Sample records for hbb gene mutations

  1. Seamless Correction of the Sickle Cell Disease Mutation of the HBB Gene in Human Induced

    E-print Network

    Zhao, Huimin

    ABSTRACT: Sickle cell disease (SCD) is the most common human genetic disease which is caused by a single; genome editing Human induced pluripotent stem cells (hiPSCs) are genetically reprogrammed from adultSeamless Correction of the Sickle Cell Disease Mutation of the HBB Gene in Human Induced

  2. Impact of single nucleotide polymorphisms in HBB gene causing haemoglobinopathies: in silico analysis.

    PubMed

    George Priya Doss, C; Rao, Sethumadhavan

    2009-04-01

    Single nucleotide polymorphisms (SNPs) are being intensively studied to understand the biological basis of complex traits and diseases. Deleterious mutations of the human beta-globin gene (HBB) are responsible for beta-thalassaemia and other haemoglobinopathies, which are the most common genetic diseases of blood. Single amino acid substitutions in the globin chain are the commonest forms of haemoglobinopathy. Although many haemoglobinopathies present similar structural abnormal points, their functions sometimes are different. Here, using computational methods, we analysed the genetic variations that can alter the expression and function of the HBB gene. We applied an evolutionary perspective to screen the SNPs using a sequence homology-based SIFT tool, which suggested that 210 (90%) non-synonymous (ns)SNPs were found to be deleterious. The structure-based approach PolyPhen server suggested that 134 (57%) nsSNPS may disrupt protein function and structure. The PupaSuite tool predicted the phenotypic effect of SNPs on the structure and function of the affected protein. Structure analysis was carried out with the major mutation that occurred in the native protein coded by the HBB gene in HbC, HbD, HbE and HbS. The amino acid residues in the native and mutant modelled protein were further analysed for solvent accessibility, and secondary structure to check the stability of the proteins. The functional analysis presented here may be a good model for further research. PMID:19429541

  3. Both TALENs and CRISPR/Cas9 directly target the HBB IVS2–654 (C?>?T) mutation in ?-thalassemia-derived iPSCs

    PubMed Central

    Xu, Peng; Tong, Ying; Liu, Xiu-zhen; Wang, Ting-ting; Cheng, Li; Wang, Bo-yu; Lv, Xiang; Huang, Yue; Liu, De-pei

    2015-01-01

    ?-Thalassemia is one of the most common genetic blood diseases and is caused by either point mutations or deletions in the ?-globin (HBB) gene. The generation of patient-specific induced pluripotent stem cells (iPSCs) and subsequent correction of the disease-causing mutations may be a potential therapeutic strategy for this disease. Due to the low efficiency of typical homologous recombination, endonucleases, including TALENs and CRISPR/Cas9, have been widely used to enhance the gene correction efficiency in patient-derived iPSCs. Here, we designed TALENs and CRISPR/Cas9 to directly target the intron2 mutation site IVS2-654 in the globin gene. We observed different frequencies of double-strand breaks (DSBs) at IVS2-654 loci using TALENs and CRISPR/Cas9, and TALENs mediated a higher homologous gene targeting efficiency compared to CRISPR/Cas9 when combined with the piggyBac transposon donor. In addition, more obvious off-target events were observed for CRISPR/Cas9 compared to TALENs. Finally, TALENs-corrected iPSC clones were selected for erythroblast differentiation using the OP9 co-culture system and detected relatively higher transcription of HBB than the uncorrected cells. This comparison of using TALENs or CRISPR/Cas9 to correct specific HBB mutations in patient-derived iPSCs will guide future applications of TALENs- or CRISPR/Cas9-based gene therapies in monogenic diseases. PMID:26156589

  4. NO ASSOCIATION BETWEEN tHbmass AND POLYMORPHISMS IN THE HBB GENE IN ENDURANCE ATHLETES

    PubMed Central

    Malczewska-Lenczowska, J.; Orysiak, J.; Majorczyk, E.; Pokrywka, A.; Kaczmarski, J.; Szygula, Z.

    2014-01-01

    The aim of this study was to examine the association between tHbmass and HBB gene polymorphisms in athletes of endurance disciplines. Eighty-two well-trained athletes (female n=36, male n=46), aged 19.3 ± 2.7 years, representing cross country skiing (n=37) and middle- and long-distance running (n=45), participated in the study. Genotyping for 2 polymorphisms in the HBB gene (- 551C/T and intron 2, +16 C/G) was performed using restriction fragment length polymorphism analysis. Total haemoglobin mass (tHbmass) was determined by the optimized carbon monoxide rebreathing method. Blood morphology, indices of iron status (ferritin, transferrin receptor and total iron binding capacity) and C reactive protein were also determined. No differences were found in the HBB genotype and allele frequencies between male and female athletes. Regardless of the polymorphisms, no relationships were found between HBB genotypes as well as alleles and relative values of tHbmass, expressed per body mass (g · kg-1 BM), both in female and male athletes. Our results demonstrated that -551 C/T and intron 2, +16 C/G polymorphisms of the HBB gene have no association with total haemoglobin mass in endurance athletes. It cannot be ruled out that several polymorphisms, each with a small but significant contribution, may be responsible for the amount of haemoglobin. PMID:24899775

  5. Integrative Analysis of CRISPR/Cas9 Target Sites in the Human HBB Gene

    PubMed Central

    Luo, Yumei; Zhang, Zhizhuo; Chen, Yaoyong; Sun, Xiaofang

    2015-01-01

    Recently, the clustered regularly interspaced short palindromic repeats (CRISPR) system has emerged as a powerful customizable artificial nuclease to facilitate precise genetic correction for tissue regeneration and isogenic disease modeling. However, previous studies reported substantial off-target activities of CRISPR system in human cells, and the enormous putative off-target sites are labor-intensive to be validated experimentally, thus motivating bioinformatics methods for rational design of CRISPR system and prediction of its potential off-target effects. Here, we describe an integrative analytical process to identify specific CRISPR target sites in the human ?-globin gene (HBB) and predict their off-target effects. Our method includes off-target analysis in both coding and noncoding regions, which was neglected by previous studies. It was found that the CRISPR target sites in the introns have fewer off-target sites in the coding regions than those in the exons. Remarkably, target sites containing certain transcriptional factor motif have enriched binding sites of relevant transcriptional factor in their off-target sets. We also found that the intron sites have fewer SNPs, which leads to less variation of CRISPR efficiency in different individuals during clinical applications. Our studies provide a standard analytical procedure to select specific CRISPR targets for genetic correction. PMID:25918715

  6. Integrative Analysis of CRISPR/Cas9 Target Sites in the Human HBB Gene.

    PubMed

    Luo, Yumei; Zhu, Detu; Zhang, Zhizhuo; Chen, Yaoyong; Sun, Xiaofang

    2015-01-01

    Recently, the clustered regularly interspaced short palindromic repeats (CRISPR) system has emerged as a powerful customizable artificial nuclease to facilitate precise genetic correction for tissue regeneration and isogenic disease modeling. However, previous studies reported substantial off-target activities of CRISPR system in human cells, and the enormous putative off-target sites are labor-intensive to be validated experimentally, thus motivating bioinformatics methods for rational design of CRISPR system and prediction of its potential off-target effects. Here, we describe an integrative analytical process to identify specific CRISPR target sites in the human ?-globin gene (HBB) and predict their off-target effects. Our method includes off-target analysis in both coding and noncoding regions, which was neglected by previous studies. It was found that the CRISPR target sites in the introns have fewer off-target sites in the coding regions than those in the exons. Remarkably, target sites containing certain transcriptional factor motif have enriched binding sites of relevant transcriptional factor in their off-target sets. We also found that the intron sites have fewer SNPs, which leads to less variation of CRISPR efficiency in different individuals during clinical applications. Our studies provide a standard analytical procedure to select specific CRISPR targets for genetic correction. PMID:25918715

  7. Trans-spliced Cas9 allows cleavage of HBB and CCR5 genes in human cells using compact expression cassettes

    PubMed Central

    Fine, Eli J.; Appleton, Caleb M.; White, Douglas E.; Brown, Matthew T.; Deshmukh, Harshavardhan; Kemp, Melissa L.; Bao, Gang

    2015-01-01

    CRISPR/Cas9 systems have been used in a wide variety of biological studies; however, the large size of CRISPR/Cas9 presents challenges in packaging it within adeno-associated viruses (AAVs) for clinical applications. We identified a two-cassette system expressing pieces of the S. pyogenes Cas9 (SpCas9) protein which splice together in cellula to form a functional protein capable of site-specific DNA cleavage. With specific CRISPR guide strands, we demonstrated the efficacy of this system in cleaving the HBB and CCR5 genes in human HEK-293T cells as a single Cas9 and as a pair of Cas9 nickases. The trans-spliced SpCas9 (tsSpCas9) displayed ~35% of the nuclease activity compared with the wild-type SpCas9 (wtSpCas9) at standard transfection doses, but had substantially decreased activity at lower dosing levels. The greatly reduced open reading frame length of the tsSpCas9 relative to wtSpCas9 potentially allows for more complex and longer genetic elements to be packaged into an AAV vector including tissue-specific promoters, multiplexed guide RNA expression, and effector domain fusions to SpCas9. For unknown reasons, the tsSpCas9 system did not work in all cell types tested. The use of protein trans-splicing may help facilitate exciting new avenues of research and therapeutic applications through AAV-based delivery of CRISPR/Cas9 systems. PMID:26126518

  8. IBMFS - gene mutations

    Cancer.gov

    A "mutation" is a change in a gene that prevents it from working properly. A "germline" mutation is a change that occurs in the egg or the sperm, or both, and is passed from one parent or both parents to the child.

  9. Seamless gene correction of ?-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac.

    PubMed

    Xie, Fei; Ye, Lin; Chang, Judy C; Beyer, Ashley I; Wang, Jiaming; Muench, Marcus O; Kan, Yuet Wai

    2014-09-01

    ?-thalassemia, one of the most common genetic diseases worldwide, is caused by mutations in the human hemoglobin beta (HBB) gene. Creation of human induced pluripotent stem cells (iPSCs) from ?-thalassemia patients could offer an approach to cure this disease. Correction of the disease-causing mutations in iPSCs could restore normal function and provide a rich source of cells for transplantation. In this study, we used the latest gene-editing tool, CRISPR/Cas9 technology, combined with the piggyBac transposon to efficiently correct the HBB mutations in patient-derived iPSCs without leaving any residual footprint. No off-target effects were detected in the corrected iPSCs, and the cells retain full pluripotency and exhibit normal karyotypes. When differentiated into erythroblasts using a monolayer culture, gene-corrected iPSCs restored expression of HBB compared to the parental iPSCs line. Our study provides an effective approach to correct HBB mutations without leaving any genetic footprint in patient-derived iPSCs, thereby demonstrating a critical step toward the future application of stem cell-based gene therapy to monogenic diseases. PMID:25096406

  10. Production of Gene-Corrected Adult Beta Globin Protein in Human Erythrocytes Differentiated from Patient iPSCs After Genome Editing of the Sickle Point Mutation.

    PubMed

    Huang, Xiaosong; Wang, Ying; Yan, Wei; Smith, Cory; Ye, Zhaohui; Wang, Jing; Gao, Yongxing; Mendelsohn, Laurel; Cheng, Linzhao

    2015-05-01

    Human induced pluripotent stem cells (iPSCs) and genome editing provide a precise way to generate gene-corrected cells for disease modeling and cell therapies. Human iPSCs generated from sickle cell disease (SCD) patients have a homozygous missense point mutation in the HBB gene encoding adult ?-globin proteins, and are used as a model system to improve strategies of human gene therapy. We demonstrate that the CRISPR/Cas9 system designer nuclease is much more efficient in stimulating gene targeting of the endogenous HBB locus near the SCD point mutation in human iPSCs than zinc finger nucleases and TALENs. Using a specific guide RNA and Cas9, we readily corrected one allele of the SCD HBB gene in human iPSCs by homologous recombination with a donor DNA template containing the wild-type HBB DNA and a selection cassette that was subsequently removed to avoid possible interference of HBB transcription and translation. We chose targeted iPSC clones that have one corrected and one disrupted SCD allele for erythroid differentiation assays, using an improved xeno-free and feeder-free culture condition we recently established. Erythrocytes from either the corrected or its parental (uncorrected) iPSC line were generated with similar efficiencies. Currently ?6%-10% of these differentiated erythrocytes indeed lacked nuclei, characteristic of further matured erythrocytes called reticulocytes. We also detected the 16-kDa ?-globin protein expressed from the corrected HBB allele in the erythrocytes differentiated from genome-edited iPSCs. Our results represent a significant step toward the clinical applications of genome editing using patient-derived iPSCs to generate disease-free cells for cell and gene therapies. Stem Cells 2015;33:1470-1479. PMID:25702619

  11. Localised Sex, Contingency and Mutator Genes

    E-print Network

    Atkinson, Katie

    ;Consequences of Asexual Reproduction Mutation Clonal Population: highly structured with low diversity, bottlenecking, back mutations #12;Mutation and mutator genes · In asexual reproduction, novelty introduced) § Reproduction § Architecture-Alteration (deletion/duplication) #12;Adaptation and Optimization · Natural

  12. Characterization of Hb Calvino (HBB: c.406G?>?A): a new silent ?-globin gene variant found in coexistence with ?-thalassemia in a family of African origin.

    PubMed

    Marsella, Maria; Salvagno, Gianluca; Dolcini, Bernadetta; Ferlini, Alessandra; Ravani, Anna; Harteveld, Cornelis L; Giordano, Piero C; Borgna-Pignatti, Caterina

    2014-01-01

    We report a new silent ?-globin gene variant found in a family from Angola living in the north eastern Italian city of Ferrara. The probands, two young sisters, presented with hematological parameters compatible with a ?-thalassemia (?-thal) minor but with normal Hb A? levels and normal hemoglobin (Hb) separation on high performance liquid chromatography (HPLC). Molecular analyses revealed a homozygosity for the common -?(3.7) (rightward) deletion and heterozygosity for a novel transition (GCT?>?ACT) at codon 135 of the ?-globin gene, leading to an Ala???Thr single amino acid substitution that was inherited from the healthy father. PMID:25222042

  13. KIT gene mutations in gastrointestinal stromal tumor.

    PubMed

    Kang, Weiming; Zhu, Changzhen; Yu, JianChun; Ye, Xin; Ma, ZhiQiang

    2015-01-01

    Gastrointestinal stromal tumor (GIST) is the most common mesenchymal tumor of the gastrointestinal tract. It arises in the stomach, small intestine, colon, rectum and esophagus. KIT gene mutation is a feature of GIST, in addition to PDGFRA gene mutation. KIT gene mutations have been observed to be involved in the development of GIST, its recurrence after surgery and chemotherapy resistance in GIST. Exons 13, 17, 9, and mainly exon 11 are concerned in these biological behaviors of GIST. In this review, we will discuss on the involvement of KIT gene mutations in the tumorigenesis, recurrence and chemotherapeutic resistance of GIST. PMID:25961532

  14. Connexin gene mutations in human genetic diseases

    Microsoft Academic Search

    Vladimir Krutovskikh; Hiroshi Yamasaki

    2000-01-01

    Rapid advances in understanding the molecular biology of the gap junctional proteins — connexins (Cx) — have revealed that these proteins are indispensable for various cellular functions. Recent findings that mutational alterations of Cx genes leads to several quite different human diseases provide additional evidence that these proteins possess several not yet fully understood functions. Many different mutations of Cx32

  15. Mutagenesis: mutating a gene while reading it.

    PubMed

    Helleday, Thomas

    2010-01-26

    Is it possible to mutate DNA during transcription? A new study shows that UV-damaged DNA is deaminated during transcription, which is a probable mechanism underlying CC tandem mutations found in the p53 gene in skin cancers. PMID:20129038

  16. Point mutations in the dystrophin gene.

    PubMed Central

    Roberts, R G; Bobrow, M; Bentley, D R

    1992-01-01

    Defining the range of mutations in genes that cause human disease is essential to determine the mechanisms of genetic variation and the function of gene domains and to perform precise carrier and prenatal diagnosis. The mutations in one-third of Duchenne muscular dystrophy patients remain unknown as they do not involve gross rearrangements of the dystrophin gene. The size and complexity of the gene have prohibited the systematic definition of point mutations. We have developed a method for the identification of these mutations by nested amplification, chemical mismatch detection, and sequencing of reverse transcripts of trace amounts of dystrophin mRNA from peripheral blood lymphocytes. Analysis of the entire coding region (11 kilobases) in seven patients has resulted in detection of a sequence change in each case that is clearly sufficient to cause the disease. All mutations should cause premature translational termination, and the resulting phenotypes are thus equivalent to those caused by frameshifting deletions. The results support a particular functional importance for the C-terminal region of dystrophin. Application of this approach to mutation detection will extend direct carrier and prenatal diagnosis to virtually every affected family. Images PMID:1549596

  17. Mutational Robustness of Gene Regulatory Networks

    PubMed Central

    van Dijk, Aalt D. J.; van Mourik, Simon; van Ham, Roeland C. H. J.

    2012-01-01

    Mutational robustness of gene regulatory networks refers to their ability to generate constant biological output upon mutations that change network structure. Such networks contain regulatory interactions (transcription factor – target gene interactions) but often also protein-protein interactions between transcription factors. Using computational modeling, we study factors that influence robustness and we infer several network properties governing it. These include the type of mutation, i.e. whether a regulatory interaction or a protein-protein interaction is mutated, and in the case of mutation of a regulatory interaction, the sign of the interaction (activating vs. repressive). In addition, we analyze the effect of combinations of mutations and we compare networks containing monomeric with those containing dimeric transcription factors. Our results are consistent with available data on biological networks, for example based on evolutionary conservation of network features. As a novel and remarkable property, we predict that networks are more robust against mutations in monomer than in dimer transcription factors, a prediction for which analysis of conservation of DNA binding residues in monomeric vs. dimeric transcription factors provides indirect evidence. PMID:22295094

  18. Mutational analysis of the lambda S gene 

    E-print Network

    Neal, Gregory Scott

    1984-01-01

    OF TASLES Table I Bacter1al strains and plasmids. 2 Poss1ble 5 gene mutat1ons 3 In vitro mutagenesis with hydroxylamine 4 Freeze-thaw lysis test results. 5 Primers used in the sequencing of mutants 6 Master table of mutants Page 14 25 28 33 42... should be very low. In fact, only I of the sequenced S 25 TABLE 2. Possible S gene mutations. a aagb aa codon possible codon changes change in aa 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29...

  19. Retrospective Review of MET Gene Mutations

    PubMed Central

    Zenali, Maryam; deKay, James; Liu, Zesheng; Hamilton, Stanley; Zuo, Zhuang; Lu, Xinyan; Bakkar, Rania; Mills, Gordon; Broaddus, Russell

    2015-01-01

    C-MET proto-oncogene is a tyrosine kinase situated on chromosome 7. C-MET and its ligand hepatocyte growth factor/scatter factor (HGF/SF) play a role in proliferation, differentiation and organ development. C-MET genetic aberrations are found associated with driving tumorigenesis. In this retrospective study, we reviewed molecular analysis data gathered from a cancer institute during a two-year period (2010-2012). Upon detection of tumors harboring c-MET mutations, we determined the status of the other mutations tested and evaluated c-MET expression by fluorescent in-situ hybridization (FISH). Our search resulted in identification of 134 c-MET mutations, 44% of which had mutations of at least one of the other genes tested. No c-MET expression aberrancy was detected in this subset by FISH. Survival amongst the patients with surgically resected metastatic colorectal cancers (CRC) was slightly better in those with only a c-MET mutation compared to those with no mutation detected, although the difference was not statistically significant. When c-MET inhibition becomes an integrated part of chemotherapy practice, our observed frequency of co-mutations will be an argument for utilizing c-MET targeted treatment in combination with other targeted drugs and therapeutic strategies. Larger studies can aid to further parse out c-MET prognostic and therapeutic significance. PMID:26097886

  20. Mutations of the GREAT gene cause cryptorchidism.

    PubMed

    Gorlov, Ivan P; Kamat, Aparna; Bogatcheva, Natalia V; Jones, Eric; Lamb, Dolores J; Truong, Anne; Bishop, Colin E; McElreavey, Ken; Agoulnik, Alexander I

    2002-09-15

    In humans, failure of testicular descent (cryptorchidism) is one of the most frequent congenital malformations, affecting 1-3% of newborn boys. The clinical consequences of this abnormality are infertility in adulthood and a significantly increased risk of testicular malignancy. Recently, we described a mouse transgene insertional mutation, crsp, causing high intraabdominal cryptorchidism in homozygous males. A candidate gene Great (G-protein-coupled receptor affecting testis descent), was identified within the transgene integration site. Great encodes a seven-transmembrane receptor with a close similarity to the glycoprotein hormone receptors. The Great gene is highly expressed in the gubernaculum, the ligament that controls testicular movement during development, and therefore may be responsible for mediating hormonal signals that affect testicular descent. Here we show that genetic targeting of the Great gene in mice causes infertile bilateral intraabdominal cryptorchidism. The mutant gubernaculae fail to differentiate, indicating that the Great gene controls their development. Mutation screening of the human GREAT gene was performed using DHPLC analysis of the genomic DNA from 60 cryptorchid patients. Nucleotide variations in GREAT cDNA were found in both the patient and the control populations. A unique missense mutation (T222P) in the ectodomain of the GREAT receptor was identified in one of the patients. This mutant receptor fails to respond to ligand stimulation, implicating the GREAT gene in the etiology in some cases of cryptorchidism in humans. PMID:12217959

  1. Multicentric origin of hemochromatosis gene (HFE) mutations.

    PubMed Central

    Rochette, J; Pointon, J J; Fisher, C A; Perera, G; Arambepola, M; Arichchi, D S; De Silva, S; Vandwalle, J L; Monti, J P; Old, J M; Merryweather-Clarke, A T; Weatherall, D J; Robson, K J

    1999-01-01

    Genetic hemochromatosis (GH) is believed to be a disease restricted to those of European ancestry. In northwestern Europe, >80% of GH patients are homozygous for one mutation, the substitution of tyrosine for cysteine at position 282 (C282Y) in the unprocessed protein. In a proportion of GH patients, two mutations are present, C282Y and H63D. The clinical significance of this second mutation is such that it appears to predispose 1%-2% of compound heterozygotes to expression of the disease. The distribution of the two mutations differ, C282Y being limited to those of northwestern European ancestry and H63D being found at allele frequencies>5%, in Europe, in countries bordering the Mediterranean, in the Middle East, and in the Indian subcontinent. The C282Y mutation occurs on a haplotype that extends mutation has arisen during the past 2,000 years. The H63D mutation is older and does not occur on such a large extended haplotype, the haplotype in this case extending mutations on new haplotypes. In Sri Lanka we have found H63D on three new haplotypes and have found C282Y on one new haplotype, demonstrating that these mutations have arisen independently on this island. These results suggest that the HFE gene has been the subject of selection pressure. These selection pressures could be due to infectious diseases, environmental conditions, or other genetic disorders such as anemia. PMID:10090890

  2. Clinical implications for BRCA gene mutation in breast cancer

    Microsoft Academic Search

    Jin Xu; Baosheng Wang; Yanjun Zhang; Ruihui Li; Yuehua Wang; Shaokun Zhang

    To investigate the mutations of BRCA1 and BRCA2 and determine whether clinic-pathological factors related to BRCA gene mutation.\\u000a Mastectomy specimens from 360 breast cancers were enrolled and examined in the study. The relationship between BRCA gene mutation\\u000a and clinic-pathological factors was evaluated. Overall, 280 patients were BRCA negative and 80 got BRCA gene mutation. Triple-negative\\u000a breast cancers—i.e., breast cancers that

  3. Mutations of the GREAT gene cause cryptorchidism

    Microsoft Academic Search

    Ivan P. Gorlov; Aparna Kamat; Natalia V. Bogatcheva; Eric Jones; Dolores J. Lamb; Anne Truong; Colin E. Bishop; Ken McElreavey; Alexander I. Agoulnik

    2002-01-01

    In humans, failure of testicular descent (cryptorchidism) is one of the most frequent congenital malformations, affecting 1-3% of newborn boys. The clinical consequences of this abnormality are infertility in adulthood and a significantly increased risk of testicular malignancy. Recently, we described a mouse transgene insertional mutation, crsp, causing high intraabdominal cryptorchidism in homozygous males. A candidate gene Great (G-protein-coupled receptor

  4. Gene promoter hypermethylation in ductal lavage fluid from healthy BRCA gene mutation carriers and mutation-negative controls

    Microsoft Academic Search

    Imogen Locke; Zsofia Kote-Jarai; Mary Jo Fackler; Elizabeth Bancroft; Peter Osin; Ashutosh Nerurkar; Louise Izatt; Gabriella Pichert; Gerald PH Gui; Rosalind A Eeles

    2007-01-01

    INTRODUCTION: Female germline BRCA gene mutation carriers are at increased risk for developing breast cancer. The purpose of our study was to establish whether healthy BRCA mutation carriers demonstrate an increased frequency of aberrant gene promoter hypermethylation in ductal lavage (DL) fluid, compared with predictive genetic test negative controls, that might serve as a surrogate marker of BRCA1\\/2 mutation status

  5. Mutational analysis of the lambda S gene

    E-print Network

    Neal, Gregory Scott

    1984-01-01

    was added to 0. 7% for solid medium. Chemicals, enzymes. Agarose, T4 DNA ligase and exonuclease II I were purchased from Bethesda Research Laboratories, Inc. All antibi- otics, X-gal, and IPTG were purchased from Sigma Chemical Company. Cs... should be very low. In fact, only I of the sequenced S 25 TABLE 2. Possible S gene mutations. a aagb aa codon possible codon changes change in aa 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29...

  6. Mutational analysis of the human MAOA gene

    SciTech Connect

    Tivol, E.A.; Shalish, C.; Schuback, D.E.; Breakefield, X.O. [Harvard Medical School, Boston, MA (United States)] [Harvard Medical School, Boston, MA (United States); Hsu, Yun-Pung [VA Medical Center, West Roxbury, MA (United States)] [VA Medical Center, West Roxbury, MA (United States)

    1996-02-16

    The monoamine oxidases (MAO-A and MAO-B) are the enzymes primarily responsible for the degradation of amine neurotransmitters, such as dopamine, norepinephrine, and serotonin. Wide variations in activity of these isozymes have been reported in control humans. The MAOA and MAOB genes are located next to each other in the p11.3-11.4 region of the human X chromosome. Our recent documentation of an MAO-A-deficiency state, apparently associated with impulsive aggressive behavior in males, has focused attention on genetic variations in the MAOA gene. In the present study, variations in the coding sequence of the MAOA gene were evaluated by RT-PCR, SSCP, and sequencing of mRNA or genomic DNA in 40 control males with >100-fold variations in MAOA activity, as measured in cultured skin fibroblasts. Remarkable conservation of the coding sequence was found, with only 5 polymorphisms observed. All but one of these were in the third codon position and thus did not alter the deduced amino acid sequence. The one amino acid alteration observed, lys{r_arrow}arg, was neutral and should not affect the structure of the protein. This study demonstrates high conservation of coding sequence in the human MAOA gene in control males, and provides primer sets which can be used to search genomic DNA for mutations in this gene in males with neuropsychiatric conditions. 47 refs., 1 fig., 2 tabs.

  7. Succinate dehydrogenase gene mutations in cardiac paragangliomas.

    PubMed

    Martucci, Victoria L; Emaminia, Abbas; Del Rivero, Jaydira; Lechan, Ronald M; Magoon, Bindiya T; Galia, Analyza; Fojo, Tito; Leung, Steve; Lorusso, Roberto; Jimenez, Camilo; Shulkin, Barry L; Audibert, Jennifer L; Adams, Karen T; Rosing, Douglas R; Vaidya, Anand; Dluhy, Robert G; Horvath, Keith A; Pacak, Karel

    2015-06-15

    Pheochromocytomas and paragangliomas are chromaffin cell tumors arising from neuroendocrine cells. At least 1/3 of paragangliomas are related to germline mutations in 1 of 17 genes. Although these tumors can occur throughout the body, cardiac paragangliomas are very rare, accounting for <0.3% of mediastinal tumors. The purpose of this study was to determine the clinical characteristics of patients with cardiac paragangliomas, particularly focusing on their genetic backgrounds. A retrospective chart analysis of 15 patients with cardiac paragangliomas was performed to determine clinical presentation, genetic background, diagnostic workup, and outcomes. The average age at diagnosis was 41.9 years. Typical symptoms of paraganglioma (e.g., hypertension, sweating, palpitations, headache) were reported at initial presentation in 13 patients (86.7%); the remaining 2, as well as 4 symptomatic patients, initially presented with cardiac-specific symptoms (e.g., chest pain, dyspnea). Genetic testing was done in 13 patients (86.7%); 10 (76.9%) were positive for mutations in succinate dehydrogenase (SDHx) subunits B, C, or D. Thirteen patients (86.7%) underwent surgery to remove the paraganglioma with no intraoperative morbidity or mortality; 1 additional patient underwent surgical resection but experienced intraoperative complications after removal of the tumor due to co-morbidities and did not survive. SDHx mutations are known to be associated with mediastinal locations and malignant behavior of paragangliomas. In this report, the investigators extend the locations of predominantly SDHx-related paragangliomas to cardiac tumors. In conclusion, cardiac paragangliomas are frequently associated with underlying SDHx germline mutations, suggesting a need for genetic testing of all patients with this rare tumor. PMID:25896150

  8. NOTCH3 gene mutations in subjects clinically suspected of CADASIL

    Microsoft Academic Search

    Lorena Mosca; Raffaella Marazzi; Alfonso Ciccone; Ignazio Santilli; Anna Bersano; Valeria Sansone; Enrico Grosso; Giorgia Mandrile; Daniela Francesca Giachino; Laura Adobbati; Elisabetta Corengia; Elio Agostoni; Anna Fiumani; Salvatore Gallone; Elio Scarpini; Mario Guidotti; Roberto Sterzi; Clara Ajmone; Alessandro Marocchi; Silvana Penco

    2011-01-01

    BackgroundCerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is an inherited cerebrovascular disease due to mutations involving loss or gain of a cysteine residue in the NOTCH3 gene. A cluster of mutations around exons 3 and 4 was originally reported. Identification of pathogenic mutation is important for diagnostic confirmation of the disease, however genetic counselling and testing of

  9. Mutation analysis of the gene involved in adrenoleukodystrophy

    SciTech Connect

    Oost, B.A. van; Ligtenberg, M.J.L. [Univ. Hospital Nijmegen (Netherlands); Kemp, S.; Bolhuis, P.A. [Academic Medical Center, Amsterdam (Netherlands)

    1994-09-01

    A gene responsible for the X-linked genetic disorder adrenoleukodystrophy (ALD) that is characterized by demyelination of the nervous system and adrenocortical insufficiency has been identified by positional cloning. The gene encodes an ATP-binding transporter which is located in the peroxisomal membrane. Deficiency of the gene leads to accumulation of unsaturated very long chain fatty acids due to impaired peroxisomal {beta}-oxidation. A systematic analysis of the open reading frame of the ALD gene unraveled the mutations in 28 different families using reverse transcriptase-PCR followed by direct sequencing. No entire gene deletions or drastic promoter mutations have been detected. Only in one family did the mutation involved multiple exons. The remaining mutations were subtle alterations leading to missense (about 50%) or nonsense mutations, frameshifts or splice acceptor site defects. In one patient a single codon was missing. Mutations affecting a single amino acid were concentrated in the region between the third and fourth putative membrane spanning fragments and in the ATP-binding domain. This overview of mutations aids in the determination of structural and functional important regions and facilitates the screening for mutations in other ALD patients. The detection of mutations in virtually all ALD families tested indicates that the isolated gene is the only gene responsible for ALD located in Xq28.

  10. Multiple thrombophilic gene mutations are risk factors for implantation failure

    Microsoft Academic Search

    Carolyn B Coulam; RS Jeyendran; Laurence A Fishel; Roumen Roussev

    2006-01-01

    While the role of inherited thrombophilia has been accepted as a cause of recurrent late pregnancy complications, the contribution of mutated thrombophilic genes to implantation failure has not been studied. Proteins involved in fibrinolysis are necessary for trophoblast invasion into the endometrium. This study compared the prevalence of 10 thrombophilic gene mutations among 42 women with a history of recurrent

  11. Hepatoblastoma and APC gene mutation in familial adenomatous polyposis.

    PubMed Central

    Giardiello, F M; Petersen, G M; Brensinger, J D; Luce, M C; Cayouette, M C; Bacon, J; Booker, S V; Hamilton, S R

    1996-01-01

    BACKGROUND: Hepatoblastoma is a rare, rapidly progressive, usually fatal childhood malignancy, which if confined to the liver can be cured by radical surgical resection. An association between hepatoblastoma and familial adenomatous polyposis (FAP), which is due to germline mutation of the APC (adenomatous polyposis coli) gene, has been confirmed, but correlation with site of APC mutation has not been studied. AIM: To analyse the APC mutational spectrum in FAP families with hepatoblastoma as a possible basis to select kindreds for surveillance. PATIENTS: Eight patients with hepatoblastoma in seven FAP kindreds were compared with 97 families with identified APC gene mutation in a large Registry. METHODS: APC gene mutation was evaluated by RNase protection assay or in vitro synthesis protein assay. The chi 2 test and correlation were used for data analysis. RESULTS: APC gene mutation was identified in all seven FAP kindreds in which an at risk member developed hepatoblastoma. A male predominance was noted (six of eight), similar to literature cases (18 of 25, p < 0.01. Mutations were restricted to codons 141 to 1230, but no significant difference in site of mutation between pedigrees with and without hepatoblastoma was identified. CONCLUSIONS: Hepatoblastoma occurs primarily in boys in FAP kindreds and is associated with germline APC mutation in the 5' end of the gene. However, the site of APC mutation cannot be used to predict occurrence of this extracolonic cancer in FAP pedigrees. PMID:9038672

  12. 21 CFR 866.5900 - Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation detection system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...transmembrane conductance regulator (CFTR) gene mutation detection system. 866.5900...transmembrane conductance regulator (CFTR) gene mutation detection system. (a) Identification . The CFTR gene mutation detection system is a...

  13. 21 CFR 866.5900 - Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation detection system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...transmembrane conductance regulator (CFTR) gene mutation detection system. 866.5900...transmembrane conductance regulator (CFTR) gene mutation detection system. (a) Identification . The CFTR gene mutation detection system is a...

  14. Mutations in Putative Mutator Genes of Mycobacterium tuberculosis Strains of the W-Beijing Family

    Microsoft Academic Search

    Mina Ebrahimi Rad; Pablo Bifani; Carlos Martin; Kristin Kremer; Sofia Samper; Jean Rauzier; Barry Kreiswirth; Jesus Blazquez; Marc Jouan; Dick van Soolingen; Brigitte Gicquel

    2003-01-01

    Alterations in genes involved in the repair of DNA mutations (mut genes) result in an increased mutation fre- quency and better adaptability of the bacterium to stressful conditions. W-Beijing genotype strains displayed unique missense alterations in three putative mut genes, including two of the mutT type (Rv3908 and mutT2) and ogt. These polymorphisms were found to be characteristic and unique

  15. ABCB4 gene mutation—associated cholelithiasis in adults

    Microsoft Academic Search

    Olivier Rosmorduc; Brigitte Hermelin; Rolland Parc; Jacques Taboury; Raoul Poupon

    2003-01-01

    Background & Aims:We recently put forward arguments in favor of ABCB4 gene (adenosine triphosphate—binding cassette, subfamily B, member 4) defects as a risk factor for symptomatic cholelithiasis in adults. In this study, we characterized ABCB4 gene mutations in a series of patients with symptomatic cholelithiasis to determine the genetic basis and the clinical phenotype of ABCB4 gene mutation—associated cholelithiasis.

  16. Somatic thrombopoietin (THPO) gene mutations in childhood myeloid leukemias.

    PubMed

    Houwing, Maite E; Koopman-Coenen, Eva A; Kersseboom, Rogier; Gooskens, Saskia; Appel, Inge M; Arentsen-Peters, Susan T C J M; de Vries, Andrica C H; Reinhardt, Dirk; Stary, Jan; Baruchel, André; de Haas, Valerie; Blink, Marjolein; Lopes Cardozo, Rob H; Pieters, Rob; Michel Zwaan, C; van den Heuvel-Eibrink, Marry M

    2015-07-01

    We report, for the first time, a non-syndromic infant with a reversible myeloproliferative disease that harbors a germline hereditary thrombopoietin (THPO) gene mutation, a condition that is known to induce familial thrombocytosis at increasing age. In order to investigate whether somatic THPO gene mutations play a role in sporadic pediatric myeloproliferative diseases, we performed a mutation screening of a large representative cohort of pediatric acute myeloid leukemia, myeloid leukemia of Down syndrome, and juvenile myelomonocytic leukemia samples and show that gain-of-function THPO mutations are extremely rare in sporadic pediatric myeloproliferative diseases. PMID:25728710

  17. Novel KRAS Gene Mutations in Sporadic Colorectal Cancer

    PubMed Central

    Naser, Walid M.; Shawarby, Mohamed A.; Al-Tamimi, Dalal M.; Seth, Arun; Al-Quorain, Abdulaziz; Nemer, Areej M. Al; Albagha, Omar M. E.

    2014-01-01

    Introduction In this article, we report 7 novel KRAS gene mutations discovered while retrospectively studying the prevalence and pattern of KRAS mutations in cancerous tissue obtained from 56 Saudi sporadic colorectal cancer patients from the Eastern Province. Methods Genomic DNA was extracted from formalin-fixed, paraffin-embedded cancerous and noncancerous colorectal tissues. Successful and specific PCR products were then bi-directionally sequenced to detect exon 4 mutations while Mutector II Detection Kits were used for identifying mutations in codons 12, 13 and 61. The functional impact of the novel mutations was assessed using bioinformatics tools and molecular modeling. Results KRAS gene mutations were detected in the cancer tissue of 24 cases (42.85%). Of these, 11 had exon 4 mutations (19.64%). They harbored 8 different mutations all of which except two altered the KRAS protein amino acid sequence and all except one were novel as revealed by COSMIC database. The detected novel mutations were found to be somatic. One mutation is predicted to be benign. The remaining mutations are predicted to cause substantial changes in the protein structure. Of these, the Q150X nonsense mutation is the second truncating mutation to be reported in colorectal cancer in the literature. Conclusions Our discovery of novel exon 4 KRAS mutations that are, so far, unique to Saudi colorectal cancer patients may be attributed to environmental factors and/or racial/ethnic variations due to genetic differences. Alternatively, it may be related to paucity of clinical studies on mutations other than those in codons 12, 13, 61 and 146. Further KRAS testing on a large number of patients of various ethnicities, particularly beyond the most common hotspot alleles in exons 2 and 3 is needed to assess the prevalence and explore the exact prognostic and predictive significance of the discovered novel mutations as well as their possible role in colorectal carcinogenesis. PMID:25412182

  18. Ferredoxin Gene Mutation in Iranian Trichomonas vaginalis Isolates

    PubMed Central

    HEIDARI, Soudabeh; BANDEHPOUR, Mojgan; SEYYED-TABAEI, Seyyed-Javad; VALADKHANI, Zarintaj; HAGHIGHI, Ali; ABADI, AliReza; KAZEMI, Bahram

    2013-01-01

    Background Trichomonas vaginalis causes trichomoniasis and metronidazole is its chosen drug for treatment. Ferredoxin has role in electron transport and carbohydrate metabolism and the conversion of an inactive form of metronidazole (CO) to its active form (CPR). Ferredoxin gene mutations reduce gene expression and increase its resistance to metronidazole. In this study, the frequency of ferredoxin gene mutations in clinical isolates of T.vaginalis in Tehran has been studied. Methods Forty six clinical T. vaginalis isolates of vaginal secretions and urine sediment were collected from Tehran Province since 2011 till 2012. DNA was extracted and ferredoxin gene was amplified by PCR technique. The ferredoxin gene PCR products were sequenced to determine gene mutations. Results In four isolates (8.69%) point mutation at nucleotide position -239 (the translation start codon) of the ferredoxin gene were detected in which adenosine were converted to thymine. Conclusion Mutation at nucleotide -239 ferredoxin gene reduces translational regulatory protein's binding affinity which concludes reduction of ferredoxin expression. For this reduction, decrease in activity and decrease in metronidazole drug delivery into the cells occur. Mutations in these four isolates may lead to resistance of them to metronidazole. PMID:24454433

  19. Tissue distribution and excretion of hexabromobenzene (HBB) and hexachlorobenzene (HCB) administered to rats

    SciTech Connect

    Yamaguchi, Y.; Kawano, M.; Tatsukawa, R.

    1986-01-01

    Tissue distribution and excretion and hexabromobenzene (HBB) and hexachlorbenzene (HCB) were studied in Wister male rats, after oral administration of these chemicals. There was no difference in the amount of two chemicals excreted in feces for seven days. Their absorption rates through intestine were the same. HBB and HCB also were excreted in urine, but their amounts were very low. Therefore, both chemicals seem to be mainly excreted via feces. HBB and HCB were found to be transported rapidly to all tissues, but the concentrations of HCB were higher than those of HBB in all tissues, indicating the rapid metabolism of HBB. The half-lives were 0.7 (phase I) and 48 days (phase II) for HBB and 20 days for HCB in whole body. It is noteworthy that the half-life at phase II is longer than than of HCB.

  20. Preservation of Duplicate Genes by Complementary, Degenerative Mutations

    Microsoft Academic Search

    Allan Force; Michael Lynch; F. Bryan Pickett; Angel Amores; Yi-lin Yan; John Postlethwait

    1999-01-01

    The origin of organismal complexity is generally thought to be tightly coupled to the evolution of new gene functions arising subsequent to gene duplication. Under the classical model for the evolution of duplicate genes, one member of the duplicated pair usually degenerates within a few million years by accumulating deleterious mutations, while the other duplicate retains the original function. This

  1. Screening for mutations in Spanish families with myotonia. Functional analysis of novel mutations in CLCN1 gene

    Microsoft Academic Search

    María J. Mazón; Francisco Barros; Pilar De la Peńa; Juan F. Quesada; Adela Escudero; Ana M. Cobo; Samuel I. Pascual-Pascual; Eduardo Gutiérrez-Rivas; Encarna Guillén; Javier Arpa; Pilar Eraso; Francisco Portillo; Jesús Molano

    Myotonia congenita is an inherited muscle disorder caused by mutations in the CLCN1 gene, a voltage-gated chloride channel of skeletal muscle. We have studied 48 families with myotonia, 32 out of them carrying mutations in CLCN1 gene and eight carry mutations in SCN4A gene. We have found 26 different mutations in CLCN1 gene, including 13 not reported previously. Among those

  2. Androgen receptor gene mutation, rearrangement, polymorphism

    PubMed Central

    Eisermann, Kurtis; Wang, Dan; Jing, Yifeng; Pascal, Laura E.; Wang, Zhou

    2014-01-01

    Genetic aberrations of the androgen receptor (AR) caused by mutations, rearrangements, and polymorphisms result in a mutant receptor that has varied functions compared to wild type AR. To date, over 1,000 mutations have been reported in the AR with most of these being associated with androgen insensitivity syndrome (AIS). While mutations of AR associated with prostate cancer occur less often in early stage localized disease, mutations in castration-resistant prostate cancer (CRPC) patients treated with anti-androgens occur more frequently with 10–30% of these patients having some form of mutation in the AR. Resistance to anti-androgen therapy usually results from gain-of-function mutations in the LBD such as is seen with bicalutamide and more recently with enzalutamide (MDV3100). Thus, it is crucial to investigate these new AR mutations arising from drug resistance to anti-androgens and other small molecule pharmacological agents. PMID:25045626

  3. Simulation of gene evolution under directional mutational pressure

    NASA Astrophysics Data System (ADS)

    Dudkiewicz, Ma?gorzata; Mackiewicz, Pawe?; Kowalczuk, Maria; Mackiewicz, Dorota; Nowicka, Aleksandra; Polak, Natalia; Smolarczyk, Kamila; Banaszak, Joanna; R. Dudek, Miros?aw; Cebrat, Stanis?aw

    2004-05-01

    The two main mechanisms generating the genetic diversity, mutation and recombination, have random character but they are biased which has an effect on the generation of asymmetry in the bacterial chromosome structure and in the protein coding sequences. Thus, like in a case of two chiral molecules-the two possible orientations of a gene in relation to the topology of a chromosome are not equivalent. Assuming that the sequence of a gene may oscillate only between certain limits of its structural composition means that the gene could be forced out of these limits by the directional mutation pressure, in the course of evolution. The probability of the event depends on the time the gene stays under the same mutation pressure. Inversion of the gene changes the directional mutational pressure to the reciprocal one and hence it changes the distance of the gene to its lower and upper bound of the structural tolerance. Using Monte Carlo methods we were able to simulate the evolution of genes under experimentally found mutational pressure, assuming simple mechanisms of selection. We found that the mutation and recombination should work in accordance to lower their negative effects on the function of the products of coding sequences.

  4. The rate of spontaneous mutation of a human gene

    Microsoft Academic Search

    J. B. S. Haldane

    1935-01-01

    Summary  The rate of mutation at which the gene for haemophilia appears in the population of London is estimated at about once in 50,000\\u000a human life cycles. There are probably two distinct allelomorphs at the same locus, the milder type arising less frequently\\u000a by mutation than the severe type.

  5. MAMMALIAN CELL GENE MUTATION ASSAYS WORKING GROUP REPORT

    EPA Science Inventory

    Mammalian cell gene mutation assays have been used for many years and the diversity of the available systems attests to the varied methods found to grow mammalian dells and detect mutations. s part of the International Workshop on Standardization of Genotoxicity Test Procedures, ...

  6. Recessive truncating titin gene, TTN, mutations presenting as centronuclear myopathy

    PubMed Central

    Ceyhan-Birsoy, Ozge; Agrawal, Pankaj B.; Hidalgo, Carlos; Schmitz-Abe, Klaus; DeChene, Elizabeth T.; Swanson, Lindsay C.; Soemedi, Rachel; Vasli, Nasim; Iannaccone, Susan T.; Shieh, Perry B.; Shur, Natasha; Dennison, Jane M.; Lawlor, Michael W.; Laporte, Jocelyn; Markianos, Kyriacos; Fairbrother, William G.; Granzier, Henk

    2013-01-01

    Objective: To identify causative genes for centronuclear myopathies (CNM), a heterogeneous group of rare inherited muscle disorders that often present in infancy or early life with weakness and hypotonia, using next-generation sequencing of whole exomes and genomes. Methods: Whole-exome or -genome sequencing was performed in a cohort of 29 unrelated patients with clinicopathologic diagnoses of CNM or related myopathy depleted for cases with mutations of MTM1, DNM2, and BIN1. Immunofluorescence analyses on muscle biopsies, splicing assays, and gel electrophoresis of patient muscle proteins were performed to determine the molecular consequences of mutations of interest. Results: Autosomal recessive compound heterozygous truncating mutations of the titin gene, TTN, were identified in 5 individuals. Biochemical analyses demonstrated increased titin degradation and truncated titin proteins in patient muscles, establishing the impact of the mutations. Conclusions: Our study identifies truncating TTN mutations as a cause of congenital myopathy that is reported as CNM. Unlike the classic CNM genes that are all involved in excitation-contraction coupling at the triad, TTN encodes the giant sarcomeric protein titin, which forms a myofibrillar backbone for the components of the contractile machinery. This study expands the phenotypic spectrum associated with TTN mutations and indicates that TTN mutation analysis should be considered in cases of possible CNM without mutations in the classic CNM genes. PMID:23975875

  7. Myoclonic encephalopathy in the CDKL5 gene mutation

    Microsoft Academic Search

    Sabrina Buoni; Raffaella Zannolli; Vito Colamaria; Francesca Macucci; Rosanna M. di Bartolo; Letizia Corbini; Alessandra Orsi; Michele Zappella; Joseph Hayek

    2006-01-01

    ObjectiveEpilepsy with mutation of the CDKL5 gene causes early seizures and is a variant of Rett syndrome (MIM (312750), which is reported typically as infantile spasms. The purpose of this study was to analyze the epileptic histories and EEGs of patients with the CDKL5 mutation.

  8. Did One Gene Mutation Launch the Black Death?

    MedlinePLUS

    ... 153344.html Did One Gene Mutation Launch the Black Death? Scientists find single change in the plague ... the deadly bug that killed millions in the Black Death and other historic epidemics, scientists report. According ...

  9. Mutation analysis of the Smad3 gene in human osteoarthritis

    Microsoft Academic Search

    Jun-Yan Yao; Yan Wang; Jing An; Chun-Ming Mao; Ning Hou; Ya-Xin Lv; You-Liang Wang; Fang Cui; Min Huang; Xiao Yang; X Yang

    2003-01-01

    Osteoarthritis (OA) is the most common joint disease worldwide. Recent studies have shown that targeted disruption of Smad3 in mouse results in OA. To reveal the possible association between the Smad3 gene mutation and human OA, we employed polymerase chain reaction-single strand conformation polymorphism and sequencing to screen mutations in all nine exons of the Smad3 gene in 32 patients

  10. ?-Globin Mutations in Egyptian Patients With ?-Thalassemia.

    PubMed

    Elmezayen, Ammar D; Kotb, Samia M; Sadek, Nadia A; Abdalla, Ebtesam M

    2015-01-01

    ?-thalassemia is a common hereditary disorder, particularly in Middle Eastern countries. More than 200 mutations in the ? globin gene have been reported; most are point mutations in functionally important regions (HBB; OMIM #141900)). The spectrum of mutations varies significantly between different geographical regions; only a few common mutations of ?-globin cause ?-thalassemia in each population. The aim of this study was to determine the spectrum of mutations that cause ?-thalassemia in the North Coast of Egypt and to investigate their correlation with the phenotypic severity of ?-thalassemia. We carried out our study with a total of 47 Egyptian patients (25 male and 22 female) confirmed to have ?-thalassemia. Evaluation of ?-thalassemia mutations revealed the presence of 10 ?-globin mutations. The most frequently encountered mutations were intronic: IVS 1.6 [T>C] (27.66%) and IVS 1.110 [G>A] (22.35%), followed by IVS 2.848 [C>A], IVS 1.1 (G>A), and IVS 2.745 [C>G]. We observed the exonic and promoter mutations less frequently. A homozygous mutation was found in 24 patients (51%) and compound heterozygous mutations were found in 13 patients (28%). However, in 9 patients (19%), we identified only 1 mutation. In 1 patient (2%), we detected no mutation. The detection rate of the method that we used in our population was 88% (83 of the tested 94 alleles). The results we obtained did not reveal any correlation between genotype and phenotype among patients with ?-thalassemia. PMID:25617386

  11. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes.

    PubMed

    Liang, Puping; Xu, Yanwen; Zhang, Xiya; Ding, Chenhui; Huang, Rui; Zhang, Zhen; Lv, Jie; Xie, Xiaowei; Chen, Yuxi; Li, Yujing; Sun, Ying; Bai, Yaofu; Songyang, Zhou; Ma, Wenbin; Zhou, Canquan; Huang, Junjiu

    2015-05-01

    Genome editing tools such as the clustered regularly interspaced short palindromic repeat (CRISPR)-associated system (Cas) have been widely used to modify genes in model systems including animal zygotes and human cells, and hold tremendous promise for both basic research and clinical applications. To date, a serious knowledge gap remains in our understanding of DNA repair mechanisms in human early embryos, and in the efficiency and potential off-target effects of using technologies such as CRISPR/Cas9 in human pre-implantation embryos. In this report, we used tripronuclear (3PN) zygotes to further investigate CRISPR/Cas9-mediated gene editing in human cells. We found that CRISPR/Cas9 could effectively cleave the endogenous ?-globin gene (HBB). However, the efficiency of homologous recombination directed repair (HDR) of HBB was low and the edited embryos were mosaic. Off-target cleavage was also apparent in these 3PN zygotes as revealed by the T7E1 assay and whole-exome sequencing. Furthermore, the endogenous delta-globin gene (HBD), which is homologous to HBB, competed with exogenous donor oligos to act as the repair template, leading to untoward mutations. Our data also indicated that repair of the HBB locus in these embryos occurred preferentially through the non-crossover HDR pathway. Taken together, our work highlights the pressing need to further improve the fidelity and specificity of the CRISPR/Cas9 platform, a prerequisite for any clinical applications of CRSIPR/Cas9-mediated editing. PMID:25894090

  12. [Hearing loss associated with GJB2 gene mutation].

    PubMed

    Cui, Qingjia; Huang, Lihui

    2013-10-01

    Deafness refers to different degrees of hearing loss (HL). The factors leading to HL are complex, among which heredity is a major one. Nonsyndromic hearing loss (NSHL) accounts for 80% of hereditary deafness. More than 140 genes have been regarded to be closely related to NSHL. The mutation of GJB2 (gap junction protein, beta 2) gene accounts for 80% of NSHL and more than 50% of children NSHL, playing the most important role in deafness genes. This paper reviewed the studies on the association between GJB2 gene mutation and HL to provide reference for genetic diagnosis and counseling. PMID:24417175

  13. Convergence in pigmentation at multiple levels: mutations, genes and function

    PubMed Central

    Manceau, Marie; Domingues, Vera S.; Linnen, Catherine R.; Rosenblum, Erica Bree; Hoekstra, Hopi E.

    2010-01-01

    Convergence—the independent evolution of the same trait by two or more taxa—has long been of interest to evolutionary biologists, but only recently has the molecular basis of phenotypic convergence been identified. Here, we highlight studies of rapid evolution of cryptic coloration in vertebrates to demonstrate that phenotypic convergence can occur at multiple levels: mutations, genes and gene function. We first show that different genes can be responsible for convergent phenotypes even among closely related populations, for example, in the pale beach mice inhabiting Florida's Gulf and Atlantic coasts. By contrast, the exact same mutation can create similar phenotypes in distantly related species such as mice and mammoths. Next, we show that different mutations in the same gene need not be functionally equivalent to produce similar phenotypes. For example, separate mutations produce divergent protein function but convergent pale coloration in two lizard species. Similarly, mutations that alter the expression of a gene in different ways can, nevertheless, result in similar phenotypes, as demonstrated by sister species of deer mice. Together these studies underscore the importance of identifying not only the genes, but also the precise mutations and their effects on protein function, that contribute to adaptation and highlight how convergence can occur at different genetic levels. PMID:20643733

  14. CAG-polyglutamine-repeat mutations: independence from gene context.

    PubMed Central

    Ordway, J M; Cearley, J A; Detloff, P J

    1999-01-01

    Several neurological disorders have been attributed to the inheritance of long CAG-polyglutamine repeats. Unlike classical mutations, whose deleterious effects are totally dependent on the context of the gene in which they reside, these translated CAG repeat mutations have been shown to cause neurotoxicity and neuronal intranuclear inclusions when expressed outside their natural gene context. We provide a description of mice with different lengths of repeat in the foreign context of the murine Hprt locus, focusing on aspects of the phenotype that provide an insight into the mechanism by which this unusual mutation might cause toxicity. PMID:10434310

  15. Dihydropteroate Synthase Gene Mutations in Pneumocystis and Sulfa Resistance

    PubMed Central

    Crothers, Kristina; Atzori, Chiara; Benfield, Thomas; Miller, Robert; Rabodonirina, Meja; Helweg-Larsen, Jannik

    2004-01-01

    Pneumocystis pneumonia (PCP) remains a major cause of illness and death in HIV-infected persons. Sulfa drugs, trimethoprim-sulfamethoxazole (TMP-SMX) and dapsone are mainstays of PCP treatment and prophylaxis. While prophylaxis has reduced the incidence of PCP, its use has raised concerns about development of resistant organisms. The inability to culture human Pneumocystis, Pneumocystis jirovecii, in a standardized culture system prevents routine susceptibility testing and detection of drug resistance. In other microorganisms, sulfa drug resistance has resulted from specific point mutations in the dihydropteroate synthase (DHPS) gene. Similar mutations have been observed in P. jirovecii. Studies have consistently demonstrated a significant association between the use of sulfa drugs for PCP prophylaxis and DHPS gene mutations. Whether these mutations confer resistance to TMP-SMX or dapsone plus trimethoprim for PCP treatment remains unclear. We review studies of DHPS mutations in P. jirovecii and summarize the evidence for resistance to sulfamethoxazole and dapsone. PMID:15504256

  16. De novo mutation in the NOTCH3 gene causing CADASIL.

    PubMed

    Stojanov, Dragan; Grozdanovi?, Danijela; Petrovi?, Sladjana; Benedeto-Stojanov, Daniela; Stefanovi?, Ivan; Stojanovi?, Nebojša; Ili?, Dušica N

    2014-02-01

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy (CADASIL) is one of the most common hereditary forms of stroke, and migraine with aura, mood disorders and dementia. CADASIL is caused by mutations of the NOTCH3 gene. This mutation is inherited as an autosomal dominant trait. Most individuals with CADASIL have a parent with the disorder. In extremely rare cases, CADASIL may occur due to a spontaneous genetic mutation that occurs for unknown reasons (de novo mutation). We report a new case of patient with de novo mutation of the NOTCH3 gene and a condition strongly suggestive of CADASIL (migraine, stroke, and white matter abnormalities), except that this patient did not have any first-degree relatives with similar symptoms. PMID:24579972

  17. Molecular approaches to the estimation of germinal gene mutation rates

    SciTech Connect

    Mohrenweiser, H.W.; Perry, B.A.; Judd, S.A.

    1989-12-11

    Estimation of the induced germinal gene mutation rate in human populations is difficult because de novo mutations, especially of functional gene loci, are rare events and the sizes of the human populations that have been exposed to known mutagens are generally small. Thus, if statistically significant estimates of mutation rates are to be generated, it is critical that a significant body of data be obtained from each offspring included in a mutation screening study. Additionally, the assay(s) employed must be sufficiently robust to efficiently detect the spectrum of lesions that may be induced by different classes of mutagens. DNA-based techniques have the potential to overcome these problems because it may be possible to screen the entire genome for mutational events and the alterations in DNA structure can be analyzed directly. Two assay systems are being developed and tested for feasibility as germinal gene mutation screening strategies. One is based upon denaturing gradient gel electrophoresis to detect nucleotide substitutions while the second is a restriction enzyme site mapping strategy to identify DNA insertions, deletions and rearrangements. Cell lines derived by clonal expansion of cells following exposure to mutagens are being screened in an initial prototype experiment. Preliminary results indicate that is should be feasible to screen for germinal gene mutations in rodent test systems and in human populations in the near future with these two techniques. 51 refs., 4 figs.

  18. Familial juvenile polyposis coli with APC gene mutation.

    PubMed

    Kim, J C; Roh, S A; Yu, C S; Lee, H I; Gong, G

    1997-10-01

    Familial juvenile polyposis has been known to have malignant potential, but their genetic relation to familial adenomatous polyposis has not been proven yet. Two young brothers with intermittent rectal bleeding revealed multiple juvenile polyposis. Their father had a history of rectal cancer with multiple colonic polyps. Four frequent exons of APC gene mutation were tested from these patients' white blood cells by polyacrylamide gel electrophoresis and sequencing. The 21-yr-old brother had a missense mutation (GAA-->GGA) at codon 1309, whereas the 18-yr-old brother showed a missense mutation (ATA-->GTA) at codon 1304 in exon 15 of APC gene. Three of four first-degree relatives were affected with familial juvenile polyposis, familial juvenile polyposis with adenomatous change, and rectal cancer with multiple polyps. The APC gene mutation of familial juvenile polyposis in this case suggests a genetic relationship with familial adenomatous polyposis. PMID:9382065

  19. Microarray-based mutation detection in the dystrophin gene

    PubMed Central

    Hegde, Madhuri R.; Chin, Ephrem L.H.; Mulle, Jennifer G.; Okou, David T.; Warren, Stephen T.; Zwick, Michael E.

    2008-01-01

    Duchenne and Becker muscular dystrophies (DMD and BMD) are X-linked recessive neuromuscular disorders caused by mutations in the dystrophin gene affecting approximately 1 in 3,500 males. The human dystrophin gene spans > 2,200 kb, or roughly 0.1% of the genome, and is composed of 79 exons. The mutational spectrum of disease-causing alleles, including exonic copy number variations (CNVs), is complex. Deletions account for approximately 65% of DMD mutations and 85% of BMD mutations. Duplications occur in approximately 6–10% of males with either DMD or BMD. The remaining 30–35% of mutations consist of small deletions, insertions, point mutations, or splicing mutations, most of which introduce a premature stop codon. Laboratory analysis of dystrophin can be used to confirm a clinical diagnosis of DMD, characterize the type of dystrophin mutation, and perform prenatal testing and carrier testing for females. Current dystrophin diagnostic assays involve a variety of methodologies, including multiplex PCR, Southern blot analysis, MLPA, DOVAM-S, and SCAIP; however, these methods are time-consuming, laborious, and do not accurately detect duplication mutations in the dystrophin gene. Furthermore, carrier testing in females is often difficult when a related affected male is unavailable. Here we describe the development, design, validation, and implementation of a high-resolution CGH microarray-based approach capable of accurately detecting both deletions and duplications in the dystrophin gene. This assay can be readily adopted by clinical molecular testing laboratories and represents a rapid, cost-effective approach for screening a large gene, such as dystrophin. PMID:18663755

  20. Spectrum of ABCR gene mutations in autosomal recessive macular dystrophies

    Microsoft Academic Search

    Jean-Michel Rozet; Sylvie Gerber; Eric Souied; Isabelle Perrault; Sophie Châtelin; Imad Ghazi; Corinne Leowski; Jean-Louis Dufier; Arnold Munnich; Josseline Kaplan; J-M Rozet

    1998-01-01

    Stargardt disease (STGD) and late-onset fundus flavimaculatus (FFM) are autosomal recessive conditions leading to macular degenerations in childhood and adulthood, respectively. Recently, mutations of the photoreceptor cell-specific ATP binding transporter gene (ABCR) have been reported in Stargardt disease. Here, we report on the screening of the whole coding sequence of the ABCR gene in 40 unrelated STGD and 15 FFM

  1. Mutation analysis of the Smad3 gene in human osteoarthritis.

    PubMed

    Yao, Jun-Yan; Wang, Yan; An, Jing; Mao, Chun-Ming; Hou, Ning; Lv, Ya-Xin; Wang, You-Liang; Cui, Fang; Huang, Min; Yang, Xiao

    2003-09-01

    Osteoarthritis (OA) is the most common joint disease worldwide. Recent studies have shown that targeted disruption of Smad3 in mouse results in OA. To reveal the possible association between the Smad3 gene mutation and human OA, we employed polymerase chain reaction-single strand conformation polymorphism and sequencing to screen mutations in all nine exons of the Smad3 gene in 32 patients with knee OA and 50 patients with only bone fracture. A missense mutation of the Smad3 gene was found in one patient. The single base mutation located in the linker region of the SMAD3 protein was A --> T change in the position 2 of codon 197 and resulted in an asparagine to isoleucine amino-acid substitution. The expressions of matrix metalloproteinase 2 (MMP-2) and MMP-9 in sera of the patient carrying the mutation were higher than other OA patients and controls. This is the first report showing that the Smad3 gene mutations could be associated with the pathogenesis of human OA. PMID:12939660

  2. A novel mutation of the fibrillin gene causing Ectopia lentis

    SciTech Connect

    Loennqvist, L.; Kainulainen, K.; Puhakka, L.; Peltonen, L. (National Public Health Institute, Helsinki (Finland)); Child, A. (St. George's Hospital Medical School, London (United Kingdom)); Peltonen, L. (Duncan Guthrie Institute, Glasgow, Scotland (United Kingdom))

    1994-02-01

    Ectopia lentis (EL), a dominantly inherited connective tissue disorder, has been genetically linked to the fibrillin gene on chromosome 15 (FBN1) in earlier studies. Here, the authors report the first EL mutation in the FBN1 gene confirming that EL is caused by mutations of this gene. So far, several mutations in the FBN1 gene have been reported in patients with Marfan syndrome (MFS). EL and MFS are clinically related but distinct conditions with typical manifestations in the ocular and skeletal systems, the fundamental difference between them being the absence of cardiovascular involvement in EL. They report a point mutation, cosegregating with the disease in the described family, that displays EL over four generations. The mutation changes a conserved glutamic acid residue in an EGF-like motif, which is the major structural component of the fibrillin and is repeated throughout the polypeptide. In vitro mutagenetic studies have demonstrated the necessity of an analogous glutamic acid residue for calcium binding in an EGF-like repeat of human factor IX. This provides a possible explanation for the role of this mutation in the disease pathogenesis. 32 refs., 2 figs., 1 tab.

  3. Prioritization of neurodevelopmental disease genes by discovery of new mutations.

    PubMed

    Hoischen, Alexander; Krumm, Niklas; Eichler, Evan E

    2014-06-01

    Advances in genome sequencing technologies have begun to revolutionize neurogenetics, allowing the full spectrum of genetic variation to be better understood in relation to disease. Exome sequencing of hundreds to thousands of samples from patients with autism spectrum disorder, intellectual disability, epilepsy and schizophrenia provides strong evidence of the importance of de novo and gene-disruptive events. There are now several hundred new candidate genes and targeted resequencing technologies that allow screening of dozens of genes in tens of thousands of individuals with high specificity and sensitivity. The decision of which genes to pursue depends on many factors, including recurrence, previous evidence of overlap with pathogenic copy number variants, the position of the mutation in the protein, the mutational burden among healthy individuals and membership of the candidate gene in disease-implicated protein networks. We discuss these emerging criteria for gene prioritization and the potential impact on the field of neuroscience. PMID:24866042

  4. Mutations in the filaggrin gene and food allergy

    PubMed Central

    Markiewicz, Lidia; Wróblewska, Barbara

    2014-01-01

    The results of long-term epidemiological studies show that the number of people suffering from allergic diseases, especially from food allergies and atopic dermatitis (AD), is still increasing. Although the research thus far has been conducted mainly in Europe, North America, and Asia, there are also data appearing from the first studies in that field among the African population. This may indicate the importance of the problem of allergic diseases. The discovery that loss-of-function mutations in the gene coding filaggrin (FLG) are the cause of ichthyosis vulgaris marked a significant breakthrough in understanding the pathogenesis of allergic diseases. The presence of mutations in the filaggrin gene is also an important factor that predisposes to such allergic diseases as: allergic rhinitis, atopic dermatitis, atopic asthma, and food allergy. So far, over 40 loss-of-function mutations and numerous silent mutations in filaggrin have been discovered. PMID:25276250

  5. What is custom mutation analysis? Custom mutation analysis refers to testing of any gene for families with previously identified mutations associated

    E-print Network

    Gilad, Yoav

    3/10 What is custom mutation analysis? Custom mutation analysis refers to testing of any gene for families with previously identified mutations associated with common or rare genetic conditions. We control guidelines that are not required of research laboratories. Who can benefit from custom mutation

  6. What is custom mutation analysis? Custom mutation analysis refers to testing of any gene for families with previously identified mutations associated

    E-print Network

    Ober, Carole

    1/13 What is custom mutation analysis? Custom mutation analysis refers to testing of any gene for families with previously identified mutations associated with common or rare genetic conditions. We control guidelines that are not required of research laboratories. Who can benefit from custom mutation

  7. Absence of p53 Gene Mutations in Primary Neuroblastomas1

    Microsoft Academic Search

    Kyle Vogan; Mark Bernstein; Jean-Marie Ledere; Linda Brisson; Garrett M. Brodeur; Jerry Pelletier; Philippe Gros

    1993-01-01

    Neuroblastoma is a common childhood malignancy of the sympathetic nervous system. Mutations in p53, a tumor suppressor gene located on the short arm of chromosome 17, are one of the most common genetic lesions in human cancers. The evidence for trisomies of 17q with loss of 17p in some cases of neuroblastoma led us to consider whether pS3 mutations might

  8. Gene mutations and molecularly targeted therapies in acute myeloid leukemia

    PubMed Central

    Hatzimichael, Eleftheria; Georgiou, Georgios; Benetatos, Leonidas; Briasoulis, Evangelos

    2013-01-01

    Acute myelogenous leukemia (AML) can progress quickly and without treatment can become fatal in a short period of time. However, over the last 30 years fine-tuning of therapeutics have increased the rates of remission and cure. Cytogenetics and mutational gene profiling, combined with the option of allogeneic hematopoietic stem cell transplantation offered in selected patients have further optimized AML treatment on a risk stratification basis in younger adults. However there is still an unmet medical need for effective therapies in AML since disease relapses in almost half of adult patients becoming refractory to salvage therapy. Improvements in the understanding of molecular biology of cancer and identification of recurrent mutations in AML provide opportunities to develop targeted therapies and improve the clinical outcome. In the spectrum of identified gene mutations, primarily targetable lesions are gain of function mutations of tyrosine kinases FLT3, JAK2 and cKIT for which specific, dual and multi-targeted small molecule inhibitors have been developed. A number of targeted compounds such as sorafenib, quizartinib, lestaurtinib, midostaurin, pacritinib, PLX3397 and CCT137690 are in clinical development. For loss-of-function gene mutations, which are mostly biomarkers of favorable prognosis, combined therapeutic approaches can maximize the therapeutic efficacy of conventional therapy. Apart from mutated gene products, proteins aberrantly overexpressed in AML appear to be clinically significant therapeutic targets. Such a molecule for which targeted inhibitors are currently in clinical development is PLK1. We review characteristic gene mutations, discuss their biological functions and clinical significance and present small molecule compounds in clinical development, which are expected to have a role in treating AML subtypes with characteristic molecular alterations. PMID:23358589

  9. Mutational screening of NOTCH3 gene reveals two novel mutations: complexity of CADASIL diagnosis.

    PubMed

    Mosca, Lorena; Rivieri, Francesca; Tanel, Raffaella; Bonfante, Aldo; Burlina, Alessandro; Manfredini, Emanuela; Primignani, Paola; Gesu, Giovanni P; Marocchi, Alessandro; Penco, Silvana

    2014-12-01

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is an adult onset hereditary vascular disease with neurological manifestations. The classical clinical course is relentlessly progressive with early transient ischaemic attacks (TIA) or strokes, dementia and finally death in the mid-1960s. The disorder is inherited in an autosomal dominant fashion, with high penetrance and broad variable clinical course even within family. It is caused by mutations in the NOTCH3 gene; all causative mutations result in gain or loss of a cysteine residue within the extracellular domain, with exons 3 and 4 reported as hot spot mutational sites. Mutation analysis of the NOTCH3 gene was performed through direct sequencing of the 2-23 exons containing all EGF-like domains. Patients underwent genetic counselling pre and post testing. Here, we report two novel mutations located in exons 6 and 15 of the NOTCH3 gene; clinical description for the probands and for available relatives is enclosed. No reliable data on incidence or prevalence rates of this disease are available: it is therefore essential that the diagnosis is obtained in all suspected cases through the extensive analysis of the NOTCH3 gene and that all cases are brought to the attention of the scientific community. PMID:24816653

  10. A novel MPZ gene mutation in congenital neuropathy with hypomyelination.

    PubMed

    Kochanski, A; Drac, H; Kabzi?ska, D; Ryniewicz, B; Rowi?ska-Marci?ska, K; Nowakowski, A; Hausmanowa-Petrusewicz, I

    2004-06-01

    Congenital hypomyelinating neuropathy (CHN; MIM# 605253) is a severe neuropathy with early infancy onset inherited as an autosomal dominant or recessive trait. Sural nerve biopsy shows a characteristic picture of nonmyelinated and poorly myelinated axons with basal lamina onion bulbs and lack of myelin breakdown products. Several mutations in the MTMR2, PMP22, EGR2, and MPZ genes have been found in patients with CHN. The authors describe the clinical and morphologic features of a patient with CHN and the identification of a novel Thr124Lys mutation in the MPZ gene. PMID:15184631

  11. Pregnancy and ABCB4 gene mutation: risk of recurrent cholelithiasis.

    PubMed

    Elderman, Jan H; ter Borg, Pieter C J; Dees, Jan; Dees, Adriaan

    2015-01-01

    Cholelithiasis is a common problem in the Western world. Recurrent gallstones after cholecystectomy, however, are rare. We describe a case of a young woman with recurrent gallstones after a laparoscopic cholecystectomy leading to cholangitis during pregnancy. Additional testing revealed an ATP-binding cassette B4 (ABCB4) gene mutation. ABCB4 gene mutations leading to a multidrug resistance (MDR)3-P-glycoprotein deficiency are related to, among other diseases, recurrent cholelithiasis. Medical treatment consists of administering oral ursodeoxycholic acid. If untreated, MDR3 deficiency can lead to progressive liver failure requiring liver transplantation. PMID:25612754

  12. DCEG Scientists Identify New Gene Mutation Related to Familial Melanoma

    Cancer.gov

    Scientists have identified a rare inherited mutation in a gene that can increase the risk of familial melanoma, according to a study that appeared online in Nature Genetics on March 30, 2014. Although the finding does not offer immediate benefit to patients, variation in the Protection of Telomeres-1 (POT1) gene provides additional clues as to the origins of melanoma and may open new avenues in prevention and treatment research.

  13. Human erythropoietic protoporphyria: two point mutations in the ferrochelatase gene.

    PubMed

    Lamoril, J; Boulechfar, S; de Verneuil, H; Grandchamp, B; Nordmann, Y; Deybach, J C

    1991-12-16

    The molecular basis of the ferrochelatase defect responsible for human Erythropoietic Protoporphyria (EPP), a usually autosomal dominant disease, was investigated in a family with an apparently homozygous patient. Two mutations of the ferrochelatase gene were identified by sequencing the proband's cDNA after in vitro amplification of the mRNA and subcloning of the amplified products. One mutation results from a G to T transition at nucleotide 163 which produces a glycine to cysteine substitution at amino-acid residue 55 (G-55-C). The other one was a G to A change at nucleotide 801, leading to a methionine to isoleucine substitution at amino-acid residue 267 (M-267-I). This EPP patient was then double heterozygous and as expected each of his parents carried one of the mutations. A second similar EPP patient was screened for these mutations with negative results, showing a genetic heterogeneity in EPP. PMID:1755842

  14. Identification of 5 novel mutations in the AGXT gene.

    PubMed

    Basmaison, O; Rolland, M O; Cochat, P; Bozon, D

    2000-06-01

    In order to identify additional genotypes in primary hyperoxaluria type 1, we sequenced the AGXT genes of 9 patients. We report 5 new mutations. Three are splice-site mutations situated at the end of intron 4 and 8 (647-1G>A, 969-1G>C, 969-3C>G), one is a missense mutation in exon 5 (D183N), and one is a short duplication in exon 2 (349ins7). Their consequence is always a lack of enzymatic activity of the Alanine-Glyoxylate Aminotransferase (AGT); for 4 of them, we were able to deduce that they were associated to the absence of AGT protein. These mutations are rare, as they have been found on one allele in our study (except 969-3C>G present in 2 unrelated families), and have not been previously reported. PMID:10862087

  15. C1 inhibitor gene sequence facilitates frameshift mutations.

    PubMed Central

    Bissler, J. J.; Meng, Q. S.; Emery, T.

    1998-01-01

    Mutations disrupting the function or production of C1 inhibitor cause the disease hereditary angioneurotic edema. Patient mutations identified an imperfect inverted repeat sequence that was postulated to play a mechanistic role in the mutations. To test this hypothesis, the inverted repeat was cloned into the chloramphenicol acetyltransferase gene in pBR325 and its mutation rate was studied in four bacterial strains. These strains were selected to assay the effects of recombination and superhelical tension on mutation frequency. Mutations that revert bacteria to chloramphenicol resistance (Cmr) were scored. Both pairs of isogenic strains had reversion frequencies of approximately 10(-8). These rare reversion events in bacteria were most often a frameshift that involved the imperfect inverted repeat with a deletion or a tandem duplication, an event very similar to the human mutations. Increased DNA superhelical tension, which would be expected to enhance cruciform extrusion, did not accentuate mutagenesis. This finding suggests that the imperfect inverted repeat may form a stem-loop structure in the single-stranded DNA created by the duplex DNA melting prior to replication. Models explaining the slippage can be drawn using the lagging strand of the replication fork. In this model, the formation of a stem-loop structure is responsible for bringing the end of the deletion or duplication into close proximity. Images Fig. 1 Fig. 2 Fig. 3 p802-a Fig. 4 PMID:9990865

  16. 40 CFR 799.9530 - TSCA in vitro mammalian cell gene mutation test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...TSCA in vitro mammalian cell gene mutation test. 799.9530 Section 799.9530 ...TESTING REQUIREMENTS Health Effects Test Guidelines § 799.9530 TSCA in vitro mammalian cell gene mutation test. (a) Scope. This section...

  17. 40 CFR 799.9530 - TSCA in vitro mammalian cell gene mutation test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...TSCA in vitro mammalian cell gene mutation test. 799.9530 Section 799.9530 ...TESTING REQUIREMENTS Health Effects Test Guidelines § 799.9530 TSCA in vitro mammalian cell gene mutation test. (a) Scope. This section...

  18. 40 CFR 799.9530 - TSCA in vitro mammalian cell gene mutation test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...TSCA in vitro mammalian cell gene mutation test. 799.9530 Section 799.9530 ...TESTING REQUIREMENTS Health Effects Test Guidelines § 799.9530 TSCA in vitro mammalian cell gene mutation test. (a) Scope. This section...

  19. 40 CFR 799.9530 - TSCA in vitro mammalian cell gene mutation test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...TSCA in vitro mammalian cell gene mutation test. 799.9530 Section 799.9530 ...TESTING REQUIREMENTS Health Effects Test Guidelines § 799.9530 TSCA in vitro mammalian cell gene mutation test. (a) Scope. This section...

  20. 40 CFR 799.9530 - TSCA in vitro mammalian cell gene mutation test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...TSCA in vitro mammalian cell gene mutation test. 799.9530 Section 799.9530 ...TESTING REQUIREMENTS Health Effects Test Guidelines § 799.9530 TSCA in vitro mammalian cell gene mutation test. (a) Scope. This section...

  1. Mutation Burden of Rare Variants in Schizophrenia Candidate Genes

    PubMed Central

    Girard, Simon L.; Dion, Patrick A.; Bourassa, Cynthia V.; Geoffroy, Steve; Lachance-Touchette, Pamela; Barhdadi, Amina; Langlois, Mathieu; Joober, Ridha; Krebs, Marie-Odile; Dubé, Marie-Pierre; Rouleau, Guy A.

    2015-01-01

    Background Schizophrenia (SCZ) is a very heterogeneous disease that affects approximately 1% of the general population. Recently, the genetic complexity thought to underlie this condition was further supported by three independent studies that identified an increased number of damaging de novo mutations DNM in different SCZ probands. While these three reports support the implication of DNM in the pathogenesis of SCZ, the absence of overlap in the genes identified suggests that the number of genes involved in SCZ is likely to be very large; a notion that has been supported by the moderate success of Genome-Wide Association Studies (GWAS). Methods To further examine the genetic heterogeneity of this disease, we resequenced 62 genes that were found to have a DNM in SCZ patients, and 40 genes that encode for proteins known to interact with the products of the genes with DNM, in a cohort of 235 SCZ cases and 233 controls. Results We found an enrichment of private nonsense mutations amongst schizophrenia patients. Using a kernel association method, we were able to assess for association for different sets. Although our power of detection was limited, we observed an increased mutation burden in the genes that have DNM. PMID:26039597

  2. Identification of Constrained Cancer Driver Genes Based on Mutation Timing

    PubMed Central

    Sakoparnig, Thomas; Fried, Patrick; Beerenwinkel, Niko

    2015-01-01

    Cancer drivers are genomic alterations that provide cells containing them with a selective advantage over their local competitors, whereas neutral passengers do not change the somatic fitness of cells. Cancer-driving mutations are usually discriminated from passenger mutations by their higher degree of recurrence in tumor samples. However, there is increasing evidence that many additional driver mutations may exist that occur at very low frequencies among tumors. This observation has prompted alternative methods for driver detection, including finding groups of mutually exclusive mutations and incorporating prior biological knowledge about gene function or network structure. Dependencies among drivers due to epistatic interactions can also result in low mutation frequencies, but this effect has been ignored in driver detection so far. Here, we present a new computational approach for identifying genomic alterations that occur at low frequencies because they depend on other events. Unlike passengers, these constrained mutations display punctuated patterns of occurrence in time. We test this driver–passenger discrimination approach based on mutation timing in extensive simulation studies, and we apply it to cross-sectional copy number alteration (CNA) data from ovarian cancer, CNA and single-nucleotide variant (SNV) data from breast tumors and SNV data from colorectal cancer. Among the top ranked predicted drivers, we find low-frequency genes that have already been shown to be involved in carcinogenesis, as well as many new candidate drivers. The mutation timing approach is orthogonal and complementary to existing driver prediction methods. It will help identifying from cancer genome data the alterations that drive tumor progression. PMID:25569148

  3. Encephalocraniocutaneous lipomatosis with a mutation in the NF1 gene

    Microsoft Academic Search

    E Legius; R Wu; M Eyssen; P Marynen; J P Fryns; J J Cassiman

    1995-01-01

    Encephalocraniocutaneous lipomatosis (ECCL) is a congenital hamartomatous disorder characterised by unilateral skin lesions, lipomas, and ipsilateral ophthamological and cerebral malformations. The disorder is thought to represent a localised form of Proteus syndrome. In this report, a child is described with ECCL and a de novo nonsense mutation in exon 29 (S1745X) of the neurofibromatosis type 1 (NF1) gene. Although it

  4. Induced mutations in the Green and Gene Revolutions

    Microsoft Academic Search

    MIROSLAW MALUSZYNSKI; IWONA SZAREJKO

    2005-01-01

    As in genomic research in animals, chemical and physical mutagenesis has become widely used in plants to close the gap between the available mutant resources and the full range of phenotypes that are essential to exploit the function of all genes of investigated species. Among various approaches, mutational analysis of plant traits appears to be one of the simplest routes

  5. Detecting negative selection on recurrent mutations using gene genealogy

    PubMed Central

    2013-01-01

    Background Whether or not a mutant allele in a population is under selection is an important issue in population genetics, and various neutrality tests have been invented so far to detect selection. However, detection of negative selection has been notoriously difficult, partly because negatively selected alleles are usually rare in the population and have little impact on either population dynamics or the shape of the gene genealogy. Recently, through studies of genetic disorders and genome-wide analyses, many structural variations were shown to occur recurrently in the population. Such “recurrent mutations” might be revealed as deleterious by exploiting the signal of negative selection in the gene genealogy enhanced by their recurrence. Results Motivated by the above idea, we devised two new test statistics. One is the total number of mutants at a recurrently mutating locus among sampled sequences, which is tested conditionally on the number of forward mutations mapped on the sequence genealogy. The other is the size of the most common class of identical-by-descent mutants in the sample, again tested conditionally on the number of forward mutations mapped on the sequence genealogy. To examine the performance of these two tests, we simulated recurrently mutated loci each flanked by sites with neutral single nucleotide polymorphisms (SNPs), with no recombination. Using neutral recurrent mutations as null models, we attempted to detect deleterious recurrent mutations. Our analyses demonstrated high powers of our new tests under constant population size, as well as their moderate power to detect selection in expanding populations. We also devised a new maximum parsimony algorithm that, given the states of the sampled sequences at a recurrently mutating locus and an incompletely resolved genealogy, enumerates mutation histories with a minimum number of mutations while partially resolving genealogical relationships when necessary. Conclusions With their considerably high powers to detect negative selection, our new neutrality tests may open new venues for dealing with the population genetics of recurrent mutations as well as help identifying some types of genetic disorders that may have escaped identification by currently existing methods. PMID:23651527

  6. Mutations and polymorphisms in the human argininosuccinate lyase (ASL) gene.

    PubMed

    Balmer, Cécile; Pandey, Amit V; Rüfenacht, Véronique; Nuoffer, Jean-Marc; Fang, Ping; Wong, Lee-Jun; Häberle, Johannes

    2014-01-01

    Argininosuccinate lyase deficiency (ASLD) is caused by a defect of the urea cycle enzyme argininosuccinate lyase (ASL) encoded by the ASL gene. Patients often present early after birth with hyperammonemia but can also manifest outside the neonatal period mainly triggered by excessive protein catabolism. Clinical courses comprise asymptomatic individuals who only excrete the biochemical marker, argininosuccinic acid, in urine, and patients who succumb to their first hyperammonemic decompensation. Some patients without any hyperammonemia develop severe neurological disease. Here, we are providing an update on the molecular basis of ASLD by collecting all published (n = 67) as well as novel mutations (n = 67) of the ASL gene. We compile data on all 160 different genotypes ever identified in 223 ASLD patients, including clinical courses whenever available. Finally, we are presenting structural considerations focusing on the relevance of mutations for ASL homotetramer formation. ASLD can be considered as a panethnic disease with only single founder mutations identified in the Finnish (c.299T>C, p.Ile100Thr) and Arab (c.1060C>T, p.Gln354*) population. Most mutations are private with only few genotypes recurring in unrelated patients. The majority of mutations are missense changes including some with more frequent occurrence such as p.Arg12Gln, p.Ile100Thr, p.Val178Met, p.Arg186Trp, p.Glu189Gly, p.Gln286Arg, and p.Arg385Cys. PMID:24166829

  7. Novel mutation in VCP gene causes atypical amyotrophic lateral sclerosis

    PubMed Central

    González-Pérez, Paloma; Cirulli, Elizabeth T.; Drory, Vivian E.; Dabby, Ron; Nisipeanu, Puiu; Carasso, Ralph L.; Sadeh, Menachem; Fox, Andrew; Festoff, Barry W.; Sapp, Peter C.; McKenna-Yasek, Diane; Goldstein, David B.

    2012-01-01

    Objective: To identify the genetic variant that causes autosomal dominantly inherited motor neuron disease in a 4-generation Israeli-Arab family using genetic linkage and whole exome sequencing. Methods: Genetic linkage analysis was performed in this family using Illumina single nucleotide polymorphism chips. Whole exome sequencing was then undertaken on DNA samples from 2 affected family members using an Illumina 2000 HiSeq platform in pursuit of potentially pathogenic genetic variants that comigrate with the disease in this pedigree. Variants meeting these criteria were then screened in all affected individuals. Results: A novel mutation (p.R191G) in the valosin-containing protein (VCP) gene was identified in the index family. Direct sequencing of the VCP gene in a panel of DNA from 274 unrelated individuals with familial amyotrophic lateral sclerosis (FALS) revealed 5 additional mutations. Among them, 2 were previously identified in pedigrees with a constellation of inclusion body myopathy with Paget disease of the bone and frontotemporal dementia (IBMPFD) and in FALS, and 2 other mutations (p.R159C and p.R155C) in IBMPFD alone. We did not detect VCP gene mutations in DNA from 178 cases of sporadic amyotrophic lateral sclerosis. Conclusions: We report a novel VCP mutation identified in an amyotrophic lateral sclerosis family (p.R191G) with atypical clinical features. In our experience, VCP mutations arise in approximately 1.5% of FALS cases. Our study supports the view that motor neuron disease is part of the clinical spectrum of VCP-associated disease. PMID:23152587

  8. Transposon-induced nuclear mutations that alter chloroplast gene expression

    SciTech Connect

    Barkan, A.

    1992-01-01

    The goal of this project is to use mutant phenotypes as a guide to nuclear genes that determine the timing and localization of chloroplast development The immediate goals are to identify nuclear mutants with defects in chloroplast gene expression from maize lines harboring active Mu transposons; characterize their phenotypes to determine the precise defect in gene expression; clone several of the most interesting mutations by exploiting the transposon tag; and use the clones to further define the roles of these genes in modulating chloroplast gene expression. Three mutants were described earlier that had global defects in chloroplast gene expression. We have found that two of these mutations are allelic. Both alleles have global defects in chloroplast translation initiation, as revealed by the failure to assemble chloroplast mRNAs into polysomes. We have isolated and characterized three new mutants from Mu lines that have novel defects in chloroplast RNA metabolism. We are now ready to begin the task of cloning several of these genes, by using the Mu transposon tag.

  9. Mutation analysis of the MECP2 gene in patients of Slavic origin with Rett syndrome: novel mutations and polymorphisms

    Microsoft Academic Search

    Daniela Zahorakova; Robert Rosipal; Jan Hadac; Alena Zumrova; Vladimir Bzduch; Nadezda Misovicova; Alice Baxova; Jiri Zeman; Pavel Martasek

    2007-01-01

    Rett syndrome (RTT), an X-linked dominant neurodevelopmental disorder in females, is caused mainly by de novo mutations in\\u000a the methyl-CpG-binding protein 2 gene (MECP2). Here we report mutation analysis of the MECP2 gene in 87 patients with RTT from the Czech and Slovak Republics, and Ukraine. The patients, all girls, with classical RTT\\u000a were investigated for mutations using bi-directional DNA

  10. Canine mdr1 Gene Mutation in Japan

    Microsoft Academic Search

    Akiko KAWABATA; Yasuyuki MOMOI; Miho INOUE-MURAYAMA; Toshiroh IWASAKI

    2005-01-01

    Frequency of the 4-bp deletion mutant in canine mdr1 gene was examined in 193 dogs of eight breeds in Japan. The mutant allele was found in Collies, Australian Shepherds, and Shetland Sheepdogs, where its respective frequencies were 58.3%, 33.3%, and 1.2%. The MDR1 protein was detected on peripheral blood mononuclear cells (PBMC) from a MDR1\\/MDR1 dog, but not on PBMC

  11. Nuclear and mitochondrial genes mutated in nonsyndromic impaired hearing.

    PubMed

    Finsterer, Josef; Fellinger, Johannes

    2005-05-01

    Half of the cases with congenital impaired hearing are hereditary (HIH). HIH may occur as part of a multisystem disease (syndromic HIH) or as disorder restricted to the ear and vestibular system (nonsyndromic HIH). Since nonsyndromic HIH is almost exclusively caused by cochlear defects, affected patients suffer from sensorineural hearing loss. One percent of the total human genes, i.e. 300-500, are estimated to cause syndromic and nonsyndromic HIH. Of these, approximately 120 genes have been cloned thus far, approximately 80 for syndromic HIH and 42 for nonsyndromic HIH. In the majority of the cases, HIH manifests before (prelingual), and rarely after (postlingual) development of speech. Prelingual, nonsyndromic HIH follows an autosomal recessive trait (75-80%), an autosomal dominant trait (10-20%), an X-chromosomal, recessive trait (1-5%), or is maternally inherited (0-20%). Postlingual nonsyndromic HIH usually follows an autosomal dominant trait. Of the 41 mutated genes that cause nonsyndromic HIH, 15 cause autosomal dominant HIH, 15 autosomal recessive HIH, 6 both autosomal dominant and recessive HIH, 2 X-linked HIH, and 3 maternally inherited HIH. Mutations in a single gene may not only cause autosomal dominant, nonsyndromic HIH, but also autosomal recessive, nonsyndromic HIH (GJB2, GJB6, MYO6, MYO7A, TECTA, TMC1), and even syndromic HIH (CDH23, COL11A2, DPP1, DSPP, GJB2, GJB3, GJB6, MYO7A, MYH9, PCDH15, POU3F4, SLC26A4, USH1C, WFS1). Different mutations in the same gene may cause variable phenotypes within a family and between families. Most cases of recessive HIH result from mutations in a single locus, but an increasing number of disorders is recognized, in which mutations in two different genes (GJB2/GJB6, TECTA/KCNQ4), or two different mutations in a single allele (GJB2) are involved. This overview focuses on recent advances in the genetic background of nonsyndromic HIH. PMID:15850684

  12. De Novo Mutations in Ataxin-2 Gene and ALS Risk

    PubMed Central

    Laffita-Mesa, José Miguel; Rodríguez Pupo, Jorge Michel; Moreno Sera, Raciel; Vázquez Mojena, Yaimee; Kourí, Vivian; Laguna-Salvia, Leonides; Martínez-Godales, Michael; Valdevila Figueira, José A.; Bauer, Peter O.; Rodríguez-Labrada, Roberto; Zaldívar, Yanetza González; Paucar, Martin; Svenningsson, Per; Pérez, Luís Velázquez

    2013-01-01

    Pathogenic CAG repeat expansion in the ataxin-2 gene (ATXN2) is the genetic cause of spinocerebellar ataxia type 2 (SCA2). Recently, it has been associated with Parkinsonism and increased genetic risk for amyotrophic lateral sclerosis (ALS). Here we report the association of de novo mutations in ATXN2 with autosomal dominant ALS. These findings support our previous conjectures based on population studies on the role of large normal ATXN2 alleles as the source for new mutations being involved in neurodegenerative pathologies associated with CAG expansions. The de novo mutations expanded from ALS/SCA2 non-risk alleles as proven by meta-analysis method. The ALS risk was associated with SCA2 alleles as well as with intermediate CAG lengths in the ATXN2. Higher risk for ALS was associated with pathogenic CAG repeat as revealed by meta-analysis. PMID:23936447

  13. Heterogeneous AVPR2 gene mutations in congenital nephrogenic diabetes insipidus.

    PubMed Central

    Wildin, R. S.; Antush, M. J.; Bennett, R. L.; Schoof, J. M.; Scott, C. R.

    1994-01-01

    Mutations in the AVPR2 gene encoding the receptor for arginine vasopressin in the kidney (V2 ADHR) have been reported in patients with congenital nephrogenic diabetes insipidus, a predominantly X-linked disorder of water homeostasis. We have used restriction-enzyme analysis and direct DNA sequencing of genomic PCR product to evaluate the AVPR2 gene in 11 unrelated affected males. Each patient has a different DNA sequence variation, and only one matches a previously reported mutation. Cosegregation of the variations with nephrogenic diabetes insipidus was demonstrated for two families, and a de novo mutation was documented in two additional cases. Carrier detection was accomplished in one family. All the variations predict frameshifts, truncations, or nonconservative amino acid substitutions in evolutionarily conserved positions in the V2 ADHR and related receptors. Of interest, a 28-bp deletion is found in one patient, while another, unrelated patient has a tandem duplication of the same 28-bp segment, suggesting that both resulted from the same unusual unequal crossing-over mechanism facilitated by 9-mer direct sequence repeats. Since the V2 ADHR is a member of the seven-transmembrane-domain, G-protein-coupled receptor superfamily, the loss-of-function mutations from this study and others provide important clues to the structure-function relationship of this and related receptors. Images Figure 1 Figure 2 Figure 3 PMID:7913579

  14. Mutations in BTD gene causing biotinidase deficiency: a regional report.

    PubMed

    Kasapkara, Çi?dem Seher; Akar, Melek; Özbek, Mehmet Nuri; Tüzün, Heybet; Aldudak, Bedri; Baran, R?za Taner; Tanyalç?n, Tijen

    2015-03-01

    Biotinidase deficiency is an autosomal recessive inborn error of biotin metabolism. Children with biotinidase deficiency cannot cleave biocytin and, therefore, cannot recycle biotin. Untreated individuals become secondarily biotin deficient, which in turn results in decreased activities of the biotin-dependent carboxylases and the subsequent accumulation of toxic metabolites causing clinical symptoms. Biotinidase deficiency is characterized by neurological, cutaneous manifestations and metabolic abnormalities. The worldwide incidence of profound biotinidase deficiency has been estimated at 1:112,271. The human biotinidase gene is located on chromosome 3p25 and consists of four exons with a total length of 1629 base pairs. To date, more than 100 mutations in the biotinidase gene known to cause biotinidase deficiency have been reported. The vast majority of mutations are homozygous or compound heterozygous. Finding known mutations can be correlated with the biochemical enzymatic results. This report summarizes the demographic features of patients identified as biotinidase deficient from August of 2012 through August of 2013 and mutation analysis results for 20 cases in the southeast region of Turkey. PMID:25423671

  15. The FBN2 gene: new mutations, locus-specific database (Universal Mutation Database FBN2), and genotype-phenotype correlations.

    PubMed

    Frédéric, Melissa Yana; Monino, Christine; Marschall, Christoph; Hamroun, Dalil; Faivre, Laurence; Jondeau, Guillaume; Klein, Hanns-Georg; Neumann, Luitgard; Gautier, Elodie; Binquet, Christine; Maslen, Cheryl; Godfrey, Maurice; Gupta, Prateek; Milewicz, Dianna; Boileau, Catherine; Claustres, Mireille; Béroud, Christophe; Collod-Béroud, Gwenaëlle

    2009-02-01

    Congenital contractural arachnodactyly (CCA) is an extremely rare disease, due to mutations in the FBN2 gene encoding fibrillin-2. Another member of the fibrillin family, the FBN1 gene, is involved in a broad phenotypic continuum of connective-tissue disorders including Marfan syndrome. Identifying not only what is in common but also what differentiates these two proteins should enable us to better comprehend their respective functions and better understand the multitude of diseases in which these two genes are involved. In 1995 we created a locus-specific database (LSDB) for FBN1 mutations with the Universal Mutation Database (UMD) tool. To facilitate comparison of identified mutations in these two genes and search for specific functional areas, we created an LSDB for the FBN2 gene: the UMD-FBN2 database. This database lists 26 published and six newly identified mutations that mainly comprise missense and splice-site mutations. Although the number of described FBN2 mutations was low, the frequency of joint dislocation was significantly higher with missense mutations when compared to splice site mutations. PMID:18767143

  16. Novel mutation and multiple mutations found in the human butyrylcholinesterase gene

    Microsoft Academic Search

    Weidong Liu; Jidong Cheng; Arata Iwasaki; Hiroyasu Imanishi; Toshikazu Hada

    2002-01-01

    Background: Mutations in human butyrylcholinesterase (BChE) are linked to low BChE activity and abnormal response to muscle relaxants. Methods: Twenty Chinese patients with hepatic disease and low cholinesterase activity, and one Japanese patient and her mother were tested for BChE activity and BChE phenotype. The butyrylcholinesterase (BCHE gene) was amplified by polymerase chain reaction (PCR) and sequenced. Mutant BChE was

  17. Combining gene mutation with gene expression data improves outcome prediction in myelodysplastic syndromes

    PubMed Central

    Gerstung, Moritz; Pellagatti, Andrea; Malcovati, Luca; Giagounidis, Aristoteles; Porta, Matteo G Della; Jädersten, Martin; Dolatshad, Hamid; Verma, Amit; Cross, Nicholas C. P.; Vyas, Paresh; Killick, Sally; Hellström-Lindberg, Eva; Cazzola, Mario; Papaemmanuil, Elli; Campbell, Peter J.; Boultwood, Jacqueline

    2015-01-01

    Cancer is a genetic disease, but two patients rarely have identical genotypes. Similarly, patients differ in their clinicopathological parameters, but how genotypic and phenotypic heterogeneity are interconnected is not well understood. Here we build statistical models to disentangle the effect of 12 recurrently mutated genes and 4 cytogenetic alterations on gene expression, diagnostic clinical variables and outcome in 124 patients with myelodysplastic syndromes. Overall, one or more genetic lesions correlate with expression levels of ~20% of all genes, explaining 20–65% of observed expression variability. Differential expression patterns vary between mutations and reflect the underlying biology, such as aberrant polycomb repression for ASXL1 and EZH2 mutations or perturbed gene dosage for copy-number changes. In predicting survival, genomic, transcriptomic and diagnostic clinical variables all have utility, with the largest contribution from the transcriptome. Similar observations are made on the TCGA acute myeloid leukaemia cohort, confirming the general trends reported here. PMID:25574665

  18. Frequency of Smad Gene Mutations in Human Cancers

    Microsoft Academic Search

    Gregory J. Riggins; Kenneth W. Kinzler; Bert Vogeistein; Sam Thiagalingam

    1997-01-01

    Much excitement has recently been generated by the discovery of the Smad genes, encoding proteins that transduce signals from the transform ing growthfactor @3 familyofcytokines. Here,we reportthe completionof cloning of the six known human Smads, providing novel sequences for SmadS and Smad6. Previously, Smad4 and Smad2 were shown to be mutated in human cancers. However, analysis of the other four

  19. Cascade genetic testing for mismatch repair gene mutations

    Microsoft Academic Search

    R. J. Mitchell; R. K. Ferguson; A. Macdonald; M. G. Dunlop; H. Campbell; M. E. Porteous

    2008-01-01

    Mismatch repair gene mutation carriers have a high risk of developing colorectal cancer, and can benefit from appropriate\\u000a surveillance. A combined population based ascertainment cascade genetic testing approach provides a systematic and potentially\\u000a effective strategy for identifying such carriers. We have developed a Markov Chain computer model system which simulates various\\u000a factors influencing cascade genetic testing; including demographics, uptake, genetic

  20. Inherited Mutations in Breast Cancer Genes—Risk and Response

    Microsoft Academic Search

    Andrew Y. Shuen; William D. Foulkes

    2011-01-01

    Germ-line mutations in BRCA1 and BRCA2 confer a high risk of developing breast cancer. They account, however, for only 40% of strongly familial breast cancer cases.\\u000a Intensive genome-wide searches for other highly-penetrant BRCA genes that, individually account for a sizeable fraction of the remaining heritability has not identified any plausible candidates.\\u000a The “missing heritability” is thought to be due to

  1. p53 and APC gene mutations: software and databases.

    PubMed Central

    Béroud, C; Soussi, T

    1997-01-01

    A large number of different mutations in the APC and p53 tumor suppressor genes have been identified in various types of cancer. This substantial increase since our previous reports can enable analyses which were not previously possible. In order to capture all these new data, the software permitting analysis has been improved. This report describes the various improvements since the second release of the database. PMID:9016523

  2. Biochemical features of ceruloplasmin gene mutations linked to aceruloplasminemia

    Microsoft Academic Search

    Satoshi Kono; Hitoshi Suzuki; Toshiaki Oda; Hiroaki Miyajima; Yoshitomo Takahashi; Kentaro Shirakawa; Kuniko Ishikawa; Masatoshi Kitagawa

    2006-01-01

    Aceruloplasminemia is a neurodegenerative disease characterized by parenchymal iron accumulation owing to mutations in the\\u000a ceruloplasmin gene. Ceruloplasmin is expressed in the central nervous system in which most of the ceruloplasmin is located\\u000a on the surface of astrocytes in a glycosylphosphatidy linositol (GPI)-anchored form. We herein describe the biochemical features\\u000a of wild-type and mutant GPI-anchored ceruloplasmin. An overexpression of wild-type

  3. Validation of high-resolution DNA melting analysis for mutation scanning of the CDKL5 gene: identification of novel mutations.

    PubMed

    Raymond, Laure; Diebold, Bertrand; Leroux, Céline; Maurey, Hélčne; Drouin-Garraud, Valérie; Delahaye, Andre; Dulac, Olivier; Metreau, Julia; Melikishvili, Gia; Toutain, Annick; Rivier, François; Bahi-Buisson, Nadia; Bienvenu, Thierry

    2013-01-01

    Mutations in the cyclin-dependent kinase-like 5 gene (CDKL5) have been predominantly described in epileptic encephalopathies of female, including infantile spasms with Rett-like features. Up to now, detection of mutations in this gene was made by laborious, expensive and/or time consuming methods. Here, we decided to validate high-resolution melting analysis (HRMA) for mutation scanning of the CDKL5 gene. Firstly, using a large DNA bank consisting to 34 samples carrying different mutations and polymorphisms, we validated our analytical conditions to analyse the different exons and flanking intronic sequences of the CDKL5 gene by HRMA. Secondly, we screened CDKL5 by both HRMA and denaturing high performance liquid chromatography (dHPLC) in a cohort of 135 patients with early-onset seizures. Our results showed that point mutations and small insertions and deletions can be reliably detected by HRMA. Compared to dHPLC, HRMA profiles are more discriminated, thereby decreasing unnecessary sequencing. In this study, we identified eleven novel sequence variations including four pathogenic mutations (2.96% prevalence). HRMA appears cost-effective, easy to set up, highly sensitive, non-toxic and rapid for mutation screening, ideally suited for large genes with heterogeneous mutations located along the whole coding sequence, such as the CDKL5 gene. PMID:23064044

  4. Prediction of phenotype and gene expression for combinations of mutations

    PubMed Central

    Carter, Gregory W; Prinz, Susanne; Neou, Christine; Shelby, J Patrick; Marzolf, Bruz; Thorsson, Vesteinn; Galitski, Timothy

    2007-01-01

    Molecular interactions provide paths for information flows. Genetic interactions reveal active information flows and reflect their functional consequences. We integrated these complementary data types to model the transcription network controlling cell differentiation in yeast. Genetic interactions were inferred from linear decomposition of gene expression data and were used to direct the construction of a molecular interaction network mediating these genetic effects. This network included both known and novel regulatory influences, and predicted genetic interactions. For corresponding combinations of mutations, the network model predicted quantitative gene expression profiles and precise phenotypic effects. Multiple predictions were tested and verified. PMID:17389876

  5. Limited clinical relevance of mitochondrial DNA mutation and gene expression analyses in ovarian cancer

    Microsoft Academic Search

    Piotr Bragoszewski; Jolanta Kupryjanczyk; Ewa Bartnik; Andrea Rachinger; Jerzy Ostrowski

    2008-01-01

    BACKGROUND: In recent years, numerous studies have investigated somatic mutations in mitochondrial DNA in various tumours. The observed high mutation rates might reflect mitochondrial deregulation; consequently, mutation analyses could be clinically relevant. The purpose of this study was to determine if mutations in the mitochondrial D-loop region and\\/or the level of mitochondrial gene expression could influence the clinical course of

  6. Identification of factor VIII gene mutations and carrier detection in Korean haemophilia A patients

    Microsoft Academic Search

    J.-Y. HAN; J.-N. LEE; S.-Y. LEE; I.-J. KIM; C.-M KIM

    2007-01-01

    Haemophilia A is an X-linked bleeding disorder caused by heterogeneous mutations in the factor VIII gene. More than 900 mutations within the FVIII coding and untranslated regions have been identified. The most common defects is an inversion in the FVIII gene that accounts for nearly 40-50% of individuals with severe haemophilia A. Point mutations, deletions and insertions are responsible for

  7. RAS gene mutations in acute and chronic myelocytic leukemias, chronic myeloproliferative disorders, and myelodysplastic syndromes

    Microsoft Academic Search

    J. W. G. Janssen; A. C. M. Steenvoorden; J. Lyons; B. Anger; J. U. Boehlke; J. L. Bos; H. Seliger; C. R. Bartram

    1987-01-01

    The authors report on investigations aimed at detecting mutated RAS genes in a variety of preleukemic disorders and leukemias of myeloid origin. DNA transfection analyses (tumorigenicity assay) and hybridization to mutation-specific oligonucleotide probes established NRAS mutations in codon 12 or 61 of 4\\/9 acute myelocytic leukemias (AML) and three AML lines. Leukemic cells of another AML patient showed HRAS gene

  8. Missense mutations in cancer suppressor gene TP53 are colocalized with exonic splicing enhancers (ESEs)

    Microsoft Academic Search

    Ivan P. Gorlov; Olga Y. Gorlova; Marsha L. Frazier; Christopher I. Amos

    2004-01-01

    Mutation databases can be viewed as footprints of functional organization of a gene and thus can be used to infer its functional organization. We studied the association of exonic splicing enhancers (ESEs) with missense mutations in the tumor suppressor gene TP53 using the International Agency for Research on Cancer (IARC) mutation database. The goals of the study were: (i) to

  9. Mutation of the COG complex subunit gene COG7 causes a lethal congenital disorder

    Microsoft Academic Search

    Xiaohua Wu; Richard A Steet; Ognian Bohorov; Jaap Bakker; John Newell; Monty Krieger; Leo Spaapen; Stuart Kornfeld; Hudson H Freeze

    2004-01-01

    The congenital disorders of glycosylation (CDG) are characterized by defects in N-linked glycan biosynthesis that result from mutations in genes encoding proteins directly involved in the glycosylation pathway. Here we describe two siblings with a fatal form of CDG caused by a mutation in the gene encoding COG-7, a subunit of the conserved oligomeric Golgi (COG) complex. The mutation impairs

  10. Mutational analysis of genes coding for cell surface proteins in colorectal cancer cell lines reveal novel altered pathways, druggable mutations and mutated epitopes for targeted therapy

    PubMed Central

    Correa, Bruna R.; Bettoni, Fabiana; Koyama, Fernanda C.; Navarro, Fabio C.P.; Perez, Rodrigo O.; Mariadason, John; Sieber, Oliver M.; Strausberg, Robert L.; Simpson, Andrew J.G.; Jardim, Denis L.F.; Reis, Luiz Fernando L.; Parmigiani, Raphael B.; Galante, Pedro A.F.; Camargo, Anamaria A.

    2014-01-01

    We carried out a mutational analysis of 3,594 genes coding for cell surface proteins (Surfaceome) in 23 colorectal cancer cell lines, searching for new altered pathways, druggable mutations and mutated epitopes for targeted therapy in colorectal cancer. A total of 3,944 somatic non-synonymous substitutions and 595 InDels, occurring in 2,061 (57%) Surfaceome genes were catalogued. We identified 48 genes not previously described as mutated in colorectal tumors in the TCGA database, including genes that are mutated and expressed in >10% of the cell lines (SEMA4C, FGFRL1, PKD1, FAM38A, WDR81, TMEM136, SLC36A1, SLC26A6, IGFLR1). Analysis of these genes uncovered important roles for FGF and SEMA4 signaling in colorectal cancer with possible therapeutic implications. We also found that cell lines express on average 11 druggable mutations, including frequent mutations (>20%) in the receptor tyrosine kinases AXL and EPHA2, which have not been previously considered as potential targets for colorectal cancer. Finally, we identified 82 cell surface mutated epitopes, however expression of only 30% of these epitopes was detected in our cell lines. Notwithstanding, 92% of these epitopes were expressed in cell lines with the mutator phenotype, opening new venues for the use of “general” immune checkpoint drugs in this subset of patients. PMID:25193853

  11. Factor V gene G1691A mutation, prothrombin gene G20210A mutation, and MTHFR gene C677T mutation are not risk factors for pulmonary thromboembolism in Chinese population

    Microsoft Academic Search

    Yanhui Lu; Yanfen Zhao; Guozhang Liu; Xiaoling Wang; Zhihong Liu; Baiping Chen; Rutai Hui

    2002-01-01

    A mutation in coagulant factor V gene, a substitution in the 3? untranslated region of prothrombin gene, and a variant in 5,10-methylenetetrahydrofolate reductase (MTHFR) gene have been reported to be related to venous thromboembolism in Caucasians, but this relationship remains in debate in other populations. In this case–control study, we aimed to determine the prevalence of these three mutations in

  12. Inherited mutations in breast cancer genes--risk and response.

    PubMed

    Shuen, Andrew Y; Foulkes, William D

    2011-04-01

    Germ-line mutations in BRCA1 and BRCA2 confer a high risk of developing breast cancer. They account, however, for only 40% of strongly familial breast cancer cases. Intensive genome-wide searches for other highly-penetrant BRCA genes that, individually account for a sizeable fraction of the remaining heritability has not identified any plausible candidates. The "missing heritability" is thought to be due to cumulative effects of susceptibility alleles associated with low to moderate penetrance, in accordance with a polygenic model of inheritance. In addition, a large number of individually very rare, highly penetrant variants could account for part of the gap. Meanwhile, an understanding of the function of BRCA1 and BRCA2 in the DNA damage response pathway has lead to the identification of a number of breast cancer susceptibility genes including PALB2, CHEK2, ATM and BRIP1, all of which interact directly or indirectly with BRCA1 or BRCA2. Knowledge of how BRCA1 and BRCA2 maintain genomic integrity has also led the development of novel targeted therapies. Here we summarize the recent advances made in the understanding of the functions of these two genes, as well as the risks and responses associated with mutations in these and other breast cancer susceptibility genes. PMID:21461995

  13. Novel chloride channel gene mutations in two unrelated Chinese families with myotonia congenita.

    PubMed

    Gao, Feng; Ma, Fu Chan; Yuan, Zhe Feng; Yang, Cui Wei; Li, Hai Feng; Xia, Zhe Zhi; Shui, Quan Xiang; Jiang, Ke Wen

    2010-01-01

    Myotonia congenita (MC) is a genetic disease characterized by mutations in the muscle chloride channel gene (CLCN1). To date, approximately 130 different mutations on the CLCN1 gene have been identified. However, most of the studies have focused on Caucasians, and reports on CLCN1 mutations in Chinese population are rare. This study investigated the mutation of CLCN1 in two Chinese families with MC. Direct sequencing of the CLCN1 gene revealed a heterozygous mutation (892G>A, resulting in A298T) in one family and a compound heterozygous mutations (782A>G, resulting in Y261C; 1679T>C, resulting in M560T) in the other family, None of the 100 normal controls had these mutations. Our findings add more to the available information on the CLCN1 mutation spectrum, and provide a valuable reference for studying the mutation types and inheritance pattern of CLCN1 in the Chinese population. PMID:21045501

  14. Horizontal gene transfer and mutation: ngrol genes in the genome of Nicotiana glauca.

    PubMed

    Aoki, S; Syno, K

    1999-11-01

    Ngrol genes (NgrolB, NgrolC, NgORF13, and NgORF14) that are similar in sequence to genes in the left transferred DNA (TL-DNA) of Agrobacterium rhizogenes have been found in the genome of untransformed plants of Nicotiana glauca. It has been suggested that a bacterial infection resulted in transformation of Ngrol genes early in the evolution of the genus Nicotiana. Although the corresponding four rol genes in TL-DNA provoked hairy-root syndrome in plants, present-day N. glauca and plants transformed with Ngrol genes did not exhibit this phenotype. Sequenced complementation analysis revealed that the NgrolB gene did not induce adventitious roots because it contained two point mutations. Single-base site-directed mutagenesis at these two positions restored the capacity for root induction to the NgrolB gene. When the NgrolB, with these two base substitutions, was positioned under the control of the cauliflower mosaic virus 35S promoter (P35S), transgenic tobacco plants exhibited morphological abnormalities that were not observed in P35S-RirolB plants. In contrast, the activity of the NgrolC gene may have been conserved after an ancient infection by bacteria. Discussed is the effect of the horizontal gene transfer of the Ngrol genes and mutations in the NgrolB gene on the phenotype of ancient plants during the evolution of N. glauca. PMID:10557303

  15. Mutations and a polymorphism in the tuberin gene

    SciTech Connect

    Northup, H.; Rodriguez, J.A.; Au, K.S.; Rodriguez, E. [Univ. of Texas Medical School, Houston, TX (United States)

    1994-09-01

    Two deletions and a polymorphism have been identified in the recently described tuberin gene. The tuberin gene (designated TSC2) when mutated causes tuberous sclerosis complex (TSC). Fifty-three affected individuals (30 from families with multiple affected and 23 isolated cases) were screened with the tuberin cDNA for gross deletions or rearrangements. Both deletions were found in families with multiple affected members (family designations: HOU-5 and HOU-22). The approximate size of the deletion in HOU-5 is ten kilobases and eliminates a BamHI restriction site. The deletion includes a portion of the 5{prime} half of the tuberin cDNA. The deletion in HOU-22 occurs in the 3{prime} half of the gene. The deletions are being further characterized. A HindIII restriction site polymorphism was detected by a 0.5 kilobase probe from the 5{prime} coding region of the tuberin gene in an individual from a family linked to chromosome 9 (posterior probability of linkage 93%). The polymorphism did not segregate with TSC in the family. The family had previously been shown to give negative results with multiple markers on chromosome 16. The polymorphism was also seen in one individual among a panel of 20 randomly selected unaffected individuals. Thirty-five additional affected probands (five from families and 30 isolated cases) are being tested with the tuberin cDNA. Testing for subtle mutations is our panel of 80 affected probands is underway utilizing SSCP. Additional mutations or polymorphisms detected will be reported. The tuberin cDNA was a kind gift of The European Chromosome 16 Tuberous Sclerosis Consortium.

  16. A second family with XLRH displays the mutation S244L in the CLCN5 gene

    Microsoft Academic Search

    Claudine Oudet; Dominique Martin-Coignard; Solange Pannetier; Elisabeth Praud; Gérard Champion; André Hanauer

    1997-01-01

    Mutations in the CLCN5 gene, mapped in Xp11.22, have been recently reported to be associated with X-linked nephrolithiasis, X-linked recessive hypophosphataemic\\u000a rickets and Dent’s disease. We report a missense mutation in exon 6 of the CLCN5 gene. The mutation in this pedigree is S244L, the same mutation as has previously been described in an Italian family showing\\u000a a similar pathology.

  17. Mutations in Hedgehog pathway genes in fetal rhabdomyomas

    PubMed Central

    Hettmer, Simone; Teot, Lisa A; van Hummelen, Paul; MacConaill, Laura; Bronson, Roderick T; Dall’Osso, Claudia; Mao, Junhao; McMahon, Andrew P; Gruber, Peter J; Grier, Holcombe E; Rodriguez-Galindo, Carlos; Fletcher, Christopher D; Wagers, Amy J

    2013-01-01

    Ligand-independent, constitutive activation of Hedgehog signalling in mice expressing a mutant, activated SmoM2 allele results in the development of multifocal, highly differentiated tumours that express myogenic markers (including desmin, actin, MyoD and myogenin). The histopathology of these tumours, commonly classified as rhabdomyosarcomas, more closely resembles human fetal rhabdomyoma (FRM), a benign tumour that can be difficult to distinguish from highly differentiated rhabdomyosarcomas. We evaluated the spectrum of Hedgehog (HH) pathway gene mutations in a cohort of human FRM tumours by targeted Illumina sequencing and fluorescence in situ hybridization testing for PTCH1. Our studies identified functionally relevant aberrations at the PTCH1 locus in three of five FRM tumours surveyed, including a PTCH1 frameshift mutation in one tumour and homozygous deletions of PTCH1 in two tumours. These data suggest that activated Hedgehog signalling contributes to the biology of human FRM. PMID:23780909

  18. Cohesin gene mutations in tumorigenesis: from discovery to clinical significance

    PubMed Central

    Solomon, David A.; Kim, Jung-Sik; Waldman, Todd

    2014-01-01

    Cohesin is a multi-protein complex composed of four core subunits (SMC1A, SMC3, RAD21, and either STAG1 or STAG2) that is responsible for the cohesion of sister chromatids following DNA replication until its cleavage during mitosis thereby enabling faithful segregation of sister chromatids into two daughter cells. Recent cancer genomics analyses have discovered a high frequency of somatic mutations in the genes encoding the core cohesin subunits as well as cohesin regulatory factors (e.g. NIPBL, PDS5B, ESPL1) in a select subset of human tumors including glioblastoma, Ewing sarcoma, urothelial carcinoma, acute myeloid leukemia, and acute megakaryoblastic leukemia. Herein we review these studies including discussion of the functional significance of cohesin inactivation in tumorigenesis and potential therapeutic mechanisms to selectively target cancers harboring cohesin mutations. [BMB Reports 2014; 47(6): 299-310] PMID:24856830

  19. Mutation screening of the HGD gene identifies a novel alkaptonuria mutation with significant founder effect and high prevalence.

    PubMed

    Sakthivel, Srinivasan; Zatkova, Andrea; Nemethova, Martina; Surovy, Milan; Kadasi, Ludevit; Saravanan, Madurai P

    2014-05-01

    Alkaptonuria (AKU) is an autosomal recessive disorder; caused by the mutations in the homogentisate 1, 2-dioxygenase (HGD) gene located on Chromosome 3q13.33. AKU is a rare disorder with an incidence of 1: 250,000 to 1: 1,000,000, but Slovakia and the Dominican Republic have a relatively higher incidence of 1: 19,000. Our study focused on studying the frequency of AKU and identification of HGD gene mutations in nomads. HGD gene sequencing was used to identify the mutations in alkaptonurics. For the past four years, from subjects suspected to be clinically affected, we found 16 positive cases among a randomly selected cohort of 41 Indian nomads (Narikuravar) settled in the specific area of Tamil Nadu, India. HGD gene mutation analysis showed that 11 of these patients carry the same homozygous splicing mutation c.87 + 1G > A; in five cases, this mutation was found to be heterozygous, while the second AKU-causing mutation was not identified in these patients. This result indicates that the founder effect and high degree of consanguineous marriages have contributed to AKU among nomads. Eleven positive samples were homozygous for a novel mutation c.87 + 1G > A, that abolishes an intron 2 donor splice site and most likely causes skipping of exon 2. The prevalence of AKU observed earlier seems to be highly increased in people of nomadic origin. PMID:24575791

  20. Screening for mutations in Spanish families with myotonia. Functional analysis of novel mutations in CLCN1 gene.

    PubMed

    Mazón, María J; Barros, Francisco; De la Peńa, Pilar; Quesada, Juan F; Escudero, Adela; Cobo, Ana M; Pascual-Pascual, Samuel I; Gutiérrez-Rivas, Eduardo; Guillén, Encarna; Arpa, Javier; Eraso, Pilar; Portillo, Francisco; Molano, Jesús

    2012-03-01

    Myotonia congenita is an inherited muscle disorder caused by mutations in the CLCN1 gene, a voltage-gated chloride channel of skeletal muscle. We have studied 48 families with myotonia, 32 out of them carrying mutations in CLCN1 gene and eight carry mutations in SCN4A gene. We have found 26 different mutations in CLCN1 gene, including 13 not reported previously. Among those 26 mutations, c.180+3A>T in intron 1 is present in nearly one half of the Spanish families in this series, the largest one analyzed in Spain so far. Although scarce data have been published on the frequency of mutation c.180+3A>T in other populations, our data suggest that this mutation is more frequent in Spain than in other European populations. In addition, expression in HEK293 cells of the new missense mutants Tyr137Asp, Gly230Val, Gly233Val, Tyr302His, Gly416Glu, Arg421Cys, Asn567Lys and Gln788Pro, demonstrated that these DNA variants are disease-causing mutations that abrogate chloride currents. PMID:22094069

  1. Whole-exome sequencing defines the mutational landscape of pheochromocytoma and identifies KMT2D as a recurrently mutated gene.

    PubMed

    Juhlin, C Christofer; Stenman, Adam; Haglund, Felix; Clark, Victoria E; Brown, Taylor C; Baranoski, Jacob; Bilguvar, Kaya; Goh, Gerald; Welander, Jenny; Svahn, Fredrika; Rubinstein, Jill C; Caramuta, Stefano; Yasuno, Katsuhito; Günel, Murat; Bäckdahl, Martin; Gimm, Oliver; Söderkvist, Peter; Prasad, Manju L; Korah, Reju; Lifton, Richard P; Carling, Tobias

    2015-09-01

    As subsets of pheochromocytomas (PCCs) lack a defined molecular etiology, we sought to characterize the mutational landscape of PCCs to identify novel gene candidates involved in disease development. A discovery cohort of 15 PCCs wild type for mutations in PCC susceptibility genes underwent whole-exome sequencing, and an additional 83 PCCs served as a verification cohort for targeted sequencing of candidate mutations. A low rate of nonsilent single nucleotide variants (SNVs) was detected (6.1/sample). Somatic HRAS and EPAS1 mutations were observed in one case each, whereas the remaining 13 cases did not exhibit variants in established PCC genes. SNVs aggregated in apoptosis-related pathways, and mutations in COSMIC genes not previously reported in PCCs included ZAN, MITF, WDTC1, and CAMTA1. Two somatic mutations and one constitutional variant in the well-established cancer gene lysine (K)-specific methyltransferase 2D (KMT2D, MLL2) were discovered in one sample each, prompting KMT2D screening using focused exome-sequencing in the verification cohort. An additional 11 PCCs displayed KMT2D variants, of which two were recurrent. In total, missense KMT2D variants were found in 14 (11 somatic, two constitutional, one undetermined) of 99 PCCs (14%). Five cases displayed somatic mutations in the functional FYR/SET domains of KMT2D, constituting 36% of all KMT2D-mutated PCCs. KMT2D expression was upregulated in PCCs compared to normal adrenals, and KMT2D overexpression positively affected cell migration in a PCC cell line. We conclude that KMT2D represents a recurrently mutated gene with potential implication for PCC development. © 2015 The Authors. Genes, Chromosomes & Cancer Published by Wiley Periodicals, Inc. PMID:26032282

  2. Mutation analysis of the MSMB gene in familial prostate cancer

    PubMed Central

    Kote-Jarai, Z; Leongamornlert, D; Tymrakiewicz, M; Field, H; Guy, M; Al Olama, A A; Morrison, J; O'Brien, L; Wilkinson, R; Hall, A; Sawyer, E; Muir, K; Hamdy, F; Donovan, J; Neal, D; Easton, D; Eeles, R

    2009-01-01

    Background: MSMB, a gene coding for ?-microseminoprotein, has been identified as a candidate susceptibility gene for prostate cancer (PrCa) in two genome-wide association studies (GWAS). SNP rs10993994 is 2?bp upstream of the transcription initiation site of MSMB and was identified as an associated PrCa risk variant. The MSMB protein is underexpressed in PrCa and it was previously proposed to be an independent marker for the recurrence of cancer after radical prostatectomy. Methods: In this study, the coding region of this gene and 1500?bp upstream of the 5?UTR has been sequenced in germline DNA in 192 PrCa patients with family history. To evaluate the possible effects of these variants we used in silico analysis. Results: No deleterious mutations were identified, however, nine new sequence variants were found, most of these in the promoter and 5?UTR region. In silico analysis suggests that four of these SNPs are likely to have some effect on gene expression either by affecting ubiquitous or prostate-specific transcription factor (TF)-binding sites or modifying splicing efficiency. Interpretation We conclude that MSMB is unlikely to be a familial PrCa gene and propose that the high-risk alleles of the SNPs in the 5?UTR effect PrCa risk by modifying MSMB gene expression in response to hormones in a tissue-specific manner. PMID:19997100

  3. Multifocal hepatic neoplasia in 3 children with APC gene mutation.

    PubMed

    Gupta, Anita; Sheridan, Rachel M; Towbin, Alexander; Geller, James I; Tiao, Gregory; Bove, Kevin E

    2013-07-01

    Hepatoblastoma (HB), the most common hepatic neoplasm in children is associated with germline mutations in adenomatous polyposis coli tumor-suppressor gene that cause familial adenomatous polyposis syndrome. Individuals with familial adenomatous polyposis have a 750 to 7500× the risk of developing HB. We report 3 children with APC gene mutation, who underwent resection or liver transplant for HB. In addition to HB, all 3 patients had multiple independent adenoma-like nodules lacking qualities of intrahepatic metastases. Twenty-five nodules were subjected to immunohistochemical analysis using a panel of antibodies including glypican-3 (GPC3), ?-catenin, cytokeratin AE1/AE3, CD34, Ki-67, glutamine synthetase (GS), and fatty acid binding protein. The nodules were round, ranged in size from 0.2 to 1.5 cm, and paler than the background liver. All lacked the chemotherapy effect. The nodules were circumscribed but nonencapsulated and composed of well-differentiated hepatocytes with occasional minor atypical features and absent or rare portal tracts. One lesion displayed a "nodule-within-nodule" pattern. The nodules demonstrated diffuse GS overexpression. Nine (36%) nodules were focally reactive for GPC3, and 1 (4%) displayed focal nuclear ?-catenin expression. The associated HB showed diffuse expression of GS, GPC3, and ?-catenin nuclear staining. We interpret these nodules as neoplastic with most being adenomas (GPC3 negative) that show features of independent origin and represent early stages of carcinogenesis, implying potential to progress to HB or hepatocellular carcinoma. To our knowledge, this is the first report of multifocal neoplasms in patients with HB and APC gene mutation. PMID:23715166

  4. Hyponatremia resulting from arginine vasopressin receptor 2 gene mutation.

    PubMed

    Bes, David Francisco; Mendilaharzu, Hernán; Fenwick, Raymond G; Arrizurieta, Elvira

    2007-03-01

    Chronic hyponatremia, unless associated with extracellular fluid volume expansion, is an infrequent electrolyte imbalance in pediatrics. We report an infant with chronic hyponatremia suggestive of a syndrome of inappropriate secretion of antidiuretic hormone (SIADH), in the absence of ADH secretion. A mutation was found in the same codon of the gene that results in a loss-of- function of arginine vasopressin receptor 2 (AVPR2) observed in congenital nephrogenic diabetes insipidus. In this case, a gain-of- function of AVPR 2 was found to be responsible for a SIADH-like state. PMID:17115194

  5. The landscape of cancer genes and mutational processes in breast cancer

    PubMed Central

    Stephens, Philip J.; Tarpey, Patrick S.; Davies, Helen; Loo, Peter Van; Greenman, Chris; Wedge, David C.; Nik-Zainal, Serena; Martin, Sancha; Varela, Ignacio; Bignell, Graham R.; Yates, Lucy R.; Papaemmanuil, Elli; Beare, David; Butler, Adam; Cheverton, Angela; Gamble, John; Hinton, Jonathan; Jia, Mingming; Jayakumar, Alagu; Jones, David; Latimer, Calli; Lau, King Wai; McLaren, Stuart; McBride, David J.; Menzies, Andrew; Mudie, Laura; Raine, Keiran; Rad, Roland; Chapman, Michael Spencer; Teague, Jon; Easton, Douglas; Langerřd, Anita; OSBREAC; Lee, Ming Ta Michael; Shen, Chen-Yang; Tee, Benita Tan Kiat; Huimin, Bernice Wong; Broeks, Annegien; Vargas, Ana Cristina; Turashvili, Gulisa; Martens, John; Fatima, Aquila; Miron, Penelope; Chin, Suet-Feung; Thomas, Gilles; Boyault, Sandrine; Mariani, Odette; Lakhani, Sunil R.; van de Vijver, Marc; van ’t Veer, Laura; Foekens, John; Desmedt, Christine; Sotiriou, Christos; Tutt, Andrew; Caldas, Carlos; Reis-Filho, Jorge S.; Aparicio, Samuel A. J. R.; Salomon, Anne Vincent; Břrresen-Dale, Anne-Lise; Richardson, Andrea L.; Campbell, Peter J.; Futreal, P. Andrew; Stratton, Michael R.

    2012-01-01

    All cancers carry somatic mutations in their genomes. A subset, known as driver mutations, confer clonal selective advantage on cancer cells and are causally implicated in oncogenesis1, and the remainder are passenger mutations. The driver mutations and mutational processes operative in breast cancer have not yet been comprehensively explored. Here we examine the genomes of 100 tumours for somatic copy number changes and mutations in the coding exons of protein-coding genes. The number of somatic mutations varied markedly between individual tumours. We found strong correlations between mutation number, age at which cancer was diagnosed and cancer histological grade, and observed multiple mutational signatures, including one present in about ten per cent of tumours characterized by numerous mutations of cytosine at TpC dinucleotides. Driver mutations were identified in several new cancer genes including AKT2, ARID1B, CASP8, CDKN1B, MAP3K1, MAP3K13, NCOR1, SMARCD1 and TBX3. Among the 100 tumours, we found driver mutations in at least 40 cancer genes and 73 different combinations of mutated cancer genes. The results highlight the substantial genetic diversity underlying this common disease. PMID:22722201

  6. Alu distribution and mutation types of cancer genes

    PubMed Central

    2011-01-01

    Background Alu elements are the most abundant retrotransposable elements comprising ~11% of the human genome. Many studies have highlighted the role that Alu elements have in genetic instability and how their contribution to the assortment of mutagenic events can lead to cancer. As of yet, little has been done to quantitatively assess the association between Alu distribution and genes that are causally implicated in oncogenesis. Results We have investigated the effect of various Alu densities on the mutation type based classifications of cancer genes. In order to establish the direct relationship between Alus and the cancer genes of interest, genome wide Alu-related densities were measured using genes rather than the sliding windows of fixed length as the units. Several novel genomic features, such as the density of the adjacent Alu pairs and the number of Alu-Exon-Alu triplets, were developed in order to extend the investigation via the multivariate statistical analysis toward more advanced biological insight. In addition, we characterized the genome-wide intron Alu distribution with a mixture model that distinguished genes containing Alu elements from those with no Alus, and evaluated the gene-level effect of the 5'-TTAAAA motif associated with Alu insertion sites using a two-step regression analysis method. Conclusions The study resulted in several novel findings worthy of further investigation. They include: (1) Recessive cancer genes (tumor suppressor genes) are enriched with Alu elements (p < 0.01) compared to dominant cancer genes (oncogenes) and the entire set of genes in the human genome; (2) Alu-related genomic features can be used to cluster cancer genes into biological meaningful groups; (3) The retention of exon Alus has been restricted in the human genome development, and an upper limit to the chromosome-level exon Alu densities is suggested by the distribution profile; (4) For the genes with at least one intron Alu repeat in individual chromosomes, the intron Alu densities can be well fitted by a Gamma distribution; (5) The effect of the 5'-TTAAAA motif on Alu densities varies across different chromosomes. PMID:21429208

  7. Genetic syndromes caused by mutations in epigenetic genes.

    PubMed

    Berdasco, María; Esteller, Manel

    2013-04-01

    The orchestrated organization of epigenetic factors that control chromatin dynamism, including DNA methylation, histone marks, non-coding RNAs (ncRNAs) and chromatin-remodeling proteins, is essential for the proper function of tissue homeostasis, cell identity and development. Indeed, deregulation of epigenetic profiles has been described in several human pathologies, including complex diseases (such as cancer, cardiovascular and neurological diseases), metabolic pathologies (type 2 diabetes and obesity) and imprinting disorders. Over the last decade it has become increasingly clear that mutations of genes involved in epigenetic mechanism, such as DNA methyltransferases, methyl-binding domain proteins, histone deacetylases, histone methylases and members of the SWI/SNF family of chromatin remodelers are linked to human disorders, including Immunodeficiency Centromeric instability Facial syndrome 1, Rett syndrome, Rubinstein-Taybi syndrome, Sotos syndrome or alpha-thalassemia/mental retardation X-linked syndrome, among others. As new members of the epigenetic machinery are described, the number of human syndromes associated with epigenetic alterations increases. As recent examples, mutations of histone demethylases and members of the non-coding RNA machinery have recently been associated with Kabuki syndrome, Claes-Jensen X-linked mental retardation syndrome and Goiter syndrome. In this review, we describe the variety of germline mutations of epigenetic modifiers that are known to be associated with human disorders, and discuss the therapeutic potential of epigenetic drugs as palliative care strategies in the treatment of such disorders. PMID:23370504

  8. Neuropathy Target Esterase Gene Mutations Cause Motor Neuron Disease

    PubMed Central

    Rainier, Shirley; Bui, Melanie; Mark, Erin; Thomas, Donald; Tokarz, Debra; Ming, Lei; Delaney, Colin; Richardson, Rudy J.; Albers, James W.; Matsunami, Nori; Stevens, Jeff; Coon, Hilary; Leppert, Mark; Fink, John K.

    2008-01-01

    The possibility that organophosphorus (OP) compounds contribute to motor neuron disease (MND) is supported by association of paraoxonase 1 polymorphisms with amyotrophic lateral sclerosis (ALS) and the occurrence of MND in OP compound-induced delayed neuropathy (OPIDN), in which neuropathy target esterase (NTE) is inhibited by organophosphorylation. We evaluated a consanguineous kindred and a genetically unrelated nonconsanguineous kindred in which affected subjects exhibited progressive spastic paraplegia and distal muscle wasting. Affected subjects resembled those with OPIDN and those with Troyer Syndrome due to SPG20/spartin gene mutation (excluded by genetic linkage and SPG20/spartin sequence analysis). Genome-wide analysis suggested linkage to a 22 cM homozygous locus (D19S565 to D19S884, maximum multipoint LOD score 3.28) on chromosome 19p13 to which NTE had been mapped (GenBank AJ004832). NTE was a candidate because of its role in OPIDN and the similarity of our patients to those with OPIDN. Affected subjects in the consanguineous kindred were homozygous for disease-specific NTE mutation c.3034A?G that disrupted an interspecies conserved residue (M1012V) in NTE's catalytic domain. Affected subjects in the nonconsanguineous family were compound heterozygotes: one allele had c.2669G?A mutation, which disrupts an interspecies conserved residue in NTE's catalytic domain (R890H), and the other allele had an insertion (c.2946_2947insCAGC) causing frameshift and protein truncation (p.S982fs1019). Disease-specific, nonconserved NTE mutations in unrelated MND patients indicates NTE's importance in maintaining axonal integrity, raises the possibility that NTE pathway disturbances contribute to other MNDs including ALS, and supports the role of NTE abnormalities in axonopathy produced by neuropathic OP compounds. PMID:18313024

  9. Mutation analysis of the Fanconi Anemia Gene FACC

    SciTech Connect

    Verlander, P.C.; Lin, J.D.; Udono, M.U.; Zhang, Q.; Auerbach, A.D. (Rockefeller Univ., New York, NY (United States)); Gibson, R.A.; Mathew, C.G. (Guy's Hospital, London (United Kingdom))

    1994-04-01

    Fanconi anemia (FA) is a genetically heterogeneous autosomal recessive disorder characterized by a unique hypersensitivity of cells to DNA cross-linking agents; a gene for complementation group C (FACC) has recently been cloned. The authors have amplified FACC exons with their flanking intron sequences from genomic DNA from 174 racially and ethnically diverse families in the International Fanconi Anemia Registry and have screened for mutations by using SSCP analysis. They have identified eight different variants in 32 families; three were detected in exon 1, one in exon 4, one in intron 4, two in exon 6, and one in exon 14. Two of the eight variants, in seven families, did not segregate with the disease allele in multiplex families, suggesting that these variants represented benign polymorphisms. Disease-associated mutations in FACC were detected in a total of 25 (14.4%) of 174 families screened. The most frequent mutations were IVS4 + 4 A [yields] T (intron 4; 12 families) and 322delG (exon 1; 9 families). Other, less common mutations include Q13X in exon 1, R185X and D195V in exon 6, and L554P in exon 14. The polymorphisms were S26F in exon 1 and G139E in exon 4. All patients in the study with 322delG, Q13X, R185X, and D195V are of northern or eastern European or southern Italian ancestry, and 18 of 19 have a mild form of the disease, while the 2 patients with L554P, both from the same family, have a severe phenotype. All 19 patients with IVS4 + 4 A [yields] T have Jewish ancestry and have a severe phenotype. 19 refs., 1 fig., 3 tabs.

  10. The Berkeley Drosophila Genome Project Gene Disruption Project: Single P-Element Insertions Mutating 25% of Vital Drosophila Genes

    Microsoft Academic Search

    Allan C. Spradling; Dianne Stern; Amy Beaton; E. Jay Rhem; Todd Laverty; Nicole Mozden; Sima Misra; Gerald M. Rubin

    A fundamental goal of genetics and functional genomics is to identify and mutate every gene in model organisms such as Drosophila melanogaster. The Berkeley Drosophila Genome Project (BDGP) gene disruption project generates single P-element insertion strains that each mutate unique genomic open reading frames. Such strains strongly facilitate further genetic and molecular studies of the disrupted loci, but it has

  11. Clinical Manifestations in Paroxysmal Kinesigenic Dyskinesia Patients with Proline-Rich Transmembrane Protein 2 Gene Mutation

    PubMed Central

    Youn, Jinyoung; Kim, Ji Sun; Lee, Munhyang; Lee, Jeehun; Roh, Hakjae

    2014-01-01

    Background and Purpose Given the diverse phenotypes including combined non-dyskinetic symptoms in patients harboring mutations of the gene encoding proline-rich transmembrane protein 2 (PRRT2), the clinical significance of these mutations in paroxysmal kinesigenic dyskinesia (PKD) is questionable. In this study, we investigated the clinical characteristics of PKD patients with PRRT2 mutations. Methods Familial and sporadic PKD patients were enrolled and PRRT2 gene sequencing was performed. Demographic and clinical data were compared between PKD patients with and without a PRRT2 mutation. Results Among the enrolled PKD patients (8 patients from 5 PKD families and 19 sporadic patients), PRRT2 mutations were detected in 3 PKD families (60%) and 2 sporadic cases (10.5%). All familial patients with a PRRT2 gene mutation had the c.649dupC mutation, which is the most commonly reported mutation. Two uncommon mutations (c.649delC and c.629dupC) were detected only in the sporadic cases. PKD patients with PRRT2 mutation were younger at symptom onset and had more non-dyskinetic symptoms than those without PRRT2 mutation. However, the characteristics of dyskinetic movement did not differ between the two groups. Conclusions This is the first study of PRRT2 mutations in Korea. The presence of a PRRT2 mutation was more strongly related to familial PKD, and was clinically related with earlier age of onset and common non-dyskinetic symptoms in PKD patients. PMID:24465263

  12. A report of a national mutation testing service for the MEN1 gene: clinical presentations and implications for mutation testing

    PubMed Central

    Cardinal, J; Bergman, L; Hayward, N; Sweet, A; Warner, J; Marks, L; Learoyd, D; Dwight, T; Robinson, B; Epstein, M; Smith, M; Teh, B; Cameron, D; Prins, J

    2005-01-01

    Introduction: Mutation testing for the MEN1 gene is a useful method to diagnose and predict individuals who either have or will develop multiple endocrine neoplasia type 1 (MEN 1). Clinical selection criteria to identify patients who should be tested are needed, as mutation analysis is costly and time consuming. This study is a report of an Australian national mutation testing service for the MEN1 gene from referred patients with classical MEN 1 and various MEN 1-like conditions. Results: All 55 MEN1 mutation positive patients had a family history of hyperparathyroidism, had hyperparathyroidism with one other MEN1 related tumour, or had hyperparathyroidism with multiglandular hyperplasia at a young age. We found 42 separate mutations and six recurring mutations from unrelated families, and evidence for a founder effect in five families with the same mutation. Discussion: Our results indicate that mutations in genes other than MEN1 may cause familial isolated hyperparathyroidism and familial isolated pituitary tumours. Conclusions: We therefore suggest that routine germline MEN1 mutation testing of all cases of "classical" MEN1, familial hyperparathyroidism, and sporadic hyperparathyroidism with one other MEN1 related condition is justified by national testing services. We do not recommend routine sequencing of the promoter region between nucleotides 1234 and 1758 (Genbank accession no. U93237) as we could not detect any sequence variations within this region in any familial or sporadic cases of MEN1 related conditions lacking a MEN1 mutation. We also suggest that testing be considered for patients <30 years old with sporadic hyperparathyroidism and multigland hyperplasia. PMID:15635078

  13. Familial Mediterranean fever gene mutations in north-eastern part of Anatolia with special respect to rare mutations.

    PubMed

    Dogan, Hasan; Faruk Bayrak, Omer; Emet, Mucahit; Keles, Mustafa; Gulluoglu, Sukru; Gul, Zeynep; Pirim, Ibrahim

    2015-09-01

    We aimed to determine the frequency of mutations, carrier rates and the association of rare mutations with Familial Mediterranean Fever (FMF) symptoms. There is a need to evaluate as many different populations as possible in order to determine either specific rare mutations or a range of disease-associated mutations. The demographic data and FMF symptoms related to MEFV gene mutations were collected from 731 participants. Exon 2 and exon 10 of the MEFV gene were tested by DNA sequencing. The rare mutations were identified as: M694I (1.1%, n=12), E148V (0.6%, n=6), T267I (0.5%, n=5), L110P (0.2%, n=2), E167D (0.2%, n=2), K695R (0.1%, n=1) and an insertion G (Guanine) mutation (0.4%, n=4) at the 777th codon of exon 10. We used routine comprehensive detection systems such as Sanger sequence that can catch rare mutations, for definite diagnosis and treatment of FMF disease. PMID:26003477

  14. Two novel homozygous missense mutations in the GDF5 gene cause brachydactyly type C.

    PubMed

    Al-Qattan, Mohammad M; Al-Motairi, Muhammed I; Al Balwi, Mohammed A

    2015-07-01

    Mutations of the GDF5 gene cause a variable phenotype including brachydactyly type C. A review of the literature showed that it is caused either by heterozygous frameshift mutations within the prodomain or heterozygous missense/nonsense mutations within the active domain. Only a single patient with a homozygous mutation (c.517A?>?G, which predicts p. Met173Val) has been reported in this disorder. In this paper, we report two children with novel homozygous missense mutations in the GDF5 gene associated with brachydactyly type C: one mutation was within the region coding for the prodomain (c.608C?>?A, which predicts p.Thr203Asn) and the other was within the region coding for the active domain (c.1456 G?>?A, which predicts p.Val486Met). The genotype-phenotype correlations in the mutational spectrum of the GDF5 gene are discussed. © 2015 Wiley Periodicals, Inc. PMID:25820810

  15. Asymptomatic carriers for homozygous novel mutations in the FKRP gene: the other end of the spectrum

    Microsoft Academic Search

    Flavia de Paula; Natássia Vieira; Alessandra Starling; Lydia Uraco Yamamoto; Bruno Lima; Rita de Cássia Pavanello; Mariz Vainzof; Vincenzo Nigro; Mayana Zatz

    2003-01-01

    Autosomal recessive limb-girdle muscular dystrophy linked to 19q13.3 (LGMD2I) was recently related to mutations in the fukutin-related protein gene (FKRP) gene. Pathogenic changes in the same gene were detected in congenital muscular dystrophy patients (MDC1C), a severe disorder. We have screened 86 LGMD genealogies to assess the frequency and distribution of mutations in the FKRP gene in Brazilian LGMD patients.

  16. Mutation screening of the RYR1 gene in malignant hyperthermia: Detection of a novel Tyr to ser mutation in a pedigree with associated centrl cores

    Microsoft Academic Search

    K. A. Quane; K. E. Keating; J. M. S. Healy

    1994-01-01

    The ryanodine receptor gene (RYR1) has been shown to be mutated in a small number of malignant hyperthermia (MH) predigrees. Missense mutations in this gene have also been identified in two families with central core disease (CCD), a rare myopathy closely associated with MH. In an effort to identify other RYR1 mutations responsible for MH and CCD, we used a

  17. Pathogenic mutations and rare variants of the APC gene identified in 75 Belgian patients with familial adenomatous polyposis by fluorescent enzymatic mutation detection (EMD)

    Microsoft Academic Search

    Genevičve Michils; Sabine Tejpar; Jean-Pierre Fryns; Eric Legius; Eric Van Cutsem; Jean-Jacques Cassiman; Gert Matthijs

    2002-01-01

    Familial adenomatous polyposis (FAP) is a dominant inherited colorectal cancer syndrome which is caused by germline mutations in the adenomatous polyposis coli (APC) gene. Enzymatic mutation detection (EMD) has potential advantages over the standard protein truncation test (PTT) that is currently used in screening the APC gene for mutations. First we wanted to validate the EMD technique in comparison to

  18. Muscle disease caused by mutations in the skeletal muscle alpha-actin gene (ACTA1)

    Microsoft Academic Search

    John C. Sparrowa; Kristen J. Nowakb; Hayley J. Durlingb; Alan H. Beggse; Carina Wallgren-Petterssonf; Norma Romerog; Ikuya Nonakah; Nigel G. Laingb

    Mutations in the skeletal muscle alpha-actin gene (ACTA1) associated with congenital myopathy with excess of thin myofilaments, nemaline myopathy and intranuclear rod myopathy were first described in 1999. At that time, only 15 different missense mutations were known in ACTA1. More than 60 mutations have now been identified. This review analyses this larger spectrum of mutations in ACTA1. It investigates

  19. Muscle disease caused by mutations in the skeletal muscle alpha-actin gene ( ACTA1)

    Microsoft Academic Search

    John C. Sparrow; Kristen J. Nowak; Hayley J. Durling; Alan H. Beggs; Carina Wallgren-Pettersson; Norma Romero; Ikuya Nonaka; Nigel G. Laing

    2003-01-01

    Mutations in the skeletal muscle alpha-actin gene (ACTA1) associated with congenital myopathy with excess of thin myofilaments, nemaline myopathy and intranuclear rod myopathy were first described in 1999. At that time, only 15 different missense mutations were known in ACTA1. More than 60 mutations have now been identified. This review analyses this larger spectrum of mutations in ACTA1. It investigates

  20. MECP2 and CDKL5 gene mutation analysis in Chinese patients with Rett syndrome

    Microsoft Academic Search

    Mei-rong Li; Hong Pan; Xin-Hua Bao; Yu-Zhi Zhang; Xi-Ru Wu

    2007-01-01

    Rett syndrome (RTT) is a progressive neurodevelopmental disorder that is caused by mutations in the X-linked methyl-CpG-binding\\u000a protein2 (MECP2) gene. In this study, the MECP2 sequences in 121 unrelated Chinese patients with classical or atypical RTT were screened for deletions and mutations. In\\u000a all, we identified 45 different MECP2 mutations in 102 of these RTT patients. The p. T158M mutation

  1. A novel ANT1 gene mutation with probable germline mosaicism in autosomal dominant progressive external ophthalmoplegia

    Microsoft Academic Search

    Marcus Deschauer; Gavin Hudson; Tobias Müller; Robert W. Taylor; Patrick F. Chinnery; Stephan Zierz

    2005-01-01

    Only four different mutations in the adenine nucleotide translocator 1 (ANT1) gene have been found in families with progressive external ophthalmoplegia (PEO). We report a novel heterozygous C to A transversion at nucleotide 269 in the ANT1 gene in a German family with PEO, predicted to convert a highly conserved alanine at codon 90 to aspartic acid. The mutation was

  2. Identification of p53 Gene Mutations in Bladder Cancers and Urine Samples

    Microsoft Academic Search

    David Sidransky; Andrew von Eschenbach; Yvonne C. Tsai; Peter Jones; Ian Summerhayes; Fray Marshall; Meera Paul; Pearl Green; Philip Frost; Bert Vogelstein

    1991-01-01

    Although bladder cancers are very common, little is known about their molecular pathogenesis. In this study, invasive bladder cancers were evaluated for the presence of gene mutations in the p53 suppressor gene. Of 18 tumors evaluated, 11 (61 percent) were found to have genetic alterations of p53. The alterations included ten point mutations resulting in single amino acid substitutions, and

  3. Edinburgh Research Explorer Novel KRAS Gene Mutations in Sporadic Colorectal Cancer

    E-print Network

    Millar, Andrew J.

    Edinburgh Research Explorer Novel KRAS Gene Mutations in Sporadic Colorectal Cancer Citation 2014, 'Novel KRAS Gene Mutations in Sporadic Colorectal Cancer' PLoS One, vol 9, no. 11, pp. e113350 in Sporadic Colorectal Cancer Walid M. Naser1 , Mohamed A. Shawarby2 *, Dalal M. Al-Tamimi2 , Arun Seth3

  4. Functional characterization of novel mutations in the human cytochrome b gene

    Microsoft Academic Search

    Frédéric Legros; Evi Chatzoglou; Paule Frachon; Hélčne Ogier de Baulny; Pascal Laforęt; Claude Jardel; Catherine Godinot; Anne Lombčs

    2001-01-01

    The great variability of the human mitochondrial DNA (mtDNA) sequence induces many difficulties in the search for its deleterious mutations. We illustrate these pitfalls by the analysis of the cytochrome b gene of 21 patients affected with a mitochondrial disease. Eighteen different sequence variations were found, five of which were new mutations. Extensive analysis of the cytochrome b gene of

  5. Clinical implications of mutations in thep53 tumor suppressor gene in female patients with breast cancer

    Microsoft Academic Search

    Hong Chen Lai

    2002-01-01

    Breast cancer is the most commonly diagnosed cancer in women in the United States. Mutation in the p53 tumor suppressor gene occurs in about 50% of all human tumors. This study investigated the association between different types and locations of point mutation in the p53 gene and race\\/ethnicity, the age at diagnosis, tumor status of breast cancer and the survival

  6. Frequent Somatic Mutations of the APC Gene in Human Pancreatic Cancer 1

    Microsoft Academic Search

    Akira Horii; Shuichi Nakatsuru; Yasuo Miyoshi; Hiroki Nagase; Hiroshi Ando; Akio Yanagisawa; Eiju Tsuchiya; Yo Kato; Yusuke Nakamura

    The APC (adenomatous polyposis coli) gene is responsible for famil- ial adenomatous polyposis and is also associated with the development of sporadic tumors of the colon and stomach. To investigate whether or not mutations of APC play any role in tumors arising in other organs, we examined somatic mutations of this gene in sporadic (nonfamilial) renal cell carcinomas, hepatocellular carcinomas,

  7. Novel missense mutation in the CASR gene in a Chinese family with familial hypocalciuric hypercalcemia

    Microsoft Academic Search

    Ching-Wan Lam; Ka-Fai Lee; Angel On-Kei Chan; Priscilla Miu-Kuen Poon; Tak-Yin Law; Sui-Fan Tong

    2005-01-01

    BackgroundFamilial hypocalciuric hypercalcemia (FHH) is an autosomal dominant disorder characterized by asymptomatic and non-progressive hypercalcemia resulting from loss-of-function mutations of the CASR (calcium-sensing receptor) gene located on chromosome 3, or from mutations in two mapped but unidentified genes located on chromosome 19.

  8. Mutation screening of theARX gene in patients with autism

    Microsoft Academic Search

    Pauline Chaste; Gudrun Nygren; Henrik Anckarsäter; Maria Rĺstam; Mary Coleman; Marion Leboyer; Christopher Gillberg; Catalina Betancur

    2007-01-01

    Mutations in the ARX gene are associated with a broad spectrum of disorders, including nonsyndromic X-linked mental retardation, sometimes associated with epilepsy, as well as syndromic forms with brain abnormalities and abnormal genitalia. Furthermore, ARX mutations have been described in a few patients with autism or autistic features. In this study, we screened the ARX gene in 226 male patients

  9. Genetic Variants of the NOTCH3 Gene in Migraine—A Mutation Analysis and Association Study

    Microsoft Academic Search

    S Schwaag; S Evers; A Schirmacher; F Stögbauer; EB Ringelstein; G Kuhlenbäumer

    2006-01-01

    Mutations in the NOTCH3 gene cause cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Exons 3 and 4 are mutation hotspots. Migraine is a clinical hallmark of CADASIL. The objective of this study was to investigate whether genetic variants in exons 3 and 4 of the NOTCH3 gene are associated with migraine. Exons 3 and 4 of the

  10. Fabry disease: six gene rearrangements and an exonic point mutation in the alpha-galactosidase gene.

    PubMed Central

    Bernstein, H S; Bishop, D F; Astrin, K H; Kornreich, R; Eng, C M; Sakuraba, H; Desnick, R J

    1989-01-01

    Fabry disease, an X-linked recessive disorder of glycosphingolipid catabolism, results from the deficient activity of the lysosomal hydrolase, alpha-galactosidase. Southern hybridization analysis of the alpha-galactosidase gene in affected hemizygous males from 130 unrelated families with Fabry disease revealed six with different gene rearrangements and one with an exonic point mutation resulting in the obliteration of an Msp I restriction site. Five partial gene deletions were detected ranging in size from 0.4 to greater than 5.5 kb. Four of these deletions had breakpoints in intron 2, a region in the gene containing multiple Alu repeat sequences. A sixth genomic rearrangement was identified in which a region of about 8 kb, containing exons 2 through 6, was duplicated by a homologous, but unequal crossover event. The Msp I site obliteration, which mapped to exon 7, was detected in an affected hemizygote who had residual enzyme activity. Genomic amplification by the polymerase chain reaction and sequencing revealed that the obliteration resulted from a C to T transition at nucleotide 1066 in the coding sequence. This point mutation, the first identified in Fabry disease, resulted in an arginine356 to tryptophan356 substitution which altered the enzyme's kinetic and stability properties. The detection of these abnormalities provided for the precise identification of Fabry heterozygotes, thereby permitting molecular pedigree analysis in these families which revealed paternity exclusions and the first documented new mutations in this disease. Images PMID:2539398

  11. Prevalence of the G1691A mutation in the factor V gene (factor V Leiden) and the G20210A prothrombin gene mutation in the Thai population.

    PubMed

    Angchaisuksiri, P; Pingsuthiwong, S; Aryuchai, K; Busabaratana, M; Sura, T; Atichartakarn, V; Sritara, P

    2000-10-01

    We investigated the prevalence of a genetic variation in the factor V gene (G1691A Leiden mutation) and the prothrombin gene (G20210A) using polymerase chain reaction techniques in samples from 500 normal Thai population and among 50 unselected Thai patients with an objectively confirmed history of deep venous thrombosis. The prevalence of factor V Leiden and the prothrombin G20210A gene mutation in a group of 500 healthy controls was 0.2% in both groups (allele frequency of 0.1%). Of the 50 adult patients studied, none was a carrier of factor V Leiden or the prothrombin G20210A gene mutation. Our findings confirm that the prevalence of factor V Leiden and prothrombin G20210A gene mutation is lower among Asians than Caucasians and that the distribution of factor V Leiden is similar to that of the prothrombin G20210A variant. The low prevalence of these two mutations can, at least in part, account for the lower frequency of deep venous thrombosis reported in the Thai population. Screening for factor V Leiden and prothrombin gene mutation is of limited benefit and may not be cost-effective in Thai patients with the first episode of deep venous thrombosis. PMID:10996828

  12. Epilepsy with auditory features: a LGI1 gene mutation suggests a loss-of-function mechanism.

    PubMed

    Pizzuti, Antonio; Flex, Elisabetta; Di Bonaventura, Carlo; Dottorini, Tania; Egeo, Gabriella; Manfredi, Mario; Dallapiccola, Bruno; Giallonardo, Anna Teresa

    2003-03-01

    Autosomal dominant partial epilepsy with auditory features (ADPEAF) is a genetically heterogeneous disorder. Some patients exhibit mutations in the leucine-rich glioma inactivated (LGI1) gene. In an ADPEAF family, a novel mutation in the Lgi1 signal peptide is predicted to interfere with the protein cell sorting, resulting in altered processing. This finding suggests a loss-of-function mechanism for LGI1 gene mutations causing ADPEAF even if other mechanisms cannot be ruled out. PMID:12601709

  13. Combined monogenic hypercholesterolemia and hypoalphalipoproteinemia caused by mutations in LDL-R and LCAT genes

    Microsoft Academic Search

    Livia Pisciotta; Laura Calabresi; Graziana Lupattelli; Donatella Siepi; Massimo Raffaele Mannarino; Elsa Moleri; Antonella Bellocchio; Alfredo Cantafora; Patrizia Tarugi; Sebastiano Calandra; Stefano Bertolini

    2005-01-01

    We studied a three generation family with co-dominant monogenic hypercholesterolemia and hypoalphalipoproteinemia. The proband, a 48 year-old male, was found to be heterozygous for a previously reported mutation in LDL receptor (LDL-R) gene (IVS15–3 c>a) and a novel mutation in exon 6 of lecithin cholesterol acyltransferase (LCAT) gene (c.803 G>A) causing a non-synonymous amino acid substitution (p.R244H). These mutations segregated

  14. Mutations in genes encoding extracellular matrix proteins suppress the emb-5 gastrulation defect in Caenorhabditis elegans

    Microsoft Academic Search

    K. Nishiwaki; J. Miwa

    1998-01-01

    The second division of the gut precursor E cells is lethally accelerated during Caenorhabditis elegans gastrulation by mutations in the emb-5 gene, which encodes a presumed nuclear protein. We have isolated suppressor mutations of the temperature-sensitive allele\\u000a emb-5(hc61), screened for them among dpy and other mutations routinely used as genetic markers, and identified eight emb-5 suppressor genes. Of these eight

  15. Novel mutations in the muscle chloride channel CLCN1 gene causing myotonia congenita in Spanish families

    Microsoft Academic Search

    C. de Diego; J. Gámez; E. Plassart-Schiess; A. Lasa; E. Del Río; C. Cervera; M. Baiget; P. Gallano; B. Fontaine

    1999-01-01

    Mutations in the muscular voltage-dependent chloride channel gene (CLCN1), located at 7q35, lead to recessive and dominant myotonia congenita. We report four novel mutations identified in this gene,\\u000a after clinical, electromyographic, and genetic studies performed on 13 unrelated families. Two of the four mutations (2512insCTCA\\u000a and A218T) were identified in families with Thomsen’s disease, one (Q658X) in a family with

  16. Mutational analysis of the ribC gene of Bacillus subtilis

    Microsoft Academic Search

    D. V. Karelov; R. A. Kreneva; L. Errais Lopes; D. A. Perumov; A. S. Mironov

    2011-01-01

    The nucleotide sequence of the ribC gene encoding the synthesis of bifunctional flavokinase\\/flavine adenine nucleotide (FAD) synthetase in Bacillus subtilis have been determined in a family of riboflavinconstitutive mutants. Two mutations have been found in the proximal region\\u000a of the gene, which controls the transferase (FAD synthase) activity. Three point mutations and one double mutation have been\\u000a found (in addition

  17. Co-segregation of LMNA and PMP22 gene mutations in the same family

    Microsoft Academic Search

    Elena Pegoraro; Bruno F. Gavassini; Sara Benedetti; Immacolata Menditto; Gabriella Zara; Roberta Padoan; Maria Luisa Mostacciuolo; Maurizio Ferrari; Corrado Angelini

    2005-01-01

    We report here clinical, electrophysiological, and molecular findings in a family affected with two inherited genetic diseases: limb girdle muscular dystrophy type 1B (LGMD1B) and hereditary neuropathy with liability to pressure palsies (HNPP). Members of the family carry a novel missense mutation in the LMNA gene and a nonsense mutation in the PMP22 gene. Interestingly, the double LMNA\\/PMP22 mutations carriers

  18. Frequency of the S65C mutation in the hemochromatosis gene in Brazil

    Microsoft Academic Search

    V. C. Oliveira; F. A. Caxito; K. B. Gomes; A. M. Castro; V. C. Pardini; A. C. S. Ferreira

    2009-01-01

    Development of hereditary hemochromatosis is asso- ciated with the C282Y, H63D or S65C mutations in the hemochro- matosis gene. Though there is extensive knowledge about the former two, there is little information on the mechanism of action and the allelic frequency of the S65C mutation. We examined the prevalence of the S65C mutation of the hemochromatosis gene in Brazilians with

  19. Mutational analysis of the avian pneumovirus conserved transcriptional gene start sequence identifying critical residues.

    PubMed

    Edworthy, Nicole L; Easton, Andrew J

    2005-12-01

    Seven of the eight genes in the avian pneumovirus (APV) genome contain a conserved 9 nt transcriptional start sequence with the virus large (L) polymerase gene differing from the consensus at three positions. The sequence requirements of the APV transcriptional gene start sequence were investigated by generating a series of mutations in which each of the nine conserved bases was mutated to each of the other three possible nucleotides in a minigenome containing two reporter genes. The effect of each mutation was assessed by measuring the relative levels of expression from the altered and unaltered gene start sequences. Mutations at positions 2, 7 and 9 significantly reduced transcription levels while alterations to position 5 had little effect. The L gene start sequence directed transcription at levels approximately 50 % below that of the consensus gene start sequence. These data suggest that there are common features in pneumovirus transcriptional control sequences. PMID:16298980

  20. Novel autosomal recessive gene mutations in aquaporin-2 in two Chinese congenital nephrogenic diabetes insipidus pedigrees

    PubMed Central

    Cen, Jing; Nie, Min; Duan, Lian; Gu, Feng

    2015-01-01

    Recent evidence has linked novel mutations in the arginine vasopressin receptor 2 gene (AVPR2) and aquaporin-2 gene (AQP2) present in Southeast Asian populations to congenital nephrogenic diabetes insipidus (NDI). To investigate mutations in 2 distinct Chinese pedigrees with NDI patients, clinical data, laboratory findings, and genomic DNA sequences from peripheral blood leukocytes were analyzed in two 5.5- and 8-year-old boys (proband 1 and 2, respectively) and their first-degree relatives. Water intake, urinary volume, body weight and medication use were recorded. Mutations in coding regions and intron-exon borders of both AQP2 and AVPR2 gene were sequenced. Three mutations in AQP2 were detected, including previously reported heterozygous frameshift mutation (c.127_128delCA, p.Gln43Aspfs ×63) inherited from the mother, a novel frameshift mutation (c.501_502insC, p.Val168Argfs ×30, inherited from the father) in proband 1 and a novel missense mutation (c. 643G>A, p. G215S), inherited from both parents in proband 2. In family 2 both parents and one sister were heterozygous carriers of the novel missense mutation. Neither pedigree exhibited mutation in the AVPR2 gene. The patient with truncated AQP2 may present with much more severe NDI manifestations. Identification of these novel AQP2 gene mutations expands the AQP2 genotypic spectrum and may contribute to etiological diagnosis and genetic counseling.

  1. New somatic mutations and WNK1-B4GALNT3 gene fusion in papillary thyroid carcinoma.

    PubMed

    Costa, Valerio; Esposito, Roberta; Ziviello, Carmela; Sepe, Romina; Bim, Larissa Valdemarin; Cacciola, Nunzio Antonio; Decaussin-Petrucci, Myriam; Pallante, Pierlorenzo; Fusco, Alfredo; Ciccodicola, Alfredo

    2015-05-10

    Papillary thyroid carcinoma (PTC) is the most frequent thyroid malignant neoplasia. Oncogene activation occurs in more than 70% of the cases. Indeed, about 40% of PTCs harbor mutations in BRAF gene, whereas RET rearrangements (RET/PTC oncogenes) are present in about 20% of cases. Finally, RAS mutations and TRK rearrangements account for about 5% each of these malignancies. We used RNA-Sequencing to identify fusion transcripts and mutations in cancer driver genes in a cohort of 18 PTC patients. Furthermore, we used targeted DNA sequencing to validate identified mutations. We extended the screening to 50 PTC patients and 30 healthy individuals. Using this approach we identified new missense mutations in CBL, NOTCH1, PIK3R4 and SMARCA4 genes. We found somatic mutations in DICER1, MET and VHL genes, previously found mutated in other tumors, but not described in PTC. We identified a new chimeric transcript generated by the fusion of WNK1 and B4GALNT3 genes, correlated with B4GALNT3 overexpression. Our data confirmed PTC genetic heterogeneity, revealing that gene expression correlates more with the mutation pattern than with tumor staging. Overall, this study provides new data about mutational landscape of this neoplasia, suggesting potential pharmacological adjuvant therapies against Notch signaling and chromatin remodeling enzymes. PMID:25803323

  2. New somatic mutations and WNK1-B4GALNT3 gene fusion in papillary thyroid carcinoma

    PubMed Central

    Ziviello, Carmela; Sepe, Romina; Bim, Larissa Valdemarin; Cacciola, Nunzio Antonio; Decaussin-Petrucci, Myriam; Pallante, Pierlorenzo; Fusco, Alfredo; Ciccodicola, Alfredo

    2015-01-01

    Papillary thyroid carcinoma (PTC) is the most frequent thyroid malignant neoplasia. Oncogene activation occurs in more than 70% of the cases. Indeed, about 40% of PTCs harbor mutations in BRAF gene, whereas RET rearrangements (RET/PTC oncogenes) are present in about 20% of cases. Finally, RAS mutations and TRK rearrangements account for about 5% each of these malignancies. We used RNA-Sequencing to identify fusion transcripts and mutations in cancer driver genes in a cohort of 18 PTC patients. Furthermore, we used targeted DNA sequencing to validate identified mutations. We extended the screening to 50 PTC patients and 30 healthy individuals. Using this approach we identified new missense mutations in CBL, NOTCH1, PIK3R4 and SMARCA4 genes. We found somatic mutations in DICER1, MET and VHL genes, previously found mutated in other tumors, but not described in PTC. We identified a new chimeric transcript generated by the fusion of WNK1 and B4GALNT3 genes, correlated with B4GALNT3 overexpression. Our data confirmed PTC genetic heterogeneity, revealing that gene expression correlates more with the mutation pattern than with tumor staging. Overall, this study provides new data about mutational landscape of this neoplasia, suggesting potential pharmacological adjuvant therapies against Notch signaling and chromatin remodeling enzymes. PMID:25803323

  3. Mutation update for GNE gene variants associated with GNE myopathy.

    PubMed

    Celeste, Frank V; Vilboux, Thierry; Ciccone, Carla; de Dios, John Karl; Malicdan, May Christine V; Leoyklang, Petcharat; McKew, John C; Gahl, William A; Carrillo-Carrasco, Nuria; Huizing, Marjan

    2014-08-01

    The GNE gene encodes the rate-limiting, bifunctional enzyme of sialic acid biosynthesis, uridine diphosphate-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE). Biallelic GNE mutations underlie GNE myopathy, an adult-onset progressive myopathy. GNE myopathy-associated GNE mutations are predominantly missense, resulting in reduced, but not absent, GNE enzyme activities. The exact pathomechanism of GNE myopathy remains unknown, but likely involves aberrant (muscle) sialylation. Here, we summarize 154 reported and novel GNE variants associated with GNE myopathy, including 122 missense, 11 nonsense, 14 insertion/deletions, and seven intronic variants. All variants were deposited in the online GNE variation database (http://www.dmd.nl/nmdb2/home.php?select_db=GNE). We report the predicted effects on protein function of all variants well as the predicted effects on epimerase and/or kinase enzymatic activities of selected variants. By analyzing exome sequence databases, we identified three frequently occurring, unreported GNE missense variants/polymorphisms, important for future sequence interpretations. Based on allele frequencies, we estimate the world-wide prevalence of GNE myopathy to be ?4-21/1,000,000. This previously unrecognized high prevalence confirms suspicions that many patients may escape diagnosis. Awareness among physicians for GNE myopathy is essential for the identification of new patients, which is required for better understanding of the disorder's pathomechanism and for the success of ongoing treatment trials. PMID:24796702

  4. One novel Dravet syndrome causing mutation and one recurrent MAE causing mutation in SCN1A gene

    Microsoft Academic Search

    Iglika Yordanova; Tihomir Todorov; Petia Dimova; Dimitrina Hristova; Radka Tincheva; Ivan Litvinenko; Olga Yotovska; Ivo Kremensky; Albena Todorova

    2011-01-01

    Mutations in SCN1A gene, encoding the voltage-gated sodium channel ?1-subunit, are found to be associated with severe myoclonic epilepsy in infancy or Dravet syndrome (DS), but only rarely with the myoclonic astatic epilepsy (MAE, or Doose syndrome). We report on two patients with SCN1A mutations and severe epilepsy within the spectrum of generalized epilepsy with febrile seizures plus syndrome (GEFS+),

  5. De novo alpha 2 hemoglobin gene (HBA2) mutation in a child with hemoglobin M Iwate and symptomatic methemoglobinemia since birth

    PubMed Central

    Viana, Marcos Borato; Belisário, André Rolim

    2014-01-01

    Cyanosis in an apparently healthy newborn baby may be caused by hemoglobin variants associated with the formation of methemoglobin, collectively known as M hemoglobins. They should not be confused with genetic alterations in methemoglobin reductase enzyme systems of red cells since treatment and prognosis are completely different. A newborn male child was noted to be significantly cyanotic at birth and is the basis for this report. Hemoglobin isoelectric focusing, acid and alkaline gel electrophoresis, and HBA/HBB gene sequencing were performed for the child, both parents and a sister. The newborn child was treated with methylene blue in an intensive care unit fearing that he had a defective reductase system and exposure to oxidant drugs or toxins. Newborn hemoglobin screening with high performance liquid chromatography was abnormal on the 10th and 45th days but no conclusive diagnosis was reached. Cyanosis persisted up to four years of age with no other symptoms. Hemoglobin M Iwate [alpha2 87(F8) His>Tyr, HBA2:c.262C>T] was detected. It was not present in the child's presumed mother, father, sister, and brother. The analysis of 15 short tandem repeats in the trio demonstrated a de novo mutation occurrence (p-value < 1 × 10?8). The family was reassured that no further action was necessary and genetic counseling was provided. Methemoglobins should be considered for differential diagnosis of cyanosis in newborns even if no familial cases are detected. Except for cosmetic consequences, the clinical course of patients with hemoglobin M Iwate is unremarkable. PMID:25031065

  6. Mutational screening of the USH2A gene in Spanish USH patients reveals 23 novel pathogenic mutations

    PubMed Central

    2011-01-01

    Background Usher Syndrome type II (USH2) is an autosomal recessive disorder, characterized by moderate to severe hearing impairment and retinitis pigmentosa (RP). Among the three genes implicated, mutations in the USH2A gene account for 74-90% of the USH2 cases. Methods To identify the genetic cause of the disease and determine the frequency of USH2A mutations in a cohort of 88 unrelated USH Spanish patients, we carried out a mutation screening of the 72 coding exons of this gene by direct sequencing. Moreover, we performed functional minigene studies for those changes that were predicted to affect splicing. Results As a result, a total of 144 DNA sequence variants were identified. Based upon previous studies, allele frequencies, segregation analysis, bioinformatics' predictions and in vitro experiments, 37 variants (23 of them novel) were classified as pathogenic mutations. Conclusions This report provide a wide spectrum of USH2A mutations and clinical features, including atypical Usher syndrome phenotypes resembling Usher syndrome type I. Considering only the patients clearly diagnosed with Usher syndrome type II, and results obtained in this and previous studies, we can state that mutations in USH2A are responsible for 76.1% of USH2 disease in patients of Spanish origin. PMID:22004887

  7. Molecular genetic analysis of the GJB1 gene: a study of six mutations.

    PubMed

    Kocha?ski, Andrzej; Kabzi?ska, Dagmara

    2004-01-01

    Charcot-Marie-Tooth type X1 disease (CMTX1) is an X-dominant peripheral neuropathy caused by mutations in the GJB1 gene. Molecular genetic analysis of the GJB1 gene is crucial for CMTX1 diagnosis and for genetic counselling. To date, molecular genetic analysis of the GJB1 gene revealed 264 mutations in the GJB1 gene. In spite of the rising number of GJB1 gene mutations, family history was documented in only a few CMTX1 cases. The aim of this study was a molecular genetic analysis of the GJB1 gene in 7 families, performed in 19 CMTX1-affected patients and 13 healthy family members. Moreover, we attempted to report evidence of effects of 6 amino-acid substitutions described in this study. To the best of our knowledge, the G110D, V152D and K167E mutations are novel substitutions, which have not been reported so far. PMID:14960772

  8. Novel mutations in the RB1 gene from Chinese families with a history of retinoblastoma.

    PubMed

    Zhang, Leilei; Jia, Renbing; Zhao, Junyang; Fan, Jiayan; Zhou, YiXiong; Han, Bing; Song, Xin; Wu, Li; Zhang, He; Song, Huaidong; Ge, Shengfang; Fan, Xianqun

    2015-04-01

    Retinoblastoma is an aggressive eye cancer that develops during infancy and is divided into two clinical types, sporadic and heritable. RB1 has been identified as the only pathological gene responsible for heritable retinoblastoma. Here, we identified 11 RB1 germline mutations in the Han pedigrees of 17 bilateral retinoblastoma patients from China. Four mutations were nonsense mutations, five were splice site mutations, and two resulted in a frame shift due to an insertion or a deletion. Three of the mutations had not been previously reported, and the p.Q344L mutation occurred in two generations of retinoblastoma patients. We investigated phenotypic-genotypic relationships for the novel mutations and showed that these mutations affected the expression, location, and function of the retinoblastoma protein. Abnormal protein localization was observed after transfection of the mutant genes. In addition, changes in the cell cycle distribution and apoptosis rates were observed when the Saos-2 cell line was transfected with plasmids encoding the mutant RB1 genes. Our findings expand the spectrum of known RB1 mutations and will benefit the investigation of RB1 mutation hotspots. Genetic counseling can be offered to families with heritable RB1 mutations. PMID:25424699

  9. Interaction between mutations and regulation of gene expression during development of de novo antibiotic resistance.

    PubMed

    Händel, Nadine; Schuurmans, Jasper M; Feng, Yanfang; Brul, Stanley; ter Kuile, Benno H

    2014-08-01

    Bacteria can become resistant not only by horizontal gene transfer or other forms of exchange of genetic information but also by de novo by adaptation at the gene expression level and through DNA mutations. The interrelationship between changes in gene expression and DNA mutations during acquisition of resistance is not well documented. In addition, it is not known whether the DNA mutations leading to resistance always occur in the same order and whether the final result is always identical. The expression of >4,000 genes in Escherichia coli was compared upon adaptation to amoxicillin, tetracycline, and enrofloxacin. During adaptation, known resistance genes were sequenced for mutations that cause resistance. The order of mutations varied within two sets of strains adapted in parallel to amoxicillin and enrofloxacin, respectively, whereas the buildup of resistance was very similar. No specific mutations were related to the rather modest increase in tetracycline resistance. Ribosome-sensed induction and efflux pump activation initially protected the cell through induction of expression and allowed it to survive low levels of antibiotics. Subsequently, mutations were promoted by the stress-induced SOS response that stimulated modulation of genetic instability, and these mutations resulted in resistance to even higher antibiotic concentrations. The initial adaptation at the expression level enabled a subsequent trial and error search for the optimal mutations. The quantitative adjustment of cellular processes at different levels accelerated the acquisition of antibiotic resistance. PMID:24841263

  10. Genetic basis of congenital erythrocytosis: mutation update and online databases.

    PubMed

    Bento, Celeste; Percy, Melanie J; Gardie, Betty; Maia, Tabita Magalhăes; van Wijk, Richard; Perrotta, Silverio; Della Ragione, Fulvio; Almeida, Helena; Rossi, Cedric; Girodon, François; Aström, Maria; Neumann, Drorit; Schnittger, Susanne; Landin, Britta; Minkov, Milen; Randi, Maria Luigia; Richard, Stéphane; Casadevall, Nicole; Vainchenker, William; Rives, Susana; Hermouet, Sylvie; Ribeiro, M Leticia; McMullin, Mary Frances; Cario, Holger; Chauveau, Aurelie; Gimenez-Roqueplo, Anne-Paule; Bressac-de-Paillerets, Brigitte; Altindirek, Didem; Lorenzo, Felipe; Lambert, Frederic; Dan, Harlev; Gad-Lapiteau, Sophie; Catarina Oliveira, Ana; Rossi, Cédric; Fraga, Cristina; Taradin, Gennadiy; Martin-Nuńez, Guillermo; Vitória, Helena; Diaz Aguado, Herrera; Palmblad, Jan; Vidán, Julia; Relvas, Luis; Ribeiro, Maria Leticia; Luigi Larocca, Maria; Luigia Randi, Maria; Pedro Silveira, Maria; Percy, Melanie; Gross, Mor; Marques da Costa, Ricardo; Beshara, Soheir; Ben-Ami, Tal; Ugo, Valérie

    2014-01-01

    Congenital erythrocytosis (CE), or congenital polycythemia, represents a rare and heterogeneous clinical entity. It is caused by deregulated red blood cell production where erythrocyte overproduction results in elevated hemoglobin and hematocrit levels. Primary congenital familial erythrocytosis is associated with low erythropoietin (Epo) levels and results from mutations in the Epo receptor gene (EPOR). Secondary CE arises from conditions causing tissue hypoxia and results in increased Epo production. These include hemoglobin variants with increased affinity for oxygen (HBB, HBA mutations), decreased production of 2,3-bisphosphoglycerate due to BPGM mutations, or mutations in the genes involved in the hypoxia sensing pathway (VHL, EPAS1, and EGLN1). Depending on the affected gene, CE can be inherited either in an autosomal dominant or recessive mode, with sporadic cases arising de novo. Despite recent important discoveries in the molecular pathogenesis of CE, the molecular causes remain to be identified in about 70% of the patients. With the objective of collecting all the published and unpublished cases of CE the COST action MPN&MPNr-Euronet developed a comprehensive Internet-based database focusing on the registration of clinical history, hematological, biochemical, and molecular data (http://www.erythrocytosis.org/). In addition, unreported mutations are also curated in the corresponding Leiden Open Variation Database. PMID:24115288

  11. Mutation Analysis of Autosomal Dominant Polycystic Kidney Disease Genes in Han Chinese

    Microsoft Academic Search

    Shuzhong Zhang; Changlin Mei; Dianyong Zhang; Bing Dai; Bing Tang; Tianmei Sun; Haidan Zhao; Yukun Zhou; Lin Li; Yumei Wu; Wenjing Wang; Xuefei Shen; Ji Song

    2005-01-01

    Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in two genes, PKD1 and PKD2. The complexity of these genes, particularly PKD1, has complicated genetic screening, though recent advances have provided new opportunities for amplifying these genes. In the Han Chinese population, no complete mutational analysis has previously been conducted across the entire span of PKD1 and PKD2. Here,

  12. Polymorphism analysis and new JAG1 gene mutations of Alagille syndrome in Mexican population.

    PubMed

    Vázquez-Martínez, Edgar Ricardo; Varela-Fascinetto, Gustavo; García-Delgado, Constanza; Rodríguez-Espino, Benjamín Antonio; Sánchez-Boiso, Adriana; Valencia-Mayoral, Pedro; Heller-Rosseau, Solange; Pelcastre-Luna, Erika Lisselly; Zenteno, Juan C; Cerbón, Marco; Morán-Barroso, Verónica Fabiola

    2014-12-01

    Alagille syndrome is a multisystem disorder with an autosomic dominant pattern of inheritance that affects the liver, heart, eyes, kidneys, skeletal system and presents characteristic facial features. Mutations of the JAG1 gene have been identified in 20-89% of the patients with Alagille syndrome, this gene encodes for a ligand that activates the Notch signaling pathway. In the present study we analyzed 9 Mexican patients with Alagille syndrome who presented the clinical criteria for the classical presentation of the disease. By using the denaturing high performance liquid chromatography mutation analysis we were able to identify different mutations in 7 of the patients (77.77%), importantly, we found 5 novel mutations in JAG1 gene. The allelic frequency distribution of 13 polymorphisms in Mexican population is also reported. The overall results demonstrated an expanding mutational spectrum of JAG1 gene in the Mexican population. PMID:25606387

  13. Mutational analysis of glycyl-tRNA synthetase (GARS) gene in Hirayama disease.

    PubMed

    Blumen, Sergiu C; Drory, Vivian E; Sadeh, Menachem; El-Ad, Baruch; Soimu, Uri; Groozman, Galina B; Bouchard, Jean-Pierre; Goldfarb, Lev G

    2010-01-01

    Sporadic juvenile muscular atrophy of the distal upper extremity or Hirayama's disease (HD) and autosomal dominant motor distal neuronopathy/axonopathy (CMT2D/dSMA-V), produced by glycyl-tRNA synthetase (GARS) gene mutations, share some clinical features including: young age of onset, predilection for the distal upper extremity, asymmetry, sparing of proximal muscles and unusual cold sensitivity. However, incomplete penetrance of GARS gene mutations may account for apparently non-familial cases. In order to inquire whether GARS gene mutations are associated with HD we studied seven patients fulfilling the clinical and electrodiagnostic criteria for HD. All patients underwent MRI of cervical spine that excluded compressive myelopathy in neutral position and intramedullary pathology. Each patient was tested for the presence of mutations in GARS by sequencing all coding exons amplified from genomic DNA. No pathogenic mutations were found, excluding the role of GARS gene as a possible factor in the aetiology of HD in this cohort. PMID:19412816

  14. Mutational analysis of glycyl-tRNA synthetase (GARS) gene in Hirayama Disease

    PubMed Central

    Blumen, Sergiu C.; Drory, Vivian E.; Sadeh, Menachem; El-Ad, Baruch; Soimu, Uri; Groozman, Galina B.; Bouchard, Jean-Pierre; Goldfarb, Lev G.

    2009-01-01

    Sporadic juvenile muscular atrophy of the distal upper extremity or Hirayama's Disease (HD) and autosomal dominant motor distal neuronopathy/axonopathy (CMT2D/dSMA-V), produced by glycyl-tRNA synthetase (GARS) gene mutations, share some clinical features including: young age of onset, predilection for the distal upper extremity, asymmetry, sparing of proximal muscles and unusual cold sensitivity. However, incomplete penetrance of GARS gene mutations may account for apparently non-familial cases. In order to inquire whether GARS gene mutations are associated with HD we studied seven patients fulfilling the clinical and electrodiagnostic criteria for HD. All patients underwent MRI of cervical spine that excluded compressive myelopathy in neutral position and intramedullary pathology. Each patient was tested for the presence of mutations in GARS by sequencing all coding exons amplified from genomic DNA. No pathogenic mutations were found, excluding the role of GARS gene as a possible factor in the etiology of HD in this cohort. PMID:19412816

  15. Novel PNPLA2 gene mutations in Chinese Han patients causing neutral lipid storage disease with myopathy.

    PubMed

    Lin, Pengfei; Li, Wei; Wen, Bing; Zhao, Yuying; Fenster, Danielle S; Wang, Yongxiang; Gong, Yaoqin; Yan, Chuanzhu

    2012-10-01

    Neutral lipid storage disease with myopathy (NLSDM) referred to those neutral lipid storage disease (NLSD) patients with myopathy but without ichthyosis. Recently, NLSDM has been attributed to mutations in the PNPLA2 gene. Until now, 19 patients with PNPLA2 mutations have been reported. In the present study, we describe the clinical and genetic findings in three Chinese patients with NLSDM. Sequence analysis of PNPLA2 gene was performed. In our patients we identified four novel mutations in the PNPLA2 gene including two splicing mutations. The identification and study of mutations found in PNPLA2 is also particularly important to define the clinical spectrum and genotype-phenotype correlations of the PNPLA2 gene. PMID:22832386

  16. A case of restless leg syndrome in a family with LRRK2 gene mutation.

    PubMed

    De Rosa, Anna; Guacci, Anna; Peluso, Silvio; Del Gaudio, Luigi; Massarelli, Marco; Barbato, Stefano; Criscuolo, Chiara; De Michele, Giuseppe

    2013-04-01

    LRRK2 gene mutations (PARK8) are a common cause of genetic Parkinson disease (PD). G2019S, the most frequent mutation, is responsible for both familial and sporadic cases of PD. The clinical picture is usually indistinguishable from that observed in idiopathic PD; however, a wide range of clinical presentations and pathological findings has been described. Restless leg syndrome (RLS) is a disabling sleep-related sensorimotor disorder whose pathogenesis is likely related to dopaminergic dysfunction. We report a 77-year-old woman with RLS and familial history of parkinsonism. The father, one sister, two cousins and one uncle were affected by PD. The proband and her sister were analyzed for mutations in LRRK2 gene and resulted to carry one heterozygous G2019S mutation in LRRK2 gene. The association between RLS and LRRK2 gene mutation may be casual, but it can hypothesized that RLS is a possible phenotypic presentation in PARK8. PMID:23227859

  17. The presence of MEFV gene mutations in patients with primary osteoarthritis who require surgery

    PubMed Central

    Erdem, Hakan; Tunay, Servet; Torun, Deniz; Genc, Halil; Tunca, Yusuf; Karadag, Omer; Simsek, Ismail; Bahce, Muhterem; Pay, Salih; Dinc, Ayhan

    2013-01-01

    Background/Aims Chronic arthritis of familial Mediterranean fever (FMF) involves weight-bearing joints and can occur in patients without a history of acute attack. Our aim was to investigate a possible causal relationship between FMF and osteoarthritis in a population in which FMF is quite common. Methods Patients with late stage primary osteoarthritis were enrolled, and five MEFV gene mutations were investigated. The frequency of MEFV gene mutations was compared among patients with osteoarthritis and a previous healthy group from our center. Results One hundred patients with primary osteoarthritis and 100 healthy controls were studied. The frequency of MEFV gene mutations was significantly lower in the osteoarthritis group (9% vs. 19%). M694V was the most frequent mutation (5%) in the osteoarthritis group, whereas in the control group, E148Q was the most common (16%). In subgroup analyses, the mutation frequency of patients with hip osteoarthritis was not different from that of patients with knee osteoarthritis and controls (7.1%, 9.7%, and 19%, respectively). There were no differences among the three groups with respect to MEFV gene mutations other than E148Q (8.1% vs. 3.6%). E148Q was significantly lower in the osteoarthritis group than in the controls (16% vs. 1%), although the mutations did not differ between patients with knee osteoarthritis and controls. Conclusions In a population with a high prevalence of MEFV gene mutations, we did not find an increased mutation rate in patients with primary osteoarthritis. Furthermore, we found that some mutations were significantly less frequent in patients with osteoarthritis. Although the number of patients studied was insufficient to claim that E148Q gene mutation protects against osteoarthritis, the potential of this gene merits further investigation. PMID:24009456

  18. Lysosomal Dysfunctions Associated with Mutations at Mouse Pigment Genes

    PubMed Central

    Novak, Edward K.; Swank, Richard T.

    1979-01-01

    Melanosomes and lysosomes share several structural and biosynthetic properties. Therefore, a large number of mouse pigment mutants were tested to determine whether genes affecting melanosome structure or function might also affect the lysosome. Among 31 mouse pigment mutants, six had 1.5- to 2.5- fold increased concentrations of kidney ?-glucuronidase. Three mutants, pale ear, pearl and pallid, had a generalized effect on lysosomal enzymes since there were coordinate increases in kidney ?-galactosidase and ?-mannosidase. The effects of these three mutations are lysosome specific since rates of kidney protein synthesis and activities of three nonlysosomal kidney enzymes were normal. Also, the mutants are relatively tissue specific in that all had normal liver lysomal enzyme concentrations.—A common dysfunction in all three mutants was a lowered rate of lysosomal enzyme secretion from kidney into urine. While normal C57BL/6J mice daily secreted 27 to 30% of total kidney ?-glucuronidase and ?-galactosidase, secretion of these two enzymes was coordinately depressed to 1 to 2%, 8 to 9% and 4 to 5% of total kidney enzyme in the pale-ear, pearl and pallid mutants, respectively. Although depressed lysosomal enzyme secretion is the major pigment mutant alteration, the higher lysomal enzyme concentrations in pearl and pallid may be partly due to an increase in lysosomal enzyme synthesis. In these mutants kidney glucuronidase synthetic rate was increased 1.4- to 1.5-fold.—These results suggest that there are several critical genes in mammals that control the biogenesis, processing and/or function of related classes of subcellular organelles. The mechanism of action of these genes is amenable to further analysis since they have been incorporated into congenic inbred strains of mice. PMID:115747

  19. EpilepsyGene: a genetic resource for genes and mutations related to epilepsy

    PubMed Central

    Ran, Xia; Li, Jinchen; Shao, Qianzhi; Chen, Huiqian; Lin, Zhongdong; Sun, Zhong Sheng; Wu, Jinyu

    2015-01-01

    Epilepsy is one of the most prevalent chronic neurological disorders, afflicting about 3.5–6.5 per 1000 children and 10.8 per 1000 elderly people. With intensive effort made during the last two decades, numerous genes and mutations have been published to be associated with the disease. An organized resource integrating and annotating the ever-increasing genetic data will be imperative to acquire a global view of the cutting-edge in epilepsy research. Herein, we developed EpilepsyGene (http://61.152.91.49/EpilepsyGene). It contains cumulative to date 499 genes and 3931 variants associated with 331 clinical phenotypes collected from 818 publications. Furthermore, in-depth data mining was performed to gain insights into the understanding of the data, including functional annotation, gene prioritization, functional analysis of prioritized genes and overlap analysis focusing on the comorbidity. An intuitive web interface to search and browse the diversified genetic data was also developed to facilitate access to the data of interest. In general, EpilepsyGene is designed to be a central genetic database to provide the research community substantial convenience to uncover the genetic basis of epilepsy. PMID:25324312

  20. Mutation screening of the EXT1 and EXT2 genes in patients with hereditary multiple exostoses.

    PubMed Central

    Philippe, C; Porter, D E; Emerton, M E; Wells, D E; Simpson, A H; Monaco, A P

    1997-01-01

    Hereditary multiple exostoses (HME), the most frequent of all skeletal dysplasias, is an autosomal dominant disorder characterized by the presence of multiple exostoses localized mainly at the end of long bones. HME is genetically heterogeneous, with at least three loci, on 8q24.1 (EXT1), 11p11-p13 (EXT2), and 19p (EXT3). Both the EXT1 and EXT2 genes have been cloned recently and define a new family of potential tumor suppressor genes. This is the first study in which mutation screening has been performed for both the EXT1 and EXT2 genes prior to any linkage analysis. We have screened 17 probands with the HME phenotype, for alterations in all translated exons and flanking intronic sequences, in the EXT1 and EXT2 genes, by conformation-sensitive gel electrophoresis. We found the disease-causing mutation in 12 families (70%), 7 (41%) of which have EXT1 mutations and 5 (29%) EXT2 mutations. Together with the previously described 1-bp deletion in exon 6, which is present in 2 of our families, we report five new mutations in EXT1. Two are missense mutations in exon 2 (G339D and R340C), and the other three alterations (a nonsense mutation, a frameshift, and a splicing mutation) are likely to result in truncated nonfunctional proteins. Four new mutations are described in EXT2. A missense mutation (D227N) was found in 2 different families; the other three alterations (two nonsense mutations and one frameshift mutation) lead directly or indirectly to premature stop codons. The missense mutations in EXT1 and EXT2 may pinpoint crucial domains in both proteins and therefore give clues for the understanding of the pathophysiology of this skeletal disorder. Images Figure 2A Figure 2C PMID:9326317

  1. Mutations in Ehrlichia chaffeensis Causing Polar Effects in Gene Expression and Differential Host Specificities

    PubMed Central

    Cheng, Chuanmin; Nair, Arathy D. S.; Jaworski, Deborah C.; Ganta, Roman R.

    2015-01-01

    Ehrlichia chaffeensis, a tick-borne rickettsial, is responsible for human monocytic ehrlichiosis. In this study, we assessed E. chaffeensis insertion mutations impacting the transcription of genes near the insertion sites. We presented evidence that the mutations within the E. chaffeensis genome at four genomic locations cause polar effects in altering gene expressions. We also reported mutations causing attenuated growth in deer (the pathogen’s reservoir host) and in dog (an incidental host), but not in its tick vector, Amblyomma americanum. This is the first study documenting insertion mutations in E. chaffeensis that cause polar effects in altering gene expression from the genes located upstream and downstream to insertion sites and the differential requirements of functionally active genes of the pathogen for its persistence in vertebrate and tick hosts. This study is important in furthering our knowledge on E. chaffeensis pathogenesis. PMID:26186429

  2. Tumor-specific mutations in low-frequency genes affect their functional properties.

    PubMed

    Erdem-Eraslan, Lale; Heijsman, Daphne; de Wit, Maurice; Kremer, Andreas; Sacchetti, Andrea; van der Spek, Peter J; Sillevis Smitt, Peter A E; French, Pim J

    2015-05-01

    Causal genetic changes in oligodendrogliomas (OD) with 1p/19q co-deletion include mutations in IDH1, IDH2, CIC, FUBP1, TERT promoter and NOTCH1. However, it is generally assumed that more somatic mutations are required for tumorigenesis. This study aimed to establish whether genes mutated at low frequency can be involved in OD initiation and/or progression. We performed whole-genome sequencing on three anaplastic ODs with 1p/19q co-deletion. To estimate mutation frequency, we performed targeted resequencing on an additional 39 ODs. Whole-genome sequencing identified a total of 55 coding mutations (range 8-32 mutations per tumor), including known abnormalities in IDH1, IDH2, CIC and FUBP1. We also identified mutations in genes, most of which were previously not implicated in ODs. Targeted resequencing on 39 additional ODs confirmed that these genes are mutated at low frequency. Most of the mutations identified were predicted to have a deleterious functional effect. Functional analysis on a subset of these genes (e.g. NTN4 and MAGEH1) showed that the mutation affects the subcellular localization of the protein (n = 2/12). In addition, HOG cells stably expressing mutant GDI1 or XPO7 showed altered cell proliferation compared to those expressing wildtype constructs. Similarly, HOG cells expressing mutant SASH3 or GDI1 showed altered migration. The significantly higher rate of predicted deleterious mutations, the changes in subcellular localization and the effects on proliferation and/or migration indicate that many of these genes functionally may contribute to gliomagenesis and/or progression. These low-frequency genes and their affected pathways may provide new treatment targets for this tumor type. PMID:25694352

  3. p53 gene mutations, p53 protein accumulation and compartmentalization in colorectal adenocarcinoma.

    PubMed Central

    Bosari, S.; Viale, G.; Roncalli, M.; Graziani, D.; Borsani, G.; Lee, A. K.; Coggi, G.

    1995-01-01

    p53 accumulation may occur in the nucleus and/or cytoplasm of neoplastic cells. Cytoplasmic accumulation has been reported to be an unfavorable, but not established, prognostic indicator in colorectal cancer. Different types of p53 intracellular compartmentalization could depend either on p53 gene mutations or on the interaction with p53 protein ligands. The purposes of our study were (1) to assess whether the different patterns of p53 accumulation are selectively associated with p53 mutations and (2) to evaluate the clinical significance of p53 mutations in colorectal carcinomas. We evaluated p53 gene mutations in colorectal carcinomas. We evaluated p53 gene mutations in exons 5 through 8, by polymerase chain reaction and single-strand conformation polymorphism analysis; p53 accumulation and intracellular compartmentalization were detected immunocytochemically with the antibodies PAb1801 and CM1. p53 mutations were found in 74 of 126 carcinomas (59%). Nuclear p53PAb1801 accumulation was associated with p53 gene mutations (P < 0.001) whereas cytoplasmic p53 CM1 accumulation was more likely to occur with the wild-type p53 gene (P = 0.048). Overall, 112 carcinomas (89%) displayed p53 gene mutations and/or p53 accumulations of any type. p53 mutations were not correlated with important clinicopathological parameters and were not related to patient survival. Our data suggest that mechanisms other than mutations may also play a role in inhibiting p53 tumor-suppressing functions in colorectal carcinomas. Cytoplasmic p53CM1 accumulation frequently does not depend on p53 mutations. Images Figure 1 PMID:7677190

  4. Excess of de novo deleterious mutations in genes associated with glutamatergic systems in nonsyndromic intellectual disability.

    PubMed

    Hamdan, Fadi F; Gauthier, Julie; Araki, Yoichi; Lin, Da-Ting; Yoshizawa, Yuhki; Higashi, Kyohei; Park, A-Reum; Spiegelman, Dan; Dobrzeniecka, Sylvia; Piton, Amélie; Tomitori, Hideyuki; Daoud, Hussein; Massicotte, Christine; Henrion, Edouard; Diallo, Ousmane; Shekarabi, Masoud; Marineau, Claude; Shevell, Michael; Maranda, Bruno; Mitchell, Grant; Nadeau, Amélie; D'Anjou, Guy; Vanasse, Michel; Srour, Myriam; Lafreničre, Ronald G; Drapeau, Pierre; Lacaille, Jean Claude; Kim, Eunjoon; Lee, Jae-Ran; Igarashi, Kazuei; Huganir, Richard L; Rouleau, Guy A; Michaud, Jacques L

    2011-03-11

    Little is known about the genetics of nonsyndromic intellectual disability (NSID). We hypothesized that de novo mutations (DNMs) in synaptic genes explain an important fraction of sporadic NSID cases. In order to investigate this possibility, we sequenced 197 genes encoding glutamate receptors and a large subset of their known interacting proteins in 95 sporadic cases of NSID. We found 11 DNMs, including ten potentially deleterious mutations (three nonsense, two splicing, one frameshift, four missense) and one neutral mutation (silent) in eight different genes. Calculation of point-substitution DNM rates per functional and neutral site showed significant excess of functional DNMs compared to neutral ones. De novo truncating and/or splicing mutations in SYNGAP1, STXBP1, and SHANK3 were found in six patients and are likely to be pathogenic. De novo missense mutations were found in KIF1A, GRIN1, CACNG2, and EPB41L1. Functional studies showed that all these missense mutations affect protein function in cell culture systems, suggesting that they may be pathogenic. Sequencing these four genes in 50 additional sporadic cases of NSID identified a second DNM in GRIN1 (c.1679_1681dup/p.Ser560dup). This mutation also affects protein function, consistent with structural predictions. None of these mutations or any other DNMs were identified in these genes in 285 healthy controls. This study highlights the importance of the glutamate receptor complexes in NSID and further supports the role of DNMs in this disorder. PMID:21376300

  5. Excess of De Novo Deleterious Mutations in Genes Associated with Glutamatergic Systems in Nonsyndromic Intellectual Disability

    PubMed Central

    Hamdan, Fadi F.; Gauthier, Julie; Araki, Yoichi; Lin, Da-Ting; Yoshizawa, Yuhki; Higashi, Kyohei; Park, A-Reum; Spiegelman, Dan; Dobrzeniecka, Sylvia; Piton, Amélie; Tomitori, Hideyuki; Daoud, Hussein; Massicotte, Christine; Henrion, Edouard; Diallo, Ousmane; Shekarabi, Masoud; Marineau, Claude; Shevell, Michael; Maranda, Bruno; Mitchell, Grant; Nadeau, Amélie; D'Anjou, Guy; Vanasse, Michel; Srour, Myriam; Lafreničre, Ronald G.; Drapeau, Pierre; Lacaille, Jean Claude; Kim, Eunjoon; Lee, Jae-Ran; Igarashi, Kazuei; Huganir, Richard L.; Rouleau, Guy A.; Michaud, Jacques L.

    2011-01-01

    Little is known about the genetics of nonsyndromic intellectual disability (NSID). We hypothesized that de novo mutations (DNMs) in synaptic genes explain an important fraction of sporadic NSID cases. In order to investigate this possibility, we sequenced 197 genes encoding glutamate receptors and a large subset of their known interacting proteins in 95 sporadic cases of NSID. We found 11 DNMs, including ten potentially deleterious mutations (three nonsense, two splicing, one frameshift, four missense) and one neutral mutation (silent) in eight different genes. Calculation of point-substitution DNM rates per functional and neutral site showed significant excess of functional DNMs compared to neutral ones. De novo truncating and/or splicing mutations in SYNGAP1, STXBP1, and SHANK3 were found in six patients and are likely to be pathogenic. De novo missense mutations were found in KIF1A, GRIN1, CACNG2, and EPB41L1. Functional studies showed that all these missense mutations affect protein function in cell culture systems, suggesting that they may be pathogenic. Sequencing these four genes in 50 additional sporadic cases of NSID identified a second DNM in GRIN1 (c.1679_1681dup/p.Ser560dup). This mutation also affects protein function, consistent with structural predictions. None of these mutations or any other DNMs were identified in these genes in 285 healthy controls. This study highlights the importance of the glutamate receptor complexes in NSID and further supports the role of DNMs in this disorder. PMID:21376300

  6. Mutations in the neurofilament light chain gene (NEFL)--a study of a possible pathogenous effect.

    PubMed

    Kocha?ski, Andrzej

    2004-01-01

    Neurofilaments (NFs) have been shown to be involved in the molecular pathology of numerous neurode-generative human disorders. Recently a set of mutations in the neurofilament light gene (NF-L) was reported in patients suffering from axonal and demyelinating forms of Charcot-Marie-Tooth disease (CMT1 and CMT2). Although a few of the NEFL gene sequence variants have been shown to be rather pathogenous mutations than harmless polymorphisms, the status of some of these variants remains unclear. The aim of this study was to analyse a potential pathogenous effect of the mutations in the NEFL gene identified in CMT affected patients. PMID:15535039

  7. Congenital Contractural Arachnodactyly without FBN1 or FBN2 Gene Mutations Complicated by Dilated Cardiomyopathy.

    PubMed

    Yagi, Hiroki; Hatano, Masaru; Takeda, Norifumi; Harada, Saori; Suzuki, Yukari; Taniguchi, Yuki; Shintani, Yukako; Morita, Hiroyuki; Kanamori, Norio; Aoyama, Takeshi; Watanabe, Masafumi; Manabe, Ichiro; Akazawa, Hiroshi; Kinugawa, Koichiro; Komuro, Issei

    2015-01-01

    Congenital contractural arachnodactyly (CCA) is a rare connective tissue disorder characterized by marfanoid habitus with camptodactyly. However, cardiac features have rarely been documented in adults. We herein report a sporadic case of CCA in a 20-year-old woman who developed decompensated dilated cardiomyopathy. The patient did not have any mutations in the FBN1 or FBN2 genes, which are most commonly associated with Marfan syndrome and CCA, respectively. Although whether these two diseases are caused by a mutation(s) in the same gene or two different genes remains unknown, this case provides new clinical insight into the cardiovascular management of CCA. PMID:25986263

  8. Clinical Significance of a Point Mutation in DNA Polymerase Beta (POLB) Gene in Gastric Cancer

    PubMed Central

    Tan, Xiaohui; Wang, Hongyi; Luo, Guangbin; Ren, Shuyang; Li, Wenmei; Cui, Jiantao; Gill, Harindarpal S.; Fu, Sidney W.; Lu, Youyong

    2015-01-01

    Gastric cancer (GC) is a major cause of global cancer mortality. Genetic variations in DNA repair genes can modulate DNA repair capability and, consequently, have been associated with risk of developing cancer. We have previously identified a T to C point mutation at nucleotide 889 (T889C) in DNA polymerase beta (POLB) gene, a key enzyme involved in base excision repair in primary GCs. The purpose of this study was to evaluate the mutation and expression of POLB in a larger cohort and to identify possible prognostic roles of the POLB alterations in GC. Primary GC specimens and their matched normal adjacent tissues were collected at the time of surgery. DNA, RNA and protein samples were isolated from GC specimens and cell lines. Mutations were detected by PCR-RFLP/DHPLC and sequencing analysis. POLB gene expression was examined by RT-PCR, tissue microarray, Western blotting and immunofluorescence assays. The function of the mutation was evaluated by chemosensitivity, MTT, Transwell matrigel invasion and host cell reactivation assays. The T889C mutation was detected in 18 (10.17%) of 177 GC patients. And the T889C mutation was associated with POLB overexpression, lymph nodes metastases and poor tumor differentiation. In addition, patients with- the mutation had significantly shorter survival time than those without-, following postoperative chemotherapy. Furthermore, cell lines with T889C mutation in POLB gene were more resistant to the treatment of 5-fluorouracil, cisplatin and epirubicin than those with wild type POLB. Forced expression of POLB gene with T889C mutation resulted in enhanced cell proliferation, invasion and resistance to anticancer drugs, along with increased DNA repair capability. These results suggest that POLB gene with T889C mutation in surgically resected primary gastric tissues may be clinically useful for predicting responsiveness to chemotherapy in patients with GC. The POLB gene alteration may serve as a prognostic biomarker for GC. PMID:25561897

  9. Spectrum of MECP2 gene mutations in a cohort of Indian patients with Rett syndrome: report of two novel mutations.

    PubMed

    Das, Dhanjit Kumar; Raha, Sarbani; Sanghavi, Daksha; Maitra, Anurupa; Udani, Vrajesh

    2013-02-15

    Rett syndrome (RTT) is an X-linked neurodevelopmental disorder, primarily affecting females and characterized by developmental regression, epilepsy, stereotypical hand movements, and motor abnormalities. Its prevalence is about 1 in 10,000 female births. Rett syndrome is caused by mutations within methyl CpG-binding protein 2 (MECP2) gene. Over 270 individual nucleotide changes which cause pathogenic mutations have been reported. However, eight most commonly occurring missense and nonsense mutations account for almost 70% of all patients. We screened 90 individuals with Rett syndrome phenotype. A total of 19 different MECP2 mutations and polymorphisms were identified in 27 patients. Of the 19 mutations, we identified 7 (37%) frameshift, 6 (31%) nonsense, 14 (74%) missense mutations and one duplication (5%). The most frequent pathogenic changes were: missense p.T158M (11%), p.R133C (7.4%), and p.R306C (7.4%) and nonsense p.R168X (11%), p.R255X (7.4%) mutations. We have identified two novel mutations namely p.385-388delPLPP present in atypical patients and p.Glu290AlafsX38 present in a classical patient of Rett syndrome. Sequence homology for p.385-388delPLPP mutation revealed that these 4 amino acids were conserved across mammalian species. This indicated the importance of these 4 amino acids in structure and function of the protein. A novel variant p.T479T has also been identified in a patient with atypical Rett syndrome. A total of 62 (69%) patients remained without molecular genetics diagnosis that necessitates further search for mutations in other genes like CDKL5 and FOXG1 that are known to cause Rett phenotype. The majority of mutations are detected in exon 4 and only one mutation was present in exon 3. Therefore, our study suggests the need for screening exon 4 of MECP2 as first line of diagnosis in these patients. PMID:23262346

  10. Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene

    Microsoft Academic Search

    Jamie W. Foster; Marina A. Dominguez-Steglich; Silvana Guioli; Cheni Kwok; Polly A. Weller; Milena Stevanovic; Jean Weissenbach; Sahar Mansour; Ian D. Young; Peter N. Goodfellow; J. David Brook; Alan J. Schafer

    1994-01-01

    Induction of testis development in mammals requires the presence of the Y-chromosome gene SPY. This gene must exert its effect by interacting with other genes in the sex-determination pathway. Cloning of a translocation chromosome breakpoint from a sex-reversed patient with campomelic dysplasia, followed by mutation analysis of an adjacent gene, indicates that SOX9, an SRY-related gene, is involved in both

  11. Dysmyelinating and demyelinating Charcot-Marie-Tooth disease associated with two myelin protein zero gene mutations.

    PubMed

    Drac, Hanna; Kabzi?ska, Dagmara; Moszy?ska, Izabela; Strugalska-Cynowska, Halina; Hausmanowa-Petrusewicz, Irena; Kocha?ski, Andrzej

    2011-05-01

    Mutations in the myelin protein zero (MPZ) gene are the third most frequent cause of hereditary motor and sensory neuropathies (HMSN), also called Charcot-Marie-Tooth disorders (CMT). Only in case of recurrent mutations occurring in the MPZ gene is it possible to draw phenotype-genotype correlations essential for establishing the prognosis and outcomes of CMT1. We have surveyed a cohort of 67 Polish patients from CMT families with demyelinating neuropathy for mutations in the MPZ gene. In this study, we report two CMT families in which the Ile135Thr and Pro132Leu mutations have been identified for the MPZ gene. These MPZ gene mutations had not been identified hitherto in the Polish population. The Pro132Leu mutation segregates with a severe early-onset dysmyelinating-hypomyelinating neuropathy, whereas the Ile135Thr substitution is associated with the classical phenotype of CMT1. To the best of our knowledge, we present here, for the first time, morphological data obtained in two sural nerve biopsies pointing to a hypomyelination-dysmyelination process in a family harboring the Pro132Leu mutation in the MPZ gene. PMID:21107784

  12. Hyperinsulinemic hypoglycemia syndrome associated with mutations in the human insulin receptor gene: Report of two cases.

    PubMed

    Kuroda, Yohei; Iwahashi, Hiromi; Mineo, Ikuo; Fukui, Kenji; Fukuhara, Atsunori; Iwamoto, Ryuya; Imagawa, Akihisa; Shimomura, Iichiro

    2015-04-30

    Insulinoma and insulin or insulin receptor (IR) autoantibodies are the main causes of hyperinsulinemic hypoglycemia in adults, but the exact cause in other cases remains obscure. This study is to determine the genetic basis of hyperinsulinemic hypoglycemia in two cases without the above abnormalities. Sequence analysis of IR gene in two patients with adult-onset hyperinsulinemic hypoglycemia and their relatives were performed, and the mutant gene observed in one case was analyzed. Both cases had normal levels of fasting plasma glucose (FPG), fasting hyperinsulinemia, low insulin sensitivity, and hypoglycemia with excessive insulin secretion during oral glucose tolerance test (OGTT). Both reported adult-onset postprandial hypoglycemic symptoms. In one patient, a missense mutation (Arg256Cys) was detected in both alleles of the IR gene, and his parents had the same mutation in only one allele but no hypoglycemia. The other had a novel nonsense mutation (Trp1273X) followed by a mutation (Gln1274Lys) in one allele, and his 9-year old son had the same mutation in one allele, together with hyperinsulinemic hypoglycemia during OGTT. Overexpression experiments of the mutant gene found in Case 1 in mammalian cells showed abnormal processing of the IR protein and demonstrated reduced function of Akt/Erk phosphorylation by insulin in the cells. In two cases of hyperinsulinemic hypoglycemia in adults, we found novel mutations in IR gene considered to be linked to hypoglycemia. We propose a disease entity of adult-onset hyperinsulinemic hypoglycemia syndrome associated with mutations in IR gene. PMID:25753915

  13. Binge Eating as a Major Phenotype of Melanocortin 4 Receptor Gene Mutations

    Microsoft Academic Search

    Ruth Branson; Natascha Potoczna; John G. Kral; Klaus-Ulrich Lentes; Margret R. Hoehe; Fritz F. Horber

    2010-01-01

    background Obesity, a multifactorial disease caused by the interaction of genetic factors with the environment, is largely polygenic. A few mutations in these genes, such as in the leptin receptor ( LEPR ) gene and melanocortin 4 receptor ( MC4R ) gene, have been identified as causes of monogenic obesity. methods We sequenced the complete MC4R coding region, the region

  14. Classi cation of missense mutations of disease genes Xi ZHOU, Edwin S. IVERSEN, JR., Giovanni PARMIGIANI

    E-print Network

    West, Mike

    mutations of breast{ovarian susceptibility genes BRCA1 and BRCA2, using data collected at the Duke cancer susceptibility genes BRCA1 and BRCA2 (Miki, Swenson, Shattuck-Eidens, Futreal, Harshman, Tavtigian) and the hereditary non-polyposis colorectal cancer (HNPCC) genes (Lynch and de la Chapelle 1999). Genetic tests

  15. Genomic analyses of gynaecologic carcinosarcomas reveal frequent mutations in chromatin remodelling genes

    PubMed Central

    Jones, Siân; Stransky, Nicolas; McCord, Christine L.; Cerami, Ethan; Lagowski, James; Kelly, Devon; Angiuoli, Samuel V.; Sausen, Mark; Kann, Lisa; Shukla, Manish; Makar, Rosemary; Wood, Laura D.; Diaz, Luis A.; Lengauer, Christoph; Velculescu, Victor E.

    2014-01-01

    Malignant mixed Müllerian tumours, also known as carcinosarcomas, are rare tumours of gynaecological origin. Here we perform whole-exome analyses of 22 tumours using massively parallel sequencing to determine the mutational landscape of this tumour type. On average, we identify 43 mutations per tumour, excluding four cases with a mutator phenotype that harboured inactivating mutations in mismatch repair genes. In addition to mutations in TP53 and KRAS, we identify genetic alterations in chromatin remodelling genes, ARID1A and ARID1B, in histone methyltransferase MLL3, in histone deacetylase modifier SPOP and in chromatin assembly factor BAZ1A, in nearly two thirds of cases. Alterations in genes with potential clinical utility are observed in more than three quarters of the cases and included members of the PI3-kinase and homologous DNA repair pathways. These findings highlight the importance of the dysregulation of chromatin remodelling in carcinosarcoma tumorigenesis and suggest new avenues for personalized therapy. PMID:25233892

  16. Mutator Genes Giving Rise to Decreased Antibiotic Susceptibility in Pseudomonas aeruginosa?

    PubMed Central

    Wiegand, Irith; Marr, Alexandra K.; Breidenstein, Elena B. M.; Schurek, Kristen N.; Taylor, Patrick; Hancock, Robert E. W.

    2008-01-01

    Screening of the PA14 genomic transposon mutant library for resistance to ceftazidime, tobramycin, and ciprofloxacin led to the discovery of several mutants that appeared in more than one screen. Testing of the frequency of mutation to ciprofloxacin resistance revealed previously known mutator genes, including mutS and mutL, as well as mutators that have not yet been described for P. aeruginosa, including PA3958 and RadA (PA4609). PMID:18663021

  17. Late Infantile Neuronal Ceroid Lipofuscinosis Is Due to Splicing Mutations in the CLN2 Gene

    Microsoft Academic Search

    Jaana M. Hartikainen; Weina Ju; Krystyna E. Wisniewski; Dorota N. Moroziewicz; Alexandra L. Kaczmarski; Lucille McLendon; David Zhong; Carolin T. Suarez; W. Ted Brown; Nan Zhong

    1999-01-01

    Late infantile neuronal ceroid lipofuscinosis, LINCL, is one of the most common pediatric neurodegenerative disorders. It is caused by mutations in the CLN2 gene, which encodes a lysosomal pepstatin-insensitive peptidase (LPIP). We have identified a novel mutation, T523-1G ? A, by molecular analyses of three unrelated LINCL cases. The mutation was found to affect a 3? intronic splicing acceptor site,

  18. Mutational analysis of the PLCE1 gene in steroid resistant nephrotic syndrome

    Microsoft Academic Search

    Olivia Boyer; Genevičve Benoit; Olivier Gribouval; Fabien Nevo; Audrey Pawtowski; Ilmay Bilge; Zelal Bircan; Georges Deschęnes; Lisa M Guay-Woodford; Michelle Hall; Marie-Alice Macher; Kenza Soulami; Constantinos J Stefanidis; Robert Weiss; Chantal Loirat; Marie-Claire Gubler; Corinne Antignac

    2010-01-01

    BackgroundMutations in the PLCE1 gene encoding phospholipase C epsilon 1 (PLC?1) have been recently described in patients with early onset nephrotic syndrome (NS) and diffuse mesangial sclerosis (DMS). In addition, two cases of PLCE1 mutations associated with focal segmental glomerulosclerosis (FSGS) and later NS onset have been reported.MethodIn order to better assess the spectrum of phenotypes associated with PLCE1 mutations,

  19. Comprehensive analysis of desmosomal gene mutations in Han Chinese patients with arrhythmogenic right ventricular cardiomyopathy.

    PubMed

    Zhou, Xiujuan; Chen, Minglong; Song, Hualian; Wang, Benqi; Chen, Hongwu; Wang, Jing; Wang, Wei; Feng, Shangpeng; Zhang, Fengxiang; Ju, Weizhu; Li, Mingfang; Gu, Kai; Cao, Kejiang; Wang, Dao W; Yang, Bing

    2015-04-01

    Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a cardiomyopathy that primarily involves the right ventricle. Mutations in desmosomal genes have been associated with ARVC. But its prevalence and spectrum are much less defined in the Chinese population, especially Han Chinese, a majority ethnic group in China; also the genotype-phenotype correlation regarding left ventricular involvement is still poorly understood. The aim of this study was to elucidate the genotype in Han Chinese patients with ARVC and the phenotype regarding cardiac left ventricle involvement in mutation carriers of ARVC. 48 Han Chinese patients were recruited into the present study based on the Original International Task Force Criteria of ARVC. Clinical data were reassessed according to the modified criteria published in 2010. A total of 36 subjects were diagnosed with ARVC; 12 patients were diagnosed with suspected ARVC. Five desmosomal genes (PKP2, DSG2, DSP, DSC2 and JUP) were sequenced directly from genomic DNA. Among the 36 patients, 21 mutations, 12 of which novel, were discovered in 19 individuals (19 of 36, 53%). The distribution of the mutations was 25% in PKP2, 14% in DSP, 11% in DSG2, 6% in JUP, and 3% in DSC2. Multiple mutations were identified in 2 subjects (2 of 36, 6%); both had digenic heterozygosity. Eight mutations, of which six were novel, were located in highly conserved regions. Seven mutations introduced a stop codon prematurely, which would result in premature termination of the protein synthesis. Two-dimensional echocardiography showed that LDVd and LDVs parameters were significantly larger in nonsense mutation carriers than in carriers of other mutations. In this comprehensive desmosome genetic analysis, 21 mutations were identified in five desmosomal genes in a group of 48 local Han Chinese subjects with ARVC, 12 of which were novel. PKP2 mutations were the most common variants. Left ventricular involvement could be a sign that the patient is a carrier of a nonsense cardiac desmosomal gene mutation. PMID:25765472

  20. Mitochondrial Cytochrome B Gene Mutation Promotes Tumor Growth in Bladder Cancer

    Microsoft Academic Search

    Santanu Dasgupta; Mohammad Obaidul Hoque; Sunil Upadhyay; David Sidransky

    Mitochondria-encoded Cytochrome B (CYTB) gene mutations were reported in different cancers, but the effect of these mutations on cellular metabolism and growth is unknown. In a murine xenograft and human model of bladder cancer, we show the functional effect of overexpression of a 21-bp deletion mutation (mt )o fCYTB. Overexpression of mtCYTB generated increased reactive oxygen species (ROS) accompanied by

  1. Novel mutations in the CDKL5 gene, predicted effects and associated phenotypes

    Microsoft Academic Search

    S. Russo; M. Marchi; F. Cogliati; M. T. Bonati; M. Pintaudi; E. Veneselli; V. Saletti; M. Balestrini; B. Ben-Zeev; L. Larizza

    2009-01-01

    It has been found that CDKL5 gene mutations are responsible for early-onset epilepsy and drug resistance. We screened a population\\u000a of 92 patients with classic\\/atypical Rett syndrome, 17 Angelman\\/Angelman-like patients and six idiopathic autistic patients\\u000a for CDKL5 mutations and exon deletions and identified seven novel mutations: six in the Rett subset and one in an Angelman\\u000a patient. This last, an

  2. Four new mutations in the BCHE gene of human butyrylcholinesterase in a Brazilian blood donor sample

    Microsoft Academic Search

    Ricardo L. R. Souza; Liya R. Mikami; Rodrigo O. B. Maegawa; Eleidi A. Chautard-Freire-Maia

    2005-01-01

    The genetic variation of human butyrylcholinesterase has been associated with height, body mass index, Alzheimer’s disease, and response to xenobiotic agents. The present study reports four new mutations, found in the exon 2 of the BCHE gene, in a sample from 3001 Brazilian blood donors. The three nonsynonymous mutations and one synonymous mutation detected are: 223G?C, G75R; 270A?C, E90D; 297T?G,

  3. Characterization of phenylalanine hydroxylase gene mutations in phenylketonuria in Xinjiang of China

    PubMed Central

    Yu, Wuzhong; He, Jiang; Yang, Xi; Zou, Hongyun; Gui, Junhao; Wang, Rui; Yang, Liu; Wang, Zheng; Lei, Quan

    2014-01-01

    To investigate the spectrum and frequency of phenylalanine hydroxylase (PAH) gene mutations in phenylketonuria (PKU) patients in Xinjiang, China. Polymerase chain reaction (PCR), in combination with single-strand conformation polymorphism (SSCP) and DNA sequencing analyses were performed, to screen potential mutations in the PAH gene in 46 individual PKU patients. Direct DNA sequencing was used to analyze the all of the exons in the PAH gene, including the promoter and flanking intron regions, in another 15 PKU patients. Our results indicated that, 30 different mutation types were identified in all 122 PAH alleles, with the mutation detection rate of 78.7% (96/122). Four novel mutations, i.e., 5’-Flanking -626G>A, 5’-Flanking -480DelACT, S196fsX4, and IVS8+1G>C, were identified for the first time. Similar to other regions in North China, R243Q, EX6-96A>G, IVS4-1A>G, R111X, and Y356X were the most prevalent PAH mutations in PKU patients from Xinjiang. Additionally, common mutations showed different frequencies in Xinjiang, when compared to other areas. Furthermore, sixteen different PAH gene mutation types were identified for the first time in the minorities in Xinjiang. Distinctive mutation spectrum of PAH gene in PKU patients from Xinjiang were characterized, which may promote the construction of PAH gene mutation database and serve as valuable tools for genetic diagnosis and counseling, and prognostic evaluation for PKU cases in the local area. PMID:25550961

  4. Screening of 38 genes identifies mutations in 62% of families with nonsyndromic deafness in Turkey.

    PubMed

    Duman, Duygu; Sirmaci, Asli; Cengiz, F Basak; Ozdag, Hilal; Tekin, Mustafa

    2011-01-01

    More than 60% of prelingual deafness is genetic in origin, and of these up to 95% are monogenic autosomal recessive traits. Causal mutations have been identified in 1 of 38 different genes in a subset of patients with nonsyndromic autosomal recessive deafness. In this study, we screened 49 unrelated Turkish families with at least three affected children born to consanguineous parents. Probands from all families were negative for mutations in the GJB2 gene, two large deletions in the GJB6 gene, and the 1555A>G substitution in the mitochondrial DNA MTRNR1 gene. Each family was subsequently screened via autozygosity mapping with genomewide single-nucleotide polymorphism arrays. If the phenotype cosegregated with a haplotype flanking one of the 38 genes, mutation analysis of the gene was performed. We identified 22 different autozygous mutations in 11 genes, other than GJB2, in 26 of 49 families, which overall explains deafness in 62% of families. Relative frequencies of genes following GJB2 were MYO15A (9.9%), TMIE (6.6%), TMC1 (6.6%), OTOF (5.0%), CDH23 (3.3%), MYO7A (3.3%), SLC26A4 (1.7%), PCDH15 (1.7%), LRTOMT (1.7%), SERPINB6 (1.7%), and TMPRSS3 (1.7%). Nineteen of 22 mutations are reported for the first time in this study. Unknown rare genes for deafness appear to be present in the remaining 23 families. PMID:21117948

  5. Familial hypercholesterolemia in Morocco: first report of mutations in the LDL receptor gene.

    PubMed

    El Messal, Mariame; Aďt Chihab, Karima; Chater, Rachid; Vallvé, Joan Carles; Bennis, Faďza; Hafidi, Aďcha; Ribalta, Josep; Varret, Mathilde; Loutfi, Mohammed; Rabčs, Jean Pierre; Kettani, Anass; Boileau, Catherine; Masana, Luis; Adlouni, Ahmed

    2003-01-01

    Familial hypercholesterolemia (FH) is a genetic disorder mainly caused by defects in the low-density lipoprotein receptor (LDLR) gene, although it can also be due to alterations in the gene encoding apolipoprotein B (familial defective apoB or FDB) or in other unidentified genes. In Morocco, the molecular basis of FH is unknown. To obtain information on this issue, 27 patients with FH from eight unrelated families were analyzed by screening the LDLR (PCR-SSCP and Southern blot) and apoB genes (PCR and restriction enzyme digestion analysis). None of the patients carried either the R3500Q or the R3531C mutation in the apoB gene. By contrast, seven mutations in the LDLR gene were identified, including five missense mutations on exons 4, 6, 8, and 14 (C113R, G266C, A370T, P664L, C690S) and two large deletions (FH Morocco-1 and FH Morocco-2). The two major rearrangements and the missense mutation G266C are novel mutations and could well be causative of FH in the Moroccan population. This study has yielded preliminary information on the mutation spectrum of the LDLR gene among patients with FH in Morocco. PMID:12730724

  6. Different mutations of the human c-mpl gene indicate distinct haematopoietic diseases

    PubMed Central

    2013-01-01

    The human c-mpl gene (MPL) plays an important role in the development of megakaryocytes and platelets as well as the self-renewal of haematopoietic stem cells. However, numerous MPL mutations have been identified in haematopoietic diseases. These mutations alter the normal regulatory mechanisms and lead to autonomous activation or signalling deficiencies. In this review, we summarise 59 different MPL mutations and classify these mutations into four different groups according to the associated diseases and mutation rates. Using this classification, we clearly distinguish four diverse types of MPL mutations and obtain a deep understand of their clinical significance. This will prove to be useful for both disease diagnosis and the design of individual therapy regimens based on the type of MPL mutations. PMID:23351976

  7. Mutated human androgen receptor gene detected in a prostatic cancer patient is also activated by estradiol

    SciTech Connect

    Elo, J.P.; Kvist, L.; Leinonen, K.; Isomaa, V. [Univ. of Oulu (Finland)] [and others] [Univ. of Oulu (Finland); and others

    1995-12-01

    Androgens are necessary for the development of prostatic cancer. The mechanisms by which the originally androgen-dependent prostatic cancer cells are relieved of the requirement to use androgen for their growth are largely unknown. The human prostatic cancer cell line LNCaP has been shown to contain a point mutation in the human androgen receptor gene (hAR), suggesting that changes in the hAR may contribute to the abnormal hormone response of prostatic cells. To search for point mutations in the hAR, we used single strand conformation polymorphism analysis and a polymerase chain reaction direct sequencing method to screen 23 prostatic cancer specimens from untreated patients, 6 prostatic cancer specimens from treated patients, and 11 benign prostatic hyperplasia specimens. One mutation was identified in DNA isolated from prostatic cancer tissue, and the mutation was also detected in the leukocyte DNA of the patient and his offspring. The mutation changed codon 726 in exon E from arginine to leucine and was a germ line mutation. The mutation we found in exon E of the hAR gene does not alter the ligand binding specificity of the AR, but the mutated receptor was activated by estradiol to a significantly greater extent than the wild-type receptor. The AR gene mutation described in this study might be one explanation for the altered biological activity of prostatic cancer. 36 refs., 4 figs.

  8. Mutations in planar cell polarity gene SCRIB are associated with spina bifida.

    PubMed

    Lei, Yunping; Zhu, Huiping; Duhon, Cody; Yang, Wei; Ross, M Elizabeth; Shaw, Gary M; Finnell, Richard H

    2013-01-01

    Neural tube defects (NTDs) (OMIM #182940) including anencephaly, spina bifida and craniorachischisis, are severe congenital malformations that affect 0.5-1 in 1,000 live births in the United States, with varying prevalence around the world. Mutations in planar cell polarity (PCP) genes are believed to cause a variety of NTDs in both mice and humans. SCRIB is a PCP-associated gene. Mice that are homozygous for the Scrib p.I285K and circletail (Crc) mutations, present with the most severe form of NTDs, namely craniorachischisis. A recent study reported that mutations in SCRIB were associated with craniorachischisis in humans, but whether SCRIB mutations contribute to increased spina bifida risk is still unknown. We sequenced the SCRIB gene in 192 infants with spina bifida and 190 healthy controls. Among the spina bifida patients, we identified five novel missense mutations that were predicted-to-be-deleterious by the PolyPhen software. Of these five mutations, three of them (p.P1043L, p.P1332L, p.L1520R) significantly affected the subcellular localization of SCRIB. In addition, we demonstrated that the craniorachischisis mouse line-90 mutation I285K, also affected SCRIB subcellular localization. In contrast, only one novel missense mutation (p.A1257T) was detected in control samples, and it was predicted to be benign. This study demonstrated that rare deleterious mutations of SCRIB may contribute to the multifactorial risk for human spina bifida. PMID:23922697

  9. Mutations in Planar Cell Polarity Gene SCRIB Are Associated with Spina Bifida

    PubMed Central

    Lei, Yunping; Zhu, Huiping; Duhon, Cody; Yang, Wei; Ross, M. Elizabeth; Shaw, Gary M.; Finnell, Richard H.

    2013-01-01

    Neural tube defects (NTDs) (OMIM #182940) including anencephaly, spina bifida and craniorachischisis, are severe congenital malformations that affect 0.5–1 in 1,000 live births in the United States, with varying prevalence around the world. Mutations in planar cell polarity (PCP) genes are believed to cause a variety of NTDs in both mice and humans. SCRIB is a PCP-associated gene. Mice that are homozygous for the Scrib p.I285K and circletail (Crc) mutations, present with the most severe form of NTDs, namely craniorachischisis. A recent study reported that mutations in SCRIB were associated with craniorachischisis in humans, but whether SCRIB mutations contribute to increased spina bifida risk is still unknown. We sequenced the SCRIB gene in 192 infants with spina bifida and 190 healthy controls. Among the spina bifida patients, we identified five novel missense mutations that were predicted-to-be-deleterious by the PolyPhen software. Of these five mutations, three of them (p.P1043L, p.P1332L, p.L1520R) significantly affected the subcellular localization of SCRIB. In addition, we demonstrated that the craniorachischisis mouse line-90 mutation I285K, also affected SCRIB subcellular localization. In contrast, only one novel missense mutation (p.A1257T) was detected in control samples, and it was predicted to be benign. This study demonstrated that rare deleterious mutations of SCRIB may contribute to the multifactorial risk for human spina bifida. PMID:23922697

  10. Androgen Receptor Gene Mutations are Rarely Associated with Isolated Penile Hypospadias

    Microsoft Academic Search

    Richard W. Sutherland; John S. Wiener; Joseph P. Hicks; Marco Marcelli; Edmond T. Gonzales; David R. Roth; Dolores J. Lamb

    1996-01-01

    PurposeHypospadias has no known single etiology but it has been linked to androgen insensitivity caused by mutations of the androgen receptor gene. The purpose of this study was to search for such mutations in cases of various degrees of isolated hypospadias to determine whether such an association exists and, if so, with any particular anatomical subgroup.

  11. High Incidence of Hemochromatosis Gene Mutations in the Myelodysplastic Syndrome: The Budapest Study on 50 Patients

    Microsoft Academic Search

    Judit Várkonyi; Gábor Tarkovács; István Karádi; Hajnalka Andrikovics; Ferenc Varga; Fatime Varga; Judit Demeter; Attila Tordai

    2003-01-01

    Genotypic testing of nonselected patients with the myelodysplastic syndrome (MDS) for the C282Y and H63D mutations of the HFE gene responsible for hereditary hemochromatosis revealed a significantly increased frequency of these mutations when compared to healthy blood donors reflecting the average population. Among the 50 patients examined [26 refractory anemia (RA), 9 refractory anemia with ring sideroblasts (RARS), 2 refractory

  12. A Fixed Point Analysis of a Gene Pool GA with Mutation Alden H. Wright #

    E-print Network

    Wright, Alden H.

    recombination, selection, and mutation. We find and rigorously prove the stability of fixed points whiA Fixed Point Analysis of a Gene Pool GA with Mutation Alden H. Wright # Computer Science # is the string length. For linear fitness functions, we show that there is a single fixed point

  13. Mutations and a polymorphism in the factor VIII gene discovered by denaturing gradient gel electrophoresis.

    PubMed Central

    Kogan, S; Gitschier, J

    1990-01-01

    Hemophilia A results from mutations in the gene coding for coagulation factor VIII. We used denaturing gradient gel electrophoresis to screen for mutations in the region of the factor VIII gene coding for the first acidic domain. Amplification primers were designed employing the MELTMAP computer program to optimize the ability to detect mutations. Screening of amplified DNA from 228 unselected hemophilia A patients revealed two mutations and one polymorphism. Rescreening the same population by making heteroduplexes between amplified patient and control samples prior to electrophoresis revealed one additional mutation. The mutations include two missense and one 4-base-pair deletion, and each mutation was found in patients with severe hemophilia. The polymorphism, located adjacent to the adenine branch site in intron 7, is useful for genetic prediction in some cases where the Bcl I and Xba I polymorphisms are uninformative. These results suggest that DNA amplification and denaturing gradient gel electrophoresis should be an excellent strategy for identifying mutations and polymorphisms in defined regions of the factor VIII gene and other large genes. Images PMID:2107542

  14. Mutations and a polymorphism in the factor VIII gene discovered by denaturing gradient gel electrophoresis

    SciTech Connect

    Kogan, S.; Gitschier, J. (Univ. of California, San Francisco (USA))

    1990-03-01

    Hemophilia A results from mutations in the gene coding for coagulation factor VIII. The authors gradient gel electrophoresis to screen for mutations in the region of the factor VIII gene coding for the first acidic domain. Amplification primers were designed employing the MELTMAP computer program to optimize the ability to detect mutations. Screening of amplified DNA from 228 unselected hemophilia A patients revealed two mutations and one polymorphism. Rescreening the same population by making heteroduplexes between amplified patient and control samples prior to electrophoresis revealed one additional mutation. The mutations include two missense and one 4-base-pair deletion, and each mutation was found in patients with severe hemophilia. The polymorphism, located adjacent to the adenine branch site in intron 7, is useful for genetic prediction in some cases where the Bcl I and Xba I polymorphisms are uninformative. These results suggest that DNA amplification and denaturing gradient gel electrophoresis should be an excellent strategy for identifying mutations and polymorphisms in defined regions of the factor VIII gene and other large genes.

  15. Novel mutations in K13 propeller gene of artemisinin-resistant Plasmodium falciparum.

    PubMed

    Isozumi, Rie; Uemura, Haruki; Kimata, Isao; Ichinose, Yoshio; Logedi, John; Omar, Ahmeddin H; Kaneko, Akira

    2015-03-01

    We looked for mutations in the Plasmodium falciparum K13 propeller gene of an artemisinin-resistant parasite on islands in Lake Victoria, Kenya, where transmission in 2012-2013 was high. The 4 new types of nonsynonymous, and 5 of synonymous, mutations we detected among 539 samples analyzed provide clues to understanding artemisinin-resistant parasites. PMID:25695257

  16. Novel Mutations in K13 Propeller Gene of Artemisinin-Resistant Plasmodium falciparum

    PubMed Central

    Uemura, Haruki; Kimata, Isao; Ichinose, Yoshio; Logedi, John; Omar, Ahmeddin H.; Kaneko, Akira

    2015-01-01

    We looked for mutations in the Plasmodium falciparum K13 propeller gene of an artemisinin-resistant parasite on islands in Lake Victoria, Kenya, where transmission in 2012–2013 was high. The 4 new types of nonsynonymous, and 5 of synonymous, mutations we detected among 539 samples analyzed provide clues to understanding artemisinin-resistant parasites. PMID:25695257

  17. p53 gene mutations in human astrocytic brain tumors including pilocytic astrocytomas

    Microsoft Academic Search

    S Patt; H Gries; M Giraldo; J Cervos-Navarro; H Martin; W Jänisch; J Brockmoller

    1996-01-01

    Recent molecular biological studies have shown evidence for a distinct pathogenesis of pilocytic astrocytomas based on alterations other than mutations of the tumor suppressor gene p53. To prove these data, the authors screened a series of 42 astrocytic human brain tumors with a relatively high proportion (16.6%) of the pilocytic variant for the presence of p53 mutations, using the polymerase

  18. GPR143 Gene Mutations in Five Chinese Families with X-linked Congenital Nystagmus

    PubMed Central

    Han, Ruifang; Wang, Xiaojuan; Wang, Dongjie; Wang, Liming; Yuan, Zhongfang; Ying, Ming; Li, Ningdong

    2015-01-01

    The ocular albinism type I (OA1) is clinically characterized by impaired visual acuity, nystagmus, iris hypopigmentation with translucency, albinotic fundus, and macular hypoplasia together with normally pigmented skin and hair. However, it is easily misdiagnosed as congenital idiopathic nystagmus in some Chinese patients with OA1 caused by the G-protein coupled receptor 143 (GPR143) gene mutations. Mutations in the FERM domain–containing 7 (FRMD7) gene are responsible for the X-linked congenital idiopathic nystagmus. In this study, five Chinese families initially diagnosed as X-linked congenital nystagmus were recruited and patients underwent ophthalmological examinations. After direct sequencing of the FRMD7 and GPR143 genes, five mutations in GPR143 gene were detected in each of the five families, including a novel nonsense mutation of c.333G>A (p.W111X), two novel splicing mutations of c.360+1G>C and c.659-1G>A, a novel small deletion mutation of c.43_50dupGACGCAGC (p.L20PfsX25), and a previously reported missense mutation of c.703G>A (p.E235K). Optical coherence tomography (OCT) examination showed foveal hypoplasia in all the affected patients with nystagmus. Our study further expands the GPR143 mutation spectrum and contributes to the study of GPR143 molecular pathogenesis. Molecular diagnosis and optical coherence tomography (OCT) are two useful tools for differential diagnosis. PMID:26160353

  19. C19orf12 gene mutations in patients with neurodegeneration with brain iron accumulation.

    PubMed

    Gagliardi, Monica; Annesi, Grazia; Lesca, G; Broussolle, E; Iannello, Grazia; Vaiti, Vincenzo; Gambardella, Antonio; Quattrone, Aldo

    2015-07-01

    A novel subtype of Neurodegeneration with Brain Iron Accumulation (NBIA) recently has been described: mitochondrial membrane protein-associated neurodegeneration (MPAN), caused by mutations of c19orf12 gene. We present phenotypic data and results of screening of C19orf12 in five unrelated NBIA families. Our data led to identify novel pathogenic mutations in C19orf12. PMID:25962551

  20. Mutational analysis of EGFR and K-RAS genes in lung adenocarcinomas

    Microsoft Academic Search

    Young Hwa Soung; Jong Woo Lee; Su Young Kim; Si Hyung Seo; Won Sang Park; Suk Woo Nam; Sang Yong Song; Joung Ho Han; Cheol Keun Park; Jung Young Lee; Nam Jin Yoo; Sug Hyung Lee

    2005-01-01

    Both epidermal growth factor receptor (EGFR) and RAS gene mutations contribute to the development of non-small cell lung cancer (NSCLC). Because RAS is one of the downstream molecules in the EGFR signal transduction, the association between the somatic mutations of EGFR and RAS may be important in the pathogenesis of NSCLC . However, to date, such data are lacking. In

  1. Osteogenesis imperfecta without features of type V caused by a mutation in the IFITM5 gene

    PubMed Central

    Grover, Monica; Campeau, Philippe M.; Lietman, Caressa Dee; Lu, James T.; Gibbs, Richard A.; Schlesinger, Alan E.; Lee, Brendan H.

    2013-01-01

    Osteogenesis imperfecta (OI) is typically caused by mutations in type 1 collagen genes, but in recent years new recessive and dominant forms caused by mutations in a plethora of different genes have been characterized. OI type V is a dominant form caused by the recurrent (c.-14C>T) mutation in the 5?UTR of the IFITM5 gene. The mutation adds 5 residues to the N-terminus of the IFITM5 but the pathophysiology of the disease still remains to be elucidated. Typical clinical features present in the majority of OI type V patients include interosseous membrane calcification between the radius and ulna, and the tibia and fibula, radial head dislocation and significant hyperplastic callus formation at the site of fractures. We report a 5 year-old child with clinical features of OI type III or severe OI type IV (characteristic facies, grey sclerae, typical fractures) and absence of classical features of OI type V with a de novo recurrent IFITM5 mutation (c.-14C>T), now typical of OI type V. This highlights the variability of OI caused by IFITM5 mutations and suggests screening for mutations in this gene in most cases of OI where type 1 collagen mutations are absent. PMID:23674381

  2. APC gene: database of germline and somatic mutations in human tumors and cell lines.

    PubMed Central

    Laurent-Puig, P; Béroud, C; Soussi, T

    1998-01-01

    A database (http://perso.curie.fr/tsoussi ) is described, in which over 1000 mutations in the human APC gene of tumors (colon cancer predominantly) are compiled from the literature. It includes both molecular information about the mutations and clinical data about the patients. Software has been designed to analyse all this information in the database. PMID:9399850

  3. Mutational hot spot in the p53 gene in human hepatocellular carcinomas

    Microsoft Academic Search

    I. C. Hsu; R. A. Metcalf; T. Sun; J. A. Welsh; N. J. Wang; C. C. Harris

    1991-01-01

    HUMAN hepatocellular carcinomas (HCC) from patients in Qidong, an area of high incidence in China, in which both hepatitis B virus and aflatoxin B1 are risk factors1, were analysed for mutations in p53, a putative tumour-suppressor gene. Eight of the 16 HCC had a point mutation at the third base position of codon 249. The G --> T transversion in

  4. Detection of point mutation in the p53 gene using a peptide nucleic acid biosensor

    Microsoft Academic Search

    Joseph Wang; Gustavo Rivas; Xiaohua Cai; Manuel Chicharro; Concepcion Parrado; Narasaiah Dontha; Asher Begleiter; Michael Mowat; Emil Palecek; Peter E. Nielsen

    1997-01-01

    A 17-mer peptide nucleic acid (PNA) is used as the recognition layer of an electrochemical biosensor for detecting a specific mutation in the p53 gene. The performance of the PNA-derived biosensor is compared with that of its DNA counterpart. The significantly higher specificity of the PNA probe greatly improves the detection of a single point mutation, found in many types

  5. 1/9/09 2:14 PMResearchers Pinpoint Spontaneous Gene Mutations Responsible for 10 Percent of Non-Familial Cases of Schizophrenia Page 1 of 3http://cumc.columbia.edu/news/press_releases/gene-mutation-schizophrenia.html

    E-print Network

    -Familial Cases of Schizophrenia Page 1 of 3http://cumc.columbia.edu/news/press_releases/gene-mutation-schizophrenia Gene Mutations Responsible for 10 Percent of Non-Familial Cases of Schizophrenia NEW YORK (May 30, 2008) ­ Scans of the genome of patients with schizophrenia have revealed rare spontaneous copy number mutations

  6. Mutated genes and driver pathways involved in myelodysplastic syndromes-a transcriptome sequencing based approach.

    PubMed

    Liu, Liang; Wang, Hongyan; Wen, Jianguo; Tseng, Chih-En; Zu, Youli; Chang, Chung-Che; Zhou, Xiaobo

    2015-07-14

    Myelodysplastic syndromes are a heterogeneous group of clonal disorders of hematopoietic progenitors and have potentiality to progress into acute myelogenous leukemia. Development of effective treatments has been impeded by limited insight into pathogenic pathways. In this study, we applied RNA-seq technology to study the transcriptome on 20 MDS patients and 5 age-matched controls, and developed a pipeline for analyzing this data. After analysis, we identified 38 mutated genes contributing to MDS pathogenesis. 37 out of 38 genes have not been reported previously, suggesting our pipeline is critical for identifying novel mutated genes in MDS. The most recurrent mutation happened in gene IFRD1, which involved 30% of patient samples. Biological relationships among these mutated genes were mined using Ingenuity Pathway Analysis, and the results demonstrated that top two networks with highest scores were highly associated with cancer and hematological diseases, indicating that the mutated genes identified by our method were highly relevant to MDS. We then integrated the pathways in KEGG database and the identified mutated genes using our novel rule-based mutated driver pathway scoring approach for detecting mutated driver pathways. The results indicated two mutated driver pathways are important for the pathogenesis of MDS: pathway in cancer and in regulation of actin cytoskeleton. The latter, which likely contributes to the hallmark morphologic dysplasia observed in MDS, has not been reported, to the best of our knowledge. These results provide us new insights into the pathogenesis of MDS, which, in turn, may lead to novel therapeutics for this disease. PMID:26010722

  7. Two new mutations and three novel polymorphisms in the RB1 gene in Ecuadorian patients.

    PubMed

    Leone, Paola E; Vega, María Elena; Jervis, Paola; Pestańa, Angel; Alonso, Javier; Paz-y-Mińo, César

    2003-01-01

    RB1 is the gene responsible for retinoblastoma, the most common malignant intraocular tumor of infancy and early childhood. There are no reports about this gene in Ecuadorian populations, and only a few studies have been published in Latin America about this subject. There is a spectrum of more than 370 mutations described in the RB1 gene mutation database (http://www.d-lohmann.de/Rb/mutations.html), and alterations have been found in 25 of the 27 exons. During the exon-by-exon analysis of 31 tumor and blood samples from Ecuadorian patients, we found two new mutations and three novel polymorphisms. One of the polymorphisms is located in intron 26 where no alterations of the gene have been described previously. The polymorphisms were found in all of the patients' tumor samples, but not in normal population, suggesting there might be a relationship between these polymorphisms and the development of retinoblastoma in the Ecuadorian population. PMID:14625809

  8. Late breast metastasis from resected lung cancer diagnosed by epidermal growth factor receptor gene mutation

    Microsoft Academic Search

    Koichi Fukumoto; Noriyasu Usami; Toshiki Okasaka; Koji Kawaguchi; Takehiko Okagawa; Haruko Suzuki; Kohei Yokoi

    2011-01-01

    Primary lung cancer metastasizes to various organs, but rarely metastasizes to the breast. We report a case of breast metastasis from primary lung cancer, which was confirmed by the detection of the same epidermal growth factor receptor (EGFR) gene mutation.

  9. Sequence analysis of tyrosinase gene in ocular and oculocutaneous albinism patients: introducing three novel mutations

    PubMed Central

    Khordadpoor-Deilamani, Faravareh; Karimipoor, Morteza; Javadi, Gholamreza

    2015-01-01

    Purpose Albinism is a heterogeneous genetic disorder of melanin synthesis that results in hypopigmented eyes (in patients with ocular albinism) or hair, skin, and eyes (in individuals with oculocutaneous albinism). It is associated with decreased visual acuity, nystagmus, strabismus, and photophobia. The tyrosinase gene is known to be involved in both oculocutaneous albinism and autosomal recessive ocular albinism. In this study, we aimed to screen the mutations in the TYR gene in the nonsyndromic OCA and autosomal recessive ocular albinism patients from Iran. Methods The tyrosinase gene was examined in 23 unrelated patients with autosomal recessive ocular albinism or nonsyndromic OCA using DNA sequencing and bioinformatics analysis. Results TYR gene mutations were identi?ed in 14 (app. 60%) albinism patients. Conclusions We found 10 mutations, 3 of which were novel. No mutation was found in our ocular albinism patients, but one of them was heterozygous for the p.R402Q polymorphism.

  10. Quantification of the paternal allele bias for new germline mutations in the retinoblastoma gene

    SciTech Connect

    Morrow, J.F.; Rapaport, J.M.; Dryia, T.P. [Massachusetts Eye & Ear Infirmary, Boston, MA (United States)

    1994-09-01

    New germline mutations in the human retinoblastoma gene preferentially arise on a paternally derived allele. In nonhereditary retinoblastoma, the initial somatic mutation seems to have no such bias. The few previous reports of these phenomena included relatively few cases (less than a dozen new germline or initial somatic mutations), so that the magnitude of the paternal allele bias for new germline mutations is not known. Knowledge of the magnitude of the bias is valuable for genetic counseling, since, for example, patients with new germline mutations who reproduce transmit risk for retinoblastoma according to the risk that the transmitted allele has a germline mutation. We sought to quantitate the paternal allele bias and to determine whether paternal age is a factor possibly accounting for it. We studied 311 families with retinoblastoma (261 simplex, 50 multiplex) that underwent clinical genetic testing and 5 informative families recruited from earlier research. Using RFLPs and polymorphic microsatellites in the retinoblastoma gene, we could determine the parental origin of 45 new germline mutations and 44 probable initial somatic mutations. Thirty-seven of the 45 new germline mutations, or 82%, arose on a paternal allele while only 24 of the 44 initial somatic mutations (55%) did so. Increased paternal age does not appear to account for the excess of new paternal germline mutations, since the average age of fathers of children with new germline mutations (29.4 years, n=26, incomplete records on 11) was not significantly different from the average age of fathers of children with maternal germline mutations or somatic initial mutations (29.8 years, n=35, incomplete records on 17).

  11. Two new mutations in the MTATP6 gene associated with Leigh syndrome.

    PubMed

    Moslemi, A-R; Darin, N; Tulinius, M; Oldfors, A; Holme, E

    2005-10-01

    In this study we have analyzed the mtDNA encoded ATPase 6 and 8 genes ( MTATP6 and MTATP8) in two children with Leigh syndrome (LS) and reduced Mg (2+) ATPase activity in muscle mitochondria. In patient 1, with a mild and reversible phenotype, mutational analysis revealed a heteroplasmic T --> C mutation at nt position 9185 (T9185C) in the MTATP6. The mutation resulted in substitution of a highly conserved leucine to proline at codon 220. The proportion of the mutation was > 97 % in the patient's blood and muscle and 85 % in blood of his asymptomatic mother. Patient 2, with severe clinical phenotype and death at 2 years of age, exhibited a novel heteroplasmic T9191C missense mutation in the MTATP6, which converted a highly conserved leucine to a proline at position 222 of the polypeptide. The proportion of the mutation was 90 % in fibroblasts and 94 % muscle tissue. This mutation was absent in the patient's parents and sister suggesting that the mutation was de novo. Our findings expand the spectrum of mutations causing LS and emphasize the role of MTATP6 gene mutations in pathogenesis of LS. PMID:16217706

  12. X-linked recessive chondrodysplasia punctata: spectrum of arylsulfatase E gene mutations and expanded clinical variability.

    PubMed

    Brunetti-Pierri, Nicola; Andreucci, Maria Vittoria; Tuzzi, Rosaria; Vega, Giovanna Roberta; Gray, George; McKeown, Carol; Ballabio, Andrea; Andria, Generoso; Meroni, Germana; Parenti, Giancarlo

    2003-03-01

    X-linked chondrodysplasia punctata (CDPX1), due to mutations of the arylsulfatase E (ARSE) gene, is a congenital disorder characterized by abnormalities in cartilage and bone development. We performed mutational analysis of the ARSE gene in a series of 16 male patients, and we found mutations in 12 subjects. Clinical variability was observed among the patients, including severe presentations with early lethality in one of them, and symptoms such as cataract and respiratory distress. This indicates that the clinical spectrum of CDPX1, commonly considered a relatively mild form of chondrodysplasia punctata, is wider than previously reported. Different types of mutations were found among the patients examined. Three missense mutations (I80N, T481M, P578S) were expressed in Cos7 cells to study the effects on arylsulfatase E catalytic activity. These mutations caused impaired enzymatic activity suggesting that they are responsible for the disease. Two nonsense mutations, W581X in four patients and R540X in one, were found. One patient showed an insertion (T616ins). In three patients we found deletions of the ARSE gene: in one the deletion involved only the 3' end of the gene, while in two the ARSE gene was completely deleted. PMID:12567415

  13. Distinctive gene expression of human lung adenocarcinomas carrying LKB1 mutations

    Microsoft Academic Search

    Paloma Fernandez; Julian Carretero; Pedro P Medina; Ana I Jimenez; Sandra Rodriguez-Perales; Maria F Paz; Juan C Cigudosa; Manel Esteller; Luis Lombardia; Manuel Morente; Lydia Sanchez-Verde; Teresa Sotelo; Montserrat Sanchez-Cespedes

    2004-01-01

    LKB1, a tumor-suppressor gene that codifies for a serine\\/threonine kinase, is mutated in the germ-line of patients affected with the Peutz–Jeghers syndrome (PJS), which have an increased incidence of several cancers including gastrointestinal, pancreatic and lung carcinomas. Regarding tumors arising in non-PJS patients, we recently observed that at least one-third of lung adenocarcinomas (LADs) harbor somatic LKB1 gene mutations, supporting

  14. Muscular dystrophy with marked Dysferlin deficiency is consistently caused by primary dysferlin gene mutations

    Microsoft Academic Search

    Mafalda Cacciottolo; Gelsomina Numitone; Stefania Aurino; Imma Rosaria Caserta; Marina Fanin; Luisa Politano; Carlo Minetti; Enzo Ricci; Giulio Piluso; Corrado Angelini; Vincenzo Nigro

    2011-01-01

    Dysferlin is a 237-kDa transmembrane protein involved in calcium-mediated sarcolemma resealing. Dysferlin gene mutations cause limb-girdle muscular dystrophy (LGMD) 2B, Miyoshi myopathy (MM) and distal myopathy of the anterior tibialis. Considering that a secondary Dysferlin reduction has also been described in other myopathies, our original goal was to identify cases with a Dysferlin deficiency without dysferlin gene mutations. The dysferlin

  15. Mosaicism of a Thyroid Hormone Receptor Gene Mutation in Resistance to Thyroid Hormone

    Microsoft Academic Search

    Sunee Mamanasiri; Sena Yesil; Alexandra M. Dumitrescu; Xiao-Hui Liao; Tevfik Demir; Roy E. Weiss; Samuel Refetoff

    Context: Heterozygous mutations in thyroid hormone receptor- (TR) gene are the cause of resistance to thyroid hormone (RTH) in more than 85% of families having the syndrome. In 23% of the fam- ilies,TRgenemutationsoccurdenovo.Ofthe141familieswithRTH investigated by us, 21 (15%) had no TR gene mutations detectable by sequencing from genomic DNA (gDNA) or cDNA (non-TR RTH). Objective: The objective of the study

  16. Whole exome sequencing reveals concomitant mutations of multiple FA genes in individual Fanconi anemia patients

    PubMed Central

    2014-01-01

    Background Fanconi anemia (FA) is a rare inherited genetic syndrome with highly variable clinical manifestations. Fifteen genetic subtypes of FA have been identified. Traditional complementation tests for grouping studies have been used generally in FA patients and in stepwise methods to identify the FA type, which can result in incomplete genetic information from FA patients. Methods We diagnosed five pediatric patients with FA based on clinical manifestations, and we performed exome sequencing of peripheral blood specimens from these patients and their family members. The related sequencing data were then analyzed by bioinformatics, and the FANC gene mutations identified by exome sequencing were confirmed by PCR re-sequencing. Results Homozygous and compound heterozygous mutations of FANC genes were identified in all of the patients. The FA subtypes of the patients included FANCA, FANCM and FANCD2. Interestingly, four FA patients harbored multiple mutations in at least two FA genes, and some of these mutations have not been previously reported. These patients’ clinical manifestations were vastly different from each other, as were their treatment responses to androstanazol and prednisone. This finding suggests that heterozygous mutation(s) in FA genes could also have diverse biological and/or pathophysiological effects on FA patients or FA gene carriers. Interestingly, we were not able to identify de novo mutations in the genes implicated in DNA repair pathways when the sequencing data of patients were compared with those of their parents. Conclusions Our results indicate that Chinese FA patients and carriers might have higher and more complex mutation rates in FANC genes than have been conventionally recognized. Testing of the fifteen FANC genes in FA patients and their family members should be a regular clinical practice to determine the optimal care for the individual patient, to counsel the family and to obtain a better understanding of FA pathophysiology. PMID:24885126

  17. Left Ventricular Noncompaction in a Family with Lamin A/C Gene Mutation

    PubMed Central

    Towbin, Jeffrey A.; Jefferies, John L.

    2015-01-01

    Left ventricular noncompaction is a rare type of cardiomyopathy, the genetics of which are poorly understood to date. Lamin A/C gene mutations have been associated with dilated cardiomyopathy and diseases of the conduction system, but rarely in left ventricular noncompaction cardiomyopathy. This report describes the cases of 4 family members with a lamin A/C gene mutation, 3 of whom had phenotypic expression of left ventricular noncompaction. PMID:25873806

  18. Repeated evolution of chimeric fusion genes in the ?-globin gene family of laurasiatherian mammals.

    PubMed

    Gaudry, Michael J; Storz, Jay F; Butts, Gary Tyler; Campbell, Kevin L; Hoffmann, Federico G

    2014-05-01

    The evolutionary fate of chimeric fusion genes may be strongly influenced by their recombinational mode of origin and the nature of functional divergence between the parental genes. In the ?-globin gene family of placental mammals, the two postnatally expressed ?- and ?-globin genes (HBD and HBB, respectively) have a propensity for recombinational exchange via gene conversion and unequal crossing-over. In the latter case, there are good reasons to expect differences in retention rates for the reciprocal HBB/HBD and HBD/HBB fusion genes due to thalassemia pathologies associated with the HBD/HBB "Lepore" deletion mutant in humans. Here, we report a comparative genomic analysis of the mammalian ?-globin gene cluster, which revealed that chimeric HBB/HBD fusion genes originated independently in four separate lineages of laurasiatherian mammals: Eulipotyphlans (shrews, moles, and hedgehogs), carnivores, microchiropteran bats, and cetaceans. In cases where an independently derived "anti-Lepore" duplication mutant has become fixed, the parental HBD and/or HBB genes have typically been inactivated or deleted, so that the newly created HBB/HBD fusion gene is primarily responsible for synthesizing the ?-type subunits of adult and fetal hemoglobin (Hb). Contrary to conventional wisdom that the HBD gene is a vestigial relict that is typically inactivated or expressed at negligible levels, we show that HBD-like genes often encode a substantial fraction (20-100%) of ?-chain Hbs in laurasiatherian taxa. Our results indicate that the ascendancy or resuscitation of genes with HBD-like coding sequence requires the secondary acquisition of HBB-like promoter sequence via unequal crossing-over or interparalog gene conversion. PMID:24814285

  19. Repeated Evolution of Chimeric Fusion Genes in the ?-Globin Gene Family of Laurasiatherian Mammals

    PubMed Central

    Gaudry, Michael J.; Storz, Jay F.; Butts, Gary Tyler; Campbell, Kevin L.; Hoffmann, Federico G.

    2014-01-01

    The evolutionary fate of chimeric fusion genes may be strongly influenced by their recombinational mode of origin and the nature of functional divergence between the parental genes. In the ?-globin gene family of placental mammals, the two postnatally expressed ?- and ?-globin genes (HBD and HBB, respectively) have a propensity for recombinational exchange via gene conversion and unequal crossing-over. In the latter case, there are good reasons to expect differences in retention rates for the reciprocal HBB/HBD and HBD/HBB fusion genes due to thalassemia pathologies associated with the HBD/HBB “Lepore” deletion mutant in humans. Here, we report a comparative genomic analysis of the mammalian ?-globin gene cluster, which revealed that chimeric HBB/HBD fusion genes originated independently in four separate lineages of laurasiatherian mammals: Eulipotyphlans (shrews, moles, and hedgehogs), carnivores, microchiropteran bats, and cetaceans. In cases where an independently derived “anti-Lepore” duplication mutant has become fixed, the parental HBD and/or HBB genes have typically been inactivated or deleted, so that the newly created HBB/HBD fusion gene is primarily responsible for synthesizing the ?-type subunits of adult and fetal hemoglobin (Hb). Contrary to conventional wisdom that the HBD gene is a vestigial relict that is typically inactivated or expressed at negligible levels, we show that HBD-like genes often encode a substantial fraction (20–100%) of ?-chain Hbs in laurasiatherian taxa. Our results indicate that the ascendancy or resuscitation of genes with HBD-like coding sequence requires the secondary acquisition of HBB-like promoter sequence via unequal crossing-over or interparalog gene conversion. PMID:24814285

  20. Mutational Analysis of the TYR and OCA2 Genes in Four Chinese Families with Oculocutaneous Albinism

    PubMed Central

    Chen, Mengping; Fan, Ning; Yang, Jie; Liu, Lu; Wang, Ying; Liu, Xuyang

    2015-01-01

    Background Oculocutaneous albinism (OCA) is an autosomal recessive disorder. The most common type OCA1 and OCA2 are caused by homozygous or compound heterozygous mutations in the tyrosinase gene (TYR) and OCA2 gene, respectively. Objective The purpose of this study was to evaluate the molecular basis of oculocutaneous albinism in four Chinese families. Patients and Methods Four non-consanguineous OCA families were included in the study. The TYR and OCA2 genes of all individuals were amplified by polymerase chain reaction (PCR), sequenced and compared with a reference database. Results Four patients with a diagnosis of oculocutaneous albinism, presented with milky skin, white or light brown hair and nystagmus. Genetic analyses demonstrated that patient A was compound heterozygous for c.1037-7T.A, c.1037-10_11delTT and c.1114delG mutations in the TYR gene; patient B was heterozygous for c.593C>T and c.1426A>G mutations in the OCA2 gene, patients C and D were compound heterozygous mutations in the TYR gene (c.549_550delGT and c.896G>A, c.832C>T and c.985T>C, respectively). The heterozygous c.549_550delGT and c.1114delG alleles in the TYR gene were two novel mutations. Interestingly, heterozygous members in these pedigrees who carried c.1114delG mutations in the TYR gene or c.1426A>G mutations in the OCA2 gene presented with blond or brown hair and pale skin, but no ocular disorders when they were born; the skin of these patients accumulated pigment over time and with sun exposure. Conclusion This study expands the mutation spectrum of oculocutaneous albinism. It is the first time, to the best of our knowledge, to report that c.549_550delGT and c.1114delG mutations in the TYR gene were associated with OCA. The two mutations (c.1114delG in the TYR gene and c.1426A>G in the OCA2 gene) may be responsible for partial clinical manifestations of OCA. PMID:25919014

  1. Immunohistochemical NF1 analysis does not predict NF1 gene mutation status in pheochromocytoma.

    PubMed

    Stenman, Adam; Svahn, Fredrika; Welander, Jenny; Gustavson, Boel; Söderkvist, Peter; Gimm, Oliver; Juhlin, C Christofer

    2015-03-01

    Pheochromocytomas (PCCs) are tumors originating from the adrenal medulla displaying a diverse genetic background. While most PCCs are sporadic, about 40 % of the tumors have been associated with constitutional mutations in one of at least 14 known susceptibility genes. As 25 % of sporadic PCCs harbor somatic neurofibromin 1 gene (NF1) mutations, NF1 has been established as the most recurrently mutated gene in PCCs. To be able to pinpoint NF1-related pheochromocytoma (PCC) disease in clinical practice could facilitate the detection of familial cases, but the large size of the NF1 gene makes standard DNA sequencing methods cumbersome. The aim of this study was to examine whether mutations in the NF1 gene could be predicted by immunohistochemistry as a method to identify cases for further genetic characterization. Sixty-seven PCCs obtained from 67 unselected patients for which the somatic and constitutional mutational status of NF1 was known (49 NF1 wild type, 18 NF1 mutated) were investigated for NF1 protein immunoreactivity, and the results were correlated to clinical and genetic data. NF1 immunoreactivity was absent in the majority of the PCCs (44/67; 66 %), including 13 out of 18 cases (72 %) with a somatic or constitutional NF1 mutation. However, only a minority of the NF1 wild-type PCCs (18/49; 37 %) displayed retained NF1 immunoreactivity, thereby diminishing the specificity of the method. We conclude that NF1 immunohistochemistry alone is not a sufficient method to distinguish between NF1-mutated and non-mutated PCCs. In the clinical context, genetic screening therefore remains the most reliable tool to detect NF1-mutated PCCs. PMID:25403449

  2. Mutations in genes involved in nonsense mediated decay ameliorate the phenotype of sel-12 mutants with amber stop mutations in Caenorhabditis elegans

    Microsoft Academic Search

    Alisson M Gontijo; Sylvie Aubert; Ingele Roelens; Bernard Lakowski

    2009-01-01

    BACKGROUND: Presenilin proteins are part of a complex of proteins that can cleave many type I transmembrane proteins, including Notch Receptors and the Amyloid Precursor Protein, in the middle of the transmembrane domain. Dominant mutations in the human presenilin genes PS1 and PS2 lead to Familial Alzheimer's disease. Mutations in the Caenorhabditis elegans sel-12 presenilin gene cause a highly penetrant

  3. A COL4A3 gene mutation and post-transplant anti-?3(IV) collagen alloantibodies in Alport syndrome

    Microsoft Academic Search

    Raghu Kalluri; L. P. van den Heuvel; H. J. M. Smeets; C. H. Schroder; H. H. Lemmink; Ariel Boutaud; Eric G Neilson; Billy G Hudson

    1995-01-01

    A COL4A3 gene mutation and post-transplant anti-?3(IV) collagen alloantibodies in Alport syndrome. The X-linked Alport syndrome is associated with mutations and deletions in COL4A5 gene, one of six genes which constitute the ?-chains of type IV collagen in basement membranes. The autosomal recessive form of Alport syndrome is characterized by mutations and deletions in the COL4A3 and COL4A4 genes. A

  4. Overexpression of genes involved in miRNA biogenesis in medullary thyroid carcinomas with RET mutation.

    PubMed

    Puppin, Cinzia; Durante, Cosimo; Sponziello, Marialuisa; Verrienti, Antonella; Pecce, Valeria; Lavarone, Elisa; Baldan, Federica; Campese, Antonio Francesco; Boichard, Amelie; Lacroix, Ludovic; Russo, Diego; Filetti, Sebastiano; Damante, Giuseppe

    2014-11-01

    Abnormal expression of non-coding micro RNA (miRNA) has been described in medullary thyroid carcinoma (MTC). Expression of genes encoding factors involved in miRNA biogenesis results often deregulated in human cancer and correlates with aggressive clinical behavior. In this study, expression of four genes involved in miRNA biogenesis (DICER, DROSHA, DCGR8, and XPO5) was investigated in 54 specimens of MTC. Among them, 33 and 13 harbored RET and RAS mutations, respectively. DICER, DGCR8, and XPO5 mRNA levels were significantly overexpressed in MTC harboring RET mutations, in particular, in the presence of RET634 mutation. When MTCs with RET and RAS mutations were compared, only DGCR8 displayed a significant difference, while MTCs with RAS mutations did not show significant differences with respect to non-mutated tumors. We then attempted to correlate expression of miRNA biogenesis genes with tumor aggressiveness. According to the TNM status, MTCs were divided in two groups and compared (N0 M0 vs. N1 and/or M1): for all four genes no significant difference was detected. Cell line experiments, in which expression of a RET mutation is silenced by siRNA, suggest the existence of a causal relationship between RET mutation and overexpression of DICER, DGCR8, and XPO5 genes. These findings demonstrate that RET- but not RAS-driven tumorigenic alterations include abnormalities in the expression of some important genes involved in miRNA biogenesis that could represent new potential markers for targeted therapies in the treatment of RET-mutated MTCs aimed to restore the normal miRNA expression profile. PMID:24569963

  5. Three novel PHEX gene mutations in four Chinese families with X-linked dominant hypophosphatemic rickets

    SciTech Connect

    Kang, Qing-lin [Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233 (China)] [Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233 (China); Xu, Jia [Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233 (China) [Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233 (China); Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233 (China); Medical College of Soochow University, Suzhou, Jiangsu province 215000 (China); Zhang, Zeng [Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233 (China) [Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233 (China); Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233 (China); He, Jin-wei [Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233 (China)] [Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233 (China); Lu, Lian-song [Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233 (China) [Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233 (China); Medical College of Soochow University, Suzhou, Jiangsu province 215000 (China); Fu, Wen-zhen [Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233 (China)] [Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233 (China); Zhang, Zhen-lin, E-mail: zzl2002@medmail.com.cn [Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233 (China)] [Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233 (China)

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer In our study, all of the patients were of Han Chinese ethnicity, which were rarely reported. Black-Right-Pointing-Pointer We identified three novel PHEX gene mutations in four unrelated families with XLH. Black-Right-Pointing-Pointer We found that the relationship between the phenotype and genotype of the PHEX gene was not invariant. Black-Right-Pointing-Pointer We found that two PHEX gene sites, p.534 and p.731, were conserved. -- Abstract: Background: X-linked hypophosphatemia (XLH), the most common form of inherited rickets, is a dominant disorder that is characterized by renal phosphate wasting with hypophosphatemia, abnormal bone mineralization, short stature, and rachitic manifestations. The related gene with inactivating mutations associated with XLH has been identified as PHEX, which is a phosphate-regulating gene with homologies to endopeptidases on the X chromosome. In this study, a variety of PHEX mutations were identified in four Chinese families with XLH. Methods: We investigated four unrelated Chinese families who exhibited typical features of XLH by using PCR to analyze mutations that were then sequenced. The laboratory and radiological investigations were conducted simultaneously. Results: Three novel mutations were found in these four families: one frameshift mutation, c.2033dupT in exon 20, resulting in p.T679H; one nonsense mutation, c.1294A > T in exon 11, resulting in p.K432X; and one missense mutation, c.2192T > C in exon 22, resulting in p.F731S. Conclusions: We found that the PHEX gene mutations were responsible for XLH in these Chinese families. Our findings are useful for understanding the genetic basis of Chinese patients with XLH.

  6. Point Mutations Effects on Charge Transport Properties of the Tumor-Suppressor Gene p53

    E-print Network

    Chi-Tin Shih; Stephan Roche; Rudolf A. Römer

    2007-08-23

    We report on a theoretical study of point mutations effects on charge transfer properties in the DNA sequence of the tumor-suppressor p53 gene. On the basis of effective single-strand or double-strand tight-binding models which simulate hole propagation along the DNA, a statistical analysis of charge transmission modulations associated with all possible point mutations is performed. We find that in contrast to non-cancerous mutations, mutation hotspots tend to result in significantly weaker {\\em changes of transmission properties}. This suggests that charge transport could play a significant role for DNA-repairing deficiency yielding carcinogenesis.

  7. Krüppel-like factor 1: hematologic phenotypes associated with KLF1 gene mutations.

    PubMed

    Waye, J S; Eng, B

    2015-05-01

    Krüppel-like factor 1 (KLF1) is a pleiotropic erythroid transcription factor that is essential for hematopoiesis. KLF1 mutations have been associated with severe hematologic disorders, including congenital dyserythropoietic anemia type IV (CDAN4) due to a dominant-negative missense mutation (c.973G>A, p.Glu325Lys) and transfusion-dependent hemolytic anemia in compound heterozygotes for loss-of-function mutations. In addition, several benign hematologic conditions are due to KLF1 haploinsufficiency. Herein, we review the genotype-phenotype relationship associated with KLF1 mutations and discuss the utility of KLF1 gene testing in laboratory hematology. PMID:25976964

  8. Rapid parallel mutation scanning of gene fragments using a microelectronic protein–DNA chip format

    PubMed Central

    Behrensdorf, Heike A.; Pignot, Marc; Windhab, Norbert; Kappel, Andreas

    2002-01-01

    We have developed a method for the de novo discovery of genetic variations, including single nucleotide polymorphisms and mutations, on microelectronic chip devices. The method combines the features of electronically controlled DNA hybridisation on open-format microarrays, with mutation detection by a fluorescence-labelled mismatch- binding protein. Electronic addressing of DNA strands to distinct test sites of the chip allows parallel analysis of several individuals, as demonstrated for mutations in different exons of the p53 gene. This microelectronic chip-based mutation discovery assay may substitute for time-consuming sequencing studies and will complement existing technologies in genomic research. PMID:12136112

  9. Mouse choroideremia gene mutation causes photoreceptor cell degeneration and is not transmitted through the female germline

    Microsoft Academic Search

    José A. J. M. van den Hurk; Wiljan Hendriks; Dorien J. R. van de Pol; Frank Oerlemans; Gesine Jaissle; Klaus Rüther; Konrad Kohler; Jens Hartmann; Eberhart Zrenner; J. van Bokhoven; Bé Wieringa; Hans-Hilger Ropers; Frans P. M. Cremers

    1997-01-01

    Choroideremia (CHM) is an X-linked progressive eye disorder which results from defects in the human Rab escort protein-1 (REP-1) gene. A gene targeting approach was used to disrupt the mouse chm\\/rep-1 gene. Chimeric males transmitted the mutated gene to their carrier daughters but, surprisingly, these heterozygous females had neither affected male nor carrier female offspring. The targeted rep-1 allele was

  10. Mutation screening of the PTEN gene in patients with autism spectrum disorders and macrocephaly.

    PubMed

    Buxbaum, Joseph D; Cai, Guiqing; Chaste, Pauline; Nygren, Gudrun; Goldsmith, Juliet; Reichert, Jennifer; Anckarsäter, Henrik; Rastam, Maria; Smith, Christopher J; Silverman, Jeremy M; Hollander, Eric; Leboyer, Marion; Gillberg, Christopher; Verloes, Alain; Betancur, Catalina

    2007-06-01

    Mutations in the PTEN gene are associated with a broad spectrum of disorders, including Cowden syndrome (CS), Bannayan-Riley-Ruvalcaba syndrome, Proteus syndrome, and Lhermitte-Duclos disease. In addition, PTEN mutations have been described in a few patients with autism spectrum disorders (ASDs) and macrocephaly. In this study, we screened the PTEN gene for mutations and deletions in 88 patients with ASDs and macrocephaly (defined as >or=2 SD above the mean). Mutation analysis was performed by direct sequencing of all exons and flanking regions, as well as the promoter region. Dosage analysis of PTEN was carried out using multiplex ligation-dependent probe amplification (MLPA). No partial or whole gene deletions were observed. We identified a de novo missense mutation (D326N) in a highly conserved amino acid in a 5-year-old boy with autism, mental retardation, language delay, extreme macrocephaly (+9.6 SD) and polydactyly of both feet. Polydactyly has previously been described in two patients with Lhermitte-Duclos disease and CS and is thus likely to be a rare sign of PTEN mutations. Our findings suggest that PTEN mutations are a relatively infrequent cause of ASDs with macrocephaly. Screening of PTEN mutations is warranted in patients with autism and pronounced macrocephaly, even in the absence of other features of PTEN-related tumor syndromes. PMID:17427195

  11. Inferring the temporal order of cancer gene mutations in individual tumor samples.

    PubMed

    Guo, Jun; Guo, Hanliang; Wang, Zhanyi

    2014-01-01

    The temporal order of cancer gene mutations in tumors is essential for understanding and treating the disease. Existing methods are unable to infer the order of mutations that are identified at the same time in individual tumor samples, leaving the heterogeneity of the order unknown. Here, we show that through a complex network-based approach, which is based on the newly defined statistic -carcinogenesis information conductivity (CIC), the temporal order in individual samples can be effectively inferred. The results suggest that tumor-suppressor genes might more frequently initiate the order of mutations than oncogenes, and every type of cancer might have its own unique order of mutations. The initial mutations appear to be dedicated to acquiring the function of evading apoptosis, and some order constraints might reflect potential regularities. Our approach is completely data-driven without any parameter settings and can be expected to become more effective as more data will become available. PMID:24586626

  12. RAS gene mutations in acute and chronic myelocytic leukemias, chronic myeloproliferative disorders, and myelodysplastic syndromes

    SciTech Connect

    Janssen, J.W.G.; Steenvoorden, A.C.M.; Lyons, J.; Anger, B.; Boehlke, J.U.; Bos, J.L.; Seliger, H.; Bartram, C.R.

    1987-12-01

    The authors report on investigations aimed at detecting mutated RAS genes in a variety of preleukemic disorders and leukemias of myeloid origin. DNA transfection analyses (tumorigenicity assay) and hybridization to mutation-specific oligonucleotide probes established NRAS mutations in codon 12 or 61 of 4/9 acute myelocytic leukemias (AML) and three AML lines. Leukemic cells of another AML patient showed HRAS gene activation. By using a rapid and sensitive dot-blot screening procedure based on the combination of in vitro amplification of RAS-specific sequences and oligonucleotide hybridization they additionally screened 15 myelodysplastic syndromes, 26 Philadelphia chromosome-positive chronic myelocytic leukemias in chronic or acute phase, and 19 other chronic myeloproliferative disorders. A mutation within NRAS codon 12 could thus be demonstrated in a patient with idiopathic myelofibrosis and in another with chronic myelomonocytic leukemia. Moreover, mutated NRAS sequences were detected in lymphocytes, in granulocytes, as well as in monocytes/macrophages of the latter case.

  13. Novel mutations of ATP2A2 gene in Japanese patients of Darier's disease.

    PubMed

    Takahashi, H; Atsuta, Y; Sato, K; Ishida-Yamamoto, A; Suzuki, H; Iizuka, H

    2001-07-01

    Darier's disease (DD) is a rare, dominantly inherited skin disorder with abnormal keratinization and acantholysis. Recently, mutations of ATP2A2 encoding the sarco/endoplasmic reticulum Ca(2+)-ATPase type 2 isoform (SERCA2) have been reported in Caucasian DD families. In the present study, we examined the ATP2A2 gene mutations of three sporadic (AS1,AS3,AS4) and one familial (AS2) Japanese DD patients. Sequence analysis revealed that the patients had novel mutations, one nonsense mutation (AS1 (C613X)) and three single base changes leading to amino acid substitutions (AS2 (L321F), AS3 (I274V), and AS4 (M719I)). These results demonstrate that distinct ATP2A2 gene mutations are present in Japanese DD patients. PMID:11390201

  14. Characterization of six mutations in Exon 37 of neurofibromatosis type 1 gene

    SciTech Connect

    Upadhyaya, M.; Osborn, M.; Maynard, J.; Harper, P. [Institute of Medical Genetics, Cardiff, Wales (United Kingdom)] [Institute of Medical Genetics, Cardiff, Wales (United Kingdom)

    1996-07-26

    Neurofibromatosis type 1 (NF1) is one of the most common inherited disorders, with an incidence of 1 in 3,000. We screened a total of 320 unrelated NF1 patients for mutations in exon 37 of the NF1 gene. Six independent mutations were identified, of which three are novel, and these include a recurrent nonsense mutation identified in 2 unrelated patients at codon 2281 (G2281X), a 1-bp insertion (6791 ins A) resulting in a change of TAG (tyrosine) to a TAA (stop codon), and a 3-bp deletion (6839 del TAC) which generated a frameshift. Another recurrent nonsense mutation, Y2264X, which was detected in 2 unrelated patients in this study, was also previously reported in 2 NF1 individuals. All the mutations were identified within a contiguous 49-bp sequence. Further studies are warranted to support the notion that this region of the gene contains highly mutable sequences. 17 refs., 2 figs., 1 tab.

  15. AID?Initiated Purposeful Mutations in Immunoglobulin Genes

    Microsoft Academic Search

    Myron F. Goodman; Matthew D. Scharff; Floyd E. Romesberg

    2007-01-01

    Exposure brings risk to all living organisms. Using a remarkably effective strategy, higher vertebrates mitigate risk by mounting a complex and sophisticated immune response to counter the potentially toxic invasion by a virtually limitless army of chemical and biological antagonists. Mutations are almost always deleterious, but in the case of antibody diversification there are mutations occurring at hugely elevated rates

  16. A Mutation in the Mitochondrial Fission Gene Dnm1l Leads to Cardiomyopathy

    PubMed Central

    Ashrafian, Houman; Docherty, Louise; Leo, Vincenzo; Towlson, Christopher; Neilan, Monica; Steeples, Violetta; Lygate, Craig A.; Hough, Tertius; Townsend, Stuart; Williams, Debbie; Wells, Sara; Norris, Dominic; Glyn-Jones, Sarah; Land, John; Barbaric, Ivana; Lalanne, Zuzanne; Denny, Paul; Szumska, Dorota; Bhattacharya, Shoumo; Griffin, Julian L.; Hargreaves, Iain; Fernandez-Fuentes, Narcis; Cheeseman, Michael; Watkins, Hugh; Dear, T. Neil

    2010-01-01

    Mutations in a number of genes have been linked to inherited dilated cardiomyopathy (DCM). However, such mutations account for only a small proportion of the clinical cases emphasising the need for alternative discovery approaches to uncovering novel pathogenic mutations in hitherto unidentified pathways. Accordingly, as part of a large-scale N-ethyl-N-nitrosourea mutagenesis screen, we identified a mouse mutant, Python, which develops DCM. We demonstrate that the Python phenotype is attributable to a dominant fully penetrant mutation in the dynamin-1-like (Dnm1l) gene, which has been shown to be critical for mitochondrial fission. The C452F mutation is in a highly conserved region of the M domain of Dnm1l that alters protein interactions in a yeast two-hybrid system, suggesting that the mutation might alter intramolecular interactions within the Dnm1l monomer. Heterozygous Python fibroblasts exhibit abnormal mitochondria and peroxisomes. Homozygosity for the mutation results in the death of embryos midway though gestation. Heterozygous Python hearts show reduced levels of mitochondria enzyme complexes and suffer from cardiac ATP depletion. The resulting energy deficiency may contribute to cardiomyopathy. This is the first demonstration that a defect in a gene involved in mitochondrial remodelling can result in cardiomyopathy, showing that the function of this gene is needed for the maintenance of normal cellular function in a relatively tissue-specific manner. This disease model attests to the importance of mitochondrial remodelling in the heart; similar defects might underlie human heart muscle disease. PMID:20585624

  17. De novo mutations from sporadic schizophrenia cases highlight important signaling genes in an independent sample.

    PubMed

    Kranz, Thorsten M; Harroch, Sheila; Manor, Orly; Lichtenberg, Pesach; Friedlander, Yechiel; Seandel, Marco; Harkavy-Friedman, Jill; Walsh-Messinger, Julie; Dolgalev, Igor; Heguy, Adriana; Chao, Moses V; Malaspina, Dolores

    2015-08-01

    Schizophrenia is a debilitating syndrome with high heritability. Genomic studies reveal more than a hundred genetic variants, largely nonspecific and of small effect size, and not accounting for its high heritability. De novo mutations are one mechanism whereby disease related alleles may be introduced into the population, although these have not been leveraged to explore the disease in general samples. This paper describes a framework to find high impact genes for schizophrenia. This study consists of two different datasets. First, whole exome sequencing was conducted to identify disruptive de novo mutations in 14 complete parent-offspring trios with sporadic schizophrenia from Jerusalem, which identified 5 sporadic cases with de novo gene mutations in 5 different genes (PTPRG, TGM5, SLC39A13, BTK, CDKN3). Next, targeted exome capture of these genes was conducted in 48 well-characterized, unrelated, ethnically diverse schizophrenia cases, recruited and characterized by the same research team in New York (NY sample), which demonstrated extremely rare and potentially damaging variants in three of the five genes (MAF<0.01) in 12/48 cases (25%); including PTPRG (5 cases), SCL39A13 (4 cases) and TGM5 (4 cases), a higher number than usually identified by whole exome sequencing. Cases differed in cognition and illness features based on which mutation-enriched gene they carried. Functional de novo mutations in protein-interaction domains in sporadic schizophrenia can illuminate risk genes that increase the propensity to develop schizophrenia across ethnicities. PMID:26091878

  18. Mutation in the CYP21B gene (Ile-172. -->. Asn) causes steroid 21-hydroxylase deficiency

    SciTech Connect

    Amor, M.; Parker, K.L.; Globerman, H.; New, M.I.; White, P.C.

    1988-03-01

    Steroid 21-hydroxylase deficiency is the most common cause of congenital adrenal hyperplasia. It results from a deficiency in a specific cytochrome P450, P450c21 (P450XXIA). The gene encoding this protein (CYP21B) and a closely linked pseudogene (CYP21A) are located in the HLA complex on chromosome 6p. Many mutant alleles are associated with deletions of CYP21B; the authors report the cloning and characterization of a nondeleted mutant CYP21B gene. This mutant gene is expressed on transfection into mouse Y1 adrenal cells, producing mRNA levels similar to those seen after transfection of the normal CYP21B gene. In codon 172 of the mutant gene, the normal codon ATC, encoding isoleucine, has been changed to AAC, encoding asparagine. This mutation is normally present in the CYP21A pseudogene, so that it may have been transferred to the mutant CYP21B gene by gene conversion. Hybridization of oligonucleotide probes corresponding to this and two other mutations normally present in CYP21A demonstrated that 4 out of 20 patients carried the codon 172 mutation; in one of these patients, the mutation was present as part of a larger gene conversion involving at least exons 3-6. Gene conversion may be a frequent cause of 21-hydroxylase deficiency.

  19. Exome Analysis Reveals Differentially Mutated Gene Signatures of Stage, Grade and Subtype in Breast Cancers

    PubMed Central

    Li, You; Wang, Xiaosheng; Vural, Suleyman; Mishra, Nitish K.; Cowan, Kenneth H.; Guda, Chittibabu

    2015-01-01

    Breast cancers exhibit highly heterogeneous molecular profiles. Although gene expression profiles have been used to predict the risks and prognostic outcomes of breast cancers, the high variability of gene expression limits its clinical application. In contrast, genetic mutation profiles would be more advantageous than gene expression profiles because genetic mutations can be stably detected and the mutational heterogeneity widely exists in breast cancer genomes. We analyzed 98 breast cancer whole exome samples that were sorted into three subtypes, two grades and two stages. The sum deleterious effect of all mutations in each gene was scored to identify differentially mutated genes (DMGs) for this case-control study. DMGs were corroborated using extensive published knowledge. Functional consequences of deleterious SNVs on protein structure and function were also investigated. Genes such as ERBB2, ESP8, PPP2R4, KIAA0922, SP4, CENPJ, PRCP and SELP that have been experimentally or clinically verified to be tightly associated with breast cancer prognosis are among the DMGs identified in this study. We also identified some genes such as ARL6IP5, RAET1E, and ANO7 that could be crucial for breast cancer development and prognosis. Further, SNVs such as rs1058808, rs2480452, rs61751507, rs79167802, rs11540666, and rs2229437 that potentially influence protein functions are observed at significantly different frequencies in different comparison groups. Protein structure modeling revealed that many non-synonymous SNVs have a deleterious effect on protein stability, structure and function. Mutational profiling at gene- and SNV-level revealed differential patterns within each breast cancer comparison group, and the gene signatures correlate with expected prognostic characteristics of breast cancer classes. Some of the genes and SNVs identified in this study show high promise and are worthy of further investigation by experimental studies. PMID:25803781

  20. A Novel Null Homozygous Mutation Confirms CACNA2D2 as a Gene Mutated in Epileptic Encephalopathy

    PubMed Central

    Pippucci, Tommaso; Parmeggiani, Antonia; Palombo, Flavia; Maresca, Alessandra; Angius, Andrea; Crisponi, Laura; Cucca, Francesco; Liguori, Rocco; Valentino, Maria Lucia; Seri, Marco; Carelli, Valerio

    2013-01-01

    Contribution to epileptic encephalopathy (EE) of mutations in CACNA2D2, encoding ?2?-2 subunit of Voltage Dependent Calcium Channels, is unclear. To date only one CACNA2D2 mutation altering channel functionality has been identified in a single family. In the same family, a rare CELSR3 polymorphism also segregated with disease. Involvement of CACNA2D2 in EE is therefore not confirmed, while that of CELSR3 is questionable. In a patient with epilepsy, dyskinesia, cerebellar atrophy, psychomotor delay and dysmorphic features, offspring to consanguineous parents, we performed whole exome sequencing (WES) for homozygosity mapping and mutation detection. WES identified extended autozygosity on chromosome 3, containing two novel homozygous candidate mutations: c.1295delA (p.Asn432fs) in CACNA2D2 and c.G6407A (p.Gly2136Asp) in CELSR3. Gene prioritization pointed to CACNA2D2 as the most prominent candidate gene. The WES finding in CACNA2D2 resulted to be statistically significant (p?=?0.032), unlike that in CELSR3. CACNA2D2 homozygous c.1295delA essentially abolished ?2?-2 expression. In summary, we identified a novel null CACNA2D2 mutation associated to a clinical phenotype strikingly similar to the Cacna2d2 null mouse model. Molecular and statistical analyses together argued in favor of a causal contribution of CACNA2D2 mutations to EE, while suggested that finding in CELSR3, although potentially damaging, is likely incidental. PMID:24358150

  1. Mutations in the CLCN1 gene leading to myotonia congenita Thomsen and generalized myotonia Becker

    SciTech Connect

    Koch, M.C.; Meyer-Kline, C.; Otto, M. [Universitaet Marburg, (Germany)] [and others

    1994-09-01

    Autosomal dominant inherited myotonia congenita Thomsen (MC) and autosomal recessive generalized myotonia Becker (GM) are non-dystropic muscle disorders in which the symptom myotonia is based on an increased excitability of the muscle fiber membrane due to a reduced sarcolemmal chloride conductance. Affected individuals exhibit myotonic muscle stiffness in all skeletal muscles and a transient muscle weakness is particularly pronounced in the arms and hands of probands with the disorder GM. Recently we have shown linkage of the disorders MC and GM to the gene CLCN1 coding for the skeletal muscle chloride channel on chromosome 7 in German families. In addition we presented data supporting the hypothesis that GM is a genetically homogeneous disorder. Data are presented about an extended screen for mutations in the CLCN1 gene for our MC and GM population. We identified mainly missense mutations leading to altered amino acid codons. The previously described F413C mutation is by far the most common mutation for GM and is found in one family only (P480L, G482R, R496S). In addition we found 5{prime} donor and 3{prime} acceptor splice site mutations at various intron-exon boundaries, as well as a deletion mutation of 14 bp in exon 13. This deletion mutation is the second most common mutation in the GM population with a frequency of 8%. So far we have not determined sites of predominance of mutations in the CLCN1 gene, which could give us more insight into the regions critical for the function of the channel and the fact that the mutations in the gene may lead to dominant and recessive inheritance.

  2. Identification and in silico analysis of 14 novel GJB1, MPZ and PMP22 gene mutations

    PubMed Central

    Miltenberger-Miltenyi, Gabriel; Schwarzbraun, Thomas; Löscher, Wolfgang N; Wanschitz, Julia; Windpassinger, Christian; Duba, Hans-Christoph; Seidl, Rainer; Albrecht, Gerhard; Weirich-Schwaiger, Helga; Zoller, Heinz; Utermann, Gerd; Auer-Grumbach, Michaela; Janecke, Andreas R

    2009-01-01

    Duplication within the chromosome 17p11.2 (CMT1Adup), peripheral myelin protein 22 (PMP22), myelin protein zero (MPZ) and gap junction ?1-protein (GJB1) gene mutations are frequent causes of the Charcot-Marie-Tooth disease (CMT). A large number of mutations in these genes are listed in databases. Sequence variants identified in patients are frequently reported as mutations without further evaluation. We analyzed 250 consecutively recruited unrelated Austrian CMT patients for CMT1Adup by microsatellite marker typing, real-time PCR or MLPA, and found 79 duplications (31.6%). The coding regions of the PMP22, MPZ and GJB1 genes were analyzed by direct sequencing in the remaining patients; 28 patients showed mutations, 14 of which were novel. We scored the pathogenicity of novel missense mutations by segregation studies and by their exclusion in control samples. Our comprehensive literature study found that up to 60% of the reported mutations in these genes had not been evaluated regarding their pathogenicity, and the PANTHER bioinformatics tool was used to score novel and published missense variants. The PANTHER program scored known polymorphisms as such, but scored ?82–88% only of the published and novel mutations as most likely deleterious. Mutations associated with axonal CMT were less likely to be classified as deleterious, and the PMP22 S72L mutation repeatedly associated with severe CMT was classified as a polymorphism using default parameters. Our data suggest that this in silico analysis tool could be useful for assessing the functional impact of DNA variations only as a complementary approach. The CMT1Adup, GJB1, MPZ and PMP22 mutation frequencies were in the range of those described in other CMT patient collectives with different ethnical backgrounds. PMID:19259128

  3. Carcinogenic ability of Schistosoma haematobium possibly through oncogenic mutation of KRAS gene.

    PubMed

    Botelho, Mónica C; Veiga, Isabel; Oliveira, Paula A; Lopes, Carlos; Teixeira, Manuel; da Costa, José M Correia; Machado, José C

    2013-04-28

    Schistosoma haematobium is a parasitic flatworm that infects millions of people, mostly in the developing world, and is associated with high incidence of bladder cancer, although why is not clear. Previously, we have used CD-1 mice to show that Schistosoma haematobium total antigen (Sh) has a carcinogenic ability. Sh intravesically instillation induced the development of several urothelial lesions, namely nodular hyperplasia and dysplasia (LGIUN-Low Grade Intra-Urothelial Neoplasia) after 40 weeks of treatment. These results suggested that Sh induce urothelium malignization. Bladder carcinoma frequently harbours gene mutations that constitutively activate the receptor tyrosine kinase-Ras pathway for this reason we studied activating mutations in KRAS gene. Twenty percent of the bladders with dysplasia presented a KRAS mutation in codon 12 of exon 2. We concluded from these results that the parasite extract of S. haematobium has carcinogenic ability possibly through oncogenic mutation of KRAS gene. PMID:25221779

  4. No evidence for oncogenic mutations in the adrenocorticotropin receptor gene in human adrenocortical neoplasms

    SciTech Connect

    Latronico, A.C.; Reincke, M.; Mendonca, B.B. [National Inst. of Child Health and Human Development, Bethesda, MD (United States)] [and others] [National Inst. of Child Health and Human Development, Bethesda, MD (United States); and others

    1995-03-01

    The mechanism(s) of tumorigenesis for the majority of adrenocortical neoplasms remain unknown. G-Protein-coupled receptors were recently proposed as candidate protooncogenes. That activating mutations of this class of receptors might be important for tumor induction or progression of endocrine neoplasms was strengthened by the recent identification of such mutations in hyperfunctioning thyroid adenomas. To examine whether the ACTH receptor (ACTH-R) gene could be an oncogene in human adrenocortical tumors, we amplified by the polymerase chain reaction and directly sequenced the entire exon of the ACTH-R gene in 25 adrenocortical tumors (17 adenomas and 8 carcinomas) and 2 adrenocortical cancer cell lines. We found no missense point mutations or even silent polymorphisms in any of the tumors and cell lines studied. We conclude that activating mutations of the ACTH-R gene do not represent a frequent mechanism of human adrenocortical tumorigenesis. 15 refs., 2 tabs.

  5. p16 tumor suppressor gene mutations in Chinese esophageal carcinomas in Hong Kong.

    PubMed

    Chan, W C; Tang, C M; Lau, K W; Lung, M L

    1997-05-19

    The frequency and nature of genetic alterations in the p16 tumor suppressor gene in 25 esophageal squamous cell carcinoma specimens from Chinese patients were investigated by PCR-SSCP and DNA sequencing techniques. No gross deletions occurred in either exon 1 and 2 of the gene by PCR amplification. However, genetic changes were observed in three cases. These included a point mutation in codon 12 of exon 1 with a resulting Ala --> Thr amino acid substitution, a point mutation at base 91 in the non-coding region of exon 1, and a 1 base pair insertion in codon 116 of exon 2. The low mutation frequency of 12% is consistent with that of three previous studies involving Japanese and Caucasian patients (8, 16 and 21% frequency: Esteve et al., 1996, Igaki et al., 1995 and Zhou et al., 1994). p16 gene mutations do not appear to play a major role in esophageal carcinogenesis. PMID:9149125

  6. Mutations in the consensus helicase domains of the Werner syndrome gene. Werner's Syndrome Collaborative Group.

    PubMed Central

    Yu, C E; Oshima, J; Wijsman, E M; Nakura, J; Miki, T; Piussan, C; Matthews, S; Fu, Y H; Mulligan, J; Martin, G M; Schellenberg, G D

    1997-01-01

    Werner syndrome (WS) is an autosomal recessive disease with a complex phenotype that is suggestive of accelerated aging. WS is caused by mutations in a gene, WRN, that encodes a predicted 1,432-amino-acid protein with homology to DNA and RNA helicases. Previous work identified four WS mutations in the 3' end of the gene, which resulted in predicted truncated protein products of 1,060-1,247 amino acids but did not disrupt the helicase domain region (amino acids 569-859). Here, additional WS subjects were screened for mutations, and the intron-exon structure of the gene was determined. A total of 35 exons were defined, with the coding sequences beginning in the second exon. Five new WS mutations were identified: two nonsense mutations at codons 369 and 889; a mutation at a splice-junction site, resulting in a predicted truncated protein of 760 amino acids; a 1-bp deletion causing a frameshift; and a predicted truncated protein of 391 amino acids. Another deletion is >15 kb of genomic DNA, including exons 19-23; the predicted protein is 1,186 amino acids long. Four of these new mutations either partially disrupt the helicase domain region or result in predicted protein products completely missing the helicase region. These results confirm that mutations in the WRN gene are responsible for WS. Also, the location of the mutations indicates that the presence or absence of the helicase domain does not influence the WS phenotype and suggests that WS is the result of complete loss of function of the WRN gene product. PMID:9012406

  7. KIT gene mutation analysis in solid tumours: biology, clincial applications and trends in diagnostic reporting.

    PubMed

    Tay, Clifton Ming; Ong, Chee Wee; Lee, Victor Kwan Min; Pang, Brendan

    2013-02-01

    Gain-of-function mutations involving c-kit protein, a cell-surface transmembrane receptor for stem cell factor, have been identified as a key oncogenic driver in a variety of solid tumours. Coupled with the development of tyrosine kinase inhibitors such as imatinib, c-kit has emerged as a viable drug target in what seems to be a validated therapeutic concept. This review will focus on gastrointestinal stromal tumours and melanomas, two types of solid tumours most closely associated with KIT gene mutations. The biology of KIT mutations in both conditions, as well as the value of KIT mutation testing in predicting disease and treatment outcomes are discussed. Since initial response to imatinib is largely influenced by mutation status, genotyping these tumours serves to facilitate personalised oncology. We also summarise our experience with diagnostic reporting of KIT mutation analysis over a period of 3 years, and briefly survey future developments in treatment, which indeed look very promising. PMID:23277171

  8. Mutation Analysis of the CYP21A2 Gene in the Iranian Population

    PubMed Central

    Rabbani, Bahareh; Mahdieh, Nejat; Ashtiani, Mohammad Tahgi Haghi; Larijani, Bagher; Akbari, Mohammad Taghi; New, Maria; Parsa, Alan; Schouten, Jan P.

    2012-01-01

    Background: Defects in the CYP21A2 gene cause steroid 21-hydroxylase deficiency, which is the most frequent cause of congenital adrenal hyperplasia. Forty four affected families were investigated to identify the mutation spectrum of the CYP21A2 gene. Methods: Families were subjected to clinical, biochemical, and molecular analyses. Allele-specific polymerase chain reaction amplification was used for eight common mutations followed by dosage analysis to exclude CYP21A2 deletions. Results: The most frequent mutations detected were gene deletions and chimera (31.8%). Other mutation frequencies were as follows: Q318X, 15.9%; I2G, 14.8%; I172N, 5.8%; gene duplication, 5.7%; R356W, 8%; and E6 cluster mutations, 2.3%. Direct sequencing of the CYP21A2 gene revealed R316X, P453S, c.484insT, and a change at the start codon. Different modules carried by patients were classified into five different haplotypes. The genotype phenotype correlation (positive predictive value) for group null, A, B, and C were 92.3%, 85.7%, 100%, and 0, respectively. Conclusions: Methods used will be helpful for carrier detection and antenatal diagnosis, especially with inclusion of the multiplex ligation probe dependent amplification technique, which is easier for routine tests in comparison with other methods. Mutation frequencies indicate that Iranians are possible descendants of Asians and Europeans. PMID:22017335

  9. Mutational heterogeneity in cancer and the search for new cancer genes

    PubMed Central

    Kryukov, Gregory V.; Cibulskis, Kristian; Sivachenko, Andrey; Carter, Scott L.; Stewart, Chip; Mermel, Craig H.; Roberts, Steven A.; Kiezun, Adam; Hammerman, Peter S.; McKenna, Aaron; Drier, Yotam; Zou, Lihua; Ramos, Alex H.; Pugh, Trevor J.; Stransky, Nicolas; Helman, Elena; Kim, Jaegil; Sougnez, Carrie; Ambrogio, Lauren; Nickerson, Elizabeth; Shefler, Erica; Cortés, Maria L.; Auclair, Daniel; Saksena, Gordon; Voet, Douglas; Noble, Michael; DiCara, Daniel; Lin, Pei; Lichtenstein, Lee; Heiman, David I.; Fennell, Timothy; Imielinski, Marcin; Hernandez, Bryan; Hodis, Eran; Baca, Sylvan; Dulak, Austin M.; Lohr, Jens; Landau, Dan-Avi; Wu, Catherine J.; Melendez-Zajgla, Jorge; Hidalgo-Miranda, Alfredo; Koren, Amnon; McCarroll, Steven A.; Mora, Jaume; Crompton, Brian; Onofrio, Robert; Parkin, Melissa; Winckler, Wendy; Ardlie, Kristin; Gabriel, Stacey B.; Roberts, Charles W. M.; Biegel, Jaclyn A.; Stegmaier, Kimberly; Bass, Adam J.; Garraway, Levi A.; Meyerson, Matthew; Golub, Todd R.; Gordenin, Dmitry A.; Sunyaev, Shamil

    2014-01-01

    Major international projects are now underway aimed at creating a comprehensive catalog of all genes responsible for the initiation and progression of cancer. These studies involve sequencing of matched tumor–normal samples followed by mathematical analysis to identify those genes in which mutations occur more frequently than expected by random chance. Here, we describe a fundamental problem with cancer genome studies: as the sample size increases, the list of putatively significant genes produced by current analytical methods burgeons into the hundreds. The list includes many implausible genes (such as those encoding olfactory receptors and the muscle protein titin), suggesting extensive false positive findings that overshadow true driver events. Here, we show that this problem stems largely from mutational heterogeneity and provide a novel analytical methodology, MutSigCV, for resolving the problem. We apply MutSigCV to exome sequences from 3,083 tumor-normal pairs and discover extraordinary variation in (i) mutation frequency and spectrum within cancer types, which shed light on mutational processes and disease etiology, and (ii) mutation frequency across the genome, which is strongly correlated with DNA replication timing and also with transcriptional activity. By incorporating mutational heterogeneity into the analyses, MutSigCV is able to eliminate most of the apparent artefactual findings and allow true cancer genes to rise to attention. PMID:23770567

  10. Origin of the Mutations in the parkin Gene in Europe: Exon Rearrangements Are Independent Recurrent Events, whereas Point Mutations May Result from Founder Effects

    PubMed Central

    Periquet, Magali; Lücking, Christoph B.; Vaughan, Jenny R.; Bonifati, Vincenzo; Dürr, Alexandra; De Michele, Giuseppe; Horstink, Martin W.; Farrer, Matt; Illarioshkin, Sergei N.; Pollak, Pierre; Borg, Michel; Brefel-Courbon, Christine; Denefle, Patrice; Meco, Giuseppe; Gasser, Thomas; Breteler, Monique M. B.; Wood, Nick W.; Agid, Yves; Brice, Alexis

    2001-01-01

    A wide variety of mutations in the parkin gene, including exon deletions and duplications, as well as point mutations, result in autosomal recessive early-onset parkinsonism. Interestingly, several of these anomalies were found repeatedly in unrelated patients and may therefore result from recurrent, de novo mutational events or from founder effects. In the present study, haplotype analysis, using 10 microsatellite markers covering a 4.7-cM region known to contain the parkin gene, was performed in 48 families, mostly from European countries, with early-onset autosomal recessive parkinsonism. The patients carried 14 distinct mutations in the parkin gene, and each mutation was detected in more than one family. Our results support the hypothesis that exon rearrangements occurred independently, whereas some point mutations, found in families from different geographic origins, may have been transmitted by a common founder. PMID:11179010

  11. A Second Common Mutation in the Methylenetetrahydrofolate Reductase Gene: An Additional Risk Factor for Neural-Tube Defects?

    Microsoft Academic Search

    Fons Gabreëls; Erik M. B. Stevens; Jan A. M. Smeitink; Frans J. M. Trijbels; Tom K. A. B. Eskes; Lambert P. van den Heuvel; Henk J. Blom

    1998-01-01

    Summary Recently, we showed that homozygosity for the common 677(CrT) mutation in the methylenetetrahydrofolate reductase (MTHFR) gene, causing thermolability of the enzyme, is a risk factor for neural-tube defects (NTDs). We now report on another mutation in the same gene, the 1298(ArC) mutation, which changes a glutamate into an alanine residue. This mutation destroys anMboII recognition site and has an

  12. Molecular Analysis of the CYP1B1 Gene: Identification of Novel Truncating Mutations in Patients with Primary Congenital Glaucoma

    Microsoft Academic Search

    O. M. Messina-Baas; L. M. González-Huerta; C. Chima-Galán; S. H. Kofman-Alfaro; M. R. Rivera-Vega; I. Babayán-Mena; S. A. Cuevas-Covarrubias

    2007-01-01

    Background: Mutations and polymorphisms have been identified in the CYP1B1 gene; while mutations that affect the conserved core structures of cytochrome P4501B1 result in primary congenital glaucoma (PCG), mutations in other regions hold the potential to define differences in estrogen metabolism. In the present study, we analyzed the CYP1B1 gene in Mexican patients with PCG and described four novel mutations.

  13. Calreticulin gene mutations in myeloproliferative neoplasms without Janus kinase 2 mutations.

    PubMed

    Sun, Chao; Zhang, Sujiang; Li, Jianyong

    2015-06-01

    Calreticulin, an endoplasmic reticulum protein with multiple functions involving chaperone activity and calcium homeostasis, plays an important role in cellular proliferation and differentiation. Calreticulin dysfunction is known to be associated with different cancers. Very recently, calreticulin mutations have been identified in myeloproliferative neoplasms (MPNs), with a particularly high frequency in MPNs without Janus kinase 2 (JAK2) mutations, which exhibit clinical characteristics different from those with mutant JAK2. Here, we focus on the structure, function and carcinogenicity of calreticulin, as well as its relationship with MPNs not involving JAK2 mutations. PMID:25115511

  14. Mutations in SOX9, the gene responsible for campomelic dysplasia and autosomal sex reversal

    SciTech Connect

    Kwok, C.; Weller, P.A.; Guioli, S. [St. George`s Hospital Medical School, London (United Kingdom)] [and others

    1995-11-01

    Campomelic dysplasia (CD) is a skeletal malformation syndrome frequently accompanied by 46,XY sex reversal. A mutation-screening strategy using SSCP was employed to identify mutations in SOX9, the chromosome 17q24 gene responsible for CD and autosomal sex reversal in man. We have screened seven CD patients with no cytologically detectable chromosomal aberrations and two CD patients with chromosome 17 rearrangements for mutations in the entire open reading frame of SOX9. Five different mutations have been identified in six CD patients: two missense mutations in the SOX9 putative DNA binding domain (high mobility group, or HMG, box); three frameshift mutations and a splice-acceptor mutation. An identical frameshift mutation is found in two unrelated 46,XY patients, one exhibiting a male phenotype and the other displaying a female phenotype (XY sex reversal). All mutations found affect a single allele, which is consistent with a dominant mode of inheritance. No mutations were found in the SOX9 open reading frame of two patients with chromosome 17q rearrangements, suggesting that the translocations affect SOX9 expression. These findings are consistent with the hypothesis that CD results from haploinsufficiency of SOX9. 27 refs., 3 figs., 3 tabs.

  15. Mutations in the WFS1 gene that cause low-frequency sensorineural hearing loss are small non-inactivating mutations

    Microsoft Academic Search

    Kim Cryns; Markus Pfister; Ronald J. E. Pennings; Steven J. H. Bom; Kris Flothmann; Goele Caethoven; Hannie Kremer; Isabelle Schatteman; Karen A. Köln; Tímea Tóth; Susan Kupka; Nikolaus Blin; Peter Nürnberg; Holger Thiele; Paul H. van de Heyning; William Reardon; Dafydd Stephens; Cor W. R. J. Cremers; Richard J. H. Smith; Guy Van Camp

    2002-01-01

    Hereditary hearing impairment is an extremely heterogeneous trait, with more than 70 identified loci. Only two of these loci are associated with an auditory phenotype that predominantly affects the low frequencies (DFNA1 and DFNA6\\/14). In this study, we have completed mutation screening of the WFS1 gene in eight autosomal dominant families and twelve sporadic cases in which affected persons have

  16. Low-density lipoprotein receptor gene (LDLR) world-wide website in familial hypercholesterolaemia: update, new features and mutation analysis

    Microsoft Academic Search

    Karen E. Heath; Mike Gahan; Ros A. Whittall; Steve E. Humphries

    2001-01-01

    Mutations in the low density lipoprotein receptor gene (LDLR) cause familial hypercholesterolaemia (FH). The FH website (http:\\/\\/www.ucl.ac.uk\\/fh) has been updated to provide various functions enabling the analysis of the large number of LDLR mutations. To date, 683 LDLR mutations have been reported; of these 58.9% are missense mutations, 21.1% minor rearrangements, 13.5% major rearrangements and 6.6% splice site mutations. Of

  17. Exome Analyses of Long QT Syndrome Reveal Candidate Pathogenic Mutations in Calmodulin-Interacting Genes

    PubMed Central

    Nakagawa, Hidewaki; Ozaki, Kouichi; Miya, Fuyuki; Satake, Wataru; Toda, Tatsushi; Miyamoto, Yoshihiro; Fujimoto, Akihiro; Suzuki, Yutaka; Kubo, Michiaki; Tsunoda, Tatsuhiko; Shimizu, Wataru; Tanaka, Toshihiro

    2015-01-01

    Long QT syndrome (LQTS) is an arrhythmogenic disorder that can lead to sudden death. To date, mutations in 15 LQTS-susceptibility genes have been implicated. However, the genetic cause for approximately 20% of LQTS patients remains elusive. Here, we performed whole-exome sequencing analyses on 59 LQTS and 61 unaffected individuals in 35 families and 138 unrelated LQTS cases, after genetic screening of known LQTS genes. Our systematic analysis of familial cases and subsequent verification by Sanger sequencing identified 92 candidate mutations in 88 genes for 23 of the 35 families (65.7%): these included eleven de novo, five recessive (two homozygous and three compound heterozygous) and seventy-three dominant mutations. Although no novel commonly mutated gene was identified other than known LQTS genes, protein-protein interaction (PPI) network analyses revealed ten new pathogenic candidates that directly or indirectly interact with proteins encoded by known LQTS genes. Furthermore, candidate gene based association studies using an independent set of 138 unrelated LQTS cases and 587 controls identified an additional novel candidate. Together, mutations in these new candidates and known genes explained 37.1% of the LQTS families (13 in 35). Moreover, half of the newly identified candidates directly interact with calmodulin (5 in 11; comparison with all genes; p=0.042). Subsequent variant analysis in the independent set of 138 cases identified 16 variants in the 11 genes, of which 14 were in calmodulin-interacting genes (87.5%). These results suggest an important role of calmodulin and its interacting proteins in the pathogenesis of LQTS. PMID:26132555

  18. Mutations in the formin gene INF2 cause focal segmental glomerulosclerosis

    Microsoft Academic Search

    Elizabeth J Brown; Johannes S Schlöndorff; Daniel J Becker; Hiroyasu Tsukaguchi; Stephen J Tonna; Andrea L Uscinski; Henry N Higgs; Joel M Henderson; Martin R Pollak

    2009-01-01

    Focal segmental glomerulosclerosis (FSGS) is a pattern of kidney injury observed either as an idiopathic finding or as a consequence of underlying systemic conditions. Several genes have been identified that, when mutated, lead to inherited FSGS and\\/or the related nephrotic syndrome. These findings have accelerated the understanding of glomerular podocyte function and disease, motivating our search for additional FSGS genes.

  19. RESEARCH ARTICLE Open Access Germline mutation in the RAD51B gene confers

    E-print Network

    Paris-Sud XI, Université de

    referred to a French family cancer clinic and had been previously tested negative for a BRCA1/2 mutation predisposition account for about 5% of cases [2]. BRCA1 and BRCA2 are the two major genes, but explain only about. Approximately 50% of familial breast cancers remain unresolved by any of these genes after genetic testing [6

  20. Atrichia with Papular Lesions Resulting from a Nonsense Mutation Within the Human Hairless Gene

    Microsoft Academic Search

    Eli Sprecher; Gilles G. Lestringant; Raymonde Szargel; Reuven Bergman; Valentina Labay; Philippe M. Frossard; Rachel Friedman-Birnbaum; Nadine Cohen

    1999-01-01

    Atrichia with papular lesions is a rare autosomal recessive form of alopecia characterized by hair loss soon after birth and the development during childhood of a diffuse papular rash. We have previously shown that this disorder results from a deleterious mutation in the human hairless gene, a gene also involved in the pathogenesis of a related but clinically distinct form

  1. Heterogeneity of mutations in the uroporphyrinogen III synthase gene in congenital erythropoietic porphyria

    Microsoft Academic Search

    Samia Boulechfar; Vasco Da Silva; Jean-Charles Deybach; Yves Nordmann; Bernard Grandchamp; Hubert de Verneuil

    1992-01-01

    Congenital erythropoietic porphyria (CEP) or Günther's disease is an inborn error of heme biosynthesis transmitted as an autosomal recessive trait and characterized by a profound deficiency of uroporphyrinogen III synthase (UROIIIS) activity. We have previously described two missense mutations in the UROIIIS gene, confirming that the primary defect responsible for CEP is a structural alteration of this gene. We have

  2. Mutations of the Notch3 Gene in Non-Caucasian Patients with Suspected CADASIL Syndrome

    Microsoft Academic Search

    Satoshi Kotorii; Keikichi Takahashi; Kohei Kamimura; Takeshi Nishio; Kunimasa Arima; Haruki Yamada; Eiichiro Uyama; Makoto Uchino; Akihito Suenaga; Masayasu Matsumoto; George Kuchel; Guy A. Rouleau; Takeshi Tabira

    2001-01-01

    The Notch3 gene has been recently identified as a causative gene for cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). To investigate the genetic contribution of Notch mutations in familial cases with vascular leukoencephalopathy, we screened 13 patients from 11 unrelated families, which were selected on the basis of magnetic resonance imaging findings and positive family history. We

  3. Screening for NOTCH3 gene mutations among 151 consecutive Korean patients with acute ischemic stroke

    Microsoft Academic Search

    Jay Chol Choi; Keun-Hwa Lee; Sook-Keun Song; Jung Seok Lee; Sa-Yoon Kang; Ji-Hoon Kang

    BackgroundCerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a single gene disorder of cerebral small blood vessels caused by mutations in the NOTCH3 gene. The initial detection of CADASIL may be more difficult among Asian populations because common clinical phenotypes and neuroimaging findings are not frequently found in these populations. The purpose of this study was to

  4. Multiple Intestinal Neoplasia Caused by a Mutation in the Murine Homolog of the APC Gene

    Microsoft Academic Search

    Li-Kuo Su; Kenneth W. Kinzler; Bert Vogelstein; Antonette C. Preisinger; Amy Rapaich Moser; Cindy Luongo; Karen A. Gould; William F. Dove

    1992-01-01

    Germ-line mutations of the APC gene are responsible for familial adenomatous polyposis (FAP), an autosomal dominantly inherited disease in humans. Patients with FAP develop multiple benign colorectal tumors. Recently, a mouse lineage that exhibits an autosomal dominantly inherited predisposition to multiple intestinal neoplasia (Min) was described. Linkage analysis showed that the murine homolog of the APC gene (mApc) was tightly

  5. Mutations in the Gene Encoding Starch Synthase II Profoundly Alter Amylopectin Structure in Pea Embr yos

    Microsoft Academic Search

    Josephine Craig; James R. Lloyd; Kim Tomlinson; Lorraine Barber; Anne Edwards; Trevor L. Wang; Cathie Martin; Cliff L. Hedley; Alison M. Smith

    1998-01-01

    Mutations at the rug5 ( rug osus 5 ) locus have been used to elucidate the role of the major soluble isoform of starch syn- thase II (SSII) in amylopectin synthesis in the developing pea embryo. The SSII gene maps to the rug5 locus, and the gene in one of three rug5 mutant lines has been shown to carry a

  6. Targeted sequencing using a 47 gene multiple myeloma mutation panel (M3P) in -17p high risk disease

    PubMed Central

    Kortüm, Klaus M.; Langer, Christian; Monge, Jorge; Bruins, Laura; Egan, Jan B.; Zhu, Yuan X.; Shi, Chang Xin; Jedlowski, Patrick; Schmidt, Jessica; Ojha, Juhi; Bullinger, Lars; Liebisch, Peter; Kull, Miriam; Champion, Mia D.; Van Wier, Scott; Ahmann, Gregory; Rasche, Leo; Knop, Stefan; Fonseca, Rafael; Einsele, Hermann; Stewart, A Keith; Braggio, Esteban

    2015-01-01

    Summary We constructed a multiple myeloma (MM)-specific gene panel for targeted sequencing and investigated 72 untreated high-risk (del17p) MM patients. Mutations were identified in 78% of the patients. While the majority of studied genes were mutated at similar frequency to published literature, the prevalence of TP53 mutation was increased (28%) and no mutations were found in FAM46C. This study provides a comprehensive insight into the mutational landscape of del17p high-risk MM. Additionally, our work demonstrates the practical use of a customized sequencing panel, as an easy, cheap and fast approach to characterize the mutational profile of MM. PMID:25302557

  7. Targeted sequencing using a 47 gene multiple myeloma mutation panel (M(3) P) in -17p high risk disease.

    PubMed

    Kortüm, Klaus M; Langer, Christian; Monge, Jorge; Bruins, Laura; Egan, Jan B; Zhu, Yuan X; Shi, Chang Xin; Jedlowski, Patrick; Schmidt, Jessica; Ojha, Juhi; Bullinger, Lars; Liebisch, Peter; Kull, Miriam; Champion, Mia D; Van Wier, Scott; Ahmann, Gregory; Rasche, Leo; Knop, Stefan; Fonseca, Rafael; Einsele, Hermann; Stewart, A Keith; Braggio, Esteban

    2015-02-01

    We constructed a multiple myeloma (MM)-specific gene panel for targeted sequencing and investigated 72 untreated high-risk (del17p) MM patients. Mutations were identified in 78% of the patients. While the majority of studied genes were mutated at similar frequency to published literature, the prevalence of TP53 mutation was increased (28%) and no mutations were found in FAM46C. This study provides a comprehensive insight into the mutational landscape of del17p high-risk MM. Additionally, our work demonstrates the practical use of a customized sequencing panel, as an easy, cheap and fast approach to characterize the mutational profile of MM. PMID:25302557

  8. Two novel mutations in the glycine-rich region of human PAX6 gene: Implications for an association of cataracts and anosmia with aniridia

    Microsoft Academic Search

    A. Martha; R. E. Ferrel; H. M. Hittner; G. F. Saunders

    1994-01-01

    Aniridia (iris hyplasia) is a autosomal dominant congenital disorder of the eye. Mutations in the human aniridia (PAX6) gene have now been identified in many patients from various ethnic groups. In the present study we describe new mutations in this gene. Out of four mutations found, three were novel mutations; the fourth one is identical to the previously reported mutations

  9. Mutations in the RYR1 gene in Italian patients at risk for Malignant Hyperthermia: evidence for a cluster of novel mutations in the C-terminal region

    Microsoft Academic Search

    L Galli; A Orrico; S Cozzolino; V Pietrini; V Tegazzin; V Sorrentino

    2002-01-01

    Mutations in the ryanodine receptor type 1 (RYR1) gene are associated with Malignant Hyperthermia (MH) and Central Core Disease (CCD). We report here on the molecular analysis of the RYR1 gene in Italian families referred as potential cases of MH or in patients with CCD or multicore\\/minicore myopathy. Of a total of 20 individuals with mutations in the RYR1 gene,

  10. Somatic mutations and germline sequence variants in the expressed tyrosine kinase genes of patients with de novo acute myeloid leukemia

    Microsoft Academic Search

    Michael H. Tomasson; Zhifu Xiang; Richard Walgren; Yu Zhao; Yumi Kasai; Tracie Miner; Rhonda E. Ries; Olga Lubman; Daved H. Fremont; Michael D. McLellan; Jacqueline E. Payton; Peter Westervelt; John F. DiPersio; Daniel C. Link; Matthew J. Walter; Timothy A. Graubert; Mark Watson; Jack Baty; Sharon Heath; William D. Shannon; Rakesh Nagarajan; Clara D. Bloomfield; Elaine R. Mardis; Richard K. Wilson; Timothy J. Ley

    2008-01-01

    Activating mutations in tyrosine kinase (TK) genes (eg, FLT3 and KIT) are found in more than 30% of patients with de novo acute myeloid leukemia (AML); many groups have speculated that mutations in other TK genes may be present in the remaining 70%. We performed high- throughput resequencing of the kinase domains of 26 TK genes (11 receptor TK; 15

  11. Somatic DICER1 gene mutation in sporadic intraocular medulloepithelioma without pleuropulmonary blastoma syndrome.

    PubMed

    Durieux, Emeline; Descotes, Françoise; Nguyen, Anh-Minh; Grange, Jean Daniel; Devouassoux-Shisheboran, Mojgan

    2015-05-01

    Germline DICER1 gene mutation has been described in ocular medulloepithelioma associated with pleuropulmonary blastoma family tumor and dysplasia syndrome. We present a case of sporadic ocular medulloepithelioma in an 18-year-old woman with D1709N somatic mutation in DICER1 gene, which has not been previously described. This case highlights the potential use of DICER1 gene sequencing to resolve the diagnostic challenge in recurrent and metastatic malignant medulloepithelioma, when morphology and immunohistochemistry are inconclusive. Further studies in larger series of this type of tumor are needed to confirm the relevance of this molecular abnormality in the tumorigenesis of this embryonic-type ocular tumor. PMID:25791583

  12. Glutaric acidemia type II: gene structure and mutations of the electron transfer flavoprotein:ubiquinone oxidoreductase (ETF:QO) gene

    Microsoft Academic Search

    Stephen I Goodman; Robert J Binard; Michael R Woontner; Frank E Frerman

    2002-01-01

    Glutaric acidemia type II is a human inborn error of metabolism which can be due to defects in either subunit of electron transfer flavoprotein (ETF) or in ETF:ubiquinone oxidoreductase (ETF:QO), but few disease-causing mutations have been described. The ETF:QO gene is located on 4q33, and contains 13 exons. Primers to amplify these exons are presented, together with mutations identified by

  13. Gaucher disease as a paradigm of current issues regarding single gene mutations of humans.

    PubMed Central

    Beutler, E

    1993-01-01

    Gaucher disease is a glycolytic storage disease caused by a deficiency in activity of the catabolic enzyme glucocerebrosidase. Over 35 different mutations have been documented, including missense and nonsense point mutations, splicing mutations, deletions and insertions, a fusion gene, and examples of gene conversion. Gaucher disease is most common in the Ashkenazi Jewish population, in which just five of the mutations in this population account for 98% of the disease-producing alleles. Each of these mutations is found in the context of a single haplotype, a finding consistent with a single origin of each mutation. Although it is clear that these mutations provide a selective advantage in the Jewish population and thus constitute a balanced polymorphism, the nature of the advantage is unknown. Gaucher disease can be treated symptomatically, by administration of the missing enzyme, by allogeneic bone marrow transplantation, and potentially by gene transfer into hematopoietic stem cells. Increasing understanding of this disease has, as in other genetic disorders, created a host of social and ethical dilemmas regarding matters such as the cost of treatment for rare diseases and the advantages and disadvantages of population-targeted genetic screening. PMID:8516282

  14. Mutation spectra of ABCC8 gene in Spanish patients with Hyperinsulinism of Infancy (HI).

    PubMed

    Fernández-Marmiesse, Ana; Salas, Antonio; Vega, Ana; Fernández-Lorenzo, José Ramón; Barreiro, Jesús; Carracedo, Angel

    2006-02-01

    Hyperinsulinism of Infancy (HI) is a clinical disorder characterized by deregulation of insulin secretion that leads to profound hypoglycemia. Mutations in genes encoding the ATP-regulated potassium channels of the pancreatic beta-cell, namely ABCC8 (SUR1) and KCNJ11 (Kir6.2), are the major genetic known cause of the disease. To elucidate the genetic etiology of HI in the uncharacterized Spanish population, we conducted extensive sequencing analysis of the ABCC8 (83.5Kb) and KCNJ11 (1.7Kb) genes in 34 Spanish HI patients. Mutations in ABCC8 were detected for both alleles in 13 patients, while ten patients carried only one mutation in one of the ABCC8 alleles. We have detected 22 novel and seven previously described mutations in ABCC8, approximately 60% of them lead to a premature termination signal, which would result in truncated SUR1 proteins. No mutations were found in the KCNJ11 gene. In addition, we report for the first time a 3914bp macrodeletion associated with the HI disorder. The potential pathogenicity of several additional variants is discussed. The spatial pattern of three pathological mutations suggests possible geographical founder effects. This work reveals for first time the involvement of KATP channels in the pathogenesis of an important proportion (approximately 68%) of Spanish HI patients. The spectrum of mutations in Spanish HI patients provides an important tool for diagnosis and prognosis of HI patients in the Spanish population, as well as for genetic counseling of HI families. PMID:16429405

  15. VarWalker: Personalized Mutation Network Analysis of Putative Cancer Genes from Next-Generation Sequencing Data

    PubMed Central

    Jia, Peilin; Zhao, Zhongming

    2014-01-01

    A major challenge in interpreting the large volume of mutation data identified by next-generation sequencing (NGS) is to distinguish driver mutations from neutral passenger mutations to facilitate the identification of targetable genes and new drugs. Current approaches are primarily based on mutation frequencies of single-genes, which lack the power to detect infrequently mutated driver genes and ignore functional interconnection and regulation among cancer genes. We propose a novel mutation network method, VarWalker, to prioritize driver genes in large scale cancer mutation data. VarWalker fits generalized additive models for each sample based on sample-specific mutation profiles and builds on the joint frequency of both mutation genes and their close interactors. These interactors are selected and optimized using the Random Walk with Restart algorithm in a protein-protein interaction network. We applied the method in >300 tumor genomes in two large-scale NGS benchmark datasets: 183 lung adenocarcinoma samples and 121 melanoma samples. In each cancer, we derived a consensus mutation subnetwork containing significantly enriched consensus cancer genes and cancer-related functional pathways. These cancer-specific mutation networks were then validated using independent datasets for each cancer. Importantly, VarWalker prioritizes well-known, infrequently mutated genes, which are shown to interact with highly recurrently mutated genes yet have been ignored by conventional single-gene-based approaches. Utilizing VarWalker, we demonstrated that network-assisted approaches can be effectively adapted to facilitate the detection of cancer driver genes in NGS data. PMID:24516372

  16. Cap myopathy caused by a mutation of the skeletal alpha-actin gene ACTA1.

    PubMed

    Hung, Ryan M; Yoon, Grace; Hawkins, Cynthia E; Halliday, Willliam; Biggar, Doug; Vajsar, Jiri

    2010-04-01

    Cap myopathy is a congenital myopathy with cap-like structures under the sarcolemma. Mutations in TPM2 and TPM3 genes have been reported in cap myopathy so far. We report a newborn boy with persistent profound weakness who required gastro-jejunal tube feeding, tracheostomy and life-long ventilation until he died at 5 years of age. Muscle biopsy at 5 weeks of age was uninformative. Repeat biopsy at 4.5 years revealed subsarcolemmally located caps that were immunopositive for alpha-actinin, actin and to some extent, desmin. EM confirmed loosely arranged thin filaments and paucity of thick filaments. Molecular analysis of ACTA1 gene identified a novel de novo Met49Val [corrected] mutation. In addition to a new ACTA1 gene mutation, our case emphasizes the genetic heterogeneity of cap myopathy and its association with ACTA1 gene as well as the importance of repeat muscle biopsy in patients with undiagnosed muscle weakness. PMID:20303757

  17. Mutations in the mitochondrial ATPase6 gene are frequent in human osteosarcoma.

    PubMed

    Guo, Xue-Guang; Liu, Chang-Ting; Dai, Huanzi; Guo, Qiao-Nan

    2013-02-01

    To explore the polymorphisms and mutations of mitochondrial ATPase6 gene in Chinese patients with osteosarcoma and their possible association with carcinogenesis, direct DNA sequencing method was used to detect the variants of the mitochondrial ATPase6 gene in 39 patients with osteosarcoma. We found mutations of the mitochondrial ATPase6 gene in 24/39 (61.5%) of the tested osteosarcoma samples, and identified 27 variant sites in ATPase6 coding regions. We did not detect any new polymorphisms in osteosarcoma, nor was there any association between variants and the three histopathological subtypes. These data demonstrated that mtDNA mutations within the ATPase6 gene are a frequent event in Chinese patients with osteosarcoma. PMID:22542792

  18. Mutations in the gene phospholipase C, delta-1 (PLCD1) underlying hereditary leukonychia.

    PubMed

    Mir, Hina; Khan, Saadullah; Arif, Muhammad Shoaib; Ali, Ghazanfar; Wali, Abdul; Ansar, Muhammad; Ahmad, Wasim

    2012-01-01

    Hereditary leukonychia or porcelain nails is a nail dystrophy characterized by whitening of the nail plates in all nails of the hands and feet. It may exhibit an autosomal recessive or autosomal dominant pattern of inheritance. Mutations in the gene PLCD1 have been reported to underlie hereditary leukonychia. In the present study, two Pakistani families with autosomal recessive hereditary leukonychia were investigated. Affected members of the families exhibited characteristic features of hereditary leukonychia with involvement of nails on both the hands and feet. Genotyping using microsatellite markers linked the families to the gene PLCD1 on chromosome 3p22.2. Sequence analysis of the gene detected one novel (p.Ser740ArgfsX19) and one previously reported mutation (p.Arg437X). This study expands spectrum of the mutations in the gene PLCD1 causing hereditary leukonychia. PMID:23149345

  19. HAEdb: a novel interactive, locus-specific mutation database for the C1 inhibitor gene.

    PubMed

    Kalmár, Lajos; Hegedüs, Tamás; Farkas, Henriette; Nagy, Melinda; Tordai, Attila

    2005-01-01

    Hereditary angioneurotic edema (HAE) is an autosomal dominant disorder characterized by episodic local subcutaneous and submucosal edema and is caused by the deficiency of the activated C1 esterase inhibitor protein (C1-INH or C1INH; approved gene symbol SERPING1). Published C1-INH mutations are represented in large universal databases (e.g., OMIM, HGMD), but these databases update their data rather infrequently, they are not interactive, and they do not allow searches according to different criteria. The HAEdb, a C1-INH gene mutation database (http://hae.biomembrane.hu) was created to contribute to the following expectations: 1) help the comprehensive collection of information on genetic alterations of the C1-INH gene; 2) create a database in which data can be searched and compared according to several flexible criteria; and 3) provide additional help in new mutation identification. The website uses MySQL, an open-source, multithreaded, relational database management system. The user-friendly graphical interface was written in the PHP web programming language. The website consists of two main parts, the freely browsable search function, and the password-protected data deposition function. Mutations of the C1-INH gene are divided in two parts: gross mutations involving DNA fragments >1 kb, and micro mutations encompassing all non-gross mutations. Several attributes (e.g., affected exon, molecular consequence, family history) are collected for each mutation in a standardized form. This database may facilitate future comprehensive analyses of C1-INH mutations and also provide regular help for molecular diagnostic testing of HAE patients in different centers. PMID:15580551

  20. Novel VANGL1 Gene Mutations in 144 Slovakian, Romanian and German Patients with Neural Tube Defects

    PubMed Central

    Bartsch, O.; Kirmes, I.; Thiede, A.; Lechno, S.; Gocan, H.; Florian, I.S.; Haaf, T.; Zechner, U.; Sabova, L.; Horn, F.

    2012-01-01

    Neural tube defects (NTDs) are a group of congenital malformations of the central nervous system occurring at an average rate of 1 per 1,000 human pregnancies worldwide. Numerous genetic and environmental factors are discussed to be relevant in their etiology. In mice, mutants in >200 genes including the planar cell polarity (PCP) pathway are known to cause NTDs, and recently, heterozygous mutations in the human VANGL1 gene have been described in a small subset of patients with NTDs. We performed a VANGL1 mutation analysis in 144 unrelated individuals with NTDs from Slovakia, Romania and Germany and identified 3 heterozygous missense mutations: c.613G>A (p.Gly205Arg) with an open spina bifida (lumbosacral meningomyelocele), c.557G>A (p.Arg186His) with a closed spina bifida (tethered cord and spinal lipoma) and c.518G>A (p.Arg173His) with an unknown NTD. The c.613G>A mutation was also found in a healthy sibling. None of the mutations were described previously. Findings support that heterozygous VANGL1 mutations represent hypomorphs or conditional mutants predisposing to NTDs and occur at a frequency of approximately 2.1% of open and closed spinal NTDs. The mutations (p.Arg173His, p.Arg186His, p.Gly205Arg) modified conserved regions of the VANGL1 protein and shared similarities with previously described mutants, providing further evidence for the presence of mutational hot spots in these patients. PMID:23326252

  1. Cellular and functional analysis of four mutations located in the mitochondrial ATPase6 gene.

    PubMed

    Vazquez-Memije, Martha Elisa; Rizza, Teresa; Meschini, Maria Chiara; Nesti, Claudia; Santorelli, Filippo Maria; Carrozzo, Rosalba

    2009-04-01

    The smallest rotary motor of living cells, F0F1-ATP synthase, couples proton flow-generated by the OXPHOS system-from the intermembrane space back to the matrix with the conversion of ADP to ATP. While all mutations affecting the multisubunit complexes of the OXPHOS system probably impact on the cell's output of ATP, only mutations in complex V can be considered to affect this output directly. So far, most of the F0F1-ATP synthase variations have been detected in the mitochondrial ATPase6 gene. In this study, the four most frequent mutations in the ATPase6 gene, namely L156R, L217R, L156P, and L217P, are studied for the first time together, both in primary cells and in cybrid clones. Arginine ("R") mutations were associated with a much more severe phenotype than Proline ("P") mutations, in terms of both biochemical activity and growth capacity. Also, a threshold effect in both "R" mutations appeared at 50% mutation load. Different mechanisms seemed to emerge for the two "R" mutations: the F1 seemed loosely bound to the membrane in the L156R mutant, whereas the L217R mutant induced low activity of complex V, possibly the result of a reduced rate of proton flow through the A6 channel. PMID:19160410

  2. Novel VANGL1 Gene Mutations in 144 Slovakian, Romanian and German Patients with Neural Tube Defects.

    PubMed

    Bartsch, O; Kirmes, I; Thiede, A; Lechno, S; Gocan, H; Florian, I S; Haaf, T; Zechner, U; Sabova, L; Horn, F

    2012-08-01

    Neural tube defects (NTDs) are a group of congenital malformations of the central nervous system occurring at an average rate of 1 per 1,000 human pregnancies worldwide. Numerous genetic and environmental factors are discussed to be relevant in their etiology. In mice, mutants in >200 genes including the planar cell polarity (PCP) pathway are known to cause NTDs, and recently, heterozygous mutations in the human VANGL1 gene have been described in a small subset of patients with NTDs. We performed a VANGL1 mutation analysis in 144 unrelated individuals with NTDs from Slovakia, Romania and Germany and identified 3 heterozygous missense mutations: c.613G>A (p.Gly205Arg) with an open spina bifida (lumbosacral meningomyelocele), c.557G>A (p.Arg186His) with a closed spina bifida (tethered cord and spinal lipoma) and c.518G>A (p.Arg173His) with an unknown NTD. The c.613G>A mutation was also found in a healthy sibling. None of the mutations were described previously. Findings support that heterozygous VANGL1 mutations represent hypomorphs or conditional mutants predisposing to NTDs and occur at a frequency of approximately 2.1% of open and closed spinal NTDs. The mutations (p.Arg173His, p.Arg186His, p.Gly205Arg) modified conserved regions of the VANGL1 protein and shared similarities with previously described mutants, providing further evidence for the presence of mutational hot spots in these patients. PMID:23326252

  3. Isocitrate dehydrogenase 1 Gene Mutation Is Associated with Prognosis in Clinical Low-Grade Gliomas

    PubMed Central

    Cai, Jin-Quan; Zhang, Chuan-Bao; Wang, Kuan-Yu; Cheng, Wen; Liu, Yan-Wei; Zhang, Wei; Jiang, Tao

    2015-01-01

    Isocitrate dehydrogenase 1 gene mutations are found in most World Health Organization grade II and III gliomas and secondary glioblastomas. Isocitrate dehydrogenase 1 mutations are known to have prognostic value in high-grade gliomas. However, their prognostic significance in low-grade gliomas remains controversial. We determined the predictive and prognostic value of isocitrate dehydrogenase 1 status in low-grade gliomas. The association of isocitrate dehydrogenase 1 status with clinicopathological and genetic factors was also evaluated. Clinical information and genetic data including isocitrate dehydrogenase 1 mutation, O 6-methylguanine DNA methyltransferase promoter methylation, 1p/19q chromosome loss, and TP53 mutation of 417 low-grade gliomas were collected from the Chinese Glioma Genome Atlas database. Kaplan–Meier and Cox proportional hazards regression analyses were performed to evaluate the prognostic effect of clinical characteristics and molecular biomarkers. Isocitrate dehydrogenase 1 mutation was identified as an independent prognostic factor for overall, but not progression-free, survival. Notably, isocitrate dehydrogenase 1 mutation was found to be a significant prognostic factor in patients with oligodendrogliomas, but not in patients with astrocytomas. Furthermore, O 6-methylguanine DNA methyltransferase promoter methylation (p = 0.017) and TP53 mutation (p < 0.001), but not 1p/19q loss (p = 0.834), occurred at a higher frequency in isocitrate dehydrogenase 1-mutated tumors than in isocitrate dehydrogenase 1 wild-type tumors. Younger patient age (p = 0.041) and frontal lobe location (p = 0.010) were significantly correlated with isocitrate dehydrogenase 1 mutation. Chemotherapy did not provide a survival benefit in patients with isocitrate dehydrogenase 1-mutated tumors. Isocitrate dehydrogenase 1 mutation was an independent prognostic factor in low-grade gliomas, whereas it showed no predictive value for chemotherapy response. Isocitrate dehydrogenase 1 mutation was highly associated with O 6-methylguanine DNA methyltransferase promoter methylation and TP53 mutation. PMID:26115094

  4. Comparison of droplet digital PCR and conventional quantitative PCR for measuring EGFR gene mutation

    PubMed Central

    ZHANG, BO; XU, CHUN-WEI; SHAO, YUN; WANG, HUAI-TAO; WU, YONG-FANG; SONG, YE-YING; LI, XIAO-BING; ZHANG, ZHE; WANG, WEN-JING; LI, LI-QIONG; CAI, CONG-LI

    2015-01-01

    Early detection of epidermal growth factor receptor (EGFR) mutation, particularly EGFR T790M mutation, is of clinical significance. The aim of the present study was to compare the performances of amplification refractory mutation system-based quantitative polymerase chain reaction (ARMS-qPCR) and droplet digital polymerase chain reaction (ddPCR) approaches in the detection of EGFR mutation and explore the feasibility of using ddPCR in the detection of samples with low mutation rates. EGFR gene mutations in plasmid samples with different T790M mutation rates (0.1–5%) and 10 clinical samples were detected using the ARMS-qPCR and ddPCR approaches. The results demonstrated that the ARMS-qPCR method stably detected the plasmid samples (6,000 copies) with 5 and 1% mutation rates, while the ddPCR approach reliably detected those with 5% (398 copies), 1% (57 copies), 0.5% (24 copies) and 0.1% (average 6 copies) mutation rates. For the 10 clinical samples, the results for nine samples by the ARMS-qPCR and ddPCR methods were consistent; however, the sample N006, indicated to be EGFR wild-type by ARMS-qPCR, was revealed to have a clear EGFR T790M mutation with seven copies of mutant alleles in a background of 6,000 wild-type copies using ddPCR technology. This study demonstrates the feasibility of applying the ddPCR system to detect EGFR mutation and identified the advantage of ddPCR in the detection of samples with a low EGFR mutation abundance, particularly the secondary EGFR T790M resistance mutation, which enables early diagnosis before acquired resistance to tyrosine kinase inhibitors becomes clinically detectable. PMID:25780439

  5. Mutations in the ATP13A2 Gene and Parkinsonism: A Preliminary Review

    PubMed Central

    Yang, Xinglong; Xu, Yanming

    2014-01-01

    Parkinson's disease (PD) is a major neurodegenerative disorder for which the etiology and pathogenesis remain as elusive as for Alzheimer's disease. PD appears to be caused by genetic and environmental factors, and pedigree and cohort studies have identified numerous susceptibility genes and loci related to PD. Autosomal recessive mutations in the genes Parkin, Pink1, DJ-1, ATP13A2, PLA2G6, and FBXO7 have been linked to PD susceptibility. Such mutations in ATP13A2, also named PARK9, were first identified in 2006 in a Chilean family and are associated with a juvenile-onset, levodopa-responsive type of Parkinsonism called Kufor-Rakeb syndrome (KRS). KRS involves pyramidal degeneration, supranuclear palsy, and cognitive impairment. Here we review current knowledge about the ATP13A2 gene, clinical characteristics of patients with PD-associated ATP13A2 mutations, and models of how the ATP13A2 protein may help prevent neurodegeneration by inhibiting ?-synuclein aggregation and supporting normal lysosomal and mitochondrial function. We also discuss another ATP13A2 mutation that is associated with the family of neurodegenerative disorders called neuronal ceroid lipofuscinoses (NCLs), and we propose a single pathway whereby ATP13A2 mutations may contribute to NCLs and Parkinsonism. Finally, we highlight how studies of mutations in this gene may provide new insights into PD pathogenesis and identify potential therapeutic targets. PMID:25197640

  6. Identification of FVIII gene mutations in patients with hemophilia A using new combinatorial sequencing by hybridization

    PubMed Central

    Chetta, M.; Drmanac, A.; Santacroce, R.; Grandone, E.; Surrey, S.; Fortina, P.; Margaglione, M.

    2008-01-01

    BACKGROUND: Standard methods of mutation detection are time consuming in Hemophilia A (HA) rendering their application unavailable in some analysis such as prenatal diagnosis. OBJECTIVES: To evaluate the feasibility of combinatorial sequencing-by-hybridization (cSBH) as an alternative and reliable tool for mutation detection in FVIII gene. PATIENTS/METHODS: We have applied a new method of cSBH that uses two different colors for detection of multiple point mutations in the FVIII gene. The 26 exons encompassing the HA gene were analyzed in 7 newly diagnosed Italian patients and in 19 previously characterized individuals with FVIII deficiency. RESULTS: Data show that, when solution-phase TAMRA and QUASAR labeled 5-mer oligonucleotide sets mixed with unlabeled target PCR templates are co-hybridized in the presence of DNA ligase to universal 6-mer oligonucleotide probe-based arrays, a number of mutations can be successfully detected. The technique was reliable also in identifying a mutant FVIII allele in an obligate heterozygote. A novel missense mutation (Leu1843Thr) in exon 16 and three novel neutral polymorphisms are presented with an updated protocol for 2-color cSBH. CONCLUSIONS: cSBH is a reliable tool for mutation detection in FVIII gene and may represent a complementary method for the genetic screening of HA patients. PMID:20300295

  7. Investigation of the Mitochondrial ATPase 6/8 and tRNALys Genes Mutations in Autism

    PubMed Central

    Piryaei, Fahimeh; Houshmand, Massoud; Aryani, Omid; Dadgar, Sepideh; Soheili, Zahra-Soheila

    2012-01-01

    Objective: Autism results from developmental factors that affect many or all functional brain systems. Brain is one of tissues which are crucially in need of adenosine triphosphate (ATP). Autism is noticeably affected by mitochondrial dysfunction which impairs energy metabolism. Considering mutations within ATPase 6, ATPase 8 and tRNALys genes, associated with different neural diseases, and the main role of ATPase 6/8 in energy generation, we decided to investigate mutations on these mtDNA-encoded genes to reveal their roles in autism pathogenesis. Materials and Methods: In this experimental study, mutation analysis for the mentioned genes were performed in a cohort of 24 unrelated patients with idiopathic autism by employing amplicon sequencing of mtDNA fragments. Results: In this study, 12 patients (50%) showed point mutations that represent a significant correlation between autism and mtDNA variations. Most of the identified substitutions (55.55%) were observed on MT-ATP6, altering some conserved amino acids to other ones which could potentially affect ATPase 6 function. Mutations causing amino acid replacement denote involvement of mtDNA genes, especially ATPase 6 in autism pathogenesis. Conclusion: MtDNA mutations in relation with autism could be remarkable to realize an understandable mechanism of pathogenesis in order to achieve therapeutic solutions. PMID:23508290

  8. A de-novo STXBP1 gene mutation in a patient showing the Rett syndrome phenotype.

    PubMed

    Romaniello, Romina; Saettini, Francesco; Panzeri, Elena; Arrigoni, Filippo; Bassi, Maria T; Borgatti, Renato

    2015-03-25

    This study reports on a 9-year-old girl who developed West syndrome and showed clinical features fulfilling the main revised diagnostic criteria for typical Rett syndrome (hand washing, severe cognitive impairment with absence of language, ataxic gait, progressive scoliosis and autistic features). Mutation analyses for methyl-CpG-binding protein 2 (MECP2), cyclin-dependent kinase-like 5 (CDKL5/STK9), ARX and Forkhead box G1 (FOXG1) genes were carried out, with negative results. A known de-novo c.1217G>A missense mutation in exon 14 leading to the substitution of a conserved residue, p.R406H in domain3b of the syntaxin-binding protein 1 (STXBP1) gene, was detected. The STXBP1 gene encodes the syntaxin-binding protein 1, a neuron-specific protein involved in synaptic vesicle release at both glutaminergic and GABAergic synapses. This function is also affected by MECP2 gene mutations, which are known to lead to a decrease in glutamate and GABA receptors' density. It is possible to speculate that the impairment in synaptic plasticity represents the pathogenic link between MECP2 and STXBP1 gene mutations. On reviewing the clinical features of the reported patients with the same mutation in the STXBP1 gene, it has been observed that poor eye contact, tremour, dyskinesia, head/hand stereotypies and both cognitive and motor progressive deterioration are common symptoms, although never considered as indicative of a Rett syndrome phenotype. In conclusion, the case described here suggests a relationship between the Rett syndrome and the STXBP1 gene not described so far, making the search for STXBP1 gene mutations advisable in patients with Rett syndrome and early onset of epilepsy. PMID:25714420

  9. Charcot-Marie-Tooth type 4F disease caused by S399fsx410 mutation in the PRX gene.

    PubMed

    Kabzinska, D; Drac, H; Sherman, D L; Kostera-Pruszczyk, A; Brophy, P J; Kochanski, A; Hausmanowa-Petrusewicz, I

    2006-03-14

    Charcot-Marie-Tooth type 4F disease (CMT4F) is an autosomal recessive neuropathy caused by mutations in the PRX gene. To date, only seven mutations have been identified in the PRX gene. In this study, the authors report a novel S399fsX410 mutation in the PRX gene and its effects at the protein level, which was identified in an 8-year-old patient with early-onset CMT disease. PMID:16534116

  10. Analysis of Mutations in the Sqt-1 and Rol-6 Collagen Genes of Caenorhabditis Elegans

    PubMed Central

    Kramer, J. M.; Johnson, J. J.

    1993-01-01

    Different mutations in the sqt-1 and rol-6 collagen genes of Caenorhabditis elegans can cause diverse changes in body morphology and display different genetic attributes. We have determined the nucleotide alterations in 15 mutant alleles of these genes. Three mutations in sqt-1 and one in rol-6 that cause dominant right-handed helical twisting (RRol) of animals are arginine to cysteine replacements. These mutations are all within a short conserved sequence, on the amino terminal side of the Gly-X-Y repeats, that is found in all C. elegans cuticle collagens. A recessive RRol mutation of rol-6 is a replacement of one of the same conserved arginines by histidine. In contrast, three sqt-1 mutations that cause recessive left-handed helical twisting (LRol) are replacements of a conserved carboxyterminal cysteine residue with either tyrosine or serine. These results suggest that disulfide bonding is important in collagen organization and that a deficit or surplus of disulfides may cause cuticle alterations of opposite handedness. In contrast to other collagens, glycine replacement mutations in the Gly-X-Y repeats of sqt-1 cause very mild phenotypes. Nonsense mutations of both sqt-1 and rol-6 cause nearly, but not totally, wild-type phenotypes. A nonsense mutation in sqt-1 suppresses the phenotype of rol-6 RRol mutations, suggesting that rol-6 collagen function is dependent on the presence of sqt-1 collagen. Mutations of sqt-1 are not suppressed by a rol-6 nonsense mutation, however, indicating that sqt-1 collagen can function independently of rol-6. PMID:8307321

  11. Impact of thrombophilic genes mutations on thrombosis risk in Egyptian nonmetastatic cancer patients.

    PubMed

    Wahba, Mona Ahmed; Ismail, Mona Ahmed; Saad, Abeer Attia; Habashy, Deena Mohamed; Hafeez, Zeinab Mohamed Abdel; Boshnak, Noha Hussein

    2015-04-01

    Venous thromboembolism (VTE) is a common complication in cancer patients. Several genetic risk factors related to thrombophilia are known; however, their contributions to thrombotic tendency in cancer patients have conflicting results. We aimed to determine the prevalence of factor V Leiden (FVL), prothrombin (PTH) G20210A and methylene tetrahydrofolate reductase (MTHFR) C677T gene polymorphisms in Egyptian nonmetastatic cancer patients and their influence on thrombosis risk in those patients. Factor V Leiden, PTH G20210A and MTHFR C677T polymorphisms were detected in 40 cancer patients with VTE (group 1) and 40 cancer patients with no evidence of VTE (group 2) by PCR-based DNA analysis. Factor V and MTHFR mutations were higher in group 1 than in group 2 (factor V heterozygous mutation: 20 vs. 7.5%, homozygous mutation: 10 vs. 2.5%; MTHFR heterozygous mutation: 40 vs. 25%, homozygous mutation 5 vs. 0%, respectively) (P?=?0.03). Mortality rate was higher in group 1 (75%) than in group 2 (25%; P?mutation (P?=?1). Mortality rate was higher in the presence of homozygous and heterozygous factor V mutation (100 and 82%, respectively) compared to the wild type (41%) (P?=?0.0006). Having any of the three studied gene mutations worsened the overall survival (P?=?0.0003). Cox regression proved that both thrombosis and presence of factor V mutation are independent factors affecting survival in cancer patients (P?mutations and risk of VTE in Egyptian cancer patients. Thrombosis and presence of factor V mutation are independent factors that influence survival in those patients. PMID:25565385

  12. MECP2 and CDKL5 gene mutation analysis in Chinese patients with Rett syndrome.

    PubMed

    Li, Mei-Rong; Pan, Hong; Bao, Xin-Hua; Zhang, Yu-Zhi; Wu, Xi-Ru

    2007-01-01

    Rett syndrome (RTT) is a progressive neurodevelopmental disorder that is caused by mutations in the X-linked methyl-CpG-binding protein2 (MECP2) gene. In this study, the MECP2 sequences in 121 unrelated Chinese patients with classical or atypical RTT were screened for deletions and mutations. In all, we identified 45 different MECP2 mutations in 102 of these RTT patients. The p. T158M mutation (15.7%) was the most common, followed in order of frequency by p. R168X (11.8%), p. R133C (6.9%), p. R270X (6.9%), p. G269fs (6.9%), p. R255X (4.9%), and p. R306C (3.9%). In addition, we identified five novel MECP2 mutations: three missense (p. K305E, p. V122M, p. A358T), one insertion (c.45-46insGGAGGA), and one 22 bp deletion (c.881-902del22). Large deletions represented 10.5% of all identified MECP2 mutations. Conversely, mutations in exon 1 appeared to be rare (0.9%). The remaining cases without MECP2 mutations were screened for the cyclin-dependent kinase-like 5 (CDKL5) gene using denaturing high-performance liquid chromatography (DHPLC). One synonymous mutation (p. I72I) was found in exon 5, suggesting that CDKL5 is a rare cause of RTT. The overall MECP2 mutation detection rate for this patient series was 84.3:87.9% in 107 classical RTT cases and 57.1% in 14 atypical RTT cases. Moreover, there were two patients with homozygous mutations and normal female karyotypes. However, we did not pinpoint a significant relationship between genotype and phenotype in these cases. PMID:17089071

  13. Novel MEK1 Mutation Identified by Mutational Analysis of Epidermal Growth Factor Receptor Signaling Pathway Genes in Lung Adenocarcinoma

    PubMed Central

    Marks, Jenifer L.; Gong, Yixuan; Chitale, Dhananjay; Golas, Ben; McLellan, Michael D.; Kasai, Yumi; Ding, Li; Mardis, Elaine R.; Wilson, Richard K.; Solit, David; Levine, Ross; Michel, Kathrin; Thomas, Roman K.; Rusch, Valerie W.; Ladanyi, Marc; Pao, William

    2008-01-01

    Genetic lesions affecting a number of kinases and other elements within the epidermal growth factor receptor (EGFR) signaling pathway have been implicated in the pathogenesis of human non–small-cell lung cancer (NSCLC). We performed mutational profiling of a large cohort of lung adenocarcinomas to uncover other potential somatic mutations in genes of this pathway that could contribute to lung tumorigenesis. We have identified in 2 of 207 primary lung tumors a somatic activating mutation in exon 2 of MEK1 (i.e., mitogen-activated protein kinase kinase 1 or MAP2K1) that substitutes asparagine for lysine at amino acid 57 (K57N) in the nonkinase portion of the kinase. Neither of these two tumors harbored known mutations in other genes encoding components of the EGFR signaling pathway (i.e., EGFR, HER2, KRAS, PIK3CA, and BRAF). Expression of mutant, but not wild-type, MEK1 leads to constitutive activity of extracellular signal–regulated kinase (ERK)-1/2 in human 293T cells and to growth factor–independent proliferation of murine Ba/F3 cells. A selective MEK inhibitor, AZD6244, inhibits mutant-induced ERK activity in 293T cells and growth of mutant-bearing Ba/F3 cells. We also screened 85 NSCLC cell lines for MEK1 exon 2 mutations; one line (NCI-H1437) harbors a Q56P substitution, a known transformation-competent allele of MEK1 originally identified in rat fibroblasts, and is sensitive to treatment with AZD6244. MEK1 mutants have not previously been reported in lung cancer and may provide a target for effective therapy in a small subset of patients with lung adenocarcinoma. PMID:18632602

  14. CYP21 Gene Mutation Analysis in 198 Patients with 21- Hydroxylase Deficiency in The Netherlands: Six Novel Mutations and a Specific Cluster of Four Mutations

    Microsoft Academic Search

    NIKE M. M. L. STIKKELBROECK; LIES H. HOEFSLOOT; ILSE J. DE WIJS; BARTO J. OTTEN; R. M. M. HERMUS; ERIK A. SISTERMANS

    Congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency is one of the most common autosomal recessive disorders. The aim of this study was to assess the frequencies of CYP21 mutations and to study genotype-phenotype corre- lation in a large population of Dutch 21-hydroxylase deficient patients. From 198 patients with 21-hydroxylase deficiency, 370 unrelated alleles were studied. Gene deletion\\/conversion was present

  15. Mutation analysis of the HDAC 1, 2, 8 and CDKL5 genes in Rett syndrome patients without mutations in MECP2.

    PubMed

    Huppke, Peter; Ohlenbusch, Andreas; Brendel, Cornelia; Laccone, Franco; Gärtner, Jutta

    2005-08-30

    Mutations in the MECP2 gene are found in only 80% of patients with Rett syndrome (RTT). Therefore other genes have to be involved in the pathogenesis of RTT. By using our defined diagnostic criteria we first re-evaluated 50 girls with possible RTT in whom the sequencing of the MECP2 gene had not revealed any mutations. Only 15 of theses patients fulfilled all criteria for RTT and could be considered to have classical RTT. In eight of these, further molecular analyses revealed large deletions of the MECP2 gene. In the remaining seven girls we then analyzed the genes HDAC1, HDAC2, and HDAC8 that encode for the histone deacetylases 1, 2, and 8 which interact with MeCP2 and are essential for its function. Although these histone deacetylase genes have been considered as good candidate genes for RTT our molecular analysis of these genes did not detect any mutations. Because recently mutations in CDKL5 were reported in patients with RTT, we included this gene in our analysis but failed to detect any mutations. We conclude that only a subgroup of girls with possible RTT and no detectable mutation in the sequencing of the MECP2 gene do really have classical RTT. In many of those large MECP2 gene deletions can be detected by further analysis. The genes HDAC1, HDAC2, and HDAC8 do not seem to play a role in the pathogenesis of RTT and at least in our subgroup no mutations in the CDKL5 gene were detected. PMID:16086395

  16. Germline mutations of the dpc4 gene in Korean juvenile polyposis patients.

    PubMed

    Kim, I J; Ku, J L; Yoon, K A; Heo, S C; Jeong, S Y; Choi, H S; Hong, K H; Yang, S K; Park, J G

    2000-05-15

    Juvenile polyposis is an uncommon condition characterized by the development of multiple (usually more than 5) juvenile polyps in the gastrointestinal tract, especially in the colon. This disease usually occurs during childhood, and is inherited in an autosomal dominant fashion. It has been suggested that the dpc4 (deleted in pancreatic carcinoma, locus 4) gene, which is located on chromosome 18q21.1, might cause juvenile polyposis. The dpc4 (smad4) gene is a candidate tumor-suppressor gene and may play a role in the TGF-beta-signaling pathway. To confirm the idea that alterations of the dpc4 gene may result in juvenile polyposis, we screened 5 Korean juvenile-polyposis patients by PCR-SSCP (single-strand conformation polymorphism) analysis and bi-directional sequencing. There were germline mutations of the dpc4 gene in 3 out of the 5 patients: 2 had a genetic alteration in exon 9 and the third had a mutation in exon 8. These germline mutations occurred in the C-terminus of the dpc4 gene, similar to most published mutations. One patient exhibited a non-sense mutation (codon 388), which changed a glutamine codon (CAG) to a stop codon (TAG). The second patient harbored a mis-sense mutation (codon 390), causing a non-conservative amino-acid change . The third patient had a mis-sense mutation in exon 8 (codon 361), which altered an arginine codon (CGC) into a histidine codon (CAC). PMID:10797267

  17. Identification of a germ-line mutation in the p53 gene in a patient with an intracranial ependymoma

    SciTech Connect

    Metzger, A.K.; Duyk, G.; Daneshvar, L.; Edwards, M.S.B.; Cogen, P.H. (Univ. of California, San Francisco (United States)); Sheffield, V.C. (Univ. of Iowa, Iowa City (United States))

    1991-09-01

    The authors detected a germ-line mutation of the p53 gene in a patient with a malignant ependymoma of the posterior fossa. This mutation, which was found at codon 242, resulted in an amino acid substitution in a highly conserved site of exon 7 of the p53 gene; the same mutation was found in both the germ-line and tumor tissue. This is the most common region of previously described somatic p53 mutations in tumor specimens and of the germ-line p53 mutations in patients with the Li-Fraumeni cancer syndrome. Evaluation of the patient's family revealed several direct maternal and paternal relatives who had died at a young age from different types of cancer. The association of a germ-line p53 mutation with an intracranial malignancy and a strong family history of cancer suggests that p53 gene mutations predispose a person to malignancy and, like retinoblastoma mutations, may be inherited.

  18. Missense mutation of the {beta}-cardiac myosin heavy-chain gene in hypertrophic cardiomyopathy

    SciTech Connect

    Arai, Shoichi; Matsuoka, Rumiko; Hirayama, Kenji; Sakurai, Hisanao [Heart Inst. of Japan, Tokyo (Japan)] [and others

    1995-09-11

    Hypertrophic cardiomyopathy occurs as an autosomal dominant familial disorder or as a sporadic disease without familial involvement. We describe a missense mutation of the {beta}-cardiac myosin heavy chain (MHC) gene, a G to T transversion (741 Gly{r_arrow}Trp) identified by direct sequencing of exon 20 in four individuals affected with familial hypertrophic cardiomyopathy. Three individuals with sporadic hypertrophic cardiomyopathy, whose parents are clinically and genetically unaffected, had sequence variations of exon 34 of the {alpha}-cardiac MHC gene (a C to T transversion, 1658 Asp{r_arrow}Asp, resulting in FokI site polymorphism), of intron 33 of the {alpha}-cardiac MHC gene (a G to A and an A to T transversion), and also of intron 14 of the {beta}-cardiac MHC gene (a C to T transversion in a patient with Noonan syndrome). Including our case, 30 missense mutations of the {beta}-cardiac MHC gene in 49 families have been reported thus far worldwide. Almost all are located in the region of the gene coding for the globular head of the molecule, and only one mutation was found in both Caucasian and Japanese families. Missense mutations of the {Beta}-cardiac MHC gene in hypertrophic cardiomyopathy may therefore differ according to race. 29 refs., 6 figs., 3 tabs.

  19. Identification of two poorly prognosed ovarian carcinoma subtypes associated with CHEK2 germ-line mutation and non-CHEK2 somatic mutation gene signatures

    PubMed Central

    Ow, Ghim Siong; Ivshina, Anna V; Fuentes, Gloria; Kuznetsov, Vladimir A

    2014-01-01

    High-grade serous ovarian cancer (HG-SOC), a major histologic type of epithelial ovarian cancer (EOC), is a poorly-characterized, heterogeneous and lethal disease where somatic mutations of TP53 are common and inherited loss-of-function mutations in BRCA1/2 predispose to cancer in 9.5–13% of EOC patients. However, the overall burden of disease due to either inherited or sporadic mutations is not known.     We performed bioinformatics analyses of mutational and clinical data of 334 HG-SOC tumor samples from The Cancer Genome Atlas to identify novel tumor-driving mutations, survival-significant patient subgroups and tumor subtypes potentially driven by either hereditary or sporadic factors. We identified a sub-cluster of high-frequency mutations in 22 patients and 58 genes associated with DNA damage repair, apoptosis and cell cycle. Mutations of CHEK2, observed with the highest intensity, were associated with poor therapy response and overall survival (OS) of these patients (P = 8.00e-05), possibly due to detrimental effect of mutations at the nuclear localization signal. A 21-gene mutational prognostic signature significantly stratifies patients into relatively low or high-risk subgroups with 5-y OS of 37% or 6%, respectively (P = 7.31e-08). Further analysis of these genes and high-risk subgroup revealed 2 distinct classes of tumors characterized by either germline mutations of genes such as CHEK2, RPS6KA2 and MLL4, or somatic mutations of other genes in the signature. Our results could provide improvement in prediction and clinical management of HG-SOC, facilitate our understanding of this complex disease, guide the design of targeted therapeutics and improve screening efforts to identify women at high-risk of hereditary ovarian cancers distinct from those associated with BRCA1/2 mutations. PMID:24879340

  20. Mutations That Alter the Timing and Pattern of Cubitus Interruptus Gene Expression in Drosophila Melanogaster

    PubMed Central

    Slusarski, D. C.; Motzny, C. K.; Holmgren, R.

    1995-01-01

    The cubitus interruptus (ci) gene is a member of the Drosophila segment polarity gene family and encodes a protein with a zinc finger domain homologous to the vertebrate Gli genes and the nematode tra-1 gene. Three classes of existing mutations in the ci locus alter the regulation of ci expression and can be used to examine ci function during development. The first class of ci mutations causes interruptions in wing veins four and five due to inappropriate expression of the ci product in the posterior compartment of imaginal discs. The second class of mutations eliminates ci protein early in embryogenesis and causes the deletion of structures that are derived from the region including and adjacent to the engrailed expressing cells. The third class of mutations eliminates ci protein later in embryogenesis and blocks the formation of the ventral naked cuticle. The loss of ci expression at these two different stages in embryonic development correlates with the subsequent elimination of wingless expression. Adults heterozygous for the unique ci(Ce) mutation have deletions between wing veins three and four. A similar wing defect is present in animals mutant for the segment polarity gene fused that encodes a putative serine/threonine kinase. In ci(Ce)/+ and fused mutants, the deletions between wing veins three and four correlate with increased ci protein levels in the anterior compartment. Thus, proper regulation of both the ci mRNA and protein appears to be critical for normal Drosophila development. PMID:7705626

  1. GeneChip{sup {trademark}} screening assay for cystic fibrosis mutations

    SciTech Connect

    Cronn, M.T.; Miyada, C.G.; Fucini, R.V. [Affymetrix, Santa Clara, CA (United States)] [and others

    1994-09-01

    GeneChip{sup {trademark}} assays are based on high density, carefully designed arrays of short oligonucleotide probes (13-16 bases) built directly on derivatized silica substrates. DNA target sequence analysis is achieved by hybridizing fluorescently labeled amplification products to these arrays. Fluorescent hybridization signals located within the probe array are translated into target sequence information using the known probe sequence at each array feature. The mutation screening assay for cystic fibrosis includes sets of oligonucleotide probes designed to detect numerous different mutations that have been described in 14 exons and one intron of the CFTR gene. Each mutation site is addressed by a sub-array of at least 40 probe sequences, half designed to detect the wild type gene sequence and half designed to detect the reported mutant sequence. Hybridization with homozygous mutant, homozygous wild type or heterozygous targets results in distinctive hybridization patterns within a sub-array, permitting specific discrimination of each mutation. The GeneChip probe arrays are very small (approximately 1 cm{sup 2}). There miniature size coupled with their high information content make GeneChip probe arrays a useful and practical means for providing CF mutation analysis in a clinical setting.

  2. The original shaker-with-syndactylism mutation (sy) is a contiguous gene deletion syndrome.

    PubMed

    Johnson, K R; Cook, S A; Zheng, Q Y

    1998-11-01

    Tests for allelism among mice with four different mutant alleles at the shaker-with-syndactylism locus on mouse Chromosome (Chr) 18 provide evidence that the original radiation-induced mutation, sy, is a deletion including at least two genes associated with distinct phenotypes. Mice homozygous for sy have syndactylous feet and other skeletal malformations, are deaf, and exhibit abnormal behavior characteristic of vestibular dysfunction. Two less severe spontaneous mutations, shown to be allelic with sy, cause syndactylism when homozygous (hence named fused phalanges, sy(fp) and sy(fp-2J)), but do not affect hearing and behavior. Here we describe a third spontaneous mutation allelic with sy that does not affect foot morphology (hence named no syndactylism, sy(ns)), but that does cause deafness and balance defects when homozygous. Complementation test results indicate that sy(fp) and sy(fp-2J) are alleles of the same gene, but that sy(ns) is an allele of a different gene. The original sy mutation, therefore, includes both of the genes defined by these three spontaneous mutations. Typing of DNA markers in sy/sy mice revealed a deletion of approximately 1 cM in the sy region of Chr 18, including D18Mit52, D18Mit124, D18Mit181, and D18Mit205. The genetic relationships described here will aid in positional cloning efforts to identify the genes responsible for the disparate phenotypes associated with the sy locus. PMID:9799839

  3. The Nature and Extent of Mutational Pleiotropy in Gene Expression of Male Drosophila serrata

    PubMed Central

    McGuigan, Katrina; Collet, Julie M.; McGraw, Elizabeth A.; Ye, Yixin H.; Allen, Scott L.; Chenoweth, Stephen F.; Blows, Mark W.

    2014-01-01

    The nature and extent of mutational pleiotropy remain largely unknown, despite the central role that pleiotropy plays in many areas of biology, including human disease, agricultural production, and evolution. Here, we investigate the variation in 11,604 gene expression traits among 41 mutation accumulation (MA) lines of Drosophila serrata. We first confirmed that these expression phenotypes were heritable, detecting genetic variation in 96% of them in an outbred, natural population of D. serrata. Among the MA lines, 3385 (29%) of expression traits were variable, with a mean mutational heritability of 0.0005. In most traits, variation was generated by mutations of relatively small phenotypic effect; putative mutations with effects of greater than one phenotypic standard deviation were observed for only 8% of traits. With most (71%) traits unaffected by any mutation, our data provide no support for universal pleiotropy. We further characterized mutational pleiotropy in the 3385 variable traits, using sets of 5, randomly assigned, traits. Covariance among traits chosen at random with respect to their biological function is expected only if pleiotropy is extensive. Taking an analytical approach in which the variance unique to each trait in the random 5-trait sets was partitioned from variance shared among traits, we detected significant (at 5% false discovery rate) mutational covariance in 21% of sets. This frequency of statistically supported covariance implied that at least some mutations must pleiotropically affect a substantial number of traits (>70; 0.6% of all measured traits). PMID:24402375

  4. The nature and extent of mutational pleiotropy in gene expression of male Drosophila serrata.

    PubMed

    McGuigan, Katrina; Collet, Julie M; McGraw, Elizabeth A; Ye, Yixin H; Allen, Scott L; Chenoweth, Stephen F; Blows, Mark W

    2014-03-01

    The nature and extent of mutational pleiotropy remain largely unknown, despite the central role that pleiotropy plays in many areas of biology, including human disease, agricultural production, and evolution. Here, we investigate the variation in 11,604 gene expression traits among 41 mutation accumulation (MA) lines of Drosophila serrata. We first confirmed that these expression phenotypes were heritable, detecting genetic variation in 96% of them in an outbred, natural population of D. serrata. Among the MA lines, 3385 (29%) of expression traits were variable, with a mean mutational heritability of 0.0005. In most traits, variation was generated by mutations of relatively small phenotypic effect; putative mutations with effects of greater than one phenotypic standard deviation were observed for only 8% of traits. With most (71%) traits unaffected by any mutation, our data provide no support for universal pleiotropy. We further characterized mutational pleiotropy in the 3385 variable traits, using sets of 5, randomly assigned, traits. Covariance among traits chosen at random with respect to their biological function is expected only if pleiotropy is extensive. Taking an analytical approach in which the variance unique to each trait in the random 5-trait sets was partitioned from variance shared among traits, we detected significant (at 5% false discovery rate) mutational covariance in 21% of sets. This frequency of statistically supported covariance implied that at least some mutations must pleiotropically affect a substantial number of traits (>70; 0.6% of all measured traits). PMID:24402375

  5. Novel Mutations in the CLCN1 Gene of Myotonia Congenita: 2 Case Reports

    PubMed Central

    Lakraj, Amanda Amrita; Miller, Geoffrey; Vortmeyer, Alexander O.; Khokhar, Babar; Nowak, Richard J.; DiCapua, Daniel B.

    2013-01-01

    Introduction: Myotonia Congenita is an inherited myotonia that is due to a mutation in the skeletal muscle chloride channel CLCN1. These mutations lead to reduced sarcolemmal chloride conductance, causing delayed muscle relaxation that is evident as clinical and electrical myotonia. Methods: We report the clinical presentations of two individuals with Myotonia Congenita (MC). Results: Patient 1 has been diagnosed with the recessive form of MC, known as the Becker variant, and Patient 2 has been diagnosed with the dominant form of MC, known as the Thomsen variant. In both patients, the diagnosis was made based on the clinical presentation, EMG and CLCN1 gene sequencing. Patient 1 also had a muscle biopsy. Conclusions: Genetic testing in both patients reveals previously unidentified mutations in the CLCN1 gene specific to Myotonia Congenita. We report the salient clinical features of each patient and discuss the effects and common types of CLCN1 mutations and review the literature. PMID:23483815

  6. Mutation profile of the CDH23 gene in 56 probands with Usher syndrome type I.

    PubMed

    Oshima, A; Jaijo, T; Aller, E; Millan, J M; Carney, C; Usami, S; Moller, C; Kimberling, W J

    2008-06-01

    Mutations in the human gene encoding cadherin23 (CDH23) cause Usher syndrome type 1D (USH1D) and nonsyndromic hearing loss. Individuals with Usher syndrome type I have profound congenital deafness, vestibular areflexia and usually begin to exhibit signs of RP in early adolescence. In the present study, we carried out the mutation analysis in all 69 exons of the CDH23 gene in 56 Usher type 1 probands already screened for mutations in MYO7A. A total of 18 of 56 subjects (32.1%) were observed to have one or two CDH23 variants that are presumed to be pathologic. Twenty one different pathologic genome variants were observed of which 15 were novel. Out of a total of 112 alleles, 31 (27.7%) were considered pathologic. Based on our results it is estimated that about 20% of patients with Usher syndrome type I have CDH23 mutations. PMID:18429043

  7. A novel nonsense mutation of the KAL1 gene (p.Trp204*) in Kallmann syndrome

    PubMed Central

    El Husny, Antonette Souto; Raiol-Moraes, Milene; Fernandes-Caldato, Milena Coelho; Ribeiro-dos-Santos, Ândrea

    2014-01-01

    Objective To describe a novel KAL1 mutation in patients affected by Kallmann syndrome. Setting Endocrinology Clinic of the Joăo de Barros Barreto University Hospital – Federal University of Pará, Brazil. Methods Clinical examination, hormone assays and sequencing of exons 5, 6 and 9 of the KAL1 gene in four Brazilian brothers with Kallmann syndrome. Results Detected a novel KAL1 mutation, c.612G.A/p.Trp204*, in four hemizygous brothers with Kallmann syndrome, and five heterozygous female family members. Conclusion The novel p.Trp204* mutation of the KAL1 gene results in the production of a truncated anosmin-1 enzyme in patients with Kallmann syndrome. This finding broadens the spectrum of pathogenic mutations for this disease. PMID:25328414

  8. Two Mutations in Surfactant Protein C Gene Associated with Neonatal Respiratory Distress

    PubMed Central

    Tarocco, Anna; Ballardini, Elisa; Contiero, Maria Raffaella; Garani, Giampaolo; Fanaro, Silvia

    2015-01-01

    Multiple mutations of surfactant genes causing surfactant dysfunction have been described. Surfactant protein C (SP-C) deficiency is associated with variable clinical manifestations ranging from neonatal respiratory distress syndrome to lethal lung disease. We present an extremely low birth weight male infant with an unusual course of respiratory distress syndrome associated with two mutations in the SFTPC gene: C43-7G>A and 12T>A. He required mechanical ventilation for 26 days and was treated with 5 subsequent doses of surfactant with temporary and short-term efficacy. He was discharged at 37 weeks of postconceptional age without any respiratory support. During the first 16 months of life he developed five respiratory infections that did not require hospitalization. Conclusion. This mild course in our patient with two mutations is peculiar because the outcome in patients with a single SFTPC mutation is usually poor. PMID:26000190

  9. Adhalin gene mutations in patients with autosomal recessive childhood onset muscular dystrophy with adhalin deficiency.

    PubMed Central

    Kawai, H; Akaike, M; Endo, T; Adachi, K; Inui, T; Mitsui, T; Kashiwagi, S; Fujiwara, T; Okuno, S; Shin, S

    1995-01-01

    Homozygous adhalin gene mutations were found in three patients from two consanguineous families with autosomal recessive childhood onset muscular dystrophy. Muscle biopsies from patients in each family showed complete absence of adhalin. Sequencing of adhalin cDNA prepared from skeletal muscle by reverse transcription PCR demonstrated a cytosine to thymidine substitution at nt 229 in the patient in family 1 and an adenine to guanine substitution at nt 410 and a 15-base insertion between nt 408 and 409 in the two patients in family 2. Sequencing of genomic DNA prepared from peripheral blood leukocytes by PCR confirmed these mutations. The parents in each family were found to be heterozygous for the respective mutations. These adhalin gene mutations are presumed to be responsible for the absence of adhalin in the skeletal muscle. Adhalin deficiency likely causes disruption of the muscle cell membrane, resulting in dystrophic changes in the skeletal muscle similar to dystrophin deficiency in Duchenne muscular dystrophy. Images PMID:7657792

  10. The stop mutation R553X in the CFTR gene results in exon skipping

    SciTech Connect

    Hull, J.; Shackleton, S.; Harris, A. (Institute of Molecular Medicine, Oxford (United Kingdom))

    1994-01-15

    Stop or nonsense mutations are known to disrupt gene function in a number of different ways. The authors have studied the effects of the stop mutation R553X in exon 11 of the CFTR gene by analyzing mRNA extracted from nasal epithelial cells harvested from patients with cystic fibrosis. Four patients who were compound heterozygotes for the R553X mutation were studied. Ten non-CF control subjects were also studied. In all four patients, full-length CFTR mRNA was identified, but only a very small proportion of this was derived from the R553X allele. A smaller transcript, lacking exon 11, was also seen in the R553X patients but not in the controls. Most of this transcript was derived from the R553X allele. These results suggest that the R553X mutation results in skipping of the exon in which it is located. 14 refs., 3 figs.

  11. Identification of a nonsense mutation in the PAX9 gene in molar oligodontia.

    PubMed

    Nieminen, P; Arte, S; Tanner, D; Paulin, L; Alaluusua, S; Thesleff, I; Pirinen, S

    2001-10-01

    Development of dentition is controlled by numerous genes, as has been shown by experimental animal studies and mutations that have been identified by genetic studies in man. Here we report a nonsense mutation in the PAX9 gene that is associated with molar tooth agenesis in a Finnish family. The A340T transversion creates a stop codon at lysine 114, and truncates the coded PAX9 protein at the end of the DNA-binding paired-box. All the affected members of the family were heterozygous for the mutation. The tooth agenesis phenotype involves all permanent second and third molars and most of the first molars and resembles the earlier reported phenotype that was also associated with a PAX9 mutation. The phenotype is presumably a consequence of haploinsufficiency of PAX9. In another Finnish family with molar tooth agenesis, we could not find similar sequence changes in PAX9. PMID:11781684

  12. Mutation and virulence assessment of chromosomal genes of Rhodococcus equi 103

    PubMed Central

    Pei, Yanlong; Parreira, Valeria; Nicholson, Vivian M.; Prescott, John F.

    2007-01-01

    Rhodococcus equi can cause severe or fatal pneumonia in foals as well as in immunocompromised animals and humans. Its ability to persist in macrophages is fundamental to how it causes disease, but the basis of this is poorly understood. To examine further the general application of a recently developed system of targeted gene mutation and to assess the importance of different genes in resistance to innate immune defenses, we disrupted the genes encoding high-temperature requirement A (htrA), nitrate reductase (narG), peptidase D (pepD), phosphoribosylaminoimidazole-succinocarboxamide synthase (purC), and superoxide dismutase (sodC) in strain 103 of R. equi using a double-crossover homologous recombination approach. Virulence testing by clearance after intravenous injection in mice showed that the htrA and narG mutants were fully attenuated, the purC and sodC mutants were unchanged, and the pepD mutant was slightly attenuated. Complementation with the pREM shuttle plasmid restored the virulence of the htrA and pepD mutants but not that of the narG mutant. A single-crossover mutation approach was simpler and faster than the double-crossover homologous recombination technique and was used to obtain mutations in 6 other genes potentially involved in virulence (clpB, fadD8, fbpB, glnA1, regX3, and sigF). These mutants were not attenuated in the mouse clearance assay. We were not able to obtain mutants for genes furA, galE, and sigE using the single-crossover mutation approach. In summary, the targeted-mutation system had general applicability but was not always completely successful, perhaps because some genes are essential under the growth conditions used or because the success of mutation depends on the target genes. PMID:17193875

  13. NF1 gene mutations and loss of heterozygosity in constitutional and tumor tissues

    SciTech Connect

    Abernathy, C.R.; Colman, S.D.; Ho, V.T. [Univ. of Florida, Gainesville, FL (United States)] [and others

    1994-09-01

    Neurofibromatosis type 1 (NF1) is a common autosomal dominant disorder characterized by neurofibromas, cafe-au-lait spots, and Lisch nodules. NF1 patients are at increased risk for certain types of malignancies such as brain tumors, sarcomas, and leukemias. NF1 is caused by disrupting mutations of the NF1 gene (17q11.2), with half of cases caused by new mutation. Less than 50 constitutional mutations have thus far been reported, with only one recurring. We are pursuing mutation analysis in germline and tumor tissues from NF1 patients (and non-NF1 tumors) by heteroduplex analysis (HDA) and SSCP, simultaneously testing for large deletions by Southern blots and loss-of-heterozygosity (LOH) studies. HDA has so far identified 18 exon mutations/variants in 110 unrelated patients (3/4 of exons tested), including splice mutations, insertions, deletions, and point changes. RT-PCR analysis in our four clearly-inactivating mutations showed that all four mutant alleles are expressed. This suggests that aberrant forms of the protein (neurofibromin) may be produced, which may shed light on yet-unknown functions. In a study of 10 new-mutations parent-child sets, one very mildly-affected patient showed LOH of an entire NF1 allele, in contrast to other patients reported who have similar deletions and a severe phenotype. This mutation is materally-derived, which is unusual given that over 90% of new mutations are thought to be of paternal origin. Preliminary LOH studies in one new-mutation patient indicate large independent somatic deletions involving the maternal NF1 allele in several neurofibromas, implicating the two-hit tumor suppressor system in neurofibroma formation. no other losses on chromosome 17 are evident, and blood and tumor karyotypes are normal. We are attempting to identify the germline mutation, confirm the somatic findings, and find the boundaries of the deletions.

  14. Four novel mutations in the lactase gene (LCT) underlying congenital lactase deficiency (CLD)

    PubMed Central

    2009-01-01

    Background Congenital lactase deficiency (CLD) is a severe gastrointestinal disorder of newborns. The diagnosis is challenging and based on clinical symptoms and low lactase activity in intestinal biopsy specimens. The disease is enriched in Finland but is also present in other parts of the world. Mutations encoding the lactase (LCT) gene have recently been shown to underlie CLD. The purpose of this study was to identify new mutations underlying CLD in patients with different ethnic origins, and to increase awareness of this disease so that the patients could be sought out and treated correctly. Methods Disaccharidase activities in intestinal biopsy specimens were assayed and the coding region of LCT was sequenced from five patients from Europe with clinical features compatible with CLD. In the analysis and prediction of mutations the following programs: ClustalW, Blosum62, PolyPhen, SIFT and Panther PSEC were used. Results Four novel mutations in the LCT gene were identified. A single nucleotide substitution leading to an amino acid change S688P in exon 7 and E1612X in exon 12 were present in a patient of Italian origin. Five base deletion V565fsX567 leading to a stop codon in exon 6 was found in one and a substitution R1587H in exon 12 from another Finnish patient. Both Finnish patients were heterozygous for the Finnish founder mutation Y1390X. The previously reported mutation G1363S was found in a homozygous state in two siblings of Turkish origin. Conclusion This is the first report of CLD mutations in patients living outside Finland. It seems that disease is more common than previously thought. All mutations in the LCT gene lead to a similar phenotype despite the location and/or type of mutation. PMID:19161632

  15. Mutations in the gene for X-linked adrenoleukodystrophy in patients with different clinical phenotypes.

    PubMed Central

    Braun, A; Ambach, H; Kammerer, S; Rolinski, B; Stöckler, S; Rabl, W; Gärtner, J; Zierz, S; Roscher, A A

    1995-01-01

    Recently, the gene for the most common peroxisomal disorder, X-linked adrenoleukodystrophy (X-ALD), has been described encoding a peroxisomal membrane transporter protein. We analyzed the entire protein-coding sequence of this gene by reverse-transcription PCR, SSCP, and DNA sequencing in five patients with different clinical expression of X-ALD and in their female relatives; these clinical expressions were cerebral childhood ALD, adrenomyeloneuropathy (AMN), and "Addison disease only" (ADO) phenotype. In the three patients exhibiting the classical picture of severe childhood ALD we identified in the 5' portion of the X-ALD gene a 38-bp deletion that causes a frameshift mutation, a 3-bp deletion leading to a deletion of an amino acid in the ATP-binding domain of the ALD protein, and a missense mutation. In the patient with the clinical phenotype of AMN, a nonsense mutation in codon 212, along with a second site mutation at codon 178, was observed. Analysis of the patient with the ADO phenotype revealed a further missense mutation at a highly conserved position in the ALDP/PMP70 comparison. The disruptive nature of two mutations (i.e., the frameshift and the nonsense mutation) in patients with biochemically proved childhood ALD and AMN further strongly supports the hypothesis that alterations in this gene play a crucial role in the pathogenesis of X-ALD. Since the current biochemical techniques for X-ALD carrier detection in affected families lack sufficient reliability, our procedure described for systematic mutation scanning is also capable of improving genetic counseling and prenatal diagnosis. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7717396

  16. Mortality risk in men is associated with a common mutation in the methylenetetrahydrofolate reductase gene (MTHFR)

    Microsoft Academic Search

    Bastiaan T Heijmans; Jacobijn Gussekloo; Cornelis Kluft; Simone Droog; A Margot Lagaay; Dick L Knook; Rudi GJ Westendorp; Eline P Slagboom

    1999-01-01

    An elevated level of homocysteine in plasma is associated with the occurrence of cardiovascular disease. A common ala-to-val mutation in the methylenetetrahydrofolate reductase gene (MTHFR) is associated with an elevated level of plasma homocysteine. We studied the possible detrimental effects of the MTHFR mutation on mortality. Within a population-based study in the city of Leiden, the Netherlands, we first compared

  17. A double missense mutation in the ATM gene of a Dutch family with ataxia telangiectasia

    Microsoft Academic Search

    M. J. van Belzen; Johan A. P. Hiel; Corry M. R. Weemaes; F. J. M. Gabreëls; Baziel G. M. van Engelen; Dominique F. C. M. Smeets; L. P. W. J. van den Heuvel

    1998-01-01

    Ataxia telangiectasia (AT) is an autosomal recessive disorder characterized by cerebellar ataxia, telangiectasia, immunodeficiency,\\u000a elevated ?-fetoprotein levels, chromosomal instability, predisposition to cancer, and radiation sensitivity. We report the\\u000a identification of a new, double missense mutation in the ataxia telangiectasia gene (ATM) of a Dutch family. This homozygous\\u000a mutation consists of two consecutive base substitutions in exon 55: a T?G transversion

  18. Extracellular Matrix Protein 1 Gene (ECM1) Mutations in Lipoid Proteinosis and Genotype-Phenotype Correlation

    Microsoft Academic Search

    Takahiro Hamada; Vesarat Wessagowit; Andrew P. South; Gabrielle H. S. Ashton; Ien Chan; Noritaka Oyama; Apatorn Siriwattana; Prachiya Jewhasuchin; Somyot Charuwichitratana; Devinder M. Thappa; Patsy Lenane; Bernice Krafchik; Kanokvalai Kulthanan; Hiroshi Shimizu; Tamer I. Kaya; Mehmet E. Erdal; Mauro Paradisi; Amy S. Paller; Mariko Seishima; Takashi Hashimoto; John A. McGrath

    2003-01-01

    The autosomal recessive disorder lipoid proteinosis results from mutations in extracellular matrix protein 1 (ECM1), a glycoprotein expressed in several tissues (including skin) and composed of two alternatively spliced isoforms, ECM1a and ECM1b, the latter lacking exon 7 of this 10-exon gene (ECM1). To date, mutations that either affect ECM1a alone or perturb both ECM1 transcripts have been demonstrated in

  19. Hereditary spastic paraplegia-like disorder due to a mitochondrial ATP6 gene point mutation

    Microsoft Academic Search

    Christophe Verny; Naig Guegen; Valerie Desquiret; Arnaud Chevrollier; Adriana Prundean; Frederic Dubas; Julien Cassereau; Marc Ferre; Patrizia Amati-Bonneau; Dominique Bonneau; Pascal Reynier; Vincent Procaccio

    2011-01-01

    Hereditary spastic paraplegia refers to a genetically heterogeneous syndrome. We identified five members of a family suffering from a late-onset spastic paraplegia-like disorder, carrying the homoplasmic m.9176T>C mutation in the mitochondrial ATP6 gene. The clinical severity of the disease observed in the family was correlated with the biochemical and assembly defects of the ATP synthase. The m.9176T>C mutation has been

  20. Mutations in the gene for X-linked adrenoleukodystrophy in patients with different clinical phenotypes

    SciTech Connect

    Braun, A.; Ambach, H.; Kammerer, S.; Rolinski, B.; Roscher, A.; Rabl, W. [Univ. of Munich (Germany); Stoeckler, S. [Univ. of Graz (Germany); Gaertner, J. [Univ. of Duesseldorf (Germany); Zierz, S. [Univ. of Bonn (Germany)

    1995-04-01

    Recently, the gene for the most common peroxisomal disorder, X-linked adrenoleukodystrophy (X-ALD), has been described encoding a peroxisomal membrane transporter protein. We analyzed the entire protein-coding sequence of this gene by reverse-transcription PCR, SSCP, and DNA sequencing in five patients with different clinical expressions were cerebral childhood ALD, adrenomyecloneuropathy (AMN), and {open_quotes}Addison disease only{close_quotes} (AD) phenotype. In the three patients exhibiting the classical picture of severe childhood ALD we identified in the 5{prime} portion of the X-ALD gene a 38-bp deletion that causes a frameshift mutation, a 3-bp deletion leading to a deletion of an amino acid in the ATP-binding domain of the ALD protein, and a missense mutation. In the patient with the clinical phenotype of AMN, a nonsense mutation in codon 212, along with a second site mutation at codon 178, was observed. Analysis of the patient with the ADO phenotype revealed a further missense mutation at a highly conserved position in the ALDP/PMP70 comparison. The disruptive nature of two mutations (i.e., the frameshift and the nonsense mutation) in patients with biochemically proved childhood ALD and AMN further strongly supports the hypothesis that alterations in this gene play a crucial role in the pathogenesis of X-ALD. Since the current biochemical techniques for X-ALD carrier detection in affected families lack sufficient reliability, our procedure described for systematic mutation scanning is also capable of improving genetic counseling and prenatal diagnosis. 19 refs., 6 figs., 3 tabs.

  1. Two novel mutations of the NOTCH3 gene in Korean patients with CADASIL

    Microsoft Academic Search

    Youngho Kim; Jong Sung Kim; Guhwan Kim; Young Joo No; Han-Wook Yoo

    2006-01-01

    Mutations in the NOTCH3 gene (NOTCH3) are responsible for cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), an adult-onset hereditary angiopathy leading to ischemic episodes, vascular dementia and other neurologic deficits. All mutations of NOTCH3 described so far are strictly stereotyped, leading to the gain or loss of a cysteine residue in a given epidermal growth factor (EGF)-like

  2. Novel mutations of ATP2A2 gene in Japanese patients of Darier's disease

    Microsoft Academic Search

    Hidetoshi Takahashi; Yoshiaki Atsuta; Katsuhiko Sato; Akemi Ishida-Yamamoto; Hiroshi Suzuki; Hajime Iizuka

    2001-01-01

    Darier's disease (DD) is a rare, dominantly inherited skin disorder with abnormal keratinization and acantholysis. Recently, mutations of ATP2A2 encoding the sarco\\/endoplasmic reticulum Ca2+-ATPase type 2 isoform (SERCA2) have been reported in Caucasian DD families. In the present study, we examined the ATP2A2 gene mutations of three sporadic (AS1,AS3,AS4) and one familial (AS2) Japanese DD patients. Sequence analysis revealed that

  3. Transcription Profiling and Mutation Detection of Soybean Homoeologous Genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The soybean genome maintains numerous gene duplications, many of which are derived from ancient large-scale duplication. We are interested in exploring the evolutionary fate of duplicated genes and the extent to which gene duplication affects selectable trait variation. We are applying quantitative ...

  4. Missense mutations in cancer suppressor gene TP53 are colocalized with exonic splicing enhancers (ESEs).

    PubMed

    Gorlov, Ivan P; Gorlova, Olga Y; Frazier, Marsha L; Amos, Christopher I

    2004-10-01

    Mutation databases can be viewed as footprints of functional organization of a gene and thus can be used to infer its functional organization. We studied the association of exonic splicing enhancers (ESEs) with missense mutations in the tumor suppressor gene TP53 using the International Agency for Research on Cancer (IARC) mutation database. The goals of the study were: (i) to verify the hypothesis that deleterious missense mutations are colocalized with ESEs; (ii) to identify potentially functional ESE sites in the open reading frame (ORF) of the TP53. If some sequence functions as a splicing enhancer, then nucleotide substitutions in the site will disturb splicing, abrogate p53 function, and cause an increased susceptibility to cancer. Therefore, among cancers showing p53 mutations, more missense mutations are expected within functional ESE sites as compared to non-functional ESE motifs. Using several statistical tests, we found that missense mutations in TP53 are strongly colocalized with ESEs, and that only a small fraction of ESE sites contributes to the association. There are usually one or two ESEs per exon showing a statistically significant association with missense mutations--so-called significant ESE sites. In many respects significant ESE sites are different from those that do not show association with missense mutations. We found that positions of significant ESE sites are codon-dependent--significant ESEs preferentially start from the first position of a codon, whereas non-significant ESEs show no position dependence. Significant ESEs showed a more limited set of sequences compared to non-significant ESEs. These findings suggest that there is a limited number of missense mutations that influence ESE sites and our analysis provides further insight into the types of sites that harbor exonic enhancer elements. PMID:15450416

  5. Mutation screening of the PCDH15 gene in Spanish patients with Usher syndrome type I

    PubMed Central

    Jaijo, Teresa; Oshima, Aki; Aller, Elena; Carney, Carol; Usami, Shin-ichi; Kimberling, William J.

    2012-01-01

    Purpose PCDH15 codes for protocadherin-15, a cell-cell adhesion protein essential in the morphogenesis and cohesion of stereocilia bundles and in the function or preservation of photoreceptor cells. Mutations in the PCDH15 gene are responsible for Usher syndrome type I (USH1F) and non-syndromic hearing loss (DFNB23). The purpose of this work was to perform PCDH15 mutation screening to identify the genetic cause of the disease in a cohort of Spanish patients with Usher syndrome type I and establish phenotype-genotype correlation. Methods Mutation analysis of PCDH15 included additional exons recently identified and was performed by direct sequencing. The screening was performed in 19 probands with USH already screened for mutations in the most prevalent USH1 genes, myosin VIIA (MYO7A) and cadherin-23 (CDH23), and for copy number variants in PCDH15. Results Seven different point mutations, five novel, were detected. Including the large PCDH15 rearrangements previously reported in our cohort of patients, a total of seven of 19 patients (36.8%) were carriers of at least one pathogenic allele. Thirteen out of the 38 screened alleles carried pathogenic PCDH15 variants (34.2%). Conclusions Five out of the seven point mutations reported in the present study are novel, supporting the idea that most PCDH15 mutations are private. Furthermore, no mutational hotspots have been identified. In most patients, detected mutations led to a truncated protein, reinforcing the hypothesis that severe mutations cause the Usher I phenotype and that missense variants are mainly responsible for non-syndromic hearing impairment. PMID:22815625

  6. Mutations in the Drosophila gene encoding ribosomal protein S6 cause tissue overgrowth.

    PubMed Central

    Stewart, M J; Denell, R

    1993-01-01

    We have characterized two P-element-induced, lethal mutations in Drosophila melanogaster which affect the larval hemocytes, mediators of the insect immune response. Each mutant displays larval melanotic tumors characteristic of mutations affecting the insect cellular immune system, and the moribund animals develop grossly hypertrophied hematopoietic organs because of increased cell proliferation and extra rounds of endoreduplication in some hematopoietic cells. Surprisingly, these mutations are due to P element insertions in the 5' regulatory region of the Drosophila gene encoding ribosomal protein S6 and cause a reduction of S6 transcript abundance in mutant larvae. Images PMID:8384310

  7. Missense mutation of the cholecystokinin B receptor gene: Lack of association with panic disorder

    SciTech Connect

    Kato, Tadafumi; Wang, Zhe Wu; Crowe, R.R. [Univ. of Iowa College of Medicine, Iowa City, IA (United States)] [Univ. of Iowa College of Medicine, Iowa City, IA (United States); Zoega, T. [National Univ. Hospital, Reykjavik (Iceland)] [National Univ. Hospital, Reykjavik (Iceland)

    1996-07-26

    Cholecystokinin tetrapeptide (CCK{sub 4}) is known to induce panic attacks in patients with panic disorder at a lower dose than in normal controls. Therefore, the cholecystokinin B (CCK{sub B}) receptor gene is a candidate gene for panic disorder. We searched for mutations in the CCK{sub B} gene in 22 probands of panic disorder pedigrees, using single-strand conformation polymorphism (SSCP) analysis. Two polymorphisms were detected. A polymorphism in an intron (2491 C{yields}A) between exons 4 and 5 was observed in 10 of 22 probands. A missense mutation in the extracellular loop of exon 2 (1550 G{yields}A, Val{sup 125}{yields}Ile) was found in only one proband. This mutation was also examined in additional 34 unrelated patients with panic disorder and 112 controls. The prevalence rate of this mutation was 8.8% in patients with panic disorder (3/34) and 4.4% in controls (5/112). The mutation did not segregate with panic disorder in two families where this could be tested. These results suggest no pathophysiological significance of this mutation in panic disorder. 21 refs., 4 figs., 1 tab.

  8. An association study of HFE gene mutation with idiopathic male infertility in the Chinese Han population

    PubMed Central

    Yu, Xiao-Ying; Wang, Bin-Bin; Xin, Zhong-Cheng; Liu, Tao; Ma, Ke; Jiang, Jian; Fang, Xiang; Yu, Li-Hua; Peng, Yi-Feng; Ma, Xu

    2012-01-01

    Mutations in the haemochromatosis gene (HFE) influence iron status in the general population of Northern Europe, and excess iron is associated with the impairment of spermatogenesis. The aim of this study is to investigate the association between three mutations (C282Y, H63D and S65C) in the HFE gene with idiopathic male infertility in the Chinese Han population. Two groups of Chinese men were recruited: 444 infertile men (including 169 with idiopathic azoospermia) and 423 controls with proven fertility. The HFE gene was detected using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique. The experimental results demonstrated that no C282Y or S65C mutations were detected. Idiopathic male infertility was not significantly associated with heterozygous H63D mutation (odds ratio=0.801, 95% confidence interval=0.452–1.421, ?2=0.577, P=0.448). The H63D mutation frequency did not correlate significantly with the serum luteinizing hormone (LH), follicle-stimulating hormone (FSH) and testosterone (T) levels in infertile men (P=0.896, P=0.404 and P=0.05, respectively). Our data suggest that the HFE H63D mutation is not associated with idiopathic male reproductive dysfunction. PMID:22504868

  9. Analysis of mutations in the entire coding sequence of the factor VIII gene

    SciTech Connect

    Bidichadani, S.I.; Lanyon, W.G.; Connor, J.M. [Glascow Univ. (United Kingdom)] [and others

    1994-09-01

    Hemophilia A is a common X-linked recessive disorder of bleeding caused by deleterious mutations in the gene for clotting factor VIII. The large size of the factor VIII gene, the high frequency of de novo mutations and its tissue-specific expression complicate the detection of mutations. We have used a combination of RT-PCR of ectopic factor VIII transcripts and genomic DNA-PCRs to amplify the entire essential sequence of the factor VIII gene. This is followed by chemical mismatch cleavage analysis and direct sequencing in order to facilitate a comprehensive search for mutations. We describe the characterization of nine potentially pathogenic mutations, six of which are novel. In each case, a correlation of the genotype with the observed phenotype is presented. In order to evaluate the pathogenicity of the five missense mutations detected, we have analyzed them for evolutionary sequence conservation and for their involvement of sequence motifs catalogued in the PROSITE database of protein sites and patterns.

  10. A Restricted Spectrum of Mutations in the SMAD4 Tumor-Suppressor Gene Underlies Myhre Syndrome

    PubMed Central

    Caputo, Viviana; Cianetti, Luciano; Niceta, Marcello; Carta, Claudio; Ciolfi, Andrea; Bocchinfuso, Gianfranco; Carrani, Eugenio; Dentici, Maria Lisa; Biamino, Elisa; Belligni, Elga; Garavelli, Livia; Boccone, Loredana; Melis, Daniela; Andria, Generoso; Gelb, Bruce D.; Stella, Lorenzo; Silengo, Margherita; Dallapiccola, Bruno; Tartaglia, Marco

    2012-01-01

    Myhre syndrome is a developmental disorder characterized by reduced growth, generalized muscular hypertrophy, facial dysmorphism, deafness, cognitive deficits, joint stiffness, and skeletal anomalies. Here, by performing exome sequencing of a single affected individual and coupling the results to a hypothesis-driven filtering strategy, we establish that heterozygous mutations in SMAD4, which encodes for a transducer mediating transforming growth factor ? and bone morphogenetic protein signaling branches, underlie this rare Mendelian trait. Two recurrent de novo SMAD4 mutations were identified in eight unrelated subjects. Both mutations were missense changes altering Ile500 within the evolutionary conserved MAD homology 2 domain, a well known mutational hot spot in malignancies. Structural analyses suggest that the substituted residues are likely to perturb the binding properties of the mutant protein to signaling partners. Although SMAD4 has been established as a tumor suppressor gene somatically mutated in pancreatic, gastrointestinal, and skin cancers, and germline loss-of-function lesions and deletions of this gene have been documented to cause disorders that predispose individuals to gastrointestinal cancer and vascular dysplasias, the present report identifies a previously unrecognized class of mutations in the gene with profound impact on development and growth. PMID:22243968

  11. A functional alternative splicing mutation in AIRE gene causes autoimmune polyendocrine syndrome type 1.

    PubMed

    Zhang, Junyu; Liu, Hongbin; Liu, Zhiyuan; Liao, Yong; Guo, Luo; Wang, Honglian; He, Lin; Zhang, Xiaodong; Xing, Qinghe

    2013-01-01

    Autoimmune polyendocrine syndrome type 1 (APS-1) is a rare autosomal recessive disease defined by the presence of two of the three conditions: mucocutaneous candidiasis, hypoparathyroidism, and Addison's disease. Loss-of-function mutations of the autoimmune regulator (AIRE) gene have been linked to APS-1. Here we report mutational analysis and functional characterization of an AIRE mutation in a consanguineous Chinese family with APS-1. All exons of the AIRE gene and adjacent exon-intron sequences were amplified by PCR and subsequently sequenced. We identified a homozygous missense AIRE mutation c.463G>A (p.Gly155Ser) in two siblings with different clinical features of APS-1. In silico splice-site prediction and minigene analysis were carried out to study the potential pathological consequence. Minigene splicing analysis and subsequent cDNA sequencing revealed that the AIRE mutation potentially compromised the recognition of the splice donor of intron 3, causing alternative pre-mRNA splicing by intron 3 retention. Furthermore, the aberrant AIRE transcript was identified in a heterozygous carrier of the c.463G>A mutation. The aberrant intron 3-retaining transcript generated a truncated protein (p.G155fsX203) containing the first 154 AIRE amino acids and followed by 48 aberrant amino acids. Therefore, our study represents the first functional characterization of the alternatively spliced AIRE mutation that may explain the pathogenetic role in APS-1. PMID:23342054

  12. Molecular analysis of mutations in the Caenorhabditis elegans collagen gene dpy-7.

    PubMed Central

    Johnstone, I L; Shafi, Y; Barry, J D

    1992-01-01

    Collagens are a family of proteins contributing to the body structure of eukaryotes. They are encoded by a large and diverse gene family in the nematode Caenorhabditis elegans but by only a few genes in vertebrates. We have studied mutant alleles of the C. elegans dpy-7 gene, one of a large group of genes whose mutant phenotype is altered body form and several of which have previously been shown to encode cuticular collagens. We made use of the C. elegans physical map to screen specifically for collagen genes in the region of the X chromosome to which dpy-7 maps. This yielded a wild-type collagen gene clone which we showed, by micro-injection, could repair the dpy-7 mutant phenotype in transgenic animals. We cloned the homologous sequence from four dpy-7 mutant strains and by sequence analysis identified a single mutation in each case. All four mutations result in the substitution of a glycine with a larger residue in the conserved Gly-X-Y collagen domains. Similar substitutions in vertebrate collagens cause the heritable brittle bone disorder osteogenesis imperfecta. Whereas the human mutations are dominant, the dpy-7 mutations are recessive, and this may reflect different levels of complexity of collagenous macromolecular structures in the two organisms. Images PMID:1396579

  13. Genomic screening for ?-sarcoglycan gene mutations: missense mutations may cause severe limb-girdle muscular dystrophy type 2E (LGMD 2E)

    Microsoft Academic Search

    Carsten G. Bönnemann; M. Rita Passos-Bueno; Elizabeth M. McNally; Mariz Vainzof; Eloísa de Sá Moreira; Suely K. Marie; Rita C. M. Pavanello; Satoru Noguchi; Eijiro Ozawa; Mayana Zatz; Louis M. Kunkel

    1996-01-01

    Autosomal recessive limb-girdle muscular dys- trophies (LGMDs) are genetically heterogeneous. A subgroup of these disorders is caused by mutations in the dystrophin-associated sarcoglycan complex. Truncating mutations in the 43 kDa ?-sarcoglycan gene (LGMD 2E) were originally identified in a sporadic case of Duchenne-like muscular dystrophy, and a common missense mutation (T151R) was identified indepen- dently in Indiana Amish pedigrees with

  14. Molecular genetic analysis of some mutations in the cystic fibrosis gene in Moldova: Characterization of molecular markers and their linkage to various mutations

    Microsoft Academic Search

    S. D. Gimbovskaya; V. N. Kalinin; T. E. Ivashchenko; V. S. Baranov

    1994-01-01

    Sixty-one patients with cystic fibrosis (CF) from Moldova were tested for mutations ÎF508, G551D, and R553X. Frequencies of various alleles of the repeated GATT sequence in intron 6B of the GFTR gene, their linkage to other polymorphic markers, and various mutations were determined. The frequency of occurrence of mutation ÎF508 was only 25%. An absolute majority of CF patients (80%)

  15. Inherited cobalamin malabsorption. Mutations in three genes reveal functional and ethnic patterns

    PubMed Central

    2012-01-01

    Background Inherited malabsorption of cobalamin (Cbl) causes hematological and neurological abnormalities that can be fatal. Three genes have been implicated in Cbl malabsorption; yet, only about 10% of ~400-500 reported cases have been molecularly studied to date. Recessive mutations in CUBN or AMN cause Imerslund-Gräsbeck Syndrome (IGS), while recessive mutations in GIF cause Intrinsic Factor Deficiency (IFD). IGS and IFD differ in that IGS usually presents with proteinuria, which is not observed in IFD. The genetic heterogeneity and numerous differential diagnoses make clinical assessment difficult. Methods We present a large genetic screening study of 154 families or patients with suspected hereditary Cbl malabsorption. Patients and their families have been accrued over a period spanning >12?years. Systematic genetic testing of the three genes CUBN, AMN, and GIF was accomplished using a combination of single strand conformation polymorphism and DNA and RNA sequencing. In addition, six genes that were contenders for a role in inherited Cbl malabsorption were studied in a subset of these patients. Results Our results revealed population-specific mutations, mutational hotspots, and functionally distinct regions in the three causal genes. We identified mutations in 126/154 unrelated cases (82%). Fifty-three of 126 cases (42%) were mutated in CUBN, 45/126 (36%) were mutated in AMN, and 28/126 (22%) had mutations in GIF. We found 26 undescribed mutations in CUBN, 19 in AMN, and 7 in GIF for a total of 52 novel defects described herein. We excluded six other candidate genes as culprits and concluded that additional genes might be involved. Conclusions Cbl malabsorption is found worldwide and genetically complex. However, our results indicate that population-specific founder mutations are quite common. Consequently, targeted genetic testing has become feasible if ethnic ancestry is considered. These results will facilitate clinical and molecular genetic testing of Cbl malabsorption. Early diagnosis improves the lifelong care required by these patients and prevents potential neurological long-term complications. This study provides the first comprehensive overview of the genetics that underlies the inherited Cbl malabsorption phenotype. PMID:22929189

  16. MEFV gene mutations and cardiac phenotype in children with familial Mediterranean fever: a cohort study

    PubMed Central

    2014-01-01

    Background Familial Mediterranean fever (FMF) is the most common autoinflammatory disorder in the world. It is characterized by recurrent febrile inflammatory attacks of serosal and synovial membranes. MEFV gene mutations are responsible for the disease and its protein product, pyrin or marenostrin, plays an essential role in the regulation of the inflammatory reactions. Although the disease may carry a potential for cardiovascular disorders because of sustained inflammation during its course, the spectrum of cardiac involvement in children with FMF has not been well studied. We aimed at defining the frequency and spectrum of cardiac affection in children with FMF. The correlation between these affections and MEFV gene mutations was searched for to establish the relationship between cardiac phenotype and the patient's genotype in FMF. Methods The present work is a cohort study including 55 patients with the clinical diagnosis of FMF based on the Tel-Hashomere criteria, confirmed by genetic analysis showing homozygous or compound heterozygous mutation of MEFV genes. Fifty age- and sex-matched normal children were included as controls. The entire study group underwent detailed cardiac examination, 12-lead ECG and echocardiography. All data was statistically analysed using SPSS version-15. Results Patients had an average age of 8.5+/?4.2 years; with an average disease duration of 2.1+/?2.2 years; 28 were males. All controls showed no MEVF gene mutations. The most frequent gene mutation of the studied cases was E148Q mutation seen in 34% of cases and the most frequent compound mutation was E148Q/V726A seen in 16.6% of cases. Echocardiographic examination revealed pericardial effusion in nine patients. Twelve had aortic regurgitation; nine had mitral regurgitation and six had pulmonary regurgitation. The most common mutation associated with pericardial effusion was E148Q/V726A in 5/9 of cases. Valvular involvement were significantly more common in FMF patients with gene mutations. Also cardiac involvement was more common in patients with positive consanguinity. However, these cardiac manifestations showed no correlation to age, family history of FMF, or response to therapy or laboratory data. Conclusions In our cohort of children with FMF, cardiac involvement appears to be common. Pericardial effusions are significantly related to presence of mutation types E48Q, P 369S, V726A. These associations may warrant genetic screening of children with FMF to detect cardiac risk. PMID:24433404

  17. Identification of novel mutations in HEXA gene in children affected with Tay Sachs disease from India.

    PubMed

    Mistri, Mehul; Tamhankar, Parag M; Sheth, Frenny; Sanghavi, Daksha; Kondurkar, Pratima; Patil, Swapnil; Idicula-Thomas, Susan; Gupta, Sarita; Sheth, Jayesh

    2012-01-01

    Tay Sachs disease (TSD) is a neurodegenerative disorder due to ?-hexosaminidase A deficiency caused by mutations in the HEXA gene. The mutations leading to Tay Sachs disease in India are yet unknown. We aimed to determine mutations leading to TSD in India by complete sequencing of the HEXA gene. The clinical inclusion criteria included neuroregression, seizures, exaggerated startle reflex, macrocephaly, cherry red spot on fundus examination and spasticity. Neuroimaging criteria included thalamic hyperdensities on CT scan/T1W images of MRI of the brain. Biochemical criteria included deficiency of hexosaminidase A (less than 2% of total hexosaminidase activity for infantile patients). Total leukocyte hexosaminidase activity was assayed by 4-methylumbelliferyl-N-acetyl-?-D-glucosamine lysis and hexosaminidase A activity was assayed by heat inactivation method and 4-methylumbelliferyl-N-acetyl-?-D-glucosamine-6-sulphate lysis method. The exons and exon-intron boundaries of the HEXA gene were bidirectionally sequenced using an automated sequencer. Mutations were confirmed in parents and looked up in public databases. In silico analysis for mutations was carried out using SIFT, Polyphen2, MutationT@ster and Accelrys Discovery Studio softwares. Fifteen families were included in the study. We identified six novel missense mutations, c.340 G>A (p.E114K), c.964 G>A (p.D322N), c.964 G>T (p.D322Y), c.1178C>G (p.R393P) and c.1385A>T (p.E462V), c.1432 G>A (p.G478R) and two previously reported mutations. c.1277_1278insTATC and c.508C>T (p.R170W). The mutation p.E462V was found in six unrelated families from Gujarat indicating a founder effect. A previously known splice site mutation c.805+1 G>C and another intronic mutation c.672+30 T>G of unknown significance were also identified. Mutations could not be identified in one family. We conclude that TSD patients from Gujarat should be screened for the common mutation p.E462V. PMID:22723944

  18. Mutational spectrum of F8 gene and prothrombotic gene variants in haemophilia A patients from Southern Italy.

    PubMed

    Sanna, V; Zarrilli, F; Nardiello, P; D'Argenio, V; Rocino, A; Coppola, A; DI Minno, G; Castaldo, G

    2008-07-01

    Haemophilia A (HA) is an X-linked recessive haemorrhagic disorder caused by a deficiency of coagulation factor VIII. Disease causative mutations are heterogeneous and spread all over the F8 gene sequence, with the exception of intron 22 inversion occurring in about 50% of severe patients. To define the specific mutational repertoire and mutation detection rate, we analysed F8 gene, by polymerase chain reaction and direct sequencing, in 128 unrelated patients from Southern Italy with severe (n = 108), moderate (n = 9) or mild (n = 11) HA. We identified 120 mutations, including 64 cases of intron 22 inversion (53.3%), three of intron 1 inversion (2.5%), one large deletion (0,8%) and 52 point mutations (43.3%). In particular, 19/120 were novel and 7/52 point mutations (13.5%) occurred at CpG sites. We also investigated eight prothrombotic genetic variants in a subgroup of 74 severe HA patients to evaluate their possible protective effect on the severity of clinical expression. Methylenetetrahydrofolate reductase A1298C and plasminogen activator inhibitor-1 4G variants recurred more frequently in HA patients with a less-severe phenotype. Clinical impact of these findings needs large-scale studies to further define the role of these prothrombotic variants as possible modifier factors of HA phenotype. PMID:18459951

  19. ONLINE MUTATION REPORT New VMD2 gene mutations identified in patients affected by

    E-print Network

    , six and eight. One of these mutations (Q293H) was particularly severe. Patch clamp analysis of human embryonic kidney cells expressing the Q293H mutant showed that this mutant channel is non-functional. Furthermore, the Q293H mutant inhibited the function of wild-type bestrophin-1 channels in a dominant negative

  20. Germline mutations of the gene encoding bone morphogenetic protein receptor 1A in juvenile polyposis.

    PubMed

    Howe, J R; Bair, J L; Sayed, M G; Anderson, M E; Mitros, F A; Petersen, G M; Velculescu, V E; Traverso, G; Vogelstein, B

    2001-06-01

    Juvenile polyposis (JP; OMIM 174900) is an autosomal dominant gastrointestinal hamartomatous polyposis syndrome in which patients are at risk for developing gastrointestinal cancers. Previous studies have demonstrated a locus for JP mapping to 18q21.1 (ref. 3) and germline mutations in the homolog of the gene for mothers against decapentaplegic, Drosophila, (MADH4, also known as SMAD4) in several JP families. However, mutations in MADH4 are only present in a subset of JP cases, and although mutations in the gene for phosphatase and tensin homolog (PTEN) have been described in a few families, undefined genetic heterogeneity remains. Using a genome-wide screen in four JP kindreds without germline mutations in MADH4 or PTEN, we identified linkage with markers from chromosome 10q22-23 (maximum lod score of 4.74, straight theta=0.00). We found no recombinants using markers developed from the vicinity of the gene for bone morphogenetic protein receptor 1A (BMPR1A), a serine-threonine kinase type I receptor involved in bone morphogenetic protein (BMP) signaling. Genomic sequencing of BMPR1A in each of these JP kindreds disclosed germline nonsense mutations in all affected kindred members but not in normal control individuals. These findings indicate involvement of an additional gene in the transforming growth factor-beta (TGF-beta) superfamily in the genesis of JP, and document an unanticipated function for BMP in colonic epithelial growth control. PMID:11381269

  1. Novel Mutations in the SCNN1A Gene Causing Pseudohypoaldosteronism Type 1

    PubMed Central

    Yin, Lei; Li, Jing; Yu, Li; Shen, Ye; Yu, Yongguo; Shen, Yongnian; Fu, Qihua

    2013-01-01

    Pseudohypoaldosteronism type 1 (PHA1) is a rare inherited disease characterized by resistance to the actions of aldosterone. Mutations in the subunit genes (SCNN1A, SCNN1B, SCNN1G) of the epithelial sodium channel (ENaC) and the NR3C2 gene encoding the mineralocorticoid receptor, result in systemic PHA1 and renal PHA1 respectively. Common clinical manifestations of PHA1 include salt wasting, hyperkalaemia, metabolic acidosis and elevated plasma aldosterone levels in the neonatal period. In this study, we describe the clinical and biochemical manifestations in two Chinese patients with systemic PHA1. Sequence analysis of the SCNN1A gene revealed a compound heterozygous mutation (c.1311delG and c.1439+1G>C) in one patient and a homozygous mutation (c.814_815insG) in another patient, all three variants are novel. Further analysis of the splicing pattern in a minigene construct showed that the c.1439+1G>C mutation can lead to the retainment of intron 9 as the 5?-donor splice site disappears during post-transcriptional processing of mRNA. In conclusion, our study identified three novel SCNN1A gene mutations in two Chinese patients with systemic PHA1. PMID:23762408

  2. Mutational hotspots in the TP53 gene and, possibly, other tumor suppressors evolve by positive selection

    PubMed Central

    Glazko, Galina V; Babenko, Vladimir N; Koonin, Eugene V; Rogozin, Igor B

    2006-01-01

    Background The mutation spectra of the TP53 gene and other tumor suppressors contain multiple hotspots, i.e., sites of non-random, frequent mutation in tumors and/or the germline. The origin of the hotspots remains unclear, the general view being that they represent highly mutable nucleotide contexts which likely reflect effects of different endogenous and exogenous factors shaping the mutation process in specific tissues. The origin of hotspots is of major importance because it has been suggested that mutable contexts could be used to infer mechanisms of mutagenesis contributing to tumorigenesis. Results Here we apply three independent tests, accounting for non-uniform base compositions in synonymous and non-synonymous sites, to test whether the hotspots emerge via selection or due to mutational bias. All three tests consistently indicate that the hotspots in the TP53 gene evolve, primarily, via positive selection. The results were robust to the elimination of the highly mutable CpG dinucleotides. By contrast, only one, the least conservative test reveals the signature of positive selection in BRCA1, BRCA2, and p16. Elucidation of the origin of the hotspots in these genes requires more data on somatic mutations in tumors. Conclusion The results of this analysis seem to indicate that positive selection for gain-of-function in tumor suppressor genes is an important aspect of tumorigenesis, blurring the distinction between tumor suppressors and oncogenes. Reviewers This article was reviewed by Sandor Pongor, Christopher Lee and Mikhail Blagosklonny. PMID:16542006

  3. Association of mutations in mannose binding protein gene with childhood infection in consecutive hospital series.

    PubMed Central

    Summerfield, J. A.; Sumiya, M.; Levin, M.; Turner, M. W.

    1997-01-01

    OBJECTIVE: To determine the extent to which mutations in the mannose binding protein gene predispose to childhood infection. DESIGN: Clinical details and genotype of mannose binding protein determined in consecutive children attending a paediatric department. SETTING: Inner city hospital paediatric service in London. SUBJECTS: 617 children attending hospital between October 1993 and August 1995. MAIN OUTCOME MEASURE: Infection as the cause for attendance or admission in relation to mutations in the mannose binding protein gene. RESULTS: The prevalence of mutations in the mannose binding protein gene in children with infection (146/345) was about twice that in children without infection (64/272) (P < 0.0001). Increased susceptibility to infection was found in both heterozygotic and homozygotic children. 13 out of 17 children homozygotic for variant alleles presented with strikingly severe infections, including 6 with septicaemia. CONCLUSIONS: The findings suggest that mutations in the mannose binding protein gene are an important risk factor for infections in children. Screening for such mutations should be included in the investigation of severe or frequent infections. PMID:9154025

  4. Distribution and gene mutation of enteric flora carrying ?-glucuronidase among patients with colorectal cancer

    PubMed Central

    Li, Yu; Zhang, Xiaome; Wang, Lu; Zhou, Yuqing; Hassan, Jama Suleiman; Li, Mingcheng

    2015-01-01

    Objective: To explore the difference of distribution in intestinal flora among colorectal cancer patients and healthy controls and investigate characteristics and changes of sequences in beta-glucuronidase (?-glucuronidase, ?-G). Methods: Bacterial genomic DNA and E. coli DNA in feces were extracted from colorectal cancer patients and healthy controls respectively. Specific primers for ?-G gene were designed and amplified by PCR as templates of fecal bacteria genomic DNA and E. coli DNA respectively. Results: Compared with normal control, the amount of E. coli in cancer group increased significantly, Lactobacillus and Bifidobacterium probiotics reduced significantly, and proportional quantity of anaerobic bacteria and aerobic bacteria reversed. The intestinal flora carry ?-G in both groups, and homologies with uidA gene sequences encoding the ?-G were 99% and 98% respectively. In colorectal cancer group the 1141th and 1148th A base were deleted. The 1149th A base mutated into T base, and the 1158th bit A base mutated into G base; however, in healthy control group the 1141th and 1148th position A base was deleted, and the 1149th A base mutated into T base. Conclusion: There are differences of intestinal flora distribution between cancer group and healthy control group. The gene mutation and deletion of intestinal flora of ?-G gene appear at the same time at 1141th, 1148th and 1149th in both cancer group and healthy control group, and 1158th genetic mutation appears only in colon cancer group.

  5. Keratin Gene Mutations in Disorders of Human Skin and its Appendages

    PubMed Central

    Chamcheu, Jean Christopher; Siddiqui, Imtiaz A.; Syed, Deeba N.; Adhami, Vaqar M.; Liovic, Mirjana; Mukhtar, Hasan

    2011-01-01

    Keratins, the major structural protein of all epithelia, are a diverse group of cytoskeletal scaffolding proteins that form intermediate filament networks, providing structural support to keratinocytes that maintain the integrity of the skin. Expression of keratin genes is usually regulated by differentiation of the epidermal cells within the stratifying squamous epithelium. Amongst the 54 known functional keratin genes in humans, about 21 different genes including hair and hair follicle-specific keratins have been associated with diverse hereditary disorders. The exact phenotype of each disease mostly reflects the spatial level of expression and types of the mutated keratin genes, the positions of the mutations as well as their consequences at sub-cellular levels. The identification of specific mutations in keratin disorders is the basis of our understanding that lead to reclassification, improved diagnosis with prognostic implications, prenatal testing and genetic counseling in severe cutaneous keratin genodermatoses. A disturbance in cutaneous keratins as a result of mutation(s) in the gene(s) that encode keratin intermediate filaments (KIF) causes keratinocytes and cutaneous tissue fragility, accounting for a large number of genetic disorders in human skin and its appendages. These diseases are characterized by a loss of structural integrity in keratinocytes expressing mutated keratins in vivo, often manifested as keratinocytes fragility (cytolysis), intra-epidermal blistering, hyperkeratosis, and keratin filament aggregation in severely affected tissues. Examples include epidermolysis bullosa simplex (EBS), keratinopathic ichthyosis (KPI), pachyonychia congenital (PC), monilethrix, steatocystoma multiplex and ichthyosis bullosa of Siemens (IBS). These keratins also have been identified to have roles in cell growth, apoptosis, tissue polarity, wound healing and tissue remodeling. PMID:21176769

  6. Regional distribution of mutations of the ATP7B gene in patients with Wilson disease: impact on genetic testing

    Microsoft Academic Search

    Peter Ferenci

    2006-01-01

    Wilson disease is an autosomal recessive inherited disorder of copper metabolism. The Wilson disease gene codes for a copper transporting P-type ATPase (ATP7B). Molecular genetic analysis reveals at least 300 distinct mutations. While most reported mutations occur in single families, a few are more common. The most common mutation in patients from Central, Eastern, and Northern Europe is the point

  7. Molecular analysis of the APC and MUTYH genes in Galician and Catalonian FAP families: a different spectrum of mutations?

    Microsoft Academic Search

    Nuria Gómez-Fernández; Sergi Castellví-Bel; Ceres Fernández-Rozadilla; Francesc Balaguer; Jenifer Muńoz; Irene Madrigal; Montserrat Milŕ; Begońa Grańa; Ana Vega; Antoni Castells; Ángel Carracedo; Clara Ruiz-Ponte

    2009-01-01

    BACKGROUND: Familial adenomatous polyposis (FAP) is an autosomal dominant-inherited colorectal cancer syndrome, caused by germline mutations in the APC gene. Recently, biallelic mutations in MUTYH have also been identified in patients with multiple colorectal adenomas and in APC-negative patients with FAP. The aim of this work is therefore to determine the frequency of APC and MUTYH mutations among FAP families

  8. Mutations and polymorphisms of the skeletal muscle alpha-actin gene (ACTA1).

    PubMed

    Laing, Nigel G; Dye, Danielle E; Wallgren-Pettersson, Carina; Richard, Gabriele; Monnier, Nicole; Lillis, Suzanne; Winder, Thomas L; Lochmüller, Hanns; Graziano, Claudio; Mitrani-Rosenbaum, Stella; Twomey, Darren; Sparrow, John C; Beggs, Alan H; Nowak, Kristen J

    2009-09-01

    The ACTA1 gene encodes skeletal muscle alpha-actin, which is the predominant actin isoform in the sarcomeric thin filaments of adult skeletal muscle, and essential, along with myosin, for muscle contraction. ACTA1 disease-causing mutations were first described in 1999, when a total of 15 mutations were known. In this article we describe 177 different disease-causing ACTA1 mutations, including 85 that have not been described before. ACTA1 mutations result in five overlapping congenital myopathies: nemaline myopathy; intranuclear rod myopathy; actin filament aggregate myopathy; congenital fiber type disproportion; and myopathy with core-like areas. Mixtures of these histopathological phenotypes may be seen in a single biopsy from one patient. Irrespective of the histopathology, the disease is frequently clinically severe, with many patients dying within the first year of life. Most mutations are dominant and most patients have de novo mutations not present in the peripheral blood DNA of either parent. Only 10% of mutations are recessive and they are genetic or functional null mutations. To aid molecular diagnosis and establishing genotype-phenotype correlations, we have developed a locus-specific database for ACTA1 variations (http://waimr.uwa.edu.au). PMID:19562689

  9. Specific Mutations in the ?-Catenin Gene (CTNNB1) Correlate with Local Recurrence in Sporadic Desmoid Tumors

    PubMed Central

    Lazar, Alexander J.F.; Tuvin, Daniel; Hajibashi, Shohrae; Habeeb, Sultan; Bolshakov, Svetlana; Mayordomo-Aranda, Empar; Warneke, Carla L.; Lopez-Terrada, Dolores; Pollock, Raphael E.; Lev, Dina

    2008-01-01

    Desmoid fibromatosis is a rare, nonmetastatic neoplasm marked by local invasiveness and relentless recurrence. Molecular determinants of desmoid recurrence remain obscure. ?-Catenin deregulation has been commonly identified in sporadic desmoids although the incidence of CTNNB1 (the gene encoding ?-catenin) mutations is uncertain. Consequently, we evaluated the prevalence of CTNNB1 mutations in a large cohort of sporadic desmoids and examined whether mutation type was relevant to desmoid outcome. Desmoid specimens (195 tumors from 160 patients, 1985 to 2005) and control dermal scars were assembled into a clinical data-linked tissue microarray. CTNNB1 genotyping was performed on a 138-sporadic desmoid subset. Immunohistochemical scoring was performed per standard criteria and data were analyzed using Kaplan-Meier and other indicated methods. CTNNB1 mutations were observed in 117 of 138 (85%) of desmoids. Three discrete mutations in two codons of CTNNB1 exon 3 were identified: 41A (59%), 45F (33%), and 45P (8%, excluded from further analysis because of rarity). Five-year recurrence-free survival was significantly poorer in 45F-mutated desmoids (23%, P < 0.0001) versus either 41A (57%) or nonmutated tumors (65%). Nuclear ?-catenin expression was observed in 98% of specimens and intensity was inversely correlated with incidence of desmoid recurrence (P < 0.01). In conclusion, CTNNB1 mutations are highly common in desmoid tumors. Furthermore, patients harboring CTNNB1 (45F) mutations are at particular risk for recurrence and therefore may especially benefit from adjuvant therapeutic approaches. PMID:18832571

  10. Two Desmin Gene Mutations Associated with Myofibrillar Myopathies in Polish Families

    PubMed Central

    Berdynski, Mariusz; Sikorska, Agata; Filipek, Slawomir; Redowicz, Maria Jolanta; Kaminska, Anna; Zekanowski, Cezary

    2014-01-01

    Desmin is a muscle-specific intermediate filament protein which forms a network connecting the sarcomere, T tubules, sarcolemma, nuclear membrane, mitochondria and other organelles. Mutations in the gene coding for desmin (DES) cause skeletal myopathies often combined with cardiomyopathy, or isolated cardiomyopathies. The molecular pathomechanisms of the disease remain ambiguous. Here, we describe and comprehensively characterize two DES mutations found in Polish patients with a clinical diagnosis of desminopathy. The study group comprised 16 individuals representing three families. Two mutations were identified: a novel missense mutation (Q348P) and a small deletion of nine nucleotides (A357_E359del), previously described by us in the Polish population. A common ancestry of all the families bearing the A357_E359del mutation was confirmed. Both mutations were predicted to be pathogenic using a bioinformatics approach, including molecular dynamics simulations which helped to rationalize abnormal behavior at molecular level. To test the impact of the mutations on DES expression and the intracellular distribution of desmin muscle biopsies were investigated. Elevated desmin levels as well as its atypical localization in muscle fibers were observed. Additional staining for M-cadherin, ?-actinin, and myosin heavy chains confirmed severe disruption of myofibrill organization. The abnormalities were more prominent in the Q348P muscle, where both small atrophic fibers as well large fibers with centrally localized nuclei were observed. We propose that the mutations affect desmin structure and cause its aberrant folding and subsequent aggregation, triggering disruption of myofibrils organization. PMID:25541946

  11. Crossovers are associated with mutation and biased gene conversion at recombination hotspots

    PubMed Central

    Arbeithuber, Barbara; Betancourt, Andrea J.; Ebner, Thomas

    2015-01-01

    Meiosis is a potentially important source of germline mutations, as sites of meiotic recombination experience recurrent double-strand breaks (DSBs). However, evidence for a local mutagenic effect of recombination from population sequence data has been equivocal, likely because mutation is only one of several forces shaping sequence variation. By sequencing large numbers of single crossover molecules obtained from human sperm for two recombination hotspots, we find direct evidence that recombination is mutagenic: Crossovers carry more de novo mutations than nonrecombinant DNA molecules analyzed for the same donors and hotspots. The observed mutations were primarily CG to TA transitions, with a higher frequency of transitions at CpG than non-CpGs sites. This enrichment of mutations at CpG sites at hotspots could predominate in methylated regions involving frequent single-stranded DNA processing as part of DSB repair. In addition, our data set provides evidence that GC alleles are preferentially transmitted during crossing over, opposing mutation, and shows that GC-biased gene conversion (gBGC) predominates over mutation in the sequence evolution of hotspots. These findings are consistent with the idea that gBGC could be an adaptation to counteract the mutational load of recombination. PMID:25646453

  12. Crossovers are associated with mutation and biased gene conversion at recombination hotspots.

    PubMed

    Arbeithuber, Barbara; Betancourt, Andrea J; Ebner, Thomas; Tiemann-Boege, Irene

    2015-02-17

    Meiosis is a potentially important source of germline mutations, as sites of meiotic recombination experience recurrent double-strand breaks (DSBs). However, evidence for a local mutagenic effect of recombination from population sequence data has been equivocal, likely because mutation is only one of several forces shaping sequence variation. By sequencing large numbers of single crossover molecules obtained from human sperm for two recombination hotspots, we find direct evidence that recombination is mutagenic: Crossovers carry more de novo mutations than nonrecombinant DNA molecules analyzed for the same donors and hotspots. The observed mutations were primarily CG to TA transitions, with a higher frequency of transitions at CpG than non-CpGs sites. This enrichment of mutations at CpG sites at hotspots could predominate in methylated regions involving frequent single-stranded DNA processing as part of DSB repair. In addition, our data set provides evidence that GC alleles are preferentially transmitted during crossing over, opposing mutation, and shows that GC-biased gene conversion (gBGC) predominates over mutation in the sequence evolution of hotspots. These findings are consistent with the idea that gBGC could be an adaptation to counteract the mutational load of recombination. PMID:25646453

  13. Mutations in the SPG7 gene cause chronic progressive external ophthalmoplegia through disordered mitochondrial DNA maintenance.

    PubMed

    Pfeffer, Gerald; Gorman, Gráinne S; Griffin, Helen; Kurzawa-Akanbi, Marzena; Blakely, Emma L; Wilson, Ian; Sitarz, Kamil; Moore, David; Murphy, Julie L; Alston, Charlotte L; Pyle, Angela; Coxhead, Jon; Payne, Brendan; Gorrie, George H; Longman, Cheryl; Hadjivassiliou, Marios; McConville, John; Dick, David; Imam, Ibrahim; Hilton, David; Norwood, Fiona; Baker, Mark R; Jaiser, Stephan R; Yu-Wai-Man, Patrick; Farrell, Michael; McCarthy, Allan; Lynch, Timothy; McFarland, Robert; Schaefer, Andrew M; Turnbull, Douglass M; Horvath, Rita; Taylor, Robert W; Chinnery, Patrick F

    2014-05-01

    Despite being a canonical presenting feature of mitochondrial disease, the genetic basis of progressive external ophthalmoplegia remains unknown in a large proportion of patients. Here we show that mutations in SPG7 are a novel cause of progressive external ophthalmoplegia associated with multiple mitochondrial DNA deletions. After excluding known causes, whole exome sequencing, targeted Sanger sequencing and multiplex ligation-dependent probe amplification analysis were used to study 68 adult patients with progressive external ophthalmoplegia either with or without multiple mitochondrial DNA deletions in skeletal muscle. Nine patients (eight probands) were found to carry compound heterozygous SPG7 mutations, including three novel mutations: two missense mutations c.2221G>A; p.(Glu741Lys), c.2224G>A; p.(Asp742Asn), a truncating mutation c.861dupT; p.Asn288*, and seven previously reported mutations. We identified a further six patients with single heterozygous mutations in SPG7, including two further novel mutations: c.184-3C>T (predicted to remove a splice site before exon 2) and c.1067C>T; p.(Thr356Met). The clinical phenotype typically developed in mid-adult life with either progressive external ophthalmoplegia/ptosis and spastic ataxia, or a progressive ataxic disorder. Dysphagia and proximal myopathy were common, but urinary symptoms were rare, despite the spasticity. Functional studies included transcript analysis, proteomics, mitochondrial network analysis, single fibre mitochondrial DNA analysis and deep re-sequencing of mitochondrial DNA. SPG7 mutations caused increased mitochondrial biogenesis in patient muscle, and mitochondrial fusion in patient fibroblasts associated with the clonal expansion of mitochondrial DNA mutations. In conclusion, the SPG7 gene should be screened in patients in whom a disorder of mitochondrial DNA maintenance is suspected when spastic ataxia is prominent. The complex neurological phenotype is likely a result of the clonal expansion of secondary mitochondrial DNA mutations modulating the phenotype, driven by compensatory mitochondrial biogenesis. PMID:24727571

  14. Recurrent mutations in the CDKL5 gene: genotype-phenotype relationships.

    PubMed

    Bahi-Buisson, Nadia; Villeneuve, Nathalie; Caietta, Emilie; Jacquette, Aurélia; Maurey, Helene; Matthijs, Gert; Van Esch, Hilde; Delahaye, Andrée; Moncla, Anne; Milh, Mathieu; Zufferey, Flore; Diebold, Bertrand; Bienvenu, Thierry

    2012-07-01

    Mutations in the cyclin-dependent kinase-like 5 gene (CDKL5) have been described in epileptic encephalopathies in females with infantile spasms with features that overlap with Rett syndrome. With more than 80 reported patients, the phenotype of CDKL5-related encephalopathy is well-defined. The main features consist of seizures starting before 6 months of age, severe intellectual disability with absent speech and hand stereotypies and deceleration of head growth, which resembles Rett syndrome. However, some clinical discrepancies suggested the influence of genetics and/or environmental factors. No genotype-phenotype correlation has been defined and thus there is a need to examine individual mutations. In this study, we analyzed eight recurrent CDKL5 mutations to test whether the clinical phenotype of patients with the same mutation is similar and whether patients with specific CDKL5 mutations have a milder phenotype than those with other CDKL5 mutations. Patients bearing missense mutations in the ATP binding site such as the p.Ala40Val mutation typically walked unaided, had normocephaly, better hand use ability, and less frequent refractory epilepsy when compared to girls with other CDKL5 mutations. In contrast, patients with mutations in the kinase domain (such as p.Arg59X, p.Arg134X, p.Arg178Trp/Pro/Gln, or c.145?+?2T?>?C) and frameshift mutations in the C-terminal region (such as c.2635_2636delCT) had a more severe phenotype with infantile spasms, refractory epileptic encephalopathy, absolute microcephaly, and inability to walk. It is important for clinicians to have this information when such patients are diagnosed. PMID:22678952

  15. Mutations of MC4R gene and its association with economic traits in Qinchuan cattle

    Microsoft Academic Search

    Hongyu Liu; Wanqiang Tian; Linsen Zan; Hongbao Wang; Huan Cui

    2010-01-01

    MC4R belongs to a seven-transmembrane G-protein-coupled receptor which may regulate body composition and insulin action. Many\\u000a mutations in the MC4R gene are associated with obesity, energy expenditure and serum triglyceride levels in human and animals. Six mutations in\\u000a the MC4R gene were identified in our study (-293C>G, -193A>T, -192T>G, -129A>G, -84T>C and 1,069C>G). The -129A>G was significantly\\u000a associated with live

  16. Human Genetic Disorders Caused by Mutations in Genes Encoding Biosynthetic Enzymes for Sulfated Glycosaminoglycans*

    PubMed Central

    Mizumoto, Shuji; Ikegawa, Shiro; Sugahara, Kazuyuki

    2013-01-01

    A number of genetic disorders are caused by mutations in the genes encoding glycosyltransferases and sulfotransferases, enzymes responsible for the synthesis of sulfated glycosaminoglycan (GAG) side chains of proteoglycans, including chondroitin sulfate, dermatan sulfate, and heparan sulfate. The phenotypes of these genetic disorders reflect disturbances in crucial biological functions of GAGs in human. Recent studies have revealed that mutations in genes encoding chondroitin sulfate and dermatan sulfate biosynthetic enzymes cause various disorders of connective tissues. This minireview focuses on growing glycobiological studies of recently described genetic diseases caused by disturbances in biosynthetic enzymes for sulfated GAGs. PMID:23457301

  17. [A case of enlarged vestibular aqueduct syndrome with PDS gene mutations].

    PubMed

    Kiyomizu, Kensuke; Tsuboi, Yasuhiro; Tono, Tetsuya; Komune, Shizuo; Abe, Satoko; Shinkawa, Hideichi; Tsukamoto, Koji; Usami, Shinichi

    2002-02-01

    Enlarged vestibular aqueduct (EVA) is an inner ear anomaly occasionally associated with sensorineural hearing loss (SNHL) and/or dizziness. Recent genetic studies indicate that mutations in the PDS gene may cause EVA. A 10-year-old EVA patient who had undergone annual hearing tests for 7 years had an aunt and cousin who also had hearing loss and EVA, so genetic examinations were conducted for a possible genetic link. Two new PDS gene mutations, S610X and S657N, were found in all 3, including the proband. We discuss the importance of genetic analysis, which offers new insight into SNHL diagnosis and treatment in children. PMID:11905055

  18. Mutations in HAMP and HJV genes and their impact on expression of clinical hemochromatosis in a cohort of 100 Spanish patients homozygous for the C282Y mutation of HFE gene

    Microsoft Academic Search

    Albert Altčs; Vanessa Bach; Angels Ruiz; Anna Esteve; Jordi Felez; Angel F. Remacha; M. Pilar Sardŕ; Montserrat Baiget

    2009-01-01

    Most hereditary hemochromatosis (HH) patients are homozygous for the C282Y mutation of the HFE gene. Nevertheless, penetrance\\u000a of the disease is very variable. In some patients, penetrance can be mediated by concomitant mutations in other iron master\\u000a genes. We evaluated the clinical impact of hepcidin (HAMP) and hemojuvelin mutations in a cohort of 100 Spanish patients homozygous\\u000a for the C282Y

  19. Bitterness of glucose/galactose: novel mutations in the SLC5A1 gene.

    PubMed

    Pode-Shakked, Ben; Reish, Orit; Aktuglu-Zeybek, Cigdem; Kesselman, Dafna; Dekel, Benjamin; Bujanover, Yoram; Anikster, Yair

    2014-01-01

    Glucose galactose malabsorption (GGM) is a rare autosomal recessive disorder characterized by life-threatening osmotic diarrhea at infancy. When the intake of the offending sugars (namely, glucose, galactose and lactose) is ceased, the diarrhea promptly stops. Mutations in the SLC5A1 gene, encoding the sodium-glucose co-transporter located in the brush border of enterocytes, have been shown to cause the disease. More than 300 subjects of diverse origin have been reported worldwide, most of whom are a result of a consanguineous union. We examined 6 patients from 4 families presenting with complaints consistent with GGM and responsive to the appropriate fructose-based diet. Genomic DNA of the patients was polymerase chain reaction amplified for each of the 15 exons of the SLC5A1 gene and analyzed by nucleotide sequencing. The analysis lead to the identification of 2 novel mutations: a 1915 del C mutation, a frameshift mutation leading to a premature stop at codon 645; and a substitution missense mutation of T to C on nucleotide 947 (exon 9) causing a L316P substitution. In addition, G426R and C255W mutations previously described were identified; in both cases, the patients were shown to be homozygous and their parents heterozygous for the mutation. Of note, additional patients who underwent a similar evaluation at our center for suspected GGM did not show mutations in the SLC5A1 gene. Because the latter did not previously undergo a diagnostic algorithm in full, for instance, one that may consist of a glucose breath hydrogen test and an empiric attempt of a dietary switch to galactomin, we suggest that molecular genotyping of such patients should only follow such appropriate clinical evaluation. PMID:24048166

  20. Mutations in Salmonella Pathogenicity Island 2 (SPI2) Genes Affecting Transcription of SPI1 Genes and Resistance to Antimicrobial Agents

    Microsoft Academic Search

    JORG DEIWICK; THOMAS NIKOLAUS; JAQUELINE E. SHEA; COLIN GLEESON; DAVID W. HOLDEN; MICHAEL HENSEL

    1998-01-01

    The Salmonella typhimurium genome contains two pathogenicity islands (SPI) with genes encoding type III secretion systems for virulence proteins. SPI1 is required for the penetration of the epithelial layer of the intestine. SPI2 is important for the subsequent proliferation of bacteria in the spleens of infected hosts. Although most mutations in SPI2 lead to a strong reduction of virulence, they

  1. Meta-analysis of clinical characteristics of 299 carriers of LMNA gene mutations: do lamin A\\/C mutations portend a high risk of sudden death?

    Microsoft Academic Search

    Jop H. van Berlo; Willem G. de Voogt; Anneke J. van der Kooi; J. Peter van Tintelen; Gisčle Bonne; Rabah Ben Yaou; Denis Duboc; Tom Rossenbacker; Hein Heidbüchel; Marianne de Visser; Harry J. G. M. Crijns; Yigal M. Pinto

    2005-01-01

    This study evaluated common clinical characteristics of patients with lamin A\\/C gene mutations that cause either isolated dilated cardiomyopathy or dilated cardiomyopathy in association with skeletal muscular dystrophy. We pooled clinical data of all published carriers of lamin A\\/C gene mutations as cause of skeletal and\\/or cardiac muscle disease and reviewed ECG findings. Cardiac dysrhythmias were reported in 92% of

  2. Locus heterogeneity of Dent's disease: OCRL1 and TMEM27 genes in patients with no CLCN5 mutations.

    PubMed

    Tosetto, Enrica; Addis, Maria; Caridi, Gianluca; Meloni, Cristiana; Emma, Francesco; Vergine, Gianluca; Stringini, Gilda; Papalia, Teresa; Barbano, Giancarlo; Ghiggeri, Gian Marco; Ruggeri, Laura; Miglietti, Nunzia; D Angelo, Angela; Melis, Maria Antonietta; Anglani, Franca

    2009-10-01

    Dent's disease is an X-linked renal tubulopathy caused by mutations mainly affecting the CLCN5 gene. Defects in the OCRL1 gene, which is usually mutated in patients with Lowe syndrome, have recently been shown to lead to a Dent-like phenotype, called Dent's disease 2. About 25% of Dent's disease patients do not carry CLCN5/OCRL1 mutations. The CLCN4 and SLC9A6 genes have been investigated, but no mutations have been identified. The recent discovery of a novel mediator of renal amino acid transport, collectrin (the TMEM27 gene), may provide new insight on the pathogenesis of Dent's disease. We studied 31 patients showing a phenotype resembling Dent's disease but lacking any CLCN5 mutations by direct sequencing of the OCRL1 and TMEM27 genes. Five novel mutations, L88X, P161HfsX167, F270S, D506N and E720D, in the OCRL1 gene, which have not previously been reported in patients with Dent's or Lowe disease, were identified among 11 patients with the classical Dent's disease phenotype. No TMEM27 gene mutations were discovered among 26 patients, 20 of whom had an incomplete Dent's disease phenotype. Our findings confirm that OCRL1 is involved in the functional defects characteristic of Dent's disease and suggest that patients carrying missense mutations in exons where many Lowe mutations are mapped may represent a phenotypic variant of Lowe syndrome. PMID:19582483

  3. Implications of mutations in hematopoietic growth factor receptor genes in congenital cytopenias.

    PubMed

    Germeshausen, M; Ballmaier, M; Welte, K

    2001-06-01

    Mutations in the genes of hematopoietic growth factor receptors as a cause of congenital cytopenia, such as congenital amegakaryocytic thrombocytopenia (CAMT) or severe congenital neutropenia (CN), are discussed. There are striking differences in the relevance of receptor mutations in these diseases. CAMT is a rare disease characterized by severe hypomegakaryocytic thrombocytopenia during the first years of life that develops into pancytopenia in later childhood. In patients with CAMT, we found inherited mutations in c-mpl, the gene coding for the thrombopoietin receptor, in 8 out of 8 cases. The type of mutation seems to correlate with the clinical course seen in the patients. Functional studies demonstrated defective thrombopoietin (TPO) reactivity in hematopoietic progenitor cells and platelets in CAMT patients. CN is a group of hematopoietic disorders characterized by profound, absolute neutropenia due to a maturation arrest of myeloid progenitor cells. About 10% of all patients develop secondary MDS/leukemia. The malignant progression is associated with acquired nonsense mutations within the G-CSF receptor gene that lead to the truncation of the carboxy-terminal cytoplasmic domain of the receptor protein involved in maturation of myeloid progenitor cells. This seems to be one important step in leukemogenesis in CN patients. CAMT is caused by inherited mutations in c-mpl, the gene for the thrombopoietin receptor, which lead to reduced or absent reactivity to TPO. In contrast, mutations in the G-CSF receptor in CN are acquired and are most probably connected with progression of the neutropenia into MDS/leukemia as a result of a loss of differentiation signaling. PMID:11458519

  4. Mutation analysis of tuberous sclerosis families using the chromosome 16 (TSC2) tuberin gene

    SciTech Connect

    Gilbert, J.; Wolpert, C.; Kumar, A. [Duke Univ. Medical Center, Durham, NC (United States)] [and others

    1994-09-01

    Tuberous sclerosis complex (TSC) is an autosomal dominant disorder which affects numerous body systems, especially brain and kidneys. The estimated prevalence of TSC is 1 per 10,000 population and the disease occurs in all racial groups. TSC exhibits both incomplete penetrance and variable expression and it is estimated that approximately 50% of affected individuals are the result of new mutations. TSC is a heterogeneous disorder with at least two disease loci which linkage studies have mapped to chromosomes 9q34 (TSC1) and 16p13.3 (TSC2). The chromosome 16 TSC gene, a 5.5 kb transcript which has been named tuberin, has recently been isolated and the characterization of the gene and mutational analysis of chromosome 16 families are presently underway. Using cDNA clones which cover approximately 90%, including the 3{prime} end, of the tuberin gene, we have screened Southern blots of 44 confirmed familial and sporadic TSC cases using the restriction enzymes Bam HI, Hind III and Taq I. To date, we have detected no confirmed deletions in any of these cases. We are in the process of screening using Pvu II blots. In addition, our laboratory is beginning to screen the TSC cases for mutations using SSCP in conjunction with RT-PCR of lymphoblast RNA and PCR of lymphoblast DNA using primers prepared from the gene sequence. We have recently ascertained an additional 20 sproadic TSC cases which will be subjected to analysis and these results together with our mutation findings will be presented. Our results would indicate that the number of mutations detectable using Southern blotting is small, especially in the larger chromosome 16 TSC families as opposed to sporadic mutations, and that more detailed technical analysis will be necessary to determine the full range of mutations in the large majority of TSC cases.

  5. Mutation analysis of paired box 6 gene in inherited aniridia in northern China

    PubMed Central

    Chen, Peng; Zang, Xinjie; Sun, Dapeng; Wang, Ye; Wang, Yao; Zhao, Xiaowen; Zhang, Mohan

    2013-01-01

    Purpose Aniridia is phenotypically and genetically heterogeneous. This study is to summarize the phenotypes and identify the underlying genetic cause of the paired box 6 (PAX6) gene responsible for aniridia in two three-generation Chinese families in northern China. Methods A detailed family history and clinical data were collected from patients during an ophthalmologic examination. All exons and flanking intronic sequences of the PAX6 gene were amplified with PCR and screened for mutation with direct DNA sequencing. Haplotyping was used to confirm the mutation sequence. Real-time PCR was used to determine the PAX6 messenger ribonucleic acid(mRNA) level in patients with aniridia and in unaffected family members. Results The probands and other patients in the two families were affected with aniridia accompanied with or without congenital cataract. A heterozygous PAX6 mutation in exon 5 (c.112delC, p.Arg38GlyfsX16) was identified in FAMILY-1, which was predicted to generate a frameshift and created a premature termination codon. A heterozygous PAX6 mutation in exon 7 (c.362C>T, p.Ser121Leu) was identified in FAMILY-2. Each mutation cosegregated with the affected individuals in the family and did not exist in unaffected family members and 200 unrelated normal controls. The PAX6 messenger ribonucleic acid level was about 50% lower in patients with aniridia than in unaffected family members in FAMILY-1. Conclusions The deletion mutation (c.112delC) in the PAX6 gene was first identified in a Chinese family with aniridia, congenital progressive cataract, developmental delay, or the absence of ulna. The mutation (c.362C>T, p.Ser121Leu) in the PAX6 gene was first identified in a patient with aniridia with congenital ptosis. We summarized the variable phenotypes among the patients, which expanded the phenotypic spectrum of aniridia in a different ethnic background. PMID:23734086

  6. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma.

    PubMed

    Schwartzentruber, Jeremy; Korshunov, Andrey; Liu, Xiao-Yang; Jones, David T W; Pfaff, Elke; Jacob, Karine; Sturm, Dominik; Fontebasso, Adam M; Quang, Dong-Anh Khuong; Tönjes, Martje; Hovestadt, Volker; Albrecht, Steffen; Kool, Marcel; Nantel, Andre; Konermann, Carolin; Lindroth, Anders; Jäger, Natalie; Rausch, Tobias; Ryzhova, Marina; Korbel, Jan O; Hielscher, Thomas; Hauser, Peter; Garami, Miklos; Klekner, Almos; Bognar, Laszlo; Ebinger, Martin; Schuhmann, Martin U; Scheurlen, Wolfram; Pekrun, Arnulf; Frühwald, Michael C; Roggendorf, Wolfgang; Kramm, Christoph; Dürken, Matthias; Atkinson, Jeffrey; Lepage, Pierre; Montpetit, Alexandre; Zakrzewska, Magdalena; Zakrzewski, Krzystof; Liberski, Pawel P; Dong, Zhifeng; Siegel, Peter; Kulozik, Andreas E; Zapatka, Marc; Guha, Abhijit; Malkin, David; Felsberg, Jörg; Reifenberger, Guido; von Deimling, Andreas; Ichimura, Koichi; Collins, V Peter; Witt, Hendrik; Milde, Till; Witt, Olaf; Zhang, Cindy; Castelo-Branco, Pedro; Lichter, Peter; Faury, Damien; Tabori, Uri; Plass, Christoph; Majewski, Jacek; Pfister, Stefan M; Jabado, Nada

    2012-02-01

    Glioblastoma multiforme (GBM) is a lethal brain tumour in adults and children. However, DNA copy number and gene expression signatures indicate differences between adult and paediatric cases. To explore the genetic events underlying this distinction, we sequenced the exomes of 48 paediatric GBM samples. Somatic mutations in the H3.3-ATRX-DAXX chromatin remodelling pathway were identified in 44% of tumours (21/48). Recurrent mutations in H3F3A, which encodes the replication-independent histone 3 variant H3.3, were observed in 31% of tumours, and led to amino acid substitutions at two critical positions within the histone tail (K27M, G34R/G34V) involved in key regulatory post-translational modifications. Mutations in ATRX (?-thalassaemia/mental retardation syndrome X-linked) and DAXX (death-domain associated protein), encoding two subunits of a chromatin remodelling complex required for H3.3 incorporation at pericentric heterochromatin and telomeres, were identified in 31% of samples overall, and in 100% of tumours harbouring a G34R or G34V H3.3 mutation. Somatic TP53 mutations were identified in 54% of all cases, and in 86% of samples with H3F3A and/or ATRX mutations. Screening of a large cohort of gliomas of various grades and histologies (n = 784) showed H3F3A mutations to be specific to GBM and highly prevalent in children and young adults. Furthermore, the presence of H3F3A/ATRX-DAXX/TP53 mutations was strongly associated with alternative lengthening of telomeres and specific gene expression profiles. This is, to our knowledge, the first report to highlight recurrent mutations in a regulatory histone in humans, and our data suggest that defects of the chromatin architecture underlie paediatric and young adult GBM pathogenesis. PMID:22286061

  7. Novel mutations in the CDKL5 gene, predicted effects and associated phenotypes.

    PubMed

    Russo, S; Marchi, M; Cogliati, F; Bonati, M T; Pintaudi, M; Veneselli, E; Saletti, V; Balestrini, M; Ben-Zeev, B; Larizza, L

    2009-07-01

    It has been found that CDKL5 gene mutations are responsible for early-onset epilepsy and drug resistance. We screened a population of 92 patients with classic/atypical Rett syndrome, 17 Angelman/Angelman-like patients and six idiopathic autistic patients for CDKL5 mutations and exon deletions and identified seven novel mutations: six in the Rett subset and one in an Angelman patient. This last, an insertion in exon 11, c.903_904 dupGA, p.Leu302Aspfx49X, is associated with a relatively mild clinical presentation as the patient is the only one capable of sitting and walking alone. Of the six mutations, two are de novo missense changes affecting highly conserved aminoacid residues, c.215 T > C p.Ile72Thr and c.380A > G p.His127Arg (present in a mosaic condition) found in two girls with the most severe clinical presentation, while the remaining are the splicing c.145 + 2 T > C and c.2376 + 5G > A, the c.1648C > T p.Arg550X and the MPLA-identified c.162_99del261 mutation. RNA characterisation of four mutations revealed the aberrant transcript of the missense allele (case 2) and not the stop mutation (case 3), but also allowed the splicing mutation (case 1) and the c.-162_99del261 (case 4) to be categorised as truncating. The obtained data reinforce the view that a more severe phenotype is due more to an altered protein than haploinsufficiency. Furthermore, the mutational repertoire of the CDKL5 gene is shown to be expanded by testing patients with phenotypical overlap to Rett syndrome and applying multiplex ligation-dependent probe amplification. PMID:19241098

  8. Characterization of seven novel mutations on the HEXB gene in French Sandhoff patients.

    PubMed

    Gaignard, Pauline; Fagart, Jérôme; Niemir, Natalia; Puech, Jean-Philippe; Azouguene, Emilie; Dussau, Jeanne; Caillaud, Catherine

    2013-01-10

    Sandhoff disease (SD) is an autosomal recessive lysosomal storage disease caused by mutations in the HEXB gene encoding the beta subunit of hexosaminidases A and B, two enzymes involved in GM2 ganglioside degradation. Eleven French Sandhoff patients with infantile or juvenile forms of the disease were completely characterized using sequencing of the HEXB gene. A specific procedure was developed to facilitate the detection of the common 5'-end 16kb deletion which was frequent (36% of the alleles) in our study. Eleven other disease-causing mutations were found, among which four have previously been reported (c.850C>T, c.793T>G, c.115del and c.800_817del). Seven mutations were completely novel and were analyzed using molecular modelling. Two deletions (c.176del and c.1058_1060del), a duplication (c.1485_1487dup) and a nonsense mutation (c.552T>G) were predicted to strongly alter the enzyme spatial organization. The splice mutation c.558+5G>A affecting the intron 4 consensus splice site led to a skipping of exon 4 and to a truncated protein (p.191X). Two missense mutations were found among the patients studied. The c.448A>C mutation was probably a severe mutation as it was present in association with the known c.793T>G in an infantile form of Sandhoff disease and as it significantly modified the N-terminal domain structure of the protein. The c.171G>C mutation resulting in a p.W57C amino acid substitution in the N-terminal region is probably less drastic than the other abnormalities as it was present in a juvenile patient in association with the c.176del. Finally, this study reports a rapid detection of the Sandhoff disease-causing alleles facilitating genetic counselling and prenatal diagnosis in at-risk families. PMID:23046579

  9. De Novo Mutations in Synaptic Transmission Genes Including DNM1 Cause Epileptic Encephalopathies

    PubMed Central

    Appenzeller, Silke; Balling, Rudi; Barisic, Nina; Baulac, Stéphanie; Caglayan, Hande; Craiu, Dana; De Jonghe, Peter; Depienne, Christel; Dimova, Petia; Djémié, Tania; Gormley, Padhraig; Guerrini, Renzo; Helbig, Ingo; Hjalgrim, Helle; Hoffman-Zacharska, Dorota; Jähn, Johanna; Klein, Karl Martin; Koeleman, Bobby; Komarek, Vladimir; Krause, Roland; Kuhlenbäumer, Gregor; Leguern, Eric; Lehesjoki, Anna-Elina; Lemke, Johannes R.; Lerche, Holger; Linnankivi, Tarja; Marini, Carla; May, Patrick; Mřller, Rikke S.; Muhle, Hiltrud; Pal, Deb; Palotie, Aarno; Pendziwiat, Manuela; Robbiano, Angela; Roelens, Filip; Rosenow, Felix; Selmer, Kaja; Serratosa, Jose M.; Sisodiya, Sanjay; Stephani, Ulrich; Sterbova, Katalin; Striano, Pasquale; Suls, Arvid; Talvik, Tiina; von Spiczak, Sarah; Weber, Yvonne; Weckhuysen, Sarah; Zara, Federico; Abou-Khalil, Bassel; Alldredge, Brian K.; Andermann, Eva; Andermann, Frederick; Amron, Dina; Bautista, Jocelyn F.; Berkovic, Samuel F.; Bluvstein, Judith; Boro, Alex; Cascino, Gregory; Consalvo, Damian; Crumrine, Patricia; Devinsky, Orrin; Dlugos, Dennis; Epstein, Michael P.; Fiol, Miguel; Fountain, Nathan B.; French, Jacqueline; Friedman, Daniel; Geller, Eric B.; Glauser, Tracy; Glynn, Simon; Haas, Kevin; Haut, Sheryl R.; Hayward, Jean; Helmers, Sandra L.; Joshi, Sucheta; Kanner, Andres; Kirsch, Heidi E.; Knowlton, Robert C.; Kossoff, Eric H.; Kuperman, Rachel; Kuzniecky, Ruben; Lowenstein, Daniel H.; McGuire, Shannon M.; Motika, Paul V.; Novotny, Edward J.; Ottman, Ruth; Paolicchi, Juliann M.; Parent, Jack; Park, Kristen; Poduri, Annapurna; Sadleir, Lynette; Scheffer, Ingrid E.; Shellhaas, Renée A.; Sherr, Elliott; Shih, Jerry J.; Singh, Rani; Sirven, Joseph; Smith, Michael C.; Sullivan, Joe; Thio, Liu Lin; Venkat, Anu; Vining, Eileen P.G.; Von Allmen, Gretchen K.; Weisenberg, Judith L.; Widdess-Walsh, Peter; Winawer, Melodie R.; Allen, Andrew S.; Berkovic, Samuel F.; Cossette, Patrick; Delanty, Norman; Dlugos, Dennis; Eichler, Evan E.; Epstein, Michael P.; Glauser, Tracy; Goldstein, David B.; Han, Yujun; Heinzen, Erin L.; Johnson, Michael R.; Kuzniecky, Ruben; Lowenstein, Daniel H.; Marson, Anthony G.; Mefford, Heather C.; Nieh, Sahar Esmaeeli; O’Brien, Terence J.; Ottman, Ruth; Petrou, Stephen; Petrovski, Slavé; Poduri, Annapurna; Ruzzo, Elizabeth K.; Scheffer, Ingrid E.; Sherr, Elliott

    2014-01-01

    Emerging evidence indicates that epileptic encephalopathies are genetically highly heterogeneous, underscoring the need for large cohorts of well-characterized individuals to further define the genetic landscape. Through a collaboration between two consortia (EuroEPINOMICS and Epi4K/EPGP), we analyzed exome-sequencing data of 356 trios with the “classical” epileptic encephalopathies, infantile spasms and Lennox Gastaut syndrome, including 264 trios previously analyzed by the Epi4K/EPGP consortium. In this expanded cohort, we find 429 de novo mutations, including de novo mutations in DNM1 in five individuals and de novo mutations in GABBR2, FASN, and RYR3 in two individuals each. Unlike previous studies, this cohort is sufficiently large to show a significant excess of de novo mutations in epileptic encephalopathy probands compared to the general population using a likelihood analysis (p = 8.2 × 10?4), supporting a prominent role for de novo mutations in epileptic encephalopathies. We bring statistical evidence that mutations in DNM1 cause epileptic encephalopathy, find suggestive evidence for a role of three additional genes, and show that at least 12% of analyzed individuals have an identifiable causal de novo mutation. Strikingly, 75% of mutations in these probands are predicted to disrupt a protein involved in regulating synaptic transmission, and there is a significant enrichment of de novo mutations in genes in this pathway in the entire cohort as well. These findings emphasize an important role for synaptic dysregulation in epileptic encephalopathies, above and beyond that caused by ion channel dysfunction. PMID:25262651

  10. CRISPR-mediated direct mutation of cancer genes in the mouse liver

    PubMed Central

    Xue, Wen; Chen, Sidi; Yin, Hao; Tammela, Tuomas; Papagiannakopoulos, Thales; Joshi, Nikhil S.; Cai, Wenxin; Yang, Gillian; Bronson, Roderick; Crowley, Denise G.; Zhang, Feng; Anderson, Daniel G.; Sharp, Phillip A.; Jacks, Tyler

    2014-01-01

    The study of cancer genes in mouse models has traditionally relied on genetically-engineered strains made via transgenesis or gene targeting in embryonic stem (ES) cells1. Here we describe a new method of cancer model generation using the CRISPR/Cas system in vivo in wild-type mice. We have used hydrodynamic injection to deliver a CRISPR plasmid DNA expressing Cas9 and single guide RNAs (sgRNAs)2–4 to the liver and directly target the tumor suppressor genes Pten5 and p536, alone and in combination. CRISPR-mediated Pten mutation led to elevated Akt phosphorylation and lipid accumulation in hepatocytes, phenocopying the effects of deletion of the gene using Cre-LoxP technology7, 8. Simultaneous targeting of Pten and p53 induced liver tumors that mimicked those caused by Cre-loxP-mediated deletion of Pten and p53. DNA sequencing of liver and tumor tissue revealed insertion or deletion (indel) mutations of the tumor suppressor genes, including bi-allelic mutations of both Pten and p53 in tumors. Furthermore, co-injection of Cas9 plasmids harboring sgRNAs targeting the ?-Catenin gene (Ctnnb1) and a single-stranded DNA (ssDNA) oligonucleotide donor carrying activating point mutations led to the generation of hepatocytes with nuclear localization of ?-Catenin. This study demonstrates the feasibility of direct mutation of tumor suppressor genes and oncogenes in the liver using the CRISPR/Cas system, which presents a new avenue for rapid development of liver cancer models and functional genomics. PMID:25119044

  11. A novel small deletion mutation in RUNX2 gene in one Chinese family with cleidocranial dysplasia

    PubMed Central

    Chen, Ting; Hou, Jin; Hu, Ling-Ling; Gao, Jie; Wu, Bu-Ling

    2014-01-01

    Cleidocranial dysplasia (CCD) is a skeletal dysplasia with autosomal-dominant inheritance. The runt related transcription factor 2 (RUNX2) gene is the only gene in which mutations are known to cause CCD. We report identification of a novel small deletions mutation in the RUNX2 gene in a Chinese family with CCD. A 29-year-old female was diagnosed as proband of CCD based on the clinical findings, which show delayed closure of the fontanels, hypoplastic or aplastic clavicles and dental anomalies. Similar dental and skeletal symptoms were also observed in the other three affected individuals. We prepared genomic DNA from all four affected individuals, unaffected individual from her family members, as well as 100 unrelated healthy controls. PCR was conducted using the above genomic DNA as template and the RUNX2 gene-specific primers. The PCR product was subjected to direct sequencing and the sequence was compared to that of RUNX2 gene within the NCBI database. We detected a small deletion CCTA from nucleotide 635 to nucleotide 638 in exon 3 of RUNX2 gene of the proband. This will lead to the introduction of a translational stop codon at codon 220, resulting in a truncated RUNX2 protein, and therefore within the runt domain of the RUNX2 protein. We detected the same mutation in the the other three affected individuals, and did not detect any mutation in the unaffected family members or the 100 unrelated healthy controls, demonstrating that this is a novel missense mutation in RUNX2 gene and therefore, contributes to the molecular diagnosis of CCD. PMID:24966961

  12. Mutation analysis of the polycystic kidney disease 1 (PKD1) gene

    SciTech Connect

    Peral, B.; Ward, C.J.; Thomas, S. [John Radcliffe Hospital, Oxford (United Kingdom)] [and others

    1994-09-01

    The gene which is mutated in most cases of autosomal dominant polycystic kidney disease (ADPKD), PKD1, has recently been identified on chromosome 16. Three quarters of this gene lies in a region of genomic DNA that is duplicated elsewhere on chromosome 16. Consequently, the search for mutations has proved difficult and our efforts so far have concentrated on screening the single copy 3{prime} region of the gene. We have employed the methods of field inversion gel electrophoresis, conventional Southern blotting, RT-PCR and heteroduplex analysis. From the examination of DNA of approximately 300 PKD1 patients, two deletions have been identified. One is a 5.5 kb genomic deletion, which is transmitted with the disease and results in a 3 kb deletion of the PKD1 transcript. The other is a de novo genomic deletion of 2 kb which removes {approximately}500 bp of the transcript. In addition, analysis of lymphoblast RNA by RT-PCR from 50 patients has revealed one splicing mutation resulting in the removal of a 135 bp exon. Further analysis of the single copy region of this gene is underway and strategies to screen the duplicated area of the gene for mutations are being explored.

  13. Novel Mutations and Deletions of the KIT (Steel Factor Receptor) Gene in Human Piebaldism

    PubMed Central

    Ezoe, Kazuhiko; Holmes, Stuart A.; Ho, Lingling; Bennett, Christopher P.; Bolognia, Jean L.; Brueton, Louise; Burn, John; Falabella, Rafael; Gatto, Emilia M.; Ishii, Norihisa; Moss, Celia; Pittelkow, Mark R.; Thompson, Elizabeth; Ward, K. Anne; Spritz, Richard A.

    1995-01-01

    Piebaldism is an autosomal dominant genetic disorder of pigmentation characterized by white patches of skin and hair. Melanocytes are lacking in these hypopigmented regions, the result of mutations of the KIT gene, which encodes the cell surface receptor for steel factor (SLF). We describe the analysis of 26 unrelated patients with piebaldism-like hypopigmentation—17 typical patients, 5 with atypical clinical features or family histories, and 4 with other disorders that involve white spotting. We identified novel pathologic mutations or deletions of the KIT gene in 10 (59%) of the typical patients, and in 2 (40%) of the atypical patients. Overall, we have identified pathologic KIT gene mutations in 21 (75%) of 28 unrelated patients with typical piebaldism we have studied. Of the patients without apparent KIT mutations, none have apparent abnormalities of the gene encoding SLF itself (MGF), and genetic linkage analyses in two of these families are suggestive of linkage of the piebald phenotype to KIT. Thus, most patients with typical piebaldism appear to have abnormalities of the KIT gene. ImagesFigure 2 PMID:7529964

  14. A novel Twinkle (PEO1) gene mutation in a Chinese family with adPEO

    PubMed Central

    Liu, Zhirong; Du, Ailian; Zhang, Baorong; Zhao, Guohua

    2008-01-01

    Purpose Autosomal dominant progressive external ophthalmoplegia (adPEO) is a genetically heterogeneous, adult-onset disease. Thus far, disease loci have been identified on four different nuclear genes. The purpose of this study is to identify the gene responsible for causing adPEO in a Chinese family. Methods Clinical data and genomic DNA of a Chinese adPEO family were collected following informed consent. Gene scan by two-point linkage analysis was performed for four genes, and mutation screening was conducted in the Twinkle (PEO1) gene by direct sequencing. Results A maximum two-point LOD score of 2.8 at ?=0.00 was obtained with marker D10S192 in close proximity to PEO1. A novel missense mutation (c.1423G>A, p.475A>T) was identified. Conclusions This study widens the mutation spectrum of PEO1 and is the first to report the PEO1 mutation in the Chinese population. PMID:18989381

  15. A novel homozygous missense mutation of the leptin gene (N103K) in an obese Egyptian patient.

    PubMed

    Mazen, I; El-Gammal, M; Abdel-Hamid, M; Amr, K

    2009-08-01

    Congenital leptin deficiency is a rare recessive genetic disorder resulting in severe hyperphagia and early onset obesity. It is caused by mutations in the LEP gene encoding leptin. To date, only two mutations have been identified in the LEP gene, Delta133G and R105W. We present the third reported mutation identified in an Egyptian patient with very low serum leptin levels and severe early onset obesity (BMI = 51). Direct sequencing of the coding region of the LEP gene revealed a novel homozygous missense mutation, N103K. The N103K mutation was not found in 100 alleles from 50 unrelated Egyptian normal-weight control subjects using polymerase chain reaction and restriction fragment length polymorphism analysis. In conclusion, this study presents the third reported mutation of the LEP gene and will provide further insight into the physiologic role of leptin in human obesity. PMID:19427251

  16. RET gene mutations and polymorphisms in medullary thyroid carcinomas in Indian patients.

    PubMed

    Sharma, B P; Saranath, D

    2011-09-01

    Germline mutations of RET gene are pathognomonic of multiple endocrine neoplasia (MEN; MEN 2A/MEN 2B) and familial medullary thyroid carcinoma (FMTC), constituting 25% of medullary thyroid carcinomas (MTCs). We investigated RET gene mutations and polymorphisms at exons 10, 11, 13, 14, 15 and 16 in 140 samples, comprising 51 clinically diagnosed MTC patients, 39 family members of patients and 50 normal individuals. The method of choice was PCR and direct nucleotide sequencing of the PCR products. RET gene mutations were detected in 15 (29.4%) patients, with MEN 2A/FMTC in 13 patients and MEN 2B in 2 patients. Further, 39 family members of seven index cases were analysed, wherein four of the seven index cases showed identical mutations, in 13 of 25 family members. We also examined single nucleotide polymorphisms (SNPs) in RET gene exons in 101 unrelated samples. Significant differences in the allelic frequencies of SNPs at codons 691, 769, 836 and 904 between patient and control groups were not observed. However, SNP frequencies were significantly different in the Indian group as compared with other European groups. We identified two novel, rare and unique SNPs separately in single patients. Our study demonstrated presence of MEN 2A/MEN 2B/FMTC-associated mutations in accordance with the reported literature. Thus, RET gene mutations in exons 10, 11, 13, 14, 15 and 16 constitute a rapid test to confirm diagnosis and assess risk of the disease in familial MEN 2A/MEN 2B/FMTC. PMID:21857107

  17. Clinical phenotype and diagnosis of arrhythmogenic right ventricular cardiomyopathy in pediatric patients carrying desmosomal gene mutations

    PubMed Central

    Bauce, Barbara; Rampazzo, Alessandra; Basso, Cristina; Mazzotti, Elisa; Rigato, Ilaria; Steriotis, Alexandros; Beffagna, Giorgia; Lorenzon, Alessandra; De Bortoli, Marzia; Pilichou, Kalliopi; Marra, Martina Perazzolo; Corbetti, Francesco; Daliento, Luciano; Iliceto, Sabino; Corrado, Domenico; Thiene, Gaetano; Nava, Andrea

    2011-01-01

    Background Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited heart muscle disease carrying a risk of sudden death. Information about the clinical features during childhood and the age at disease onset is scanty. Objective The aim of the study was to describe the ARVC phenotype as its initial clinical manifestation in a pediatric population (<18 years) with desmosomal gene mutations. Methods Fifty-three ARVC desmosomal gene mutation carriers (mean age 12.3 ± 3.9 years) were investigated by electrocardiogram (ECG), signal-averaged ECG, 24-hour Holter, echocardiogram, and contrast-enhanced cardiac magnetic resonance (CMR). Results None of the children ?10 years old fulfilled the 1994 criteria, as opposed to six (33%) aged 11–14 years and eight aged >14 years (42%). At the end of follow-up (9 ± 7 years), 21 (40%) fulfilled the 1994 diagnostic criteria (mean age 16 ± 4 years). By using the 2010 criteria in subjects aged ?18 years, 53% were unaffected, versus 62% by using the traditional criteria. More than two-thirds of affected subjects had moderate-severe forms of the disease. Contrast-enhanced CMR was performed in 21 (40%); of 13 unaffected gene mutation carriers, six showed ARVC morphological and/or tissue abnormalities. Conclusion In pediatric ARVC mutation carriers, a diagnosis was achieved in 40% of cases, confirming that the disease usually develops during adolescence and young adulthood. The 2010 modified criteria seem to be more sensitive than the 1994 ones in identifying familial pediatric cases. Contrast-enhanced CMR can provide diagnostic information on gene mutation carriers not fulfilling either traditional or modified criteria. Management of asymptomatic gene mutation carriers remains the main clinical challenge. PMID:21723241

  18. Mutations in the Glycosylphosphatidylinositol Gene PIGL Cause CHIME Syndrome

    PubMed Central

    Ng, Bobby G.; Hackmann, Karl; Jones, Melanie A.; Eroshkin, Alexey M.; He, Ping; Wiliams, Roy; Bhide, Shruti; Cantagrel, Vincent; Gleeson, Joseph G.; Paller, Amy S.; Schnur, Rhonda E.; Tinschert, Sigrid; Zunich, Janice; Hegde, Madhuri R.; Freeze, Hudson H.

    2012-01-01

    CHIME syndrome is characterized by colobomas, heart defects, ichthyosiform dermatosis, mental retardation (intellectual disability), and ear anomalies, including conductive hearing loss. Whole-exome sequencing on five previously reported cases identified PIGL, the de-N-acetylase required for glycosylphosphatidylinositol (GPI) anchor formation, as a strong candidate. Furthermore, cell lines derived from these cases had significantly reduced levels of the two GPI anchor markers, CD59 and a GPI-binding toxin, aerolysin (FLAER), confirming the pathogenicity of the mutations. PMID:22444671

  19. Mutations in the epidermal growth factor receptor gene and effects of EGFR-tyrosine kinase inhibitors on lung cancers

    Microsoft Academic Search

    Takayuki Fukui; Tetsuya Mitsudomi

    2008-01-01

    Epidermal growth factor receptor (EGFR) gene mutations are frequent in lung cancer arising in patients of Asian ethnicity, female sex, nonsmokers, and adenocarcinoma\\u000a histology. About 70% of the patients with EGFR mutations respond to EGFR tyrosine kinase inhibitors (TKIs) including gefitinib and erlotinib, whereas only 10% of those\\u000a without the mutations do so. Therefore, EGFR mutation is being recognized as

  20. Mutations in the rpoB Gene of Multidrug-Resistant Mycobacterium tuberculosis Isolates from China

    Microsoft Academic Search

    Jun Yue; Wei Shi; Jingping Xie; Yao Li; Erliang Zeng; Honghai Wang

    2003-01-01

    Mutations in the 81-bp rifampin resistance determining region (RRDR) and mutation V176F locating at the beginning of the ropB gene were analyzed by DNA sequencing of 86 Mycobacterium tuberculosis clinical isolates (72 resistant and 14 sensitive) from different parts of China. Sixty-five mutations of 22 distinct kinds, 21 point mutations, and 1 insertion were found in 65 of 72 resistant

  1. Mutations in the rpoB Gene of Multidrug-Resistant Mycobacterium tuberculosis Clinical Isolates from India

    Microsoft Academic Search

    CHERUVU MANI; N. SELVAKUMAR; SUJATHA NARAYANAN; P. R. NARAYANAN

    2001-01-01

    Mutations in the 81-bp rifampin resistance-determining region (RRDR) of the rpoB gene were analyzed by DNA sequencing of 50 Mycobacterium tuberculosis clinical isolates (44 resistant and 6 sensitive) from various parts of India. Fifty-three mutations of 18 different kinds, 17 point mutations and one deletion, were observed in 43 of 44 resistant isolates. Three novel mutations and three new alleles

  2. A common founder for the 35delG GJB2gene mutation in connexin 26 hearing impairment

    Microsoft Academic Search

    L Van Laer; P Coucke; R F Mueller; G Caethoven; K Flothmann; S D Prasad; G P Chamberlin; M Houseman; G R Taylor; C M Van de Heyning; E Fransen; J Rowland; R A Cucci; R J H Smith; G Van Camp

    2001-01-01

    Fifty to eighty percent of autosomal recessive congenital severe to profound hearing impairment result from mutations in a single gene, GJB2, that encodes the protein connexin 26. One mutation of this gene, the 35delG allele, is particularly common in white populations. We report evidence that the high frequency of this allelic variant is the result of a founder effect rather

  3. High dietary intake of sodium selenite does not affect gene mutation frequency in rat colon and liver

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gene mutations have been implicated in the etiology of cancer. In the present study, we utilized Big Blue transgenic rats to evaluate the in vivo mutation frequency of the ' cII gene in rats fed either a Se-deficient (0 µg Se/g diet) or selenium-supplemented diet (2 µg Se/g diet) (n=6 rats/diet) and...

  4. Mutational Screening of Breast Cancer Susceptibility Gene 1 from Early Onset, Bilateral, and Familial Breast Cancer Patients in Taiwan

    Microsoft Academic Search

    Shou-Tung Chen; Ruei-A Chen; Shou-Jen Kuo; Yi-Chih Chien

    2003-01-01

    The BRCA1 gene has been shown to be strongly associated with the occurrence of familial breast cancer. The spectrum of BRCA1 gene mutations in breast cancer patients in various populations has been investigated. In this study, patients in Central Taiwan with breast cancer were screened for BRCA1 mutations by sequencing PCR products spanning the coding region and partial intronic regions

  5. New mutation in the myocilin gene segregates with juvenile-onset open-angle glaucoma in a Brazilian family

    E-print Network

    Neshich, Goran

    New mutation in the myocilin gene segregates with juvenile-onset open-angle glaucoma in a Brazilian-onset open-angle glaucoma Myocilin Mutations in the myocilin gene (MYOC) account for most cases of autosomal dominant juvenile-onset open-angle glaucoma (JOAG), an earlier and more severe form of POAG. We accessed

  6. Identification of a germ-line mutation in the p53 gene in a patient with an intracranial ependymoma

    Microsoft Academic Search

    A. K. Metzger; G. Duyk; L. Daneshvar; M. S. B. Edwards; P. H. Cogen; V. C. Sheffield

    1991-01-01

    The authors detected a germ-line mutation of the p53 gene in a patient with a malignant ependymoma of the posterior fossa. This mutation, which was found at codon 242, resulted in an amino acid substitution in a highly conserved site of exon 7 of the p53 gene; the same mutation was found in both the germ-line and tumor tissue. This

  7. Identification of two novel Darier disease?associated mutations in the ATP2A2 gene.

    PubMed

    Zheng, Libao; Jiang, Huili; Mei, Qin; Chen, Bin

    2015-08-01

    Darier disease (DD) is an autosomal dominant inherited skin disorder, characterized by abnormal keratinization, loss of adhesion between epidermal cells, termed acantholysis, and the development of warty papules and plaques on the central trunk, forehead, scalp and flexures. These symptoms are often exacerbated by heat, sweating, sunburn and stress. Mutations in the ATP2A2 gene, encoding SERCA2, a calcium pump of the sarco/endoplasmic reticulum, are responsible for the disease. The aim of the present study was to investigate two pedigrees of DD and to examine the genetic mutations. DNA was extracted from peripheral blood, which was obtained from four patients with DD, 10 healthy individuals from the two families and 100 ethnicity?matched control individuals, on which subsequent polymerase chain reaction amplification and direct automated DNA sequencing were performed. The results identified two novel missense mutations, p.R603I and p.G749 V. These mutations were not identified in the remaining ten healthy individuals in the same families or in any of the 100 controls. These mutations may contribute to the expanding database of ATP2A2 gene mutations in patients with DD. PMID:25872913

  8. [Analysis of MLC1 gene mutation in a Chinese family with megalencephalic leukoencephalopathy with subcortical cysts].

    PubMed

    Zhu, Li-Na; Ma, Xiu-Wei; Zheng, Tian; He, Fang; Feng, Zhi-Chun

    2015-04-01

    The clinical data of a patient with megalencephalic leukoencephalopathy (MLC) with subcortical cysts and her parents were collected. MLC1 gene mutation was detected by polymerase chain reaction and direct DNA sequencing. The patient presented with motor developmental delay and giant skull, and brain magnetic resonance imaging showed diffuse white matter swelling accompanied by subcortical cysts in bilateral frontal and parietal lobes. Gene sequencing identified two heterozygous mutations of MLC1, including missense mutation in exon 3 (c.217G>A, p.Gly73Arg) and splice site mutation in intron 9 (c.772-1G>C in IVS9-1). The patient's parents both had heterozygous mutation c.772-1G>C in IVS9-1 with normal phenotype. It can be presumed that c.772-1G>C in IVS9-1 comes from the parents, and c.217G>A (p.Gly73Arg) is a de novo mutation. PMID:25919557

  9. Mutations of Cx26 gene (GJB2) for prelingual deafness in Taiwan.

    PubMed

    Wang, Yi-Chun; Kung, Chiu-Yun; Su, Mao-Chang; Su, Ching-Chyuan; Hsu, Hsiu-Mei; Tsai, Chin-Chu; Lin, Chyi-Chyang; Li, Shuan-Yow

    2002-08-01

    Mutations in the Cx26 (GJB2) gene have been shown to be responsible for a major part of autosomal recessive non-syndromic inherited prelingual deafness. We have sequenced the coding region of GJB2 gene from 169 Taiwanese patients with prelingual deafness and 100 unrelated normal individuals. In the deaf patients, three mutations were found: two novel mutations, 551G-->A, and 299-300delAT, and one previously described mutation, 235delC. Four previously reported polymorphisms, 79G-->A, 109G-->A, 341A-->G, and 608T-->C, were also found in both deaf patients and normal individuals and one new possible polymorphism, 558G-->A, which was only found in a patient. Interestingly, we did not find the 35delG allele, which is commonly found in the Caucasian population, either in the patients or in normal individuals we examined. Our data also showed 235delC to be the most common type of mutation found in Cx26 mutants (approximately 57%). Therefore, based on our findings, we have developed a simple molecular test for the 235delC mutation and it should be of considerable help to those families to understand the cause of their children having the prelingual deafness. PMID:12111646

  10. Missense mutations in disease genes: a Bayesian approach to evaluate causality.

    PubMed Central

    Petersen, G M; Parmigiani, G; Thomas, D

    1998-01-01

    The problem of interpreting missense mutations of disease-causing genes is an increasingly important one. Because these point mutations result in alteration of only a single amino acid of the protein product, it is often unclear whether this change alone is sufficient to cause disease. We propose a Bayesian approach that utilizes genetic information on affected relatives in families ascertained through known missense-mutation carriers. This method is useful in evaluating known disease genes for common disease phenotypes, such as breast cancer or colorectal cancer. The posterior probability that a missense mutation is disease causing is conditioned on the relationship of the relatives to the proband, the population frequency of the mutation, and the phenocopy rate of the disease. The approach is demonstrated in two cancer data sets: BRCA1 R841W and APC I1307K. In both examples, this method helps establish that these mutations are likely to be disease causing, with Bayes factors in favor of causality of 5.09 and 66.97, respectively, and posterior probabilities of .836 and .985. We also develop a simple approximation for rare alleles and consider the case of unknown penetrance and allele frequency. PMID:9585599

  11. A new database for ribosomal protein genes which are mutated in Diamond-Blackfan Anemia.

    PubMed

    Boria, Ilenia; Quarello, Paola; Avondo, Federica; Garelli, Emanuela; Aspesi, Anna; Carando, Adriana; Campagnoli, Maria Francesca; Dianzani, Irma; Ramenghi, Ugo

    2008-11-01

    Mutations in ribosomal proteins RPS19, RPS24 and RPS17 have been reported in Diamond-Blackfan Anemia (DBA), an autosomal dominant disease characterised by pure red cell aplasia. DBA is the prototype of ribosomapathies: a protein synthesis defect in a tissue with a high cellular turnover is considered the cause of the erythroid progenitor failure. We have created the Diamond-Blackfan Anemia mutation database to curate and record DBA gene mutations, together with their functional consequences and clinical phenotypes. This locus-specific resource is open to future submissions and is available online (http://www.dbagenes.unito.it). It is founded on the Leiden Open (source) Variation Database (LOVD) system and includes data from sequence and structure analysis tools, genomic database resources and published reports. It lists all identified variants and background genomic information. Phenotypic data are accessed by selecting a particular mutation. The database includes 219 unique variants of which 86 are disease-causing mutations. The database will be supplemented with other DBA genes as soon as they are reported and their mutations are identified and it should be of assistance to clinicians and investigators involved in DBA research and care. PMID:18781615

  12. Origin and Ascendancy of a Chimeric Fusion Gene: The ?/?-Globin Gene of Paenungulate Mammals

    PubMed Central

    Opazo, Juan C.; Sloan, Angela M.; Campbell, Kevin L.

    2009-01-01

    The ?-globin gene (HBD) of eutherian mammals exhibits a propensity for recombinational exchange with the closely linked ?-globin gene (HBB) and has been independently converted by the HBB gene in multiple lineages. Here we report the presence of a chimeric ?/? fusion gene in the African elephant (Loxodonta africana) that was created by unequal crossing-over between misaligned HBD and HBB paralogs. The recombinant chromosome that harbors the ?/? fusion gene in elephants is structurally similar to the “anti-Lepore” duplication mutant of humans (the reciprocal exchange product of the hemoglobin Lepore deletion mutant). However, the situation in the African elephant is unique in that the chimeric ?/? fusion gene supplanted the parental HBB gene and is therefore solely responsible for synthesizing the ?-chain subunits of adult hemoglobin. A phylogenetic survey of ?-like globin genes in afrotherian and xenarthran mammals revealed that the origin of the chimeric ?/? fusion gene and the concomitant inactivation of the HBB gene predated the radiation of “Paenungulata,” a clade of afrotherian mammals that includes three orders: Proboscidea (elephants), Sirenia (dugongs and manatees), and Hyracoidea (hyraxes). The reduced fitness of the human Hb Lepore deletion mutant helps to explain why independently derived ?/? fusion genes (which occur on an anti-Lepore chromosome) have been fixed in a number of mammalian lineages, whereas the reciprocal ?/? fusion gene (which occurs on a Lepore chromosome) has yet to be documented in any nonhuman mammal. This illustrates how the evolutionary fates of chimeric fusion genes can be strongly influenced by their recombinational mode of origin. PMID:19332641

  13. Analysis of mutations in the PIK3CA and FGFR3 genes in verrucous epidermal nevus*

    PubMed Central

    Miranda, Ludmilla Queirós; Fracaroli, Tainá Scalfoni; Fonseca, Joăo Carlos Macedo; Fontenelle, Elisa; Curvo, Raphael Pedro Machado; Porto, Luís Cristóvăo; Souto, Roberto

    2013-01-01

    Verrucous epidermal nevi are congenital hamartomas composed of keratinocytes and may occur alone or in association with developmental abnormalities. A close relationship between variations in the PIK3CA and FGFR3 genes and the appearance of nevi has been recently reported. Based on that, we performed molecular assays for the identification of E542K, E545G/K and H1047R mutations in the PIK3CA gene and of the R248C mutation in the FGFR3 gene. Interestingly, during the amplification process, we did not observe the PCR product of exon 9 of the PIK3CA gene, a region comprising amino acids 542-545. This strongly suggests the occurrence of a microdeletion of that region and indicates a possible allelic variant, which has not yet being described in the literature. PMID:24346875

  14. Three novel mutations of the fibrillin-1 gene and ten single nucleotide polymorphisms of the fibrillin-3 gene in Marfan syndrome patients

    Microsoft Academic Search

    Tomomi Uyeda; Toru Takahashi; Shuji Eto; Takumi Sato; Gang Xu; Rika Kanezaki; Tsutomu Toki; Susumu Yonesaka; Etsuro Ito

    2004-01-01

    Marfan syndrome (MFS) is an autosomal dominant disorder of the extracellular matrix. Allelic variations in the gene for fibrillin-1 ( FBN1) have been shown to cause MFS. To date, over 550 mutations have been identified in patients with MFS and related connective tissue diseases. However, about a half of MFS cases do not possess mutations in the FBN1 gene. These

  15. Germ-line mutations in the neurofibromatosis 2 gene: correlations with disease severity and retinal abnormalities.

    PubMed Central

    Parry, D. M.; MacCollin, M. M.; Kaiser-Kupfer, M. I.; Pulaski, K.; Nicholson, H. S.; Bolesta, M.; Eldridge, R.; Gusella, J. F.

    1996-01-01

    Neurofibromatosis 2 (NF2) features bilateral vestibular schwannomas, other benign neural tumors, and cataracts. Patients in some families develop many tumors at an early age and have rapid clinical progression, whereas in other families, patients may not have symptoms until much later and vestibular schwannomas may be the only tumors. The NF2 gene has been cloned from chromosome 22q; most identified germ-line mutations result in a truncated protein and severe NF2. To look for additional mutations and clinical correlations, we used SSCP analysis to screen DNA from 32 unrelated patients. We identified 20 different mutations in 21 patients (66%): 10 nonsense mutations, 2 frameshifts, 7 splice-site mutations, and 1 large in-frame deletion. Clinical information on 47 patients from the 21 families included ages at onset and at diagnosis, numbers of meningiomas, spinal and skin tumors, and presence of cataracts and retinal abnormalities. We compared clinical findings in patients with nonsense or frameshift mutations to those with splice-site mutations. When each patient was considered as an independent random event, the two groups differed (P < or = .05) for nearly every variable. Patients with nonsense or frameshift mutations were younger at onset and at diagnosis and had a higher frequency and mean number of tumors, supporting the correlation between nonsense and frameshift mutations and severe NF2. When each family was considered as an independent random event, statistically significant differences between the two groups were observed only for mean ages at onset and at diagnosis. A larger data set is needed to resolve these discrepancies. We observed retinal hamartomas and/or epiretinal membranes in nine patients from five families with four different nonsense mutations. This finding, which may represent a new genotype-phenotype correlation, merits further study. PMID:8751853

  16. Germ-line mutations in the neurofibromatosis 2 gene: Correlations with disease severity and retinal abnormalities

    SciTech Connect

    Parry, D.M. [National Cancer Inst., Bethesda, WA (United States); Kaiser-Kupfer, M. [National Eye Inst., Bethesda, MD (United States); Eldridge, R. [Public Health Service, Bethesda, MD (United States)] [and others

    1996-09-01

    Neurofibromatosis 2 (NF2) features bilateral vestibular schwannomas, other benign neural tumors, and cataracts. Patients in some families develop many tumors at an early age and have rapid clinical progression, whereas in other families, patients may not have symptoms until much later and vestibular schwannomas may be the only tumors. The NF2 gene has been cloned from chromosome 22q; most identified germ-line mutations result in a truncated protein and severe NF2. To look for additional mutations and clinical correlations, we used SSCP analysis to screen DNA from 32 unrelated patients. We identified 20 different mutations in 21 patients (66%): 10 nonsense mutations, 2 frameshifts, 7 splice-site mutations, and 1 large in-frame deletion. Clinical information on 47 patients from the 21 families included ages at onset and at diagnosis, numbers of meningiomas, spinal and skin tumors, and presence of cataracts and retinal abnormalities. We compared clinical findings in patients with nonsense or frameshift mutations to those with splice-site mutations. When each patient was considered as an independent random event, the two groups differed (P {le} .05) for nearly every variable. Patients with nonsense or frameshift mutations were younger at onset and at diagnosis and had a higher frequency and mean number of tumors, supporting the correlation between nonsense and frameshift mutations and severe NF2. When each family was considered as an independent random event, statistically significant differences between the two groups were observed only for mean ages at onset and at diagnosis. A larger data set is needed to resolve these discrepancies. We observed retinal hamartomas and/or epiretinal membranes in nine patients from five families with four different nonsense mutations. This finding, which may represent a new genotype-phenotype correlation, merits further study. 58 refs., 2 tabs.

  17. [The spectrum of CLCN1 gene mutations in patients with nondystrophic Thomsen's and Becker's myotonias].

    PubMed

    Ivanova, E A; Dadali, E L; Fedotov, V P; Kurbatov, S A; Rudenskaia, G E; Proskokova, T N; Poliakov, A V

    2012-09-01

    Thomsen's and Becker's diseases are the most prevalent nondystrophic myotonias. Their frequency varies, according to different sources, from 1 : 100 000 to 1 : 10 000. Thomsen's myotonia is autosomal dominant, and Becker's myotonia is autosomal recessive. Both diseases result from mutations of the CLCN1 gene encoding chloride ion channels of skeletal muscles. Molecular genetic analysis of the CLCN1 gene has been performed in patients with diagnoses of nondystrophic Thomsen's and Becker's myotonias living in the Russian Federation. A sample of 79 unrelated probands with nondystrophic Thomsen's and Becker's myotonias and 44 their relatives has been formed in the Laboratory of DNA Diagnosis of the Medical Genetic Research Center of the Russian Academy of Medical Sciences. Forty CLCN1 gene mutations have been found in a total of 118 chromosomes of 66 probands, including 21 familial and 45 sporadic cases. About half the mutations detected (45%) have been found for the first time; they are not described in the SNP database (ncbi.nlm.nih.gov). The following mutations (substitutions) have been detected in more than one chromosome, accounting for a total of 59.3% of chromosomes with mutations: Glyl90Ser (5.9%), c.1437-1450del14 (9.3%), Ala493Glu (5.1%), Thr550Met (3.4%), Tyr686Stop (5.1%), and Arg894Stop (30.5%). PMID:23113340

  18. A novel MLL2 gene mutation in a Korean patient with Kabuki syndrome

    PubMed Central

    Kim, Soo Jin; Cho, Sung Yoon; Maeng, Se Hyun; Sohn, Young Bae; Kim, Su-Jin; Ki, Chang-Seok

    2013-01-01

    Kabuki syndrome (KS) is a rare genetic disease with a distinctive dysmorphic face, intellectual disability, and multiple congenital abnormalities. KS is inherited in an autosomal dominant manner. As the primary cause of KS, MLL2 mutations have been identified in 56-76% of affected individuals who have been tested, suggesting that there may be additional genes associated with KS. Recently, a few KS individuals have been found to have de novo partial or complete deletions of an X chromosome gene, KDM6A, which encodes a histone demethylase that interacts with MLL2. Nevertheless, mutations in MLL2 are the major cause of KS. Although there are a few reports of KS patients in Korea, none of these had been confirmed by genetic analysis. Here, we report a case of a Korean patient with clinical features of KS. Using direct sequencing, we identified a frameshift heterozygous mutation for MLL2: (c.5256_5257delGA;p.Lys1753Alafs*34). Clinically, the patient presented with typical facial features, and diagnosis of KS was based on the diagnostic criteria. While KS is a rare disease, other malformations that overlap with those found in individuals with KS are common. Hence, the diagnosis of KS by mutational analysis can be a valuable method for patients with KS-like syndromes. Furthermore, in the near future, other genes could be identified in patients with KS without a detectable MLL2 mutation. PMID:24019847

  19. RB1 gene mutation up-date, a meta-analysis based on 932 reported mutations available in a searchable database

    PubMed Central

    Valverde, José R; Alonso, Javier; Palacios, Itziar; Pestańa, Ángel

    2005-01-01

    Background Retinoblastoma, a prototype of hereditary cancer, is the most common intraocular tumour in children and potential cause of blindness from therapeutic eye ablation, second tumours in germ line carrier's survivors, and even death when left untreated. The molecular scanning of RB1 in search of germ line mutations lead to the publication of more than 900 mutations whose knowledge is important for genetic counselling and the characterization of phenotypic-genotypic relationships. Results A searchable database (RBGMdb) has been constructed with 932 published RB1 mutations. The spectrum of these mutations has been analyzed with the following results: 1) the retinoblastoma protein is frequently inactivated by deletions and nonsense mutations while missense mutations are the main inactivating event in most genetic diseases. 2) Near 40% of RB1 gene mutations are recurrent and gather in sixteen hot points, including twelve nonsense, two missense and three splicing mutations. The remainder mutations are scattered along RB1, being most frequent in exons 9, 10, 14, 17, 18, 20, and 23. 3) The analysis of RB1 mutations by country of origin of the patients identifies two groups in which the incidence of nonsense and splicing mutations show differences extremely significant, and suggest the involvement of predisposing ethnic backgrounds. 4) A significant association between late age at diagnosis and splicing mutations in bilateral retinoblastoma patients suggests the occurrence of a delayed-onset genotype. 5) Most of the reported mutations in low-penetrance families fall in three groups: a) Mutations in regulatory sequences at the promoter resulting in low expression of a normal Rb; b) Missense and in-frame deletions affecting non-essential sequence motifs which result in a partial inactivation of Rb functions; c) Splicing mutations leading to the reduction of normal mRNA splicing or to alternative splicing involving either true oncogenic or defective (weak) alleles. Conclusion The analysis of RB1 gene mutations logged in the RBGMdb has shown relevant phenotype-genotype relationships and provided working hypothesis to ascertain mechanisms linking certain mutations to ethnicity, delayed onset of the disease and low-penetrance. Gene profiling of tumors will help to clarify the genetic background linked to ethnicity and variable expressivity or delayed onset phenotypes. PMID:16269091

  20. CHD7, the gene mutated in CHARGE syndrome, regulates genes involved in neural crest cell guidance.

    PubMed

    Schulz, Yvonne; Wehner, Peter; Opitz, Lennart; Salinas-Riester, Gabriela; Bongers, Ernie M H F; van Ravenswaaij-Arts, Conny M A; Wincent, Josephine; Schoumans, Jacqueline; Kohlhase, Jürgen; Borchers, Annette; Pauli, Silke

    2014-08-01

    Heterozygous loss of function mutations in CHD7 (chromodomain helicase DNA-binding protein 7) lead to CHARGE syndrome, a complex developmental disorder affecting craniofacial structures, cranial nerves and several organ systems. Recently, it was demonstrated that CHD7 is essential for the formation of multipotent migratory neural crest cells, which migrate from the neural tube to many regions of the embryo, where they differentiate into various tissues including craniofacial and heart structures. So far, only few CHD7 target genes involved in neural crest cell development have been identified and the role of CHD7 in neural crest cell guidance and the regulation of mesenchymal-epithelial transition are unknown. Therefore, we undertook a genome-wide microarray expression analysis on wild-type and CHD7 deficient (Chd7 (Whi/+) and Chd7 (Whi/Whi)) mouse embryos at day 9.5, a time point of neural crest cell migration. We identified 98 differentially expressed genes between wild-type and Chd7 (Whi/Whi) embryos. Interestingly, many misregulated genes are involved in neural crest cell and axon guidance such as semaphorins and ephrin receptors. By performing knockdown experiments for Chd7 in Xenopus laevis embryos, we found abnormalities in the expression pattern of Sema3a, a protein involved in the pathogenesis of Kallmann syndrome, in vivo. In addition, we detected non-synonymous SEMA3A variations in 3 out of 45 CHD7-negative CHARGE patients. In summary, we discovered for the first time that Chd7 regulates genes involved in neural crest cell guidance, demonstrating a new aspect in the pathogenesis of CHARGE syndrome. Furthermore, we showed for Sema3a a conserved regulatory mechanism across different species, highlighting its significance during development. Although we postulated that the non-synonymous SEMA3A variants which we found in CHD7-negative CHARGE patients alone are not sufficient to produce the phenotype, we suggest an important modifier role for SEMA3A in the pathogenesis of this multiple malformation syndrome. PMID:24728844

  1. The prion gene complex encoding PrP C and Doppel: insights from mutational analysis

    Microsoft Academic Search

    Peter Mastrangelo; David Westaway

    2001-01-01

    The prion protein gene, Prnp, encodes PrPSc, the major structural component of prions, infectious pathogens causing a number of disorders including scrapie and bovine spongiform encephalopathy (or BSE). Missense mutations in the human Prnp gene cause inherited prion diseases such as familial Creutzfeldt–Jakob disease. In uninfected animals Prnp encodes a glycophosphatidylinositol (GPI)-anchored protein denoted PrPC and in prion infections PrPC

  2. Novel Twinkle ( PEO1 ) gene mutations in mendelian progressive external ophthalmoplegia

    Microsoft Academic Search

    Roberta Virgilio; Dario Ronchi; Georgios M. Hadjigeorgiou; Andreina Bordoni; Francesca Saladino; Maurizio Moggio; Laura Adobbati; Demetra Kafetsouli; Evangelia Tsironi; Stefano Previtali; Alexandros Papadimitriou; Nereo Bresolin; Giacomo P. Comi

    2008-01-01

    Multiple deletions of mitochondrial DNA (mtDNA) are associated with different mitochondrial disorders inherited as autosomal\\u000a dominant and recessive traits. Causative mutations have been found in five genes, mainly involved in mtDNA replication and\\u000a stability. They include POLG1, the gene encoding the catalytic subunit of mtDNA polymerase (pol?), POLG2 encoding its accessory subunit, ANT1 coding the adenine nucleotide translocator and PEO1

  3. Detection of ras Gene Mutations in Pancreatic Juice and Peripheral Blood of Patients with Pancreatic Adenocarcinoma

    Microsoft Academic Search

    Minora Tada; Masao Ornata; Shigenobu Kawai; Hiromitsu Saisho; Randall K. Saiki; John J. Sninsky

    Pancreatic adenocarcinomas are known to have a high incidence of K-ras gene mutations. Differential diagnosis of pancreatic cancer and chronic pancreatitis sometimes presents a clinical dilemma. We recently developed a highly sensitive and specific polymerase chain reaction capa ble of detecting 3-30 copies of mutant K-ra.v genes harboring melon 12 single base changes in the presence of 300.000 normal copies.

  4. Mutation screening and association analysis of six candidate genes for autism on chromosome 7q

    Microsoft Academic Search

    Elena Bonora; Janine A Lamb; Gabrielle Barnby; Nuala Sykes; Thomas Moberly; Kim S Beyer; Sabine M Klauck; Firtz Poustka; Elena Bacchelli; Francesca Blasi; Elena Maestrini; Agatino Battaglia; Demetrios Haracopos; Lennart Pedersen; Torben Isager; Gunna Eriksen; Birgitte Viskum; Ester-Ulsted Sorensen; Karen Brondum-Nielsen; Rodney Cotterill; Herman von Engeland; Maretha de Jonge; Chantal Kemner; Karlijn Steggehuis; Margret Scherpenisse; Michael Rutter; Patrick F Bolton; Jeremy R Parr; Annemarie Poustka; Anthony J Bailey; Anthony P Monaco

    2005-01-01

    Genetic studies have provided evidence for an autism susceptibility locus (AUTS1) on chromosome 7q. Screening for mutations in six genes mapping to 7q, CUTL1, SRPK2, SYPL, LAMB1, NRCAM and PTPRZ1 in 48 unrelated individuals with autism led to the identification of several new coding variants in the genes CUTL1, LAMB1 and PTPRZ1. Analysis of genetic variants provided evidence for association

  5. Absence of WNT4 gene mutation in a patient with MURCS association.

    PubMed

    Shoar, Zohreh; Ganguly, Tapan; Anderson, Carol E; De Luca, Francesco; Suarez, Elizabeth

    2014-05-01

    MURCS (Mullerian duct aplasia, Renal anomalies, and Cervicothoracic Somite dysplasia) association is a group of congenital genito-urinary and skeletal malformations. We report an adolescent girl with the cardinal features of MURCS association, obesity, and clinical findings of hyperandrogenism who did not show any exonic mutation of the WNT4 gene. Our finding excludes WNT4 gene as a candidate for MURCS association and suggests the need for further genetic studies. PMID:24356390

  6. Mutation analysis of CACNA1A gene in Iranian migrainous and review literatures

    PubMed Central

    Meamar, Rokhsareh; Ostadsharif, Maryam; Saadatnia, Mohammad; Ghorbani, Abbas; Nouri, Nayereh; Dehghani, Leila; Salehi, Mansoor

    2013-01-01

    Background: There are contrary results about the role of CACNA1A gene in the causation of common migraine in different populations. However, migraine may be genetically heterogeneous and more studies in different families and populations are required for a definite conclusion. The aim of this study was to surveyed leukocyte genomic DNA mutation of CACNA1A in Iranian migraine patients with [MA] and without aura [MO] who has family history of migraine and we performed a narrative review of all studies that evaluated CACNA1A gene, non-hemiplegic migraine [MA and MO] and FHM [familial hemiplegic migraine]. Materials and Methods: The 30 patients with family history of migraine were selected for mutations analysis for CACNA1A gene by PCR method. For review, we searched MEDLINE-PUBMED, ISI, Scopus and Cochrane databases up to December 2012. Results: Mutation analysis of the 4 exons of the CACNA1A gene in these patients revealed no mutations in this gene. Direct sequencing revealed a polymorphism previously reported G to A transition in the exon 16 [nt2369, G?A] in 9 patients. In review, the correlation of FHM loci [CACNA1A gene] with MA and MO has been showed in different population and only small population from Caucasians presented this correlation. Conclusion: CACNA1A is most likely not a major susceptibility gene for common migraine in Iranian maigrainous. It's essential to study more on larger series and covering all 47 exons of the CACNA1A gene to confirm this hypothesis. PMID:23961289

  7. A novel mutation in the connexin 29 gene may contribute to nonsyndromic hearing loss

    Microsoft Academic Search

    Hui-Mei Hong; Jiann-Jou Yang; Ching-Chyuan Su; Juan-Yu Chang; Tung-Cheng Li; Shuan-Yow Li

    2010-01-01

    Connexins (Cxs) are homologous four-transmembrane domain proteins and constitute the major components of gap junctions. Among\\u000a a cohort of patients with nonsyndromic hearing loss, we recently identified a novel missense mutation, E269D, in the GJC3 gene encoding connexin 29 (Cx29), as being causally related to hearing loss. The functional alteration of Cx29 caused by\\u000a the mutant GJC3 gene, however, remains

  8. A nuclear mutation affects the synthesis of the chloroplast psbA gene production Chlamydomonas reinhardtii

    Microsoft Academic Search

    Jacqueline Girard-Bascou; Yves Pierre; Dominique Drapier

    1992-01-01

    The effect of the nuclear mutation F34 on the synthesis of chloroplast-encoded photosystem II (PSII) polypeptides has been controversal. While we had concluded that the synthesis of the psbC gene product (P6) was specifically deficient in this mutant, another laboratory has found that the synthesis of the psbA gene product, the herbicide-binding protein D1, was primarily affected. These conflicting results

  9. Ocular ochronosis in alkaptonuria patients carrying mutations in the homogentisate 1,2-dioxygenase gene

    Microsoft Academic Search

    Ute Felbor; Yvonne Mutsch; Franz Grehn; Clemens R Müller; Wolfram Kress

    1999-01-01

    AIMSTo assess the involvement of the recently identified human homogentisate 1,2-dioxygenase gene (HGO) in alkaptonuria (AKU) in two unrelated patients with ochronosis of the conjunctiva, sclera, and cornea.METHODSA mutation screen of the entire coding region of the HGO gene was performed using single stranded conformational analysis after polymerase chain reaction with oligonucleotide primers flanking all 14 exons of the HGO

  10. Mutational and functional analysis of the neurofibromatosis type 1 ( NF1 ) gene

    Microsoft Academic Search

    Meena Upadhyaya; Michael J. Osborn; Julie Maynard; Mee Rhan Kim; Fuyuhiko Tamanoi; David N. Cooper

    1996-01-01

    Neurofibromatosis type 1 (NF1) is one of the most common autosomal dominant disorders. It is caused by mutations in the NF1 gene which comprises 60 exons and is located on chromosome 17q. The NF1 gene product, neurofibromin, displays partial homology to GTPase-activating protein (GAP). The GAP-related domain (GRD),\\u000a encoded by exons 20–27a, is the only region of neurofibromin to which

  11. FAD2 Gene Mutations Significantly Alter Fatty Acid Profiles in Cultivated Peanuts ( Arachis hypogaea )

    Microsoft Academic Search

    Ming Li Wang; Noelle A. Barkley; Zhenbang Chen; Roy N. Pittman

    A panel of 55 peanut lines was analyzed for fatty acid composition with gas chromatography and also genotyped with SNP markers\\u000a from the FAD2 genes by real-time PCR. Significant variation in fatty acid composition was identified, and the ratio of oleic acid to linoleic\\u000a acid (O\\/L) ranged from 1.23 to 56.45. In terms of the FAD2 gene mutation, the assayed

  12. Exon 9 of the CFTR gene: splice site haplotypes and cystic fibrosis mutations.

    PubMed

    Dörk, T; Fislage, R; Neumann, T; Wulf, B; Tümmler, B

    1994-01-01

    The alternatively spliced exon 9 of the cystic fibrosis transmembrane conductance regulator (CFTR) gene codes for the initial part of the amino-terminal nucleotide-binding fold of CFTR. A unique feature of the acceptor splice site preceding this exon is a variable length polymorphism within the polypyrimidine tract influencing the extent of exon 9 skipping in CFTR mRNA. We investigated this repeat for its relationship to CFTR mutations and intragenic markers on 200 chromosomes from German patients with cystic fibrosis (CF). Four frequent length variations were strongly associated with the four predominant haplotypes previously defined by intragenic marker dimorphisms. One of these alleles displayed absolute linkage disequilibrium to the major CF mutation delta F508. Other frequent CFTR mutations were linked to one particular splice site haplotype indicating that differential exon 9 skipping contributes little to the clinical heterogeneity among CF patients with an identical mutation. We also identified a novel missense mutation (V456F) and a novel nonsense mutation (Q414X) within the coding region of exon 9. The missense mutation V456F adjacent to Walker motif A was present in a pancreas-sufficient CF patient. In contrast, the pancreas-insufficient Q414X/delta F508 compound heterozygote suffered from a severe form of the disease, indicating that alternative splicing of exon 9 does not overcome the deleterious effect of a stop codon with this exon. PMID:7505767

  13. Development, multiplexing, and application of ARMS tests for common mutations in the CFTR gene.

    PubMed Central

    Ferrie, R M; Schwarz, M J; Robertson, N H; Vaudin, S; Super, M; Malone, G; Little, S

    1992-01-01

    The amplification refractory mutation system (ARMS) is a simple, rapid and reliable method for the detection of any mutation involving single base changes or small deletions. We have applied ARMS methodology to the detection of mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Single ARMS tests have been developed for 11 CFTR mutations found in the northwest of England. ARMS reactions for the most common mutations have been multiplexed to give a test which will detect the presence of the delta F508, G551D, G542X, and 621 + 1G----T mutations in a DNA sample. The multiplex test has been validated by the analysis of over 500 previously genotyped samples and has been found to be completely accurate. The rapid detection of the most common mutations has enabled early molecular confirmation of suspected cystic fibrosis in neonates, rapid typing of cystic fibrosis patients and their relatives, and testing of sperm and egg donors. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:1379414

  14. Novel GUCY2D Gene Mutations in Japanese Male Twins with Leber Congenital Amaurosis

    PubMed Central

    Hosono, Katsuhiro; Harada, Yuko; Kurata, Kentaro; Hikoya, Akiko; Sato, Miho; Minoshima, Shinsei; Hotta, Yoshihiro

    2015-01-01

    Purpose. Leber congenital amaurosis (LCA), a genetically and clinically heterogeneous disease, is the earliest onset retinitis pigmentosa (RP) and is the most severe of hereditary retinal dystrophies. This study was conducted to investigate genetic and clinical features of LCA in a set of Japanese male twins with LCA. Methods. To identify causative mutations, 74 genes known to cause RP or LCA were examined by targeted-next generation sequencing (NGS). Targeted-NGS was performed using a custom designed Agilent HaloPlex target enrichment kit with Illumina Miseq sequencer. Identified potential pathogenic mutations were confirmed using Sanger sequencing. Clinical analyses were based on ophthalmic examination, fundus photography, and electroretinography (ERG). Results. Compound heterozygous GUCY2D mutations of novel splicing mutation c.2113+2_2113+3insT and novel missense mutation p.L905P were detected in both twins. Their father and mother were heterozygous for c.2113+2_2113+3insT and p.L905P, respectively. The twins had phenotypic features similar to those previously reported in patients with GUCY2D mutations. This included early childhood onset of visual loss, nystagmus, unrecordable ERG, photophobia, and hyperopia. Conclusions. To the best of our knowledge, this is the first report of genetic and clinical features of Japanese LCA twins with GUCY2D mutation, which were detected using targeted-NGS.

  15. An activating mutation in the CSF3R gene induces a hereditary chronic neutrophilia

    PubMed Central

    Plo, Isabelle; Zhang, Yanyan; Le Couédic, Jean-Pierre; Nakatake, Mayuka; Boulet, Jean-Michel; Itaya, Miki; Smith, Steven O.; Debili, Najet; Constantinescu, Stefan N.; Louache, Fawzia; de Botton, Stéphane

    2009-01-01

    We identify an autosomal mutation in the CSF3R gene in a family with a chronic neutrophilia. This T617N mutation energetically favors dimerization of the granulocyte colony-stimulating factor (G-CSF) receptor transmembrane domain, and thus, strongly promotes constitutive activation of the receptor and hypersensitivity to G-CSF for proliferation and differentiation, which ultimately leads to chronic neutrophilia. Mutant hematopoietic stem cells yield a myeloproliferative-like disorder in xenotransplantation and syngenic mouse bone marrow engraftment assays. The survey of 12 affected individuals during three generations indicates that only one patient had a myelodysplastic syndrome. Our data thus indicate that mutations in the CSF3R gene can be responsible for hereditary neutrophilia mimicking a myeloproliferative disorder. PMID:19620628

  16. A Plakophilin-1 Gene Mutation in an Egyptian Family with Ectodermal Dysplasia-Skin Fragility Syndrome

    PubMed Central

    Abdalla, Ebtesam M.; Has, Cristina

    2014-01-01

    Ectodermal dysplasia-skin fragility syndrome (ED-SFS) is a rare genodermatosis caused by mutations in the PKP1 gene, encoding the desmosomal plaque protein plakophilin-1. Since its initial description in 1997, few individuals with this disorder have been reported to date. Here, we present the first Egyptian cases of ED-SFS, carrying a novel homozygous mutation in the PKP1 gene. Direct sequencing of the amplified DNA from the affected cases disclosed a G-to-T transversion at nucleotide position c.203-1 within intron 1 of PKP1 (c.203-1G>T). To the best of our knowledge, this mutation has not been previously described in the databases. PMID:25565931

  17. A plakophilin-1 gene mutation in an egyptian family with ectodermal dysplasia-skin fragility syndrome.

    PubMed

    Abdalla, Ebtesam M; Has, Cristina

    2014-12-01

    Ectodermal dysplasia-skin fragility syndrome (ED-SFS) is a rare genodermatosis caused by mutations in the PKP1 gene, encoding the desmosomal plaque protein plakophilin-1. Since its initial description in 1997, few individuals with this disorder have been reported to date. Here, we present the first Egyptian cases of ED-SFS, carrying a novel homozygous mutation in the PKP1 gene. Direct sequencing of the amplified DNA from the affected cases disclosed a G-to-T transversion at nucleotide position c.203-1 within intron 1 of PKP1 (c.203-1G>T). To the best of our knowledge, this mutation has not been previously described in the databases. PMID:25565931

  18. Intellectual Ability in the Duchenne Muscular Dystrophy and Dystrophin Gene Mutation Location

    PubMed Central

    Milic Rasic, V; Vojinovic, D; Pesovic, J; Mijalkovic, G; Lukic, V; Mladenovic, J; Kosac, A; Novakovic, I; Maksimovic, N; Romac, S; Todorovic, S; Savic Pavicevic, D

    2014-01-01

    Duchenne muscular dystrophy (DMD) is the most common form of muscular dystrophy during childhood. Mutations in dystrophin (DMD) gene are also recognized as a cause of cognitive impairment. We aimed to determine the association between intelligence level and mutation location in DMD genes in Serbian patients with DMD. Forty-one male patients with DMD, aged 3 to 16 years, were recruited at the Clinic for Neurology and Psychiatry for Children and Youth in Belgrade, Serbia. All patients had defined DMD gene deletions or duplications [multiplex ligation-dependent probe amplification (MLPA), polymerase chain reaction (PCR)] and cognitive status assessment (Wechsler Intelligence Scale for Children, Brunet-Lezine scale, Vineland-Doll scale). In 37 patients with an estimated full scale intelligence quotient (FSIQ), six (16.22%) had borderline intelligence (70mutations when boundaries were set at exons 30 and 45. However, FSIQ was statistically significantly associated with mutation location when we assumed their functional consequence on dystrophin isoforms and when mutations in the 5?-untranslated region (5?UTR) of Dp140 (exons 45–50) were assigned to affect only Dp427 and Dp260. Mutations affecting Dp140 and Dp71/Dp40 have been associated with more frequent and more severe cognitive impairment. Finally, the same classification of mutations explained the greater proportion of FSIQ variability associated with cumulative loss of dystrophin isoforms. In conclusion, cumulative loss of dystrophin isoforms increases the risk of intellectual impairment in DMD and characterizing the genotype can define necessity of early cognitive interventions in DMD patients. PMID:25937795

  19. Inherited retinal diseases in dogs: advances in gene/mutation discovery

    PubMed Central

    Miyadera, Keiko

    2015-01-01

    1. Inherited retinal diseases (RDs) are vision-threatening conditions affecting humans as well as many domestic animals. Through many years of clinical studies of the domestic dog population, a wide array of RDs has been phenotypically characterized. Extensive effort to map the causative gene and to identify the underlying mutation followed. Through candidate gene, linkage analysis, genome-wide association studies, and more recently, by means of next-generation sequencing, as many as 31 mutations in 24 genes have been identified as the underlying cause for canine RDs. Most of these genes have been associated with human RDs providing opportunities to study their roles in the disease pathogenesis and in normal visual function. The canine model has also contributed in developing new treatments such as gene therapy which has been clinically applied to human patients. Meanwhile, with increasing knowledge of the molecular architecture of RDs in different subpopulations of dogs, the conventional understanding of RDs as a simple monogenic disease is beginning to change. Emerging evidence of modifiers that alters the disease outcome is complicating the interpretation of DNA tests. In this review, advances in the gene/mutation discovery approaches and the emerging genetic complexity of canine RDs are discussed.

  20. Ethnic disparity in 21-hydroxylase gene mutations identified in Pakistani congenital adrenal hyperplasia patients

    PubMed Central

    2011-01-01

    Background Congenital adrenal hyperplasia (CAH) is a group of autosomal recessive disorders caused by defects in the steroid 21 hydroxylase gene (CYP21A2). We studied the spectrum of mutations in CYP21A2 gene in a multi-ethnic population in Pakistan to explore the genetics of CAH. Methods A cross sectional study was conducted for the identification of mutations CYP21A2 and their phenotypic associations in CAH using ARMS-PCR assay. Results Overall, 29 patients were analyzed for nine different mutations. The group consisted of two major forms of CAH including 17 salt wasters and 12 simple virilizers. There were 14 phenotypic males and 15 females representing all the major ethnic groups of Pakistan. Parental consanguinity was reported in 65% cases and was equally distributed in the major ethnic groups. Among 58 chromosomes analyzed, mutations were identified in 45 (78.6%) chromosomes. The most frequent mutation was I2 splice (27%) followed by Ile173Asn (26%), Arg 357 Trp (19%), Gln319stop, 16% and Leu308InsT (12%), whereas Val282Leu was not observed in this study. Homozygosity was seen in 44% and heterozygosity in 34% cases. I2 splice mutation was found to be associated with SW in the homozygous. The Ile173Asn mutation was identified in both SW and SV forms. Moreover, Arg357Trp manifested SW in compound heterozygous state. Conclusion Our study showed that CAH exists in our population with ethnic difference in the prevalence of mutations examined. PMID:21329531

  1. Divergence Involving Global Regulatory Gene Mutations in an Escherichia coli Population Evolving under Phosphate Limitation

    PubMed Central

    Wang, Lei; Spira, Beny; Zhou, Zhemin; Feng, Lu; Maharjan, Ram P.; Li, Xiaomin; Li, Fangfang; McKenzie, Christopher; Reeves, Peter R.; Ferenci, Thomas

    2010-01-01

    Many of the important changes in evolution are regulatory in nature. Sequenced bacterial genomes point to flexibility in regulatory circuits but we do not know how regulation is remodeled in evolving bacteria. Here, we study the regulatory changes that emerge in populations evolving under controlled conditions during experimental evolution of Escherichia coli in a phosphate-limited chemostat culture. Genomes were sequenced from five clones with different combinations of phenotypic properties that coexisted in a population after 37 days. Each of the distinct isolates contained a different mutation in 1 of 3 highly pleiotropic regulatory genes (hfq, spoT, or rpoS). The mutations resulted in dissimilar proteomic changes, consistent with the documented effects of hfq, spoT, and rpoS mutations. The different mutations do share a common benefit, however, in that the mutations each redirect cellular resources away from stress responses that are redundant in a constant selection environment. The hfq mutation lowers several individual stress responses as well the small RNA–dependent activation of rpoS translation and hence general stress resistance. The spoT mutation reduces ppGpp levels, decreasing the stringent response as well as rpoS expression. The mutations in and upstream of rpoS resulted in partial or complete loss of general stress resistance. Our observations suggest that the degeneracy at the core of bacterial stress regulation provides alternative solutions to a common evolutionary challenge. These results can explain phenotypic divergence in a constant environment and also how evolutionary jumps and adaptive radiations involve altered gene regulation. PMID:20639316

  2. Genomic analyses reveal mutational signatures and frequently altered genes in esophageal squamous cell carcinoma.

    PubMed

    Zhang, Ling; Zhou, Yong; Cheng, Caixia; Cui, Heyang; Cheng, Le; Kong, Pengzhou; Wang, Jiaqian; Li, Yin; Chen, Wenliang; Song, Bin; Wang, Fang; Jia, Zhiwu; Li, Lin; Li, Yaoping; Yang, Bin; Liu, Jing; Shi, Ruyi; Bi, Yanghui; Zhang, Yanyan; Wang, Juan; Zhao, Zhenxiang; Hu, Xiaoling; Yang, Jie; Li, Hongyi; Gao, Zhibo; Chen, Gang; Huang, Xuanlin; Yang, Xukui; Wan, Shengqing; Chen, Chao; Li, Bin; Tan, Yongkai; Chen, Longyun; He, Minghui; Xie, Sha; Li, Xiangchun; Zhuang, Xuehan; Wang, Mengyao; Xia, Zhi; Luo, Longhai; Ma, Jie; Dong, Bing; Zhao, Jiuzhou; Song, Yongmei; Ou, Yunwei; Li, Enming; Xu, Liyan; Wang, Jinfen; Xi, Yanfeng; Li, Guodong; Xu, Enwei; Liang, Jianfang; Yang, Xiaofeng; Guo, Jiansheng; Chen, Xing; Zhang, Yanbo; Li, Qingshan; Liu, Lixin; Li, Yingrui; Zhang, Xiuqing; Yang, Huanming; Lin, Dongxin; Cheng, Xiaolong; Guo, Yongjun; Wang, Jun; Zhan, Qimin; Cui, Yongping

    2015-04-01

    Esophageal squamous cell carcinoma (ESCC) is one of the most common cancers worldwide and the fourth most lethal cancer in China. However, although genomic studies have identified some mutations associated with ESCC, we know little of the mutational processes responsible. To identify genome-wide mutational signatures, we performed either whole-genome sequencing (WGS) or whole-exome sequencing (WES) on 104 ESCC individuals and combined our data with those of 88 previously reported samples. An APOBEC-mediated mutational signature in 47% of 192 tumors suggests that APOBEC-catalyzed deamination provides a source of DNA damage in ESCC. Moreover, PIK3CA hotspot mutations (c.1624G>A [p.Glu542Lys] and c.1633G>A [p.Glu545Lys]) were enriched in APOBEC-signature tumors, and no smoking-associated signature was observed in ESCC. In the samples analyzed by WGS, we identified focal (<100 kb) amplifications of CBX4 and CBX8. In our combined cohort, we identified frequent inactivating mutations in AJUBA, ZNF750, and PTCH1 and the chromatin-remodeling genes CREBBP and BAP1, in addition to known mutations. Functional analyses suggest roles for several genes (CBX4, CBX8, AJUBA, and ZNF750) in ESCC. Notably, high activity of hedgehog signaling and the PI3K pathway in approximately 60% of 104 ESCC tumors indicates that therapies targeting these pathways might be particularly promising strategies for ESCC. Collectively, our data provide comprehensive insights into the mutational signatures of ESCC and identify markers for early diagnosis and potential therapeutic targets. PMID:25839328

  3. Mutation analysis of the MSMB gene in familial prostate cancer

    Microsoft Academic Search

    Z Kote-Jarai; D Leongamornlert; M Tymrakiewicz; H Field; M Guy; A A Al Olama; J Morrison; L O'Brien; R Wilkinson; A Hall; E Sawyer; K Muir; F Hamdy; J Donovan; D Neal; D Easton; R Eeles

    2010-01-01

    Background:MSMB, a gene coding for ?-microseminoprotein, has been identified as a candidate susceptibility gene for prostate cancer (PrCa) in two genome-wide association studies (GWAS). SNP rs10993994 is 2 bp upstream of the transcription initiation site of MSMB and was identified as an associated PrCa risk variant. The MSMB protein is underexpressed in PrCa and it was previously proposed to be

  4. Mutational Analysis of PHEX Gene in X-Linked Hypophosphatemia

    Microsoft Academic Search

    PETER H. DIXON; PAUL T. CHRISTIE; CAROL WOODING; DOROTHY TRUMP; MARVIN GRIEFF; INGRID HOLM; JOSEPH M. GERTNER; JORG SCHMIDTKE; BINITA SHAH; NICHOLAS SHAW; COLIN SMITH; CHRISTINA TAU; DAVID SCHLESSINGER; MICHAEL P. WHYTE; RAJESH V. THAKKER

    2010-01-01

    Hypophosphatemic rickets is commonly an X-linked dominant dis- order (XLH or HYP) associated with a renal tubular defect in phos- phate transport and bone deformities. The XLH gene, referred to as PHEX, or formerly as PEX (phosphate regulating gene with homol- ogies to endopeptidases on the X-chromosome), encodes a 749-amino acid protein that putatively consists of an intracellular, transmem- brane,

  5. Mutational analysis of the [phi] X174 E Gene

    E-print Network

    Morham, Scott Garton

    1985-01-01

    /function 2. MATERIALS AND METHODS Abbreviations . Media and buffers Assay conditions Bacterial strains and constructions Construction of screening vector Induction of liquid cultures Purification of JglacE fusion protein Isolation of plasmid DNA... Biological characterization of the pSM120 screening vector and the JHlacZ fusion gene Selection and characterization of E mutants M13 subcloning Dideoxy sequencing Isolation of single base changes which inactivate gene E function Suppressor studies...

  6. Dendritic Cells from Chronic Lymphocytic Leukemia Patients Are Normal Regardless of Ig V Gene Mutation Status

    Microsoft Academic Search

    DAVORKA MESSMER; GLORIA TELUSMA; TARUN WASIL; BRADLEY T MESSMER; STEVEN ALLEN; KANTI R RAI; NICHOLAS CHIORAZZI

    Patients with B-type chronic lymphocytic leukemia (B-CLL) segregate into 2 subgroups based on the mutational status of the immunoglobulin (Ig) V genes and the patients in these subgroups follow very different clinical courses. To examine whether den- dritic cells (DCs) generated from CLL patients can be candidates for immune therapy, we compared the phenotypic and func- tional capacities of DCs

  7. Positionally Cloned Gene for a Novel Glomerular Protein—Nephrin—Is Mutated in Congenital Nephrotic Syndrome

    Microsoft Academic Search

    Marjo Kestilä; Ulla Lenkkeri; Minna Männikkö; Jane Lamerdin; Paula McCready; Heli Putaala; Vesa Ruotsalainen; Takako Morita; Marja Nissinen; Riitta Herva; Clifford E Kashtan; Leena Peltonen; Christer Holmberg; Anne Olsen; Karl Tryggvason

    1998-01-01

    Congenital nephrotic syndrome of the Finnish type (NPHS1) is an autosomal-recessive disorder, characterized by massive proteinuria in utero and nephrosis at birth. In this study, the 150 kb critical region of NPHS1 was sequenced, revealing the presence of at least 11 genes, the structures of 5 of which were determined. Four different mutations segregating with the disease were found in

  8. TP53 Gene Mutation, an Unfavorable Prognostic Factor for Malignant Lymphomas in Autoimmune Diseases

    Microsoft Academic Search

    Yoshihiko Hoshida; Tadashi Hongyo; Jing-Xian Xu; Toru Sasaki; Yasuhiko Tomita; Taisei Nomura; Katsuyuki Aozasa

    2005-01-01

    Objectives: To investigate whether mutations of the TP53 tumor suppressor gene are associated with a poor prognosis in lymphoproliferative disorders (LPD) developing in patients with a history of autoimmune disease (AID). Methods: Fifty patients, 15 males and 35 females ranging in age from 23 to 83 (median, 61) years, were examined. Rheumatoid arthritis (21 cases) is the commonest type of

  9. Mutation (677 C to T) in the methylenetetrahydrofolate reductase gene aggravates hyperhomocysteinemia in hemodialysis patients

    Microsoft Academic Search

    Manuela Födinger; Christine Mannhalter; Gabriele Wölfl; Ingrid Pabinger; Eva Müller; Rainer Schmid; Walter H Hörl; Gere Sunder-Plassmann

    1997-01-01

    Mutation 677 C to T in the methylenetetrahydrofolate reductase gene aggravates hyperhomocysteinemia in hemodialysis patients. Hyperhomocysteinemia is frequent in hemodialysis patients and represents an independent risk factor for vascular disease in these patients. Elevated total homocysteine (tHcy) plasma levels can result from defective remethyla-tion of Hcy to methionine due to decreased activity of the enzyme methylenetetrahydrofolate reductase (MTHFR). A genetic

  10. De novo mutations in the actin genes ACTB and ACTG1 cause Baraitser-Winter syndrome

    PubMed Central

    Rivičre, Jean-Baptiste; van Bon, Bregje W M; Hoischen, Alexander; Kholmanskikh, Stanislav S; O’Roak, Brian J; Gilissen, Christian; Gijsen, Sabine; Sullivan, Christopher T; Christian, Susan L; Abdul-Rahman, Omar A; Atkin, Joan F; Chassaing, Nicolas; Drouin-Garraud, Valerie; Fry, Andrew E; Fryns, Jean-Pierre; Gripp, Karen W; Kempers, Marlies; Kleefstra, Tjitske; Mancini, Grazia M S; Nowaczyk, Ma?gorzata J M; van Ravenswaaij-Arts, Conny M A; Roscioli, Tony; Marble, Michael; Rosenfeld, Jill A; Siu, Victoria M; de Vries, Bert B A; Shendure, Jay; Verloes, Alain; Veltman, Joris A; Brunner, Han G; Ross, M Elizabeth; Pilz, Daniela T; Dobyns, William B

    2013-01-01

    Brain malformations are individually rare but collectively common causes of developmental disabilities1–3. Many forms occur sporadically and have reduced reproductive fitness, pointing towards a causative role for de novo mutations4,5. Here we report our studies of Baraitser-Winter syndrome, a well-defined syndrome characterized by distinct craniofacial features, ocular colobomata and a neuronal migration defect6,7. By using whole-exome sequencing in three proband-parent trios, we identified de novo missense changes in the cytoplasmic actin genes ACTB and ACTG1 in one and two probands, respectively. Sequencing of both genes in fifteen additional patients revealed disease-causing mutations in all probands, including two recurrent de novo mutations (ACTB p.Arg196His and ACTG1 p.Ser155Phe). Our results confirm that trio-based exome sequencing is a powerful approach to discover the genes causing sporadic developmental disorders, emphasize the overlapping roles of cytoplasmic actins in development, and suggest that Baraitser-Winter syndrome is the predominant phenotype associated with mutations of these two genes. PMID:22366783

  11. KCNJ10 gene mutations causing EAST syndrome (epilepsy, ataxia, sensorineural deafness, and

    E-print Network

    Witzgall, Ralph - Naturwissenschaftliche Fakultät III

    KCNJ10 gene mutations causing EAST syndrome (epilepsy, ataxia, sensorineural deafness of Regensburg, 93053 Regensburg, Germany; b Departments of Physiology and Medicine and Institute of Child Health tubulopathy (EAST) syndrome. We investigated the local- ization of KCNJ10 and the homologous KCNJ16 in kidney

  12. Tomato tos1 mutation identifies a gene essential for osmotic tolerance and abscisic acid sensitivity

    E-print Network

    Málaga, Universidad de

    Tomato tos1 mutation identifies a gene essential for osmotic tolerance and abscisic acid to intracellular abscisic acid (ABA) and this decreased ABA sensitivity of tos1 is a basic cellular trait expressed for osmotic tolerance. Keywords: abscisic acid, osmotic stress, tos1 mutant, tss2 mutant. Introduction Osmotic

  13. Identification of Gene Mutations in Autosomal Dominant Polycystic Kidney Disease through Targeted Resequencing

    PubMed Central

    Hopp, Katharina; Sikkink, Robert A.; Sundsbak, Jamie L.; Lee, Yean Kit; Kubly, Vickie; Eckloff, Bruce W.; Ward, Christopher J.; Winearls, Christopher G.; Torres, Vicente E.; Harris, Peter C.

    2012-01-01

    Mutations in two large multi-exon genes, PKD1 and PKD2, cause autosomal dominant polycystic kidney disease (ADPKD). The duplication of PKD1 exons 1–32 as six pseudogenes on chromosome 16, the high level of allelic heterogeneity, and the cost of Sanger sequencing complicate mutation analysis, which can aid diagnostics of ADPKD. We developed and validated a strategy to analyze both the PKD1 and PKD2 genes using next-generation sequencing by pooling long-range PCR amplicons and multiplexing bar-coded libraries. We used this approach to characterize a cohort of 230 patients with ADPKD. This process detected definitely and likely pathogenic variants in 115 (63%) of 183 patients with typical ADPKD. In addition, we identified atypical mutations, a gene conversion, and one missed mutation resulting from allele dropout, and we characterized the pattern of deep intronic variation for both genes. In summary, this strategy involving next-generation sequencing is a model for future genetic characterization of large ADPKD populations. PMID:22383692

  14. A Mutation in the FAM83G Gene in Dogs with Hereditary Footpad Hyperkeratosis (HFH)

    E-print Network

    Paris-Sud XI, Université de

    A Mutation in the FAM83G Gene in Dogs with Hereditary Footpad Hyperkeratosis (HFH) Michaela Dro a palmoplantar hyperkeratosis, which is inherited as a monogenic autosomal recessive trait in several dog breeds of the sequence data with 46 genomes of non-affected dogs from other breeds revealed a single private non

  15. Two novel mutations in the COLQ gene cause endplate acetylcholinesterase deficiency

    Microsoft Academic Search

    Keiko Ishigaki; Delphine Nicolle; Eric Krejci; Jean-Paul Leroy; Jeanine Koenig; Michel Fardeau; Bruno Eymard

    2003-01-01

    Congenital myasthenic syndromes with endplate acetylcholinesterase deficiency are very rare autosomal recessive diseases, characterized by onset of the disease in childhood, general weakness increased by exertion, ophthalmoplegia and refractoriness to anticholinesterase drugs. To date, all reported cases are due to mutations within the gene encoding ColQ, a specific collagen that anchors acetylcholinesterase in the basal lamina at the neuromuscular junction.

  16. Abstract Cystic fibrosis (CF) is caused by mutations in the gene encoding the cystic fibrosis transmembrane

    E-print Network

    Bedwell, David M.

    Abstract Cystic fibrosis (CF) is caused by mutations in the gene encoding the cystic fibrosis · J.R. Lindsey A. Tousson · Z. Bebök · E.J. Sorscher · D.M. Bedwell Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA J.A. Whitsett · C

  17. Automated DNA mutation detection using universal conditions direct sequencing: application to ten muscular dystrophy genes

    Microsoft Academic Search

    Richard R Bennett; Hal E Schneider; Elicia Estrella; Stephanie Burgess; Andrew S Cheng; Caitlin Barrett; Va Lip; Poh San Lai; Yiping Shen; Bai-Lin Wu; Basil T Darras; Alan H Beggs; Louis M Kunkel

    2009-01-01

    BACKGROUND: One of the most common and efficient methods for detecting mutations in genes is PCR amplification followed by direct sequencing. Until recently, the process of designing PCR assays has been to focus on individual assay parameters rather than concentrating on matching conditions for a set of assays. Primers for each individual assay were selected based on location and sequence

  18. Somatic mutations of the ?-catenin gene are frequent in mouse and human hepatocellular carcinomas

    PubMed Central

    Coste, Alix de La; Romagnolo, Béatrice; Billuart, Pierre; Renard, Claire-Angélique; Buendia, Marie-Annick; Soubrane, Olivier; Fabre, Monique; Chelly, Jamel; Beldjord, Cherif; Kahn, Axel; Perret, Christine

    1998-01-01

    Hepatocellular carcinoma (HCC) is the major primary malignant tumor in the human liver, but the molecular changes leading to liver cell transformation remain largely unknown. The Wnt-?-catenin pathway is activated in colon cancers and some melanoma cell lines, but has not yet been investigated in HCC. We have examined the status of the ?-catenin gene in different transgenic mouse lines of HCC obtained with the oncogenes c-myc or H-ras. Fifty percent of the hepatic tumors in these transgenic mice had activating somatic mutations within the ?-catenin gene similar to those found in colon cancers and melanomas. These alterations in the ?-catenin gene (point mutations or deletions) lead to a disregulation of the signaling function of ?-catenin and thus to carcinogenesis. We then analyzed human HCCs and found similar mutations in eight of 31 (26%) human liver tumors tested and in HepG2 and HuH6 hepatoma cells. The mutations led to the accumulation of ?-catenin in the nucleus. Thus alterations in the ?-catenin gene frequently are selected for during liver tumorigenesis and suggest that disregulation of the Wnt-?-catenin pathway is a major event in the development of HCC in humans and mice. PMID:9671767

  19. Obliteration of cardiomyocyte nuclear architecture in a patient with LMNA gene mutation

    Microsoft Academic Search

    Anna Fidzia?ska; Zofia T. Bili?ska; Frédérique Tesson; Teresa Wagner; Micha? Walski; Jacek Grzybowski; Witold Ru?y??o; Irena Hausmanowa-Petrusewicz

    2008-01-01

    ObjectiveThe aim of our study was to perform an immunohistochemical and ultrastructural analysis of the nuclear architecture of cardiomyocytes from an end-stage DCM patient with a missense point mutation in the exon 3 of the LMNA gene which is predicted to result in a D192G substitution.

  20. MUTATIONAL ANALYSIS OF THE PLCE1 GENE IN STEROID-RESISTANT NEPHROTIC SYNDROME

    E-print Network

    Paris-Sud XI, Université de

    1 MUTATIONAL ANALYSIS OF THE PLCE1 GENE IN STEROID-RESISTANT NEPHROTIC SYNDROME AUTHORS: Olivia Néphrologie Pédiatrique, CHU Sainte-Justine, Université de Montréal, Canada 4 Assistance Publique-Hôpitaux de patients (95 familial cases belonging to 68 families and 44 sporadic cases) with steroid-resistant NS

  1. Novel mutations in the duplicated region of the polycystic kidney disease 1 (PKD1) gene provides supporting evidence for gene conversion.

    PubMed

    Afzal, A R; Floręncio, R N; Taylor, R; Patton, M A; Saggar-Malik, A; Jeffery, S

    2000-01-01

    Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common human single-gene disorders, and is the most common inherited form of cystic kidney disease. It is estimated that approximately 85% of ADPKD is due to mutations in the PKD1 gene, which is located on chromosome 16p13.3. Mutation analysis in this gene is difficult, because more than two-thirds of reiterated several times at 16p13.1. In this study, mutation screening in 90 ADPKD patients was carried out on exons in the duplicated region of the PKD1 gene (23-34), using genomic long-range PCR followed by nested PCR and single-strand conformation polymorphism (SSCP), and finally cycle sequencing. Two nonconservative missense mutations were detected in exons 25 and 31, and two conservative mutations were found in exons 24 and 29. A novel splicing mutation, which is expected to cause skipping of exon 30, was detected in one case. Moreover, six intronic variants, three silent variants, and one polymorphic variant were detected in this study. Comparison between some of these changes and published sequences from the homologous genes on 16p13.1, revealed supporting evidence for the gene conversion theory as a mechanism responsible for some of the mutations in the PKD1 gene. Factors likely to facilitate gene conversion in this region of the PKD1 gene are discussed. PMID:11216660

  2. Mild recessive mutations in six Fraser syndrome-related genes cause isolated congenital anomalies of the kidney and urinary tract.

    PubMed

    Kohl, Stefan; Hwang, Daw-Yang; Dworschak, Gabriel C; Hilger, Alina C; Saisawat, Pawaree; Vivante, Asaf; Stajic, Natasa; Bogdanovic, Radovan; Reutter, Heiko M; Kehinde, Elijah O; Tasic, Velibor; Hildebrandt, Friedhelm

    2014-09-01

    Congenital anomalies of the kidney and urinary tract (CAKUT) account for approximately 40% of children with ESRD in the United States. Hitherto, mutations in 23 genes have been described as causing autosomal dominant isolated CAKUT in humans. However, >90% of cases of isolated CAKUT still remain without a molecular diagnosis. Here, we hypothesized that genes mutated in recessive mouse models with the specific CAKUT phenotype of unilateral renal agenesis may also be mutated in humans with isolated CAKUT. We applied next-generation sequencing technology for targeted exon sequencing of 12 recessive murine candidate genes in 574 individuals with isolated CAKUT from 590 families. In 15 of 590 families, we identified recessive mutations in the genes FRAS1, FREM2, GRIP1, FREM1, ITGA8, and GREM1, all of which function in the interaction of the ureteric bud and the metanephric mesenchyme. We show that isolated CAKUT may be caused partially by mutations in recessive genes. Our results also indicate that biallelic missense mutations in the Fraser/MOTA/BNAR spectrum genes cause isolated CAKUT, whereas truncating mutations are found in the multiorgan form of Fraser syndrome. The newly identified recessive biallelic mutations in these six genes represent the molecular cause of isolated CAKUT in 2.5% of the 590 affected families in this study. PMID:24700879

  3. Mutations in microRNA binding sites of CEP genes involved in cancer.

    PubMed

    Gopalakrishnan, Chandrasekhar; Kamaraj, Balu; Purohit, Rituraj

    2014-12-01

    The CEP genes play a pivotal role in the replication of the cell. CEP family proteins form the major constituents of the centrosome and play a prominent role in centriole biogenesis and in cell replication. Alteration in CEP genes will result in disruption of cell cycle that may in turn cause cancer. In our study, we found that 16 of the CEP genes are a potential target to miRNA that binds to complementary sequences in 3'untranslated regions (UTR) of mRNA and stop them from translation. Single nucleotide polymorphisms (SNPs) occurring naturally in such miRNA binding site can alter the miRNA: mRNA interaction and can significantly alter gene expression. We developed a systematic computational pipeline that integrates data from well-established databases, followed stringent selection criteria and identified a panel of 44 high-confidence SNPs that may impair miRNA target sites in the 3'UTR of 16 genes. Further we performed expression analysis to shed light on the potential tissues that might be affected by mutation, enrichment analysis to find the metabolic functions of the gene, and network analysis to highlight the important interactions of CEP genes with other genes to provide insight that complex network will be disturbed upon mutation. In this study, we explored and prioritised the SNPs in CEP gene which could act as a potential target in centrosome-associated human disease. Our analysis would provide a thoughtful insight to wet lab researches to understand the expression pattern of CEP genes and binding phenomenon of mRNA and miRNA upon mutation, which is responsible for inhibition of translation process at genomic levels. PMID:25115610

  4. UV and skin cancer: Specific p53 gene mutation in normal skin as a biologically relevant exposure measurement

    SciTech Connect

    Nakazawa, H.; Martel, N.; Armstrong, B.K.; Yamasaki, H. (International Agency for Research on Cancer, Lyon (France)); English, D.; Randell, P.L. (Univ. of Western Australia, Nedlands, WA (Australia)); Nakazawa, K. (Hospital Edouard Herriot, Lyon (France))

    1994-01-04

    Many human skin tumors contain mutated p53 genes that probably results from UV exposure. To investigate the link between UV exposure and p53 gene mutation, the authors developed two methods to detect presumptive UV-specific p53 gene mutations in UV-exposed normal skin. The methods are based on mutant allele-specific PCRs and ligase chain reactions and designed to detect CC to TT mutations at codons 245 and 247/248, using 10 [mu]g of DNA samples. These specific mutations in the p53 gene have been reported in skin tumors. CC to TT mutations in the p53 gene were detected in cultured human skin cells only after UV irradiation, and the mutation frequency increased with increasing UV dose. Seventeen of 23 samples of normal skin from sun-exposed sites (74%) on Australian skin cancer patients contained CC to TT mutations in one or both of codons 245 and 247/248 of the p53 gene, and only 1 of 20 samples form non-sun-exposed sites (5%) harbored the mutation. None of 15 biopsies of normal skin from non-sun-exposed or intermittently exposed sites on volunteers living in France carried such mutations. The results suggest that specific p53 gene mutations associated with human skin cancer are induced in normal skin by solar UV radiation. Measurement of these mutations may be useful as a biologically relevant measure of UV exposure in humans and as a possible predictor of risk for skin cancer.

  5. UV and skin cancer: specific p53 gene mutation in normal skin as a biologically relevant exposure measurement.

    PubMed Central

    Nakazawa, H; English, D; Randell, P L; Nakazawa, K; Martel, N; Armstrong, B K; Yamasaki, H

    1994-01-01

    Many human skin tumors contain mutated p53 genes that probably result from UV exposure. To investigate the link between UV exposure and p53 gene mutation, we developed two methods to detect presumptive UV-specific p53 gene mutations in UV-exposed normal skin. The methods are based on mutant allele-specific PCRs and ligase chain reactions and designed to detect CC to TT mutations at codons 245 and 247/248, using 10 micrograms of DNA samples. These specific mutations in the p53 gene have been reported in skin tumors. CC to TT mutations in the p53 gene were detected in cultured human skin cells only after UV irradiation, and the mutation frequency increased with increasing UV dose. Seventeen of 23 samples of normal skin from sun-exposed sites (74%) on Australian skin cancer patients contained CC to TT mutations in one or both of codons 245 and 247/248 of the p53 gene, and only 1 of 20 samples from non-sun-exposed sites (5%) harbored the mutation. None of 15 biopsies of normal skin from non-sun-exposed or intermittently exposed sites on volunteers living in France carried such mutations. Our results suggest that specific p53 gene mutations associated with human skin cancer are induced in normal skin by solar UV radiation. Measurement of these mutations may be useful as a biologically relevant measure of UV exposure in humans and as a possible predictor of risk for skin cancer. Images Fig. 2 Fig. 3 Fig. 4 PMID:8278394

  6. Systematic analysis of coproporphyrinogen oxidase gene defects in hereditary coproporphyria and mutation update.

    PubMed

    Rosipal, R; Lamoril, J; Puy, H; Da Silva, V; Gouya, L; De Rooij, F W; Te Velde, K; Nordmann, Y; Martŕsek, P; Deybach, J C

    1999-01-01

    Hereditary coproporphyria (HC) is an acute hepatic porphyria with autosomal dominant inheritance caused by deficient activity of coproporphyrinogen III oxidase (CPO). Clinical manifestations of the disease are characterized by acute attacks of neurological dysfunction often precipitated by drugs, fasting, cyclical hormonal changes, or infectious diseases. Skin photosensitivity may also be present. The seven exons, the exon/intron boundaries and part of 3' noncoding sequence of the CPO gene were systematically analyzed by an exon-by-exon denaturing gradient gel electrophoresis (DGGE) strategy followed by direct sequencing in seven unrelated heterozygous HC patients from France, Holland, and Czech Republic. Seven novel mutations and two new polymorphisms were detected. Among these mutations: two are missense (G197W, W427R), two are nonsense (Q306X, Q385X), two are small deletions (662de14bp; 1168del3bp removing a glycine at position 390), and one is a splicing mutation (IVS1-15c-->g) which creates a new acceptor splice site. The pathological significance of the point mutations G197W, W427R, and the in-frame deletion 390delGly were assessed by their respective expression in a prokaryotic system using site-directed mutagenesis. These mutations resulted in the absence or a dramatic decrease of CPO activity. The two polymorphisms were localized in noncoding part of the gene: 1) a C/G polymorphism in the promotor region, 142 bp upstream from the transcriptional initiation site (-142C/G), and 2) a 6 bp deletion polymorphism in the 3' noncoding part of the CPO gene, 574 bp downstream of the last base of the normal termination codon (+574 delATTCTT). Five intragenic dimorphisms are now well characterized and the high degree of allelic heterogeneity in HC is demonstrated with seven new different mutations making a total of nineteen CPO gene defects reported so far. PMID:9888388

  7. Mutational and expressional analyses of PTEN gene in colorectal cancer from Northern India.

    PubMed

    Ali, Asgar; Saluja, Sundeep S; Hajela, Krishnan; Mishra, Pramod K; Rizvi, Moshahid A

    2014-02-01

    The PTEN is a tumor-suppressor gene located on chromosome 10q23.3 and established to play key role in the varied types of cancer. To elucidate the possible effect of mutations and inactivation of PTEN gene on the occurrence and development of colorectal cancer (CRC), 223 cancer specimens were selected to probe PTEN gene mutations through the micro dissection of the genome. Polymerase chain reaction single-strand conformation polymorphism and DNA sequencing methods were applied for mutations while protein expression was evaluated by immunohistochemistry. Mutations in exons 7 and 8 of PTEN were observed in 12.5% and PTEN loss of expression was identified in 48% in CRC. In exon 7, we found the insertion of "G" resulted into the change at codon 218 from TGC to GTC leading to change in the reading frame starting downward from Cystein to Valine. In addition, the insertion of "A" in the same exon at codon 213 resulted into the change of codon CCT to CCA, which cause silent mutation. In exon 8, however, "A" is replaced by C at codon 282, but both encodes for Glycine. Statistically significant loss of PTEN expression was observed in cancerous tissue when compared with the adjacent control (P < 0.05). Furthermore, weak PTEN expression in CRC tissues were significantly associated with tumor size, depth of invasion, lymphatic invasion, lymph node metastasis, grade of differentiation, and TNM stage (P < 0.05). Our results suggested that PTEN gene mutation and loss of PTEN expression may provide valuable prognostic information to aid treatment strategies for CRC patients. PMID:23359334

  8. Germline retinoblastoma without inherited gene mutation: a case report.

    PubMed

    Quintero-Estades, José A; Izquierdo, Natalio J

    2014-01-01

    Retinoblastoma is the most common primary ocular malignancy in childhood and can occur as a germline or somatic mutation. Recent studies have suggested a higher incidence of retinoblastoma in Hispanic children as compared to non-Hispanic white children of the same ages. We report the ocular findings of a 20 years old Hispanic male with a history of bilateral retinoblastoma. Although screening is currently performned with the red reflex test, analysis of current literature suggests the need to reassess screening recommendations for retinoblastoma. PMID:25508534

  9. Germline retinoblastoma without inherited gene mutation: a case report.

    PubMed

    Quintero-Estades, José A; Izquierdo, Natalio J

    2014-01-01

    Retinoblastoma is the most common primary ocular malignancy in childhood and can occur as a germline or somatic mutation. Recent studies have suggested a higher incidence of retinoblastoma in Hispanic children as compared to non-Hispanic white children of the same ages. We report the ocular findings of a 20 years old Hispanic male with a history of bilateral retinoblastoma. Although screening is currently performed with the red reflex test, analysis of current literature suggests the need to reassess screening recommendations for retinoblastoma. PMID:25470907

  10. Novel Mutations Detected in Avirulence Genes Overcoming Tomato Cf Resistance Genes in Isolates of a Japanese Population of Cladosporium fulvum

    PubMed Central

    Iida, Yuichiro; van ‘t Hof, Pieter; Beenen, Henriek; Mesarich, Carl; Kubota, Masaharu; Stergiopoulos, Ioannis; Mehrabi, Rahim; Notsu, Ayumi; Fujiwara, Kazuki; Bahkali, Ali; Abd-Elsalam, Kamel; Collemare, Jérôme; de Wit, Pierre J. G. M.

    2015-01-01

    Leaf mold of tomato is caused by the biotrophic fungus Cladosporium fulvum which complies with the gene-for-gene system. The disease was first reported in Japan in the 1920s and has since been frequently observed. Initially only race 0 isolates were reported, but since the consecutive introduction of resistance genes Cf-2, Cf-4, Cf-5 and Cf-9 new races have evolved. Here we first determined the virulence spectrum of 133 C. fulvum isolates collected from 22 prefectures in Japan, and subsequently sequenced the avirulence (Avr) genes Avr2, Avr4, Avr4E, Avr5 and Avr9 to determine the molecular basis of overcoming Cf genes. Twelve races of C. fulvum with a different virulence spectrum were identified, of which races 9, 2.9, 4.9, 4.5.9 and 4.9.11 occur only in Japan. The Avr genes in many of these races contain unique mutations not observed in races identified elsewhere in the world including (i) frameshift mutations and (ii) transposon insertions in Avr2, (iii) point mutations in Avr4 and Avr4E, and (iv) deletions of Avr4E, Avr5 and Avr9. New races have developed by selection pressure imposed by consecutive introductions of Cf-2, Cf-4, Cf-5 and Cf-9 genes in commercially grown tomato cultivars. Our study shows that molecular variations to adapt to different Cf genes in an isolated C. fulvum population in Japan are novel but overall follow similar patterns as those observed in populations from other parts of the world. Implications for breeding of more durable C. fulvum resistant varieties are discussed. PMID:25902074

  11. MEFV Gene Profile in Northwest of Iran, Twelve Common MEFV Gene Mutations Analysis in 216 Patients with Familial Mediterranean Fever

    PubMed Central

    Salehzadeh, Farhad; Jafari Asl, Mehdi; Hosseini Asl, Saeid; Jahangiri, Sepideh; Habibzadeh, Shahram

    2015-01-01

    Familial Mediterranean Fever (FMF) is a hereditary autoinflammatory disease with autosomal recessive inheritance pattern often seen around the Mediterranean Sea. It is characterized by recurrent episodes of fever and polyserositis and rash. Recently, MEFV gene analysis determines the definitive diagnosis of FMF. In this study, we analyzed 12 MEFV gene mutations in more than 200 FMF patients, previously diagnosed by Tel-Hashomer clinical criteria, in northwest of Iran, located in the proximity of the Mediterranean Sea. In the northwest of Iran (Ardabil), 216 patients with FMF diagnosis, based on Tel-Hashomer criteria, referred to the genetic laboratory to be tested for the following mutations; P369S, F479L, M680I(G/C), M680I(G/A), I692del, M694V, M694I, K695R, V726A, A744S, R761H, E148Q. All patients were screened for MEFV gene mutations by a reverse hybridization assay (FMF Strip Assay, Vienna lab, Vienna, Austria) according to manufacturer’s instructions. Among these FMF patients, no mutation was detected in 51 (23/62%) patients, but 165 (76/38%) patients had one or two mutations, 33 patients (15/28%) homozygous, 86 patients (39/81%) compound heterozygous and 46 patients (21/29%) were heterozygous. The most common mutations were M694V (23/61%), V726A (11/11%) and E148Q (9/95%) respectively. MEFV gene mutations showed similarities and dissimilarities in different ethnic groups, while it is common among Arabs and Armenians genotype. Since common 12 MEFV gene analysis could not detect up to 50% of our patients, who had FMF on the basis of clinical Tel-Hashomer criteria, clinical criteria is still the best way in the diagnosis of FMF in this area. The abstract of this article has been presented in the 7th Congress of International Society of Systemic Auto-Inflammatory Diseases in Lausanne, Switzerland, 22-26 May 2013. PMID:25648235

  12. Detection of germline mutations in the von Hippel-Lindau disease gene by the primer specified restriction map modification method.

    PubMed Central

    Kishida, T; Chen, F; Lerman, M I; Zbar, B

    1995-01-01

    Von Hippel-Lindau disease (VHL) is an inherited disorder characterised by a predisposition to develop tumours in the eyes, central nervous system, kidneys, and adrenal glands. Recently the VHL gene was cloned and shown to be mutated in 75% of US and Canadian VHL families. To develop simple, rapid methods for the detection of mutations found in large numbers of affected people, we designed based on the primer specified restriction site modification method. These tests have proved useful in identifying asymptomatic mutated VHL gene carriers who have the nt 505 T to C mutation or the nt 686 T to C mutation. Together with an MspI digestion test which can detect a mutation hot spot in codon 238, polymerase chain reaction/restriction endonuclease based tests can now detect VHL mutations in more than 50% of VHL type 2 families. Images PMID:8825919

  13. Integrated Analysis of Mutation Data from Various Sources Identifies Key Genes and Signaling Pathways in Hepatocellular Carcinoma

    PubMed Central

    Wei, Lin; Tang, Ruqi; Lian, Baofeng; Zhao, Yingjun; He, Xianghuo; Xie, Lu

    2014-01-01

    Background Recently, a number of studies have performed genome or exome sequencing of hepatocellular carcinoma (HCC) and identified hundreds or even thousands of mutations in protein-coding genes. However, these studies have only focused on a limited number of candidate genes, and many important mutation resources remain to be explored. Principal Findings In this study, we integrated mutation data obtained from various sources and performed pathway and network analysis. We identified 113 pathways that were significantly mutated in HCC samples and found that the mutated genes included in these pathways contained high percentages of known cancer genes, and damaging genes and also demonstrated high conservation scores, indicating their important roles in liver tumorigenesis. Five classes of pathways that were mutated most frequently included (a) proliferation and apoptosis related pathways, (b) tumor microenvironment related pathways, (c) neural signaling related pathways, (d) metabolic related pathways, and (e) circadian related pathways. Network analysis further revealed that the mutated genes with the highest betweenness coefficients, such as the well-known cancer genes TP53, CTNNB1 and recently identified novel mutated genes GNAL and the ADCY family, may play key roles in these significantly mutated pathways. Finally, we highlight several key genes (e.g., RPS6KA3 and PCLO) and pathways (e.g., axon guidance) in which the mutations were associated with clinical features. Conclusions Our workflow illustrates the increased statistical power of integrating multiple studies of the same subject, which can provide biological insights that would otherwise be masked under individual sample sets. This type of bioinformatics approach is consistent with the necessity of making the best use of the ever increasing data provided in valuable databases, such as TCGA, to enhance the speed of deciphering human cancers. PMID:24988079

  14. Mutation screening of melatonin-related genes in patients with autism spectrum disorders

    PubMed Central

    2010-01-01

    Background One consistent finding in autism spectrum disorders (ASD) is a decreased level of the pineal gland hormone melatonin and it has recently been demonstrated that this decrease to a large extent is due to low activity of the acetylserotonin O-methyltransferase (ASMT), the last enzyme in the melatonin synthesis pathway. Moreover, mutations in the ASMT gene have been identified, including a splice site mutation, that were associated with low ASMT activity and melatonin secretion, suggesting that the low ASMT activity observed in autism is, at least partly, due to variation within the ASMT gene. Methods In the present study, we have investigated all the genes involved in the melatonin pathway by mutation screening of AA-NAT (arylalkylamine N-acetyltransferase), ASMT, MTNR1A, MTNR1B (melatonin receptor 1A and 1B) and GPR50 (G protein-coupled receptor 50), encoding both synthesis enzymes and the three main receptors of melatonin, in 109 patients with autism spectrum disorders (ASD). A cohort of 188 subjects from the general population was used as a comparison group and was genotyped for the variants identified in the patient sample. Results Several rare variants were identified in patients with ASD, including the previously reported splice site mutation in ASMT (IVS5+2T>C). Of the variants affecting protein sequence, only the V124I in the MTNR1B gene was absent in our comparison group. However, mutations were found in upstream regulatory regions in three of the genes investigated, ASMT, MTNR1A, and MTNR1B. Conclusions Our report of another ASD patient carrying the splice site mutation IVS5+2T>C, in ASMT further supports an involvement of this gene in autism. Moreover, our results also suggest that other melatonin related genes might be interesting candidates for further investigation in the search for genes involved in autism spectrum disorders and related neurobehavioral phenotypes. However, further studies of the novel variants identified in this study are warranted to shed light on their potential role in the pathophysiology of these disorders. PMID:20377855

  15. The Bacteriophage T4 Rapid-Lysis Genes and Their Mutational Proclivities ?

    PubMed Central

    Burch, Lauranell H.; Zhang, Leilei; Chao, Frank G.; Xu, Hong; Drake, John W.

    2011-01-01

    Like most phages with double-stranded DNA, phage T4 exits the infected host cell by a lytic process requiring, at a minimum, an endolysin and a holin. Unlike most phages, T4 can sense superinfection (which signals the depletion of uninfected host cells) and responds by delaying lysis and achieving an order-of-magnitude increase in burst size using a mechanism called lysis inhibition (LIN). T4 r mutants, which are unable to conduct LIN, produce distinctly large, sharp-edged plaques. The discovery of r mutants was key to the foundations of molecular biology, in particular to discovering and characterizing genetic recombination in T4, to redefining the nature of the gene, and to exploring the mutation process at the nucleotide level of resolution. A number of r genes have been described in the past 7 decades with various degrees of clarity. Here we describe an extensive and perhaps saturating search for T4 r genes and relate the corresponding mutational spectra to the often imperfectly known physiologies of the proteins encoded by these genes. Focusing on r genes whose mutant phenotypes are largely independent of the host cell, the genes are rI (which seems to sense superinfection and signal the holin to delay lysis), rIII (of poorly defined function), rIV (same as sp and also of poorly defined function), and rV (same as t, the holin gene). We did not identify any mutations that might correspond to a putative rVI gene, and we did not focus on the famous rII genes because they appear to affect lysis only indirectly. PMID:21571993

  16. Mutation of the LUNATIC FRINGE Gene in Humans Causes Spondylocostal Dysostosis with a Severe Vertebral Phenotype

    PubMed Central

    Sparrow, D. B.; Chapman, G.; Wouters, M. A.; Whittock, N. V.; Ellard, S.; Fatkin, D.; Turnpenny, P. D.; Kusumi, K.; Sillence, D.; Dunwoodie, S. L.

    2006-01-01

    The spondylocostal dysostoses (SCDs) are a heterogeneous group of vertebral malsegmentation disorders that arise during embryonic development by a disruption of somitogenesis. Previously, we had identified two genes that cause a subset of autosomal recessive forms of this disease: DLL3 (SCD1) and MESP2 (SCD2). These genes are important components of the Notch signaling pathway, which has multiple roles in development and disease. Here, we have used a candidate-gene approach to identify a mutation in a third Notch pathway gene, LUNATIC FRINGE (LFNG), in a family with autosomal recessive SCD. LFNG encodes a glycosyltransferase that modifies the Notch family of cell-surface receptors, a key step in the regulation of this signaling pathway. A missense mutation was identified in a highly conserved phenylalanine close to the active site of the enzyme. Functional analysis revealed that the mutant LFNG was not localized to the correct compartment of the cell, was unable to modulate Notch signaling in a cell-based assay, and was enzymatically inactive. This represents the first known mutation in the human LFNG gene and reinforces the hypothesis that proper regulation of the Notch signaling pathway is an absolute requirement for the correct patterning of the axial skeleton. PMID:16385447

  17. Toward a Gene Therapy for Dominant Disease: Validation of an RNA Interference-Based Mutation-Independent Approach

    Microsoft Academic Search

    Anna-Sophia Kiang; Arpad Palfi; Marius Ader; Paul F. Kenna; Sophia Millington-Ward; Gerry Clark; Avril Kennan; Mary O'Reilly; Lawrence C. T. Tam; Aileen Aherne; Niamh McNally; Pete Humphries; G. Jane Farrar

    2005-01-01

    The intragenic heterogeneity encountered in many dominant disease-causing genes represents a significant challenge with respect to development of economically viable therapeutics. For example, 25% of autosomal dominant retinitis pigmentosa is caused by over 100 different mutations within the gene encoding rhodopsin, each of which could require a unique gene therapy. We describe here an RNA interference (RNAi)-based mutation-independent approach, targeting

  18. Illegitimate splicing of the NF1 gene in healthy individuals mimics mutation-induced splicing alterations in NF1 patients

    Microsoft Academic Search

    Katharina Wimmer; Markus Eckart; Helga Rehder; Christa Fonatsch

    2000-01-01

    Neurofibromatosis type 1 (NF1) is a common inherited disease affecting one in 3500 individuals. The mutation rate in the NF1 gene is one of the highest known for human genes. Compared to other methods, the protein truncation test (PTT) and subsequent sequence analysis of cloned cDNA provides improved efficiency in detecting NF1 mutations that are dispersed throughout the gene spanning

  19. Mutations in the rpoB and katG Genes Leading to Drug Resistance in Mycobacterium tuberculosis in Latvia

    Microsoft Academic Search

    T. Tracevska; I. Jansone; L. Broka; O. Marga; V. Baumanis

    2002-01-01

    To characterize the genetic basis of drug resistance in Mycobacterium tuberculosis in Latvia, mutations involved in rifampin (rpoB gene) and isoniazid (katG gene) resistance in DNA from 19 drug-susceptible and 51 multidrug-resistant M. tuberculosis complex isolates were analyzed. The most frequent rpoB gene mutations found by the Line Probe assay were the S531L (14 of 34 isolates), D516V (7 of

  20. Autosomal dominant nocturnal frontal lobe epilepsy with a mutation in the CHRNB2 gene.

    PubMed

    Díaz-Otero, Fernando; Quesada, Mar; Morales-Corraliza, José; Martínez-Parra, Carlos; Gómez-Garre, Pilar; Serratosa, José M

    2008-03-01

    Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE; MIM 600513) has been associated with mutations in the genes coding for the alfa-4 (CHRNA4), beta-2 (CHRNB2), and alpha-2 (CHRNA2) subunits of the neuronal nicotinic acetylcholine receptor (nAChR) and for the corticotropin-releasing hormone (CRH). A four-generation ADNFLE family with six affected members was identified. All affected members presented the clinical characteristics of ADNFLE. Interictal awake and sleep EEG recordings showed no epileptiform abnormalities. Ictal video-EEG recordings showed focal seizures with frontal lobe semiology. Mutation analysis of the CHRNB2 gene revealed a c.859G>A transition (Val287Met) within the second transmembrane domain, identical to that previously described in a Scottish ADNFLE family. To our knowledge, this is the third family reported presenting a mutation in CHRNB2. The clinical phenotype appears similar to that described with mutations in CHRNA4, suggesting that mutations in these two subunits lead to similar functional alterations of the nAChR. PMID:17900292

  1. The Meckel-Gruber Syndrome Gene, MKS3, Is Mutated in Joubert Syndrome

    PubMed Central

    Baala, Lekbir; Romano, Stéphane; Khaddour, Rana; Saunier, Sophie; Smith, Ursula M.; Audollent, Sophie; Ozilou, Catherine; Faivre, Laurence; Laurent, Nicole; Foliguet, Bernard; Munnich, Arnold; Lyonnet, Stanislas; Salomon, Rémi; Encha-Razavi, Férechté; Gubler, Marie-Claire; Boddaert, Nathalie; Lonlay, Pascale de; Johnson, Colin A.; Vekemans, Michel; Antignac, Corinne; Attié-Bitach, Tania

    2007-01-01

    Joubert syndrome (JS) is an autosomal recessive disorder characterized by cerebellar vermis hypoplasia associated with hypotonia, developmental delay, abnormal respiratory patterns, and abnormal eye movements. The association of retinal dystrophy and renal anomalies defines JS type B. JS is a genetically heterogeneous condition with mutations in two genes, AHI1 and CEP290, identified to date. In addition, NPHP1 deletions identical to those that cause juvenile nephronophthisis have been identified in a subset of patients with a mild form of cerebellar and brainstem anomaly. Occipital encephalocele and/or polydactyly have occasionally been reported in some patients with JS, and these phenotypic features can also be observed in Meckel-Gruber syndrome (MKS). MKS is a rare, autosomal recessive lethal condition characterized by central nervous system malformations (typically, occipital meningoencephalocele), postaxial polydactyly, multicystic kidney dysplasia, and ductal proliferation in the portal area of the liver. Since there is obvious phenotypic overlap between JS and MKS, we hypothesized that mutations in the recently identified MKS genes, MKS1 on chromosome 17q and MKS3 on 8q, may be a cause of JS. After mutation analysis of MKS1 and MKS3 in a series of patients with JS (n=22), we identified MKS3 mutations in four patients with JS, thus defining MKS3 as the sixth JS locus (JBTS6). No MKS1 mutations were identified in this series, suggesting that the allelism is restricted to MKS3. PMID:17160906

  2. Perspectives for therapeutic targeting of gene mutations in acute myeloid leukaemia with normal cytogenetics.

    PubMed

    Falini, Brunangelo; Sportoletti, Paolo; Brunetti, Lorenzo; Martelli, Maria Paola

    2015-08-01

    The acute myeloid leukaemia (AML) genome contains more than 20 driver recurrent mutations. Here, we review the potential for therapeutic targeting of the most common mutations associated with normal cytogenetics AML, focusing on those affecting the FLT3, NPM1 and epigenetic modifier genes (DNMT3A, IDH1/2, TET2). As compared to early compounds, second generation FLT3 inhibitors are more specific and have better pharmacokinetics. They also show higher anti-leukaemic activity, leading to about 50% of composite complete remissions in refractory/relapsed FLT3-internal tandem duplication-mutated AML. However, rapid relapses invariably occur due to various mechanisms of resistance to FLT3 inhibitors. This issue and the best way for using FLT3 inhibitors in combination with other therapeutic modalities are discussed. Potential approaches for therapeutic targeting of NPM1-mutated AML include: (i) reverting the aberrant nuclear export of NPM1 mutant using exportin-1 inhibitors; (ii) disruption of the nucleolus with drugs blocking the oligomerization of wild-type nucleophosmin or inducing nucleolar stress; and (iii) immunotherapeutic targeting of highly expressed CD33 and IL3RA (CD123) antigens. Finally, we discuss the role of demethylating agents (decitabine and azacitidine) and IDH1/2 inhibitors in the treatment of AML patients carrying mutations of genes (DNMT3A, IDH1/2 and TET2) involved in the epigenetic regulation of transcription. PMID:25891481

  3. [Clinical features and COMP gene mutation in a family with a pseudoachondroplasia child].

    PubMed

    Lu, Chun-Ting; Guo, Li; Zahng, Zhan-Hui; Lin, Wei-Xia; Song, Yuan-Zong; Feng, Lie

    2013-11-01

    This study aimed to report the clinical characteristics and COMP gene mutation of a family with pseudoachondroplasia (PSACH), a relatively rare spinal and epiphyseal dysplasia that is inherited as an autosomal dominant trait. Clinical information on a 5-year-2-month-old PSACH child and his parents was collected and analyzed. Diagnosis was confirmed by PCR amplification and direct sequencing of all the 19 exons and their flanking sequences of COMP gene, and the mutation was further ascertained by cloning analysis of exon 10. The child presented with short and stubby fingers, bow leg, short limb dwarfism and metaphysic broadening in long bone as well as lumbar lordosis. A mutation c.1048_1116del (p.Asn350_Asp372del) in exon 10, inherited from his father who did not demonstrate any phenotypic feature of PSACH, was detected in the child. PSACH was diagnosed definitively by means of COMP mutation analysis, on the basis of the child's clinical and imaging features. The non-penetrance phenomenon of COMP mutation was described for the first time in PSACH. PMID:24229584

  4. Meconium ileus in a Lebanese family secondary to mutations in the GUCY2C gene.

    PubMed

    Smith, Amanda; Bulman, Dennis E; Goldsmith, Claire; Bareke, Eric; Majewski, Jacek; Boycott, Kym M; Nikkel, Sarah M

    2015-07-01

    Meconium ileus is most often associated with mutations in the CFTR gene; however recently, mutations in GUCY2C in the Bedouin population have also been shown to result in this phenotype. This gene codes for an intestinal transmembrane receptor that generates cyclic GMP, which activates cystic fibrosis transmembrane receptor. We report a third family that supports the association of variants in the GUCY2C gene with meconium ileus (MI). A Lebanese kindred was studied and individuals affected with MI had either homozygous or compound heterozygous variants in GUCY2C. The earliest manifestation of the affected individuals was the presence of second trimester fetal echogenic bowel, thus resulting in the expansion of the differential diagnosis of this ultrasound finding. PMID:25370039

  5. Genome-scale genetic screen of lead ion-sensitive gene deletion mutations in Saccharomyces cerevisiae.

    PubMed

    Du, J; Cao, C; Jiang, L

    2015-06-01

    Pb (lead) is one of the most widespread and toxic heavy metal contaminants and imposes potential harm to human health. Pb ions cause cellular damage and induce loss of cell viability. However, mechanisms regulating Pb toxicity remain poorly understood. Through a genome-scale screen, we have identified 30 yeast single-gene deletion mutants that are sensitive to lead ions. These genes are involved in the metabolism, transcription, protein synthesis, cell cycle and DNA processing, protein folding, modification, destination, as well as cellular transport process. Comparative analyses to cadmium-sensitive mutations identified from previous studies indicate that overlapping genes of lead- and cadmium-sensitive mutations are involved in both the metabolism and the cellular transport process. Furthermore, eleven lead-sensitive mutants show elevated levels of lead contents in response to lead stress. Our findings provide a basis to understand molecular mechanisms underlying the detoxification of lead ions by yeast cells. PMID:25773006

  6. A RASopathy gene commonly mutated in cancer: the neurofibromatosis type 1 tumour suppressor.

    PubMed

    Ratner, Nancy; Miller, Shyra J

    2015-05-01

    Neurofibromatosis type 1 (NF1) is a common genetic disorder that predisposes affected individuals to tumours. The NF1 gene encodes a RAS GTPase-activating protein called neurofibromin and is one of several genes that (when mutant) affect RAS-MAPK signalling, causing related diseases collectively known as RASopathies. Several RASopathies, beyond NF1, are cancer predisposition syndromes. Somatic NF1 mutations also occur in 5-10% of human sporadic cancers and may contribute to resistance to therapy. To highlight areas for investigation in RASopathies and sporadic tumours with NF1 mutations, we summarize current knowledge of NF1 disease, the NF1 gene and neurofibromin, neurofibromin signalling pathways and recent developments in NF1 therapeutics. PMID:25877329

  7. Analysis of POFUT1 Gene Mutation in a Chinese Family with Dowling-Degos Disease

    PubMed Central

    Chen, Mingfei; Li, Yi; Liu, Hong; Fu, Xi'an; Yu, Yiongxiang; Yu, Gongqi; Wang, Chuan; Bao, Fangfang; Liany, Herty; Wang, Zhenzhen; Shi, Zhongxiang; Zhang, Dizhan; Zhou, Guizhi; Liu, Jianjun; Zhang, Furen

    2014-01-01

    Dowling-Degos disease (DDD) is an autosomal dominant genodermatosis characterized by reticular pigmented anomaly mainly affecting flexures. Though KRT5 has been identified to be the causal gene of DDD, the heterogeneity of this disease was displayed: for example, POFUT1 and POGLUT1 were recently identified and confirmed to be additional pathogenic genes of DDD. To identify other DDD causative genes, we performed genome-wide linkage and exome sequencing analyses in a multiplex Chinese DDD family, in which the KRT5 mutation was absent. Only a novel 1-bp deletion (c.246+5delG) in POFUT1 was found. No other novel mutation or this deletion was detected in POFUT1 in a second DDD family and a sporadic DDD case by Sanger Sequencing. The result shows the genetic-heterogeneity and complexity of DDD and will contribute to the further understanding of DDD genotype/phenotype correlations and to the pathogenesis of this disease. PMID:25157627

  8. A large cohort of myotonia congenita probands: novel mutations and a high-frequency mutation region in exons 4 and 5 of the CLCN1 gene.

    PubMed

    Brugnoni, Raffaella; Kapetis, Dimos; Imbrici, Paola; Pessia, Mauro; Canioni, Eleonora; Colleoni, Lara; de Rosbo, Nicole Kerlero; Morandi, Lucia; Cudia, Paola; Gashemi, Nasrin; Bernasconi, Pia; Desaphy, Jean-Francois; Conte, Diana; Mantegazza, Renato

    2013-09-01

    Myotonia congenita is a genetic disease characterized by impaired muscle relaxation after forceful contraction (myotonia) and caused by mutations in the chloride channel voltage-sensitive 1 (CLCN1) gene, encoding the voltage-gated chloride channel of skeletal muscle (ClC-1). In a large cohort of clinically diagnosed unrelated probands, we identified 75 different CLCN1 mutations in 106 individuals, among which 29 were novel mutations and 46 had already been reported. Despite the newly described mutations being scattered throughout the gene, in our patients, mutations were mostly found in exons 4 and 5. Most of the novel mutations located in the region comprising the intramembrane helices are involved in the ion-conducting pathway and predicted to affect channel function. We report for the first time that two mutations, inherited on the same allele as a heterozygous trait, abrogate disease expression, although when inherited singularly they were pathogenic. Such a mode of inheritance might explain the incomplete penetrance reported for autosomal dominant mutations in particular families. PMID:23739125

  9. Role of Duplicate Genes in Robustness against Deleterious Human Mutations

    E-print Network

    Vitkup, Dennis

    are credited. Funding: This work was funded by a Columbia start-up package for the investigator. Competing a significant contribution to functional compensation by duplicate yeast genes. A similar pattern by duplicates was recently investigated by Kafri et al. [10], who showed that null deletions in yeast are often

  10. Novel germline mutations in breast cancer susceptibility genes BRCA1 , BRCA2 and p53 gene in breast cancer patients from India

    Microsoft Academic Search

    Suresh Hedau; Neeraj Jain; Syed A. Husain; Ashish K. Mandal; Gibanananda Ray; M. Shahid; Ravi Kant; Vishal Gupta; Nootan K. Shukla; Suryanarayan S. V. Deo; Bhudev C. Das

    2004-01-01

    Mutations in breast cancer susceptibility genes, BRCA1 and BRCA2 account for more than 80% of hereditary breast and ovarian cancers. p53 tumor suppressor gene that controls cellular growth and differentiation is also known to be mutated in more than 50% of human cancers including breast cancer. We have carried out a study on BRCA1 and BRCA2 along with p53 gene

  11. A high-throughput protocol for mutation scanning of the BRCA1 and BRCA2 genes

    PubMed Central

    2011-01-01

    Background Detection of mutations by DNA sequencing can be facilitated by scanning methods to identify amplicons which may have mutations. Current scanning methods used for the detection of germline sequence variants are laborious as they require post-PCR manipulation. High resolution melting (HRM) is a cost-effective rapid screening strategy, which readily detects heterozygous variants by melting curve analysis of PCR products. It is well suited to screening genes such as BRCA1 and BRCA2 as germline pathogenic mutations in these genes are always heterozygous. Methods Assays for the analysis of all coding regions and intron-exon boundaries of BRCA1 and BRCA2 were designed, and optimised. A final set of 94 assays which ran under identical amplification conditions were chosen for BRCA1 (36) and BRCA2 (58). Significant attention was placed on primer design to enable reproducible detection of mutations within the amplicon while minimising unnecessary detection of polymorphisms. Deoxyinosine residues were incorporated into primers that overlay intronic polymorphisms. Multiple 384 well plates were used to facilitate high throughput. Results 169 BRCA1 and 239 BRCA2 known sequence variants were used to test the amplicons. We also performed an extensive blinded validation of the protocol with 384 separate patient DNAs. All heterozygous variants were detected with the optimised assays. Conclusions This is the first HRM approach to screen the entire coding region of the BRCA1 and BRCA2 genes using one set of reaction conditions in a multi plate 384 well format using specifically designed primers. The parallel screening of a relatively large number of samples enables better detection of sequence variants. HRM has the advantages of decreasing the necessary sequencing by more than 90%. This markedly reduced cost of sequencing will result in BRCA1 and BRCA2 mutation testing becoming accessible to individuals who currently do not undergo mutation testing because of the significant costs involved. PMID:21702907

  12. Prelingual deafness: high prevalence of a 30delG mutation in the connexin 26 gene.

    PubMed

    Denoyelle, F; Weil, D; Maw, M A; Wilcox, S A; Lench, N J; Allen-Powell, D R; Osborn, A H; Dahl, H H; Middleton, A; Houseman, M J; Dodé, C; Marlin, S; Boulila-ElGaďed, A; Grati, M; Ayadi, H; BenArab, S; Bitoun, P; Lina-Granade, G; Godet, J; Mustapha, M; Loiselet, J; El-Zir, E; Aubois, A; Joannard, A; Levilliers, J; Garabédian, E N; Mueller, R F; Gardner, R J; Petit, C

    1997-11-01

    Prelingual non-syndromic (isolated) deafness is the most frequent hereditary sensory defect. In >80% of the cases, the mode of transmission is autosomal recessive. To date, 14 loci have been identified for the recessive forms (DFNB loci). For two of them, DFNB1 and DFNB2, the genes responsible have been characterized; they encode connexin 26 and myosin VIIA, respectively. In order to evaluate the extent to which the connexin 26 gene (Cx26) contributes to prelingual deafness, we searched for mutations in this gene in 65 affected Caucasian families originating from various countries, mainly tunisia, France, New Zealand and the UK. Six of these families are consanguineous, and deafness was shown to be linked to the DFNB1 locus, 10 are small non consanguineous families in which the segregation of the trait has been found to be compatible with the involvement of DFNB1, and in the remaining 49 families no linkage analysis has been performed. A total of 62 mutant alleles in 39 families were identified. Therefore, mutations in Cx26 represent a major cause of recessively inherited prelingual deafness since according to the present results they would underlie approximately half of the cases. In addition, one specific mutation, 30delG, accounts for the majority (approximately 70%) of the Cx26 mutant alleles. It is therefore one of the most frequent disease mutations so far identified. Several lines of evidence indicate that the high prevalence of the 30delG mutation arises from a mutation hot spot rather than from a founder effect. Genetic counseling for prelingual deafness has been so far considerably impaired by the difficulty in distinguishing genetic and non genetic deafness in families presenting with a single deaf child. Based on the results presented here, the development of a simple molecular test could be designed which should be of considerable help. PMID:9336442

  13. The phenotypic spectrum of neutral lipid storage myopathy due to mutations in the PNPLA2 gene.

    PubMed

    Reilich, Peter; Horvath, Rita; Krause, Sabine; Schramm, Nicolai; Turnbull, Doug M; Trenell, Michael; Hollingsworth, Kieren G; Gorman, Grainne S; Hans, Volkmar H; Reimann, Jens; MacMillan, Andrée; Turner, Lesley; Schollen, Annette; Witte, Gregor; Czermin, Birgit; Holinski-Feder, Elke; Walter, Maggie C; Schoser, Benedikt; Lochmüller, Hanns

    2011-11-01

    Neutral lipid storage disease is caused by mutations in the CGI-58 or the PNPLA2 genes. Lipid storage can be detected in various cell types including blood granulocytes. While CGI-58 mutations are associated with Chanarin-Dorfman syndrome, a condition characterized by lipid storage and skin involvement (ichthyosis), mutations in the patatin-like phospholipase domain-containing protein 2 gene (PNPLA2) were reported with skeletal and cardiac muscle disease only. We describe clinical, myopathological, magnetic resonance imaging (MRI), and genetic findings of six patients carrying different recessive PNPLA2 mutations. Pulse-chase labeling of control and patient cells with supplementation of clenbuterol, salmeterol, and dexamethasone was performed in vitro. The patients share a recognizable phenotype with prominent shoulder girdle weakness and mild pelvic girdle and distal muscle weakness, with highly elevated creatine kinase (CK) and cardiomyopathy developing at later stages. Muscle histology invariably reveals massive accumulation of lipid droplets. New muscle or whole-body MRI techniques may assist diagnosis and may become a useful tool to quantify intramuscular lipid storage. Four novel and two previously reported mutations were detected, affecting different parts of the PNPLA2 gene. Activation of hormone-sensitive lipase by beta-adrenergic substances such as clenbuterol appears to bypass the enzymatic block in PNPLA2-deficient patient cells in vitro. PNPLA2 deficiency is a slowly progressive myopathy with onset around the third decade. Cardiac involvement is relatively common at a later stage. Muscle MRI may detect increased lipid in a characteristic distribution, which could be used for monitoring disease progression. Beta-adrenergic agents may be beneficial in improving triacylglycerol breakdown in patients with PNPLA2 mutations. PMID:21544567

  14. Mutations in human CPO gene predict clinical expression of either hepatic hereditary coproporphyria or erythropoietic harderoporphyria.

    PubMed

    Schmitt, Caroline; Gouya, Laurent; Malonova, Eva; Lamoril, Jérôme; Camadro, Jean-Michel; Flamme, Magali; Rose, Christian; Lyoumi, Said; Da Silva, Vasco; Boileau, Catherine; Grandchamp, Bernard; Beaumont, Carole; Deybach, Jean-Charles; Puy, Hervé

    2005-10-15

    Hereditary coproporphyria (HCP), an autosomal dominant acute hepatic porphyria, results from mutations in the gene that encodes coproporphyrinogen III oxidase (CPO). HCP (heterozygous or rarely homozygous) patients present with an acute neurovisceral crisis, sometimes associated with skin lesions. Four patients (two families) have been reported with a clinically distinct variant form of HCP. In such patients, the presence of a specific mutation (K404E) on both alleles or associated with a null allele, produces a unifying syndrome in which hematological disorders predominate: 'harderoporphyria'. Here, we report the fifth case (from a third family) with harderoporphyria. In addition, we show that harderoporphyric patients exhibit iron overload secondary to dyserythropoiesis. To investigate the molecular basis of this peculiar phenotype, we first studied the secondary structure of the human CPO by a predictive method, the hydrophobic cluster analysis (HCA) which allowed us to focus on a region of the enzyme. We then expressed mutant enzymes for each amino acid of the region of interest, as well as all missense mutations reported so far in HCP patients and evaluated the amount of harderoporphyrin in each mutant. Our results strongly suggest that only a few missense mutations, restricted to five amino acids encoded by exon 6, may accumulate significant amounts of harderoporphyrin: D400-K404. Moreover, all other type of mutations or missense mutations mapped elsewhere throughout the CPO gene, lead to coproporphyrin accumulation and subsequently typical HCP. Our findings, reinforced by recent crystallographic results of yeast CPO, shed new light on the genetic predisposition to HCP. It represents a first monogenic metabolic disorder where clinical expression of overt disease is dependent upon the location and type of mutation, resulting either in acute hepatic or in erythropoietic porphyria. PMID:16159891

  15. [Analysis of CYP21A2 gene mutation in one case of congenital adrenal hyperplasia].

    PubMed

    Lin, Xiao-Mei; Wu, Ben-Qing; Huang, Jin-Jie; Li, Bo; Fan, Yi; Lin, Lin-Hua; Yao, Qiu-Xuan; Wu, Wen-Yuan; Yu, Lian

    2013-11-01

    CYP21A2 gene mutations in a child with congenital adrenal hyperplasia (CAH), and the child's parents, were detected in the study. The clinical features, treatment monitoring and molecular genetic mechanism of CAH are reviewed. In the study, DNA was extracted from peripheral blood samples using the QIAGEN Blood DNA Mini Kit; a highly specific PCR primer for CYP21A2 gene was designed according to the sequence difference between CYP2lA2 gene and its pseudogene; the whole CYP2lA2 gene was amplified with PrimeSTAR DNA polymerase (Takara), and the amplification product was directly sequenced to detect and analyze CYP2lA2 gene mutation. The child was clinically diagnosed with CAH (21-hydroxylase deficiency, 21-OHD) at the age of 36 days, and the case was confirmed by genetic diagnosis at the age of 1.5 years. The proband had a homozygous mutation at c.293-13C in the second intron of CYP21 gene, while the parents had heterozygous mutations. Early diagnosis and standard treatment of CAH (21-OHD) should be performed to prevent salt-wasting crisis and reduce mortality; bone aging should be avoided to increase final adult height (FAH), and reproductive dysfunction due to oligospermia in adulthood should be avoided. These factors are helpful for improving prognosis and increasing FAH. Investigating the molecular genetic mechanism of CAH can improve recognition and optimize diagnosis of this disease. In addition, carrier diagnosis and genetic counseling for the proband family are of great significance. PMID:24229585

  16. Myotonia caused by mutations in the muscle chloride channel gene CLCN1.

    PubMed

    Pusch, Michael

    2002-04-01

    Pure non-syndromic, non-dystrophic myotonia in humans is caused by mutations in the genes coding for the skeletal muscle sodium channel (SCN5A) or the skeletal muscle chloride channel (CLCN1) with similar phenotypes. Chloride-channel myotonia can be dominant (Thomsen-type myotonia) or recessive (Becker-type myotonia). More than 60 myotonia-causing mutations in the CLCN1 gene have been identified, with only a few of them being dominant. A common phenotype of dominant mutations is a dominant negative effect of mutant subunits in mutant-WT heterodimers, causing a large shift of the steady-state open probability voltage-dependence towards more positive, unphysiological voltages. The study of the properties of disease causing mutations has helped in understanding the functional properties of the CLC-1 channel that is part of a nine-member gene family of chloride channels. The large body of knowledge obtained for CLC-1 may also help to better understand the other CLC channels, three of which are also involved in genetic diseases. PMID:11933197

  17. Cardiolipin content in mitochondria from cultured skin fibroblasts harboring mutations in the mitochondrial ATP6 gene.

    PubMed

    El-Hafidi, Mohammed; Meschini, Maria Chiara; Rizza, Teresa; Santorelli, Filippo M; Bertini, Enrico; Carrozzo, Rosalba; Vázquez-Memije, Martha Elisa

    2011-12-01

    The role of phospholipids in normal assembly and organization of the membrane proteins has been well documented. Cardiolipin, a unique tetra-acyl phospholipid localized in the inner mitochondrial membrane, is implicated in the stability of many inner-membrane protein complexes. Loss of cardiolipin content, alterations in its acyl chain composition and/or cardiolipin peroxidation have been associated with dysfunction in multiple tissues in a variety of pathological conditions. The aim of this study was to analyze the phospholipid composition of the mitochondrial membrane in the four most frequent mutations in the ATP6 gene: L156R, L217R, L156P and L217P but, more importantly, to investigate the possible changes in the cardiolipin profile. Mitochondrial membranes from fibroblasts with mutations at codon 217 of the ATP6 gene, showed a different cardiolipin content compared to controls. Conversely, results similar to controls were obtained for mutations at codon 156. These findings may be attributed to differences in the biosynthesis and remodeling of cardiolipin at the level of the inner mitochondrial transmembrane related to some mutations of the ATP6 gene. PMID:21993659

  18. Mutation analysis of the NSD1 gene in patients with autism spectrum disorders and macrocephaly

    PubMed Central

    Buxbaum, Joseph D; Cai, Guiqing; Nygren, Gudrun; Chaste, Pauline; Delorme, Richard; Goldsmith, Juliet; Rĺstam, Maria; Silverman, Jeremy M; Hollander, Eric; Gillberg, Christopher; Leboyer, Marion; Betancur, Catalina

    2007-01-01

    Background Sotos syndrome is an overgrowth syndrome characterized by macrocephaly, advanced bone age, characteristic facial features, and learning disabilities, caused by mutations or deletions of the NSD1 gene, located at 5q35. Sotos syndrome has been described in a number of patients with autism spectrum disorders, suggesting that NSD1 could be involved in other cases of autism and macrocephaly. Methods We screened the NSD1 gene for mutations and deletions in 88 patients with autism spectrum disorders and macrocephaly (head circumference 2 standard deviations or more above the mean). Mutation analysis was performed by direct sequencing of all exons and flanking regions. Dosage analysis of NSD1 was carried out using multiplex ligation-dependent probe amplification. Results We identified three missense variants (R604L, S822C and E1499G) in one patient each, but none is within a functional domain. In addition, segregation analysis showed that all variants were inherited from healthy parents and in two cases were also present in unaffected siblings, indicating that they are probably nonpathogenic. No partial or whole gene deletions/duplications were observed. Conclusion Our findings suggest that Sotos syndrome is a rare cause of autism spectrum disorders and that screening for NSD1 mutations and deletions in patients with autism and macrocephaly is not warranted in the absence of other features of Sotos syndrome. PMID:18001468

  19. Identification of a novel missense GLRA1 gene mutation in hyperekplexia: a case report

    PubMed Central

    2014-01-01

    Introduction Hereditary hyperekplexia is a neurological disorder characterized by excessive startle responses with violent jerking to noise or touch, stiffening of the trunk and limbs, clenching of the fists and attacks of a high-frequency trembling. Hyperekplexia has a heterogeneous genetic background with several identified causative genes and demonstrates both dominant and recessive inheritance. Mutations in the glycine receptor alpha 1 subunit gene occur in about 30 percent of hyperekplexia cases. Case presentation In this study, we report the case of a Hungarian boy whose abnormal movements, muscle stiffness and convulsions were first noted when he was 4 days old. Neurological and electrophysiological investigation suggested the clinical diagnosis of hyperekplexia. Conclusions Direct sequencing of the coding regions and the flanking introns of the glycine receptor alpha 1 subunit gene revealed a novel heterozygous missense mutation (c.211A/T, p.Ile71Phe). Genetic screening of our patient’s family revealed that the clinically unaffected parents and sister do not carry the mutation, suggesting that the identified sequence change is a de novo mutation. Since hyperekplexia can have severe consequences, including sudden infant death due to laryngospasm and cardiorespiratory failure, identification of the causative genetic alteration(s) of the disease is high priority. Such knowledge is necessary for prenatal diagnosis, which would allow informed family planning and greater parental sensitivity to hyperekplexia 1-associated risks. PMID:24969041

  20. KIAA1549: BRAF Gene Fusion and FGFR1 Hotspot Mutations Are Prognostic Factors in Pilocytic Astrocytomas

    PubMed Central

    Becker, Aline Paixăo; Scapulatempo-Neto, Cristovam; Carloni, Adriana C.; Paulino, Alessandra; Sheren, Jamie; Aisner, Dara L.; Musselwhite, Evelyn; Clara, Carlos; Machado, Hélio R.; Oliveira, Ricardo S.; Neder, Luciano; Varella-Garcia, Marileila; Reis, Rui M.

    2015-01-01

    Abstract Up to 20% of patients with pilocytic astrocytoma (PA) experience a poor outcome. BRAF alterations and Fibroblast growth factor receptor 1 (FGFR1) point mutations are key molecular alterations in Pas, but their clinical implications are not established. We aimed to determine the frequency and prognostic role of these alterations in a cohort of 69 patients with PAs. We assessed KIAA1549:BRAF fusion by fluorescence in situ hybridization and BRAF (exon 15) mutations by capillary sequencing. In addition, FGFR1 expression was analyzed using immunohistochemistry, and this was compared with gene amplification and hotspot mutations (exons 12 and 14) assessed by fluorescence in situ hybridization and capillary sequencing. KIAA1549:BRAF fusion was identified in almost 60% of cases. Two tumors harbored mutated BRAF. Despite high FGFR1 expression overall, no cases had FGFR1 amplifications. Three cases harbored a FGFR1 p.K656E point mutation. No correlation was observed between BRAF and FGFR1 alterations. The cases were predominantly pediatric (87%), and no statistical differences were observed in molecular alterations–related patient ages. In summary, we confirmed the high frequency of KIAA1549:BRAF fusion in PAs and its association with a better outcome. Oncogenic mutations of FGFR1, although rare, occurred in a subset of patients with worse outcome. These molecular alterations may constitute alternative targets for novel clinical approaches, when radical surgical resection is unachievable. PMID:26083571