saskatoon [β22(B4)Glu→Lys, HBB: c.67G > A] is a rare, nonpathological β-globin variant that was first described in a Canadian woman of Scottish and Dutch ancestry and has since then been detected in several populations. The aim of the present study was to identify the origin of Hb E-Saskatoon in Brazil using β-globin haplotypes and genetic ancestry in carriers of this hemoglobin (Hb) variant. Blood samples were investigated by isoelectric focusing (IEF) and high performance liquid chromatography (HPLC) using commercial kits. Hb E-Saskatoon was confirmed by amplification of the HBB gene, followed by sequence analysis. Haplotypes of the β-globin gene were determined by polymerase chain reaction (PCR), followed by digestion with specific restriction enzymes. Individual ancestry was estimated with 48 biallelic insertion/deletions using three 16-plex PCR amplifications. The IEF pattern was similar to Hbs C (HBB: c.19G > A) and Hb E (HBB: c.79G > A) [isoelectric point (pI): 7.59-7.65], and HPLC results showed an elution in the Hb S (HBB: c.20A > T) window [retention time (RT): 4.26-4.38]. DNA sequencing of the amplified β-globin gene showed a mutation at codon 22 (GAA>AAA) corresponding to Hb E-Saskatoon. A total of 11 cases of this variant were identified. In nine unrelated individuals, Hb E-Saskatoon was in linkage disequilibrium with haplotype 2 [+ - - - -]. All subjects showed a high degree of European contribution (mean = 0.85). Hb E-Saskatoon occurred on the β-globin gene of haplotype 2 in all Brazilian carriers. These findings suggest a different genetic origin for this Hb variant from that previously described. PMID:27250692

  19. Beta-globin gene haplotypes among cameroonians and review of the global distribution: is there a case for a single sickle mutation origin in Africa?

    PubMed

    Bitoungui, Valentina J Ngo; Pule, Gift D; Hanchard, Neil; Ngogang, Jeanne; Wonkam, Ambroise

    2015-03-01

    Studies of hemoglobin S haplotypes in African subpopulations have potential implications for patient care and our understanding of genetic factors that have shaped the prevalence of sickle cell disease (SCD). We evaluated HBB gene cluster haplotypes in SCD patients from Cameroon, and reviewed the literature for a global distribution. We reviewed medical records to obtain pertinent socio-demographic and clinical features for 610 Cameroonian SCD patients, including hemoglobin electrophoresis and full blood counts. RFLP-PCR was used to determine the HBB gene haplotype on 1082 chromosomes. A systematic review of the current literature was undertaken to catalogue HBB haplotype frequencies in SCD populations around the world. Benin (74%; n = 799) and Cameroon (19%; n = 207) were the most prevalent haplotypes observed among Cameroonian patients. There was no significant association between HBB haplotypes and clinical life events, anthropometric measures, hematological parameters, or fetal hemoglobin (HbF) levels. The literature review of the global haplotype distributions was consistent with known historical migrations of the people of Africa. Previously reported data from Sudan showed a distinctly unusual pattern; all four classical haplotypes were reported, with an exceptionally high proportion of the Senegal, Cameroon, and atypical haplotypes. We did not observe any significant associations between HBB haplotype and SCD disease course in this cohort. Taken together, the data from Cameroon and from the wider literature suggest that a careful reassessment of African HBB haplotypes may shed further light on the evolutionary dynamics of the sickle allele, which could suggest a single origin of the sickle mutation. PMID:25748438

  20. Beta-Globin Gene Haplotypes Among Cameroonians and Review of the Global Distribution: Is There a Case for a Single Sickle Mutation Origin in Africa?

    PubMed Central

    Bitoungui, Valentina J. Ngo; Pule, Gift D.; Hanchard, Neil; Ngogang, Jeanne

    2015-01-01

    Abstract Studies of hemoglobin S haplotypes in African subpopulations have potential implications for patient care and our understanding of genetic factors that have shaped the prevalence of sickle cell disease (SCD). We evaluated HBB gene cluster haplotypes in SCD patients from Cameroon, and reviewed the literature for a global distribution. We reviewed medical records to obtain pertinent socio-demographic and clinical features for 610 Cameroonian SCD patients, including hemoglobin electrophoresis and full blood counts. RFLP-PCR was used to determine the HBB gene haplotype on 1082 chromosomes. A systematic review of the current literature was undertaken to catalogue HBB haplotype frequencies in SCD populations around the world. Benin (74%; n=799) and Cameroon (19%; n=207) were the most prevalent haplotypes observed among Cameroonian patients. There was no significant association between HBB haplotypes and clinical life events, anthropometric measures, hematological parameters, or fetal hemoglobin (HbF) levels. The literature review of the global haplotype distributions was consistent with known historical migrations of the people of Africa. Previously reported data from Sudan showed a distinctly unusual pattern; all four classical haplotypes were reported, with an exceptionally high proportion of the Senegal, Cameroon, and atypical haplotypes. We did not observe any significant associations between HBB haplotype and SCD disease course in this cohort. Taken together, the data from Cameroon and from the wider literature suggest that a careful reassessment of African HBB haplotypes may shed further light on the evolutionary dynamics of the sickle allele, which could suggest a single origin of the sickle mutation. PMID:25748438

  1. Thalassaemia mutations within the 5'UTR of the human beta-globin gene disrupt transcription.

    PubMed

    Sgourou, Argyro; Routledge, Samantha; Antoniou, Michael; Papachatzopoulou, Adamantia; Psiouri, Lambrini; Athanassiadou, Aglaia

    2004-03-01

    The mechanisms by which mutations within the 5' untranslated region (UTR) of the human beta-globin gene (HBB) cause thalassaemia are currently not well understood. We present here the first comprehensive comparative functional analysis of four 'silent' mutations in the human beta-globin 5'UTR, namely: +10(-T), +22(G --> A), +33(C --> G) and +(40-43)(-AAAC), which are present in patients with beta-thalassaemia intermedia. Expression of these genes under the control of the beta-globin locus control region in stable transfected murine erythroleukaemia cells showed that all four mutations decreased steady state levels of mRNA to 61.6%, 68%, 85.2% and 70.6%, respectively, compared with the wildtype gene. These mutations did not interfere with either mRNA transport from the nucleus to the cytoplasm, 3' end processing or mRNA stability. Nuclear run-on experiments demonstrated that mutations +10(-T) and +33(C --> G) reduced the rate of transcription to a degree that fully accounted for the observed lower level of mRNA accumulation, suggesting a disruption of downstream promoter sequences. Interestingly, mutation +22(G --> A) decreased the rate of transcription to a low degree, indicating the existence of a mechanism that acts post-transcriptionally. Generally, our data demonstrated the significance of functionally analysing mutants of this type in the presence of a full complement of transcriptional regulatory elements within a stably integrated chromatin context in an erythroid cell environment. PMID:15009072

  2. β-Thalassemia Due to Intronic LINE-1 Insertion in the β-Globin Gene (HBB): Molecular Mechanisms Underlying Reduced Transcript Levels of the β-GlobinL1 Allele

    PubMed Central

    Lanikova, Lucie; Kucerova, Jana; Indrak, Karel; Divoka, Martina; Issa, Jean-Pierre; Papayannopoulou, Thalia; Prchal, Josef T.; Divoky, Vladimir

    2016-01-01

    We describe the molecular etiology of β+-thalassemia that is caused by the insertion of the full-length transposable element LINE-1 (L1) into the intron-2 of the β-globin gene (HBB). The transcript level of the affected β-globin gene was severely reduced. The remaining transcripts consisted of full-length, correctly processed β-globin mRNA and a minute amount of three aberrantly spliced transcripts with a decreased half-life due to activation of the nonsense-mediated decay pathway. The lower steady-state amount of mRNA produced by the β-globinL1 allele also resulted from a reduced rate of transcription and decreased production of full-length β-globin primary transcripts. The promoter and enhancer sequences of the β-globinL1 allele were hypermethylated; however, treatment with a demethylating agent did not restore the impaired transcription. A histone deacetylase inhibitor partially reactivated the β-globinL1 transcription despite permanent β-globinL1 promoter CpG methylation. This result indicates that the decreased rate of transcription from the β-globinL1 allele is associated with an altered chromatin structure. Therefore, the molecular defect caused by intronic L1 insertion in the β-globin gene represents a novel etiology of β-thalassemia. PMID:23878091

  3. The Spectrum of β-Thalassemia Mutations in a Population from the Brazilian Amazon.

    PubMed

    Silva, Aylla N L M; Cardoso, Greice L; Cunha, Daniele A; Diniz, Isabela G; Santos, Sidney E B; Andrade, Gabriela B; Trindade, Saide M S; Cardoso, Maria do Socorro O; Francês, Larissa T V M; Guerreiro, João F

    2016-01-01

    The spectrum of β-thalassemia (β-thal) mutations was investigated for the first time in a cohort of 33 unrelated patients from the Brazilian Amazon attending the Center for Hemotherapy and Hematology of the Pará Foundation (HEMOPA), in Belém, the state capital of Pará, Northern Brazil. Identification of the β-thal mutations was made by direct genomic sequencing of the β-globin gene. Mutations were identified in all patients, corresponding to a spectrum of 10 different point mutations and a total of 37 alleles studied. HBB: c.92 + 5G > A [IVS-I-5 (G > A)], was the most common β-thal mutation, followed by HBB: c.118C > T [codon 39 (C > T)], HBB: c.-138C > T [-88 (C>T)], HBB: c.92 + 1G > A [IVS-I-1 (G > A)] and HBB: c.92 + 6T > C [IVS-I-6 (T > C)] mutations. These five mutations (four Mediterranean origin and one African origin) accounted for 86.5% of the β-thal alleles. The profile of β-thal mutations found in northern Brazil is different from those described in other regions of the country. In the southeast and south, the nonsense mutation HBB: c.118C > T is the most prevalent, followed by HBB: c.93-21G > A [IVS-I-110 (G > A)], whereas in the northeast, HBB: c.92 + 6T > C has been identified as the most common mutation, followed by HBB: c.92 + 1G > A. This heterogeneous geographical distribution is certainly related to the ancestry of Brazilian populations because they have similar genetic backgrounds (European, African and Amerindian), although with slightly different admixture proportions. Furthermore, the European contribution in the southeast and south was largely made up of immigrants of other nationalities, such as Italian and Spanish, in addition to Portuguese. PMID:26372288

  4. Gene mutations in Cushing's disease

    PubMed Central

    Xiong, Qi; Ge, Wei

    2016-01-01

    Cushing's disease (CD) is a severe (and potentially fatal) disease caused by adrenocorticotropic hormone (ACTH)-secreting adenomas of the pituitary gland (often termed pituitary adenomas). The majority of ACTH-secreting corticotroph tumors are sporadic and CD rarely appears as a familial disorder, thus, the genetic mechanisms underlying CD are poorly understood. Studies have reported that various mutated genes are associated with CD, such as those in menin 1, aryl hydrocarbon receptor-interacting protein and the nuclear receptor subfamily 3 group C member 1. Recently it was identified that ubiquitin-specific protease 8 mutations contribute to CD, which was significant towards elucidating the genetic mechanisms of CD. The present study reviews the associated gene mutations in CD patients. PMID:27588171

  5. A novel 26 bp deletion [HBB: c.20_45del26bp] in exon 1 of the β-globin gene causing β-thalassemia major.

    PubMed

    Edison, Eunice S; Venkatesan, Rajkumar S; Govindanattar, Sankari Devi; George, Biju; Shaji, Ramachandran V

    2012-01-01

    Molecular characterization of β-thalassemia (β-thal) is essential in prevention and in understanding the biology of the disease. Deletion mutations are relatively uncommon in β-thal. In this report, we describe a novel 26 bp deletion from codon 6 to codon 14 in the β-globin in a consanguineous family from Tamil Nadu, India. This novel mutation causes a shift in the normal reading frame of the β-globin coding sequence, and consequently, a premature chain termination of translation due to the creation of a stop codon at the position of codon 21. The identification of this novel deletional mutation adds to the repertoire of β-thal mutations in India. PMID:22233277

  6. Coinheritance of a Rare Nucleotide Substitution on the β-Globin Gene and Other Known Mutations in the Globin Clusters: Management in Genetic Counseling.

    PubMed

    Vinciguerra, Margherita; Passarello, Cristina; Leto, Filippo; Crivello, Anna; Fustaneo, Maria; Cassarà, Filippo; Cannata, Monica; Maggio, Aurelio; Giambona, Antonino

    2016-08-01

    A large number of methods for DNA analysis are available to identify defects in globin genes associated with hemoglobin (Hb) disorders. In this study, we report a rare nucleotide (nt) substitution on the β-globin gene, nt 781 in the second intron [IVS-II-781 (C > G); HBB: c.316-70C > G], identified in four patients. This nt substitution was previously described only as a personal communication to the HbVar database and indicated as a β(0) or β(+) mutation. The purpose of this study was to evaluate the clinical implication of this nt change, particularly when coinherited with severe β-thalassemia (β-thal), in order to be able to conduct appropriate genetic counseling. Genetic studies were performed on two subjects, one carried Hb S [β6(A3)Glu→Val; HBB: c.20A > T], and the other carried IVS-I-110 (G > A) (HBB: c.93-21G > A). All these subjects showed this new β nt substitution in association with Hb A2' (or Hb B2) [δ16(A13)Gly→Arg; HBD: c.49G > C]. Another 16 samples, carrying the same δ variant as the probands, were processed by β-globin gene sequencing in order to better understand the correlation between this Hb variant and the rare nt substitution reported in this study. The present investigation emphasizes the importance of sharing the observed nt changes in the globin gene cluster, especially in the case of new or rare undefined mutations, in order to facilitate the determination of their phenotypic expression, the possible interactions with known molecular defects and to formulate appropriate genetic counseling for at-risk couples. PMID:27258795

  7. Frequency and origins of hemoglobin S mutation in African-derived Brazilian populations.

    PubMed

    De Mello Auricchio, Maria Teresa Balester; Vicente, João Pedro; Meyer, Diogo; Mingroni-Netto, Regina Célia

    2007-12-01

    Africans arrived in Brazil as slaves in great numbers, mainly after 1550. Before the abolition of slavery in Brazil in 1888, many communities, called quilombos, were formed by runaway or abandoned African slaves. These communities are presently referred to as remnants of quilombos, and many are still partially genetically isolated. These remnants can be regarded as relicts of the original African genetic contribution to the Brazilian population. In this study we assessed frequencies and probable geographic origins of hemoglobin S (HBB*S) mutations in remnants of quilombo populations in the Ribeira River valley, São Paulo, Brazil, to reconstruct the history of African-derived populations in the region. We screened for HBB*S mutations in 11 quilombo populations (1,058 samples) and found HBB*S carrier frequencies that ranged from 0% to 14%. We analyzed beta-globin gene cluster haplotypes linked to the HBB*S mutation in 86 chromosomes and found the four known African haplotypes: 70 (81.4%) Bantu (Central Africa Republic), 7 (8.1%) Benin, 7 (8.1%) Senegal, and 2 (2.3%) Cameroon haplotypes. One sickle cell homozygote was Bantu/Bantu and two homozygotes had Bantu/Benin combinations. The high frequency of the sickle cell trait and the diversity of HBB*S linked haplotypes indicate that Brazilian remnants of quilombos are interesting repositories of genetic diversity present in the ancestral African populations. PMID:18494376

  8. Rare hemoglobin variants: Hb G-Szuhu (HBB: c.243C>G), Hb G-Coushatta (HBB: c.68A>C) and Hb Mizuho (HBB: c.206T>C) in Sri Lankan families.

    PubMed

    Perera, P Shiromi; Silva, Ishari; Hapugoda, Menaka; Wickramarathne, Merita N; Wijesiriwardena, Indira; Efremov, Dimitar G; Fisher, Christopher A; Weatherall, David J; Premawardhena, Anuja

    2015-01-01

    In this short communication, we describe the clinical presentation of unusual hemoglobin (Hb), variants in three Sri Lankan cases under study for β-thalassemia intermedia (β-TI). We believe this is the first report on their occurrence in Sri Lanka as well as from the Indian subcontinent. During a molecular study performed on β-TI patients, we identified three unusual Hb variants as Hb G-Szuhu (HBB: c.243C>G), Hb G-Coushatta (HBB: c.68A>C) and Hb Mizuho (HBB: c.206T>C) in three unrelated families. Hb G-Szuhu and Hb G-Coushatta were found in combination with the common β-thalassemia (β-thal) mutation, IVS-I-5 (G>C). Both probands had mild anemia with greatly reduced red cell indices and had non palpable livers and spleens, however, by ultrasound, both were observed to be enlarged. The final Hb variant, Hb Mizuho, was identified as a heterozygous mutation found in both proband and his mother. Both family members had severe anemia and were regularly transfused and had increased red cell parameters. PMID:25572187

  9. Mutational Robustness of Gene Regulatory Networks

    PubMed Central

    van Dijk, Aalt D. J.; van Mourik, Simon; van Ham, Roeland C. H. J.

    2012-01-01

    Mutational robustness of gene regulatory networks refers to their ability to generate constant biological output upon mutations that change network structure. Such networks contain regulatory interactions (transcription factor – target gene interactions) but often also protein-protein interactions between transcription factors. Using computational modeling, we study factors that influence robustness and we infer several network properties governing it. These include the type of mutation, i.e. whether a regulatory interaction or a protein-protein interaction is mutated, and in the case of mutation of a regulatory interaction, the sign of the interaction (activating vs. repressive). In addition, we analyze the effect of combinations of mutations and we compare networks containing monomeric with those containing dimeric transcription factors. Our results are consistent with available data on biological networks, for example based on evolutionary conservation of network features. As a novel and remarkable property, we predict that networks are more robust against mutations in monomer than in dimer transcription factors, a prediction for which analysis of conservation of DNA binding residues in monomeric vs. dimeric transcription factors provides indirect evidence. PMID:22295094

  10. From Gene Mutation to Protein Characterization

    ERIC Educational Resources Information Center

    Moffet, David A.

    2009-01-01

    A seven-week "gene to protein" laboratory sequence is described for an undergraduate biochemistry laboratory course. Student pairs were given the task of introducing a point mutation of their choosing into the well studied protein, enhanced green fluorescent protein (EGFP). After conducting literature searches, each student group chose the…

  11. The Wilson disease gene: Haplotypes and mutations

    SciTech Connect

    Thomas, G.R.; Roberts, E.A.; Cox, D.W.; Walshe, J.M.

    1994-09-01

    Wilson disease (WND) is an autosomal recessive defect of copper transport. The gene involved in WND, located on chromosome 13, has recently been shown to be a putative copper transporting P-type ATPase, designated ATP7B. The gene is highly similar to ATP7A, located on the X chromosome, which is defective in Menkes disease, another disorder of copper transport. We have available for study WND families from Canada (34 families), the United Kingdom (32 families), Japan (4 families), Iceland (3 families) and Hong Kong (2 families). We have utilized four highly polymorphic CA repeat markers (D13S296, D13S301, D13S314 and D13S316) surrounding the ATP7B locus to construct haplotypes in these families. Analysis indicates that there are many unique WND haplotypes not present on normal chromosomes and that there may be a large number of different WND mutations. We have screened the WND patients for mutations in the ATP7B gene. Fifty six patients, representing all of the identified haplotypes, have been screened using single strand conformational polymorphism (SSCP), followed by selective sequencing. To date, 19 mutations and 12 polymorphisms have been identified. All of the changes are nucleotide substitutions or small insertions/deletions and there is no evidence for larger deletions as seen in the similar gene on the X chromosome, ATP7A. Haplotypes of close markers and the ability to detect some of the mutations present in the gene allow for more reliable molecular diagnosis of presymptomatic sibs of WND patients. A reassessment of individuals previously diagnosed in the presymptomatic phase is now required, as we have have identified some heterozygotes who are biochemically indistinguishable from affected homozygotes. The identification of specific mutations will soon allow direct diagnosis of WND patients with a high level of certainty.

  12. LEOPARD Syndrome: Clinical Features and Gene Mutations

    PubMed Central

    Martínez-Quintana, E.; Rodríguez-González, F.

    2012-01-01

    The RAS/MAPK pathway proteins with germline mutations in their respective genes are associated with some disorders such as Noonan, LEOPARD (LS), neurofibromatosis type 1, Costello and cardio-facio-cutaneous syndromes. LEOPARD is an acronym, mnemonic for the major manifestations of this disorder, characterized by multiple lentigines, electrocardiographic abnormalities, ocular hypertelorism, pulmonic stenosis, abnormal genitalia, retardation of growth, and sensorineural deafness. Though it is not included in the acronym, hypertrophic cardiomyopathy is the most frequent cardiac anomaly observed, representing a potentially life-threatening problem in these patients. PTPN11, RAF1 and BRAF are the genes known to be associated with LS, identifying molecular genetic testing of the 3 gene mutations in about 95% of affected individuals. PTPN11 mutations are the most frequently found. Eleven different missense PTPN11 mutations (Tyr279Cys/Ser, Ala461Thr, Gly464Ala, Thr468Met/Pro, Arg498Trp/Leu, Gln506Pro, and Gln510Glu/Pro) have been reported so far in LS, 2 of which (Tyr279Cys and Thr468Met) occur in about 65% of the cases. Here, we provide an overview of clinical aspects of this disorder, the molecular mechanisms underlying pathogenesis and major genotype-phenotype correlations. PMID:23239957

  13. Mutated Genes in Schizophrenia Map to Brain Networks

    MedlinePlus

    ... 2013 Mutated Genes in Schizophrenia Map to Brain Networks Schizophrenia networks in the prefrontal cortex area of the brain. ... of spontaneous mutations in genes that form a network in the front region of the brain. The ...

  14. Collodion Baby with TGM1 gene mutation

    PubMed Central

    Sharma, Deepak; Gupta, Basudev; Shastri, Sweta; Pandita, Aakash; Pawar, Smita

    2015-01-01

    Collodion baby (CB) is normally diagnosed at the time of birth and refers to a newborn infant that is delivered with a lambskin-like membrane encompassing the total body surface. CB is not a specific disease entity, but is a common phenotype in conditions like harlequin ichthyosis, lamellar ichthyosis, nonbullous congenital ichthyosiform erythroderma, and trichothiodystrophy. We report a CB that was brought to our department and later diagnosed to have TGM1 gene c.984+1G>A mutation. However, it could not be ascertained whether the infant had lamellar ichthyosis or congenital ichthyosiform erythroderma (both having the same mutation). The infant was lost to follow-up. PMID:26451124

  15. Collodion Baby with TGM1 gene mutation.

    PubMed

    Sharma, Deepak; Gupta, Basudev; Shastri, Sweta; Pandita, Aakash; Pawar, Smita

    2015-01-01

    Collodion baby (CB) is normally diagnosed at the time of birth and refers to a newborn infant that is delivered with a lambskin-like membrane encompassing the total body surface. CB is not a specific disease entity, but is a common phenotype in conditions like harlequin ichthyosis, lamellar ichthyosis, nonbullous congenital ichthyosiform erythroderma, and trichothiodystrophy. We report a CB that was brought to our department and later diagnosed to have TGM1 gene c.984+1G>A mutation. However, it could not be ascertained whether the infant had lamellar ichthyosis or congenital ichthyosiform erythroderma (both having the same mutation). The infant was lost to follow-up. PMID:26451124

  16. Deafness gene mutations in newborns in Beijing.

    PubMed

    Han, Shujing; Yang, Xiaojian; Zhou, Yi; Hao, Jinsheng; Shen, Adong; Xu, Fang; Chu, Ping; Jin, Yaqiong; Lu, Jie; Guo, Yongli; Shi, Jin; Liu, Haihong; Ni, Xin

    2016-05-01

    Objective To determine the incidence of congenital hearing loss (HL) in newborns by the rate of deafness-related genetic mutations. Design Clinical study of consecutive newborns in Beijing using allele-specific polymerase chain reaction-based universal array. Study sample This study tested 37 573 newborns within 3 days after birth, including nine sites in four genes: GJB2 (35 del G, 176 del 16, 235 del C, 299 del AT), SLC26A4 (IVS7-2 A > G, 2168 A > G), MTRNR1 (1555 A > G, 1494 C > T), and GJB3 (538 C > T). The birth condition of infants was also recorded. Results Of 37 573 newborns, 1810 carried pathogenic mutations, or 4.817%. The carrier rates of GJB2 (35 del G, 176 del 16, 235 del C, 299 del AT), GJB3 (538 C > T), SLC26A4 (IVS7-2 A > G, 2168 A > G), and MTRNR1 (1555 A > G, 1494 C > T) mutations were 0.005%, 0.104%, 1.924%, 0.551%, 0.295%, 0.253%, 1.387%, 0.024%, and 0.274%, respectively. Logistic regression analysis indicated no statistically significant relationship between mutations and infant sex, premature delivery, twin status, or birth weight. Conclusions The 235delC GJB2 mutation was the most frequent deafness-related mutation in the Chinese population. Genetic screening for the deafness gene will help detect more cases of newborn congenital HL than current screening practices. PMID:26766211

  17. Towards linked open gene mutations data

    PubMed Central

    2012-01-01

    Background With the advent of high-throughput technologies, a great wealth of variation data is being produced. Such information may constitute the basis for correlation analyses between genotypes and phenotypes and, in the future, for personalized medicine. Several databases on gene variation exist, but this kind of information is still scarce in the Semantic Web framework. In this paper, we discuss issues related to the integration of mutation data in the Linked Open Data infrastructure, part of the Semantic Web framework. We present the development of a mapping from the IARC TP53 Mutation database to RDF and the implementation of servers publishing this data. Methods A version of the IARC TP53 Mutation database implemented in a relational database was used as first test set. Automatic mappings to RDF were first created by using D2RQ and later manually refined by introducing concepts and properties from domain vocabularies and ontologies, as well as links to Linked Open Data implementations of various systems of biomedical interest. Since D2RQ query performances are lower than those that can be achieved by using an RDF archive, generated data was also loaded into a dedicated system based on tools from the Jena software suite. Results We have implemented a D2RQ Server for TP53 mutation data, providing data on a subset of the IARC database, including gene variations, somatic mutations, and bibliographic references. The server allows to browse the RDF graph by using links both between classes and to external systems. An alternative interface offers improved performances for SPARQL queries. The resulting data can be explored by using any Semantic Web browser or application. Conclusions This has been the first case of a mutation database exposed as Linked Data. A revised version of our prototype, including further concepts and IARC TP53 Mutation database data sets, is under development. The publication of variation information as Linked Data opens new perspectives

  18. Succinate dehydrogenase gene mutations in cardiac paragangliomas.

    PubMed

    Martucci, Victoria L; Emaminia, Abbas; del Rivero, Jaydira; Lechan, Ronald M; Magoon, Bindiya T; Galia, Analyza; Fojo, Tito; Leung, Steve; Lorusso, Roberto; Jimenez, Camilo; Shulkin, Barry L; Audibert, Jennifer L; Adams, Karen T; Rosing, Douglas R; Vaidya, Anand; Dluhy, Robert G; Horvath, Keith A; Pacak, Karel

    2015-06-15

    Pheochromocytomas and paragangliomas are chromaffin cell tumors arising from neuroendocrine cells. At least 1/3 of paragangliomas are related to germline mutations in 1 of 17 genes. Although these tumors can occur throughout the body, cardiac paragangliomas are very rare, accounting for <0.3% of mediastinal tumors. The purpose of this study was to determine the clinical characteristics of patients with cardiac paragangliomas, particularly focusing on their genetic backgrounds. A retrospective chart analysis of 15 patients with cardiac paragangliomas was performed to determine clinical presentation, genetic background, diagnostic workup, and outcomes. The average age at diagnosis was 41.9 years. Typical symptoms of paraganglioma (e.g., hypertension, sweating, palpitations, headache) were reported at initial presentation in 13 patients (86.7%); the remaining 2, as well as 4 symptomatic patients, initially presented with cardiac-specific symptoms (e.g., chest pain, dyspnea). Genetic testing was done in 13 patients (86.7%); 10 (76.9%) were positive for mutations in succinate dehydrogenase (SDHx) subunits B, C, or D. Thirteen patients (86.7%) underwent surgery to remove the paraganglioma with no intraoperative morbidity or mortality; 1 additional patient underwent surgical resection but experienced intraoperative complications after removal of the tumor due to co-morbidities and did not survive. SDHx mutations are known to be associated with mediastinal locations and malignant behavior of paragangliomas. In this report, the investigators extend the locations of predominantly SDHx-related paragangliomas to cardiac tumors. In conclusion, cardiac paragangliomas are frequently associated with underlying SDHx germline mutations, suggesting a need for genetic testing of all patients with this rare tumor. PMID:25896150

  19. Shared and unique mutational gene co-occurrences in cancers.

    PubMed

    Liu, Junqi; Zhao, Di; Fan, Ruitai

    2015-10-01

    Cancers are often associated with mutations in multiple genes; thus, studying the distributions of genes that harbor cancer-promoting mutations in cancer samples and their co-occurrences could provide insights into cancer diagnostics and treatment. Using data from the Catalogue of Somatic Mutations in Cancer (COSMIC), we found that mutated genes in cancer samples followed a power-law distribution. For instance, a few genes were mutated in a large number of samples (designated as high-frequent genes), while a large number of genes were only mutated in a few samples. This power-law distribution can be found in samples of all cancer types as well as individual cancers. In samples where two or more mutated genes are found, the high-frequent genes, i.e., those that were frequently mutated, often did not co-occur with other genes, while the other genes often tended to co-occur. Co-occurrences of mutated genes were often unique to a certain cancer; however, some co-occurrences were shared by multiple cancer types. Our results revealed distinct patterns of high-frequent genes and those that were less-frequently mutated in the cancer samples in co-occurring and anti-co-occurring networks. Our results indicated that distinct treatment strategies should be adopted for cancer patients with known high-frequent gene mutations and those without. The latter might be better treated with a combination of drugs targeting multiple genes. Our results also suggested that possible cross-cancer treatments, i.e., the use of the same drug combinations, may treat cancers of different histological origins. PMID:26315265

  20. Factor-induced Reprogramming and Zinc Finger Nuclease-aided Gene Targeting Cause Different Genome Instability in β-Thalassemia Induced Pluripotent Stem Cells (iPSCs)*

    PubMed Central

    Ma, Ning; Shan, Yongli; Liao, Baojian; Kong, Guanyi; Wang, Cheng; Huang, Ke; Zhang, Hui; Cai, Xiujuan; Chen, Shubin; Pei, Duanqing; Chen, Nansheng; Pan, Guangjin

    2015-01-01

    The generation of personalized induced pluripotent stem cells (iPSCs) followed by targeted genome editing provides an opportunity for developing customized effective cellular therapies for genetic disorders. However, it is critical to ascertain whether edited iPSCs harbor unfavorable genomic variations before their clinical application. To examine the mutation status of the edited iPSC genome and trace the origin of possible mutations at different steps, we have generated virus-free iPSCs from amniotic cells carrying homozygous point mutations in β-hemoglobin gene (HBB) that cause severe β-thalassemia (β-Thal), corrected the mutations in both HBB alleles by zinc finger nuclease-aided gene targeting, and obtained the final HBB gene-corrected iPSCs by excising the exogenous drug resistance gene with Cre recombinase. Through comparative genomic hybridization and whole-exome sequencing, we uncovered seven copy number variations, five small insertions/deletions, and 64 single nucleotide variations (SNVs) in β-Thal iPSCs before the gene targeting step and found a single small copy number variation, 19 insertions/deletions, and 340 single nucleotide variations in the final gene-corrected β-Thal iPSCs. Our data revealed that substantial but different genomic variations occurred at factor-induced somatic cell reprogramming and zinc finger nuclease-aided gene targeting steps, suggesting that stringent genomic monitoring and selection are needed both at the time of iPSC derivation and after gene targeting. PMID:25795783

  1. Parkinson disease (PARK) genes are somatically mutated in cutaneous melanoma

    PubMed Central

    Samuels, Yardena; Azizi, Esther; Qutob, Nouar; Inzelberg, Lilah; Domany, Eytan; Schechtman, Edna; Friedman, Eitan

    2016-01-01

    Objective: To assess whether Parkinson disease (PD) genes are somatically mutated in cutaneous melanoma (CM) tissue, because CM occurs in patients with PD at higher rates than in the general population and PD is more common than expected in CM cohorts. Methods: We cross-referenced somatic mutations in metastatic CM detected by whole-exome sequencing with the 15 known PD (PARK) genes. We computed the empirical distribution of the sum of mutations in each gene (Smut) and of the number of tissue samples in which a given gene was mutated at least once (SSampl) for each of the analyzable genes, determined the 90th and 95th percentiles of the empirical distributions of these sums, and verified the location of PARK genes in these distributions. Identical analyses were applied to adenocarcinoma of lung (ADENOCA-LUNG) and squamous cell carcinoma of lung (SQUAMCA-LUNG). We also analyzed the distribution of the number of mutated PARK genes in CM samples vs the 2 lung cancers. Results: Somatic CM mutation analysis (n = 246) detected 315,914 mutations in 18,758 genes. Somatic CM mutations were found in 14 of 15 PARK genes. Forty-eight percent of CM samples carried ≥1 PARK mutation and 25% carried multiple PARK mutations. PARK8 mutations occurred above the 95th percentile of the empirical distribution for SMut and SSampl. Significantly more CM samples harbored multiple PARK gene mutations compared with SQUAMCA-LUNG (p = 0.0026) and with ADENOCA-LUNG (p < 0.0001). Conclusions: The overrepresentation of somatic PARK mutations in CM suggests shared dysregulated pathways for CM and PD. PMID:27123489

  2. Mutation analysis of the gene involved in adrenoleukodystrophy

    SciTech Connect

    Oost, B.A. van; Ligtenberg, M.J.L.; Kemp, S.; Bolhuis, P.A.

    1994-09-01

    A gene responsible for the X-linked genetic disorder adrenoleukodystrophy (ALD) that is characterized by demyelination of the nervous system and adrenocortical insufficiency has been identified by positional cloning. The gene encodes an ATP-binding transporter which is located in the peroxisomal membrane. Deficiency of the gene leads to accumulation of unsaturated very long chain fatty acids due to impaired peroxisomal {beta}-oxidation. A systematic analysis of the open reading frame of the ALD gene unraveled the mutations in 28 different families using reverse transcriptase-PCR followed by direct sequencing. No entire gene deletions or drastic promoter mutations have been detected. Only in one family did the mutation involved multiple exons. The remaining mutations were subtle alterations leading to missense (about 50%) or nonsense mutations, frameshifts or splice acceptor site defects. In one patient a single codon was missing. Mutations affecting a single amino acid were concentrated in the region between the third and fourth putative membrane spanning fragments and in the ATP-binding domain. This overview of mutations aids in the determination of structural and functional important regions and facilitates the screening for mutations in other ALD patients. The detection of mutations in virtually all ALD families tested indicates that the isolated gene is the only gene responsible for ALD located in Xq28.

  3. Bestrophin gene mutations in patients with Best vitelliform macular dystrophy.

    PubMed

    Caldwell, G M; Kakuk, L E; Griesinger, I B; Simpson, S A; Nowak, N J; Small, K W; Maumenee, I H; Rosenfeld, P J; Sieving, P A; Shows, T B; Ayyagari, R

    1999-05-15

    Best vitelliform macular dystrophy (VMD2) is an autosomal dominant dystrophy with a juvenile age of onset. Mutations in the Bestrophin gene were shown in patients affected with VMD2. In a mutation study, we made three new and interesting observations. First, we identified possible mutation hotspots within the gene, suggesting that particular regions of the protein have greater functional significance than others. Second, we described a 2-bp deletion in a part of the gene where mutations have not previously been reported; this mutation causes a frameshift and subsequent premature termination of the protein. Finally, we have evidence that some mutations are associated with variable expression of the disease, suggesting the involvement of other factors or genes in the disease phenotype. PMID:10331951

  4. Clonal diversity of recurrently mutated genes in myelodysplastic syndromes

    PubMed Central

    Walter, MJ; Shen, D; Shao, J; Ding, L; White, BS; Kandoth, C; Miller, CA; Niu, B; McLellan, MD; Dees, ND; Fulton, R; Elliot, K; Heath, S; Grillot, M; Westervelt, P; Link, DC; DiPersio, JF; Mardis, E; Ley, TJ; Wilson, RK; Graubert, TA

    2013-01-01

    Recent studies suggest that most cases of myelodysplastic syndrome (MDS) are clonally heterogeneous, with a founding clone and multiple subclones. It is not known whether specific gene mutations typically occur in founding clones or subclones. We screened a panel of 94 candidate genes in a cohort of 157 patients with MDS or secondary acute myeloid leukemia (sAML). This included 150 cases with samples obtained at MDS diagnosis and 15 cases with samples obtained at sAML transformation (8 were also analyzed at the MDS stage). We performed whole-genome sequencing (WGS) to define the clonal architecture in eight sAML genomes and identified the range of variant allele frequencies (VAFs) for founding clone mutations. At least one mutation or cytogenetic abnormality was detected in 83% of the 150 MDS patients and 17 genes were significantly mutated (false discovery rate ≤0.05). Individual genes and patient samples displayed a wide range of VAFs for recurrently mutated genes, indicating that no single gene is exclusively mutated in the founding clone. The VAFs of recurrently mutated genes did not fully recapitulate the clonal architecture defined by WGS, suggesting that comprehensive sequencing may be required to accurately assess the clonal status of recurrently mutated genes in MDS. PMID:23443460

  5. Mutational analysis of STK11 gene in ovarian carcinomas.

    PubMed

    Nishioka, Y; Kobayashi, K; Sagae, S; Sugimura, M; Ishioka, S; Nagata, M; Terasawa, K; Tokino, T; Kudo, R

    1999-06-01

    Recently STK11, the causative gene of Peutz-Jeghers syndrome (PJS) was identified on chromosome 19p13.3. PJS is often accompanied by several malignancies, including breast tumor, adenoma malignum of the uterine cervix, and ovarian tumor. To investigate the involvement of STK11 gene in the development of ovarian carcinomas, we analyzed 30 ovarian carcinomas for loss of heterozygosity (LOH) and STK11 gene mutations. We found one missense mutation (codon 281, Pro to Leu) with heterozygous and somatic status. This mutation occurred at codon 281, which lies within the mutational hot spot (codon 279-281) of STK11 gene previously reported in PJS. We also detected LOH in 2 (11%) of 19 informative ovarian carcinomas. Our results suggest that mutations of the STK11 gene may play a limited role in the development of ovarian carcinomas. PMID:10429654

  6. Gene Expression in the Star Mutation of Petunia x Hybrida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Differences in structural gene expression are responsible for a wide range of responses from human cancer to patterned flowers. Gene silencing is one of the ways in which gene expression is controlled. We have developed a model system to study anthocyanin gene silencing using a mutation in Petunia ...

  7. Novel mutations in the emerin gene in Israeli families.

    PubMed

    Nevo, Y; Ahituv, S; Yaron, Y; Kedmi, M; Shomrat, R; Legum, C; Orr-Urtreger, A

    2001-06-01

    Emery-Dreifuss Muscular Dystrophy (EMD or EDMD) is a rare X-linked recessive disorder, characterized by progressive muscle wasting and weakness, contractures, and cardiomyopathy, manifesting as heart block. Mutation analysis at the EMD gene locus was performed in 4 unrelated Israeli families with X-linked EMD and in one sporadic case. In the 4 families 4 different mutations were found, 3 of which were novel. These included two frame shift mutations in exon 2 (333delT and 412insA) and one base pair substitution at the consensus +1 donor splice in intron 5 (1429G-->A). The fourth mutation in exon 6 (1675-1678delTCCG) has been previously described. No mutations were identified in the one sporadic case. Two of the three novel mutations were found in exon 2. A summary of the previously published mutations described in the EMD Mutation Database (http://www.path.cam.ac.uk/emd/) as well as the mutations described in our study suggest that the distribution of mutations in EMD gene is not entirely random and that exon 2 is prone to mutations. Hum Mutat 17:522, 2001. PMID:11385714

  8. Na channel gene mutations in epilepsy--the functional consequences.

    PubMed

    Yamakawa, Kazuhiro

    2006-08-01

    Mutations of voltage-gated sodium channel genes SCN1A, SCN2A, and SCN1B have been identified in several types of epilepsies including generalized epilepsy with febrile seizures plus (GEFS+) and severe myoclonic epilepsy in infancy (SMEI). In both SCN1A and SCN2A, missense mutations tend to result in benign idiopathic epilepsy, whereas truncation mutations lead to severe and intractable epilepsy. However, the results obtained by the biophysical analyses using cultured cell systems still remain elusive. Now studies in animal models harboring sodium channel gene mutations should be eagerly pursued. PMID:16806834

  9. DRUMS: a human disease related unique gene mutation search engine.

    PubMed

    Li, Zuofeng; Liu, Xingnan; Wen, Jingran; Xu, Ye; Zhao, Xin; Li, Xuan; Liu, Lei; Zhang, Xiaoyan

    2011-10-01

    With the completion of the human genome project and the development of new methods for gene variant detection, the integration of mutation data and its phenotypic consequences has become more important than ever. Among all available resources, locus-specific databases (LSDBs) curate one or more specific genes' mutation data along with high-quality phenotypes. Although some genotype-phenotype data from LSDB have been integrated into central databases little effort has been made to integrate all these data by a search engine approach. In this work, we have developed disease related unique gene mutation search engine (DRUMS), a search engine for human disease related unique gene mutation as a convenient tool for biologists or physicians to retrieve gene variant and related phenotype information. Gene variant and phenotype information were stored in a gene-centred relational database. Moreover, the relationships between mutations and diseases were indexed by the uniform resource identifier from LSDB, or another central database. By querying DRUMS, users can access the most popular mutation databases under one interface. DRUMS could be treated as a domain specific search engine. By using web crawling, indexing, and searching technologies, it provides a competitively efficient interface for searching and retrieving mutation data and their relationships to diseases. The present system is freely accessible at http://www.scbit.org/glif/new/drums/index.html. PMID:21913285

  10. CFTR gene mutations in isolated chronic obstructive pulmonary disease

    SciTech Connect

    Pignatti, P.F.; Bombien, C.; Marigo, C.

    1994-09-01

    In order to identify a possible hereditary predisposition to the development of chronic obstructive pulmonary disease (COPD), we have looked for the presence of cystic fibrosis transmembrane regulator (CFTR) gene DNA sequence modifications in 28 unrelated patients with no signs of cystic fibrosis. The known mutations in Italian CF patients, as well as the most frequent worldwide CF mutations, were investigated. In addition, a denaturing gradient gel electrophoresis analysis of about half of the coding sequence of the gene in 56 chromosomes from the patients and in 102 chromosomes from control individuals affected by other pulmonary diseases and from normal controls was performed. Nine different CFTR gene mutations and polymorphisms were found in seven patients, a highly significant increase over controls. Two of the patients were compound heterozygotes. Two frequent CF mutations were detected: deletion F508 and R117H; two rare CF mutations: R1066C and 3667ins4; and five CF sequence variants: R75Q (which was also described as a disease-causing mutation in male sterility cases due to the absence of the vasa deferentia), G576A, 2736 A{r_arrow}G, L997F, and 3271+18C{r_arrow}T. Seven (78%) of the mutations are localized in transmembrane domains. Six (86%) of the patients with defined mutations and polymorphisms had bronchiectasis. These results indicate that CFTR gene mutations and sequence alterations may be involved in the etiopathogenesis of some cases of COPD.

  11. Ferredoxin Gene Mutation in Iranian Trichomonas vaginalis Isolates

    PubMed Central

    HEIDARI, Soudabeh; BANDEHPOUR, Mojgan; SEYYED-TABAEI, Seyyed-Javad; VALADKHANI, Zarintaj; HAGHIGHI, Ali; ABADI, AliReza; KAZEMI, Bahram

    2013-01-01

    Background Trichomonas vaginalis causes trichomoniasis and metronidazole is its chosen drug for treatment. Ferredoxin has role in electron transport and carbohydrate metabolism and the conversion of an inactive form of metronidazole (CO) to its active form (CPR). Ferredoxin gene mutations reduce gene expression and increase its resistance to metronidazole. In this study, the frequency of ferredoxin gene mutations in clinical isolates of T.vaginalis in Tehran has been studied. Methods Forty six clinical T. vaginalis isolates of vaginal secretions and urine sediment were collected from Tehran Province since 2011 till 2012. DNA was extracted and ferredoxin gene was amplified by PCR technique. The ferredoxin gene PCR products were sequenced to determine gene mutations. Results In four isolates (8.69%) point mutation at nucleotide position -239 (the translation start codon) of the ferredoxin gene were detected in which adenosine were converted to thymine. Conclusion Mutation at nucleotide -239 ferredoxin gene reduces translational regulatory protein's binding affinity which concludes reduction of ferredoxin expression. For this reduction, decrease in activity and decrease in metronidazole drug delivery into the cells occur. Mutations in these four isolates may lead to resistance of them to metronidazole. PMID:24454433

  12. Mutation hot spots in the canine herpesvirus thymidine kinase gene.

    PubMed

    Yamada, Shinya; Matsumoto, Yasunobu; Takashima, Yasuhiro; Otsuka, Haruki

    2005-08-01

    The guanine and cytosine content (GC-content) of alpha-herpesvirus genes are highly variable despite similar genome structures. It is known that drug resistant HSV, which has the genome with a high GC-content (approximately 70%), commonly includes frameshift mutations in homopolymer stretches of guanine (G) and cytosine (C) within the thymidine kinase (TK) gene. However, whether such mutation hotspots exist in the TK gene of canine herpesvirus (CHV) which has a low GC-content was unknown. In this study, we investigated mutations in the TK gene of CHV. CHV was passaged in the presence of iodo-deoxyuridine (IDU), and IDU-resistant clones were isolated. In all IDU-resistant virus clones, mutations in the TK gene were observed. The majority of these mutations were frameshift mutations of an adenine (A) insertion or deletion within either of 2 stretches of eight A's in the TK gene. It was demonstrated that CHV TK mutations frequently occur at a limited number of hot spots within long homopolymer nucleotide stretches. PMID:15965615

  13. Four novel mutations of the coproporphyrinogen III oxidase gene.

    PubMed

    Aurizi, C; Lupia Palmieri, G; Barbieri, L; Macrì, A; Sorge, F; Usai, G; Biolcati, G

    2009-01-01

    Here we report the characterization of four novel mutations and a previously described one of the coproporphyrinogen III oxidase (CPO) gene in five Italian patients affected by Hereditary Coproporphyria (HCP). Three of the novel genetic variants are missense mutations (p.Gly242Cys; p.Leu398Pro; p.Ser245Phe) and one is a frameshift mutation (p.Gly188TrpfsX45). PMID:19267996

  14. Diverse growth hormone receptor gene mutations in Laron syndrome

    SciTech Connect

    Berg, M.A.; Francke, U. ); Gracia, R.; Rosenbloom, A.; Toledo, S.P.A. ); Chernausek, S. ); Guevara-Aguirre, J. ); Hopp, M. ); Rosenbloom, A.; Argente, J. ); Toledo, S.P.A. )

    1993-05-01

    To better understand the molecular genetic basis and genetic epidemiology of Laron syndrome (growth-hormone insensitivity syndrome), the authors analysed the growth-hormone receptor (GHR) genes of seven unrelated affected individuals from the United States, South America, Europe, and Africa. They amplified all nine GHR gene exons and splice junctions from these individuals by PCR and screened the products for mutations by using denaturing gradient gel electrophoresis (DGGE). They identified a single GHR gene fragment with abnormal DGGE results for each affected individual, sequenced this fragment, and, in each case, identified a mutation likely to cause Laron syndrome, including two nonsense mutations (R43X and R217X), two splice-junction mutations, (189-1 G to T and 71+1 G to A), and two frameshift mutations (46 del TT and 230 del TA or AT). Only one of these mutations, R43X, has been previously reported. Using haplotype analysis, they determined that this mutation, which involves a CpG dinucleotide hot spot, likely arose as a separate event in this case, relative to the two prior reports of R43X. Aside from R43X, the mutations identified are unique to patients from particular geographic regions. Ten GHR gene mutations have now been described in this disorder. The authors conclude that Laron syndrome is caused by diverse GHR gene mutations, including deletions, RNA processing defects, translational stop codons, and missense codons. All the identified mutations involve the extracellular domain of the receptor, and most are unique to particular families or geographic areas. 35 refs., 3 figs., 1 tab.

  15. Simulation of gene evolution under directional mutational pressure

    NASA Astrophysics Data System (ADS)

    Dudkiewicz, Małgorzata; Mackiewicz, Paweł; Kowalczuk, Maria; Mackiewicz, Dorota; Nowicka, Aleksandra; Polak, Natalia; Smolarczyk, Kamila; Banaszak, Joanna; R. Dudek, Mirosław; Cebrat, Stanisław

    2004-05-01

    The two main mechanisms generating the genetic diversity, mutation and recombination, have random character but they are biased which has an effect on the generation of asymmetry in the bacterial chromosome structure and in the protein coding sequences. Thus, like in a case of two chiral molecules-the two possible orientations of a gene in relation to the topology of a chromosome are not equivalent. Assuming that the sequence of a gene may oscillate only between certain limits of its structural composition means that the gene could be forced out of these limits by the directional mutation pressure, in the course of evolution. The probability of the event depends on the time the gene stays under the same mutation pressure. Inversion of the gene changes the directional mutational pressure to the reciprocal one and hence it changes the distance of the gene to its lower and upper bound of the structural tolerance. Using Monte Carlo methods we were able to simulate the evolution of genes under experimentally found mutational pressure, assuming simple mechanisms of selection. We found that the mutation and recombination should work in accordance to lower their negative effects on the function of the products of coding sequences.

  16. Phenotypic Involvement in Females with the FMR1 Gene Mutation.

    ERIC Educational Resources Information Center

    Riddle, J. E.; Cheema, A.; Sobesky, W. E.; Gardner, S. C.; Taylor, A. K.; Pennington, B. F.; Hagerman, R. J.

    1998-01-01

    A study investigated phenotypic effects seen in 114 females with premutation and 41 females (ages 18-58) with full Fragile X mental retardation gene mutation. Those with the full mutation had a greater incidence of hand-flapping, eye contact problems, special education help for reading and math, and grade retention. (Author/CR)

  17. MAMMALIAN CELL GENE MUTATION ASSAYS WORKING GROUP REPORT

    EPA Science Inventory

    Mammalian cell gene mutation assays have been used for many years and the diversity of the available systems attests to the varied methods found to grow mammalian dells and detect mutations. s part of the International Workshop on Standardization of Genotoxicity Test Procedures, ...

  18. Variable expressivity and mutation databases: The androgen receptor gene mutations database.

    PubMed

    Gottlieb, B; Beitel, L K; Trifiro, M A

    2001-05-01

    For over 50 years genetics has presumed that variations in phenotypic expression have, for the most part, been the result of alterations in genotype. The importance and value of mutation databases has been based on the premise that the same gene or allelic variation in a specific gene that has been proven to determine a specific phenotype, will always produce the same phenotype. However, recent evidence has shown that so called "simple" Mendelian disorders or monogenic traits are often far from simple, exhibiting phenotypic variation (variable expressivity) that cannot be explained solely by a gene or allelic alteration. The AR gene mutations database now lists 25 cases where different degrees of androgen insensitivity are caused by identical mutations in the androgen receptor gene. In five of these cases the phenotypic variability is due to somatic mosaicism, that is, somatic mutations that occur in only certain cells of androgen-sensitive tissue. Recently, a number of other cases of variable expressivity have also been linked to somatic mosaicism. The impact of variable expressivity due to somatic mutations and mosaicism on mutation databases is discussed. In particular, the effect of an organism exhibiting genetic heterogeneity within its tissues, and the possibility of an organism's genotype changing over its lifetime, are considered to have important implications for mutation databases in the future. PMID:11317353

  19. Molecular analysis of mutations in the human HPRT gene.

    PubMed

    Keohavong, Phouthone; Xi, Liqiang; Grant, Stephen G

    2014-01-01

    The HPRT assay uses incorporation of toxic nucleotide analogues to select for cells lacking the purine scavenger enzyme hypoxanthine-guanine phosphoribosyl transferase. A major advantage of this assay is the ability to isolate mutant cells and determine the molecular basis for their functional deficiency. Many types of analyses have been performed at this locus: the current protocol involves generation of a cDNA and multiplex PCR of each exon, including the intron/exon junctions, followed by direct sequencing of the products. This analysis detects point mutations, small deletions and insertions within the gene, mutations affecting RNA splicing, and products of illegitimate V(D)J recombination within the gene. Establishment of and comparisons with mutational spectra hold the promise of identifying exposures to mutation-inducing genotoxicants from their distinctive pattern of gene-specific DNA damage at this easily analyzed reporter gene. PMID:24623237

  20. Identification of somatic gene mutations in penile squamous cell carcinoma.

    PubMed

    Ferrándiz-Pulido, Carla; Hernández-Losa, Javier; Masferrer, Emili; Vivancos, Ana; Somoza, Rosa; Marés, Roso; Valverde, Claudia; Salvador, Carlos; Placer, Jose; Morote, Juan; Pujol, Ramon M; Ramon y Cajal, Santiago; de Torres, Ines; Toll, Agusti; García-Patos, Vicente

    2015-10-01

    There is a lack of studies on somatic gene mutations and cell signaling driving penile carcinogenesis. Our objective was to analyze somatic mutations in genes downstream of EGFR in penile squamous cell carcinomas, especially the mTOR and RAS/MAPK pathways. We retrospectively analyzed somatic mutations in 10 in situ and 65 invasive penile squamous cell carcinomas by using Sequenom's Mass Spectrometry iPlex Technology and Oncocarta v1.0 Panel. The DNA was extracted from FFPE blocks and we identified somatic missense mutations in three in situ tumors and in 19 invasive tumors, mostly in PIK3CA, KRAS, HRAS, NRAS, and PDGFA genes. Somatic mutations in the PIK3CA gene or RAS family genes were neither associated with tumor grade, stage or outcome, and were equally often identified in hrHPV positive and in hrHPV negative tumors that showed no p53 expression. Mutations in PIK3CA, KRAS, and HRAS are frequent in penile squamous cell carcinoma and likely play a role in the development of p53-negative tumors. Although the presence of these mutations does not seem to correlate with tumoral behavior or outcome, they could be biomarkers of treatment failure with anti-EGFR mAb in patients with penile squamous cell carcinoma. PMID:26216163

  1. Pancreatic adenocarcinomas frequently show p53 gene mutations.

    PubMed Central

    Scarpa, A.; Capelli, P.; Mukai, K.; Zamboni, G.; Oda, T.; Iacono, C.; Hirohashi, S.

    1993-01-01

    Thirty-four pancreatic adenocarcinomas were studied for the presence of p53 gene mutations by the single-strand conformation polymorphism method and by direct sequencing of PCR-amplified fragments. p53 protein expression was immunohistochemically evaluated using monoclonal PAb1801 and polyclonal CM1 antibodies. Mutations were detected in 14 cases. The transitions were six G to A and two A to G; the transversions were one C to G and two A to C; the remaining three were frameshift mutations. Immunostaining results were identical with both antibodies. Nuclear immunohistochemical p53-positive cells were found in nine p53 mutated cases and in 12 cases in which no mutation was detected. In most of these latter cases only a minority of cancer cells showed immunohistochemical positivity. Twenty-nine cases, including all p53 mutated cancers, were known to contain codon 12 Ki-ras gene mutations. Also in the light of the demonstrated cooperation of ras and p53 gene alterations in the transformation of cultured cells, our data suggest that p53 mutation is one of the genetic defects that may have a role in the pathogenesis of a proportion of pancreatic cancers. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:8494051

  2. Preservation of duplicate genes by complementary, degenerative mutations.

    PubMed Central

    Force, A; Lynch, M; Pickett, F B; Amores, A; Yan, Y L; Postlethwait, J

    1999-01-01

    The origin of organismal complexity is generally thought to be tightly coupled to the evolution of new gene functions arising subsequent to gene duplication. Under the classical model for the evolution of duplicate genes, one member of the duplicated pair usually degenerates within a few million years by accumulating deleterious mutations, while the other duplicate retains the original function. This model further predicts that on rare occasions, one duplicate may acquire a new adaptive function, resulting in the preservation of both members of the pair, one with the new function and the other retaining the old. However, empirical data suggest that a much greater proportion of gene duplicates is preserved than predicted by the classical model. Here we present a new conceptual framework for understanding the evolution of duplicate genes that may help explain this conundrum. Focusing on the regulatory complexity of eukaryotic genes, we show how complementary degenerative mutations in different regulatory elements of duplicated genes can facilitate the preservation of both duplicates, thereby increasing long-term opportunities for the evolution of new gene functions. The duplication-degeneration-complementation (DDC) model predicts that (1) degenerative mutations in regulatory elements can increase rather than reduce the probability of duplicate gene preservation and (2) the usual mechanism of duplicate gene preservation is the partitioning of ancestral functions rather than the evolution of new functions. We present several examples (including analysis of a new engrailed gene in zebrafish) that appear to be consistent with the DDC model, and we suggest several analytical and experimental approaches for determining whether the complementary loss of gene subfunctions or the acquisition of novel functions are likely to be the primary mechanisms for the preservation of gene duplicates. For a newly duplicated paralog, survival depends on the outcome of the race between

  3. Characterization of Hb Calvino (HBB: c.406G > A): a new silent β-globin gene variant found in coexistence with α-thalassemia in a family of African origin.

    PubMed

    Marsella, Maria; Salvagno, Gianluca; Dolcini, Bernadetta; Ferlini, Alessandra; Ravani, Anna; Harteveld, Cornelis L; Giordano, Piero C; Borgna-Pignatti, Caterina

    2014-01-01

    We report a new silent β-globin gene variant found in a family from Angola living in the north eastern Italian city of Ferrara. The probands, two young sisters, presented with hematological parameters compatible with a β-thalassemia (β-thal) minor but with normal Hb A₂ levels and normal hemoglobin (Hb) separation on high performance liquid chromatography (HPLC). Molecular analyses revealed a homozygosity for the common -α(3.7) (rightward) deletion and heterozygosity for a novel transition (GCT > ACT) at codon 135 of the β-globin gene, leading to an Ala → Thr single amino acid substitution that was inherited from the healthy father. PMID:25222042

  4. Two novel CAV3 gene mutations in Japanese families.

    PubMed

    Sugie, Kazuma; Murayama, Kumiko; Noguchi, Satoru; Murakami, Nobuyuki; Mochizuki, Mika; Hayashi, Yukiko K; Nonaka, Ikuya; Nishino, Ichizo

    2004-12-01

    Caveolin-3 deficiency is a rare, autosomal dominant, muscle disorder caused by caveolin-3 gene (CAV3) mutations and consists of four clinical phenotypes: limb-girdle muscular dystrophy type 1C (LGMD-1C), rippling muscle disease, distal myopathy, and familial hyperCKemia. So far, only 13 mutations have been reported. We here report two novel heterozygous mutations, 96C>G (N32K) and 128T>A (V43E), in the CAV3 gene in two unrelated Japanese families with LGMD-1C. Both probands presented with elevated serum CK level with calf muscle hypertrophy in their childhood but without apparent muscle weakness. However, their mothers showed mild limb-girdle weakness in addition to high CK level. Caveolin-3 was deficient and caveolae were lacking in muscles from both patients. Our data confirm that caveolin-3 deficiency causes LGMD-1C and expand the variability in CAV3 gene mutations. PMID:15564037

  5. Role of Duplicate Genes in Robustness against Deleterious Human Mutations

    PubMed Central

    Hsiao, Tzu-Lin; Vitkup, Dennis

    2008-01-01

    It is now widely recognized that robustness is an inherent property of biological systems [1],[2],[3]. The contribution of close sequence homologs to genetic robustness against null mutations has been previously demonstrated in simple organisms [4],[5]. In this paper we investigate in detail the contribution of gene duplicates to back-up against deleterious human mutations. Our analysis demonstrates that the functional compensation by close homologs may play an important role in human genetic disease. Genes with a 90% sequence identity homolog are about 3 times less likely to harbor known disease mutations compared to genes with remote homologs. Moreover, close duplicates affect the phenotypic consequences of deleterious mutations by making a decrease in life expectancy significantly less likely. We also demonstrate that similarity of expression profiles across tissues significantly increases the likelihood of functional compensation by homologs. PMID:18369440

  6. 21 CFR 866.5900 - Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation detection system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... regulator (CFTR) gene mutation detection system. 866.5900 Section 866.5900 Food and Drugs FOOD AND DRUG...) gene mutation detection system. (a) Identification. The CFTR gene mutation detection system is a device used to simultaneously detect and identify a panel of mutations and variants in the CFTR gene. It...

  7. 21 CFR 866.5900 - Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation detection system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... regulator (CFTR) gene mutation detection system. 866.5900 Section 866.5900 Food and Drugs FOOD AND DRUG...) gene mutation detection system. (a) Identification. The CFTR gene mutation detection system is a device used to simultaneously detect and identify a panel of mutations and variants in the CFTR gene. It...

  8. 21 CFR 866.5900 - Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation detection system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... regulator (CFTR) gene mutation detection system. 866.5900 Section 866.5900 Food and Drugs FOOD AND DRUG...) gene mutation detection system. (a) Identification. The CFTR gene mutation detection system is a device used to simultaneously detect and identify a panel of mutations and variants in the CFTR gene. It...

  9. 21 CFR 866.5900 - Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation detection system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... regulator (CFTR) gene mutation detection system. 866.5900 Section 866.5900 Food and Drugs FOOD AND DRUG...) gene mutation detection system. (a) Identification. The CFTR gene mutation detection system is a device used to simultaneously detect and identify a panel of mutations and variants in the CFTR gene. It...

  10. 21 CFR 866.5900 - Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation detection system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... regulator (CFTR) gene mutation detection system. 866.5900 Section 866.5900 Food and Drugs FOOD AND DRUG...) gene mutation detection system. (a) Identification. The CFTR gene mutation detection system is a device used to simultaneously detect and identify a panel of mutations and variants in the CFTR gene. It...

  11. AB125. Neonatal diabetes mellitus due to insulin gene mutation

    PubMed Central

    Can, Ngoc Thi Bich; Vu, Dung Chi; Bui, Thao Phuong; Nguyen, Khanh Ngoc; Nguyen, Dat Phu; Craig, Maria; Ellard, Sian; Nguyen, Hoan Thi

    2015-01-01

    Background and objective Insulin (INS) gene mutations that cause permanent neonatal diabetes mellitus change single protein building blocks (amino acids) in the protein sequence. These mutations are believed to disrupt the cleavage of the proinsulin chain or the binding of the A and B chains to form insulin, leading to impaired blood sugar control. At least ten mutations in the INS gene have been identified in people with permanent neonatal diabetes mellitus. To describe clinical features and laboratory manifestations of patients with INS gene mutation and to evaluate outcome of management. Methods Clinical features, biochemical finding, mutation analysis and management outcome of six cases from six unrelated families were study. All exons of INS gene were amplified from genomic DNA and directly sequenced. Results Six cases (three girls and three boys) onset at 129.2±128.8 days of age (median 101.5 days) with gestation age of 37.3±3.0 weeks, birth weight of 2,816.6±767.8 g. Five out of six patients admitted with the feature of diabetic ketoacidosis with pH of 7.04±0.22; plasma glucose levels were 34.3±12.7 mmoL/L, HbA1C of 9.75%±3.5%. Mutation analysis of the INS gene showed: heterozygous for a novel missense mutation (c.127T > A; C43S) in exon 2 in one case; heterozygous for a splicing mutation c.188-31G > A in intron 2 in two cases; heterozygous for a missense mutation c.286T > C in exon 3 in one case; heterozygous for a missense mutation c.265C > T [p.Arg89Cys (p.R89C)] in exon 3 in two cases. After 19.2±13.4 months of insulin treatment, 4/5 patients have normal development with DQ 80-100%, HbA1C of 6.85%±0.49%, quite normal blood glucose levels. The case with c.127T > A mutation treated with insulin for 14 years has physical development delay, poor blood glucose control with HbA1C of 11.4%. Conclusions It is important to perform screening gene mutation for patients with diabetes diagnosed before 6 months of age to control blood glucose and follow up the

  12. Pyridoxine responsiveness in novel mutations of the PNPO gene

    PubMed Central

    Paul, Karl; Mills, Philippa; Clayton, Peter; Paschke, Eduard; Maier, Oliver; Hasselmann, Oswald; Schmiedel, Gudrun; Kanz, Simone; Connolly, Mary; Wolf, Nicole; Struys, Eduard; Stockler, Sylvia; Abela, Lucia; Hofer, Doris

    2014-01-01

    Objective: To determine whether patients with pyridoxine-responsive seizures but normal biomarkers for antiquitin deficiency and normal sequencing of the ALDH7A1 gene may have PNPO mutations. Methods: We sequenced the PNPO gene in 31 patients who fulfilled the above-mentioned criteria. Results: We were able to identify 11 patients carrying 3 novel mutations of the PNPO gene. In 6 families, a homozygous missense mutation p.Arg225His in exon 7 was identified, while 1 family was compound heterozygous for a novel missense mutation p.Arg141Cys in exon 5 and a deletion c.279_290del in exon 3. Pathogenicity of the respective mutations was proven by absence in 100 control alleles and expression studies in CHO-K1 cell lines. The response to pyridoxine was prompt in 4, delayed in 2, on EEG only in 2, and initially absent in another 2 patients. Two unrelated patients homozygous for the p.Arg225His mutation experienced status epilepticus when switched to pyridoxal 5′-phosphate (PLP). Conclusions: This study challenges the paradigm of exclusive PLP responsiveness in patients with pyridoxal 5′-phosphate oxidase deficiency and underlines the importance of consecutive testing of pyridoxine and PLP in neonates with antiepileptic drug–resistant seizures. Patients with pyridoxine response but normal biomarkers for antiquitin deficiency should undergo PNPO mutation analysis. PMID:24658933

  13. Progressive myoclonus epilepsy associated with SACS gene mutations.

    PubMed

    Nascimento, Fábio A; Canafoglia, Laura; Aljaafari, Danah; Muona, Mikko; Lehesjoki, Anna-Elina; Berkovic, Samuel F; Franceschetti, Silvana; Andrade, Danielle M

    2016-08-01

    Pathogenic variants in the SACS gene (OMIM #604490) cause autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS). ARSACS is a neurodegenerative early-onset progressive disorder, originally described in French Canadians, but later observed elsewhere.(1) Whole-exome sequencing of a large group of patients with unclassified progressive myoclonus epilepsies (PMEs) identified 2 patients bearing SACS gene mutations.(2) We detail the PME clinical features associated with SACS mutations and suggest the inclusion of the SACS gene in diagnostic screening of PMEs. PMID:27433545

  14. Neurocognitive Profiles in Duchenne Muscular Dystrophy and Gene Mutation Site

    PubMed Central

    D’Angelo, Maria Grazia; Lorusso, Maria Luisa; Civati, Federica; Comi, Giacomo Pietro; Magri, Francesca; Del Bo, Roberto; Guglieri, Michela; Molteni, Massimo; Turconi, Anna Carla; Bresolin, Nereo

    2011-01-01

    The presence of nonprogressive cognitive impairment is recognized as a common feature in a substantial proportion of patients with Duchenne muscular dystrophy. To investigate the possible role of mutations along the dystrophin gene affecting different brain dystrophin isoforms and specific cognitive profiles, 42 school-age children affected with Duchenne muscular dystrophy, subdivided according to sites of mutations along the dystrophin gene, underwent a battery of tests tapping a wide range of intellectual, linguistic, and neuropsychologic functions. Full-scale intelligence quotient was approximately 1 S.D. below the population average in the whole group of dystrophic children. Patients with Duchenne muscular dystrophy and mutations located in the distal portion of the dystrophin gene (involving the 140-kDa brain protein isoform, called Dp140) were generally more severely affected and expressed different patterns of strengths and impairments, compared with patients with Duchenne muscular dystrophy and mutations located in the proximal portion of the dystrophin gene (not involving Dp140). Patients with Duchenne muscular dystrophy and distal mutations demonstrated specific impairments in visuospatial functions and visual memory (which seemed intact in proximally mutated patients) and greater impairment in syntactic processing. PMID:22000308

  15. Prioritization of neurodevelopmental disease genes by discovery of new mutations

    PubMed Central

    Hoischen, Alexander; Krumm, Niklas; Eichler, Evan E.

    2014-01-01

    Advances in genome sequencing technologies have begun to revolutionize neurogenetics allowing the full spectrum of genetic variation to be better understood in relationship to disease. Exome sequencing of hundreds to thousands of samples from patients with autism spectrum disorder, intellectual disability, epilepsy, and schizophrenia provide strong evidence of the importance of de novo and gene-disruptive events. There are now several hundred new candidate genes and targeted resequencing technologies that allow screening of dozens of genes in tens of thousands of individuals with high specificity and sensitivity. The decision of which genes to pursue depends on numerous factors including recurrence, prior evidence of overlap with pathogenic copy number variants, the position of the mutation within the protein, the mutational burden among healthy individuals, and membership of the candidate gene within disease-implicated protein networks. We discuss these emerging criteria for gene prioritization and the potential impact on the field of neuroscience. PMID:24866042

  16. Gene mutation-based and specific therapies in precision medicine.

    PubMed

    Wang, Xiangdong

    2016-04-01

    Precision medicine has been initiated and gains more and more attention from preclinical and clinical scientists. A number of key elements or critical parts in precision medicine have been described and emphasized to establish a systems understanding of precision medicine. The principle of precision medicine is to treat patients on the basis of genetic alterations after gene mutations are identified, although questions and challenges still remain before clinical application. Therapeutic strategies of precision medicine should be considered according to gene mutation, after biological and functional mechanisms of mutated gene expression or epigenetics, or the correspondent protein, are clearly validated. It is time to explore and develop a strategy to target and correct mutated genes by direct elimination, restoration, correction or repair of mutated sequences/genes. Nevertheless, there are still numerous challenges to integrating widespread genomic testing into individual cancer therapies and into decision making for one or another treatment. There are wide-ranging and complex issues to be solved before precision medicine becomes clinical reality. Thus, the precision medicine can be considered as an extension and part of clinical and translational medicine, a new alternative of clinical therapies and strategies, and have an important impact on disease cures and patient prognoses. PMID:26994883

  17. Identification of mutator genes and mutational pathways in Escherichia coli using a multicopy cloning approach.

    PubMed

    Yang, Hanjing; Wolff, Erika; Kim, Mandy; Diep, Amy; Miller, Jeffrey H

    2004-07-01

    We searched for genes that create mutator phenotypes when put on to a multicopy plasmid in Escherichia coli. In many cases, this will result in overexpression of the gene in question. We constructed a random shotgun library with E. coli genomic fragments between 3 and 5 kbp in length on a multicopy plasmid vector that was transformed into E. coli to screen for frameshift mutators. We identified a total of 115 independent genomic fragments that covered 17 regions on the E. coli chromosome. Further studies identified 12 genes not previously known as causing mutator phenotypes when overproduced. A striking finding is that overproduction of the multidrug resistance transcription regulator, EmrR, results in a large increase in frameshift and base substitution mutagenesis. This suggests a link between multidrug resistance and mutagenesis. Other identified genes include those encoding DNA helicases (UvrD, RecG, RecQ), truncated forms of the DNA mismatch repair protein (MutS) and a primosomal component (DnaT), a negative modulator of initiation of replication/GATC-binding protein (SeqA), a stationary phase regulator AppY, a transcriptional regulator PaaX and three putative open reading frames, ycgW, yfjY and yjiD, encoding hypothetical proteins. In addition, we found three genes encoding proteins that were previously known to cause mutator effects under overexpression conditions: error-prone polymerase IV (DinB), DNA methylase (Dam) and sigma S factor (RpoS). This genomic strategy offers an approach to identify novel mutator effects resulting from the multicopy cloning (MCC) of specific genes and therefore complementing the conventional gene inactivation approach to finding mutators. PMID:15225322

  18. Mutations in the filaggrin gene and food allergy

    PubMed Central

    Markiewicz, Lidia; Wróblewska, Barbara

    2014-01-01

    The results of long-term epidemiological studies show that the number of people suffering from allergic diseases, especially from food allergies and atopic dermatitis (AD), is still increasing. Although the research thus far has been conducted mainly in Europe, North America, and Asia, there are also data appearing from the first studies in that field among the African population. This may indicate the importance of the problem of allergic diseases. The discovery that loss-of-function mutations in the gene coding filaggrin (FLG) are the cause of ichthyosis vulgaris marked a significant breakthrough in understanding the pathogenesis of allergic diseases. The presence of mutations in the filaggrin gene is also an important factor that predisposes to such allergic diseases as: allergic rhinitis, atopic dermatitis, atopic asthma, and food allergy. So far, over 40 loss-of-function mutations and numerous silent mutations in filaggrin have been discovered. PMID:25276250

  19. Novel PRKAR1A gene mutations in Carney Complex.

    PubMed

    Pan, Lorraine; Peng, Lan; Jean-Gilles, J; Zhang, Ximin; Wieczorek, Rosemary; Jain, Shilpa; Levine, Vicki; Osman, Iman; Prieto, Victor G; Lee, Peng

    2010-01-01

    Carney complex is a syndrome that may include cardiac and mucocutaneous myxomas, spotting skin pigmentation, and endocrine lesions. Many patients with Carney complex have been shown to have a stop codon mutation in the PRKAR1A gene in the 17q22-24 region. Here we present the case of a 57 year-old man with multiple skin lesions and cardiac myxomas. Histology of the skin lesions showed lentigenous melanocytic hyperplasia and cutaneous myxomas, confirming the diagnosis of Carney complex. Lesional and control normal tissue from the patient were identified and sequenced for the PRKAR1A gene. A germline missense mutation was identified at exon 1A. This is the first report of this mutation, and one of the few reported missense mutation associated with Carney complex. This finding strengthens the argument that there are alternative ways in which the protein kinase A 1-alpha subunit plays a role in tumorigenesis. PMID:20606737

  20. Legius Syndrome: two novel mutations in the SPRED1 gene

    PubMed Central

    Bianchi, Marika; Saletti, Veronica; Micheli, Roberto; Esposito, Silvia; Molinaro, Anna; Gagliardi, Stella; Orcesi, Simona; Cereda, Cristina

    2015-01-01

    The SPRED1 gene encodes a protein involved in the Ras/MAPK (mitogen-activated protein kinase) signaling pathway. Mutations in SPRED1 have been reported to cause Legius Syndrome, a rare developmental disorder that shares some clinical features with Neurofibromatosis-1. Direct sequencing was used to define SPRED1 mutations. We present two previously undescribed mutations: a frameshift mutation causing a stop codon, which was identified in an Italian family (p.Ile60Tyrfs*18) and a missense variation, which was identified in one sporadic Italian case (p.Pro422Arg). Our results led us to hypothesize that these modifications may contribute to the Legius Syndrome phenotype. Further studies will be needed to determine the roles of these mutations in the mechanisms of Legius Syndrome. PMID:27081556

  1. Molecular evaluation of a novel missense mutation & an insertional truncating mutation in SUMF1 gene

    PubMed Central

    Kotecha, Udhaya H.; Movva, Sireesha; Sharma, Deepak; Verma, Jyotsna; Puri, Ratna Dua; Verma, Ishwar Chander

    2014-01-01

    Background & objectives: Multiple suphphatase deficiency (MSD) is an autosomal recessive disorder affecting the post translational activation of all enzymes of the sulphatase family. To date, approximately 30 different mutations have been identified in the causative gene, sulfatase modifying factor 1 (SUMF1). We describe here the mutation analysis of a case of MSD. Methods: The proband was a four year old boy with developmental delay followed by neuroregression. He had coarse facies, appendicular hypertonia, truncal ataxia and ichthyosis limited to both lower limbs. Radiographs showed dysostosis multiplex. Clinical suspicion of MSD was confirmed by enzyme analysis of four enzymes of the sulphatase group. Results: The patient was compound heterozygote for a c.451A>G (p.K151E) substitution in exon 3 and a single base insertion mutation (c.690_691 InsT) in exon 5 in the SUMF1 gene. The bioinformatic analysis of the missense mutation revealed no apparent effect on the overall structure. However, the mutated 151-amino acid residue was found to be adjacent to the substrate binding and the active site residues, thereby affecting the substrate binding and/or catalytic activity, resulting in almost complete loss of enzyme function. Conclusions: The two mutations identified in the present case were novel. This is perhaps the first report of an insertion mutation in SUMF1 causing premature truncation of the protein. PMID:25222778

  2. SERPINA1 Full-Gene Sequencing Identifies Rare Mutations Not Detected in Targeted Mutation Analysis.

    PubMed

    Graham, Rondell P; Dina, Michelle A; Howe, Sarah C; Butz, Malinda L; Willkomm, Kurt S; Murray, David L; Snyder, Melissa R; Rumilla, Kandelaria M; Halling, Kevin C; Highsmith, W Edward

    2015-11-01

    Genetic α-1 antitrypsin (AAT) deficiency is characterized by low serum AAT levels and the identification of causal mutations or an abnormal protein. It needs to be distinguished from deficiency because of nongenetic causes, and diagnostic delay may contribute to worse patient outcome. Current routine clinical testing assesses for only the most common mutations. We wanted to determine the proportion of unexplained cases of AAT deficiency that harbor causal mutations not identified through current standard allele-specific genotyping and isoelectric focusing (IEF). All prospective cases from December 1, 2013, to October 1, 2014, with a low serum AAT level not explained by allele-specific genotyping and IEF were assessed through full-gene sequencing with a direct sequencing method for pathogenic mutations. We reviewed the results using American Council of Medical Genetics criteria. Of 3523 cases, 42 (1.2%) met study inclusion criteria. Pathogenic or likely pathogenic mutations not identified through clinical testing were detected through full-gene sequencing in 16 (38%) of the 42 cases. Rare mutations not detected with current allele-specific testing and IEF underlie a substantial proportion of genetic AAT deficiency. Full-gene sequencing, therefore, has the ability to improve accuracy in the diagnosis of AAT deficiency. PMID:26321041

  3. Gene mutations and molecularly targeted therapies in acute myeloid leukemia

    PubMed Central

    Hatzimichael, Eleftheria; Georgiou, Georgios; Benetatos, Leonidas; Briasoulis, Evangelos

    2013-01-01

    Acute myelogenous leukemia (AML) can progress quickly and without treatment can become fatal in a short period of time. However, over the last 30 years fine-tuning of therapeutics have increased the rates of remission and cure. Cytogenetics and mutational gene profiling, combined with the option of allogeneic hematopoietic stem cell transplantation offered in selected patients have further optimized AML treatment on a risk stratification basis in younger adults. However there is still an unmet medical need for effective therapies in AML since disease relapses in almost half of adult patients becoming refractory to salvage therapy. Improvements in the understanding of molecular biology of cancer and identification of recurrent mutations in AML provide opportunities to develop targeted therapies and improve the clinical outcome. In the spectrum of identified gene mutations, primarily targetable lesions are gain of function mutations of tyrosine kinases FLT3, JAK2 and cKIT for which specific, dual and multi-targeted small molecule inhibitors have been developed. A number of targeted compounds such as sorafenib, quizartinib, lestaurtinib, midostaurin, pacritinib, PLX3397 and CCT137690 are in clinical development. For loss-of-function gene mutations, which are mostly biomarkers of favorable prognosis, combined therapeutic approaches can maximize the therapeutic efficacy of conventional therapy. Apart from mutated gene products, proteins aberrantly overexpressed in AML appear to be clinically significant therapeutic targets. Such a molecule for which targeted inhibitors are currently in clinical development is PLK1. We review characteristic gene mutations, discuss their biological functions and clinical significance and present small molecule compounds in clinical development, which are expected to have a role in treating AML subtypes with characteristic molecular alterations. PMID:23358589

  4. Frequent mutations in chromatin-remodeling genes in pulmonary carcinoids

    PubMed Central

    Lu, Xin; Sun, Ruping; Ozretić, Luka; Seidal, Danila; Zander, Thomas; Leenders, Frauke; George, Julie; Müller, Christian; Dahmen, Ilona; Pinther, Berit; Bosco, Graziella; Konrad, Kathryn; Altmüller, Janine; Nürnberg, Peter; Achter, Viktor; Lang, Ulrich; Schneider, Peter M; Bogus, Magdalena; Soltermann, Alex; Brustugun, Odd Terje; Helland, Åslaug; Solberg, Steinar; Lund-Iversen, Marius; Ansén, Sascha; Stoelben, Erich; Wright, Gavin M.; Russell, Prudence; Wainer, Zoe; Solomon, Benjamin; Field, John K; Hyde, Russell; Davies, Michael PA.; Heukamp, Lukas C; Petersen, Iver; Perner, Sven; Lovly, Christine; Cappuzzo, Federico; Travis, William D; Wolf, Jürgen; Vingron, Martin; Brambilla, Elisabeth; Haas, Stefan A.; Buettner, Reinhard; Thomas, Roman K

    2014-01-01

    Pulmonary carcinoids are rare neuroendocrine tumors of the lung. The molecular alterations underlying the pathogenesis of these tumors have not been systematically studied so far. Here we perform gene copy number analysis (n=54), genome/exome (n=44) and transcriptome (n=69) sequencing of pulmonary carcinoids and observe frequent mutations in chromatin-remodeling genes. Covalent histone modifiers and subunits of the SWI/SNF complex are mutated in 40% and 22.2% of the cases respectively, with MEN1, PSIP1 and ARID1A being recurrently affected. In contrast to small-cell lung cancer and large-cell neuroendocrine tumors, TP53 and RB1 mutations are rare events, suggesting that pulmonary carcinoids are not early progenitor lesions of the highly aggressive lung neuroendocrine tumors but arise through independent cellular mechanisms. These data also suggest that inactivation of chromatin remodeling genes is sufficient to drive transformation in pulmonary carcinoids. PMID:24670920

  5. TINF2 Gene Mutation in a Patient with Pulmonary Fibrosis

    PubMed Central

    Hoffman, T. W.; van der Vis, J. J.; van Oosterhout, M. F. M.; van Es, H. W.; van Kessel, D. A.; Grutters, J. C.; van Moorsel, C. H. M.

    2016-01-01

    Pulmonary fibrosis is a frequent manifestation of telomere syndromes. Telomere gene mutations are found in up to 25% and 3% of patients with familial disease and sporadic disease, respectively. The telomere gene TINF2 encodes an eponymous protein that is part of the shelterin complex, a complex involved in telomere protection and maintenance. A TINF2 gene mutation was recently reported in a family with pulmonary fibrosis. We identified a heterozygous Ser245Tyr mutation in the TINF2 gene of previously healthy female patient that presented with progressive cough due to pulmonary fibrosis as well as panhypogammaglobulinemia at age 52. Retrospective multidisciplinary evaluation classified her as a case of possible idiopathic pulmonary fibrosis. Telomere length-measurement indicated normal telomere length in the peripheral blood compartment. This is the first report of a TINF2 mutation in a patient with sporadic pulmonary fibrosis, which represents another association between TINF2 mutations and this disease. Furthermore, this case underlines the importance of telomere dysfunction and not telomere length alone in telomere syndromes and draws attention to hypogammaglobulinemia as a manifestation of telomere syndromes. PMID:27088026

  6. Gene-Specific Function Prediction for Non-Synonymous Mutations in Monogenic Diabetes Genes

    PubMed Central

    Li, Quan; Liu, Xiaoming; Gibbs, Richard A.; Boerwinkle, Eric; Polychronakos, Constantin; Qu, Hui-Qi

    2014-01-01

    The rapid progress of genomic technologies has been providing new opportunities to address the need of maturity-onset diabetes of the young (MODY) molecular diagnosis. However, whether a new mutation causes MODY can be questionable. A number of in silico methods have been developed to predict functional effects of rare human mutations. The purpose of this study is to compare the performance of different bioinformatics methods in the functional prediction of nonsynonymous mutations in each MODY gene, and provides reference matrices to assist the molecular diagnosis of MODY. Our study showed that the prediction scores by different methods of the diabetes mutations were highly correlated, but were more complimentary than replacement to each other. The available in silico methods for the prediction of diabetes mutations had varied performances across different genes. Applying gene-specific thresholds defined by this study may be able to increase the performance of in silico prediction of disease-causing mutations. PMID:25136813

  7. SPINK1 gene mutations and pancreatitis in Japan.

    PubMed

    Shimosegawa, Tooru; Kume, Kiyoshi; Masamune, Atsushi

    2006-10-01

    SPINK1 can inhibit up to 20% of trypsin activity, and may constitute one major mechanism to protect the pancreas from autodigestion. In 2000, Witt et al. first recognized the association between mutations in the SPINK1 gene and chronic pancreatitis (CP), but the significance of SPINK1 gene mutation in pancreatitis and its relation to alcohol consumption remains unclear in Japan. The aim of the present paper was to clarify the incidence of SPINK1 mutations in CP patients with various etiologies in Japan and, in addition, to examine the relationship between alcohol metabolism and the polymorphisms in the key enzymes, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase-2 (ALDH2). A total of 156 patients with CP, and 165 healthy volunteers, all Japanese, were examined for the SPINK1 mutations by polymerase chain reaction-restriction fragment length polymorphism and direct sequencing. In Japan, the prevalence of [N34S; IVS1-37T > C] and [-215G > A; IVS3 + 2T > C] was significantly higher in patients with idiopathic CP (10.6% and 12.8%, respectively) than normal subjects (0.6% and 0%). The frequency of the [-215G > A; IVS3 + 2T > C] mutation in Japan was significantly higher than that reported in other populations. Concerning alcoholic CP, the [-215G > A; IVS3 + 2T > C] mutation was found in only a small number of patients (3.9%). On analysis of ADH2 and ALDH2 gene polymorphisms an association was found between ADH2*2 allele and alcoholic CP, and the ADH2*2/2*2 genotype had a tendency to increase the risk of developing pancreatic pseudocyst. In conclusion, in Japan the [-215G > A; IVS3 + 2T > C] mutation in the SPINK1 gene may form a unique genetic background for pancreatitis. PMID:16958672

  8. Mutation distributions and clinical correlations of PIK3CA gene mutations in breast cancer.

    PubMed

    Dirican, Ebubekir; Akkiprik, Mustafa; Özer, Ayşe

    2016-06-01

    Breast cancer (BCa) is the most common cancer and the second cause of death among women. Phosphoinositide 3-kinase (PI3K) signaling pathway has a crucial role in the cellular processes such as cell survival, growth, division, and motility. Moreover, oncogenic mutations in the PI3K pathway generally involve the activation phosphatidylinositol-4,5-bisphosphate 3-kinase-catalytic subunit alpha (PIK3CA) mutation which has been identified in numerous BCa subtypes. In this review, correlations between PIK3CA mutations and their clinicopathological parameters on BCa will be described. It is reported that PIK3CA mutations which have been localized mostly on exon 9 and 20 hot spots are detected 25-40 % in BCa. This relatively high frequency can offer an advantage for choosing the best treatment options for BCa. PIK3CA mutations may be used as biomarkers and have been major focus of drug development in cancer with the first clinical trials of PI3K pathway inhibitors currently in progress. Screening of PIK3CA gene mutations might be useful genetic tests for targeted therapeutics or diagnosis. Increasing data about PIK3CA mutations and its clinical correlations with BCa will help to introduce new clinical applications in the near future. PMID:26921096

  9. Mutator gene and hereditary non-polyposis colorectal cancer

    DOEpatents

    de la Chapelle, Albert; Vogelstein, Bert; Kinzler, Kenneth W.

    2008-02-05

    The human MSH2 gene, responsible for hereditary non-polyposis colorectal cancer, was identified by virtue of its homology to the MutS class of genes, which are involved in DNA mismatch repair. The sequence of cDNA clones of the human gene are provided, and the sequence of the gene can be used to demonstrate the existence of germ line mutations in hereditary non-polyposis colorectal cancer (HNPCC) kindreds, as well as in replication error.sup.+ (RER.sup.+) tumor cells.

  10. CHCHD2 gene mutations in familial and sporadic Parkinson's disease.

    PubMed

    Shi, Chang-He; Mao, Cheng-Yuan; Zhang, Shu-Yu; Yang, Jing; Song, Bo; Wu, Ping; Zuo, Chuan-Tao; Liu, Yu-Tao; Ji, Yan; Yang, Zhi-Hua; Wu, Jun; Zhuang, Zheng-Ping; Xu, Yu-Ming

    2016-02-01

    Mutations in CHCHD2 gene have been reported in autosomal dominant Parkinson's disease (ADPD). However, there is still lack of evidence supported CHCHD2 mutations lead to ADPD in other populations. We performed whole exome sequencing, positron emission tomography (PET), and haplotype analyses in an ADPD pedigree and then comprehensively screened for CHCHD2 gene mutations in additional 18 familial parkinsonism pedigrees, 364 sporadic PD patients, and 384 healthy controls to assess the frequencies of known and novel rare nonsynonymous CHCHD2 mutations. We identified a heterozygous variant (c.182C>T; p.Thr61Ile) in the CHCHD2 gene in the ADPD pedigree. PET revealed a significant reduction in dopamine transporter binding in the putamen and caudate nucleus of the proband, similar to idiopathic PD. The single nucleotide variant 5C>T (Pro2Leu) in CHCHD2 was confirmed to have a significantly higher frequency among sporadic PD patients than controls. Our results confirm that ADPD can be caused by CHCHD2 mutations and show that the Pro2Leu variant in CHCHD2 may be a risk factor for sporadic PD in Chinese populations. PMID:26705026

  11. Identification of 5 novel mutations in the AGXT gene.

    PubMed

    Basmaison, O; Rolland, M O; Cochat, P; Bozon, D

    2000-06-01

    In order to identify additional genotypes in primary hyperoxaluria type 1, we sequenced the AGXT genes of 9 patients. We report 5 new mutations. Three are splice-site mutations situated at the end of intron 4 and 8 (647-1G>A, 969-1G>C, 969-3C>G), one is a missense mutation in exon 5 (D183N), and one is a short duplication in exon 2 (349ins7). Their consequence is always a lack of enzymatic activity of the Alanine-Glyoxylate Aminotransferase (AGT); for 4 of them, we were able to deduce that they were associated to the absence of AGT protein. These mutations are rare, as they have been found on one allele in our study (except 969-3C>G present in 2 unrelated families), and have not been previously reported. PMID:10862087

  12. Detection of driver pathways using mutated gene network in cancer.

    PubMed

    Li, Feng; Gao, Lin; Ma, Xiaoke; Yang, Xiaofei

    2016-06-21

    Distinguishing driver pathways has been extensively studied because they are critical for understanding the development and molecular mechanisms of cancers. Most existing methods for driver pathways are based on high coverage as well as high mutual exclusivity, with the underlying assumption that mutations are exclusive. However, in many cases, mutated driver genes in the same pathways are not strictly mutually exclusive. Based on this observation, we propose an index for quantifying mutual exclusivity between gene pairs. Then, we construct a mutated gene network for detecting driver pathways by integrating the proposed index and coverage. The detection of driver pathways on the mutated gene network consists of two steps: raw pathways are obtained using a CPM method, and the final driver pathways are selected using a strict testing strategy. We apply this method to glioblastoma and breast cancers and find that our method is more accurate than state-of-the-art methods in terms of enrichment of KEGG pathways. Furthermore, the detected driver pathways intersect with well-known pathways with moderate exclusivity, which cannot be discovered using the existing algorithms. In conclusion, the proposed method provides an effective way to investigate driver pathways in cancers. PMID:27118146

  13. Mutation Burden of Rare Variants in Schizophrenia Candidate Genes

    PubMed Central

    Girard, Simon L.; Dion, Patrick A.; Bourassa, Cynthia V.; Geoffroy, Steve; Lachance-Touchette, Pamela; Barhdadi, Amina; Langlois, Mathieu; Joober, Ridha; Krebs, Marie-Odile; Dubé, Marie-Pierre; Rouleau, Guy A.

    2015-01-01

    Background Schizophrenia (SCZ) is a very heterogeneous disease that affects approximately 1% of the general population. Recently, the genetic complexity thought to underlie this condition was further supported by three independent studies that identified an increased number of damaging de novo mutations DNM in different SCZ probands. While these three reports support the implication of DNM in the pathogenesis of SCZ, the absence of overlap in the genes identified suggests that the number of genes involved in SCZ is likely to be very large; a notion that has been supported by the moderate success of Genome-Wide Association Studies (GWAS). Methods To further examine the genetic heterogeneity of this disease, we resequenced 62 genes that were found to have a DNM in SCZ patients, and 40 genes that encode for proteins known to interact with the products of the genes with DNM, in a cohort of 235 SCZ cases and 233 controls. Results We found an enrichment of private nonsense mutations amongst schizophrenia patients. Using a kernel association method, we were able to assess for association for different sets. Although our power of detection was limited, we observed an increased mutation burden in the genes that have DNM. PMID:26039597

  14. The Combination of CRISPR/Cas9 and iPSC Technologies in the Gene Therapy of Human β-thalassemia in Mice

    PubMed Central

    Ou, Zhanhui; Niu, Xiaohua; He, Wenyin; Chen, Yuchang; Song, Bing; Xian, Yexing; Fan, Di; Tang, Daolin; Sun, Xiaofang

    2016-01-01

    β-thalassemia results from point mutations or small deletions in the β-globin (HBB) gene that ultimately cause anemia. The generation of induced pluripotent stem cells (iPSCs) from the somatic cells of patients in combination with subsequent homologous recombination-based gene correction provides new approaches to cure this disease. CRISPR/Cas9 is a genome editing tool that is creating a buzz in the scientific community for treating human diseases, especially genetic disorders. Here, we reported that correction of β-thalassemia mutations in patient-specific iPSCs using the CRISPR/Cas9 tool promotes hematopoietic differentiation in vivo. CRISPR/Cas9-corrected iPSC-derived hematopoietic stem cells (HSCs) were injected into sublethally-irradiated NOD-scid-IL2Rg−/− (NSI) mice. HBB expression was observed in these HSCs after hematopoietic differentiation in the NSI mice. Importantly, no tumor was found in the livers, lungs, kidneys, or bone marrow at 10 weeks in the NSI mice after implantation with these HSCs. Collectively, our findings demonstrated that CRISPR/Cas9 successfully corrects β-thalassemia mutations in patient-specific iPSCs. These CRISPR/Cas9-corrected iPSC-derived HSCs express normal HBB in mice without tumorigenic potential, suggesting a safe strategy for personalized treatment of β-thalassemia. PMID:27581487

  15. The Combination of CRISPR/Cas9 and iPSC Technologies in the Gene Therapy of Human β-thalassemia in Mice.

    PubMed

    Ou, Zhanhui; Niu, Xiaohua; He, Wenyin; Chen, Yuchang; Song, Bing; Xian, Yexing; Fan, Di; Tang, Daolin; Sun, Xiaofang

    2016-01-01

    β-thalassemia results from point mutations or small deletions in the β-globin (HBB) gene that ultimately cause anemia. The generation of induced pluripotent stem cells (iPSCs) from the somatic cells of patients in combination with subsequent homologous recombination-based gene correction provides new approaches to cure this disease. CRISPR/Cas9 is a genome editing tool that is creating a buzz in the scientific community for treating human diseases, especially genetic disorders. Here, we reported that correction of β-thalassemia mutations in patient-specific iPSCs using the CRISPR/Cas9 tool promotes hematopoietic differentiation in vivo. CRISPR/Cas9-corrected iPSC-derived hematopoietic stem cells (HSCs) were injected into sublethally-irradiated NOD-scid-IL2Rg-/- (NSI) mice. HBB expression was observed in these HSCs after hematopoietic differentiation in the NSI mice. Importantly, no tumor was found in the livers, lungs, kidneys, or bone marrow at 10 weeks in the NSI mice after implantation with these HSCs. Collectively, our findings demonstrated that CRISPR/Cas9 successfully corrects β-thalassemia mutations in patient-specific iPSCs. These CRISPR/Cas9-corrected iPSC-derived HSCs express normal HBB in mice without tumorigenic potential, suggesting a safe strategy for personalized treatment of β-thalassemia. PMID:27581487

  16. Mutations in ras genes in experimental tumours of rodents.

    PubMed

    Sills, R C; Boorman, G A; Neal, J E; Hong, H L; Devereux, T R

    1999-01-01

    Studies of carcinogenesis in rodents are valuable for examining mutagenesis in vivo. An advantage of evaluating the frequency and spectra of ras mutations in chemically induced neoplasms is that the additional data at the molecular level indicate whether the carcinogenic effect is due to the chemical and is not a spontaneous event, as illustrated by the numerous examples in Appendices 1 and 2. In addition, data on the frequency and spectra of ras mutations in spontaneous and chemically induced neoplasms clearly expand the toxicological database by providing information helpful for understanding the pathogenesis of carcinogenesis. For example: (1) ozone-induced lung neoplasms had two unique mutations, one (codon 61 K-ras CTA mutation) consistent with a direct genotoxic event and a second (codon 12 K-ras G --> T transversion) consistent with an indirect genotoxic effect; (2) isoprene-induced Harderian gland neoplasms had a unique K-ras A --> T transversion at codon 61 which provided evidence that formation of an epoxide intermediate was involved; (3) 1,3-butadiene-induced neoplasms had a characteristic K-ras G --> C transversion mutation at codon 13 which was also consistent with a chemical-specific effect; (4) methylene chloride-induced liver neoplasms had an H-ras mutation profile at codon 61 similar to that of spontaneous tumours, suggesting that methylene chloride promotes cells with 'spontaneously initiated' ras mutations and (5) oxazepam-induced liver neoplasms had a low frequency of ras mutations, suggesting a nonmutagenic pathway of carcinogenesis. By extending the evaluation of rodent tumours to include molecular studies on ras mutation spectra and abnormalities in other cancer genes with human homologues, a number of hypotheses can be tested, allowing the most complete understanding of carcinogenesis in rodents and in potential extrapolation to the human risk situation. PMID:10353384

  17. [Correlation of adult AML Npm1 mutations with prognosis and its relationship with gene mutation of FLT3 and CEBPA].

    PubMed

    Bao, Li-Yan; Wang, Ji-Shi

    2010-02-01

    This study was aimed to investigate the correlation of 12th exon mutations in the npm1 gene with prognosis of adult AML patients and to explore the relationship of 12th exon mutation with other gene mutations. The specimen of bone marrow and peripheral blood from AML patients, the informations of medical history, symptoms, related image examinations, blood routine examination, NAP, oxygen saturation level in artery blood and EPO level in serum were collected; the bcr/abl fusion gene was detected by routine examination of bone marrow + biopsy + chromosome mapping + FISH. The patients were typed according to WHO classification. The DNA in cells was extracted, the npm1 gene mutation was detected by allele specific PCR combined were the sequencing. The results indicated that the npm1 heterozygote gene mutation was found in 72 out of 150 AML patients with normal cytogenetics (48%, 72/150). 48% patients showed a frameshift mutation in the C-terminal region of the NPM1 protein. The AML patients with npm1 gene mutation had specific clinical, phenotypic and genetic characteristics. The statistical analysis demonstrated the relationship between npm1 and flt3 ITDs. The patients with npm1 mutation showed a better response to induction therapy, furthermore, the overall survival (OS) rate of patients without flt3 ITD mutation was enhanced. The multivariate analysis demonstrated that the npm1 gene mutation and cebpa mutation positively correlated to the OS rate, and the correlation of flt3 mutation to OS rate showed negative. It is concluded that npm1 mutation is a favorable independent prognostic factor for adult AML patients with normal cytogenetics under conditions without FIT3 gene mutation. PMID:20137111

  18. Germline Mutations in Predisposition Genes in Pediatric Cancer

    PubMed Central

    Edmonson, Michael N.; Gruber, Tanja A.; Easton, John; Hedges, Dale; Ma, Xiaotu; Zhou, Xin; Yergeau, Donald A.; Wilkinson, Mark R.; Vadodaria, Bhavin; Chen, Xiang; McGee, Rose B.; Hines-Dowell, Stacy; Nuccio, Regina; Quinn, Emily; Shurtleff, Sheila A.; Rusch, Michael; Patel, Aman; Becksfort, Jared B.; Wang, Shuoguo; Weaver, Meaghann S.; Ding, Li; Mardis, Elaine R.; Wilson, Richard K.; Gajjar, Amar; Ellison, David W.; Pappo, Alberto S.; Pui, Ching-Hon; Downing, James R.

    2016-01-01

    BACKGROUND The prevalence and spectrum of predisposing mutations among children and adolescents with cancer are largely unknown. Knowledge of such mutations may improve the understanding of tumorigenesis, direct patient care, and enable genetic counseling of patients and families. METHODS In 1120 patients younger than 20 years of age, we sequenced the whole genomes (in 595 patients), whole exomes (in 456), or both (in 69). We analyzed the DNA sequences of 565 genes, including 60 that have been associated with autosomal dominant cancer-predisposition syndromes, for the presence of germline mutations. The pathogenicity of the mutations was determined by a panel of medical experts with the use of cancer-specific and locus-specific genetic databases, the medical literature, computational predictions, and second hits identified in the tumor genome. The same approach was used to analyze data from 966 persons who did not have known cancer in the 1000 Genomes Project, and a similar approach was used to analyze data from an autism study (from 515 persons with autism and 208 persons without autism). RESULTS Mutations that were deemed to be pathogenic or probably pathogenic were identified in 95 patients with cancer (8.5%), as compared with 1.1% of the persons in the 1000 Genomes Project and 0.6% of the participants in the autism study. The most commonly mutated genes in the affected patients were TP53 (in 50 patients), APC (in 6), BRCA2 (in 6), NF1 (in 4), PMS2 (in 4), RB1 (in 3), and RUNX1 (in 3). A total of 18 additional patients had protein-truncating mutations in tumor-suppressor genes. Of the 58 patients with a predisposing mutation and available information on family history, 23 (40%) had a family history of cancer. CONCLUSIONS Germline mutations in cancer-predisposing genes were identified in 8.5% of the children and adolescents with cancer. Family history did not predict the presence of an underlying predisposition syndrome in most patients. (Funded by the American

  19. Mutations of the tyrosinase gene produce autosomal recessive ocular albinism

    SciTech Connect

    King, R.A.; Summers, C.G.; Oetting, W.S.

    1994-09-01

    Albinism has historically been divided into ocular (OA) and oculocutaneous (OCA) types based on the presence or absence of clinically apparent skin and hair involvement in an individual with the ocular features of albinism. The major genes for OCA include the tyrosinase gene in OCA1 and the P gene in OCA2. X-linked and autosomal recessive OA have been described and the responsible genes have not been identified. We now present six Caucasian individuals who have the phenotype of autosomal recessive OA but who have OCA1 as shown by the presence of mutations of the tyrosinase. They had white or very light hair and white skin at birth, and cutaneous pigment developed in the first decade of life. At ages ranging from 1.5-23 years, hair color was dark blond to light brown. The skin had generalized pigment and well developed tan was present on the exposed arm and face skin of four. Iris pigment was present and iris translucency varied. Molecular analysis of the tyrosinase gene, using PCR amplification and direct di-deoxy sequencing showed the following mutations: E398Z/E398Q, P406S/g346a, R402E/T373K, ?/D383N, and H211N/T373K. The homozygous individual was not from a known consanguineous mating. T373K is the most common tyrosinase gene mutation in our laboratory. Three of these mutations are associated with a total loss of tyrosinase activity (g346a splice-site, T373K, and D383N), while four are associated with residual enzyme activity (H211N, R402E, E398Q, and P406S). These studies show that mutations of the tyrosinase gene can produce the phenotype of autosomal recessive OA in an individual who has normal amounts of cutaneous pigment and the ability to tan after birth. This extends the phenotypic range of OCA1 to normal cutaneous pigment after early childhood, and suggest that mutations of the tyrosinase gene account for a significant number of individuals with autosomal recessive OA.

  20. [Driver gene mutation and targeted therapy of lung cancer].

    PubMed

    Mitsudomi, Tetsuya

    2013-03-01

    Although cancers may have many genetic alterations, there are only a few mutations actually associated with essential traits of cancer cells such as cell proliferation or evasion from apoptosis. Because cancer cells are "addicted" to these "drive genes" , pharmacologic inhibition of these gene function is highly effective. Epidermal growth factor receptor(EGFR)-tyrosine kinase inhibitor(TKI)(such as gefitinib or erlotinib)treatment of lung cancer harboring EGFR gene mutation is one of the prototypes of such therapies. Several clinical trials clearly demonstrated that progression-free survival of patients treated with EGFR-TKI is significantly longer than that of those treated by conventional platinum doublet chemotherapy. EGFR-TKI therapy dramatically changed the paradigm of lung cancer treatment. Furthermore, in 2012, crizotinib was approved for lung cancer treatment with anaplastic lymphoma kinase(ALK)gene translocation. Targeted therapies for lung cancers "addicted" to other driver gene mutations including ROS1, RET or HER2 are also under development. Through these personalized approaches, lung cancer is changing from an acute fatal disease to a more chronic disease, and eventually we might be able to cure it. PMID:23507588

  1. EDA Gene Mutations Underlie Non-syndromic Oligodontia

    PubMed Central

    Song, S.; Han, D.; Qu, H.; Gong, Y.; Wu, H.; Zhang, X.; Zhong, N.; Feng, H.

    2009-01-01

    Recent studies have detected mutations in the EDA gene, previously identified as causing X-linked hypohidrotic ectodermal dysplasia (XLHED), in two families with X-linked non-syndromic hypodontia. Notably, all affected males in both families exhibited isolated oligodontia, while almost all female carriers showed a milder or normal phenotype. We hypothesized that the EDA gene could be responsible for sporadic non-syndromic oligodontia in affected males. In this study, we examined 15 unrelated males with non-syndromic oligodontia. Three novel EDA mutations (p.Ala259Glu, p.Arg289Cys, and p.Arg334His) were identified in four individuals (27%). A genetic defect in the EDA gene could result in non-syndromic oligodontia in affected males. PMID:19278982

  2. Mutation of p53 Tumor Suppressor Gene in Hepatocellular Carcinoma.

    PubMed

    Tullo, A; Sbisà, E

    2000-01-01

    In recent years, the most commonly observed genetic alteration in hepatocellular carcinoma (HCC), as in many other tumors affecting man, has been reported to be the mutation of the p53 coding gene (1,2). This gene has the features of a recessive oncosuppressor in its wild-type form and can be a dominant oncogene in its mutated form. The gene (20 kb) is located in a single copy on the short arm of chromosome 17 and contains 11 exons interrupted by 10 introns. The mRNA (2.8 kb) codes for a protein of 393 amino acids, which is expressed at relatively low levels in all tissues. p53 product is a 53-kDa phosphoprotein involved in the regulation of cell cycle, in DNA synthesis and repair, and in cell differentiation and apoptosis (see refs. 3-6, for reviews). PMID:21341051

  3. PDCD10 Gene Mutations in Multiple Cerebral Cavernous Malformations

    PubMed Central

    Cigoli, Maria Sole; Avemaria, Francesca; De Benedetti, Stefano; Gesu, Giovanni P.; Accorsi, Lucio Giordano; Parmigiani, Stefano; Corona, Maria Franca; Capra, Valeria; Mosca, Andrea; Giovannini, Simona; Notturno, Francesca; Ciccocioppo, Fausta; Volpi, Lilia; Estienne, Margherita; De Michele, Giuseppe; Antenora, Antonella; Bilo, Leda; Tavoni, Antonietta; Zamponi, Nelia; Alfei, Enrico; Baranello, Giovanni; Riva, Daria; Penco, Silvana

    2014-01-01

    Cerebral cavernous malformations (CCMs) are vascular abnormalities that may cause seizures, intracerebral haemorrhages, and focal neurological deficits. Familial form shows an autosomal dominant pattern of inheritance with incomplete penetrance and variable clinical expression. Three genes have been identified causing familial CCM: KRIT1/CCM1, MGC4607/CCM2, and PDCD10/CCM3. Aim of this study is to report additional PDCD10/CCM3 families poorly described so far which account for 10-15% of hereditary cerebral cavernous malformations. Our group investigated 87 consecutive Italian affected individuals (i.e. positive Magnetic Resonance Imaging) with multiple/familial CCM through direct sequencing and Multiplex Ligation-Dependent Probe Amplification (MLPA) analysis. We identified mutations in over 97.7% of cases, and PDCD10/CCM3 accounts for 13.1%. PDCD10/CCM3 molecular screening revealed four already known mutations and four novel ones. The mutated patients show an earlier onset of clinical manifestations as compared to CCM1/CCM2 mutated patients. The study of further families carrying mutations in PDCD10/CCM3 may help define a possible correlation between genotype and phenotype; an accurate clinical follow up of the subjects would help define more precisely whether mutations in PDCD10/CCM3 lead to a characteristic phenotype. PMID:25354366

  4. Mutational analysis of adrenoleukodystrophy (ALD) gene in Japanese ALD patients

    SciTech Connect

    Koike, R.; Onodera, O.; Tabe, H.

    1994-09-01

    Recently a putative ALD gene containing a striking homology with peroxisomal membrane protein (PMP70) has been identified. Besides childhood ALD, various clinical phenotypes have been identified with the onset in adolescence or adulthood (adrenomyeloneuropathy (AMN), adult cerebral ALD or cerebello-brainstem dominant type). The different clinical phenotypes occasionally coexist even in the same family. To investigate if there is a correlation between the clinical phenotypes and genotypes of the mutations in the ALD gene, we have analyzed 43 Japanese ALD patients. By Southern blot analysis, we identified non-overlapping deletions of 0.5 kb to 10.4 kb involving the ALD gene in 3 patients with adult onset cerebello-brainstem dominant type. By detailed direct sequence analysis, we found 4 patients who had point mutations in the coding region. An AMN patient had a point mutation leading to {sup 266}Gly{r_arrow}Arg change, and another patient with adult cerebral ALD had a 3 bp deletion resulting in the loss of glutamic acid at codon 291, which is a conserved amino acid both in ALD protein and PMP70. Two patients with childhood ALD had point mutations leading to {sup 507}Gly{r_arrow}Val, and {sup 518}Arg{r_arrow}Gln, respectively. Since amino acids from 507 to 520 are highly conserved as ATP-binding cassette transporter proteins, mutations in this region are expected to result in dramatic changes of the function of this protein. Although there is a tendancy for mutation in childhood ALD to be present within the ATP-binding site motif, we found two adult patients who had large deletions involving the region. Taken together, strong correlation between genotypes and clinical phenotypes is unlikely to exist, and some other modifying factors might well play an important role for the clinical manifestations of ALD.

  5. AID-initiated purposeful mutations in immunoglobulin genes.

    PubMed

    Goodman, Myron F; Scharff, Matthew D; Romesberg, Floyd E

    2007-01-01

    Exposure brings risk to all living organisms. Using a remarkably effective strategy, higher vertebrates mitigate risk by mounting a complex and sophisticated immune response to counter the potentially toxic invasion by a virtually limitless army of chemical and biological antagonists. Mutations are almost always deleterious, but in the case of antibody diversification there are mutations occurring at hugely elevated rates within the variable (V) and switch regions (SR) of the immunoglobulin (Ig) genes that are responsible for binding to and neutralizing foreign antigens throughout the body. These mutations are truly purposeful. This chapter is centered on activation-induced cytidine deaminase (AID). AID is required for initiating somatic hypermutation (SHM) in the V regions and class switch recombination (CSR) in the SR portions of Ig genes. By converting C --> U, while transcription takes place, AID instigates a cascade of mutational events involving error-prone DNA polymerases, base excision and mismatch repair enzymes, and recombination pathways. Together, these processes culminate in highly mutated antibody genes and the B cells expressing antibodies that have achieved optimal antigenic binding undergo positive selection in germinal centers. We will discuss the biological role of AID in this complex process, primarily in terms of its biochemical properties in relation to SHM in vivo. The chapter also discusses recent advances in experimental methods to characterize antibody dynamics as a function of SHM to help elucidate the role that the AID-induced mutations play in tailoring molecular recognition. The emerging experimental techniques help to address long-standing conundrums concerning evolution-imposed constraints on antibody structure and function. PMID:17560274

  6. Recognizable cerebellar dysplasia associated with mutations in multiple tubulin genes.

    PubMed

    Oegema, Renske; Cushion, Thomas D; Phelps, Ian G; Chung, Seo-Kyung; Dempsey, Jennifer C; Collins, Sarah; Mullins, Jonathan G L; Dudding, Tracy; Gill, Harinder; Green, Andrew J; Dobyns, William B; Ishak, Gisele E; Rees, Mark I; Doherty, Dan

    2015-09-15

    Mutations in alpha- and beta-tubulins are increasingly recognized as a major cause of malformations of cortical development (MCD), typically lissencephaly, pachygyria and polymicrogyria; however, sequencing tubulin genes in large cohorts of MCD patients has detected tubulin mutations in only 1-13%. We identified patients with a highly characteristic cerebellar dysplasia but without lissencephaly, pachygyria and polymicrogyria typically associated with tubulin mutations. Remarkably, in seven of nine patients (78%), targeted sequencing revealed mutations in three different tubulin genes (TUBA1A, TUBB2B and TUBB3), occurring de novo or inherited from a mosaic parent. Careful re-review of the cortical phenotype on brain imaging revealed only an irregular pattern of gyri and sulci, for which we propose the term tubulinopathy-related dysgyria. Basal ganglia (100%) and brainstem dysplasia (80%) were common features. On the basis of in silico structural predictions, the mutations affect amino acids in diverse regions of the alpha-/beta-tubulin heterodimer, including the nucleotide binding pocket. Cell-based assays of tubulin dynamics reveal various effects of the mutations on incorporation into microtubules: TUBB3 p.Glu288Lys and p.Pro357Leu do not incorporate into microtubules at all, whereas TUBB2B p.Gly13Ala shows reduced incorporation and TUBA1A p.Arg214His incorporates fully, but at a slower rate than wild-type. The broad range of effects on microtubule incorporation is at odds with the highly stereotypical clinical phenotype, supporting differential roles for the three tubulin genes involved. Identifying this highly characteristic phenotype is important due to the low recurrence risk compared with the other (recessive) cerebellar dysplasias and the apparent lack of non-neurological medical issues. PMID:26130693

  7. Transposon-induced nuclear mutations that alter chloroplast gene expression

    SciTech Connect

    Barkan, A.

    1992-01-01

    The goal of this project is to use mutant phenotypes as a guide to nuclear genes that determine the timing and localization of chloroplast development The immediate goals are to identify nuclear mutants with defects in chloroplast gene expression from maize lines harboring active Mu transposons; characterize their phenotypes to determine the precise defect in gene expression; clone several of the most interesting mutations by exploiting the transposon tag; and use the clones to further define the roles of these genes in modulating chloroplast gene expression. Three mutants were described earlier that had global defects in chloroplast gene expression. We have found that two of these mutations are allelic. Both alleles have global defects in chloroplast translation initiation, as revealed by the failure to assemble chloroplast mRNAs into polysomes. We have isolated and characterized three new mutants from Mu lines that have novel defects in chloroplast RNA metabolism. We are now ready to begin the task of cloning several of these genes, by using the Mu transposon tag.

  8. Point Mutation in Essential Genes with Loss or Mutation of the Second Allele

    PubMed Central

    Beck-Engeser, Gabriele B.; Monach, Paul A.; Mumberg, Dominik; Yang, Farley; Wanderling, Sherry; Schreiber, Karin; Espinosa, Rafael; Le Beau, Michelle M.; Meredith, Stephen C.; Schreiber, Hans

    2001-01-01

    Antigens that are tumor specific yet retained by tumor cells despite tumor progression offer stable and specific targets for immunologic and possibly other therapeutic interventions. Therefore, we have studied two CD4+ T cell–recognized tumor-specific antigens that were retained during evolution of two ultraviolet-light–induced murine cancers to more aggressive growth. The antigens are ribosomal proteins altered by somatic tumor-specific point mutations, and the progressor (PRO) variants lack the corresponding normal alleles. In the first tumor, 6132A-PRO, the antigen is encoded by a point-mutated L9 ribosomal protein gene. The tumor lacks the normal L9 allele because of an interstitial deletion from chromosome 5. In the second tumor, 6139B-PRO, both alleles of the L26 gene have point mutations, and each encodes a different tumor-specific CD4+ T cell–recognized antigen. Thus, for both L9 and L26 genes, we observe “two hit” kinetics commonly observed in genes suppressing tumor growth. Indeed, reintroduction of the lost wild-type L9 allele into the 6132A-PRO variant suppressed the growth of the tumor cells in vivo. Since both L9 and L26 encode proteins essential for ribosomal biogenesis, complete loss of the tumor-specific target antigens in the absence of a normal allele would abrogate tumor growth. PMID:11489948

  9. Screening for mutations in the PKD1 gene

    SciTech Connect

    Roelfsema, J.H.; Spruit, L.; Ommen, G.J.B. van

    1994-09-01

    With an estimated incidence of 1:1000, polycystic kidney disease is one of the most frequent single-gene disorders in the Caucasian population. The PKD1 gene, which is involved in approximately 85% of all cases, has recently been identified. The gene, which has a very large transcript, is partly situated within a duplicated area. This fact makes mutation screening a difficult task. Thus far, few deletions have been found. Therefore it seems likely that in a large number of patients the disease is caused by point mutations, possibly resulting in stop codons which lead to truncated proteins. A truncated protein can explain a putative dominant negative effect of the mutation. We are able to screen the patients which carry such stop codons with the protein truncation test (PTT). It is relatively easy to screen large stretches of the PKD1 gene with the PTT. The screening will be done on mRNA with the aid of RT-PCR. The reverse transcription reaction can give us the opportunity to specifically obtain the PKD1 transcript.

  10. Canine mdr1 gene mutation in Japan.

    PubMed

    Kawabata, Akiko; Momoi, Yasuyuki; Inoue-Murayama, Miho; Iwasaki, Toshiroh

    2005-11-01

    Frequency of the 4-bp deletion mutant in canine mdr1 gene was examined in 193 dogs of eight breeds in Japan. The mutant allele was found in Collies, Australian Shepherds, and Shetland Sheepdogs, where its respective frequencies were 58.3%, 33.3%, and 1.2%. The MDR1 protein was detected on peripheral blood mononuclear cells (PBMC) from a MDR1/MDR1 dog, but not on PBMC from a mdr1-1Delta/mdr1-1Delta Collie. Rhodamine 123 was extruded from MDR1/MDR1 lymphocytes. That excretion was inhibited by a MDR1 inhibitor, verapamil. On the other hand, Rh123 excretion was not observed from lymphocytes derived from a mdr1-1Delta/mdr1-1Delta Collie. These results indicated that the mutant mdr1 allele also existed in Collie-breed dogs in Japan at high rates and that mdr1-1Delta /mdr1-1Delta dogs have no functional MDR1. PMID:16327220

  11. De Novo Mutations in Ataxin-2 Gene and ALS Risk

    PubMed Central

    Laffita-Mesa, José Miguel; Rodríguez Pupo, Jorge Michel; Moreno Sera, Raciel; Vázquez Mojena, Yaimee; Kourí, Vivian; Laguna-Salvia, Leonides; Martínez-Godales, Michael; Valdevila Figueira, José A.; Bauer, Peter O.; Rodríguez-Labrada, Roberto; Zaldívar, Yanetza González; Paucar, Martin; Svenningsson, Per; Pérez, Luís Velázquez

    2013-01-01

    Pathogenic CAG repeat expansion in the ataxin-2 gene (ATXN2) is the genetic cause of spinocerebellar ataxia type 2 (SCA2). Recently, it has been associated with Parkinsonism and increased genetic risk for amyotrophic lateral sclerosis (ALS). Here we report the association of de novo mutations in ATXN2 with autosomal dominant ALS. These findings support our previous conjectures based on population studies on the role of large normal ATXN2 alleles as the source for new mutations being involved in neurodegenerative pathologies associated with CAG expansions. The de novo mutations expanded from ALS/SCA2 non-risk alleles as proven by meta-analysis method. The ALS risk was associated with SCA2 alleles as well as with intermediate CAG lengths in the ATXN2. Higher risk for ALS was associated with pathogenic CAG repeat as revealed by meta-analysis. PMID:23936447

  12. HFE gene: Structure, function, mutations, and associated iron abnormalities.

    PubMed

    Barton, James C; Edwards, Corwin Q; Acton, Ronald T

    2015-12-15

    The hemochromatosis gene HFE was discovered in 1996, more than a century after clinical and pathologic manifestations of hemochromatosis were reported. Linked to the major histocompatibility complex (MHC) on chromosome 6p, HFE encodes the MHC class I-like protein HFE that binds beta-2 microglobulin. HFE influences iron absorption by modulating the expression of hepcidin, the main controller of iron metabolism. Common HFE mutations account for ~90% of hemochromatosis phenotypes in whites of western European descent. We review HFE mapping and cloning, structure, promoters and controllers, and coding region mutations, HFE protein structure, cell and tissue expression and function, mouse Hfe knockouts and knockins, and HFE mutations in other mammals with iron overload. We describe the pertinence of HFE and HFE to mechanisms of iron homeostasis, the origin and fixation of HFE polymorphisms in European and other populations, and the genetic and biochemical basis of HFE hemochromatosis and iron overload. PMID:26456104

  13. The genetic basis of asymptomatic codon 8 frame-shift (HBB:c25_26delAA) β(0) -thalassaemia homozygotes.

    PubMed

    Jiang, Zhihua; Luo, Hong-Yuan; Huang, Shengwen; Farrell, John J; Davis, Lance; Théberge, Roger; Benson, Katherine A; Riolueang, Suchada; Viprakasit, Vip; Al-Allawi, Nasir A S; Ünal, Sule; Gümrük, Fatma; Akar, Nejat; Başak, A Nazli; Osorio, Leonor; Badens, Catherine; Pissard, Serge; Joly, Philippe; Campbell, Andrew D; Gallagher, Patrick G; Steinberg, Martin H; Forget, Bernard G; Chui, David H K

    2016-03-01

    Two 21-year old dizygotic twin men of Iraqi descent were homozygous for HBB codon 8, deletion of two nucleotides (-AA) frame-shift β(0) -thalassaemia mutation (FSC8; HBB:c25_26delAA). Both were clinically well, had splenomegaly, and were never transfused. They had mild microcytic anaemia (Hb 120-130 g/l) and 98% of their haemoglobin was fetal haemoglobin (HbF). Both were carriers of Hph α-thalassaemia mutation. On the three major HbF quantitative trait loci (QTL), the twins were homozygous for G>A HBG2 Xmn1 site at single nucleotide polymorphism (SNP) rs7482144, homozygous for 3-bp deletion HBS1L-MYB intergenic polymorphism (HMIP) at rs66650371, and heterozygous for the A>C BCL11A intron 2 polymorphism at rs766432. These findings were compared with those found in 22 other FSC8 homozygote patients: four presented with thalassaemia intermedia phenotype, and 18 were transfusion dependent. The inheritance of homozygosity for HMIP 3-bp deletion at rs66650371 and heterozygosity for Hph α-thalassaemia mutation was found in the twins and not found in any of the other 22 patients. Further studies are needed to uncover likely additional genetic variants that could contribute to the exceptionally high HbF levels and mild phenotype in these twins. PMID:26771086

  14. Heterogeneous AVPR2 gene mutations in congenital nephrogenic diabetes insipidus

    SciTech Connect

    Wildin, R.S.; Antush, M.J.; Bennett, R.L.; Schoof, J.M.; Scott, C.R. )

    1994-08-01

    Mutations in the AVPR2 gene encoding the receptor for arginine vasopressin in the kidney (V2 ADHR) have been reported in patients with congenital nephrogenic diabetes insipidus, a predominantly X-linked disorder of water homeostasis. The authors have used restriction-enzyme analysis and direct DNA sequencing of genomic PCR product to evaluate the AVPR2 gene in 11 unrelated affected males. Each patient has a different DNA sequence variation, and only one matches a previously reported mutation. Cosegregation of the variations with nephrogenic diabetes insipidus was demonstrated for two families, and a de novo mutation was accomplished in one family. All the variations predict frameshifts, truncations, or nonconservative amino acid substitutions in evolutionarily conserved positions in the V2 ADHR and related receptors. Of interest, a 28-bp deletion is found in one patient, while another, unrelated patient has a tandem duplication of the same 28-bp segment, suggesting that both resulted from the same unusual unequal crossing-over mechanism facilitated by 9-mer direct sequence repeats. Since the V2 ADHR is a member of the seven-transmembrane-domain, G-protein-coupled receptor superfamily, the loss-of-function mutations from this study and others provide important clues to the structure-function relationship of this and related receptors. 55 refs., 4 figs., 2 tabs.

  15. Multiple pathways of selected gene amplification during adaptive mutation.

    PubMed

    Kugelberg, Elisabeth; Kofoid, Eric; Reams, Andrew B; Andersson, Dan I; Roth, John R

    2006-11-14

    In a phenomenon referred to as "adaptive mutation," a population of bacterial cells with a mutation in the lac operon (lac-) accumulates Lac+ revertants during prolonged exposure to selective growth conditions (lactose). Evidence was provided that selective conditions do not increase the mutation rate but instead favor the growth of rare cells with a duplication of the leaky lac allele. A further increase in copy number (amplification) improves growth and increases the likelihood of a sequence change by adding more mutational targets to the clone (cells and lac copies per cell). These duplications and amplifications are described here. Before selection, cells with large (134-kb) lac duplications and long junction sequences (>1 kb) were common (0.2%). The same large repeats were found after selection in cells with a low-copy-number lac amplification. Surprisingly, smaller repeats (average, 34 kb) were found in high-copy-number amplifications. The small-repeat duplications form when deletions modify a preexisting large-repeat duplication. The shorter repeat size allowed higher lac amplification and better growth on lactose. Thus, selection favors a succession of gene-amplification types that make sequence changes more probable by adding targets. These findings are relevant to genetic adaptation in any biological systems in which fitness can be increased by adding gene copies (e.g., cancer and bacterial drug resistance). PMID:17082307

  16. Mutations in COL1A1 Gene Change Dentin Nanostructure.

    PubMed

    Duan, Xiaohong; Liu, Zhenxia; Gan, Yunna; Xia, Dan; Li, Qiang; Li, Yanling; Yang, Jiaji; Gao, Shan; Dong, Mingdong

    2016-04-01

    Although many studies have attempted to associate specific gene mutations with dentin phenotypic severity, it remains unknown how the mutations in COL1A1 gene influence the mechanical behavior of dentin collagen and matrix. Here, we reported one osteogenesis imperfecta (OI) pedigree caused by two new inserting mutations in exon 5 of COL1A1 (NM_000088.3:c.440_441insT;c.441_442insA), which resulted in the unstable expression of COL1A1 mRNA and half quantity of procollagen production. We investigated the morphological and mechanical features of proband's dentin using atomic force microscope (AFM), scanning electron microscope, and transmission electron microscope. Increased D-periodic spacing, variably enlarged collagen fibrils coating with fewer minerals were found in the mutated collagen. AFM analysis demonstrated rougher dentin surface and sparsely decreased Young's modulus in proband's dentin. We believe that our findings provide new insights into the genetic-/nano- mechanisms of dentin diseases, and may well explain OI dentin features with reduced mechanical strength and a lower crosslinked density. Anat Rec, 299:511-519, 2016. © 2015 Wiley Periodicals, Inc. PMID:26694865

  17. MUFFINN: cancer gene discovery via network analysis of somatic mutation data.

    PubMed

    Cho, Ara; Shim, Jung Eun; Kim, Eiru; Supek, Fran; Lehner, Ben; Lee, Insuk

    2016-01-01

    A major challenge for distinguishing cancer-causing driver mutations from inconsequential passenger mutations is the long-tail of infrequently mutated genes in cancer genomes. Here, we present and evaluate a method for prioritizing cancer genes accounting not only for mutations in individual genes but also in their neighbors in functional networks, MUFFINN (MUtations For Functional Impact on Network Neighbors). This pathway-centric method shows high sensitivity compared with gene-centric analyses of mutation data. Notably, only a marginal decrease in performance is observed when using 10 % of TCGA patient samples, suggesting the method may potentiate cancer genome projects with small patient populations. PMID:27333808

  18. Molecular screening of pituitary adenomas for gene mutations and rearrangements

    SciTech Connect

    Herman, V.; Drazin, N.Z.; Gonskey, R.; Melmed, S. )

    1993-07-01

    Although pituitary tumors arise as benign monoclonal neoplasms, genetic alterations have not readily been identified in these adenomas. The authors studied restriction fragment abnormalities involving the GH gene locus, and mutations in the p53 and H-, K-, and N-ras genes in 22 human GH cell adenomas. Twenty two nonsecretory adenomas were also examined for p53 and ras gene mutations. Seven prolactinoma DNA samples were tested for deletions in the multiple endocrine neoplasia-1 (MEN-1) locus, as well as for rearrangements in the hst gene, a member of the fibroblast growth factor family. In DNA from GH-cell adenomas, identical GH restriction patterns were detected in both pituitary and lymphocyte DNA in all patients and in one patient with a mixed GH-TSH cell adenoma. Using polymerase chain reaction (PCR)-single stranded conformation polymorphism analysis, no mutations were detected in exons 5, 6, 7 and 8 of the p53 gene in GH cell adenomas nor in 22 nonsecretory adenomas. Codons 12/13 and 61 of H-ras, K-ras, and N-ras genes were also intact on GH cell adenomas and in nonsecretory adenomas. Site-specific probes for chromosome 11q13 including, PYGM, D11S146, and INT2 were used in 7 sporadic PRL-secreting adenomas to detect deletions of the MEN-1 locus on chromosome 11. One patient was identified with a loss of 11p, and the remaining 6 patients did not demonstrate loss of heterozygosity in the pituitary 11q13 locus, compared to lymphocyte DNA. None of these patients demonstrated hst gene rearrangements which also maps to this locus. These results show that p53 and ras gene mutations are not common events in the pathogenesis of acromegaly and nonsecretory tumors. Although hst gene rearrangements and deletions of 11q13 are not associated with sporadic PRl-cell adenoma formation, a single patient was detected with a partial loss of chromosome 11, including the putative MEN-1 site. 31 refs., 5 figs., 2 tabs.

  19. Next generation sequencing in synovial sarcoma reveals novel gene mutations.

    PubMed

    Vlenterie, Myrella; Hillebrandt-Roeffen, Melissa H S; Flucke, Uta E; Groenen, Patricia J T A; Tops, Bastiaan B J; Kamping, Eveline J; Pfundt, Rolph; de Bruijn, Diederik R H; Geurts van Kessel, Ad H M; van Krieken, Han J H J M; van der Graaf, Winette T A; Versleijen-Jonkers, Yvonne M H

    2015-10-27

    Over 95% of all synovial sarcomas (SS) share a unique translocation, t(X;18), however, they show heterogeneous clinical behavior. We analyzed multiple SS to reveal additional genetic alterations besides the translocation. Twenty-six SS from 22 patients were sequenced for 409 cancer-related genes using the Comprehensive Cancer Panel (Life Technologies, USA) on an Ion Torrent platform. The detected variants were verified by Sanger sequencing and compared to matched normal DNAs. Copy number variation was assessed in six tumors using the Oncoscan array (Affymetrix, USA). In total, eight somatic mutations were detected in eight samples. These mutations have not been reported previously in SS. Two of these, in KRAS and CCND1, represent known oncogenic mutations in other malignancies. Additional mutations were detected in RNF213, SEPT9, KDR, CSMD3, MLH1 and ERBB4. DNA alterations occurred more often in adult tumors. A distinctive loss of 6q was found in a metastatic lesion progressing under pazopanib, but not in the responding lesion. Our results emphasize t(X;18) as a single initiating event in SS and as the main oncogenic driver. Our results also show the occurrence of additional genetic events, mutations or chromosomal aberrations, occurring more frequently in SS with an onset in adults. PMID:26415226

  20. Next generation sequencing in synovial sarcoma reveals novel gene mutations

    PubMed Central

    Vlenterie, Myrella; Hillebrandt-Roeffen, Melissa H.S.; Flucke, Uta E.; Groenen, Patricia J.T.A.; Tops, Bastiaan B.J.; Kamping, Eveline J.; Pfundt, Rolph; de Bruijn, Diederik R.H.; van Kessel, Ad H.M. Geurts; van Krieken, Han J.H.J.M.; van der Graaf, Winette T.A.; Versleijen-Jonkers, Yvonne M.H.

    2015-01-01

    Over 95% of all synovial sarcomas (SS) share a unique translocation, t(X;18), however, they show heterogeneous clinical behavior. We analyzed multiple SS to reveal additional genetic alterations besides the translocation. Twenty-six SS from 22 patients were sequenced for 409 cancer-related genes using the Comprehensive Cancer Panel (Life Technologies, USA) on an Ion Torrent platform. The detected variants were verified by Sanger sequencing and compared to matched normal DNAs. Copy number variation was assessed in six tumors using the Oncoscan array (Affymetrix, USA). In total, eight somatic mutations were detected in eight samples. These mutations have not been reported previously in SS. Two of these, in KRAS and CCND1, represent known oncogenic mutations in other malignancies. Additional mutations were detected in RNF213, SEPT9, KDR, CSMD3, MLH1 and ERBB4. DNA alterations occurred more often in adult tumors. A distinctive loss of 6q was found in a metastatic lesion progressing under pazopanib, but not in the responding lesion. Our results emphasize t(X;18) as a single initiating event in SS and as the main oncogenic driver. Our results also show the occurrence of additional genetic events, mutations or chromosomal aberrations, occurring more frequently in SS with an onset in adults. PMID:26415226

  1. Single molecule targeted sequencing for cancer gene mutation detection.

    PubMed

    Gao, Yan; Deng, Liwei; Yan, Qin; Gao, Yongqian; Wu, Zengding; Cai, Jinsen; Ji, Daorui; Li, Gailing; Wu, Ping; Jin, Huan; Zhao, Luyang; Liu, Song; Ge, Liangjin; Deem, Michael W; He, Jiankui

    2016-01-01

    With the rapid decline in cost of sequencing, it is now affordable to examine multiple genes in a single disease-targeted clinical test using next generation sequencing. Current targeted sequencing methods require a separate step of targeted capture enrichment during sample preparation before sequencing. Although there are fast sample preparation methods available in market, the library preparation process is still relatively complicated for physicians to use routinely. Here, we introduced an amplification-free Single Molecule Targeted Sequencing (SMTS) technology, which combined targeted capture and sequencing in one step. We demonstrated that this technology can detect low-frequency mutations using artificially synthesized DNA sample. SMTS has several potential advantages, including simple sample preparation thus no biases and errors are introduced by PCR reaction. SMTS has the potential to be an easy and quick sequencing technology for clinical diagnosis such as cancer gene mutation detection, infectious disease detection, inherited condition screening and noninvasive prenatal diagnosis. PMID:27193446

  2. Mutations in the pericentrin (PCNT) gene cause primordial dwarfism.

    PubMed

    Rauch, Anita; Thiel, Christian T; Schindler, Detlev; Wick, Ursula; Crow, Yanick J; Ekici, Arif B; van Essen, Anthonie J; Goecke, Timm O; Al-Gazali, Lihadh; Chrzanowska, Krystyna H; Zweier, Christiane; Brunner, Han G; Becker, Kristin; Curry, Cynthia J; Dallapiccola, Bruno; Devriendt, Koenraad; Dörfler, Arnd; Kinning, Esther; Megarbane, André; Meinecke, Peter; Semple, Robert K; Spranger, Stephanie; Toutain, Annick; Trembath, Richard C; Voss, Egbert; Wilson, Louise; Hennekam, Raoul; de Zegher, Francis; Dörr, Helmuth-Günther; Reis, André

    2008-02-01

    Fundamental processes influencing human growth can be revealed by studying extreme short stature. Using genetic linkage analysis, we find that biallelic loss-of-function mutations in the centrosomal pericentrin (PCNT) gene on chromosome 21q22.3 cause microcephalic osteodysplastic primordial dwarfism type II (MOPD II) in 25 patients. Adults with this rare inherited condition have an average height of 100 centimeters and a brain size comparable to that of a 3-month-old baby, but are of near-normal intelligence. Absence of PCNT results in disorganized mitotic spindles and missegregation of chromosomes. Mutations in related genes are known to cause primary microcephaly (MCPH1, CDK5RAP2, ASPM, and CENPJ). PMID:18174396

  3. Single molecule targeted sequencing for cancer gene mutation detection

    PubMed Central

    Gao, Yan; Deng, Liwei; Yan, Qin; Gao, Yongqian; Wu, Zengding; Cai, Jinsen; Ji, Daorui; Li, Gailing; Wu, Ping; Jin, Huan; Zhao, Luyang; Liu, Song; Ge, Liangjin; Deem, Michael W.; He, Jiankui

    2016-01-01

    With the rapid decline in cost of sequencing, it is now affordable to examine multiple genes in a single disease-targeted clinical test using next generation sequencing. Current targeted sequencing methods require a separate step of targeted capture enrichment during sample preparation before sequencing. Although there are fast sample preparation methods available in market, the library preparation process is still relatively complicated for physicians to use routinely. Here, we introduced an amplification-free Single Molecule Targeted Sequencing (SMTS) technology, which combined targeted capture and sequencing in one step. We demonstrated that this technology can detect low-frequency mutations using artificially synthesized DNA sample. SMTS has several potential advantages, including simple sample preparation thus no biases and errors are introduced by PCR reaction. SMTS has the potential to be an easy and quick sequencing technology for clinical diagnosis such as cancer gene mutation detection, infectious disease detection, inherited condition screening and noninvasive prenatal diagnosis. PMID:27193446

  4. Co-inheritance of novel ATRX gene mutation and globin (α & β) gene mutations in transfusion dependent beta-thalassemia patients.

    PubMed

    Al-Nafie, Awatif N; Borgio, J Francis; AbdulAzeez, Sayed; Al-Suliman, Ahmed M; Qaw, Fuad S; Naserullah, Zaki A; Al-Jarrash, Sana; Al-Madan, Mohammed S; Al-Ali, Rudaynah A; AlKhalifah, Mohammed A; Al-Muhanna, Fahad; Steinberg, Martin H; Al-Ali, Amein K

    2015-06-01

    α-Thalassemia X-linked mental retardation syndrome is a rare inherited intellectual disability disorder due to mutations in the ATRX gene. In our previous study of the prevalence of β-thalassemia mutations in the Eastern Province of Saudi Arabia, we confirmed the widespread coinheritance of α-thalassemia mutation. Some of these subjects have a family history of mental retardation, the cause of which is unknown. Therefore, we investigated the presence or absence of mutations in the ATRX gene in these patients. Three exons of the ATRX gene and their flanking regions were directly sequenced. Only four female transfusion dependent β-thalassemia patients were found to be carriers of a novel mutation in the ATRX gene. Two of the ATRX gene mutations, c.623delA and c.848T>C were present in patients homozygous for IVS I-5(G→C) and homozygous for Cd39(C → T) β-thalassemia mutation, respectively. While the other two that were located in the intronic region (flanking regions), were present in patients homozygous for Cd39(C → T) β-thalassemia mutation. The two subjects with the mutations in the coding region had family members with mental retardation, which suggests that the novel frame shift mutation and the missense mutation at coding region of ATRX gene are involved in ATRX syndrome. PMID:25976463

  5. Optimization of gene sequences under constant mutational pressure and selection

    NASA Astrophysics Data System (ADS)

    Kowalczuk, M.; Gierlik, A.; Mackiewicz, P.; Cebrat, S.; Dudek, M. R.

    1999-12-01

    We have analyzed the influence of constant mutational pressure and selection on the nucleotide composition of DNA sequences of various size, which were represented by the genes of the Borrelia burgdorferi genome. With the help of MC simulations we have found that longer DNA sequences accumulate much less base substitutions per sequence length than short sequences. This leads us to the conclusion that the accuracy of replication may determine the size of genome.

  6. Driver Gene Mutations in Stools of Colorectal Carcinoma Patients Detected by Targeted Next-Generation Sequencing.

    PubMed

    Armengol, Gemma; Sarhadi, Virinder K; Ghanbari, Reza; Doghaei-Moghaddam, Masoud; Ansari, Reza; Sotoudeh, Masoud; Puolakkainen, Pauli; Kokkola, Arto; Malekzadeh, Reza; Knuutila, Sakari

    2016-07-01

    Detection of driver gene mutations in stool DNA represents a promising noninvasive approach for screening colorectal cancer (CRC). Amplicon-based next-generation sequencing (NGS) is a good option to study mutations in many cancer genes simultaneously and from a low amount of DNA. Our aim was to assess the feasibility of identifying mutations in 22 cancer driver genes with Ion Torrent technology in stool DNA from a series of 65 CRC patients. The assay was successful in 80% of stool DNA samples. NGS results showed 83 mutations in cancer driver genes, 29 hotspot and 54 novel mutations. One to five genes were mutated in 75% of cases. TP53, KRAS, FBXW7, and SMAD4 were the top mutated genes, consistent with previous studies. Of samples with mutations, 54% presented concomitant mutations in different genes. Phosphatidylinositol 3-kinase/mitogen-activated protein kinase pathway genes were mutated in 70% of samples, with 58% having alterations in KRAS, NRAS, or BRAF. Because mutations in these genes can compromise the efficacy of epidermal growth factor receptor blockade in CRC patients, identifying mutations that confer resistance to some targeted treatments may be useful to guide therapeutic decisions. In conclusion, the data presented herein show that NGS procedures on stool DNA represent a promising tool to detect genetic mutations that could be used in the future for diagnosis, monitoring, or treating CRC. PMID:27155048

  7. Mutation in the cystatin C gene causes hereditary brain hemorrhage.

    PubMed

    Palsdottir, A; Abrahamson, M; Thorsteinsson, L; Arnason, A; Olafsson, I; Grubb, A; Jensson, O

    1989-01-01

    Hereditary cystatin C amyloid angiopathy (HCCAA) is an autosomal dominant disorder leading to massive brain hemorrhage and death in young adults (Jensson et al., 1987). A variant of a potent inhibitor of cysteine proteinases, cystatin C (Barrett et al., 1984), is deposited as amyloid fibrils in the cerebral arteries of the patients (Ghiso et al., 1986). We have used the full length cystatin C cDNA probe (Abrahamson et al., 1987) to demonstrate a mutation in the codon for leucine at position 68, which abolishes an Alu I restriction site in cystatin C gene of the HCCAA patients. The Alu I marker has been used to show that this mutation is transmitted only in the affected members in all eight families investigated, proving that the mutated cystatin C gene causes HCCAA. This DNA marker will be useful for the diagnosis of HCCAA in patients, asymptomatic affected individuals and also for pre-natal diagnosis. HCCAA is the first human disorder known to be caused by an abnormal gene for a cysteine proteinase inhibitor. PMID:2602420

  8. Myostatin gene mutated mice induced with tale nucleases.

    PubMed

    Zhou, Fangfang; Sun, Ruilin; Chen, Hongyan; Fei, Jian; Lu, Daru

    2015-01-01

    Myostain gene (MSTN) is expressed primarily in skeletal muscle, and negatively regulates skeletal muscle mass; it has been suggested that mice with MSTN inhibition have reduced adiposity and improved insulin sensitivity. Therefore, it is important to establish a fast and effective gene editing method. In this report, we established the myostatin mutated-mouse model by microinjection of Transcription Activator-Like Effector Nucleases (TALENs) mRNA within the mouse fertilized oocytes and achieved high rates of mutagenesis of the mouse MSTN in C57BL/6J. Six of 45 born mice carried target mutations and we appointed one as the parental mating with wild mouse to produce the F1 and backcross to produce the F2 generation. All the mutations of the mice were examined quickly and efficiently by high-resolution melting curve analysis (HRMA) and then verified by direct sequencing. We obtained the homozygous of the F2 generation which transmitted the mutant alleles to the progeny with 100% efficiency. Mutant mice exhibited increases in muscle mass comparable to those observed in wild-type mice. Therefore, combining TALEN-mediated gene targeting with HRMA technology is a superior method of constructing genetically modified mice through microinjection in the mouse fertilized oocytes with high efficiency and short time of selection. PMID:25695746

  9. The DCC gene: Structural analysis and mutations in colorectal carcinomas

    SciTech Connect

    Cho, K.R.; Oliner, J.D.; Simons, J.W.; Hedrick, L.; Preisinger, A.C.; Vogelstein, B. ); Fearon, E.R. ); Hedge, P. ); Silverman, G.A. )

    1994-02-01

    DCC is a candidate tumor-suppressor gene encoding a protein with sequence similarity to cell adhesion molecules such as N-CAM. A set of overlapping YAC clones that contains the entire DCC coding region was isolated. Studies of this YAC contig showed that the DCC gene spans approximately 1.4 Mb. For elucidation of exon-intron structure, lambda phage clones containing all known coding sequences were isolated from a genomic library. These clones were used to demonstrate the existence of 29 DCC exons, and the sequences of the exon-intron boundaries were determined for each. Twenty-three polymorphic markers from chromosome 18 were then studied in a panel of primary colorectal tumors that had lost some, but not all, of chromosome 18. In most of these tumors, the region that was lost included DCC. Finally, Southern blot and PCR-based approaches were used to search for subtle mutations in several DCC exons. One tumor that had a point mutation in exon 28 was found, resulting in a proline to histidine substitution. A second tumor with a point mutation in intron 13 was also found. The regional map and genomic structure of DCC should provide the means to more extensively study DCC gene alterations and protein function in normal and neoplastic cells. 23 refs., 4 figs., 1 tab.

  10. Diagnostic Dilemma of Hb Perth [β32(B14)Leu→Pro; HBB: c.98T > C] in Mainland China.

    PubMed

    Jiang, Hua; Yan, Jin-Mei; Li, Jian; Xie, Xing-Mei; Li, Dong-Zhi

    2016-06-01

    Unstable hemoglobin (Hb) variants represent a rare etiology of congenital hemolytic anemia. Correct diagnosis can be a challenge due to the relative rarity or lack of awareness of this disorder. We report an 18-month-old girl, who presented with a long-standing hemolytic anemia. Her diagnosis of unstable Hb Perth [β32(B14)Leu→Pro, HBB: c.98T > C] had not been made until gene sequencing of the β-globin gene was performed. PMID:27117570

  11. Screening of sarcomere gene mutations in young athletes with abnormal findings in electrocardiography: identification of a MYH7 mutation and MYBPC3 mutations.

    PubMed

    Kadota, Chika; Arimura, Takuro; Hayashi, Takeharu; Naruse, Taeko K; Kawai, Sachio; Kimura, Akinori

    2015-10-01

    There is an overlap between the physiological cardiac remodeling associated with training in athletes, the so-called athlete's heart, and mild forms of hypertrophic cardiomyopathy (HCM), the most common hereditary cardiac disease. HCM is often accompanied by unfavorable outcomes including a sudden cardiac death in the adolescents. Because one of the initial signs of HCM is abnormality in electrocardiogram (ECG), athletes may need to monitor for ECG findings to prevent any unfavorable outcomes. HCM is caused by mutations in genes for sarcomere proteins, but there is no report on the systematic screening of gene mutations in athletes. One hundred and two genetically unrelated young Japanese athletes with abnormal ECG findings were the subjects for the analysis of four sarcomere genes, MYH7, MYBPC3, TNNT2 and TNNI3. We found that 5 out of 102 (4.9%) athletes carried mutations: a heterozygous MYH7 Glu935Lys mutation, a heterozygous MYBPC3 Arg160Trp mutation and another heterozygous MYBPC3 Thr1046Met mutation, all of which had been reported as HCM-associated mutations, in 1, 2 and 2 subjects, respectively. This is the first study of systematic screening of sarcomere gene mutations in a cohort of athletes with abnormal ECG, demonstrating the presence of sarcomere gene mutations in the athlete's heart. PMID:26178432

  12. Mutational analysis of genes coding for cell surface proteins in colorectal cancer cell lines reveal novel altered pathways, druggable mutations and mutated epitopes for targeted therapy

    PubMed Central

    Correa, Bruna R.; Bettoni, Fabiana; Koyama, Fernanda C.; Navarro, Fabio C.P.; Perez, Rodrigo O.; Mariadason, John; Sieber, Oliver M.; Strausberg, Robert L.; Simpson, Andrew J.G.; Jardim, Denis L.F.; Reis, Luiz Fernando L.; Parmigiani, Raphael B.; Galante, Pedro A.F.; Camargo, Anamaria A.

    2014-01-01

    We carried out a mutational analysis of 3,594 genes coding for cell surface proteins (Surfaceome) in 23 colorectal cancer cell lines, searching for new altered pathways, druggable mutations and mutated epitopes for targeted therapy in colorectal cancer. A total of 3,944 somatic non-synonymous substitutions and 595 InDels, occurring in 2,061 (57%) Surfaceome genes were catalogued. We identified 48 genes not previously described as mutated in colorectal tumors in the TCGA database, including genes that are mutated and expressed in >10% of the cell lines (SEMA4C, FGFRL1, PKD1, FAM38A, WDR81, TMEM136, SLC36A1, SLC26A6, IGFLR1). Analysis of these genes uncovered important roles for FGF and SEMA4 signaling in colorectal cancer with possible therapeutic implications. We also found that cell lines express on average 11 druggable mutations, including frequent mutations (>20%) in the receptor tyrosine kinases AXL and EPHA2, which have not been previously considered as potential targets for colorectal cancer. Finally, we identified 82 cell surface mutated epitopes, however expression of only 30% of these epitopes was detected in our cell lines. Notwithstanding, 92% of these epitopes were expressed in cell lines with the mutator phenotype, opening new venues for the use of “general” immune checkpoint drugs in this subset of patients. PMID:25193853

  13. Mild Microcytic Anemia in an Infant with a Compound Heterozygosity for Hb C (HBB: c.19G > A) and Hb Osu Christiansborg (HBB: c.157G > A).

    PubMed

    Boucher, Maria O; Chui, David H K; Woda, Bruce A; Newburger, Peter E

    2016-06-01

    We report an infant with a compound heterozygosity for Hb C (HBB: c.19G > A) and Hb Osu Christiansborg (HBB: c.157G > A) and a phenotype of mild microcytic anemia with target cell morphology but without overt hemolysis. PMID:27117572

  14. [Osteochondrodysplasia determined genetically by a collagen type II gene mutation].

    PubMed

    Czarny-Ratajczak, M; Rogala, P; Wolnik-Brzozowska, D; Latos-Bieleńska, A

    2001-01-01

    Chondrodysplasias are a heterogenous group of skeletal dysplasias, affecting the growing cartilage. The main part of chondrodysplasias is caused by mutations in various types of collagen genes. The current classification within this group of disorder relies on clinical, histological and radiographic features. Type II collagenopathies comprise part of chondrodysplasias, consisting of hereditary disorders caused by defects in the type II collagen. Collagen type II is coded by a large gene--COL2A1. The chromosomal location for the human COL2A1 gene is 12q13.11-q13.12. Defects in collagen type II are caused by point mutations in the COL2A1 gene. Type II collagenopathies form a wide spectrum of clinical severity ranging from lethal achondrogenesis type II, hypochondrogenesis, through severe forms like spondyloepiphyseal dysplasia congenita, spondyloepimetaphyseal dysplasia congenita, Marshall syndrome, to the mild forms--Stickler syndrome and early osteoarthritis. The pathological changes in the patients are observed in the growth plate, nucleus pulposus and vitreous body, where the abnormal collagen type II is distributed. This article presents the genetic background of collagenopathies type II and the results of current molecular studies of the patients. Both the molecular and the clinical studies may promise a better understanding of the relationship between the genotype and the phenotype. We present the patients, who were diagnosed at the Department of Medical Genetics and in the Orthopaedic Department in Poznań. PMID:11481990

  15. The clinical implications of gene mutations in chronic lymphocytic leukaemia.

    PubMed

    Rossi, Davide; Gaidano, Gianluca

    2016-04-12

    Chronic lymphocytic leukaemia (CLL) is a molecularly heterogeneous disease as revealed by recent genomic studies. Among genetic lesions that are recurrent in CLL, few clinically validated prognostic markers, such as TP53 mutations and 17p deletion, are available for the use in clinical practice to guide treatment decisions. Recently, several novel molecular markers have been identified in CLL. Though these mutations have not yet gained the qualification of predictive factors for treatment tailoring, they have shown to be promising to refine the prognostic stratification of patients. The introduction of targeted drugs is changing the genetics of CLL, and has disclosed the acquisition of previously unexpected drug resistant mutations in signalling pathway genes. Ultra-deep next generation sequencing has allowed to reach deep levels of resolution of the genetic portrait of CLL providing a precise definition of its subclonal genetic architecture. This approach has shown that small subclones harbouring drug resistant mutations anticipate the development of a chemorefractory phenotype. Here we review the recent advances in the definition of the genomic landscape of CLL and the ongoing research to characterise the clinical implications of old and new molecular lesions in the setting of both conventional chemo-immunotherapy and targeted drugs. PMID:27031852

  16. The clinical implications of gene mutations in chronic lymphocytic leukaemia

    PubMed Central

    Rossi, Davide; Gaidano, Gianluca

    2016-01-01

    Chronic lymphocytic leukaemia (CLL) is a molecularly heterogeneous disease as revealed by recent genomic studies. Among genetic lesions that are recurrent in CLL, few clinically validated prognostic markers, such as TP53 mutations and 17p deletion, are available for the use in clinical practice to guide treatment decisions. Recently, several novel molecular markers have been identified in CLL. Though these mutations have not yet gained the qualification of predictive factors for treatment tailoring, they have shown to be promising to refine the prognostic stratification of patients. The introduction of targeted drugs is changing the genetics of CLL, and has disclosed the acquisition of previously unexpected drug resistant mutations in signalling pathway genes. Ultra-deep next generation sequencing has allowed to reach deep levels of resolution of the genetic portrait of CLL providing a precise definition of its subclonal genetic architecture. This approach has shown that small subclones harbouring drug resistant mutations anticipate the development of a chemorefractory phenotype. Here we review the recent advances in the definition of the genomic landscape of CLL and the ongoing research to characterise the clinical implications of old and new molecular lesions in the setting of both conventional chemo-immunotherapy and targeted drugs. PMID:27031852

  17. Thyroglobulin gene mutations in Chinese patients with congenital hypothyroidism.

    PubMed

    Hu, Xuyun; Chen, Rongyu; Fu, Chunyun; Fan, Xin; Wang, Jin; Qian, Jiale; Yi, Shang; Li, Chuan; Luo, Jingsi; Su, Jiasun; Zhang, Shujie; Xie, Bobo; Zheng, Haiyang; Lai, Yunli; Chen, Yun; Li, Hongdou; Gu, Xuefan; Chen, Shaoke; Shen, Yiping

    2016-03-01

    Mutations in Thyroglobulin (TG) are common genetic causes of congenital hypothyroidism (CH). But the TG mutation spectrum and its frequency in Chinese CH patients have not been investigated. Here we conducted a genetic screening of TG gene in a cohort of 382 Chinese CH patients. We identified 22 rare non-polymorphic variants including six truncating variants and 16 missense variants of unknown significance (VUS). Seven patients carried homozygous pathogenic variants, and three patients carried homozygous or compound heterozygous VUS. 48 out of 382 patients carried one of 18 heterozygous VUS which is significantly more often than their occurrences in control cohort (P < 0.0001). Unique to Asian population, the c.274+2T>G variant is the most common pathogenic variant with an allele frequency of 0.021. The prevalence of CH due to TG gene defect in Chinese population was estimated to be approximately 1/101,000. Our study uncovered ethnicity specific TG mutation spectrum and frequency. PMID:26777470

  18. Mutations and a polymorphism in the tuberin gene

    SciTech Connect

    Northup, H.; Rodriguez, J.A.; Au, K.S.; Rodriguez, E.

    1994-09-01

    Two deletions and a polymorphism have been identified in the recently described tuberin gene. The tuberin gene (designated TSC2) when mutated causes tuberous sclerosis complex (TSC). Fifty-three affected individuals (30 from families with multiple affected and 23 isolated cases) were screened with the tuberin cDNA for gross deletions or rearrangements. Both deletions were found in families with multiple affected members (family designations: HOU-5 and HOU-22). The approximate size of the deletion in HOU-5 is ten kilobases and eliminates a BamHI restriction site. The deletion includes a portion of the 5{prime} half of the tuberin cDNA. The deletion in HOU-22 occurs in the 3{prime} half of the gene. The deletions are being further characterized. A HindIII restriction site polymorphism was detected by a 0.5 kilobase probe from the 5{prime} coding region of the tuberin gene in an individual from a family linked to chromosome 9 (posterior probability of linkage 93%). The polymorphism did not segregate with TSC in the family. The family had previously been shown to give negative results with multiple markers on chromosome 16. The polymorphism was also seen in one individual among a panel of 20 randomly selected unaffected individuals. Thirty-five additional affected probands (five from families and 30 isolated cases) are being tested with the tuberin cDNA. Testing for subtle mutations is our panel of 80 affected probands is underway utilizing SSCP. Additional mutations or polymorphisms detected will be reported. The tuberin cDNA was a kind gift of The European Chromosome 16 Tuberous Sclerosis Consortium.

  19. Molecular basis of human CD36 gene mutations.

    PubMed

    Rać, Monika Ewa; Safranow, Krzysztof; Poncyljusz, Wojciech

    2007-01-01

    CD36 is a transmembrane glycoprotein of the class B scavenger receptor family. The CD36 gene is located on chromosome 7 q11.2 and is encoded by 15 exons. Defective CD36 is a likely candidate gene for impaired fatty acid metabolism, glucose intolerance, atherosclerosis, arterial hypertension, diabetes, cardiomyopathy, Alzheimer disease, and modification of the clinical course of malaria. Contradictory data concerning the effects of antiatherosclerotic drugs on CD36 expression indicate that further investigation of the role of CD36 in the development of atherosclerosis may be important for the prevention and treatment of this disease. This review summarizes current knowledge of CD36 gene structure, splicing, and mutations and the molecular, metabolic, and clinical consequences of these phenomena. PMID:17673938

  20. Molecular Basis of Human CD36 Gene Mutations

    PubMed Central

    Rać, Monika Ewa; Safranow, Krzysztof; Poncyljusz, Wojciech

    2007-01-01

    CD36 is a transmembrane glycoprotein of the class B scavenger receptor family. The CD36 gene is located on chromosome 7 q11.2 and is encoded by 15 exons. Defective CD36 is a likely candidate gene for impaired fatty acid metabolism, glucose intolerance, atherosclerosis, arterial hypertension, diabetes, cardiomyopathy, Alzheimer disease, and modification of the clinical course of malaria. Contradictory data concerning the effects of antiatherosclerotic drugs on CD36 expression indicate that further investigation of the role of CD36 in the development of atherosclerosis may be important for the prevention and treatment of this disease. This review summarizes current knowledge of CD36 gene structure, splicing, and mutations and the molecular, metabolic, and clinical consequences of these phenomena. PMID:17673938

  1. Identification of Gene Mutations and Fusion Genes in Patients with Sézary Syndrome.

    PubMed

    Prasad, Aparna; Rabionet, Raquel; Espinet, Blanca; Zapata, Luis; Puiggros, Anna; Melero, Carme; Puig, Anna; Sarria-Trujillo, Yaris; Ossowski, Stephan; Garcia-Muret, Maria P; Estrach, Teresa; Servitje, Octavio; Lopez-Lerma, Ingrid; Gallardo, Fernando; Pujol, Ramon M; Estivill, Xavier

    2016-07-01

    Sézary syndrome is a leukemic form of cutaneous T-cell lymphoma with an aggressive clinical course. The genetic etiology of the disease is poorly understood, with chromosomal abnormalities and mutations in some genes being involved in the disease. The goal of our study was to understand the genetic basis of the disease by looking for driver gene mutations and fusion genes in 15 erythrodermic patients with circulating Sézary cells, 14 of them fulfilling the diagnostic criteria of Sézary syndrome. We have discovered genes that could be involved in the pathogenesis of Sézary syndrome. Some of the genes that are affected by somatic point mutations include ITPR1, ITPR2, DSC1, RIPK2, IL6, and RAG2, with some of them mutated in more than one patient. We observed several somatic copy number variations shared between patients, including deletions and duplications of large segments of chromosome 17. Genes with potential function in the T-cell receptor signaling pathway and tumorigenesis were disrupted in Sézary syndrome patients, for example, CBLB, RASA2, BCL7C, RAMP3, TBRG4, and DAD1. Furthermore, we discovered several fusion events of interest involving RASA2, NFKB2, BCR, FASN, ZEB1, TYK2, and SGMS1. Our work has implications for the development of potential therapeutic approaches for this aggressive disease. PMID:27039262

  2. Cohesin gene mutations in tumorigenesis: from discovery to clinical significance

    PubMed Central

    Solomon, David A.; Kim, Jung-Sik; Waldman, Todd

    2014-01-01

    Cohesin is a multi-protein complex composed of four core subunits (SMC1A, SMC3, RAD21, and either STAG1 or STAG2) that is responsible for the cohesion of sister chromatids following DNA replication until its cleavage during mitosis thereby enabling faithful segregation of sister chromatids into two daughter cells. Recent cancer genomics analyses have discovered a high frequency of somatic mutations in the genes encoding the core cohesin subunits as well as cohesin regulatory factors (e.g. NIPBL, PDS5B, ESPL1) in a select subset of human tumors including glioblastoma, Ewing sarcoma, urothelial carcinoma, acute myeloid leukemia, and acute megakaryoblastic leukemia. Herein we review these studies including discussion of the functional significance of cohesin inactivation in tumorigenesis and potential therapeutic mechanisms to selectively target cancers harboring cohesin mutations. [BMB Reports 2014; 47(6): 299-310] PMID:24856830

  3. Optimal Control of Gene Mutation in DNA Replication

    PubMed Central

    Yu, Juanyi; Li, Jr-Shin; Tarn, Tzyh-Jong

    2012-01-01

    We propose a molecular-level control system view of the gene mutations in DNA replication from the finite field concept. By treating DNA sequences as state variables, chemical mutagens and radiation as control inputs, one cell cycle as a step increment, and the measurements of the resulting DNA sequence as outputs, we derive system equations for both deterministic and stochastic discrete-time, finite-state systems of different scales. Defining the cost function as a summation of the costs of applying mutagens and the off-trajectory penalty, we solve the deterministic and stochastic optimal control problems by dynamic programming algorithm. In addition, given that the system is completely controllable, we find that the global optimum of both base-to-base and codon-to-codon deterministic mutations can always be achieved within a finite number of steps. PMID:22454557

  4. Systematic analysis of somatic mutations impacting gene expression in 12 tumour types

    PubMed Central

    Ding, Jiarui; McConechy, Melissa K.; Horlings, Hugo M.; Ha, Gavin; Chun Chan, Fong; Funnell, Tyler; Mullaly, Sarah C.; Reimand, Jüri; Bashashati, Ali; Bader, Gary D.; Huntsman, David; Aparicio, Samuel; Condon, Anne; Shah, Sohrab P.

    2015-01-01

    We present a novel hierarchical Bayes statistical model, xseq, to systematically quantify the impact of somatic mutations on expression profiles. We establish the theoretical framework and robust inference characteristics of the method using computational benchmarking. We then use xseq to analyse thousands of tumour data sets available through The Cancer Genome Atlas, to systematically quantify somatic mutations impacting expression profiles. We identify 30 novel cis-effect tumour suppressor gene candidates, enriched in loss-of-function mutations and biallelic inactivation. Analysis of trans-effects of mutations and copy number alterations with xseq identifies mutations in 150 genes impacting expression networks, with 89 novel predictions. We reveal two important novel characteristics of mutation impact on expression: (1) patients harbouring known driver mutations exhibit different downstream gene expression consequences; (2) expression patterns for some mutations are stable across tumour types. These results have critical implications for identification and interpretation of mutations with consequent impact on transcription in cancer. PMID:26436532

  5. Adaptation to an automated platform of algorithmic combinations of advantageous mutations in genes generated using amino acid scanning mutational strategy.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent mutational strategies for generating and screening of genes for optimized traits, including directed evolution, domain shuffling, random mutagenesis, and site-directed mutagenesis, have been adapted for automated platforms. Here we discuss the amino acid scanning mutational strategy and its ...

  6. NIH Researchers Identify New Gene Mutation Associated with ALS and Dementia

    MedlinePlus

    ... NIH researchers identify new gene mutation associated with ALS and dementia April 7, 2014 A rare mutation ... cell, has been linked with development of familial amyotrophic lateral sclerosis (ALS). This finding, from a research team led ...

  7. 40 CFR 799.9530 - TSCA in vitro mammalian cell gene mutation test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... several base pairs in the DNA. Forward mutation is a gene mutation from the parental type to the mutant... multiple base pairs in the DNA molecule. Mutant frequency is the number of mutant cells observed divided...

  8. Whole‐exome sequencing defines the mutational landscape of pheochromocytoma and identifies KMT2D as a recurrently mutated gene

    PubMed Central

    Stenman, Adam; Haglund, Felix; Clark, Victoria E.; Brown, Taylor C.; Baranoski, Jacob; Bilguvar, Kaya; Goh, Gerald; Welander, Jenny; Svahn, Fredrika; Rubinstein, Jill C.; Caramuta, Stefano; Yasuno, Katsuhito; Günel, Murat; Bäckdahl, Martin; Gimm, Oliver; Söderkvist, Peter; Prasad, Manju L.; Korah, Reju; Lifton, Richard P.

    2015-01-01

    As subsets of pheochromocytomas (PCCs) lack a defined molecular etiology, we sought to characterize the mutational landscape of PCCs to identify novel gene candidates involved in disease development. A discovery cohort of 15 PCCs wild type for mutations in PCC susceptibility genes underwent whole‐exome sequencing, and an additional 83 PCCs served as a verification cohort for targeted sequencing of candidate mutations. A low rate of nonsilent single nucleotide variants (SNVs) was detected (6.1/sample). Somatic HRAS and EPAS1 mutations were observed in one case each, whereas the remaining 13 cases did not exhibit variants in established PCC genes. SNVs aggregated in apoptosis‐related pathways, and mutations in COSMIC genes not previously reported in PCCs included ZAN, MITF, WDTC1, and CAMTA1. Two somatic mutations and one constitutional variant in the well‐established cancer gene lysine (K)‐specific methyltransferase 2D (KMT2D, MLL2) were discovered in one sample each, prompting KMT2D screening using focused exome‐sequencing in the verification cohort. An additional 11 PCCs displayed KMT2D variants, of which two were recurrent. In total, missense KMT2D variants were found in 14 (11 somatic, two constitutional, one undetermined) of 99 PCCs (14%). Five cases displayed somatic mutations in the functional FYR/SET domains of KMT2D, constituting 36% of all KMT2D‐mutated PCCs. KMT2D expression was upregulated in PCCs compared to normal adrenals, and KMT2D overexpression positively affected cell migration in a PCC cell line. We conclude that KMT2D represents a recurrently mutated gene with potential implication for PCC development. © 2015 The Authors. Genes, Chromosomes & Cancer Published by Wiley Periodicals, Inc. PMID:26032282

  9. Four novel MSH2 / MLH1 gene mutations in portuguese HNPCC families.

    PubMed

    Isidro, G; Veiga, I; Matos, P; Almeida, S; Bizarro, S; Marshall, B; Baptista, M; Leite, J; Regateiro, F; Soares, J; Castedo, S; Boavida, M G

    2000-01-01

    Hereditary non-polyposis colorectal cancer (HNPCC) is considered to be determined by germline mutations in the mismatch repair (MMR) genes, especially MSH2 and MLH1. While screening for mutations in these two genes in HNPCC portuguese families, 3 previously unreported MSH2 and 1 MLH1 mutations have been identified in families meeting strict Amsterdam criteria. Hum Mutat 15:116, 2000. PMID:10612836

  10. Review: Clinical aspects of hereditary DNA Mismatch repair gene mutations.

    PubMed

    Sijmons, Rolf H; Hofstra, Robert M W

    2016-02-01

    Inherited mutations of the DNA Mismatch repair genes MLH1, MSH2, MSH6 and PMS2 can result in two hereditary tumor syndromes: the adult-onset autosomal dominant Lynch syndrome, previously referred to as Hereditary Non-Polyposis Colorectal Cancer (HNPCC) and the childhood-onset autosomal recessive Constitutional Mismatch Repair Deficiency syndrome. Both conditions are important to recognize clinically as their identification has direct consequences for clinical management and allows targeted preventive actions in mutation carriers. Lynch syndrome is one of the more common adult-onset hereditary tumor syndromes, with thousands of patients reported to date. Its tumor spectrum is well established and includes colorectal cancer, endometrial cancer and a range of other cancer types. However, surveillance for cancers other than colorectal cancer is still of uncertain value. Prophylactic surgery, especially for the uterus and its adnexa is an option in female mutation carriers. Chemoprevention of colorectal cancer with aspirin is actively being investigated in this syndrome and shows promising results. In contrast, the Constitutional Mismatch Repair Deficiency syndrome is rare, features a wide spectrum of childhood onset cancers, many of which are brain tumors with high mortality rates. Future studies are very much needed to improve the care for patients with this severe disorder. PMID:26746812

  11. Genetic syndromes caused by mutations in epigenetic genes.

    PubMed

    Berdasco, María; Esteller, Manel

    2013-04-01

    The orchestrated organization of epigenetic factors that control chromatin dynamism, including DNA methylation, histone marks, non-coding RNAs (ncRNAs) and chromatin-remodeling proteins, is essential for the proper function of tissue homeostasis, cell identity and development. Indeed, deregulation of epigenetic profiles has been described in several human pathologies, including complex diseases (such as cancer, cardiovascular and neurological diseases), metabolic pathologies (type 2 diabetes and obesity) and imprinting disorders. Over the last decade it has become increasingly clear that mutations of genes involved in epigenetic mechanism, such as DNA methyltransferases, methyl-binding domain proteins, histone deacetylases, histone methylases and members of the SWI/SNF family of chromatin remodelers are linked to human disorders, including Immunodeficiency Centromeric instability Facial syndrome 1, Rett syndrome, Rubinstein-Taybi syndrome, Sotos syndrome or alpha-thalassemia/mental retardation X-linked syndrome, among others. As new members of the epigenetic machinery are described, the number of human syndromes associated with epigenetic alterations increases. As recent examples, mutations of histone demethylases and members of the non-coding RNA machinery have recently been associated with Kabuki syndrome, Claes-Jensen X-linked mental retardation syndrome and Goiter syndrome. In this review, we describe the variety of germline mutations of epigenetic modifiers that are known to be associated with human disorders, and discuss the therapeutic potential of epigenetic drugs as palliative care strategies in the treatment of such disorders. PMID:23370504

  12. Whole-exome sequencing defines the mutational landscape of pheochromocytoma and identifies KMT2D as a recurrently mutated gene.

    PubMed

    Juhlin, C Christofer; Stenman, Adam; Haglund, Felix; Clark, Victoria E; Brown, Taylor C; Baranoski, Jacob; Bilguvar, Kaya; Goh, Gerald; Welander, Jenny; Svahn, Fredrika; Rubinstein, Jill C; Caramuta, Stefano; Yasuno, Katsuhito; Günel, Murat; Bäckdahl, Martin; Gimm, Oliver; Söderkvist, Peter; Prasad, Manju L; Korah, Reju; Lifton, Richard P; Carling, Tobias

    2015-09-01

    As subsets of pheochromocytomas (PCCs) lack a defined molecular etiology, we sought to characterize the mutational landscape of PCCs to identify novel gene candidates involved in disease development. A discovery cohort of 15 PCCs wild type for mutations in PCC susceptibility genes underwent whole-exome sequencing, and an additional 83 PCCs served as a verification cohort for targeted sequencing of candidate mutations. A low rate of nonsilent single nucleotide variants (SNVs) was detected (6.1/sample). Somatic HRAS and EPAS1 mutations were observed in one case each, whereas the remaining 13 cases did not exhibit variants in established PCC genes. SNVs aggregated in apoptosis-related pathways, and mutations in COSMIC genes not previously reported in PCCs included ZAN, MITF, WDTC1, and CAMTA1. Two somatic mutations and one constitutional variant in the well-established cancer gene lysine (K)-specific methyltransferase 2D (KMT2D, MLL2) were discovered in one sample each, prompting KMT2D screening using focused exome-sequencing in the verification cohort. An additional 11 PCCs displayed KMT2D variants, of which two were recurrent. In total, missense KMT2D variants were found in 14 (11 somatic, two constitutional, one undetermined) of 99 PCCs (14%). Five cases displayed somatic mutations in the functional FYR/SET domains of KMT2D, constituting 36% of all KMT2D-mutated PCCs. KMT2D expression was upregulated in PCCs compared to normal adrenals, and KMT2D overexpression positively affected cell migration in a PCC cell line. We conclude that KMT2D represents a recurrently mutated gene with potential implication for PCC development. PMID:26032282

  13. GNAS gene mutation may be present only transiently during colorectal tumorigenesis

    PubMed Central

    Zauber, Peter; Marotta, Stephen P; Sabbath-Solitare, Marlene

    2016-01-01

    Mutations of the gene GNAS have been shown to activate the adenylate cyclase gene and lead to constitutive cAMP signaling. Several preliminary reports have suggested a role for GNAS gene mutations during colorectal carcinogenesis, particularly mucinous carcinomas. The aim of this study was to clarify the incidence of GNAS mutations in adenomas (tubular, tubulovillous, and villous), carcinomas with residual adenoma, and carcinomas, and to relate these findings to mutations of the KRAS gene and to the mucinous status of the tumors. We used standard PCR techniques and direct gene sequencing to evaluate tumors for gene mutations. No GNAS mutations were identified in 25 tubular adenomas, but were present in 6.4% of tubulovillous adenomas and 11.2% of villous adenomas. A GNAS mutation was found in 9.7% of the benign portion of carcinoma with residual adenoma, but in none of 86 carcinomas. A similar trend was seen for KRAS mutation across the five groups of tumors. GNAS mutations may function as an important driver mutation during certain phases of colorectal carcinogenesis, but may then be lost once the biological advantage gained by the mutated gene is no longer necessary to sustain or advance tumor development. PMID:27186325

  14. Mutation analysis of the Fanconi Anemia Gene FACC

    SciTech Connect

    Verlander, P.C.; Lin, J.D.; Udono, M.U.; Zhang, Q.; Auerbach, A.D. ); Gibson, R.A.; Mathew, C.G. )

    1994-04-01

    Fanconi anemia (FA) is a genetically heterogeneous autosomal recessive disorder characterized by a unique hypersensitivity of cells to DNA cross-linking agents; a gene for complementation group C (FACC) has recently been cloned. The authors have amplified FACC exons with their flanking intron sequences from genomic DNA from 174 racially and ethnically diverse families in the International Fanconi Anemia Registry and have screened for mutations by using SSCP analysis. They have identified eight different variants in 32 families; three were detected in exon 1, one in exon 4, one in intron 4, two in exon 6, and one in exon 14. Two of the eight variants, in seven families, did not segregate with the disease allele in multiplex families, suggesting that these variants represented benign polymorphisms. Disease-associated mutations in FACC were detected in a total of 25 (14.4%) of 174 families screened. The most frequent mutations were IVS4 + 4 A [yields] T (intron 4; 12 families) and 322delG (exon 1; 9 families). Other, less common mutations include Q13X in exon 1, R185X and D195V in exon 6, and L554P in exon 14. The polymorphisms were S26F in exon 1 and G139E in exon 4. All patients in the study with 322delG, Q13X, R185X, and D195V are of northern or eastern European or southern Italian ancestry, and 18 of 19 have a mild form of the disease, while the 2 patients with L554P, both from the same family, have a severe phenotype. All 19 patients with IVS4 + 4 A [yields] T have Jewish ancestry and have a severe phenotype. 19 refs., 1 fig., 3 tabs.

  15. Three faces of recombination activating gene 1 (RAG1) mutations.

    PubMed

    Patiroglu, Turkan; Akar, Himmet Haluk; Van Der Burg, Mirjam

    2015-12-01

    Severe combined immune deficiency (SCID) is a group of genetic disorder associated with development of T- and/or B-lymphocytes. Recombination-activating genes (RAG1/2) play a critical role on VDJ recombination process that leads to the production of a broad T-cell receptor (TCR) and B-cell receptor (BCR) repertoire in the development of T and B cells. RAG1/2 genes mutations result in various forms of primary immunodeficiency, ranging from classic SCID to Omenn syndrome (OS) to atypical SCID with such as granuloma formation and autoimmunity. Herein, we reported 4 patients with RAG1 deficiency: classic SCID was seen in two patients who presented with recurrent pneumonia and chronic diarrhoea, and failure to thrive. OS was observed in one patient who presented with chronic diarrhoea, skin rash, recurrent lower respiratory infections, and atypical SCID was seen in one patient who presented with Pyoderma gangrenosum (PG) and had novel RAG1 mutation. PMID:26689875

  16. First-Step Mutations during Adaptation Restore the Expression of Hundreds of Genes

    PubMed Central

    Rodríguez-Verdugo, Alejandra; Tenaillon, Olivier; Gaut, Brandon S.

    2016-01-01

    The temporal change of phenotypes during the adaptive process remains largely unexplored, as do the genetic changes that affect these phenotypic changes. Here we focused on three mutations that rose to high frequency in the early stages of adaptation within 12 Escherichia coli populations subjected to thermal stress (42 °C). All the mutations were in the rpoB gene, which encodes the RNA polymerase beta subunit. For each mutation, we measured the growth curves and gene expression (mRNAseq) of clones at 42 °C. We also compared growth and gene expression with their ancestor under unstressed (37 °C) and stressed conditions (42 °C). Each of the three mutations changed the expression of hundreds of genes and conferred large fitness advantages, apparently through the restoration of global gene expression from the stressed toward the prestressed state. These three mutations had a similar effect on gene expression as another single mutation in a distinct domain of the rpoB protein. Finally, we compared the phenotypic characteristics of one mutant, I572L, with two high-temperature adapted clones that have this mutation plus additional background mutations. The background mutations increased fitness, but they did not substantially change gene expression. We conclude that early mutations in a global transcriptional regulator cause extensive changes in gene expression, many of which are likely under positive selection for their effect in restoring the prestress physiology. PMID:26500250

  17. Mutation Analysis of IDH1/2 Genes in Unselected De novo Acute Myeloid Leukaemia Patients in India - Identification of A Novel IDH2 Mutation.

    PubMed

    Raveendran, Sureshkumar; Sarojam, Santhi; Vijay, Sangeetha; Geetha, Aswathy Chandran; Sreedharan, Jayadevan; Narayanan, Geetha; Sreedharan, Hariharan

    2015-01-01

    IDH1/2 mutations which result in alternation in DNA methylation pattern are one of the most common methylation associated mutations in Acute myeloid leukaemia. IDH1/2 mutations frequently associated with higher platelet level, normal cytogentics and NPM1 mutations. Here we analyzed IDH1/2 mutations in 200 newly diagnosed unselected Indian adult AML patients and investigated their correlation with clinical, cytogenetic parameters along with cooperating NPM1 mutation. We detected 5.5% and 4% mutations in IDH1/2 genes, respectively. Except IDH2 c.515_516GG>AA mutation, all the other identified mutations were reported mutations. Similar to reported c.515G>A mutation, the novel c.515_516GG>AA mutation replaces 172nd arginine to lysine in the active site of the enzyme. Even though there was a preponderance of IDH1/2 mutations in NK-AML, cytogenetically abnormal patients also harboured IDH1/2 mutations. IDH1 mutations showed significant higher platelet count and NPM1 mutations. IDH2 mutated patients displayed infrequent NPM1 mutations and lower WBC count. All the NPM1 mutations in the IDH1/2 mutated cases showed type A mutation. The present data suggest that IDH1/2 mutations are associated with normal cytogenetics and type A NPM1 mutations in adult Indian AML patients. PMID:25987093

  18. Point mutations in dihydrofolate reductase and dihydropteroate synthase genes of Plasmodium falciparum isolates from Venezuela.

    PubMed

    Urdaneta, L; Plowe, C; Goldman, I; Lal, A A

    1999-09-01

    The present study was designed to characterize mutations in dihydrofolate reductase (DHFR) and dihydropteroate synthase (DHPS) genes of Plasmodium falciparum in the Bolivar region of Venezuela, where high levels of clinical resistance to sulfadoxine-pyrimethamine (SP, Fansidar; F. Hoffman-La Roche, Basel, Switzerland) has been documented. We used a nested mutation-specific polymerase chain reaction and restriction digestion methods to measure 1) the prevalence of DHFR mutations at 16, 50, 51, 59, 108, and 164 codon positions, and 2) the prevalence of mutations in the 436, 437, 581, and 613 codon sites in DHPS gene. In the case of the DHFR gene, of the 54 parasite isolates analyzed, we detected the presence of Asn-108 and Ile-51 in 96% of the isolates and Arg-50 mutation in 64% of the isolates. Each of these mutations has been associated with high level of resistance to pyrimethamine. Only 2 samples (4%) showed the wild type Ser-108 mutation and none showed Thr-108 and Val-16 mutations that are specific for resistance to cycloguanil. In the case of DHPS gene, we found a mutation at position 437 (Gly) in 100% of the isolates and Gly-581 in 96% of the isolates. The simultaneous presence of mutations Asn-108 and Ile-51 in the DHFR gene and Gly-437 and Gly-581 in the DHPS gene in 96% of the samples tested suggested that a cumulative effect of mutations could be the major mechanism conferring high SP resistance in this area. PMID:10497990

  19. Aneuploidy vs. gene mutation hypothesis of cancer: Recent study claims mutation but is found to support aneuploidy

    PubMed Central

    Li, Ruhong; Sonik, Arvind; Stindl, Reinhard; Rasnick, David; Duesberg, Peter

    2000-01-01

    For nearly a century, cancer has been blamed on somatic mutation. But it is still unclear whether this mutation is aneuploidy, an abnormal balance of chromosomes, or gene mutation. Despite enormous efforts, the currently popular gene mutation hypothesis has failed to identify cancer-specific mutations with transforming function and cannot explain why cancer occurs only many months to decades after mutation by carcinogens and why solid cancers are aneuploid, although conventional mutation does not depend on karyotype alteration. A recent high-profile publication now claims to have solved these discrepancies with a set of three synthetic mutant genes that “suffices to convert normal human cells into tumorigenic cells.” However, we show here that even this study failed to explain why it took more than “60 population doublings” from the introduction of the first of these genes, a derivative of the tumor antigen of simian virus 40 tumor virus, to generate tumor cells, why the tumor cells were clonal although gene transfer was polyclonal, and above all, why the tumor cells were aneuploid. If aneuploidy is assumed to be the somatic mutation that causes cancer, all these results can be explained. The aneuploidy hypothesis predicts the long latent periods and the clonality on the basis of the following two-stage mechanism: stage one, a carcinogen (or mutant gene) generates aneuploidy; stage two, aneuploidy destabilizes the karyotype and thus initiates an autocatalytic karyotype evolution generating preneoplastic and eventually neoplastic karyotypes. Because the odds are very low that an abnormal karyotype will surpass the viability of a normal diploid cell, the evolution of a neoplastic cell species is slow and thus clonal, which is comparable to conventional evolution of new species. PMID:10725343

  20. Combined Complement Gene Mutations in Atypical Hemolytic Uremic Syndrome Influence Clinical Phenotype

    PubMed Central

    Bresin, Elena; Rurali, Erica; Caprioli, Jessica; Sanchez-Corral, Pilar; Fremeaux-Bacchi, Veronique; Rodriguez de Cordoba, Santiago; Pinto, Sheila; Goodship, Timothy H.J.; Alberti, Marta; Ribes, David; Valoti, Elisabetta; Remuzzi, Giuseppe

    2013-01-01

    Several abnormalities in complement genes reportedly contribute to atypical hemolytic uremic syndrome (aHUS), but incomplete penetrance suggests that additional factors are necessary for the disease to manifest. Here, we sought to describe genotype–phenotype correlations among patients with combined mutations, defined as mutations in more than one complement gene. We screened 795 patients with aHUS and identified single mutations in 41% and combined mutations in 3%. Only 8%–10% of patients with mutations in CFH, C3, or CFB had combined mutations, whereas approximately 25% of patients with mutations in MCP or CFI had combined mutations. The concomitant presence of CFH and MCP risk haplotypes significantly increased disease penetrance in combined mutated carriers, with 73% penetrance among carriers with two risk haplotypes compared with 36% penetrance among carriers with zero or one risk haplotype. Among patients with CFH or CFI mutations, the presence of mutations in other genes did not modify prognosis; in contrast, 50% of patients with combined MCP mutation developed end stage renal failure within 3 years from onset compared with 19% of patients with an isolated MCP mutation. Patients with combined mutations achieved remission with plasma treatment similar to patients with single mutations. Kidney transplant outcomes were worse, however, for patients with combined MCP mutation compared with an isolated MCP mutation. In summary, these data suggest that genotyping for the risk haplotypes in CFH and MCP may help predict the risk of developing aHUS in unaffected carriers of mutations. Furthermore, screening patients with aHUS for all known disease-associated genes may inform decisions about kidney transplantation. PMID:23431077

  1. A single gene mutation that increases maize seed weight

    SciTech Connect

    Giroux, M.J.; Shaw, J.; Hannah, L.C. |

    1996-06-11

    The maize endosperm-specific gene shrunken2 (Sh2) encodes the large subunit of the heterotetrameric starch synthetic enzyme adenosine diphosphoglucose pyrophosphorylase (AGP; EC 2.7.7.27). Here we exploit an in vivo, site-specific mutagenesis system to create short insertion mutations in a region of the gene known to be involved in the allosteric regulation of AGP. The site-specific mutagen is the transposable element dissociation (Ds). Approximately one-third (8 of 23) of the germinal revertants sequenced restored the wild-type sequence, whereas the remaining revertants contained insertions of 3 or 6 bp. All revertants retained the original reading frame 3 feet to the insertion site and involved the addition of tyrosine and/or serine. Each insertion revertant reduced total AGP activity and the amount of the SH2 protein. The revertant containing additional tyrosine and serine residues increased seed weight 11-18% without increasing or decreasing the percentage of starch. Other insertion revertants lacking an additional serine reduced seed weight. Reduced sensitivity to phosphate, a long-known inhibitor of AGP, was found in the high seed-weight revertant. This alteration is likely universally important since insertion of tyrosine and serine in the potato large subunit of AGP at the comparable position and expression in Escherichia coli also led to a phosphate-insensitive enzyme. These results show that single gene mutations giving rise to increased seed weight, and therefore perhaps yield, are clearly possible in a plant with a long history of intensive and successful breeding efforts. 20 refs., 5 figs., 5 tabs.

  2. Mutational analysis of PKD1 gene in a Chinese family with autosomal dominant polycystic kidney disease.

    PubMed

    Liu, Jingyan; Li, Lanrong; Liu, Qingmin

    2015-01-01

    Autosomal dominant polycystic kidney disease (ADPKD) is a hereditary disease and common renal disease. Mutations of PKD genes are responsible for this disease. We analyzed a large Chinese family with ADPKD using Sanger sequencing to identify the mutation responsible for this disease. The family comprised 27 individuals including 10 ADPKD patients. These ADPKD patients had severe renal disease and most of them died very young. We analyzed 6 survival patients gene and found they all had C10529T mutation in exon 35 of PKD1 gene. We did not found gene mutation in any unaffected relatives or 300 unrelated controls. These findings suggested that the C10529T mutation in PKD1 gene might be the pathogenic mutation responsible for the disease in this family. PMID:26722532

  3. Mutational analysis of PKD1 gene in a Chinese family with autosomal dominant polycystic kidney disease

    PubMed Central

    Liu, Jingyan; Li, Lanrong; Liu, Qingmin

    2015-01-01

    Autosomal dominant polycystic kidney disease (ADPKD) is a hereditary disease and common renal disease. Mutations of PKD genes are responsible for this disease. We analyzed a large Chinese family with ADPKD using Sanger sequencing to identify the mutation responsible for this disease. The family comprised 27 individuals including 10 ADPKD patients. These ADPKD patients had severe renal disease and most of them died very young. We analyzed 6 survival patients gene and found they all had C10529T mutation in exon 35 of PKD1 gene. We did not found gene mutation in any unaffected relatives or 300 unrelated controls. These findings suggested that the C10529T mutation in PKD1 gene might be the pathogenic mutation responsible for the disease in this family. PMID:26722532

  4. Important role of indels in somatic mutations of human cancer genes

    PubMed Central

    2010-01-01

    Background Cancer is clonal proliferation that arises owing to mutations in a subset of genes that confer growth advantage. More and more cancer related genes are found to have accumulated somatic mutations. However, little has been reported about mutational patterns of insertions/deletions (indels) in these genes. Results We analyzed indels' abundance and distribution, the relative ratio between indels and somatic base substitutions and the association between those two forms of mutations in a large number of somatic mutations in the Catalogue of Somatic Mutations in Cancer database. We found a strong correlation between indels and base substitutions in cancer-related genes and showed that they tend to concentrate at the same locus in the coding sequences within the same samples. More importantly, a much higher proportion of indels were observed in somatic mutations, as compared to meiotic ones. Furthermore, our analysis demonstrated a great diversity of indels at some loci of cancer-related genes. Particularly in the genes with abundant mutations, the proportion of 3n indels in oncogenes is 7.9 times higher than that in tumor suppressor genes. Conclusions There are three distinct patterns of indel distribution in somatic mutations: high proportion, great abundance and non-random distribution. Because of the great influence of indels on gene function (e.g., the effect of frameshift mutation), these patterns indicate that indels are frequently under positive selection and can often be the 'driver mutations' in oncogenesis. Such driver forces can better explain why much less frameshift mutations are in oncogenes while much more in tumor suppressor genes, because of their different function in oncogenesis. These findings contribute to our understanding of mutational patterns and the relationship between indels and cancer. PMID:20807447

  5. Repeated evolution of chimeric fusion genes in the β-globin gene family of laurasiatherian mammals.

    PubMed

    Gaudry, Michael J; Storz, Jay F; Butts, Gary Tyler; Campbell, Kevin L; Hoffmann, Federico G

    2014-05-01

    The evolutionary fate of chimeric fusion genes may be strongly influenced by their recombinational mode of origin and the nature of functional divergence between the parental genes. In the β-globin gene family of placental mammals, the two postnatally expressed δ- and β-globin genes (HBD and HBB, respectively) have a propensity for recombinational exchange via gene conversion and unequal crossing-over. In the latter case, there are good reasons to expect differences in retention rates for the reciprocal HBB/HBD and HBD/HBB fusion genes due to thalassemia pathologies associated with the HBD/HBB "Lepore" deletion mutant in humans. Here, we report a comparative genomic analysis of the mammalian β-globin gene cluster, which revealed that chimeric HBB/HBD fusion genes originated independently in four separate lineages of laurasiatherian mammals: Eulipotyphlans (shrews, moles, and hedgehogs), carnivores, microchiropteran bats, and cetaceans. In cases where an independently derived "anti-Lepore" duplication mutant has become fixed, the parental HBD and/or HBB genes have typically been inactivated or deleted, so that the newly created HBB/HBD fusion gene is primarily responsible for synthesizing the β-type subunits of adult and fetal hemoglobin (Hb). Contrary to conventional wisdom that the HBD gene is a vestigial relict that is typically inactivated or expressed at negligible levels, we show that HBD-like genes often encode a substantial fraction (20-100%) of β-chain Hbs in laurasiatherian taxa. Our results indicate that the ascendancy or resuscitation of genes with HBD-like coding sequence requires the secondary acquisition of HBB-like promoter sequence via unequal crossing-over or interparalog gene conversion. PMID:24814285

  6. Repeated Evolution of Chimeric Fusion Genes in the β-Globin Gene Family of Laurasiatherian Mammals

    PubMed Central

    Gaudry, Michael J.; Storz, Jay F.; Butts, Gary Tyler; Campbell, Kevin L.; Hoffmann, Federico G.

    2014-01-01

    The evolutionary fate of chimeric fusion genes may be strongly influenced by their recombinational mode of origin and the nature of functional divergence between the parental genes. In the β-globin gene family of placental mammals, the two postnatally expressed δ- and β-globin genes (HBD and HBB, respectively) have a propensity for recombinational exchange via gene conversion and unequal crossing-over. In the latter case, there are good reasons to expect differences in retention rates for the reciprocal HBB/HBD and HBD/HBB fusion genes due to thalassemia pathologies associated with the HBD/HBB “Lepore” deletion mutant in humans. Here, we report a comparative genomic analysis of the mammalian β-globin gene cluster, which revealed that chimeric HBB/HBD fusion genes originated independently in four separate lineages of laurasiatherian mammals: Eulipotyphlans (shrews, moles, and hedgehogs), carnivores, microchiropteran bats, and cetaceans. In cases where an independently derived “anti-Lepore” duplication mutant has become fixed, the parental HBD and/or HBB genes have typically been inactivated or deleted, so that the newly created HBB/HBD fusion gene is primarily responsible for synthesizing the β-type subunits of adult and fetal hemoglobin (Hb). Contrary to conventional wisdom that the HBD gene is a vestigial relict that is typically inactivated or expressed at negligible levels, we show that HBD-like genes often encode a substantial fraction (20–100%) of β-chain Hbs in laurasiatherian taxa. Our results indicate that the ascendancy or resuscitation of genes with HBD-like coding sequence requires the secondary acquisition of HBB-like promoter sequence via unequal crossing-over or interparalog gene conversion. PMID:24814285

  7. Familial Mediterranean fever gene mutations in north-eastern part of Anatolia with special respect to rare mutations.

    PubMed

    Dogan, Hasan; Faruk Bayrak, Omer; Emet, Mucahit; Keles, Mustafa; Gulluoglu, Sukru; Gul, Zeynep; Pirim, Ibrahim

    2015-09-01

    We aimed to determine the frequency of mutations, carrier rates and the association of rare mutations with Familial Mediterranean Fever (FMF) symptoms. There is a need to evaluate as many different populations as possible in order to determine either specific rare mutations or a range of disease-associated mutations. The demographic data and FMF symptoms related to MEFV gene mutations were collected from 731 participants. Exon 2 and exon 10 of the MEFV gene were tested by DNA sequencing. The rare mutations were identified as: M694I (1.1%, n=12), E148V (0.6%, n=6), T267I (0.5%, n=5), L110P (0.2%, n=2), E167D (0.2%, n=2), K695R (0.1%, n=1) and an insertion G (Guanine) mutation (0.4%, n=4) at the 777th codon of exon 10. We used routine comprehensive detection systems such as Sanger sequence that can catch rare mutations, for definite diagnosis and treatment of FMF disease. PMID:26003477

  8. Systematic analysis of mutation distribution in three dimensional protein structures identifies cancer driver genes.

    PubMed

    Fujimoto, Akihiro; Okada, Yukinori; Boroevich, Keith A; Tsunoda, Tatsuhiko; Taniguchi, Hiroaki; Nakagawa, Hidewaki

    2016-01-01

    Protein tertiary structure determines molecular function, interaction, and stability of the protein, therefore distribution of mutation in the tertiary structure can facilitate the identification of new driver genes in cancer. To analyze mutation distribution in protein tertiary structures, we applied a novel three dimensional permutation test to the mutation positions. We analyzed somatic mutation datasets of 21 types of cancers obtained from exome sequencing conducted by the TCGA project. Of the 3,622 genes that had ≥3 mutations in the regions with tertiary structure data, 106 genes showed significant skew in mutation distribution. Known tumor suppressors and oncogenes were significantly enriched in these identified cancer gene sets. Physical distances between mutations in known oncogenes were significantly smaller than those of tumor suppressors. Twenty-three genes were detected in multiple cancers. Candidate genes with significant skew of the 3D mutation distribution included kinases (MAPK1, EPHA5, ERBB3, and ERBB4), an apoptosis related gene (APP), an RNA splicing factor (SF1), a miRNA processing factor (DICER1), an E3 ubiquitin ligase (CUL1) and transcription factors (KLF5 and EEF1B2). Our study suggests that systematic analysis of mutation distribution in the tertiary protein structure can help identify cancer driver genes. PMID:27225414

  9. Systematic analysis of mutation distribution in three dimensional protein structures identifies cancer driver genes

    PubMed Central

    Fujimoto, Akihiro; Okada, Yukinori; Boroevich, Keith A.; Tsunoda, Tatsuhiko; Taniguchi, Hiroaki; Nakagawa, Hidewaki

    2016-01-01

    Protein tertiary structure determines molecular function, interaction, and stability of the protein, therefore distribution of mutation in the tertiary structure can facilitate the identification of new driver genes in cancer. To analyze mutation distribution in protein tertiary structures, we applied a novel three dimensional permutation test to the mutation positions. We analyzed somatic mutation datasets of 21 types of cancers obtained from exome sequencing conducted by the TCGA project. Of the 3,622 genes that had ≥3 mutations in the regions with tertiary structure data, 106 genes showed significant skew in mutation distribution. Known tumor suppressors and oncogenes were significantly enriched in these identified cancer gene sets. Physical distances between mutations in known oncogenes were significantly smaller than those of tumor suppressors. Twenty-three genes were detected in multiple cancers. Candidate genes with significant skew of the 3D mutation distribution included kinases (MAPK1, EPHA5, ERBB3, and ERBB4), an apoptosis related gene (APP), an RNA splicing factor (SF1), a miRNA processing factor (DICER1), an E3 ubiquitin ligase (CUL1) and transcription factors (KLF5 and EEF1B2). Our study suggests that systematic analysis of mutation distribution in the tertiary protein structure can help identify cancer driver genes. PMID:27225414

  10. Laminin 5 genes and Herlitz junctional epidermolysis bullosa: novel mutations and polymorphisms in the LAMB3 and LAMC2 genes. Mutations in brief no. 190. Online.

    PubMed

    Kon, A; Pulkkinen, L; Hara, M; Tamai, K; Tagami, H; Hashimoto, I; Uitto, J

    1998-01-01

    Herlitz junctional epidermolysis bullosa (H-JEB; OMIM #226700) is a lethal, autosomal recessive blistering disorder characterized by fragility of the skin and other specialized epithelia. Previously, mutations in the laminin 5 genes (LAMA3, LAMB3, and LAMC2) have been disclosed, most of them in LAMB3. In this study, we have examined the genetic basis of H-JEB in three families utilizing heteroduplex analysis and automated nucleotide sequencing. In one family, the proband was compound heterozygote for previously unpublished LAMB3 mutations, 1482delC and W95X. In two other families, the probands were found to be homozygous for novel nonsense mutations C553X and K822X in the LAMC2 gene. These mutations result in premature termination codons and predict truncation of the corresponding polypeptides. Also, during the search of laminin 5 mutations, 18 LAMB3 and LAMC2 polymorphisms were discovered, 9 of them being previously undescribed. Delineation of novel homozygous nonsense mutations in the LAMB3 and LAMC2 genes, with previous demonstrations of LAMA3 mutations, re-emphasizes the concept that stop codon mutations in both alleles of any of the three laminin 5 genes result in the severe H-JEB phenotype. PMID:10660342

  11. MMACHC gene mutation in familial hypogonadism with neurological symptoms.

    PubMed

    Shi, Changhe; Shang, Dandan; Sun, Shilei; Mao, Chengyuan; Qin, Jie; Luo, Haiyang; Shao, Mingwei; Chen, Zhengguang; Liu, Yutao; Liu, Xinjing; Song, Bo; Xu, Yuming

    2015-12-15

    Recent studies have convincingly documented that hypogonadism is a component of various hereditary disorders and is often recognized as an important clinical feature in combination with various neurological symptoms, yet, the causative genes in a few related families are still unknown. High-throughput sequencing has become an efficient method to identify causative genes in related complex hereditary disorders. In this study, we performed exome sequencing in a family presenting hypergonadotropic hypogonadism with neurological presentations of mental retardation, epilepsy, ataxia, and leukodystrophy. After bioinformatic analysis and Sanger sequencing validation, we identified compound heterozygous mutations: c.482G>A (p.R161Q) and c.609G>A (p.W203X) in MMACHC gene in this pedigree. MMACHC was previously confirmed to be responsible for methylmalonic aciduria (MMA) combined with homocystinuria, cblC type (cblC disease), a hereditary vitamin B12 metabolic disorder. Biochemical and gas chromatography-mass spectrometry (GC-MS) examinations in this pedigree further supported the cblC disease diagnosis. These results indicated that hypergonadotropic hypogonadism may be a novel clinical manifestation of cblC disease, but more reports on additional patients are needed to support this hypothesis. PMID:26283149

  12. Clinical Manifestations in Paroxysmal Kinesigenic Dyskinesia Patients with Proline-Rich Transmembrane Protein 2 Gene Mutation

    PubMed Central

    Youn, Jinyoung; Kim, Ji Sun; Lee, Munhyang; Lee, Jeehun; Roh, Hakjae

    2014-01-01

    Background and Purpose Given the diverse phenotypes including combined non-dyskinetic symptoms in patients harboring mutations of the gene encoding proline-rich transmembrane protein 2 (PRRT2), the clinical significance of these mutations in paroxysmal kinesigenic dyskinesia (PKD) is questionable. In this study, we investigated the clinical characteristics of PKD patients with PRRT2 mutations. Methods Familial and sporadic PKD patients were enrolled and PRRT2 gene sequencing was performed. Demographic and clinical data were compared between PKD patients with and without a PRRT2 mutation. Results Among the enrolled PKD patients (8 patients from 5 PKD families and 19 sporadic patients), PRRT2 mutations were detected in 3 PKD families (60%) and 2 sporadic cases (10.5%). All familial patients with a PRRT2 gene mutation had the c.649dupC mutation, which is the most commonly reported mutation. Two uncommon mutations (c.649delC and c.629dupC) were detected only in the sporadic cases. PKD patients with PRRT2 mutation were younger at symptom onset and had more non-dyskinetic symptoms than those without PRRT2 mutation. However, the characteristics of dyskinetic movement did not differ between the two groups. Conclusions This is the first study of PRRT2 mutations in Korea. The presence of a PRRT2 mutation was more strongly related to familial PKD, and was clinically related with earlier age of onset and common non-dyskinetic symptoms in PKD patients. PMID:24465263

  13. Malignant pheochromocytomas/paragangliomas harbor mutations in transport and cell adhesion genes.

    PubMed

    Wilzén, Annica; Rehammar, Anna; Muth, Andreas; Nilsson, Ola; Tešan Tomić, Tajana; Wängberg, Bo; Kristiansson, Erik; Abel, Frida

    2016-05-01

    One out of ten patients with pheochromocytoma (PCC) and paraganglioma (PGL) develop malignant disease. Today there are no reliable pathological methods to predict malignancy at the time of diagnosis. Tumors harboring mutations in the succinate dehydrogenase subunit B (SDHB) gene often metastasize but the sequential genetic events resulting in malignant progression are not fully understood. The aim of this study was to identify somatic mutations that contribute to the malignant transformation of PCC/PGL. We performed pair-wise (tumor-normal) whole-exome sequencing to analyze the somatic mutational landscape in five malignant and four benign primary PCC/sympathetic PGL (sPGL), including two biological replicates from each specimen. In total, 225 unique somatic mutations were identified in 215 genes, with an average mutation rate of 0.54 mutations/megabase. Malignant tumors had a significantly higher number of mutations compared to benign tumors (p < 0.001). Three novel genes were identified as recurrently mutated; MYCN, MYO5B and VCL, and mutations in these genes were exclusively found in malignant sPGL tumors. Mutations in the MYO5B gene could be verified in two publicly available data sets. A gene ontology analysis of mutated genes showed enrichment of cellular functions related to cytoskeletal protein binding, myosin complex and motor activity, many of which had functions in Rab and Rac/Rho GTPase pathways. In conclusion, we have identified recurrent mutations in genes related to intracellular transport and cell adhesion, and we have confirmed MYO5B to be recurrently mutated in PCC/PGL cases with malignant potential. Our study suggests that deregulated Rab and Rac/Rho pathways may be important in PCC/PGL tumorigenesis. PMID:26650627

  14. Identifying Sarcomere Gene Mutations in HCM: A Personal History

    PubMed Central

    Seidman, Christine E.; Seidman, J.G.

    2011-01-01

    This article provides an historical and personal perspective on the discovery of genetic causes for hypertrophic cardiomyopathy (HCM). Extraordinary insights of physicians who initially detailed remarkable and varied manifestations of the disorder, collaboration among multidisciplinary teams with skills in clinical diagnostics and molecular genetics, and hard work by scores of trainees, solved the etiologic riddle of HCM, and unexpectedly demonstrated mutations in sarcomere protein genes as the cause of disease. In addition to celebrating 20 years of genetic research in HCM, this article serves as an introductory overview to a thematic review series that will present contemporary advances in the field of hypertrophic heart disease. Through the continued application of advances in genetic methodologies, combined with biochemical and biophysical analyses of the consequences of human mutations, fundamental knowledge about HCM and sarcomere biology has emerged. Expanding research to elucidate the mechanisms by which subtle genetic variation in contractile proteins remodel the human heart remains an exciting opportunity, one with considerable promise to provide new strategies to limit or even prevent HCM pathogenesis. PMID:21415408

  15. Compound heterozygous mutations of the TNXB gene cause primary myopathy.

    PubMed

    Pénisson-Besnier, Isabelle; Allamand, Valérie; Beurrier, Philippe; Martin, Ludovic; Schalkwijk, Joost; van Vlijmen-Willems, Ivonne; Gartioux, Corine; Malfait, Fransiska; Syx, Delfien; Macchi, Laurent; Marcorelles, Pascale; Arbeille, Brigitte; Croué, Anne; De Paepe, Anne; Dubas, Frédéric

    2013-08-01

    Complete deficiency of the extracellular matrix glycoprotein tenascin-X (TNX) leads to recessive forms of Ehlers-Danlos syndrome, clinically characterized by hyperextensible skin, easy bruising and joint hypermobility. Clinical and pathological studies, immunoassay, and molecular analyses were combined to study a patient suffering from progressive muscle weakness. Clinical features included axial and proximal limb muscle weakness, subclinical heart involvement, minimal skin hyperextensibility, no joint abnormalities, and a history of easy bruising. Skeletal muscle biopsy disclosed striking muscle consistency and the abnormal presence of myotendinous junctions in the muscle belly. TNX immunostaining was markedly reduced in muscle and skin, and serum TNX levels were undetectable. Compound heterozygous mutations were identified: a previously reported 30kb deletion and a non-synonymous novel missense mutation in the TNXB gene. This study identifies a TNX-deficient patient presenting with a primary muscle disorder, thus expanding the phenotypic spectrum of TNX-related abnormalities. Biopsy findings provide evidence that TNX deficiency leads to muscle softness and to mislocalization of myotendinous junctions. PMID:23768946

  16. An Ashkenazi founder mutation in the PKHD1 gene.

    PubMed

    Quint, Adina; Sagi, Michal; Carmi, Shai; Daum, Hagit; Macarov, Michal; Ben Neriah, Ziva; Meiner, Vardiela; Elpeleg, Orly; Lerer, Israela

    2016-02-01

    Autosomal recessive polycystic kidney disease (ARPKD) is usually detected late in pregnancies in embryos with large echogenic kidneys accompanied by oligohydramnios. Hundreds of private pathogenic variants have been identified in the large PKHD1 gene in various populations. Yet, because of the large size of the gene, segregation analysis of microsatellite polymorphic markers residing in the PKDH1 locus has commonly been utilized for prenatal diagnosis. Keeping in mind the limitations of this strategy, we utilized it for testing 7 families with affected fetuses or newborns, of which in 5 at least one parent was Ashkenazi, and identified that the same haplotype was shared by the majority of the Ashkenazi parents (7/9). This led us to suspect that they carry the same founder mutation. Whole Exome analysis of DNA from a fetus of one of the families detected an already known pathogenic variant c.3761_3762delCCinsG, an indel variant resulting in frameshift (p.Ala1254GlyfsX49). This variant was detected in 9 parents (5 families), of them 7 individuals were Ashkenazi and one Moroccan Jew who shared the same haplotype, and one Ashkenazi, who carried the same variant on a recombinant haplotype. Screening for this variant in 364 Ashkenazi individuals detected 2 carriers. These findings suggest that although c.3761_3762delCCinsG is considered one of the frequent variants detected in unrelated individuals, and was thought to have occurred independently on various haplotypes, it is in fact a founder mutation in the Ashkenazi population. PMID:26721323

  17. Moderate malnutrition in rats induces somatic gene mutations.

    PubMed

    Pacheco-Martínez, M Monserrat; Cortés-Barberena, Edith; Cervantes-Ríos, Elsa; Del Carmen García-Rodríguez, María; Rodríguez-Cruz, Leonor; Ortiz-Muñiz, Rocío

    2016-07-01

    The relationship between malnutrition and genetic damage has been widely studied in human and animal models, leading to the observation that interactions between genotoxic exposure and micronutrient status appear to affect genomic stability. A new assay has been developed that uses the phosphatidylinositol glycan class A gene (Pig-a) as a reporter for measuring in vivo gene mutation. The Pig-a assay can be employed to evaluate mutant frequencies (MFs) in peripheral blood reticulocytes (RETs) and erythrocytes (RBCs) using flow cytometry. In the present study, we assessed the effects of malnutrition on mutagenic susceptibility by exposing undernourished (UN) and well-nourished (WN) rats to N-ethyl-N-nitrosourea (ENU) and measuring Pig-a MFs. Two week-old UN and WN male Han-Wistar rats were treated daily with 0, 20, or 40mg/kg ENU for 3 consecutive days. Blood was collected from the tail vein one day before ENU treatment (Day-1) and after ENU administration on Days 7, 14, 21, 28, 35, 42, 49, 56 and 63. Pig-a MFs were measured in RETs and RBCs as the RET(CD59-) and RBC(CD59-) frequencies. In the vehicle control groups, the frequencies of mutant RETs and RBCs were significantly higher in UN rats compared with WN rats at all sampling times. The ENU treatments increased RET and RBC MFs starting at Day 7. Although ENU-induced Pig-a MFs were consistently lower in UN rats than in WN rats, these differences were not significant. To understand these responses, further studies should use other mutagens and nucleated surrogate cells and examine the types of mutations induced in UN and WN rats. PMID:26994962

  18. A novel large deletion mutation of FERMT1 gene in a Chinese patient with Kindler syndrome

    PubMed Central

    GAO, Ying; BAI, Jin-li; LIU, Xiao-yan; QU, Yu-jin; CAO, Yan-yan; WANG, Jian-cai; JIN, Yu-wei; WANG, Hong; SONG, Fang

    2015-01-01

    Kindler syndrome (KS; OMIM 173650) is a rare autosomal recessive skin disorder, which results in symptoms including blistering, epidermal atrophy, increased risk of cancer, and poor wound healing. The majority of mutations of the disease-determining gene (FERMT1 gene) are single nucleotide substitutions, including missense mutations, nonsense mutations, etc. Large deletion mutations are seldom reported. To determine the mutation in the FERMT1 gene associated with a 7-year-old Chinese patient who presented clinical manifestation of KS, we performed direct sequencing of all the exons of FERMT1 gene. For the exons 2–6 without amplicons, we analyzed the copy numbers using quantitative real-time polymerase chain reaction (qRT-PCR) with specific primers. The deletion breakpoints were sublocalized and the range of deletion was confirmed by PCR and direct sequencing. In this study, we identified a new 17-kb deletion mutation spanning the introns 1–6 of FERMT1 gene in a Chinese patient with severe KS phenotypes. Her parents were carriers of the same mutation. Our study reported a newly identified large deletion mutation of FERMT1 gene involved in KS, which further enriched the mutation spectrum of the FERMT1 gene. PMID:26537214

  19. Mutation analysis of the entire PKD1 gene: genetic and diagnostic implications.

    PubMed

    Rossetti, S; Strmecki, L; Gamble, V; Burton, S; Sneddon, V; Peral, B; Roy, S; Bakkaloglu, A; Komel, R; Winearls, C G; Harris, P C

    2001-01-01

    Mutation screening of the major autosomal dominant polycystic kidney disease (ADPKD) locus, PKD1, has proved difficult because of the large transcript and complex reiterated gene region. We have developed methods, employing long polymerase chain reaction (PCR) and specific reverse transcription-PCR, to amplify all of the PKD1 coding area. The gene was screened for mutations in 131 unrelated patients with ADPKD, using the protein-truncation test and direct sequencing. Mutations were identified in 57 families, and, including 24 previously characterized changes from this cohort, a detection rate of 52.3% was achieved in 155 families. Mutations were found in all areas of the gene, from exons 1 to 46, with no clear hotspot identified. There was no significant difference in mutation frequency between the single-copy and duplicated areas, but mutations were more than twice as frequent in the 3' half of the gene, compared with the 5' half. The majority of changes were predicted to truncate the protein through nonsense mutations (32%), insertions or deletions (29.6%), or splicing changes (6.2%), although the figures were biased by the methods employed, and, in sequenced areas, approximately 50% of all mutations were missense or in-frame. Studies elsewhere have suggested that gene conversion may be a significant cause of mutation at PKD1, but only 3 of 69 different mutations matched PKD1-like HG sequence. A relatively high rate of new PKD1 mutation was calculated, 1.8x10-5 mutations per generation, consistent with the many different mutations identified (69 in 81 pedigrees) and suggesting significant selection against mutant alleles. The mutation detection rate, in this study, of >50% is comparable to that achieved for other large multiexon genes and shows the feasibility of genetic diagnosis in this disorder. PMID:11115377

  20. Muscle imaging in muscle dystrophies produced by mutations in the EMD and LMNA genes.

    PubMed

    Díaz-Manera, Jordi; Alejaldre, Aida; González, Laura; Olivé, Montse; Gómez-Andrés, David; Muelas, Nuria; Vílchez, Juan José; Llauger, Jaume; Carbonell, Pilar; Márquez-Infante, Celedonio; Fernández-Torrón, Roberto; Poza, Juan José; López de Munáin, Adolfo; González-Quereda, Lidia; Mirabet, Sonia; Clarimon, Jordi; Gallano, Pía; Rojas-García, Ricard; Gallardo, Eduard; Illa, Isabel

    2016-01-01

    Identifying the mutated gene that produces a particular muscle dystrophy is difficult because different genotypes may share a phenotype and vice versa. Muscle MRI is a useful tool to recognize patterns of muscle involvement in patients with muscle dystrophies and to guide the diagnosis process. The radiologic pattern of muscle involvement in patients with mutations in the EMD and LMNA genes has not been completely established. Our objective is to describe the pattern of muscle fatty infiltration in patients with mutations in the EMD and in the LMNA genes and to search for differences between the two genotypes that could be helpful to guide the genetic tests. We conducted a national multicenter study in 42 patients, 10 with mutations in the EMD gene and 32 with mutations in the LMNA gene. MRI or CT was used to study the muscles from trunk to legs. Patients had a similar pattern of fatty infiltration regardless of whether they had the mutation in the EMD or LMNA gene. The main muscles involved were the paravertebral, glutei, quadriceps, biceps, semitendinosus, semimembranosus, adductor major, soleus, and gastrocnemius. Involvement of peroneus muscle, which was more frequently affected in patients with mutations in the EMD gene, was useful to differentiate between the two genotypes. Muscle MRI/CT identifies a similar pattern of muscle fatty infiltration in patients with mutations in the EMD or the LMNA genes. The involvement of peroneus muscles could be useful to conduct genetic analysis in patients with an EDMD phenotype. PMID:26573435

  1. [Parkinson's disease associated with a mutation in the PARK2 gene].

    PubMed

    Kaasinen, Valtteri; Hietala, Marja; Kuoppamäki, Mikko

    2015-01-01

    The most common cause of monogenic hereditary Parkinson's disease is a mutation in the PARK2 gene. Early onset, slow progression, dystonia, and good response to levodopa are typical of the disease phenotype. Finnish PARK2 patients have not been described previously. We describe two patients, in whom pathogenic mutations in the PARK2 gene were the cause of parkinsonism. PMID:26245049

  2. Germ-line mutations of the APC gene in 53 familial adenomatous polyposis patients.

    PubMed Central

    Miyoshi, Y; Ando, H; Nagase, H; Nishisho, I; Horii, A; Miki, Y; Mori, T; Utsunomiya, J; Baba, S; Petersen, G

    1992-01-01

    We searched for germ-line mutations of the APC gene in 79 unrelated patients with familial adenomatous polyposis using a ribonuclease protection analysis coupled with polymerase chain reaction amplifications of genomic DNA. Mutations were found in 53 patients (67%); 28 of the mutations were small deletions and 2 were 1- to 2-base-pair insertions; 19 were point mutations resulting in stop codons and only 4 were missense point mutations. Thus, 92% of the mutations were predicted to result in truncations of the APC protein. More than two-thirds (68%) of the mutations were clustered in the 5' half of the last exon, and nearly two-fifths of the total mutations occurred at one of five positions. This information has significant implications for understanding the role of APC mutation in inherited forms of colorectal neoplasia and for designing effective methods for genetic counseling and presymptomatic diagnosis. Images PMID:1316610

  3. Mutational screening of the USH2A gene in Spanish USH patients reveals 23 novel pathogenic mutations

    PubMed Central

    2011-01-01

    Background Usher Syndrome type II (USH2) is an autosomal recessive disorder, characterized by moderate to severe hearing impairment and retinitis pigmentosa (RP). Among the three genes implicated, mutations in the USH2A gene account for 74-90% of the USH2 cases. Methods To identify the genetic cause of the disease and determine the frequency of USH2A mutations in a cohort of 88 unrelated USH Spanish patients, we carried out a mutation screening of the 72 coding exons of this gene by direct sequencing. Moreover, we performed functional minigene studies for those changes that were predicted to affect splicing. Results As a result, a total of 144 DNA sequence variants were identified. Based upon previous studies, allele frequencies, segregation analysis, bioinformatics' predictions and in vitro experiments, 37 variants (23 of them novel) were classified as pathogenic mutations. Conclusions This report provide a wide spectrum of USH2A mutations and clinical features, including atypical Usher syndrome phenotypes resembling Usher syndrome type I. Considering only the patients clearly diagnosed with Usher syndrome type II, and results obtained in this and previous studies, we can state that mutations in USH2A are responsible for 76.1% of USH2 disease in patients of Spanish origin. PMID:22004887

  4. mutation3D: Cancer Gene Prediction Through Atomic Clustering of Coding Variants in the Structural Proteome.

    PubMed

    Meyer, Michael J; Lapcevic, Ryan; Romero, Alfonso E; Yoon, Mark; Das, Jishnu; Beltrán, Juan Felipe; Mort, Matthew; Stenson, Peter D; Cooper, David N; Paccanaro, Alberto; Yu, Haiyuan

    2016-05-01

    A new algorithm and Web server, mutation3D (http://mutation3d.org), proposes driver genes in cancer by identifying clusters of amino acid substitutions within tertiary protein structures. We demonstrate the feasibility of using a 3D clustering approach to implicate proteins in cancer based on explorations of single proteins using the mutation3D Web interface. On a large scale, we show that clustering with mutation3D is able to separate functional from nonfunctional mutations by analyzing a combination of 8,869 known inherited disease mutations and 2,004 SNPs overlaid together upon the same sets of crystal structures and homology models. Further, we present a systematic analysis of whole-genome and whole-exome cancer datasets to demonstrate that mutation3D identifies many known cancer genes as well as previously underexplored target genes. The mutation3D Web interface allows users to analyze their own mutation data in a variety of popular formats and provides seamless access to explore mutation clusters derived from over 975,000 somatic mutations reported by 6,811 cancer sequencing studies. The mutation3D Web interface is freely available with all major browsers supported. PMID:26841357

  5. Novel autosomal recessive gene mutations in aquaporin-2 in two Chinese congenital nephrogenic diabetes insipidus pedigrees

    PubMed Central

    Cen, Jing; Nie, Min; Duan, Lian; Gu, Feng

    2015-01-01

    Recent evidence has linked novel mutations in the arginine vasopressin receptor 2 gene (AVPR2) and aquaporin-2 gene (AQP2) present in Southeast Asian populations to congenital nephrogenic diabetes insipidus (NDI). To investigate mutations in 2 distinct Chinese pedigrees with NDI patients, clinical data, laboratory findings, and genomic DNA sequences from peripheral blood leukocytes were analyzed in two 5.5- and 8-year-old boys (proband 1 and 2, respectively) and their first-degree relatives. Water intake, urinary volume, body weight and medication use were recorded. Mutations in coding regions and intron-exon borders of both AQP2 and AVPR2 gene were sequenced. Three mutations in AQP2 were detected, including previously reported heterozygous frameshift mutation (c.127_128delCA, p.Gln43Aspfs ×63) inherited from the mother, a novel frameshift mutation (c.501_502insC, p.Val168Argfs ×30, inherited from the father) in proband 1 and a novel missense mutation (c. 643G>A, p. G215S), inherited from both parents in proband 2. In family 2 both parents and one sister were heterozygous carriers of the novel missense mutation. Neither pedigree exhibited mutation in the AVPR2 gene. The patient with truncated AQP2 may present with much more severe NDI manifestations. Identification of these novel AQP2 gene mutations expands the AQP2 genotypic spectrum and may contribute to etiological diagnosis and genetic counseling. PMID:26064258

  6. Extensive Variation in the Mutation Rate Between and Within Human Genes Associated with Mendelian Disease.

    PubMed

    Smith, Thomas; Ho, Gladys; Christodoulou, John; Price, Elizabeth Ann; Onadim, Zerrin; Gauthier-Villars, Marion; Dehainault, Catherine; Houdayer, Claude; Parfait, Beatrice; van Minkelen, Rick; Lohman, Dietmar; Eyre-Walker, Adam

    2016-05-01

    We have investigated whether the mutation rate varies between genes and sites using de novo mutations (DNMs) from three genes associated with Mendelian diseases (RB1, NF1, and MECP2). We show that the relative frequency of mutations at CpG dinucleotides relative to non-CpG sites varies between genes and relative to the genomic average. In particular we show that the rate of transition mutation at CpG sites relative to the rate of non-CpG transversion is substantially higher in our disease genes than amongst DNMs in general; the rate of CpG transition can be several hundred-fold greater than the rate of non-CpG transversion. We also show that the mutation rate varies significantly between sites of a particular mutational type, such as non-CpG transversion, within a gene. We estimate that for all categories of sites, except CpG transitions, there is at least a 30-fold difference in the mutation rate between the 10% of sites with the highest and lowest mutation rates. However, our best estimate is that the mutation rate varies by several hundred-fold variation. We suggest that the presence of hypermutable sites may be one reason certain genes are associated with disease. PMID:26857394

  7. [Frontotemporal dementia (FTD) and genetic mutations including progranulin gene].

    PubMed

    Arai, Tetsuaki; Hasegawa, Masato; Nishihara, Masugi; Nonaka, Takashi; Kametani, Fuyuki; Yoshida, Mari; Hashizume, Yoshio; Beach, Thomas G; Morita, Mitsuya; Nakano, Imaharu; Oda, Tatsuro; Tsuchiya, Kuniaki; Akiyama, Haruhiko

    2008-11-01

    Research on familial frontotemporal lobar degeneration (FTLD) has led to the discovery of disease-causing genes: microtubule-associated protein tau (MAPT), progranulin (PGRN) and valosin-containing protein (VCP). TAR DNA-binding protein of 43 kDa (TDP-43) has been identified as a major component of tau-negative ubiquitin-positive inclusions in familial and sporadic FTLD and amyotrophic lateral sclerosis (ALS), which are now referred to as TDP-43 proteinopathy. Recent findings of mutations in TDP-43 gene in familial and sporadic ALS cases confirm the pathogenetic role for TDP-43 in neurodegeneration. TDP-43 proteinopathies have been classified into 4 pathological subtypes. Type 1 is characterized by numerous dystrophic neurites (DNs), Type 2 has numerous neuronal cytoplasmic inclusions (NCIs), Type 3 has NCIs and DNs and Type 4 has neuronal intranuclear inclusions (NIIs) and DNs. There is a close relationship between such pathological subtypes of TDP-43 proteinopathy and the immunoblot pattern of C-terminal fragments of accumulated TDP-43. These results parallel our earlier findings of differing C-terminal tau fragments in progressive supranuclear palsy and corticobasal degeneration, despite identical composition of tau isoforms. Taken together, these results suggest that elucidating the mechanism of C-terminal fragment origination may shed light on the pathogenesis of several neurodegenerative disorders involving TDP-43 proteinopathy and tauopathy. PMID:19198141

  8. UNSTABLE MUTATIONS IN THE FMR1 GENE AND THE PHENOTYPES

    PubMed Central

    Loesch, Danuta; Hagerman, Randi

    2014-01-01

    Fragile X syndrome (FXS), a severe neurodevelopmental anomaly, and one of the earliest disorders linked to an unstable (‘dynamic’) mutation, is caused by the large (>200) CGG repeat expansions in the noncoding portion of the FMR1 (Fragile X Mental Retardation-1) gene. These expansions, termed full mutations, normally silence this gene's promoter through methylation, leading to a gross deficit of the Fragile X Mental Retardation Protein (FMRP) that is essential for normal brain development. Rare individuals with the expansion but with an unmethylated promoter (and thus, FMRP production), present a much less severe form of FXS. However, a unique feature of the relationship between the different sizes of CGG expanded tract and phenotypic changes is that smaller expansions (<200) generate a series of different clinical manifestations and/or neuropsychological changes. The major part of this chapter is devoted to those FMR1 alleles with small (55-200) CGG expansions, termed ‘premutations’, which have the potential for generating the full mutation alleles on mother-offspring transmission, on the one hand, and are associated with some phenotypic changes, on the other. Thus, the role of several factors known to determine the rate of CGG expansion in the premutation alleles is discussed first. Then, an account of various neurodevelopmental, congnitive, behavioural and physical changes reported in carriers of these small expansions is given, and possible association of these conditions with a toxicity of the elevated FMR1 gene's transcript (mRNA) is discussed. The next two sections are devoted to major and well defined clinical conditions associated with the premutation alleles. The first one is the late onset neurodegenerative disorder termed fragile X-associated tremor ataxia syndrome (FXTAS). The wide range of clinical and neuropsychological manifestations of this syndrome, and their relevance to elevated levels of the FMR1 mRNA, are described. Another distinct

  9. Association of PAX2 and Other Gene Mutations with the Clinical Manifestations of Renal Coloboma Syndrome

    PubMed Central

    Higashide, Tomomi; Sakurai, Mayumi; Hashimoto, Shin-ichi; Shinozaki, Yasuyuki; Hara, Akinori; Iwata, Yasunori; Sakai, Norihiko; Sugiyama, Kazuhisa; Kaneko, Shuichi; Wada, Takashi

    2015-01-01

    Background Renal coloboma syndrome (RCS) is characterized by renal anomalies and optic nerve colobomas. PAX2 mutations contribute to RCS. However, approximately half of the patients with RCS have no mutation in PAX2 gene. Methods To investigate the incidence and effects of mutations of PAX2 and 25 candidate genes, patient genes were screened using next-generation sequence analysis, and candidate mutations were confirmed using Sanger sequencing. The correlation between mutations and clinical manifestation was evaluated. Result Thirty patients, including 26 patients (two families of five and two, 19 sporadic cases) with RCS, and 4 optic nerve coloboma only control cases were evaluated in the present study. Six PAX2 mutations in 21 probands [28%; two in family cohorts (n = 5 and n = 2) and in 4 out of 19 patients with sporadic disease] including four novel mutations were confirmed using Sanger sequencing. Moreover, four other sequence variants (CHD7, SALL4, KIF26B, and SIX4) were also confirmed, including a potentially pathogenic novel KIF26B mutation. Kidney function and proteinuria were more severe in patients with PAX2 mutations than in those without the mutation. Moreover, the coloboma score was significantly higher in patients with PAX2 gene mutations. Three out of five patients with PAX2 mutations had focal segmental glomerulosclerosis (FSGS) diagnosed from kidney biopsies. Conclusion The results of this study identify several new mutations of PAX2, and sequence variants in four additional genes, including a novel potentially pathogenic mutation in KIF26B, which may play a role in the pathogenesis of RCS. PMID:26571382

  10. Identification of a novel mutation in the presenilin 1 gene in a Chinese Alzheimer's disease family.

    PubMed

    Deng, Bo; Lian, Yan; Wang, Xin; Zeng, Fan; Jiao, Bin; Wang, Ye-Ran; Liang, Chun-Rong; Liu, Yu-Hui; Bu, Xian-Le; Yao, Xiu-Qing; Zhu, Chi; Shen, Lu; Zhou, Hua-Dong; Zhang, Tao; Wang, Yan-Jiang

    2014-10-01

    This study has identified a gene mutation in a Chinese family with Alzheimer's disease (AD). Family members were screened by a set of medical examinations and neuropsychological tests. Their DNA was extracted from blood cells and sequenced for gene mutation in the amyloid precursor protein (APP), the presenilin 1 (PS1) and the presenilin 2 (PS2) genes. Genetic analysis showed that the AD patients in the family harbored a T to G missense mutation at the position 314 in exon 4 of the PS1 gene, resulting in a change of F105C in amino acid sequence. Clinical manifestation of these patients included memory loss, counting difficulty, personality change, disorientation, dyscalculia, agnosia, aphasia, and apraxia, which was similar to that of the familial AD (FAD) patients harboring other PS1 mutations. We intend to add a novel mutation F105C of the PS1 gene to the pool of FAD mutations. With the current available genetic data, mutations of the PS1 gene account for the majority of gene mutations in Chinese FAD. PMID:24737487

  11. Lysosomal Dysfunctions Associated with Mutations at Mouse Pigment Genes

    PubMed Central

    Novak, Edward K.; Swank, Richard T.

    1979-01-01

    Melanosomes and lysosomes share several structural and biosynthetic properties. Therefore, a large number of mouse pigment mutants were tested to determine whether genes affecting melanosome structure or function might also affect the lysosome. Among 31 mouse pigment mutants, six had 1.5- to 2.5- fold increased concentrations of kidney β-glucuronidase. Three mutants, pale ear, pearl and pallid, had a generalized effect on lysosomal enzymes since there were coordinate increases in kidney β-galactosidase and α-mannosidase. The effects of these three mutations are lysosome specific since rates of kidney protein synthesis and activities of three nonlysosomal kidney enzymes were normal. Also, the mutants are relatively tissue specific in that all had normal liver lysomal enzyme concentrations.—A common dysfunction in all three mutants was a lowered rate of lysosomal enzyme secretion from kidney into urine. While normal C57BL/6J mice daily secreted 27 to 30% of total kidney β-glucuronidase and β-galactosidase, secretion of these two enzymes was coordinately depressed to 1 to 2%, 8 to 9% and 4 to 5% of total kidney enzyme in the pale-ear, pearl and pallid mutants, respectively. Although depressed lysosomal enzyme secretion is the major pigment mutant alteration, the higher lysomal enzyme concentrations in pearl and pallid may be partly due to an increase in lysosomal enzyme synthesis. In these mutants kidney glucuronidase synthetic rate was increased 1.4- to 1.5-fold.—These results suggest that there are several critical genes in mammals that control the biogenesis, processing and/or function of related classes of subcellular organelles. The mechanism of action of these genes is amenable to further analysis since they have been incorporated into congenic inbred strains of mice. PMID:115747

  12. A novel nonsense mutation in the WFS1 gene causes the Wolfram syndrome.

    PubMed

    Noorian, Shahab; Savad, Shahram; Mohammadi, Davood Shah

    2016-05-01

    Wolfram syndrome is a rare autosomal recessive neurodegenerative disorder, which is mostly caused by mutations in the WFS1 gene. The WFS1 gene product, which is called wolframin, is thought to regulate the function of endoplasmic reticulum. The endoplasmic reticulum has a critical role in protein folding and material transportation within the cell or to the surface of the cell. Identification of new mutations in WFS1 gene will unravel the molecular pathology of WS. The aim of this case report study is to describe a novel mutation in exon 4 of the WFS1 gene (c.330C>A) in a 9-year-old boy with WS. PMID:26943604

  13. Spliceosomal gene mutations in myelodysplasia: molecular links to clonal abnormalities of hematopoiesis

    PubMed Central

    Inoue, Daichi; Bradley, Robert K.; Abdel-Wahab, Omar

    2016-01-01

    Genomic analyses of the myeloid malignancies and clonal disorders of hematopoiesis that may give rise to these disorders have identified that mutations in genes encoding core spliceosomal proteins and accessory regulatory splicing factors are among the most common targets of somatic mutations. These spliceosomal mutations often occur in a mutually exclusive manner with one another and, in aggregate, account for the most frequent class of mutations in patients with myelodysplastic syndromes (MDSs) in particular. Although substantial progress has been made in understanding the effects of several of these mutations on splicing and splice site recognition, functional connections linking the mechanistic changes in splicing induced by these mutations to the phenotypic consequences of clonal and aberrant hematopoiesis are not yet well defined. This review describes our current understanding of the mechanistic and biological effects of spliceosomal gene mutations in MDSs as well as the regulation of splicing throughout normal hematopoiesis. PMID:27151974

  14. Chronic inflammatory state in sickle cell anemia patients is associated with HBB(*)S haplotype.

    PubMed

    Bandeira, Izabel C J; Rocha, Lillianne B S; Barbosa, Maritza C; Elias, Darcielle B D; Querioz, José A N; Freitas, Max Vitor Carioca; Gonçalves, Romélia P

    2014-02-01

    The chronic inflammatory state in sickle cell anemia (SCA) is associated with several factors such as the following: endothelial damage; increased production of reactive oxygen species; hemolysis; increased expression of adhesion molecules by leukocytes, erythrocytes, and platelets; and increased production of proinflammatory cytokines. Genetic characteristics affecting the clinical severity of SCA include variations in the hemoglobin F (HbF) level, coexistence of alpha-thalassemia, and the haplotype associated with the HbS gene. The different haplotypes of SCA are Bantu, Benin, Senegal, Cameroon, and Arab-Indian. These haplotypes are associated with ethnic groups and also based on the geographical origin. Studies have shown that the Bantu haplotype is associated with higher incidence of clinical complications than the other haplotypes and is therefore considered to have the worst prognosis. This study aimed to evaluate the profile of the proinflammatory cytokines interleukin-6, tumor necrosis factor-α, and interleukin-17 in patients with SCA and also to assess the haplotypes associated with beta globin cluster S (HBB(*)S). We analyzed a total of 62 patients who had SCA and had been treated with hydroxyurea; they had received a dose ranging between 15 and 25 (20.0±0.6)mg/kg/day for 6-60 (18±3.4)months; their data were compared with those for 30 normal individuals. The presence of HbS was detected and the haplotypes of the beta S gene cluster were analyzed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Our study demonstrated that SCA patients have increased inflammatory profile when compared to the healthy individuals. Further, analysis of the association between the haplotypes and inflammatory profile showed that the levels of IL-6 and TNF-α were greater in subjects with the Bantu/Bantu haplotype than in subjects with the Benin/Benin haplotype. The Bantu/Benin haplotype individuals had lower levels of cytokines than those with

  15. K-ras gene mutation in gall bladder carcinomas and dysplasia.

    PubMed Central

    Ajiki, T; Fujimori, T; Onoyama, H; Yamamoto, M; Kitazawa, S; Maeda, S; Saitoh, Y

    1996-01-01

    Epithelial dysplasia of gall bladder is an important precancerous lesion of gall bladder carcinogenesis. To investigate the frequency of K-ras gene mutation in gall bladder carcinoma and dysplasia, K-ras codon 12 mutations were investigated by the polymerase chain reaction/restriction enzyme based method following direct sequencing. Mutation was detected in 59% (30 of 51) of gall bladder carcinomas, in 73% (8 of 11) of gall bladder dysplasia in gall stone cases, and in 0% of the normal gall bladder epithelium. There was, however, no correlation between K-ras mutation and clinicopathological factors of gall bladder carcinoma. K-ras gene mutation occurs even in gall bladder dysplasia at an incidence similar to that in carcinomas, suggesting that testing for K-ras gene mutation may prove useful as an adjunct to bile cytological or biopsy analysis. Images Figure 1 Figure 2 Figure 3 PMID:8675098

  16. Novel mutations in the RB1 gene from Chinese families with a history of retinoblastoma.

    PubMed

    Zhang, Leilei; Jia, Renbing; Zhao, Junyang; Fan, Jiayan; Zhou, YiXiong; Han, Bing; Song, Xin; Wu, Li; Zhang, He; Song, Huaidong; Ge, Shengfang; Fan, Xianqun

    2015-04-01

    Retinoblastoma is an aggressive eye cancer that develops during infancy and is divided into two clinical types, sporadic and heritable. RB1 has been identified as the only pathological gene responsible for heritable retinoblastoma. Here, we identified 11 RB1 germline mutations in the Han pedigrees of 17 bilateral retinoblastoma patients from China. Four mutations were nonsense mutations, five were splice site mutations, and two resulted in a frame shift due to an insertion or a deletion. Three of the mutations had not been previously reported, and the p.Q344L mutation occurred in two generations of retinoblastoma patients. We investigated phenotypic-genotypic relationships for the novel mutations and showed that these mutations affected the expression, location, and function of the retinoblastoma protein. Abnormal protein localization was observed after transfection of the mutant genes. In addition, changes in the cell cycle distribution and apoptosis rates were observed when the Saos-2 cell line was transfected with plasmids encoding the mutant RB1 genes. Our findings expand the spectrum of known RB1 mutations and will benefit the investigation of RB1 mutation hotspots. Genetic counseling can be offered to families with heritable RB1 mutations. PMID:25424699

  17. Mutations in the diastrophic dysplasia sulfate transporter (DTDST) gene (SLC26A2): 22 novel mutations, mutation review, associated skeletal phenotypes, and diagnostic relevance.

    PubMed

    Rossi, A; Superti-Furga, A

    2001-03-01

    Mutations in the DTDST gene can result in a family of skeletal dysplasia conditions which comprise two lethal disorders, achondrogenesis type 1B (ACG1B) and atelosteogenesis type 2 (AO2); and two non-lethal disorders, diastrophic dysplasia (DTD) and recessive multiple epiphyseal dysplasia (rMED). The gene product is a sulfate-chloride exchanger of the cell membrane. Inactivation of the sulfate exchanger leads to intracellular sulfate depletion and to the synthesis of undersulfated proteoglycans in susceptible cells such as chondrocytes and fibroblasts. Genotype-phenotype correlations are recognizable, with mutations predicting a truncated protein or a non-conservative amino acid substitution in a transmembrane domain giving the severe phenotypes, and non-transmembrane amino acid substitutions and splice site mutations giving the milder phenotypes. The clinical phenotype is modulated strictly by the degree of residual activity. Over 30 mutations have been observed, including 22 novel mutations reported here. The most frequent mutation, 862C>T (R279W), is a mild mutation giving the rMED phenotype when homozygous and mostly DTD when compounded; occurrence at a CpG dinucleotide and its panethnic distribution suggest independent recurrence. Mutation IVS1+2T>C is the second most common mutation, but is very frequent in Finland. It produces low levels of correctly spliced mRNA, and results in DTD when homozygous. Two other mutations, 1045-1047delGTT (V340del) and 558C>T (R178X), are associated with severe phenotypes and have been observed in multiple patients. Most other mutations are rare. Heterozygotes are clinically unaffected. When clinical samples are screened for radiologic and histologic features compatible with the ACG1B/AO2/DTD/rMED spectrum prior to analysis, the mutation detection rate is high (over 90% of alleles), and appropriate genetic counseling can be given. The sulfate uptake or sulfate incorporation assays in cultured fibroblasts have largely been

  18. Relationship between periodontal destruction and gene mutations in patients with familial Mediterranean fever.

    PubMed

    Sezer, Ufuk; Şenyurt, Süleyman Ziya; Özdemir, Eda Çetin; Zengin, Orhan; Üstün, Kemal; Erciyas, Kamile; Kısacık, Bünyamin; Onat, Ahmet Mesut

    2016-07-01

    Recent studies have shown that genetic factors involved in the host responses might determine the disease severity for both familial Mediterranean fever (FMF) and periodontitis. The present study aimed to investigate the relationship of FMF with periodontitis and to search for the potential association between periodontitis and MEFV gene missense variations in patients with FMF. The study consisted of 97 FMF patients and 34 healthy volunteers. FMF patients were classified according to the kind of MEFV gene mutation: (1) patients with homozygous M694V gene mutation, (2) patients with heterozygous M694V gene mutation, and (3) patients with MEFV gene different mutations. Gingival Index (GI), Plaque Index (PI), probing pocket depth (PD), and clinical attachment level (CAL) were measured in all participants. The results of multivariate logistic regression showed a highly significant association between homozygous M694V gene mutation and periodontitis in FMF patients (p < 0.05). After adjusting for potential confounders (smoking, body weight, age, and gender), FMF patients with homozygous M694V gene mutation were 3.51 (1.08-11.45) times more likely to present periodontitis than the other FMF patients. These results indicate that the presence of homozygous M694V gene mutation seems to increase the risk for periodontitis in FMF patients. PMID:26400644

  19. Compound EGFR mutation is frequently detected with co-mutations of actionable genes and associated with poor clinical outcome in lung adenocarcinoma

    PubMed Central

    Kim, Eun Young; Cho, Eun Na; Park, Heae Surng; Hong, Ji Young; Lim, Seri; Youn, Jong Pil; Hwang, Seung Yong; Chang, Yoon Soo

    2016-01-01

    Compound EGFR mutations, defined as double or multiple mutations in the EGFR tyrosine kinase domain, are frequently detected with advances in sequencing technology but its clinical significance is unclear. This study analyzed 61 cases of EGFR mutation positive lung adenocarcinoma using next-generation sequencing (NGS) based repeated deep sequencing panel of 16 genes that contain actionable mutations and investigated clinical implication of compound EGFR mutations. Compound EGFR mutation was detected in 15 (24.6%) of 61 cases of EGFR mutation-positive lung adenocarcinoma. The majority (12/15) of compound mutations are combination of the atypical mutation and typical mutations such as exon19 deletion, L858R or G719X substitutions, or exon 20 insertion whereas 3 were combinations of rare atypical mutations. The patients with compound mutation showed shorter overall survival than those with simple mutations (83.7 vs. 72.8 mo; P = 0.020, Breslow test). Among the 115 missense mutations discovered in the tested genes, a few number of actionable mutations were detected irrelevant to the subtype of EGFR mutations, including ALK rearrangement, BCL2L11 intron 2 deletion, KRAS c.35G>A, PIK3CA c.1633G>A which are possible target of crizotinib, BH3 mimetics, MEK inhibitors, and PI3K-tyrosine kinase inhibitors, respectively. 31 missense mutations were detected in the cases with simple mutations whereas 84 in those with compound mutation, showing that the cases with compound missense mutation have higher burden of missense mutations (P = 0.001, independent sample t-test). Compound EGFR mutations are detected at a high frequency using NGS-based repeated deep sequencing. Because patients with compound EGFR mutations showed poor clinical outcomes, they should be closely monitored during follow-up. PMID:26785607

  20. Splicing mutation of a gene within the Duchenne muscular dystrophy family.

    PubMed

    Zhu, Y B; Gan, J H; Luo, J W; Zheng, X Y; Wei, S C; Hu, D

    2016-01-01

    The aim of this study was to identify the mutation site and phenotype of the Duchenne muscular dystrophy (DMD) gene in a DMD family. The DMD gene is by far the largest known gene in humans. Up to 34% of the point mutations reported to date affect splice sites of the DMD gene. However, no hotspot mutation has been reported. Capture sequencing of second-generation exons was used to investigate the DMD gene in a proband. Sanger sequencing was performed for mutation scanning in eight family members. Scale-invariant feature transform and PolyPhen were applied to predict the functional impact of protein mutations. A hemizygous splicing mutation IVS44ds +1G-A (c.6438 +1G>A) that induces abnormal splicing variants during late transcription and produces abnormal proteins was located in intron 44. Four missense mutations (p.Arg2937Gln, p.Asp882Gly, p.Lys2366Gln, and p.Arg1745His) that are known multiple-polymorphic sites were found in the coding region of the DMD gene. A heterozygous c.6438+1G>A mutation was detected on the X chromosome of the proband's mother and maternal grandmother. PMID:27421007

  1. Gene Mutation Analysis in 253 Chinese Children with Unexplained Epilepsy and Intellectual/Developmental Disabilities

    PubMed Central

    Gao, Yang; Liu, Xiaoyan; Gao, Kai; Xie, Han; Wu, Ye; Zhang, Yuehua; Wang, Jingmin; Gao, Feng; Wu, Xiru; Jiang, Yuwu

    2015-01-01

    Objective Epilepsy and intellectual/developmental disabilities (ID/DD) have a high rate of co-occurrence. Here, we investigated gene mutations in Chinese children with unexplained epilepsy and ID/DD. Methods We used targeted next-generation sequencing to detect mutations within 300 genes related to epilepsy and ID/DD in 253 Chinese children with unexplained epilepsy and ID/DD. A series of filtering criteria was used to find the possible pathogenic variations. Validation and parental origin analyses were performed by Sanger sequencing. We reviewed the phenotypes of patients with each mutated gene. Results We identified 32 novel and 16 reported mutations within 24 genes in 46 patients. The detection rate was 18% (46/253) in the whole group and 26% (17/65) in the early-onset (before three months after birth) epilepsy group. To our knowledge, we are the first to report KCNAB1 is a disease-causing gene of epilepsy by identifying a novel de novo mutation (c.1062dupCA p.Leu355HisfsTer5) within this gene in one patient with early infantile epileptic encephalopathy (EIEE). Patients with an SCN1A mutation accounted for the largest proportion, 17% (8/46). A total of 38% (9/24) of the mutated genes re-occurred at least 2 times and 63% (15/24) occurred only one time. Ion channel genes are the most common (8/24) and genes related to synapse are the next most common to occur (5/24). Significance We have established genetic diagnosis for 46 patients of our cohort. Early-onset epilepsy had the highest detection rate. KCNAB1 mutation was first identified in EIEE patient. We expanded the phenotype and mutation spectrum of the genes we identified. The mutated genes in this cohort are mostly isolated. This suggests that epilepsy and ID/DD phenotypes occur as a consequence of brain dysfunction caused by a highly diverse population of mutated genes. Ion channel genes and genes related to synapse were more common mutated in this patient cohort. PMID:26544041

  2. Analysis of catechol-O-methyltransferase gene mutation and identification of new pathogenic gene for paroxysmal kinesigenic dyskinesia.

    PubMed

    Gu, Chengzhi; Li, Jia; Zhu, Lianhai; Lu, Zhenhui; Huang, Huaiyu

    2016-03-01

    We aimed to analyze the mutation site and frequency of catechol-O-methyltransferase (COMT) gene, to explore the relationship between COMT genotype and phenotype, and to find new pathogenic genes for paroxysmal kinesigenic dyskinesia (PKD). PKD patients who were treated from December 2011 to January 2014 were selected and subjected to genetic testing in the exon region of COMT. Two patients and one intrafamilial healthy control were subjected to exome sequencing using whole exome capture in combination with high-throughput sequencing to find candidate pathogenic gene sites. The results were verified by Sanger sequencing. A total of 11 familial PKD patients from 4 families and 9 sporadic patients without family history were included. Pathogenic c.634dupC(p.P220fsX7) mutation of COMT gene was found in 7 familial PKD patients and3 sporadic patients. Mutated COMT gene carriers suffered from PKD earlier (average age of onset: 11.61 ± 2.33 vs 16.21 ± 2.58, P = 0.001) with symmetric symptoms in most cases, while the mutation-negative group only showed unilateral symptoms (P = 0.001). The mutation-positive group also had more daily attacks (P = 0.038). Carbamazepine worked for all mutation-positive patients (10/10, 100%), but only for a part of mutation-negative patients (3/10, 30.0%). About 90000 single nucleotide polymorphisms and 2000 insertion-deletion polymorphisms were detected in each of the three samples. c.737C → T(p.T246 M) mutation of POC1B gene was a new pathogenic site for a selected family. COMT gene mutation, which was the pathogenesis of most familial PKD patients and a part of sporadic patients, predicted the response to carbamazepine. POC1B may be a novel pathogenic gene for PKD. PMID:26650803

  3. EpilepsyGene: a genetic resource for genes and mutations related to epilepsy.

    PubMed

    Ran, Xia; Li, Jinchen; Shao, Qianzhi; Chen, Huiqian; Lin, Zhongdong; Sun, Zhong Sheng; Wu, Jinyu

    2015-01-01

    Epilepsy is one of the most prevalent chronic neurological disorders, afflicting about 3.5-6.5 per 1000 children and 10.8 per 1000 elderly people. With intensive effort made during the last two decades, numerous genes and mutations have been published to be associated with the disease. An organized resource integrating and annotating the ever-increasing genetic data will be imperative to acquire a global view of the cutting-edge in epilepsy research. Herein, we developed EpilepsyGene (http://61.152.91.49/EpilepsyGene). It contains cumulative to date 499 genes and 3931 variants associated with 331 clinical phenotypes collected from 818 publications. Furthermore, in-depth data mining was performed to gain insights into the understanding of the data, including functional annotation, gene prioritization, functional analysis of prioritized genes and overlap analysis focusing on the comorbidity. An intuitive web interface to search and browse the diversified genetic data was also developed to facilitate access to the data of interest. In general, EpilepsyGene is designed to be a central genetic database to provide the research community substantial convenience to uncover the genetic basis of epilepsy. PMID:25324312

  4. EpilepsyGene: a genetic resource for genes and mutations related to epilepsy

    PubMed Central

    Ran, Xia; Li, Jinchen; Shao, Qianzhi; Chen, Huiqian; Lin, Zhongdong; Sun, Zhong Sheng; Wu, Jinyu

    2015-01-01

    Epilepsy is one of the most prevalent chronic neurological disorders, afflicting about 3.5–6.5 per 1000 children and 10.8 per 1000 elderly people. With intensive effort made during the last two decades, numerous genes and mutations have been published to be associated with the disease. An organized resource integrating and annotating the ever-increasing genetic data will be imperative to acquire a global view of the cutting-edge in epilepsy research. Herein, we developed EpilepsyGene (http://61.152.91.49/EpilepsyGene). It contains cumulative to date 499 genes and 3931 variants associated with 331 clinical phenotypes collected from 818 publications. Furthermore, in-depth data mining was performed to gain insights into the understanding of the data, including functional annotation, gene prioritization, functional analysis of prioritized genes and overlap analysis focusing on the comorbidity. An intuitive web interface to search and browse the diversified genetic data was also developed to facilitate access to the data of interest. In general, EpilepsyGene is designed to be a central genetic database to provide the research community substantial convenience to uncover the genetic basis of epilepsy. PMID:25324312

  5. Phenylalanine hydroxylase gene mutations in the United States: report from the Maternal PKU Collaborative Study.

    PubMed Central

    Guldberg, P.; Levy, H. L.; Hanley, W. B.; Koch, R.; Matalon, R.; Rouse, B. M.; Trefz, F.; de la Cruz, F.; Henriksen, K. F.; Güttler, F.

    1996-01-01

    The major cause of hyperphenylalaninemia is mutations in the gene encoding phenylalanine hydroxylase (PAH). The known mutations have been identified primarily in European patients. The purpose of this study was to determine the spectrum of mutations responsible for PAH deficiency in the United States. One hundred forty-nine patients enrolled in the Maternal PKU Collaborative Study were subjects for clinical and molecular investigations. PAH gene mutations associated with phenylketonuria (PKU) or mild hyperphenylalaninemia (MHP) were identified on 279 of 294 independent mutant chromosomes, a diagnostic efficiency of 95%. The spectrum is composed of 71 different mutations, including 47 missense mutations, 11 splice mutations, 5 nonsense mutations, and 8 microdeletions. Sixteen previously unreported mutations were identified. Among the novel mutations, five were found in patients with MHP, and the remainder were found in patients with PKU. The most common mutations were R408W, IVS12nt1g-->a, and Y414C, accounting for 18.7%, 7.8%, and 5.4% of the mutant chromosomes, respectively. Thirteen mutations had relative frequencies of 1%-5%, and 55 mutations each had frequencies < or = 1%. The mutational spectrum corresponded to that observed for the European ancestry of the U.S. population. To evaluate the extent of allelic variation at the PAH locus within the United States in comparison with other populations, we used allele frequencies to calculate the homozygosity for 11 populations where >90% ascertainment of mutations has been obtained. The United States was shown to contain one of the most heterogeneous populations, with homozygosity values similar to Sicily and ethnically mixed sample populations in Europe. The extent of allelic heterogeneity must be a major determining factor in the choice of mutation-detection methodology for molecular diagnosis in PAH deficiency. Images Figure 1 PMID:8659548

  6. Novel mutations in the USH1C gene in Usher syndrome patients

    PubMed Central

    Aparisi, María José; García-García, Gema; Jaijo, Teresa; Rodrigo, Regina; Graziano, Claudio; Seri, Marco; Simsek, Tulay; Simsek, Enver; Bernal, Sara; Baiget, Montserrat; Pérez-Garrigues, Herminio; Millán, José María

    2010-01-01

    Purpose Usher syndrome type I (USH1) is an autosomal recessive disorder characterized by severe-profound sensorineural hearing loss, retinitis pigmentosa, and vestibular areflexia. To date, five USH1 genes have been identified. One of these genes is Usher syndrome 1C (USH1C), which encodes a protein, harmonin, containing PDZ domains. The aim of the present work was the mutation screening of the USH1C gene in a cohort of 33 Usher syndrome patients, to identify the genetic cause of the disease and to determine the relative involvement of this gene in USH1 pathogenesis in the Spanish population. Methods Thirty-three patients were screened for mutations in the USH1C gene by direct sequencing. Some had already been screened for mutations in the other known USH1 genes (myosin VIIA [MYO7A], cadherin-related 23 [CDH23], protocadherin-related 15 [PCDH15], and Usher syndrome 1G [USH1G]), but no mutation was found. Results Two novel mutations were found in the USH1C gene: a non-sense mutation (p.C224X) and a frame-shift mutation (p.D124TfsX7). These mutations were found in a homozygous state in two unrelated USH1 patients. Conclusions In the present study, we detected two novel pathogenic mutations in the USH1C gene. Our results suggest that mutations in USH1C are responsible for 1.5% of USH1 disease in patients of Spanish origin (considering the total cohort of 65 Spanish USH1 patients since 2005), indicating that USH1C is a rare form of USH in this population. PMID:21203349

  7. Amelogenin signal peptide mutation: Correlation between mutations in the amelogenin gene (AMGX) and manifestations of X-linked amelogenesis imperfecta

    SciTech Connect

    Lagerstroem-Fermer, M.; Nilsson, M.; Pettersson, U.

    1995-03-01

    Formation of tooth enamel is a poorly understood biological process. In this study the authors describe a 9-bp deletion in exon 2 of the amelogenin gene (AMGX) causing X-linked hypoplastic amelogenesis imperfecta, a disease characterized by defective enamel. The mutation results in the loss of 3 amino acids and exchange of 1 in the signal peptide of the amelogenin protein. This deletion in the signal peptide probably interferes with translocation of the amelogenin protein during synthesis, resulting in the thin enamel observed in affected members of the family. The authors compare this mutation to a previously reported mutation in the amelogenin gene that causes a different disease phenotype. The study illustrates that molecular analysis can help explain the various manifestations of a tooth disorder and thereby provide insights into the mechanisms of tooth enamel formation. 16 refs., 2 figs., 1 tab.

  8. The importance of BRCA1 and BRCA2 genes mutations in breast cancer development

    PubMed Central

    Mehrgou, Amir; Akouchekian, Mansoureh

    2016-01-01

    Many factors including genetic, environmental, and acquired are involved in breast cancer development across various societies. Among all of these factors in families with a history of breast cancer throughout several generations, genetics, like predisposing genes to develop this disease, should be considered more. Early detection of mutation carriers in these genes, in turn, can play an important role in its prevention. Because this disease has a high prevalence in half of the global population, female screening of reported mutations in predisposing genes, which have been seen in breast cancer patients, seems necessary. In this review, a number of mutations in two predisposing genes (BRCA1 and BRCA2) that occurred in patients with a family history was investigated. We studied published articles about mutations in genes predisposed to breast cancer between 2000 and 2015. We then summarized and classified reported mutations in these two genes to recommend some exons which have a high potential to mutate. According to previous studies, exons have been reported as most mutated exons presented in this article. Considering the large size and high cost of screening all exons in these two genes in patients with a family history, especially in developing countries, the results of this review article can be beneficial and helpful in the selection of exon to screen for patients with this disease. PMID:27493913

  9. The importance of BRCA1 and BRCA2 genes mutations in breast cancer development.

    PubMed

    Mehrgou, Amir; Akouchekian, Mansoureh

    2016-01-01

    Many factors including genetic, environmental, and acquired are involved in breast cancer development across various societies. Among all of these factors in families with a history of breast cancer throughout several generations, genetics, like predisposing genes to develop this disease, should be considered more. Early detection of mutation carriers in these genes, in turn, can play an important role in its prevention. Because this disease has a high prevalence in half of the global population, female screening of reported mutations in predisposing genes, which have been seen in breast cancer patients, seems necessary. In this review, a number of mutations in two predisposing genes (BRCA1 and BRCA2) that occurred in patients with a family history was investigated. We studied published articles about mutations in genes predisposed to breast cancer between 2000 and 2015. We then summarized and classified reported mutations in these two genes to recommend some exons which have a high potential to mutate. According to previous studies, exons have been reported as most mutated exons presented in this article. Considering the large size and high cost of screening all exons in these two genes in patients with a family history, especially in developing countries, the results of this review article can be beneficial and helpful in the selection of exon to screen for patients with this disease. PMID:27493913

  10. Analysis of in vivo mutation in the Hprt and Tk genes of mouse lymphocytes.

    PubMed

    Dobrovolsky, Vasily N; Shaddock, Joseph G; Heflich, Robert H

    2014-01-01

    Assays measuring mutant frequencies in endogenous reporter genes are used for identifying potentially genotoxic environmental agents and discovering phenotypes prone to genomic instability and diseases, such as cancer. Here, we describe methods for identifying mouse spleen lymphocytes with mutations in the endogenous X-linked hypoxanthine guanine phosphoribosyl transferase (Hprt) gene and the endogenous autosomal thymidine kinase (Tk) gene. The selective clonal expansion of mutant lymphocytes is based upon the phenotypic properties of HPRT- and TK-deficient cells. The same procedure can be utilized for quantifying Hprt mutations in most strains of mice (and, with minor changes, in other mammalian species), while mutations in the Tk gene can be determined only in transgenic mice that are heterozygous for inactivation of this gene. Expanded mutant clones can be further analyzed to classify the types of mutations in the Tk gene (small intragenic mutations vs. large chromosomal mutations) and to determine the nature of intragenic mutation in both the Hprt and Tk genes. PMID:24623234

  11. Analysis of mutation of the c-Kit gene and PDGFRA in gastrointestinal stromal tumors

    PubMed Central

    XU, CHUN-WEI; LIN, SHAN; WANG, WU-LONG; GAO, WEN-BIN; LV, JIN-YAN; GAO, JING-SHAN; ZHANG, LI-YING; LI, YANG; WANG, LIN; ZHANG, YU-PING; TIAN, YU-WANG

    2015-01-01

    The aim of the present study was to investigate mutation status of the c-Kit gene (KIT) and PDGFRA in patients with a gastrointestinal stromal tumor (GIST). In total, 93 patients with a GIST were included in the study, in which polymerase chain reaction amplification and gene sequencing were used to detect the sequences of exons 9, 11, 13 and 17 in KIT and exons 12 and 18 in PDGFRA. KIT mutations were detected in 64 cases (68.82%), of which exon 11 mutations were detected in 56 cases (60.22%), exon 13 mutations were detected in three cases (3.23%) and one case (1.08%) was shown to have a mutation in exon 17. The most common mutation in exon 11 was a deletion, which accounted for 55.36% (31/56) of the cases, followed by a point mutation observed in 26.79% (15/56) of the cases, while an insertion (tandem repeats) was identified in 14.29% (8/56) of the cases, and 3.57% (2/56) of the exon 11 mutations were deletions associated with a point mutation. The majority of the mutations were heterozygous, with only a few homozygous mutations. Mutational analysis revealed the mutations to be more concentrated in the classic hot zone at the 5′-end, followed by the tandem repeat frame at the 3′-end. In four cases, a mutation was detected in exon 18 of PDGFRA, of which one was associated with a mutation in KIT. The remaining three cases (10.34%, 3/29) were not associated with mutations in KIT and accounted for 37.5% (3/8) of the CD117-negative GIST cases. Therefore, the majority of the GIST cases were characterized by mutations in KIT or PDGFRA, which were directly associated with the disease. Pairs of different mutations in the same exon of KIT, or KIT mutations coupled with pairs of mutations in PDGFRA, were detected in a small number of patients. Imatinib is a small molecule tyrosine kinase inhibitor and is the first line targeted treatment for GIST, resulting in markedly improved survival rates. Thus, gene mutation genotyping may provide inspiration and guidance for

  12. Separation of mutational and transcriptional enhancers in immunoglobulin genes

    PubMed Central

    Kothapalli, Naga Rama; Collura, Kaitlin M.; Norton, Darrell D.; Fugmann, Sebastian D.

    2011-01-01

    Secondary immunoglobulin (Ig) gene diversification relies on activation-induced cytidine deaminase (AID) to create U:G mismatches that are subsequently fixed by mutagenic repair pathways. AID activity is focused to Ig loci by cis-regulatory DNA sequences named targeting elements. Here we show that in contrast to prevailing thought in the field, the targeting elements in the chicken IGL locus are distinct from classical transcriptional enhancers. These mutational enhancer elements (MEEs) are required over and above transcription to recruit AID-mediated mutagenesis to Ig loci. We identified a small 222 bp fragment in the chicken IGL locus that enhances mutagenesis without boosting transcription, and this sequence represents a key component of a MEE. Lastly, MEEs are evolutionarily conserved amongst birds, both in sequence and function, and contain several highly conserved sequence modules that are likely involved in recruiting trans-acting targeting factors. We propose that MEEs represent a novel class of cis-regulatory elements whose function is to control genomic integrity. PMID:21844395

  13. Separation of mutational and transcriptional enhancers in Ig genes.

    PubMed

    Kothapalli, Naga Rama; Collura, Kaitlin M; Norton, Darrell D; Fugmann, Sebastian D

    2011-09-15

    Secondary Ig gene diversification relies on activation-induced cytidine deaminase (AID) to create U:G mismatches that are subsequently fixed by mutagenic repair pathways. AID activity is focused to Ig loci by cis-regulatory DNA sequences named targeting elements. In this study, we show that in contrast to prevailing thought in the field, the targeting elements in the chicken IGL locus are distinct from classical transcriptional enhancers. These mutational enhancer elements (MEEs) are required over and above transcription to recruit AID-mediated mutagenesis to Ig loci. We identified a small 222-bp fragment in the chicken IGL locus that enhances mutagenesis without boosting transcription, and this sequence represents a key component of an MEE. Lastly, MEEs are evolutionarily conserved among birds, both in sequence and function, and contain several highly conserved sequence modules that are likely involved in recruiting trans-acting targeting factors. We propose that MEEs represent a novel class of cis-regulatory elements for which the function is to control genomic integrity. PMID:21844395

  14. TET2 gene mutation is unfavorable prognostic factor in cytogenetically normal acute myeloid leukemia patients with NPM1+ and FLT3-ITD - mutations.

    PubMed

    Tian, Xiaopeng; Xu, Yang; Yin, Jia; Tian, Hong; Chen, Suning; Wu, Depei; Sun, Aining

    2014-07-01

    Cytogenetically normal acute myeloid leukemia (cn-AML) is a group of heterogeneous diseases. Gene mutations are increasingly used to assess the prognosis of cn-AML patients and guide risk-adapted treatment. In the present study, we analyzed the molecular genetics characteristics of 373 adult cn-AML patients and explored the relationship between TET2 gene mutations or different genetic mutation patterns and prognosis. We found that 16.1 % of patients had TET2 mutations, 31.6 % had FLT3 internal tandem duplications (ITDs), 6.2 % had FLT3 tyrosine kinase domain mutations, 2.4 % had c-KIT mutations, 37.8 % had NPM1 mutations, 11.3 % had WT1 mutations, 5.9 % had RUNX1 mutations, 11.5 % had ASXL1 mutations, 3.8 % had MLL-PTDs, 7.8 % had IDH1 mutations, 7.8 % had NRAS mutations, 12.3 % had IDH2 mutations, 1.6 % had EZH2 mutations, and 14.7 % had DNMT3A mutations, while none had CBL mutations. Gene mutations were detected in 76.94 % (287/373) of all patients. In the NPM1m(+) patients, those with TET2 mutations were associated with a shorter median overall survival (OS) as compared to TET2 wild-type (wt) patients (9.9 vs. 27.0 months, respectively; P = 0.023); Interestingly, the TET2 mutation was identified as an unfavorable prognostic factor and was closely associated with a shorter median OS as compared to TET2-wt (9.5 vs. 32.2 months, respectively; P = 0.013) in the NPM1m(+)/FLT3-ITDm(-) patient group. Thus, identification of TET2 combined with classic NPM1 and FLT3-ITD mutations allowed us to stratify cn-AML into distinct subtypes. PMID:24859829

  15. Next-generation sequencing identifies novel CACNA1A gene mutations in episodic ataxia type 2.

    PubMed

    Maksemous, Neven; Roy, Bishakha; Smith, Robert A; Griffiths, Lyn R

    2016-03-01

    Episodic Ataxia type 2 (EA2) is a rare autosomal dominantly inherited neurological disorder characterized by recurrent disabling imbalance, vertigo, and episodes of ataxia lasting minutes to hours. EA2 is caused most often by loss of function mutations of the calcium channel gene CACNA1A. In addition to EA2, mutations in CACNA1A are responsible for two other allelic disorders: familial hemiplegic migraine type 1 (FHM1) and spinocerebellar ataxia type 6 (SCA6). Herein, we have utilized next-generation sequencing (NGS) to screen the coding sequence, exon-intron boundaries, and Untranslated Regions (UTRs) of five genes where mutation is known to produce symptoms related to EA2, including CACNA1A. We performed this screening in a group of 31 unrelated patients with EA2 symptoms. Both novel and known mutations were detected through NGS technology, and confirmed through Sanger sequencing. Genetic testing showed in total 15 mutation bearing patients (48%), of which nine were novel mutations (6 missense and 3 small frameshift deletion mutations) and six known mutations (4 missense and 2 nonsense).These results demonstrate the efficiency of our NGS-panel for detecting known and novel mutations for EA2 in the CACNA1A gene, also identifying a novel missense mutation in ATP1A2 which is not a normal target for EA2 screening. PMID:27066515

  16. New mutations of EXT1 and EXT2 genes in German patients with Multiple Osteochondromas.

    PubMed

    Heinritz, Wolfram; Hüffmeier, Ulrike; Strenge, Sibylle; Miterski, Bianca; Zweier, Christiane; Leinung, Steffen; Bohring, Axel; Mitulla, Beate; Peters, Usha; Froster, Ursula G

    2009-05-01

    Mutations in either the EXT1 or EXT2 genes lead to Multiple Osteochondromas (MO), an autosomal dominantly inherited disorder. This is a report on clinical findings and results of molecular analyses of both genes in 23 German patients affected by MO. Mutation screening was performed by using denaturing high performance liquid chromatography (dHPLC) and automated sequencing. In 17 of 23 patients novel pathogenic mutations have been identified; eleven in the EXT1 and six in the EXT2 gene. Five patients were carriers of recurrent mutations in the EXT2 gene (p.Asp227Asn, p.Gln172X, p.Gln258X) and one patient had no detectable mutation. To demonstrate their pathogenic effect on transcription, two complex mutations in EXT1 and EXT2 and three splice site mutations were characterized by mRNA investigations. The results obtained provide evidence for different aberrant splice effects - usage of new cryptic splice sites and exon skipping. Our study extends the mutational spectrum and understanding of pathogenic effects of mutations in EXT1 and EXT2. PMID:19344451

  17. D620N mutation in the VPS35 gene and R1205H mutation in the EIF4G1 gene are uncommon in the Greek population.

    PubMed

    Kalinderi, Kallirhoe; Bostantjopoulou, Sevasti; Katsarou, Zoe; Dimikiotou, Maria; Fidani, Liana

    2015-10-01

    Recently, vacuolar protein sorting 35 (VPS35) and eukaryotic translation initiation factor 4 gamma 1 (EIF4G1) have been identified as new causal Parkinson's disease (PD) genes, with the VPS35 D620N and EIF4G1 R1205H mutations being identified in both autosomal dominant late-onset familial and sporadic PD patients. However, the frequencies of these two mutations among different ethnic groups vary. We studied the VPS35 D620N and EIF4G1 R1205H mutations in a total of 333 individuals, 202 Greek patients with sporadic PD and 131 control subjects, using a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. None of our studied individuals carried these two mutations. Our data support that the VPS35 D620N and EIF4G1 R1205H mutations are not a common cause of PD in the Greek population. PMID:26300542

  18. Blue genes: An integrative laboratory to differentiate genetic transformation from gene mutation for underclassmen.

    PubMed

    Militello, Kevin T; Chang, Ming-Mei; Simon, Robert D; Lazatin, Justine C

    2016-01-01

    The ability of students to understand the relationship between genotype and phenotype, and the mechanisms by which genotypes and phenotypes can change is essential for students studying genetics. To this end, we have developed a four-week laboratory called Blue Genes, which is designed to help novice students discriminate between two mechanisms by which the genetic material can be altered: genetic transformation and gene mutation. In the first week of the laboratory, students incubate a plasmid DNA with calcium chloride-treated Escherichia coli JM109 cells and observe a phenotype change from ampicillin sensitive to ampicillin resistant and from white color to blue color on plates containing 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-gal) and isopropyl β-D-thiogalactopyranoside (IPTG). Over the course of the next three weeks, students use a battery of approaches including plasmid DNA isolation experiments, restriction maps, and PCR to differentiate between mutation and transformation. The students ultimately come to the conclusion that the changes in phenotypes are due to genetic transformation and not mutation based on the evidence generated over the four-week period. Pre-laboratory tests and post-laboratory tests indicate that this set of exercises is successful in helping students differentiate between transformation and mutation. The laboratory is designed for underclassmen and is a good prerequisite for an apprentice-based research opportunity, although it is not designed as a class based research experience. Potential modifications and future directions of the laboratory based upon student experiences and assessment are presented. PMID:26525488

  19. Mutation spectrum of the rhodopsin gene among patients with autosomal dominant retinitis pigmentosa

    SciTech Connect

    Dryja, T.P.; Han, L.B.; Cowley, G.S.; McGee, T.L.; Berson, E.L. )

    1991-10-15

    The authors searched for point mutations in every exon of the rhodopsin gene in 150 patients from separate families with autosomal dominant retinitis pigmentosa. Including the 4 mutations the authors reported previously, they found a total of 17 different mutations that correlate with the disease. Each of these mutations is a single-base substitution corresponding to a single amino acid substitution. Based on current models for the structure of rhodopsin, 3 of the 17 mutant amino acids are normally located on the cytoplasmic side of the protein, 6 in transmembrane domains, and 8 on the intradiscal side. Forty-three of the 150 patients (29%) carry 1 of these mutations, and no patient has more than 1 mutation. In every family with a mutation so far analyzed, the mutation cosegregates with the disease. They found one instance of a mutation in an affected patient that was absent in both unaffected parents (i.e., a new germ-line mutation), indicating that some isolate cases of retinitis pigmentosa carry a mutation of the rhodopsin gene.

  20. Excess of De Novo Deleterious Mutations in Genes Associated with Glutamatergic Systems in Nonsyndromic Intellectual Disability

    PubMed Central

    Hamdan, Fadi F.; Gauthier, Julie; Araki, Yoichi; Lin, Da-Ting; Yoshizawa, Yuhki; Higashi, Kyohei; Park, A-Reum; Spiegelman, Dan; Dobrzeniecka, Sylvia; Piton, Amélie; Tomitori, Hideyuki; Daoud, Hussein; Massicotte, Christine; Henrion, Edouard; Diallo, Ousmane; Shekarabi, Masoud; Marineau, Claude; Shevell, Michael; Maranda, Bruno; Mitchell, Grant; Nadeau, Amélie; D'Anjou, Guy; Vanasse, Michel; Srour, Myriam; Lafrenière, Ronald G.; Drapeau, Pierre; Lacaille, Jean Claude; Kim, Eunjoon; Lee, Jae-Ran; Igarashi, Kazuei; Huganir, Richard L.; Rouleau, Guy A.; Michaud, Jacques L.

    2011-01-01

    Little is known about the genetics of nonsyndromic intellectual disability (NSID). We hypothesized that de novo mutations (DNMs) in synaptic genes explain an important fraction of sporadic NSID cases. In order to investigate this possibility, we sequenced 197 genes encoding glutamate receptors and a large subset of their known interacting proteins in 95 sporadic cases of NSID. We found 11 DNMs, including ten potentially deleterious mutations (three nonsense, two splicing, one frameshift, four missense) and one neutral mutation (silent) in eight different genes. Calculation of point-substitution DNM rates per functional and neutral site showed significant excess of functional DNMs compared to neutral ones. De novo truncating and/or splicing mutations in SYNGAP1, STXBP1, and SHANK3 were found in six patients and are likely to be pathogenic. De novo missense mutations were found in KIF1A, GRIN1, CACNG2, and EPB41L1. Functional studies showed that all these missense mutations affect protein function in cell culture systems, suggesting that they may be pathogenic. Sequencing these four genes in 50 additional sporadic cases of NSID identified a second DNM in GRIN1 (c.1679_1681dup/p.Ser560dup). This mutation also affects protein function, consistent with structural predictions. None of these mutations or any other DNMs were identified in these genes in 285 healthy controls. This study highlights the importance of the glutamate receptor complexes in NSID and further supports the role of DNMs in this disorder. PMID:21376300

  1. Excess of de novo deleterious mutations in genes associated with glutamatergic systems in nonsyndromic intellectual disability.

    PubMed

    Hamdan, Fadi F; Gauthier, Julie; Araki, Yoichi; Lin, Da-Ting; Yoshizawa, Yuhki; Higashi, Kyohei; Park, A-Reum; Spiegelman, Dan; Dobrzeniecka, Sylvia; Piton, Amélie; Tomitori, Hideyuki; Daoud, Hussein; Massicotte, Christine; Henrion, Edouard; Diallo, Ousmane; Shekarabi, Masoud; Marineau, Claude; Shevell, Michael; Maranda, Bruno; Mitchell, Grant; Nadeau, Amélie; D'Anjou, Guy; Vanasse, Michel; Srour, Myriam; Lafrenière, Ronald G; Drapeau, Pierre; Lacaille, Jean Claude; Kim, Eunjoon; Lee, Jae-Ran; Igarashi, Kazuei; Huganir, Richard L; Rouleau, Guy A; Michaud, Jacques L

    2011-03-11

    Little is known about the genetics of nonsyndromic intellectual disability (NSID). We hypothesized that de novo mutations (DNMs) in synaptic genes explain an important fraction of sporadic NSID cases. In order to investigate this possibility, we sequenced 197 genes encoding glutamate receptors and a large subset of their known interacting proteins in 95 sporadic cases of NSID. We found 11 DNMs, including ten potentially deleterious mutations (three nonsense, two splicing, one frameshift, four missense) and one neutral mutation (silent) in eight different genes. Calculation of point-substitution DNM rates per functional and neutral site showed significant excess of functional DNMs compared to neutral ones. De novo truncating and/or splicing mutations in SYNGAP1, STXBP1, and SHANK3 were found in six patients and are likely to be pathogenic. De novo missense mutations were found in KIF1A, GRIN1, CACNG2, and EPB41L1. Functional studies showed that all these missense mutations affect protein function in cell culture systems, suggesting that they may be pathogenic. Sequencing these four genes in 50 additional sporadic cases of NSID identified a second DNM in GRIN1 (c.1679_1681dup/p.Ser560dup). This mutation also affects protein function, consistent with structural predictions. None of these mutations or any other DNMs were identified in these genes in 285 healthy controls. This study highlights the importance of the glutamate receptor complexes in NSID and further supports the role of DNMs in this disorder. PMID:21376300

  2. A new mutation of the noggin gene in a French Fibrodysplasia ossificans progressiva (FOP) family.

    PubMed

    Fontaine, K; Sémonin, O; Legarde, J P; Lenoir, G; Lucotte, G

    2005-01-01

    A new mutation of the Noggin gene in a French Fybrodysplasia ossificans progressiva (FOP) family: Fibrodysplasia ossificans progressiva (FOP) is a very rare disease characterized by congenital malformation of the great toes and progressive heterotopic ossification of the muscles. We previously located a FOP gene in the 17q21-22 region and described several mutations of the noggin (NOG) gene (located in 17q22) in four FOP patients, including the G91C mutation which is transmitted dominantly in a Spanish FOP family. We describe in the present study a new mutation of the NOG gene in a French FOP family. This new mutation is a guanine to adenine change at nucleotide 283 (283G --> A) of the NOG gene, and is transmitted in the family (in the heterozygote form) by the affected mother to her two affected children. At the peptide level this mutation (A95T) substitutes an Alanine residue by a Threonine at position 95 of the Noggin protein. The Alanine mutated residue is located just adjacent to the myristoylation site of the protein, where all the mutations we described until now are located. PMID:16080294

  3. Clinical Significance of a Point Mutation in DNA Polymerase Beta (POLB) Gene in Gastric Cancer

    PubMed Central

    Tan, Xiaohui; Wang, Hongyi; Luo, Guangbin; Ren, Shuyang; Li, Wenmei; Cui, Jiantao; Gill, Harindarpal S.; Fu, Sidney W.; Lu, Youyong

    2015-01-01

    Gastric cancer (GC) is a major cause of global cancer mortality. Genetic variations in DNA repair genes can modulate DNA repair capability and, consequently, have been associated with risk of developing cancer. We have previously identified a T to C point mutation at nucleotide 889 (T889C) in DNA polymerase beta (POLB) gene, a key enzyme involved in base excision repair in primary GCs. The purpose of this study was to evaluate the mutation and expression of POLB in a larger cohort and to identify possible prognostic roles of the POLB alterations in GC. Primary GC specimens and their matched normal adjacent tissues were collected at the time of surgery. DNA, RNA and protein samples were isolated from GC specimens and cell lines. Mutations were detected by PCR-RFLP/DHPLC and sequencing analysis. POLB gene expression was examined by RT-PCR, tissue microarray, Western blotting and immunofluorescence assays. The function of the mutation was evaluated by chemosensitivity, MTT, Transwell matrigel invasion and host cell reactivation assays. The T889C mutation was detected in 18 (10.17%) of 177 GC patients. And the T889C mutation was associated with POLB overexpression, lymph nodes metastases and poor tumor differentiation. In addition, patients with- the mutation had significantly shorter survival time than those without-, following postoperative chemotherapy. Furthermore, cell lines with T889C mutation in POLB gene were more resistant to the treatment of 5-fluorouracil, cisplatin and epirubicin than those with wild type POLB. Forced expression of POLB gene with T889C mutation resulted in enhanced cell proliferation, invasion and resistance to anticancer drugs, along with increased DNA repair capability. These results suggest that POLB gene with T889C mutation in surgically resected primary gastric tissues may be clinically useful for predicting responsiveness to chemotherapy in patients with GC. The POLB gene alteration may serve as a prognostic biomarker for GC. PMID

  4. Interacting genes that affect microtubule function in Drosophila melanogaster: Two classes of mutation revert the failure to complement between hay sup nc2 and mutations in tubulin genes

    SciTech Connect

    Regan, C.L.; Fuller, M.T. )

    1990-05-01

    The recessive male sterile mutation hay{sup nc2} of Drosophila melanogaster fails to complement certain {beta}{sub 2}-tubulin and {alpha}-tubulin mutations, suggesting that the haywire product plays a role in microtubule function, perhaps as a structural component of microtubules. The genetic interaction appears to require the presence of the aberrant product encoded by hay{sup nc2}, which may act as a structural poison. Based on this observation, the authors have isolated ten new mutations with EMS that revert the failure to complement between hay{sup nc2} and B2t{sup n}. The revertants tested behaved as intragenic mutations of hay in recombination tests, and feel into two phenotypic classes, suggesting two functional domains of the hay gene product. Some revertants were hemizygous viable and less severe than hay{sup nc2} in their recessive phenotype. These mutations might revert the poison by restoring the aberrant product encoded by the hay{sup nc2} allele to more wild-type function. Most of the revertants were recessive lethal mutations, indicating that the hay gene product is essential for viability. These more extreme mutations could revert the poison by destroying the ability of the aberrant haywire{sup nc2} product to interact structurally with microtubules. Flies heterozygous for the original hay{sup nc2} allele and an extreme revertant show defects in both the structure and the function of the male meiotic spindle.

  5. High frequency of additional gene mutations in acute myeloid leukemia with MLL partial tandem duplication: DNMT3A mutation is associated with poor prognosis

    PubMed Central

    Kao, Hsiao-Wen; Liang, Der-Cherng; Kuo, Ming-Chung; Wu, Jin-Hou; Dunn, Po; Wang, Po-Nan; Lin, Tung-Liang; Shih, Yu-Shu; Liang, Sung-Tzu; Lin, Tung-Huei; Lai, Chen-Yu; Lin, Chun-Hui; Shih, Lee-Yung

    2015-01-01

    The mutational profiles of acute myeloid leukemia (AML) with partial tandem duplication of mixed-lineage leukemia gene (MLL-PTD) have not been comprehensively studied. We studied 19 gene mutations for 98 patients with MLL-PTD AML to determine the mutation frequency and clinical correlations. MLL-PTD was screened by reverse-transcriptase PCR and confirmed by real-time quantitative PCR. The mutational analyses were performed with PCR-based assays followed by direct sequencing. Gene mutations of signaling pathways occurred in 63.3% of patients, with FLT3-ITD (44.9%) and FLT3-TKD (13.3%) being the most frequent. 66% of patients had gene mutations involving epigenetic regulation, and DNMT3A (32.7%), IDH2 (18.4%), TET2 (18.4%), and IDH1 (10.2%) mutations were most common. Genes of transcription pathways and tumor suppressors accounted for 23.5% and 10.2% of patients. RUNX1 mutation occurred in 23.5% of patients, while none had NPM1 or double CEBPA mutation. 90.8% of MLL-PTD AML patients had at least one additional gene mutation. Of 55 MLL-PTD AML patients who received standard chemotherapy, age older than 50 years and DNMT3A mutation were associated with inferior outcome. In conclusion, gene mutations involving DNA methylation and activated signaling pathway were common co-existed gene mutations. DNMT3A mutation was a poor prognostic factor in MLL-PTD AML. PMID:26375248

  6. Nemaline myopathy caused by mutations in the nebulin gene may present as a distal myopathy.

    PubMed

    Lehtokari, Vilma-Lotta; Pelin, Katarina; Herczegfalvi, Agnes; Karcagi, Veronika; Pouget, Jean; Franques, Jerôme; Pellissier, Jean François; Figarella-Branger, Dominique; von der Hagen, Maja; Huebner, Angela; Schoser, Benedikt; Lochmüller, Hanns; Wallgren-Pettersson, Carina

    2011-08-01

    Mutations in the nebulin gene are the main cause of autosomal recessive nemaline myopathy, with clinical presentations ranging from mild to severe disease. We have previously reported a nonspecific distal myopathy caused by homozygous missense mutations in the nebulin gene in six Finnish patients from four different families. Here we describe three non-Finnish patients in two unrelated families with distal nemaline myopathy caused by four different compound heterozygous nebulin mutations, only one of which is a missense mutation. One of the mutations has previously been identified in one family with the severe form of nemaline myopathy. We conclude that nemaline myopathy and distal myopathy caused by nebulin mutations form a clinical and histological continuum. Nemaline myopathy should be considered as a differential diagnosis in patients presenting with an early-onset predominantly distal myopathy. PMID:21724397

  7. New mutations in MAPT gene causing frontotemporal lobar degeneration: biochemical and structural characterization.

    PubMed

    Rossi, Giacomina; Bastone, Antonio; Piccoli, Elena; Mazzoleni, Giulia; Morbin, Michela; Uggetti, Andrea; Giaccone, Giorgio; Sperber, Sarah; Beeg, Marten; Salmona, Mario; Tagliavini, Fabrizio

    2012-04-01

    Frontotemporal lobar degeneration (FTLD) can be sporadic or familial. The genes encoding the microtubule-associated protein tau (MAPT) and progranulin (GRN) are the most relevant genes so far known causing the hereditary forms. Following genetic screening of patients affected by FTLD, we identified 2 new MAPT mutations, P364S and G366R, the former in a sporadic case. In the study we report the clinical and genetic features of the patients carrying these mutations, and the functional effects of the mutations, analyzed in vitro in order to investigate their pathogenic character. Both mutations resulted in reduced ability of tau to promote microtubule polymerization; the P364S protein variant also showed a high propensity to aggregate into filaments. These results suggest a high probability that these mutations are pathogenic. Our findings highlight the importance of genetic analysis also in sporadic forms of FTLD, and the role of in vitro studies to evaluate the pathologic features of new mutations. PMID:21943955

  8. Prevalence of Mutations in eyeGENE Probands With a Diagnosis of Autosomal Dominant Retinitis Pigmentosa

    PubMed Central

    Sullivan, Lori S.; Bowne, Sara J.; Reeves, Melissa J.; Blain, Delphine; Goetz, Kerry; NDifor, Vida; Vitez, Sally; Wang, Xinjing; Tumminia, Santa J.; Daiger, Stephen P.

    2013-01-01

    Purpose. To screen samples from patients with presumed autosomal dominant retinitis pigmentosa (adRP) for mutations in 12 disease genes as a contribution to the research and treatment goals of the National Ophthalmic Disease Genotyping and Phenotyping Network (eyeGENE). Methods. DNA samples were obtained from eyeGENE. A total of 170 probands with an intake diagnosis of adRP were tested through enrollment in eyeGENE. The 10 most common genes causing adRP (IMPDH1, KLHL7, NR2E3, PRPF3/RP18, PRPF31/RP11, PRPF8/RP13, PRPH2/RDS, RHO, RP1, and TOPORS) were chosen for PCR-based dideoxy sequencing, along with the two X-linked RP genes, RPGR and RP2. RHO, PRPH2, PRPF31, RPGR, and RP2 were completely sequenced, while only mutation hotspots in the other genes were analyzed. Results. Disease-causing mutations were identified in 52% of the probands. The frequencies of disease-causing mutations in the 12 genes were consistent with previous studies. Conclusions. The Laboratory for Molecular Diagnosis of Inherited Eye Disease at the University of Texas in Houston has thus far received DNA samples from 170 families with a diagnosis of adRP from the eyeGENE Network. Disease-causing mutations in autosomal genes were identified in 48% (81/170) of these families while mutations in X-linked genes accounted for an additional 4% (7/170). Of the 55 distinct mutations detected, 19 (33%) have not been previously reported. All diagnostic results were returned by eyeGENE to participating patients via their referring clinician. These genotyped samples along with their corresponding phenotypic information are also available to researchers who may request access to them for further study of these ophthalmic disorders. (ClinicalTrials.gov number, NCT00378742.) PMID:23950152

  9. Recurrent de novo mutations implicate novel genes underlying simplex autism risk

    PubMed Central

    O'Roak, B. J.; Stessman, H. A.; Boyle, E. A.; Witherspoon, K. T.; Martin, B.; Lee, C.; Vives, L.; Baker, C.; Hiatt, J. B.; Nickerson, D. A.; Bernier, R.; Shendure, J.; Eichler, E. E.

    2014-01-01

    Autism spectrum disorder (ASD) has a strong but complex genetic component. Here we report on the resequencing of 64 candidate neurodevelopmental disorder risk genes in 5,979 individuals: 3,486 probands and 2,493 unaffected siblings. We find a strong burden of de novo point mutations for these genes and specifically implicate nine genes. These include CHD2 and SYNGAP1, genes previously reported in related disorders, and novel genes TRIP12 and PAX5. We also show that mutation carriers generally have lower IQs and enrichment for seizures. These data begin to distinguish genetically distinct subtypes of autism important for etiological classification and future therapeutics. PMID:25418537

  10. Steatocystoma multiplex is associated with the R94C mutation in the KRTl7 gene

    PubMed Central

    LIU, QIAO; WU, WEIWEI; LU, JIEJIE; WANG, PING; QIAO, FENG

    2015-01-01

    Steatocystoma multiplex (SM) is an uncommon disorder, characterized by numerous skin-colored subcutaneous cysts. A number of SM pedigrees have been identified with mutations in the keratin 17 (KRT17) gene. The present study examined a four-generation Chinese pedigree with an autosomal dominant mode of inheritance and examined its genetic basis. A review of the literature on KRT17 gene mutations in the SM pedigree was also performed to investigate the KRT17 gene mutation and genotype-phenotype correlation. Exon 1 of the KRTl7 gene was amplified using polymerase chain reaction (PCR) from genomic DNA obtained, which was obtained from 25 family members in the selected Chinese pedigree and from 100 unrelated control individuals. The DNA was then subjected to automatic DNA sequencing. Genealogical investigations demonstrated an autosomal dominant pattern, and direct sequencing of the PCR product revealed a heterozygous mutation, c.280C/T (R94C), which was located in exon 1 of the KRT17 gene in all 10 affected family members. The mutation was not identified in the 15 unaffected family members or in the 100 unrelated control individuals. Therefore, the present study identified a causative mutation in the KRT17 gene in a large Chinese SM pedigree, exhibiting autosomal dominance. A review of the literature suggested that, in addition to the mutation factor, other modifying factors contribute to the phenotype of familial SM. PMID:26165312

  11. Steatocystoma multiplex is associated with the R94C mutation in the KRTl7 gene.

    PubMed

    Liu, Qiao; Wu, Weiwei; Lu, Jiejie; Wang, Ping; Qiao, Feng

    2015-10-01

    Steatocystoma multiplex (SM) is an uncommon disorder, characterized by numerous skin‑colored subcutaneous cysts. A number of SM pedigrees have been identified with mutations in the keratin 17 (KRT17) gene. The present study examined a four‑generation Chinese pedigree with an autosomal dominant mode of inheritance and examined its genetic basis. A review of the literature on KRT17 gene mutations in the SM pedigree was also performed to investigate the KRT17 gene mutation and genotype‑phenotype correlation. Exon 1 of the KRTl7 gene was amplified using polymerase chain reaction (PCR) from genomic DNA obtained, which was obtained from 25 family members in the selected Chinese pedigree and from 100 unrelated control individuals. The DNA was then subjected to automatic DNA sequencing. Genealogical investigations demonstrated an autosomal dominant pattern, and direct sequencing of the PCR product revealed a heterozygous mutation, c.280C/T (R94C), which was located in exon 1 of the KRT17 gene in all 10 affected family members. The mutation was not identified in the 15 unaffected family members or in the 100 unrelated control individuals. Therefore, the present study identified a causative mutation in the KRT17 gene in a large Chinese SM pedigree, exhibiting autosomal dominance. A review of the literature suggested that, in addition to the mutation factor, other modifying factors contribute to the phenotype of familial SM. PMID:26165312

  12. DNA repair genes are selectively mutated in diffuse large B cell lymphomas

    PubMed Central

    de Miranda, Noel FCC; Peng, Roujun; Georgiou, Konstantinos; Wu, Chenglin; Sörqvist, Elin Falk; Berglund, Mattias; Chen, Longyun; Gao, Zhibo; Lagerstedt, Kristina; Lisboa, Susana; Roos, Fredrik; van Wezel, Tom; Teixeira, Manuel R.; Rosenquist, Richard; Sundström, Christer; Enblad, Gunilla; Nilsson, Mats; Zeng, Yixin; Kipling, David

    2013-01-01

    DNA repair mechanisms are fundamental for B cell development, which relies on the somatic diversification of the immunoglobulin genes by V(D)J recombination, somatic hypermutation, and class switch recombination. Their failure is postulated to promote genomic instability and malignant transformation in B cells. By performing targeted sequencing of 73 key DNA repair genes in 29 B cell lymphoma samples, somatic and germline mutations were identified in various DNA repair pathways, mainly in diffuse large B cell lymphomas (DLBCLs). Mutations in mismatch repair genes (EXO1, MSH2, and MSH6) were associated with microsatellite instability, increased number of somatic insertions/deletions, and altered mutation signatures in tumors. Somatic mutations in nonhomologous end-joining (NHEJ) genes (DCLRE1C/ARTEMIS, PRKDC/DNA-PKcs, XRCC5/KU80, and XRCC6/KU70) were identified in four DLBCL tumors and cytogenetic analyses revealed that translocations involving the immunoglobulin-heavy chain locus occurred exclusively in NHEJ-mutated samples. The novel mutation targets, CHEK2 and PARP1, were further screened in expanded DLBCL cohorts, and somatic as well as novel and rare germline mutations were identified in 8 and 5% of analyzed tumors, respectively. By correlating defects in a subset of DNA damage response and repair genes with genomic instability events in tumors, we propose that these genes play a role in DLBCL lymphomagenesis. PMID:23960188

  13. Prevalence of Pathogenic Mutations in Cancer Predisposition Genes among Pancreatic Cancer Patients.

    PubMed

    Hu, Chunling; Hart, Steven N; Bamlet, William R; Moore, Raymond M; Nandakumar, Kannabiran; Eckloff, Bruce W; Lee, Yean K; Petersen, Gloria M; McWilliams, Robert R; Couch, Fergus J

    2016-01-01

    The prevalence of germline pathogenic mutations in a comprehensive panel of cancer predisposition genes is not well-defined for patients with pancreatic ductal adenocarcinoma (PDAC). To estimate the frequency of mutations in a panel of 22 cancer predisposition genes, 96 patients unselected for a family history of cancer who were recruited to the Mayo Clinic Pancreatic Cancer patient registry over a 12-month period were screened by next-generation sequencing. Fourteen pathogenic mutations in 13 patients (13.5%) were identified in eight genes: four in ATM, two in BRCA2, CHEK2, and MSH6, and one in BARD1, BRCA1, FANCM, and NBN. These included nine mutations (9.4%) in established pancreatic cancer genes. Three mutations were found in patients with a first-degree relative with PDAC, and 10 mutations were found in patients with first- or second-degree relatives with breast, pancreas, colorectal, ovarian, or endometrial cancers. These results suggest that a substantial proportion of patients with PDAC carry germline mutations in predisposition genes associated with other cancers and that a better understanding of pancreatic cancer risk will depend on evaluation of families with broad constellations of tumors. These findings highlight the need for recommendations governing germline gene-panel testing of patients with pancreatic cancer. PMID:26483394

  14. Prevalence of pathogenic mutations in cancer predisposition genes among pancreatic cancer patients

    PubMed Central

    Hu, Chunling; Hart, Steven N.; Bamlet, William R.; Moore, Raymond M.; Nandakumar, Kannabiran; Eckloff, Bruce W.; Lee, Yean K.; Petersen, Gloria M.; McWilliams, Robert R.; Couch, Fergus J.

    2016-01-01

    The prevalence of germline pathogenic mutations in a comprehensive panel of cancer predisposition genes is not well defined for patients with pancreatic ductal adenocarcinoma (PDAC). To estimate the frequency of mutations in a panel of 22 cancer predisposition genes, 96 patients unselected for a family history of cancer who were recruited to the Mayo Clinic Pancreatic Cancer patient registry over a 12 month period were screened by next-generation sequencing. Fourteen pathogenic mutations in 13 patients (13.5%) were identified in eight genes: four in ATM, two in BRCA2, CHEK2, and MSH6, and one in BARD1, BRCA1, FANCM, and NBN. These included nine mutations (9.4%) in established pancreatic cancer genes. Three mutations were found in patients with a first degree relative with PDAC, and 10 mutations were found in patients with first or second-degree relatives with breast, pancreas, colorectal, ovarian, or endometrial cancer. These results suggest that a substantial proportion of patients with PDAC carry germline mutations in predisposition genes associated with other cancers, and that a better understanding of pancreatic cancer risk will depend on evaluation of families with broad constellations of tumors. These findings highlight the need for recommendations governing germline gene-panel testing of pancreatic cancer patients. PMID:26483394

  15. Hyperinsulinemic hypoglycemia syndrome associated with mutations in the human insulin receptor gene: report of two cases.

    PubMed

    Kuroda, Yohei; Iwahashi, Hiromi; Mineo, Ikuo; Fukui, Kenji; Fukuhara, Atsunori; Iwamoto, Ryuya; Imagawa, Akihisa; Shimomura, Iichiro

    2015-01-01

    Insulinoma and insulin or insulin receptor (IR) autoantibodies are the main causes of hyperinsulinemic hypoglycemia in adults, but the exact cause in other cases remains obscure. This study is to determine the genetic basis of hyperinsulinemic hypoglycemia in two cases without the above abnormalities. Sequence analysis of IR gene in two patients with adult-onset hyperinsulinemic hypoglycemia and their relatives were performed, and the mutant gene observed in one case was analyzed. Both cases had normal levels of fasting plasma glucose (FPG), fasting hyperinsulinemia, low insulin sensitivity, and hypoglycemia with excessive insulin secretion during oral glucose tolerance test (OGTT). Both reported adult-onset postprandial hypoglycemic symptoms. In one patient, a missense mutation (Arg256Cys) was detected in both alleles of the IR gene, and his parents had the same mutation in only one allele but no hypoglycemia. The other had a novel nonsense mutation (Trp1273X) followed by a mutation (Gln1274Lys) in one allele, and his 9-year old son had the same mutation in one allele, together with hyperinsulinemic hypoglycemia during OGTT. Overexpression experiments of the mutant gene found in Case 1 in mammalian cells showed abnormal processing of the IR protein and demonstrated reduced function of Akt/Erk phosphorylation by insulin in the cells. In two cases of hyperinsulinemic hypoglycemia in adults, we found novel mutations in IR gene considered to be linked to hypoglycemia. We propose a disease entity of adult-onset hyperinsulinemic hypoglycemia syndrome associated with mutations in IR gene. PMID:25753915

  16. A Common Founder Mutation in the EDA-A1 Gene in X-Linked Hypodontia

    PubMed Central

    Kurban, Mazen; Michailidis, Eleni; Wajid, Muhammad; Shimomura, Yutaka; Christiano, Angela M.

    2010-01-01

    Background X-linked recessive hypohidrotic ectodermal dysplasia (XLHED; OMIM 305100) is a rare genodermatosis characterized clinically by developmental abnormalities affecting the teeth, hair and sweat glands. Mutations in the EDA-A1 gene have been associated with XLHED. Recently, mutations in the EDA-A1 gene have also been implicated in isolated X-linked recessive hypodontia (XLRH; OMIM 313500). Methods We analyzed the DNA from members of 3 unrelated Pakistani families with XLRH for mutations in the EDA-A1 gene through direct sequencing and performed haplotype analysis. Results We identified a common missense mutation in both families designated c.1091T→C (p.M364T). Haplotype analysis revealed that this is a founder mutation in the 3 families. Conclusion XLHED is a syndrome with variable clinical presentations that contain a spectrum of findings, including hypodontia. We suggest that XLRH should be grouped under XLHED as both share several phenotypic and genotypic similarities. PMID:20628232

  17. Mutations in the SLC3A1 Transporter Gene in Cystinuria

    PubMed Central

    Pras, Elon; Raben, Nina; Golomb, Eliahu; Arber, Nadir; Aksentijevich, Ivona; Schapiro, Jonathan M.; Harel, Daniela; Katz, Giora; Liberman, Uri; Pras, Mordechai; Kastner, Daniel L.

    1995-01-01

    Cystinuria is an autosomal recessive disease characterized by the development of kidney stones. Guided by the identification of the SLC3A1 amino acid–transport gene on chromosome 2, we recently established genetic linkage of cystinuria to chromosome 2p in 17 families, without evidence for locus heterogeneity. Other authors have independently identified missense mutations in SLC3A1 in cystinuria patients. In this report we describe four additional cystinuria-associated mutations in this gene: a frameshift, a deletion, a transversion inducing a critical amino acid change, and a nonsense mutation. The latter stop codon was found in all of eight Ashkenazi Jewish carrier chromosomes examined. This report brings the number of disease-associated mutations in this gene to 10. We also assess the frequency of these mutations in our 17 cystinuria families. ImagesFigure 2Figure 3Figure 4 PMID:7539209

  18. Mutations in the SLC3A1 transporter gene in cystinuria

    SciTech Connect

    Pras, E.; Raben, N.; Aksentijevich, I.

    1995-06-01

    Cystinuria is an autosomal recessive disease characterized by the development of kidney stones. Guided by the identification of the SLC3A1 amino acid-transport gene on chromosome 2, we recently established genetic linkage of cystinuria to chromosome 2p in 17 families, without evidence for locus heterogeneity. Other authors have independently identified missense mutations in SLC3A1 in cystinuria patients. In this report we describe four additional cystinuria-associated mutations in this gene: a frameshift, a deletion, a transversion inducing a critical amino acid change, and a nonsense mutation. The latter stop codon was found in all of eight Ashkenazi Jewish carrier chromosomes examined. This report brings the number of disease-associated mutations in this gene to 10. We also assess the frequency of these mutations in our 17 cystinuria families. 24 refs., 4 figs., 1 tab.

  19. Epilepsy and sodium channel gene mutations: gain or loss of function?

    PubMed

    Yamakawa, Kazuhiro

    2005-01-19

    Mutations in voltage-gated sodium channel genes (SCN1A, SCN2A, SCN1B) have been reported to be responsible for some epilepsies. Although studying such mutations to elucidate the disease mechanisms would be indispensable for the development of effective therapies, the functional consequences of these mutations remain controversial. Here, I propose a novel hypothesis for an epileptic disease mechanism which could drive the design of further studies to understand the molecular pathology of these diseases. PMID:15618878

  20. Extending the Mutation Spectrum for Galloway–Mowat Syndrome to Include Homozygous Missense Mutations in the WDR73 Gene

    PubMed Central

    Rosti, Rasim O.; Dikoglu, Esra; Zaki, Maha S.; Abdel-Salam, Ghada; Makhseed, Nawal; Sese, Jordan C.; Musaev, Damir; Rosti, Basak; Harbert, Mary J.; Jones, Marilyn C.; Vaux, Keith K.; Gleeson, Joseph G.

    2016-01-01

    Galloway–Mowat syndrome is a rare autosomal-recessive disorder classically described as the combination of microcephaly and nephrotic syndrome. Recently, homozygous truncating mutations in WDR73 (WD repeat domain 73) were described in two of 31 unrelated families with Galloway–Mowat syndrome which was followed by a report of two sibs in an Egyptian consanguineous family. In this report, seven affecteds from four families showing biallelic missense mutations in WDR73 were identified by exome sequencing and confirmed to follow a recessive model of inheritance. Three-dimensional modeling predicted conformational alterations as a result of the mutation, supporting pathogenicity. An additional 13 families with microcephaly and renal phenotype were negative for WDR73 mutations. Missense mutations in the WDR73 gene are reported for the first time in Galloway–Mowat syndrome. A detailed phenotypic comparison of all reported WDR73-linked Galloway–Mowat syndrome patients with WDR73 negative patients showed that WDR73 mutations are limited to those with classical Galloway–Mowat syndrome features, in addition to cerebellar atrophy, thin corpus callosum, brain stem hypoplasia, occasional coarse face, late-onset and mostly slow progressive nephrotic syndrome, and frequent epilepsy. PMID:27001912

  1. Extending the mutation spectrum for Galloway-Mowat syndrome to include homozygous missense mutations in the WDR73 gene.

    PubMed

    Rosti, Rasim O; Dikoglu, Esra; Zaki, Maha S; Abdel-Salam, Ghada; Makhseed, Nawal; Sese, Jordan C; Musaev, Damir; Rosti, Basak; Harbert, Mary J; Jones, Marilyn C; Vaux, Keith K; Gleeson, Joseph G

    2016-04-01

    Galloway-Mowat syndrome is a rare autosomal-recessive disorder classically described as the combination of microcephaly and nephrotic syndrome. Recently, homozygous truncating mutations in WDR73 (WD repeat domain 73) were described in two of 31 unrelated families with Galloway-Mowat syndrome which was followed by a report of two sibs in an Egyptian consanguineous family. In this report, seven affecteds from four families showing biallelic missense mutations in WDR73 were identified by exome sequencing and confirmed to follow a recessive model of inheritance. Three-dimensional modeling predicted conformational alterations as a result of the mutation, supporting pathogenicity. An additional 13 families with microcephaly and renal phenotype were negative for WDR73 mutations. Missense mutations in the WDR73 gene are reported for the first time in Galloway-Mowat syndrome. A detailed phenotypic comparison of all reported WDR73-linked Galloway-Mowat syndrome patients with WDR73 negative patients showed that WDR73 mutations are limited to those with classical Galloway-Mowat syndrome features, in addition to cerebellar atrophy, thin corpus callosum, brain stem hypoplasia, occasional coarse face, late-onset and mostly slow progressive nephrotic syndrome, and frequent epilepsy. PMID:27001912

  2. Splicing defects in the ataxia-telangiectasia gene, ATM: underlying mutations and consequences.

    PubMed Central

    Teraoka, S N; Telatar, M; Becker-Catania, S; Liang, T; Onengüt, S; Tolun, A; Chessa, L; Sanal, O; Bernatowska, E; Gatti, R A; Concannon, P

    1999-01-01

    Mutations resulting in defective splicing constitute a significant proportion (30/62 [48%]) of a new series of mutations in the ATM gene in patients with ataxia-telangiectasia (AT) that were detected by the protein-truncation assay followed by sequence analysis of genomic DNA. Fewer than half of the splicing mutations involved the canonical AG splice-acceptor site or GT splice-donor site. A higher percentage of mutations occurred at less stringently conserved sites, including silent mutations of the last nucleotide of exons, mutations in nucleotides other than the conserved AG and GT in the consensus splice sites, and creation of splice-acceptor or splice-donor sites in either introns or exons. These splicing mutations led to a variety of consequences, including exon skipping and, to a lesser degree, intron retention, activation of cryptic splice sites, or creation of new splice sites. In addition, 5 of 12 nonsense mutations and 1 missense mutation were associated with deletion in the cDNA of the exons in which the mutations occurred. No ATM protein was detected by western blotting in any AT cell line in which splicing mutations were identified. Several cases of exon skipping in both normal controls and patients for whom no underlying defect could be found in genomic DNA were also observed, suggesting caution in the interpretation of exon deletions observed in ATM cDNA when there is no accompanying identification of genomic mutations. PMID:10330348

  3. Consequences of Marfan mutations to expression of fibrillin gene and to the structure of microfibrils

    SciTech Connect

    Peltonen, L.; Karttunen, L.; Rantamaeki, T.

    1994-09-01

    Marfan syndrome (MFS) is a dominantly inherited connective tissue disorder which is caused by mutations in the fibrillin-1 gene (FBN1). Over 40 family-specific FBN1 mutations have been identified. We have characterized 18 different heterozygous mutations including amino acid substitutions, premature stop, and splicing defects leading to deletions or one insertion, and one compound heterozygote with two differently mutated FBN1 alleles inherited from his affected parents. To unravel the consequences of FBN1 mutations to the transcription of FBN1 gene, we have measured the steady state levels of mRNA transcribed from the normal and mutated alleles. The missense mutations do not affect the transcription of the allele while the nonsense mutation leads to lower steady state amount of mutated allele. For the dissection of molecular pathogenesis of FBN1 mutations we have performed rotary shadowing of the microfibrils produced by the cell cultures from MFS patients. The cells from the neonatal patients with established mutations produced only disorganized fibrillin aggregates but no clearly defined microfibrils could be detected, suggesting a major role of this gene region coding for exons 24-26 in stabilization and organization of the bead structure of microfibrils. From the cells of a rare compound heterozygote case carrying two different mutations, no detectable microfibrils could be detected whereas the cells of his parents with heterozygous mutations were able to form identifiable but disorganized microfibrils. In the cells of an MFS case caused by a premature stop removing the C-terminus of fibrillin, the microfibril assembly takes place but the appropriate packing of the microfibrils is disturbed suggesting that C-terminae are actually located within the interbead domain of the microfibrils.

  4. Identification of a novel mutation of the EDA gene in X-linked hypohidrotic ectodermal dysplasia.

    PubMed

    Xue, J J; Tan, B; Gao, Q P; Zhu, G S; Liang, D S; Wu, L Q

    2015-01-01

    This study aimed to identify the disease-causing mutation in the ectodysplasin A (EDA) gene in a Chinese family affected by X-linked hypohidrotic ectodermal dysplasia (XLHED). A family clinically diagnosed with XLHED was investigated. For mutation analysis, the coding region of EDA of 2 patients and 7 unaffected members of the family was sequenced. The detected mutation in EDA was investigated in 120 normal controls. A missense mutation (c.878T>G) in EDA was detected in 2 patients and 3 female carriers, but not in 4 unaffected members of the family. The mutation was not found in the 120 healthy controls and has not been reported previously. Our findings indicate that a novel mutation (c.878T>G) of EDA is associated with XLHED and adds to the repertoire of EDA mutations. PMID:26634545

  5. An Undergraduate Laboratory Class Using CRISPR/Cas9 Technology to Mutate Drosophila Genes

    ERIC Educational Resources Information Center

    Adame, Vanesa; Chapapas, Holly; Cisneros, Marilyn; Deaton, Carol; Deichmann, Sophia; Gadek, Chauncey; Lovato, TyAnna L.; Chechenova, Maria B.; Guerin, Paul; Cripps, Richard M.

    2016-01-01

    CRISPR/Cas9 genome editing technology is used in the manipulation of genome sequences and gene expression. Because of the ease and rapidity with which genes can be mutated using CRISPR/Cas9, we sought to determine if a single-semester undergraduate class could be successfully taught, wherein students isolate mutants for specific genes using…

  6. Characterization of phenylalanine hydroxylase gene mutations in phenylketonuria in Xinjiang of China

    PubMed Central

    Yu, Wuzhong; He, Jiang; Yang, Xi; Zou, Hongyun; Gui, Junhao; Wang, Rui; Yang, Liu; Wang, Zheng; Lei, Quan

    2014-01-01

    To investigate the spectrum and frequency of phenylalanine hydroxylase (PAH) gene mutations in phenylketonuria (PKU) patients in Xinjiang, China. Polymerase chain reaction (PCR), in combination with single-strand conformation polymorphism (SSCP) and DNA sequencing analyses were performed, to screen potential mutations in the PAH gene in 46 individual PKU patients. Direct DNA sequencing was used to analyze the all of the exons in the PAH gene, including the promoter and flanking intron regions, in another 15 PKU patients. Our results indicated that, 30 different mutation types were identified in all 122 PAH alleles, with the mutation detection rate of 78.7% (96/122). Four novel mutations, i.e., 5’-Flanking -626G>A, 5’-Flanking -480DelACT, S196fsX4, and IVS8+1G>C, were identified for the first time. Similar to other regions in North China, R243Q, EX6-96A>G, IVS4-1A>G, R111X, and Y356X were the most prevalent PAH mutations in PKU patients from Xinjiang. Additionally, common mutations showed different frequencies in Xinjiang, when compared to other areas. Furthermore, sixteen different PAH gene mutation types were identified for the first time in the minorities in Xinjiang. Distinctive mutation spectrum of PAH gene in PKU patients from Xinjiang were characterized, which may promote the construction of PAH gene mutation database and serve as valuable tools for genetic diagnosis and counseling, and prognostic evaluation for PKU cases in the local area. PMID:25550961

  7. Mutated human androgen receptor gene detected in a prostatic cancer patient is also activated by estradiol

    SciTech Connect

    Elo, J.P.; Kvist, L.; Leinonen, K.; Isomaa, V.

    1995-12-01

    Androgens are necessary for the development of prostatic cancer. The mechanisms by which the originally androgen-dependent prostatic cancer cells are relieved of the requirement to use androgen for their growth are largely unknown. The human prostatic cancer cell line LNCaP has been shown to contain a point mutation in the human androgen receptor gene (hAR), suggesting that changes in the hAR may contribute to the abnormal hormone response of prostatic cells. To search for point mutations in the hAR, we used single strand conformation polymorphism analysis and a polymerase chain reaction direct sequencing method to screen 23 prostatic cancer specimens from untreated patients, 6 prostatic cancer specimens from treated patients, and 11 benign prostatic hyperplasia specimens. One mutation was identified in DNA isolated from prostatic cancer tissue, and the mutation was also detected in the leukocyte DNA of the patient and his offspring. The mutation changed codon 726 in exon E from arginine to leucine and was a germ line mutation. The mutation we found in exon E of the hAR gene does not alter the ligand binding specificity of the AR, but the mutated receptor was activated by estradiol to a significantly greater extent than the wild-type receptor. The AR gene mutation described in this study might be one explanation for the altered biological activity of prostatic cancer. 36 refs., 4 figs.

  8. Mutational analysis of the luteinizing hormone receptor gene in two individuals with Leydig cell tumors.

    PubMed

    Canto, Patricia; Söderlund, Daniela; Ramón, Guillermo; Nishimura, Elisa; Méndez, Juan Pablo

    2002-03-01

    Inactivating mutations of the luteinizing hormone receptor (LHR) gene in males induce Leydig cell agenesis or hypoplasia, while activating mutations cause testotoxicosis. Recently, it was demonstrated that a somatic heterozygous activating mutation of the LHR gene (Asp578His), limited to the tumor, was the cause of Leydig cell adenomas in three unrelated patients. We describe the molecular study of two unrelated boys with gonadotropin-independent hypersecretion of testosterone due to Leydig cell adenomas. Genomic DNA was extracted from the tumor, the adjacent normal testis tissue, and blood leukocytes. Both individuals exhibited an heterozygous missense mutation, limited only to the tumor, consisting of a guanine (G) to cytosine (C) substitution at codon 578 (GAT to CAT), turning aspartic acid into histidine. The presence of the same mutation in different ethnic groups demonstrates the existence of a mutational hot spot in the LHR gene. Indeed, this mutation occurs at the conserved aspartic acid residue at amino acid 578, where a substitution by glycine is the most common mutation observed in testotoxicosis and where a substitution by tyrosine has been linked to a more severe clinical phenotype where diffuse Leydig cell hyperplasia is found. Our results confirm the fact that somatic activating mutations of gonadotropin receptors are involved in gonadal tumorigenesis. PMID:11857565

  9. Mutational analysis of the androgen receptor gene in two Chinese families with complete androgen insensitivity syndrome

    PubMed Central

    WANG, SONG; XU, HAIKUN; AN, WEI; ZHU, DECHUN; LI, DEJUN

    2016-01-01

    Androgens are essential for normal male sex differentiation and are responsible for the normal development of male secondary sexual characteristics at puberty. The physiological effects of androgens are mediated by the androgen receptor (AR). Mutations in the AR gene are the most common cause of androgen insensitivity syndrome. The present study undertook a genetic analysis of the AR gene in two unrelated families affected by complete androgen insensitivity syndrome (CAIS) in China. In family 1, a previously reported nonsense mutation (G-to-A; p.W751X) was identified in exon 5 of the AR gene. In addition, a novel missense mutation was detected in exon 6 of the AR gene from family 2; this mutation resulted in a predicted amino acid change from phenylalanine to serine at codon 804 (T-to-C; p.F804S) in the ligand-binding domain (LBD) of AR. Computer simulation of the structural changes generated by the p.F804S substitution revealed marked conformational alterations in the hydrophobic core responsible for the stability and function of the AR-LBD. In conclusion, the present study identified two mutations from two unrelated Chinese families affected by CAIS. The novel mutation (p.F804S) may provide insights into the molecular mechanism underlying CAIS. Furthermore, it expands on the number of mutational hot spots in the international AR mutation database, which may be useful in the future for prenatal diagnosis and genetic counseling. PMID:27284311

  10. Novel Mutations in K13 Propeller Gene of Artemisinin-Resistant Plasmodium falciparum

    PubMed Central

    Uemura, Haruki; Kimata, Isao; Ichinose, Yoshio; Logedi, John; Omar, Ahmeddin H.; Kaneko, Akira

    2015-01-01

    We looked for mutations in the Plasmodium falciparum K13 propeller gene of an artemisinin-resistant parasite on islands in Lake Victoria, Kenya, where transmission in 2012–2013 was high. The 4 new types of nonsynonymous, and 5 of synonymous, mutations we detected among 539 samples analyzed provide clues to understanding artemisinin-resistant parasites. PMID:25695257