Science.gov

Sample records for hbb gene mutations

  1. Distinctive mutation spectrum of the HBB gene in an urban eastern Indian population.

    PubMed

    Sahoo, Subhransu Sekhar; Biswal, Sebaranjan; Dixit, Manjusha

    2014-01-01

    ABSTRACT Hemoglobinopathies such as β-thalassemia (β-thal) and sickle cell anemia (or Hb S [β6(A3)Glu→Val]) impose a major health burden in the Indian population. To determine the frequencies of the HBB gene mutations in eastern Indian populations and to compare with the available data, a comprehensive molecular analysis of the HBB gene was done in the normal Odisha State population. Using polymerase chain reaction (PCR), restriction fragment length polymorphism (RFLP), amplification refractory mutation system (ARMS) and DNA sequencing techniques, β-thal and sickle cell anemia mutations were characterized in 267 healthy individuals. Entire HBB gene sequencing showed 63 different mutations including 11 new ones. The predominant mutation HBB: c.9T > C was observed at a high frequency (19.57%) in the normal population. In the urban population of Odisha State, India, carrier frequency of hemoglobinopathies was found to be 18.48%, and for β-thal, the carrier rate was 14.13%, which is very high indeed. In the absence of a complete cure by any expensive treatment and drug administration, this information would be helpful for planning a population screening program and establishing prenatal diagnosis of β-thal in order to reduce the burden of such a genetic disease. PMID:24099628

  2. A Novel Mutation in the Promoter Region of the β-Globin Gene: HBB: c.-127G > C.

    PubMed

    Bilgen, Turker; Canatan, Duran; Delibas, Serpil; Keser, Ibrahim

    2016-08-01

    Novel β-globin gene mutations are still occasionally being reported, especially when evaluating milder phenotypes. We report here a novel putative mutation in the promoter region of the β-globin gene and assess its clinical implications. A family, parents and four siblings, with hematological and clinical features suspected of being β-globin gene mutation(s), were involved in this study. In addition to hematological and clinical evaluations of the whole family, molecular analyses of the β-globin gene were performed by direct sequencing. Sequencing of the β-globin gene revealed a novel genomic alteration in the regulatory region of the gene. This novel genomic alteration was defined as HBB: c.-127G > C according to the Human Genome Variation Society (HGVS) nomenclature. Two siblings were found to be carriers of the HBB: c.-127G > C mutation, while the other two siblings were carriers of the codon 8 (-AA) (HBB: c.25_26delAA) deletion of the β-globin gene. The mother was a compound heterozygote for the codon 8 and HBB: c.-127G > C mutations. Based on hematological and clinical evaluations, we conclude that this novel β-globin gene promoter region change would be associated with a mild phenotype of β-thalassemia (β-thal). PMID:27349616

  3. Generation of KCL035 research grade human embryonic stem cell line carrying a mutation in HBB gene.

    PubMed

    Hewitson, Heema; Wood, Victoria; Kadeva, Neli; Cornwell, Glenda; Codognotto, Stefano; Stephenson, Emma; Ilic, Dusko

    2016-03-01

    The KCL035 human embryonic stem cell line was derived from an embryo donated for research that carried a mutation in the HBB gene, which is linked to the β-thalassemia syndrome. The ICM was isolated using laser microsurgery and plated on γ-irradiated human foreskin fibroblasts. Both the derivation and cell line propagation were performed in an animal product-free environment. Pluripotent state and differentiation potential were confirmed by in vitro assays. PMID:27345970

  4. Compound heterozygous β(+) β(0) mutation of HBB gene leading to β-thalassemia major in a Gujarati family - A case study.

    PubMed

    Chaudhary, Spandan; Dhawan, Dipali; Bagali, Prashanth G; S Chaudhary, Pooja; Chaudhary, Abhinav; Singh, Sanjay; Vudathala, Srinivas

    2016-06-01

    β-Thalassemia is a genetic disease characterized by reduced or non-functionality of β-globin gene expression, which is caused due to a number of variations and indels (insertions and deletions). In this case study, we have reported a rare occurrence of compound heterozygosity of two different variants, namely, HBBc.92G > C and HBBc.92 + 5G > C in maternal amniotic fluid sample. Prenatal β-thalassemia mutation detection in fetal DNA was carried out using nucleotide sequencing method. After analysis, the father was found to be heterozygous for HBBc.92G > C (Codon 30 (G > C)) mutation which is β(0) type and the mother was heterozygous for HBBc.92 + 5G > C (IVS I-5 (G > C)) mutation which is β(+) type. When amniotic fluid sample was analyzed for β-globin gene (HBB), we found the occurrence of heterozygous allelic pattern for aforesaid mutations. This compound heterozygous state of fetus sample was considered as β(+)/β(0) category of β thalassemia which was clinically and genotypically interpreted as β-thalassemia major. Regular blood transfusions are required for the survival of thalassemia major patients hence prenatal diagnosis is imperative for timely patient management. Prenatal diagnosis helps the parents to know the thalassemic status of the fetus and enables an early decision on the pregnancy. In the present study, we have identified compound heterozygosity for β-thalassemia in the fetus which portrays the importance of prenatal screening. PMID:27134826

  5. Compound heterozygous β+ β0 mutation of HBB gene leading to β-thalassemia major in a Gujarati family — A case study

    PubMed Central

    Chaudhary, Spandan; Dhawan, Dipali; Bagali, Prashanth G.; S.Chaudhary, Pooja; Chaudhary, Abhinav; Singh, Sanjay; Vudathala, Srinivas

    2016-01-01

    β-Thalassemia is a genetic disease characterized by reduced or non-functionality of β-globin gene expression, which is caused due to a number of variations and indels (insertions and deletions). In this case study, we have reported a rare occurrence of compound heterozygosity of two different variants, namely, HBBc.92G > C and HBBc.92 + 5G > C in maternal amniotic fluid sample. Prenatal β-thalassemia mutation detection in fetal DNA was carried out using nucleotide sequencing method. After analysis, the father was found to be heterozygous for HBBc.92G > C (Codon 30 (G > C)) mutation which is β0 type and the mother was heterozygous for HBBc.92 + 5G > C (IVS I-5 (G > C)) mutation which is β+ type. When amniotic fluid sample was analyzed for β-globin gene (HBB), we found the occurrence of heterozygous allelic pattern for aforesaid mutations. This compound heterozygous state of fetus sample was considered as β+/β0 category of β thalassemia which was clinically and genotypically interpreted as β-thalassemia major. Regular blood transfusions are required for the survival of thalassemia major patients hence prenatal diagnosis is imperative for timely patient management. Prenatal diagnosis helps the parents to know the thalassemic status of the fetus and enables an early decision on the pregnancy. In the present study, we have identified compound heterozygosity for β-thalassemia in the fetus which portrays the importance of prenatal screening. PMID:27134826

  6. A novel β-globin gene mutation HBB.c.22 G>C produces a hemoglobin variant (Hb Vellore) mimicking HbS in HPLC.

    PubMed

    Edison, E S; Sathya, M; Rajkumar, S V; Nair, S C; Srivastava, A; Shaji, R V

    2012-10-01

    Hemoglobinopathies are highly prevalent in Indian population. DNA analysis to detect causative mutations is required for identifying rare hemoglobin variants or when hematological results are discordant with the clinical phenotype. In this report, we describe a novel hemoglobin variant caused by a mutation in beta-globin gene, Codon 7 GAG→CAG (Glu→Gln) that elutes in the position of sickle haemoglobin (HbS) in cation exchange high performance liquid chromatography. This report highlights possible diagnostic pitfalls in interpreting data solely based on haemoglobin analysis and usefulness of mutation screening in definitive diagnosis of hemoglobinopathies. PMID:22471768

  7. Identification of a Novel β-Globin Mutation (HBB: C.189_195delTCATGGC) in a Chinese Family.

    PubMed

    He, Sheng; Lin, Li; Wei, Yuan; Chen, Biyan; Yi, Shang; Chen, Qiuli; Qiu, XiaoXia; Wei, Hongwei; Li, Guojian; Zheng, Chenguang

    2016-08-01

    β-Thalassemia (β-thal) is one of the most common genetic disorders worldwide. Molecular characterization of β-thal is essential for prevention and understanding the biology of the disease. More and more rare and novel mutations are being reported. Here, we report a novel 7 bp deletion at codons 63-65 (HBB: c.189_195delTCATGGC) in exon 2 of the β-globin gene in a family from Guangxi Province, China. This novel mutation causes a shift in the normal reading frame of the β-globin coding sequence and created a stop codon at codon 87 in exon 2, which leads to a β(0)-thal phenotype. PMID:27492766

  8. Coinheritance of a novel mutation on the HBA1 gene: c.187delG (p.W62fsX66) [codon 62 (-G) (α1)] with the α212 patchwork allele and Hb S [β6(A3)Glu→Val, GAG>GTG; HBB: c.20A>T].

    PubMed

    Scheps, Karen G; De Paula, Silvia M; Bitsman, Alicia R; Freigeiro, Daniel H; Basack, F Nora; Pennesi, Sandra P; Varela, Viviana

    2013-01-01

    We describe a novel frameshift mutation on the HBA1 gene (c.187delG), causative of α-thalassemia (α-thal) in a Black Cuban family with multiple sequence variants in the HBA genes and the Hb S [β6(A3)Glu→Val, GAG>GTG; HBB: c.20A>T] mutation. The deletion of the first base of codon 62 resulted in a frameshift at amino acid 62 with a putative premature termination codon (PTC) at amino acid 66 on the same exon (p.W62fsX66), which most likely triggers nonsense mediated decay of the resulting mRNA. This study also presents the first report of the α212 patchwork allele in Latin America and the description of two new sequence variants in the HBA2 region (c.-614G>A in the promoter region and c.95+39 C>T on the first intron). PMID:23806041

  9. Deletion Mapping of Four Loci Defined by N-Ethyl-N-Nitrosourea-Induced Postimplantation-Lethal Mutations within the Pid-Hbb Region of Mouse Chromosome 7

    PubMed Central

    Rinchik, E. M.; Carpenter, D. A.; Long, C. L.

    1993-01-01

    As part of a long-term effort to refine the physical and functional maps of the Fes-Hbb region of mouse chromosome 7, four loci [l(7)1Rn, l(7)2Rn, l(7)3Rn, l(7)4Rn] defined by N-ethyl-N-nitrosourea (ENU)-induced, prenatally lethal mutations were mapped by means of trans complementation crosses to mice carrying lethal deletions of the mouse chromosome-7 albino (c) locus. Each locus was assigned to a defined subregion of the deletion map at the distal end of the Fes-Hbb interval. Of particular use for this mapping were preimplantation-lethal deletions having distal breakpoints localized between pid and Omp. Hemizygosity or homozygosity for each of the ENU-induced lethals was found to arrest development after uterine implantation; the specific time of postimplantation death varied, and depended on both the mutation itself and on whether it was hemizygous or homozygous. Based on their map positions outside of and distal to deletions that cause death at preimplantation stages, these ENU-induced mutations identify loci, necessary for postimplantation development, that could not have been discovered by phenotypic analyses of mice homozygous for any albino deletion. The mapping of these loci to specific genetic intervals defined by deletion breakpoints suggests a number of positional-cloning strategies for the molecular isolation of these genes. Phenotypic and genetic analyses of these mutations should provide useful information on the functional composition of the corresponding segment of the human genome (perhaps human 11q13.5). PMID:8307327

  10. Integrative Analysis of CRISPR/Cas9 Target Sites in the Human HBB Gene.

    PubMed

    Luo, Yumei; Zhu, Detu; Zhang, Zhizhuo; Chen, Yaoyong; Sun, Xiaofang

    2015-01-01

    Recently, the clustered regularly interspaced short palindromic repeats (CRISPR) system has emerged as a powerful customizable artificial nuclease to facilitate precise genetic correction for tissue regeneration and isogenic disease modeling. However, previous studies reported substantial off-target activities of CRISPR system in human cells, and the enormous putative off-target sites are labor-intensive to be validated experimentally, thus motivating bioinformatics methods for rational design of CRISPR system and prediction of its potential off-target effects. Here, we describe an integrative analytical process to identify specific CRISPR target sites in the human β-globin gene (HBB) and predict their off-target effects. Our method includes off-target analysis in both coding and noncoding regions, which was neglected by previous studies. It was found that the CRISPR target sites in the introns have fewer off-target sites in the coding regions than those in the exons. Remarkably, target sites containing certain transcriptional factor motif have enriched binding sites of relevant transcriptional factor in their off-target sets. We also found that the intron sites have fewer SNPs, which leads to less variation of CRISPR efficiency in different individuals during clinical applications. Our studies provide a standard analytical procedure to select specific CRISPR targets for genetic correction. PMID:25918715

  11. Integrative Analysis of CRISPR/Cas9 Target Sites in the Human HBB Gene

    PubMed Central

    Luo, Yumei; Zhang, Zhizhuo; Chen, Yaoyong; Sun, Xiaofang

    2015-01-01

    Recently, the clustered regularly interspaced short palindromic repeats (CRISPR) system has emerged as a powerful customizable artificial nuclease to facilitate precise genetic correction for tissue regeneration and isogenic disease modeling. However, previous studies reported substantial off-target activities of CRISPR system in human cells, and the enormous putative off-target sites are labor-intensive to be validated experimentally, thus motivating bioinformatics methods for rational design of CRISPR system and prediction of its potential off-target effects. Here, we describe an integrative analytical process to identify specific CRISPR target sites in the human β-globin gene (HBB) and predict their off-target effects. Our method includes off-target analysis in both coding and noncoding regions, which was neglected by previous studies. It was found that the CRISPR target sites in the introns have fewer off-target sites in the coding regions than those in the exons. Remarkably, target sites containing certain transcriptional factor motif have enriched binding sites of relevant transcriptional factor in their off-target sets. We also found that the intron sites have fewer SNPs, which leads to less variation of CRISPR efficiency in different individuals during clinical applications. Our studies provide a standard analytical procedure to select specific CRISPR targets for genetic correction. PMID:25918715

  12. A new hemoglobin variant: Hb Meylan [β73(E17)Asp → Phe; HBB: c.220G>T; c.221A>T] with a double base mutation at the same codon.

    PubMed

    Renoux, Céline; Feray, Cécile; Joly, Philippe; Zanella-Cleon, Isabelle; Garcia, Caroline; Lacan, Philippe; Couprie, Nicole; Francina, Alain

    2015-01-01

    We report a new β-globin chain variant: Hb Meylan [β73(E17)Asp → Phe; HBB: c.220G>T; c.221A>T]. The new variant results from a double nucleotide mutation at the same codon. The possible molecular mechanisms are discussed. PMID:25476778

  13. Simple, Efficient, and Cost-Effective Multiplex Genotyping with Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry of Hemoglobin Beta Gene Mutations

    PubMed Central

    Thongnoppakhun, Wanna; Jiemsup, Surasak; Yongkiettrakul, Suganya; Kanjanakorn, Chompunut; Limwongse, Chanin; Wilairat, Prapon; Vanasant, Anusorn; Rungroj, Nanyawan; Yenchitsomanus, Pa-thai

    2009-01-01

    A number of common mutations in the hemoglobin β (HBB) gene cause β-thalassemia, a monogenic disease with high prevalence in certain ethnic groups. As there are 30 HBB variants that cover more than 99.5% of HBB mutant alleles in the Thai population, an efficient and cost-effective screening method is required. Three panels of multiplex primer extensions, followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry were developed. The first panel simultaneously detected 21 of the most common HBB mutations, while the second panel screened nine additional mutations, plus seven of the first panel for confirmation; the third panel was used to confirm three HBB mutations, yielding a 9-Da mass difference that could not be clearly distinguished by the previous two panels. The protocol was both standardized using 40 samples of known genotypes and subsequently validated in 162 blind samples with 27 different genotypes (including a normal control), comprising heterozygous, compound heterozygous, and homozygous β-thalassemia. Results were in complete agreement with those from the genotyping results, conducted using three different methods overall. The method developed here permitted the detection of mutations missed using a single genotyping procedure. The procedure should serve as the method of choice for HBB genotyping due to its accuracy, sensitivity, and cost-effectiveness, and can be applied to studies of other gene variants that are potential disease biomarkers. PMID:19460936

  14. Trans-spliced Cas9 allows cleavage of HBB and CCR5 genes in human cells using compact expression cassettes.

    PubMed

    Fine, Eli J; Appleton, Caleb M; White, Douglas E; Brown, Matthew T; Deshmukh, Harshavardhan; Kemp, Melissa L; Bao, Gang

    2015-01-01

    CRISPR/Cas9 systems have been used in a wide variety of biological studies; however, the large size of CRISPR/Cas9 presents challenges in packaging it within adeno-associated viruses (AAVs) for clinical applications. We identified a two-cassette system expressing pieces of the S. pyogenes Cas9 (SpCas9) protein which splice together in cellula to form a functional protein capable of site-specific DNA cleavage. With specific CRISPR guide strands, we demonstrated the efficacy of this system in cleaving the HBB and CCR5 genes in human HEK-293T cells as a single Cas9 and as a pair of Cas9 nickases. The trans-spliced SpCas9 (tsSpCas9) displayed ~35% of the nuclease activity compared with the wild-type SpCas9 (wtSpCas9) at standard transfection doses, but had substantially decreased activity at lower dosing levels. The greatly reduced open reading frame length of the tsSpCas9 relative to wtSpCas9 potentially allows for more complex and longer genetic elements to be packaged into an AAV vector including tissue-specific promoters, multiplexed guide RNA expression, and effector domain fusions to SpCas9. For unknown reasons, the tsSpCas9 system did not work in all cell types tested. The use of protein trans-splicing may help facilitate exciting new avenues of research and therapeutic applications through AAV-based delivery of CRISPR/Cas9 systems. PMID:26126518

  15. Combining Single Strand Oligodeoxynucleotides and CRISPR/Cas9 to Correct Gene Mutations in β-Thalassemia-induced Pluripotent Stem Cells.

    PubMed

    Niu, Xiaohua; He, Wenyin; Song, Bing; Ou, Zhanhui; Fan, Di; Chen, Yuchang; Fan, Yong; Sun, Xiaofang

    2016-08-01

    β-Thalassemia (β-Thal) is one of the most common genetic diseases in the world. The generation of patient-specific β-Thal-induced pluripotent stem cells (iPSCs), correction of the disease-causing mutations in those cells, and then differentiation into hematopoietic stem cells offers a new therapeutic strategy for this disease. Here, we designed a CRISPR/Cas9 to specifically target the Homo sapiens hemoglobin β (HBB) gene CD41/42(-CTTT) mutation. We demonstrated that the combination of single strand oligodeoxynucleotides with CRISPR/Cas9 was capable of correcting the HBB gene CD41/42 mutation in β-Thal iPSCs. After applying a correction-specific PCR assay to purify the corrected clones followed by sequencing to confirm mutation correction, we verified that the purified clones retained full pluripotency and exhibited normal karyotyping. Additionally, whole-exome sequencing showed that the mutation load to the exomes was minimal after CRISPR/Cas9 targeting. Furthermore, the corrected iPSCs were selected for erythroblast differentiation and restored the expression of HBB protein compared with the parental iPSCs. This method provides an efficient and safe strategy to correct the HBB gene mutation in β-Thal iPSCs. PMID:27288406

  16. Thrombocytopenia and erythrocytosis in mice with a mutation in the gene encoding the hemoglobin β minor chain

    PubMed Central

    Kauppi, Maria; Hilton, Adrienne A.; Metcalf, Donald; Ng, Ashley P.; Hyland, Craig D.; Collinge, Janelle E.; Kile, Benjamin T.; Hilton, Douglas J.; Alexander, Warren S.

    2012-01-01

    Diverse mutations in the genes encoding hemoglobin (Hb) have been characterized in human disease. We describe here a mutation in the mouse Hbb-b2 gene, denoted Plt12, that precisely mimics the human hemoglobin Hotel Dieu variant. The mutation results in increased affinity of Hb for oxygen and Plt12 mutant mice exhibited reduced partial pressure of O2 in the blood, accompanied by erythrocytosis characterized by elevated erythropoietin levels and splenomegaly with excess erythropoiesis. Most homozygous Hbb-b2Plt12/Plt12 mice succumbed to early lethality associated with emphysema, cardiac abnormalities, and liver degeneration. Survivors displayed a marked thrombocytopenia without significant deficiencies in the numbers of megakaryocytes or megakaryocyte progenitor cells. The lifespan of platelets in the circulation of Hbb-b2Plt12/Plt12 mice was normal, and splenectomy did not correct the thrombocytopenia, suggesting that increased sequestration was unlikely to be a major contributor. These data, together with the observation that megakaryocytes in Hbb-b2Plt12/Plt12 mice appeared smaller and deficient in cytoplasm, support a model in which hypoxia causes thrombocytopenia as a consequence of an inability of megakaryocytes, once formed, to properly mature and produce sufficient platelets. The Plt12 mouse is a model of high O2-affinity hemoglobinopathy and provides insights into hematopoiesis under conditions of chronic hypoxia. PMID:22203977

  17. Thrombocytopenia and erythrocytosis in mice with a mutation in the gene encoding the hemoglobin β minor chain.

    PubMed

    Kauppi, Maria; Hilton, Adrienne A; Metcalf, Donald; Ng, Ashley P; Hyland, Craig D; Collinge, Janelle E; Kile, Benjamin T; Hilton, Douglas J; Alexander, Warren S

    2012-01-10

    Diverse mutations in the genes encoding hemoglobin (Hb) have been characterized in human disease. We describe here a mutation in the mouse Hbb-b2 gene, denoted Plt12, that precisely mimics the human hemoglobin Hotel Dieu variant. The mutation results in increased affinity of Hb for oxygen and Plt12 mutant mice exhibited reduced partial pressure of O(2) in the blood, accompanied by erythrocytosis characterized by elevated erythropoietin levels and splenomegaly with excess erythropoiesis. Most homozygous Hbb-b2(Plt12/Plt12) mice succumbed to early lethality associated with emphysema, cardiac abnormalities, and liver degeneration. Survivors displayed a marked thrombocytopenia without significant deficiencies in the numbers of megakaryocytes or megakaryocyte progenitor cells. The lifespan of platelets in the circulation of Hbb-b2(Plt12/Plt12) mice was normal, and splenectomy did not correct the thrombocytopenia, suggesting that increased sequestration was unlikely to be a major contributor. These data, together with the observation that megakaryocytes in Hbb-b2(Plt12/Plt12) mice appeared smaller and deficient in cytoplasm, support a model in which hypoxia causes thrombocytopenia as a consequence of an inability of megakaryocytes, once formed, to properly mature and produce sufficient platelets. The Plt12 mouse is a model of high O(2)-affinity hemoglobinopathy and provides insights into hematopoiesis under conditions of chronic hypoxia. PMID:22203977

  18. High Frequency of Hb E-Saskatoon (HBB: c.67G > A) in Brazilians: A New Genetic Origin?

    PubMed

    Wagner, Sandrine C; Lindenau, Juliana D; Castro, Simone M de; Santin, Ana Paula; Zaleski, Carina F; Azevedo, Laura A; Ribeiro Dos Santos, Ândrea K C; Dos Santos, Sidney E B; Hutz, Mara H

    2016-08-01

    Hb E-Saskatoon [β22(B4)Glu→Lys, HBB: c.67G > A] is a rare, nonpathological β-globin variant that was first described in a Canadian woman of Scottish and Dutch ancestry and has since then been detected in several populations. The aim of the present study was to identify the origin of Hb E-Saskatoon in Brazil using β-globin haplotypes and genetic ancestry in carriers of this hemoglobin (Hb) variant. Blood samples were investigated by isoelectric focusing (IEF) and high performance liquid chromatography (HPLC) using commercial kits. Hb E-Saskatoon was confirmed by amplification of the HBB gene, followed by sequence analysis. Haplotypes of the β-globin gene were determined by polymerase chain reaction (PCR), followed by digestion with specific restriction enzymes. Individual ancestry was estimated with 48 biallelic insertion/deletions using three 16-plex PCR amplifications. The IEF pattern was similar to Hbs C (HBB: c.19G > A) and Hb E (HBB: c.79G > A) [isoelectric point (pI): 7.59-7.65], and HPLC results showed an elution in the Hb S (HBB: c.20A > T) window [retention time (RT): 4.26-4.38]. DNA sequencing of the amplified β-globin gene showed a mutation at codon 22 (GAA>AAA) corresponding to Hb E-Saskatoon. A total of 11 cases of this variant were identified. In nine unrelated individuals, Hb E-Saskatoon was in linkage disequilibrium with haplotype 2 [+ - - - -]. All subjects showed a high degree of European contribution (mean = 0.85). Hb E-Saskatoon occurred on the β-globin gene of haplotype 2 in all Brazilian carriers. These findings suggest a different genetic origin for this Hb variant from that previously described. PMID:27250692

  19. Beta-Globin Gene Haplotypes Among Cameroonians and Review of the Global Distribution: Is There a Case for a Single Sickle Mutation Origin in Africa?

    PubMed Central

    Bitoungui, Valentina J. Ngo; Pule, Gift D.; Hanchard, Neil; Ngogang, Jeanne

    2015-01-01

    Abstract Studies of hemoglobin S haplotypes in African subpopulations have potential implications for patient care and our understanding of genetic factors that have shaped the prevalence of sickle cell disease (SCD). We evaluated HBB gene cluster haplotypes in SCD patients from Cameroon, and reviewed the literature for a global distribution. We reviewed medical records to obtain pertinent socio-demographic and clinical features for 610 Cameroonian SCD patients, including hemoglobin electrophoresis and full blood counts. RFLP-PCR was used to determine the HBB gene haplotype on 1082 chromosomes. A systematic review of the current literature was undertaken to catalogue HBB haplotype frequencies in SCD populations around the world. Benin (74%; n=799) and Cameroon (19%; n=207) were the most prevalent haplotypes observed among Cameroonian patients. There was no significant association between HBB haplotypes and clinical life events, anthropometric measures, hematological parameters, or fetal hemoglobin (HbF) levels. The literature review of the global haplotype distributions was consistent with known historical migrations of the people of Africa. Previously reported data from Sudan showed a distinctly unusual pattern; all four classical haplotypes were reported, with an exceptionally high proportion of the Senegal, Cameroon, and atypical haplotypes. We did not observe any significant associations between HBB haplotype and SCD disease course in this cohort. Taken together, the data from Cameroon and from the wider literature suggest that a careful reassessment of African HBB haplotypes may shed further light on the evolutionary dynamics of the sickle allele, which could suggest a single origin of the sickle mutation. PMID:25748438

  20. Beta-globin gene haplotypes among cameroonians and review of the global distribution: is there a case for a single sickle mutation origin in Africa?

    PubMed

    Bitoungui, Valentina J Ngo; Pule, Gift D; Hanchard, Neil; Ngogang, Jeanne; Wonkam, Ambroise

    2015-03-01

    Studies of hemoglobin S haplotypes in African subpopulations have potential implications for patient care and our understanding of genetic factors that have shaped the prevalence of sickle cell disease (SCD). We evaluated HBB gene cluster haplotypes in SCD patients from Cameroon, and reviewed the literature for a global distribution. We reviewed medical records to obtain pertinent socio-demographic and clinical features for 610 Cameroonian SCD patients, including hemoglobin electrophoresis and full blood counts. RFLP-PCR was used to determine the HBB gene haplotype on 1082 chromosomes. A systematic review of the current literature was undertaken to catalogue HBB haplotype frequencies in SCD populations around the world. Benin (74%; n = 799) and Cameroon (19%; n = 207) were the most prevalent haplotypes observed among Cameroonian patients. There was no significant association between HBB haplotypes and clinical life events, anthropometric measures, hematological parameters, or fetal hemoglobin (HbF) levels. The literature review of the global haplotype distributions was consistent with known historical migrations of the people of Africa. Previously reported data from Sudan showed a distinctly unusual pattern; all four classical haplotypes were reported, with an exceptionally high proportion of the Senegal, Cameroon, and atypical haplotypes. We did not observe any significant associations between HBB haplotype and SCD disease course in this cohort. Taken together, the data from Cameroon and from the wider literature suggest that a careful reassessment of African HBB haplotypes may shed further light on the evolutionary dynamics of the sickle allele, which could suggest a single origin of the sickle mutation. PMID:25748438

  1. Thalassaemia mutations within the 5'UTR of the human beta-globin gene disrupt transcription.

    PubMed

    Sgourou, Argyro; Routledge, Samantha; Antoniou, Michael; Papachatzopoulou, Adamantia; Psiouri, Lambrini; Athanassiadou, Aglaia

    2004-03-01

    The mechanisms by which mutations within the 5' untranslated region (UTR) of the human beta-globin gene (HBB) cause thalassaemia are currently not well understood. We present here the first comprehensive comparative functional analysis of four 'silent' mutations in the human beta-globin 5'UTR, namely: +10(-T), +22(G --> A), +33(C --> G) and +(40-43)(-AAAC), which are present in patients with beta-thalassaemia intermedia. Expression of these genes under the control of the beta-globin locus control region in stable transfected murine erythroleukaemia cells showed that all four mutations decreased steady state levels of mRNA to 61.6%, 68%, 85.2% and 70.6%, respectively, compared with the wildtype gene. These mutations did not interfere with either mRNA transport from the nucleus to the cytoplasm, 3' end processing or mRNA stability. Nuclear run-on experiments demonstrated that mutations +10(-T) and +33(C --> G) reduced the rate of transcription to a degree that fully accounted for the observed lower level of mRNA accumulation, suggesting a disruption of downstream promoter sequences. Interestingly, mutation +22(G --> A) decreased the rate of transcription to a low degree, indicating the existence of a mechanism that acts post-transcriptionally. Generally, our data demonstrated the significance of functionally analysing mutants of this type in the presence of a full complement of transcriptional regulatory elements within a stably integrated chromatin context in an erythroid cell environment. PMID:15009072

  2. β-Thalassemia Due to Intronic LINE-1 Insertion in the β-Globin Gene (HBB): Molecular Mechanisms Underlying Reduced Transcript Levels of the β-GlobinL1 Allele

    PubMed Central

    Lanikova, Lucie; Kucerova, Jana; Indrak, Karel; Divoka, Martina; Issa, Jean-Pierre; Papayannopoulou, Thalia; Prchal, Josef T.; Divoky, Vladimir

    2016-01-01

    We describe the molecular etiology of β+-thalassemia that is caused by the insertion of the full-length transposable element LINE-1 (L1) into the intron-2 of the β-globin gene (HBB). The transcript level of the affected β-globin gene was severely reduced. The remaining transcripts consisted of full-length, correctly processed β-globin mRNA and a minute amount of three aberrantly spliced transcripts with a decreased half-life due to activation of the nonsense-mediated decay pathway. The lower steady-state amount of mRNA produced by the β-globinL1 allele also resulted from a reduced rate of transcription and decreased production of full-length β-globin primary transcripts. The promoter and enhancer sequences of the β-globinL1 allele were hypermethylated; however, treatment with a demethylating agent did not restore the impaired transcription. A histone deacetylase inhibitor partially reactivated the β-globinL1 transcription despite permanent β-globinL1 promoter CpG methylation. This result indicates that the decreased rate of transcription from the β-globinL1 allele is associated with an altered chromatin structure. Therefore, the molecular defect caused by intronic L1 insertion in the β-globin gene represents a novel etiology of β-thalassemia. PMID:23878091

  3. The Spectrum of β-Thalassemia Mutations in a Population from the Brazilian Amazon.

    PubMed

    Silva, Aylla N L M; Cardoso, Greice L; Cunha, Daniele A; Diniz, Isabela G; Santos, Sidney E B; Andrade, Gabriela B; Trindade, Saide M S; Cardoso, Maria do Socorro O; Francês, Larissa T V M; Guerreiro, João F

    2016-01-01

    The spectrum of β-thalassemia (β-thal) mutations was investigated for the first time in a cohort of 33 unrelated patients from the Brazilian Amazon attending the Center for Hemotherapy and Hematology of the Pará Foundation (HEMOPA), in Belém, the state capital of Pará, Northern Brazil. Identification of the β-thal mutations was made by direct genomic sequencing of the β-globin gene. Mutations were identified in all patients, corresponding to a spectrum of 10 different point mutations and a total of 37 alleles studied. HBB: c.92 + 5G > A [IVS-I-5 (G > A)], was the most common β-thal mutation, followed by HBB: c.118C > T [codon 39 (C > T)], HBB: c.-138C > T [-88 (C>T)], HBB: c.92 + 1G > A [IVS-I-1 (G > A)] and HBB: c.92 + 6T > C [IVS-I-6 (T > C)] mutations. These five mutations (four Mediterranean origin and one African origin) accounted for 86.5% of the β-thal alleles. The profile of β-thal mutations found in northern Brazil is different from those described in other regions of the country. In the southeast and south, the nonsense mutation HBB: c.118C > T is the most prevalent, followed by HBB: c.93-21G > A [IVS-I-110 (G > A)], whereas in the northeast, HBB: c.92 + 6T > C has been identified as the most common mutation, followed by HBB: c.92 + 1G > A. This heterogeneous geographical distribution is certainly related to the ancestry of Brazilian populations because they have similar genetic backgrounds (European, African and Amerindian), although with slightly different admixture proportions. Furthermore, the European contribution in the southeast and south was largely made up of immigrants of other nationalities, such as Italian and Spanish, in addition to Portuguese. PMID:26372288

  4. Gene mutations in Cushing's disease

    PubMed Central

    Xiong, Qi; Ge, Wei

    2016-01-01

    Cushing's disease (CD) is a severe (and potentially fatal) disease caused by adrenocorticotropic hormone (ACTH)-secreting adenomas of the pituitary gland (often termed pituitary adenomas). The majority of ACTH-secreting corticotroph tumors are sporadic and CD rarely appears as a familial disorder, thus, the genetic mechanisms underlying CD are poorly understood. Studies have reported that various mutated genes are associated with CD, such as those in menin 1, aryl hydrocarbon receptor-interacting protein and the nuclear receptor subfamily 3 group C member 1. Recently it was identified that ubiquitin-specific protease 8 mutations contribute to CD, which was significant towards elucidating the genetic mechanisms of CD. The present study reviews the associated gene mutations in CD patients. PMID:27588171

  5. A novel 26 bp deletion [HBB: c.20_45del26bp] in exon 1 of the β-globin gene causing β-thalassemia major.

    PubMed

    Edison, Eunice S; Venkatesan, Rajkumar S; Govindanattar, Sankari Devi; George, Biju; Shaji, Ramachandran V

    2012-01-01

    Molecular characterization of β-thalassemia (β-thal) is essential in prevention and in understanding the biology of the disease. Deletion mutations are relatively uncommon in β-thal. In this report, we describe a novel 26 bp deletion from codon 6 to codon 14 in the β-globin in a consanguineous family from Tamil Nadu, India. This novel mutation causes a shift in the normal reading frame of the β-globin coding sequence, and consequently, a premature chain termination of translation due to the creation of a stop codon at the position of codon 21. The identification of this novel deletional mutation adds to the repertoire of β-thal mutations in India. PMID:22233277

  6. Coinheritance of a Rare Nucleotide Substitution on the β-Globin Gene and Other Known Mutations in the Globin Clusters: Management in Genetic Counseling.

    PubMed

    Vinciguerra, Margherita; Passarello, Cristina; Leto, Filippo; Crivello, Anna; Fustaneo, Maria; Cassarà, Filippo; Cannata, Monica; Maggio, Aurelio; Giambona, Antonino

    2016-08-01

    A large number of methods for DNA analysis are available to identify defects in globin genes associated with hemoglobin (Hb) disorders. In this study, we report a rare nucleotide (nt) substitution on the β-globin gene, nt 781 in the second intron [IVS-II-781 (C > G); HBB: c.316-70C > G], identified in four patients. This nt substitution was previously described only as a personal communication to the HbVar database and indicated as a β(0) or β(+) mutation. The purpose of this study was to evaluate the clinical implication of this nt change, particularly when coinherited with severe β-thalassemia (β-thal), in order to be able to conduct appropriate genetic counseling. Genetic studies were performed on two subjects, one carried Hb S [β6(A3)Glu→Val; HBB: c.20A > T], and the other carried IVS-I-110 (G > A) (HBB: c.93-21G > A). All these subjects showed this new β nt substitution in association with Hb A2' (or Hb B2) [δ16(A13)Gly→Arg; HBD: c.49G > C]. Another 16 samples, carrying the same δ variant as the probands, were processed by β-globin gene sequencing in order to better understand the correlation between this Hb variant and the rare nt substitution reported in this study. The present investigation emphasizes the importance of sharing the observed nt changes in the globin gene cluster, especially in the case of new or rare undefined mutations, in order to facilitate the determination of their phenotypic expression, the possible interactions with known molecular defects and to formulate appropriate genetic counseling for at-risk couples. PMID:27258795

  7. Frequency and origins of hemoglobin S mutation in African-derived Brazilian populations.

    PubMed

    De Mello Auricchio, Maria Teresa Balester; Vicente, João Pedro; Meyer, Diogo; Mingroni-Netto, Regina Célia

    2007-12-01

    Africans arrived in Brazil as slaves in great numbers, mainly after 1550. Before the abolition of slavery in Brazil in 1888, many communities, called quilombos, were formed by runaway or abandoned African slaves. These communities are presently referred to as remnants of quilombos, and many are still partially genetically isolated. These remnants can be regarded as relicts of the original African genetic contribution to the Brazilian population. In this study we assessed frequencies and probable geographic origins of hemoglobin S (HBB*S) mutations in remnants of quilombo populations in the Ribeira River valley, São Paulo, Brazil, to reconstruct the history of African-derived populations in the region. We screened for HBB*S mutations in 11 quilombo populations (1,058 samples) and found HBB*S carrier frequencies that ranged from 0% to 14%. We analyzed beta-globin gene cluster haplotypes linked to the HBB*S mutation in 86 chromosomes and found the four known African haplotypes: 70 (81.4%) Bantu (Central Africa Republic), 7 (8.1%) Benin, 7 (8.1%) Senegal, and 2 (2.3%) Cameroon haplotypes. One sickle cell homozygote was Bantu/Bantu and two homozygotes had Bantu/Benin combinations. The high frequency of the sickle cell trait and the diversity of HBB*S linked haplotypes indicate that Brazilian remnants of quilombos are interesting repositories of genetic diversity present in the ancestral African populations. PMID:18494376

  8. Rare hemoglobin variants: Hb G-Szuhu (HBB: c.243C>G), Hb G-Coushatta (HBB: c.68A>C) and Hb Mizuho (HBB: c.206T>C) in Sri Lankan families.

    PubMed

    Perera, P Shiromi; Silva, Ishari; Hapugoda, Menaka; Wickramarathne, Merita N; Wijesiriwardena, Indira; Efremov, Dimitar G; Fisher, Christopher A; Weatherall, David J; Premawardhena, Anuja

    2015-01-01

    In this short communication, we describe the clinical presentation of unusual hemoglobin (Hb), variants in three Sri Lankan cases under study for β-thalassemia intermedia (β-TI). We believe this is the first report on their occurrence in Sri Lanka as well as from the Indian subcontinent. During a molecular study performed on β-TI patients, we identified three unusual Hb variants as Hb G-Szuhu (HBB: c.243C>G), Hb G-Coushatta (HBB: c.68A>C) and Hb Mizuho (HBB: c.206T>C) in three unrelated families. Hb G-Szuhu and Hb G-Coushatta were found in combination with the common β-thalassemia (β-thal) mutation, IVS-I-5 (G>C). Both probands had mild anemia with greatly reduced red cell indices and had non palpable livers and spleens, however, by ultrasound, both were observed to be enlarged. The final Hb variant, Hb Mizuho, was identified as a heterozygous mutation found in both proband and his mother. Both family members had severe anemia and were regularly transfused and had increased red cell parameters. PMID:25572187

  9. Mutational Robustness of Gene Regulatory Networks

    PubMed Central

    van Dijk, Aalt D. J.; van Mourik, Simon; van Ham, Roeland C. H. J.

    2012-01-01

    Mutational robustness of gene regulatory networks refers to their ability to generate constant biological output upon mutations that change network structure. Such networks contain regulatory interactions (transcription factor – target gene interactions) but often also protein-protein interactions between transcription factors. Using computational modeling, we study factors that influence robustness and we infer several network properties governing it. These include the type of mutation, i.e. whether a regulatory interaction or a protein-protein interaction is mutated, and in the case of mutation of a regulatory interaction, the sign of the interaction (activating vs. repressive). In addition, we analyze the effect of combinations of mutations and we compare networks containing monomeric with those containing dimeric transcription factors. Our results are consistent with available data on biological networks, for example based on evolutionary conservation of network features. As a novel and remarkable property, we predict that networks are more robust against mutations in monomer than in dimer transcription factors, a prediction for which analysis of conservation of DNA binding residues in monomeric vs. dimeric transcription factors provides indirect evidence. PMID:22295094

  10. From Gene Mutation to Protein Characterization

    ERIC Educational Resources Information Center

    Moffet, David A.

    2009-01-01

    A seven-week "gene to protein" laboratory sequence is described for an undergraduate biochemistry laboratory course. Student pairs were given the task of introducing a point mutation of their choosing into the well studied protein, enhanced green fluorescent protein (EGFP). After conducting literature searches, each student group chose the…

  11. The Wilson disease gene: Haplotypes and mutations

    SciTech Connect

    Thomas, G.R.; Roberts, E.A.; Cox, D.W.; Walshe, J.M.

    1994-09-01

    Wilson disease (WND) is an autosomal recessive defect of copper transport. The gene involved in WND, located on chromosome 13, has recently been shown to be a putative copper transporting P-type ATPase, designated ATP7B. The gene is highly similar to ATP7A, located on the X chromosome, which is defective in Menkes disease, another disorder of copper transport. We have available for study WND families from Canada (34 families), the United Kingdom (32 families), Japan (4 families), Iceland (3 families) and Hong Kong (2 families). We have utilized four highly polymorphic CA repeat markers (D13S296, D13S301, D13S314 and D13S316) surrounding the ATP7B locus to construct haplotypes in these families. Analysis indicates that there are many unique WND haplotypes not present on normal chromosomes and that there may be a large number of different WND mutations. We have screened the WND patients for mutations in the ATP7B gene. Fifty six patients, representing all of the identified haplotypes, have been screened using single strand conformational polymorphism (SSCP), followed by selective sequencing. To date, 19 mutations and 12 polymorphisms have been identified. All of the changes are nucleotide substitutions or small insertions/deletions and there is no evidence for larger deletions as seen in the similar gene on the X chromosome, ATP7A. Haplotypes of close markers and the ability to detect some of the mutations present in the gene allow for more reliable molecular diagnosis of presymptomatic sibs of WND patients. A reassessment of individuals previously diagnosed in the presymptomatic phase is now required, as we have have identified some heterozygotes who are biochemically indistinguishable from affected homozygotes. The identification of specific mutations will soon allow direct diagnosis of WND patients with a high level of certainty.

  12. LEOPARD Syndrome: Clinical Features and Gene Mutations

    PubMed Central

    Martínez-Quintana, E.; Rodríguez-González, F.

    2012-01-01

    The RAS/MAPK pathway proteins with germline mutations in their respective genes are associated with some disorders such as Noonan, LEOPARD (LS), neurofibromatosis type 1, Costello and cardio-facio-cutaneous syndromes. LEOPARD is an acronym, mnemonic for the major manifestations of this disorder, characterized by multiple lentigines, electrocardiographic abnormalities, ocular hypertelorism, pulmonic stenosis, abnormal genitalia, retardation of growth, and sensorineural deafness. Though it is not included in the acronym, hypertrophic cardiomyopathy is the most frequent cardiac anomaly observed, representing a potentially life-threatening problem in these patients. PTPN11, RAF1 and BRAF are the genes known to be associated with LS, identifying molecular genetic testing of the 3 gene mutations in about 95% of affected individuals. PTPN11 mutations are the most frequently found. Eleven different missense PTPN11 mutations (Tyr279Cys/Ser, Ala461Thr, Gly464Ala, Thr468Met/Pro, Arg498Trp/Leu, Gln506Pro, and Gln510Glu/Pro) have been reported so far in LS, 2 of which (Tyr279Cys and Thr468Met) occur in about 65% of the cases. Here, we provide an overview of clinical aspects of this disorder, the molecular mechanisms underlying pathogenesis and major genotype-phenotype correlations. PMID:23239957

  13. Mutated Genes in Schizophrenia Map to Brain Networks

    MedlinePlus

    ... 2013 Mutated Genes in Schizophrenia Map to Brain Networks Schizophrenia networks in the prefrontal cortex area of the brain. ... of spontaneous mutations in genes that form a network in the front region of the brain. The ...

  14. Collodion Baby with TGM1 gene mutation

    PubMed Central

    Sharma, Deepak; Gupta, Basudev; Shastri, Sweta; Pandita, Aakash; Pawar, Smita

    2015-01-01

    Collodion baby (CB) is normally diagnosed at the time of birth and refers to a newborn infant that is delivered with a lambskin-like membrane encompassing the total body surface. CB is not a specific disease entity, but is a common phenotype in conditions like harlequin ichthyosis, lamellar ichthyosis, nonbullous congenital ichthyosiform erythroderma, and trichothiodystrophy. We report a CB that was brought to our department and later diagnosed to have TGM1 gene c.984+1G>A mutation. However, it could not be ascertained whether the infant had lamellar ichthyosis or congenital ichthyosiform erythroderma (both having the same mutation). The infant was lost to follow-up. PMID:26451124

  15. Collodion Baby with TGM1 gene mutation.

    PubMed

    Sharma, Deepak; Gupta, Basudev; Shastri, Sweta; Pandita, Aakash; Pawar, Smita

    2015-01-01

    Collodion baby (CB) is normally diagnosed at the time of birth and refers to a newborn infant that is delivered with a lambskin-like membrane encompassing the total body surface. CB is not a specific disease entity, but is a common phenotype in conditions like harlequin ichthyosis, lamellar ichthyosis, nonbullous congenital ichthyosiform erythroderma, and trichothiodystrophy. We report a CB that was brought to our department and later diagnosed to have TGM1 gene c.984+1G>A mutation. However, it could not be ascertained whether the infant had lamellar ichthyosis or congenital ichthyosiform erythroderma (both having the same mutation). The infant was lost to follow-up. PMID:26451124

  16. Deafness gene mutations in newborns in Beijing.

    PubMed

    Han, Shujing; Yang, Xiaojian; Zhou, Yi; Hao, Jinsheng; Shen, Adong; Xu, Fang; Chu, Ping; Jin, Yaqiong; Lu, Jie; Guo, Yongli; Shi, Jin; Liu, Haihong; Ni, Xin

    2016-05-01

    Objective To determine the incidence of congenital hearing loss (HL) in newborns by the rate of deafness-related genetic mutations. Design Clinical study of consecutive newborns in Beijing using allele-specific polymerase chain reaction-based universal array. Study sample This study tested 37 573 newborns within 3 days after birth, including nine sites in four genes: GJB2 (35 del G, 176 del 16, 235 del C, 299 del AT), SLC26A4 (IVS7-2 A > G, 2168 A > G), MTRNR1 (1555 A > G, 1494 C > T), and GJB3 (538 C > T). The birth condition of infants was also recorded. Results Of 37 573 newborns, 1810 carried pathogenic mutations, or 4.817%. The carrier rates of GJB2 (35 del G, 176 del 16, 235 del C, 299 del AT), GJB3 (538 C > T), SLC26A4 (IVS7-2 A > G, 2168 A > G), and MTRNR1 (1555 A > G, 1494 C > T) mutations were 0.005%, 0.104%, 1.924%, 0.551%, 0.295%, 0.253%, 1.387%, 0.024%, and 0.274%, respectively. Logistic regression analysis indicated no statistically significant relationship between mutations and infant sex, premature delivery, twin status, or birth weight. Conclusions The 235delC GJB2 mutation was the most frequent deafness-related mutation in the Chinese population. Genetic screening for the deafness gene will help detect more cases of newborn congenital HL than current screening practices. PMID:26766211

  17. Towards linked open gene mutations data

    PubMed Central

    2012-01-01

    Background With the advent of high-throughput technologies, a great wealth of variation data is being produced. Such information may constitute the basis for correlation analyses between genotypes and phenotypes and, in the future, for personalized medicine. Several databases on gene variation exist, but this kind of information is still scarce in the Semantic Web framework. In this paper, we discuss issues related to the integration of mutation data in the Linked Open Data infrastructure, part of the Semantic Web framework. We present the development of a mapping from the IARC TP53 Mutation database to RDF and the implementation of servers publishing this data. Methods A version of the IARC TP53 Mutation database implemented in a relational database was used as first test set. Automatic mappings to RDF were first created by using D2RQ and later manually refined by introducing concepts and properties from domain vocabularies and ontologies, as well as links to Linked Open Data implementations of various systems of biomedical interest. Since D2RQ query performances are lower than those that can be achieved by using an RDF archive, generated data was also loaded into a dedicated system based on tools from the Jena software suite. Results We have implemented a D2RQ Server for TP53 mutation data, providing data on a subset of the IARC database, including gene variations, somatic mutations, and bibliographic references. The server allows to browse the RDF graph by using links both between classes and to external systems. An alternative interface offers improved performances for SPARQL queries. The resulting data can be explored by using any Semantic Web browser or application. Conclusions This has been the first case of a mutation database exposed as Linked Data. A revised version of our prototype, including further concepts and IARC TP53 Mutation database data sets, is under development. The publication of variation information as Linked Data opens new perspectives

  18. Succinate dehydrogenase gene mutations in cardiac paragangliomas.

    PubMed

    Martucci, Victoria L; Emaminia, Abbas; del Rivero, Jaydira; Lechan, Ronald M; Magoon, Bindiya T; Galia, Analyza; Fojo, Tito; Leung, Steve; Lorusso, Roberto; Jimenez, Camilo; Shulkin, Barry L; Audibert, Jennifer L; Adams, Karen T; Rosing, Douglas R; Vaidya, Anand; Dluhy, Robert G; Horvath, Keith A; Pacak, Karel

    2015-06-15

    Pheochromocytomas and paragangliomas are chromaffin cell tumors arising from neuroendocrine cells. At least 1/3 of paragangliomas are related to germline mutations in 1 of 17 genes. Although these tumors can occur throughout the body, cardiac paragangliomas are very rare, accounting for <0.3% of mediastinal tumors. The purpose of this study was to determine the clinical characteristics of patients with cardiac paragangliomas, particularly focusing on their genetic backgrounds. A retrospective chart analysis of 15 patients with cardiac paragangliomas was performed to determine clinical presentation, genetic background, diagnostic workup, and outcomes. The average age at diagnosis was 41.9 years. Typical symptoms of paraganglioma (e.g., hypertension, sweating, palpitations, headache) were reported at initial presentation in 13 patients (86.7%); the remaining 2, as well as 4 symptomatic patients, initially presented with cardiac-specific symptoms (e.g., chest pain, dyspnea). Genetic testing was done in 13 patients (86.7%); 10 (76.9%) were positive for mutations in succinate dehydrogenase (SDHx) subunits B, C, or D. Thirteen patients (86.7%) underwent surgery to remove the paraganglioma with no intraoperative morbidity or mortality; 1 additional patient underwent surgical resection but experienced intraoperative complications after removal of the tumor due to co-morbidities and did not survive. SDHx mutations are known to be associated with mediastinal locations and malignant behavior of paragangliomas. In this report, the investigators extend the locations of predominantly SDHx-related paragangliomas to cardiac tumors. In conclusion, cardiac paragangliomas are frequently associated with underlying SDHx germline mutations, suggesting a need for genetic testing of all patients with this rare tumor. PMID:25896150

  19. Shared and unique mutational gene co-occurrences in cancers.

    PubMed

    Liu, Junqi; Zhao, Di; Fan, Ruitai

    2015-10-01

    Cancers are often associated with mutations in multiple genes; thus, studying the distributions of genes that harbor cancer-promoting mutations in cancer samples and their co-occurrences could provide insights into cancer diagnostics and treatment. Using data from the Catalogue of Somatic Mutations in Cancer (COSMIC), we found that mutated genes in cancer samples followed a power-law distribution. For instance, a few genes were mutated in a large number of samples (designated as high-frequent genes), while a large number of genes were only mutated in a few samples. This power-law distribution can be found in samples of all cancer types as well as individual cancers. In samples where two or more mutated genes are found, the high-frequent genes, i.e., those that were frequently mutated, often did not co-occur with other genes, while the other genes often tended to co-occur. Co-occurrences of mutated genes were often unique to a certain cancer; however, some co-occurrences were shared by multiple cancer types. Our results revealed distinct patterns of high-frequent genes and those that were less-frequently mutated in the cancer samples in co-occurring and anti-co-occurring networks. Our results indicated that distinct treatment strategies should be adopted for cancer patients with known high-frequent gene mutations and those without. The latter might be better treated with a combination of drugs targeting multiple genes. Our results also suggested that possible cross-cancer treatments, i.e., the use of the same drug combinations, may treat cancers of different histological origins. PMID:26315265

  20. Factor-induced Reprogramming and Zinc Finger Nuclease-aided Gene Targeting Cause Different Genome Instability in β-Thalassemia Induced Pluripotent Stem Cells (iPSCs)*

    PubMed Central

    Ma, Ning; Shan, Yongli; Liao, Baojian; Kong, Guanyi; Wang, Cheng; Huang, Ke; Zhang, Hui; Cai, Xiujuan; Chen, Shubin; Pei, Duanqing; Chen, Nansheng; Pan, Guangjin

    2015-01-01

    The generation of personalized induced pluripotent stem cells (iPSCs) followed by targeted genome editing provides an opportunity for developing customized effective cellular therapies for genetic disorders. However, it is critical to ascertain whether edited iPSCs harbor unfavorable genomic variations before their clinical application. To examine the mutation status of the edited iPSC genome and trace the origin of possible mutations at different steps, we have generated virus-free iPSCs from amniotic cells carrying homozygous point mutations in β-hemoglobin gene (HBB) that cause severe β-thalassemia (β-Thal), corrected the mutations in both HBB alleles by zinc finger nuclease-aided gene targeting, and obtained the final HBB gene-corrected iPSCs by excising the exogenous drug resistance gene with Cre recombinase. Through comparative genomic hybridization and whole-exome sequencing, we uncovered seven copy number variations, five small insertions/deletions, and 64 single nucleotide variations (SNVs) in β-Thal iPSCs before the gene targeting step and found a single small copy number variation, 19 insertions/deletions, and 340 single nucleotide variations in the final gene-corrected β-Thal iPSCs. Our data revealed that substantial but different genomic variations occurred at factor-induced somatic cell reprogramming and zinc finger nuclease-aided gene targeting steps, suggesting that stringent genomic monitoring and selection are needed both at the time of iPSC derivation and after gene targeting. PMID:25795783

  1. Parkinson disease (PARK) genes are somatically mutated in cutaneous melanoma

    PubMed Central

    Samuels, Yardena; Azizi, Esther; Qutob, Nouar; Inzelberg, Lilah; Domany, Eytan; Schechtman, Edna; Friedman, Eitan

    2016-01-01

    Objective: To assess whether Parkinson disease (PD) genes are somatically mutated in cutaneous melanoma (CM) tissue, because CM occurs in patients with PD at higher rates than in the general population and PD is more common than expected in CM cohorts. Methods: We cross-referenced somatic mutations in metastatic CM detected by whole-exome sequencing with the 15 known PD (PARK) genes. We computed the empirical distribution of the sum of mutations in each gene (Smut) and of the number of tissue samples in which a given gene was mutated at least once (SSampl) for each of the analyzable genes, determined the 90th and 95th percentiles of the empirical distributions of these sums, and verified the location of PARK genes in these distributions. Identical analyses were applied to adenocarcinoma of lung (ADENOCA-LUNG) and squamous cell carcinoma of lung (SQUAMCA-LUNG). We also analyzed the distribution of the number of mutated PARK genes in CM samples vs the 2 lung cancers. Results: Somatic CM mutation analysis (n = 246) detected 315,914 mutations in 18,758 genes. Somatic CM mutations were found in 14 of 15 PARK genes. Forty-eight percent of CM samples carried ≥1 PARK mutation and 25% carried multiple PARK mutations. PARK8 mutations occurred above the 95th percentile of the empirical distribution for SMut and SSampl. Significantly more CM samples harbored multiple PARK gene mutations compared with SQUAMCA-LUNG (p = 0.0026) and with ADENOCA-LUNG (p < 0.0001). Conclusions: The overrepresentation of somatic PARK mutations in CM suggests shared dysregulated pathways for CM and PD. PMID:27123489

  2. Mutation analysis of the gene involved in adrenoleukodystrophy

    SciTech Connect

    Oost, B.A. van; Ligtenberg, M.J.L.; Kemp, S.; Bolhuis, P.A.

    1994-09-01

    A gene responsible for the X-linked genetic disorder adrenoleukodystrophy (ALD) that is characterized by demyelination of the nervous system and adrenocortical insufficiency has been identified by positional cloning. The gene encodes an ATP-binding transporter which is located in the peroxisomal membrane. Deficiency of the gene leads to accumulation of unsaturated very long chain fatty acids due to impaired peroxisomal {beta}-oxidation. A systematic analysis of the open reading frame of the ALD gene unraveled the mutations in 28 different families using reverse transcriptase-PCR followed by direct sequencing. No entire gene deletions or drastic promoter mutations have been detected. Only in one family did the mutation involved multiple exons. The remaining mutations were subtle alterations leading to missense (about 50%) or nonsense mutations, frameshifts or splice acceptor site defects. In one patient a single codon was missing. Mutations affecting a single amino acid were concentrated in the region between the third and fourth putative membrane spanning fragments and in the ATP-binding domain. This overview of mutations aids in the determination of structural and functional important regions and facilitates the screening for mutations in other ALD patients. The detection of mutations in virtually all ALD families tested indicates that the isolated gene is the only gene responsible for ALD located in Xq28.

  3. Bestrophin gene mutations in patients with Best vitelliform macular dystrophy.

    PubMed

    Caldwell, G M; Kakuk, L E; Griesinger, I B; Simpson, S A; Nowak, N J; Small, K W; Maumenee, I H; Rosenfeld, P J; Sieving, P A; Shows, T B; Ayyagari, R

    1999-05-15

    Best vitelliform macular dystrophy (VMD2) is an autosomal dominant dystrophy with a juvenile age of onset. Mutations in the Bestrophin gene were shown in patients affected with VMD2. In a mutation study, we made three new and interesting observations. First, we identified possible mutation hotspots within the gene, suggesting that particular regions of the protein have greater functional significance than others. Second, we described a 2-bp deletion in a part of the gene where mutations have not previously been reported; this mutation causes a frameshift and subsequent premature termination of the protein. Finally, we have evidence that some mutations are associated with variable expression of the disease, suggesting the involvement of other factors or genes in the disease phenotype. PMID:10331951

  4. Clonal diversity of recurrently mutated genes in myelodysplastic syndromes

    PubMed Central

    Walter, MJ; Shen, D; Shao, J; Ding, L; White, BS; Kandoth, C; Miller, CA; Niu, B; McLellan, MD; Dees, ND; Fulton, R; Elliot, K; Heath, S; Grillot, M; Westervelt, P; Link, DC; DiPersio, JF; Mardis, E; Ley, TJ; Wilson, RK; Graubert, TA

    2013-01-01

    Recent studies suggest that most cases of myelodysplastic syndrome (MDS) are clonally heterogeneous, with a founding clone and multiple subclones. It is not known whether specific gene mutations typically occur in founding clones or subclones. We screened a panel of 94 candidate genes in a cohort of 157 patients with MDS or secondary acute myeloid leukemia (sAML). This included 150 cases with samples obtained at MDS diagnosis and 15 cases with samples obtained at sAML transformation (8 were also analyzed at the MDS stage). We performed whole-genome sequencing (WGS) to define the clonal architecture in eight sAML genomes and identified the range of variant allele frequencies (VAFs) for founding clone mutations. At least one mutation or cytogenetic abnormality was detected in 83% of the 150 MDS patients and 17 genes were significantly mutated (false discovery rate ≤0.05). Individual genes and patient samples displayed a wide range of VAFs for recurrently mutated genes, indicating that no single gene is exclusively mutated in the founding clone. The VAFs of recurrently mutated genes did not fully recapitulate the clonal architecture defined by WGS, suggesting that comprehensive sequencing may be required to accurately assess the clonal status of recurrently mutated genes in MDS. PMID:23443460

  5. Mutational analysis of STK11 gene in ovarian carcinomas.

    PubMed

    Nishioka, Y; Kobayashi, K; Sagae, S; Sugimura, M; Ishioka, S; Nagata, M; Terasawa, K; Tokino, T; Kudo, R

    1999-06-01

    Recently STK11, the causative gene of Peutz-Jeghers syndrome (PJS) was identified on chromosome 19p13.3. PJS is often accompanied by several malignancies, including breast tumor, adenoma malignum of the uterine cervix, and ovarian tumor. To investigate the involvement of STK11 gene in the development of ovarian carcinomas, we analyzed 30 ovarian carcinomas for loss of heterozygosity (LOH) and STK11 gene mutations. We found one missense mutation (codon 281, Pro to Leu) with heterozygous and somatic status. This mutation occurred at codon 281, which lies within the mutational hot spot (codon 279-281) of STK11 gene previously reported in PJS. We also detected LOH in 2 (11%) of 19 informative ovarian carcinomas. Our results suggest that mutations of the STK11 gene may play a limited role in the development of ovarian carcinomas. PMID:10429654

  6. Gene Expression in the Star Mutation of Petunia x Hybrida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Differences in structural gene expression are responsible for a wide range of responses from human cancer to patterned flowers. Gene silencing is one of the ways in which gene expression is controlled. We have developed a model system to study anthocyanin gene silencing using a mutation in Petunia ...

  7. Novel mutations in the emerin gene in Israeli families.

    PubMed

    Nevo, Y; Ahituv, S; Yaron, Y; Kedmi, M; Shomrat, R; Legum, C; Orr-Urtreger, A

    2001-06-01

    Emery-Dreifuss Muscular Dystrophy (EMD or EDMD) is a rare X-linked recessive disorder, characterized by progressive muscle wasting and weakness, contractures, and cardiomyopathy, manifesting as heart block. Mutation analysis at the EMD gene locus was performed in 4 unrelated Israeli families with X-linked EMD and in one sporadic case. In the 4 families 4 different mutations were found, 3 of which were novel. These included two frame shift mutations in exon 2 (333delT and 412insA) and one base pair substitution at the consensus +1 donor splice in intron 5 (1429G-->A). The fourth mutation in exon 6 (1675-1678delTCCG) has been previously described. No mutations were identified in the one sporadic case. Two of the three novel mutations were found in exon 2. A summary of the previously published mutations described in the EMD Mutation Database (http://www.path.cam.ac.uk/emd/) as well as the mutations described in our study suggest that the distribution of mutations in EMD gene is not entirely random and that exon 2 is prone to mutations. Hum Mutat 17:522, 2001. PMID:11385714

  8. Na channel gene mutations in epilepsy--the functional consequences.

    PubMed

    Yamakawa, Kazuhiro

    2006-08-01

    Mutations of voltage-gated sodium channel genes SCN1A, SCN2A, and SCN1B have been identified in several types of epilepsies including generalized epilepsy with febrile seizures plus (GEFS+) and severe myoclonic epilepsy in infancy (SMEI). In both SCN1A and SCN2A, missense mutations tend to result in benign idiopathic epilepsy, whereas truncation mutations lead to severe and intractable epilepsy. However, the results obtained by the biophysical analyses using cultured cell systems still remain elusive. Now studies in animal models harboring sodium channel gene mutations should be eagerly pursued. PMID:16806834

  9. DRUMS: a human disease related unique gene mutation search engine.

    PubMed

    Li, Zuofeng; Liu, Xingnan; Wen, Jingran; Xu, Ye; Zhao, Xin; Li, Xuan; Liu, Lei; Zhang, Xiaoyan

    2011-10-01

    With the completion of the human genome project and the development of new methods for gene variant detection, the integration of mutation data and its phenotypic consequences has become more important than ever. Among all available resources, locus-specific databases (LSDBs) curate one or more specific genes' mutation data along with high-quality phenotypes. Although some genotype-phenotype data from LSDB have been integrated into central databases little effort has been made to integrate all these data by a search engine approach. In this work, we have developed disease related unique gene mutation search engine (DRUMS), a search engine for human disease related unique gene mutation as a convenient tool for biologists or physicians to retrieve gene variant and related phenotype information. Gene variant and phenotype information were stored in a gene-centred relational database. Moreover, the relationships between mutations and diseases were indexed by the uniform resource identifier from LSDB, or another central database. By querying DRUMS, users can access the most popular mutation databases under one interface. DRUMS could be treated as a domain specific search engine. By using web crawling, indexing, and searching technologies, it provides a competitively efficient interface for searching and retrieving mutation data and their relationships to diseases. The present system is freely accessible at http://www.scbit.org/glif/new/drums/index.html. PMID:21913285

  10. CFTR gene mutations in isolated chronic obstructive pulmonary disease

    SciTech Connect

    Pignatti, P.F.; Bombien, C.; Marigo, C.

    1994-09-01

    In order to identify a possible hereditary predisposition to the development of chronic obstructive pulmonary disease (COPD), we have looked for the presence of cystic fibrosis transmembrane regulator (CFTR) gene DNA sequence modifications in 28 unrelated patients with no signs of cystic fibrosis. The known mutations in Italian CF patients, as well as the most frequent worldwide CF mutations, were investigated. In addition, a denaturing gradient gel electrophoresis analysis of about half of the coding sequence of the gene in 56 chromosomes from the patients and in 102 chromosomes from control individuals affected by other pulmonary diseases and from normal controls was performed. Nine different CFTR gene mutations and polymorphisms were found in seven patients, a highly significant increase over controls. Two of the patients were compound heterozygotes. Two frequent CF mutations were detected: deletion F508 and R117H; two rare CF mutations: R1066C and 3667ins4; and five CF sequence variants: R75Q (which was also described as a disease-causing mutation in male sterility cases due to the absence of the vasa deferentia), G576A, 2736 A{r_arrow}G, L997F, and 3271+18C{r_arrow}T. Seven (78%) of the mutations are localized in transmembrane domains. Six (86%) of the patients with defined mutations and polymorphisms had bronchiectasis. These results indicate that CFTR gene mutations and sequence alterations may be involved in the etiopathogenesis of some cases of COPD.

  11. Ferredoxin Gene Mutation in Iranian Trichomonas vaginalis Isolates

    PubMed Central

    HEIDARI, Soudabeh; BANDEHPOUR, Mojgan; SEYYED-TABAEI, Seyyed-Javad; VALADKHANI, Zarintaj; HAGHIGHI, Ali; ABADI, AliReza; KAZEMI, Bahram

    2013-01-01

    Background Trichomonas vaginalis causes trichomoniasis and metronidazole is its chosen drug for treatment. Ferredoxin has role in electron transport and carbohydrate metabolism and the conversion of an inactive form of metronidazole (CO) to its active form (CPR). Ferredoxin gene mutations reduce gene expression and increase its resistance to metronidazole. In this study, the frequency of ferredoxin gene mutations in clinical isolates of T.vaginalis in Tehran has been studied. Methods Forty six clinical T. vaginalis isolates of vaginal secretions and urine sediment were collected from Tehran Province since 2011 till 2012. DNA was extracted and ferredoxin gene was amplified by PCR technique. The ferredoxin gene PCR products were sequenced to determine gene mutations. Results In four isolates (8.69%) point mutation at nucleotide position -239 (the translation start codon) of the ferredoxin gene were detected in which adenosine were converted to thymine. Conclusion Mutation at nucleotide -239 ferredoxin gene reduces translational regulatory protein's binding affinity which concludes reduction of ferredoxin expression. For this reduction, decrease in activity and decrease in metronidazole drug delivery into the cells occur. Mutations in these four isolates may lead to resistance of them to metronidazole. PMID:24454433

  12. Mutation hot spots in the canine herpesvirus thymidine kinase gene.

    PubMed

    Yamada, Shinya; Matsumoto, Yasunobu; Takashima, Yasuhiro; Otsuka, Haruki

    2005-08-01

    The guanine and cytosine content (GC-content) of alpha-herpesvirus genes are highly variable despite similar genome structures. It is known that drug resistant HSV, which has the genome with a high GC-content (approximately 70%), commonly includes frameshift mutations in homopolymer stretches of guanine (G) and cytosine (C) within the thymidine kinase (TK) gene. However, whether such mutation hotspots exist in the TK gene of canine herpesvirus (CHV) which has a low GC-content was unknown. In this study, we investigated mutations in the TK gene of CHV. CHV was passaged in the presence of iodo-deoxyuridine (IDU), and IDU-resistant clones were isolated. In all IDU-resistant virus clones, mutations in the TK gene were observed. The majority of these mutations were frameshift mutations of an adenine (A) insertion or deletion within either of 2 stretches of eight A's in the TK gene. It was demonstrated that CHV TK mutations frequently occur at a limited number of hot spots within long homopolymer nucleotide stretches. PMID:15965615

  13. Four novel mutations of the coproporphyrinogen III oxidase gene.

    PubMed

    Aurizi, C; Lupia Palmieri, G; Barbieri, L; Macrì, A; Sorge, F; Usai, G; Biolcati, G

    2009-01-01

    Here we report the characterization of four novel mutations and a previously described one of the coproporphyrinogen III oxidase (CPO) gene in five Italian patients affected by Hereditary Coproporphyria (HCP). Three of the novel genetic variants are missense mutations (p.Gly242Cys; p.Leu398Pro; p.Ser245Phe) and one is a frameshift mutation (p.Gly188TrpfsX45). PMID:19267996

  14. Diverse growth hormone receptor gene mutations in Laron syndrome

    SciTech Connect

    Berg, M.A.; Francke, U. ); Gracia, R.; Rosenbloom, A.; Toledo, S.P.A. ); Chernausek, S. ); Guevara-Aguirre, J. ); Hopp, M. ); Rosenbloom, A.; Argente, J. ); Toledo, S.P.A. )

    1993-05-01

    To better understand the molecular genetic basis and genetic epidemiology of Laron syndrome (growth-hormone insensitivity syndrome), the authors analysed the growth-hormone receptor (GHR) genes of seven unrelated affected individuals from the United States, South America, Europe, and Africa. They amplified all nine GHR gene exons and splice junctions from these individuals by PCR and screened the products for mutations by using denaturing gradient gel electrophoresis (DGGE). They identified a single GHR gene fragment with abnormal DGGE results for each affected individual, sequenced this fragment, and, in each case, identified a mutation likely to cause Laron syndrome, including two nonsense mutations (R43X and R217X), two splice-junction mutations, (189-1 G to T and 71+1 G to A), and two frameshift mutations (46 del TT and 230 del TA or AT). Only one of these mutations, R43X, has been previously reported. Using haplotype analysis, they determined that this mutation, which involves a CpG dinucleotide hot spot, likely arose as a separate event in this case, relative to the two prior reports of R43X. Aside from R43X, the mutations identified are unique to patients from particular geographic regions. Ten GHR gene mutations have now been described in this disorder. The authors conclude that Laron syndrome is caused by diverse GHR gene mutations, including deletions, RNA processing defects, translational stop codons, and missense codons. All the identified mutations involve the extracellular domain of the receptor, and most are unique to particular families or geographic areas. 35 refs., 3 figs., 1 tab.

  15. Simulation of gene evolution under directional mutational pressure

    NASA Astrophysics Data System (ADS)

    Dudkiewicz, Małgorzata; Mackiewicz, Paweł; Kowalczuk, Maria; Mackiewicz, Dorota; Nowicka, Aleksandra; Polak, Natalia; Smolarczyk, Kamila; Banaszak, Joanna; R. Dudek, Mirosław; Cebrat, Stanisław

    2004-05-01

    The two main mechanisms generating the genetic diversity, mutation and recombination, have random character but they are biased which has an effect on the generation of asymmetry in the bacterial chromosome structure and in the protein coding sequences. Thus, like in a case of two chiral molecules-the two possible orientations of a gene in relation to the topology of a chromosome are not equivalent. Assuming that the sequence of a gene may oscillate only between certain limits of its structural composition means that the gene could be forced out of these limits by the directional mutation pressure, in the course of evolution. The probability of the event depends on the time the gene stays under the same mutation pressure. Inversion of the gene changes the directional mutational pressure to the reciprocal one and hence it changes the distance of the gene to its lower and upper bound of the structural tolerance. Using Monte Carlo methods we were able to simulate the evolution of genes under experimentally found mutational pressure, assuming simple mechanisms of selection. We found that the mutation and recombination should work in accordance to lower their negative effects on the function of the products of coding sequences.

  16. MAMMALIAN CELL GENE MUTATION ASSAYS WORKING GROUP REPORT

    EPA Science Inventory

    Mammalian cell gene mutation assays have been used for many years and the diversity of the available systems attests to the varied methods found to grow mammalian dells and detect mutations. s part of the International Workshop on Standardization of Genotoxicity Test Procedures, ...

  17. Phenotypic Involvement in Females with the FMR1 Gene Mutation.

    ERIC Educational Resources Information Center

    Riddle, J. E.; Cheema, A.; Sobesky, W. E.; Gardner, S. C.; Taylor, A. K.; Pennington, B. F.; Hagerman, R. J.

    1998-01-01

    A study investigated phenotypic effects seen in 114 females with premutation and 41 females (ages 18-58) with full Fragile X mental retardation gene mutation. Those with the full mutation had a greater incidence of hand-flapping, eye contact problems, special education help for reading and math, and grade retention. (Author/CR)

  18. Variable expressivity and mutation databases: The androgen receptor gene mutations database.

    PubMed

    Gottlieb, B; Beitel, L K; Trifiro, M A

    2001-05-01

    For over 50 years genetics has presumed that variations in phenotypic expression have, for the most part, been the result of alterations in genotype. The importance and value of mutation databases has been based on the premise that the same gene or allelic variation in a specific gene that has been proven to determine a specific phenotype, will always produce the same phenotype. However, recent evidence has shown that so called "simple" Mendelian disorders or monogenic traits are often far from simple, exhibiting phenotypic variation (variable expressivity) that cannot be explained solely by a gene or allelic alteration. The AR gene mutations database now lists 25 cases where different degrees of androgen insensitivity are caused by identical mutations in the androgen receptor gene. In five of these cases the phenotypic variability is due to somatic mosaicism, that is, somatic mutations that occur in only certain cells of androgen-sensitive tissue. Recently, a number of other cases of variable expressivity have also been linked to somatic mosaicism. The impact of variable expressivity due to somatic mutations and mosaicism on mutation databases is discussed. In particular, the effect of an organism exhibiting genetic heterogeneity within its tissues, and the possibility of an organism's genotype changing over its lifetime, are considered to have important implications for mutation databases in the future. PMID:11317353

  19. Molecular analysis of mutations in the human HPRT gene.

    PubMed

    Keohavong, Phouthone; Xi, Liqiang; Grant, Stephen G

    2014-01-01

    The HPRT assay uses incorporation of toxic nucleotide analogues to select for cells lacking the purine scavenger enzyme hypoxanthine-guanine phosphoribosyl transferase. A major advantage of this assay is the ability to isolate mutant cells and determine the molecular basis for their functional deficiency. Many types of analyses have been performed at this locus: the current protocol involves generation of a cDNA and multiplex PCR of each exon, including the intron/exon junctions, followed by direct sequencing of the products. This analysis detects point mutations, small deletions and insertions within the gene, mutations affecting RNA splicing, and products of illegitimate V(D)J recombination within the gene. Establishment of and comparisons with mutational spectra hold the promise of identifying exposures to mutation-inducing genotoxicants from their distinctive pattern of gene-specific DNA damage at this easily analyzed reporter gene. PMID:24623237

  20. Identification of somatic gene mutations in penile squamous cell carcinoma.

    PubMed

    Ferrándiz-Pulido, Carla; Hernández-Losa, Javier; Masferrer, Emili; Vivancos, Ana; Somoza, Rosa; Marés, Roso; Valverde, Claudia; Salvador, Carlos; Placer, Jose; Morote, Juan; Pujol, Ramon M; Ramon y Cajal, Santiago; de Torres, Ines; Toll, Agusti; García-Patos, Vicente

    2015-10-01

    There is a lack of studies on somatic gene mutations and cell signaling driving penile carcinogenesis. Our objective was to analyze somatic mutations in genes downstream of EGFR in penile squamous cell carcinomas, especially the mTOR and RAS/MAPK pathways. We retrospectively analyzed somatic mutations in 10 in situ and 65 invasive penile squamous cell carcinomas by using Sequenom's Mass Spectrometry iPlex Technology and Oncocarta v1.0 Panel. The DNA was extracted from FFPE blocks and we identified somatic missense mutations in three in situ tumors and in 19 invasive tumors, mostly in PIK3CA, KRAS, HRAS, NRAS, and PDGFA genes. Somatic mutations in the PIK3CA gene or RAS family genes were neither associated with tumor grade, stage or outcome, and were equally often identified in hrHPV positive and in hrHPV negative tumors that showed no p53 expression. Mutations in PIK3CA, KRAS, and HRAS are frequent in penile squamous cell carcinoma and likely play a role in the development of p53-negative tumors. Although the presence of these mutations does not seem to correlate with tumoral behavior or outcome, they could be biomarkers of treatment failure with anti-EGFR mAb in patients with penile squamous cell carcinoma. PMID:26216163

  1. Pancreatic adenocarcinomas frequently show p53 gene mutations.

    PubMed Central

    Scarpa, A.; Capelli, P.; Mukai, K.; Zamboni, G.; Oda, T.; Iacono, C.; Hirohashi, S.

    1993-01-01

    Thirty-four pancreatic adenocarcinomas were studied for the presence of p53 gene mutations by the single-strand conformation polymorphism method and by direct sequencing of PCR-amplified fragments. p53 protein expression was immunohistochemically evaluated using monoclonal PAb1801 and polyclonal CM1 antibodies. Mutations were detected in 14 cases. The transitions were six G to A and two A to G; the transversions were one C to G and two A to C; the remaining three were frameshift mutations. Immunostaining results were identical with both antibodies. Nuclear immunohistochemical p53-positive cells were found in nine p53 mutated cases and in 12 cases in which no mutation was detected. In most of these latter cases only a minority of cancer cells showed immunohistochemical positivity. Twenty-nine cases, including all p53 mutated cancers, were known to contain codon 12 Ki-ras gene mutations. Also in the light of the demonstrated cooperation of ras and p53 gene alterations in the transformation of cultured cells, our data suggest that p53 mutation is one of the genetic defects that may have a role in the pathogenesis of a proportion of pancreatic cancers. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:8494051

  2. Preservation of duplicate genes by complementary, degenerative mutations.

    PubMed Central

    Force, A; Lynch, M; Pickett, F B; Amores, A; Yan, Y L; Postlethwait, J

    1999-01-01

    The origin of organismal complexity is generally thought to be tightly coupled to the evolution of new gene functions arising subsequent to gene duplication. Under the classical model for the evolution of duplicate genes, one member of the duplicated pair usually degenerates within a few million years by accumulating deleterious mutations, while the other duplicate retains the original function. This model further predicts that on rare occasions, one duplicate may acquire a new adaptive function, resulting in the preservation of both members of the pair, one with the new function and the other retaining the old. However, empirical data suggest that a much greater proportion of gene duplicates is preserved than predicted by the classical model. Here we present a new conceptual framework for understanding the evolution of duplicate genes that may help explain this conundrum. Focusing on the regulatory complexity of eukaryotic genes, we show how complementary degenerative mutations in different regulatory elements of duplicated genes can facilitate the preservation of both duplicates, thereby increasing long-term opportunities for the evolution of new gene functions. The duplication-degeneration-complementation (DDC) model predicts that (1) degenerative mutations in regulatory elements can increase rather than reduce the probability of duplicate gene preservation and (2) the usual mechanism of duplicate gene preservation is the partitioning of ancestral functions rather than the evolution of new functions. We present several examples (including analysis of a new engrailed gene in zebrafish) that appear to be consistent with the DDC model, and we suggest several analytical and experimental approaches for determining whether the complementary loss of gene subfunctions or the acquisition of novel functions are likely to be the primary mechanisms for the preservation of gene duplicates. For a newly duplicated paralog, survival depends on the outcome of the race between

  3. Characterization of Hb Calvino (HBB: c.406G > A): a new silent β-globin gene variant found in coexistence with α-thalassemia in a family of African origin.

    PubMed

    Marsella, Maria; Salvagno, Gianluca; Dolcini, Bernadetta; Ferlini, Alessandra; Ravani, Anna; Harteveld, Cornelis L; Giordano, Piero C; Borgna-Pignatti, Caterina

    2014-01-01

    We report a new silent β-globin gene variant found in a family from Angola living in the north eastern Italian city of Ferrara. The probands, two young sisters, presented with hematological parameters compatible with a β-thalassemia (β-thal) minor but with normal Hb A₂ levels and normal hemoglobin (Hb) separation on high performance liquid chromatography (HPLC). Molecular analyses revealed a homozygosity for the common -α(3.7) (rightward) deletion and heterozygosity for a novel transition (GCT > ACT) at codon 135 of the β-globin gene, leading to an Ala → Thr single amino acid substitution that was inherited from the healthy father. PMID:25222042

  4. Role of Duplicate Genes in Robustness against Deleterious Human Mutations

    PubMed Central

    Hsiao, Tzu-Lin; Vitkup, Dennis

    2008-01-01

    It is now widely recognized that robustness is an inherent property of biological systems [1],[2],[3]. The contribution of close sequence homologs to genetic robustness against null mutations has been previously demonstrated in simple organisms [4],[5]. In this paper we investigate in detail the contribution of gene duplicates to back-up against deleterious human mutations. Our analysis demonstrates that the functional compensation by close homologs may play an important role in human genetic disease. Genes with a 90% sequence identity homolog are about 3 times less likely to harbor known disease mutations compared to genes with remote homologs. Moreover, close duplicates affect the phenotypic consequences of deleterious mutations by making a decrease in life expectancy significantly less likely. We also demonstrate that similarity of expression profiles across tissues significantly increases the likelihood of functional compensation by homologs. PMID:18369440

  5. Two novel CAV3 gene mutations in Japanese families.

    PubMed

    Sugie, Kazuma; Murayama, Kumiko; Noguchi, Satoru; Murakami, Nobuyuki; Mochizuki, Mika; Hayashi, Yukiko K; Nonaka, Ikuya; Nishino, Ichizo

    2004-12-01

    Caveolin-3 deficiency is a rare, autosomal dominant, muscle disorder caused by caveolin-3 gene (CAV3) mutations and consists of four clinical phenotypes: limb-girdle muscular dystrophy type 1C (LGMD-1C), rippling muscle disease, distal myopathy, and familial hyperCKemia. So far, only 13 mutations have been reported. We here report two novel heterozygous mutations, 96C>G (N32K) and 128T>A (V43E), in the CAV3 gene in two unrelated Japanese families with LGMD-1C. Both probands presented with elevated serum CK level with calf muscle hypertrophy in their childhood but without apparent muscle weakness. However, their mothers showed mild limb-girdle weakness in addition to high CK level. Caveolin-3 was deficient and caveolae were lacking in muscles from both patients. Our data confirm that caveolin-3 deficiency causes LGMD-1C and expand the variability in CAV3 gene mutations. PMID:15564037

  6. 21 CFR 866.5900 - Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation detection system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... regulator (CFTR) gene mutation detection system. 866.5900 Section 866.5900 Food and Drugs FOOD AND DRUG...) gene mutation detection system. (a) Identification. The CFTR gene mutation detection system is a device used to simultaneously detect and identify a panel of mutations and variants in the CFTR gene. It...

  7. 21 CFR 866.5900 - Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation detection system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... regulator (CFTR) gene mutation detection system. 866.5900 Section 866.5900 Food and Drugs FOOD AND DRUG...) gene mutation detection system. (a) Identification. The CFTR gene mutation detection system is a device used to simultaneously detect and identify a panel of mutations and variants in the CFTR gene. It...

  8. 21 CFR 866.5900 - Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation detection system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... regulator (CFTR) gene mutation detection system. 866.5900 Section 866.5900 Food and Drugs FOOD AND DRUG...) gene mutation detection system. (a) Identification. The CFTR gene mutation detection system is a device used to simultaneously detect and identify a panel of mutations and variants in the CFTR gene. It...

  9. 21 CFR 866.5900 - Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation detection system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... regulator (CFTR) gene mutation detection system. 866.5900 Section 866.5900 Food and Drugs FOOD AND DRUG...) gene mutation detection system. (a) Identification. The CFTR gene mutation detection system is a device used to simultaneously detect and identify a panel of mutations and variants in the CFTR gene. It...

  10. 21 CFR 866.5900 - Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation detection system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... regulator (CFTR) gene mutation detection system. 866.5900 Section 866.5900 Food and Drugs FOOD AND DRUG...) gene mutation detection system. (a) Identification. The CFTR gene mutation detection system is a device used to simultaneously detect and identify a panel of mutations and variants in the CFTR gene. It...

  11. AB125. Neonatal diabetes mellitus due to insulin gene mutation

    PubMed Central

    Can, Ngoc Thi Bich; Vu, Dung Chi; Bui, Thao Phuong; Nguyen, Khanh Ngoc; Nguyen, Dat Phu; Craig, Maria; Ellard, Sian; Nguyen, Hoan Thi

    2015-01-01

    Background and objective Insulin (INS) gene mutations that cause permanent neonatal diabetes mellitus change single protein building blocks (amino acids) in the protein sequence. These mutations are believed to disrupt the cleavage of the proinsulin chain or the binding of the A and B chains to form insulin, leading to impaired blood sugar control. At least ten mutations in the INS gene have been identified in people with permanent neonatal diabetes mellitus. To describe clinical features and laboratory manifestations of patients with INS gene mutation and to evaluate outcome of management. Methods Clinical features, biochemical finding, mutation analysis and management outcome of six cases from six unrelated families were study. All exons of INS gene were amplified from genomic DNA and directly sequenced. Results Six cases (three girls and three boys) onset at 129.2±128.8 days of age (median 101.5 days) with gestation age of 37.3±3.0 weeks, birth weight of 2,816.6±767.8 g. Five out of six patients admitted with the feature of diabetic ketoacidosis with pH of 7.04±0.22; plasma glucose levels were 34.3±12.7 mmoL/L, HbA1C of 9.75%±3.5%. Mutation analysis of the INS gene showed: heterozygous for a novel missense mutation (c.127T > A; C43S) in exon 2 in one case; heterozygous for a splicing mutation c.188-31G > A in intron 2 in two cases; heterozygous for a missense mutation c.286T > C in exon 3 in one case; heterozygous for a missense mutation c.265C > T [p.Arg89Cys (p.R89C)] in exon 3 in two cases. After 19.2±13.4 months of insulin treatment, 4/5 patients have normal development with DQ 80-100%, HbA1C of 6.85%±0.49%, quite normal blood glucose levels. The case with c.127T > A mutation treated with insulin for 14 years has physical development delay, poor blood glucose control with HbA1C of 11.4%. Conclusions It is important to perform screening gene mutation for patients with diabetes diagnosed before 6 months of age to control blood glucose and follow up the

  12. Pyridoxine responsiveness in novel mutations of the PNPO gene

    PubMed Central

    Paul, Karl; Mills, Philippa; Clayton, Peter; Paschke, Eduard; Maier, Oliver; Hasselmann, Oswald; Schmiedel, Gudrun; Kanz, Simone; Connolly, Mary; Wolf, Nicole; Struys, Eduard; Stockler, Sylvia; Abela, Lucia; Hofer, Doris

    2014-01-01

    Objective: To determine whether patients with pyridoxine-responsive seizures but normal biomarkers for antiquitin deficiency and normal sequencing of the ALDH7A1 gene may have PNPO mutations. Methods: We sequenced the PNPO gene in 31 patients who fulfilled the above-mentioned criteria. Results: We were able to identify 11 patients carrying 3 novel mutations of the PNPO gene. In 6 families, a homozygous missense mutation p.Arg225His in exon 7 was identified, while 1 family was compound heterozygous for a novel missense mutation p.Arg141Cys in exon 5 and a deletion c.279_290del in exon 3. Pathogenicity of the respective mutations was proven by absence in 100 control alleles and expression studies in CHO-K1 cell lines. The response to pyridoxine was prompt in 4, delayed in 2, on EEG only in 2, and initially absent in another 2 patients. Two unrelated patients homozygous for the p.Arg225His mutation experienced status epilepticus when switched to pyridoxal 5′-phosphate (PLP). Conclusions: This study challenges the paradigm of exclusive PLP responsiveness in patients with pyridoxal 5′-phosphate oxidase deficiency and underlines the importance of consecutive testing of pyridoxine and PLP in neonates with antiepileptic drug–resistant seizures. Patients with pyridoxine response but normal biomarkers for antiquitin deficiency should undergo PNPO mutation analysis. PMID:24658933

  13. Progressive myoclonus epilepsy associated with SACS gene mutations.

    PubMed

    Nascimento, Fábio A; Canafoglia, Laura; Aljaafari, Danah; Muona, Mikko; Lehesjoki, Anna-Elina; Berkovic, Samuel F; Franceschetti, Silvana; Andrade, Danielle M

    2016-08-01

    Pathogenic variants in the SACS gene (OMIM #604490) cause autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS). ARSACS is a neurodegenerative early-onset progressive disorder, originally described in French Canadians, but later observed elsewhere.(1) Whole-exome sequencing of a large group of patients with unclassified progressive myoclonus epilepsies (PMEs) identified 2 patients bearing SACS gene mutations.(2) We detail the PME clinical features associated with SACS mutations and suggest the inclusion of the SACS gene in diagnostic screening of PMEs. PMID:27433545

  14. Neurocognitive Profiles in Duchenne Muscular Dystrophy and Gene Mutation Site

    PubMed Central

    D’Angelo, Maria Grazia; Lorusso, Maria Luisa; Civati, Federica; Comi, Giacomo Pietro; Magri, Francesca; Del Bo, Roberto; Guglieri, Michela; Molteni, Massimo; Turconi, Anna Carla; Bresolin, Nereo

    2011-01-01

    The presence of nonprogressive cognitive impairment is recognized as a common feature in a substantial proportion of patients with Duchenne muscular dystrophy. To investigate the possible role of mutations along the dystrophin gene affecting different brain dystrophin isoforms and specific cognitive profiles, 42 school-age children affected with Duchenne muscular dystrophy, subdivided according to sites of mutations along the dystrophin gene, underwent a battery of tests tapping a wide range of intellectual, linguistic, and neuropsychologic functions. Full-scale intelligence quotient was approximately 1 S.D. below the population average in the whole group of dystrophic children. Patients with Duchenne muscular dystrophy and mutations located in the distal portion of the dystrophin gene (involving the 140-kDa brain protein isoform, called Dp140) were generally more severely affected and expressed different patterns of strengths and impairments, compared with patients with Duchenne muscular dystrophy and mutations located in the proximal portion of the dystrophin gene (not involving Dp140). Patients with Duchenne muscular dystrophy and distal mutations demonstrated specific impairments in visuospatial functions and visual memory (which seemed intact in proximally mutated patients) and greater impairment in syntactic processing. PMID:22000308

  15. Prioritization of neurodevelopmental disease genes by discovery of new mutations

    PubMed Central

    Hoischen, Alexander; Krumm, Niklas; Eichler, Evan E.

    2014-01-01

    Advances in genome sequencing technologies have begun to revolutionize neurogenetics allowing the full spectrum of genetic variation to be better understood in relationship to disease. Exome sequencing of hundreds to thousands of samples from patients with autism spectrum disorder, intellectual disability, epilepsy, and schizophrenia provide strong evidence of the importance of de novo and gene-disruptive events. There are now several hundred new candidate genes and targeted resequencing technologies that allow screening of dozens of genes in tens of thousands of individuals with high specificity and sensitivity. The decision of which genes to pursue depends on numerous factors including recurrence, prior evidence of overlap with pathogenic copy number variants, the position of the mutation within the protein, the mutational burden among healthy individuals, and membership of the candidate gene within disease-implicated protein networks. We discuss these emerging criteria for gene prioritization and the potential impact on the field of neuroscience. PMID:24866042

  16. Gene mutation-based and specific therapies in precision medicine.

    PubMed

    Wang, Xiangdong

    2016-04-01

    Precision medicine has been initiated and gains more and more attention from preclinical and clinical scientists. A number of key elements or critical parts in precision medicine have been described and emphasized to establish a systems understanding of precision medicine. The principle of precision medicine is to treat patients on the basis of genetic alterations after gene mutations are identified, although questions and challenges still remain before clinical application. Therapeutic strategies of precision medicine should be considered according to gene mutation, after biological and functional mechanisms of mutated gene expression or epigenetics, or the correspondent protein, are clearly validated. It is time to explore and develop a strategy to target and correct mutated genes by direct elimination, restoration, correction or repair of mutated sequences/genes. Nevertheless, there are still numerous challenges to integrating widespread genomic testing into individual cancer therapies and into decision making for one or another treatment. There are wide-ranging and complex issues to be solved before precision medicine becomes clinical reality. Thus, the precision medicine can be considered as an extension and part of clinical and translational medicine, a new alternative of clinical therapies and strategies, and have an important impact on disease cures and patient prognoses. PMID:26994883

  17. Identification of mutator genes and mutational pathways in Escherichia coli using a multicopy cloning approach.

    PubMed

    Yang, Hanjing; Wolff, Erika; Kim, Mandy; Diep, Amy; Miller, Jeffrey H

    2004-07-01

    We searched for genes that create mutator phenotypes when put on to a multicopy plasmid in Escherichia coli. In many cases, this will result in overexpression of the gene in question. We constructed a random shotgun library with E. coli genomic fragments between 3 and 5 kbp in length on a multicopy plasmid vector that was transformed into E. coli to screen for frameshift mutators. We identified a total of 115 independent genomic fragments that covered 17 regions on the E. coli chromosome. Further studies identified 12 genes not previously known as causing mutator phenotypes when overproduced. A striking finding is that overproduction of the multidrug resistance transcription regulator, EmrR, results in a large increase in frameshift and base substitution mutagenesis. This suggests a link between multidrug resistance and mutagenesis. Other identified genes include those encoding DNA helicases (UvrD, RecG, RecQ), truncated forms of the DNA mismatch repair protein (MutS) and a primosomal component (DnaT), a negative modulator of initiation of replication/GATC-binding protein (SeqA), a stationary phase regulator AppY, a transcriptional regulator PaaX and three putative open reading frames, ycgW, yfjY and yjiD, encoding hypothetical proteins. In addition, we found three genes encoding proteins that were previously known to cause mutator effects under overexpression conditions: error-prone polymerase IV (DinB), DNA methylase (Dam) and sigma S factor (RpoS). This genomic strategy offers an approach to identify novel mutator effects resulting from the multicopy cloning (MCC) of specific genes and therefore complementing the conventional gene inactivation approach to finding mutators. PMID:15225322

  18. Mutations in the filaggrin gene and food allergy

    PubMed Central

    Markiewicz, Lidia; Wróblewska, Barbara

    2014-01-01

    The results of long-term epidemiological studies show that the number of people suffering from allergic diseases, especially from food allergies and atopic dermatitis (AD), is still increasing. Although the research thus far has been conducted mainly in Europe, North America, and Asia, there are also data appearing from the first studies in that field among the African population. This may indicate the importance of the problem of allergic diseases. The discovery that loss-of-function mutations in the gene coding filaggrin (FLG) are the cause of ichthyosis vulgaris marked a significant breakthrough in understanding the pathogenesis of allergic diseases. The presence of mutations in the filaggrin gene is also an important factor that predisposes to such allergic diseases as: allergic rhinitis, atopic dermatitis, atopic asthma, and food allergy. So far, over 40 loss-of-function mutations and numerous silent mutations in filaggrin have been discovered. PMID:25276250

  19. Novel PRKAR1A gene mutations in Carney Complex.

    PubMed

    Pan, Lorraine; Peng, Lan; Jean-Gilles, J; Zhang, Ximin; Wieczorek, Rosemary; Jain, Shilpa; Levine, Vicki; Osman, Iman; Prieto, Victor G; Lee, Peng

    2010-01-01

    Carney complex is a syndrome that may include cardiac and mucocutaneous myxomas, spotting skin pigmentation, and endocrine lesions. Many patients with Carney complex have been shown to have a stop codon mutation in the PRKAR1A gene in the 17q22-24 region. Here we present the case of a 57 year-old man with multiple skin lesions and cardiac myxomas. Histology of the skin lesions showed lentigenous melanocytic hyperplasia and cutaneous myxomas, confirming the diagnosis of Carney complex. Lesional and control normal tissue from the patient were identified and sequenced for the PRKAR1A gene. A germline missense mutation was identified at exon 1A. This is the first report of this mutation, and one of the few reported missense mutation associated with Carney complex. This finding strengthens the argument that there are alternative ways in which the protein kinase A 1-alpha subunit plays a role in tumorigenesis. PMID:20606737

  20. Legius Syndrome: two novel mutations in the SPRED1 gene

    PubMed Central

    Bianchi, Marika; Saletti, Veronica; Micheli, Roberto; Esposito, Silvia; Molinaro, Anna; Gagliardi, Stella; Orcesi, Simona; Cereda, Cristina

    2015-01-01

    The SPRED1 gene encodes a protein involved in the Ras/MAPK (mitogen-activated protein kinase) signaling pathway. Mutations in SPRED1 have been reported to cause Legius Syndrome, a rare developmental disorder that shares some clinical features with Neurofibromatosis-1. Direct sequencing was used to define SPRED1 mutations. We present two previously undescribed mutations: a frameshift mutation causing a stop codon, which was identified in an Italian family (p.Ile60Tyrfs*18) and a missense variation, which was identified in one sporadic Italian case (p.Pro422Arg). Our results led us to hypothesize that these modifications may contribute to the Legius Syndrome phenotype. Further studies will be needed to determine the roles of these mutations in the mechanisms of Legius Syndrome. PMID:27081556

  1. Molecular evaluation of a novel missense mutation & an insertional truncating mutation in SUMF1 gene

    PubMed Central

    Kotecha, Udhaya H.; Movva, Sireesha; Sharma, Deepak; Verma, Jyotsna; Puri, Ratna Dua; Verma, Ishwar Chander

    2014-01-01

    Background & objectives: Multiple suphphatase deficiency (MSD) is an autosomal recessive disorder affecting the post translational activation of all enzymes of the sulphatase family. To date, approximately 30 different mutations have been identified in the causative gene, sulfatase modifying factor 1 (SUMF1). We describe here the mutation analysis of a case of MSD. Methods: The proband was a four year old boy with developmental delay followed by neuroregression. He had coarse facies, appendicular hypertonia, truncal ataxia and ichthyosis limited to both lower limbs. Radiographs showed dysostosis multiplex. Clinical suspicion of MSD was confirmed by enzyme analysis of four enzymes of the sulphatase group. Results: The patient was compound heterozygote for a c.451A>G (p.K151E) substitution in exon 3 and a single base insertion mutation (c.690_691 InsT) in exon 5 in the SUMF1 gene. The bioinformatic analysis of the missense mutation revealed no apparent effect on the overall structure. However, the mutated 151-amino acid residue was found to be adjacent to the substrate binding and the active site residues, thereby affecting the substrate binding and/or catalytic activity, resulting in almost complete loss of enzyme function. Conclusions: The two mutations identified in the present case were novel. This is perhaps the first report of an insertion mutation in SUMF1 causing premature truncation of the protein. PMID:25222778

  2. SERPINA1 Full-Gene Sequencing Identifies Rare Mutations Not Detected in Targeted Mutation Analysis.

    PubMed

    Graham, Rondell P; Dina, Michelle A; Howe, Sarah C; Butz, Malinda L; Willkomm, Kurt S; Murray, David L; Snyder, Melissa R; Rumilla, Kandelaria M; Halling, Kevin C; Highsmith, W Edward

    2015-11-01

    Genetic α-1 antitrypsin (AAT) deficiency is characterized by low serum AAT levels and the identification of causal mutations or an abnormal protein. It needs to be distinguished from deficiency because of nongenetic causes, and diagnostic delay may contribute to worse patient outcome. Current routine clinical testing assesses for only the most common mutations. We wanted to determine the proportion of unexplained cases of AAT deficiency that harbor causal mutations not identified through current standard allele-specific genotyping and isoelectric focusing (IEF). All prospective cases from December 1, 2013, to October 1, 2014, with a low serum AAT level not explained by allele-specific genotyping and IEF were assessed through full-gene sequencing with a direct sequencing method for pathogenic mutations. We reviewed the results using American Council of Medical Genetics criteria. Of 3523 cases, 42 (1.2%) met study inclusion criteria. Pathogenic or likely pathogenic mutations not identified through clinical testing were detected through full-gene sequencing in 16 (38%) of the 42 cases. Rare mutations not detected with current allele-specific testing and IEF underlie a substantial proportion of genetic AAT deficiency. Full-gene sequencing, therefore, has the ability to improve accuracy in the diagnosis of AAT deficiency. PMID:26321041

  3. Gene mutations and molecularly targeted therapies in acute myeloid leukemia

    PubMed Central

    Hatzimichael, Eleftheria; Georgiou, Georgios; Benetatos, Leonidas; Briasoulis, Evangelos

    2013-01-01

    Acute myelogenous leukemia (AML) can progress quickly and without treatment can become fatal in a short period of time. However, over the last 30 years fine-tuning of therapeutics have increased the rates of remission and cure. Cytogenetics and mutational gene profiling, combined with the option of allogeneic hematopoietic stem cell transplantation offered in selected patients have further optimized AML treatment on a risk stratification basis in younger adults. However there is still an unmet medical need for effective therapies in AML since disease relapses in almost half of adult patients becoming refractory to salvage therapy. Improvements in the understanding of molecular biology of cancer and identification of recurrent mutations in AML provide opportunities to develop targeted therapies and improve the clinical outcome. In the spectrum of identified gene mutations, primarily targetable lesions are gain of function mutations of tyrosine kinases FLT3, JAK2 and cKIT for which specific, dual and multi-targeted small molecule inhibitors have been developed. A number of targeted compounds such as sorafenib, quizartinib, lestaurtinib, midostaurin, pacritinib, PLX3397 and CCT137690 are in clinical development. For loss-of-function gene mutations, which are mostly biomarkers of favorable prognosis, combined therapeutic approaches can maximize the therapeutic efficacy of conventional therapy. Apart from mutated gene products, proteins aberrantly overexpressed in AML appear to be clinically significant therapeutic targets. Such a molecule for which targeted inhibitors are currently in clinical development is PLK1. We review characteristic gene mutations, discuss their biological functions and clinical significance and present small molecule compounds in clinical development, which are expected to have a role in treating AML subtypes with characteristic molecular alterations. PMID:23358589

  4. Frequent mutations in chromatin-remodeling genes in pulmonary carcinoids

    PubMed Central

    Lu, Xin; Sun, Ruping; Ozretić, Luka; Seidal, Danila; Zander, Thomas; Leenders, Frauke; George, Julie; Müller, Christian; Dahmen, Ilona; Pinther, Berit; Bosco, Graziella; Konrad, Kathryn; Altmüller, Janine; Nürnberg, Peter; Achter, Viktor; Lang, Ulrich; Schneider, Peter M; Bogus, Magdalena; Soltermann, Alex; Brustugun, Odd Terje; Helland, Åslaug; Solberg, Steinar; Lund-Iversen, Marius; Ansén, Sascha; Stoelben, Erich; Wright, Gavin M.; Russell, Prudence; Wainer, Zoe; Solomon, Benjamin; Field, John K; Hyde, Russell; Davies, Michael PA.; Heukamp, Lukas C; Petersen, Iver; Perner, Sven; Lovly, Christine; Cappuzzo, Federico; Travis, William D; Wolf, Jürgen; Vingron, Martin; Brambilla, Elisabeth; Haas, Stefan A.; Buettner, Reinhard; Thomas, Roman K

    2014-01-01

    Pulmonary carcinoids are rare neuroendocrine tumors of the lung. The molecular alterations underlying the pathogenesis of these tumors have not been systematically studied so far. Here we perform gene copy number analysis (n=54), genome/exome (n=44) and transcriptome (n=69) sequencing of pulmonary carcinoids and observe frequent mutations in chromatin-remodeling genes. Covalent histone modifiers and subunits of the SWI/SNF complex are mutated in 40% and 22.2% of the cases respectively, with MEN1, PSIP1 and ARID1A being recurrently affected. In contrast to small-cell lung cancer and large-cell neuroendocrine tumors, TP53 and RB1 mutations are rare events, suggesting that pulmonary carcinoids are not early progenitor lesions of the highly aggressive lung neuroendocrine tumors but arise through independent cellular mechanisms. These data also suggest that inactivation of chromatin remodeling genes is sufficient to drive transformation in pulmonary carcinoids. PMID:24670920

  5. TINF2 Gene Mutation in a Patient with Pulmonary Fibrosis

    PubMed Central

    Hoffman, T. W.; van der Vis, J. J.; van Oosterhout, M. F. M.; van Es, H. W.; van Kessel, D. A.; Grutters, J. C.; van Moorsel, C. H. M.

    2016-01-01

    Pulmonary fibrosis is a frequent manifestation of telomere syndromes. Telomere gene mutations are found in up to 25% and 3% of patients with familial disease and sporadic disease, respectively. The telomere gene TINF2 encodes an eponymous protein that is part of the shelterin complex, a complex involved in telomere protection and maintenance. A TINF2 gene mutation was recently reported in a family with pulmonary fibrosis. We identified a heterozygous Ser245Tyr mutation in the TINF2 gene of previously healthy female patient that presented with progressive cough due to pulmonary fibrosis as well as panhypogammaglobulinemia at age 52. Retrospective multidisciplinary evaluation classified her as a case of possible idiopathic pulmonary fibrosis. Telomere length-measurement indicated normal telomere length in the peripheral blood compartment. This is the first report of a TINF2 mutation in a patient with sporadic pulmonary fibrosis, which represents another association between TINF2 mutations and this disease. Furthermore, this case underlines the importance of telomere dysfunction and not telomere length alone in telomere syndromes and draws attention to hypogammaglobulinemia as a manifestation of telomere syndromes. PMID:27088026

  6. Gene-Specific Function Prediction for Non-Synonymous Mutations in Monogenic Diabetes Genes

    PubMed Central

    Li, Quan; Liu, Xiaoming; Gibbs, Richard A.; Boerwinkle, Eric; Polychronakos, Constantin; Qu, Hui-Qi

    2014-01-01

    The rapid progress of genomic technologies has been providing new opportunities to address the need of maturity-onset diabetes of the young (MODY) molecular diagnosis. However, whether a new mutation causes MODY can be questionable. A number of in silico methods have been developed to predict functional effects of rare human mutations. The purpose of this study is to compare the performance of different bioinformatics methods in the functional prediction of nonsynonymous mutations in each MODY gene, and provides reference matrices to assist the molecular diagnosis of MODY. Our study showed that the prediction scores by different methods of the diabetes mutations were highly correlated, but were more complimentary than replacement to each other. The available in silico methods for the prediction of diabetes mutations had varied performances across different genes. Applying gene-specific thresholds defined by this study may be able to increase the performance of in silico prediction of disease-causing mutations. PMID:25136813

  7. SPINK1 gene mutations and pancreatitis in Japan.

    PubMed

    Shimosegawa, Tooru; Kume, Kiyoshi; Masamune, Atsushi

    2006-10-01

    SPINK1 can inhibit up to 20% of trypsin activity, and may constitute one major mechanism to protect the pancreas from autodigestion. In 2000, Witt et al. first recognized the association between mutations in the SPINK1 gene and chronic pancreatitis (CP), but the significance of SPINK1 gene mutation in pancreatitis and its relation to alcohol consumption remains unclear in Japan. The aim of the present paper was to clarify the incidence of SPINK1 mutations in CP patients with various etiologies in Japan and, in addition, to examine the relationship between alcohol metabolism and the polymorphisms in the key enzymes, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase-2 (ALDH2). A total of 156 patients with CP, and 165 healthy volunteers, all Japanese, were examined for the SPINK1 mutations by polymerase chain reaction-restriction fragment length polymorphism and direct sequencing. In Japan, the prevalence of [N34S; IVS1-37T > C] and [-215G > A; IVS3 + 2T > C] was significantly higher in patients with idiopathic CP (10.6% and 12.8%, respectively) than normal subjects (0.6% and 0%). The frequency of the [-215G > A; IVS3 + 2T > C] mutation in Japan was significantly higher than that reported in other populations. Concerning alcoholic CP, the [-215G > A; IVS3 + 2T > C] mutation was found in only a small number of patients (3.9%). On analysis of ADH2 and ALDH2 gene polymorphisms an association was found between ADH2*2 allele and alcoholic CP, and the ADH2*2/2*2 genotype had a tendency to increase the risk of developing pancreatic pseudocyst. In conclusion, in Japan the [-215G > A; IVS3 + 2T > C] mutation in the SPINK1 gene may form a unique genetic background for pancreatitis. PMID:16958672

  8. Mutation distributions and clinical correlations of PIK3CA gene mutations in breast cancer.

    PubMed

    Dirican, Ebubekir; Akkiprik, Mustafa; Özer, Ayşe

    2016-06-01

    Breast cancer (BCa) is the most common cancer and the second cause of death among women. Phosphoinositide 3-kinase (PI3K) signaling pathway has a crucial role in the cellular processes such as cell survival, growth, division, and motility. Moreover, oncogenic mutations in the PI3K pathway generally involve the activation phosphatidylinositol-4,5-bisphosphate 3-kinase-catalytic subunit alpha (PIK3CA) mutation which has been identified in numerous BCa subtypes. In this review, correlations between PIK3CA mutations and their clinicopathological parameters on BCa will be described. It is reported that PIK3CA mutations which have been localized mostly on exon 9 and 20 hot spots are detected 25-40 % in BCa. This relatively high frequency can offer an advantage for choosing the best treatment options for BCa. PIK3CA mutations may be used as biomarkers and have been major focus of drug development in cancer with the first clinical trials of PI3K pathway inhibitors currently in progress. Screening of PIK3CA gene mutations might be useful genetic tests for targeted therapeutics or diagnosis. Increasing data about PIK3CA mutations and its clinical correlations with BCa will help to introduce new clinical applications in the near future. PMID:26921096

  9. Mutator gene and hereditary non-polyposis colorectal cancer

    DOEpatents

    de la Chapelle, Albert; Vogelstein, Bert; Kinzler, Kenneth W.

    2008-02-05

    The human MSH2 gene, responsible for hereditary non-polyposis colorectal cancer, was identified by virtue of its homology to the MutS class of genes, which are involved in DNA mismatch repair. The sequence of cDNA clones of the human gene are provided, and the sequence of the gene can be used to demonstrate the existence of germ line mutations in hereditary non-polyposis colorectal cancer (HNPCC) kindreds, as well as in replication error.sup.+ (RER.sup.+) tumor cells.

  10. CHCHD2 gene mutations in familial and sporadic Parkinson's disease.

    PubMed

    Shi, Chang-He; Mao, Cheng-Yuan; Zhang, Shu-Yu; Yang, Jing; Song, Bo; Wu, Ping; Zuo, Chuan-Tao; Liu, Yu-Tao; Ji, Yan; Yang, Zhi-Hua; Wu, Jun; Zhuang, Zheng-Ping; Xu, Yu-Ming

    2016-02-01

    Mutations in CHCHD2 gene have been reported in autosomal dominant Parkinson's disease (ADPD). However, there is still lack of evidence supported CHCHD2 mutations lead to ADPD in other populations. We performed whole exome sequencing, positron emission tomography (PET), and haplotype analyses in an ADPD pedigree and then comprehensively screened for CHCHD2 gene mutations in additional 18 familial parkinsonism pedigrees, 364 sporadic PD patients, and 384 healthy controls to assess the frequencies of known and novel rare nonsynonymous CHCHD2 mutations. We identified a heterozygous variant (c.182C>T; p.Thr61Ile) in the CHCHD2 gene in the ADPD pedigree. PET revealed a significant reduction in dopamine transporter binding in the putamen and caudate nucleus of the proband, similar to idiopathic PD. The single nucleotide variant 5C>T (Pro2Leu) in CHCHD2 was confirmed to have a significantly higher frequency among sporadic PD patients than controls. Our results confirm that ADPD can be caused by CHCHD2 mutations and show that the Pro2Leu variant in CHCHD2 may be a risk factor for sporadic PD in Chinese populations. PMID:26705026

  11. Identification of 5 novel mutations in the AGXT gene.

    PubMed

    Basmaison, O; Rolland, M O; Cochat, P; Bozon, D

    2000-06-01

    In order to identify additional genotypes in primary hyperoxaluria type 1, we sequenced the AGXT genes of 9 patients. We report 5 new mutations. Three are splice-site mutations situated at the end of intron 4 and 8 (647-1G>A, 969-1G>C, 969-3C>G), one is a missense mutation in exon 5 (D183N), and one is a short duplication in exon 2 (349ins7). Their consequence is always a lack of enzymatic activity of the Alanine-Glyoxylate Aminotransferase (AGT); for 4 of them, we were able to deduce that they were associated to the absence of AGT protein. These mutations are rare, as they have been found on one allele in our study (except 969-3C>G present in 2 unrelated families), and have not been previously reported. PMID:10862087

  12. Detection of driver pathways using mutated gene network in cancer.

    PubMed

    Li, Feng; Gao, Lin; Ma, Xiaoke; Yang, Xiaofei

    2016-06-21

    Distinguishing driver pathways has been extensively studied because they are critical for understanding the development and molecular mechanisms of cancers. Most existing methods for driver pathways are based on high coverage as well as high mutual exclusivity, with the underlying assumption that mutations are exclusive. However, in many cases, mutated driver genes in the same pathways are not strictly mutually exclusive. Based on this observation, we propose an index for quantifying mutual exclusivity between gene pairs. Then, we construct a mutated gene network for detecting driver pathways by integrating the proposed index and coverage. The detection of driver pathways on the mutated gene network consists of two steps: raw pathways are obtained using a CPM method, and the final driver pathways are selected using a strict testing strategy. We apply this method to glioblastoma and breast cancers and find that our method is more accurate than state-of-the-art methods in terms of enrichment of KEGG pathways. Furthermore, the detected driver pathways intersect with well-known pathways with moderate exclusivity, which cannot be discovered using the existing algorithms. In conclusion, the proposed method provides an effective way to investigate driver pathways in cancers. PMID:27118146

  13. Mutation Burden of Rare Variants in Schizophrenia Candidate Genes

    PubMed Central

    Girard, Simon L.; Dion, Patrick A.; Bourassa, Cynthia V.; Geoffroy, Steve; Lachance-Touchette, Pamela; Barhdadi, Amina; Langlois, Mathieu; Joober, Ridha; Krebs, Marie-Odile; Dubé, Marie-Pierre; Rouleau, Guy A.

    2015-01-01

    Background Schizophrenia (SCZ) is a very heterogeneous disease that affects approximately 1% of the general population. Recently, the genetic complexity thought to underlie this condition was further supported by three independent studies that identified an increased number of damaging de novo mutations DNM in different SCZ probands. While these three reports support the implication of DNM in the pathogenesis of SCZ, the absence of overlap in the genes identified suggests that the number of genes involved in SCZ is likely to be very large; a notion that has been supported by the moderate success of Genome-Wide Association Studies (GWAS). Methods To further examine the genetic heterogeneity of this disease, we resequenced 62 genes that were found to have a DNM in SCZ patients, and 40 genes that encode for proteins known to interact with the products of the genes with DNM, in a cohort of 235 SCZ cases and 233 controls. Results We found an enrichment of private nonsense mutations amongst schizophrenia patients. Using a kernel association method, we were able to assess for association for different sets. Although our power of detection was limited, we observed an increased mutation burden in the genes that have DNM. PMID:26039597

  14. The Combination of CRISPR/Cas9 and iPSC Technologies in the Gene Therapy of Human β-thalassemia in Mice

    PubMed Central

    Ou, Zhanhui; Niu, Xiaohua; He, Wenyin; Chen, Yuchang; Song, Bing; Xian, Yexing; Fan, Di; Tang, Daolin; Sun, Xiaofang

    2016-01-01

    β-thalassemia results from point mutations or small deletions in the β-globin (HBB) gene that ultimately cause anemia. The generation of induced pluripotent stem cells (iPSCs) from the somatic cells of patients in combination with subsequent homologous recombination-based gene correction provides new approaches to cure this disease. CRISPR/Cas9 is a genome editing tool that is creating a buzz in the scientific community for treating human diseases, especially genetic disorders. Here, we reported that correction of β-thalassemia mutations in patient-specific iPSCs using the CRISPR/Cas9 tool promotes hematopoietic differentiation in vivo. CRISPR/Cas9-corrected iPSC-derived hematopoietic stem cells (HSCs) were injected into sublethally-irradiated NOD-scid-IL2Rg−/− (NSI) mice. HBB expression was observed in these HSCs after hematopoietic differentiation in the NSI mice. Importantly, no tumor was found in the livers, lungs, kidneys, or bone marrow at 10 weeks in the NSI mice after implantation with these HSCs. Collectively, our findings demonstrated that CRISPR/Cas9 successfully corrects β-thalassemia mutations in patient-specific iPSCs. These CRISPR/Cas9-corrected iPSC-derived HSCs express normal HBB in mice without tumorigenic potential, suggesting a safe strategy for personalized treatment of β-thalassemia. PMID:27581487

  15. The Combination of CRISPR/Cas9 and iPSC Technologies in the Gene Therapy of Human β-thalassemia in Mice.

    PubMed

    Ou, Zhanhui; Niu, Xiaohua; He, Wenyin; Chen, Yuchang; Song, Bing; Xian, Yexing; Fan, Di; Tang, Daolin; Sun, Xiaofang

    2016-01-01

    β-thalassemia results from point mutations or small deletions in the β-globin (HBB) gene that ultimately cause anemia. The generation of induced pluripotent stem cells (iPSCs) from the somatic cells of patients in combination with subsequent homologous recombination-based gene correction provides new approaches to cure this disease. CRISPR/Cas9 is a genome editing tool that is creating a buzz in the scientific community for treating human diseases, especially genetic disorders. Here, we reported that correction of β-thalassemia mutations in patient-specific iPSCs using the CRISPR/Cas9 tool promotes hematopoietic differentiation in vivo. CRISPR/Cas9-corrected iPSC-derived hematopoietic stem cells (HSCs) were injected into sublethally-irradiated NOD-scid-IL2Rg-/- (NSI) mice. HBB expression was observed in these HSCs after hematopoietic differentiation in the NSI mice. Importantly, no tumor was found in the livers, lungs, kidneys, or bone marrow at 10 weeks in the NSI mice after implantation with these HSCs. Collectively, our findings demonstrated that CRISPR/Cas9 successfully corrects β-thalassemia mutations in patient-specific iPSCs. These CRISPR/Cas9-corrected iPSC-derived HSCs express normal HBB in mice without tumorigenic potential, suggesting a safe strategy for personalized treatment of β-thalassemia. PMID:27581487

  16. Mutations in ras genes in experimental tumours of rodents.

    PubMed

    Sills, R C; Boorman, G A; Neal, J E; Hong, H L; Devereux, T R

    1999-01-01

    Studies of carcinogenesis in rodents are valuable for examining mutagenesis in vivo. An advantage of evaluating the frequency and spectra of ras mutations in chemically induced neoplasms is that the additional data at the molecular level indicate whether the carcinogenic effect is due to the chemical and is not a spontaneous event, as illustrated by the numerous examples in Appendices 1 and 2. In addition, data on the frequency and spectra of ras mutations in spontaneous and chemically induced neoplasms clearly expand the toxicological database by providing information helpful for understanding the pathogenesis of carcinogenesis. For example: (1) ozone-induced lung neoplasms had two unique mutations, one (codon 61 K-ras CTA mutation) consistent with a direct genotoxic event and a second (codon 12 K-ras G --> T transversion) consistent with an indirect genotoxic effect; (2) isoprene-induced Harderian gland neoplasms had a unique K-ras A --> T transversion at codon 61 which provided evidence that formation of an epoxide intermediate was involved; (3) 1,3-butadiene-induced neoplasms had a characteristic K-ras G --> C transversion mutation at codon 13 which was also consistent with a chemical-specific effect; (4) methylene chloride-induced liver neoplasms had an H-ras mutation profile at codon 61 similar to that of spontaneous tumours, suggesting that methylene chloride promotes cells with 'spontaneously initiated' ras mutations and (5) oxazepam-induced liver neoplasms had a low frequency of ras mutations, suggesting a nonmutagenic pathway of carcinogenesis. By extending the evaluation of rodent tumours to include molecular studies on ras mutation spectra and abnormalities in other cancer genes with human homologues, a number of hypotheses can be tested, allowing the most complete understanding of carcinogenesis in rodents and in potential extrapolation to the human risk situation. PMID:10353384

  17. [Correlation of adult AML Npm1 mutations with prognosis and its relationship with gene mutation of FLT3 and CEBPA].

    PubMed

    Bao, Li-Yan; Wang, Ji-Shi

    2010-02-01

    This study was aimed to investigate the correlation of 12th exon mutations in the npm1 gene with prognosis of adult AML patients and to explore the relationship of 12th exon mutation with other gene mutations. The specimen of bone marrow and peripheral blood from AML patients, the informations of medical history, symptoms, related image examinations, blood routine examination, NAP, oxygen saturation level in artery blood and EPO level in serum were collected; the bcr/abl fusion gene was detected by routine examination of bone marrow + biopsy + chromosome mapping + FISH. The patients were typed according to WHO classification. The DNA in cells was extracted, the npm1 gene mutation was detected by allele specific PCR combined were the sequencing. The results indicated that the npm1 heterozygote gene mutation was found in 72 out of 150 AML patients with normal cytogenetics (48%, 72/150). 48% patients showed a frameshift mutation in the C-terminal region of the NPM1 protein. The AML patients with npm1 gene mutation had specific clinical, phenotypic and genetic characteristics. The statistical analysis demonstrated the relationship between npm1 and flt3 ITDs. The patients with npm1 mutation showed a better response to induction therapy, furthermore, the overall survival (OS) rate of patients without flt3 ITD mutation was enhanced. The multivariate analysis demonstrated that the npm1 gene mutation and cebpa mutation positively correlated to the OS rate, and the correlation of flt3 mutation to OS rate showed negative. It is concluded that npm1 mutation is a favorable independent prognostic factor for adult AML patients with normal cytogenetics under conditions without FIT3 gene mutation. PMID:20137111

  18. Germline Mutations in Predisposition Genes in Pediatric Cancer

    PubMed Central

    Edmonson, Michael N.; Gruber, Tanja A.; Easton, John; Hedges, Dale; Ma, Xiaotu; Zhou, Xin; Yergeau, Donald A.; Wilkinson, Mark R.; Vadodaria, Bhavin; Chen, Xiang; McGee, Rose B.; Hines-Dowell, Stacy; Nuccio, Regina; Quinn, Emily; Shurtleff, Sheila A.; Rusch, Michael; Patel, Aman; Becksfort, Jared B.; Wang, Shuoguo; Weaver, Meaghann S.; Ding, Li; Mardis, Elaine R.; Wilson, Richard K.; Gajjar, Amar; Ellison, David W.; Pappo, Alberto S.; Pui, Ching-Hon; Downing, James R.

    2016-01-01

    BACKGROUND The prevalence and spectrum of predisposing mutations among children and adolescents with cancer are largely unknown. Knowledge of such mutations may improve the understanding of tumorigenesis, direct patient care, and enable genetic counseling of patients and families. METHODS In 1120 patients younger than 20 years of age, we sequenced the whole genomes (in 595 patients), whole exomes (in 456), or both (in 69). We analyzed the DNA sequences of 565 genes, including 60 that have been associated with autosomal dominant cancer-predisposition syndromes, for the presence of germline mutations. The pathogenicity of the mutations was determined by a panel of medical experts with the use of cancer-specific and locus-specific genetic databases, the medical literature, computational predictions, and second hits identified in the tumor genome. The same approach was used to analyze data from 966 persons who did not have known cancer in the 1000 Genomes Project, and a similar approach was used to analyze data from an autism study (from 515 persons with autism and 208 persons without autism). RESULTS Mutations that were deemed to be pathogenic or probably pathogenic were identified in 95 patients with cancer (8.5%), as compared with 1.1% of the persons in the 1000 Genomes Project and 0.6% of the participants in the autism study. The most commonly mutated genes in the affected patients were TP53 (in 50 patients), APC (in 6), BRCA2 (in 6), NF1 (in 4), PMS2 (in 4), RB1 (in 3), and RUNX1 (in 3). A total of 18 additional patients had protein-truncating mutations in tumor-suppressor genes. Of the 58 patients with a predisposing mutation and available information on family history, 23 (40%) had a family history of cancer. CONCLUSIONS Germline mutations in cancer-predisposing genes were identified in 8.5% of the children and adolescents with cancer. Family history did not predict the presence of an underlying predisposition syndrome in most patients. (Funded by the American

  19. Mutations of the tyrosinase gene produce autosomal recessive ocular albinism

    SciTech Connect

    King, R.A.; Summers, C.G.; Oetting, W.S.

    1994-09-01

    Albinism has historically been divided into ocular (OA) and oculocutaneous (OCA) types based on the presence or absence of clinically apparent skin and hair involvement in an individual with the ocular features of albinism. The major genes for OCA include the tyrosinase gene in OCA1 and the P gene in OCA2. X-linked and autosomal recessive OA have been described and the responsible genes have not been identified. We now present six Caucasian individuals who have the phenotype of autosomal recessive OA but who have OCA1 as shown by the presence of mutations of the tyrosinase. They had white or very light hair and white skin at birth, and cutaneous pigment developed in the first decade of life. At ages ranging from 1.5-23 years, hair color was dark blond to light brown. The skin had generalized pigment and well developed tan was present on the exposed arm and face skin of four. Iris pigment was present and iris translucency varied. Molecular analysis of the tyrosinase gene, using PCR amplification and direct di-deoxy sequencing showed the following mutations: E398Z/E398Q, P406S/g346a, R402E/T373K, ?/D383N, and H211N/T373K. The homozygous individual was not from a known consanguineous mating. T373K is the most common tyrosinase gene mutation in our laboratory. Three of these mutations are associated with a total loss of tyrosinase activity (g346a splice-site, T373K, and D383N), while four are associated with residual enzyme activity (H211N, R402E, E398Q, and P406S). These studies show that mutations of the tyrosinase gene can produce the phenotype of autosomal recessive OA in an individual who has normal amounts of cutaneous pigment and the ability to tan after birth. This extends the phenotypic range of OCA1 to normal cutaneous pigment after early childhood, and suggest that mutations of the tyrosinase gene account for a significant number of individuals with autosomal recessive OA.

  20. [Driver gene mutation and targeted therapy of lung cancer].

    PubMed

    Mitsudomi, Tetsuya

    2013-03-01

    Although cancers may have many genetic alterations, there are only a few mutations actually associated with essential traits of cancer cells such as cell proliferation or evasion from apoptosis. Because cancer cells are "addicted" to these "drive genes" , pharmacologic inhibition of these gene function is highly effective. Epidermal growth factor receptor(EGFR)-tyrosine kinase inhibitor(TKI)(such as gefitinib or erlotinib)treatment of lung cancer harboring EGFR gene mutation is one of the prototypes of such therapies. Several clinical trials clearly demonstrated that progression-free survival of patients treated with EGFR-TKI is significantly longer than that of those treated by conventional platinum doublet chemotherapy. EGFR-TKI therapy dramatically changed the paradigm of lung cancer treatment. Furthermore, in 2012, crizotinib was approved for lung cancer treatment with anaplastic lymphoma kinase(ALK)gene translocation. Targeted therapies for lung cancers "addicted" to other driver gene mutations including ROS1, RET or HER2 are also under development. Through these personalized approaches, lung cancer is changing from an acute fatal disease to a more chronic disease, and eventually we might be able to cure it. PMID:23507588

  1. EDA Gene Mutations Underlie Non-syndromic Oligodontia

    PubMed Central

    Song, S.; Han, D.; Qu, H.; Gong, Y.; Wu, H.; Zhang, X.; Zhong, N.; Feng, H.

    2009-01-01

    Recent studies have detected mutations in the EDA gene, previously identified as causing X-linked hypohidrotic ectodermal dysplasia (XLHED), in two families with X-linked non-syndromic hypodontia. Notably, all affected males in both families exhibited isolated oligodontia, while almost all female carriers showed a milder or normal phenotype. We hypothesized that the EDA gene could be responsible for sporadic non-syndromic oligodontia in affected males. In this study, we examined 15 unrelated males with non-syndromic oligodontia. Three novel EDA mutations (p.Ala259Glu, p.Arg289Cys, and p.Arg334His) were identified in four individuals (27%). A genetic defect in the EDA gene could result in non-syndromic oligodontia in affected males. PMID:19278982

  2. Mutation of p53 Tumor Suppressor Gene in Hepatocellular Carcinoma.

    PubMed

    Tullo, A; Sbisà, E

    2000-01-01

    In recent years, the most commonly observed genetic alteration in hepatocellular carcinoma (HCC), as in many other tumors affecting man, has been reported to be the mutation of the p53 coding gene (1,2). This gene has the features of a recessive oncosuppressor in its wild-type form and can be a dominant oncogene in its mutated form. The gene (20 kb) is located in a single copy on the short arm of chromosome 17 and contains 11 exons interrupted by 10 introns. The mRNA (2.8 kb) codes for a protein of 393 amino acids, which is expressed at relatively low levels in all tissues. p53 product is a 53-kDa phosphoprotein involved in the regulation of cell cycle, in DNA synthesis and repair, and in cell differentiation and apoptosis (see refs. 3-6, for reviews). PMID:21341051

  3. PDCD10 Gene Mutations in Multiple Cerebral Cavernous Malformations

    PubMed Central

    Cigoli, Maria Sole; Avemaria, Francesca; De Benedetti, Stefano; Gesu, Giovanni P.; Accorsi, Lucio Giordano; Parmigiani, Stefano; Corona, Maria Franca; Capra, Valeria; Mosca, Andrea; Giovannini, Simona; Notturno, Francesca; Ciccocioppo, Fausta; Volpi, Lilia; Estienne, Margherita; De Michele, Giuseppe; Antenora, Antonella; Bilo, Leda; Tavoni, Antonietta; Zamponi, Nelia; Alfei, Enrico; Baranello, Giovanni; Riva, Daria; Penco, Silvana

    2014-01-01

    Cerebral cavernous malformations (CCMs) are vascular abnormalities that may cause seizures, intracerebral haemorrhages, and focal neurological deficits. Familial form shows an autosomal dominant pattern of inheritance with incomplete penetrance and variable clinical expression. Three genes have been identified causing familial CCM: KRIT1/CCM1, MGC4607/CCM2, and PDCD10/CCM3. Aim of this study is to report additional PDCD10/CCM3 families poorly described so far which account for 10-15% of hereditary cerebral cavernous malformations. Our group investigated 87 consecutive Italian affected individuals (i.e. positive Magnetic Resonance Imaging) with multiple/familial CCM through direct sequencing and Multiplex Ligation-Dependent Probe Amplification (MLPA) analysis. We identified mutations in over 97.7% of cases, and PDCD10/CCM3 accounts for 13.1%. PDCD10/CCM3 molecular screening revealed four already known mutations and four novel ones. The mutated patients show an earlier onset of clinical manifestations as compared to CCM1/CCM2 mutated patients. The study of further families carrying mutations in PDCD10/CCM3 may help define a possible correlation between genotype and phenotype; an accurate clinical follow up of the subjects would help define more precisely whether mutations in PDCD10/CCM3 lead to a characteristic phenotype. PMID:25354366

  4. AID-initiated purposeful mutations in immunoglobulin genes.

    PubMed

    Goodman, Myron F; Scharff, Matthew D; Romesberg, Floyd E

    2007-01-01

    Exposure brings risk to all living organisms. Using a remarkably effective strategy, higher vertebrates mitigate risk by mounting a complex and sophisticated immune response to counter the potentially toxic invasion by a virtually limitless army of chemical and biological antagonists. Mutations are almost always deleterious, but in the case of antibody diversification there are mutations occurring at hugely elevated rates within the variable (V) and switch regions (SR) of the immunoglobulin (Ig) genes that are responsible for binding to and neutralizing foreign antigens throughout the body. These mutations are truly purposeful. This chapter is centered on activation-induced cytidine deaminase (AID). AID is required for initiating somatic hypermutation (SHM) in the V regions and class switch recombination (CSR) in the SR portions of Ig genes. By converting C --> U, while transcription takes place, AID instigates a cascade of mutational events involving error-prone DNA polymerases, base excision and mismatch repair enzymes, and recombination pathways. Together, these processes culminate in highly mutated antibody genes and the B cells expressing antibodies that have achieved optimal antigenic binding undergo positive selection in germinal centers. We will discuss the biological role of AID in this complex process, primarily in terms of its biochemical properties in relation to SHM in vivo. The chapter also discusses recent advances in experimental methods to characterize antibody dynamics as a function of SHM to help elucidate the role that the AID-induced mutations play in tailoring molecular recognition. The emerging experimental techniques help to address long-standing conundrums concerning evolution-imposed constraints on antibody structure and function. PMID:17560274

  5. Mutational analysis of adrenoleukodystrophy (ALD) gene in Japanese ALD patients

    SciTech Connect

    Koike, R.; Onodera, O.; Tabe, H.

    1994-09-01

    Recently a putative ALD gene containing a striking homology with peroxisomal membrane protein (PMP70) has been identified. Besides childhood ALD, various clinical phenotypes have been identified with the onset in adolescence or adulthood (adrenomyeloneuropathy (AMN), adult cerebral ALD or cerebello-brainstem dominant type). The different clinical phenotypes occasionally coexist even in the same family. To investigate if there is a correlation between the clinical phenotypes and genotypes of the mutations in the ALD gene, we have analyzed 43 Japanese ALD patients. By Southern blot analysis, we identified non-overlapping deletions of 0.5 kb to 10.4 kb involving the ALD gene in 3 patients with adult onset cerebello-brainstem dominant type. By detailed direct sequence analysis, we found 4 patients who had point mutations in the coding region. An AMN patient had a point mutation leading to {sup 266}Gly{r_arrow}Arg change, and another patient with adult cerebral ALD had a 3 bp deletion resulting in the loss of glutamic acid at codon 291, which is a conserved amino acid both in ALD protein and PMP70. Two patients with childhood ALD had point mutations leading to {sup 507}Gly{r_arrow}Val, and {sup 518}Arg{r_arrow}Gln, respectively. Since amino acids from 507 to 520 are highly conserved as ATP-binding cassette transporter proteins, mutations in this region are expected to result in dramatic changes of the function of this protein. Although there is a tendancy for mutation in childhood ALD to be present within the ATP-binding site motif, we found two adult patients who had large deletions involving the region. Taken together, strong correlation between genotypes and clinical phenotypes is unlikely to exist, and some other modifying factors might well play an important role for the clinical manifestations of ALD.

  6. Recognizable cerebellar dysplasia associated with mutations in multiple tubulin genes.

    PubMed

    Oegema, Renske; Cushion, Thomas D; Phelps, Ian G; Chung, Seo-Kyung; Dempsey, Jennifer C; Collins, Sarah; Mullins, Jonathan G L; Dudding, Tracy; Gill, Harinder; Green, Andrew J; Dobyns, William B; Ishak, Gisele E; Rees, Mark I; Doherty, Dan

    2015-09-15

    Mutations in alpha- and beta-tubulins are increasingly recognized as a major cause of malformations of cortical development (MCD), typically lissencephaly, pachygyria and polymicrogyria; however, sequencing tubulin genes in large cohorts of MCD patients has detected tubulin mutations in only 1-13%. We identified patients with a highly characteristic cerebellar dysplasia but without lissencephaly, pachygyria and polymicrogyria typically associated with tubulin mutations. Remarkably, in seven of nine patients (78%), targeted sequencing revealed mutations in three different tubulin genes (TUBA1A, TUBB2B and TUBB3), occurring de novo or inherited from a mosaic parent. Careful re-review of the cortical phenotype on brain imaging revealed only an irregular pattern of gyri and sulci, for which we propose the term tubulinopathy-related dysgyria. Basal ganglia (100%) and brainstem dysplasia (80%) were common features. On the basis of in silico structural predictions, the mutations affect amino acids in diverse regions of the alpha-/beta-tubulin heterodimer, including the nucleotide binding pocket. Cell-based assays of tubulin dynamics reveal various effects of the mutations on incorporation into microtubules: TUBB3 p.Glu288Lys and p.Pro357Leu do not incorporate into microtubules at all, whereas TUBB2B p.Gly13Ala shows reduced incorporation and TUBA1A p.Arg214His incorporates fully, but at a slower rate than wild-type. The broad range of effects on microtubule incorporation is at odds with the highly stereotypical clinical phenotype, supporting differential roles for the three tubulin genes involved. Identifying this highly characteristic phenotype is important due to the low recurrence risk compared with the other (recessive) cerebellar dysplasias and the apparent lack of non-neurological medical issues. PMID:26130693

  7. Transposon-induced nuclear mutations that alter chloroplast gene expression

    SciTech Connect

    Barkan, A.

    1992-01-01

    The goal of this project is to use mutant phenotypes as a guide to nuclear genes that determine the timing and localization of chloroplast development The immediate goals are to identify nuclear mutants with defects in chloroplast gene expression from maize lines harboring active Mu transposons; characterize their phenotypes to determine the precise defect in gene expression; clone several of the most interesting mutations by exploiting the transposon tag; and use the clones to further define the roles of these genes in modulating chloroplast gene expression. Three mutants were described earlier that had global defects in chloroplast gene expression. We have found that two of these mutations are allelic. Both alleles have global defects in chloroplast translation initiation, as revealed by the failure to assemble chloroplast mRNAs into polysomes. We have isolated and characterized three new mutants from Mu lines that have novel defects in chloroplast RNA metabolism. We are now ready to begin the task of cloning several of these genes, by using the Mu transposon tag.

  8. Point Mutation in Essential Genes with Loss or Mutation of the Second Allele

    PubMed Central

    Beck-Engeser, Gabriele B.; Monach, Paul A.; Mumberg, Dominik; Yang, Farley; Wanderling, Sherry; Schreiber, Karin; Espinosa, Rafael; Le Beau, Michelle M.; Meredith, Stephen C.; Schreiber, Hans

    2001-01-01

    Antigens that are tumor specific yet retained by tumor cells despite tumor progression offer stable and specific targets for immunologic and possibly other therapeutic interventions. Therefore, we have studied two CD4+ T cell–recognized tumor-specific antigens that were retained during evolution of two ultraviolet-light–induced murine cancers to more aggressive growth. The antigens are ribosomal proteins altered by somatic tumor-specific point mutations, and the progressor (PRO) variants lack the corresponding normal alleles. In the first tumor, 6132A-PRO, the antigen is encoded by a point-mutated L9 ribosomal protein gene. The tumor lacks the normal L9 allele because of an interstitial deletion from chromosome 5. In the second tumor, 6139B-PRO, both alleles of the L26 gene have point mutations, and each encodes a different tumor-specific CD4+ T cell–recognized antigen. Thus, for both L9 and L26 genes, we observe “two hit” kinetics commonly observed in genes suppressing tumor growth. Indeed, reintroduction of the lost wild-type L9 allele into the 6132A-PRO variant suppressed the growth of the tumor cells in vivo. Since both L9 and L26 encode proteins essential for ribosomal biogenesis, complete loss of the tumor-specific target antigens in the absence of a normal allele would abrogate tumor growth. PMID:11489948

  9. Screening for mutations in the PKD1 gene

    SciTech Connect

    Roelfsema, J.H.; Spruit, L.; Ommen, G.J.B. van

    1994-09-01

    With an estimated incidence of 1:1000, polycystic kidney disease is one of the most frequent single-gene disorders in the Caucasian population. The PKD1 gene, which is involved in approximately 85% of all cases, has recently been identified. The gene, which has a very large transcript, is partly situated within a duplicated area. This fact makes mutation screening a difficult task. Thus far, few deletions have been found. Therefore it seems likely that in a large number of patients the disease is caused by point mutations, possibly resulting in stop codons which lead to truncated proteins. A truncated protein can explain a putative dominant negative effect of the mutation. We are able to screen the patients which carry such stop codons with the protein truncation test (PTT). It is relatively easy to screen large stretches of the PKD1 gene with the PTT. The screening will be done on mRNA with the aid of RT-PCR. The reverse transcription reaction can give us the opportunity to specifically obtain the PKD1 transcript.

  10. Canine mdr1 gene mutation in Japan.

    PubMed

    Kawabata, Akiko; Momoi, Yasuyuki; Inoue-Murayama, Miho; Iwasaki, Toshiroh

    2005-11-01

    Frequency of the 4-bp deletion mutant in canine mdr1 gene was examined in 193 dogs of eight breeds in Japan. The mutant allele was found in Collies, Australian Shepherds, and Shetland Sheepdogs, where its respective frequencies were 58.3%, 33.3%, and 1.2%. The MDR1 protein was detected on peripheral blood mononuclear cells (PBMC) from a MDR1/MDR1 dog, but not on PBMC from a mdr1-1Delta/mdr1-1Delta Collie. Rhodamine 123 was extruded from MDR1/MDR1 lymphocytes. That excretion was inhibited by a MDR1 inhibitor, verapamil. On the other hand, Rh123 excretion was not observed from lymphocytes derived from a mdr1-1Delta/mdr1-1Delta Collie. These results indicated that the mutant mdr1 allele also existed in Collie-breed dogs in Japan at high rates and that mdr1-1Delta /mdr1-1Delta dogs have no functional MDR1. PMID:16327220

  11. HFE gene: Structure, function, mutations, and associated iron abnormalities.

    PubMed

    Barton, James C; Edwards, Corwin Q; Acton, Ronald T

    2015-12-15

    The hemochromatosis gene HFE was discovered in 1996, more than a century after clinical and pathologic manifestations of hemochromatosis were reported. Linked to the major histocompatibility complex (MHC) on chromosome 6p, HFE encodes the MHC class I-like protein HFE that binds beta-2 microglobulin. HFE influences iron absorption by modulating the expression of hepcidin, the main controller of iron metabolism. Common HFE mutations account for ~90% of hemochromatosis phenotypes in whites of western European descent. We review HFE mapping and cloning, structure, promoters and controllers, and coding region mutations, HFE protein structure, cell and tissue expression and function, mouse Hfe knockouts and knockins, and HFE mutations in other mammals with iron overload. We describe the pertinence of HFE and HFE to mechanisms of iron homeostasis, the origin and fixation of HFE polymorphisms in European and other populations, and the genetic and biochemical basis of HFE hemochromatosis and iron overload. PMID:26456104

  12. De Novo Mutations in Ataxin-2 Gene and ALS Risk

    PubMed Central

    Laffita-Mesa, José Miguel; Rodríguez Pupo, Jorge Michel; Moreno Sera, Raciel; Vázquez Mojena, Yaimee; Kourí, Vivian; Laguna-Salvia, Leonides; Martínez-Godales, Michael; Valdevila Figueira, José A.; Bauer, Peter O.; Rodríguez-Labrada, Roberto; Zaldívar, Yanetza González; Paucar, Martin; Svenningsson, Per; Pérez, Luís Velázquez

    2013-01-01

    Pathogenic CAG repeat expansion in the ataxin-2 gene (ATXN2) is the genetic cause of spinocerebellar ataxia type 2 (SCA2). Recently, it has been associated with Parkinsonism and increased genetic risk for amyotrophic lateral sclerosis (ALS). Here we report the association of de novo mutations in ATXN2 with autosomal dominant ALS. These findings support our previous conjectures based on population studies on the role of large normal ATXN2 alleles as the source for new mutations being involved in neurodegenerative pathologies associated with CAG expansions. The de novo mutations expanded from ALS/SCA2 non-risk alleles as proven by meta-analysis method. The ALS risk was associated with SCA2 alleles as well as with intermediate CAG lengths in the ATXN2. Higher risk for ALS was associated with pathogenic CAG repeat as revealed by meta-analysis. PMID:23936447

  13. The genetic basis of asymptomatic codon 8 frame-shift (HBB:c25_26delAA) β(0) -thalassaemia homozygotes.

    PubMed

    Jiang, Zhihua; Luo, Hong-Yuan; Huang, Shengwen; Farrell, John J; Davis, Lance; Théberge, Roger; Benson, Katherine A; Riolueang, Suchada; Viprakasit, Vip; Al-Allawi, Nasir A S; Ünal, Sule; Gümrük, Fatma; Akar, Nejat; Başak, A Nazli; Osorio, Leonor; Badens, Catherine; Pissard, Serge; Joly, Philippe; Campbell, Andrew D; Gallagher, Patrick G; Steinberg, Martin H; Forget, Bernard G; Chui, David H K

    2016-03-01

    Two 21-year old dizygotic twin men of Iraqi descent were homozygous for HBB codon 8, deletion of two nucleotides (-AA) frame-shift β(0) -thalassaemia mutation (FSC8; HBB:c25_26delAA). Both were clinically well, had splenomegaly, and were never transfused. They had mild microcytic anaemia (Hb 120-130 g/l) and 98% of their haemoglobin was fetal haemoglobin (HbF). Both were carriers of Hph α-thalassaemia mutation. On the three major HbF quantitative trait loci (QTL), the twins were homozygous for G>A HBG2 Xmn1 site at single nucleotide polymorphism (SNP) rs7482144, homozygous for 3-bp deletion HBS1L-MYB intergenic polymorphism (HMIP) at rs66650371, and heterozygous for the A>C BCL11A intron 2 polymorphism at rs766432. These findings were compared with those found in 22 other FSC8 homozygote patients: four presented with thalassaemia intermedia phenotype, and 18 were transfusion dependent. The inheritance of homozygosity for HMIP 3-bp deletion at rs66650371 and heterozygosity for Hph α-thalassaemia mutation was found in the twins and not found in any of the other 22 patients. Further studies are needed to uncover likely additional genetic variants that could contribute to the exceptionally high HbF levels and mild phenotype in these twins. PMID:26771086

  14. Multiple pathways of selected gene amplification during adaptive mutation.

    PubMed

    Kugelberg, Elisabeth; Kofoid, Eric; Reams, Andrew B; Andersson, Dan I; Roth, John R

    2006-11-14

    In a phenomenon referred to as "adaptive mutation," a population of bacterial cells with a mutation in the lac operon (lac-) accumulates Lac+ revertants during prolonged exposure to selective growth conditions (lactose). Evidence was provided that selective conditions do not increase the mutation rate but instead favor the growth of rare cells with a duplication of the leaky lac allele. A further increase in copy number (amplification) improves growth and increases the likelihood of a sequence change by adding more mutational targets to the clone (cells and lac copies per cell). These duplications and amplifications are described here. Before selection, cells with large (134-kb) lac duplications and long junction sequences (>1 kb) were common (0.2%). The same large repeats were found after selection in cells with a low-copy-number lac amplification. Surprisingly, smaller repeats (average, 34 kb) were found in high-copy-number amplifications. The small-repeat duplications form when deletions modify a preexisting large-repeat duplication. The shorter repeat size allowed higher lac amplification and better growth on lactose. Thus, selection favors a succession of gene-amplification types that make sequence changes more probable by adding targets. These findings are relevant to genetic adaptation in any biological systems in which fitness can be increased by adding gene copies (e.g., cancer and bacterial drug resistance). PMID:17082307

  15. Heterogeneous AVPR2 gene mutations in congenital nephrogenic diabetes insipidus

    SciTech Connect

    Wildin, R.S.; Antush, M.J.; Bennett, R.L.; Schoof, J.M.; Scott, C.R. )

    1994-08-01

    Mutations in the AVPR2 gene encoding the receptor for arginine vasopressin in the kidney (V2 ADHR) have been reported in patients with congenital nephrogenic diabetes insipidus, a predominantly X-linked disorder of water homeostasis. The authors have used restriction-enzyme analysis and direct DNA sequencing of genomic PCR product to evaluate the AVPR2 gene in 11 unrelated affected males. Each patient has a different DNA sequence variation, and only one matches a previously reported mutation. Cosegregation of the variations with nephrogenic diabetes insipidus was demonstrated for two families, and a de novo mutation was accomplished in one family. All the variations predict frameshifts, truncations, or nonconservative amino acid substitutions in evolutionarily conserved positions in the V2 ADHR and related receptors. Of interest, a 28-bp deletion is found in one patient, while another, unrelated patient has a tandem duplication of the same 28-bp segment, suggesting that both resulted from the same unusual unequal crossing-over mechanism facilitated by 9-mer direct sequence repeats. Since the V2 ADHR is a member of the seven-transmembrane-domain, G-protein-coupled receptor superfamily, the loss-of-function mutations from this study and others provide important clues to the structure-function relationship of this and related receptors. 55 refs., 4 figs., 2 tabs.

  16. Mutations in COL1A1 Gene Change Dentin Nanostructure.

    PubMed

    Duan, Xiaohong; Liu, Zhenxia; Gan, Yunna; Xia, Dan; Li, Qiang; Li, Yanling; Yang, Jiaji; Gao, Shan; Dong, Mingdong

    2016-04-01

    Although many studies have attempted to associate specific gene mutations with dentin phenotypic severity, it remains unknown how the mutations in COL1A1 gene influence the mechanical behavior of dentin collagen and matrix. Here, we reported one osteogenesis imperfecta (OI) pedigree caused by two new inserting mutations in exon 5 of COL1A1 (NM_000088.3:c.440_441insT;c.441_442insA), which resulted in the unstable expression of COL1A1 mRNA and half quantity of procollagen production. We investigated the morphological and mechanical features of proband's dentin using atomic force microscope (AFM), scanning electron microscope, and transmission electron microscope. Increased D-periodic spacing, variably enlarged collagen fibrils coating with fewer minerals were found in the mutated collagen. AFM analysis demonstrated rougher dentin surface and sparsely decreased Young's modulus in proband's dentin. We believe that our findings provide new insights into the genetic-/nano- mechanisms of dentin diseases, and may well explain OI dentin features with reduced mechanical strength and a lower crosslinked density. Anat Rec, 299:511-519, 2016. © 2015 Wiley Periodicals, Inc. PMID:26694865

  17. MUFFINN: cancer gene discovery via network analysis of somatic mutation data.

    PubMed

    Cho, Ara; Shim, Jung Eun; Kim, Eiru; Supek, Fran; Lehner, Ben; Lee, Insuk

    2016-01-01

    A major challenge for distinguishing cancer-causing driver mutations from inconsequential passenger mutations is the long-tail of infrequently mutated genes in cancer genomes. Here, we present and evaluate a method for prioritizing cancer genes accounting not only for mutations in individual genes but also in their neighbors in functional networks, MUFFINN (MUtations For Functional Impact on Network Neighbors). This pathway-centric method shows high sensitivity compared with gene-centric analyses of mutation data. Notably, only a marginal decrease in performance is observed when using 10 % of TCGA patient samples, suggesting the method may potentiate cancer genome projects with small patient populations. PMID:27333808

  18. Molecular screening of pituitary adenomas for gene mutations and rearrangements

    SciTech Connect

    Herman, V.; Drazin, N.Z.; Gonskey, R.; Melmed, S. )

    1993-07-01

    Although pituitary tumors arise as benign monoclonal neoplasms, genetic alterations have not readily been identified in these adenomas. The authors studied restriction fragment abnormalities involving the GH gene locus, and mutations in the p53 and H-, K-, and N-ras genes in 22 human GH cell adenomas. Twenty two nonsecretory adenomas were also examined for p53 and ras gene mutations. Seven prolactinoma DNA samples were tested for deletions in the multiple endocrine neoplasia-1 (MEN-1) locus, as well as for rearrangements in the hst gene, a member of the fibroblast growth factor family. In DNA from GH-cell adenomas, identical GH restriction patterns were detected in both pituitary and lymphocyte DNA in all patients and in one patient with a mixed GH-TSH cell adenoma. Using polymerase chain reaction (PCR)-single stranded conformation polymorphism analysis, no mutations were detected in exons 5, 6, 7 and 8 of the p53 gene in GH cell adenomas nor in 22 nonsecretory adenomas. Codons 12/13 and 61 of H-ras, K-ras, and N-ras genes were also intact on GH cell adenomas and in nonsecretory adenomas. Site-specific probes for chromosome 11q13 including, PYGM, D11S146, and INT2 were used in 7 sporadic PRL-secreting adenomas to detect deletions of the MEN-1 locus on chromosome 11. One patient was identified with a loss of 11p, and the remaining 6 patients did not demonstrate loss of heterozygosity in the pituitary 11q13 locus, compared to lymphocyte DNA. None of these patients demonstrated hst gene rearrangements which also maps to this locus. These results show that p53 and ras gene mutations are not common events in the pathogenesis of acromegaly and nonsecretory tumors. Although hst gene rearrangements and deletions of 11q13 are not associated with sporadic PRl-cell adenoma formation, a single patient was detected with a partial loss of chromosome 11, including the putative MEN-1 site. 31 refs., 5 figs., 2 tabs.

  19. Next generation sequencing in synovial sarcoma reveals novel gene mutations.

    PubMed

    Vlenterie, Myrella; Hillebrandt-Roeffen, Melissa H S; Flucke, Uta E; Groenen, Patricia J T A; Tops, Bastiaan B J; Kamping, Eveline J; Pfundt, Rolph; de Bruijn, Diederik R H; Geurts van Kessel, Ad H M; van Krieken, Han J H J M; van der Graaf, Winette T A; Versleijen-Jonkers, Yvonne M H

    2015-10-27

    Over 95% of all synovial sarcomas (SS) share a unique translocation, t(X;18), however, they show heterogeneous clinical behavior. We analyzed multiple SS to reveal additional genetic alterations besides the translocation. Twenty-six SS from 22 patients were sequenced for 409 cancer-related genes using the Comprehensive Cancer Panel (Life Technologies, USA) on an Ion Torrent platform. The detected variants were verified by Sanger sequencing and compared to matched normal DNAs. Copy number variation was assessed in six tumors using the Oncoscan array (Affymetrix, USA). In total, eight somatic mutations were detected in eight samples. These mutations have not been reported previously in SS. Two of these, in KRAS and CCND1, represent known oncogenic mutations in other malignancies. Additional mutations were detected in RNF213, SEPT9, KDR, CSMD3, MLH1 and ERBB4. DNA alterations occurred more often in adult tumors. A distinctive loss of 6q was found in a metastatic lesion progressing under pazopanib, but not in the responding lesion. Our results emphasize t(X;18) as a single initiating event in SS and as the main oncogenic driver. Our results also show the occurrence of additional genetic events, mutations or chromosomal aberrations, occurring more frequently in SS with an onset in adults. PMID:26415226

  20. Next generation sequencing in synovial sarcoma reveals novel gene mutations

    PubMed Central

    Vlenterie, Myrella; Hillebrandt-Roeffen, Melissa H.S.; Flucke, Uta E.; Groenen, Patricia J.T.A.; Tops, Bastiaan B.J.; Kamping, Eveline J.; Pfundt, Rolph; de Bruijn, Diederik R.H.; van Kessel, Ad H.M. Geurts; van Krieken, Han J.H.J.M.; van der Graaf, Winette T.A.; Versleijen-Jonkers, Yvonne M.H.

    2015-01-01

    Over 95% of all synovial sarcomas (SS) share a unique translocation, t(X;18), however, they show heterogeneous clinical behavior. We analyzed multiple SS to reveal additional genetic alterations besides the translocation. Twenty-six SS from 22 patients were sequenced for 409 cancer-related genes using the Comprehensive Cancer Panel (Life Technologies, USA) on an Ion Torrent platform. The detected variants were verified by Sanger sequencing and compared to matched normal DNAs. Copy number variation was assessed in six tumors using the Oncoscan array (Affymetrix, USA). In total, eight somatic mutations were detected in eight samples. These mutations have not been reported previously in SS. Two of these, in KRAS and CCND1, represent known oncogenic mutations in other malignancies. Additional mutations were detected in RNF213, SEPT9, KDR, CSMD3, MLH1 and ERBB4. DNA alterations occurred more often in adult tumors. A distinctive loss of 6q was found in a metastatic lesion progressing under pazopanib, but not in the responding lesion. Our results emphasize t(X;18) as a single initiating event in SS and as the main oncogenic driver. Our results also show the occurrence of additional genetic events, mutations or chromosomal aberrations, occurring more frequently in SS with an onset in adults. PMID:26415226

  1. Single molecule targeted sequencing for cancer gene mutation detection.

    PubMed

    Gao, Yan; Deng, Liwei; Yan, Qin; Gao, Yongqian; Wu, Zengding; Cai, Jinsen; Ji, Daorui; Li, Gailing; Wu, Ping; Jin, Huan; Zhao, Luyang; Liu, Song; Ge, Liangjin; Deem, Michael W; He, Jiankui

    2016-01-01

    With the rapid decline in cost of sequencing, it is now affordable to examine multiple genes in a single disease-targeted clinical test using next generation sequencing. Current targeted sequencing methods require a separate step of targeted capture enrichment during sample preparation before sequencing. Although there are fast sample preparation methods available in market, the library preparation process is still relatively complicated for physicians to use routinely. Here, we introduced an amplification-free Single Molecule Targeted Sequencing (SMTS) technology, which combined targeted capture and sequencing in one step. We demonstrated that this technology can detect low-frequency mutations using artificially synthesized DNA sample. SMTS has several potential advantages, including simple sample preparation thus no biases and errors are introduced by PCR reaction. SMTS has the potential to be an easy and quick sequencing technology for clinical diagnosis such as cancer gene mutation detection, infectious disease detection, inherited condition screening and noninvasive prenatal diagnosis. PMID:27193446

  2. Single molecule targeted sequencing for cancer gene mutation detection

    PubMed Central

    Gao, Yan; Deng, Liwei; Yan, Qin; Gao, Yongqian; Wu, Zengding; Cai, Jinsen; Ji, Daorui; Li, Gailing; Wu, Ping; Jin, Huan; Zhao, Luyang; Liu, Song; Ge, Liangjin; Deem, Michael W.; He, Jiankui

    2016-01-01

    With the rapid decline in cost of sequencing, it is now affordable to examine multiple genes in a single disease-targeted clinical test using next generation sequencing. Current targeted sequencing methods require a separate step of targeted capture enrichment during sample preparation before sequencing. Although there are fast sample preparation methods available in market, the library preparation process is still relatively complicated for physicians to use routinely. Here, we introduced an amplification-free Single Molecule Targeted Sequencing (SMTS) technology, which combined targeted capture and sequencing in one step. We demonstrated that this technology can detect low-frequency mutations using artificially synthesized DNA sample. SMTS has several potential advantages, including simple sample preparation thus no biases and errors are introduced by PCR reaction. SMTS has the potential to be an easy and quick sequencing technology for clinical diagnosis such as cancer gene mutation detection, infectious disease detection, inherited condition screening and noninvasive prenatal diagnosis. PMID:27193446

  3. Mutations in the pericentrin (PCNT) gene cause primordial dwarfism.

    PubMed

    Rauch, Anita; Thiel, Christian T; Schindler, Detlev; Wick, Ursula; Crow, Yanick J; Ekici, Arif B; van Essen, Anthonie J; Goecke, Timm O; Al-Gazali, Lihadh; Chrzanowska, Krystyna H; Zweier, Christiane; Brunner, Han G; Becker, Kristin; Curry, Cynthia J; Dallapiccola, Bruno; Devriendt, Koenraad; Dörfler, Arnd; Kinning, Esther; Megarbane, André; Meinecke, Peter; Semple, Robert K; Spranger, Stephanie; Toutain, Annick; Trembath, Richard C; Voss, Egbert; Wilson, Louise; Hennekam, Raoul; de Zegher, Francis; Dörr, Helmuth-Günther; Reis, André

    2008-02-01

    Fundamental processes influencing human growth can be revealed by studying extreme short stature. Using genetic linkage analysis, we find that biallelic loss-of-function mutations in the centrosomal pericentrin (PCNT) gene on chromosome 21q22.3 cause microcephalic osteodysplastic primordial dwarfism type II (MOPD II) in 25 patients. Adults with this rare inherited condition have an average height of 100 centimeters and a brain size comparable to that of a 3-month-old baby, but are of near-normal intelligence. Absence of PCNT results in disorganized mitotic spindles and missegregation of chromosomes. Mutations in related genes are known to cause primary microcephaly (MCPH1, CDK5RAP2, ASPM, and CENPJ). PMID:18174396

  4. Co-inheritance of novel ATRX gene mutation and globin (α & β) gene mutations in transfusion dependent beta-thalassemia patients.

    PubMed

    Al-Nafie, Awatif N; Borgio, J Francis; AbdulAzeez, Sayed; Al-Suliman, Ahmed M; Qaw, Fuad S; Naserullah, Zaki A; Al-Jarrash, Sana; Al-Madan, Mohammed S; Al-Ali, Rudaynah A; AlKhalifah, Mohammed A; Al-Muhanna, Fahad; Steinberg, Martin H; Al-Ali, Amein K

    2015-06-01

    α-Thalassemia X-linked mental retardation syndrome is a rare inherited intellectual disability disorder due to mutations in the ATRX gene. In our previous study of the prevalence of β-thalassemia mutations in the Eastern Province of Saudi Arabia, we confirmed the widespread coinheritance of α-thalassemia mutation. Some of these subjects have a family history of mental retardation, the cause of which is unknown. Therefore, we investigated the presence or absence of mutations in the ATRX gene in these patients. Three exons of the ATRX gene and their flanking regions were directly sequenced. Only four female transfusion dependent β-thalassemia patients were found to be carriers of a novel mutation in the ATRX gene. Two of the ATRX gene mutations, c.623delA and c.848T>C were present in patients homozygous for IVS I-5(G→C) and homozygous for Cd39(C → T) β-thalassemia mutation, respectively. While the other two that were located in the intronic region (flanking regions), were present in patients homozygous for Cd39(C → T) β-thalassemia mutation. The two subjects with the mutations in the coding region had family members with mental retardation, which suggests that the novel frame shift mutation and the missense mutation at coding region of ATRX gene are involved in ATRX syndrome. PMID:25976463

  5. Optimization of gene sequences under constant mutational pressure and selection

    NASA Astrophysics Data System (ADS)

    Kowalczuk, M.; Gierlik, A.; Mackiewicz, P.; Cebrat, S.; Dudek, M. R.

    1999-12-01

    We have analyzed the influence of constant mutational pressure and selection on the nucleotide composition of DNA sequences of various size, which were represented by the genes of the Borrelia burgdorferi genome. With the help of MC simulations we have found that longer DNA sequences accumulate much less base substitutions per sequence length than short sequences. This leads us to the conclusion that the accuracy of replication may determine the size of genome.

  6. Driver Gene Mutations in Stools of Colorectal Carcinoma Patients Detected by Targeted Next-Generation Sequencing.

    PubMed

    Armengol, Gemma; Sarhadi, Virinder K; Ghanbari, Reza; Doghaei-Moghaddam, Masoud; Ansari, Reza; Sotoudeh, Masoud; Puolakkainen, Pauli; Kokkola, Arto; Malekzadeh, Reza; Knuutila, Sakari

    2016-07-01

    Detection of driver gene mutations in stool DNA represents a promising noninvasive approach for screening colorectal cancer (CRC). Amplicon-based next-generation sequencing (NGS) is a good option to study mutations in many cancer genes simultaneously and from a low amount of DNA. Our aim was to assess the feasibility of identifying mutations in 22 cancer driver genes with Ion Torrent technology in stool DNA from a series of 65 CRC patients. The assay was successful in 80% of stool DNA samples. NGS results showed 83 mutations in cancer driver genes, 29 hotspot and 54 novel mutations. One to five genes were mutated in 75% of cases. TP53, KRAS, FBXW7, and SMAD4 were the top mutated genes, consistent with previous studies. Of samples with mutations, 54% presented concomitant mutations in different genes. Phosphatidylinositol 3-kinase/mitogen-activated protein kinase pathway genes were mutated in 70% of samples, with 58% having alterations in KRAS, NRAS, or BRAF. Because mutations in these genes can compromise the efficacy of epidermal growth factor receptor blockade in CRC patients, identifying mutations that confer resistance to some targeted treatments may be useful to guide therapeutic decisions. In conclusion, the data presented herein show that NGS procedures on stool DNA represent a promising tool to detect genetic mutations that could be used in the future for diagnosis, monitoring, or treating CRC. PMID:27155048

  7. Myostatin gene mutated mice induced with tale nucleases.

    PubMed

    Zhou, Fangfang; Sun, Ruilin; Chen, Hongyan; Fei, Jian; Lu, Daru

    2015-01-01

    Myostain gene (MSTN) is expressed primarily in skeletal muscle, and negatively regulates skeletal muscle mass; it has been suggested that mice with MSTN inhibition have reduced adiposity and improved insulin sensitivity. Therefore, it is important to establish a fast and effective gene editing method. In this report, we established the myostatin mutated-mouse model by microinjection of Transcription Activator-Like Effector Nucleases (TALENs) mRNA within the mouse fertilized oocytes and achieved high rates of mutagenesis of the mouse MSTN in C57BL/6J. Six of 45 born mice carried target mutations and we appointed one as the parental mating with wild mouse to produce the F1 and backcross to produce the F2 generation. All the mutations of the mice were examined quickly and efficiently by high-resolution melting curve analysis (HRMA) and then verified by direct sequencing. We obtained the homozygous of the F2 generation which transmitted the mutant alleles to the progeny with 100% efficiency. Mutant mice exhibited increases in muscle mass comparable to those observed in wild-type mice. Therefore, combining TALEN-mediated gene targeting with HRMA technology is a superior method of constructing genetically modified mice through microinjection in the mouse fertilized oocytes with high efficiency and short time of selection. PMID:25695746

  8. Mutation in the cystatin C gene causes hereditary brain hemorrhage.

    PubMed

    Palsdottir, A; Abrahamson, M; Thorsteinsson, L; Arnason, A; Olafsson, I; Grubb, A; Jensson, O

    1989-01-01

    Hereditary cystatin C amyloid angiopathy (HCCAA) is an autosomal dominant disorder leading to massive brain hemorrhage and death in young adults (Jensson et al., 1987). A variant of a potent inhibitor of cysteine proteinases, cystatin C (Barrett et al., 1984), is deposited as amyloid fibrils in the cerebral arteries of the patients (Ghiso et al., 1986). We have used the full length cystatin C cDNA probe (Abrahamson et al., 1987) to demonstrate a mutation in the codon for leucine at position 68, which abolishes an Alu I restriction site in cystatin C gene of the HCCAA patients. The Alu I marker has been used to show that this mutation is transmitted only in the affected members in all eight families investigated, proving that the mutated cystatin C gene causes HCCAA. This DNA marker will be useful for the diagnosis of HCCAA in patients, asymptomatic affected individuals and also for pre-natal diagnosis. HCCAA is the first human disorder known to be caused by an abnormal gene for a cysteine proteinase inhibitor. PMID:2602420

  9. The DCC gene: Structural analysis and mutations in colorectal carcinomas

    SciTech Connect

    Cho, K.R.; Oliner, J.D.; Simons, J.W.; Hedrick, L.; Preisinger, A.C.; Vogelstein, B. ); Fearon, E.R. ); Hedge, P. ); Silverman, G.A. )

    1994-02-01

    DCC is a candidate tumor-suppressor gene encoding a protein with sequence similarity to cell adhesion molecules such as N-CAM. A set of overlapping YAC clones that contains the entire DCC coding region was isolated. Studies of this YAC contig showed that the DCC gene spans approximately 1.4 Mb. For elucidation of exon-intron structure, lambda phage clones containing all known coding sequences were isolated from a genomic library. These clones were used to demonstrate the existence of 29 DCC exons, and the sequences of the exon-intron boundaries were determined for each. Twenty-three polymorphic markers from chromosome 18 were then studied in a panel of primary colorectal tumors that had lost some, but not all, of chromosome 18. In most of these tumors, the region that was lost included DCC. Finally, Southern blot and PCR-based approaches were used to search for subtle mutations in several DCC exons. One tumor that had a point mutation in exon 28 was found, resulting in a proline to histidine substitution. A second tumor with a point mutation in intron 13 was also found. The regional map and genomic structure of DCC should provide the means to more extensively study DCC gene alterations and protein function in normal and neoplastic cells. 23 refs., 4 figs., 1 tab.

  10. Diagnostic Dilemma of Hb Perth [β32(B14)Leu→Pro; HBB: c.98T > C] in Mainland China.

    PubMed

    Jiang, Hua; Yan, Jin-Mei; Li, Jian; Xie, Xing-Mei; Li, Dong-Zhi

    2016-06-01

    Unstable hemoglobin (Hb) variants represent a rare etiology of congenital hemolytic anemia. Correct diagnosis can be a challenge due to the relative rarity or lack of awareness of this disorder. We report an 18-month-old girl, who presented with a long-standing hemolytic anemia. Her diagnosis of unstable Hb Perth [β32(B14)Leu→Pro, HBB: c.98T > C] had not been made until gene sequencing of the β-globin gene was performed. PMID:27117570

  11. Mild Microcytic Anemia in an Infant with a Compound Heterozygosity for Hb C (HBB: c.19G > A) and Hb Osu Christiansborg (HBB: c.157G > A).

    PubMed

    Boucher, Maria O; Chui, David H K; Woda, Bruce A; Newburger, Peter E

    2016-06-01

    We report an infant with a compound heterozygosity for Hb C (HBB: c.19G > A) and Hb Osu Christiansborg (HBB: c.157G > A) and a phenotype of mild microcytic anemia with target cell morphology but without overt hemolysis. PMID:27117572

  12. Mutational analysis of genes coding for cell surface proteins in colorectal cancer cell lines reveal novel altered pathways, druggable mutations and mutated epitopes for targeted therapy

    PubMed Central

    Correa, Bruna R.; Bettoni, Fabiana; Koyama, Fernanda C.; Navarro, Fabio C.P.; Perez, Rodrigo O.; Mariadason, John; Sieber, Oliver M.; Strausberg, Robert L.; Simpson, Andrew J.G.; Jardim, Denis L.F.; Reis, Luiz Fernando L.; Parmigiani, Raphael B.; Galante, Pedro A.F.; Camargo, Anamaria A.

    2014-01-01

    We carried out a mutational analysis of 3,594 genes coding for cell surface proteins (Surfaceome) in 23 colorectal cancer cell lines, searching for new altered pathways, druggable mutations and mutated epitopes for targeted therapy in colorectal cancer. A total of 3,944 somatic non-synonymous substitutions and 595 InDels, occurring in 2,061 (57%) Surfaceome genes were catalogued. We identified 48 genes not previously described as mutated in colorectal tumors in the TCGA database, including genes that are mutated and expressed in >10% of the cell lines (SEMA4C, FGFRL1, PKD1, FAM38A, WDR81, TMEM136, SLC36A1, SLC26A6, IGFLR1). Analysis of these genes uncovered important roles for FGF and SEMA4 signaling in colorectal cancer with possible therapeutic implications. We also found that cell lines express on average 11 druggable mutations, including frequent mutations (>20%) in the receptor tyrosine kinases AXL and EPHA2, which have not been previously considered as potential targets for colorectal cancer. Finally, we identified 82 cell surface mutated epitopes, however expression of only 30% of these epitopes was detected in our cell lines. Notwithstanding, 92% of these epitopes were expressed in cell lines with the mutator phenotype, opening new venues for the use of “general” immune checkpoint drugs in this subset of patients. PMID:25193853

  13. Screening of sarcomere gene mutations in young athletes with abnormal findings in electrocardiography: identification of a MYH7 mutation and MYBPC3 mutations.

    PubMed

    Kadota, Chika; Arimura, Takuro; Hayashi, Takeharu; Naruse, Taeko K; Kawai, Sachio; Kimura, Akinori

    2015-10-01

    There is an overlap between the physiological cardiac remodeling associated with training in athletes, the so-called athlete's heart, and mild forms of hypertrophic cardiomyopathy (HCM), the most common hereditary cardiac disease. HCM is often accompanied by unfavorable outcomes including a sudden cardiac death in the adolescents. Because one of the initial signs of HCM is abnormality in electrocardiogram (ECG), athletes may need to monitor for ECG findings to prevent any unfavorable outcomes. HCM is caused by mutations in genes for sarcomere proteins, but there is no report on the systematic screening of gene mutations in athletes. One hundred and two genetically unrelated young Japanese athletes with abnormal ECG findings were the subjects for the analysis of four sarcomere genes, MYH7, MYBPC3, TNNT2 and TNNI3. We found that 5 out of 102 (4.9%) athletes carried mutations: a heterozygous MYH7 Glu935Lys mutation, a heterozygous MYBPC3 Arg160Trp mutation and another heterozygous MYBPC3 Thr1046Met mutation, all of which had been reported as HCM-associated mutations, in 1, 2 and 2 subjects, respectively. This is the first study of systematic screening of sarcomere gene mutations in a cohort of athletes with abnormal ECG, demonstrating the presence of sarcomere gene mutations in the athlete's heart. PMID:26178432

  14. [Osteochondrodysplasia determined genetically by a collagen type II gene mutation].

    PubMed

    Czarny-Ratajczak, M; Rogala, P; Wolnik-Brzozowska, D; Latos-Bieleńska, A

    2001-01-01

    Chondrodysplasias are a heterogenous group of skeletal dysplasias, affecting the growing cartilage. The main part of chondrodysplasias is caused by mutations in various types of collagen genes. The current classification within this group of disorder relies on clinical, histological and radiographic features. Type II collagenopathies comprise part of chondrodysplasias, consisting of hereditary disorders caused by defects in the type II collagen. Collagen type II is coded by a large gene--COL2A1. The chromosomal location for the human COL2A1 gene is 12q13.11-q13.12. Defects in collagen type II are caused by point mutations in the COL2A1 gene. Type II collagenopathies form a wide spectrum of clinical severity ranging from lethal achondrogenesis type II, hypochondrogenesis, through severe forms like spondyloepiphyseal dysplasia congenita, spondyloepimetaphyseal dysplasia congenita, Marshall syndrome, to the mild forms--Stickler syndrome and early osteoarthritis. The pathological changes in the patients are observed in the growth plate, nucleus pulposus and vitreous body, where the abnormal collagen type II is distributed. This article presents the genetic background of collagenopathies type II and the results of current molecular studies of the patients. Both the molecular and the clinical studies may promise a better understanding of the relationship between the genotype and the phenotype. We present the patients, who were diagnosed at the Department of Medical Genetics and in the Orthopaedic Department in Poznań. PMID:11481990

  15. The clinical implications of gene mutations in chronic lymphocytic leukaemia.

    PubMed

    Rossi, Davide; Gaidano, Gianluca

    2016-04-12

    Chronic lymphocytic leukaemia (CLL) is a molecularly heterogeneous disease as revealed by recent genomic studies. Among genetic lesions that are recurrent in CLL, few clinically validated prognostic markers, such as TP53 mutations and 17p deletion, are available for the use in clinical practice to guide treatment decisions. Recently, several novel molecular markers have been identified in CLL. Though these mutations have not yet gained the qualification of predictive factors for treatment tailoring, they have shown to be promising to refine the prognostic stratification of patients. The introduction of targeted drugs is changing the genetics of CLL, and has disclosed the acquisition of previously unexpected drug resistant mutations in signalling pathway genes. Ultra-deep next generation sequencing has allowed to reach deep levels of resolution of the genetic portrait of CLL providing a precise definition of its subclonal genetic architecture. This approach has shown that small subclones harbouring drug resistant mutations anticipate the development of a chemorefractory phenotype. Here we review the recent advances in the definition of the genomic landscape of CLL and the ongoing research to characterise the clinical implications of old and new molecular lesions in the setting of both conventional chemo-immunotherapy and targeted drugs. PMID:27031852

  16. The clinical implications of gene mutations in chronic lymphocytic leukaemia

    PubMed Central

    Rossi, Davide; Gaidano, Gianluca

    2016-01-01

    Chronic lymphocytic leukaemia (CLL) is a molecularly heterogeneous disease as revealed by recent genomic studies. Among genetic lesions that are recurrent in CLL, few clinically validated prognostic markers, such as TP53 mutations and 17p deletion, are available for the use in clinical practice to guide treatment decisions. Recently, several novel molecular markers have been identified in CLL. Though these mutations have not yet gained the qualification of predictive factors for treatment tailoring, they have shown to be promising to refine the prognostic stratification of patients. The introduction of targeted drugs is changing the genetics of CLL, and has disclosed the acquisition of previously unexpected drug resistant mutations in signalling pathway genes. Ultra-deep next generation sequencing has allowed to reach deep levels of resolution of the genetic portrait of CLL providing a precise definition of its subclonal genetic architecture. This approach has shown that small subclones harbouring drug resistant mutations anticipate the development of a chemorefractory phenotype. Here we review the recent advances in the definition of the genomic landscape of CLL and the ongoing research to characterise the clinical implications of old and new molecular lesions in the setting of both conventional chemo-immunotherapy and targeted drugs. PMID:27031852

  17. Thyroglobulin gene mutations in Chinese patients with congenital hypothyroidism.

    PubMed

    Hu, Xuyun; Chen, Rongyu; Fu, Chunyun; Fan, Xin; Wang, Jin; Qian, Jiale; Yi, Shang; Li, Chuan; Luo, Jingsi; Su, Jiasun; Zhang, Shujie; Xie, Bobo; Zheng, Haiyang; Lai, Yunli; Chen, Yun; Li, Hongdou; Gu, Xuefan; Chen, Shaoke; Shen, Yiping

    2016-03-01

    Mutations in Thyroglobulin (TG) are common genetic causes of congenital hypothyroidism (CH). But the TG mutation spectrum and its frequency in Chinese CH patients have not been investigated. Here we conducted a genetic screening of TG gene in a cohort of 382 Chinese CH patients. We identified 22 rare non-polymorphic variants including six truncating variants and 16 missense variants of unknown significance (VUS). Seven patients carried homozygous pathogenic variants, and three patients carried homozygous or compound heterozygous VUS. 48 out of 382 patients carried one of 18 heterozygous VUS which is significantly more often than their occurrences in control cohort (P < 0.0001). Unique to Asian population, the c.274+2T>G variant is the most common pathogenic variant with an allele frequency of 0.021. The prevalence of CH due to TG gene defect in Chinese population was estimated to be approximately 1/101,000. Our study uncovered ethnicity specific TG mutation spectrum and frequency. PMID:26777470

  18. Mutations and a polymorphism in the tuberin gene

    SciTech Connect

    Northup, H.; Rodriguez, J.A.; Au, K.S.; Rodriguez, E.

    1994-09-01

    Two deletions and a polymorphism have been identified in the recently described tuberin gene. The tuberin gene (designated TSC2) when mutated causes tuberous sclerosis complex (TSC). Fifty-three affected individuals (30 from families with multiple affected and 23 isolated cases) were screened with the tuberin cDNA for gross deletions or rearrangements. Both deletions were found in families with multiple affected members (family designations: HOU-5 and HOU-22). The approximate size of the deletion in HOU-5 is ten kilobases and eliminates a BamHI restriction site. The deletion includes a portion of the 5{prime} half of the tuberin cDNA. The deletion in HOU-22 occurs in the 3{prime} half of the gene. The deletions are being further characterized. A HindIII restriction site polymorphism was detected by a 0.5 kilobase probe from the 5{prime} coding region of the tuberin gene in an individual from a family linked to chromosome 9 (posterior probability of linkage 93%). The polymorphism did not segregate with TSC in the family. The family had previously been shown to give negative results with multiple markers on chromosome 16. The polymorphism was also seen in one individual among a panel of 20 randomly selected unaffected individuals. Thirty-five additional affected probands (five from families and 30 isolated cases) are being tested with the tuberin cDNA. Testing for subtle mutations is our panel of 80 affected probands is underway utilizing SSCP. Additional mutations or polymorphisms detected will be reported. The tuberin cDNA was a kind gift of The European Chromosome 16 Tuberous Sclerosis Consortium.

  19. Molecular basis of human CD36 gene mutations.

    PubMed

    Rać, Monika Ewa; Safranow, Krzysztof; Poncyljusz, Wojciech

    2007-01-01

    CD36 is a transmembrane glycoprotein of the class B scavenger receptor family. The CD36 gene is located on chromosome 7 q11.2 and is encoded by 15 exons. Defective CD36 is a likely candidate gene for impaired fatty acid metabolism, glucose intolerance, atherosclerosis, arterial hypertension, diabetes, cardiomyopathy, Alzheimer disease, and modification of the clinical course of malaria. Contradictory data concerning the effects of antiatherosclerotic drugs on CD36 expression indicate that further investigation of the role of CD36 in the development of atherosclerosis may be important for the prevention and treatment of this disease. This review summarizes current knowledge of CD36 gene structure, splicing, and mutations and the molecular, metabolic, and clinical consequences of these phenomena. PMID:17673938

  20. Molecular Basis of Human CD36 Gene Mutations

    PubMed Central

    Rać, Monika Ewa; Safranow, Krzysztof; Poncyljusz, Wojciech

    2007-01-01

    CD36 is a transmembrane glycoprotein of the class B scavenger receptor family. The CD36 gene is located on chromosome 7 q11.2 and is encoded by 15 exons. Defective CD36 is a likely candidate gene for impaired fatty acid metabolism, glucose intolerance, atherosclerosis, arterial hypertension, diabetes, cardiomyopathy, Alzheimer disease, and modification of the clinical course of malaria. Contradictory data concerning the effects of antiatherosclerotic drugs on CD36 expression indicate that further investigation of the role of CD36 in the development of atherosclerosis may be important for the prevention and treatment of this disease. This review summarizes current knowledge of CD36 gene structure, splicing, and mutations and the molecular, metabolic, and clinical consequences of these phenomena. PMID:17673938

  1. Identification of Gene Mutations and Fusion Genes in Patients with Sézary Syndrome.

    PubMed

    Prasad, Aparna; Rabionet, Raquel; Espinet, Blanca; Zapata, Luis; Puiggros, Anna; Melero, Carme; Puig, Anna; Sarria-Trujillo, Yaris; Ossowski, Stephan; Garcia-Muret, Maria P; Estrach, Teresa; Servitje, Octavio; Lopez-Lerma, Ingrid; Gallardo, Fernando; Pujol, Ramon M; Estivill, Xavier

    2016-07-01

    Sézary syndrome is a leukemic form of cutaneous T-cell lymphoma with an aggressive clinical course. The genetic etiology of the disease is poorly understood, with chromosomal abnormalities and mutations in some genes being involved in the disease. The goal of our study was to understand the genetic basis of the disease by looking for driver gene mutations and fusion genes in 15 erythrodermic patients with circulating Sézary cells, 14 of them fulfilling the diagnostic criteria of Sézary syndrome. We have discovered genes that could be involved in the pathogenesis of Sézary syndrome. Some of the genes that are affected by somatic point mutations include ITPR1, ITPR2, DSC1, RIPK2, IL6, and RAG2, with some of them mutated in more than one patient. We observed several somatic copy number variations shared between patients, including deletions and duplications of large segments of chromosome 17. Genes with potential function in the T-cell receptor signaling pathway and tumorigenesis were disrupted in Sézary syndrome patients, for example, CBLB, RASA2, BCL7C, RAMP3, TBRG4, and DAD1. Furthermore, we discovered several fusion events of interest involving RASA2, NFKB2, BCR, FASN, ZEB1, TYK2, and SGMS1. Our work has implications for the development of potential therapeutic approaches for this aggressive disease. PMID:27039262

  2. Cohesin gene mutations in tumorigenesis: from discovery to clinical significance

    PubMed Central

    Solomon, David A.; Kim, Jung-Sik; Waldman, Todd

    2014-01-01

    Cohesin is a multi-protein complex composed of four core subunits (SMC1A, SMC3, RAD21, and either STAG1 or STAG2) that is responsible for the cohesion of sister chromatids following DNA replication until its cleavage during mitosis thereby enabling faithful segregation of sister chromatids into two daughter cells. Recent cancer genomics analyses have discovered a high frequency of somatic mutations in the genes encoding the core cohesin subunits as well as cohesin regulatory factors (e.g. NIPBL, PDS5B, ESPL1) in a select subset of human tumors including glioblastoma, Ewing sarcoma, urothelial carcinoma, acute myeloid leukemia, and acute megakaryoblastic leukemia. Herein we review these studies including discussion of the functional significance of cohesin inactivation in tumorigenesis and potential therapeutic mechanisms to selectively target cancers harboring cohesin mutations. [BMB Reports 2014; 47(6): 299-310] PMID:24856830

  3. Optimal Control of Gene Mutation in DNA Replication

    PubMed Central

    Yu, Juanyi; Li, Jr-Shin; Tarn, Tzyh-Jong

    2012-01-01

    We propose a molecular-level control system view of the gene mutations in DNA replication from the finite field concept. By treating DNA sequences as state variables, chemical mutagens and radiation as control inputs, one cell cycle as a step increment, and the measurements of the resulting DNA sequence as outputs, we derive system equations for both deterministic and stochastic discrete-time, finite-state systems of different scales. Defining the cost function as a summation of the costs of applying mutagens and the off-trajectory penalty, we solve the deterministic and stochastic optimal control problems by dynamic programming algorithm. In addition, given that the system is completely controllable, we find that the global optimum of both base-to-base and codon-to-codon deterministic mutations can always be achieved within a finite number of steps. PMID:22454557

  4. Systematic analysis of somatic mutations impacting gene expression in 12 tumour types

    PubMed Central

    Ding, Jiarui; McConechy, Melissa K.; Horlings, Hugo M.; Ha, Gavin; Chun Chan, Fong; Funnell, Tyler; Mullaly, Sarah C.; Reimand, Jüri; Bashashati, Ali; Bader, Gary D.; Huntsman, David; Aparicio, Samuel; Condon, Anne; Shah, Sohrab P.

    2015-01-01

    We present a novel hierarchical Bayes statistical model, xseq, to systematically quantify the impact of somatic mutations on expression profiles. We establish the theoretical framework and robust inference characteristics of the method using computational benchmarking. We then use xseq to analyse thousands of tumour data sets available through The Cancer Genome Atlas, to systematically quantify somatic mutations impacting expression profiles. We identify 30 novel cis-effect tumour suppressor gene candidates, enriched in loss-of-function mutations and biallelic inactivation. Analysis of trans-effects of mutations and copy number alterations with xseq identifies mutations in 150 genes impacting expression networks, with 89 novel predictions. We reveal two important novel characteristics of mutation impact on expression: (1) patients harbouring known driver mutations exhibit different downstream gene expression consequences; (2) expression patterns for some mutations are stable across tumour types. These results have critical implications for identification and interpretation of mutations with consequent impact on transcription in cancer. PMID:26436532

  5. Adaptation to an automated platform of algorithmic combinations of advantageous mutations in genes generated using amino acid scanning mutational strategy.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent mutational strategies for generating and screening of genes for optimized traits, including directed evolution, domain shuffling, random mutagenesis, and site-directed mutagenesis, have been adapted for automated platforms. Here we discuss the amino acid scanning mutational strategy and its ...

  6. NIH Researchers Identify New Gene Mutation Associated with ALS and Dementia

    MedlinePlus

    ... NIH researchers identify new gene mutation associated with ALS and dementia April 7, 2014 A rare mutation ... cell, has been linked with development of familial amyotrophic lateral sclerosis (ALS). This finding, from a research team led ...

  7. 40 CFR 799.9530 - TSCA in vitro mammalian cell gene mutation test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... several base pairs in the DNA. Forward mutation is a gene mutation from the parental type to the mutant... multiple base pairs in the DNA molecule. Mutant frequency is the number of mutant cells observed divided...

  8. Whole‐exome sequencing defines the mutational landscape of pheochromocytoma and identifies KMT2D as a recurrently mutated gene

    PubMed Central

    Stenman, Adam; Haglund, Felix; Clark, Victoria E.; Brown, Taylor C.; Baranoski, Jacob; Bilguvar, Kaya; Goh, Gerald; Welander, Jenny; Svahn, Fredrika; Rubinstein, Jill C.; Caramuta, Stefano; Yasuno, Katsuhito; Günel, Murat; Bäckdahl, Martin; Gimm, Oliver; Söderkvist, Peter; Prasad, Manju L.; Korah, Reju; Lifton, Richard P.

    2015-01-01

    As subsets of pheochromocytomas (PCCs) lack a defined molecular etiology, we sought to characterize the mutational landscape of PCCs to identify novel gene candidates involved in disease development. A discovery cohort of 15 PCCs wild type for mutations in PCC susceptibility genes underwent whole‐exome sequencing, and an additional 83 PCCs served as a verification cohort for targeted sequencing of candidate mutations. A low rate of nonsilent single nucleotide variants (SNVs) was detected (6.1/sample). Somatic HRAS and EPAS1 mutations were observed in one case each, whereas the remaining 13 cases did not exhibit variants in established PCC genes. SNVs aggregated in apoptosis‐related pathways, and mutations in COSMIC genes not previously reported in PCCs included ZAN, MITF, WDTC1, and CAMTA1. Two somatic mutations and one constitutional variant in the well‐established cancer gene lysine (K)‐specific methyltransferase 2D (KMT2D, MLL2) were discovered in one sample each, prompting KMT2D screening using focused exome‐sequencing in the verification cohort. An additional 11 PCCs displayed KMT2D variants, of which two were recurrent. In total, missense KMT2D variants were found in 14 (11 somatic, two constitutional, one undetermined) of 99 PCCs (14%). Five cases displayed somatic mutations in the functional FYR/SET domains of KMT2D, constituting 36% of all KMT2D‐mutated PCCs. KMT2D expression was upregulated in PCCs compared to normal adrenals, and KMT2D overexpression positively affected cell migration in a PCC cell line. We conclude that KMT2D represents a recurrently mutated gene with potential implication for PCC development. © 2015 The Authors. Genes, Chromosomes & Cancer Published by Wiley Periodicals, Inc. PMID:26032282

  9. Four novel MSH2 / MLH1 gene mutations in portuguese HNPCC families.

    PubMed

    Isidro, G; Veiga, I; Matos, P; Almeida, S; Bizarro, S; Marshall, B; Baptista, M; Leite, J; Regateiro, F; Soares, J; Castedo, S; Boavida, M G

    2000-01-01

    Hereditary non-polyposis colorectal cancer (HNPCC) is considered to be determined by germline mutations in the mismatch repair (MMR) genes, especially MSH2 and MLH1. While screening for mutations in these two genes in HNPCC portuguese families, 3 previously unreported MSH2 and 1 MLH1 mutations have been identified in families meeting strict Amsterdam criteria. Hum Mutat 15:116, 2000. PMID:10612836

  10. Review: Clinical aspects of hereditary DNA Mismatch repair gene mutations.

    PubMed

    Sijmons, Rolf H; Hofstra, Robert M W

    2016-02-01

    Inherited mutations of the DNA Mismatch repair genes MLH1, MSH2, MSH6 and PMS2 can result in two hereditary tumor syndromes: the adult-onset autosomal dominant Lynch syndrome, previously referred to as Hereditary Non-Polyposis Colorectal Cancer (HNPCC) and the childhood-onset autosomal recessive Constitutional Mismatch Repair Deficiency syndrome. Both conditions are important to recognize clinically as their identification has direct consequences for clinical management and allows targeted preventive actions in mutation carriers. Lynch syndrome is one of the more common adult-onset hereditary tumor syndromes, with thousands of patients reported to date. Its tumor spectrum is well established and includes colorectal cancer, endometrial cancer and a range of other cancer types. However, surveillance for cancers other than colorectal cancer is still of uncertain value. Prophylactic surgery, especially for the uterus and its adnexa is an option in female mutation carriers. Chemoprevention of colorectal cancer with aspirin is actively being investigated in this syndrome and shows promising results. In contrast, the Constitutional Mismatch Repair Deficiency syndrome is rare, features a wide spectrum of childhood onset cancers, many of which are brain tumors with high mortality rates. Future studies are very much needed to improve the care for patients with this severe disorder. PMID:26746812

  11. Genetic syndromes caused by mutations in epigenetic genes.

    PubMed

    Berdasco, María; Esteller, Manel

    2013-04-01

    The orchestrated organization of epigenetic factors that control chromatin dynamism, including DNA methylation, histone marks, non-coding RNAs (ncRNAs) and chromatin-remodeling proteins, is essential for the proper function of tissue homeostasis, cell identity and development. Indeed, deregulation of epigenetic profiles has been described in several human pathologies, including complex diseases (such as cancer, cardiovascular and neurological diseases), metabolic pathologies (type 2 diabetes and obesity) and imprinting disorders. Over the last decade it has become increasingly clear that mutations of genes involved in epigenetic mechanism, such as DNA methyltransferases, methyl-binding domain proteins, histone deacetylases, histone methylases and members of the SWI/SNF family of chromatin remodelers are linked to human disorders, including Immunodeficiency Centromeric instability Facial syndrome 1, Rett syndrome, Rubinstein-Taybi syndrome, Sotos syndrome or alpha-thalassemia/mental retardation X-linked syndrome, among others. As new members of the epigenetic machinery are described, the number of human syndromes associated with epigenetic alterations increases. As recent examples, mutations of histone demethylases and members of the non-coding RNA machinery have recently been associated with Kabuki syndrome, Claes-Jensen X-linked mental retardation syndrome and Goiter syndrome. In this review, we describe the variety of germline mutations of epigenetic modifiers that are known to be associated with human disorders, and discuss the therapeutic potential of epigenetic drugs as palliative care strategies in the treatment of such disorders. PMID:23370504

  12. Whole-exome sequencing defines the mutational landscape of pheochromocytoma and identifies KMT2D as a recurrently mutated gene.

    PubMed

    Juhlin, C Christofer; Stenman, Adam; Haglund, Felix; Clark, Victoria E; Brown, Taylor C; Baranoski, Jacob; Bilguvar, Kaya; Goh, Gerald; Welander, Jenny; Svahn, Fredrika; Rubinstein, Jill C; Caramuta, Stefano; Yasuno, Katsuhito; Günel, Murat; Bäckdahl, Martin; Gimm, Oliver; Söderkvist, Peter; Prasad, Manju L; Korah, Reju; Lifton, Richard P; Carling, Tobias

    2015-09-01

    As subsets of pheochromocytomas (PCCs) lack a defined molecular etiology, we sought to characterize the mutational landscape of PCCs to identify novel gene candidates involved in disease development. A discovery cohort of 15 PCCs wild type for mutations in PCC susceptibility genes underwent whole-exome sequencing, and an additional 83 PCCs served as a verification cohort for targeted sequencing of candidate mutations. A low rate of nonsilent single nucleotide variants (SNVs) was detected (6.1/sample). Somatic HRAS and EPAS1 mutations were observed in one case each, whereas the remaining 13 cases did not exhibit variants in established PCC genes. SNVs aggregated in apoptosis-related pathways, and mutations in COSMIC genes not previously reported in PCCs included ZAN, MITF, WDTC1, and CAMTA1. Two somatic mutations and one constitutional variant in the well-established cancer gene lysine (K)-specific methyltransferase 2D (KMT2D, MLL2) were discovered in one sample each, prompting KMT2D screening using focused exome-sequencing in the verification cohort. An additional 11 PCCs displayed KMT2D variants, of which two were recurrent. In total, missense KMT2D variants were found in 14 (11 somatic, two constitutional, one undetermined) of 99 PCCs (14%). Five cases displayed somatic mutations in the functional FYR/SET domains of KMT2D, constituting 36% of all KMT2D-mutated PCCs. KMT2D expression was upregulated in PCCs compared to normal adrenals, and KMT2D overexpression positively affected cell migration in a PCC cell line. We conclude that KMT2D represents a recurrently mutated gene with potential implication for PCC development. PMID:26032282

  13. Mutation analysis of the Fanconi Anemia Gene FACC

    SciTech Connect

    Verlander, P.C.; Lin, J.D.; Udono, M.U.; Zhang, Q.; Auerbach, A.D. ); Gibson, R.A.; Mathew, C.G. )

    1994-04-01

    Fanconi anemia (FA) is a genetically heterogeneous autosomal recessive disorder characterized by a unique hypersensitivity of cells to DNA cross-linking agents; a gene for complementation group C (FACC) has recently been cloned. The authors have amplified FACC exons with their flanking intron sequences from genomic DNA from 174 racially and ethnically diverse families in the International Fanconi Anemia Registry and have screened for mutations by using SSCP analysis. They have identified eight different variants in 32 families; three were detected in exon 1, one in exon 4, one in intron 4, two in exon 6, and one in exon 14. Two of the eight variants, in seven families, did not segregate with the disease allele in multiplex families, suggesting that these variants represented benign polymorphisms. Disease-associated mutations in FACC were detected in a total of 25 (14.4%) of 174 families screened. The most frequent mutations were IVS4 + 4 A [yields] T (intron 4; 12 families) and 322delG (exon 1; 9 families). Other, less common mutations include Q13X in exon 1, R185X and D195V in exon 6, and L554P in exon 14. The polymorphisms were S26F in exon 1 and G139E in exon 4. All patients in the study with 322delG, Q13X, R185X, and D195V are of northern or eastern European or southern Italian ancestry, and 18 of 19 have a mild form of the disease, while the 2 patients with L554P, both from the same family, have a severe phenotype. All 19 patients with IVS4 + 4 A [yields] T have Jewish ancestry and have a severe phenotype. 19 refs., 1 fig., 3 tabs.

  14. GNAS gene mutation may be present only transiently during colorectal tumorigenesis

    PubMed Central

    Zauber, Peter; Marotta, Stephen P; Sabbath-Solitare, Marlene

    2016-01-01

    Mutations of the gene GNAS have been shown to activate the adenylate cyclase gene and lead to constitutive cAMP signaling. Several preliminary reports have suggested a role for GNAS gene mutations during colorectal carcinogenesis, particularly mucinous carcinomas. The aim of this study was to clarify the incidence of GNAS mutations in adenomas (tubular, tubulovillous, and villous), carcinomas with residual adenoma, and carcinomas, and to relate these findings to mutations of the KRAS gene and to the mucinous status of the tumors. We used standard PCR techniques and direct gene sequencing to evaluate tumors for gene mutations. No GNAS mutations were identified in 25 tubular adenomas, but were present in 6.4% of tubulovillous adenomas and 11.2% of villous adenomas. A GNAS mutation was found in 9.7% of the benign portion of carcinoma with residual adenoma, but in none of 86 carcinomas. A similar trend was seen for KRAS mutation across the five groups of tumors. GNAS mutations may function as an important driver mutation during certain phases of colorectal carcinogenesis, but may then be lost once the biological advantage gained by the mutated gene is no longer necessary to sustain or advance tumor development. PMID:27186325

  15. Three faces of recombination activating gene 1 (RAG1) mutations.

    PubMed

    Patiroglu, Turkan; Akar, Himmet Haluk; Van Der Burg, Mirjam

    2015-12-01

    Severe combined immune deficiency (SCID) is a group of genetic disorder associated with development of T- and/or B-lymphocytes. Recombination-activating genes (RAG1/2) play a critical role on VDJ recombination process that leads to the production of a broad T-cell receptor (TCR) and B-cell receptor (BCR) repertoire in the development of T and B cells. RAG1/2 genes mutations result in various forms of primary immunodeficiency, ranging from classic SCID to Omenn syndrome (OS) to atypical SCID with such as granuloma formation and autoimmunity. Herein, we reported 4 patients with RAG1 deficiency: classic SCID was seen in two patients who presented with recurrent pneumonia and chronic diarrhoea, and failure to thrive. OS was observed in one patient who presented with chronic diarrhoea, skin rash, recurrent lower respiratory infections, and atypical SCID was seen in one patient who presented with Pyoderma gangrenosum (PG) and had novel RAG1 mutation. PMID:26689875

  16. First-Step Mutations during Adaptation Restore the Expression of Hundreds of Genes

    PubMed Central

    Rodríguez-Verdugo, Alejandra; Tenaillon, Olivier; Gaut, Brandon S.

    2016-01-01

    The temporal change of phenotypes during the adaptive process remains largely unexplored, as do the genetic changes that affect these phenotypic changes. Here we focused on three mutations that rose to high frequency in the early stages of adaptation within 12 Escherichia coli populations subjected to thermal stress (42 °C). All the mutations were in the rpoB gene, which encodes the RNA polymerase beta subunit. For each mutation, we measured the growth curves and gene expression (mRNAseq) of clones at 42 °C. We also compared growth and gene expression with their ancestor under unstressed (37 °C) and stressed conditions (42 °C). Each of the three mutations changed the expression of hundreds of genes and conferred large fitness advantages, apparently through the restoration of global gene expression from the stressed toward the prestressed state. These three mutations had a similar effect on gene expression as another single mutation in a distinct domain of the rpoB protein. Finally, we compared the phenotypic characteristics of one mutant, I572L, with two high-temperature adapted clones that have this mutation plus additional background mutations. The background mutations increased fitness, but they did not substantially change gene expression. We conclude that early mutations in a global transcriptional regulator cause extensive changes in gene expression, many of which are likely under positive selection for their effect in restoring the prestress physiology. PMID:26500250

  17. Mutation Analysis of IDH1/2 Genes in Unselected De novo Acute Myeloid Leukaemia Patients in India - Identification of A Novel IDH2 Mutation.

    PubMed

    Raveendran, Sureshkumar; Sarojam, Santhi; Vijay, Sangeetha; Geetha, Aswathy Chandran; Sreedharan, Jayadevan; Narayanan, Geetha; Sreedharan, Hariharan

    2015-01-01

    IDH1/2 mutations which result in alternation in DNA methylation pattern are one of the most common methylation associated mutations in Acute myeloid leukaemia. IDH1/2 mutations frequently associated with higher platelet level, normal cytogentics and NPM1 mutations. Here we analyzed IDH1/2 mutations in 200 newly diagnosed unselected Indian adult AML patients and investigated their correlation with clinical, cytogenetic parameters along with cooperating NPM1 mutation. We detected 5.5% and 4% mutations in IDH1/2 genes, respectively. Except IDH2 c.515_516GG>AA mutation, all the other identified mutations were reported mutations. Similar to reported c.515G>A mutation, the novel c.515_516GG>AA mutation replaces 172nd arginine to lysine in the active site of the enzyme. Even though there was a preponderance of IDH1/2 mutations in NK-AML, cytogenetically abnormal patients also harboured IDH1/2 mutations. IDH1 mutations showed significant higher platelet count and NPM1 mutations. IDH2 mutated patients displayed infrequent NPM1 mutations and lower WBC count. All the NPM1 mutations in the IDH1/2 mutated cases showed type A mutation. The present data suggest that IDH1/2 mutations are associated with normal cytogenetics and type A NPM1 mutations in adult Indian AML patients. PMID:25987093

  18. Point mutations in dihydrofolate reductase and dihydropteroate synthase genes of Plasmodium falciparum isolates from Venezuela.

    PubMed

    Urdaneta, L; Plowe, C; Goldman, I; Lal, A A

    1999-09-01

    The present study was designed to characterize mutations in dihydrofolate reductase (DHFR) and dihydropteroate synthase (DHPS) genes of Plasmodium falciparum in the Bolivar region of Venezuela, where high levels of clinical resistance to sulfadoxine-pyrimethamine (SP, Fansidar; F. Hoffman-La Roche, Basel, Switzerland) has been documented. We used a nested mutation-specific polymerase chain reaction and restriction digestion methods to measure 1) the prevalence of DHFR mutations at 16, 50, 51, 59, 108, and 164 codon positions, and 2) the prevalence of mutations in the 436, 437, 581, and 613 codon sites in DHPS gene. In the case of the DHFR gene, of the 54 parasite isolates analyzed, we detected the presence of Asn-108 and Ile-51 in 96% of the isolates and Arg-50 mutation in 64% of the isolates. Each of these mutations has been associated with high level of resistance to pyrimethamine. Only 2 samples (4%) showed the wild type Ser-108 mutation and none showed Thr-108 and Val-16 mutations that are specific for resistance to cycloguanil. In the case of DHPS gene, we found a mutation at position 437 (Gly) in 100% of the isolates and Gly-581 in 96% of the isolates. The simultaneous presence of mutations Asn-108 and Ile-51 in the DHFR gene and Gly-437 and Gly-581 in the DHPS gene in 96% of the samples tested suggested that a cumulative effect of mutations could be the major mechanism conferring high SP resistance in this area. PMID:10497990

  19. Aneuploidy vs. gene mutation hypothesis of cancer: Recent study claims mutation but is found to support aneuploidy

    PubMed Central

    Li, Ruhong; Sonik, Arvind; Stindl, Reinhard; Rasnick, David; Duesberg, Peter

    2000-01-01

    For nearly a century, cancer has been blamed on somatic mutation. But it is still unclear whether this mutation is aneuploidy, an abnormal balance of chromosomes, or gene mutation. Despite enormous efforts, the currently popular gene mutation hypothesis has failed to identify cancer-specific mutations with transforming function and cannot explain why cancer occurs only many months to decades after mutation by carcinogens and why solid cancers are aneuploid, although conventional mutation does not depend on karyotype alteration. A recent high-profile publication now claims to have solved these discrepancies with a set of three synthetic mutant genes that “suffices to convert normal human cells into tumorigenic cells.” However, we show here that even this study failed to explain why it took more than “60 population doublings” from the introduction of the first of these genes, a derivative of the tumor antigen of simian virus 40 tumor virus, to generate tumor cells, why the tumor cells were clonal although gene transfer was polyclonal, and above all, why the tumor cells were aneuploid. If aneuploidy is assumed to be the somatic mutation that causes cancer, all these results can be explained. The aneuploidy hypothesis predicts the long latent periods and the clonality on the basis of the following two-stage mechanism: stage one, a carcinogen (or mutant gene) generates aneuploidy; stage two, aneuploidy destabilizes the karyotype and thus initiates an autocatalytic karyotype evolution generating preneoplastic and eventually neoplastic karyotypes. Because the odds are very low that an abnormal karyotype will surpass the viability of a normal diploid cell, the evolution of a neoplastic cell species is slow and thus clonal, which is comparable to conventional evolution of new species. PMID:10725343

  20. Combined Complement Gene Mutations in Atypical Hemolytic Uremic Syndrome Influence Clinical Phenotype

    PubMed Central

    Bresin, Elena; Rurali, Erica; Caprioli, Jessica; Sanchez-Corral, Pilar; Fremeaux-Bacchi, Veronique; Rodriguez de Cordoba, Santiago; Pinto, Sheila; Goodship, Timothy H.J.; Alberti, Marta; Ribes, David; Valoti, Elisabetta; Remuzzi, Giuseppe

    2013-01-01

    Several abnormalities in complement genes reportedly contribute to atypical hemolytic uremic syndrome (aHUS), but incomplete penetrance suggests that additional factors are necessary for the disease to manifest. Here, we sought to describe genotype–phenotype correlations among patients with combined mutations, defined as mutations in more than one complement gene. We screened 795 patients with aHUS and identified single mutations in 41% and combined mutations in 3%. Only 8%–10% of patients with mutations in CFH, C3, or CFB had combined mutations, whereas approximately 25% of patients with mutations in MCP or CFI had combined mutations. The concomitant presence of CFH and MCP risk haplotypes significantly increased disease penetrance in combined mutated carriers, with 73% penetrance among carriers with two risk haplotypes compared with 36% penetrance among carriers with zero or one risk haplotype. Among patients with CFH or CFI mutations, the presence of mutations in other genes did not modify prognosis; in contrast, 50% of patients with combined MCP mutation developed end stage renal failure within 3 years from onset compared with 19% of patients with an isolated MCP mutation. Patients with combined mutations achieved remission with plasma treatment similar to patients with single mutations. Kidney transplant outcomes were worse, however, for patients with combined MCP mutation compared with an isolated MCP mutation. In summary, these data suggest that genotyping for the risk haplotypes in CFH and MCP may help predict the risk of developing aHUS in unaffected carriers of mutations. Furthermore, screening patients with aHUS for all known disease-associated genes may inform decisions about kidney transplantation. PMID:23431077

  1. A single gene mutation that increases maize seed weight

    SciTech Connect

    Giroux, M.J.; Shaw, J.; Hannah, L.C. |

    1996-06-11

    The maize endosperm-specific gene shrunken2 (Sh2) encodes the large subunit of the heterotetrameric starch synthetic enzyme adenosine diphosphoglucose pyrophosphorylase (AGP; EC 2.7.7.27). Here we exploit an in vivo, site-specific mutagenesis system to create short insertion mutations in a region of the gene known to be involved in the allosteric regulation of AGP. The site-specific mutagen is the transposable element dissociation (Ds). Approximately one-third (8 of 23) of the germinal revertants sequenced restored the wild-type sequence, whereas the remaining revertants contained insertions of 3 or 6 bp. All revertants retained the original reading frame 3 feet to the insertion site and involved the addition of tyrosine and/or serine. Each insertion revertant reduced total AGP activity and the amount of the SH2 protein. The revertant containing additional tyrosine and serine residues increased seed weight 11-18% without increasing or decreasing the percentage of starch. Other insertion revertants lacking an additional serine reduced seed weight. Reduced sensitivity to phosphate, a long-known inhibitor of AGP, was found in the high seed-weight revertant. This alteration is likely universally important since insertion of tyrosine and serine in the potato large subunit of AGP at the comparable position and expression in Escherichia coli also led to a phosphate-insensitive enzyme. These results show that single gene mutations giving rise to increased seed weight, and therefore perhaps yield, are clearly possible in a plant with a long history of intensive and successful breeding efforts. 20 refs., 5 figs., 5 tabs.

  2. Mutational analysis of PKD1 gene in a Chinese family with autosomal dominant polycystic kidney disease.

    PubMed

    Liu, Jingyan; Li, Lanrong; Liu, Qingmin

    2015-01-01

    Autosomal dominant polycystic kidney disease (ADPKD) is a hereditary disease and common renal disease. Mutations of PKD genes are responsible for this disease. We analyzed a large Chinese family with ADPKD using Sanger sequencing to identify the mutation responsible for this disease. The family comprised 27 individuals including 10 ADPKD patients. These ADPKD patients had severe renal disease and most of them died very young. We analyzed 6 survival patients gene and found they all had C10529T mutation in exon 35 of PKD1 gene. We did not found gene mutation in any unaffected relatives or 300 unrelated controls. These findings suggested that the C10529T mutation in PKD1 gene might be the pathogenic mutation responsible for the disease in this family. PMID:26722532

  3. Mutational analysis of PKD1 gene in a Chinese family with autosomal dominant polycystic kidney disease

    PubMed Central

    Liu, Jingyan; Li, Lanrong; Liu, Qingmin

    2015-01-01

    Autosomal dominant polycystic kidney disease (ADPKD) is a hereditary disease and common renal disease. Mutations of PKD genes are responsible for this disease. We analyzed a large Chinese family with ADPKD using Sanger sequencing to identify the mutation responsible for this disease. The family comprised 27 individuals including 10 ADPKD patients. These ADPKD patients had severe renal disease and most of them died very young. We analyzed 6 survival patients gene and found they all had C10529T mutation in exon 35 of PKD1 gene. We did not found gene mutation in any unaffected relatives or 300 unrelated controls. These findings suggested that the C10529T mutation in PKD1 gene might be the pathogenic mutation responsible for the disease in this family. PMID:26722532

  4. Important role of indels in somatic mutations of human cancer genes

    PubMed Central

    2010-01-01

    Background Cancer is clonal proliferation that arises owing to mutations in a subset of genes that confer growth advantage. More and more cancer related genes are found to have accumulated somatic mutations. However, little has been reported about mutational patterns of insertions/deletions (indels) in these genes. Results We analyzed indels' abundance and distribution, the relative ratio between indels and somatic base substitutions and the association between those two forms of mutations in a large number of somatic mutations in the Catalogue of Somatic Mutations in Cancer database. We found a strong correlation between indels and base substitutions in cancer-related genes and showed that they tend to concentrate at the same locus in the coding sequences within the same samples. More importantly, a much higher proportion of indels were observed in somatic mutations, as compared to meiotic ones. Furthermore, our analysis demonstrated a great diversity of indels at some loci of cancer-related genes. Particularly in the genes with abundant mutations, the proportion of 3n indels in oncogenes is 7.9 times higher than that in tumor suppressor genes. Conclusions There are three distinct patterns of indel distribution in somatic mutations: high proportion, great abundance and non-random distribution. Because of the great influence of indels on gene function (e.g., the effect of frameshift mutation), these patterns indicate that indels are frequently under positive selection and can often be the 'driver mutations' in oncogenesis. Such driver forces can better explain why much less frameshift mutations are in oncogenes while much more in tumor suppressor genes, because of their different function in oncogenesis. These findings contribute to our understanding of mutational patterns and the relationship between indels and cancer. PMID:20807447

  5. Repeated evolution of chimeric fusion genes in the β-globin gene family of laurasiatherian mammals.

    PubMed

    Gaudry, Michael J; Storz, Jay F; Butts, Gary Tyler; Campbell, Kevin L; Hoffmann, Federico G

    2014-05-01

    The evolutionary fate of chimeric fusion genes may be strongly influenced by their recombinational mode of origin and the nature of functional divergence between the parental genes. In the β-globin gene family of placental mammals, the two postnatally expressed δ- and β-globin genes (HBD and HBB, respectively) have a propensity for recombinational exchange via gene conversion and unequal crossing-over. In the latter case, there are good reasons to expect differences in retention rates for the reciprocal HBB/HBD and HBD/HBB fusion genes due to thalassemia pathologies associated with the HBD/HBB "Lepore" deletion mutant in humans. Here, we report a comparative genomic analysis of the mammalian β-globin gene cluster, which revealed that chimeric HBB/HBD fusion genes originated independently in four separate lineages of laurasiatherian mammals: Eulipotyphlans (shrews, moles, and hedgehogs), carnivores, microchiropteran bats, and cetaceans. In cases where an independently derived "anti-Lepore" duplication mutant has become fixed, the parental HBD and/or HBB genes have typically been inactivated or deleted, so that the newly created HBB/HBD fusion gene is primarily responsible for synthesizing the β-type subunits of adult and fetal hemoglobin (Hb). Contrary to conventional wisdom that the HBD gene is a vestigial relict that is typically inactivated or expressed at negligible levels, we show that HBD-like genes often encode a substantial fraction (20-100%) of β-chain Hbs in laurasiatherian taxa. Our results indicate that the ascendancy or resuscitation of genes with HBD-like coding sequence requires the secondary acquisition of HBB-like promoter sequence via unequal crossing-over or interparalog gene conversion. PMID:24814285

  6. Repeated Evolution of Chimeric Fusion Genes in the β-Globin Gene Family of Laurasiatherian Mammals

    PubMed Central

    Gaudry, Michael J.; Storz, Jay F.; Butts, Gary Tyler; Campbell, Kevin L.; Hoffmann, Federico G.

    2014-01-01

    The evolutionary fate of chimeric fusion genes may be strongly influenced by their recombinational mode of origin and the nature of functional divergence between the parental genes. In the β-globin gene family of placental mammals, the two postnatally expressed δ- and β-globin genes (HBD and HBB, respectively) have a propensity for recombinational exchange via gene conversion and unequal crossing-over. In the latter case, there are good reasons to expect differences in retention rates for the reciprocal HBB/HBD and HBD/HBB fusion genes due to thalassemia pathologies associated with the HBD/HBB “Lepore” deletion mutant in humans. Here, we report a comparative genomic analysis of the mammalian β-globin gene cluster, which revealed that chimeric HBB/HBD fusion genes originated independently in four separate lineages of laurasiatherian mammals: Eulipotyphlans (shrews, moles, and hedgehogs), carnivores, microchiropteran bats, and cetaceans. In cases where an independently derived “anti-Lepore” duplication mutant has become fixed, the parental HBD and/or HBB genes have typically been inactivated or deleted, so that the newly created HBB/HBD fusion gene is primarily responsible for synthesizing the β-type subunits of adult and fetal hemoglobin (Hb). Contrary to conventional wisdom that the HBD gene is a vestigial relict that is typically inactivated or expressed at negligible levels, we show that HBD-like genes often encode a substantial fraction (20–100%) of β-chain Hbs in laurasiatherian taxa. Our results indicate that the ascendancy or resuscitation of genes with HBD-like coding sequence requires the secondary acquisition of HBB-like promoter sequence via unequal crossing-over or interparalog gene conversion. PMID:24814285

  7. Familial Mediterranean fever gene mutations in north-eastern part of Anatolia with special respect to rare mutations.

    PubMed

    Dogan, Hasan; Faruk Bayrak, Omer; Emet, Mucahit; Keles, Mustafa; Gulluoglu, Sukru; Gul, Zeynep; Pirim, Ibrahim

    2015-09-01

    We aimed to determine the frequency of mutations, carrier rates and the association of rare mutations with Familial Mediterranean Fever (FMF) symptoms. There is a need to evaluate as many different populations as possible in order to determine either specific rare mutations or a range of disease-associated mutations. The demographic data and FMF symptoms related to MEFV gene mutations were collected from 731 participants. Exon 2 and exon 10 of the MEFV gene were tested by DNA sequencing. The rare mutations were identified as: M694I (1.1%, n=12), E148V (0.6%, n=6), T267I (0.5%, n=5), L110P (0.2%, n=2), E167D (0.2%, n=2), K695R (0.1%, n=1) and an insertion G (Guanine) mutation (0.4%, n=4) at the 777th codon of exon 10. We used routine comprehensive detection systems such as Sanger sequence that can catch rare mutations, for definite diagnosis and treatment of FMF disease. PMID:26003477

  8. Systematic analysis of mutation distribution in three dimensional protein structures identifies cancer driver genes

    PubMed Central

    Fujimoto, Akihiro; Okada, Yukinori; Boroevich, Keith A.; Tsunoda, Tatsuhiko; Taniguchi, Hiroaki; Nakagawa, Hidewaki

    2016-01-01

    Protein tertiary structure determines molecular function, interaction, and stability of the protein, therefore distribution of mutation in the tertiary structure can facilitate the identification of new driver genes in cancer. To analyze mutation distribution in protein tertiary structures, we applied a novel three dimensional permutation test to the mutation positions. We analyzed somatic mutation datasets of 21 types of cancers obtained from exome sequencing conducted by the TCGA project. Of the 3,622 genes that had ≥3 mutations in the regions with tertiary structure data, 106 genes showed significant skew in mutation distribution. Known tumor suppressors and oncogenes were significantly enriched in these identified cancer gene sets. Physical distances between mutations in known oncogenes were significantly smaller than those of tumor suppressors. Twenty-three genes were detected in multiple cancers. Candidate genes with significant skew of the 3D mutation distribution included kinases (MAPK1, EPHA5, ERBB3, and ERBB4), an apoptosis related gene (APP), an RNA splicing factor (SF1), a miRNA processing factor (DICER1), an E3 ubiquitin ligase (CUL1) and transcription factors (KLF5 and EEF1B2). Our study suggests that systematic analysis of mutation distribution in the tertiary protein structure can help identify cancer driver genes. PMID:27225414

  9. Systematic analysis of mutation distribution in three dimensional protein structures identifies cancer driver genes.

    PubMed

    Fujimoto, Akihiro; Okada, Yukinori; Boroevich, Keith A; Tsunoda, Tatsuhiko; Taniguchi, Hiroaki; Nakagawa, Hidewaki

    2016-01-01

    Protein tertiary structure determines molecular function, interaction, and stability of the protein, therefore distribution of mutation in the tertiary structure can facilitate the identification of new driver genes in cancer. To analyze mutation distribution in protein tertiary structures, we applied a novel three dimensional permutation test to the mutation positions. We analyzed somatic mutation datasets of 21 types of cancers obtained from exome sequencing conducted by the TCGA project. Of the 3,622 genes that had ≥3 mutations in the regions with tertiary structure data, 106 genes showed significant skew in mutation distribution. Known tumor suppressors and oncogenes were significantly enriched in these identified cancer gene sets. Physical distances between mutations in known oncogenes were significantly smaller than those of tumor suppressors. Twenty-three genes were detected in multiple cancers. Candidate genes with significant skew of the 3D mutation distribution included kinases (MAPK1, EPHA5, ERBB3, and ERBB4), an apoptosis related gene (APP), an RNA splicing factor (SF1), a miRNA processing factor (DICER1), an E3 ubiquitin ligase (CUL1) and transcription factors (KLF5 and EEF1B2). Our study suggests that systematic analysis of mutation distribution in the tertiary protein structure can help identify cancer driver genes. PMID:27225414

  10. Laminin 5 genes and Herlitz junctional epidermolysis bullosa: novel mutations and polymorphisms in the LAMB3 and LAMC2 genes. Mutations in brief no. 190. Online.

    PubMed

    Kon, A; Pulkkinen, L; Hara, M; Tamai, K; Tagami, H; Hashimoto, I; Uitto, J

    1998-01-01

    Herlitz junctional epidermolysis bullosa (H-JEB; OMIM #226700) is a lethal, autosomal recessive blistering disorder characterized by fragility of the skin and other specialized epithelia. Previously, mutations in the laminin 5 genes (LAMA3, LAMB3, and LAMC2) have been disclosed, most of them in LAMB3. In this study, we have examined the genetic basis of H-JEB in three families utilizing heteroduplex analysis and automated nucleotide sequencing. In one family, the proband was compound heterozygote for previously unpublished LAMB3 mutations, 1482delC and W95X. In two other families, the probands were found to be homozygous for novel nonsense mutations C553X and K822X in the LAMC2 gene. These mutations result in premature termination codons and predict truncation of the corresponding polypeptides. Also, during the search of laminin 5 mutations, 18 LAMB3 and LAMC2 polymorphisms were discovered, 9 of them being previously undescribed. Delineation of novel homozygous nonsense mutations in the LAMB3 and LAMC2 genes, with previous demonstrations of LAMA3 mutations, re-emphasizes the concept that stop codon mutations in both alleles of any of the three laminin 5 genes result in the severe H-JEB phenotype. PMID:10660342

  11. MMACHC gene mutation in familial hypogonadism with neurological symptoms.

    PubMed

    Shi, Changhe; Shang, Dandan; Sun, Shilei; Mao, Chengyuan; Qin, Jie; Luo, Haiyang; Shao, Mingwei; Chen, Zhengguang; Liu, Yutao; Liu, Xinjing; Song, Bo; Xu, Yuming

    2015-12-15

    Recent studies have convincingly documented that hypogonadism is a component of various hereditary disorders and is often recognized as an important clinical feature in combination with various neurological symptoms, yet, the causative genes in a few related families are still unknown. High-throughput sequencing has become an efficient method to identify causative genes in related complex hereditary disorders. In this study, we performed exome sequencing in a family presenting hypergonadotropic hypogonadism with neurological presentations of mental retardation, epilepsy, ataxia, and leukodystrophy. After bioinformatic analysis and Sanger sequencing validation, we identified compound heterozygous mutations: c.482G>A (p.R161Q) and c.609G>A (p.W203X) in MMACHC gene in this pedigree. MMACHC was previously confirmed to be responsible for methylmalonic aciduria (MMA) combined with homocystinuria, cblC type (cblC disease), a hereditary vitamin B12 metabolic disorder. Biochemical and gas chromatography-mass spectrometry (GC-MS) examinations in this pedigree further supported the cblC disease diagnosis. These results indicated that hypergonadotropic hypogonadism may be a novel clinical manifestation of cblC disease, but more reports on additional patients are needed to support this hypothesis. PMID:26283149

  12. Clinical Manifestations in Paroxysmal Kinesigenic Dyskinesia Patients with Proline-Rich Transmembrane Protein 2 Gene Mutation

    PubMed Central

    Youn, Jinyoung; Kim, Ji Sun; Lee, Munhyang; Lee, Jeehun; Roh, Hakjae

    2014-01-01

    Background and Purpose Given the diverse phenotypes including combined non-dyskinetic symptoms in patients harboring mutations of the gene encoding proline-rich transmembrane protein 2 (PRRT2), the clinical significance of these mutations in paroxysmal kinesigenic dyskinesia (PKD) is questionable. In this study, we investigated the clinical characteristics of PKD patients with PRRT2 mutations. Methods Familial and sporadic PKD patients were enrolled and PRRT2 gene sequencing was performed. Demographic and clinical data were compared between PKD patients with and without a PRRT2 mutation. Results Among the enrolled PKD patients (8 patients from 5 PKD families and 19 sporadic patients), PRRT2 mutations were detected in 3 PKD families (60%) and 2 sporadic cases (10.5%). All familial patients with a PRRT2 gene mutation had the c.649dupC mutation, which is the most commonly reported mutation. Two uncommon mutations (c.649delC and c.629dupC) were detected only in the sporadic cases. PKD patients with PRRT2 mutation were younger at symptom onset and had more non-dyskinetic symptoms than those without PRRT2 mutation. However, the characteristics of dyskinetic movement did not differ between the two groups. Conclusions This is the first study of PRRT2 mutations in Korea. The presence of a PRRT2 mutation was more strongly related to familial PKD, and was clinically related with earlier age of onset and common non-dyskinetic symptoms in PKD patients. PMID:24465263

  13. Compound heterozygous mutations of the TNXB gene cause primary myopathy.

    PubMed

    Pénisson-Besnier, Isabelle; Allamand, Valérie; Beurrier, Philippe; Martin, Ludovic; Schalkwijk, Joost; van Vlijmen-Willems, Ivonne; Gartioux, Corine; Malfait, Fransiska; Syx, Delfien; Macchi, Laurent; Marcorelles, Pascale; Arbeille, Brigitte; Croué, Anne; De Paepe, Anne; Dubas, Frédéric

    2013-08-01

    Complete deficiency of the extracellular matrix glycoprotein tenascin-X (TNX) leads to recessive forms of Ehlers-Danlos syndrome, clinically characterized by hyperextensible skin, easy bruising and joint hypermobility. Clinical and pathological studies, immunoassay, and molecular analyses were combined to study a patient suffering from progressive muscle weakness. Clinical features included axial and proximal limb muscle weakness, subclinical heart involvement, minimal skin hyperextensibility, no joint abnormalities, and a history of easy bruising. Skeletal muscle biopsy disclosed striking muscle consistency and the abnormal presence of myotendinous junctions in the muscle belly. TNX immunostaining was markedly reduced in muscle and skin, and serum TNX levels were undetectable. Compound heterozygous mutations were identified: a previously reported 30kb deletion and a non-synonymous novel missense mutation in the TNXB gene. This study identifies a TNX-deficient patient presenting with a primary muscle disorder, thus expanding the phenotypic spectrum of TNX-related abnormalities. Biopsy findings provide evidence that TNX deficiency leads to muscle softness and to mislocalization of myotendinous junctions. PMID:23768946

  14. Identifying Sarcomere Gene Mutations in HCM: A Personal History

    PubMed Central

    Seidman, Christine E.; Seidman, J.G.

    2011-01-01

    This article provides an historical and personal perspective on the discovery of genetic causes for hypertrophic cardiomyopathy (HCM). Extraordinary insights of physicians who initially detailed remarkable and varied manifestations of the disorder, collaboration among multidisciplinary teams with skills in clinical diagnostics and molecular genetics, and hard work by scores of trainees, solved the etiologic riddle of HCM, and unexpectedly demonstrated mutations in sarcomere protein genes as the cause of disease. In addition to celebrating 20 years of genetic research in HCM, this article serves as an introductory overview to a thematic review series that will present contemporary advances in the field of hypertrophic heart disease. Through the continued application of advances in genetic methodologies, combined with biochemical and biophysical analyses of the consequences of human mutations, fundamental knowledge about HCM and sarcomere biology has emerged. Expanding research to elucidate the mechanisms by which subtle genetic variation in contractile proteins remodel the human heart remains an exciting opportunity, one with considerable promise to provide new strategies to limit or even prevent HCM pathogenesis. PMID:21415408

  15. Malignant pheochromocytomas/paragangliomas harbor mutations in transport and cell adhesion genes.

    PubMed

    Wilzén, Annica; Rehammar, Anna; Muth, Andreas; Nilsson, Ola; Tešan Tomić, Tajana; Wängberg, Bo; Kristiansson, Erik; Abel, Frida

    2016-05-01

    One out of ten patients with pheochromocytoma (PCC) and paraganglioma (PGL) develop malignant disease. Today there are no reliable pathological methods to predict malignancy at the time of diagnosis. Tumors harboring mutations in the succinate dehydrogenase subunit B (SDHB) gene often metastasize but the sequential genetic events resulting in malignant progression are not fully understood. The aim of this study was to identify somatic mutations that contribute to the malignant transformation of PCC/PGL. We performed pair-wise (tumor-normal) whole-exome sequencing to analyze the somatic mutational landscape in five malignant and four benign primary PCC/sympathetic PGL (sPGL), including two biological replicates from each specimen. In total, 225 unique somatic mutations were identified in 215 genes, with an average mutation rate of 0.54 mutations/megabase. Malignant tumors had a significantly higher number of mutations compared to benign tumors (p < 0.001). Three novel genes were identified as recurrently mutated; MYCN, MYO5B and VCL, and mutations in these genes were exclusively found in malignant sPGL tumors. Mutations in the MYO5B gene could be verified in two publicly available data sets. A gene ontology analysis of mutated genes showed enrichment of cellular functions related to cytoskeletal protein binding, myosin complex and motor activity, many of which had functions in Rab and Rac/Rho GTPase pathways. In conclusion, we have identified recurrent mutations in genes related to intracellular transport and cell adhesion, and we have confirmed MYO5B to be recurrently mutated in PCC/PGL cases with malignant potential. Our study suggests that deregulated Rab and Rac/Rho pathways may be important in PCC/PGL tumorigenesis. PMID:26650627

  16. Moderate malnutrition in rats induces somatic gene mutations.

    PubMed

    Pacheco-Martínez, M Monserrat; Cortés-Barberena, Edith; Cervantes-Ríos, Elsa; Del Carmen García-Rodríguez, María; Rodríguez-Cruz, Leonor; Ortiz-Muñiz, Rocío

    2016-07-01

    The relationship between malnutrition and genetic damage has been widely studied in human and animal models, leading to the observation that interactions between genotoxic exposure and micronutrient status appear to affect genomic stability. A new assay has been developed that uses the phosphatidylinositol glycan class A gene (Pig-a) as a reporter for measuring in vivo gene mutation. The Pig-a assay can be employed to evaluate mutant frequencies (MFs) in peripheral blood reticulocytes (RETs) and erythrocytes (RBCs) using flow cytometry. In the present study, we assessed the effects of malnutrition on mutagenic susceptibility by exposing undernourished (UN) and well-nourished (WN) rats to N-ethyl-N-nitrosourea (ENU) and measuring Pig-a MFs. Two week-old UN and WN male Han-Wistar rats were treated daily with 0, 20, or 40mg/kg ENU for 3 consecutive days. Blood was collected from the tail vein one day before ENU treatment (Day-1) and after ENU administration on Days 7, 14, 21, 28, 35, 42, 49, 56 and 63. Pig-a MFs were measured in RETs and RBCs as the RET(CD59-) and RBC(CD59-) frequencies. In the vehicle control groups, the frequencies of mutant RETs and RBCs were significantly higher in UN rats compared with WN rats at all sampling times. The ENU treatments increased RET and RBC MFs starting at Day 7. Although ENU-induced Pig-a MFs were consistently lower in UN rats than in WN rats, these differences were not significant. To understand these responses, further studies should use other mutagens and nucleated surrogate cells and examine the types of mutations induced in UN and WN rats. PMID:26994962

  17. An Ashkenazi founder mutation in the PKHD1 gene.

    PubMed

    Quint, Adina; Sagi, Michal; Carmi, Shai; Daum, Hagit; Macarov, Michal; Ben Neriah, Ziva; Meiner, Vardiela; Elpeleg, Orly; Lerer, Israela

    2016-02-01

    Autosomal recessive polycystic kidney disease (ARPKD) is usually detected late in pregnancies in embryos with large echogenic kidneys accompanied by oligohydramnios. Hundreds of private pathogenic variants have been identified in the large PKHD1 gene in various populations. Yet, because of the large size of the gene, segregation analysis of microsatellite polymorphic markers residing in the PKDH1 locus has commonly been utilized for prenatal diagnosis. Keeping in mind the limitations of this strategy, we utilized it for testing 7 families with affected fetuses or newborns, of which in 5 at least one parent was Ashkenazi, and identified that the same haplotype was shared by the majority of the Ashkenazi parents (7/9). This led us to suspect that they carry the same founder mutation. Whole Exome analysis of DNA from a fetus of one of the families detected an already known pathogenic variant c.3761_3762delCCinsG, an indel variant resulting in frameshift (p.Ala1254GlyfsX49). This variant was detected in 9 parents (5 families), of them 7 individuals were Ashkenazi and one Moroccan Jew who shared the same haplotype, and one Ashkenazi, who carried the same variant on a recombinant haplotype. Screening for this variant in 364 Ashkenazi individuals detected 2 carriers. These findings suggest that although c.3761_3762delCCinsG is considered one of the frequent variants detected in unrelated individuals, and was thought to have occurred independently on various haplotypes, it is in fact a founder mutation in the Ashkenazi population. PMID:26721323

  18. A novel large deletion mutation of FERMT1 gene in a Chinese patient with Kindler syndrome

    PubMed Central

    GAO, Ying; BAI, Jin-li; LIU, Xiao-yan; QU, Yu-jin; CAO, Yan-yan; WANG, Jian-cai; JIN, Yu-wei; WANG, Hong; SONG, Fang

    2015-01-01

    Kindler syndrome (KS; OMIM 173650) is a rare autosomal recessive skin disorder, which results in symptoms including blistering, epidermal atrophy, increased risk of cancer, and poor wound healing. The majority of mutations of the disease-determining gene (FERMT1 gene) are single nucleotide substitutions, including missense mutations, nonsense mutations, etc. Large deletion mutations are seldom reported. To determine the mutation in the FERMT1 gene associated with a 7-year-old Chinese patient who presented clinical manifestation of KS, we performed direct sequencing of all the exons of FERMT1 gene. For the exons 2–6 without amplicons, we analyzed the copy numbers using quantitative real-time polymerase chain reaction (qRT-PCR) with specific primers. The deletion breakpoints were sublocalized and the range of deletion was confirmed by PCR and direct sequencing. In this study, we identified a new 17-kb deletion mutation spanning the introns 1–6 of FERMT1 gene in a Chinese patient with severe KS phenotypes. Her parents were carriers of the same mutation. Our study reported a newly identified large deletion mutation of FERMT1 gene involved in KS, which further enriched the mutation spectrum of the FERMT1 gene. PMID:26537214

  19. Mutation analysis of the entire PKD1 gene: genetic and diagnostic implications.

    PubMed

    Rossetti, S; Strmecki, L; Gamble, V; Burton, S; Sneddon, V; Peral, B; Roy, S; Bakkaloglu, A; Komel, R; Winearls, C G; Harris, P C

    2001-01-01

    Mutation screening of the major autosomal dominant polycystic kidney disease (ADPKD) locus, PKD1, has proved difficult because of the large transcript and complex reiterated gene region. We have developed methods, employing long polymerase chain reaction (PCR) and specific reverse transcription-PCR, to amplify all of the PKD1 coding area. The gene was screened for mutations in 131 unrelated patients with ADPKD, using the protein-truncation test and direct sequencing. Mutations were identified in 57 families, and, including 24 previously characterized changes from this cohort, a detection rate of 52.3% was achieved in 155 families. Mutations were found in all areas of the gene, from exons 1 to 46, with no clear hotspot identified. There was no significant difference in mutation frequency between the single-copy and duplicated areas, but mutations were more than twice as frequent in the 3' half of the gene, compared with the 5' half. The majority of changes were predicted to truncate the protein through nonsense mutations (32%), insertions or deletions (29.6%), or splicing changes (6.2%), although the figures were biased by the methods employed, and, in sequenced areas, approximately 50% of all mutations were missense or in-frame. Studies elsewhere have suggested that gene conversion may be a significant cause of mutation at PKD1, but only 3 of 69 different mutations matched PKD1-like HG sequence. A relatively high rate of new PKD1 mutation was calculated, 1.8x10-5 mutations per generation, consistent with the many different mutations identified (69 in 81 pedigrees) and suggesting significant selection against mutant alleles. The mutation detection rate, in this study, of >50% is comparable to that achieved for other large multiexon genes and shows the feasibility of genetic diagnosis in this disorder. PMID:11115377

  20. Muscle imaging in muscle dystrophies produced by mutations in the EMD and LMNA genes.

    PubMed

    Díaz-Manera, Jordi; Alejaldre, Aida; González, Laura; Olivé, Montse; Gómez-Andrés, David; Muelas, Nuria; Vílchez, Juan José; Llauger, Jaume; Carbonell, Pilar; Márquez-Infante, Celedonio; Fernández-Torrón, Roberto; Poza, Juan José; López de Munáin, Adolfo; González-Quereda, Lidia; Mirabet, Sonia; Clarimon, Jordi; Gallano, Pía; Rojas-García, Ricard; Gallardo, Eduard; Illa, Isabel

    2016-01-01

    Identifying the mutated gene that produces a particular muscle dystrophy is difficult because different genotypes may share a phenotype and vice versa. Muscle MRI is a useful tool to recognize patterns of muscle involvement in patients with muscle dystrophies and to guide the diagnosis process. The radiologic pattern of muscle involvement in patients with mutations in the EMD and LMNA genes has not been completely established. Our objective is to describe the pattern of muscle fatty infiltration in patients with mutations in the EMD and in the LMNA genes and to search for differences between the two genotypes that could be helpful to guide the genetic tests. We conducted a national multicenter study in 42 patients, 10 with mutations in the EMD gene and 32 with mutations in the LMNA gene. MRI or CT was used to study the muscles from trunk to legs. Patients had a similar pattern of fatty infiltration regardless of whether they had the mutation in the EMD or LMNA gene. The main muscles involved were the paravertebral, glutei, quadriceps, biceps, semitendinosus, semimembranosus, adductor major, soleus, and gastrocnemius. Involvement of peroneus muscle, which was more frequently affected in patients with mutations in the EMD gene, was useful to differentiate between the two genotypes. Muscle MRI/CT identifies a similar pattern of muscle fatty infiltration in patients with mutations in the EMD or the LMNA genes. The involvement of peroneus muscles could be useful to conduct genetic analysis in patients with an EDMD phenotype. PMID:26573435

  1. [Parkinson's disease associated with a mutation in the PARK2 gene].

    PubMed

    Kaasinen, Valtteri; Hietala, Marja; Kuoppamäki, Mikko

    2015-01-01

    The most common cause of monogenic hereditary Parkinson's disease is a mutation in the PARK2 gene. Early onset, slow progression, dystonia, and good response to levodopa are typical of the disease phenotype. Finnish PARK2 patients have not been described previously. We describe two patients, in whom pathogenic mutations in the PARK2 gene were the cause of parkinsonism. PMID:26245049

  2. Germ-line mutations of the APC gene in 53 familial adenomatous polyposis patients.

    PubMed Central

    Miyoshi, Y; Ando, H; Nagase, H; Nishisho, I; Horii, A; Miki, Y; Mori, T; Utsunomiya, J; Baba, S; Petersen, G

    1992-01-01

    We searched for germ-line mutations of the APC gene in 79 unrelated patients with familial adenomatous polyposis using a ribonuclease protection analysis coupled with polymerase chain reaction amplifications of genomic DNA. Mutations were found in 53 patients (67%); 28 of the mutations were small deletions and 2 were 1- to 2-base-pair insertions; 19 were point mutations resulting in stop codons and only 4 were missense point mutations. Thus, 92% of the mutations were predicted to result in truncations of the APC protein. More than two-thirds (68%) of the mutations were clustered in the 5' half of the last exon, and nearly two-fifths of the total mutations occurred at one of five positions. This information has significant implications for understanding the role of APC mutation in inherited forms of colorectal neoplasia and for designing effective methods for genetic counseling and presymptomatic diagnosis. Images PMID:1316610

  3. Mutational screening of the USH2A gene in Spanish USH patients reveals 23 novel pathogenic mutations

    PubMed Central

    2011-01-01

    Background Usher Syndrome type II (USH2) is an autosomal recessive disorder, characterized by moderate to severe hearing impairment and retinitis pigmentosa (RP). Among the three genes implicated, mutations in the USH2A gene account for 74-90% of the USH2 cases. Methods To identify the genetic cause of the disease and determine the frequency of USH2A mutations in a cohort of 88 unrelated USH Spanish patients, we carried out a mutation screening of the 72 coding exons of this gene by direct sequencing. Moreover, we performed functional minigene studies for those changes that were predicted to affect splicing. Results As a result, a total of 144 DNA sequence variants were identified. Based upon previous studies, allele frequencies, segregation analysis, bioinformatics' predictions and in vitro experiments, 37 variants (23 of them novel) were classified as pathogenic mutations. Conclusions This report provide a wide spectrum of USH2A mutations and clinical features, including atypical Usher syndrome phenotypes resembling Usher syndrome type I. Considering only the patients clearly diagnosed with Usher syndrome type II, and results obtained in this and previous studies, we can state that mutations in USH2A are responsible for 76.1% of USH2 disease in patients of Spanish origin. PMID:22004887

  4. mutation3D: Cancer Gene Prediction Through Atomic Clustering of Coding Variants in the Structural Proteome.

    PubMed

    Meyer, Michael J; Lapcevic, Ryan; Romero, Alfonso E; Yoon, Mark; Das, Jishnu; Beltrán, Juan Felipe; Mort, Matthew; Stenson, Peter D; Cooper, David N; Paccanaro, Alberto; Yu, Haiyuan

    2016-05-01

    A new algorithm and Web server, mutation3D (http://mutation3d.org), proposes driver genes in cancer by identifying clusters of amino acid substitutions within tertiary protein structures. We demonstrate the feasibility of using a 3D clustering approach to implicate proteins in cancer based on explorations of single proteins using the mutation3D Web interface. On a large scale, we show that clustering with mutation3D is able to separate functional from nonfunctional mutations by analyzing a combination of 8,869 known inherited disease mutations and 2,004 SNPs overlaid together upon the same sets of crystal structures and homology models. Further, we present a systematic analysis of whole-genome and whole-exome cancer datasets to demonstrate that mutation3D identifies many known cancer genes as well as previously underexplored target genes. The mutation3D Web interface allows users to analyze their own mutation data in a variety of popular formats and provides seamless access to explore mutation clusters derived from over 975,000 somatic mutations reported by 6,811 cancer sequencing studies. The mutation3D Web interface is freely available with all major browsers supported. PMID:26841357

  5. Novel autosomal recessive gene mutations in aquaporin-2 in two Chinese congenital nephrogenic diabetes insipidus pedigrees

    PubMed Central

    Cen, Jing; Nie, Min; Duan, Lian; Gu, Feng

    2015-01-01

    Recent evidence has linked novel mutations in the arginine vasopressin receptor 2 gene (AVPR2) and aquaporin-2 gene (AQP2) present in Southeast Asian populations to congenital nephrogenic diabetes insipidus (NDI). To investigate mutations in 2 distinct Chinese pedigrees with NDI patients, clinical data, laboratory findings, and genomic DNA sequences from peripheral blood leukocytes were analyzed in two 5.5- and 8-year-old boys (proband 1 and 2, respectively) and their first-degree relatives. Water intake, urinary volume, body weight and medication use were recorded. Mutations in coding regions and intron-exon borders of both AQP2 and AVPR2 gene were sequenced. Three mutations in AQP2 were detected, including previously reported heterozygous frameshift mutation (c.127_128delCA, p.Gln43Aspfs ×63) inherited from the mother, a novel frameshift mutation (c.501_502insC, p.Val168Argfs ×30, inherited from the father) in proband 1 and a novel missense mutation (c. 643G>A, p. G215S), inherited from both parents in proband 2. In family 2 both parents and one sister were heterozygous carriers of the novel missense mutation. Neither pedigree exhibited mutation in the AVPR2 gene. The patient with truncated AQP2 may present with much more severe NDI manifestations. Identification of these novel AQP2 gene mutations expands the AQP2 genotypic spectrum and may contribute to etiological diagnosis and genetic counseling. PMID:26064258

  6. [Frontotemporal dementia (FTD) and genetic mutations including progranulin gene].

    PubMed

    Arai, Tetsuaki; Hasegawa, Masato; Nishihara, Masugi; Nonaka, Takashi; Kametani, Fuyuki; Yoshida, Mari; Hashizume, Yoshio; Beach, Thomas G; Morita, Mitsuya; Nakano, Imaharu; Oda, Tatsuro; Tsuchiya, Kuniaki; Akiyama, Haruhiko

    2008-11-01

    Research on familial frontotemporal lobar degeneration (FTLD) has led to the discovery of disease-causing genes: microtubule-associated protein tau (MAPT), progranulin (PGRN) and valosin-containing protein (VCP). TAR DNA-binding protein of 43 kDa (TDP-43) has been identified as a major component of tau-negative ubiquitin-positive inclusions in familial and sporadic FTLD and amyotrophic lateral sclerosis (ALS), which are now referred to as TDP-43 proteinopathy. Recent findings of mutations in TDP-43 gene in familial and sporadic ALS cases confirm the pathogenetic role for TDP-43 in neurodegeneration. TDP-43 proteinopathies have been classified into 4 pathological subtypes. Type 1 is characterized by numerous dystrophic neurites (DNs), Type 2 has numerous neuronal cytoplasmic inclusions (NCIs), Type 3 has NCIs and DNs and Type 4 has neuronal intranuclear inclusions (NIIs) and DNs. There is a close relationship between such pathological subtypes of TDP-43 proteinopathy and the immunoblot pattern of C-terminal fragments of accumulated TDP-43. These results parallel our earlier findings of differing C-terminal tau fragments in progressive supranuclear palsy and corticobasal degeneration, despite identical composition of tau isoforms. Taken together, these results suggest that elucidating the mechanism of C-terminal fragment origination may shed light on the pathogenesis of several neurodegenerative disorders involving TDP-43 proteinopathy and tauopathy. PMID:19198141

  7. Extensive Variation in the Mutation Rate Between and Within Human Genes Associated with Mendelian Disease.

    PubMed

    Smith, Thomas; Ho, Gladys; Christodoulou, John; Price, Elizabeth Ann; Onadim, Zerrin; Gauthier-Villars, Marion; Dehainault, Catherine; Houdayer, Claude; Parfait, Beatrice; van Minkelen, Rick; Lohman, Dietmar; Eyre-Walker, Adam

    2016-05-01

    We have investigated whether the mutation rate varies between genes and sites using de novo mutations (DNMs) from three genes associated with Mendelian diseases (RB1, NF1, and MECP2). We show that the relative frequency of mutations at CpG dinucleotides relative to non-CpG sites varies between genes and relative to the genomic average. In particular we show that the rate of transition mutation at CpG sites relative to the rate of non-CpG transversion is substantially higher in our disease genes than amongst DNMs in general; the rate of CpG transition can be several hundred-fold greater than the rate of non-CpG transversion. We also show that the mutation rate varies significantly between sites of a particular mutational type, such as non-CpG transversion, within a gene. We estimate that for all categories of sites, except CpG transitions, there is at least a 30-fold difference in the mutation rate between the 10% of sites with the highest and lowest mutation rates. However, our best estimate is that the mutation rate varies by several hundred-fold variation. We suggest that the presence of hypermutable sites may be one reason certain genes are associated with disease. PMID:26857394

  8. UNSTABLE MUTATIONS IN THE FMR1 GENE AND THE PHENOTYPES

    PubMed Central

    Loesch, Danuta; Hagerman, Randi

    2014-01-01

    Fragile X syndrome (FXS), a severe neurodevelopmental anomaly, and one of the earliest disorders linked to an unstable (‘dynamic’) mutation, is caused by the large (>200) CGG repeat expansions in the noncoding portion of the FMR1 (Fragile X Mental Retardation-1) gene. These expansions, termed full mutations, normally silence this gene's promoter through methylation, leading to a gross deficit of the Fragile X Mental Retardation Protein (FMRP) that is essential for normal brain development. Rare individuals with the expansion but with an unmethylated promoter (and thus, FMRP production), present a much less severe form of FXS. However, a unique feature of the relationship between the different sizes of CGG expanded tract and phenotypic changes is that smaller expansions (<200) generate a series of different clinical manifestations and/or neuropsychological changes. The major part of this chapter is devoted to those FMR1 alleles with small (55-200) CGG expansions, termed ‘premutations’, which have the potential for generating the full mutation alleles on mother-offspring transmission, on the one hand, and are associated with some phenotypic changes, on the other. Thus, the role of several factors known to determine the rate of CGG expansion in the premutation alleles is discussed first. Then, an account of various neurodevelopmental, congnitive, behavioural and physical changes reported in carriers of these small expansions is given, and possible association of these conditions with a toxicity of the elevated FMR1 gene's transcript (mRNA) is discussed. The next two sections are devoted to major and well defined clinical conditions associated with the premutation alleles. The first one is the late onset neurodegenerative disorder termed fragile X-associated tremor ataxia syndrome (FXTAS). The wide range of clinical and neuropsychological manifestations of this syndrome, and their relevance to elevated levels of the FMR1 mRNA, are described. Another distinct

  9. Association of PAX2 and Other Gene Mutations with the Clinical Manifestations of Renal Coloboma Syndrome

    PubMed Central

    Higashide, Tomomi; Sakurai, Mayumi; Hashimoto, Shin-ichi; Shinozaki, Yasuyuki; Hara, Akinori; Iwata, Yasunori; Sakai, Norihiko; Sugiyama, Kazuhisa; Kaneko, Shuichi; Wada, Takashi

    2015-01-01

    Background Renal coloboma syndrome (RCS) is characterized by renal anomalies and optic nerve colobomas. PAX2 mutations contribute to RCS. However, approximately half of the patients with RCS have no mutation in PAX2 gene. Methods To investigate the incidence and effects of mutations of PAX2 and 25 candidate genes, patient genes were screened using next-generation sequence analysis, and candidate mutations were confirmed using Sanger sequencing. The correlation between mutations and clinical manifestation was evaluated. Result Thirty patients, including 26 patients (two families of five and two, 19 sporadic cases) with RCS, and 4 optic nerve coloboma only control cases were evaluated in the present study. Six PAX2 mutations in 21 probands [28%; two in family cohorts (n = 5 and n = 2) and in 4 out of 19 patients with sporadic disease] including four novel mutations were confirmed using Sanger sequencing. Moreover, four other sequence variants (CHD7, SALL4, KIF26B, and SIX4) were also confirmed, including a potentially pathogenic novel KIF26B mutation. Kidney function and proteinuria were more severe in patients with PAX2 mutations than in those without the mutation. Moreover, the coloboma score was significantly higher in patients with PAX2 gene mutations. Three out of five patients with PAX2 mutations had focal segmental glomerulosclerosis (FSGS) diagnosed from kidney biopsies. Conclusion The results of this study identify several new mutations of PAX2, and sequence variants in four additional genes, including a novel potentially pathogenic mutation in KIF26B, which may play a role in the pathogenesis of RCS. PMID:26571382

  10. Identification of a novel mutation in the presenilin 1 gene in a Chinese Alzheimer's disease family.

    PubMed

    Deng, Bo; Lian, Yan; Wang, Xin; Zeng, Fan; Jiao, Bin; Wang, Ye-Ran; Liang, Chun-Rong; Liu, Yu-Hui; Bu, Xian-Le; Yao, Xiu-Qing; Zhu, Chi; Shen, Lu; Zhou, Hua-Dong; Zhang, Tao; Wang, Yan-Jiang

    2014-10-01

    This study has identified a gene mutation in a Chinese family with Alzheimer's disease (AD). Family members were screened by a set of medical examinations and neuropsychological tests. Their DNA was extracted from blood cells and sequenced for gene mutation in the amyloid precursor protein (APP), the presenilin 1 (PS1) and the presenilin 2 (PS2) genes. Genetic analysis showed that the AD patients in the family harbored a T to G missense mutation at the position 314 in exon 4 of the PS1 gene, resulting in a change of F105C in amino acid sequence. Clinical manifestation of these patients included memory loss, counting difficulty, personality change, disorientation, dyscalculia, agnosia, aphasia, and apraxia, which was similar to that of the familial AD (FAD) patients harboring other PS1 mutations. We intend to add a novel mutation F105C of the PS1 gene to the pool of FAD mutations. With the current available genetic data, mutations of the PS1 gene account for the majority of gene mutations in Chinese FAD. PMID:24737487

  11. Lysosomal Dysfunctions Associated with Mutations at Mouse Pigment Genes

    PubMed Central

    Novak, Edward K.; Swank, Richard T.

    1979-01-01

    Melanosomes and lysosomes share several structural and biosynthetic properties. Therefore, a large number of mouse pigment mutants were tested to determine whether genes affecting melanosome structure or function might also affect the lysosome. Among 31 mouse pigment mutants, six had 1.5- to 2.5- fold increased concentrations of kidney β-glucuronidase. Three mutants, pale ear, pearl and pallid, had a generalized effect on lysosomal enzymes since there were coordinate increases in kidney β-galactosidase and α-mannosidase. The effects of these three mutations are lysosome specific since rates of kidney protein synthesis and activities of three nonlysosomal kidney enzymes were normal. Also, the mutants are relatively tissue specific in that all had normal liver lysomal enzyme concentrations.—A common dysfunction in all three mutants was a lowered rate of lysosomal enzyme secretion from kidney into urine. While normal C57BL/6J mice daily secreted 27 to 30% of total kidney β-glucuronidase and β-galactosidase, secretion of these two enzymes was coordinately depressed to 1 to 2%, 8 to 9% and 4 to 5% of total kidney enzyme in the pale-ear, pearl and pallid mutants, respectively. Although depressed lysosomal enzyme secretion is the major pigment mutant alteration, the higher lysomal enzyme concentrations in pearl and pallid may be partly due to an increase in lysosomal enzyme synthesis. In these mutants kidney glucuronidase synthetic rate was increased 1.4- to 1.5-fold.—These results suggest that there are several critical genes in mammals that control the biogenesis, processing and/or function of related classes of subcellular organelles. The mechanism of action of these genes is amenable to further analysis since they have been incorporated into congenic inbred strains of mice. PMID:115747

  12. A novel nonsense mutation in the WFS1 gene causes the Wolfram syndrome.

    PubMed

    Noorian, Shahab; Savad, Shahram; Mohammadi, Davood Shah

    2016-05-01

    Wolfram syndrome is a rare autosomal recessive neurodegenerative disorder, which is mostly caused by mutations in the WFS1 gene. The WFS1 gene product, which is called wolframin, is thought to regulate the function of endoplasmic reticulum. The endoplasmic reticulum has a critical role in protein folding and material transportation within the cell or to the surface of the cell. Identification of new mutations in WFS1 gene will unravel the molecular pathology of WS. The aim of this case report study is to describe a novel mutation in exon 4 of the WFS1 gene (c.330C>A) in a 9-year-old boy with WS. PMID:26943604

  13. Chronic inflammatory state in sickle cell anemia patients is associated with HBB(*)S haplotype.

    PubMed

    Bandeira, Izabel C J; Rocha, Lillianne B S; Barbosa, Maritza C; Elias, Darcielle B D; Querioz, José A N; Freitas, Max Vitor Carioca; Gonçalves, Romélia P

    2014-02-01

    The chronic inflammatory state in sickle cell anemia (SCA) is associated with several factors such as the following: endothelial damage; increased production of reactive oxygen species; hemolysis; increased expression of adhesion molecules by leukocytes, erythrocytes, and platelets; and increased production of proinflammatory cytokines. Genetic characteristics affecting the clinical severity of SCA include variations in the hemoglobin F (HbF) level, coexistence of alpha-thalassemia, and the haplotype associated with the HbS gene. The different haplotypes of SCA are Bantu, Benin, Senegal, Cameroon, and Arab-Indian. These haplotypes are associated with ethnic groups and also based on the geographical origin. Studies have shown that the Bantu haplotype is associated with higher incidence of clinical complications than the other haplotypes and is therefore considered to have the worst prognosis. This study aimed to evaluate the profile of the proinflammatory cytokines interleukin-6, tumor necrosis factor-α, and interleukin-17 in patients with SCA and also to assess the haplotypes associated with beta globin cluster S (HBB(*)S). We analyzed a total of 62 patients who had SCA and had been treated with hydroxyurea; they had received a dose ranging between 15 and 25 (20.0±0.6)mg/kg/day for 6-60 (18±3.4)months; their data were compared with those for 30 normal individuals. The presence of HbS was detected and the haplotypes of the beta S gene cluster were analyzed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Our study demonstrated that SCA patients have increased inflammatory profile when compared to the healthy individuals. Further, analysis of the association between the haplotypes and inflammatory profile showed that the levels of IL-6 and TNF-α were greater in subjects with the Bantu/Bantu haplotype than in subjects with the Benin/Benin haplotype. The Bantu/Benin haplotype individuals had lower levels of cytokines than those with

  14. Spliceosomal gene mutations in myelodysplasia: molecular links to clonal abnormalities of hematopoiesis

    PubMed Central

    Inoue, Daichi; Bradley, Robert K.; Abdel-Wahab, Omar

    2016-01-01

    Genomic analyses of the myeloid malignancies and clonal disorders of hematopoiesis that may give rise to these disorders have identified that mutations in genes encoding core spliceosomal proteins and accessory regulatory splicing factors are among the most common targets of somatic mutations. These spliceosomal mutations often occur in a mutually exclusive manner with one another and, in aggregate, account for the most frequent class of mutations in patients with myelodysplastic syndromes (MDSs) in particular. Although substantial progress has been made in understanding the effects of several of these mutations on splicing and splice site recognition, functional connections linking the mechanistic changes in splicing induced by these mutations to the phenotypic consequences of clonal and aberrant hematopoiesis are not yet well defined. This review describes our current understanding of the mechanistic and biological effects of spliceosomal gene mutations in MDSs as well as the regulation of splicing throughout normal hematopoiesis. PMID:27151974

  15. K-ras gene mutation in gall bladder carcinomas and dysplasia.

    PubMed Central

    Ajiki, T; Fujimori, T; Onoyama, H; Yamamoto, M; Kitazawa, S; Maeda, S; Saitoh, Y

    1996-01-01

    Epithelial dysplasia of gall bladder is an important precancerous lesion of gall bladder carcinogenesis. To investigate the frequency of K-ras gene mutation in gall bladder carcinoma and dysplasia, K-ras codon 12 mutations were investigated by the polymerase chain reaction/restriction enzyme based method following direct sequencing. Mutation was detected in 59% (30 of 51) of gall bladder carcinomas, in 73% (8 of 11) of gall bladder dysplasia in gall stone cases, and in 0% of the normal gall bladder epithelium. There was, however, no correlation between K-ras mutation and clinicopathological factors of gall bladder carcinoma. K-ras gene mutation occurs even in gall bladder dysplasia at an incidence similar to that in carcinomas, suggesting that testing for K-ras gene mutation may prove useful as an adjunct to bile cytological or biopsy analysis. Images Figure 1 Figure 2 Figure 3 PMID:8675098

  16. Novel mutations in the RB1 gene from Chinese families with a history of retinoblastoma.

    PubMed

    Zhang, Leilei; Jia, Renbing; Zhao, Junyang; Fan, Jiayan; Zhou, YiXiong; Han, Bing; Song, Xin; Wu, Li; Zhang, He; Song, Huaidong; Ge, Shengfang; Fan, Xianqun

    2015-04-01

    Retinoblastoma is an aggressive eye cancer that develops during infancy and is divided into two clinical types, sporadic and heritable. RB1 has been identified as the only pathological gene responsible for heritable retinoblastoma. Here, we identified 11 RB1 germline mutations in the Han pedigrees of 17 bilateral retinoblastoma patients from China. Four mutations were nonsense mutations, five were splice site mutations, and two resulted in a frame shift due to an insertion or a deletion. Three of the mutations had not been previously reported, and the p.Q344L mutation occurred in two generations of retinoblastoma patients. We investigated phenotypic-genotypic relationships for the novel mutations and showed that these mutations affected the expression, location, and function of the retinoblastoma protein. Abnormal protein localization was observed after transfection of the mutant genes. In addition, changes in the cell cycle distribution and apoptosis rates were observed when the Saos-2 cell line was transfected with plasmids encoding the mutant RB1 genes. Our findings expand the spectrum of known RB1 mutations and will benefit the investigation of RB1 mutation hotspots. Genetic counseling can be offered to families with heritable RB1 mutations. PMID:25424699

  17. Mutations in the diastrophic dysplasia sulfate transporter (DTDST) gene (SLC26A2): 22 novel mutations, mutation review, associated skeletal phenotypes, and diagnostic relevance.

    PubMed

    Rossi, A; Superti-Furga, A

    2001-03-01

    Mutations in the DTDST gene can result in a family of skeletal dysplasia conditions which comprise two lethal disorders, achondrogenesis type 1B (ACG1B) and atelosteogenesis type 2 (AO2); and two non-lethal disorders, diastrophic dysplasia (DTD) and recessive multiple epiphyseal dysplasia (rMED). The gene product is a sulfate-chloride exchanger of the cell membrane. Inactivation of the sulfate exchanger leads to intracellular sulfate depletion and to the synthesis of undersulfated proteoglycans in susceptible cells such as chondrocytes and fibroblasts. Genotype-phenotype correlations are recognizable, with mutations predicting a truncated protein or a non-conservative amino acid substitution in a transmembrane domain giving the severe phenotypes, and non-transmembrane amino acid substitutions and splice site mutations giving the milder phenotypes. The clinical phenotype is modulated strictly by the degree of residual activity. Over 30 mutations have been observed, including 22 novel mutations reported here. The most frequent mutation, 862C>T (R279W), is a mild mutation giving the rMED phenotype when homozygous and mostly DTD when compounded; occurrence at a CpG dinucleotide and its panethnic distribution suggest independent recurrence. Mutation IVS1+2T>C is the second most common mutation, but is very frequent in Finland. It produces low levels of correctly spliced mRNA, and results in DTD when homozygous. Two other mutations, 1045-1047delGTT (V340del) and 558C>T (R178X), are associated with severe phenotypes and have been observed in multiple patients. Most other mutations are rare. Heterozygotes are clinically unaffected. When clinical samples are screened for radiologic and histologic features compatible with the ACG1B/AO2/DTD/rMED spectrum prior to analysis, the mutation detection rate is high (over 90% of alleles), and appropriate genetic counseling can be given. The sulfate uptake or sulfate incorporation assays in cultured fibroblasts have largely been

  18. Relationship between periodontal destruction and gene mutations in patients with familial Mediterranean fever.

    PubMed

    Sezer, Ufuk; Şenyurt, Süleyman Ziya; Özdemir, Eda Çetin; Zengin, Orhan; Üstün, Kemal; Erciyas, Kamile; Kısacık, Bünyamin; Onat, Ahmet Mesut

    2016-07-01

    Recent studies have shown that genetic factors involved in the host responses might determine the disease severity for both familial Mediterranean fever (FMF) and periodontitis. The present study aimed to investigate the relationship of FMF with periodontitis and to search for the potential association between periodontitis and MEFV gene missense variations in patients with FMF. The study consisted of 97 FMF patients and 34 healthy volunteers. FMF patients were classified according to the kind of MEFV gene mutation: (1) patients with homozygous M694V gene mutation, (2) patients with heterozygous M694V gene mutation, and (3) patients with MEFV gene different mutations. Gingival Index (GI), Plaque Index (PI), probing pocket depth (PD), and clinical attachment level (CAL) were measured in all participants. The results of multivariate logistic regression showed a highly significant association between homozygous M694V gene mutation and periodontitis in FMF patients (p < 0.05). After adjusting for potential confounders (smoking, body weight, age, and gender), FMF patients with homozygous M694V gene mutation were 3.51 (1.08-11.45) times more likely to present periodontitis than the other FMF patients. These results indicate that the presence of homozygous M694V gene mutation seems to increase the risk for periodontitis in FMF patients. PMID:26400644

  19. Compound EGFR mutation is frequently detected with co-mutations of actionable genes and associated with poor clinical outcome in lung adenocarcinoma

    PubMed Central

    Kim, Eun Young; Cho, Eun Na; Park, Heae Surng; Hong, Ji Young; Lim, Seri; Youn, Jong Pil; Hwang, Seung Yong; Chang, Yoon Soo

    2016-01-01

    Compound EGFR mutations, defined as double or multiple mutations in the EGFR tyrosine kinase domain, are frequently detected with advances in sequencing technology but its clinical significance is unclear. This study analyzed 61 cases of EGFR mutation positive lung adenocarcinoma using next-generation sequencing (NGS) based repeated deep sequencing panel of 16 genes that contain actionable mutations and investigated clinical implication of compound EGFR mutations. Compound EGFR mutation was detected in 15 (24.6%) of 61 cases of EGFR mutation-positive lung adenocarcinoma. The majority (12/15) of compound mutations are combination of the atypical mutation and typical mutations such as exon19 deletion, L858R or G719X substitutions, or exon 20 insertion whereas 3 were combinations of rare atypical mutations. The patients with compound mutation showed shorter overall survival than those with simple mutations (83.7 vs. 72.8 mo; P = 0.020, Breslow test). Among the 115 missense mutations discovered in the tested genes, a few number of actionable mutations were detected irrelevant to the subtype of EGFR mutations, including ALK rearrangement, BCL2L11 intron 2 deletion, KRAS c.35G>A, PIK3CA c.1633G>A which are possible target of crizotinib, BH3 mimetics, MEK inhibitors, and PI3K-tyrosine kinase inhibitors, respectively. 31 missense mutations were detected in the cases with simple mutations whereas 84 in those with compound mutation, showing that the cases with compound missense mutation have higher burden of missense mutations (P = 0.001, independent sample t-test). Compound EGFR mutations are detected at a high frequency using NGS-based repeated deep sequencing. Because patients with compound EGFR mutations showed poor clinical outcomes, they should be closely monitored during follow-up. PMID:26785607

  20. Splicing mutation of a gene within the Duchenne muscular dystrophy family.

    PubMed

    Zhu, Y B; Gan, J H; Luo, J W; Zheng, X Y; Wei, S C; Hu, D

    2016-01-01

    The aim of this study was to identify the mutation site and phenotype of the Duchenne muscular dystrophy (DMD) gene in a DMD family. The DMD gene is by far the largest known gene in humans. Up to 34% of the point mutations reported to date affect splice sites of the DMD gene. However, no hotspot mutation has been reported. Capture sequencing of second-generation exons was used to investigate the DMD gene in a proband. Sanger sequencing was performed for mutation scanning in eight family members. Scale-invariant feature transform and PolyPhen were applied to predict the functional impact of protein mutations. A hemizygous splicing mutation IVS44ds +1G-A (c.6438 +1G>A) that induces abnormal splicing variants during late transcription and produces abnormal proteins was located in intron 44. Four missense mutations (p.Arg2937Gln, p.Asp882Gly, p.Lys2366Gln, and p.Arg1745His) that are known multiple-polymorphic sites were found in the coding region of the DMD gene. A heterozygous c.6438+1G>A mutation was detected on the X chromosome of the proband's mother and maternal grandmother. PMID:27421007

  1. Gene Mutation Analysis in 253 Chinese Children with Unexplained Epilepsy and Intellectual/Developmental Disabilities

    PubMed Central

    Gao, Yang; Liu, Xiaoyan; Gao, Kai; Xie, Han; Wu, Ye; Zhang, Yuehua; Wang, Jingmin; Gao, Feng; Wu, Xiru; Jiang, Yuwu

    2015-01-01

    Objective Epilepsy and intellectual/developmental disabilities (ID/DD) have a high rate of co-occurrence. Here, we investigated gene mutations in Chinese children with unexplained epilepsy and ID/DD. Methods We used targeted next-generation sequencing to detect mutations within 300 genes related to epilepsy and ID/DD in 253 Chinese children with unexplained epilepsy and ID/DD. A series of filtering criteria was used to find the possible pathogenic variations. Validation and parental origin analyses were performed by Sanger sequencing. We reviewed the phenotypes of patients with each mutated gene. Results We identified 32 novel and 16 reported mutations within 24 genes in 46 patients. The detection rate was 18% (46/253) in the whole group and 26% (17/65) in the early-onset (before three months after birth) epilepsy group. To our knowledge, we are the first to report KCNAB1 is a disease-causing gene of epilepsy by identifying a novel de novo mutation (c.1062dupCA p.Leu355HisfsTer5) within this gene in one patient with early infantile epileptic encephalopathy (EIEE). Patients with an SCN1A mutation accounted for the largest proportion, 17% (8/46). A total of 38% (9/24) of the mutated genes re-occurred at least 2 times and 63% (15/24) occurred only one time. Ion channel genes are the most common (8/24) and genes related to synapse are the next most common to occur (5/24). Significance We have established genetic diagnosis for 46 patients of our cohort. Early-onset epilepsy had the highest detection rate. KCNAB1 mutation was first identified in EIEE patient. We expanded the phenotype and mutation spectrum of the genes we identified. The mutated genes in this cohort are mostly isolated. This suggests that epilepsy and ID/DD phenotypes occur as a consequence of brain dysfunction caused by a highly diverse population of mutated genes. Ion channel genes and genes related to synapse were more common mutated in this patient cohort. PMID:26544041

  2. Analysis of catechol-O-methyltransferase gene mutation and identification of new pathogenic gene for paroxysmal kinesigenic dyskinesia.

    PubMed

    Gu, Chengzhi; Li, Jia; Zhu, Lianhai; Lu, Zhenhui; Huang, Huaiyu

    2016-03-01

    We aimed to analyze the mutation site and frequency of catechol-O-methyltransferase (COMT) gene, to explore the relationship between COMT genotype and phenotype, and to find new pathogenic genes for paroxysmal kinesigenic dyskinesia (PKD). PKD patients who were treated from December 2011 to January 2014 were selected and subjected to genetic testing in the exon region of COMT. Two patients and one intrafamilial healthy control were subjected to exome sequencing using whole exome capture in combination with high-throughput sequencing to find candidate pathogenic gene sites. The results were verified by Sanger sequencing. A total of 11 familial PKD patients from 4 families and 9 sporadic patients without family history were included. Pathogenic c.634dupC(p.P220fsX7) mutation of COMT gene was found in 7 familial PKD patients and3 sporadic patients. Mutated COMT gene carriers suffered from PKD earlier (average age of onset: 11.61 ± 2.33 vs 16.21 ± 2.58, P = 0.001) with symmetric symptoms in most cases, while the mutation-negative group only showed unilateral symptoms (P = 0.001). The mutation-positive group also had more daily attacks (P = 0.038). Carbamazepine worked for all mutation-positive patients (10/10, 100%), but only for a part of mutation-negative patients (3/10, 30.0%). About 90000 single nucleotide polymorphisms and 2000 insertion-deletion polymorphisms were detected in each of the three samples. c.737C → T(p.T246 M) mutation of POC1B gene was a new pathogenic site for a selected family. COMT gene mutation, which was the pathogenesis of most familial PKD patients and a part of sporadic patients, predicted the response to carbamazepine. POC1B may be a novel pathogenic gene for PKD. PMID:26650803

  3. EpilepsyGene: a genetic resource for genes and mutations related to epilepsy.

    PubMed

    Ran, Xia; Li, Jinchen; Shao, Qianzhi; Chen, Huiqian; Lin, Zhongdong; Sun, Zhong Sheng; Wu, Jinyu

    2015-01-01

    Epilepsy is one of the most prevalent chronic neurological disorders, afflicting about 3.5-6.5 per 1000 children and 10.8 per 1000 elderly people. With intensive effort made during the last two decades, numerous genes and mutations have been published to be associated with the disease. An organized resource integrating and annotating the ever-increasing genetic data will be imperative to acquire a global view of the cutting-edge in epilepsy research. Herein, we developed EpilepsyGene (http://61.152.91.49/EpilepsyGene). It contains cumulative to date 499 genes and 3931 variants associated with 331 clinical phenotypes collected from 818 publications. Furthermore, in-depth data mining was performed to gain insights into the understanding of the data, including functional annotation, gene prioritization, functional analysis of prioritized genes and overlap analysis focusing on the comorbidity. An intuitive web interface to search and browse the diversified genetic data was also developed to facilitate access to the data of interest. In general, EpilepsyGene is designed to be a central genetic database to provide the research community substantial convenience to uncover the genetic basis of epilepsy. PMID:25324312

  4. EpilepsyGene: a genetic resource for genes and mutations related to epilepsy

    PubMed Central

    Ran, Xia; Li, Jinchen; Shao, Qianzhi; Chen, Huiqian; Lin, Zhongdong; Sun, Zhong Sheng; Wu, Jinyu

    2015-01-01

    Epilepsy is one of the most prevalent chronic neurological disorders, afflicting about 3.5–6.5 per 1000 children and 10.8 per 1000 elderly people. With intensive effort made during the last two decades, numerous genes and mutations have been published to be associated with the disease. An organized resource integrating and annotating the ever-increasing genetic data will be imperative to acquire a global view of the cutting-edge in epilepsy research. Herein, we developed EpilepsyGene (http://61.152.91.49/EpilepsyGene). It contains cumulative to date 499 genes and 3931 variants associated with 331 clinical phenotypes collected from 818 publications. Furthermore, in-depth data mining was performed to gain insights into the understanding of the data, including functional annotation, gene prioritization, functional analysis of prioritized genes and overlap analysis focusing on the comorbidity. An intuitive web interface to search and browse the diversified genetic data was also developed to facilitate access to the data of interest. In general, EpilepsyGene is designed to be a central genetic database to provide the research community substantial convenience to uncover the genetic basis of epilepsy. PMID:25324312

  5. Phenylalanine hydroxylase gene mutations in the United States: report from the Maternal PKU Collaborative Study.

    PubMed Central

    Guldberg, P.; Levy, H. L.; Hanley, W. B.; Koch, R.; Matalon, R.; Rouse, B. M.; Trefz, F.; de la Cruz, F.; Henriksen, K. F.; Güttler, F.

    1996-01-01

    The major cause of hyperphenylalaninemia is mutations in the gene encoding phenylalanine hydroxylase (PAH). The known mutations have been identified primarily in European patients. The purpose of this study was to determine the spectrum of mutations responsible for PAH deficiency in the United States. One hundred forty-nine patients enrolled in the Maternal PKU Collaborative Study were subjects for clinical and molecular investigations. PAH gene mutations associated with phenylketonuria (PKU) or mild hyperphenylalaninemia (MHP) were identified on 279 of 294 independent mutant chromosomes, a diagnostic efficiency of 95%. The spectrum is composed of 71 different mutations, including 47 missense mutations, 11 splice mutations, 5 nonsense mutations, and 8 microdeletions. Sixteen previously unreported mutations were identified. Among the novel mutations, five were found in patients with MHP, and the remainder were found in patients with PKU. The most common mutations were R408W, IVS12nt1g-->a, and Y414C, accounting for 18.7%, 7.8%, and 5.4% of the mutant chromosomes, respectively. Thirteen mutations had relative frequencies of 1%-5%, and 55 mutations each had frequencies < or = 1%. The mutational spectrum corresponded to that observed for the European ancestry of the U.S. population. To evaluate the extent of allelic variation at the PAH locus within the United States in comparison with other populations, we used allele frequencies to calculate the homozygosity for 11 populations where >90% ascertainment of mutations has been obtained. The United States was shown to contain one of the most heterogeneous populations, with homozygosity values similar to Sicily and ethnically mixed sample populations in Europe. The extent of allelic heterogeneity must be a major determining factor in the choice of mutation-detection methodology for molecular diagnosis in PAH deficiency. Images Figure 1 PMID:8659548

  6. Novel mutations in the USH1C gene in Usher syndrome patients

    PubMed Central

    Aparisi, María José; García-García, Gema; Jaijo, Teresa; Rodrigo, Regina; Graziano, Claudio; Seri, Marco; Simsek, Tulay; Simsek, Enver; Bernal, Sara; Baiget, Montserrat; Pérez-Garrigues, Herminio; Millán, José María

    2010-01-01

    Purpose Usher syndrome type I (USH1) is an autosomal recessive disorder characterized by severe-profound sensorineural hearing loss, retinitis pigmentosa, and vestibular areflexia. To date, five USH1 genes have been identified. One of these genes is Usher syndrome 1C (USH1C), which encodes a protein, harmonin, containing PDZ domains. The aim of the present work was the mutation screening of the USH1C gene in a cohort of 33 Usher syndrome patients, to identify the genetic cause of the disease and to determine the relative involvement of this gene in USH1 pathogenesis in the Spanish population. Methods Thirty-three patients were screened for mutations in the USH1C gene by direct sequencing. Some had already been screened for mutations in the other known USH1 genes (myosin VIIA [MYO7A], cadherin-related 23 [CDH23], protocadherin-related 15 [PCDH15], and Usher syndrome 1G [USH1G]), but no mutation was found. Results Two novel mutations were found in the USH1C gene: a non-sense mutation (p.C224X) and a frame-shift mutation (p.D124TfsX7). These mutations were found in a homozygous state in two unrelated USH1 patients. Conclusions In the present study, we detected two novel pathogenic mutations in the USH1C gene. Our results suggest that mutations in USH1C are responsible for 1.5% of USH1 disease in patients of Spanish origin (considering the total cohort of 65 Spanish USH1 patients since 2005), indicating that USH1C is a rare form of USH in this population. PMID:21203349

  7. Amelogenin signal peptide mutation: Correlation between mutations in the amelogenin gene (AMGX) and manifestations of X-linked amelogenesis imperfecta

    SciTech Connect

    Lagerstroem-Fermer, M.; Nilsson, M.; Pettersson, U.

    1995-03-01

    Formation of tooth enamel is a poorly understood biological process. In this study the authors describe a 9-bp deletion in exon 2 of the amelogenin gene (AMGX) causing X-linked hypoplastic amelogenesis imperfecta, a disease characterized by defective enamel. The mutation results in the loss of 3 amino acids and exchange of 1 in the signal peptide of the amelogenin protein. This deletion in the signal peptide probably interferes with translocation of the amelogenin protein during synthesis, resulting in the thin enamel observed in affected members of the family. The authors compare this mutation to a previously reported mutation in the amelogenin gene that causes a different disease phenotype. The study illustrates that molecular analysis can help explain the various manifestations of a tooth disorder and thereby provide insights into the mechanisms of tooth enamel formation. 16 refs., 2 figs., 1 tab.

  8. The importance of BRCA1 and BRCA2 genes mutations in breast cancer development

    PubMed Central

    Mehrgou, Amir; Akouchekian, Mansoureh

    2016-01-01

    Many factors including genetic, environmental, and acquired are involved in breast cancer development across various societies. Among all of these factors in families with a history of breast cancer throughout several generations, genetics, like predisposing genes to develop this disease, should be considered more. Early detection of mutation carriers in these genes, in turn, can play an important role in its prevention. Because this disease has a high prevalence in half of the global population, female screening of reported mutations in predisposing genes, which have been seen in breast cancer patients, seems necessary. In this review, a number of mutations in two predisposing genes (BRCA1 and BRCA2) that occurred in patients with a family history was investigated. We studied published articles about mutations in genes predisposed to breast cancer between 2000 and 2015. We then summarized and classified reported mutations in these two genes to recommend some exons which have a high potential to mutate. According to previous studies, exons have been reported as most mutated exons presented in this article. Considering the large size and high cost of screening all exons in these two genes in patients with a family history, especially in developing countries, the results of this review article can be beneficial and helpful in the selection of exon to screen for patients with this disease. PMID:27493913

  9. The importance of BRCA1 and BRCA2 genes mutations in breast cancer development.

    PubMed

    Mehrgou, Amir; Akouchekian, Mansoureh

    2016-01-01

    Many factors including genetic, environmental, and acquired are involved in breast cancer development across various societies. Among all of these factors in families with a history of breast cancer throughout several generations, genetics, like predisposing genes to develop this disease, should be considered more. Early detection of mutation carriers in these genes, in turn, can play an important role in its prevention. Because this disease has a high prevalence in half of the global population, female screening of reported mutations in predisposing genes, which have been seen in breast cancer patients, seems necessary. In this review, a number of mutations in two predisposing genes (BRCA1 and BRCA2) that occurred in patients with a family history was investigated. We studied published articles about mutations in genes predisposed to breast cancer between 2000 and 2015. We then summarized and classified reported mutations in these two genes to recommend some exons which have a high potential to mutate. According to previous studies, exons have been reported as most mutated exons presented in this article. Considering the large size and high cost of screening all exons in these two genes in patients with a family history, especially in developing countries, the results of this review article can be beneficial and helpful in the selection of exon to screen for patients with this disease. PMID:27493913

  10. Analysis of in vivo mutation in the Hprt and Tk genes of mouse lymphocytes.

    PubMed

    Dobrovolsky, Vasily N; Shaddock, Joseph G; Heflich, Robert H

    2014-01-01

    Assays measuring mutant frequencies in endogenous reporter genes are used for identifying potentially genotoxic environmental agents and discovering phenotypes prone to genomic instability and diseases, such as cancer. Here, we describe methods for identifying mouse spleen lymphocytes with mutations in the endogenous X-linked hypoxanthine guanine phosphoribosyl transferase (Hprt) gene and the endogenous autosomal thymidine kinase (Tk) gene. The selective clonal expansion of mutant lymphocytes is based upon the phenotypic properties of HPRT- and TK-deficient cells. The same procedure can be utilized for quantifying Hprt mutations in most strains of mice (and, with minor changes, in other mammalian species), while mutations in the Tk gene can be determined only in transgenic mice that are heterozygous for inactivation of this gene. Expanded mutant clones can be further analyzed to classify the types of mutations in the Tk gene (small intragenic mutations vs. large chromosomal mutations) and to determine the nature of intragenic mutation in both the Hprt and Tk genes. PMID:24623234

  11. Analysis of mutation of the c-Kit gene and PDGFRA in gastrointestinal stromal tumors

    PubMed Central

    XU, CHUN-WEI; LIN, SHAN; WANG, WU-LONG; GAO, WEN-BIN; LV, JIN-YAN; GAO, JING-SHAN; ZHANG, LI-YING; LI, YANG; WANG, LIN; ZHANG, YU-PING; TIAN, YU-WANG

    2015-01-01

    The aim of the present study was to investigate mutation status of the c-Kit gene (KIT) and PDGFRA in patients with a gastrointestinal stromal tumor (GIST). In total, 93 patients with a GIST were included in the study, in which polymerase chain reaction amplification and gene sequencing were used to detect the sequences of exons 9, 11, 13 and 17 in KIT and exons 12 and 18 in PDGFRA. KIT mutations were detected in 64 cases (68.82%), of which exon 11 mutations were detected in 56 cases (60.22%), exon 13 mutations were detected in three cases (3.23%) and one case (1.08%) was shown to have a mutation in exon 17. The most common mutation in exon 11 was a deletion, which accounted for 55.36% (31/56) of the cases, followed by a point mutation observed in 26.79% (15/56) of the cases, while an insertion (tandem repeats) was identified in 14.29% (8/56) of the cases, and 3.57% (2/56) of the exon 11 mutations were deletions associated with a point mutation. The majority of the mutations were heterozygous, with only a few homozygous mutations. Mutational analysis revealed the mutations to be more concentrated in the classic hot zone at the 5′-end, followed by the tandem repeat frame at the 3′-end. In four cases, a mutation was detected in exon 18 of PDGFRA, of which one was associated with a mutation in KIT. The remaining three cases (10.34%, 3/29) were not associated with mutations in KIT and accounted for 37.5% (3/8) of the CD117-negative GIST cases. Therefore, the majority of the GIST cases were characterized by mutations in KIT or PDGFRA, which were directly associated with the disease. Pairs of different mutations in the same exon of KIT, or KIT mutations coupled with pairs of mutations in PDGFRA, were detected in a small number of patients. Imatinib is a small molecule tyrosine kinase inhibitor and is the first line targeted treatment for GIST, resulting in markedly improved survival rates. Thus, gene mutation genotyping may provide inspiration and guidance for

  12. Separation of mutational and transcriptional enhancers in immunoglobulin genes

    PubMed Central

    Kothapalli, Naga Rama; Collura, Kaitlin M.; Norton, Darrell D.; Fugmann, Sebastian D.

    2011-01-01

    Secondary immunoglobulin (Ig) gene diversification relies on activation-induced cytidine deaminase (AID) to create U:G mismatches that are subsequently fixed by mutagenic repair pathways. AID activity is focused to Ig loci by cis-regulatory DNA sequences named targeting elements. Here we show that in contrast to prevailing thought in the field, the targeting elements in the chicken IGL locus are distinct from classical transcriptional enhancers. These mutational enhancer elements (MEEs) are required over and above transcription to recruit AID-mediated mutagenesis to Ig loci. We identified a small 222 bp fragment in the chicken IGL locus that enhances mutagenesis without boosting transcription, and this sequence represents a key component of a MEE. Lastly, MEEs are evolutionarily conserved amongst birds, both in sequence and function, and contain several highly conserved sequence modules that are likely involved in recruiting trans-acting targeting factors. We propose that MEEs represent a novel class of cis-regulatory elements whose function is to control genomic integrity. PMID:21844395

  13. Separation of mutational and transcriptional enhancers in Ig genes.

    PubMed

    Kothapalli, Naga Rama; Collura, Kaitlin M; Norton, Darrell D; Fugmann, Sebastian D

    2011-09-15

    Secondary Ig gene diversification relies on activation-induced cytidine deaminase (AID) to create U:G mismatches that are subsequently fixed by mutagenic repair pathways. AID activity is focused to Ig loci by cis-regulatory DNA sequences named targeting elements. In this study, we show that in contrast to prevailing thought in the field, the targeting elements in the chicken IGL locus are distinct from classical transcriptional enhancers. These mutational enhancer elements (MEEs) are required over and above transcription to recruit AID-mediated mutagenesis to Ig loci. We identified a small 222-bp fragment in the chicken IGL locus that enhances mutagenesis without boosting transcription, and this sequence represents a key component of an MEE. Lastly, MEEs are evolutionarily conserved among birds, both in sequence and function, and contain several highly conserved sequence modules that are likely involved in recruiting trans-acting targeting factors. We propose that MEEs represent a novel class of cis-regulatory elements for which the function is to control genomic integrity. PMID:21844395

  14. TET2 gene mutation is unfavorable prognostic factor in cytogenetically normal acute myeloid leukemia patients with NPM1+ and FLT3-ITD - mutations.

    PubMed

    Tian, Xiaopeng; Xu, Yang; Yin, Jia; Tian, Hong; Chen, Suning; Wu, Depei; Sun, Aining

    2014-07-01

    Cytogenetically normal acute myeloid leukemia (cn-AML) is a group of heterogeneous diseases. Gene mutations are increasingly used to assess the prognosis of cn-AML patients and guide risk-adapted treatment. In the present study, we analyzed the molecular genetics characteristics of 373 adult cn-AML patients and explored the relationship between TET2 gene mutations or different genetic mutation patterns and prognosis. We found that 16.1 % of patients had TET2 mutations, 31.6 % had FLT3 internal tandem duplications (ITDs), 6.2 % had FLT3 tyrosine kinase domain mutations, 2.4 % had c-KIT mutations, 37.8 % had NPM1 mutations, 11.3 % had WT1 mutations, 5.9 % had RUNX1 mutations, 11.5 % had ASXL1 mutations, 3.8 % had MLL-PTDs, 7.8 % had IDH1 mutations, 7.8 % had NRAS mutations, 12.3 % had IDH2 mutations, 1.6 % had EZH2 mutations, and 14.7 % had DNMT3A mutations, while none had CBL mutations. Gene mutations were detected in 76.94 % (287/373) of all patients. In the NPM1m(+) patients, those with TET2 mutations were associated with a shorter median overall survival (OS) as compared to TET2 wild-type (wt) patients (9.9 vs. 27.0 months, respectively; P = 0.023); Interestingly, the TET2 mutation was identified as an unfavorable prognostic factor and was closely associated with a shorter median OS as compared to TET2-wt (9.5 vs. 32.2 months, respectively; P = 0.013) in the NPM1m(+)/FLT3-ITDm(-) patient group. Thus, identification of TET2 combined with classic NPM1 and FLT3-ITD mutations allowed us to stratify cn-AML into distinct subtypes. PMID:24859829

  15. Next-generation sequencing identifies novel CACNA1A gene mutations in episodic ataxia type 2.

    PubMed

    Maksemous, Neven; Roy, Bishakha; Smith, Robert A; Griffiths, Lyn R

    2016-03-01

    Episodic Ataxia type 2 (EA2) is a rare autosomal dominantly inherited neurological disorder characterized by recurrent disabling imbalance, vertigo, and episodes of ataxia lasting minutes to hours. EA2 is caused most often by loss of function mutations of the calcium channel gene CACNA1A. In addition to EA2, mutations in CACNA1A are responsible for two other allelic disorders: familial hemiplegic migraine type 1 (FHM1) and spinocerebellar ataxia type 6 (SCA6). Herein, we have utilized next-generation sequencing (NGS) to screen the coding sequence, exon-intron boundaries, and Untranslated Regions (UTRs) of five genes where mutation is known to produce symptoms related to EA2, including CACNA1A. We performed this screening in a group of 31 unrelated patients with EA2 symptoms. Both novel and known mutations were detected through NGS technology, and confirmed through Sanger sequencing. Genetic testing showed in total 15 mutation bearing patients (48%), of which nine were novel mutations (6 missense and 3 small frameshift deletion mutations) and six known mutations (4 missense and 2 nonsense).These results demonstrate the efficiency of our NGS-panel for detecting known and novel mutations for EA2 in the CACNA1A gene, also identifying a novel missense mutation in ATP1A2 which is not a normal target for EA2 screening. PMID:27066515

  16. New mutations of EXT1 and EXT2 genes in German patients with Multiple Osteochondromas.

    PubMed

    Heinritz, Wolfram; Hüffmeier, Ulrike; Strenge, Sibylle; Miterski, Bianca; Zweier, Christiane; Leinung, Steffen; Bohring, Axel; Mitulla, Beate; Peters, Usha; Froster, Ursula G

    2009-05-01

    Mutations in either the EXT1 or EXT2 genes lead to Multiple Osteochondromas (MO), an autosomal dominantly inherited disorder. This is a report on clinical findings and results of molecular analyses of both genes in 23 German patients affected by MO. Mutation screening was performed by using denaturing high performance liquid chromatography (dHPLC) and automated sequencing. In 17 of 23 patients novel pathogenic mutations have been identified; eleven in the EXT1 and six in the EXT2 gene. Five patients were carriers of recurrent mutations in the EXT2 gene (p.Asp227Asn, p.Gln172X, p.Gln258X) and one patient had no detectable mutation. To demonstrate their pathogenic effect on transcription, two complex mutations in EXT1 and EXT2 and three splice site mutations were characterized by mRNA investigations. The results obtained provide evidence for different aberrant splice effects - usage of new cryptic splice sites and exon skipping. Our study extends the mutational spectrum and understanding of pathogenic effects of mutations in EXT1 and EXT2. PMID:19344451

  17. D620N mutation in the VPS35 gene and R1205H mutation in the EIF4G1 gene are uncommon in the Greek population.

    PubMed

    Kalinderi, Kallirhoe; Bostantjopoulou, Sevasti; Katsarou, Zoe; Dimikiotou, Maria; Fidani, Liana

    2015-10-01

    Recently, vacuolar protein sorting 35 (VPS35) and eukaryotic translation initiation factor 4 gamma 1 (EIF4G1) have been identified as new causal Parkinson's disease (PD) genes, with the VPS35 D620N and EIF4G1 R1205H mutations being identified in both autosomal dominant late-onset familial and sporadic PD patients. However, the frequencies of these two mutations among different ethnic groups vary. We studied the VPS35 D620N and EIF4G1 R1205H mutations in a total of 333 individuals, 202 Greek patients with sporadic PD and 131 control subjects, using a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. None of our studied individuals carried these two mutations. Our data support that the VPS35 D620N and EIF4G1 R1205H mutations are not a common cause of PD in the Greek population. PMID:26300542

  18. Blue genes: An integrative laboratory to differentiate genetic transformation from gene mutation for underclassmen.

    PubMed

    Militello, Kevin T; Chang, Ming-Mei; Simon, Robert D; Lazatin, Justine C

    2016-01-01

    The ability of students to understand the relationship between genotype and phenotype, and the mechanisms by which genotypes and phenotypes can change is essential for students studying genetics. To this end, we have developed a four-week laboratory called Blue Genes, which is designed to help novice students discriminate between two mechanisms by which the genetic material can be altered: genetic transformation and gene mutation. In the first week of the laboratory, students incubate a plasmid DNA with calcium chloride-treated Escherichia coli JM109 cells and observe a phenotype change from ampicillin sensitive to ampicillin resistant and from white color to blue color on plates containing 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-gal) and isopropyl β-D-thiogalactopyranoside (IPTG). Over the course of the next three weeks, students use a battery of approaches including plasmid DNA isolation experiments, restriction maps, and PCR to differentiate between mutation and transformation. The students ultimately come to the conclusion that the changes in phenotypes are due to genetic transformation and not mutation based on the evidence generated over the four-week period. Pre-laboratory tests and post-laboratory tests indicate that this set of exercises is successful in helping students differentiate between transformation and mutation. The laboratory is designed for underclassmen and is a good prerequisite for an apprentice-based research opportunity, although it is not designed as a class based research experience. Potential modifications and future directions of the laboratory based upon student experiences and assessment are presented. PMID:26525488

  19. Mutation spectrum of the rhodopsin gene among patients with autosomal dominant retinitis pigmentosa

    SciTech Connect

    Dryja, T.P.; Han, L.B.; Cowley, G.S.; McGee, T.L.; Berson, E.L. )

    1991-10-15

    The authors searched for point mutations in every exon of the rhodopsin gene in 150 patients from separate families with autosomal dominant retinitis pigmentosa. Including the 4 mutations the authors reported previously, they found a total of 17 different mutations that correlate with the disease. Each of these mutations is a single-base substitution corresponding to a single amino acid substitution. Based on current models for the structure of rhodopsin, 3 of the 17 mutant amino acids are normally located on the cytoplasmic side of the protein, 6 in transmembrane domains, and 8 on the intradiscal side. Forty-three of the 150 patients (29%) carry 1 of these mutations, and no patient has more than 1 mutation. In every family with a mutation so far analyzed, the mutation cosegregates with the disease. They found one instance of a mutation in an affected patient that was absent in both unaffected parents (i.e., a new germ-line mutation), indicating that some isolate cases of retinitis pigmentosa carry a mutation of the rhodopsin gene.

  20. A new mutation of the noggin gene in a French Fibrodysplasia ossificans progressiva (FOP) family.

    PubMed

    Fontaine, K; Sémonin, O; Legarde, J P; Lenoir, G; Lucotte, G

    2005-01-01

    A new mutation of the Noggin gene in a French Fybrodysplasia ossificans progressiva (FOP) family: Fibrodysplasia ossificans progressiva (FOP) is a very rare disease characterized by congenital malformation of the great toes and progressive heterotopic ossification of the muscles. We previously located a FOP gene in the 17q21-22 region and described several mutations of the noggin (NOG) gene (located in 17q22) in four FOP patients, including the G91C mutation which is transmitted dominantly in a Spanish FOP family. We describe in the present study a new mutation of the NOG gene in a French FOP family. This new mutation is a guanine to adenine change at nucleotide 283 (283G --> A) of the NOG gene, and is transmitted in the family (in the heterozygote form) by the affected mother to her two affected children. At the peptide level this mutation (A95T) substitutes an Alanine residue by a Threonine at position 95 of the Noggin protein. The Alanine mutated residue is located just adjacent to the myristoylation site of the protein, where all the mutations we described until now are located. PMID:16080294

  1. Excess of De Novo Deleterious Mutations in Genes Associated with Glutamatergic Systems in Nonsyndromic Intellectual Disability

    PubMed Central

    Hamdan, Fadi F.; Gauthier, Julie; Araki, Yoichi; Lin, Da-Ting; Yoshizawa, Yuhki; Higashi, Kyohei; Park, A-Reum; Spiegelman, Dan; Dobrzeniecka, Sylvia; Piton, Amélie; Tomitori, Hideyuki; Daoud, Hussein; Massicotte, Christine; Henrion, Edouard; Diallo, Ousmane; Shekarabi, Masoud; Marineau, Claude; Shevell, Michael; Maranda, Bruno; Mitchell, Grant; Nadeau, Amélie; D'Anjou, Guy; Vanasse, Michel; Srour, Myriam; Lafrenière, Ronald G.; Drapeau, Pierre; Lacaille, Jean Claude; Kim, Eunjoon; Lee, Jae-Ran; Igarashi, Kazuei; Huganir, Richard L.; Rouleau, Guy A.; Michaud, Jacques L.

    2011-01-01

    Little is known about the genetics of nonsyndromic intellectual disability (NSID). We hypothesized that de novo mutations (DNMs) in synaptic genes explain an important fraction of sporadic NSID cases. In order to investigate this possibility, we sequenced 197 genes encoding glutamate receptors and a large subset of their known interacting proteins in 95 sporadic cases of NSID. We found 11 DNMs, including ten potentially deleterious mutations (three nonsense, two splicing, one frameshift, four missense) and one neutral mutation (silent) in eight different genes. Calculation of point-substitution DNM rates per functional and neutral site showed significant excess of functional DNMs compared to neutral ones. De novo truncating and/or splicing mutations in SYNGAP1, STXBP1, and SHANK3 were found in six patients and are likely to be pathogenic. De novo missense mutations were found in KIF1A, GRIN1, CACNG2, and EPB41L1. Functional studies showed that all these missense mutations affect protein function in cell culture systems, suggesting that they may be pathogenic. Sequencing these four genes in 50 additional sporadic cases of NSID identified a second DNM in GRIN1 (c.1679_1681dup/p.Ser560dup). This mutation also affects protein function, consistent with structural predictions. None of these mutations or any other DNMs were identified in these genes in 285 healthy controls. This study highlights the importance of the glutamate receptor complexes in NSID and further supports the role of DNMs in this disorder. PMID:21376300

  2. Excess of de novo deleterious mutations in genes associated with glutamatergic systems in nonsyndromic intellectual disability.

    PubMed

    Hamdan, Fadi F; Gauthier, Julie; Araki, Yoichi; Lin, Da-Ting; Yoshizawa, Yuhki; Higashi, Kyohei; Park, A-Reum; Spiegelman, Dan; Dobrzeniecka, Sylvia; Piton, Amélie; Tomitori, Hideyuki; Daoud, Hussein; Massicotte, Christine; Henrion, Edouard; Diallo, Ousmane; Shekarabi, Masoud; Marineau, Claude; Shevell, Michael; Maranda, Bruno; Mitchell, Grant; Nadeau, Amélie; D'Anjou, Guy; Vanasse, Michel; Srour, Myriam; Lafrenière, Ronald G; Drapeau, Pierre; Lacaille, Jean Claude; Kim, Eunjoon; Lee, Jae-Ran; Igarashi, Kazuei; Huganir, Richard L; Rouleau, Guy A; Michaud, Jacques L

    2011-03-11

    Little is known about the genetics of nonsyndromic intellectual disability (NSID). We hypothesized that de novo mutations (DNMs) in synaptic genes explain an important fraction of sporadic NSID cases. In order to investigate this possibility, we sequenced 197 genes encoding glutamate receptors and a large subset of their known interacting proteins in 95 sporadic cases of NSID. We found 11 DNMs, including ten potentially deleterious mutations (three nonsense, two splicing, one frameshift, four missense) and one neutral mutation (silent) in eight different genes. Calculation of point-substitution DNM rates per functional and neutral site showed significant excess of functional DNMs compared to neutral ones. De novo truncating and/or splicing mutations in SYNGAP1, STXBP1, and SHANK3 were found in six patients and are likely to be pathogenic. De novo missense mutations were found in KIF1A, GRIN1, CACNG2, and EPB41L1. Functional studies showed that all these missense mutations affect protein function in cell culture systems, suggesting that they may be pathogenic. Sequencing these four genes in 50 additional sporadic cases of NSID identified a second DNM in GRIN1 (c.1679_1681dup/p.Ser560dup). This mutation also affects protein function, consistent with structural predictions. None of these mutations or any other DNMs were identified in these genes in 285 healthy controls. This study highlights the importance of the glutamate receptor complexes in NSID and further supports the role of DNMs in this disorder. PMID:21376300

  3. Clinical Significance of a Point Mutation in DNA Polymerase Beta (POLB) Gene in Gastric Cancer

    PubMed Central

    Tan, Xiaohui; Wang, Hongyi; Luo, Guangbin; Ren, Shuyang; Li, Wenmei; Cui, Jiantao; Gill, Harindarpal S.; Fu, Sidney W.; Lu, Youyong

    2015-01-01

    Gastric cancer (GC) is a major cause of global cancer mortality. Genetic variations in DNA repair genes can modulate DNA repair capability and, consequently, have been associated with risk of developing cancer. We have previously identified a T to C point mutation at nucleotide 889 (T889C) in DNA polymerase beta (POLB) gene, a key enzyme involved in base excision repair in primary GCs. The purpose of this study was to evaluate the mutation and expression of POLB in a larger cohort and to identify possible prognostic roles of the POLB alterations in GC. Primary GC specimens and their matched normal adjacent tissues were collected at the time of surgery. DNA, RNA and protein samples were isolated from GC specimens and cell lines. Mutations were detected by PCR-RFLP/DHPLC and sequencing analysis. POLB gene expression was examined by RT-PCR, tissue microarray, Western blotting and immunofluorescence assays. The function of the mutation was evaluated by chemosensitivity, MTT, Transwell matrigel invasion and host cell reactivation assays. The T889C mutation was detected in 18 (10.17%) of 177 GC patients. And the T889C mutation was associated with POLB overexpression, lymph nodes metastases and poor tumor differentiation. In addition, patients with- the mutation had significantly shorter survival time than those without-, following postoperative chemotherapy. Furthermore, cell lines with T889C mutation in POLB gene were more resistant to the treatment of 5-fluorouracil, cisplatin and epirubicin than those with wild type POLB. Forced expression of POLB gene with T889C mutation resulted in enhanced cell proliferation, invasion and resistance to anticancer drugs, along with increased DNA repair capability. These results suggest that POLB gene with T889C mutation in surgically resected primary gastric tissues may be clinically useful for predicting responsiveness to chemotherapy in patients with GC. The POLB gene alteration may serve as a prognostic biomarker for GC. PMID

  4. Interacting genes that affect microtubule function in Drosophila melanogaster: Two classes of mutation revert the failure to complement between hay sup nc2 and mutations in tubulin genes

    SciTech Connect

    Regan, C.L.; Fuller, M.T. )

    1990-05-01

    The recessive male sterile mutation hay{sup nc2} of Drosophila melanogaster fails to complement certain {beta}{sub 2}-tubulin and {alpha}-tubulin mutations, suggesting that the haywire product plays a role in microtubule function, perhaps as a structural component of microtubules. The genetic interaction appears to require the presence of the aberrant product encoded by hay{sup nc2}, which may act as a structural poison. Based on this observation, the authors have isolated ten new mutations with EMS that revert the failure to complement between hay{sup nc2} and B2t{sup n}. The revertants tested behaved as intragenic mutations of hay in recombination tests, and feel into two phenotypic classes, suggesting two functional domains of the hay gene product. Some revertants were hemizygous viable and less severe than hay{sup nc2} in their recessive phenotype. These mutations might revert the poison by restoring the aberrant product encoded by the hay{sup nc2} allele to more wild-type function. Most of the revertants were recessive lethal mutations, indicating that the hay gene product is essential for viability. These more extreme mutations could revert the poison by destroying the ability of the aberrant haywire{sup nc2} product to interact structurally with microtubules. Flies heterozygous for the original hay{sup nc2} allele and an extreme revertant show defects in both the structure and the function of the male meiotic spindle.

  5. High frequency of additional gene mutations in acute myeloid leukemia with MLL partial tandem duplication: DNMT3A mutation is associated with poor prognosis

    PubMed Central

    Kao, Hsiao-Wen; Liang, Der-Cherng; Kuo, Ming-Chung; Wu, Jin-Hou; Dunn, Po; Wang, Po-Nan; Lin, Tung-Liang; Shih, Yu-Shu; Liang, Sung-Tzu; Lin, Tung-Huei; Lai, Chen-Yu; Lin, Chun-Hui; Shih, Lee-Yung

    2015-01-01

    The mutational profiles of acute myeloid leukemia (AML) with partial tandem duplication of mixed-lineage leukemia gene (MLL-PTD) have not been comprehensively studied. We studied 19 gene mutations for 98 patients with MLL-PTD AML to determine the mutation frequency and clinical correlations. MLL-PTD was screened by reverse-transcriptase PCR and confirmed by real-time quantitative PCR. The mutational analyses were performed with PCR-based assays followed by direct sequencing. Gene mutations of signaling pathways occurred in 63.3% of patients, with FLT3-ITD (44.9%) and FLT3-TKD (13.3%) being the most frequent. 66% of patients had gene mutations involving epigenetic regulation, and DNMT3A (32.7%), IDH2 (18.4%), TET2 (18.4%), and IDH1 (10.2%) mutations were most common. Genes of transcription pathways and tumor suppressors accounted for 23.5% and 10.2% of patients. RUNX1 mutation occurred in 23.5% of patients, while none had NPM1 or double CEBPA mutation. 90.8% of MLL-PTD AML patients had at least one additional gene mutation. Of 55 MLL-PTD AML patients who received standard chemotherapy, age older than 50 years and DNMT3A mutation were associated with inferior outcome. In conclusion, gene mutations involving DNA methylation and activated signaling pathway were common co-existed gene mutations. DNMT3A mutation was a poor prognostic factor in MLL-PTD AML. PMID:26375248

  6. New mutations in MAPT gene causing frontotemporal lobar degeneration: biochemical and structural characterization.

    PubMed

    Rossi, Giacomina; Bastone, Antonio; Piccoli, Elena; Mazzoleni, Giulia; Morbin, Michela; Uggetti, Andrea; Giaccone, Giorgio; Sperber, Sarah; Beeg, Marten; Salmona, Mario; Tagliavini, Fabrizio

    2012-04-01

    Frontotemporal lobar degeneration (FTLD) can be sporadic or familial. The genes encoding the microtubule-associated protein tau (MAPT) and progranulin (GRN) are the most relevant genes so far known causing the hereditary forms. Following genetic screening of patients affected by FTLD, we identified 2 new MAPT mutations, P364S and G366R, the former in a sporadic case. In the study we report the clinical and genetic features of the patients carrying these mutations, and the functional effects of the mutations, analyzed in vitro in order to investigate their pathogenic character. Both mutations resulted in reduced ability of tau to promote microtubule polymerization; the P364S protein variant also showed a high propensity to aggregate into filaments. These results suggest a high probability that these mutations are pathogenic. Our findings highlight the importance of genetic analysis also in sporadic forms of FTLD, and the role of in vitro studies to evaluate the pathologic features of new mutations. PMID:21943955

  7. Nemaline myopathy caused by mutations in the nebulin gene may present as a distal myopathy.

    PubMed

    Lehtokari, Vilma-Lotta; Pelin, Katarina; Herczegfalvi, Agnes; Karcagi, Veronika; Pouget, Jean; Franques, Jerôme; Pellissier, Jean François; Figarella-Branger, Dominique; von der Hagen, Maja; Huebner, Angela; Schoser, Benedikt; Lochmüller, Hanns; Wallgren-Pettersson, Carina

    2011-08-01

    Mutations in the nebulin gene are the main cause of autosomal recessive nemaline myopathy, with clinical presentations ranging from mild to severe disease. We have previously reported a nonspecific distal myopathy caused by homozygous missense mutations in the nebulin gene in six Finnish patients from four different families. Here we describe three non-Finnish patients in two unrelated families with distal nemaline myopathy caused by four different compound heterozygous nebulin mutations, only one of which is a missense mutation. One of the mutations has previously been identified in one family with the severe form of nemaline myopathy. We conclude that nemaline myopathy and distal myopathy caused by nebulin mutations form a clinical and histological continuum. Nemaline myopathy should be considered as a differential diagnosis in patients presenting with an early-onset predominantly distal myopathy. PMID:21724397

  8. Prevalence of Mutations in eyeGENE Probands With a Diagnosis of Autosomal Dominant Retinitis Pigmentosa

    PubMed Central

    Sullivan, Lori S.; Bowne, Sara J.; Reeves, Melissa J.; Blain, Delphine; Goetz, Kerry; NDifor, Vida; Vitez, Sally; Wang, Xinjing; Tumminia, Santa J.; Daiger, Stephen P.

    2013-01-01

    Purpose. To screen samples from patients with presumed autosomal dominant retinitis pigmentosa (adRP) for mutations in 12 disease genes as a contribution to the research and treatment goals of the National Ophthalmic Disease Genotyping and Phenotyping Network (eyeGENE). Methods. DNA samples were obtained from eyeGENE. A total of 170 probands with an intake diagnosis of adRP were tested through enrollment in eyeGENE. The 10 most common genes causing adRP (IMPDH1, KLHL7, NR2E3, PRPF3/RP18, PRPF31/RP11, PRPF8/RP13, PRPH2/RDS, RHO, RP1, and TOPORS) were chosen for PCR-based dideoxy sequencing, along with the two X-linked RP genes, RPGR and RP2. RHO, PRPH2, PRPF31, RPGR, and RP2 were completely sequenced, while only mutation hotspots in the other genes were analyzed. Results. Disease-causing mutations were identified in 52% of the probands. The frequencies of disease-causing mutations in the 12 genes were consistent with previous studies. Conclusions. The Laboratory for Molecular Diagnosis of Inherited Eye Disease at the University of Texas in Houston has thus far received DNA samples from 170 families with a diagnosis of adRP from the eyeGENE Network. Disease-causing mutations in autosomal genes were identified in 48% (81/170) of these families while mutations in X-linked genes accounted for an additional 4% (7/170). Of the 55 distinct mutations detected, 19 (33%) have not been previously reported. All diagnostic results were returned by eyeGENE to participating patients via their referring clinician. These genotyped samples along with their corresponding phenotypic information are also available to researchers who may request access to them for further study of these ophthalmic disorders. (ClinicalTrials.gov number, NCT00378742.) PMID:23950152

  9. Recurrent de novo mutations implicate novel genes underlying simplex autism risk

    PubMed Central

    O'Roak, B. J.; Stessman, H. A.; Boyle, E. A.; Witherspoon, K. T.; Martin, B.; Lee, C.; Vives, L.; Baker, C.; Hiatt, J. B.; Nickerson, D. A.; Bernier, R.; Shendure, J.; Eichler, E. E.

    2014-01-01

    Autism spectrum disorder (ASD) has a strong but complex genetic component. Here we report on the resequencing of 64 candidate neurodevelopmental disorder risk genes in 5,979 individuals: 3,486 probands and 2,493 unaffected siblings. We find a strong burden of de novo point mutations for these genes and specifically implicate nine genes. These include CHD2 and SYNGAP1, genes previously reported in related disorders, and novel genes TRIP12 and PAX5. We also show that mutation carriers generally have lower IQs and enrichment for seizures. These data begin to distinguish genetically distinct subtypes of autism important for etiological classification and future therapeutics. PMID:25418537

  10. DNA repair genes are selectively mutated in diffuse large B cell lymphomas

    PubMed Central

    de Miranda, Noel FCC; Peng, Roujun; Georgiou, Konstantinos; Wu, Chenglin; Sörqvist, Elin Falk; Berglund, Mattias; Chen, Longyun; Gao, Zhibo; Lagerstedt, Kristina; Lisboa, Susana; Roos, Fredrik; van Wezel, Tom; Teixeira, Manuel R.; Rosenquist, Richard; Sundström, Christer; Enblad, Gunilla; Nilsson, Mats; Zeng, Yixin; Kipling, David

    2013-01-01

    DNA repair mechanisms are fundamental for B cell development, which relies on the somatic diversification of the immunoglobulin genes by V(D)J recombination, somatic hypermutation, and class switch recombination. Their failure is postulated to promote genomic instability and malignant transformation in B cells. By performing targeted sequencing of 73 key DNA repair genes in 29 B cell lymphoma samples, somatic and germline mutations were identified in various DNA repair pathways, mainly in diffuse large B cell lymphomas (DLBCLs). Mutations in mismatch repair genes (EXO1, MSH2, and MSH6) were associated with microsatellite instability, increased number of somatic insertions/deletions, and altered mutation signatures in tumors. Somatic mutations in nonhomologous end-joining (NHEJ) genes (DCLRE1C/ARTEMIS, PRKDC/DNA-PKcs, XRCC5/KU80, and XRCC6/KU70) were identified in four DLBCL tumors and cytogenetic analyses revealed that translocations involving the immunoglobulin-heavy chain locus occurred exclusively in NHEJ-mutated samples. The novel mutation targets, CHEK2 and PARP1, were further screened in expanded DLBCL cohorts, and somatic as well as novel and rare germline mutations were identified in 8 and 5% of analyzed tumors, respectively. By correlating defects in a subset of DNA damage response and repair genes with genomic instability events in tumors, we propose that these genes play a role in DLBCL lymphomagenesis. PMID:23960188

  11. Steatocystoma multiplex is associated with the R94C mutation in the KRTl7 gene

    PubMed Central

    LIU, QIAO; WU, WEIWEI; LU, JIEJIE; WANG, PING; QIAO, FENG

    2015-01-01

    Steatocystoma multiplex (SM) is an uncommon disorder, characterized by numerous skin-colored subcutaneous cysts. A number of SM pedigrees have been identified with mutations in the keratin 17 (KRT17) gene. The present study examined a four-generation Chinese pedigree with an autosomal dominant mode of inheritance and examined its genetic basis. A review of the literature on KRT17 gene mutations in the SM pedigree was also performed to investigate the KRT17 gene mutation and genotype-phenotype correlation. Exon 1 of the KRTl7 gene was amplified using polymerase chain reaction (PCR) from genomic DNA obtained, which was obtained from 25 family members in the selected Chinese pedigree and from 100 unrelated control individuals. The DNA was then subjected to automatic DNA sequencing. Genealogical investigations demonstrated an autosomal dominant pattern, and direct sequencing of the PCR product revealed a heterozygous mutation, c.280C/T (R94C), which was located in exon 1 of the KRT17 gene in all 10 affected family members. The mutation was not identified in the 15 unaffected family members or in the 100 unrelated control individuals. Therefore, the present study identified a causative mutation in the KRT17 gene in a large Chinese SM pedigree, exhibiting autosomal dominance. A review of the literature suggested that, in addition to the mutation factor, other modifying factors contribute to the phenotype of familial SM. PMID:26165312

  12. Steatocystoma multiplex is associated with the R94C mutation in the KRTl7 gene.

    PubMed

    Liu, Qiao; Wu, Weiwei; Lu, Jiejie; Wang, Ping; Qiao, Feng

    2015-10-01

    Steatocystoma multiplex (SM) is an uncommon disorder, characterized by numerous skin‑colored subcutaneous cysts. A number of SM pedigrees have been identified with mutations in the keratin 17 (KRT17) gene. The present study examined a four‑generation Chinese pedigree with an autosomal dominant mode of inheritance and examined its genetic basis. A review of the literature on KRT17 gene mutations in the SM pedigree was also performed to investigate the KRT17 gene mutation and genotype‑phenotype correlation. Exon 1 of the KRTl7 gene was amplified using polymerase chain reaction (PCR) from genomic DNA obtained, which was obtained from 25 family members in the selected Chinese pedigree and from 100 unrelated control individuals. The DNA was then subjected to automatic DNA sequencing. Genealogical investigations demonstrated an autosomal dominant pattern, and direct sequencing of the PCR product revealed a heterozygous mutation, c.280C/T (R94C), which was located in exon 1 of the KRT17 gene in all 10 affected family members. The mutation was not identified in the 15 unaffected family members or in the 100 unrelated control individuals. Therefore, the present study identified a causative mutation in the KRT17 gene in a large Chinese SM pedigree, exhibiting autosomal dominance. A review of the literature suggested that, in addition to the mutation factor, other modifying factors contribute to the phenotype of familial SM. PMID:26165312

  13. Prevalence of Pathogenic Mutations in Cancer Predisposition Genes among Pancreatic Cancer Patients.

    PubMed

    Hu, Chunling; Hart, Steven N; Bamlet, William R; Moore, Raymond M; Nandakumar, Kannabiran; Eckloff, Bruce W; Lee, Yean K; Petersen, Gloria M; McWilliams, Robert R; Couch, Fergus J

    2016-01-01

    The prevalence of germline pathogenic mutations in a comprehensive panel of cancer predisposition genes is not well-defined for patients with pancreatic ductal adenocarcinoma (PDAC). To estimate the frequency of mutations in a panel of 22 cancer predisposition genes, 96 patients unselected for a family history of cancer who were recruited to the Mayo Clinic Pancreatic Cancer patient registry over a 12-month period were screened by next-generation sequencing. Fourteen pathogenic mutations in 13 patients (13.5%) were identified in eight genes: four in ATM, two in BRCA2, CHEK2, and MSH6, and one in BARD1, BRCA1, FANCM, and NBN. These included nine mutations (9.4%) in established pancreatic cancer genes. Three mutations were found in patients with a first-degree relative with PDAC, and 10 mutations were found in patients with first- or second-degree relatives with breast, pancreas, colorectal, ovarian, or endometrial cancers. These results suggest that a substantial proportion of patients with PDAC carry germline mutations in predisposition genes associated with other cancers and that a better understanding of pancreatic cancer risk will depend on evaluation of families with broad constellations of tumors. These findings highlight the need for recommendations governing germline gene-panel testing of patients with pancreatic cancer. PMID:26483394

  14. Prevalence of pathogenic mutations in cancer predisposition genes among pancreatic cancer patients

    PubMed Central

    Hu, Chunling; Hart, Steven N.; Bamlet, William R.; Moore, Raymond M.; Nandakumar, Kannabiran; Eckloff, Bruce W.; Lee, Yean K.; Petersen, Gloria M.; McWilliams, Robert R.; Couch, Fergus J.

    2016-01-01

    The prevalence of germline pathogenic mutations in a comprehensive panel of cancer predisposition genes is not well defined for patients with pancreatic ductal adenocarcinoma (PDAC). To estimate the frequency of mutations in a panel of 22 cancer predisposition genes, 96 patients unselected for a family history of cancer who were recruited to the Mayo Clinic Pancreatic Cancer patient registry over a 12 month period were screened by next-generation sequencing. Fourteen pathogenic mutations in 13 patients (13.5%) were identified in eight genes: four in ATM, two in BRCA2, CHEK2, and MSH6, and one in BARD1, BRCA1, FANCM, and NBN. These included nine mutations (9.4%) in established pancreatic cancer genes. Three mutations were found in patients with a first degree relative with PDAC, and 10 mutations were found in patients with first or second-degree relatives with breast, pancreas, colorectal, ovarian, or endometrial cancer. These results suggest that a substantial proportion of patients with PDAC carry germline mutations in predisposition genes associated with other cancers, and that a better understanding of pancreatic cancer risk will depend on evaluation of families with broad constellations of tumors. These findings highlight the need for recommendations governing germline gene-panel testing of pancreatic cancer patients. PMID:26483394

  15. Hyperinsulinemic hypoglycemia syndrome associated with mutations in the human insulin receptor gene: report of two cases.

    PubMed

    Kuroda, Yohei; Iwahashi, Hiromi; Mineo, Ikuo; Fukui, Kenji; Fukuhara, Atsunori; Iwamoto, Ryuya; Imagawa, Akihisa; Shimomura, Iichiro

    2015-01-01

    Insulinoma and insulin or insulin receptor (IR) autoantibodies are the main causes of hyperinsulinemic hypoglycemia in adults, but the exact cause in other cases remains obscure. This study is to determine the genetic basis of hyperinsulinemic hypoglycemia in two cases without the above abnormalities. Sequence analysis of IR gene in two patients with adult-onset hyperinsulinemic hypoglycemia and their relatives were performed, and the mutant gene observed in one case was analyzed. Both cases had normal levels of fasting plasma glucose (FPG), fasting hyperinsulinemia, low insulin sensitivity, and hypoglycemia with excessive insulin secretion during oral glucose tolerance test (OGTT). Both reported adult-onset postprandial hypoglycemic symptoms. In one patient, a missense mutation (Arg256Cys) was detected in both alleles of the IR gene, and his parents had the same mutation in only one allele but no hypoglycemia. The other had a novel nonsense mutation (Trp1273X) followed by a mutation (Gln1274Lys) in one allele, and his 9-year old son had the same mutation in one allele, together with hyperinsulinemic hypoglycemia during OGTT. Overexpression experiments of the mutant gene found in Case 1 in mammalian cells showed abnormal processing of the IR protein and demonstrated reduced function of Akt/Erk phosphorylation by insulin in the cells. In two cases of hyperinsulinemic hypoglycemia in adults, we found novel mutations in IR gene considered to be linked to hypoglycemia. We propose a disease entity of adult-onset hyperinsulinemic hypoglycemia syndrome associated with mutations in IR gene. PMID:25753915

  16. Mutations in the SLC3A1 Transporter Gene in Cystinuria

    PubMed Central

    Pras, Elon; Raben, Nina; Golomb, Eliahu; Arber, Nadir; Aksentijevich, Ivona; Schapiro, Jonathan M.; Harel, Daniela; Katz, Giora; Liberman, Uri; Pras, Mordechai; Kastner, Daniel L.

    1995-01-01

    Cystinuria is an autosomal recessive disease characterized by the development of kidney stones. Guided by the identification of the SLC3A1 amino acid–transport gene on chromosome 2, we recently established genetic linkage of cystinuria to chromosome 2p in 17 families, without evidence for locus heterogeneity. Other authors have independently identified missense mutations in SLC3A1 in cystinuria patients. In this report we describe four additional cystinuria-associated mutations in this gene: a frameshift, a deletion, a transversion inducing a critical amino acid change, and a nonsense mutation. The latter stop codon was found in all of eight Ashkenazi Jewish carrier chromosomes examined. This report brings the number of disease-associated mutations in this gene to 10. We also assess the frequency of these mutations in our 17 cystinuria families. ImagesFigure 2Figure 3Figure 4 PMID:7539209

  17. Mutations in the SLC3A1 transporter gene in cystinuria

    SciTech Connect

    Pras, E.; Raben, N.; Aksentijevich, I.

    1995-06-01

    Cystinuria is an autosomal recessive disease characterized by the development of kidney stones. Guided by the identification of the SLC3A1 amino acid-transport gene on chromosome 2, we recently established genetic linkage of cystinuria to chromosome 2p in 17 families, without evidence for locus heterogeneity. Other authors have independently identified missense mutations in SLC3A1 in cystinuria patients. In this report we describe four additional cystinuria-associated mutations in this gene: a frameshift, a deletion, a transversion inducing a critical amino acid change, and a nonsense mutation. The latter stop codon was found in all of eight Ashkenazi Jewish carrier chromosomes examined. This report brings the number of disease-associated mutations in this gene to 10. We also assess the frequency of these mutations in our 17 cystinuria families. 24 refs., 4 figs., 1 tab.

  18. A Common Founder Mutation in the EDA-A1 Gene in X-Linked Hypodontia

    PubMed Central

    Kurban, Mazen; Michailidis, Eleni; Wajid, Muhammad; Shimomura, Yutaka; Christiano, Angela M.

    2010-01-01

    Background X-linked recessive hypohidrotic ectodermal dysplasia (XLHED; OMIM 305100) is a rare genodermatosis characterized clinically by developmental abnormalities affecting the teeth, hair and sweat glands. Mutations in the EDA-A1 gene have been associated with XLHED. Recently, mutations in the EDA-A1 gene have also been implicated in isolated X-linked recessive hypodontia (XLRH; OMIM 313500). Methods We analyzed the DNA from members of 3 unrelated Pakistani families with XLRH for mutations in the EDA-A1 gene through direct sequencing and performed haplotype analysis. Results We identified a common missense mutation in both families designated c.1091T→C (p.M364T). Haplotype analysis revealed that this is a founder mutation in the 3 families. Conclusion XLHED is a syndrome with variable clinical presentations that contain a spectrum of findings, including hypodontia. We suggest that XLRH should be grouped under XLHED as both share several phenotypic and genotypic similarities. PMID:20628232

  19. Epilepsy and sodium channel gene mutations: gain or loss of function?

    PubMed

    Yamakawa, Kazuhiro

    2005-01-19

    Mutations in voltage-gated sodium channel genes (SCN1A, SCN2A, SCN1B) have been reported to be responsible for some epilepsies. Although studying such mutations to elucidate the disease mechanisms would be indispensable for the development of effective therapies, the functional consequences of these mutations remain controversial. Here, I propose a novel hypothesis for an epileptic disease mechanism which could drive the design of further studies to understand the molecular pathology of these diseases. PMID:15618878

  20. Extending the mutation spectrum for Galloway-Mowat syndrome to include homozygous missense mutations in the WDR73 gene.

    PubMed

    Rosti, Rasim O; Dikoglu, Esra; Zaki, Maha S; Abdel-Salam, Ghada; Makhseed, Nawal; Sese, Jordan C; Musaev, Damir; Rosti, Basak; Harbert, Mary J; Jones, Marilyn C; Vaux, Keith K; Gleeson, Joseph G

    2016-04-01

    Galloway-Mowat syndrome is a rare autosomal-recessive disorder classically described as the combination of microcephaly and nephrotic syndrome. Recently, homozygous truncating mutations in WDR73 (WD repeat domain 73) were described in two of 31 unrelated families with Galloway-Mowat syndrome which was followed by a report of two sibs in an Egyptian consanguineous family. In this report, seven affecteds from four families showing biallelic missense mutations in WDR73 were identified by exome sequencing and confirmed to follow a recessive model of inheritance. Three-dimensional modeling predicted conformational alterations as a result of the mutation, supporting pathogenicity. An additional 13 families with microcephaly and renal phenotype were negative for WDR73 mutations. Missense mutations in the WDR73 gene are reported for the first time in Galloway-Mowat syndrome. A detailed phenotypic comparison of all reported WDR73-linked Galloway-Mowat syndrome patients with WDR73 negative patients showed that WDR73 mutations are limited to those with classical Galloway-Mowat syndrome features, in addition to cerebellar atrophy, thin corpus callosum, brain stem hypoplasia, occasional coarse face, late-onset and mostly slow progressive nephrotic syndrome, and frequent epilepsy. PMID:27001912

  1. Extending the Mutation Spectrum for Galloway–Mowat Syndrome to Include Homozygous Missense Mutations in the WDR73 Gene

    PubMed Central

    Rosti, Rasim O.; Dikoglu, Esra; Zaki, Maha S.; Abdel-Salam, Ghada; Makhseed, Nawal; Sese, Jordan C.; Musaev, Damir; Rosti, Basak; Harbert, Mary J.; Jones, Marilyn C.; Vaux, Keith K.; Gleeson, Joseph G.

    2016-01-01

    Galloway–Mowat syndrome is a rare autosomal-recessive disorder classically described as the combination of microcephaly and nephrotic syndrome. Recently, homozygous truncating mutations in WDR73 (WD repeat domain 73) were described in two of 31 unrelated families with Galloway–Mowat syndrome which was followed by a report of two sibs in an Egyptian consanguineous family. In this report, seven affecteds from four families showing biallelic missense mutations in WDR73 were identified by exome sequencing and confirmed to follow a recessive model of inheritance. Three-dimensional modeling predicted conformational alterations as a result of the mutation, supporting pathogenicity. An additional 13 families with microcephaly and renal phenotype were negative for WDR73 mutations. Missense mutations in the WDR73 gene are reported for the first time in Galloway–Mowat syndrome. A detailed phenotypic comparison of all reported WDR73-linked Galloway–Mowat syndrome patients with WDR73 negative patients showed that WDR73 mutations are limited to those with classical Galloway–Mowat syndrome features, in addition to cerebellar atrophy, thin corpus callosum, brain stem hypoplasia, occasional coarse face, late-onset and mostly slow progressive nephrotic syndrome, and frequent epilepsy. PMID:27001912

  2. Splicing defects in the ataxia-telangiectasia gene, ATM: underlying mutations and consequences.

    PubMed Central

    Teraoka, S N; Telatar, M; Becker-Catania, S; Liang, T; Onengüt, S; Tolun, A; Chessa, L; Sanal, O; Bernatowska, E; Gatti, R A; Concannon, P

    1999-01-01

    Mutations resulting in defective splicing constitute a significant proportion (30/62 [48%]) of a new series of mutations in the ATM gene in patients with ataxia-telangiectasia (AT) that were detected by the protein-truncation assay followed by sequence analysis of genomic DNA. Fewer than half of the splicing mutations involved the canonical AG splice-acceptor site or GT splice-donor site. A higher percentage of mutations occurred at less stringently conserved sites, including silent mutations of the last nucleotide of exons, mutations in nucleotides other than the conserved AG and GT in the consensus splice sites, and creation of splice-acceptor or splice-donor sites in either introns or exons. These splicing mutations led to a variety of consequences, including exon skipping and, to a lesser degree, intron retention, activation of cryptic splice sites, or creation of new splice sites. In addition, 5 of 12 nonsense mutations and 1 missense mutation were associated with deletion in the cDNA of the exons in which the mutations occurred. No ATM protein was detected by western blotting in any AT cell line in which splicing mutations were identified. Several cases of exon skipping in both normal controls and patients for whom no underlying defect could be found in genomic DNA were also observed, suggesting caution in the interpretation of exon deletions observed in ATM cDNA when there is no accompanying identification of genomic mutations. PMID:10330348

  3. Consequences of Marfan mutations to expression of fibrillin gene and to the structure of microfibrils

    SciTech Connect

    Peltonen, L.; Karttunen, L.; Rantamaeki, T.

    1994-09-01

    Marfan syndrome (MFS) is a dominantly inherited connective tissue disorder which is caused by mutations in the fibrillin-1 gene (FBN1). Over 40 family-specific FBN1 mutations have been identified. We have characterized 18 different heterozygous mutations including amino acid substitutions, premature stop, and splicing defects leading to deletions or one insertion, and one compound heterozygote with two differently mutated FBN1 alleles inherited from his affected parents. To unravel the consequences of FBN1 mutations to the transcription of FBN1 gene, we have measured the steady state levels of mRNA transcribed from the normal and mutated alleles. The missense mutations do not affect the transcription of the allele while the nonsense mutation leads to lower steady state amount of mutated allele. For the dissection of molecular pathogenesis of FBN1 mutations we have performed rotary shadowing of the microfibrils produced by the cell cultures from MFS patients. The cells from the neonatal patients with established mutations produced only disorganized fibrillin aggregates but no clearly defined microfibrils could be detected, suggesting a major role of this gene region coding for exons 24-26 in stabilization and organization of the bead structure of microfibrils. From the cells of a rare compound heterozygote case carrying two different mutations, no detectable microfibrils could be detected whereas the cells of his parents with heterozygous mutations were able to form identifiable but disorganized microfibrils. In the cells of an MFS case caused by a premature stop removing the C-terminus of fibrillin, the microfibril assembly takes place but the appropriate packing of the microfibrils is disturbed suggesting that C-terminae are actually located within the interbead domain of the microfibrils.

  4. Identification of a novel mutation of the EDA gene in X-linked hypohidrotic ectodermal dysplasia.

    PubMed

    Xue, J J; Tan, B; Gao, Q P; Zhu, G S; Liang, D S; Wu, L Q

    2015-01-01

    This study aimed to identify the disease-causing mutation in the ectodysplasin A (EDA) gene in a Chinese family affected by X-linked hypohidrotic ectodermal dysplasia (XLHED). A family clinically diagnosed with XLHED was investigated. For mutation analysis, the coding region of EDA of 2 patients and 7 unaffected members of the family was sequenced. The detected mutation in EDA was investigated in 120 normal controls. A missense mutation (c.878T>G) in EDA was detected in 2 patients and 3 female carriers, but not in 4 unaffected members of the family. The mutation was not found in the 120 healthy controls and has not been reported previously. Our findings indicate that a novel mutation (c.878T>G) of EDA is associated with XLHED and adds to the repertoire of EDA mutations. PMID:26634545

  5. An Undergraduate Laboratory Class Using CRISPR/Cas9 Technology to Mutate Drosophila Genes

    ERIC Educational Resources Information Center

    Adame, Vanesa; Chapapas, Holly; Cisneros, Marilyn; Deaton, Carol; Deichmann, Sophia; Gadek, Chauncey; Lovato, TyAnna L.; Chechenova, Maria B.; Guerin, Paul; Cripps, Richard M.

    2016-01-01

    CRISPR/Cas9 genome editing technology is used in the manipulation of genome sequences and gene expression. Because of the ease and rapidity with which genes can be mutated using CRISPR/Cas9, we sought to determine if a single-semester undergraduate class could be successfully taught, wherein students isolate mutants for specific genes using…

  6. Characterization of phenylalanine hydroxylase gene mutations in phenylketonuria in Xinjiang of China

    PubMed Central

    Yu, Wuzhong; He, Jiang; Yang, Xi; Zou, Hongyun; Gui, Junhao; Wang, Rui; Yang, Liu; Wang, Zheng; Lei, Quan

    2014-01-01

    To investigate the spectrum and frequency of phenylalanine hydroxylase (PAH) gene mutations in phenylketonuria (PKU) patients in Xinjiang, China. Polymerase chain reaction (PCR), in combination with single-strand conformation polymorphism (SSCP) and DNA sequencing analyses were performed, to screen potential mutations in the PAH gene in 46 individual PKU patients. Direct DNA sequencing was used to analyze the all of the exons in the PAH gene, including the promoter and flanking intron regions, in another 15 PKU patients. Our results indicated that, 30 different mutation types were identified in all 122 PAH alleles, with the mutation detection rate of 78.7% (96/122). Four novel mutations, i.e., 5’-Flanking -626G>A, 5’-Flanking -480DelACT, S196fsX4, and IVS8+1G>C, were identified for the first time. Similar to other regions in North China, R243Q, EX6-96A>G, IVS4-1A>G, R111X, and Y356X were the most prevalent PAH mutations in PKU patients from Xinjiang. Additionally, common mutations showed different frequencies in Xinjiang, when compared to other areas. Furthermore, sixteen different PAH gene mutation types were identified for the first time in the minorities in Xinjiang. Distinctive mutation spectrum of PAH gene in PKU patients from Xinjiang were characterized, which may promote the construction of PAH gene mutation database and serve as valuable tools for genetic diagnosis and counseling, and prognostic evaluation for PKU cases in the local area. PMID:25550961

  7. Mutational analysis of the luteinizing hormone receptor gene in two individuals with Leydig cell tumors.

    PubMed

    Canto, Patricia; Söderlund, Daniela; Ramón, Guillermo; Nishimura, Elisa; Méndez, Juan Pablo

    2002-03-01

    Inactivating mutations of the luteinizing hormone receptor (LHR) gene in males induce Leydig cell agenesis or hypoplasia, while activating mutations cause testotoxicosis. Recently, it was demonstrated that a somatic heterozygous activating mutation of the LHR gene (Asp578His), limited to the tumor, was the cause of Leydig cell adenomas in three unrelated patients. We describe the molecular study of two unrelated boys with gonadotropin-independent hypersecretion of testosterone due to Leydig cell adenomas. Genomic DNA was extracted from the tumor, the adjacent normal testis tissue, and blood leukocytes. Both individuals exhibited an heterozygous missense mutation, limited only to the tumor, consisting of a guanine (G) to cytosine (C) substitution at codon 578 (GAT to CAT), turning aspartic acid into histidine. The presence of the same mutation in different ethnic groups demonstrates the existence of a mutational hot spot in the LHR gene. Indeed, this mutation occurs at the conserved aspartic acid residue at amino acid 578, where a substitution by glycine is the most common mutation observed in testotoxicosis and where a substitution by tyrosine has been linked to a more severe clinical phenotype where diffuse Leydig cell hyperplasia is found. Our results confirm the fact that somatic activating mutations of gonadotropin receptors are involved in gonadal tumorigenesis. PMID:11857565

  8. Mutated human androgen receptor gene detected in a prostatic cancer patient is also activated by estradiol

    SciTech Connect

    Elo, J.P.; Kvist, L.; Leinonen, K.; Isomaa, V.

    1995-12-01

    Androgens are necessary for the development of prostatic cancer. The mechanisms by which the originally androgen-dependent prostatic cancer cells are relieved of the requirement to use androgen for their growth are largely unknown. The human prostatic cancer cell line LNCaP has been shown to contain a point mutation in the human androgen receptor gene (hAR), suggesting that changes in the hAR may contribute to the abnormal hormone response of prostatic cells. To search for point mutations in the hAR, we used single strand conformation polymorphism analysis and a polymerase chain reaction direct sequencing method to screen 23 prostatic cancer specimens from untreated patients, 6 prostatic cancer specimens from treated patients, and 11 benign prostatic hyperplasia specimens. One mutation was identified in DNA isolated from prostatic cancer tissue, and the mutation was also detected in the leukocyte DNA of the patient and his offspring. The mutation changed codon 726 in exon E from arginine to leucine and was a germ line mutation. The mutation we found in exon E of the hAR gene does not alter the ligand binding specificity of the AR, but the mutated receptor was activated by estradiol to a significantly greater extent than the wild-type receptor. The AR gene mutation described in this study might be one explanation for the altered biological activity of prostatic cancer. 36 refs., 4 figs.

  9. Novel Mutations in K13 Propeller Gene of Artemisinin-Resistant Plasmodium falciparum

    PubMed Central

    Uemura, Haruki; Kimata, Isao; Ichinose, Yoshio; Logedi, John; Omar, Ahmeddin H.; Kaneko, Akira

    2015-01-01

    We looked for mutations in the Plasmodium falciparum K13 propeller gene of an artemisinin-resistant parasite on islands in Lake Victoria, Kenya, where transmission in 2012–2013 was high. The 4 new types of nonsynonymous, and 5 of synonymous, mutations we detected among 539 samples analyzed provide clues to understanding artemisinin-resistant parasites. PMID:25695257

  10. Novel mutations in K13 propeller gene of artemisinin-resistant Plasmodium falciparum.

    PubMed

    Isozumi, Rie; Uemura, Haruki; Kimata, Isao; Ichinose, Yoshio; Logedi, John; Omar, Ahmeddin H; Kaneko, Akira

    2015-03-01

    We looked for mutations in the Plasmodium falciparum K13 propeller gene of an artemisinin-resistant parasite on islands in Lake Victoria, Kenya, where transmission in 2012-2013 was high. The 4 new types of nonsynonymous, and 5 of synonymous, mutations we detected among 539 samples analyzed provide clues to understanding artemisinin-resistant parasites. PMID:25695257

  11. Spectrum of factor X gene mutations in Iranian patients with congenital factor X deficiency.

    PubMed

    Dorgalaleh, Akbar; Zaker, Farhad; Tabibian, Shadi; Alizadeh, Shaban; Dorgalele, Saeed; Hosseini, Soudabeh; Shamsizadeh, Morteza

    2016-04-01

    Congenital factor X deficiency is one of the most severe forms of rare bleeding disorders transmitted in autosomal recessive manner. According to the World Federation of Hemophilia survey, 153 patients with factor X deficiency (FXD) live in Iran, but a few studies have been performed to determine the precise distribution of FXD in different parts of the country and to assess molecular basis of this disorder in Iranian patients. This study was conducted to assess the spectrum of factor X gene mutation in Iranian patients with congenital FXD. All relevant English and Persian-language publications were searched (until 2015). Clinical presentations or molecular basis of nearly 90 Iranian patients were reported in different studies. Most of these studies focused on clinical presentations of patients, whereas molecular analyses were rarely performed. Most molecular studies found a diversity in factor X disease causing mutations in Iranian patients. Like other parts of the world, the majority of mutations in Iranian patients were missense mutations, but splice-site mutations were relatively common. Three extremely rare cases of combined factor X and factor VII deficiencies were observed in two cases of which this disorder resulted from different missense mutations in respective factor genes. A wide spectrum of factor X gene mutations was observed in Iranian patients with congenital FXD that revealed diversity in FXD gene mutations. PMID:26891460

  12. Missense mutation in the Chlamydomonas chloroplast gene that encodes the Rubisco large subunit

    SciTech Connect

    Spreitzer, R.J.; Brown, T.; Chen, Zhixiang; Zhang, Donghong; Al-Abed, S.R. )

    1988-04-01

    The 69-12Q mutant of Chlamydomonas reinhardtii lacks ribulose-1,5-bisphosphate carboxylase activity, but retains holoenzyme protein. It results from a mutation in the chloroplast large-subunit gene that causes an isoleucine-for-threonine substitution at amino-acid residue 173. Considering that lysine-175 is involved in catalysis, it appears that mutations cluster at the active site.

  13. Mutations and a polymorphism in the factor VIII gene discovered by denaturing gradient gel electrophoresis

    SciTech Connect

    Kogan, S.; Gitschier, J. )

    1990-03-01

    Hemophilia A results from mutations in the gene coding for coagulation factor VIII. The authors gradient gel electrophoresis to screen for mutations in the region of the factor VIII gene coding for the first acidic domain. Amplification primers were designed employing the MELTMAP computer program to optimize the ability to detect mutations. Screening of amplified DNA from 228 unselected hemophilia A patients revealed two mutations and one polymorphism. Rescreening the same population by making heteroduplexes between amplified patient and control samples prior to electrophoresis revealed one additional mutation. The mutations include two missense and one 4-base-pair deletion, and each mutation was found in patients with severe hemophilia. The polymorphism, located adjacent to the adenine branch site in intron 7, is useful for genetic prediction in some cases where the Bcl I and Xba I polymorphisms are uninformative. These results suggest that DNA amplification and denaturing gradient gel electrophoresis should be an excellent strategy for identifying mutations and polymorphisms in defined regions of the factor VIII gene and other large genes.

  14. GPR143 Gene Mutations in Five Chinese Families with X-linked Congenital Nystagmus.

    PubMed

    Han, Ruifang; Wang, Xiaojuan; Wang, Dongjie; Wang, Liming; Yuan, Zhongfang; Ying, Ming; Li, Ningdong

    2015-01-01

    The ocular albinism type I (OA1) is clinically characterized by impaired visual acuity, nystagmus, iris hypopigmentation with translucency, albinotic fundus, and macular hypoplasia together with normally pigmented skin and hair. However, it is easily misdiagnosed as congenital idiopathic nystagmus in some Chinese patients with OA1 caused by the G-protein coupled receptor 143 (GPR143) gene mutations. Mutations in the FERM domain-containing 7 (FRMD7) gene are responsible for the X-linked congenital idiopathic nystagmus. In this study, five Chinese families initially diagnosed as X-linked congenital nystagmus were recruited and patients underwent ophthalmological examinations. After direct sequencing of the FRMD7 and GPR143 genes, five mutations in GPR143 gene were detected in each of the five families, including a novel nonsense mutation of c.333G>A (p.W111X), two novel splicing mutations of c.360+1G>C and c.659-1G>A, a novel small deletion mutation of c.43_50dupGACGCAGC (p.L20PfsX25), and a previously reported missense mutation of c.703G>A (p.E235K). Optical coherence tomography (OCT) examination showed foveal hypoplasia in all the affected patients with nystagmus. Our study further expands the GPR143 mutation spectrum and contributes to the study of GPR143 molecular pathogenesis. Molecular diagnosis and optical coherence tomography (OCT) are two useful tools for differential diagnosis. PMID:26160353

  15. Mutational analysis of the androgen receptor gene in two Chinese families with complete androgen insensitivity syndrome

    PubMed Central

    WANG, SONG; XU, HAIKUN; AN, WEI; ZHU, DECHUN; LI, DEJUN

    2016-01-01

    Androgens are essential for normal male sex differentiation and are responsible for the normal development of male secondary sexual characteristics at puberty. The physiological effects of androgens are mediated by the androgen receptor (AR). Mutations in the AR gene are the most common cause of androgen insensitivity syndrome. The present study undertook a genetic analysis of the AR gene in two unrelated families affected by complete androgen insensitivity syndrome (CAIS) in China. In family 1, a previously reported nonsense mutation (G-to-A; p.W751X) was identified in exon 5 of the AR gene. In addition, a novel missense mutation was detected in exon 6 of the AR gene from family 2; this mutation resulted in a predicted amino acid change from phenylalanine to serine at codon 804 (T-to-C; p.F804S) in the ligand-binding domain (LBD) of AR. Computer simulation of the structural changes generated by the p.F804S substitution revealed marked conformational alterations in the hydrophobic core responsible for the stability and function of the AR-LBD. In conclusion, the present study identified two mutations from two unrelated Chinese families affected by CAIS. The novel mutation (p.F804S) may provide insights into the molecular mechanism underlying CAIS. Furthermore, it expands on the number of mutational hot spots in the international AR mutation database, which may be useful in the future for prenatal diagnosis and genetic counseling. PMID:27284311

  16. GPR143 Gene Mutations in Five Chinese Families with X-linked Congenital Nystagmus

    PubMed Central

    Han, Ruifang; Wang, Xiaojuan; Wang, Dongjie; Wang, Liming; Yuan, Zhongfang; Ying, Ming; Li, Ningdong

    2015-01-01

    The ocular albinism type I (OA1) is clinically characterized by impaired visual acuity, nystagmus, iris hypopigmentation with translucency, albinotic fundus, and macular hypoplasia together with normally pigmented skin and hair. However, it is easily misdiagnosed as congenital idiopathic nystagmus in some Chinese patients with OA1 caused by the G-protein coupled receptor 143 (GPR143) gene mutations. Mutations in the FERM domain–containing 7 (FRMD7) gene are responsible for the X-linked congenital idiopathic nystagmus. In this study, five Chinese families initially diagnosed as X-linked congenital nystagmus were recruited and patients underwent ophthalmological examinations. After direct sequencing of the FRMD7 and GPR143 genes, five mutations in GPR143 gene were detected in each of the five families, including a novel nonsense mutation of c.333G>A (p.W111X), two novel splicing mutations of c.360+1G>C and c.659-1G>A, a novel small deletion mutation of c.43_50dupGACGCAGC (p.L20PfsX25), and a previously reported missense mutation of c.703G>A (p.E235K). Optical coherence tomography (OCT) examination showed foveal hypoplasia in all the affected patients with nystagmus. Our study further expands the GPR143 mutation spectrum and contributes to the study of GPR143 molecular pathogenesis. Molecular diagnosis and optical coherence tomography (OCT) are two useful tools for differential diagnosis. PMID:26160353

  17. Red blood cell PK deficiency: An update of PK-LR gene mutation database.

    PubMed

    Canu, Giulia; De Bonis, Maria; Minucci, Angelo; Capoluongo, Ettore

    2016-03-01

    Pyruvate kinase (PK) deficiency is known as being the most common cause of chronic nonspherocytic hemolytic anemia (CNSHA). Clinical PK deficiency is transmitted as an autosomal recessive trait, that can segregate neither in homozygous or in a compound heterozygous modality, respectively. Two PK genes are present in mammals: the pyruvate kinase liver and red blood cells (PK-LR) and the pyruvate kinase muscle (PK-M), of which only the first encodes for the isoenzymes normally expressed in the red blood cells (R-type) and in the liver (L-type). Several reports have been published describing a large variety of genetic defects in PK-LR gene associated to CNSHA. Herein, we present a review of about 250 published mutations and six polymorphisms in PK-LR gene with the corresponding clinical and molecular data. We consulted the PubMed website for searching mutations and papers, along with two main databases: the Leiden Open Variation Database (LOVD, https://grenada.lumc.nl/LOVD2/mendelian_genes/home.php?select_db=PKLR) and Human Gene Mutation Database (HGMD, http://www.hgmd.cf.ac.uk/ac/gene.php?gene=PKLR) for selecting, reviewing and listing the annotated PK-LR gene mutations present in literature. This paper is aimed to provide useful information to clinicians and laboratory professionals regarding overall reported PK-LR gene mutations, also giving the opportunity to harmonize data regarding PK-deficient individuals. PMID:26832193

  18. Quantification of the paternal allele bias for new germline mutations in the retinoblastoma gene

    SciTech Connect

    Morrow, J.F.; Rapaport, J.M.; Dryia, T.P.

    1994-09-01

    New germline mutations in the human retinoblastoma gene preferentially arise on a paternally derived allele. In nonhereditary retinoblastoma, the initial somatic mutation seems to have no such bias. The few previous reports of these phenomena included relatively few cases (less than a dozen new germline or initial somatic mutations), so that the magnitude of the paternal allele bias for new germline mutations is not known. Knowledge of the magnitude of the bias is valuable for genetic counseling, since, for example, patients with new germline mutations who reproduce transmit risk for retinoblastoma according to the risk that the transmitted allele has a germline mutation. We sought to quantitate the paternal allele bias and to determine whether paternal age is a factor possibly accounting for it. We studied 311 families with retinoblastoma (261 simplex, 50 multiplex) that underwent clinical genetic testing and 5 informative families recruited from earlier research. Using RFLPs and polymorphic microsatellites in the retinoblastoma gene, we could determine the parental origin of 45 new germline mutations and 44 probable initial somatic mutations. Thirty-seven of the 45 new germline mutations, or 82%, arose on a paternal allele while only 24 of the 44 initial somatic mutations (55%) did so. Increased paternal age does not appear to account for the excess of new paternal germline mutations, since the average age of fathers of children with new germline mutations (29.4 years, n=26, incomplete records on 11) was not significantly different from the average age of fathers of children with maternal germline mutations or somatic initial mutations (29.8 years, n=35, incomplete records on 17).

  19. Nonsense mutations in the human. beta. -globin gene affect mRNA metabolism

    SciTech Connect

    Baserga, S.J.; Benz, E.J. Jr. )

    1988-04-01

    A number of premature translation termination mutations (nonsense mutations) have been described in the human {alpha}- and {beta}-globin genes. Studies on mRNA isolated from patients with {beta}{sup 0}-thalassemia have shown that for both the {beta}-17 and the {beta}-39 mutations less than normal levels of {beta}-globin mRNA accumulate in peripheral blood cells. (The codon at which the mutation occurs designates the name of the mutation; there are 146 codons in human {beta}-globin mRNA). In vitro studies using the cloned {beta}-39 gene have reproduced this effect in a heterologous transfection system and have suggested that the defect resides in intranuclear metabolism. The authors have asked if this phenomenon of decreased mRNA accumulation is a general property of nonsense mutations and if the effect depends on the location or the type of mutation. Toward this end, they have studied the effect of five nonsense mutations and two missense mutations on the expression of human {beta}-globin mRNA in a heterologous transfection system. In all cases studied, the presence of a translation termination codon correlates with a decrease in the steady-state level of mRNA. The data suggest that the metabolism of a mammalian mRNA is affected by the presence of a mutation that affects translation.

  20. Suppressor of cytokine signaling 1 gene mutation status as a prognostic biomarker in classical Hodgkin lymphoma

    PubMed Central

    Bubolz, Anna-Maria; Lessel, Davor; Welke, Claudia; Rüther, Nele; Viardot, Andreas; Möller, Peter

    2015-01-01

    Suppressor of cytokine signaling 1 (SOCS1) mutations are among the most frequent somatic mutations in classical Hodgkin lymphoma (cHL), yet their prognostic relevance in cHL is unexplored. Here, we performed laser-capture microdissection of Hodgkin/Reed-Sternberg (HRS) cells from tumor samples in a cohort of 105 cHL patients. Full-length SOCS1 gene sequencing showed mutations in 61% of all cases (n = 64/105). Affected DNA-motifs and mutation pattern suggest that many of these SOCS1 mutations are the result of aberrant somatic hypermutation and we confirmed expression of mutant alleles at the RNA level. Contingency analysis showed no significant differences of patient-characteristics with HRS-cells containing mutant vs. wild-type SOCS1. By predicted mutational consequence, mutations can be separated into those with non-truncating point mutations (‘minor’ n = 49/64 = 77%) and those with length alteration (‘major’; n = 15/64 = 23%). Subgroups did not differ in clinicopathological characteristics; however, patients with HRS-cells that contained SOCS1 major mutations suffered from early relapse and significantly shorter overall survival (P = 0.03). The SOCS1 major status retained prognostic significance in uni-(P = 0.016) and multivariate analyses (P = 0.005). Together, our data indicate that the SOCS1 mutation type qualifies as a single-gene prognostic biomarker in cHL. PMID:26336985

  1. Asymptomatic carriers for homozygous novel mutations in the FKRP gene: the other end of the spectrum.

    PubMed

    de Paula, Flavia; Vieira, Natássia; Starling, Alessandra; Yamamoto, Lydia Uraco; Lima, Bruno; de Cássia Pavanello, Rita; Vainzof, Mariz; Nigro, Vincenzo; Zatz, Mayana

    2003-12-01

    Autosomal recessive limb-girdle muscular dystrophy linked to 19q13.3 (LGMD2I) was recently related to mutations in the fukutin-related protein gene (FKRP) gene. Pathogenic changes in the same gene were detected in congenital muscular dystrophy patients (MDC1C), a severe disorder. We have screened 86 LGMD genealogies to assess the frequency and distribution of mutations in the FKRP gene in Brazilian LGMD patients. We found 13 Brazilian genealogies, including 20 individuals with mutations in the FKRP gene, and identified nine novel pathogenic changes. The commonest C826A European mutation was found in 30% (9/26) of the mutated LGMD2I alleles. One affected patient homozygous for the FKRP (C826A) mutation also carries a missense R125H change in one allele of the caveolin-3 gene (responsible for LGMD1C muscular dystrophy). Two of her normal sibs were found to be double heterozygotes. In two unrelated LGMD2I families, homozygous for novel missense mutations, we identified four asymptomatic carriers, all older than 20 years. Genotype-phenotype correlation studies in the present study as well as in patients from different populations suggests that the spectrum of variability associated with mutations in the FKRP gene seems to be wider than in other forms of LGMD. It also reinforces the observations that pathogenic mutations are not always determinant of an abnormal phenotype, suggesting the possibility of other mechanisms modulating the severity of the phenotype that opens new avenues for therapeutic approaches. PMID:14647208

  2. Novel mutations in the COL2A1 gene in Japanese patients with Stickler syndrome.

    PubMed

    Kondo, Hiroyuki; Matsushita, Itsuka; Nagata, Tatsuo; Hayashi, Takaaki; Kakinoki, Masashi; Uchio, Eiichi; Kondo, Mineo; Ohji, Masahito; Kusaka, Shunji

    2016-01-01

    Stickler syndrome is an inherited connective tissue disorder that affects the eyes, cartilage and articular tissues. The phenotypes of Stickler syndrome include congenital high myopia, retinal detachment, premature joint degeneration, hearing impairment and craniofacial anomalies, such as cleft palate and midline facial hypoplasia. The disease is genetically heterogeneous, and the majority of the cases are caused by mutations in the COL2A1 gene. We examined 40 Japanese patients with Stickler syndrome from 23 families to determine whether they had mutations in the COL2A1 gene. This analysis was conducted by examining each patient's genomic DNA by Sanger sequencing. Five nonsense, 4 splicing and 8 deletion mutations in the COL2A1 gene were identified, accounting for 21 of the 23 families. Different mutations of the COL2A1 gene were associated with similar phenotypes but with different degrees of expressivity. PMID:27408751

  3. Novel mutations in the COL2A1 gene in Japanese patients with Stickler syndrome

    PubMed Central

    Kondo, Hiroyuki; Matsushita, Itsuka; Nagata, Tatsuo; Hayashi, Takaaki; Kakinoki, Masashi; Uchio, Eiichi; Kondo, Mineo; Ohji, Masahito; Kusaka, Shunji

    2016-01-01

    Stickler syndrome is an inherited connective tissue disorder that affects the eyes, cartilage and articular tissues. The phenotypes of Stickler syndrome include congenital high myopia, retinal detachment, premature joint degeneration, hearing impairment and craniofacial anomalies, such as cleft palate and midline facial hypoplasia. The disease is genetically heterogeneous, and the majority of the cases are caused by mutations in the COL2A1 gene. We examined 40 Japanese patients with Stickler syndrome from 23 families to determine whether they had mutations in the COL2A1 gene. This analysis was conducted by examining each patient’s genomic DNA by Sanger sequencing. Five nonsense, 4 splicing and 8 deletion mutations in the COL2A1 gene were identified, accounting for 21 of the 23 families. Different mutations of the COL2A1 gene were associated with similar phenotypes but with different degrees of expressivity. PMID:27408751

  4. Sequence analysis of tyrosinase gene in ocular and oculocutaneous albinism patients: introducing three novel mutations

    PubMed Central

    Khordadpoor-Deilamani, Faravareh; Karimipoor, Morteza; Javadi, Gholamreza

    2015-01-01

    Purpose Albinism is a heterogeneous genetic disorder of melanin synthesis that results in hypopigmented eyes (in patients with ocular albinism) or hair, skin, and eyes (in individuals with oculocutaneous albinism). It is associated with decreased visual acuity, nystagmus, strabismus, and photophobia. The tyrosinase gene is known to be involved in both oculocutaneous albinism and autosomal recessive ocular albinism. In this study, we aimed to screen the mutations in the TYR gene in the nonsyndromic OCA and autosomal recessive ocular albinism patients from Iran. Methods The tyrosinase gene was examined in 23 unrelated patients with autosomal recessive ocular albinism or nonsyndromic OCA using DNA sequencing and bioinformatics analysis. Results TYR gene mutations were identified in 14 (app. 60%) albinism patients. Conclusions We found 10 mutations, 3 of which were novel. No mutation was found in our ocular albinism patients, but one of them was heterozygous for the p.R402Q polymorphism. PMID:26167114

  5. Widely distributed mutations in the COL2A1 gene produce achondrogenesis type II/hypochondrogenesis.

    PubMed

    Körkkö, J; Cohn, D H; Ala-Kokko, L; Krakow, D; Prockop, D J

    2000-05-15

    The COL2A1 gene was assayed for mutations in genomic DNA from 12 patients with achondrogenesis type II/hypochondrogenesis. The exons and flanking sequences of the 54 exons in the COL2A1 gene were amplified by a series of specific primers using PCR. The PCR products were scanned for mutations by conformation sensitive gel electrophoresis, and PCR products that generated heteroduplex bands were then sequenced. Mutations in the COL2A1 gene were found in all 12 patients. Ten of the mutations were single base substitutions that converted a codon for an obligate glycine to a codon for an amino acid with a bulkier side chain. One of the mutations was a change in a consensus RNA splice site. Another was an 18-base pair deletion of coding sequences. The results confirmed previous indications that conformation sensitive gel electrophoresis is highly sensitive for detection of mutations in large and complex genes. They also demonstrate that most, if not all, patients with achondrogenesis type II/hypochondrogenesis have mutations in the COL2A1 gene. PMID:10797431

  6. Two mutations in LDLR gene were found in two Chinese families with familial hypercholesterolemia.

    PubMed

    Cheng, Xiaohuan; Ding, Junfa; Zheng, Fang; Zhou, Xin; Xiong, Chenling

    2009-11-01

    Familial hypercholesterolemia (FH) (OMIM 143890) is an autosomal dominantly inherited disease mainly caused by mutations of the gene encoding the low density lipoprotein receptor (LDLR) and Apolipoprotein (Apo) B. First the common mutation R3500Q in ApoB gene was determined using PCR/RFLP method. Then the LDLR gene was screened for mutations using Touch-down PCR, SSCP and sequencing techniques. Furthermore, the secondary structure of the LDLR protein was predicted with ANTHEPROT5.0. The R3500Q mutation was absent in these two families. A heterozygous p.W483X mutation of LDLR gene was identified in family A which caused a premature stop codon, while a homozygous mutation p.A627T was found in family B. The predicted secondary structures of the mutant LDLR were altered. We identified two known mutations (p.W483X, p.A627T) of the LDLR gene in two Chinese FH families respectively. PMID:19020990

  7. Oculocutaneous albinism with TYRP1 gene mutations in a Caucasian patient.

    PubMed

    Rooryck, Caroline; Roudaut, Christel; Robine, Eulalie; Müsebeck, Jörg; Arveiler, Benoît

    2006-06-01

    Non-syndromic oculocutaneous albinism (OCA) is a clinically and genetically heterogeneous autosomal recessive disorder with mutations identified in several genes: OCA1 (tyrosinase, TYR), OCA2 (OCA2), OCA3 (tyrosinase-related protein 1, TYRP1), and OCA4 (membrane-associated transporter protein, MATP). OCA3 was thought to be restricted to black populations, where it was clinically described as rufous or brown albinism, until the recent report of a homozygous TYRP1 mutation in Caucasian patients from a consanguineous Pakistani family. Here, we describe a German patient of Caucasian origin, with a light-yellow skin, yellow-gold hair with orange highlights, fair eyelashes, several pigmented naevi, and no tendency to tan, only to burn. Eye-colour is blue-green with substance defects of the iris. Molecular analysis did not reveal any mutation in the TYR and OCA2 genes. Two mutations were found in the TYRP1 gene: a missense mutation (c.1066G>A/p.Arg356Glu) that was inherited from the mother, and a de novo single-base deletion (c.106delT/p.Leu36X). This finding suggests that mutation screening should be extended to the TYRP1 gene in patients from all ethnic origins, at least in cases where no mutations have been identified in the other OCA genes. PMID:16704458

  8. The Association of Pre-S/S Gene Mutations and Hepatitis B Virus Vertical Transmission

    PubMed Central

    Yin, Yuzhu; Zhang, Peizhen; Tan, Zhangmin; Zhou, Jin; Wu, Lingling; Hou, Hongying

    2016-01-01

    Background HBV Pre-S/S gene mutations can occur before or after implementation of combined vaccination program. HBV Prs-S/S gene mutation is a risk factor of vaccination failure and frequently causes HBV vertical transfection. Objectives To assess the association of hepatitis B virus (HBV) S gene mutations with vertical transmission. Patients and Methods In this prospective nested case-control study, a total of 60 pregnant women with positive serum HBsAg and HBV DNA ≥ 107 IU/mL were divided into a case group (15 cases with vaccination failure) and a control group (45 cases with vaccination success) according to whether their infants tested positive for HBV infection. Mothers and their children in the case group were further sub-divided into groups including mothers, newborns and infant (the same newborns at age of seven months). The pre-S/S gene mutations were detected by PCR and sequenced and its association with vertical transmission of HBV was analyzed. Results HBV genotype B was the dominant genotype in the both groups’ mothers. Each mother-child pair in case group had the same HBV genotype. There were no significant differences in mutation frequencies of HBV Pre-S/S gene between case and control groups’ mothers (Fragment 1 (M): 2 vs. 4, P > 0.05; Fragment 2 (M): 10 vs. 10, P > 0.05), or among the mothers, newborns and infants in the case group (Fragment 1 (M): 2, 2, and 3, respectively, P > 0.05; Fragment 2 (M): 10, 10 and 10 respectively, P > 0.05). Mutation site analysis of the both groups’ mothers demonstrated 108 different mutation sites in the HBV pre-S/S gene, with 105 silent mutations and 5 missense mutations including ntA826G, ntC531T, ntT667C, ntC512T and ntC546A. Among 15 mother-newborn-infant pairs with successful PCR and sequence in case group, 7 (41.17%) mother-newborn pairs, 9 (60.00%) mother-infant pairs and 3 (20.00%) infant-newborn pairs had different mutation sites. Conclusions HBV in children due to vaccination failure was resulted

  9. Phenotypic expression in von Hippel-Lindau disease: correlations with germline VHL gene mutations.

    PubMed Central

    Maher, E R; Webster, A R; Richards, F M; Green, J S; Crossey, P A; Payne, S J; Moore, A T

    1996-01-01

    Von Hippel-Lindau disease is an autosomal dominantly inherited familial cancer syndrome predisposing to retinal and central nervous system haemangioblastomas, renal cell carcinoma, and phaeochromocytoma. VHL disease shows variable expression and interfamilial differences in predisposition to phaeochromocytoma. In a previous study of 65 VHL kindreds with defined VHL mutations we detected significant differences between VHL families with and without phaeochromocytoma such that missense mutations were more common and large deletions or protein truncating mutations less frequent in phaeochromocytoma positive families. To investigate the significance and cause of this association further, we studied 138 VHL kindreds for germline mutations and calculated the age related tumour risks for different classes of VHL gene mutations. Using SSCP, heteroduplex and Southern analysis we identified a germline VHL gene mutation in 101 families (73%). Direct sequencing of the VHL coding region further increased the mutation detection rate to 81%. In addition to precise presymptomatic diagnosis, identification of a VHL gene mutation can provide an indication of the likely phenotype. We found that large deletions and mutations predicted to cause a truncated protein were associated with a lower risk of phaeochromocytoma (6% and 9% at 30 and 50 years, respectively) than missense mutations (40% and 59%, respectively) and that missense mutations at codon 167 were associated with a high risk of phaeochromocytoma (53% and 82% at ages 30 and 50 years). Cumulative probabilities of renal cell carcinoma did not differ between the two groups (deletion/ truncation mutations: 8% and 60%, and missense mutations: 10% and 64% at ages 30 and 50 years, respectively). Age related risks for haemangioblastoma were similar in the two mutation groups, with the age related risks of cerebellar haemangioblastoma slightly less (35% and 64% v 38% and 75% at ages 30 and 50 years) and retinal haemangioblastoma

  10. Phenotypic heterogeneity in British patients with a founder mutation in the FHL1 gene

    PubMed Central

    Sarkozy, Anna; Windpassinger, Christian; Hudson, Judith; Dougan, Charlotte F; Lecky, Bryan; Hilton-Jones, David; Eagle, Michelle; Charlton, Richard; Barresi, Rita; Lochmüller, Hanns; Bushby, Kate; Straub, Volker

    2011-01-01

    Mutations in the four-and-a-half LIM domain 1 (FHL1) gene, which encodes a 280-amino-acid protein containing four LIM domains and a single zinc-finger domain in the N-terminal region, have been associated with a broad clinical spectrum of X-linked muscle diseases encompassing a variety of different phenotypes. Patients might present with a scapuloperoneal myopathy, a myopathy with postural muscle atrophy and generalized hypertrophy, an Emery–Dreifuss muscular dystrophy, or an early onset myopathy with reducing bodies. It has been proposed that the phenotypic variability is related to the position of the mutation within the FHL1 gene. Here, we report on three British families with a heterogeneous clinical presentation segregating a single FHL1 gene mutation and haplotype, suggesting that this represents a founder mutation. The underlying FHL1 gene mutation was detected by direct sequencing and the founder effect was verified by haplotype analysis of the FHL1 gene locus. A 3-bp insertion mutation (p.Phe127_Thr128insIle) within the second LIM domain of the FHL1 gene was identified in all available affected family members of the three families. Haplotype analysis of the FHL1 region on Xq26 revealed that the families shared a common haplotype. The p.Phe127_Thr128insIle mutation in the FHL1 gene therefore appears to be a British founder mutation and FHL1 gene screening, in particular of exon 6, should therefore be indicated in British patients with a broad phenotypic spectrum of X-linked muscle diseases. PMID:21629301

  11. Identification of 45 novel mutations in the nebulin gene associated with autosomal recessive nemaline myopathy.

    PubMed

    Lehtokari, Vilma-Lotta; Pelin, Katarina; Sandbacka, Maria; Ranta, Salla; Donner, Kati; Muntoni, Francesco; Sewry, Caroline; Angelini, Corrado; Bushby, Kate; Van den Bergh, Peter; Iannaccone, Susan; Laing, Nigel G; Wallgren-Pettersson, Carina

    2006-09-01

    Nemaline myopathy (NM) is a clinically and genetically heterogeneous disorder of skeletal muscle caused by mutations in at least five different genes encoding thin filament proteins of the striated muscle sarcomere. We have previously described 18 different mutations in the last 42 exons of the nebulin gene (NEB) in 18 families with NM. Here we report 45 novel NEB mutations detected by denaturing high-performance liquid chromatography (dHPLC) and sequence analysis of all 183 NEB exons in NM patients from 44 families. Altogether we have identified, including the deletion of exon 55 identified in the Ashkenazi Jewish population, 64 different mutations in NEB segregating with autosomal recessive NM in 55 families. The majority (55%) of the mutations in NEB are frameshift or nonsense mutations predicted to cause premature truncation of nebulin. Point mutations (25%) or deletions (3%) affecting conserved splice signals are predicted in the majority of cases to cause in-frame exon skipping, possibly leading to impaired nebulin-tropomyosin interaction along the thin filament. Patients in 18 families had one of nine missense mutations (14%) affecting conserved amino acids at or in the vicinity of actin or tropomyosin binding sites. In addition, we found the exon 55 deletion in four families. The majority of the patients (in 49/55 families) were shown to be compound heterozygous for two different mutations. The mutations were found in both constitutively and alternatively expressed exons throughout the NEB gene, and there were no obvious mutational hotspots. Patients with more severe clinical pictures tended to have mutations predicted to be more disruptive than patients with milder forms. PMID:16917880

  12. Mutational characteristics of ANK1 and SPTB genes in hereditary spherocytosis.

    PubMed

    Park, J; Jeong, D-C; Yoo, J; Jang, W; Chae, H; Kim, J; Kwon, A; Choi, H; Lee, J W; Chung, N-G; Kim, M; Kim, Y

    2016-07-01

    The aim of this study was to describe the mutational characteristics in Korean hereditary spherocytosis (HS) patients. Relevant literatures including genetically confirmed cases with well-documented clinical summaries and relevant information were also reviewed to investigate the mutational gene- or domain-specific laboratory and clinical association. Twenty-five HS patients carried one heterozygous mutation of ANK1 (n = 13) or SPTB (n = 12) but not in SPTA1, SLC4A1, or EPB42. Deleterious mutations including frameshift, nonsense, and splice site mutations were identified in 91% (21/23), and non-hotspot mutations were dispersed across multiple exons. Genotype-phenotype correlation was clarified after combined analysis of the cases and the literature review; anemia was most severe in HS patients with mutations on the ANK1 spectrin-binding domain (p < 0.05), and SPTB mutations in HS patients spared the tetramerization domain in which mutations of hereditary elliptocytosis and pyropoikilocytosis are located. Splenectomy (17/75) was more frequent in ANK1 mutant HS (32%) than in HS with SPTB mutation (10%) (p = 0.028). Aplastic crisis occurred in 32.0% of the patients (8/25; 3 ANK1 and 5 SPTB), and parvovirus B19 was detected in 88%. The study clarifies ANK1 or SPTB mutational characteristics in HS Korean patients. The genetic association of laboratory and clinical aspects suggests comprehensive considerations for genetic-based management of HS. PMID:26830532

  13. Mutational Analysis of the TYR and OCA2 Genes in Four Chinese Families with Oculocutaneous Albinism

    PubMed Central

    Chen, Mengping; Fan, Ning; Yang, Jie; Liu, Lu; Wang, Ying; Liu, Xuyang

    2015-01-01

    Background Oculocutaneous albinism (OCA) is an autosomal recessive disorder. The most common type OCA1 and OCA2 are caused by homozygous or compound heterozygous mutations in the tyrosinase gene (TYR) and OCA2 gene, respectively. Objective The purpose of this study was to evaluate the molecular basis of oculocutaneous albinism in four Chinese families. Patients and Methods Four non-consanguineous OCA families were included in the study. The TYR and OCA2 genes of all individuals were amplified by polymerase chain reaction (PCR), sequenced and compared with a reference database. Results Four patients with a diagnosis of oculocutaneous albinism, presented with milky skin, white or light brown hair and nystagmus. Genetic analyses demonstrated that patient A was compound heterozygous for c.1037-7T.A, c.1037-10_11delTT and c.1114delG mutations in the TYR gene; patient B was heterozygous for c.593C>T and c.1426A>G mutations in the OCA2 gene, patients C and D were compound heterozygous mutations in the TYR gene (c.549_550delGT and c.896G>A, c.832C>T and c.985T>C, respectively). The heterozygous c.549_550delGT and c.1114delG alleles in the TYR gene were two novel mutations. Interestingly, heterozygous members in these pedigrees who carried c.1114delG mutations in the TYR gene or c.1426A>G mutations in the OCA2 gene presented with blond or brown hair and pale skin, but no ocular disorders when they were born; the skin of these patients accumulated pigment over time and with sun exposure. Conclusion This study expands the mutation spectrum of oculocutaneous albinism. It is the first time, to the best of our knowledge, to report that c.549_550delGT and c.1114delG mutations in the TYR gene were associated with OCA. The two mutations (c.1114delG in the TYR gene and c.1426A>G in the OCA2 gene) may be responsible for partial clinical manifestations of OCA. PMID:25919014

  14. Novel mutations in SKIV2L and TTC37 genes in Malaysian children with trichohepatoenteric syndrome.

    PubMed

    Lee, Way Seah; Teo, Kai Ming; Ng, Ruey Terng; Chong, Sze Yee; Kee, Boon Pin; Chua, Kek Heng

    2016-07-15

    Trichohepatoenteric syndrome (THES) is a rare autosomal recessive disorder that is classically associated with intractable diarrhea with an onset within the first few months of life. Herein, we investigated and reported novel mutations in two causal genes in 3 Malaysian cases. Genomic DNA was extracted from peripheral blood obtained from patients in two Malaysian Chinese families. The exons of SKIV2L and TTC37 genes were amplified and sequenced by bi-directional sequencing to identify the point mutations within the coding sequence. Three Chinese boys from two families with characteristic features and clinical course were diagnosed with THES. In family-1, two point mutations were identified in the SKIV2L gene (c.1891G>A and c.3187C>T). In family-2, a single-nucleotide duplication (c.3426dupA) was found in the TTC37 gene. These mutations cause the production of abnormal non-functional gene product leading to the clinical manifestations in the patients. We reported three point mutations, which have not been previously described in other patients with THES in SKIV2L and TTC37 genes, including one nonsense, one frameshift, and one missense mutations. PMID:27050310

  15. A Leri-Weill dyschondrosteosis patient confirmed by mutation analysis of SHOX gene.

    PubMed

    Choi, Won Bok; Seo, Seung Hyeon; Yoo, Woo Hyun; Kim, Su Young; Kwak, Min Jung

    2015-09-01

    Leri-Weill dyschondrosteosis is characterized by SHOX deficiency, Madelung deformity, and mesomelic short stature. In addition, SHOX deficiency is associated with idiopathic short stature, Turner syndrome, and Langer mesomelic dysplasia. We report the first case of a Leri-Weill dyschondrosteosis patient confirmed by SHOX gene mutation analysis in Korea. The patient, who was a 7-year-old female, showed short stature. Her height and weight were 108.9 cm (<3rd percentile) and 19.7 kg (5th-10th percentile), respectively. Her arm span, height of trunk, leg length, and sitting length were 100.5 cm, 58 cm, 50.9 cm, and 62.5 cm, respectively. Her body proportion was 1.13:1. Extremities to trunk ratio was 2.61. Her hand radiograph showed Madelung deformity. And the growth hormone stimulation test showed a normal response. Furthermore, because of Madelung deformity with idiopathic short stature, she was suspected of SHOX deficiency. We performed SHOX gene mutation analysis and found a c.491G>A (p.W164X) mutation of the SHOX gene. Accordingly, this patient was diagnosed with Leri-Weill dyschondrosteosis. Recently, many mutations have been reported in the SHOX gene. However, to date, mutation analysis of the SHOX gene for Leri-Weill dyschondrosteosis has not been reported in Korea as yet. We report the first case of a Leri-Weill dyschondrosteosis patient confirmed by mutation analysis of the SHOX gene. PMID:26512353

  16. A Leri-Weill dyschondrosteosis patient confirmed by mutation analysis of SHOX gene

    PubMed Central

    Choi, Won Bok; Seo, Seung Hyeon; Yoo, Woo Hyun; Kim, Su Young

    2015-01-01

    Leri-Weill dyschondrosteosis is characterized by SHOX deficiency, Madelung deformity, and mesomelic short stature. In addition, SHOX deficiency is associated with idiopathic short stature, Turner syndrome, and Langer mesomelic dysplasia. We report the first case of a Leri-Weill dyschondrosteosis patient confirmed by SHOX gene mutation analysis in Korea. The patient, who was a 7-year-old female, showed short stature. Her height and weight were 108.9 cm (<3rd percentile) and 19.7 kg (5th-10th percentile), respectively. Her arm span, height of trunk, leg length, and sitting length were 100.5 cm, 58 cm, 50.9 cm, and 62.5 cm, respectively. Her body proportion was 1.13:1. Extremities to trunk ratio was 2.61. Her hand radiograph showed Madelung deformity. And the growth hormone stimulation test showed a normal response. Furthermore, because of Madelung deformity with idiopathic short stature, she was suspected of SHOX deficiency. We performed SHOX gene mutation analysis and found a c.491G>A (p.W164X) mutation of the SHOX gene. Accordingly, this patient was diagnosed with Leri-Weill dyschondrosteosis. Recently, many mutations have been reported in the SHOX gene. However, to date, mutation analysis of the SHOX gene for Leri-Weill dyschondrosteosis has not been reported in Korea as yet. We report the first case of a Leri-Weill dyschondrosteosis patient confirmed by mutation analysis of the SHOX gene. PMID:26512353

  17. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma | Office of Cancer Genomics

    Cancer.gov

    In a recent Nature article, Morin et al. uncovered a novel role for chromatin modification in driving the progression of two non-Hodgkin lymphomas (NHLs), follicular lymphoma and diffuse large B-cell lymphoma. Through DNA and RNA sequencing of 117 tumor samples and 10 assorted cell lines, the authors identified and validated 109 genes with multiple mutations in these B-cell NHLs. Of the 109 genes, several genes not previously linked to lymphoma demonstrated positive selection for mutation including two genes involved in histone modification, MLL2 and MEF2B.

  18. Three novel PHEX gene mutations in four Chinese families with X-linked dominant hypophosphatemic rickets

    SciTech Connect

    Kang, Qing-lin; Xu, Jia; Zhang, Zeng; He, Jin-wei; Lu, Lian-song; Fu, Wen-zhen; Zhang, Zhen-lin

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer In our study, all of the patients were of Han Chinese ethnicity, which were rarely reported. Black-Right-Pointing-Pointer We identified three novel PHEX gene mutations in four unrelated families with XLH. Black-Right-Pointing-Pointer We found that the relationship between the phenotype and genotype of the PHEX gene was not invariant. Black-Right-Pointing-Pointer We found that two PHEX gene sites, p.534 and p.731, were conserved. -- Abstract: Background: X-linked hypophosphatemia (XLH), the most common form of inherited rickets, is a dominant disorder that is characterized by renal phosphate wasting with hypophosphatemia, abnormal bone mineralization, short stature, and rachitic manifestations. The related gene with inactivating mutations associated with XLH has been identified as PHEX, which is a phosphate-regulating gene with homologies to endopeptidases on the X chromosome. In this study, a variety of PHEX mutations were identified in four Chinese families with XLH. Methods: We investigated four unrelated Chinese families who exhibited typical features of XLH by using PCR to analyze mutations that were then sequenced. The laboratory and radiological investigations were conducted simultaneously. Results: Three novel mutations were found in these four families: one frameshift mutation, c.2033dupT in exon 20, resulting in p.T679H; one nonsense mutation, c.1294A > T in exon 11, resulting in p.K432X; and one missense mutation, c.2192T > C in exon 22, resulting in p.F731S. Conclusions: We found that the PHEX gene mutations were responsible for XLH in these Chinese families. Our findings are useful for understanding the genetic basis of Chinese patients with XLH.

  19. Human gene mutation database-a biomedical information and research resource.

    PubMed

    Krawczak, M; Ball, E V; Fenton, I; Stenson, P D; Abeysinghe, S; Thomas, N; Cooper, D N

    2000-01-01

    Although 20 years have elapsed since the first single basepair substitution underlying an inherited disease in humans was characterised at the DNA level, the initiative has only recently been taken to establish central database resources for pathological genetic variants. Disease-associated gene lesions are currently collected and publicised by the Human Gene Mutation Database (HGMD) in Cardiff, locus-specific mutation databases, and to some extent also by the Genome Database (GDB) and Online Mendelian Inheritance in Man (OMIM). To date, HGMD represents the only comprehensive and publicly available database of gene lesions underlying human inherited disease. By July 1999, HGMD contained over 18,000 different mutations from some 900 human genes, the majority being single basepair substitutions. In addition to its potential as an information resource for clinicians and genetic counsellors, HGMD has allowed molecular geneticists to address a variety of biological questions through meta-analysis of the collated data. HGMD also promises to assist research workers in optimising mutation search strategies for a given gene. A questionnaire sent out to, and answered by, the editors of 20 key journals revealed that human genetics journals are increasingly reluctant to publish mutation reports. Electronic data submission and publication facilities are therefore urgently required. The World Wide Web (WWW) provides an excellent medium within which to combine the centralised management of basic mutation data, including rigorous quality control, with the possibility of publishing additional mutation-related information. In response to these needs, HGMD has both instituted a collaboration with Springer-Verlag GmbH, Heidelberg, to potentiate free online submission and electronic publication of human gene mutation data and developed links with the curators of locus-specific mutation databases. PMID:10612821

  20. A Novel Null Homozygous Mutation Confirms CACNA2D2 as a Gene Mutated in Epileptic Encephalopathy

    PubMed Central

    Pippucci, Tommaso; Parmeggiani, Antonia; Palombo, Flavia; Maresca, Alessandra; Angius, Andrea; Crisponi, Laura; Cucca, Francesco; Liguori, Rocco; Valentino, Maria Lucia; Seri, Marco; Carelli, Valerio

    2013-01-01

    Contribution to epileptic encephalopathy (EE) of mutations in CACNA2D2, encoding α2δ-2 subunit of Voltage Dependent Calcium Channels, is unclear. To date only one CACNA2D2 mutation altering channel functionality has been identified in a single family. In the same family, a rare CELSR3 polymorphism also segregated with disease. Involvement of CACNA2D2 in EE is therefore not confirmed, while that of CELSR3 is questionable. In a patient with epilepsy, dyskinesia, cerebellar atrophy, psychomotor delay and dysmorphic features, offspring to consanguineous parents, we performed whole exome sequencing (WES) for homozygosity mapping and mutation detection. WES identified extended autozygosity on chromosome 3, containing two novel homozygous candidate mutations: c.1295delA (p.Asn432fs) in CACNA2D2 and c.G6407A (p.Gly2136Asp) in CELSR3. Gene prioritization pointed to CACNA2D2 as the most prominent candidate gene. The WES finding in CACNA2D2 resulted to be statistically significant (p = 0.032), unlike that in CELSR3. CACNA2D2 homozygous c.1295delA essentially abolished α2δ-2 expression. In summary, we identified a novel null CACNA2D2 mutation associated to a clinical phenotype strikingly similar to the Cacna2d2 null mouse model. Molecular and statistical analyses together argued in favor of a causal contribution of CACNA2D2 mutations to EE, while suggested that finding in CELSR3, although potentially damaging, is likely incidental. PMID:24358150

  1. Point Mutations Effects on Charge Transport Properties of the Tumor-Suppressor Gene p53

    NASA Astrophysics Data System (ADS)

    Roemer, Rudolf A.; Shih, Chi-Tin; Roche, Stephan

    2008-03-01

    We report on a theoretical study of point mutations effects on charge transfer properties in the DNA sequence of the tumor-suppressor p53 gene. On the basis of effective tight-binding models which simulate hole propagation along the DNA, a statistical analysis of mutation-induced charge transfer modifications is performed. In contrast to non-cancerous mutations, mutation hotspots tend to result in significantly weaker changes of transmission properties. This suggests that charge transport could play a significant role for DNA-repairing deficiency yielding carcinogenesis.

  2. Identification of 28 novel mutations in the Bardet-Biedl syndrome genes: the burden of private mutations in an extensively heterogeneous disease.

    PubMed

    Muller, Jean; Stoetzel, C; Vincent, M C; Leitch, C C; Laurier, V; Danse, J M; Hellé, S; Marion, V; Bennouna-Greene, V; Vicaire, S; Megarbane, A; Kaplan, J; Drouin-Garraud, V; Hamdani, M; Sigaudy, S; Francannet, C; Roume, J; Bitoun, P; Goldenberg, A; Philip, N; Odent, S; Green, J; Cossée, M; Davis, E E; Katsanis, N; Bonneau, D; Verloes, A; Poch, O; Mandel, J L; Dollfus, H

    2010-03-01

    Bardet-Biedl syndrome (BBS), an emblematic disease in the rapidly evolving field of ciliopathies, is characterized by pleiotropic clinical features and extensive genetic heterogeneity. To date, 14 BBS genes have been identified, 3 of which have been found mutated only in a single BBS family each (BBS11/TRIM32, BBS13/MKS1 and BBS14/MKS4/NPHP6). Previous reports of systematic mutation detection in large cohorts of BBS families (n > 90) have dealt only with a single gene, or at most small subsets of the known BBS genes. Here we report extensive analysis of a cohort of 174 BBS families for 12/14 genes, leading to the identification of 28 novel mutations. Two pathogenic mutations in a single gene have been found in 117 families, and a single heterozygous mutation in 17 families (of which 8 involve the BBS1 recurrent mutation, M390R). We confirm that BBS1 and BBS10 are the most frequently mutated genes, followed by BBS12. No mutations have been found in BBS11/TRIM32, the identification of which as a BBS gene only relies on a single missense mutation in a single consanguineous family. While a third variant allele has been observed in a few families, they are in most cases missenses of uncertain pathogenicity, contrasting with the type of mutations observed as two alleles in a single gene. We discuss the various strategies for diagnostic mutation detection, including homozygosity mapping and targeted arrays for the detection of previously reported mutations. PMID:20177705

  3. Identification of 28 novel mutations in the Bardet–Biedl syndrome genes: the burden of private mutations in an extensively heterogeneous disease

    PubMed Central

    Stoetzel, C.; Vincent, M. C.; Leitch, C. C.; Laurier, V.; Danse, J. M.; Hellé, S.; Marion, V.; Bennouna-Greene, V.; Vicaire, S.; Megarbane, A.; Kaplan, J.; Drouin-Garraud, V.; Hamdani, M.; Sigaudy, S.; Francannet, C.; Roume, J.; Bitoun, P.; Goldenberg, A.; Philip, N.; Odent, S.; Green, J.; Cossée, M.; Davis, E. E.; Katsanis, N.; Bonneau, D.; Verloes, A.; Poch, O.; Mandel, J. L.; Dollfus, H.

    2013-01-01

    Bardet–Biedl syndrome (BBS), an emblematic disease in the rapidly evolving field of ciliopathies, is characterized by pleiotropic clinical features and extensive genetic heterogeneity. To date, 14 BBS genes have been identified, 3 of which have been found mutated only in a single BBS family each (BBS11/TRIM32, BBS13/MKS1 and BBS14/MKS4/NPHP6). Previous reports of systematic mutation detection in large cohorts of BBS families (n > 90) have dealt only with a single gene, or at most small subsets of the known BBS genes. Here we report extensive analysis of a cohort of 174 BBS families for 12/14 genes, leading to the identification of 28 novel mutations. Two pathogenic mutations in a single gene have been found in 117 families, and a single heterozygous mutation in 17 families (of which 8 involve the BBS1 recurrent mutation, M390R). We confirm that BBS1 and BBS10 are the most frequently mutated genes, followed by BBS12. No mutations have been found in BBS11/TRIM32, the identification of which as a BBS gene only relies on a single missense mutation in a single consanguineous family. While a third variant allele has been observed in a few families, they are in most cases missenses of uncertain pathogenicity, contrasting with the type of mutations observed as two alleles in a single gene. We discuss the various strategies for diagnostic mutation detection, including homozygosity mapping and targeted arrays for the detection of previously reported mutations. PMID:20177705

  4. Gene Coexpression Analyses Differentiate Networks Associated with Diverse Cancers Harboring TP53 Missense or Null Mutations

    PubMed Central

    Oros Klein, Kathleen; Oualkacha, Karim; Lafond, Marie-Hélène; Bhatnagar, Sahir; Tonin, Patricia N.; Greenwood, Celia M. T.

    2016-01-01

    In a variety of solid cancers, missense mutations in the well-established TP53 tumor suppressor gene may lead to the presence of a partially-functioning protein molecule, whereas mutations affecting the protein encoding reading frame, often referred to as null mutations, result in the absence of p53 protein. Both types of mutations have been observed in the same cancer type. As the resulting tumor biology may be quite different between these two groups, we used RNA-sequencing data from The Cancer Genome Atlas (TCGA) from four different cancers with poor prognosis, namely ovarian, breast, lung and skin cancers, to compare the patterns of coexpression of genes in tumors grouped according to their TP53 missense or null mutation status. We used Weighted Gene Coexpression Network analysis (WGCNA) and a new test statistic built on differences between groups in the measures of gene connectivity. For each cancer, our analysis identified a set of genes showing differential coexpression patterns between the TP53 missense- and null mutation-carrying groups that was robust to the choice of the tuning parameter in WGCNA. After comparing these sets of genes across the four cancers, one gene (KIR3DL2) consistently showed differential coexpression patterns between the null and missense groups. KIR3DL2 is known to play an important role in regulating the immune response, which is consistent with our observation that this gene's strongly-correlated partners implicated many immune-related pathways. Examining mutation-type-related changes in correlations between sets of genes may provide new insight into tumor biology. PMID:27536319

  5. A cancer-predisposing "hot spot" mutation of the fumarase gene creates a dominant negative protein.

    PubMed

    Lorenzato, Annalisa; Olivero, Martina; Perro, Mario; Brière, Jean Jacques; Rustin, Pierre; Di Renzo, Maria Flavia

    2008-02-15

    The Fumarase (Fumarate Hydratase, FH) is a tumor suppressor gene whose germline heterozygous mutations predispose to hereditary leiomyomatosis and renal cell cancer (HLRCC). The FH gene encodes an enzyme of the Krebs cycle, functioning as a homotetramer and catalyzing the hydration of fumarate to malate. Among the numerous FH mutations reported so far, the R190H missense mutation is the most frequent in HLRCC patients. Here we show the functional analyses of the R190H, in comparison to the better characterized E319Q mutation. We first expressed wild-type and mutated proteins in FH deficient human skin fibroblasts, using lentiviral vectors. The wild-type transgene was able to restore the FH enzymatic activity in cells, while the R190H- and E319Q-FH were not. More interestingly, when the same transgenes were expressed in normal, FH-proficient cells, only the R190H-FH reduced the endogenous FH enzymatic activity. By enforcing the expression of equal amount of wild-type and R190H-FH in the same cell, we showed that the mutated FH protein directly inhibited enzymatic activity by nearly abrogating the FH homotetramer formation. These data demonstrate the dominant negative effect of the R190H missense mutation in the FH gene and suggest that the FH tumor-suppressing activity might be impaired in cells carrying a heterozygous mutation. PMID:17960613

  6. Novel mutations of endothelin-B receptor gene in Pakistani patients with Waardenburg syndrome.

    PubMed

    Jabeen, Raheela; Babar, Masroor Ellahi; Ahmad, Jamil; Awan, Ali Raza

    2012-01-01

    Mutations in EDNRB gene have been reported to cause Waardenburg-Shah syndrome (WS4) in humans. We investigated 17 patients with WS4 for identification of mutations in EDNRB gene using PCR and direct sequencing technique. Four genomic mutations were detected in four patients; a G to C transversion in codon 335 (S335C) in exon 5 and a transition of T to C in codon (S361L) in exon 5, a transition of A to G in codon 277 (L277L) in exon 4, a non coding transversion of T to A at -30 nucleotide position of exon 5. None of these mutations were found in controls. One of the patients harbored two novel mutations (S335C, S361L) in exon 5 and one in Intronic region (-30exon5 A>G). All of the mutations were homozygous and novel except the mutation observed in exon 4. In this study, we have identified 3 novel mutations in EDNRB gene associated with WS4 in Pakistani patients. PMID:21547364

  7. Novel point mutations in the ERG11 gene in clinical isolates of azole resistant Candida species

    PubMed Central

    Silva, Danielly Beraldo dos Santos; Rodrigues, Luana Mireli Carbonera; de Almeida, Adriana Araújo; de Oliveira, Kelly Mari Pires; Grisolia/, Alexéia Barufatti

    2016-01-01

    The azoles are the class of medications most commonly used to fight infections caused by Candida sp. Typically, resistance can be attributed to mutations in ERG11 gene (CYP51) which encodes the cytochrome P450 14α-demethylase, the primary target for the activity of azoles. The objective of this study was to identify mutations in the coding region of theERG11 gene in clinical isolates of Candidaspecies known to be resistant to azoles. We identified three new synonymous mutations in the ERG11 gene in the isolates of Candida glabrata (C108G, C423T and A1581G) and two new nonsynonymous mutations in the isolates of Candida krusei - A497C (Y166S) and G1570A (G524R). The functional consequence of these nonsynonymous mutations was predicted using evolutionary conservation scores. The G524R mutation did not have effect on 14α-demethylase functionality, while the Y166S mutation was found to affect the enzyme. This observation suggests a possible link between the mutation and dose-dependent sensitivity to voriconazole in the clinical isolate of C. krusei. Although the presence of the Y166S in phenotype of reduced azole sensitivity observed in isolate C. kruseidemands investigation, it might contribute to the search of new therapeutic agents against resistant Candida isolates. PMID:26982177

  8. Novel point mutations in the ERG11 gene in clinical isolates of azole resistant Candida species.

    PubMed

    Silva, Danielly Beraldo dos Santos; Rodrigues, Luana Mireli Carbonera; Almeida, Adriana Araújo de; Oliveira, Kelly Mari Pires de; Grisolia, Alexéia Barufatti

    2016-03-01

    The azoles are the class of medications most commonly used to fight infections caused by Candida sp. Typically, resistance can be attributed to mutations in ERG11 gene (CYP51) which encodes the cytochrome P450 14α-demethylase, the primary target for the activity of azoles. The objective of this study was to identify mutations in the coding region of theERG11 gene in clinical isolates of Candida species known to be resistant to azoles. We identified three new synonymous mutations in the ERG11 gene in the isolates of Candida glabrata (C108G, C423T and A1581G) and two new nonsynonymous mutations in the isolates of Candida krusei--A497C (Y166S) and G1570A (G524R). The functional consequence of these nonsynonymous mutations was predicted using evolutionary conservation scores. The G524R mutation did not have effect on 14α-demethylase functionality, while the Y166S mutation was found to affect the enzyme. This observation suggests a possible link between the mutation and dose-dependent sensitivity to voriconazole in the clinical isolate of C. krusei. Although the presence of the Y166S in phenotype of reduced azole sensitivity observed in isolate C. krusei demands investigation, it might contribute to the search of new therapeutic agents against resistant Candida isolates. PMID:26982177

  9. Mutational landscape of gingivo-buccal oral squamous cell carcinoma reveals new recurrently-mutated genes and molecular subgroups

    PubMed Central

    Maitra, Arindam; Biswas, Nidhan K.; Amin, Kishore; Kowtal, Pradnya; Kumar, Shantanu; Das, Subrata; Sarin, Rajiv; Majumder, Partha P.; Bagchi, I; Bairagya, B. B.; Basu, A.; Bhan, M. K.; Chaturvedi, P.; Das, D.; D'Cruz, A.; Dhar, R.; Dutta, D.; Ganguli, D.; Gera, P.; Gupta, T.; Mahapatra, S.; Mujawar, M. H. K.; Mukherjee, S.; Nair, S.; Nikam, S.; Nobre, M.; Patil, A.; Patra, S.; Rama-Gowtham, M.; Rao, T. S.; Roy, B.; Roychowdhury, B.; Sarkar, D.; Sarkar, S.; Sarkar-Roy, N.; Sutradhar, D.

    2013-01-01

    Gingivo-buccal oral squamous cell carcinoma (OSCC-GB), an anatomical and clinical subtype of head and neck squamous cell carcinoma (HNSCC), is prevalent in regions where tobacco-chewing is common. Exome sequencing (n=50) and recurrence testing (n=60) reveals that some significantly and frequently altered genes are specific to OSCC-GB (USP9X, MLL4, ARID2, UNC13C and TRPM3), while some others are shared with HNSCC (for example, TP53, FAT1, CASP8, HRAS and NOTCH1). We also find new genes with recurrent amplifications (for example, DROSHA, YAP1) or homozygous deletions (for example, DDX3X) in OSCC-GB. We find a high proportion of C>G transversions among tobacco users with high numbers of mutations. Many pathways that are enriched for genomic alterations are specific to OSCC-GB. Our work reveals molecular subtypes with distinctive mutational profiles such as patients predominantly harbouring mutations in CASP8 with or without mutations in FAT1. Mean duration of disease-free survival is significantly elevated in some molecular subgroups. These findings open new avenues for biological characterization and exploration of therapies. PMID:24292195

  10. Bilateral transverse sinus thrombosis secondary to a homozygous C677T MTHFR gene mutation.

    PubMed

    Kanaan, Ziad M; Mahfouz, Rami; Taher, Ali; Sawaya, Raja A

    2008-09-01

    We describe the case of a previously healthy young man who presented with headache, diplopia, nausea, vomiting, and bilateral papilledema. Magnetic resonance venography of the brain revealed thrombosis of the right transverse sinus. Blood tests showed elevated homocysteine levels, and coagulation studies revealed a homozygous C677T mutation and a heterozygous A1298C mutation of the methylenetetrahydrofolate reductase (MTHFR) gene. The patient had no other etiology for venous thrombosis. We recommend screening patients who present with sinus thrombosis for MTHFR gene mutations. PMID:18666857

  11. Genomic organization of SLC3A1, a transporter gene mutated in cystinuria

    SciTech Connect

    Pras, E.; Sood, R.; Raben, N.

    1996-08-15

    The SLC3A1 gene encodes a transport protein for cystine and the dibasic amino acids. Recently mutations in this gene have been shown to cause cystinuria. We report the genomic structure and organization of SLC3A1, which is composed of 10 exons and spans nearly 45 kb. Until now screening for mutations in SLC3A1 has been based on RT-PCR amplification of illegitimate mRNA transcripts from white blood cells. In this report we provide primers for amplification of exons from genomic DNA, thus simplifying the process of screening for SLC3A1 mutations in cystinuria. 20 refs., 3 figs., 2 tabs.

  12. PCR-sequencing is a complementary method to amplification refractory mutation system for EGFR gene mutation analysis in FFPE samples.

    PubMed

    Jiang, Junchang; Wang, Chunhua; Yu, Xiaoli; Sheng, Danli; Zuo, Chen; Ren, Minpu; Wu, Yaqin; Shen, Jie; Jin, Mei; Xu, Songxiao

    2015-12-01

    Amplification Refractory Mutation System (ARMS) is the most popular technology for EGFR gene mutation analysis in China. Cutoff Ct or ΔCt values were used to differentiate low mutation abundance cases from no mutation cases. In this study, all of 359 NSCLC samples were tested by ARMS. Seventeen samples with larger Ct or ΔCt than cutoff values were retested by PCR-sequencing. TKI treatment responses were monitored on the cases with ARMS negative and PCR-sequencing positive results. One exon 18 G719X case, 67 exon 19 deletion cases, 2 exon 20 insertion cases, 1 exon 20 T790M case, 60 exon 21 L858R cases, 5 exon 21 L861Q cases and 201 wild type cases were identified by ARMS. Another 22 cases were evaluated as wild type but had later amplification fluorescent curves. Seventeen out of these 22 cases were retested by PCR-sequencing. It turns out that 3 out of 3 cases with exon 19 deletion later amplifications, 2 out of 2 cases with L858R later amplifications and 4 out of 12 cases with T790M later amplifications were identified as mutation positive. Two cases with exon 19 deletion and L858R respectively were treated by TKI and got responses. Our study indicated that PCR-sequencing might be a complementary way to confirm ARMS results with later amplifications. PMID:26477713

  13. Clinical impact of recurrently mutated genes on lymphoma diagnostics: state-of-the-art and beyond.

    PubMed

    Rosenquist, Richard; Rosenwald, Andreas; Du, Ming-Qing; Gaidano, Gianluca; Groenen, Patricia; Wotherspoon, Andrew; Ghia, Paolo; Gaulard, Philippe; Campo, Elias; Stamatopoulos, Kostas

    2016-09-01

    Similar to the inherent clinical heterogeneity of most, if not all, lymphoma entities, the genetic landscape of these tumors is markedly complex in the majority of cases, with a rapidly growing list of recurrently mutated genes discovered in recent years by next-generation sequencing technology. Whilst a few genes have been implied to have diagnostic, prognostic and even predictive impact, most gene mutations still require rigorous validation in larger, preferably prospective patient series, to scrutinize their potential role in lymphoma diagnostics and patient management. In selected entities, a predominantly mutated gene is identified in almost all cases (e.g. Waldenström's macroglobulinemia/lymphoplasmacytic lymphoma and hairy-cell leukemia), while for the vast majority of lymphomas a quite diverse mutation pattern is observed, with a limited number of frequently mutated genes followed by a seemingly endless tail of genes with mutations at a low frequency. Herein, the European Expert Group on NGS-based Diagnostics in Lymphomas (EGNL) summarizes the current status of this ever-evolving field, and, based on the present evidence level, segregates mutations into the following categories: i) immediate impact on treatment decisions, ii) diagnostic impact, iii) prognostic impact, iv) potential clinical impact in the near future, or v) should only be considered for research purposes. In the coming years, coordinated efforts aiming to apply targeted next-generation sequencing in large patient series will be needed in order to elucidate if a particular gene mutation will have an immediate impact on the lymphoma classification, and ultimately aid clinical decision making. PMID:27582569

  14. Detection of a novel mutation in exon 20 of the BRCA1 gene.

    PubMed

    Chakraborty, Abhijit; Katarkar, Atul; Chaudhuri, Keya; Mukhopadhyay, Ashis; Basak, Jayasri

    2013-12-01

    Hereditary breast cancer constitutes 5-10% of all breast cancer cases. Inherited mutations in the BRCA1 and BRCA2 tumor-suppressor genes account for the majority of hereditary breast cancer cases. The BRCA1 C-terminal region (BRCT) has a functional duplicated globular domain, which helps with DNA damage repair and cell cycle checkpoint protein control. More than 100 distinct BRCA1 missense variants with structural and functional effects have been documented within the BRCT domain. Interpreting the results of mutation screening of tumor-suppressor genes that can have high-risk susceptibility mutations is increasingly important in clinical practice. This study includes a novel mutation, p.His1746 Pro (c.5237A>C), which was found in BRCA1 exon 20 of a breast cancer patient. In silico analysis suggests that this mutation could alter the stability and orientation of the BRCT domain and the differential binding of the BACH1 substrate. PMID:24297685

  15. [Some behavioral features in Drosophila melanogaster lines carrying a flamenco gene mutation].

    PubMed

    Subocheva, E A; Romanova, L G; Romanova, N I; Kim, A I

    2001-11-01

    Olfactory sensitivity and locomotor activity was assayed in Drosophila melanogaster strains carrying a mutation of the flamenco gene, which controls transposition of the mobile genetic element 4 (MGE4) retrotransposon the gypsy mobile element. A change in olfactory sensitivity was detected. The reaction to the odor of acetic acid was inverted in flies of the mutator strain (MS), which carried the flam mutation and active MGE4 copies and were characterized by genetic instability. Flies of the genetically unstable strains displayed a lower locomotor activity. The behavioral changes in MS flies can be explained by the pleiotropic effect of the flam mutation or by insertion mutations which arise in behavior genes as a result of genome destabilization by MGE4. PMID:11771305

  16. De Novo Truncating FUS Gene Mutation as a Cause of Sporadic Amyotrophic Lateral Sclerosis

    PubMed Central

    DeJesus-Hernandez, Mariely; Kocerha, Jannet; Finch, NiCole; Crook, Richard; Baker, Matt; Desaro, Pamela; Johnston, Amelia; Rutherford, Nicola; Wojtas, Aleksandra; Kennelly, Kathleen; Wszolek, Zbigniew K.; Graff-Radford, Neill; Boylan, Kevin; Rademakers, Rosa

    2010-01-01

    Mutations in the gene encoding fused in sarcoma (FUS) were recently identified as a novel cause of amyotrophic lateral sclerosis (ALS), emphasizing the genetic heterogeneity of ALS. We sequenced the genes encoding superoxide dismutase (SOD1), TAR DNA-binding protein 43 (TARDBP) and FUS in 99 sporadic and 17 familial ALS patients ascertained at Mayo Clinic. We identified two novel mutations in FUS in two out of 99 (2.0%) sporadic ALS patients and established the de novo occurrence of one FUS mutation. In familial patients, we identified three (17.6%) SOD1 mutations, while FUS and TARDBP mutations were excluded. The de novo FUS mutation (g.10747A>G; IVS13-2A>G) affects the splice-acceptor site of FUS intron 13 and was shown to induce skipping of FUS exon 14 leading to the C-terminal truncation of FUS (p.G466VfsX14). Subcellular localization studies showed a dramatic increase in the cytoplasmic localization of FUS and a reduction of normal nuclear expression in cells transfected with truncated compared to wild-type FUS. We further identified a novel in-frame insertion/deletion mutation in FUS exon 12 (p.S402 P411delinsGGGG) which is predicted to expand a conserved poly-glycine motif. Our findings extend the mutation spectrum in FUS leading to ALS and describe the first de novo mutation in FUS. PMID:20232451

  17. Tyrosinase gene mutations in the Chinese Han population with OCA1.

    PubMed

    Liu, Ning; Kong, Xiang Dong; Shi, Hui Rong; Wu, Qing Hua; Jiang, Miao

    2014-01-01

    Oculocutaneous albinism (OCA) is a heterogeneous autosomal recessive genetic disorder that affects melanin synthesis. OCA results in reduced or absent pigmentation in the hair, skin and eyes. Type 1 OCA (OCA1) is the result of tyrosinase (TYR) gene mutations and is a severe disease type. This study investigated TYR mutations in a Chinese cohort with OCA1. This study included two parts: patient genetic study and prenatal genetic diagnosis. A total of 30 OCA1 patients were subjected to TYR gene mutation analysis. Ten pedigrees were included for prenatal genetic diagnosis. A total of 100 unrelated healthy Chinese individuals were genotyped for controls. The coding sequence and the intron/exon junctions of TYR were analysed by bidirectional DNA sequencing. In this study, 20 mutations were identified, four of which were novel. Of these 30 OCA1 patients, 25 patients were TYR compound heterozygous; two patients carried homozygous TYR mutations; and three were heterozygous. Among the ten prenatally genotyped fetuses, three fetuses carried compound heterozygous mutations and seven carried no mutation or only one mutant allele of TYR and appeared normal at birth. In conclusion, we identified four novel TYR mutations and showed that molecular-based prenatal screening to detect TYR mutations in a fetus at risk for OCA1 provided essential information for genetic counselling of couples at risk. PMID:25577957

  18. A high frequency of distinct ATM gene mutations in ataxia-telangiectasia

    SciTech Connect

    Wright, J.; Teraoka, S.; Concannon, P.

    1996-10-01

    The clinical features of the autosomal recessive disorder ataxia-telangiectasia (AT) include a progressive cerebellar ataxia, hypersensitivity to ionizing radiation, and an increased susceptibility to malignancies. Epidemiological studies have suggested that AT heterozygotes may also be at increased risk for malignancy, possibly as a consequence of radiation exposure. A gene mutated in AT patients (ATM) has recently been isolated, making mutation screening in both patients and the general population possible. Because of the relatively large size of the ATM gene, the design of screening programs will depend on the types and distribution of mutations in the general population. In this report, we describe 30 mutations identified in a panel of unrelated AT patients and controls. Twenty-five of the 30 were distinct, and most patients were compound heterozygotes. The most frequently detected mutation was found in three different families and had previously been reported in five others. This corresponds to a frequency of 8% of all reported ATM mutations. Twenty-two of the alterations observed would be predicted to lead to protein truncation at sites scattered throughout the molecule. Two fibroblast cell lines, which displayed normal responses to ionizing radiation, also proved to be heterozygous for truncation mutations of ATM. These observations suggest that the carrier frequency of ATM mutations may be sufficiently high to make population screening practical. However, such screening may need to be done prospectively, that is, by searching for new mutations rather than by screening for just those already identified in AT families. 33 refs., 1 fig., 1 tab.

  19. Mutations in Gcr1, a Transcriptional Activator of Saccharomyces Cerevisiae Glycolytic Genes, Function as Suppressors of Gcr2 Mutations

    PubMed Central

    Uemura, H.; Jigami, Y.

    1995-01-01

    The Saccharomyces cerevisiae GCR1 and GCR2 genes affect expression of most of the glycolytic genes. Evidence for Gcr1p/Gcr2p interaction has been presented earlier and is now supported by the isolation of mutations in Gcr1p suppressing gcr2, as assessed by growth and enzyme assay. Four specific mutation sites were identified. Together with use of the two-hybrid system of FIELDS and SONG, they show that Gcr1p in its N-terminal half has a potential transcriptional activating function as well as elements for interaction with Gcr2p, which perhaps acts normally to expose an otherwise cryptic activation domain on Gcr1p. Complementation of various gcr1 mutant alleles and results with the two-hybrid system also indicate that Gcr1p itself normally functions as an oligomer. PMID:7713414

  20. A Mutation in the Mitochondrial Fission Gene Dnm1l Leads to Cardiomyopathy

    PubMed Central

    Ashrafian, Houman; Docherty, Louise; Leo, Vincenzo; Towlson, Christopher; Neilan, Monica; Steeples, Violetta; Lygate, Craig A.; Hough, Tertius; Townsend, Stuart; Williams, Debbie; Wells, Sara; Norris, Dominic; Glyn-Jones, Sarah; Land, John; Barbaric, Ivana; Lalanne, Zuzanne; Denny, Paul; Szumska, Dorota; Bhattacharya, Shoumo; Griffin, Julian L.; Hargreaves, Iain; Fernandez-Fuentes, Narcis; Cheeseman, Michael; Watkins, Hugh; Dear, T. Neil

    2010-01-01

    Mutations in a number of genes have been linked to inherited dilated cardiomyopathy (DCM). However, such mutations account for only a small proportion of the clinical cases emphasising the need for alternative discovery approaches to uncovering novel pathogenic mutations in hitherto unidentified pathways. Accordingly, as part of a large-scale N-ethyl-N-nitrosourea mutagenesis screen, we identified a mouse mutant, Python, which develops DCM. We demonstrate that the Python phenotype is attributable to a dominant fully penetrant mutation in the dynamin-1-like (Dnm1l) gene, which has been shown to be critical for mitochondrial fission. The C452F mutation is in a highly conserved region of the M domain of Dnm1l that alters protein interactions in a yeast two-hybrid system, suggesting that the mutation might alter intramolecular interactions within the Dnm1l monomer. Heterozygous Python fibroblasts exhibit abnormal mitochondria and peroxisomes. Homozygosity for the mutation results in the death of embryos midway though gestation. Heterozygous Python hearts show reduced levels of mitochondria enzyme complexes and suffer from cardiac ATP depletion. The resulting energy deficiency may contribute to cardiomyopathy. This is the first demonstration that a defect in a gene involved in mitochondrial remodelling can result in cardiomyopathy, showing that the function of this gene is needed for the maintenance of normal cellular function in a relatively tissue-specific manner. This disease model attests to the importance of mitochondrial remodelling in the heart; similar defects might underlie human heart muscle disease. PMID:20585624

  1. Distribution of Gene Mutations Associated with Familial Normosmic Idiopathic Hypogonadotropic Hypogonadism

    PubMed Central

    Gürbüz, Fatih; Kotan, L. Damla; Mengen, Eda; Şıklar, Zeynep; Berberoğlu, Merih; Dökmetaş, Sebila; Kılıçlı, Mehmet Fatih; Güven, Ayla; Kirel, Birgül; Saka, Nurçin; Poyrazoğlu, Şükran; Cesur, Yaşar; Doğan, Murat; Özen, Samim; Özbek, Mehmet Nuri; Demirbilek, Hüseyin; Kekil, M. Burcu; Temiz, Fatih; Önenli Mungan, Neslihan; Yüksel, Bilgin; Topaloğlu, Ali Kemal

    2012-01-01

    Objective: Normosmic idiopathic hypogonadotropic hypogonadism (nIHH) is characterized by failure of initiation or maintenance of puberty due to insufficient gonadotropin release, which is not associated with anosmia/hyposmia. The objective of this study was to determine the distribution of causative mutations in a hereditary form of nIHH. Methods: In this prospective collaborative study, 22 families with more than one affected individual (i.e. multiplex families) with nIHH were recruited and screened for genes known or suspected to be strong candidates for nIHH. Results: Mutations were identified in five genes (GNRHR, TACR3, TAC3, KISS1R, and KISS1) in 77% of families with autosomal recessively inherited nIHH. GNRHR and TACR3 mutations were the most common two causative mutations occurring with about equal frequency. Conclusions: Mutations in these five genes account for about three quarters of the causative mutations in nIHH families with more than one affected individual. This frequency is significantly greater than the previously reported rates in all inclusive (familial plus sporadic) cohorts. GNRHR and TACR3 should be the first two genes to be screened for diagnostic purposes. Identification of causative mutations in the remaining families will shed light on the regulation of puberty. Conflict of interest:None declared. PMID:22766261

  2. De novo mutations in histone modifying genes in congenital heart disease

    PubMed Central

    Zaidi, Samir; Choi, Murim; Wakimoto, Hiroko; Ma, Lijiang; Jiang, Jianming; Overton, John D.; Romano-Adesman, Angela; Bjornson, Robert D.; Breitbart, Roger E.; Brown, Kerry K.; Carriero, Nicholas J.; Cheung, Yee Him; Deanfield, John; DePalma, Steve; Fakhro, Khalid A.; Glessner, Joseph; Hakonarson, Hakon; Italia, Michael; Kaltman, Jonathan R.; Kaski, Juan; Kim, Richard; Kline, Jennie K.; Lee, Teresa; Leipzig, Jeremy; Lopez, Alexander; Mane, Shrikant M.; Mitchell, Laura E.; Newburger, Jane W.; Parfenov, Michael; Pe'er, Itsik; Porter, George; Roberts, Amy; Sachidanandam, Ravi; Sanders, Stephan J.; Seiden, Howard S.; State, Mathew W.; Subramanian, Sailakshmi; Tikhonova, Irina R.; Wang, Wei; Warburton, Dorothy; White, Peter S.; Williams, Ismee A.; Zhao, Hongyu; Seidman, Jonathan G.; Brueckner, Martina; Chung, Wendy K.; Gelb, Bruce D.; Goldmuntz, Elizabeth; Seidman, Christine E.; Lifton, Richard P.

    2013-01-01

    Congenital heart disease (CHD) is the most frequent birth defect, affecting 0.8% of live births1. Many cases occur sporadically and impair reproductive fitness, suggesting a role for de novo mutations. By analysis of exome sequencing of parent-offspring trios, we compared the incidence of de novo mutations in 362 severe CHD cases and 264 controls. CHD cases showed a significant excess of protein-altering de novo mutations in genes expressed in the developing heart, with an odds ratio of 7.5 for damaging mutations. Similar odds ratios were seen across major classes of severe CHD. We found a marked excess of de novo mutations in genes involved in production, removal or reading of H3K4 methylation (H3K4me), or ubiquitination of H2BK120, which is required for H3K4 methylation2–4. There were also two de novo mutations in SMAD2; SMAD2 signaling in the embryonic left-right organizer induces demethylation of H3K27me5. H3K4me and H3K27me mark `poised' promoters and enhancers that regulate expression of key developmental genes6. These findings implicate de novo point mutations in several hundred genes that collectively contribute to ~10% of severe CHD. PMID:23665959

  3. The Phenotype of a Germline Mutation in PIGA: The Gene Somatically Mutated in Paroxysmal Nocturnal Hemoglobinuria

    PubMed Central

    Johnston, Jennifer J.; Gropman, Andrea L.; Sapp, Julie C.; Teer, Jamie K.; Martin, Jodie M.; Liu, Cyndi F.; Yuan, Xuan; Ye, Zhaohui; Cheng, Linzhao; Brodsky, Robert A.; Biesecker, Leslie G.

    2012-01-01

    Phosphatidylinositol glycan class A (PIGA) is involved in the first step of glycosylphosphatidylinositol (GPI) biosynthesis. Many proteins, including CD55 and CD59, are anchored to the cell by GPI. Loss of CD55 and CD59 on erythrocytes causes complement-mediated lysis in paroxysmal nocturnal hemoglobinuria (PNH), a disease that manifests after clonal expansion of hematopoietic cells with somatic PIGA mutations. Although somatic PIGA mutations have been identified in many PNH patients, it has been proposed that germline mutations are lethal. We report a family with an X-linked lethal disorder involving cleft palate, neonatal seizures, contractures, central nervous system (CNS) structural malformations, and other anomalies. An X chromosome exome next-generation sequencing screen identified a single nonsense PIGA mutation, c.1234C>T, which predicts p.Arg412∗. This variant segregated with disease and carrier status in the family, is similar to mutations known to cause PNH as a result of PIGA dysfunction, and was absent in 409 controls. PIGA-null mutations are thought to be embryonic lethal, suggesting that p.Arg412∗ PIGA has residual function. Transfection of a mutant p.Arg412∗ PIGA construct into PIGA-null cells showed partial restoration of GPI-anchored proteins. The genetic data show that the c.1234C>T (p.Arg412∗) mutation is present in an affected child, is linked to the affected chromosome in this family, is rare in the population, and results in reduced, but not absent, biosynthesis of GPI anchors. We conclude that c.1234C>T in PIGA results in the lethal X-linked phenotype recognized in the reported family. PMID:22305531

  4. Spectrum of rhodopsin gene mutations in Chinese patients with retinitis pigmentosa

    PubMed Central

    Yang, Guoxing; Xie, Shipeng; Feng, Na; Yuan, Zhifeng; Zhang, Minglian

    2014-01-01

    Purpose This study was to analyze the spectrum and frequency of rhodopsin gene (RHO) mutations in Chinese patients with retinitis pigmentosa (RP). Methods Patients were given physical examinations, and blood samples were collected for DNA extraction. The RHO mutations were screened with direct sequencing. Results Eight heterozygous nucleotide changes were detected in eight of 300 probands with RP, including six novel mutations and two known mutations. p.R21C, p.C110S, p.G182V, p.C187G, c.409–426delGTGGTGGTGTGTAAGCCC, and p.P347L were found in six autosomal dominant families. p.T92I and p.Y178C were found in two isolated cases. Conclusions The results reveal the spectrum and frequency of RHO mutations in Chinese patients with different forms of RP and demonstrate that RHO mutations account for a high proportion of autosomal dominant RP (adRP) cases. PMID:25221422

  5. Heteroduplex analysis of the dystrophin gene: Application to point mutation and carrier detection

    SciTech Connect

    Prior, T.W.; Papp, A.C.; Snyder, P.J.; Sedra, M.S.; Western, L.M.; Bartolo, C.; Mendell, J.R.; Moxley, R.T.

    1994-03-01

    Approximately one-third of Duchenne muscular dystrophy patients have undefined mutations in the dystrophin gene. For carrier and prenatal studies in families without detectable mutations, the indirect restriction fragment length polymorphism linkage approach is used. Using a multiplex amplification and heteroduplex analysis of dystrophin exons, the authors identified nonsense mutations in two DMD patients. Although the nonsense mutations are predicted to severely truncate the dystrophin protein, both patients presented with mild clinical courses of the disease. As a result of identifying the mutation in the affected boys, direct carrier studies by heteroduplex analysis were extended to other relatives. The authors conclude that the technique is not only ideal for mutation detection but is also useful for diagnostic testing. 29 refs., 4 figs.

  6. Mutations in the CLCN1 gene leading to myotonia congenita Thomsen and generalized myotonia Becker

    SciTech Connect

    Koch, M.C.; Meyer-Kline, C.; Otto, M.

    1994-09-01

    Autosomal dominant inherited myotonia congenita Thomsen (MC) and autosomal recessive generalized myotonia Becker (GM) are non-dystropic muscle disorders in which the symptom myotonia is based on an increased excitability of the muscle fiber membrane due to a reduced sarcolemmal chloride conductance. Affected individuals exhibit myotonic muscle stiffness in all skeletal muscles and a transient muscle weakness is particularly pronounced in the arms and hands of probands with the disorder GM. Recently we have shown linkage of the disorders MC and GM to the gene CLCN1 coding for the skeletal muscle chloride channel on chromosome 7 in German families. In addition we presented data supporting the hypothesis that GM is a genetically homogeneous disorder. Data are presented about an extended screen for mutations in the CLCN1 gene for our MC and GM population. We identified mainly missense mutations leading to altered amino acid codons. The previously described F413C mutation is by far the most common mutation for GM and is found in one family only (P480L, G482R, R496S). In addition we found 5{prime} donor and 3{prime} acceptor splice site mutations at various intron-exon boundaries, as well as a deletion mutation of 14 bp in exon 13. This deletion mutation is the second most common mutation in the GM population with a frequency of 8%. So far we have not determined sites of predominance of mutations in the CLCN1 gene, which could give us more insight into the regions critical for the function of the channel and the fact that the mutations in the gene may lead to dominant and recessive inheritance.

  7. Investigation of mutations in Erg11 gene of fluconazole resistant Candida albicans isolates from Turkish hospitals.

    PubMed

    Manastır, Lerzan; Ergon, M Cem; Yücesoy, Mine

    2011-03-01

    Widespread use of fluconazole has resulted in resistance in strains of Candida. The aim of our study was to investigate Y132H and other mutations in the ERG11 gene in conferring fluconazole resistance to C. albicans isolates. Seven fluconazole-resistant (R)/susceptible dose-dependent (SDD)/trailing and 10 fluconazole-susceptible (S) isolates were included. Restriction enzyme analysis was performed on all isolates for Y132H mutation and sequence analysis was performed for other mutations in the ERG11 gene. None of our strains had Y132H mutation. One single mutation (D153E, E266D, D116E, V437I) was detected in isolates 348, 533, 644, 1453, 2157, while the others had more than one nucleotide change. D116E and E266D, which were two mutations found in fluconazole R/SDD/trailing isolates with the highest frequency, were also detected in azole S strains. K143R, G464S, G465S and V488I mutations were determined in three of the R/SDD isolates. S412T and R469K mutations were detected only in this group of strains by sequence analysis. Mutations such as K143R, G464S, G465S, V488I, S412T and R469K in the ERG11 gene were determined to be effective mechanisms in our fluconazole R/SDD C. albicans isolates. Other mechanisms of resistance, such as overexpression of ERG11 and efflux pumps and mutations in the ERG3 gene should also be investigated. PMID:19732347

  8. Mutations in STK11 gene in Czech Peutz-Jeghers patients

    PubMed Central

    Vasovčák, Peter; Puchmajerová, Alena; Roubalík, Jan; Křepelová, Anna

    2009-01-01

    Background Peutz-Jeghers syndrome (PJS) is an autosomal dominant hereditary disease characterized by mucocutaneous pigmentation and gastrointestinal hamartomatous polyposis. The germline mutations in the serine/threonine kinase 11 (STK11) gene have been shown to be associated with the disease. Individuals with PJS are at increased risk for development of various neoplasms. The aim of the present study was to characterize the genotype and phenotype of Czech patients with PJS. Methods We examined genomic DNA of 8 individuals from five Czech families by sequencing analysis of STK11 gene, covering its promotor region, the entire coding region and the splice-site boundaries, and by multiplex ligation-dependent probe amplification (MLPA) assay designed for the identification of large exonic deletions or duplications of STK11 gene. Results We found pathogenic mutations in STK11 gene in two families fulfilling the diagnostic criteria of PJS and in one of three sporadic cases not complying with the criteria. The patient with the frameshift mutation in STK11 gene developed aggressive gastric cancer. No other studied proband has developed a carcinoma so far. Conclusion Our results showed that a germline mutation of STK11 gene can be found not only in probands fulfilling the PJS diagnostic criteria, but also in some sporadic cases not complying with the criteria. Moreover, we observed a new case of aggressive gastric cancer in a young patient with a frameshift mutation of STK11 gene. PMID:19615099

  9. Cloning of three human multifunctional de novo purine biosynthetic genes by functional complementation of yeast mutations.

    PubMed Central

    Schild, D; Brake, A J; Kiefer, M C; Young, D; Barr, P J

    1990-01-01

    Functional complementation of mutations in the yeast Saccharomyces cerevisiae has been used to clone three multifunctional human genes involved in de novo purine biosynthesis. A HepG2 cDNA library constructed in a yeast expression vector was used to transform yeast strains with mutations in adenine biosynthetic genes. Clones were isolated that complement mutations in the yeast ADE2, ADE3, and ADE8 genes. The cDNA that complemented the ade8 (phosphoribosylglycinamide formyltransferase, GART) mutation, also complemented the ade5 (phosphoribosylglycinamide synthetase) and ade7 [phosphoribosylaminoimidazole synthetase (AIRS; also known as PAIS)] mutations, indicating that it is the human trifunctional GART gene. Supporting data include homology between the AIRS and GART domains of this gene and the published sequence of these domains from other organisms, and localization of the cloned gene to human chromosome 21, where the GART gene has been shown to map. The cDNA that complemented ade2 (phosphoribosylaminoimidazole carboxylase) also complemented ade1 (phosphoribosylaminoimidazole succinocarboxamide synthetase), supporting earlier data suggesting that in some organisms these functions are part of a bifunctional protein. The cDNA that complemented ade3 (formyltetrahydrofolate synthetase) is different from the recently isolated human cDNA encoding this enzyme and instead appears to encode a related mitochondrial enzyme. Images PMID:2183217

  10. De novo mutations from sporadic schizophrenia cases highlight important signaling genes in an independent sample.

    PubMed

    Kranz, Thorsten M; Harroch, Sheila; Manor, Orly; Lichtenberg, Pesach; Friedlander, Yechiel; Seandel, Marco; Harkavy-Friedman, Jill; Walsh-Messinger, Julie; Dolgalev, Igor; Heguy, Adriana; Chao, Moses V; Malaspina, Dolores

    2015-08-01

    Schizophrenia is a debilitating syndrome with high heritability. Genomic studies reveal more than a hundred genetic variants, largely nonspecific and of small effect size, and not accounting for its high heritability. De novo mutations are one mechanism whereby disease related alleles may be introduced into the population, although these have not been leveraged to explore the disease in general samples. This paper describes a framework to find high impact genes for schizophrenia. This study consists of two different datasets. First, whole exome sequencing was conducted to identify disruptive de novo mutations in 14 complete parent-offspring trios with sporadic schizophrenia from Jerusalem, which identified 5 sporadic cases with de novo gene mutations in 5 different genes (PTPRG, TGM5, SLC39A13, BTK, CDKN3). Next, targeted exome capture of these genes was conducted in 48 well-characterized, unrelated, ethnically diverse schizophrenia cases, recruited and characterized by the same research team in New York (NY sample), which demonstrated extremely rare and potentially damaging variants in three of the five genes (MAF<0.01) in 12/48 cases (25%); including PTPRG (5 cases), SCL39A13 (4 cases) and TGM5 (4 cases), a higher number than usually identified by whole exome sequencing. Cases differed in cognition and illness features based on which mutation-enriched gene they carried. Functional de novo mutations in protein-interaction domains in sporadic schizophrenia can illuminate risk genes that increase the propensity to develop schizophrenia across ethnicities. PMID:26091878

  11. Mutations of rabphillin-3A-like gene in colorectal cancers.

    PubMed

    Goi, Takanori; Takeuchi, Kazuo; Katayama, Kanji; Hirose, Kazuo; Yamaguchi, Akio

    2002-01-01

    The chromosome region 17p shows frequently allele losses/mutations in colorectal cancers, and such frequent genetic alterations are a hallmark of the presence of tumor-suppressor gene. The RPH3AL, which is located at 17p13, has been identified from a candidate 17p13 medulloblastoma tumor suppressor locus. The aim of this study was to determine whether it is also altered in colorectal cancers. Mutational analyses of the RPH3AL gene were performed on DNA samples from 50 primary colorectal cancer specimens using polymerase chain reaction-single strand conformation polymorphism, and DNA sequencing. Six missense mutations producing amino acid substitution in coding region of the RPH3AL gene were detected in 50 primary colorectal cancer patients. The RPH3AL gene may play a role as a tumor-suppressor gene in fraction of colorectal cancers, but a minority show RPH3AL gene mutations. Somatic RPH3AL mutations were identified, providing support for an authentic role as tumor-suppressor gene in colorectal cancer, but only in a minority of cases. PMID:12375017

  12. Molecular analysis of the APC gene in 71 Israeli families: 17 novel mutations.

    PubMed

    Gavert, Nancy; Yaron, Yuval; Naiman, Tova; Bercovich, Dani; Rozen, Paul; Shomrat, Ruth; Legum, Cyril; Orr-Urtreger, Avi

    2002-06-01

    Familial adenomatous polyposis (FAP) is caused by germline mutations in the APC gene. This study included 71 Israeli families referred for molecular analysis of the APC gene. Analysis was performed by the protein truncation test (PTT) of exon 15, and if negative, by direct sequencing of exon 1 to 14. Mutations were found in 36 (50.7%) probands. Mutation detection rates depended on the pattern of referral, such that among the 40 probands referred from the Service for Hereditary Cancer the mutation detection rate was 70%, whereas among the 31 probands referred by other gastroenterologists detection rate was significantly lower (25.8%). Of the 36 mutations detected, 21 were within exon 15, 13 within exons 1 to 14 and 2 were newly-described splicing mutations in introns 9 and 14. A relatively high proportion of the mutations was detected in exon 9 (6/36), five of them newly described. Altogether, we describe here 17 new mutations. Within the two major ethnic groups in Israel, patients of Ashkenazi and non-Ashkenazi origin, there was no significant differences in the mutation detection rate or the distribution of mutations within the APC gene. No founder mutation was detected in any of these populations. Our data confirm that higher detection rates may be expected in patients referred by clinical services specializing in hereditary colon cancer. These results further underscore the importance of complete analysis of all exons and exon/intron boundaries, in order to achieve maximal detection rate in patients suspected of FAP. PMID:12007223

  13. A bacterial model for expression of mutations in the human ornithine transcarbamylase (OTC) gene

    SciTech Connect

    Tuchman, M.; McCann, M.T.; Qureshi, A.A.

    1994-09-01

    OTC is a mitochondrial enzyme catalyzing the formation of citrulline from carbamyl phosphate and ornithine. X-linked deficiency of OTC is the most prevalent genetic defect of ureagenesis. Mutations and polymorphisms in the OTC gene identified in deficient patients have indicated the occurrence of many family-specific, unique alleles. Due to the low frequency of recurrent mutations, distinguishing between deleterious mutations and polymorphisms is difficult. Using a human OTC gene containing plasmid driven by a tac promoter, we have devised a simple and efficient method for expressing mutations in the mature human OTC enzyme. To demonstrate this method, PCR engineered site-directed mutagenesis was employed to generated cDNA fragments which contained either the R151Q or R277W known mutations found in patients with neonatal and late-onset OTC deficiency, respectively. The normal allele for each mutation was also generated by an identical PCR procedure. Digestion with Bgl II- and Sty I-generated mutant and normal replacement cassettes containing the respective mutant and wild type sequences. Upon transformation of JM109 E.coli cells, OTC enzymatic activity was measured at log and stationary phases of growth using a radiochromatographic method. The R141Q mutation abolished enzymatic activity (<0.02% of normal), whereas the R277W mutation expressed partial activity (2.3% of normal). In addition, a PCR-generated mutation, A280V, resulted in 73% loss of catalytic activity. This OTC expression system is clinically applicable for distinguishing between mutations and polymorphisms, and it can be used to investigate the effects of mutations on various domains of the OTC gene.

  14. Mutations in the consensus helicase domains of the Werner syndrome gene

    SciTech Connect

    Yu, Chang-En; Oshima, Junko; Wijsman, E.M.

    1997-02-01

    Werner syndrome (WS) is an autosomal recessive disease with a complex phenotype that is suggestive of accelerated aging. WS is caused by mutations in a gene, WRN, that encodes a predicted 1,432-amino-acid protein with homology to DNA and RNA helicases. Previous work identified four WS mutations in the 3{prime} end of the gene, which resulted in predicted truncated protein products of 1,060-1,247 amino acids but did not disrupt the helicase domain region (amino acids 569-859). Here, additional WS subjects were screened for mutations, and the intron-exon structure of the gene was determined. A total of 35 exons were defined, with the coding sequences beginning in the second exon. Five new WS mutations were identified: two nonsense mutations at codons 369 and 889; a mutation at a splice-junction site, resulting in a predicted truncated protein of 760 amino acids; a 1-bp deletion causing a frameshift; and a predicted truncated protein of 391 amino acids. Another deletion is >15 kb of genomic DNA, including exons 19-23; the predicted protein is 1,186 amino acids long. Four of these new mutations either partially disrupt the helicase domain region or result in predicted protein products completely missing the helicase region. These results confirm that mutations in the WRN gene are responsible for WS. Also, the location of the mutations indicates that the presence or absence of the helicase domain does not influence the WS phenotype and suggests that WS is the result of complete loss of function of the WRN gene product. 63 refs., 1 fig., 5 tabs.

  15. Spectrum and prognostic relevance of driver gene mutations in acute myeloid leukemia.

    PubMed

    Metzeler, Klaus H; Herold, Tobias; Rothenberg-Thurley, Maja; Amler, Susanne; Sauerland, Maria C; Görlich, Dennis; Schneider, Stephanie; Konstandin, Nikola P; Dufour, Annika; Bräundl, Kathrin; Ksienzyk, Bianka; Zellmeier, Evelyn; Hartmann, Luise; Greif, Philipp A; Fiegl, Michael; Subklewe, Marion; Bohlander, Stefan K; Krug, Utz; Faldum, Andreas; Berdel, Wolfgang E; Wörmann, Bernhard; Büchner, Thomas; Hiddemann, Wolfgang; Braess, Jan; Spiekermann, Karsten

    2016-08-01

    The clinical and prognostic relevance of many recently identified driver gene mutations in adult acute myeloid leukemia (AML) is poorly defined. We sequenced the coding regions or hotspot areas of 68 recurrently mutated genes in a cohort of 664 patients aged 18 to 86 years treated on 2 phase 3 trials of the German AML Cooperative Group (AMLCG). The median number of 4 mutations per patient varied according to cytogenetic subgroup, age, and history of previous hematologic disorder or antineoplastic therapy. We found patterns of significantly comutated driver genes suggesting functional synergism. Conversely, we identified 8 virtually nonoverlapping patient subgroups, jointly comprising 78% of AML patients, that are defined by mutually exclusive genetic alterations. These subgroups, likely representing distinct underlying pathways of leukemogenesis, show widely divergent outcomes. Furthermore, we provide detailed information on associations between gene mutations, clinical patient characteristics, and therapeutic outcomes in this large cohort of uniformly treated AML patients. In multivariate analyses including a comprehensive set of molecular and clinical variables, we identified DNMT3A and RUNX1 mutations as important predictors of shorter overall survival (OS) in AML patients <60 years, and particularly in those with intermediate-risk cytogenetics. NPM1 mutations in the absence of FLT3-ITD, mutated TP53, and biallelic CEBPA mutations were identified as important molecular prognosticators of OS irrespective of patient age. In summary, our study provides a comprehensive overview of the spectrum, clinical associations, and prognostic relevance of recurrent driver gene mutations in a large cohort representing a broad spectrum and age range of intensively treated AML patients. PMID:27288520

  16. A nonsense mutation in the LDL receptor gene leads to familial hypercholesterolemia in the Druze sect

    SciTech Connect

    Landsberger, D.; Meiner, V.; Reshef, A.; Leitersdorf, E. ); Levy, Yishai ); Westhytzen, D.R. van der; Coetzee, G.A. )

    1992-02-01

    Familial hypercholesterolemia (FH) is an autosomal dominant disease caused by mutations in the LDL receptor gene. Here the authors characterize and LDL receptor mutation that is associated with a distinct haplotype and causes FH in the Druze, a small Middle Eastern Islamic sect with a high degree of inbreeding. The mutation was found in FH families from two distinct Druze villages from the Golan Heights (northern Israel). It was not found either in another Druze FH family residing in a different geographical area nor in eight Arab and four Jewish FH heterozygote index cases whose hypercholesterolemia cosegregates with an identical LDL receptor gene haplotype. The mutation, a single-base substitution, results in a termination codon in exon 4 of the LDL receptor gene that encodes for the fourth repeat of the binding domain of the mature receptor. It can be diagnosed by allele-specific oligonucleotide hybridization of PCR-amplified DNA from FH patients.

  17. Exome sequencing identifies recurrent mutations in NF1 and RASopathy genes in sun-exposed melanomas.

    PubMed

    Krauthammer, Michael; Kong, Yong; Bacchiocchi, Antonella; Evans, Perry; Pornputtapong, Natapol; Wu, Cen; McCusker, James P; Ma, Shuangge; Cheng, Elaine; Straub, Robert; Serin, Merdan; Bosenberg, Marcus; Ariyan, Stephan; Narayan, Deepak; Sznol, Mario; Kluger, Harriet M; Mane, Shrikant; Schlessinger, Joseph; Lifton, Richard P; Halaban, Ruth

    2015-09-01

    We report on whole-exome sequencing (WES) of 213 melanomas. Our analysis established NF1, encoding a negative regulator of RAS, as the third most frequently mutated gene in melanoma, after BRAF and NRAS. Inactivating NF1 mutations were present in 46% of melanomas expressing wild-type BRAF and RAS, occurred in older patients and showed a distinct pattern of co-mutation with other RASopathy genes, particularly RASA2. Functional studies showed that NF1 suppression led to increased RAS activation in most, but not all, melanoma cases. In addition, loss of NF1 did not predict sensitivity to MEK or ERK inhibitors. The rebound pathway, as seen by the induction of phosphorylated MEK, occurred in cells both sensitive and resistant to the studied drugs. We conclude that NF1 is a key tumor suppressor lost in melanomas, and that concurrent RASopathy gene mutations may enhance its role in melanomagenesis. PMID:26214590

  18. A Novel Fibrillin 1 Gene Mutation Leading to Marfan Syndrome with Minimal Cardiac Features

    PubMed Central

    Martínez-Quintana, E; Rodríguez-González, F; Garay-Sánchez, P; Tugores, A

    2014-01-01

    Marfan syndrome is an autosomal dominant disorder of the connective tissue, characterized by early development of thoracic aortic aneurysms and/or dissections, accompanied by ocular and/or skeletal involvement, and is caused by mutations in the fibrillin 1 (FBN1) gene. We report on a patient with ectopia lentis and a nonprogressive aortic root dilatation who presented with a novel mutation affecting a conserved cysteine residue present in a calcium-binding epidermal growth factor-like domain of FBN1 (ENSP00000325527, p.Cys538Phe; Chr15:48,805,751 G>T), as revealed by complete sequencing of the FBN1 gene exons and flanking sequences. Identification of the mutation led to genetic screening of apparently asymptomatic family members, allowing the detection of characteristic ocular phenotypes in the absence of typical cardiac Marfan features. This finding stresses the importance of genetic screening of asymptomatic relatives for FBN1 gene mutation carriers. PMID:25337071

  19. A common FGFR3 gene mutation is present in achondroplasia but not in hypochondroplasia

    SciTech Connect

    Stoilov, I.; Kilpatrick, M.W.; Tsipouras, P.

    1995-01-02

    Achondroplasia is the most common type of genetic dwarfism. It is characterized by disproportionate short stature and other skeletal anomalies resulting from a defect in the maturation of the chondrocytes in the growth plate of the cartilage. Recent studies mapped the achondroplasia gene on chromosome region 4p16.3 and identified a common mutation in the gene encoding the fibroblast growth factor receptor 3 (FGFR3). In an analysis of 19 achondroplasia families from a variety of ethnic backgrounds we confirmed the presence of the G380R mutation in 21 of 23 achondroplasia chromosomes studied. In contrast, the G380R mutation was not found in any of the 8 hypochondroplasia chromosomes studied. Futhermore, linkage studies in a 3-generation family with hypochondroplasia show discordant segregation with markers in the 4p16.3 region suggesting that at least some cases of hypochondroplasia are caused by mutations in a gene other than FGFR3. 27 refs., 2 figs.

  20. Association of Carney Complex with an Intronic Splice Site Mutation in the PRKAR1A Gene.

    PubMed

    Guo, H; Xiong, H; Li, Z; Xu, J; Zhang, H; Chen, X; Hu, S

    2016-06-01

    This study was aimed to investigate the clinical features and mutations in the PRKAR1A gene of a multigenerational kindred including 17 individuals at risk for Carney complex. Eight patients were diagnosed with Carney complex among the 17 individuals (47.1%). Among the 8 affected patients, 4 had cardiac myxomas, 8 had skin pigmentation, and 3 had diabetes. Genomic DNA sequencing in 14 surviving patients showed 6 had the same germline mutation in the sixth intron and affected the splice site. cDNA sequencing and DNAMAN software showed 159 bases were absent, resulting in the absence of the amino acids 249 to 301 from the protein. All 6 patients with this PRKAR1A gene mutation had skin pigmentation. In conclusion, the present study reported for the first time an intronic splice site mutation in the PRKAR1A gene of a Chinese family with Carney complex, which probably caused skin pigmentation observed in affected family members. PMID:26788925

  1. Exome sequencing identifies recurrent mutations in NF1 and RASopathy genes in sun-exposed melanomas

    PubMed Central

    Krauthammer, Michael; Kong, Yong; Bacchiocchi, Antonella; Evans, Perry; Pornputtapong, Natapol; Wu, Cen; McCusker, James P; Ma, Shuangge; Cheng, Elaine; Straub, Robert; Serin, Merdan; Bosenberg, Marcus; Ariyan, Stephan; Narayan, Deepak; Sznol, Mario; Kluger, Harriet M; Mane, Shrikant; Schlessinger, Joseph; Lifton, Richard P; Halaban, Ruth

    2016-01-01

    We report on whole-exome sequencing (WES) of 213 melanomas. Our analysis established NF1, encoding a negative regulator of RAS, as the third most frequently mutated gene in melanoma, after BRAF and NRAS. Inactivating NF1 mutations were present in 46% of melanomas expressing wild-type BRAF and RAS, occurred in older patients and showed a distinct pattern of co-mutation with other RASopathy genes, particularly RASA2. Functional studies showed that NF1 suppression led to increased RAS activation in most, but not all, melanoma cases. In addition, loss of NF1 did not predict sensitivity to MEK or ERK inhibitors. The rebound pathway, as seen by the induction of phosphorylated MEK, occurred in cells both sensitive and resistant to the studied drugs. We conclude that NF1 is a key tumor suppressor lost in melanomas, and that concurrent RASopathy gene mutations may enhance its role in melanomagenesis. PMID:26214590

  2. Exome Analysis Reveals Differentially Mutated Gene Signatures of Stage, Grade and Subtype in Breast Cancers

    PubMed Central

    Li, You; Wang, Xiaosheng; Vural, Suleyman; Mishra, Nitish K.; Cowan, Kenneth H.; Guda, Chittibabu

    2015-01-01

    Breast cancers exhibit highly heterogeneous molecular profiles. Although gene expression profiles have been used to predict the risks and prognostic outcomes of breast cancers, the high variability of gene expression limits its clinical application. In contrast, genetic mutation profiles would be more advantageous than gene expression profiles because genetic mutations can be stably detected and the mutational heterogeneity widely exists in breast cancer genomes. We analyzed 98 breast cancer whole exome samples that were sorted into three subtypes, two grades and two stages. The sum deleterious effect of all mutations in each gene was scored to identify differentially mutated genes (DMGs) for this case-control study. DMGs were corroborated using extensive published knowledge. Functional consequences of deleterious SNVs on protein structure and function were also investigated. Genes such as ERBB2, ESP8, PPP2R4, KIAA0922, SP4, CENPJ, PRCP and SELP that have been experimentally or clinically verified to be tightly associated with breast cancer prognosis are among the DMGs identified in this study. We also identified some genes such as ARL6IP5, RAET1E, and ANO7 that could be crucial for breast cancer development and prognosis. Further, SNVs such as rs1058808, rs2480452, rs61751507, rs79167802, rs11540666, and rs2229437 that potentially influence protein functions are observed at significantly different frequencies in different comparison groups. Protein structure modeling revealed that many non-synonymous SNVs have a deleterious effect on protein stability, structure and function. Mutational profiling at gene- and SNV-level revealed differential patterns within each breast cancer comparison group, and the gene signatures correlate with expected prognostic characteristics of breast cancer classes. Some of the genes and SNVs identified in this study show high promise and are worthy of further investigation by experimental studies. PMID:25803781

  3. Mutations of 3c and spike protein genes correlate with the occurrence of feline infectious peritonitis.

    PubMed

    Bank-Wolf, Barbara Regina; Stallkamp, Iris; Wiese, Svenja; Moritz, Andreas; Tekes, Gergely; Thiel, Heinz-Jürgen

    2014-10-10

    The genes encoding accessory proteins 3a, 3b, 3c, 7a and 7b, the S2 domain of the spike (S) protein gene and the membrane (M) protein gene of feline infectious peritonitis virus (FIPV) and feline enteric coronavirus (FECV) samples were amplified, cloned and sequenced. For this faeces and/or ascites samples from 19 cats suffering from feline infectious peritonitis (FIP) as well as from 20 FECV-infected healthy cats were used. Sequence comparisons revealed that 3c genes of animals with FIP were heavily affected by nucleotide deletions and point mutations compared to animals infected with FECV; these alterations resulted either in early termination or destruction of the translation initiation codon. Two ascites-derived samples of cats with FIP which displayed no alterations of ORF3c harboured mutations in the S2 domain of the S protein gene which resulted in amino acid exchanges or deletions. Moreover, changes in 3c were often accompanied by mutations in S2. In contrast, in samples obtained from faeces of healthy cats, the ORF3c was never affected by such mutations. Similarly ORF3c from faecal samples of the cats with FIP was mostly intact and showed only in a few cases the same mutations found in the respective ascites samples. The genes encoding 3a, 3b, 7a and 7b displayed no mutations linked to the feline coronavirus (FCoV) biotype. The M protein gene was found to be conserved between FECV and FIPV samples. Our findings suggest that mutations of 3c and spike protein genes correlate with the occurrence of FIP. PMID:25150756

  4. Mutations in HAMP and HJV genes and their impact on expression of clinical hemochromatosis in a cohort of 100 Spanish patients homozygous for the C282Y mutation of HFE gene.

    PubMed

    Altès, Albert; Bach, Vanessa; Ruiz, Angels; Esteve, Anna; Felez, Jordi; Remacha, Angel F; Sardà, M Pilar; Baiget, Montserrat

    2009-10-01

    Most hereditary hemochromatosis (HH) patients are homozygous for the C282Y mutation of the HFE gene. Nevertheless, penetrance of the disease is very variable. In some patients, penetrance can be mediated by concomitant mutations in other iron master genes. We evaluated the clinical impact of hepcidin (HAMP) and hemojuvelin mutations in a cohort of 100 Spanish patients homozygous for the C282Y mutation of the HFE gene. HAMP and hemojuvelin mutations were evaluated in all patients by bidirectional direct cycle sequencing. Phenotype-genotype interactions were evaluated. A heterozygous mutation of the HAMP gene (G71D) was found in only one out of 100 cases. Following, we performed a study of several members of that family, and we observed several members had a digenic inheritance of the C282Y mutation of the HFE gene and the G71D mutation of the HAMP gene. This mutation in the HAMP gene did not modify the phenotype of the individuals who were homozygous for the C282Y mutation. One other patient presented a new polymorphism in the hemojuvelin gene, without consequences in iron load or clinical course of the disease. In conclusion, HAMP and hemojuvelin mutations are rare among Spanish HH patients, and their impact in this population is not significant. PMID:19214511

  5. Accumulation of Deleterious Mutations Near Sexually Antagonistic Genes.

    PubMed

    Connallon, Tim; Jordan, Crispin Y

    2016-01-01

    Mutation generates a steady supply of genetic variation that, while occasionally useful for adaptation, is more often deleterious for fitness. Recent research has emphasized that the fitness effects of mutations often differ between the sexes, leading to important evolutionary consequences for the maintenance of genetic variation and long-term population viability. Some forms of sex-specific selection-i.e., stronger purifying selection in males than females-can help purge a population's load of female-harming mutations and promote population growth. Other scenarios-e.g., sexually antagonistic selection, in which mutations that harm females are beneficial for males-inflate genetic loads and potentially dampen population viability. Evolutionary processes of sexual antagonism and purifying selection are likely to impact the evolutionary dynamics of different loci within a genome, yet theory has mostly ignored the potential for interactions between such loci to jointly shape the evolutionary genetic basis of female and male fitness variation. Here, we show that sexually antagonistic selection at a locus tends to elevate the frequencies of deleterious alleles at tightly linked loci that evolve under purifying selection. Moreover, haplotypes that segregate for different sexually antagonistic alleles accumulate different types of deleterious mutations. Haplotypes that carry female-benefit sexually antagonistic alleles preferentially accumulate mutations that are primarily male harming, whereas male-benefit haplotypes accumulate mutations that are primarily female harming. The theory predicts that sexually antagonistic selection should shape the genomic organization of genetic variation that differentially impacts female and male fitness, and contribute to sexual dimorphism in the genetic basis of fitness variation. PMID:27226163

  6. Accumulation of Deleterious Mutations Near Sexually Antagonistic Genes

    PubMed Central

    Connallon, Tim; Jordan, Crispin Y.

    2016-01-01

    Mutation generates a steady supply of genetic variation that, while occasionally useful for adaptation, is more often deleterious for fitness. Recent research has emphasized that the fitness effects of mutations often differ between the sexes, leading to important evolutionary consequences for the maintenance of genetic variation and long-term population viability. Some forms of sex-specific selection—i.e., stronger purifying selection in males than females—can help purge a population’s load of female-harming mutations and promote population growth. Other scenarios—e.g., sexually antagonistic selection, in which mutations that harm females are beneficial for males—inflate genetic loads and potentially dampen population viability. Evolutionary processes of sexual antagonism and purifying selection are likely to impact the evolutionary dynamics of different loci within a genome, yet theory has mostly ignored the potential for interactions between such loci to jointly shape the evolutionary genetic basis of female and male fitness variation. Here, we show that sexually antagonistic selection at a locus tends to elevate the frequencies of deleterious alleles at tightly linked loci that evolve under purifying selection. Moreover, haplotypes that segregate for different sexually antagonistic alleles accumulate different types of deleterious mutations. Haplotypes that carry female-benefit sexually antagonistic alleles preferentially accumulate mutations that are primarily male harming, whereas male-benefit haplotypes accumulate mutations that are primarily female harming. The theory predicts that sexually antagonistic selection should shape the genomic organization of genetic variation that differentially impacts female and male fitness, and contribute to sexual dimorphism in the genetic basis of fitness variation. PMID:27226163

  7. Identification of P gene mutations in individuals with oculocutaneous albinism in sub-Saharan Africa.

    PubMed

    Kerr, R; Stevens, G; Manga, P; Salm, S; John, P; Haw, T; Ramsay, M

    2000-01-01

    Oculocutaneous albinism (OCA) is an inherited disorder resulting in hypopigmentation of the skin, hair, and eyes. OCA type 2 (tyrosinase-positive) is the most common recessively inherited disorder among southern African Blacks. OCA2 is also seen in southern African Caucasoids, but is less frequent. The gene responsible for this type of albinism, P, is the human homolog of the mouse pink-eyed dilution gene. Mutations at this locus are also responsible for the milder hypopigmentation phenotype seen in individuals with brown oculocutaneous albinism (BOCA). A common African P mutation was identified in Black OCA2 individuals, and has since been shown to occur in Black individuals with brown OCA as well. This mutation is a 2.7 kb interstitial deletion. In this study, we undertook to screen the coding region of the P gene for mutations in the non-2.7 kb deletion alleles of OCA2 patients who did not carry the deletion allele in either one or both of their P genes. We identified four mutations (A334V, 614delA, 683insG [corrected], 727insG) in a group of 39 unrelated Black OCA2 patients with a total of 52 non-2.7 kb deletion OCA2 genes. When taking all OCA2 cases into consideration, including those homozygous for the 2.7 kb deletion mutation, these account for a further 1.7% of OCA2 mutations in southern African Blacks, increasing the overall mutation detection rate to 78.7%. Three mutations (E678K, L688F, I370T) were identified in a group of 15 Black patients with an initially unclassified type of OCA and another three mutations (IVS 14-2 (a-->g), V350M, P743L) were identified in nine Caucasoid OCA patients. Relatively few mutations, all with low frequency, were identified in the non-2.7 kb deletion OCA genes. We propose that other mutations may lie either within intronic sequence or within the promoter region of the gene. PMID:10649493

  8. Mutation Analysis of the CYP21A2 Gene in the Iranian Population

    PubMed Central

    Rabbani, Bahareh; Mahdieh, Nejat; Ashtiani, Mohammad Tahgi Haghi; Larijani, Bagher; Akbari, Mohammad Taghi; New, Maria; Parsa, Alan; Schouten, Jan P.

    2012-01-01

    Background: Defects in the CYP21A2 gene cause steroid 21-hydroxylase deficiency, which is the most frequent cause of congenital adrenal hyperplasia. Forty four affected families were investigated to identify the mutation spectrum of the CYP21A2 gene. Methods: Families were subjected to clinical, biochemical, and molecular analyses. Allele-specific polymerase chain reaction amplification was used for eight common mutations followed by dosage analysis to exclude CYP21A2 deletions. Results: The most frequent mutations detected were gene deletions and chimera (31.8%). Other mutation frequencies were as follows: Q318X, 15.9%; I2G, 14.8%; I172N, 5.8%; gene duplication, 5.7%; R356W, 8%; and E6 cluster mutations, 2.3%. Direct sequencing of the CYP21A2 gene revealed R316X, P453S, c.484insT, and a change at the start codon. Different modules carried by patients were classified into five different haplotypes. The genotype phenotype correlation (positive predictive value) for group null, A, B, and C were 92.3%, 85.7%, 100%, and 0, respectively. Conclusions: Methods used will be helpful for carrier detection and antenatal diagnosis, especially with inclusion of the multiplex ligation probe dependent amplification technique, which is easier for routine tests in comparison with other methods. Mutation frequencies indicate that Iranians are possible descendants of Asians and Europeans. PMID:22017335

  9. Type of mutation in the neurofibromatosis type 2 gene (NF2) frequently determines severity of disease.

    PubMed Central

    Ruttledge, M. H.; Andermann, A. A.; Phelan, C. M.; Claudio, J. O.; Han, F. Y.; Chretien, N.; Rangaratnam, S.; MacCollin, M.; Short, P.; Parry, D.; Michels, V.; Riccardi, V. M.; Weksberg, R.; Kitamura, K.; Bradburn, J. M.; Hall, B. D.; Propping, P.; Rouleau, G. A.

    1996-01-01

    The gene predisposing to neurofibromatosis type 2 (NF2) on human chromosome 22 has revealed a wide variety of different mutations in NF2 individuals. These patients display a marked variability in clinical presentation, ranging from very severe disease with numerous tumors at a young age to a relatively mild condition much later in life. To investigate whether this phenotypic heterogeneity is determined by the type of mutation in NF2, we have collected clinical information on 111 NF2 cases from 73 different families on whom we have performed mutation screening in this gene. Sixty-seven individuals (56.2%) from 41 of these kindreds revealed 36 different putative disease-causing mutations. These include 26 proposed protein-truncating alterations (frameshift deletions/insertions and nonsense mutations), 6 splice-site mutations, 2 missense mutations, 1 base substitution in the 3' UTR of the NF2 cDNA, and a single 3-bp in-frame insertion. Seventeen of these mutations are novel, whereas the remaining 19 have been described previously in other NF2 individuals or sporadic tumors. When individuals harboring protein-truncating mutations are compared with cases with single codon alterations, a significant correlation (P < .001) with clinical outcome is observed. Twenty-four of 28 patients with mutations that cause premature truncation of the NF2 protein, schwannomin, present with severe phenotypes. In contrast, all 16 cases from three families with mutations that affect only a single amino acid have mild NF2. These data provide conclusive evidence that a phenotype/genotype correlation exists for certain NF2 mutations. PMID:8755919

  10. Mutations in the Kinase Domain of the HER2/ERBB2 Gene Identified in a Wide Variety of Human Cancers.

    PubMed

    Wen, Wenhsiang; Chen, Wangjuh Sting; Xiao, Nick; Bender, Ryan; Ghazalpour, Anatole; Tan, Zheng; Swensen, Jeffrey; Millis, Sherri Z; Basu, Gargi; Gatalica, Zoran; Press, Michael F

    2015-09-01

    The HER2 (official name ERBB2) gene encodes a membrane receptor in the epidermal growth factor receptor family amplified and overexpressed in adenocarcinoma. Activating mutations also occur in several cancers. We report mutation analyses of the HER2 kinase domain in 7497 histologically diverse cancers. Forty-five genes, including the kinase domain of HER2 with HER2 IHC and dual in situ hybridization, were analyzed in tumors from 7497 patients with cancer, including 850 breast, 770 colorectal, 910 non-small cell lung, 823 uterine or cervical, 1372 ovarian, and 297 pancreatic cancers, as well as 323 melanomas and 2152 other solid tumors. Sixty-nine HER2 kinase domain mutations were identified in tumors from 68 patients (approximately 1% of all cases, ranging from absent in sarcomas to 4% in urothelial cancers), which included previously published activating mutations and 13 novel mutations. Fourteen cases with coexisting HER2 mutation and amplification and/or overexpression were identified. Fifty-two of 68 patients had additional mutations in other analyzed genes, whereas 16 patients (23%) had HER2 mutations identified as the sole driver mutation. HER2 mutations coexisted with HER2 gene amplification and overexpression and with mutations in other functionally important genes. HER2 mutations were identified as the only driver mutation in a significant proportion of solid cancers. Evaluation of anti-HER2 therapies in nonamplified, HER2-mutated cancers is warranted. PMID:26320869

  11. A genome-editing strategy to treat β-hemoglobinopathies that recapitulates a mutation associated with a benign genetic condition.

    PubMed

    Traxler, Elizabeth A; Yao, Yu; Wang, Yong-Dong; Woodard, Kaitly J; Kurita, Ryo; Nakamura, Yukio; Hughes, Jim R; Hardison, Ross C; Blobel, Gerd A; Li, Chunliang; Weiss, Mitchell J

    2016-09-01

    Disorders resulting from mutations in the hemoglobin subunit beta gene (HBB; which encodes β-globin), mainly sickle cell disease (SCD) and β-thalassemia, become symptomatic postnatally as fetal γ-globin expression from two paralogous genes, hemoglobin subunit gamma 1 (HBG1) and HBG2, decreases and adult β-globin expression increases, thereby shifting red blood cell (RBC) hemoglobin from the fetal (referred to as HbF or α2γ2) to adult (referred to as HbA or α2β2) form. These disorders are alleviated when postnatal expression of fetal γ-globin is maintained. For example, in hereditary persistence of fetal hemoglobin (HPFH), a benign genetic condition, mutations attenuate γ-globin-to-β-globin switching, causing high-level HbF expression throughout life. Co-inheritance of HPFH with β-thalassemia- or SCD-associated gene mutations alleviates their clinical manifestations. Here we performed CRISPR-Cas9-mediated genome editing of human blood progenitors to mutate a 13-nt sequence that is present in the promoters of the HBG1 and HBG2 genes, thereby recapitulating a naturally occurring HPFH-associated mutation. Edited progenitors produced RBCs with increased HbF levels that were sufficient to inhibit the pathological hypoxia-induced RBC morphology found in SCD. Our findings identify a potential DNA target for genome-editing-mediated therapy of β-hemoglobinopathies. PMID:27525524

  12. Immunohistochemical detection of mutations in the epidermal growth factor receptor gene in lung adenocarcinomas using mutation-specific antibodies

    PubMed Central

    2013-01-01

    Background The recent development of antibodies specific for the major hotspot mutations in the epidermal growth factor receptor (EGFR), L858R and E746_A750del, may provide an opportunity to use immunohistochemistry (IHC) as a screening test for EGFR gene mutations. This study was designed to optimize the IHC protocol and the criteria for interpretation of the results using DNA sequencing as the gold-standard. Methods Tumor sections from fifty lung adenocarcinoma specimens from Chinese patients were immunostained using L858R and E746_A750del-specific antibodies using three different antigen retrieval solutions, and the results were evaluated using three different sets of criteria. The same specimens were used for DNA purification and analysis of EGFR gene mutations. Results In this study the optimal buffer for antigen retrieval was EDTA (pH 8.0), and the optimal scoring method was to call positive results when there was moderate to strong staining of membrane and/or cytoplasm in >10% of the tumor cells. Using the optimized protocol, L858R-specific IHC showed a sensitivity of 81% and a specificity of 97%, and E746_A750del-specific IHC showed a sensitivity of 59% and a specificity of 100%, both compared with direct DNA analysis. Additionally, the mutant proteins as assessed by IHC showed a more homogeneous than heterogeneous pattern of expression. Conclusions Our data demonstrate that mutation-specific IHC, using optimized procedures, is a reliable prescreening test for detecting EGFR mutations in lung adenocarcinoma. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/2059012601872392 PMID:23419122

  13. Novel MEK1 Mutation Identified by Mutational Analysis of Epidermal Growth Factor Receptor Signaling Pathway Genes in Lung Adenocarcinoma

    PubMed Central

    Marks, Jenifer L.; Gong, Yixuan; Chitale, Dhananjay; Golas, Ben; McLellan, Michael D.; Kasai, Yumi; Ding, Li; Mardis, Elaine R.; Wilson, Richard K.; Solit, David; Levine, Ross; Michel, Kathrin; Thomas, Roman K.; Rusch, Valerie W.; Ladanyi, Marc; Pao, William

    2008-01-01

    Genetic lesions affecting a number of kinases and other elements within the epidermal growth factor receptor (EGFR) signaling pathway have been implicated in the pathogenesis of human non–small-cell lung cancer (NSCLC). We performed mutational profiling of a large cohort of lung adenocarcinomas to uncover other potential somatic mutations in genes of this pathway that could contribute to lung tumorigenesis. We have identified in 2 of 207 primary lung tumors a somatic activating mutation in exon 2 of MEK1 (i.e., mitogen-activated protein kinase kinase 1 or MAP2K1) that substitutes asparagine for lysine at amino acid 57 (K57N) in the nonkinase portion of the kinase. Neither of these two tumors harbored known mutations in other genes encoding components of the EGFR signaling pathway (i.e., EGFR, HER2, KRAS, PIK3CA, and BRAF). Expression of mutant, but not wild-type, MEK1 leads to constitutive activity of extracellular signal–regulated kinase (ERK)-1/2 in human 293T cells and to growth factor–independent proliferation of murine Ba/F3 cells. A selective MEK inhibitor, AZD6244, inhibits mutant-induced ERK activity in 293T cells and growth of mutant-bearing Ba/F3 cells. We also screened 85 NSCLC cell lines for MEK1 exon 2 mutations; one line (NCI-H1437) harbors a Q56P substitution, a known transformation-competent allele of MEK1 originally identified in rat fibroblasts, and is sensitive to treatment with AZD6244. MEK1 mutants have not previously been reported in lung cancer and may provide a target for effective therapy in a small subset of patients with lung adenocarcinoma. PMID:18632602

  14. Mutation analysis of pre-mRNA splicing genes in Chinese families with retinitis pigmentosa

    PubMed Central

    Pan, Xinyuan; Chen, Xue; Liu, Xiaoxing; Gao, Xiang; Kang, Xiaoli; Xu, Qihua; Chen, Xuejuan; Zhao, Kanxing; Zhang, Xiumei; Chu, Qiaomei; Wang, Xiuying

    2014-01-01

    Purpose Seven genes involved in precursor mRNA (pre-mRNA) splicing have been implicated in autosomal dominant retinitis pigmentosa (adRP). We sought to detect mutations in all seven genes in Chinese families with RP, to characterize the relevant phenotypes, and to evaluate the prevalence of mutations in splicing genes in patients with adRP. Methods Six unrelated families from our adRP cohort (42 families) and two additional families with RP with uncertain inheritance mode were clinically characterized in the present study. Targeted sequence capture with next-generation massively parallel sequencing (NGS) was performed to screen mutations in 189 genes including all seven pre-mRNA splicing genes associated with adRP. Variants detected with NGS were filtered with bioinformatics analyses, validated with Sanger sequencing, and prioritized with pathogenicity analysis. Results Mutations in pre-mRNA splicing genes were identified in three individual families including one novel frameshift mutation in PRPF31 (p.Leu366fs*1) and two known mutations in SNRNP200 (p.Arg681His and p.Ser1087Leu). The patients carrying SNRNP200 p.R681H showed rapid disease progression, and the family carrying p.S1087L presented earlier onset ages and more severe phenotypes compared to another previously reported family with p.S1087L. In five other families, we identified mutations in other RP-related genes, including RP1 p. Ser781* (novel), RP2 p.Gln65* (novel) and p.Ile137del (novel), IMPDH1 p.Asp311Asn (recurrent), and RHO p.Pro347Leu (recurrent). Conclusions Mutations in splicing genes identified in the present and our previous study account for 9.5% in our adRP cohort, indicating the important role of pre-mRNA splicing deficiency in the etiology of adRP. Mutations in the same splicing gene, or even the same mutation, could correlate with different phenotypic severities, complicating the genotype–phenotype correlation and clinical prognosis. PMID:24940031

  15. Mutation of the PIK3CA gene as a prognostic factor in patients with colorectal cancer

    PubMed Central

    STEC, RAFAŁ; SEMENIUK-WOJTAŚ, ALEKSANDRA; CHARKIEWICZ, RADOSŁAW; BODNAR, LUBOMIR; KORNILUK, JAN; SMOTER, MARTA; CHYCZEWSKI, LECH; NIKLIŃSKI, JACEK; SZCZYLIK, CEZARY

    2015-01-01

    Colorectal cancer (CRC) is one of the most common cancers worldwide, with ~700,000 mortalities occurring due to CRC in 2012. The treatment options are effective in a small percentage of patients, and it is important to identify specific biomarkers in order to determine patients for whom the available therapies will be beneficial. It has been hypothesised that the PIK3CA gene mutation may affect the response to therapy of patients with metastatic CRC. In the present study, primary tumour specimens were collected from 156 patients with CRC who were treated in the Military Institute of Medicine in Warsaw (Warsaw, Poland). Codons 12 and 13 of exon 1 of KRAS, exons 11 and 15 of BRAF and exons 9 and 20 of PIK3CA were analysed for mutation using direct sequencing. The prognostic value of each mutation and the clinical and pathological variables of these tumours were estimated. The results revealed that PIK3CA mutations were present in 15 patients (9.6%), of whom seven (46.7%) possessed mutations in codon 9 and eight (53.3%) possessed mutations in codon 20. Mutation in the PIK3CA gene was detected in six patients with KRAS gene mutations, which accounted for 40% of PIK3CA-mutated tumours, and in one patient with BRAF mutations, which accounted for 6.6% of PIK3CA-mutated tumours. No significant differences were identified between the overall survival (OS) rates of patients with PIK3CA mutations (median OS, 56.7 months) and those with wild-type PIK3CA genes (median OS, 47.6 months) (P=0.1270). Univariate analysis identified that the following prognostic factors affected the OS rate in the current patient cohort: Gender, female patients survived for 57.5 months compared with 39.3 months for male patients (P=0.0111); and lymph node involvement grade, as survival of patients without lymph node metastases was 61.4 months compared with 45.4 months in patients presenting with metastases (P=0.0122). The findings of the present analysis indicate that PIK3CA mutation status is not a

  16. Suppressors of Mutations in the rII Gene of Bacteriophage T4 Affect Promoter Utilization

    PubMed Central

    Hall, Dwight H.; Snyder, Ronald D.

    1981-01-01

    Homyk, Rodriguez and Weil (1976) have described T4 mutants, called sip, that partially suppress the inability of T4rII mutants to grow in λ lysogens. We have found that mutants sip1 and sip2 are resistant to folate analogs and overproduce FH2 reductase. The results of recombination and complementation studies indicate that sip mutations are in the mot gene. Like other mot mutations (Mattson, Richardson and Goodin 1974; Chace and Hall 1975; Sauerbier, Hercules and Hall 1976), the sip2 mutation affects the expression of many genes and appears to affect promoter utilization. The mot gene function is not required for T4 growth on most hosts, but we have found that it is required for good growth on E. coli CTr5X. Homyk, Rodriguez and Weil (1976) also described L mutations that reverse the effects of sip mutations. L2 decreases the folate analog resistance and the inability of sip2 to grow on CTr5X. L2 itself is partially resistant to a folate analog, and appears to reverse the effects of sip2 on gene expression. These results suggest that L2 affects another regulatory gene related to the mot gene. PMID:7262547

  17. A novel start codon mutation of the MERTK gene in a patient with retinitis pigmentosa

    PubMed Central

    Jinda, Worapoj; Poungvarin, Naravat; Taylor, Todd D.; Suzuki, Yutaka; Thongnoppakhun, Wanna; Limwongse, Chanin; Lertrit, Patcharee; Suriyaphol, Prapat

    2016-01-01

    Purpose Retinitis pigmentosa (RP) is a clinically and genetically heterogeneous group of inherited retinal degenerations characterized by progressive loss of photoreceptor cells and RPE functions. More than 70 causative genes are known to be responsible for RP. This study aimed to identify the causative gene in a patient from a consanguineous family with childhood-onset severe retinal dystrophy. Methods To identify the defective gene, whole exome sequencing was performed. Candidate causative variants were selected and validated using Sanger sequencing. Segregation analysis of the causative gene was performed in additional family members. To verify that the mutation has an effect on protein synthesis, an expression vector containing the first ten amino acids of the mutant protein fused with the DsRed2 fluorescent protein was constructed and transfected into HEK293T cells. Expression of the fusion protein in the transfected cells was measured using fluorescence microscopy. Results By filtering against public variant databases, a novel homozygous missense mutation (c.3G>A) localized in the start codon of the MERTK gene was detected as a potentially pathogenic mutation for autosomal recessive RP. The c.3G>A mutation cosegregated with the disease phenotype in the family. No expression of the first ten amino acids of the MerTK mutant fused with the DsRed2 fluorescent protein was detected in HEK293T cells, indicating that the mutation affects the translation initiation site of the gene that may lead to loss of function of the MerTK signaling pathway. Conclusions We report a novel missense mutation (c.3G>A, p.0?) in the MERTK gene that causes severe vision impairment in a patient. Taken together with previous reports, our results expand the spectrum of MERTK mutations and extend our understanding of the role of the MerTK protein in the pathogenesis of retinitis pigmentosa. PMID:27122965

  18. Mutations of the tyrosinase gene in Indo-Pakistani patients with type I (tyrosinase-deficient) oculocutaneous albinsm (OCA)

    SciTech Connect

    Tripathi, R.K.; Droetto, S.; Strunk, K.M.; Holmes, S.A.; Spritz, R.A. ); Bundey, S.; Musarella, M.A.

    1993-12-01

    Oculocutaneous albinism (OCA) is a group of autosomal recessive disorders characterized by deficient synthesis of melanin pigment. Type I (tyrosinase-deficient) OCA results from mutations of the tyrosinase gene (TYR gene) encoding tyrosinase, the enzyme that catalyzes the first two steps of melanin biosynthesis. Mutations of the TYR gene have been identified in a large number of patients, most of Caucasian ethnic origin, with various forms of type I OCA. The authors present an analysis of the TYR gene in eight Indo-Pakistani patients with type I OCA. The authors describe four novel TYR gene mutations and a fifth mutation previously observed in a Caucasian patient. 16 refs., 6 figs.

  19. Recurrent Deep Intronic Mutations in the SLC12A3 Gene Responsible for Gitelman's Syndrome

    PubMed Central

    Lo, Yi-Fen; Nozu, Kandai; Iijima, Kazumoto; Morishita, Takahiro; Huang, Che-Chung; Yang, Sung-Sen; Sytwu, Huey-Kang; Fang, Yu-Wei; Tseng, Min-Hua

    2011-01-01

    Summary Background and objectives Gitelman's syndrome (GS) is an autosomal recessive renal tubular disorder caused by mutations in the SLC12A3 gene encoding the thiazide-sensitive Na+-Cl− cotransporter (NCC). Despite meticulous sequencing of genomic DNA, approximately one-third of GS patients are negative or heterozygotes for the known mutations. Design, Setting, Participants, & Measurements Because blood leukocytes express NCC mRNA, we evaluate whether deep intronic mutations contribute to GS patients with uniallelic or undetectable SLC12A3 mutations. Twenty-nine patients with GS (men/women = 16/13), including eight negative and 21 uniallelic SLC12A3 mutations from 19 unrelated families, and normal controls were enrolled in an academic medical center. Analysis of cDNA from blood leukocytes, sequencing of the corresponding introns of genomic DNA for abnormal transcript, and analysis of NCC protein expression from renal biopsy were performed. Results We identified nine Taiwan aboriginal patients carrying c.1670–191C→T mutations in intron 13 and 10 nonaboriginal patients carrying c.2548+253C→T mutations in intron 21 from 14 families (14/19). These two mutations undetected in 100 healthy subjects created pseudoexons containing new premature termination codons. Haplotype analysis with markers flanking SLC12A3 revealed that both mutations did not have founder effects. Apical NCC expression in the DCT of renal tissue was markedly diminished in two patients carrying deep intronic mutations. Conclusions Deep intronic mutations in SLC12A3 causing defective NCC expression can be identified with the RNA-based approach in patients with GS. c.1670–191C→T and c.2548+253C→T are hot spot mutations that can be screened in GS patients with uniallelic or negative SLC12A3 mutations. PMID:21051746

  20. Study on the Evolution of Genes Mutation Related With Gastrointestinal Stromal Tumors

    ClinicalTrials.gov

    2012-01-05

    Full Gene Sequences of c-KIT、PDGFRA and DOG1 Are Analyzed With the Screening-sequencing Approach; Investigate the Characteristics and Variations Associated With the Different Gene Mutations of c-KIT、PDGFRA and DOG1 in GIST Patients

  1. MOLECULAR ANALYSIS OF MUTATIONS INDUCED BY MUTAGENS IN THE TK GENE OF MOUSE LYMPHOMA CELLS

    EPA Science Inventory

    MOLECULAR ANALYSIS OF MUTATIONS INDUCED BY BROMATE AND N- ETHYL-N-NITROSOUREA IN THE TK GENE OF MOUSE L YMPHOMA CELLS

    The mouse lymphoma assay is widely used to identify chemical mutagens The Tk +1- gene located on an autosome in mouse lymphoma cells may recover a wide ra...

  2. Exome Analyses of Long QT Syndrome Reveal Candidate Pathogenic Mutations in Calmodulin-Interacting Genes.

    PubMed

    Shigemizu, Daichi; Aiba, Takeshi; Nakagawa, Hidewaki; Ozaki, Kouichi; Miya, Fuyuki; Satake, Wataru; Toda, Tatsushi; Miyamoto, Yoshihiro; Fujimoto, Akihiro; Suzuki, Yutaka; Kubo, Michiaki; Tsunoda, Tatsuhiko; Shimizu, Wataru; Tanaka, Toshihiro

    2015-01-01

    Long QT syndrome (LQTS) is an arrhythmogenic disorder that can lead to sudden death. To date, mutations in 15 LQTS-susceptibility genes have been implicated. However, the genetic cause for approximately 20% of LQTS patients remains elusive. Here, we performed whole-exome sequencing analyses on 59 LQTS and 61 unaffected individuals in 35 families and 138 unrelated LQTS cases, after genetic screening of known LQTS genes. Our systematic analysis of familial cases and subsequent verification by Sanger sequencing identified 92 candidate mutations in 88 genes for 23 of the 35 families (65.7%): these included eleven de novo, five recessive (two homozygous and three compound heterozygous) and seventy-three dominant mutations. Although no novel commonly mutated gene was identified other than known LQTS genes, protein-protein interaction (PPI) network analyses revealed ten new pathogenic candidates that directly or indirectly interact with proteins encoded by known LQTS genes. Furthermore, candidate gene based association studies using an independent set of 138 unrelated LQTS cases and 587 controls identified an additional novel candidate. Together, mutations in these new candidates and known genes explained 37.1% of the LQTS families (13 in 35). Moreover, half of the newly identified candidates directly interact with calmodulin (5 in 11; comparison with all genes; p=0.042). Subsequent variant analysis in the independent set of 138 cases identified 16 variants in the 11 genes, of which 14 were in calmodulin-interacting genes (87.5%). These results suggest an important role of calmodulin and its interacting proteins in the pathogenesis of LQTS. PMID:26132555

  3. Kallmann Syndrome: Mutations in the Genes Encoding Prokineticin-2 and Prokineticin Receptor-2

    PubMed Central

    Dodé, Catherine; Teixeira, Luis; Levilliers, Jacqueline; Fouveaut, Corinne; Bouchard, Philippe; Kottler, Marie-Laure; Lespinasse, James; Lienhardt-Roussie, Anne; Mathieu, Michèle; Moerman, Alexandre; Morgan, Graeme; Murat, Arnaud; Toublanc, Jean-Edmont; Wolczynski, Slawomir; Delpech, Marc; Petit, Christine; Young, Jacques; Hardelin, Jean-Pierre

    2006-01-01

    Kallmann syndrome combines anosmia, related to defective olfactory bulb morphogenesis, and hypogonadism due to gonadotropin-releasing hormone deficiency. Loss-of-function mutations in KAL1 and FGFR1 underlie the X chromosome-linked form and an autosomal dominant form of the disease, respectively. Mutations in these genes, however, only account for approximately 20% of all Kallmann syndrome cases. In a cohort of 192 patients we took a candidate gene strategy and identified ten and four different point mutations in the genes encoding the G protein-coupled prokineticin receptor-2 (PROKR2) and one of its ligands, prokineticin-2 (PROK2), respectively. The mutations in PROK2 were detected in the heterozygous state, whereas PROKR2 mutations were found in the heterozygous, homozygous, or compound heterozygous state. In addition, one of the patients heterozygous for a PROKR2 mutation was also carrying a missense mutation in KAL1, thus indicating a possible digenic inheritance of the disease in this individual. These findings reveal that insufficient prokineticin-signaling through PROKR2 leads to abnormal development of the olfactory system and reproductive axis in man. They also shed new light on the complex genetic transmission of Kallmann syndrome. PMID:17054399

  4. A170P mutation in SHOX gene in a patient not presenting with Madelung deformity.

    PubMed

    Alvarez-Mora, María Isabel; Madrigal, Irene; Rodriguez-Revenga, Laia; Mur, Antonio; Calvo, Dolors; Pascual I Bardají, Josep; Milà, Montserrat

    2012-09-01

    Idiopathic short stature is a multifactorial disease caused by defects in several genes. Among them, short stature homeobox-containing gene (SHOX) mutations have an incidence of 2%-15% within the idiopathic short population. The authors report a patient with moderate intellectual disability, short stature and no other radiological traits referred for subtelomeric screening. MLPA and sequencing results showed a heterozygous mutation in SHOX gene (A170P). This mutation has been described to fully cosegregate with Madelung deformity in patients affected with Léri-Weill dyschondrosteosis and Langer mesomelic dysplasia. The authors report the first case of idiopathic short stature due to the A170P mutation in a patient without any radiological trait. The A170P mutation is the most prevalent mutation in the Spanish gypsy population affected with short stature disorders. The authors strongly recommend SHOX screening for deletions, duplications and point mutations in patients affected with short stature although they do not present any radiological traits. PMID:22461651

  5. Comprehensive analysis of cancer-associated somatic mutations in class I HLA genes

    PubMed Central

    Shukla, Sachet A.; Rooney, Michael S.; Rajasagi, Mohini; Tiao, Grace; Dixon, Philip M.; Lawrence, Michael S.; Stevens, Jonathan; Lane, William J.; Dellagatta, Jamie L.; Steelman, Scott; Sougnez, Carrie; Cibulskis, Kristian; Kiezun, Adam; Brusic, Vladimir; Wu, Catherine J.; Getz, Gad

    2015-01-01

    Detection of somatic mutations in HLA genes using whole-exome sequencing (WES) is hampered by the high polymorphism of the HLA loci, which prevents alignment of sequencing reads to the human reference genome. We describe a computational pipeline that enables accurate inference of germline alleles of class I HLA-A, -B and -C genes and subsequent detection of mutations in these genes using the inferred alleles as a reference. Analysis of WES data from 7,930 pairs of tumor and healthy tissue from the same patient revealed 298 non-silent HLA mutations in tumors from 266 patients. These 298 mutations are enriched for likely functional mutations, including putative loss-of-function events. Recurrence of mutations suggested that these ‘hotspot’ sites were positively selected. Cancers with recurrent somatic HLA mutations were associated with upregulation of signatures of cytolytic activity characteristic of tumor infiltration by effector lymphocytes, supporting immune evasion by altered HLA function as a contributory mechanism in cancer. PMID:26372948

  6. The human δ2 glutamate receptor gene is not mutated in patients with spinocerebellar ataxia

    PubMed Central

    Huang, Jinxiang; Lin, Aiyu; Dong, Haiyan; Wang, Chaodong

    2014-01-01

    The human glutamate receptor delta 2 gene (GRID2) shares 90% homology with the orthologous mouse gene. The mouse Grid2 gene is involved with functions of the cerebellum and spontaneous mutation of Grid2 leads to a spinocerebellar ataxia-like phenotype. To investigate whether such mutations occur in humans, we screened for mutations in the coding sequence of GRID2 in 24 patients with familial or sporadic spinocerebellar ataxia and in 52 normal controls. We detected no point mutations or insertion/deletion mutations in the 16 exons of GRID2. However, a polymorphic 4 nucleotide deletion (IVS5-121_-118 GAGT) and two single nucleotide polymorphisms (c.1251G>T and IVS14-63C>G) were identified. The frequency of these polymorphisms was similar between spinocerebellar ataxia patients and normal controls. These data indicate that spontaneous mutations do not occur in GRID2 and that the incidence of spinocerebellar ataxia in humans is not associated with GRID2 mutation or polymorphisms. PMID:25206761

  7. Mutation analysis of mycobacterial rpoB genes and rifampin resistance using recombinant Mycobacterium smegmatis.

    PubMed

    Nakata, Noboru; Kai, Masanori; Makino, Masahiko

    2012-04-01

    Rifampin is a major drug used to treat leprosy and tuberculosis. The rifampin resistance of Mycobacterium leprae and Mycobacterium tuberculosis results from a mutation in the rpoB gene, encoding the β subunit of RNA polymerase. A method for the molecular determination of rifampin resistance in these two mycobacteria would be clinically valuable, but the relationship between the mutations and susceptibility to rifampin must be clarified before its use. Analyses of mutations responsible for rifampin resistance using clinical isolates present some limitations. Each clinical isolate has its own genetic variations in some loci other than rpoB, which might affect rifampin susceptibility. For this study, we constructed recombinant strains of Mycobacterium smegmatis carrying the M. leprae or M. tuberculosis rpoB gene with or without mutation and disrupted their own rpoB genes on the chromosome. The rifampin and rifabutin susceptibilities of the recombinant bacteria were measured to examine the influence of the mutations. The results confirmed that several mutations detected in clinical isolates of these two pathogenic mycobacteria can confer rifampin resistance, but they also suggested that some mutations detected in M. leprae isolates or rifampin-resistant M. tuberculosis isolates are not involved in rifampin resistance. PMID:22252831

  8. Mutation of the PAX6 gene in patients with autosomal dominant keratitis.

    PubMed Central

    Mirzayans, F; Pearce, W G; MacDonald, I M; Walter, M A

    1995-01-01

    Autosomal dominant keratitis (ADK) is an eye disorder chiefly characterized by corneal opacification and vascularization and by foveal hypoplasia. Aniridia (shown recently to result from mutations in the PAX6 gene) has overlapping clinical findings and a similar pattern of inheritance with ADK. On the basis of these similarities, we used a candidate-gene approach to investigate whether mutations in the PAX6 gene also result in ADK. Significant linkage was found between two polymorphic loci in the PAX6 region and ADK in a family with 15 affected members in four generations (peak LOD score = 4.45; theta = .00 with D11S914), consistent with PAX6 mutations being responsible for ADK. SSCP analysis and direct sequencing revealed a mutation in the PAX6 exon 11 splice-acceptor site. The predicted consequent incorrect splicing results in truncation of the PAX6 proline-serine-threonine activation domain. The SeyNeu mouse results from a mutation in the Pax-6 exon 10 splice-donor site that produces a PAX6 protein truncated from the same point as occurs in our family with ADK. Therefore, the SeyNeu mouse is an excellent animal model of ADK. The finding that mutations in PAX6 underlie ADK, along with a recent report that mutations in PAX6 also underlie Peters anomaly, implicates PAX6 broadly in human anterior segment malformations. Images Figure 2 Figure 1 Figure 3 PMID:7668281

  9. Fumarate hydratase gene mutation in two young patients with sporadic uterine fibroids.

    PubMed

    Kubinova, Kristyna; Tesarova, Marketa; Hansikova, Hana; Vesela, Kamila; Kuzel, David; Mara, Michal

    2013-01-01

    Fumarate hydratase (FH) is a key enzyme of the Krebs cycle. Germline mutations in the FH gene encoding fumarate hydratase cause autosomal dominant syndromes multiple cutaneous and uterine leiomyomata and hereditary leiomyomatosis and renal cell cancer (HLRCC). Few data have been published on the role of FH gene mutation in development of uterine fibroids outside the context of multiple cutaneous and uterine leiomyomata /HLRCC. We report two FH gene mutations, one novel and one previously described, in two young patients with sporadic uterine fibroids and decreased fumarate hydratase activity in lymphocytes. In patient 1, a novel heterozygous mutation c.892G>C was found. In patient 2 we detected heterozygous mutation c.584T>C. Both the patients had a negative family history for renal cancer and cutaneous leiomyomatosis. None of the relatives, however, underwent renal imaging at the time of writing. FH mutation carriers may be easily identified by analysis of fumarate hydratase activity in blood lymphocytes. We suggest performing fumarate hydratase activity or FH mutation screening in women with onset of uterine fibroids in their 20s and family history of uterine fibroids or other HLRCC-associated malignancies. PMID:22764886

  10. Novel VANGL1 Gene Mutations in 144 Slovakian, Romanian and German Patients with Neural Tube Defects

    PubMed Central

    Bartsch, O.; Kirmes, I.; Thiede, A.; Lechno, S.; Gocan, H.; Florian, I.S.; Haaf, T.; Zechner, U.; Sabova, L.; Horn, F.

    2012-01-01

    Neural tube defects (NTDs) are a group of congenital malformations of the central nervous system occurring at an average rate of 1 per 1,000 human pregnancies worldwide. Numerous genetic and environmental factors are discussed to be relevant in their etiology. In mice, mutants in >200 genes including the planar cell polarity (PCP) pathway are known to cause NTDs, and recently, heterozygous mutations in the human VANGL1 gene have been described in a small subset of patients with NTDs. We performed a VANGL1 mutation analysis in 144 unrelated individuals with NTDs from Slovakia, Romania and Germany and identified 3 heterozygous missense mutations: c.613G>A (p.Gly205Arg) with an open spina bifida (lumbosacral meningomyelocele), c.557G>A (p.Arg186His) with a closed spina bifida (tethered cord and spinal lipoma) and c.518G>A (p.Arg173His) with an unknown NTD. The c.613G>A mutation was also found in a healthy sibling. None of the mutations were described previously. Findings support that heterozygous VANGL1 mutations represent hypomorphs or conditional mutants predisposing to NTDs and occur at a frequency of approximately 2.1% of open and closed spinal NTDs. The mutations (p.Arg173His, p.Arg186His, p.Gly205Arg) modified conserved regions of the VANGL1 protein and shared similarities with previously described mutants, providing further evidence for the presence of mutational hot spots in these patients. PMID:23326252

  11. Mutations in the CHD7 Gene: The Experience of a Commercial Laboratory

    PubMed Central

    Bartels, Cynthia F.; Scacheri, Cheryl; White, Lashonda

    2010-01-01

    CHARGE syndrome is an autosomal dominant multisystem disorder caused by mutation in the CHD7 gene, encoding chromodomain helicase DNA-binding protein 7. Molecular diagnostic testing for CHD7 mutation has been available in a clinical setting since 2005. We report here the results from the first 642 unrelated proband samples submitted for testing. Thirty-two percent (n = 203) of patient samples had a heterozygous pathogenic variant identified. The lower mutation rate than that published for well-characterized clinical samples is likely due to referral bias, as samples submitted for clinical testing may be for “rule-out” diagnoses, rather than solely to confirm clinical suspicion. We identified 159 unique pathogenic mutations, and of these, 134 mutations were each seen in a single individual and 25 mutations were found in two to five individuals (n = 69). Of the 203 mutations, only 9 were missense, with 107 nonsense, 69 frameshift, and 15 splice-site mutations likely leading to haploinsufficiency at the cellular level. An additional 72 variations identified in the 642 tested samples (11%) were considered to have unknown clinical significance. Copy number changes (deletion/duplication of the entire gene or one/several exons) were found to account for a very small number of cases (n = 3). This cohort represents the largest CHARGE syndrome sample size to date and is intended to serve as a resource for clinicians, genetic counselors, researchers, and other diagnostic laboratories. PMID:21158681

  12. Detection of a novel mutation in the CACNA1A gene.

    PubMed

    Stuart, Shani; Roy, Bishakha; Davies, Gail; Maksemous, Nevene; Smith, Robert; Griffiths, Lyn R

    2012-02-01

    Familial hemiplegic migraine (FHM) is a rare autosomal dominant subtype of migraine with aura. It is divided into three subtypes FHM1, FHM2 and FHM3, which are caused by mutations in the CACNA1A, ATP1A2 and SCN1A genes respectively. As part of a regular diagnostic service, we investigated 168 patients with FHM symptoms. Samples were tested for mutations contained within the CACNA1A gene. Some tested samples (4.43%) showed an FHM1 mutation, with five of the mutations found in exon 5, one mutation in exon 16 and one in exon 17. Four polymorphisms were also detected, one of which occurred in a large percentage of samples (14.88%). The exon 16 2094G>A polymorphism, however, has been found to occur in healthy Caucasian control populations up to a frequency of 16% and is not considered to be significantly associated with FHM. A finding of significance, found in a single patient, was the detection of a novel mutation in exon 5 that results in a P225H change. The affected individual was an 8-year-old female. The exact phenotypic effect of this mutation is unknown, and further studies are needed to understand the pathophysiology of this mutation in FHM1. New information will allow for diagnostic procedures to be constantly updated, thus improving accuracy of diagnosis. It is possible that new information will also aid the development of new therapeutic agents for the treatment of FHM. PMID:22784462

  13. Mutations in the intellectual disability gene KDM5C reduce protein stability and demethylase activity

    PubMed Central

    Brookes, Emily; Laurent, Benoit; Õunap, Katrin; Carroll, Renee; Moeschler, John B.; Field, Michael; Schwartz, Charles E.; Gecz, Jozef; Shi, Yang

    2015-01-01

    Mutations in KDM5C are an important cause of X-linked intellectual disability in males. KDM5C encodes a histone demethylase, suggesting that alterations in chromatin landscape may contribute to disease. We used primary patient cells and biochemical approaches to investigate the effects of patient mutations on KDM5C expression, stability and catalytic activity. We report and characterize a novel nonsense mutation, c.3223delG (p.V1075Yfs*2), which leads to loss of KDM5C protein. We also characterize two KDM5C missense mutations, c.1439C>T (p.P480L) and c.1204G>T (p.D402Y) that are compatible with protein production, but compromise stability and enzymatic activity. Finally, we demonstrate that a c.2T>C mutation in the translation initiation codon of KDM5C results in translation re-start and production of a N-terminally truncated protein (p.M1_E165del) that is unstable and lacks detectable demethylase activity. Patient fibroblasts do not show global changes in histone methylation but we identify several up-regulated genes, suggesting local changes in chromatin conformation and gene expression. This thorough examination of KDM5C patient mutations demonstrates the utility of examining the molecular consequences of patient mutations on several levels, ranging from enzyme production to catalytic activity, when assessing the functional outcomes of intellectual disability mutations. PMID:25666439

  14. Novel plasminogen gene mutations in Turkish patients with type I plasminogen deficiency.

    PubMed

    Dönmez-Demir, Buket; Celkan, Tiraje; Sarper, Nazan; Deda, Gülhis; İnce, Elif; Çalişkan, Ümran; Öztürk, Gülyüz; Karagün, Barbaros; Küpesiz, Alphan; Tokgöz, Hüseyin; Akar, Nejat; Özdağ, Hilal

    2016-09-01

    The plasminogen (Plg) protein is the inactive proenzyme form of plasmin that dissolves fibrin thrombi by a process called fibrinolysis. It has been shown that homozygous or compound-heterozygous deficiency of this protein is a major cause of a rare inflammatory disease affecting mainly mucous membranes found in different body sites. In this study, five individual Turkish patients and nine Turkish families with type 1 Plg deficiency were investigated for PLG gene mutations. All of the coding regions of the PLG gene mutations were screened for mutations using denaturing high-pressure liquid chromatography (DHPLC). Samples showing a different DHPLC profile were subjected to DNA sequencing analysis. Here, we described five novel mutations namely, Cys49Ter, +1 IVS6 G>A, Gly218Val, Tyr283Cys, and Gly703Asp. Previously identified five nonsynonymous (Lys38Glu, Glu180Lys, Gly420Asp, Asp453Asn, Pro763Ser), five synonymous (330 C>T, 582 C>T, 771 T>C, 1083 A>G, 2286 T>G), and a 3' untranslated region (3' UTR) mutation (c.*45 A>G) were also reported in this present study. In this study, we have identified a total of eight mutations, five of which are novel. The mutations/polymorphisms identified in eight of the patients do not explain the disease phenotype. These cases probably carry other pathological mutations (homozygous or compound heterozygous) that cannot be detected by DHPLC. PMID:26340456

  15. Novel mutations of the PRKAR1A gene in patients with acrodysostosis.

    PubMed

    Muhn, F; Klopocki, E; Graul-Neumann, L; Uhrig, S; Colley, A; Castori, M; Lankes, E; Henn, W; Gruber-Sedlmayr, U; Seifert, W; Horn, D

    2013-12-01

    Acrodysostosis is characterized by a peripheral dysostosis that is accompanied by short stature, midface hypoplasia, and developmental delay. Recently, it was shown that heterozygous point mutations in the PRKAR1A gene cause acrodysostosis with hormone resistance. By mutational analysis of the PRKAR1A gene we detected four different mutations (p.Arg368Stop, p.Ala213Thr, p.Tyr373Cys, and p.Arg335Cys) in four of seven affected patients with acrodysostosis. The combination of clinical results, endocrinological parameters and in silico mutation analysis gives evidence to suppose a pathogenic effect of each mutation. This assumption is supported by the de novo origin of these mutations. Apart from typical radiological abnormalities of the hand bones, elevated thyroid stimulating hormone and parathyroid hormone values as well as short stature are the most common findings. Less frequent features are characteristic facial dysmorphisms, sensorineural hearing loss and mild intellectual disability. These results lead to the conclusion that mutations of PKRAR1A are the major molecular cause for acrodysostosis with endocrinological abnormalities. In addition, in our cohort of 44 patients affected with brachydactyly type E (BDE) we detected only one sequence variant of PRKAR1A (p.Asp227Asn) with an unclear effect on protein function. Thus, we conclude that PRKAR1A mutations may play no major role in the pathogenesis of BDE. PMID:23425300

  16. Point mutations throughout the GLI3 gene cause Greig cephalopolysyndactyly syndrome.

    PubMed

    Kalff-Suske, M; Wild, A; Topp, J; Wessling, M; Jacobsen, E M; Bornholdt, D; Engel, H; Heuer, H; Aalfs, C M; Ausems, M G; Barone, R; Herzog, A; Heutink, P; Homfray, T; Gillessen-Kaesbach, G; König, R; Kunze, J; Meinecke, P; Müller, D; Rizzo, R; Strenge, S; Superti-Furga, A; Grzeschik, K H

    1999-09-01

    Greig cephalopolysyndactyly syndrome, characterized by craniofacial and limb anomalies (GCPS; MIM 175700), previously has been demonstrated to be associated with translocations as well as point mutations affecting one allele of the zinc finger gene GLI3. In addition to GCPS, Pallister-Hall syndrome (PHS; MIM 146510) and post-axial polydactyly type A (PAP-A; MIM 174200), two other disorders of human development, are caused by GLI3 mutations. In order to gain more insight into the mutational spectrum associated with a single phenotype, we report here the extension of the GLI3 mutation analysis to 24 new GCPS cases. We report the identification of 15 novel mutations present in one of the patient's GLI3 alleles. The mutations map throughout the coding gene regions. The majority are truncating mutations (nine of 15) that engender prematurely terminated protein products mostly but not exclusively N-terminally to or within the central region encoding the DNA-binding domain. Two missense and two splicing mutations mapping within the zinc finger motifs presumably also interfere with DNA binding. The five mutations identified within the protein regions C-terminal to the zinc fingers putatively affect additional functional properties of GLI3. In cell transfection experiments using fusions of the DNA-binding domain of yeast GAL4 to different segments of GLI3, transactivating capacity was assigned to two adjacent independent domains (TA(1)and TA(2)) in the C-terminal third of GLI3. Since these are the only functional domains affected by three C-terminally truncating mutations, we postulate that GCPS may be due either to haploinsufficiency resulting from the complete loss of one gene copy or to functional haploinsufficiency related to compromised properties of this transcription factor such as DNA binding and transactivation. PMID:10441342

  17. Targeted next-generation sequencing of candidate genes reveals novel mutations in patients with dilated cardiomyopathy

    PubMed Central

    ZHAO, YUE; FENG, YUE; ZHANG, YUN-MEI; DING, XIAO-XUE; SONG, YU-ZHU; ZHANG, A-MEI; LIU, LI; ZHANG, HONG; DING, JIA-HUAN; XIA, XUE-SHAN

    2015-01-01

    Dilated cardiomyopathy (DCM) is a major cause of sudden cardiac death and heart failure, and it is characterized by genetic and clinical heterogeneity, even for some patients with a very poor clinical prognosis; in the majority of cases, DCM necessitates a heart transplant. Genetic mutations have long been considered to be associated with this disease. At present, mutations in over 50 genes related to DCM have been documented. This study was carried out to elucidate the characteristics of gene mutations in patients with DCM. The candidate genes that may cause DCM include MYBPC3, MYH6, MYH7, LMNA, TNNT2, TNNI3, MYPN, MYL3, TPM1, SCN5A, DES, ACTC1 and RBM20. Using next-generation sequencing (NGS) and subsequent mutation confirmation with traditional capillary Sanger sequencing analysis, possible causative non-synonymous mutations were identified in ~57% (12/21) of patients with DCM. As a result, 7 novel mutations (MYPN, p.E630K; TNNT2, p.G180A; MYH6, p.R1047C; TNNC1, p.D3V; DES, p.R386H; MYBPC3, p.C1124F; and MYL3, p.D126G), 3 variants of uncertain significance (RBM20, p.R1182H; MYH6, p.T1253M; and VCL, p.M209L), and 2 known mutations (MYH7, p.A26V and MYBPC3, p.R160W) were revealed to be associated with DCM. The mutations were most frequently found in the sarcomere (MYH6, MYBPC3, MYH7, TNNC1, TNNT2 and MYL3) and cytoskeletal (MYPN, DES and VCL) genes. As genetic testing is a useful tool in the clinical management of disease, testing for pathogenic mutations is beneficial to the treatment of patients with DCM and may assist in predicting disease risk for their family members before the onset of symptoms. PMID:26458567

  18. Cartilage Hair Hypoplasia: Two Unrelated Cases with g.70 A > G Mutation in RMRP Gene.

    PubMed

    Narayanan, Dhanya Lakshmi; Shukla, Anju; Siddesh, Anju Rani; Stephen, Joshi; Srivastava, Priyanka; Mandal, Kausik; Phadke, Shubha R

    2016-09-01

    Cartilage-hair hypoplasia is an autosomal recessive disorder, characterized by short stature, metaphyseal dysplasia, hypotrichosis and immunodeficiency. More than 90 different biallelic mutations in RMRP gene have been identified to cause this condition. Three cases previously reported from India showed novel mutations in RMRP gene. The authors report two unrelated cases with the more common g.70A > G mutation, stressing the need to screen for this mutation in Indian population having features of cartilage-hair hypoplasia. PMID:26830278

  19. New ANTXR1 Gene Mutation for GAPO Syndrome: A Case Report.

    PubMed

    Salas-Alanís, Julio C; Scott, Claire A; Fajardo-Ramírez, Oscar R; Duran, Carola; Moreno-Treviño, María G; Kelsell, David P

    2016-07-01

    GAPO syndrome is a very rare genetic disorder characterized by growth retardation, alopecia, pseudoanodontia and progressive optic atrophy (GAPO). To date, only 30 cases have been described worldwide. Recently, gene alterations in the ANTXR1 gene have been reported to be causative of this disorder, and an autosomal recessive pattern has been observed. This gene encodes a matrix-interacting protein that works as an adhesion molecule. In this report, we describe 2 homozygous siblings diagnosed with GAPO syndrome carrying a new missense mutation. This mutation produces the substitution of a glutamine in position 137 for a leucine (c.410A>T, p.Q137L). PMID:27587992

  20. Malignancy of Cancers and Synthetic Lethal Interactions Associated With Mutations of Cancer Driver Genes

    PubMed Central

    Wang, Xiaosheng; Zhang, Yue; Han, Ze-Guang; He, Kun-Yan

    2016-01-01

    Abstract The mutation status of cancer driver genes may correlate with different degrees of malignancy of cancers. The doubling time and multidrug resistance are 2 phenotypes that reflect the degree of malignancy of cancer cells. Because most of cancer driver genes are hard to target, identification of their synthetic lethal partners might be a viable approach to treatment of the cancers with the relevant mutations. The genome-wide screening for synthetic lethal partners is costly and labor intensive. Thus, a computational approach facilitating identification of candidate genes for a focus synthetic lethal RNAi screening will accelerate novel anticancer drug discovery. We used several publicly available cancer cell lines and tumor tissue genomic data in this study. We compared the doubling time and multidrug resistance between the NCI-60 cell lines with mutations in some cancer driver genes and those without the mutations. We identified some candidate synthetic lethal genes to the cancer driver genes APC, KRAS, BRAF, PIK3CA, and TP53 by comparison of their gene phenotype values in cancer cell lines with the relevant mutations and wild-type background. Further, we experimentally validated some of the synthetic lethal relationships we predicted. We reported that mutations in some cancer driver genes mutations in some cancer driver genes such as APC, KRAS, or PIK3CA might correlate with cancer proliferation or drug resistance. We identified 40, 21, 5, 43, and 18 potential synthetic lethal genes to APC, KRAS, BRAF, PIK3CA, and TP53, respectively. We found that some of the potential synthetic lethal genes show significantly higher expression in the cancers with mutations of their synthetic lethal partners and the wild-type counterparts. Further, our experiments confirmed several synthetic lethal relationships that are novel findings by our methods. We experimentally validated a part of the synthetic lethal relationships we predicted. We plan to perform further

  1. Glutaric acidemia type II: gene structure and mutations of the electron transfer flavoprotein:ubiquinone oxidoreductase (ETF:QO) gene.

    PubMed

    Goodman, Stephen I; Binard, Robert J; Woontner, Michael R; Frerman, Frank E

    2002-01-01

    Glutaric acidemia type II is a human inborn error of metabolism which can be due to defects in either subunit of electron transfer flavoprotein (ETF) or in ETF:ubiquinone oxidoreductase (ETF:QO), but few disease-causing mutations have been described. The ETF:QO gene is located on 4q33, and contains 13 exons. Primers to amplify these exons are presented, together with mutations identified by molecular analysis of 20 ETF:QO-deficient patients. Twenty-one different disease-causing mutations were identified on 36 of the 40 chromosomes. PMID:12359134

  2. Monoallelic thyroid peroxidase gene mutation in a patient with congenital hypothyroidism with total iodide organification defect.

    PubMed

    Neves, Solange Caires; Mezalira, Paola Rossi; Dias, Vera M A; Chagas, Antonio J; Viana, Maria; Targovnik, Hector; Knobel, Meyer; Medeiros-Neto, Geraldo; Rubio, Ileana G S

    2010-11-01

    The aim of this study was to identify the genetic defect of a patient with dyshormonogenetic congenital hypothyroidisms (CH) with total iodide organification defect (TIOD). A male child diagnosed with CH during neonatal screening. Laboratory tests confirmed the permanent and severe CH with TIOD (99% perchlorate release). The coding sequence of TPO, DUOX2, and DUOXA2 genes and 2957 base pairs (bp) of the TPO promoter were sequenced. Molecular analysis of patient's DNA identified the heterozygous duplication GGCC (c.1186_1187insGGCC) in exon 8 of the TPO gene. No additional mutation was detected either in the TPO gene, TPO promoter, DUOX2 or DUOXA2 genes. We have described a patient with a clear TIOD causing severe goitrous CH due to a monoallelic TPO mutation. A plausible explanation for the association between an autosomal recessive disorder with a single TPO-mutated allele is the presence of monoallelic TPO expression. PMID:21340161

  3. Novel LMNA Gene Mutation in a Patient With Atypical Werner's Syndrome

    PubMed Central

    Doh, Yun Jeong; Kim, Hee Kyoung; Jung, Eui Dal; Choi, Seung Hee; Kim, Jung Guk; Kim, Bo Wan

    2009-01-01

    Hutchinson-Gilford progeria syndrome (HGPS) and Werner's syndrome are representative types of progeroid syndrome. LMNA (Lamin A/C) gene mutation with atypical Werner's syndrome have recently been reported. Atypical Werner's syndrome with the severe metabolic complications, the extent of the lipodystrophy is associated with A133L mutation in the LMNA gene and these patients present with phenotypically heterogeneous disorders. We experienced a 15-yr-old Korean female with progeroid features, generalized lipodystrophy, hypertriglyceridemia, fatty liver, steatohepatitis, and type 2 diabetes mellitus. Skin fibroblasts from the patient showed marked abnormal nuclear morphology, compared with that from normal persons. Gene analysis revealed that this patient had T506del of exon 2 in the LMNA gene. We report here the first case of atypical Werner's syndrome with frameshift mutation that was caused by T506del. PMID:19270485

  4. Transcription Profiling and Mutation Detection of Soybean Homoeologous Genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The soybean genome maintains numerous gene duplications, many of which are derived from ancient large-scale duplication. We are interested in exploring the evolutionary fate of duplicated genes and the extent to which gene duplication affects selectable trait variation. We are applying quantitative ...

  5. Impact of thrombophilic genes mutations on thrombosis risk in Egyptian nonmetastatic cancer patients.

    PubMed

    Wahba, Mona Ahmed; Ismail, Mona Ahmed; Saad, Abeer Attia; Habashy, Deena Mohamed; Hafeez, Zeinab Mohamed Abdel; Boshnak, Noha Hussein

    2015-04-01

    Venous thromboembolism (VTE) is a common complication in cancer patients. Several genetic risk factors related to thrombophilia are known; however, their contributions to thrombotic tendency in cancer patients have conflicting results. We aimed to determine the prevalence of factor V Leiden (FVL), prothrombin (PTH) G20210A and methylene tetrahydrofolate reductase (MTHFR) C677T gene polymorphisms in Egyptian nonmetastatic cancer patients and their influence on thrombosis risk in those patients. Factor V Leiden, PTH G20210A and MTHFR C677T polymorphisms were detected in 40 cancer patients with VTE (group 1) and 40 cancer patients with no evidence of VTE (group 2) by PCR-based DNA analysis. Factor V and MTHFR mutations were higher in group 1 than in group 2 (factor V heterozygous mutation: 20 vs. 7.5%, homozygous mutation: 10 vs. 2.5%; MTHFR heterozygous mutation: 40 vs. 25%, homozygous mutation 5 vs. 0%, respectively) (P = 0.03). Mortality rate was higher in group 1 (75%) than in group 2 (25%; P < 0.001). No difference was found between those groups regarding PTH mutation (P = 1). Mortality rate was higher in the presence of homozygous and heterozygous factor V mutation (100 and 82%, respectively) compared to the wild type (41%) (P = 0.0006). Having any of the three studied gene mutations worsened the overall survival (P = 0.0003). Cox regression proved that both thrombosis and presence of factor V mutation are independent factors affecting survival in cancer patients (P < 0.001 and P = 0.01, respectively). In conclusion, there is an association between factor V and MTHFR mutations and risk of VTE in Egyptian cancer patients. Thrombosis and presence of factor V mutation are independent factors that influence survival in those patients. PMID:25565385

  6. Adiposity is associated with p53 gene mutations in breast cancer.

    PubMed

    Ochs-Balcom, Heather M; Marian, Catalin; Nie, Jing; Brasky, Theodore M; Goerlitz, David S; Trevisan, Maurizio; Edge, Stephen B; Winston, Janet; Berry, Deborah L; Kallakury, Bhaskar V; Freudenheim, Jo L; Shields, Peter G

    2015-10-01

    Mutations in the p53 gene are among the most frequent genetic events in human cancer and may be triggered by environmental and occupational exposures. We examined the association of clinical and pathological characteristics of breast tumors and breast cancer risk factors according to the prevalence and type of p53 mutations. Using tumor blocks from incident cases from a case-control study in western New York, we screened for p53 mutations in exons 2-11 using the Affymetrix p53 Gene Chip array and analyzed case-case comparisons using logistic regression. The p53 mutation frequency among cases was 28.1 %; 95 % were point mutations (13 % of which were silent) and the remainder were single base pair deletions. Sixty seven percent of all point mutations were transitions; 24 % of them are G:C>A:T at CpG sites. Positive p53 mutation status was associated with poorer differentiation (OR, 95 % CI 2.29, 1.21-4.32), higher nuclear grade (OR, 95 % CI 1.99, 1.22-3.25), and increased Ki-67 status (OR, 95 % CI 1.81, 1.10-2.98). Cases with P53 mutations were more likely to have a combined ER-positive and PR-negative status (OR, 95 % CI 1.65, 1.01-2.71), and a combined ER-negative and PR-negative status (OR, 95 % CI 2.18, 1.47-3.23). Body mass index >30 kg/m(2), waist circumference >79 cm, and waist-to-hip ratio >0.86 were also associated with p53 status; obese breast cancer cases are more likely to have p53 mutations (OR, 95 % CI 1.78, 1.19-2.68). We confirmed that p53 mutations are associated with less favorable tumor characteristics and identified an association of p53 mutation status and adiposity. PMID:26364297

  7. Spontaneous Dominant Mutations in Chlamydomonas Highlight Ongoing Evolution by Gene Diversification

    PubMed Central

    Boulouis, Alix; Drapier, Dominique; Razafimanantsoa, Hélène; Wostrikoff, Katia; Tourasse, Nicolas J.; Pascal, Kevin; Girard-Bascou, Jacqueline; Vallon, Olivier; Wollman, Francis-André; Choquet, Yves

    2015-01-01

    We characterized two spontaneous and dominant nuclear mutations in the unicellular alga Chlamydomonas reinhardtii, ncc1 and ncc2 (for nuclear control of chloroplast gene expression), which affect two octotricopeptide repeat (OPR) proteins encoded in a cluster of paralogous genes on chromosome 15. Both mutations cause a single amino acid substitution in one OPR repeat. As a result, the mutated NCC1 and NCC2 proteins now recognize new targets that we identified in the coding sequences of the chloroplast atpA and petA genes, respectively. Interaction of the mutated proteins with these targets leads to transcript degradation; however, in contrast to the ncc1 mutation, the ncc2 mutation requires on-going translation to promote the decay of the petA mRNA. Thus, these mutants reveal a mechanism by which nuclear factors act on chloroplast mRNAs in Chlamydomonas. They illustrate how diversifying selection can allow cells to adapt the nuclear control of organelle gene expression to environmental changes. We discuss these data in the wider context of the evolution of regulation by helical repeat proteins. PMID:25804537

  8. Soluble normal and mutated DNA sequences from single-copy genes in human blood.

    PubMed

    Sorenson, G D; Pribish, D M; Valone, F H; Memoli, V A; Bzik, D J; Yao, S L

    1994-01-01

    Healthy individuals have soluble (extracellular) DNA in their blood, and increased amounts are present in cancer patients. Here we report the detection of specific sequences of the cystic fibrosis and K-ras genes in plasma DNA from normal donors by amplification with the polymerase chain reaction. In addition, mutated K-ras sequences are identified by polymerase chain reaction utilizing allele-specific primers in the plasma or serum from three patients with pancreatic carcinoma that contain mutated K-ras genes. The mutations are confirmed by direct sequencing. These results indicate that sequences of single-copy genes can be identified in normal plasma and that the sequences of mutated oncogenes can be detected and identified with allele-specific amplification by polymerase chain reaction in plasma or serum from patients with malignant tumors containing identical mutated genes. Mutated oncogenes in plasma and serum may represent tumor markers that could be useful for diagnosis, determining response to treatment, and predicting prognosis. PMID:8118388

  9. Novel CHST6 gene mutations in 2 unrelated cases of macular corneal dystrophy

    PubMed Central

    Patel, Dhara A.; Harocopos, George J.; Chang, Shu-Hong; Vora, Smita C.; Lubniewski, Anthony J.; Huang, Andrew J.W.

    2010-01-01

    Purpose To investigate possible mutations in the carbohydrate sulfotransferase 6 (CHST6) gene of two unrelated cases of macular corneal dystrophy (MCD) and to report atypical stromal deposits in one of them. Methods Corneal tissues were stained with anti-sulfated keratan sulfate (KS), anti-transforming growth factor beta 1-induced protein (TGFBIp), thioflavin-T, alcian blue, and Masson trichrome. Sequencing was performed to identify potential mutations in the CHST6 gene and the fourth and twelfth exons of the TGFBI gene. Results Alcian blue staining revealed the presence of multiple subepithelial and intra-stromal mucopolysaccharide deposits, confirming the diagnosis of MCD in both cases. Immunofluorescence staining in case 1 revealed the presence of sulfated KS only in the keratocytes and select endothelial cells, consistent with MCD type IA. Preferential expression of sulfated KS was observed in keratocytes and extracellular stromal matrix in case 2, consistent with MCD type II. Atypical sub-epithelial and superficial stromal deposits were observed in case 1, which stained positively with alcian blue, eosin, Masson trichrome and thioflavin-T indicating the presence of hyaline and amyloid materials. CHST6 gene sequencing revealed two heterozygous mutations in case 1 (a p.Arg211Gln and a novel mutation of p.Arg177Gly) and a novel homozygous mutation of p.Pro186Arg in case 2. No mutations were found in exons 4 or 12 of the TGFBI gene in case 1. Conclusions Secondary hyalinosis and amyloidosis occur in a case of MCD type IA with a novel p.Arg177Gly mutation in CHST6. A novel p.Pro186Arg mutation in CHST6 is associated with MCD type II in an African American. PMID:21242781

  10. Analysis of factor VIII gene inversion mutations in 166 unrelated haemophilia A families: frequency and utility in genetic counselling.

    PubMed

    Vnencak-Jones, C L; Iii, J A; Janco, R L; Cohen, M P; Dupont, W D; Kazazian, H H; Rossiter, J P

    1996-01-01

    Haemophilia A is an X-linked recessive bleeding disorder of variable severity that is caused by a deficiency of coagulation factor VIII (FVIII). The disease results from mutations in the FVIII gene which are heterogenous both in type and position within the gene. Recently, however, inversion mutations were found to be common to patients with severe disease (Lakich et al., 1993). These mutations result from intrachromosomal recombinations between DNA sequences in the A gene (located in intron 22 of the FVIII gene) and one of two A genes upstream to the FVIII gene. To determine the frequency of these inversions we performed Southern blot analysis on banked DNA from 166 consecutive, unrelated haemophilia A families previously referred for carrier or prenatal testing. In 57/166 (34%) families an inversion or other unique mutation was detected. The distal and proximal A genes lying upstream to the FVIII gene were involved in 79% and 18% of the mutations, respectively, but in 3% of the families the sequences involved in the mutation have not been identified. In 20/38 (53%) families with severe disease a mutation was detected. Interestingly, the relative risk of developing inhibitors in patients with FVIII gene inversions or other 3° mutations detected by this assay, as compared to patients with no detectable mutation by this assay, was 3.8. In families for which a mutation is detected, direct DNA testing is an accurate and inexpensive alternative to linkage analysis for prenatal or haemophilia A carrier testing. PMID:27213900

  11. Targeted sequencing using a 47 gene multiple myeloma mutation panel (M3P) in -17p high risk disease

    PubMed Central

    Kortüm, Klaus M.; Langer, Christian; Monge, Jorge; Bruins, Laura; Egan, Jan B.; Zhu, Yuan X.; Shi, Chang Xin; Jedlowski, Patrick; Schmidt, Jessica; Ojha, Juhi; Bullinger, Lars; Liebisch, Peter; Kull, Miriam; Champion, Mia D.; Van Wier, Scott; Ahmann, Gregory; Rasche, Leo; Knop, Stefan; Fonseca, Rafael; Einsele, Hermann; Stewart, A Keith; Braggio, Esteban

    2015-01-01

    Summary We constructed a multiple myeloma (MM)-specific gene panel for targeted sequencing and investigated 72 untreated high-risk (del17p) MM patients. Mutations were identified in 78% of the patients. While the majority of studied genes were mutated at similar frequency to published literature, the prevalence of TP53 mutation was increased (28%) and no mutations were found in FAM46C. This study provides a comprehensive insight into the mutational landscape of del17p high-risk MM. Additionally, our work demonstrates the practical use of a customized sequencing panel, as an easy, cheap and fast approach to characterize the mutational profile of MM. PMID:25302557

  12. Targeted sequencing using a 47 gene multiple myeloma mutation panel (M(3) P) in -17p high risk disease.

    PubMed

    Kortüm, Klaus M; Langer, Christian; Monge, Jorge; Bruins, Laura; Egan, Jan B; Zhu, Yuan X; Shi, Chang Xin; Jedlowski, Patrick; Schmidt, Jessica; Ojha, Juhi; Bullinger, Lars; Liebisch, Peter; Kull, Miriam; Champion, Mia D; Van Wier, Scott; Ahmann, Gregory; Rasche, Leo; Knop, Stefan; Fonseca, Rafael; Einsele, Hermann; Stewart, A Keith; Braggio, Esteban

    2015-02-01

    We constructed a multiple myeloma (MM)-specific gene panel for targeted sequencing and investigated 72 untreated high-risk (del17p) MM patients. Mutations were identified in 78% of the patients. While the majority of studied genes were mutated at similar frequency to published literature, the prevalence of TP53 mutation was increased (28%) and no mutations were found in FAM46C. This study provides a comprehensive insight into the mutational landscape of del17p high-risk MM. Additionally, our work demonstrates the practical use of a customized sequencing panel, as an easy, cheap and fast approach to characterize the mutational profile of MM. PMID:25302557

  13. Natural selection against a circadian clock gene mutation in mice

    PubMed Central

    Spoelstra, Kamiel; Wikelski, Martin; Daan, Serge; Loudon, Andrew S. I.; Hau, Michaela

    2016-01-01

    Circadian rhythms with an endogenous period close to or equal to the natural light–dark cycle are considered evolutionarily adaptive (“circadian resonance hypothesis”). Despite remarkable insight into the molecular mechanisms driving circadian cycles, this hypothesis has not been tested under natural conditions for any eukaryotic organism. We tested this hypothesis in mice bearing a short-period mutation in the enzyme casein kinase 1ε (tau mutation), which accelerates free-running circadian cycles. We compared daily activity (feeding) rhythms, survivorship, and reproduction in six replicate populations in outdoor experimental enclosures, established with wild-type, heterozygous, and homozygous mice in a Mendelian ratio. In the release cohort, survival was reduced in the homozygote mutant mice, revealing strong selection against short-period genotypes. Over the course of 14 mo, the relative frequency of the tau allele dropped from initial parity to 20%. Adult survival and recruitment of juveniles into the population contributed approximately equally to the selection for wild-type alleles. The expression of activity during daytime varied throughout the experiment and was significantly increased by the tau mutation. The strong selection against the short-period tau allele observed here contrasts with earlier studies showing absence of selection against a Period 2 (Per2) mutation, which disrupts internal clock function, but does not change period length. These findings are consistent with, and predicted by the theory that resonance of the circadian system plays an important role in individual fitness. PMID:26715747

  14. Natural selection against a circadian clock gene mutation in mice.

    PubMed

    Spoelstra, Kamiel; Wikelski, Martin; Daan, Serge; Loudon, Andrew S I; Hau, Michaela

    2016-01-19

    Circadian rhythms with an endogenous period close to or equal to the natural light-dark cycle are considered evolutionarily adaptive ("circadian resonance hypothesis"). Despite remarkable insight into the molecular mechanisms driving circadian cycles, this hypothesis has not been tested under natural conditions for any eukaryotic organism. We tested this hypothesis in mice bearing a short-period mutation in the enzyme casein kinase 1ε (tau mutation), which accelerates free-running circadian cycles. We compared daily activity (feeding) rhythms, survivorship, and reproduction in six replicate populations in outdoor experimental enclosures, established with wild-type, heterozygous, and homozygous mice in a Mendelian ratio. In the release cohort, survival was reduced in the homozygote mutant mice, revealing strong selection against short-period genotypes. Over the course of 14 mo, the relative frequency of the tau allele dropped from initial parity to 20%. Adult survival and recruitment of juveniles into the population contributed approximately equally to the selection for wild-type alleles. The expression of activity during daytime varied throughout the experiment and was significantly increased by the tau mutation. The strong selection against the short-period tau allele observed here contrasts with earlier studies showing absence of selection against a Period 2 (Per2) mutation, which disrupts internal clock function, but does not change period length. These findings are consistent with, and predicted by the theory that resonance of the circadian system plays an important role in individual fitness. PMID:26715747

  15. 2004 Annual Meeting - Genes, Mutations and Disease: The Environmental Connection

    SciTech Connect

    Leona D. Samson, Ph.D.

    2004-08-23

    The Meeting consisted of 9 Symposia, 4 Keynote Lectures, 3 Platform Sessions and 4 Poster Sessions. In addition there were Breakfast Meetings for Special Interest Groups designed to inform attendees about the latest advances in environmental mutagenesis research. Several of the topics to be covered at this broad meeting will be of interest to the Department of Energy, Office of Science. The relevance of this meeting to the DOE derives from the fact that low dose radiation may represent one of the most significant sources of human mutations that are attributable to the environment. The EMS membership, and those who attended the EMS Annual Meeting were interested in both chemical and radiation induced biological effects, such as cell death, mutation, teratogenesis, carcinogenesis and aging. These topics thate were presented at the 2004 EMS Annual meeting that were of clear interest to DOE include: human variation in cancer susceptibility, unusual mechanisms of mutation, germ and stem cell mutagenesis, recombination and the maintenance of genomic stability, multiple roles for DNA mismatch repair, DNA helicases, mutation, cancer and aging, Genome-wide transcriptional responses to environmental change, Telomeres and genomic stability: when ends don?t meet, systems biology approach to cell phenotypic decision processes, and the surprising biology of short RNAs. Poster and platform sessions addressed topics related to environmental mutagen exposure, DNA repair, mechanisms of mutagenesis, epidemiology, genomic and proteomics and bioinformatics. These sessions were designed to give student, postdocs and more junior scientists a chance to present their workl.

  16. Imperfect Genes, Fisherian Mutation and the Evolution of Sex

    PubMed Central

    Peck, J. R.; Barreau, G.; Heath, S. C.

    1997-01-01

    In this paper we present a mathematical model of mutation and selection that allows for the coexistence of multiple alleles at a locus with very small selective differences between alleles. The model also allows for the determination of fitness by multiple loci. Models of this sort are biologically plausible. However, some previous attempts to construct similar models have assumed that all mutations produce a decrease in fitness, and this has led to a tendency for the average fitness of population members to decline when population numbers are finite. In our model we incorporate some of the ideas of R. A. FISHER, so that both deleterious and beneficial mutations are possible. As a result, average fitness tends to approach a stationary distribution. We have used computer simulation methods to apply the Fisherian mutation model to the problem of the evolution of sex and recombination. The results suggest that sex and recombination can provide very large benefits in terms of average fitness. The results also suggest that obligately sexual species will win ecological competitions with species that produce a substantial fraction of their offspring asexually, so long as the number of sites under selection within the genomes of the competing species is not too small and the population sizes are not too large. Our model focuses on fertility selection in an hermaphroditic plant. However, the results are likely to generalize to a wide variety of other situations as well. PMID:9093868

  17. DNA damage in leukocytes of sickle cell anemia patients is associated with hydroxyurea therapy and with HBB*S haplotype.

    PubMed

    da Silva Rocha, Lilianne Brito; Dias Elias, Darcielle Bruna; Barbosa, Maritza Cavalcante; Bandeira, Izabel Cristina Justino; Gonçalves, Romélia Pinheiro

    2012-12-12

    Hydroxyurea (HU) is the primary pharmacologic agent for preventing the complications and improving the quality of life of sickle cell anemia (SCA) patients. Although HU has been associated with an increased risk of leukemia in some patients with myeloproliferative disorders, the mutagenic and carcinogenic potential of HU has not been established. This study used the alkaline comet assay to investigate DNA damage in peripheral blood leukocytes from 41 individuals with SCA treated with HU (SCAHU) and from 26 normal individuals. The presence of HbS and the analysis of the haplotypes of the beta S gene cluster were done by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The damage index (DI) in the SCAHU group was significantly higher than in controls (p<0.001). Neither gender nor age was associated with DNA damage in controls or SCAHU individuals. Among the SCAHU individuals, DI was significantly influenced by length of HU treatment (p=0.0039) and BMI (p=0.001). Individuals with length of HU treatment≥20 months and BMI≤20kg/m(2) had a significantly greater DI than those with length of HU treatment<20 months and BMI>20kg/m(2). No significant influence of mean HU dose was observed on DI (p=0.950). However, individuals who received a mean HU dose≥20mg/kg showed a higher DI than those who received less. Furthermore, an association was observed between DI damage and HBB*S gene haplotypes. DI values for the Bantu/Bantu haplotype was greater when compared to the Benin/Benin haplotype; and the Bantu/Benin haplotype had a DI lower than the Bantu/Bantu haplotype and greater than the Benin/Benin haplotype. Our results show that DNA damage in sickle cell anemia is associated not only with treatment with HU but also with genotype. PMID:22918118

  18. Frequency of mutations and polymorphisms in borderline ovarian tumors of known cancer genes.

    PubMed

    Stemke-Hale, Katherine; Shipman, Kristy; Kitsou-Mylona, Isidora; de Castro, David G; Hird, Vicky; Brown, Robert; Flanagan, James; Gabra, Hani; Mills, Gordon B; Agarwal, Roshan; El-Bahrawy, Mona

    2013-04-01

    Borderline ovarian tumors represent an understudied subset of ovarian tumors. Most studies investigating aberrations in borderline tumors have focused on KRAS/BRAF mutations. In this study, we conducted an extensive analysis of mutations and single-nucleotide polymorphisms (SNPs) in borderline ovarian tumors. Using the Sequenom MassArray platform, we investigated 160 mutations/polymorphisms in 33 genes involved in cell signaling, apoptosis, angiogenesis, cell cycle regulation and cellular senescence. Of 52 tumors analyzed, 33 were serous, 18 mucinous and 1 endometrioid. KRAS c.35G>A p.Gly12Asp mutations were detected in eight tumors (six serous and two mucinous), BRAF V600E mutations in two serous tumors, and PIK3CA H1047Y and PIK3CA E542K mutations in a serous and an endometrioid BOT, respectively. CTNNB1 mutation was detected in a serous tumor. Potentially functional polymorphisms were found in vascular endothelial growth factor (VEGF), ABCB1, FGFR2 and PHLPP2. VEGF polymorphisms were the most common and detected at four loci. PHLPP2 polymorphisms were more frequent in mucinous as compared with serous tumors (P=0.04), with allelic imbalance in one case. This study represents the largest and most comprehensive analysis of mutations and functional SNPs in borderline ovarian tumors to date. At least 25% of borderline ovarian tumors harbor somatic mutations associated with potential response to targeted therapeutics. PMID:23174937

  19. Frequency of mutations and polymorphisms in borderline ovarian tumors of known cancer genes

    PubMed Central

    Stemke-Hale, Katherine; Shipman, Kristy; Kitsou-Mylona, Isidora; de Castro, David Gonzalez; Hird, Vicky; Brown, Robert; Flanagan, James; Hani Gabra, H; Mills, Gordon B.; Agarwal, R; El-Bahrawy, Mona

    2013-01-01

    Borderline ovarian tumors represent an understudied subset of ovarian tumors. Most studies investigating aberrations in borderline tumors have focused on KRAS/BRAF mutations. In this study we conducted an extensive analysis of mutations and single nucleotide polymorphisms in borderline ovarian tumors. Using the Sequenom MassARRAY platform we investigated 160 mutations/polymorphisms in 33 genes involved in cell signalling, apoptosis, angiogenesis, cell cycle regulation, and cellular senescence. Of 52 tumors analysed, 33 were serous, 18 mucinous and 1 endometrioid. KRAS c.35G>A p.Gly12Asp mutations were detected in 8 tumors (6 serous and 2 mucinous), BRAF V600E mutations in 2 serous tumors, and PIK3CA H1047Y and PIK3CA E542K mutations in a serous and an endometrioid BOT respectively. CTNNB1 mutation was detected in a serous tumor. Potentially functional polymorphisms were found in VEGF, ABCB1, FGFR2 and PHLPP2. VEGF polymorphisms were the most common and detected at 4 loci. PHLPP2 polymorphisms were more frequent in mucinous as compared to serous tumors (p=0.04), with allelic imbalance in one case. This study represents the largest and most comprehensive analysis of mutations and functional single nucleotide polymorphisms in borderline ovarian tumors to date. At least 25% of borderline ovarian tumors harbour somatic mutations associated with potential response to targeted therapeutics. PMID:23174937

  20. Activating HER2 mutations in HER2 gene amplification negative breast cancer

    PubMed Central

    Bose, Ron; Kavuri, Shyam M.; Searleman, Adam C.; Shen, Wei; Shen, Dong; Koboldt, Daniel C.; Monsey, John; Goel, Nicholas; Aronson, Adam B.; Li, Shunqiang; Ma, Cynthia X.; Ding, Li; Mardis, Elaine R.; Ellis, Matthew J.

    2012-01-01

    Data from eight breast cancer genome sequencing projects identified 25 patients with HER2 somatic mutations in cancers lacking HER2 gene amplification. To determine the phenotype of these mutations, we functionally characterized thirteen HER2 mutations using in vitro kinase assays, protein structure analysis, cell culture and xenograft experiments. Seven of these mutations are activating mutations, including G309A, D769H, D769Y, V777L, P780ins, V842I, and R896C. HER2 in-frame deletion 755-759, which is homologous to EGFR exon 19 in-frame deletions, had a neomorphic phenotype with increased phosphorylation of EGFR or HER3. L755S produced lapatinib resistance, but was not an activating mutation in our experimental systems. All of these mutations were sensitive to the irreversible kinase inhibitor, neratinib. These findings demonstrate that HER2 somatic mutation is an alternative mechanism to activate HER2 in breast cancer and they validate HER2 somatic mutations as drug targets for breast cancer treatment. PMID:23220880

  1. The Nature and Extent of Mutational Pleiotropy in Gene Expression of Male Drosophila serrata

    PubMed Central

    McGuigan, Katrina; Collet, Julie M.; McGraw, Elizabeth A.; Ye, Yixin H.; Allen, Scott L.; Chenoweth, Stephen F.; Blows, Mark W.

    2014-01-01

    The nature and extent of mutational pleiotropy remain largely unknown, despite the central role that pleiotropy plays in many areas of biology, including human disease, agricultural production, and evolution. Here, we investigate the variation in 11,604 gene expression traits among 41 mutation accumulation (MA) lines of Drosophila serrata. We first confirmed that these expression phenotypes were heritable, detecting genetic variation in 96% of them in an outbred, natural population of D. serrata. Among the MA lines, 3385 (29%) of expression traits were variable, with a mean mutational heritability of 0.0005. In most traits, variation was generated by mutations of relatively small phenotypic effect; putative mutations with effects of greater than one phenotypic standard deviation were observed for only 8% of traits. With most (71%) traits unaffected by any mutation, our data provide no support for universal pleiotropy. We further characterized mutational pleiotropy in the 3385 variable traits, using sets of 5, randomly assigned, traits. Covariance among traits chosen at random with respect to their biological function is expected only if pleiotropy is extensive. Taking an analytical approach in which the variance unique to each trait in the random 5-trait sets was partitioned from variance shared among traits, we detected significant (at 5% false discovery rate) mutational covariance in 21% of sets. This frequency of statistically supported covariance implied that at least some mutations must pleiotropically affect a substantial number of traits (>70; 0.6% of all measured traits). PMID:24402375

  2. Mutation analysis of the CYP21A2 gene in congenital adrenal hyperplasia.

    PubMed

    Forouzanfar, K; Seifi, M; Hashemi-Gorji, F; Karimi, N; Estiar, M A; Karimoei, M; Sakhinia, E; Karimipour, M; Ghergherehchi, R

    2015-01-01

    Congenital adrenal hyperplasia (CAH) is an inherited autosomal recessive enzymatic disorder involving the synthesis of adrenal corticosteroids. 21-Hydroxylase deficiency (21-OHD) is the most common form of the disease which is observed in more than 90% of patients with CAH. Early identification of mutations in the genes involved in this disease is critical. A marker of the disease, errors in the CYP21A2 gene, is thought to be part of the pathophysiology of CAH. Therefore, the identification of gene mutations would be very beneficial in the early detection of CAH. This research was a descriptive epidemiological study conducted on individuals elected by the inclusion criteria whom were referred to the Genetic Diagnosis Center of Tabriz during 2012 to 2013. After sampling and DNA extraction, PCR for the detection of mutations in the CYP21A2 gene was performed followed by sequencing. For data analysis, the results of sequencing were compared with the reference gene by blast, Gene Runner and MEGA-5 software. Obtained changes were compared with NCBI databases. The analysis of the sequencing determined the mutations located in Exons 6, 7, 8 and 10. The most frequent findings were Q318X (53%) and R356W (28%). Exon 6 cluster (7%), E431k (4%), V237E (2%), V281L (2%), E351K (2%), R426C (2%) were also frequent in our patients. The most frequent genotype was compound heterozygote, Q318X/R356W. Three rare mutations in our study were E431K, E351K and R426C. Observed mutation frequencies in this study were much higher than those reported in previous studies in Iranian populations. Thus, it seems that it is necessary to follow-up screening programs and use sequencing methods to better identify mutations in the development of the disease. PMID:26278268

  3. Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders.

    PubMed

    O'Roak, Brian J; Vives, Laura; Fu, Wenqing; Egertson, Jarrett D; Stanaway, Ian B; Phelps, Ian G; Carvill, Gemma; Kumar, Akash; Lee, Choli; Ankenman, Katy; Munson, Jeff; Hiatt, Joseph B; Turner, Emily H; Levy, Roie; O'Day, Diana R; Krumm, Niklas; Coe, Bradley P; Martin, Beth K; Borenstein, Elhanan; Nickerson, Deborah A; Mefford, Heather C; Doherty, Dan; Akey, Joshua M; Bernier, Raphael; Eichler, Evan E; Shendure, Jay

    2012-12-21

    Exome sequencing studies of autism spectrum disorders (ASDs) have identified many de novo mutations but few recurrently disrupted genes. We therefore developed a modified molecular inversion probe method enabling ultra-low-cost candidate gene resequencing in very large cohorts. To demonstrate the power of this approach, we captured and sequenced 44 candidate genes in 2446 ASD probands. We discovered 27 de novo events in 16 genes, 59% of which are predicted to truncate proteins or disrupt splicing. We estimate that recurrent disruptive mutations in six genes-CHD8, DYRK1A, GRIN2B, TBR1, PTEN, and TBL1XR1-may contribute to 1% of sporadic ASDs. Our data support associations between specific genes and reciprocal subphenotypes (CHD8-macrocephaly and DYRK1A-microcephaly) and replicate the importance of a β-catenin-chromatin-remodeling network to ASD etiology. PMID:23160955

  4. Two novel mutations and a previously unreported intronic polymorphism in the NOTCH3 gene.

    PubMed

    Roy, B; Maksemous, N; Smith, R A; Menon, S; Davies, G; Griffiths, L R

    2012-04-01

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a hereditary disease of small vessel caused by mutations in the NOTCH3 gene (NCBI Gene ID: 4854) located on chromosome 19p13.1. NOTCH3 consists of 33 exons which encode a protein of 2321 amino acids. Exons 3 and 4 were found to be mutation hotspots, containing more than 65% of all CADASIL mutations. We performed direct sequencing on an ABI 3130 Genetic Analyser to screen for mutations and polymorphisms on 300 patients who were clinically suspected to have CADASIL. First, exons 3 and 4 were screened in NOTCH3 and if there were no variations found, then extended CADASIL testing (exons 2, 11, 18 and 19) was offered to patients. Here we report two novel non-synonymous mutations identified in the NOTCH3 gene. The first mutation, located in exon 4 was found in a 49-year-old female and causes an alanine to valine amino acid change at position 202 (605C>T). The second mutation, located in exon 11, was found in a 66-year-old female and causes a cysteine to arginine amino acid change at position 579 (1735T>C). We also report a 46-year-old male with a known polymorphism Thr101Thr (rs3815188) and an unreported polymorphism NM_000435.2:c.679+60G>A observed in intron 4 of the NOTCH3 gene. Although Ala202Ala (rs1043994) is a common polymorphism in the NOTCH3 gene, our reported novel mutation (Ala202Val) causes an amino acid change at the same locus. Our other reported mutation (Cys579Arg) correlates well with other known mutations in NOTCH3, as the majority of the CADASIL-associated mutations in NOTCH3 generally occur in the EGF-like (epidermal growth factor-like) repeat domain, causing a change in the number of cysteine residues. The intronic polymorphism NM_000435.2:c.679+60G>A lies close to the intron-exon boundary and may affect the splicing mechanism in the NOTCH3 gene. PMID:22373597

  5. Identification of two poorly prognosed ovarian carcinoma subtypes associated with CHEK2 germ-line mutation and non-CHEK2 somatic mutation gene signatures.

    PubMed

    Ow, Ghim Siong; Ivshina, Anna V; Fuentes, Gloria; Kuznetsov, Vladimir A

    2014-01-01

    High-grade serous ovarian cancer (HG-SOC), a major histologic type of epithelial ovarian cancer (EOC), is a poorly-characterized, heterogeneous and lethal disease where somatic mutations of TP53 are common and inherited loss-of-function mutations in BRCA1/2 predispose to cancer in 9.5-13% of EOC patients. However, the overall burden of disease due to either inherited or sporadic mutations is not known. We performed bioinformatics analyses of mutational and clinical data of 334 HG-SOC tumor samples from The Cancer Genome Atlas to identify novel tumor-driving mutations, survival-significant patient subgroups and tumor subtypes potentially driven by either hereditary or sporadic factors. We identified a sub-cluster of high-frequency mutations in 22 patients and 58 genes associated with DNA damage repair, apoptosis and cell cycle. Mutations of CHEK2, observed with the highest intensity, were associated with poor therapy response and overall survival (OS) of these patients (P = 8.00e-05), possibly due to detrimental effect of mutations at the nuclear localization signal. A 21-gene mutational prognostic signature significantly stratifies patients into relatively low or high-risk subgroups with 5-y OS of 37% or 6%, respectively (P = 7.31e-08). Further analysis of these genes and high-risk subgroup revealed 2 distinct classes of tumors characterized by either germline mutations of genes such as CHEK2, RPS6KA2 and MLL4, or somatic mutations of other genes in the signature. Our results could provide improvement in prediction and clinical management of HG-SOC, facilitate our understanding of this complex disease, guide the design of targeted therapeutics and improve screening efforts to identify women at high-risk of hereditary ovarian cancers distinct from those associated with BRCA1/2 mutations. PMID:24879340

  6. Purification and Characterization of an Alkali-Thermostable Lipase from Thermophilic Anoxybacillus flavithermus HBB 134.

    PubMed

    Bakir, Zehra Burcu; Metin, Kubilay

    2016-06-28

    An intracellular lipase from Anoxybacillus flavithermus HBB 134 was purified to 7.4-fold. The molecular mass of the enzyme was found to be about 64 kDa. The maximum activity of the enzyme was at pH 9.0 and 50°C. The enzyme was stable between pH 6.0 and 11.0 at 25°C, 40°C, and 50°C for 24 h. The Km and Vmax of the enzyme for pNPL substrate were determined as 0.084 mM and 500 U/mg, respectively. Glycerol, sorbitol, and mannitol enhanced the enzyme thermostability. The enzyme was found to be highly stable against acetone, ethyl acetate, and diethyl ether. The presence of PMSF, NBS, DTT and β-mercaptoethanol inhibited the enzyme activity. Hg(2+), Fe(3+), Pb(2+), Al(3+), and Zn(2+) strongly inhibited the enzyme whereas Li(+), Na(+), K(+), and NH4(+) slightly activated it. At least 60% of the enzyme activity and stability were retained against sodium deoxycholate, sodium taurocholate, n-octyl-β-D-glucopyranoside, and CHAPS. The presence of 1% Triton X-100 caused about 34% increase in the enzyme activity. The enzyme is thought to be a true lipase since it has preferred the long-chain triacylglycerols. The lipase of HBB 134 cleaved triolein at the 1- or 3-position. PMID:27012240

  7. Novel insertion mutation of ABCB1 gene in an ivermectin-sensitive Border Collie.

    PubMed

    Han, Jae-Ik; Son, Hyoung-Won; Park, Seung-Cheol; Na, Ki-Jeong

    2010-12-01

    P-glycoprotein (P-gp) is encoded by the ABCB1 gene and acts as an efflux pump for xenobiotics. In the Border Collie, a nonsense mutation caused by a 4-base pair deletion in the ABCB1 gene is associated with a premature stop to P-gp synthesis. In this study, we examined the full-length coding sequence of the ABCB1 gene in an ivermectin-sensitive Border Collie that lacked the aforementioned deletion mutation. The sequence was compared to the corresponding sequences of a wild-type Beagle and seven ivermectin-tolerant family members of the Border Collie. When compared to the wild-type Beagle sequence, that of the ivermectin-sensitive Border Collie was found to have one insertion mutation and eight single nucleotide polymorphisms (SNPs) in the coding sequence of the ABCB1 gene. While the eight SNPs were also found in the family members' sequences, the insertion mutation was found only in the ivermectin-sensitive dog. These results suggest the possibility that the SNPs are species-specific features of the ABCB1 gene in Border Collies, and that the insertion mutation may be related to ivermectin intolerance. PMID:21113104

  8. New novel mutation of the ATP7B gene in a family with Wilson disease.

    PubMed

    Lee, Jun-Young; Kim, Young-Hyun; Kim, Tae-Woo; Oh, Sun-Young; Kim, Dal-Sik; Shin, Byoung-Soo

    2012-02-15

    Wilson disease (WD) is an autosomal recessive disorder of copper metabolism. The WD gene codes for a copper transporting P-type ATPase (ATP7B) are located on chromosome 13q14.3. Mutation of this gene disrupts copper homeostasis, resulting in the accumulation of copper in the liver, brain, kidneys and corneas and copper toxication at these sites. Since the detection of the WD gene in 1993, approximately 300 disease-specific muations have been identified. We recently evaluated a Korean family with WD. The proband, a 17-year-old boy, visited our hospital due to abnormal behaviors including generalized slow movement, dysphagia, drooling and ataxia. Laboratory results revealed decreases in serum copper and ceruloplasmin and an increase in urinary excretion of copper. He had liver cirrhosis, brain lesions and Kayser-Fleischer corenal rings. Molecular genetic analysis of the ATP7B gene demonstrated that he was heterozygous for deletion mutation c.2697_2723del27 in exon 11. Further study of family members revealed that his father and younger brother had the same mutation. The c.2697_2723del27 deletion mutation in exon 11 has not yet been reported as a causative muation of WD and is an in-frame deletion not expected to lead to a frame shift. Therefore, we report a novel mutation of the ATP7B gene in a family with WD. PMID:22075048

  9. Genomic Approaches For the Discovery of Genes Mutated in Inherited Retinal Degeneration

    PubMed Central

    Siemiatkowska, Anna M.; Collin, Rob W.J.; den Hollander, Anneke I.; Cremers, Frans P.M.

    2014-01-01

    In view of their high degree of genetic heterogeneity, inherited retinal diseases (IRDs) pose a significant challenge for identifying novel genetic causes. Thus far, more than 200 genes have been found to be mutated in IRDs, which together contain causal variants in >80% of the cases. Accurate genetic diagnostics is particularly important for isolated cases, in which X-linked and de novo autosomal dominant variants are not uncommon. In addition, new gene- or mutation-specific therapies are emerging, underlining the importance of identifying causative mutations in each individual. Sanger sequencing of selected genes followed by cost-effective targeted next-generation sequencing (NGS) can identify defects in known IRD-associated genes in the majority of the cases. Exome NGS in combination with genetic linkage or homozygosity mapping studies can aid the identification of the remaining causal genes. As these are thought to be mutated in <1% of the cases, validation through functional modeling in, for example, zebrafish and/or replication through the genotyping of large patient cohorts is required. In the near future, whole genome NGS in combination with transcriptome NGS may reveal mutations that are currently hidden in the noncoding regions of the human genome. PMID:24939053

  10. Mutation Spectrum of Six Genes in Chinese Phenylketonuria Patients Obtained through Next-Generation Sequencing

    PubMed Central

    Cen, Zhong; Yu, Li; Lin, Lin; Hao, Jing; Yang, Zhigang; Peng, Jiabao; Cui, Shujian; Huang, Jian

    2014-01-01

    Background The identification of gene variants plays an important role in the diagnosis of genetic diseases. Methodology/Principal Findings To develop a rapid method for the diagnosis of phenylketonuria (PKU) and tetrahydrobiopterin (BH4) deficiency, we designed a multiplex, PCR-based primer panel to amplify all the exons and flanking regions (50 bp average) of six PKU-associated genes (PAH, PTS, GCH1, QDPR, PCBD1 and GFRP). The Ion Torrent Personal Genome Machine (PGM) System was used to detect mutations in all the exons of these six genes. We tested 93 DNA samples from blood specimens from 35 patients and their parents (32 families) and 26 healthy adults. Using strict bioinformatic criteria, this sequencing data provided, on average, 99.14% coverage of the 39 exons at more than 70-fold mean depth of coverage. We found 23 previously documented variants in the PAH gene and six novel mutations in the PAH and PTS genes. A detailed analysis of the mutation spectrum of these patients is described in this study. Conclusions/Significance These results were confirmed by Sanger sequencing. In conclusion, benchtop next-generation sequencing technology can be used to detect mutations in monogenic diseases and can detect both point mutations and indels with high sensitivity, fidelity and throughput at a lower cost than conventional methods in clinical applications. PMID:24705691

  11. Novel Mutations in MLH1 and MSH2 Genes in Mexican Patients with Lynch Syndrome

    PubMed Central

    Moreno-Ortiz, Jose Miguel; Ayala-Madrigal, María de la Luz; Corona-Rivera, Jorge Román; Maciel-Gutiérrez, Víctor; Franco-Topete, Ramón Antonio; Armendáriz-Borunda, Juan; Pérez-Carbonell, Lucia; Rhees, Jennifer; Gutiérrez-Angulo, Melva

    2016-01-01

    Background. Lynch Syndrome (LS) is characterized by germline mutations in the DNA mismatch repair (MMR) genes MLH1, MSH2, MSH6, and PMS2. This syndrome is inherited in an autosomal dominant pattern and is characterized by early onset colorectal cancer (CRC) and extracolonic tumors. The aim of this study was to identify mutations in MMR genes in three Mexican patients with LS. Methods. Immunohistochemical analysis was performed as a prescreening method to identify absent protein expression. PCR, Denaturing High Performance Liquid Chromatography (dHPLC), and Sanger sequencing complemented the analysis. Results. Two samples showed the absence of nuclear staining for MLH1 and one sample showed loss of nuclear staining for MSH2. The mutations found in MLH1 gene were c.2103+1G>C in intron 18 and compound heterozygous mutants c.1852_1854delAAG (p.K618del) and c.1852_1853delinsGC (p.K618A) in exon 16. In the MSH2 gene, we identified mutation c.638dupT (p.L213fs) in exon 3. Conclusions. This is the first report of mutations in MMR genes in Mexican patients with LS and these appear to be novel. PMID:27247567

  12. GeneChip{sup {trademark}} screening assay for cystic fibrosis mutations

    SciTech Connect

    Cronn, M.T.; Miyada, C.G.; Fucini, R.V.

    1994-09-01

    GeneChip{sup {trademark}} assays are based on high density, carefully designed arrays of short oligonucleotide probes (13-16 bases) built directly on derivatized silica substrates. DNA target sequence analysis is achieved by hybridizing fluorescently labeled amplification products to these arrays. Fluorescent hybridization signals located within the probe array are translated into target sequence information using the known probe sequence at each array feature. The mutation screening assay for cystic fibrosis includes sets of oligonucleotide probes designed to detect numerous different mutations that have been described in 14 exons and one intron of the CFTR gene. Each mutation site is addressed by a sub-array of at least 40 probe sequences, half designed to detect the wild type gene sequence and half designed to detect the reported mutant sequence. Hybridization with homozygous mutant, homozygous wild type or heterozygous targets results in distinctive hybridization patterns within a sub-array, permitting specific discrimination of each mutation. The GeneChip probe arrays are very small (approximately 1 cm{sup 2}). There miniature size coupled with their high information content make GeneChip probe arrays a useful and practical means for providing CF mutation analysis in a clinical setting.

  13. Two novel mutations in PEO1 (Twinkle) gene associated with chronic external ophthalmoplegia☆

    PubMed Central

    Ronchi, Dario; Fassone, Elisa; Bordoni, Andreina; Sciacco, Monica; Lucchini, Valeria; Di Fonzo, Alessio; Rizzuti, Mafalda; Colombo, Irene; Napoli, Laura; Ciscato, Patrizia; Moggio, Maurizio; Cosi, Alessandra; Collotta, Martina; Corti, Stefania; Bresolin, Nereo; Comi, Giacomo P.

    2011-01-01

    Maintenance and replication of mitochondrial DNA require the concerted action of several factors encoded by nuclear genome. The mitochondrial helicase Twinkle is a key player of replisome machinery. Heterozygous mutations in its coding gene, PEO1, are associated with progressive external ophthalmoplegia (PEO) characterised by ptosis and ophthalmoparesis, with cytochrome c oxidase (COX)-deficient fibres, ragged-red fibres (RRF) and multiple mtDNA deletions in muscle. Here we describe clinical, histological and molecular features of two patients presenting with mitochondrial myopathy associated with PEO. PEO1 sequencing disclosed two novel mutations in exons 1 and 4 of the gene, respectively. Although mutations in PEO1 exon 1 have already been described, this is the first report of mutation occurring in exon 4. PMID:21689831

  14. Mutations of the E-cadherin gene in human gynecologic cancers.

    PubMed

    Risinger, J I; Berchuck, A; Kohler, M F; Boyd, J

    1994-05-01

    Expression of the E-cadherin cell adhesion molecule is reduced in several types of human carcinomas, and the protein serves as an invasion suppressor in vitro. To determine if mutations of the E-cadherin gene (on chromosome 16q22) contribute to epithelial tumorigenesis, 135 carcinomas of the endometrium and ovary were examined for alterations in the E-cadherin coding region. Four mutations were identified: one somatic nonsense and one somatic missense mutation, both with retention of the wild-type alleles, and two missense mutations with somatic loss of heterozygosity in the tumour tissue. These data support the classification of E-cadherin as a human tumour suppressor gene. PMID:8075649

  15. A novel nonsense mutation of the KAL1 gene (p.Trp204*) in Kallmann syndrome

    PubMed Central

    El Husny, Antonette Souto; Raiol-Moraes, Milene; Fernandes-Caldato, Milena Coelho; Ribeiro-dos-Santos, Ândrea

    2014-01-01

    Objective To describe a novel KAL1 mutation in patients affected by Kallmann syndrome. Setting Endocrinology Clinic of the João de Barros Barreto University Hospital – Federal University of Pará, Brazil. Methods Clinical examination, hormone assays and sequencing of exons 5, 6 and 9 of the KAL1 gene in four Brazilian brothers with Kallmann syndrome. Results Detected a novel KAL1 mutation, c.612G.A/p.Trp204*, in four hemizygous brothers with Kallmann syndrome, and five heterozygous female family members. Conclusion The novel p.Trp204* mutation of the KAL1 gene results in the production of a truncated anosmin-1 enzyme in patients with Kallmann syndrome. This finding broadens the spectrum of pathogenic mutations for this disease. PMID:25328414

  16. Novel splicing mutation in the ASXL3 gene causing Bainbridge-Ropers syndrome.

    PubMed

    Hori, Ikumi; Miya, Fuyuki; Ohashi, Kei; Negishi, Yutaka; Hattori, Ayako; Ando, Naoki; Okamoto, Nobuhiko; Kato, Mitsuhiro; Tsunoda, Tatsuhiko; Yamasaki, Mami; Kanemura, Yonehiro; Kosaki, Kenjiro; Saitoh, Shinji

    2016-07-01

    Bainbridge-Ropers syndrome (BRPS) is characterized by severe developmental delay, feeding problems, short stature, characteristic facal appearance including arched eyebrows and anteverted nares, and ulnar deviation of the hands. BRPS is caused by a heterozygous mutation in the additional sex combs-like 3 (ASXL3) gene. We describe a patient with severe developmental delay, feeding problems, short stature, autism, and sleep disturbance with a heterozygous de novo splicing mutation in the ASXL3 gene. Reported disease-causing mutations in ASXL3 are located mostly in the first half of exon 11, analogous to ASXL1 mutations of which result in Bohring-Opitz syndrome (BOS). Our findings suggest that the expression of the truncated ASXL3 protein, including ASXN and ASXH domains, give rise to BRPS, which is distinct from but overlaps with BOS. © 2016 Wiley Periodicals, Inc. PMID:27075689

  17. Novel mutation of the NOTCH3 gene in a Polish family with CADASIL.

    PubMed

    Buczek, Julia; Błażejewska-Hyżorek, Beata; Cudna, Agnieszka; Lusawa, Małgorzata; Lewandowska, Eliza; Kurkowska-Jastrzębska, Iwona; Członkowska, Anna

    2016-01-01

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is an inherited small blood vessels disease caused by mutations in the gene encoding the neurogenic locus notch homolog protein 3 (NOTCH 3). We present a Polish family with a previously unreported novel mutation in exon 12 c.1851C>C/G of the NOTCH3 gene and varying disease expression. One of the two family members with the confirmed mutation presented with all the main CADASIL symptoms; while, his affected father was nearly asymptomatic. Both family members had epilepsy, coronary artery disease, and abdominal aorta aneurysm. Our observation confirms there is phenotypic variability in CADASIL not only between, but also within, families carrying the same mutation. PMID:27375140

  18. Currarino syndrome: variable imaging features in three siblings with HLXB9 gene mutation.

    PubMed

    Kim, Ah Yeong; Yoo, So-Young; Kim, Ji Hye; Eo, Hong; Jeon, Tae Yeon

    2013-01-01

    Currarino syndrome (CS) is characterized by the triad of partial sacral defect, anorectal malformation, and presacral mass and has been recently reported to be associated with mutations in the HLXB9 gene, which have been suggested to be the genetic background of CS. Phenotypic expression of the HLXB9 gene mutation in a CS family varies from an incomplete to a complete triad. We present variable clinical and imaging features of CS in three siblings with genetically identified HLXB9 mutation. Clinical presentation, management and outcome were also reviewed, and we suggest that magnetic resonance imaging should be used as a screening tool in the members of a CS family with genetic mutation in order to avoid morbidity and mortality from an undiagnosed presacral mass. PMID:23466002

  19. The interplay of mutations and electronic properties in disease-related genes

    NASA Astrophysics Data System (ADS)

    Shih, Chi-Tin; Wells, Stephen A.; Hsu, Ching-Ling; Cheng, Yun-Yin; Römer, Rudolf A.

    2012-02-01

    Electronic properties of DNA are believed to play a crucial role in many phenomena in living organisms, for example the location of DNA lesions by base excision repair (BER) glycosylases and the regulation of tumor-suppressor genes such as p53 by detection of oxidative damage. However, the reproducible measurement and modelling of charge migration through DNA molecules at the nanometer scale remains a challenging and controversial subject even after more than a decade of intense efforts. Here we show, by analysing 162 disease-related genes from a variety of medical databases with a total of almost 20,000 observed pathogenic mutations, a significant difference in the electronic properties of the population of observed mutations compared to the set of all possible mutations. Our results have implications for the role of the electronic properties of DNA in cellular processes, and hint at the possibility of prediction, early diagnosis and detection of mutation hotspots.

  20. A novel CHSY1 gene mutation underlies Temtamy preaxial brachydactyly syndrome in a Pakistani family.

    PubMed

    Sher, Gulab; Naeem, Muhammad

    2014-01-01

    Temtamy preaxial brachydactyly syndrome (TPBS) is an autosomal recessive rare disorder characterized by hyperphalangism of digits, facial dysmorphism, dental anomalies, sensorineural hearing loss, delayed motor and mental development, and growth retardation. Loss of function mutations have been recently reported in the CHSY1 gene to cause the TPBS. Here, we report a novel missense mutation (c.1897 G > A) in the CHSY1 gene in two TPBS patients from a consanguineous Pakistani family. The mutation predicted substitution of a highly conserved aspartate amino acid residue to asparagine at position 633 in the protein (D633N). Polyphen analysis supported the pathogenicity of D36N mutation. Our finding extends the body of recent evidence that supports the role of CHSY1 as a potential mediator of BMP signaling. PMID:24269551

  1. An unusual mutation in RECQ4 gene leading to Rothmund-Thomson syndrome.

    PubMed

    Balraj, Pauline; Concannon, Pat; Jamal, Rahman; Beghini, Alessandro; Hoe, T S; Khoo, Alan Soobeng; Volpi, Ludovica

    2002-10-31

    Rothmund-Thomson syndrome (OMIM #268400) is a severe autosomal recessive genodermatosis: characterised by growth retardation, hyperpigmentation and frequently accompanied by congenital bone defects, brittle hair and hypogonadism. Mutations in helicase RECQ4 gene are responsible for a subset of cases of RTS. Only six mutations have been reported, thus, far and each affecting the coding sequence or the splice junctions. We report the first homozygous mutation in RECQ4 helicase: 2746-2756-delTGGGCTGAGGC in IVS8 responsible for the severe phenotype associated with RTS in a Malaysian pedigree. We report also a 5321 G-->A transition in exon 17 and the updated list of the RECQ4 gene mutations. PMID:12379465

  2. A Novel Missense Mutation in CLCN1 Gene in a Family with Autosomal Recessive Congenital Myotonia.

    PubMed

    Miryounesi, Mohammad; Ghafouri-Fard, Soudeh; Fardaei, Majid

    2016-09-01

    Congenital recessive myotonia is a rare genetic disorder caused by mutations in CLCN1, which codes for the main skeletal muscle chloride channel ClC-1. More than 120 mutations have been found in this gene. The main feature of this disorder is muscle membrane hyperexcitability. Here, we report a 59-year male patient suffering from congenital myotonia. He had transient generalized myotonia, which started in early childhood. We analyzed CLCN1 sequence in this patient and other members of his family. We found a new missense mutation in CLCN1 gene (c.1886T>C, p.Leu629Pro). Co-segregation of this mutation with the disease was demonstrated by direct sequencing of the fragment in affected as well as unaffected members of this family. In addition, in silico analyses predicted that this nucleotide change would impair the protein function. Thus, this new nucleotide variation can be used for prenatal diagnosis in this family. PMID:27582597

  3. Multiple mutations in a specific gene in a small geographic area: A common phenomenon

    SciTech Connect

    Zlotogora, J.; Bach, G.; Gieselmann, V.

    1996-01-01

    We read with interest the article from Allamand et al., which demonstrates in a genetic isolate the presence of at least six different haplotypes in the limb-girdle muscular dystrophy type 2A chromosome. Several hypotheses were proposed by the authors to explain this finding, but, after the identification of calpain, the gene involved in the disorder, multiple mutations were proved to be at the origin of this observation. The authors proposed that both the presence of multiple distinct calpain mutations within the Reunion Island pedigrees and the relatively low frequency of the disease in the isolate may be explained by a digenic inheritance of the disorder. Their hypothesis postulates that, although calpain mutations may be frequent in all populations, the disease manifestations are controlled by another frequently mutated nuclear or mitochondrial gene in the Reunion isolate. 8 refs.

  4. A Novel Missense Mutation in CLCN1 Gene in a Family with Autosomal Recessive Congenital Myotonia

    PubMed Central

    Miryounesi, Mohammad; Ghafouri-Fard, Soudeh; Fardaei, Majid

    2016-01-01

    Congenital recessive myotonia is a rare genetic disorder caused by mutations in CLCN1, which codes for the main skeletal muscle chloride channel ClC-1. More than 120 mutations have been found in this gene. The main feature of this disorder is muscle membrane hyperexcitability. Here, we report a 59-year male patient suffering from congenital myotonia. He had transient generalized myotonia, which started in early childhood. We analyzed CLCN1 sequence in this patient and other members of his family. We found a new missense mutation in CLCN1 gene (c.1886T>C, p.Leu629Pro). Co-segregation of this mutation with the disease was demonstrated by direct sequencing of the fragment in affected as well as unaffected members of this family. In addition, in silico analyses predicted that this nucleotide change would impair the protein function. Thus, this new nucleotide variation can be used for prenatal diagnosis in this family. PMID:27582597

  5. The stop mutation R553X in the CFTR gene results in exon skipping

    SciTech Connect

    Hull, J.; Shackleton, S.; Harris, A. )

    1994-01-15

    Stop or nonsense mutations are known to disrupt gene function in a number of different ways. The authors have studied the effects of the stop mutation R553X in exon 11 of the CFTR gene by analyzing mRNA extracted from nasal epithelial cells harvested from patients with cystic fibrosis. Four patients who were compound heterozygotes for the R553X mutation were studied. Ten non-CF control subjects were also studied. In all four patients, full-length CFTR mRNA was identified, but only a very small proportion of this was derived from the R553X allele. A smaller transcript, lacking exon 11, was also seen in the R553X patients but not in the controls. Most of this transcript was derived from the R553X allele. These results suggest that the R553X mutation results in skipping of the exon in which it is located. 14 refs., 3 figs.

  6. Nocturnal frontal lobe epilepsy caused by a mutation in the GATOR1 complex gene NPRL3.

    PubMed

    Korenke, Georg-Christoph; Eggert, Marlene; Thiele, Holger; Nürnberg, Peter; Sander, Thomas; Steinlein, Ortrud K

    2016-03-01

    Mutations in NPRL3, one of three genes that encode proteins of the mTORC1-regulating GATOR1 complex, have recently been reported to cause cortical dysplasia with focal epilepsy. We have now analyzed a multiplex epilepsy family by whole exome sequencing and identified a frameshift mutation (NM_001077350.2; c.1522delG; p.E508Rfs*46) within exon 13 of NPRL3. This truncating mutation causes an epilepsy phenotype characterized by early childhood onset of mainly nocturnal frontal lobe epilepsy. The penetrance in our family was low (three affected out of six mutation carriers), compared to families with either ion channel- or DEPDC5-associated familial nocturnal frontal lobe epilepsy. The absence of apparent structural brain abnormalities suggests that mutations in NPRL3 are not necessarily associated with focal cortical dysplasia but might be able to cause epilepsy by different, yet unknown pathomechanisms. PMID:26786403

  7. Screening analysis of candidate gene mutations in a kindred with polycystic liver disease

    PubMed Central

    Jin, Song; Cui, Kai; Sun, Zi-Qiang; Shen, Yang-Yang; Li, Pang; Wang, Zhen-Dan; Li, Fei-Fei; Gong, Ke-Nan; Li, Sheng

    2015-01-01

    AIM: To find potential mutable sites by detecting mutations of the candidate gene in a kindred with polycystic liver disease (PCLD). METHODS: First, we chose a kindred with PCLD and obtained five venous blood samples of this kindred after the family members signed the informed consent form. In the kindred two cases were diagnosed with PCLD, and the left three cases were normal individuals. All the blood samples were preserved at -85 °C. Second, we extracted the genomic DNA from the venous blood samples of the kindred using a QIAamp DNA Mini Kit and then performed long-range polymerase chain reaction (PCR) with different primers. The exons of PKD1 were all sequenced with the forward and reverse primers to ensure the accuracy of the results. Next, we purified the PCR products and directly sequenced them using Big Dye Terminator Chemistry version 3.1. The sequencing reaction was conducted with BiomekFX (Beckman). Finally, we analyzed the results. RESULTS: A total of 42 normal exons were identified in detecting mutations of the PKD1 gene. A synonymous mutation occurred in exon 5. The mutation was a homozygous T in the proband and was C in the reference sequence. This mutation was located in the third codon and did not change the amino acid encoded by the codon. Missense mutations occurred in exons 11 and 35. These mutations were located in the second codon; they changed the amino acid sequence and existed in the dbSNP library. A nonsense mutation occurred in exon 15. The mutation was a heterozygous CT in the proband and was C in the reference sequence. This mutation was located in the first codon and resulted in a termination codon. This mutation had an obvious influence on the encoded protein and changed the length of the protein from 4303 to 2246 amino acids. This was a new mutation that was not present in the dbSNP library. CONCLUSION: The nonsense mutation of exon 15 existed in the proband and in the third individual. Additionally, the proband was heterozygous

  8. Improved mutation tagging with gene identifiers applied to membrane protein stability prediction

    PubMed Central

    Winnenburg, Rainer; Plake, Conrad; Schroeder, Michael

    2009-01-01

    Background The automated retrieval and integration of information about protein point mutations in combination with structure, domain and interaction data from literature and databases promises to be a valuable approach to study structure-function relationships in biomedical data sets. Results We developed a rule- and regular expression-based protein point mutation retrieval pipeline for PubMed abstracts, which shows an F-measure of 87% for the mutation retrieval task on a benchmark dataset. In order to link mutations to their proteins, we utilize a named entity recognition algorithm for the identification of gene names co-occurring in the abstract, and establish links based on sequence checks. Vice versa, we could show that gene recognition improved from 77% to 91% F-measure when considering mutation information given in the text. To demonstrate practical relevance, we utilize mutation information from text to evaluate a novel solvation energy based model for the prediction of stabilizing regions in membrane proteins. For five G protein-coupled receptors we identified 35 relevant single mutations and associated phenotypes, of which none had been annotated in the UniProt or PDB database. In 71% reported phenotypes were in compliance with the model predictions, supporting a relation between mutations and stability issues in membrane proteins. Conclusion We present a reliable approach for the retrieval of protein mutations from PubMed abstracts for any set of genes or proteins of interest. We further demonstrate how amino acid substitution information from text can be utilized for protein structure stability studies on the basis of a novel energy model. PMID:19758467

  9. Four novel mutations in the lactase gene (LCT) underlying congenital lactase deficiency (CLD)

    PubMed Central

    2009-01-01

    Background Congenital lactase deficiency (CLD) is a severe gastrointestinal disorder of newborns. The diagnosis is challenging and based on clinical symptoms and low lactase activity in intestinal biopsy specimens. The disease is enriched in Finland but is also present in other parts of the world. Mutations encoding the lactase (LCT) gene have recently been shown to underlie CLD. The purpose of this study was to identify new mutations underlying CLD in patients with different ethnic origins, and to increase awareness of this disease so that the patients could be sought out and treated correctly. Methods Disaccharidase activities in intestinal biopsy specimens were assayed and the coding region of LCT was sequenced from five patients from Europe with clinical features compatible with CLD. In the analysis and prediction of mutations the following programs: ClustalW, Blosum62, PolyPhen, SIFT and Panther PSEC were used. Results Four novel mutations in the LCT gene were identified. A single nucleotide substitution leading to an amino acid change S688P in exon 7 and E1612X in exon 12 were present in a patient of Italian origin. Five base deletion V565fsX567 leading to a stop codon in exon 6 was found in one and a substitution R1587H in exon 12 from another Finnish patient. Both Finnish patients were heterozygous for the Finnish founder mutation Y1390X. The previously reported mutation G1363S was found in a homozygous state in two siblings of Turkish origin. Conclusion This is the first report of CLD mutations in patients living outside Finland. It seems that disease is more common than previously thought. All mutations in the LCT gene lead to a similar phenotype despite the location and/or type of mutation. PMID:19161632

  10. A Novel c.554+5C>T Mutation in the DUOXA2 Gene Combined with p.R885Q Mutation in the DUOX2 Gene Causing Congenital Hypothyroidism.

    PubMed

    Zheng, Xiao; Ma, Shao Gang; Qiu, Ya Li; Guo, Man Li; Shao, Xiao Juan

    2016-06-01

    The coexistence of mutations in the dual oxidase maturation factor 2 (DUOXA2) and dual oxidase 2 (DUOX2) genes is rarely identified in congenital hypothyroidism (CH). This study reports a boy with CH due to a novel splice-site mutation in the DUOXA2 gene and a missense mutation in the DUOX2 gene. A four-year-old boy was diagnosed with CH at neonatal screening and was enrolled in this study. The DUOXA2, DUOX2, thyroid peroxidase (TPO), and thyrotropin receptor (TSHR) genes were considered for genetic defects screening. Genomic DNA was extracted from peripheral blood leukocytes, and Sanger sequencing was used to screen the mutations in the exon fragments. Family members of the patient and the controls were also enrolled and evaluated. The boy harbored compound heterozygous mutations including a novel splice-site mutation c.554+5C>T in the maternal DUOXA2 allele and c.2654G>A (p.R885Q) in the paternal DUOX2 allele. The germline mutations from his parents were consistent with an autosomal recessive inheritance pattern. No mutations in the TPO and TSHR genes were detected. A novel splice-site mutation c.554+5C>T in the DUOXA2 gene and a mutation p.R885Q in the DUOX2 gene were identified in a 4-year-old patient with goitrous CH. PMID:26758695

  11. Feature genes predicting the FLT3/ITD mutation in acute myeloid leukemia

    PubMed Central

    LI, CHENGLONG; ZHU, BIAO; CHEN, JIAO; HUANG, XIAOBING

    2016-01-01

    In the present study, gene expression profiles of acute myeloid leukemia (AML) samples were analyzed to identify feature genes with the capacity to predict the mutation status of FLT3/ITD. Two machine learning models, namely the support vector machine (SVM) and random forest (RF) methods, were used for classification. Four datasets were downloaded from the European Bioinformatics Institute, two of which (containing 371 samples, including 281 FLT3/ITD mutation-negative and 90 mutation-positive samples) were randomly defined as the training group, while the other two datasets (containing 488 samples, including 350 FLT3/ITD mutation-negative and 138 mutation-positive samples) were defined as the test group. Differentially expressed genes (DEGs) were identified by significance analysis of the micro-array data by using the training samples. The classification efficiency of the SCM and RF methods was evaluated using the following parameters: Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and the area under the receiver operating characteristic curve. Functional enrichment analysis was performed for the feature genes with DAVID. A total of 585 DEGs were identified in the training group, of which 580 were upregulated and five were downregulated. The classification accuracy rates of the two methods for the training group, the test group and the combined group using the 585 feature genes were >90%. For the SVM and RF methods, the rates of correct determination, specificity and PPV were >90%, while the sensitivity and NPV were >80%. The SVM method produced a slightly better classification effect than the RF method. A total of 13 biological pathways were overrepresented by the feature genes, mainly involving energy metabolism, chromatin organization and translation. The feature genes identified in the present study may be used to predict the mutation status of FLT3/ITD in patients with AML. PMID:27177049

  12. Muscular dystrophy with marked Dysferlin deficiency is consistently caused by primary dysferlin gene mutations

    PubMed Central

    Cacciottolo, Mafalda; Numitone, Gelsomina; Aurino, Stefania; Caserta, Imma Rosaria; Fanin, Marina; Politano, Luisa; Minetti, Carlo; Ricci, Enzo; Piluso, Giulio; Angelini, Corrado; Nigro, Vincenzo

    2011-01-01

    Dysferlin is a 237-kDa transmembrane protein involved in calcium-mediated sarcolemma resealing. Dysferlin gene mutations cause limb-girdle muscular dystrophy (LGMD) 2B, Miyoshi myopathy (MM) and distal myopathy of the anterior tibialis. Considering that a secondary Dysferlin reduction has also been described in other myopathies, our original goal was to identify cases with a Dysferlin deficiency without dysferlin gene mutations. The dysferlin gene is huge, composed of 55 exons that span 233 140 bp of genomic DNA. We performed a thorough mutation analysis in 65 LGMD/MM patients with ≤20% Dysferlin. The screening was exhaustive, as we sequenced both genomic DNA and cDNA. When required, we used other methods, including real-time PCR, long PCR and array CGH. In all patients, we were able to recognize the primary involvement of the dysferlin gene. We identified 38 novel mutation types. Some of these, such as a dysferlin gene duplication, could have been missed by conventional screening strategies. Nonsense-mediated mRNA decay was evident in six cases, in three of which both alleles were only detectable in the genomic DNA but not in the mRNA. Among a wide spectrum of novel gene defects, we found the first example of a ‘nonstop' mutation causing a dysferlinopathy. This study presents the first direct and conclusive evidence that an amount of Dysferlin ≤20% is pathogenic and always caused by primary dysferlin gene mutations. This demonstrates the high specificity of a marked reduction of Dysferlin on western blot and the value of a comprehensive molecular approach for LGMD2B/MM diagnosis. PMID:21522182

  13. Molecular and clinical studies in five index cases with novel mutations in the GLA gene.

    PubMed

    Zizzo, Carmela; Monte, Ines; Pisani, Antonio; Fatuzzo, Pasquale; Riccio, Eleonora; Rodolico, Margherita Stefania; Colomba, Paolo; Uva, Maurizio; Cammarata, Giuseppe; Alessandro, Riccardo; Iemolo, Francesco; Duro, Giovanni

    2016-03-01

    Fabry disease is a metabolic and lysosomal storage disorder caused by the functional defect of the α-galactosidase A enzyme; this defect is due to mutations in the GLA gene, that is composed of seven exons and is located on the long arm of the X-chromosome (Xq21-22). The enzymatic deficit is responsible for the accumulation of glycosphingolipids in lysosomes of different cellular types, mainly in those ones of vascular endothelium. It consequently causes a cellular and microvascular dysfunction. In this paper, we described five novel mutations in the GLA gene, related to absent enzymatic activity and typical manifestations of Fabry disease. We identified three mutations (c.846_847delTC, p.E341X and p.C382X) that lead to the introduction of a stop codon in positions 297, 341 and 382. Moreover we found a missense mutation (p.R227P) in the exon 5 of the GLA gene and a single point mutation (c.639+5 G>T) occurring five base pairs beyond the end of the exon 4. These mutations have never been found in our group of healthy control subjects >2300. The studied patients presented some clinical manifestations, such as cornea verticillata, hypo-anhidrosis, left ventricular hypertrophy, cerebrovascular disorders and renal failure, that, considering the null enzymatic activity, suggest that the new mutations reported here are related to the classic form of Fabry disease. The identification of novel mutations in patients with symptomatology referable to FD increases the molecular knowledge of the GLA gene and it gives clinicians an important support for the proper diagnosis of the disease. PMID:26691501

  14. Acral peeling skin syndrome associated with a novel CSTA gene mutation.

    PubMed

    Muttardi, K; Nitoiu, D; Kelsell, D P; O'Toole, E A; Batta, K

    2016-06-01

    Acral peeling skin syndrome (APSS) is a rare autosomal recessive condition, characterized by asymptomatic peeling of the skin of the hands and feet, often linked to mutations in the gene TGM5. However, more recently recessive loss of function mutations in CSTA, encoding cystatin A, have been linked with APSS and exfoliative ichthyosis. We describe the clinical features in two sisters with APSS, associated with a novel large homozygous deletion encompassing exon 1 of CSTA. PMID:26684698

  15. The role of mutation of metabolism-related genes in genomic hypermethylation.

    PubMed

    Waterfall, Joshua J; Killian, J Keith; Meltzer, Paul S

    2014-12-01

    Genetic mutations, metabolic dysfunction, and epigenetic misregulation are commonly considered to play distinct roles in tumor development and maintenance. However, intimate relationships between these mechanisms are now emerging. In particular, mutations in genes for the core metabolic enzymes IDH, SDH, and FH are significant drivers of diverse tumor types. In each case, the resultant accumulation of particular metabolites inhibits TET enzymes responsible for oxidizing 5-methylcytosine, leading to pervasive DNA hypermethylation. PMID:25111818

  16. p16 and K-ras gene mutations in the intraductal precursors of human pancreatic adenocarcinoma.

    PubMed

    Moskaluk, C A; Hruban, R H; Kern, S E

    1997-06-01

    Pancreatic adenocarcinoma is thought to arise from a noninvasive neoplastic precursor, the pancreatic intraductal lesion (PIL). Mutations of the K-ras gene are known to occur in PILs, but their high prevalence among PILs within the general population probably limit the use of K-ras as a marker of eventual clinical risk. In search of genetic constellations that might indicate the progression of some PILs toward an invasive phenotype, mutations at both the K-ras and p16 genes were sought within PILs of 10 pancreata resected for adenocarcinoma. K-ras mutations were present in most PILs and in nearly all PILs having nuclear atypia. In half of the patients, two or more unique K-ras mutations were identified among distinct PILs, which is evidence for the separate clonal evolution of multiple pancreatic neoplasms within individual patients. p16 alterations (one homozygous deletion and three point mutations) were found in 4 of the 10 carcinomas; these four pancreata harbored p16 alterations in three of nine PILs, of which one was a "histologically early" lesion. Two patients had p16 alterations in PILs matching those of the associated carcinomas. p16 mutations were not found in PILs of pancreata having wild-type p16 in the carcinoma, nor were they found in ducts having normal histology. It is suggested that alterations of the p16 gene affect a subset of PILs that contain mutations of the K-ras gene and that these mutations might identify high-risk precursors of the invasive malignancy. PMID:9187111

  17. Mutation Analysis of the LH Receptor Gene in Leydig Cell Adenoma and Hyperplasia and Functional and Biochemical Studies of Activating Mutations of the LH Receptor Gene

    PubMed Central

    Lumbroso, Serge; Verhoef-Post, Miriam; Richter-Unruh, Annette; Looijenga, Leendert H. J.; Funaro, Ada; Beishuizen, Auke; van Marle, André; Drop, Stenvert L. S.; Themmen, Axel P. N.

    2011-01-01

    Context: Germline and somatic activating mutations in the LH receptor (LHR) gene have been reported. Objective: Our objective was to perform mutation analysis of the LHR gene of patients with Leydig cell adenoma or hyperplasia. Functional studies were conducted to compare the D578H-LHR mutant with the wild-type (WT)-LHR and the D578G-LHR mutant, a classic cause of testotoxicosis. The three main signal transduction pathways in which LHR is involved were studied. Patients: We describe eight male patients with gonadotropin-independent precocious puberty due to Leydig cell adenoma or hyperplasia. Results: The D578H-LHR mutation was found in the adenoma or nodule with hyperplasia in all but two patients. D578H-LHR displayed a constitutively increased but noninducible production of cAMP, led to a very high production of inositol phosphates, and induced a slight phosphorylation of p44/42 MAPK in the absence of human chorionic gonadotropin. The D578G-LHR showed a response intermediate between WT-LHR and the D578H-LHR. Subcellular localization studies showed that the WT-LHR was almost exclusively located at the cell membrane, whereas the D578H-LHR showed signs of internalization. D578H-LHR was the only receptor to colocalize with early endosomes in the absence of human chorionic gonadotropin. Conclusions: Although several LHR mutations have been reported in testotoxicosis, the D578H-LHR mutation, which has been found only as a somatic mutation, appears up until now to be specifically responsible for Leydig cell adenomas. This is reflected by the different activation of the signal transduction pathways, when compared with the WT-LHR or D578G-LHR, which may explain the tumorigenesis in the D578H mutant. PMID:21490077

  18. Frequent NF2 gene transcript mutations in sporadic meningiomas and vestibular schwannomas

    SciTech Connect

    Deprez, R.H.L.; Groen, N.A.; Zwarthoff, E.C.; Hagemeijer, A.; Van Drunen, E.; Bootsma, D.; Koper, J.W.; Avezaat, C.J.J. ); Bianchi, A.B.; Seizinger, B.R. )

    1994-06-01

    The gene for the hereditary disorder neurofibromatosis type 2 (NF2), which predisposes for benign CNS tumors such as vestibular schwannomas and meningiomas, has been assigned to chromosome 22 and recently has been isolated. Mutations in the NF2 gene were found in both sporadic meningiomas and vestibular schwannomas. However, so far only 6 of the 16 exons of the gene have been analyzed. In order to extend the analysis of an involvement of the NF2 gene in the sporadic counterparts of these NF2-related tumors, the authors have used reverse transcriptase-PCR amplification followed by SSCP and DNA sequence analysis to screen for mutations in the coding region of the NF2 gene. Analysis of the NF2 gene transcript in 53 unrelated patients with meningiomas and vestibular schwannomas revealed mutations in 32% of the sporadic meningiomas (n = 44), in 50% of the sporadic vestibular schwannomas (n = 4), in 100% of the tumors found in NF2 patients (n = 2), and in one of three tumors from multiple-meningioma patients. Of the 18 tumors in which a mutation in the NF2 gene transcript was observed and the copy number of chromosome 22 could be established, 14 also showed loss of (parts of) chromosome 22. This suggests that in sporadic meningiomas and NF2-associated tumors the NF2 gene functions as a recessive tumor-suppressor gene. The mutations detected resulted mostly in frameshifts, predicting truncations starting within the N-terminal half of the putative protein. 23 refs., 2 figs. 3 tabs.

  19. Clinical Manifestation of Calreticulin Gene Mutations in Essential Thrombocythemia without Janus Kinase 2 and MPL Mutations: A Chinese Cohort Clinical Study

    PubMed Central

    Sun, Chao; Zhou, Xin; Zou, Zhi-Jian; Guo, Hong-Feng; Li, Jian-Yong; Qiao, Chun

    2016-01-01

    Background: Recently, calreticulin (CALR) gene mutations have been identified in patients with essential thrombocythemia (ET). A high-frequency of ET cases without Janus kinase 2 (JAK2) mutations contain CALR mutations and exhibit clinical characteristics different from those with mutant JAK2. Thus, we investigated the frequency and clinical features of Chinese patients of Han ethnicity with CALR mutations in ET. Methods: We recruited 310 Chinese patients of Han ethnicity with ET to analyze states of CALR, JAK2V617F, and MPLW515 mutations by polymerase chain reaction and direct sequencing. We analyzed the relationship between the mutations and clinical features. Results: CALR, JAK2V617F, and MPLW515 mutations were detected in 30% (n = 92), 48% (n = 149), and 1% (n = 4) of patients with ET, respectively. The mutation types of CALR involved deletion and insertion of base pairs. Most of them were Type 1 (52-bp deletion) and Type 2 (5-bp insertion, TTGTC) mutations, leading to del367fs46 and ins385fs47, respectively. The three mutations were exclusive. Clinically, patients with mutated CALR had a lower hemoglobin level, lower white blood cell (WBC) count, and higher platelet count compared to those with mutated JAK2 (P < 0.05). Furthermore, a significant difference was found in WBCs between wild-type patients (triple negative for JAK2, MPL, and CALR mutations) and patients with JAK2 mutations. Patients with CALR mutations predominantly clustered into low or intermediate groups according to the International Prognostic Score of thrombosis for ET (P < 0.05). Conclusions: CALR mutations were frequent in Chinese patients with ET, especially in those without JAK2 or MPL mutations. Compared with JAK2 mutant ET, CALR mutant ET showed a different clinical manifestation and an unfavorable prognosis. Thus, CALR is a potentially valuable diagnostic marker and therapeutic target in ET. PMID:27453224

  20. dBRWD3 Regulates Tissue Overgrowth and Ectopic Gene Expression Caused by Polycomb Group Mutations.

    PubMed

    Shih, Hsueh-Tzu; Chen, Wei-Yu; Liu, Kwei-Yan; Shih, Zong-Siou; Chen, Yi-Jyun; Hsieh, Paul-Chen; Kuo, Kuan-Lin; Huang, Kuo-How; Hsu, Pang-Hung; Liu, Ya-Wen; Chan, Shih-Peng; Lee, Hsiu-Hsiang; Tsai, Yu-Chen; Wu, June-Tai

    2016-09-01

    To maintain a particular cell fate, a unique set of genes should be expressed while another set is repressed. One way to repress gene expression is through Polycomb group (PcG) proteins that compact chromatin into a silent configuration. In addition to cell fate maintenance, PcG proteins also maintain normal cell physiology, for example cell cycle. In the absence of PcG, ectopic activation of the PcG-repressed genes leads to developmental defects and malignant tumors. Little is known about the molecular nature of ectopic gene expression; especially what differentiates expression of a given gene in the orthotopic tissue (orthotopic expression) and the ectopic expression of the same gene due to PcG mutations. Here we present that ectopic gene expression in PcG mutant cells specifically requires dBRWD3, a negative regulator of HIRA/Yemanuclein (YEM)-mediated histone variant H3.3 deposition. dBRWD3 mutations suppress both the ectopic gene expression and aberrant tissue overgrowth in PcG mutants through a YEM-dependent mechanism. Our findings identified dBRWD3 as a critical regulator that is uniquely required for ectopic gene expression and aberrant tissue overgrowth caused by PcG mutations. PMID:27588417

  1. Role of p53 gene mutations in human esophageal carcinogenesis: results from immunohistochemical and mutation analyses of carcinomas and nearby non-cancerous lesions.

    PubMed

    Shi, S T; Yang, G Y; Wang, L D; Xue, Z; Feng, B; Ding, W; Xing, E P; Yang, C S

    1999-04-01

    In order to characterize p53 alterations in esophageal cancer and to study their roles in carcinogenesis, we performed gene mutation and immunohistochemical analysis on 43 surgically resected human esophageal specimens, which contain squamous cell carcinoma (SCC) and adjacent non-cancerous lesions, from a high-incidence area of Linzhou in Henan, China. A newly developed immunohisto-selective sequencing (IHSS) method was used to enrich the p53 immunostain-positive cells for mutation analysis. p53 gene mutations were detected in 30 out of 43 (70%) SCC cases. Among 29 SCC cases that were stained positive for p53 protein, 25 (86%) were found to contain p53 mutations. In five cases of SCC with homogeneous p53 staining, the same mutation was observed in samples taken from four different positions of each tumor. In a well differentiated cancer nest, p53 mutation was detected in only the peripheral p53-positive cells. In tumor areas with heterogeneous p53 staining, either the area stained positive for p53 had an additional mutation to the negatively stained area or both areas lacked any detectable p53 mutation. In the p53-positive non-cancerous lesions adjacent to cancer, p53 mutations were detected in seven out of 16 (47%) samples with basal cell hyperplasia (BCH), eight out of 12 (67%) samples with dysplasia (DYS), and six out of seven (86%) samples with carcinoma in situ (CIS). All mutations found in lesions with DYS and CIS were the same as those in the nearby SCC. In seven cases of BCH containing mutations, only three had the same mutations as the nearby SCC. The results suggest that p53 mutation is an early event in esophageal carcinogenesis occurring in most of the DYS and CIS lesions, and cells with such mutations will progress to carcinoma, whereas the role of p53 mutations in BCH is less clear. PMID:10223186

  2. Mutation of the PIK3CA gene in ovarian and breast cancer.

    PubMed

    Campbell, Ian G; Russell, Sarah E; Choong, David Y H; Montgomery, Karen G; Ciavarella, Marianne L; Hooi, Christine S F; Cristiano, Briony E; Pearson, Richard B; Phillips, Wayne A

    2004-11-01

    Phosphatidylinositol 3'-kinases are lipid kinases with important roles in neoplasia. Recently, a very high frequency of somatic mutations in PIK3CA has been reported among a large series of colorectal cancers. However, the relevance of PIK3CA mutation in other cancer types remains unclear because of the limited number of tumors investigated. We have screened a total of 284 primary human tumors for mutations in all coding exons of PIK3CA using a combination of single stranded conformational polymorphism and denaturing high-performance liquid chromatography analysis. Among 70 primary breast cancers, 40% (28 of 70) harbored mutations in PIK3CA, making it the most common mutation described to date in this cancer type. Mutations were not associated with histologic subtype, estrogen receptor status, grade or presence of tumor in lymph nodes. Among the primary epithelial ovarian cancers only 11 of 167 (6.6%) contain somatic mutations, but there was a clear histologic subtype bias in their distribution. Only 2 of 88 (2.3%) of serous carcinomas had PIK3CA mutations compared with 8 of 40 (20.0%) endometrioid and clear cell cancers, which was highly significant (P = 0.001). In contrast, PIK3CA gene amplification (>7-fold) was common among all histologic subtypes (24.5%) and was inversely associated with the presence of mutations. Overall, PIK3CA mutation or gene amplification was detected in 30.5% of all ovarian cancers and 45% of the endometrioid and clear cell subtypes. Our study is the first direct evidence that PIK3CA is an oncogene in ovarian cancer and greatly extends recent findings in breast cancer. PMID:15520168

  3. Mutations in Melanocortin-3 Receptor Gene and Human Obesity.

    PubMed

    Yang, Z; Tao, Y-X

    2016-01-01

    The prevalence of obesity calls for novel therapeutic targets. The melanocortin-3 receptor (MC3R) has been increasingly recognized as an important regulator of energy homeostasis and MC3R has been intensively analyzed in molecular genetic studies for obesity-related traits. Twenty-seven MC3R mutations and two common polymorphic variants have been identified so far in different cohorts. The mutant MC3Rs demonstrate multiple defects in functional analysis and can be cataloged into different classes according to receptor life cycle based classification system. Although the pathogenic role of MC3R in human obesity remains controversial, recent findings in the noncanonical signaling pathway of MC3R mutants have provided new insights. Potential therapeutic strategies for obesity related to MC3R mutations are highlighted. PMID:27288827

  4. Multisystem disorder associated with a missense mutation in the mitochondrial cytochrome b gene.

    PubMed

    Wibrand, F; Ravn, K; Schwartz, M; Rosenberg, T; Horn, N; Vissing, J

    2001-10-01

    Mitochondrial cytochrome b mutations have been reported to have a homogenous phenotype of pure exercise intolerance. We describe a novel mutation in the cytochrome b gene of mitochondrial DNA (A15579G) associated with a selective decrease of muscle complex III activity in a patient who, besides severe exercise intolerance, also has multisystem manifestations (deafness, mental retardation, retinitis pigmentosa, cataract, growth retardation, epilepsy). The point mutation is heteroplasmic in muscle (88%) and leukocytes (15%), and changes a highly conserved tyrosine to cysteine at amino acid position 278. PMID:11601507

  5. A case of Rubinstein-Taybi Syndrome with a CREB-binding protein gene mutation.

    PubMed

    Kim, Se Hee; Lim, Byung Chan; Chae, Jong Hee; Kim, Ki Joong; Hwang, Yong Seung

    2010-06-01

    Rubinstein-Taybi syndrome (RTS) is a congenital disorder characterized by typical facial features, broad thumbs and toes, with mental retardation. Additionally, tumors, keloids and various congenital anomalies including congenital heart defects have been reported in RTS patients. In about 50% of the patients, mutations in the CREB binding protein (CREBBP) have been found, which are understood to be associated with cell growth and proliferation. Here, we describe a typical RTS patient with Arnold-Chiari malformation. A mutation in the CREBBP gene, c.4944_4945insC, was identified by mutational analysis. PMID:21189944

  6. Two novel mutations in the KHDC3L gene in Asian patients with recurrent hydatidiform mole.

    PubMed

    Rezaei, Maryam; Nguyen, Ngoc Minh Phuong; Foroughinia, Leila; Dash, Pratima; Ahmadpour, Fatemeh; Verma, Ishwar Chandra; Slim, Rima; Fardaei, Majid

    2016-01-01

    Recurrent hydatidiform mole (RHM) is defined by the occurrence of repeated molar pregnancies in affected women. Two genes, NLRP7 and KHDC3L, play a causal role in RHM and are responsible for 48-80% and 5% of cases, respectively. Here, we report the results of screening these two genes for mutations in one Iranian and one Indian patient with RHM. No mutations in NLRP7 were identified in the two patients. KHDC3L sequencing identified two novel protein-truncating mutations in a homozygous state, a 4-bp deletion, c.17_20delGGTT (p.Arg6Leufs*7), in the Iranian patient and a splice mutation, c.349+1G>A, that affects the invariant donor site at the junction of exon 2 and intron 2 in the Indian patient. To date, only four mutations in KHDC3L have been reported. The identification of two additional mutations provides further evidence for the important role of KHDC3L in the pathophysiology of RHM and increases the diversity of mutations described in Asian populations. PMID:27621838

  7. Prognostic implications of novel beta cardiac myosin heavy chain gene mutations that cause familial hypertrophic cardiomyopathy.

    PubMed Central

    Anan, R; Greve, G; Thierfelder, L; Watkins, H; McKenna, W J; Solomon, S; Vecchio, C; Shono, H; Nakao, S; Tanaka, H

    1994-01-01

    Three novel beta cardiac myosin heavy chain (MHC) gene missense mutations, Phe513Cys, Gly716Arg, and Arg719Trp, which cause familial hypertrophic cardiomyopathy (FHC) are described. One mutation in exon 15 (Phe513Cys) does not alter the charge of the encoded amino acid, and affected family members have a near normal life expectancy. The Gly716Arg mutation (exon 19; charge change of +1) causes FHC in three family members, one of whom underwent transplantation for heart failure. The Arg719Trp mutation (exon 19; charge change of -1) was found in four unrelated FHC families with a high incidence of premature death and an average life expectancy in affected individuals of 38 yr. A comparable high frequency of disease-related deaths in four families with the Arg719Trp mutation suggests that this specific gene defect directly accounts for the observed malignant phenotype. Further, the significantly different life expectancies associated with the Arg719Trp vs. Phe513Cys mutation (P < 0.001) support the hypothesis that mutations which alter the charge of the encoded amino acid affect survival more significantly than those that produce a conservative amino acid change. Images PMID:8282798

  8. Mutations in epilepsy and intellectual disability genes in patients with features of Rett syndrome.

    PubMed

    Olson, Heather E; Tambunan, Dimira; LaCoursiere, Christopher; Goldenberg, Marti; Pinsky, Rebecca; Martin, Emilie; Ho, Eugenia; Khwaja, Omar; Kaufmann, Walter E; Poduri, Annapurna

    2015-09-01

    Rett syndrome and neurodevelopmental disorders with features overlapping this syndrome frequently remain unexplained in patients without clinically identified MECP2 mutations. We recruited a cohort of 11 patients with features of Rett syndrome and negative initial clinical testing for mutations in MECP2. We analyzed their phenotypes to determine whether patients met formal criteria for Rett syndrome, reviewed repeat clinical genetic testing, and performed exome sequencing of the probands. Using 2010 diagnostic criteria, three patients had classical Rett syndrome, including two for whom repeat MECP2 gene testing had identified mutations. In a patient with neonatal onset epilepsy with atypical Rett syndrome, we identified a frameshift deletion in STXBP1. Among seven patients with features of Rett syndrome not fulfilling formal diagnostic criteria, four had suspected pathogenic mutations, one each in MECP2, FOXG1, SCN8A, and IQSEC2. MECP2 mutations are highly correlated with classical Rett syndrome. Genes associated with atypical Rett syndrome, epilepsy, or intellectual disability should be considered in patients with features overlapping with Rett syndrome and negative MECP2 testing. While most of the identified mutations were apparently de novo, the SCN8A variant was inherited from an unaffected parent mosaic for the mutation, which is important to note for counseling regarding recurrence risks. PMID:25914188

  9. Two novel NIPBL gene mutations in Chinese patients with Cornelia de Lange syndrome.

    PubMed

    Mei, Libin; Liang, Desheng; Huang, Yanru; Pan, Qian; Wu, Lingqian

    2015-01-25

    Cornelia de Lange syndrome (CdLS) is a dominantly inherited developmental disorder characterized by distinctive facial features, mental retardation, and upper limb defects, with the involvement of multiple organs and systems. To date, mutations have been identified in five genes responsible for CdLS: NIPBL, SMC1A, SMC3, RAD21, and HDAC8. Here, we present a clinical and molecular characterization of five unrelated Chinese patients whose clinical presentation is consistent with that of CdLS. There were no chromosomal abnormalities in the five children. In three patients, DNA sequencing revealed a previously reported frameshift mutation c.2479delA (p.Arg827GlyfsX20), and two novel mutations including a heterozygous mutation c.6272 G>T (p.Cys2091Phe) and a frameshift mutation c.1672delA (p.Thr558LeufsX7) in NIPBL. For the remaining patients, large deletions and/or duplications within the NIPBL gene were excluded as playing a role in the pathogenesis, by Multiplex Ligation-dependent Probe Amplification (MLPA) analysis. These findings broaden the mutation spectrum of NIPBL and further our understanding of the diverse and variable effects of NIPBL mutations on CdLS. PMID:25447906

  10. Two novel mutations in the KHDC3L gene in Asian patients with recurrent hydatidiform mole

    PubMed Central

    Rezaei, Maryam; Nguyen, Ngoc Minh Phuong; Foroughinia, Leila; Dash, Pratima; Ahmadpour, Fatemeh; Verma, Ishwar Chandra; Slim, Rima; Fardaei, Majid

    2016-01-01

    Recurrent hydatidiform mole (RHM) is defined by the occurrence of repeated molar pregnancies in affected women. Two genes, NLRP7 and KHDC3L, play a causal role in RHM and are responsible for 48–80% and 5% of cases, respectively. Here, we report the results of screening these two genes for mutations in one Iranian and one Indian patient with RHM. No mutations in NLRP7 were identified in the two patients. KHDC3L sequencing identified two novel protein-truncating mutations in a homozygous state, a 4-bp deletion, c.17_20delGGTT (p.Arg6Leufs*7), in the Iranian patient and a splice mutation, c.349+1G>A, that affects the invariant donor site at the junction of exon 2 and intron 2 in the Indian patient. To date, only four mutations in KHDC3L have been reported. The identification of two additional mutations provides further evidence for the important role of KHDC3L in the pathophysiology of RHM and increases the diversity of mutations described in Asian populations. PMID:27621838

  11. Parental source effect of inherited mutations in the dystrophin gene of mice and men

    SciTech Connect

    Kress, W.; Grimm, T.; Mueller, C.R.; Bittner, R.

    1994-09-01

    Skewed X-inactivation has been suspected the genetic cause for some manifesting female carriers of BMD and DMD. To test whether a parental source effect on the protein expression of the dystrophin gene exists, we have set up backcrosses of mdx mice to wild type strains, enabling us to study the effect of the well-defined origin of the mutation on the dystrophin expression. In skeletal muscle sections the immunohistological staining patterns of dystrophin antibodies were showing a significant difference in the proportion of dystrophin positive versus negative fibers, suggesting a lower expression of paternally inherited mdx mutations. These data are in concordance with the pyruvate kinase (PK) levels in the serum: PK levels were much higher when the mutation was of maternal origin as compared to PK levels in paternally derived mutations. In order to test this {open_quotes}paternal source effect{close_quotes} in humans, we checked obligatory carriers of Becker muscular dystrophy (BMD) for the origin of their mutations. Creatin kinase (CK) levels in 21 carriers with maternally derived mutations were compared to CK values from 8 heterozygotes with mutations of paternal origin: CK (mat) = 140.3 IU/1 versus CK (pat) = 48.6 IU/I. The difference is statistically significant at the 5% level. These observations suggest either a differential X-inactivation or an imprinting of the dystrophin gene in mice and men.

  12. Paroxysmal hypnogenic dyskinesia is associated with mutations in the PRRT2 gene

    PubMed Central

    Liu, Xiao-Rong; Huang, Dan; Wang, Jie; Wang, Yi-Fan; Sun, Hui; Tang, Bin; Li, Wen; Lai, Jin-Xing; He, Na; Wu, Mei; Su, Tao; Meng, Heng; Shi, Yi-Wu; Li, Bing-Mei; Tang, Bei-Sha

    2016-01-01

    Objective: To explore the potential causative genes of paroxysmal hypnogenic dyskinesia (PHD), which was initially considered a subtype of paroxysmal dyskinesia and has been recently considered a form of nocturnal frontal lobe epilepsy (NFLE). Methods: Eleven patients with PHD were recruited. Mutations in proline-rich region transmembrane protein-2 (PRRT2), myofibrillogenesis regulator 1 (MR-1), solute carrier family 2, member 1 (SLC2A1), calcium-activated potassium channel alpha subunit (KCNMA1), cholinergic receptor, nicotinic, alpha 4 (CHRNA4), cholinergic receptor, nicotinic, beta 2 (CHRNB2), cholinergic receptor, nicotinic, alpha 2 (CHRNA2), and potassium channel subfamily T member 1 (KCNT1) were screened by direct sequencing. Results: Two PRRT2 mutations were identified in patients with typical PHD. A mutation of c.649dupC (p.Arg217ProfsX8) was identified in a patient with PHD and his father who was diagnosed with paroxysmal kinesigenic dyskinesia. An additional mutation of c.640G>C (p.Ala214Pro) was identified in a sporadic patient and his asymptomatic mother. No mutations were found in the other screened genes. Conclusions: The present study identified PRRT2 mutations in PHD, extending the phenotypic spectrum of PRRT2 and supporting the classification of PHD as a subtype of paroxysmal dyskinesia but not NFLE. Based on the results of this study, screening for the PRRT2 mutation is recommended in patients with PHD. PMID:27123484

  13. Analysis of mutations in the entire coding sequence of the factor VIII gene

    SciTech Connect

    Bidichadani, S.I.; Lanyon, W.G.; Connor, J.M.

    1994-09-01

    Hemophilia A is a common X-linked recessive disorder of bleeding caused by deleterious mutations in the gene for clotting factor VIII. The large size of the factor VIII gene, the high frequency of de novo mutations and its tissue-specific expression complicate the detection of mutations. We have used a combination of RT-PCR of ectopic factor VIII transcripts and genomic DNA-PCRs to amplify the entire essential sequence of the factor VIII gene. This is followed by chemical mismatch cleavage analysis and direct sequencing in order to facilitate a comprehensive search for mutations. We describe the characterization of nine potentially pathogenic mutations, six of which are novel. In each case, a correlation of the genotype with the observed phenotype is presented. In order to evaluate the pathogenicity of the five missense mutations detected, we have analyzed them for evolutionary sequence conservation and for their involvement of sequence motifs catalogued in the PROSITE database of protein sites and patterns.

  14. Mutation analysis of the PALB2 gene in unselected pancreatic cancer patients in the Czech Republic.

    PubMed

    Borecka, M; Zemankova, P; Vocka, M; Soucek, P; Soukupova, J; Kleiblova, P; Sevcik, J; Kleibl, Z; Janatova, M

    2016-05-01

    Pancreatic ductal adenocarcinoma (PDAC) has the worst prognosis among common solid cancer diagnoses. It has been shown that up to 10% of PDAC cases have a familial component. Characterization of PDAC-susceptibility genes could reveal high-risk individuals and patients that may benefit from tailored therapy. Hereditary mutations in PALB2 (Partner and Localizer of BRCA2) gene has been shown to predispose, namely to PDAC and breast cancers; however, frequencies of mutations vary among distinct geographical populations. Using the combination of sequencing, high-resolution melting and multiplex ligation-dependent probe amplification analyses, we screened the entire PALB2 gene in 152 unselected Czech PDAC patients. Truncating mutations were identified in three (2.0%) patients. Genotyping of found PALB2 variants in 1226 control samples revealed one carrier of PALB2 truncating variant (0.08%; P = 0.005). The mean age at PDAC diagnosis was significantly lower among PALB2 mutation carriers (51 years) than in non-carriers (63 years; P = 0.016). Only one patient carrying germline PALB2 mutation had a positive family breast cancer history. Our results indicate that hereditary PALB2 mutation represents clinically considerable genetic factor increasing PDAC susceptibility in our population and that analysis of PALB2 should be considered not only in PDAC patients with familial history of breast or pancreatic cancers but also in younger PDAC patients without family cancer history. PMID:27106063

  15. Rare Mutations in Renal Sodium and Potassium Transporter Genes Exhibit Impaired Transport Function

    PubMed Central

    Welling, Paul A.

    2014-01-01

    Purpose of review Recent efforts to explore the genetic underpinnings of hypertension revealed rare mutations in kidney salt transport genes contribute to blood pressure variation and hypertension susceptibility in the general population. The current review focuses on these latest findings, highlighting a discussion about the rare mutations and how they affect transport function. Recent findings Rare mutations that confer a low blood pressure trait and resistance to hypertension have recently been extensively studied. Physiological and biochemical analyses of the effected renal salt transport molecules (NKCC2 (SLC12A1), ROMK (KCNJ1), and NCC (SLC12A3)) revealed that most of the mutations do, in fact, cause a loss of transport function. The mutations disrupt transport by many different mechanisms, including altering biosynthetic processing, trafficking, ion transport, and regulation. Summary New insights into the genetic basis of hypertension have recently emerged, supporting a major role of rare, rather than common, gene variants. Many different rare mutations have been found to affect the functions of different salt transporter genes by different mechanisms, yet all confer the same blood pressure phenotype. These studies reinforce the critical roles of the kidney, and renal salt transport in blood pressure regulation and hypertension. PMID:24253496

  16. A novel mutation of the insulin-like 3 gene in patients with cryptorchidism.

    PubMed

    Canto, Patricia; Escudero, Irineo; Söderlund, Daniela; Nishimura, Elisa; Carranza-Lira, Sebastian; Gutierrez, Jesus; Nava, Andres; Mendez, Juan Pablo

    2003-01-01

    Two independent studies demonstrated that transgenic mice with a targeted deletion of the insulin-like 3 ( INSL3) gene presented bilateral cryptorchidism. Studies in humans have investigated the possibility that mutations in the INSL3 gene are the cause of cryptorchidism. In the present study, genomic DNA was obtained from 150 patients with idiopathic cryptorchidism. DNA was amplified and the polymerase chain reaction products of both exons were sequenced. A previously unidentified missense mutation was found in only one of the patients studied. In exon 2, a heterozygous C/G substitution at nucleotide 2560, which turned asparagine into lysine at codon 86, was documented. The familial study revealed that the mother was a heterozygous carrier of the mutation and the father was a homozygote wild type. We also found three polymorphic changes, previously reported in exon 1. The Asn-into-Lys change is likely deleterious because it leads to a nonconservative amino acid substitution, changing a highly conserved residue. This mutation, located in the A-chain of the INSL3 protein, is the first mutation reported in this region. This finding provides new evidence that INSL3 is involved in testicular descent in humans; however, mutations of this gene are not a frequent cause of cryptorchidism. PMID:12601553

  17. An association study of HFE gene mutation with idiopathic male infertility in the Chinese Han population

    PubMed Central

    Yu, Xiao-Ying; Wang, Bin-Bin; Xin, Zhong-Cheng; Liu, Tao; Ma, Ke; Jiang, Jian; Fang, Xiang; Yu, Li-Hua; Peng, Yi-Feng; Ma, Xu

    2012-01-01

    Mutations in the haemochromatosis gene (HFE) influence iron status in the general population of Northern Europe, and excess iron is associated with the impairment of spermatogenesis. The aim of this study is to investigate the association between three mutations (C282Y, H63D and S65C) in the HFE gene with idiopathic male infertility in the Chinese Han population. Two groups of Chinese men were recruited: 444 infertile men (including 169 with idiopathic azoospermia) and 423 controls with proven fertility. The HFE gene was detected using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique. The experimental results demonstrated that no C282Y or S65C mutations were detected. Idiopathic male infertility was not significantly associated with heterozygous H63D mutation (odds ratio=0.801, 95% confidence interval=0.452–1.421, χ2=0.577, P=0.448). The H63D mutation frequency did not correlate significantly with the serum luteinizing hormone (LH), follicle-stimulating hormone (FSH) and testosterone (T) levels in infertile men (P=0.896, P=0.404 and P=0.05, respectively). Our data suggest that the HFE H63D mutation is not associated with idiopathic male reproductive dysfunction. PMID:22504868

  18. Frequency of mutations in PROP-1 gene in Turkish children with combined pituitary hormone deficiency.

    PubMed

    Kandemir, Nurgün; Vurallı, Doğuş; Taşkıran, Ekim; Gönç, Nazlı; Özön, Alev; Alikaşifoğlu, Ayfer; Yılmaz, Engin

    2012-01-01

    Mutations in the prophet of Pit-1 (PROP-1) gene are responsible for most of the cases of combined pituitary hormone deficiencies (CPHD). We performed this study to determine the prevalence of PROP-1 mutations in a group of Turkish children with CPHD. Fifty-three children with the diagnosis of CPHD were included in this study. Clinical data were obtained from medical files, and hormonal evaluation and genetic screening for PROP-1 mutations were performed. A homozygous S109X mutation was found in the second exon in two brothers, and they had growth hormone (GH) and thyroid-stimulating hormone (TSH) deficiencies and normal prolactin levels. In the third exon of the PROP-1 gene, a heterozygous A142T polymorphism was found in 14 patients and a homozygous A142T polymorphism was found in 3 patients. In the first exon, a homozygous A9A polymorphism was found in 7 patients and a heterozygous A9A polymorphism was found in 31 patients. We assumed that mutations in the PROP-1 gene in cases with CPHD were expected to be more prevalent in our population due to consanguinity, but it was found that these mutations were far less than expected and that it was rare in non-familial cases. PMID:23692781

  19. Distribution of gene mutations in sporadic congenital cataract in a Han Chinese population

    PubMed Central

    Li, Dan; Wang, Siying; Ye, Hongfei; Tang, Yating; Qiu, Xiaodi; Fan, Qi; Rong, Xianfang; Liu, Xin; Chen, Yuhong; Yang, Jin

    2016-01-01

    Purpose This study aimed to investigate the genetic effects underlying non-familial sporadic congenital cataract (SCC). Methods We collected DNA samples from 74 patients with SCC and 20 patients with traumatic cataract (TC) in an age-matched group and performed genomic sequencing of 61 lens-related genes with target region capture and next-generation sequencing (NGS). The suspected SCC variants were validated with MassARRAY and Sanger sequencing. DNA samples from 103 healthy subjects were used as additional controls in the confirmation examination. Results By filtering against common variants in public databases and those associated with TC cases, we identified 23 SCC-specific variants in 17 genes from 19 patients, which were predicted to be functional. These mutations were further confirmed by examination of the 103 healthy controls. Among the mutated genes, CRYBB3 had the highest mutation frequency with mutations detected four times in four patients, followed by EPHA2, NHS, and WDR36, the mutation of which were detected two times in two patients. We observed that the four patients with CRYBB3 mutations had three different cataract phenotypes. Conclusions From this study, we concluded the clinical and genetic heterogeneity of SCC. This is the first study to report broad spectrum genotyping for patients with SCC. PMID:27307692

  20. Mutation of the PAX6 gene in patients with autosomal dominant keratitis

    SciTech Connect

    Mirzayans, F.; Pearce, W.G.; MacDonald, I.M.; Walter, M.A.

    1995-09-01

    Autosomal dominant keratitis (ADK) is an eye disorder chiefly characterized by corneal opacification and vascularization and by foveal hypoplasia. Aniridia (shown recently to result from mutations in the PAX6 gene) has overlapping clinical findings and a similar pattern of inheritance with ADK. On the basis of these similarities, we used a candidate-gene approach to investigate whether mutations in the PAX6 gene also result in ADK. Significant linkage was found between two polymorphic loci in the PAX6 region and ADK in a family with 15 affected members in four generations (peak LOD score = 4.45; {theta} = .00 with D11S914), consistent with PAX6 mutations being responsible for ADK. SSCP analysis and direct sequencing revealed a mutation in the PAX6 exon 11 splice-acceptor site. The predicted consequent incorrect splicing results in truncation of the PAX6 proline-serine-threonine activation domain. The Sey{sup Neu} mouse results from a mutation in the Pax-6 exon 10 splice-donor site that produces a PAX6 protein truncated from the same point as occurs in our family with ADK. Therefore, the Sey{sup Neu} mouse is an excellent animal model of ADK. The finding that mutations in PAX6 also underlie Peters anomaly implicates PAX6 broadly in human anterior segment malformations. 42 refs., 5 figs., 3 tabs.

  1. Identification of Novel Mutations in HEXA Gene in Children Affected with Tay Sachs Disease from India

    PubMed Central

    Sheth, Frenny; Sanghavi, Daksha; Kondurkar, Pratima; Patil, Swapnil; Idicula-Thomas, Susan; Gupta, Sarita; Sheth, Jayesh

    2012-01-01

    Tay Sachs disease (TSD) is a neurodegenerative disorder due to β-hexosaminidase A deficiency caused by mutations in the HEXA gene. The mutations leading to Tay Sachs disease in India are yet unknown. We aimed to determine mutations leading to TSD in India by complete sequencing of the HEXA gene. The clinical inclusion criteria included neuroregression, seizures, exaggerated startle reflex, macrocephaly, cherry red spot on fundus examination and spasticity. Neuroimaging criteria included thalamic hyperdensities on CT scan/T1W images of MRI of the brain. Biochemical criteria included deficiency of hexosaminidase A (less than 2% of total hexosaminidase activity for infantile patients). Total leukocyte hexosaminidase activity was assayed by 4-methylumbelliferyl-N-acetyl-β-D-glucosamine lysis and hexosaminidase A activity was assayed by heat inactivation method and 4-methylumbelliferyl-N-acetyl-β-D-glucosamine-6-sulphate lysis method. The exons and exon-intron boundaries of the HEXA gene were bidirectionally sequenced using an automated sequencer. Mutations were confirmed in parents and looked up in public databases. In silico analysis for mutations was carried out using SIFT, Polyphen2, MutationT@ster and Accelrys Discovery Studio softwares. Fifteen families were included in the study. We identified six novel missense mutations, c.340 G>A (p.E114K), c.964 G>A (p.D322N), c.964 G>T (p.D322Y), c.1178C>G (p.R393P) and c.1385A>T (p.E462V), c.1432 G>A (p.G478R) and two previously reported mutations. c.1277_1278insTATC and c.508C>T (p.R170W). The mutation p.E462V was found in six unrelated families from Gujarat indicating a founder effect. A previously known splice site mutation c.805+1 G>C and another intronic mutation c.672+30 T>G of unknown significance were also identified. Mutations could not be identified in one family. We conclude that TSD patients from Gujarat should be screened for the common mutation p.E462V. PMID:22723944

  2. FLT3 and NPM1 gene mutations in childhood acute myeloblastic leukemia.

    PubMed

    Mukda, Ekchol; Pintaraks, Katsarin; Sawangpanich, Rachchadol; Wiangnon, Surapon; Pakakasama, Samart

    2011-01-01

    Mutations of receptor tyrosine kinases are implicated in the constitutive activation and development of human hematologic malignancies. Mutations in fms-like tyrosine kinase 3 (FLT3) gene including internal tandem duplication (ITD) and point mutation in the tyrosine kinase domain (TKD) as well as in nucleoplasmin (NPM1) gene are associated with pathogenesis of acute myeloblastic leukemia (AML). Several reports have demonstrated high incidences of the FLT3 and NPM1 mutations in adult AML patients. Since the pathogenesis of pediatric AML is different from that of adult and the FLT3 and NPM1 mutations have not been well characterized in childhood AML. Therefore, the objective of this study was to determine the frequencies of FLT3 and NPM1 mutations in 64 newly diagnosed childhood AML patients. All blood and bone marrow samples were previously diagnosed with AML by using flow cytometry and/or cytochemistry. FLT3-ITD and FLT3-TKD were detected by PCR and PCR-RFLP methods, respectively. The NPM1 mutation was analyzed by PCR and direct DNA sequencing. The FLT3 mutations were detected in 7 of 64 (11.1%), including FLT3-ITD in 4 of 64 (6.3%) and FLT-TKD in 3 of 62 (4.8%). The NPM1 mutation was not detected in this cohort. By multivariate analysis, white blood cell counts, peripheral blood and bone marrow blast cell counts at diagnosis were significantly higher in children with FLT3-ITD (P<0.05). In addition, the median percentage of CD117 was significantly higher in leukemic blast cells with FLT3-ITD than those with wild type (P=0.01). We did not find any FLT3 mutations in children aged less than 5 years. The AML M3 cell type was most frequently associated with FLT3 gene mutations (50%). In conclusion, the FLT3 mutations was found in 11.1% but none of NPM1 mutation was detected in Thai children with AML. These data support the hypothesis of different biology and pathogenesis between adult and childhood AML. PMID:22126574

  3. Identification of novel mutations in HEXA gene in children affected with Tay Sachs disease from India.

    PubMed

    Mistri, Mehul; Tamhankar, Parag M; Sheth, Frenny; Sanghavi, Daksha; Kondurkar, Pratima; Patil, Swapnil; Idicula-Thomas, Susan; Gupta, Sarita; Sheth, Jayesh

    2012-01-01

    Tay Sachs disease (TSD) is a neurodegenerative disorder due to β-hexosaminidase A deficiency caused by mutations in the HEXA gene. The mutations leading to Tay Sachs disease in India are yet unknown. We aimed to determine mutations leading to TSD in India by complete sequencing of the HEXA gene. The clinical inclusion criteria included neuroregression, seizures, exaggerated startle reflex, macrocephaly, cherry red spot on fundus examination and spasticity. Neuroimaging criteria included thalamic hyperdensities on CT scan/T1W images of MRI of the brain. Biochemical criteria included deficiency of hexosaminidase A (less than 2% of total hexosaminidase activity for infantile patients). Total leukocyte hexosaminidase activity was assayed by 4-methylumbelliferyl-N-acetyl-β-D-glucosamine lysis and hexosaminidase A activity was assayed by heat inactivation method and 4-methylumbelliferyl-N-acetyl-β-D-glucosamine-6-sulphate lysis method. The exons and exon-intron boundaries of the HEXA gene were bidirectionally sequenced using an automated sequencer. Mutations were confirmed in parents and looked up in public databases. In silico analysis for mutations was carried out using SIFT, Polyphen2, MutationT@ster and Accelrys Discovery Studio softwares. Fifteen families were included in the study. We identified six novel missense mutations, c.340 G>A (p.E114K), c.964 G>A (p.D322N), c.964 G>T (p.D322Y), c.1178C>G (p.R393P) and c.1385A>T (p.E462V), c.1432 G>A (p.G478R) and two previously reported mutations. c.1277_1278insTATC and c.508C>T (p.R170W). The mutation p.E462V was found in six unrelated families from Gujarat indicating a founder effect. A previously known splice site mutation c.805+1 G>C and another intronic mutation c.672+30 T>G of unknown significance were also identified. Mutations could not be identified in one family. We conclude that TSD patients from Gujarat should be screened for the common mutation p.E462V. PMID:22723944

  4. Molecular principles behind pyrazinamide resistance due to mutations in panD gene in Mycobacterium tuberculosis.

    PubMed

    Pandey, Bharati; Grover, Sonam; Tyagi, Chetna; Goyal, Sukriti; Jamal, Salma; Singh, Aditi; Kaur, Jagdeep; Grover, Abhinav

    2016-04-25

    The latest resurrection of drug resistance poses serious threat to the treatment and control of the disease. Mutations have been detected in panD gene in the Mycobacterium tuberculosis (Mtb) strains. Mutation of histidine to arginine at residue 21 (H21R) and isoleucine to valine at residue 29 (I49V) in the non-active site of panD gene has led to PZA resistance. This study will help in reconnoitering the mechanism of pyrazinamide (PZA) resistance caused due to double mutation identified in the panD gene of M. tuberculosis clinical isolates. It is known that panD gene encodes aspartate decarboxylase essential for β-alanine synthesis that makes it a potential therapeutic drug target for tuberculosis treatment. The knowledge about the molecular mechanism conferring drug resistance in M. tuberculosis is scarce, which is a significant challenge in designing successful therapeutic drug. In this study, structural and dynamic repercussions of H21R-I49V double mutation in panD complexed with PZA have been corroborated through docking and molecular dynamics based simulation. The double mutant (DM) shows low docking score and thus, low binding affinity for PZA as compared to the native protein. It was observed that the mutant protein exhibits more structural fluctuation at the ligand binding site in comparison to the native type. Furthermore, the flexibility and compactness analyses indicate that the double mutation influence interaction of PZA with the protein. The hydrogen-bond interaction patterns further supported our results. The covariance and PCA analysis elucidated that the double mutation affects the collective motion of residues in phase space. The results have been presented with an explanation for the induced drug resistance conferred by the H21R-I49V double mutation in panD gene and gain valuable insight to facilitate the advent of efficient therapeutics for combating resistance against PZA. PMID:26784657

  5. Identification of a Variety of Mutations in Cancer Predisposition Genes in Patients with Suspected Lynch Syndrome

    PubMed Central

    Yurgelun, Matthew B.; Allen, Brian; Kaldate, Rajesh R.; Bowles, Karla R.; Judkins, Thaddeus; Kaushik, Praveen; Roa, Benjamin B.; Wenstrup, Richard J.; Hartman, Anne-Renee; Syngal, Sapna

    2015-01-01

    Background & Aims Multigene panels are commercially available tools for hereditary cancer risk assessment that allow for next-generation sequencing of numerous genes in parallel. However, it is not clear if these panels offer advantages over traditional genetic testing. We investigated the number of cancer predisposition gene mutations identified by parallel sequencing in individuals with suspected Lynch syndrome. Methods We performed germline analysis with a 25-gene next-generation sequencing panel using DNA from 1260 individuals who underwent clinical genetic testing for Lynch syndrome from 2012 through 2013. All subjects had a history of Lynch syndrome-associated cancer and/or polyps. We classified all identified germline alterations for pathogenicity and calculated the frequencies of pathogenic mutations and variants of uncertain significance (VUS). We also analyzed data on patients’ personal and family history of cancer, including fulfillment of clinical guidelines for genetic testing. Results Of the 1260 subjects, 1112 met National Comprehensive Cancer Network (NCCN) criteria for Lynch syndrome testing (88%; 95% confidence interval [CI], 86%–90%). Multigene panel testing identified 114 probands with Lynch syndrome mutations (9.0%; 95% CI, 7.6%−10.8%) and 71 with mutations in other cancer predisposition genes (5.6%; 95% CI, 4.4%−7.1%). Fifteen individuals had mutations in BRCA1 or BRCA2; 93% of these met the NCCN criteria for Lynch syndrome testing and 33% met NCCN criteria for BRCA1 and BRCA2 analysis (P=.0017). An additional 9 individuals carried mutations in other genes linked to high lifetime risks of cancer (5 had mutations in APC, 3 had bi-allelic mutations in MUTYH, and 1 had a mutation in STK11); all of these patients met NCCN criteria for Lynch syndrome testing. Four hundred seventy-nine individuals had ≥1 VUS (38%; 95% CI, 35%–41%). Conclusions In individuals with suspected Lynch syndrome, multigene panel testing identified high

  6. Inherited cobalamin malabsorption. Mutations in three genes reveal functional and ethnic patterns

    PubMed Central

    2012-01-01

    Background Inherited malabsorption of cobalamin (Cbl) causes hematological and neurological abnormalities that can be fatal. Three genes have been implicated in Cbl malabsorption; yet, only about 10% of ~400-500 reported cases have been molecularly studied to date. Recessive mutations in CUBN or AMN cause Imerslund-Gräsbeck Syndrome (IGS), while recessive mutations in GIF cause Intrinsic Factor Deficiency (IFD). IGS and IFD differ in that IGS usually presents with proteinuria, which is not observed in IFD. The genetic heterogeneity and numerous differential diagnoses make clinical assessment difficult. Methods We present a large genetic screening study of 154 families or patients with suspected hereditary Cbl malabsorption. Patients and their families have been accrued over a period spanning >12 years. Systematic genetic testing of the three genes CUBN, AMN, and GIF was accomplished using a combination of single strand conformation polymorphism and DNA and RNA sequencing. In addition, six genes that were contenders for a role in inherited Cbl malabsorption were studied in a subset of these patients. Results Our results revealed population-specific mutations, mutational hotspots, and functionally distinct regions in the three causal genes. We identified mutations in 126/154 unrelated cases (82%). Fifty-three of 126 cases (42%) were mutated in CUBN, 45/126 (36%) were mutated in AMN, and 28/126 (22%) had mutations in GIF. We found 26 undescribed mutations in CUBN, 19 in AMN, and 7 in GIF for a total of 52 novel defects described herein. We excluded six other candidate genes as culprits and concluded that additional genes might be involved. Conclusions Cbl malabsorption is found worldwide and genetically complex. However, our results indicate that population-specific founder mutations are quite common. Consequently, targeted genetic testing has become feasible if ethnic ancestry is considered. These results will facilitate clinical and molecular genetic testing of

  7. The Berkeley Drosophila Genome Project gene disruption project: Single P-element insertions mutating 25% of vital Drosophila genes.

    PubMed Central

    Spradling, A C; Stern, D; Beaton, A; Rhem, E J; Laverty, T; Mozden, N; Misra, S; Rubin, G M

    1999-01-01

    A fundamental goal of genetics and functional genomics is to identify and mutate every gene in model organisms such as Drosophila melanogaster. The Berkeley Drosophila Genome Project (BDGP) gene disruption project generates single P-element insertion strains that each mutate unique genomic open reading frames. Such strains strongly facilitate further genetic and molecular studies of the disrupted loci, but it has remained unclear if P elements can be used to mutate all Drosophila genes. We now report that the primary collection has grown to contain 1045 strains that disrupt more than 25% of the estimated 3600 Drosophila genes that are essential for adult viability. Of these P insertions, 67% have been verified by genetic tests to cause the associated recessive mutant phenotypes, and the validity of most of the remaining lines is predicted on statistical grounds. Sequences flanking >920 insertions have been determined to exactly position them in the genome and to identify 376 potentially affected transcripts from collections of EST sequences. Strains in the BDGP collection are available from the Bloomington Stock Center and have already assisted the research community in characterizing >250 Drosophila genes. The likely identity of 131 additional genes in the collection is reported here. Our results show that Drosophila genes have a wide range of sensitivity to inactivation by P elements, and provide a rationale for greatly expanding the BDGP primary collection based entirely on insertion site sequencing. We predict that this approach can bring >85% of all Drosophila open reading frames under experimental control. PMID:10471706

  8. AKAP2 identified as a novel gene mutated in a Chinese family with adolescent idiopathic scoliosis

    PubMed Central

    Li, Wei; Li, YaWei; Zhang, Lusi; Guo, Hui; Tian, Di; Li, Ying; Peng, Yu; Zheng, Yu; Dai, Yuliang; Xia, Kun; Lan, Xinqiang; Wang, Bing; Hu, Zhengmao

    2016-01-01

    Background Adolescent idiopathic scoliosis exhibits high heritability and is one of the most common spinal deformities found in adolescent populations. However, little is known about the disease-causing genes in families with adolescent idiopathic scoliosis exhibiting Mendelian inheritance. Objective The aim of this study was to identify the causative gene in a family with adolescent idiopathic scoliosis. Methods Whole-exome sequencing was performed on this family to identify the candidate gene. Sanger sequencing was conducted to validate the candidate mutations and familial segregation. Real-time QPCR was used to measure the expression level of the possible causative gene. Results We identified the mutation c.2645A>C (p.E882A) within the AKAP2 gene, which cosegregated with the adolescent idiopathic scoliosis phenotypes. AKAP2 is located in a previously reported linkage locus (IS4) on chromosome 9q31.2–q34.2 and has been implicated in skeletal development. The mutation was absent in dbSNP144, ESP6500 and 503 ethnicity-matched controls. Real-time QPCR revealed that the mRNA expression level in the patients was increased significantly compared with the family controls (p<0.0001). Conclusions AKAP2 was therefore implicated as a novel gene mutated in a Chinese family with adolescent idiopathic scoliosis. Further studies should be conducted to validate the results from the perspective of both the genetics and pathogenesis of this disease. PMID:26989089

  9. Targeted disruption of Ataxia-telangiectasia mutated gene in miniature pigs by somatic cell nuclear transfer

    SciTech Connect

    Kim, Young June; Ahn, Kwang Sung; Kim, Minjeong; Kim, Min Ju; Park, Sang-Min; Ryu, Junghyun; Ahn, Jin Seop; Heo, Soon Young; Kang, Jee Hyun; Choi, You Jung; Choi, Seong-Jun; Shim, Hosup

    2014-10-03

    Highlights: • ATM gene-targeted pigs were produced by somatic cell nuclear transfer. • A novel large animal model for ataxia telangiectasia was developed. • The new model may provide an alternative to the mouse model. - Abstract: Ataxia telangiectasia (A-T) is a recessive autosomal disorder associated with pleiotropic phenotypes, including progressive cerebellar degeneration, gonad atrophy, and growth retardation. Even though A-T is known to be caused by the mutations in the Ataxia telangiectasia mutated (ATM) gene, the correlation between abnormal cellular physiology caused by ATM mutations and the multiple symptoms of A-T disease has not been clearly determined. None of the existing ATM mouse models properly reflects the extent to which neurological degeneration occurs in human. In an attempt to provide a large animal model for A-T, we produced gene-targeted pigs with mutations in the ATM gene by somatic cell nuclear transfer. The disrupted allele in the ATM gene of cloned piglets was confirmed via PCR and Southern blot analysis. The ATM gene-targeted pigs generated in the present study may provide an alternative to the current mouse model for the study of mechanisms underlying A-T disorder and for the development of new therapies.

  10. A Novel WASP Gene Mutation in a Chinese Boy with Wiskott-Aldrich Syndrome.

    PubMed

    Wu, Hui; Hu, Cheng; Dang, Dan; Guo, Ying-Jie

    2014-09-01

    Wiskott-Aldrich syndrome (WAS) is a rare inherited X-linked recessive immunodeficiency disease characterized by eczema, thrombocytopenia, immune deficiency, and bloody diarrhea and is caused by WASP gene mutations. This study reports a case of WAS with a novel mutation. A newborn Chinese infant was admitted to the hospital because of intermittent bloody stools, recurrent infections, and persistent thrombocytopenia. Genetic analysis of the coding sequences and flanking splice sites of the WASP gene showed a novel WASP gene deletion mutation (1144delA) at exon 10. Family history showed that both his mother and aunt had a heterozygous genotype of the WASP gene. The infant died at the age of 4 months due to persistent thrombocytopenia and severe pneumonia. A novel WASP gene deletion (1144delA) at exon 10 was identified in a Chinese infant with WAS. This base deletion results in a frame-shift mutation of the gene for an early stop codon at amino acid 444. PMID:25332617

  11. Molecular basis of variegate porphyria: a missense mutation in the protoporphyrinogen oxidase gene.

    PubMed Central

    Frank, J; Lam, H; Zaider, E; Poh-Fitzpatrick, M; Christiano, A M

    1998-01-01

    Variegate porphyria (VP) is an autosomal dominant disorder characterised by a partial defect in the activity of protoporphyrinogen oxidase (PPO), and has recently been genetically linked to the PPO gene on chromosome 1q22-23 (Z=6.62). In this study, we identified a mutation in the PPO gene in a patient with VP and two unaffected family members. The mutation consisted of a previously unreported T to C transition in exon 13 of the PPO gene, resulting in the substitution of a polar serine by a non-polar proline (S450P). This serine residue is evolutionarily highly conserved in man, mouse, and Bacillus subtilis, attesting to the importance of this residue. Interestingly, the gene for Gardner's syndrome (FAP) also segregates in this family, independently of the VP mutation. Gardner's syndrome or familial adenomatous polyposis (FAP) is also an autosomal dominantly inherited genodermatosis, and typically presents with colorectal cancer in early adult life secondary to extensive adenomatous polyps of the colon. The specific gene on chromosome 5 that is the site of the mutation in this disorder is known as APC (adenomatous polyposis coli), and the gene has been genetically linked to the region of 5q22. Images PMID:9541112

  12. Achondroplastic dog breeds have no mutations in the transmembrane domain of the FGFR-3 gene.

    PubMed

    Martínez, S; Valdés, J; Alonso, R A

    2000-10-01

    One of the most common skeletal affections in humans is achondroplasia, a short-limbed dwarfism that is, in most cases, caused by mutations in the transmembrane domain of the fibroblast growth factor receptor-3 (FGFR-3) gene. Due to the lack of sufficient radiological, genetic, and molecular studies, most types of skeletal anomalies in dogs are classified as achondroplasia. To initiate the molecular characterization of some osteochondrodysplastic dog breeds, we obtained the DNA sequence of the transmembrane domain of the FGFR-3 gene from the dachshund, basset hound, bulldog, and German shepherd dogs. All 4 breeds showed no mutation in the evaluated region. This indicates that the mutation responsible for the osteochondrodysplastic phenotype in the tested dog breeds lies either elsewhere in the FGFR-3 gene or in other ones involved in the formation and development of endochondral bone. PMID:11041504

  13. Thyroid hormone resistance: a novel mutation in thyroid hormone receptor beta (THRB) gene - case report.

    PubMed

    Işık, Emregül; Beck Peccoz, Paolo; Campi, Irene; Özön, Alev; Alikaşifoğlu, Ayfer; Gönç, Nazlı; Kandemir, Nurgün

    2013-01-01

    Thyroid hormone resistance (THR) is a dominantly inherited syndrome characterized by reduced sensitivity to thyroid hormones. It is usually caused by mutations in the thyroid hormone receptor beta (THRB) gene. In the present report, we describe the clinical and laboratory characteristics and genetic analysis of patients with a novel THRB gene mutation. The index patient had been misdiagnosed as hyperthyroidism and treated with antithyroid drugs since eight days of age. Thyroid hormone results showed that thyrotropin (thyroid-stimulating hormone, TSH) was never suppressed despite elevated thyroid hormone levels, and there was no symptom suggesting hyperthyroidism. A heterozygous mutation at codon 350 located in exon 9 of the THRB gene was detected in all the affected members of the family. It is important to consider thyroid hormone levels in association with TSH levels to prevent inappropriate treatment and the potential complications, such as clinical hypothyroidism or an increase in goiter size. PMID:24217081

  14. Limb-girdle muscular dystrophy in the Agarwals: Utility of founder mutations in CAPN3 gene

    PubMed Central

    Khadilkar, Satish V.; Chaudhari, Chetan R.; Dastur, Rashna S.; Gaitonde, Pradnya S.; Yadav, Jayendra G.

    2016-01-01

    Background and Purpose: Diagnostic evaluation of limb-girdle muscular dystrophy type 2A (LGMD2A) involves specialized studies on muscle biopsy and mutation analysis. Mutation screening is the gold standard for diagnosis but is difficult as the gene is large and multiple mutations are known. This study evaluates the utility of two known founder mutations as a first-line diagnostic test for LGMD2A in the Agarwals. Materials and Methods: The Agarwals with limb-girdle muscular dystrophy (LGMD) phenotype were analyzed for two founder alleles (intron 18/exon 19 c.2051-1G>T and exon 22 c.2338G>C). Asymptomatic first-degree relatives of patients with genetically confirmed mutations and desirous of counseling were screened for founder mutations. Results: Founder alleles were detected in 26 out of 29 subjects with LGMD phenotype (89%). The most common genotype observed was homozygous for exon 22 c.2338 G>C mutation fo