Sample records for hdac histone deacetylase

  1. Histone deacetylases (HDACs) in XPC gene silencing and bladder cancer

    PubMed Central

    2011-01-01

    Bladder cancer is one of the most common malignancies and causes hundreds of thousands of deaths worldwide each year. Bladder cancer is strongly associated with exposure to environmental carcinogens. It is believed that DNA damage generated by environmental carcinogens and their metabolites causes development of bladder cancer. Nucleotide excision repair (NER) is the major DNA repair pathway for repairing bulk DNA damage generated by most environmental carcinogens, and XPC is a DNA damage recognition protein required for initiation of the NER process. Recent studies demonstrate reduced levels of XPC protein in tumors for a majority of bladder cancer patients. In this work we investigated the role of histone deacetylases (HDACs) in XPC gene silencing and bladder cancer development. The results of our HDAC inhibition study revealed that the treatment of HTB4 and HTB9 bladder cancer cells with the HDAC inhibitor valproic acid (VPA) caused an increase in transcription of the XPC gene in these cells. The results of our chromatin immunoprecipitation (ChIP) studies indicated that the VPA treatment caused increased binding of both CREB1 and Sp1 transcription factors at the promoter region of the XPC gene for both HTB4 and HTB9 cells. The results of our immunohistochemistry (IHC) staining studies further revealed a strong correlation between the over-expression of HDAC4 and increased bladder cancer occurrence (p < 0.001) as well as a marginal significance of increasing incidence of HDAC4 positivity seen with an increase in severity of bladder cancer (p = 0.08). In addition, the results of our caspase 3 activation studies demonstrated that prior treatment with VPA increased the anticancer drug cisplatin-induced activation of caspase 3 in both HTB4 and HTB9 cells. All of these results suggest that the HDACs negatively regulate transcription of the XPC gene in bladder cancer cells and contribute to the severity of bladder tumors. PMID:21507255

  2. Histone deacetylase 3 ( hdac3) is specifically required for liver development in zebrafish

    Microsoft Academic Search

    Muhammad Farooq; K. N. Sulochana; Xiufang Pan; Jiawei To; Donglai Sheng; Zhiyuan Gong; Ruowen Ge

    2008-01-01

    Histone deacetylases (HDACs) are key transcription regulators that function by deacetylating histones\\/transcription factors and modifying chromatin structure. In this work, we showed that chemical inhibition of HDACs by valproic acid (VPA) led to impaired liver development in zebrafish mainly by inhibiting specification, budding, and differentiation. Formation of exocrine pancreas but not endocrine pancreas was also inhibited. The liver defects induced

  3. Histone Deacetylase-1 (HDAC1) Is a Molecular Switch between Neuronal Survival and Death* ?

    PubMed Central

    Bardai, Farah H.; Price, Valerie; Zaayman, Marcus; Wang, Lulu; D'Mello, Santosh R.

    2012-01-01

    Both neuroprotective and neurotoxic roles have previously been described for histone deacetylase-1 (HDAC1). Here we report that HDAC1 expression is elevated in vulnerable brain regions of two mouse models of neurodegeneration, the R6/2 model of Huntington disease and the Ca2+/calmodulin-dependent protein kinase (CaMK)/p25 double-transgenic model of tauopathic degeneration, suggesting a role in promoting neuronal death. Indeed, elevating HDAC1 expression by ectopic expression promotes the death of otherwise healthy cerebellar granule neurons and cortical neurons in culture. The neurotoxic effect of HDAC1 requires interaction and cooperation with HDAC3, which has previously been shown to selectively induce the death of neurons. HDAC1-HDAC3 interaction is greatly elevated under conditions of neurodegeneration both in vitro and in vivo. Furthermore, the knockdown of HDAC3 suppresses HDAC1-induced neurotoxicity, and the knockdown of HDAC1 suppresses HDAC3 neurotoxicity. As described previously for HDAC3, the neurotoxic effect of HDAC1 is inhibited by treatment with IGF-1, the expression of Akt, or the inhibition of glycogen synthase kinase 3? (GSK3?). In addition to HDAC3, HDAC1 has been shown to interact with histone deacetylase-related protein (HDRP), a truncated form of HDAC9, whose expression is down-regulated during neuronal death. In contrast to HDAC3, the interaction between HDRP and HDAC1 protects neurons from death, an effect involving acquisition of the deacetylase activity of HDAC1 by HDRP. We find that elevated HDRP inhibits HDAC1-HDAC3 interaction and prevents the neurotoxic effect of either of these two proteins. Together, our results suggest that HDAC1 is a molecular switch between neuronal survival and death. Its interaction with HDRP promotes neuronal survival, whereas interaction with HDAC3 results in neuronal death. PMID:22918830

  4. Differential Display Cloning of a Novel Human Histone Deacetylase (HDAC3) cDNA from PHA-Activated Immune Cells

    Microsoft Academic Search

    Fernando Dangond; David A. Hafler; Jeffrey K. Tong; Jeffrey Randall; Ryoji Kojima; Nalân Utku; Steven R. Gullans

    1998-01-01

    The nucleosomal histones can be modified through reversible acetylation by histone acetyltransferases (HATs) and deacetylases (HDACs). HATs induce nucleosomal relaxation and allow DNA-binding by transcriptional activators. HDACs form corepressor complexes which negatively regulate cell growth. However, the HDAC inhibitors butyrate and Trichostatin A block T cell proliferation, suggesting that not all effects of HDACs lead to repression. Using mRNA differential

  5. Histone Deacetylases

    PubMed Central

    Parbin, Sabnam; Kar, Swayamsiddha; Shilpi, Arunima; Sengupta, Dipta; Deb, Moonmoon; Rath, Sandip Kumar

    2014-01-01

    In the current era of genomic medicine, diseases are identified as manifestations of anomalous patterns of gene expression. Cancer is the principal example among such maladies. Although remarkable progress has been achieved in the understanding of the molecular mechanisms involved in the genesis and progression of cancer, its epigenetic regulation, particularly histone deacetylation, demands further studies. Histone deacetylases (HDACs) are one of the key players in the gene expression regulation network in cancer because of their repressive role on tumor suppressor genes. Higher expression and function of deacetylases disrupt the finely tuned acetylation homeostasis in both histone and non-histone target proteins. This brings about alterations in the genes implicated in the regulation of cell proliferation, differentiation, apoptosis and other cellular processes. Moreover, the reversible nature of epigenetic modulation by HDACs makes them attractive targets for cancer remedy. This review summarizes the current knowledge of HDACs in tumorigenesis and tumor progression as well as their contribution to the hallmarks of cancer. The present report also describes briefly various assays to detect histone deacetylase activity and discusses the potential role of histone deacetylase inhibitors as emerging epigenetic drugs to cure cancer. PMID:24051359

  6. In vivo imaging of histone deacetylases (HDACs) in the central nervous system and major peripheral organs.

    PubMed

    Wang, Changning; Schroeder, Frederick A; Wey, Hsiao-Ying; Borra, Ronald; Wagner, Florence F; Reis, Surya; Kim, Sung Won; Holson, Edward B; Haggarty, Stephen J; Hooker, Jacob M

    2014-10-01

    Epigenetic enzymes are now targeted to treat the underlying gene expression dysregulation that contribute to disease pathogenesis. Histone deacetylases (HDACs) have shown broad potential in treatments against cancer and emerging data supports their targeting in the context of cardiovascular disease and central nervous system dysfunction. Development of a molecular agent for non-invasive imaging to elucidate the distribution and functional roles of HDACs in humans will accelerate medical research and drug discovery in this domain. Herein, we describe the synthesis and validation of an HDAC imaging agent, [(11)C]6. Our imaging results demonstrate that this probe has high specificity, good selectivity, and appropriate kinetics and distribution for imaging HDACs in the brain, heart, kidney, pancreas, and spleen. Our findings support the translational potential for [(11)C]6 for human epigenetic imaging. PMID:25203558

  7. The role of class I histone deacetylase (HDAC) on gluconeogenesis in liver

    SciTech Connect

    Oiso, Hiroshi [Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan)] [Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan); Furukawa, Noboru, E-mail: n-furu@gpo.kumamoto-u.ac.jp [Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan)] [Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan); Suefuji, Mihoshi; Shimoda, Seiya [Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan)] [Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan); Ito, Akihiro; Furumai, Ryohei [Chemical Genetics Laboratory, RIKEN Advanced Science Institute, Saitama (Japan)] [Chemical Genetics Laboratory, RIKEN Advanced Science Institute, Saitama (Japan); Nakagawa, Junichi [Department of Food Science and Technology, Faculty of Bio-Industry, Tokyo University of Agriculture, Hokkaido (Japan)] [Department of Food Science and Technology, Faculty of Bio-Industry, Tokyo University of Agriculture, Hokkaido (Japan); Yoshida, Minoru [Chemical Genetics Laboratory, RIKEN Advanced Science Institute, Saitama (Japan)] [Chemical Genetics Laboratory, RIKEN Advanced Science Institute, Saitama (Japan); Nishino, Norikazu [Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu (Japan)] [Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu (Japan); Araki, Eiichi [Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan)] [Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan)

    2011-01-07

    Research highlights: {yields} A novel class I HDAC inhibitor decreased hepatic PEPCK mRNA and gluconeogenesis. {yields} Inhibition of HDAC decreased PEPCK by reducing HNF4{alpha} expression and FoxO1 activity. {yields} siRNA knockdown of HDAC1 in HepG2 cells reduced the expression of PEPCK and HNF4{alpha}. {yields} Inhibition of class I HDAC improves glucose homeostasis in HFD mice. -- Abstract: Hepatic gluconeogenesis is crucial for glucose homeostasis. Although sirtuin 1 (Sirt1) is implicated in the regulation of gluconeogenesis in the liver, the effects of other histone deacetylases (HDAC) on gluconeogenesis are unclear. The aim of this study was to identify the role of class I HDACs in hepatic gluconeogenesis. In HepG2 cells and the liver of mice, the expressions of phosphoenol pyruvate carboxykinase (PEPCK) and hepatocyte nuclear factor 4{alpha} (HNF4{alpha}) were significantly decreased by treatment with a newly designed class I HDAC inhibitor, Ky-2. SiRNA knockdown of HDAC1 expression, but not of HDAC2 or HDAC3, in HepG2 cells decreased PEPCK and HNF4{alpha} expression. In HepG2 cells, insulin-stimulated phosphorylation of Akt and forkhead box O 1 (FoxO1) was increased by Ky-2. Pyruvate tolerance tests in Ky-2-treated high-fat-diet (HFD)-fed mice showed a marked reduction in blood glucose compared with vehicle-treated HFD mice. These data suggest that class I HDACs increase HNF4{alpha} protein expression and the transcriptional activity of FoxO1, followed by the induction of PEPCK mRNA expression and gluconeogenesis in liver.

  8. Histone deacetylase (HDAC) inhibitors targeting HDAC3 and HDAC1 ameliorate polyglutamine-elicited phenotypes in model systems of Huntington's disease

    PubMed Central

    Jia, Haiqun; Pallos, Judit; Jacques, Vincent; Lau, Alice; Tang, Bin; Cooper, Andrew; Syed, Adeela; Purcell, Judith; Chen, Yi; Sharma, Shefali; Sangrey, Gavin R.; Darnell, Shayna B.; Plasterer, Heather; Sadri-Vakili, Ghazaleh; Gottesfeld, Joel M.; Thompson, Leslie M.; Rusche, James R.; Marsh, J. Lawrence; Thomas, Elizabeth A.

    2012-01-01

    We have previously demonstrated amelioration of Huntington's disease (HD)-related phenotypes in R6/2 transgenic mice in response to treatment with the novel histone deacetylase (HDAC) inhibitor 4b. Here we have measured the selectivity profiles of 4b and related compounds against class I and class II HDACs and have tested their ability to restore altered expression of genes related to HD pathology in mice and to rescue disease effects in cell culture and Drosophila models of HD. R6/2 transgenic and wild-type (wt) mice received daily injections of HDAC inhibitors for 3 days followed by real-time PCR analysis to detect expression differences for 13 HD-related genes. We find that HDACi 4b and 136, two compounds showing high potency for inhibiting HDAC3 were most effective in reversing the expression of genes relevant to HD, including Ppp1r1b, which encodes DARPP-32, a marker for medium spiny striatal neurons. In contrast, compounds targeting HDAC1 were less effective at correcting gene expression abnormalities in R6/2 transgenic mice, but did cause significant increases in the expression of selected genes. An additional panel of 4b-related compounds was tested in a Drosophila model of HD and in STHdhQ111 striatal cells to further distinguish HDAC selectivity. Significant improvement in huntingtin-elicited Drosophila eye neurodegeneration in the fly was observed in response to treatment with compounds targeting human HDAC1 and/or HDAC3. In STHdhQ111 striatal cells, the ability of HDAC inhibitors to improve Htt-elicited metabolic deficits correlated with the potency at inhibiting HDAC1 and HDAC3, although the IC50 values for HDAC1 inhibition were typically 10-fold higher than for inhibition of HDAC3. Assessment of HDAC protein localization in brain tissue by Western blot analysis revealed accumulation of HDAC1 and HDAC3 in the nucleus of HD transgenic mice compared to wt mice, with a concurrent decrease in cytoplasmic localization, suggesting that these HDACs contribute to a repressive chromatin environment in HD. No differences were detected in the localization of HDAC2, HDAC4 or HDAC7. These results suggest that inhibition of HDACs 1 and 3 can relieve HD-like phenotypes in model systems and that HDAC inhibitors targeting these isotypes might show therapeutic benefit in human HD. PMID:22590724

  9. Clinical significance of histone deacetylases 1, 2, 3, and 7: HDAC2 is an independent predictor of survival in HCC

    Microsoft Academic Search

    Karl Quint; Abbas Agaimy; Pietro Di Fazio; Roberta Montalbano; Claudia Steindorf; Rudolf Jung; Claus Hellerbrand; Arndt Hartmann; Helmut Sitter; Daniel Neureiter; Matthias Ocker

    Histone deacetylases (HDAC) are responsible for the transcriptional control of genes through chromatin remodeling and control\\u000a tumor suppressor genes. In several tumors, their expression has been linked to clinicopathological factors and patient survival.\\u000a This study investigates HDACs 1, 2, 3, and 7 expressions in hepatocellular carcinoma (HCC) and their correlation with clinical\\u000a data and patient survival. Tissue microarrays of 170

  10. Valproic Acid as a Potential Inhibitor of Plasmodium falciparum Histone Deacetylase 1 (PfHDAC1): An in Silico Approach

    PubMed Central

    Elbadawi, Mohamed A. Abdallah; Awadalla, Mohamed Khalid Alhaj; Abdel Hamid, Muzamil Mahdi; Mohamed, Magdi Awadalla; Awad, Talal Ahmed

    2015-01-01

    A new Plasmodium falciparum histone deacetylase1 (PfHDAC1) homology model was built based on the highest sequence identity available template human histone deacetylase 2 structure. The generated model was carefully evaluated for stereochemical accuracy, folding correctness and overall structure quality. All evaluations were acceptable and consistent. Docking a group of hydroxamic acid histone deacetylase inhibitors and valproic acid has shown binding poses that agree well with inhibitor-bound histone deacetylase-solved structural interactions. Docking affinity dG scores were in agreement with available experimental binding affinities. Further, enzyme-ligand complex stability and reliability were investigated by running 5-nanosecond molecular dynamics simulations. Thorough analysis of the simulation trajectories has shown that enzyme-ligand complexes were stable during the simulation period. Interestingly, the calculated theoretical binding energies of the docked hydroxamic acid inhibitors have shown that the model can discriminate between strong and weaker inhibitors and agrees well with the experimental affinities reported in the literature. The model and the docking methodology can be used in screening virtual libraries for PfHDAC1 inhibitors, since the docking scores have ranked ligands in accordance with experimental binding affinities. Valproic acid calculated theoretical binding energy suggests that it may inhibit PfHDAC1. PMID:25679451

  11. Valproic acid as a potential inhibitor of Plasmodium falciparum histone deacetylase 1 (PfHDAC1): an in silico approach.

    PubMed

    Elbadawi, Mohamed A Abdallah; Awadalla, Mohamed Khalid Alhaj; Hamid, Muzamil Mahdi Abdel; Mohamed, Magdi Awadalla; Awad, Talal Ahmed

    2015-01-01

    A new Plasmodium falciparum histone deacetylase1 (PfHDAC1) homology model was built based on the highest sequence identity available template human histone deacetylase 2 structure. The generated model was carefully evaluated for stereochemical accuracy, folding correctness and overall structure quality. All evaluations were acceptable and consistent. Docking a group of hydroxamic acid histone deacetylase inhibitors and valproic acid has shown binding poses that agree well with inhibitor-bound histone deacetylase-solved structural interactions. Docking affinity dG scores were in agreement with available experimental binding affinities. Further, enzyme-ligand complex stability and reliability were investigated by running 5-nanosecond molecular dynamics simulations. Thorough analysis of the simulation trajectories has shown that enzyme-ligand complexes were stable during the simulation period. Interestingly, the calculated theoretical binding energies of the docked hydroxamic acid inhibitors have shown that the model can discriminate between strong and weaker inhibitors and agrees well with the experimental affinities reported in the literature. The model and the docking methodology can be used in screening virtual libraries for PfHDAC1 inhibitors, since the docking scores have ranked ligands in accordance with experimental binding affinities. Valproic acid calculated theoretical binding energy suggests that it may inhibit PfHDAC1. PMID:25679451

  12. Activation of the growth-differentiation factor 11 gene by the histone deacetylase (HDAC) inhibitor trichostatin A and repression by HDAC3.

    PubMed

    Zhang, Xiaohong; Wharton, Walker; Yuan, Zhigang; Tsai, Shih-Chang; Olashaw, Nancy; Seto, Edward

    2004-06-01

    Histone deacetylase (HDAC) inhibitors inhibit the proliferation of transformed cells in vitro, restrain tumor growth in animals, and are currently being actively exploited as potential anticancer agents. To identify gene targets of the HDAC inhibitor trichostatin A (TSA), we compared the gene expression profiles of BALB/c-3T3 cells treated with or without TSA. Our results show that TSA up-regulates the expression of the gene encoding growth-differentiation factor 11 (Gdf11), a transforming growth factor beta family member that inhibits cell proliferation. Detailed analyses indicated that TSA activates the gdf11 promoter through a conserved CCAAT box element. A comprehensive survey of human HDACs revealed that HDAC3 is necessary and sufficient for the repression of gdf11 promoter activity. Chromatin immunoprecipitation assays showed that treatment of cells with TSA or silencing of HDAC3 expression by small interfering RNA causes the hyperacetylation of Lys-9 in histone H3 on the gdf11 promoter. Together, our results provide a new model in which HDAC inhibitors reverse abnormal cell growth by inactivation of HDAC3, which in turn leads to the derepression of gdf11 expression. PMID:15169878

  13. Santacruzamate A, a Potent and Selective Histone Deacetylase (HDAC) Inhibitor from the Panamanian Marine Cyanobacterium cf. Symploca sp.

    PubMed Central

    Pavlik, Christopher M.; Wong, Christina Y.B.; Ononye, Sophia; Lopez, Dioxelis D.; Engene, Niclas; McPhail, Kerry L.; Gerwick, William H.; Balunas, Marcy J.

    2013-01-01

    A dark-brown tuft-forming cyanobacterium, morphologically resembling the genus Symploca, was collected during an expedition to the Coiba National Park, a UNESCO World Heritage Site on the Pacific coast of Panama. Phylogenetic analysis of its 16S rRNA gene sequence indicated that it is 4.5% divergent from the type strain for Symploca, and thus is likely a new genus. Fractionation of the crude extract led to the isolation of a new cytotoxin, designated santacruzamate A (1), which has several structural features in common with suberoylanilide hydroxamic acid [(2), SAHA, trade name Vorinostat®], a clinically approved histone deacetylase (HDAC) inhibitor used to treat refractory cutaneous T-cell lymphoma. Recognition of the structural similarly of 1 and SAHA led to the characterization of santacruzamate A as a picomolar level selective inhibitor of HDAC2, a Class I HDAC, with relatively little inhibition of HDAC4 or HDAC6, both Class II HDACs. As a result, chemical syntheses of santacruzamate A as well as a structurally intriguing hybrid molecule, which blends aspects of both agents (1 and 2), were achieved and evaluated for their HDAC activity and specificity. PMID:24164245

  14. Insights into the Recruitment of Class IIa Histone Deacetylases (HDACs) to the SMRT/NCoR Transcriptional Repression Complex*

    PubMed Central

    Hudson, Gregg M.; Watson, Peter J.; Fairall, Louise; Jamieson, Andrew G.; Schwabe, John W. R.

    2015-01-01

    Class IIa histone deacetylases repress transcription of target genes. However, their mechanism of action is poorly understood because they exhibit very low levels of deacetylase activity. The class IIa HDACs are associated with the SMRT/NCoR repression complexes and this may, at least in part, account for their repressive activity. However, the molecular mechanism of recruitment to co-repressor proteins has yet to be established. Here we show that a repeated peptide motif present in both SMRT and NCoR is sufficient to mediate specific interaction, with micromolar affinity, with all the class IIa HDACs (HDACs 4, 5, 7, and 9). Mutations in the consensus motif abrogate binding. Mutational analysis of HDAC4 suggests that the peptide interacts in the vicinity of the active site of the enzyme and requires the “closed” conformation of the zinc-binding loop on the surface of the enzyme. Together these findings represent the first insights into the molecular mechanism of recruitment of class IIa HDACs to the SMRT/NCoR repression complexes. PMID:26055705

  15. Histone Deacetylases (HDAC)-Induced Histone Modifications in the Amygdala: A Role in Rapid Tolerance to the Anxiolytic Effects of Ethanol

    PubMed Central

    Sakharkar, Amul J; Zhang, Huaibo; Tang, Lei; Shi, Guangbin; Pandey, Subhash C

    2011-01-01

    Background Rapid tolerance to the anxiolytic effects of ethanol appears to be an important factor in the development of alcoholism. Here, we investigated the involvement of amygdaloid histone deacetylases (HDAC)-induced epigenetic changes in rapid ethanol tolerance (RET). Methods RET in rats was induced by two ethanol injections administered 24 hrs apart. Both ethanol-tolerant and control rats were treated with the HDAC inhibitor, trichostatin A (TSA), and anxiety-like behaviors were measured. HDAC activity, histone (H3 & H4) acetylation, and neuropeptide Y (NPY) expression in the amygdala of these rats were also measured. Results A single ethanol exposure was able to produce an anxiolytic response, inhibit amygdaloid HDAC activity, and increase both histone acetylation and NPY expression (mRNA and protein levels) in the central nucleus of amygdala (CeA) and medial nucleus of amygdala (MeA) of rats. In contrast, two exposures of the same dose of ethanol (24 hrs apart) neither elicited a similar anxiolytic response nor modulated HDAC activity, histone acetylation, or NPY expression in the amygdala. However, exposure to a higher dose of ethanol on the second day was able to produce an anxiolytic response and also inhibit amygdaloid HDAC activity. TSA treatment caused the reversal of RET by inhibiting HDAC activity thereby increasing histone acetylation and NPY expression in the CeA and MeA. Conclusions Cellular tolerance to the initial acute ethanol-induced inhibition of HDAC activity and the subsequent up-regulation of histone acetylation and NPY expression in the amygdala may be involved in the mechanisms underlying rapid tolerance to the anxiolytic effects of ethanol. PMID:21790673

  16. Preclinical antitumor activity of ST7612AA1: a new oral thiol-based histone deacetylase (HDAC) inhibitor

    PubMed Central

    Milazzo, Ferdinando Maria; De Santis, Rita; Gaudio, Eugenio; Kwee, Ivo; Rinaldi, Andrea; Pace, Silvia; Carollo, Valeria; Giannini, Giuseppe; Bertoni, Francesco

    2015-01-01

    ST7612AA1 (property of Sigma-Tau), a thioacetate-? (?-lactam amide) derivative, is a potent, second generation, oral pan-histone deacetylase inhibitor (HDACi). Aim of the study was to assess the efficacy of ST7612AA1 in solid and haematological tumors, and to characterize its mechanism of action. In vitro, ST7612AA1 potently inhibited different class I and class II HDACs, leading to restore the balance of both histone and non-histone protein acetylation. In vivo, it induced significant anti-tumor effects in xenograft models of lung, colon, breast and ovarian carcinomas, leukemia and lymphoma. This was likely due to the modulation of different HDAC substrates and induction of transcriptional changes with respect to several genes involved in key processes, such as cell cycle regulation, DNA damage checkpoints, immune response, cell adhesion and epithelial-to-mesenchymal transition. PK analysis confirmed the pro-drug nature of ST7612AA1, which is rapidly absorbed and converted to ST7464AA1 after a single oral dose in mice. ST7612AA1 was selected from a novel generation of oral HDAC inhibitors. Its high efficacy correlated with its potent and selective inhibitory activity of HDAC and was combined with a favorable pharmacodynamics profile. These aspects support a clinical development of ST7612AA1 towards a broad spectrum of human solid and haematologic malignancies. PMID:25671299

  17. Compensatory functions of histone deacetylase 1 (HDAC1) and HDAC2 regulate transcription and apoptosis during mouse oocyte development.

    PubMed

    Ma, Pengpeng; Pan, Hua; Montgomery, Rusty L; Olson, Eric N; Schultz, Richard M

    2012-02-21

    Dramatic changes in chromatin structure and histone modification occur during oocyte growth, as well as a global cessation of transcription. The role of histone modifications in these processes is poorly understood. We report the effect of conditionally deleting Hdac1 and Hdac2 on oocyte development. Deleting either gene has little or no effect on oocyte development, whereas deleting both genes results in follicle development arrest at the secondary follicle stage. This developmental arrest is accompanied by substantial perturbation of the transcriptome and a global reduction in transcription even though histone acetylation is markedly increased. There is no apparent change in histone repressive marks, but there is a pronounced decrease in histone H3K4 methylation, an activating mark. The decrease in H3K4 methylation is likely a result of increased expression of Kdm5b because RNAi-mediated targeting of Kdm5b in double-mutant oocytes results in an increase in H3K4 methylation. An increase in TRP53 acetylation also occurs in mutant oocytes and may contribute to the observed increased incidence of apoptosis. Taken together, these results suggest seminal roles of acetylation of histone and nonhistone proteins in oocyte development. PMID:22223663

  18. The class II histone deacetylase HDAC4 regulates cognitive, metabolic and endocrine functions through its expression in osteoblasts

    PubMed Central

    Makinistoglu, Munevver Parla; Karsenty, Gerard

    2014-01-01

    Objective The recently described endocrine functions of osteoblasts raise questions about their transcriptional regulation. Thus far, this aspect of osteoblast biology has been addressed only by examining the role of transcription factors binding to specific cis-acting elements in the promoter of the Osteocalcin gene. Methods In contrast, the role of chromatin remodeling enzymes, such as histone deacetylases (HDACs), in this process has not as yet been thoroughly understood. Results Here we show that through its expression in osteoblasts, one class II HDAC molecule, HDAC4, favors Osteocalcin expression, and as a result, the physiological functions regulated by osteocalcin such as spatial learning, memory, male fertility and insulin secretion. Molecular and genetic evidence indicates that through its expression in osteoblasts HDAC4 fulfills these long-range functions in part by stabilizing the transcription factor ATF4. Remarkably, through its expression in osteoblasts, HDAC4 also enhances appetite, a physiological function that is not regulated by osteocalcin. Conclusions These results provide a more in depth molecular understanding of the regulation of the endocrine functions of the osteoblast, and suggest the existence of additional hormones synthesized by osteoblasts that also regulate appetite. PMID:25685691

  19. The histone deacetylase (HDAC) inhibitor valproic acid reduces ethanol consumption and ethanol-conditioned place preference in rats.

    PubMed

    Al Ameri, Mouza; Al Mansouri, Shamma; Al Maamari, Alyazia; Bahi, Amine

    2014-10-01

    Recent evidence suggests that epigenetic mechanisms such as chromatin modification (specifically histone acetylation) may play a crucial role in the development of addictive behavior. However, little is known about the role of epigenetic modifications in the rewarding properties of ethanol. In the current study, we studied the effects of systemic injection of the histone deacetylase (HDAC) inhibitor, valproic acid (VPA) on ethanol consumption and ethanol-elicited conditioned place preference (CPP). The effect of VPA (300 mg/kg) on voluntary ethanol intake and preference was assessed using continuous two-bottle choice procedure with escalating concentrations of alcohol (2.5-20% v/v escalating over 4 weeks). Taste sensitivity was studies using saccharin (sweet; 0.03% and 0.06%) and quinine (bitter; 20 µM and 40 µM) tastants solutions. Ethanol conditioned reward was investigated using an unbiased CPP model. Blood ethanol concentration (BEC) was also measured. Compared to vehicle, VPA-injected rats displayed significantly lower preference and consumption of ethanol in a two-bottle choice paradigm, with no significant difference observed with saccharin and quinine. More importantly, 0.5 g/kg ethanol-induced-CPP acquisition was blocked following VPA administration. Finally, vehicle- and VPA-treated mice had similar BECs. Taken together, our results implicated HDAC inhibition in the behavioral and reinforcement-related effects of alcohol and raise the question of whether specific drugs that target HDAC could potentially help to tackle alcoholism in humans. PMID:25108044

  20. HDAC8 Substrates: Histones and Beyond

    PubMed Central

    Wolfson, Noah A.; Pitcairn, Carol Ann; Fierke, Carol A.

    2012-01-01

    The lysine deacetylase family of enzymes (HDACs) was first demonstrated to catalyze deacetylation of acetyllysine residues on histones. In subsequent years, HDACs have been shown to recognize a large pool of acetylated non-histone proteins as substrates. Recently, thousands of acetylated proteins have been discovered, yet in most cases, the HDAC that catalyzes deacetylation in vivo has not been identified. This gap has created the need for better in vivo, in vitro, and in silico approaches for determining HDAC substrates. While HDAC8 is the best kinetically and structurally characterized HDAC, few efficient substrates have yet been substantiated in vivo. In this review we delineate factors that may be important for determining HDAC8 substrate recognition and catalytic activity, including structure, complex formation, and post-translational modifications. This summary provides insight into the challenges of identifying in vivo substrates for HDAC8, and provides a good vantage point for understanding the variables important for predicting HDAC substrate recognition. PMID:23175386

  1. Structural Basis for the Inhibition of Histone Deacetylase 8 (HDAC8), a Key Epigenetic Player in the Blood Fluke Schistosoma mansoni

    PubMed Central

    Marek, Martin; Kannan, Srinivasaraghavan; Hauser, Alexander-Thomas; Moraes Mourão, Marina; Caby, Stéphanie; Cura, Vincent; Stolfa, Diana A.; Schmidtkunz, Karin; Lancelot, Julien; Andrade, Luiza; Renaud, Jean-Paul; Oliveira, Guilherme; Sippl, Wolfgang; Jung, Manfred; Cavarelli, Jean; Pierce, Raymond J.; Romier, Christophe

    2013-01-01

    The treatment of schistosomiasis, a disease caused by blood flukes parasites of the Schistosoma genus, depends on the intensive use of a single drug, praziquantel, which increases the likelihood of the development of drug-resistant parasite strains and renders the search for new drugs a strategic priority. Currently, inhibitors of human epigenetic enzymes are actively investigated as novel anti-cancer drugs and have the potential to be used as new anti-parasitic agents. Here, we report that Schistosoma mansoni histone deacetylase 8 (smHDAC8), the most expressed class I HDAC isotype in this organism, is a functional acetyl-L-lysine deacetylase that plays an important role in parasite infectivity. The crystal structure of smHDAC8 shows that this enzyme adopts a canonical ?/? HDAC fold, with specific solvent exposed loops corresponding to insertions in the schistosome HDAC8 sequence. Importantly, structures of smHDAC8 in complex with generic HDAC inhibitors revealed specific structural changes in the smHDAC8 active site that cannot be accommodated by human HDACs. Using a structure-based approach, we identified several small-molecule inhibitors that build on these specificities. These molecules exhibit an inhibitory effect on smHDAC8 but show reduced affinity for human HDACs. Crucially, we show that a newly identified smHDAC8 inhibitor has the capacity to induce apoptosis and mortality in schistosomes. Taken together, our biological and structural findings define the framework for the rational design of small-molecule inhibitors specifically interfering with schistosome epigenetic mechanisms, and further support an anti-parasitic epigenome targeting strategy to treat neglected diseases caused by eukaryotic pathogens. PMID:24086136

  2. Histone Deacetylase 3 (HDAC3)-dependent Reversible Lysine Acetylation of Cardiac Myosin Heavy Chain Isoforms Modulates Their Enzymatic and Motor Activity.

    PubMed

    Samant, Sadhana A; Pillai, Vinodkumar B; Sundaresan, Nagalingam R; Shroff, Sanjeev G; Gupta, Mahesh P

    2015-06-19

    Reversible lysine acetylation is a widespread post-translational modification controlling the activity of proteins in different subcellular compartments. We previously demonstrated that a class II histone deacetylase (HDAC), HDAC4, and a histone acetyltransferase, p300/CREB-binding protein-associated factor, associate with cardiac sarcomeres and that a class I and II HDAC inhibitor, trichostatin A, enhances contractile activity of myofilaments. In this study we show that a class I HDAC, HDAC3, is also present at cardiac sarcomeres. By immunohistochemical and electron microscopic analyses, we found that HDAC3 was localized to A-band of sarcomeres and capable of deacetylating myosin heavy chain (MHC) isoforms. The motor domains of both cardiac ?- and ?-MHC isoforms were found to be reversibly acetylated. Biomechanical studies revealed that lysine acetylation significantly decreased the Km for the actin-activated ATPase activity of MHC isoforms. By in vitro motility assay, we found that lysine acetylation increased the actin-sliding velocity of ?-myosin by 20% and ?-myosin by 36% compared with their respective non-acetylated isoforms. Moreover, myosin acetylation was found to be sensitive to cardiac stress. During induction of hypertrophy, myosin isoform acetylation increased progressively with duration of stress stimuli independently of isoform shift, suggesting that lysine acetylation of myosin could be an early response of myofilaments to increase contractile performance of the heart. These studies provide the first evidence for localization of HDAC3 at myofilaments and uncover a novel mechanism modulating the motor activity of cardiac MHC isoforms. PMID:25911107

  3. Ginsenoside Rg3 Inhibits Melanoma Cell Proliferation through Down-Regulation of Histone Deacetylase 3 (HDAC3) and Increase of p53 Acetylation

    PubMed Central

    Shan, Xiu; Fu, Yuan-Shan; Aziz, Faisal; Wang, Xiao-Qi; Yan, Qiu; Liu, Ji-Wei

    2014-01-01

    Malignant melanoma is an aggressive and deadly form of skin cancer, and despite recent advances in available therapies, is still lacking in completely effective treatments. Rg3, a monomer extracted from ginseng roots, has been attempted for the treatment of many cancers. It is reported that the expressions of histone deacetylase 3 (HDAC3) and p53 acetylation correlate with tumor cell growth. However, the antitumor effect of Rg3 on melanoma and the mechanism by which it regulates HDAC3 expression and p53 acetylation remain unknown. We found high expression of HDAC3 in human melanoma tissues to be significantly correlated to lymph node metastasis and clinical stage of disease (p<0.05). In melanoma cells, Rg3 inhibited cell proliferation and induced G0/G1 cell cycle arrest. Rg3 also decreased the expression of HDAC3 and increased the acetylation of p53 on lysine (k373/k382). Moreover, suppression of HDAC3 by either siRNA or a potent HDAC3 inhibitor (MS-275) inhibited cell proliferation, increased p53 acetylation and transcription activity. In A375 melanoma xenograft studies, we demonstrated that Rg3 and HDAC3 short hairpin RNA (shHDAC3) inhibited the growth of xenograft tumors with down-regulation of HDAC3 expression and up-regulation of p53 acetylation. In conclusion, Rg3 has antiproliferative activity against melanoma by decreasing HDAC3 and increasing acetylation of p53 both in vitro and in vivo. Thus, Rg3 serves as a potential therapeutic agent for the treatment of melanoma. PMID:25521755

  4. Ginsenoside Rg3 inhibits melanoma cell proliferation through down-regulation of histone deacetylase 3 (HDAC3) and increase of p53 acetylation.

    PubMed

    Shan, Xiu; Fu, Yuan-Shan; Aziz, Faisal; Wang, Xiao-Qi; Yan, Qiu; Liu, Ji-Wei

    2014-01-01

    Malignant melanoma is an aggressive and deadly form of skin cancer, and despite recent advances in available therapies, is still lacking in completely effective treatments. Rg3, a monomer extracted from ginseng roots, has been attempted for the treatment of many cancers. It is reported that the expressions of histone deacetylase 3 (HDAC3) and p53 acetylation correlate with tumor cell growth. However, the antitumor effect of Rg3 on melanoma and the mechanism by which it regulates HDAC3 expression and p53 acetylation remain unknown. We found high expression of HDAC3 in human melanoma tissues to be significantly correlated to lymph node metastasis and clinical stage of disease (p<0.05). In melanoma cells, Rg3 inhibited cell proliferation and induced G0/G1 cell cycle arrest. Rg3 also decreased the expression of HDAC3 and increased the acetylation of p53 on lysine (k373/k382). Moreover, suppression of HDAC3 by either siRNA or a potent HDAC3 inhibitor (MS-275) inhibited cell proliferation, increased p53 acetylation and transcription activity. In A375 melanoma xenograft studies, we demonstrated that Rg3 and HDAC3 short hairpin RNA (shHDAC3) inhibited the growth of xenograft tumors with down-regulation of HDAC3 expression and up-regulation of p53 acetylation. In conclusion, Rg3 has antiproliferative activity against melanoma by decreasing HDAC3 and increasing acetylation of p53 both in vitro and in vivo. Thus, Rg3 serves as a potential therapeutic agent for the treatment of melanoma. PMID:25521755

  5. Histone deacetylase turnover and recovery in sulforaphane-treated colon cancer cells: competing actions of 14-3-3 and Pin1 in HDAC3\\/SMRT corepressor complex dissociation\\/reassembly

    Microsoft Academic Search

    Praveen Rajendran; Barbara Delage; W Mohaiza Dashwood; Tian-Wei Yu; Bradyn Wuth; David E Williams; Emily Ho; Roderick H Dashwood

    2011-01-01

    Background  Histone deacetylase (HDAC) inhibitors are currently undergoing clinical evaluation as anti-cancer agents. Dietary constituents\\u000a share certain properties of HDAC inhibitor drugs, including the ability to induce global histone acetylation, turn-on epigenetically-silenced\\u000a genes, and trigger cell cycle arrest, apoptosis, or differentiation in cancer cells. One such example is sulforaphane (SFN),\\u000a an isothiocyanate derived from the glucosinolate precursor glucoraphanin, which is abundant

  6. Dynamic structure-based pharmacophore model development: a new and effective addition in the histone deacetylase 8 (HDAC8) inhibitor discovery.

    PubMed

    Thangapandian, Sundarapandian; John, Shalini; Lee, Yuno; Kim, Songmi; Lee, Keun Woo

    2011-01-01

    Histone deacetylase 8 (HDAC8) is an enzyme involved in deacetylating the amino groups of terminal lysine residues, thereby repressing the transcription of various genes including tumor suppressor gene. The over expression of HDAC8 was observed in many cancers and thus inhibition of this enzyme has emerged as an efficient cancer therapeutic strategy. In an effort to facilitate the future discovery of HDAC8 inhibitors, we developed two pharmacophore models containing six and five pharmacophoric features, respectively, using the representative structures from two molecular dynamic (MD) simulations performed in Gromacs 4.0.5 package. Various analyses of trajectories obtained from MD simulations have displayed the changes upon inhibitor binding. Thus utilization of the dynamically-responded protein structures in pharmacophore development has the added advantage of considering the conformational flexibility of protein. The MD trajectories were clustered based on single-linkage method and representative structures were taken to be used in the pharmacophore model development. Active site complimenting structure-based pharmacophore models were developed using Discovery Studio 2.5 program and validated using a dataset of known HDAC8 inhibitors. Virtual screening of chemical database coupled with drug-like filter has identified drug-like hit compounds that match the pharmacophore models. Molecular docking of these hits reduced the false positives and identified two potential compounds to be used in future HDAC8 inhibitor design. PMID:22272142

  7. Altered expression of histone deacetylases in cancer.

    PubMed

    Montezuma, Diana; Henrique, Rui Manuel Ferreira; Jeronimo, Carmen

    2015-01-01

    Epigenetic mechanisms, including histone deacetylation, are commonly deregulated in cancer. Histone deacetylases (HDACs) play an important role in tumorigenesis and their value as therapeutic targets has been under intense investigation in recent years. In addition to classical HDACs (HDAC classes I, II, and IV), sirtuins (class III HDACs) are currently in the spotlight of cancer research showing promise as cancer biomarkers and therapeutic targets. Translating research knowledge into the clinical setting is, however, a challenging and demanding task. This review describes the association between HDAC deregulation and cancer promotion and highlights recent advances in the use of HDAC inhibitors in the management of neoplastic diseases, with emphasis on urological tumors. Sirtuins' bivalent role in tumor development and therapeutic agents targeting these molecules will be also addressed. PMID:25746102

  8. Modulation of cellular radiation responses by histone deacetylase inhibitors

    Microsoft Academic Search

    T C Karagiannis; A El-Osta

    2006-01-01

    Histone deacetylase (HDAC) inhibitors are emerging as a new class of targeted cancer chemotherapeutics. Several HDAC inhibitors are currently in clinical trials and promising anticancer effects at well-tolerated doses have been observed for both hematologic and solid cancers. HDAC inhibitors have been shown to induce cell-cycle and growth arrest, differentiation and in certain cases apoptosis in cell cultures and in

  9. Deacetylase-Independent Function of HDAC3 in Transcription and Metabolism Requires Nuclear Receptor Corepressor

    PubMed Central

    Sun, Zheng; Feng, Dan; Fang, Bin; Mullican, Shannon E.; You, Seo-Hee; Lim, Hee-Woong; Everett, Logan J.; Nabel, Christopher S.; Li, Yun; Selvakumaran, Vignesh; Won, Kyoung-Jae; Lazar, Mitchell A.

    2013-01-01

    Histone deacetylases (HDACs) are believed to regulate gene transcription by catalyzing deacetylation reactions. HDAC3 depletion in mouse liver upregulates lipogenic genes and results in severe hepatosteatosis. Here we show that pharmacologic HDAC inhibition in primary hepatocytes causes histone hyperacetylation but does not upregulate expression of HDAC3 target genes. Meanwhile, deacetylase-dead HDAC3 mutants can rescue hepatosteatosis and repress lipogenic genes expression in HDAC3-depleted mouse liver, demonstrating that histone acetylation is insufficient to activate gene transcription. Mutations abolishing interactions with the nuclear receptor corepressor (NCOR or SMRT) render HDAC3 nonfunctional in vivo. Additionally, liver-specific knockout of NCOR, but not SMRT, causes metabolic and transcriptomal alterations resembling those of mice without hepatic HDAC3, demonstrating that interaction with NCOR is essential for deacetylase-independent function of HDAC3. These findings highlight non-enzymatic roles of a major HDAC in transcriptional regulation in vivo and warrant reconsideration of the mechanism of action of HDAC inhibitors. PMID:24268577

  10. Histone deacetylases and cardiovascular cell lineage commitment.

    PubMed

    Yang, Jun-Yao; Wang, Qian; Wang, Wen; Zeng, Ling-Fang

    2015-06-26

    Cardiovascular diseases (CVDs), which include all diseases of the heart and circulation system, are the leading cause of deaths on the globally. During the development of CVDs, choric inflammatory, lipid metabolism disorder and endothelial dysfunction are widely recognized risk factors. Recently, the new treatment for CVDs that designed to regenerate the damaged myocardium and injured vascular endothelium and improve recovery by the use of stem cells, attracts more and more public attention. Histone deacetylases (HDACs) are a family of enzymes that remove acetyl groups from lysine residues of histone proteins allowing the histones to wrap the DNA more tightly and commonly known as epigenetic regulators of gene transcription. HDACs play indispensable roles in nearly all biological processes, such as transcriptional regulation, cell cycle progression and developmental events, and have originally shown to be involved in cancer and neurological diseases. HDACs are also found to play crucial roles in cardiovascular diseases by modulating vascular cell homeostasis (e.g., proliferation, migration, and apoptosis of both ECs and SMCs). This review focuses on the roles of different members of HDACs and HDAC inhibitor on stem cell/ progenitor cell differentiation toward vascular cell lineages (endothelial cells, smooth muscle cells and Cardiomyocytes) and its potential therapeutics. PMID:26131315

  11. Histone deacetylases and cardiovascular cell lineage commitment

    PubMed Central

    Yang, Jun-Yao; Wang, Qian; Wang, Wen; Zeng, Ling-Fang

    2015-01-01

    Cardiovascular diseases (CVDs), which include all diseases of the heart and circulation system, are the leading cause of deaths on the globally. During the development of CVDs, choric inflammatory, lipid metabolism disorder and endothelial dysfunction are widely recognized risk factors. Recently, the new treatment for CVDs that designed to regenerate the damaged myocardium and injured vascular endothelium and improve recovery by the use of stem cells, attracts more and more public attention. Histone deacetylases (HDACs) are a family of enzymes that remove acetyl groups from lysine residues of histone proteins allowing the histones to wrap the DNA more tightly and commonly known as epigenetic regulators of gene transcription. HDACs play indispensable roles in nearly all biological processes, such as transcriptional regulation, cell cycle progression and developmental events, and have originally shown to be involved in cancer and neurological diseases. HDACs are also found to play crucial roles in cardiovascular diseases by modulating vascular cell homeostasis (e.g., proliferation, migration, and apoptosis of both ECs and SMCs). This review focuses on the roles of different members of HDACs and HDAC inhibitor on stem cell/ progenitor cell differentiation toward vascular cell lineages (endothelial cells, smooth muscle cells and Cardiomyocytes) and its potential therapeutics. PMID:26131315

  12. Post-Training Intrahippocampal Inhibition of Class I Histone Deacetylases Enhances Long-Term Object-Location Memory

    ERIC Educational Resources Information Center

    Hawk, Joshua D.; Florian, Cedrick; Abel, Ted

    2011-01-01

    Long-term memory formation involves covalent modification of the histone proteins that package DNA. Reducing histone acetylation by mutating histone acetyltransferases impairs long-term memory, and enhancing histone acetylation by inhibiting histone deacetylases (HDACs) improves long-term memory. Previous studies using HDAC inhibitors to enhance…

  13. Inhibition of class II histone deacetylases in the spinal cord attenuates inflammatory hyperalgesia

    Microsoft Academic Search

    Guang Bai; Dong Wei; Shiping Zou; Ke Ren; Ronald Dubner

    2010-01-01

    BACKGROUND: Several classes of histone deacetylases (HDACs) are expressed in the spinal cord that is a critical structure of the nociceptive pathway. HDAC-regulated histone acetylation is an important component of chromatin remodeling leading to epigenetic regulation of gene transcription. To understand the role of histone acetylation in epigenetic regulation of pathological pain, we have studied the impact of different classes

  14. Inhibition of histone deacetylase activity increases chromosomal instability by the aberrant regulation of mitotic checkpoint activation

    Microsoft Academic Search

    Hyun-Jin Shin; Kwan-Hyuck Baek; Ae-Hwa Jeon; So-Jung Kim; Kyung-Lib Jang; Young-Chul Sung; Chang-Min Kim; Chang-Woo Lee

    2003-01-01

    Histone modification through acetylation and deacetylation is a key process in transcription, DNA replication, and chromosome segregation. During mitosis, histones are highly acetylated and chromatin is condensed. Here, we investigate the mechanistic involvement of histone deacetylase (HDAC) activity in the regulation of mitotic checkpoint activation. Inhibition of HDAC activity was found to cause the improper kinetochore localization of the mitotic

  15. Suppression of caspase-11 expression by histone deacetylase inhibitors

    SciTech Connect

    Heo, Hyejung; Yoo, Lang [Department of Molecular Biology, Sejong University, 98 Gunja-dong, Gwangjin-gu, Seoul 143-747 (Korea, Republic of); Shin, Ki Soon [Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Kang, Shin Jung [Department of Molecular Biology, Sejong University, 98 Gunja-dong, Gwangjin-gu, Seoul 143-747 (Korea, Republic of)], E-mail: sjkang@sejong.ac.kr

    2009-01-02

    It has been well documented that histone deacetylase inhibitors suppress inflammatory gene expression. Therefore, we investigated whether histone deacetylase inhibitors modulate the expression of caspase-11 that is known as an inducible caspase regulating both inflammation and apoptosis. In the present study, we show that sodium butyrate and trichostatin A, two structurally unrelated inhibitors of histone deacetylase (HDAC), effectively suppressed the induction of caspase-11 in mouse embryonic fibroblasts stimulated with lipopolysaccharides. Sodium butyrate inhibited the activation of upstream signaling events for the caspase-11 induction such as activation of p38 mitogen-activated protein kinase and c-Jun N-terminal kinase, degradation of inhibitor of {kappa}B, and activation of nuclear factor-{kappa}B. These results suggest that the HDAC inhibitor suppressed cytosolic signaling events for the induction of caspase-11 by inhibiting the deacetylation of non-histone proteins.

  16. Histone Deacetylase 6 (HDAC6) Promotes the Pro-survival Activity of 14-3-3? via Deacetylation of Lysines within the 14-3-3? Binding Pocket.

    PubMed

    Mortenson, Jeffrey B; Heppler, Lisa N; Banks, Courtney J; Weerasekara, Vajira K; Whited, Matthew D; Piccolo, Stephen R; Johnson, William E; Thompson, J Will; Andersen, Joshua L

    2015-05-15

    The phospho-binding protein 14-3-3? acts as a signaling hub controlling a network of interacting partners and oncogenic pathways. We show here that lysines within the 14-3-3? binding pocket and protein-protein interface can be modified by acetylation. The positive charge on two of these lysines, Lys(49) and Lys(120), is critical for coordinating 14-3-3?-phosphoprotein interactions. Through screening, we identified HDAC6 as the Lys(49)/Lys(120) deacetylase. Inhibition of HDAC6 blocks 14-3-3? interactions with two well described interacting partners, Bad and AS160, which triggers their dephosphorylation at Ser(112) and Thr(642), respectively. Expression of an acetylation-refractory K49R/K120R mutant of 14-3-3? rescues both the HDAC6 inhibitor-induced loss of interaction and Ser(112)/Thr(642) phosphorylation. Furthermore, expression of the K49R/K120R mutant of 14-3-3? inhibits the cytotoxicity of HDAC6 inhibition. These data demonstrate a novel role for HDAC6 in controlling 14-3-3? binding activity. PMID:25770209

  17. Histone deacetylase inhibitors: Mechanisms of cell death and promise in combination cancer therapy

    Microsoft Academic Search

    Jennifer S. Carew; Francis J. Giles; Steffan T. Nawrocki

    2008-01-01

    Histone deacetylases (HDACs) play an important role in the epigenetic regulation of gene expression by catalyzing the removal of acetyl groups, stimulating chromatin condensation and promoting transcriptional repression. Since aberrant epigenetic changes are a hallmark of cancer, HDACs are a promising target for pharmacological inhibition. HDAC inhibitors can induce cell-cycle arrest, promote differentiation, and stimulate tumor cell death. These properties

  18. HDAC4 Does Not Act as a Protein Deacetylase in the Postnatal Murine Brain In Vivo

    PubMed Central

    Mielcarek, Michal; Seredenina, Tamara; Stokes, Matthew P.; Osborne, Georgina F.; Landles, Christian; Inuabasi, Linda; Franklin, Sophie A.; Silva, Jeffrey C.; Luthi-Carter, Ruth; Beaumont, Vahri; Bates, Gillian P.

    2013-01-01

    Reversible protein acetylation provides a central mechanism for controlling gene expression and cellular signaling events. It is governed by the antagonistic commitment of two enzymes families: the histone acetyltransferases (HATs) and the histone deacetylases (HDACs). HDAC4, like its class IIa counterparts, is a potent transcriptional repressor through interactions with tissue specific transcription factors via its N-terminal domain. Whilst the lysine deacetylase activity of the class IIa HDACs is much less potent than that of the class I enzymes, HDAC4 has been reported to influence protein deacetylation through its interaction with HDAC3. To investigate the influence of HDAC4 on protein acetylation we employed the immunoaffinity-based AcetylScan proteomic method. We identified many proteins known to be modified by acetylation, but found that the absence of HDAC4 had no effect on the acetylation profile of the murine neonate brain. This is consistent with the biochemical data suggesting that HDAC4 may not function as a lysine deacetylase, but these in vivo data do not support the previous report showing that the enzymatic activity of HDAC3 might be modified by its interaction with HDAC4. To complement this work, we used Affymetrix arrays to investigate the effect of HDAC4 knock-out on the transcriptional profile of the postnatal murine brain. There was no effect on global transcription, consistent with the absence of a differential histone acetylation profile. Validation of the array data by Taq-man qPCR indicated that only protamine 1 and Igfbp6 mRNA levels were increased by more than one-fold and only Calml4 was decreased. The lack of a major effect on the transcriptional profile is consistent with the cytoplasmic location of HDAC4 in the P3 murine brain. PMID:24278330

  19. HDAC4 does not act as a protein deacetylase in the postnatal murine brain in vivo.

    PubMed

    Mielcarek, Michal; Seredenina, Tamara; Stokes, Matthew P; Osborne, Georgina F; Landles, Christian; Inuabasi, Linda; Franklin, Sophie A; Silva, Jeffrey C; Luthi-Carter, Ruth; Beaumont, Vahri; Bates, Gillian P

    2013-01-01

    Reversible protein acetylation provides a central mechanism for controlling gene expression and cellular signaling events. It is governed by the antagonistic commitment of two enzymes families: the histone acetyltransferases (HATs) and the histone deacetylases (HDACs). HDAC4, like its class IIa counterparts, is a potent transcriptional repressor through interactions with tissue specific transcription factors via its N-terminal domain. Whilst the lysine deacetylase activity of the class IIa HDACs is much less potent than that of the class I enzymes, HDAC4 has been reported to influence protein deacetylation through its interaction with HDAC3. To investigate the influence of HDAC4 on protein acetylation we employed the immunoaffinity-based AcetylScan proteomic method. We identified many proteins known to be modified by acetylation, but found that the absence of HDAC4 had no effect on the acetylation profile of the murine neonate brain. This is consistent with the biochemical data suggesting that HDAC4 may not function as a lysine deacetylase, but these in vivo data do not support the previous report showing that the enzymatic activity of HDAC3 might be modified by its interaction with HDAC4. To complement this work, we used Affymetrix arrays to investigate the effect of HDAC4 knock-out on the transcriptional profile of the postnatal murine brain. There was no effect on global transcription, consistent with the absence of a differential histone acetylation profile. Validation of the array data by Taq-man qPCR indicated that only protamine 1 and Igfbp6 mRNA levels were increased by more than one-fold and only Calml4 was decreased. The lack of a major effect on the transcriptional profile is consistent with the cytoplasmic location of HDAC4 in the P3 murine brain. PMID:24278330

  20. Repression of Runx2 function by TGF-b through recruitment of class II histone deacetylases

    E-print Network

    Derynck, Rik

    Repression of Runx2 function by TGF-b through recruitment of class II histone deacetylases by Smad3 inhibition of the function of Runx2 (Cbfa1) by Smad3. The mechanism through which TGF-b/ Smad3 inhibits Runx2 histone deacetylases (HDAC)4 and 5, which are recruited through interaction with Smad3 to the Smad3/Runx2

  1. Histone Deacetylase 5 Limits Cocaine Reward through cAMP-Induced Nuclear Import

    E-print Network

    Taniguchi, Makoto

    Chromatin remodeling by histone deacetylases (HDACs) is a key mechanism regulating behavioral adaptations to cocaine use. We report here that cocaine and cyclic adenosine monophosphate (cAMP) signaling induce the transient ...

  2. Macrocyclic Peptoid–Peptide Hybrids as Inhibitors of Class I Histone Deacetylases

    PubMed Central

    2012-01-01

    We report the design, synthesis, and biological evaluation of the first macrocyclic peptoid-containing histone deacetylase (HDAC) inhibitors. The compounds selectively inhibit human class I HDAC isoforms in vitro, with no inhibition of the tubulin deacetylase activity associated with class IIb HDAC6 in cultured Jurkat cells. Compared to the natural product apicidin (1), one inhibitor (compound 10) showed equivalent potency against K-562 cells, but was more cytoselective across a panel of cancer cell lines. PMID:24900543

  3. Radioprotection by the histone deacetylase inhibitor phenylbutyrate.

    PubMed

    Miller, Alexandra C; Cohen, Stuart; Stewart, Michael; Rivas, Rafael; Lison, Paul

    2011-11-01

    The histone deacetylase inhibitor (HDAC), phenylbutyrate (PB), is a novel anti-tumor agent. Studies have demonstrated that HDAC inhibitors can suppress cutaneous radiation syndrome and stimulate hematopoiesis. The objective of this study was to test the ability of PB treatment to protect against acute gamma-radiation-induced lethality in the DBA/2 mouse model. A 30-day radiation lethality study was used to assess radioprotective capability of PB. Mechanisms were evaluated using western blots, flow cytometry, and the single-cell gel electrophoresis assay. Western blot studies showed that PB treatment acetylated histones in vivo. For radiation protection studies, prophylactic administration of PB (24 h preradiation; 1-50 mg/kg) provided radioprotection against gamma radiation (8-9.5 Gy) and PB demonstrated a DRF of 1.31 (P = 0.001; 95% confidence interval: 1.27, 1.36). When PB (10 mg/kg) was administered post-radiation (4 h), it also provided significant radioprotection at 8.0 Gy radiation (P = 0.022). PB treatment before radiation was associated with significant elevations in neutrophils and platelets following radiation. Results from single-cell gel electrophoresis of peripheral blood leukocytes demonstrated that PB treatment before radiation can attenuate DNA damage and inhibit radiation-induced apoptosis. These results indicate that an HDAC inhibitor like PB has potential as a radiation protector and that mechanisms of action include attenuation of DNA damage and inhibition of apoptosis. PMID:21892632

  4. Dual Inhibitors Against Topoisomerases and Histone Deacetylases

    PubMed Central

    Seo, Young Ho

    2015-01-01

    Topoisomerases and histone deacetylases (HDACs) are considered as important therapeutic targets for a wide range of cancers, due to their association with the initiation, proliferation and survival of cancer cells. Topoisomerases are involved in the cleavage and religation processes of DNA, while HDACs regulate a dynamic epigenetic modification of the lysine amino acid on various proteins. Extensive studies have been undertaken to discover small molecule inhibitor of each protein and thereby, several drugs have been transpired from this effort and successfully approved for clinical use. However, the inherent heterogeneity and multiple genetic abnormalities of cancers challenge the clinical application of these single targeted drugs. In order to overcome the limitations of a single target approach, a novel approach, simultaneously targeting topoisomerases and HDACs with a single molecule has been recently employed and attracted much attention of medicinal chemists in drug discovery. This review highlights the current studies on the discovery of dual inhibitors against topoisomerases and HDACs, provides their pharmacological aspects and advantages, and discusses the challenges and promise of the dual inhibitors.

  5. Development of a fluorescence polarization based assay for histone deacetylase ligand discovery

    PubMed Central

    Mazitschek, Ralph; Patel, Vishal; Wirth, Dyann F.; Clardy, Jon

    2008-01-01

    Histone deacetylases (HDACs) regulate many important physiological processes and the discovery of small molecules that modulate HDAC activity has both academic and clinical relevance. HDAC inhibitors, most notably SAHA, have been pursued as cancer chemotherapeutics but may be useful in treating psychiatric disorders, malaria, and other diseases. Herein, we describe an inexpensive and robust assay, based on fluorescence polarization, for HDAC ligand discovery. The assay is well suited for high-throughput screening and enzyme kinetic studies. PMID:18430569

  6. Treatment of chronic kidney diseases with histone deacetylase inhibitors

    PubMed Central

    Liu, Na; Zhuang, Shougang

    2015-01-01

    Histone deacetylases (HDACs) induce deacetylation of both histone and non-histone proteins and play a critical role in the modulation of physiological and pathological gene expression. Pharmacological inhibition of HDAC has been reported to attenuate progression of renal fibrogenesis in obstructed kidney and reduce cyst formation in polycystic kidney disease. HDAC inhibitors (HDACis) are also able to ameliorate renal lesions in diabetes nephropathy, lupus nephritis, aristolochic acid nephropathy, and transplant nephropathy. The beneficial effects of HDACis are associated with their anti-fibrosis, anti-inflammation, and immunosuppressant effects. In this review, we summarize recent advances on the treatment of various chronic kidney diseases with HDACis in pre-clinical models. PMID:25972812

  7. SQSTM1/p62 interacts with HDAC6 and regulates deacetylase activity.

    PubMed

    Yan, Jin; Seibenhener, Michael Lamar; Calderilla-Barbosa, Luis; Diaz-Meco, Maria-Theresa; Moscat, Jorge; Jiang, Jianxiong; Wooten, Marie W; Wooten, Michael C

    2013-01-01

    Protein aggregates can form in the cytoplasm of the cell and are accumulated at aggresomes localized to the microtubule organizing center (MTOC) where they are subsequently degraded by autophagy. In this process, aggregates are engulfed into autophagosomes which subsequently fuse with lysosomes for protein degradation. A member of the class II histone deacetylase family, histone deacetylase 6(HDAC6) has been shown to be involved in both aggresome formation and the fusion of autophagosomes with lysosomes making it an attractive target to regulate protein aggregation. The scaffolding protein sequestosome 1(SQSTM1)/p62 has also been shown to regulate accumulation and autophagic clearance of protein aggregates. Recent studies have revealed colocalization of HDAC6 and p62 to ubiquitinated mitochondria, as well as, ubiquitinated protein aggregates associated with the E3 ubiquitin ligase TRIM50. HDAC6 deacetylase activity is required for aggresome formation and can be regulated by protein interaction with HDAC6. Due to their colocalization at ubiquitinated protein aggregates, we sought to examine if p62 specifically interacted with HDAC6 and if so, if this interaction had any effect on HDAC6 activity and/or the physiological function of cortactin-F-actin assembly. We succeeded in identifying and mapping the direct interaction between HDAC6 and p62. We further show that this interaction regulates HDAC6 deacetylase activity. Data are presented demonstrating that the absence of p62 results in hyperactivation of HDAC6 and deacetylation of ?-tubulin and cortactin. Further, upon induction of protein misfolding we show that p62 is required for perinuclear co-localization of cortactin-F-actin assemblies. Thus, our findings indicate that p62 plays a key role in regulating the recruitment of F-actin network assemblies to the MTOC, a critical cellular function that is required for successful autophagic clearance of protein aggregates. PMID:24086678

  8. Interpreting clinical assays for histone deacetylase inhibitors

    PubMed Central

    Martinet, Nadine; Bertrand, Philippe

    2011-01-01

    As opposed to genetics, dealing with gene expressions by direct DNA sequence modifications, the term epigenetics applies to all the external influences that target the chromatin structure of cells with impact on gene expression unrelated to the sequence coding of DNA itself. In normal cells, epigenetics modulates gene expression through all development steps. When “imprinted” early by the environment, epigenetic changes influence the organism at an early stage and can be transmitted to the progeny. Together with DNA sequence alterations, DNA aberrant cytosine methylation and microRNA deregulation, epigenetic modifications participate in the malignant transformation of cells. Their reversible nature has led to the emergence of the promising field of epigenetic therapy. The efforts made to inhibit in particular the epigenetic enzyme family called histone deacetylases (HDACs) are described. HDAC inhibitors (HDACi) have been proposed as a viable clinical therapeutic approach for the treatment of leukemia and solid tumors, but also to a lesser degree for noncancerous diseases. Three epigenetic drugs are already arriving at the patient’s bedside, and more than 100 clinical assays for HDACi are registered on the National Cancer Institute website. They explore the eventual additive benefits of combined therapies. In the context of the pleiotropic effects of HDAC isoforms, more specific HDACi and more informative screening tests are being developed for the benefit of the patients. PMID:21625397

  9. Histone deacetylase 1 and 2 regulate Wnt and p53 pathways in the ureteric bud epithelium.

    PubMed

    Chen, Shaowei; Yao, Xiao; Li, Yuwen; Saifudeen, Zubaida; Bachvarov, Dimcho; El-Dahr, Samir S

    2015-03-15

    Histone deacetylases (HDACs) regulate a broad range of biological processes through removal of acetyl groups from histones as well as non-histone proteins. Our previous studies showed that Hdac1 and Hdac2 are bound to promoters of key renal developmental regulators and that HDAC activity is required for embryonic kidney gene expression. However, the existence of many HDAC isoforms in embryonic kidneys raises questions concerning the possible specificity or redundancy of their functions. We report here that targeted deletion of both the Hdac1 and Hdac2 genes from the ureteric bud (UB) cell lineage of mice causes bilateral renal hypodysplasia. One copy of either Hdac1 or Hdac2 is sufficient to sustain normal renal development. In addition to defective cell proliferation and survival, genome-wide transcriptional profiling revealed that the canonical Wnt signaling pathway is specifically impaired in UB(Hdac1,2-/-) kidneys. Our results also demonstrate that loss of Hdac1 and Hdac2 in the UB epithelium leads to marked hyperacetylation of the tumor suppressor protein p53 on lysine 370, 379 and 383; these post-translational modifications are known to boost p53 stability and transcriptional activity. Genetic deletion of p53 partially rescues the development of UB(Hdac1,2-/-) kidneys. Together, these data indicate that Hdac1 and Hdac2 are crucial for kidney development. They perform redundant, yet essential, cell lineage-autonomous functions via p53-dependent and -independent pathways. PMID:25758227

  10. Presentation of Telomerase Reverse Transcriptase, a Self-Tumor Antigen, is Down-regulated by Histone Deacetylase Inhibition

    Microsoft Academic Search

    Ilenia Pellicciotta; Roman Sasik; Yoram Reiter; Gary Hardiman; Pierre Langlade-Demoyen; Maurizio Zanetti

    2008-01-01

    Histone deacetylases (HDAC) modify the architecture of chromatin, leading to decreased gene expression, an effect that is reversed by HDAC inhibition. The balance between deacetylation and acetylation is central to many biological events including the regulation of cell proliferation and cancer but also the differentiation of immune T cells. The effects of HDAC inhibition on the interaction between antitumor effector

  11. Class IIa histone deacetylases are conserved regulators of circadian function.

    PubMed

    Fogg, Paul C M; O'Neill, John S; Dobrzycki, Tomasz; Calvert, Shaun; Lord, Emma C; McIntosh, Rebecca L L; Elliott, Christopher J H; Sweeney, Sean T; Hastings, Michael H; Chawla, Sangeeta

    2014-12-01

    Class IIa histone deacetylases (HDACs) regulate the activity of many transcription factors to influence liver gluconeogenesis and the development of specialized cells, including muscle, neurons, and lymphocytes. Here, we describe a conserved role for class IIa HDACs in sustaining robust circadian behavioral rhythms in Drosophila and cellular rhythms in mammalian cells. In mouse fibroblasts, overexpression of HDAC5 severely disrupts transcriptional rhythms of core clock genes. HDAC5 overexpression decreases BMAL1 acetylation on Lys-537 and pharmacological inhibition of class IIa HDACs increases BMAL1 acetylation. Furthermore, we observe cyclical nucleocytoplasmic shuttling of HDAC5 in mouse fibroblasts that is characteristically circadian. Mutation of the Drosophila homolog HDAC4 impairs locomotor activity rhythms of flies and decreases period mRNA levels. RNAi-mediated knockdown of HDAC4 in Drosophila clock cells also dampens circadian function. Given that the localization of class IIa HDACs is signal-regulated and influenced by Ca(2+) and cAMP signals, our findings offer a mechanism by which extracellular stimuli that generate these signals can feed into the molecular clock machinery. PMID:25271152

  12. Class IIa Histone Deacetylases Are Conserved Regulators of Circadian Function*

    PubMed Central

    Fogg, Paul C. M.; O'Neill, John S.; Dobrzycki, Tomasz; Calvert, Shaun; Lord, Emma C.; McIntosh, Rebecca L. L.; Elliott, Christopher J. H.; Sweeney, Sean T.; Hastings, Michael H.; Chawla, Sangeeta

    2014-01-01

    Class IIa histone deacetylases (HDACs) regulate the activity of many transcription factors to influence liver gluconeogenesis and the development of specialized cells, including muscle, neurons, and lymphocytes. Here, we describe a conserved role for class IIa HDACs in sustaining robust circadian behavioral rhythms in Drosophila and cellular rhythms in mammalian cells. In mouse fibroblasts, overexpression of HDAC5 severely disrupts transcriptional rhythms of core clock genes. HDAC5 overexpression decreases BMAL1 acetylation on Lys-537 and pharmacological inhibition of class IIa HDACs increases BMAL1 acetylation. Furthermore, we observe cyclical nucleocytoplasmic shuttling of HDAC5 in mouse fibroblasts that is characteristically circadian. Mutation of the Drosophila homolog HDAC4 impairs locomotor activity rhythms of flies and decreases period mRNA levels. RNAi-mediated knockdown of HDAC4 in Drosophila clock cells also dampens circadian function. Given that the localization of class IIa HDACs is signal-regulated and influenced by Ca2+ and cAMP signals, our findings offer a mechanism by which extracellular stimuli that generate these signals can feed into the molecular clock machinery. PMID:25271152

  13. Inhibition of Histone Deacetylase Expands the Renal Progenitor Cell Population

    PubMed Central

    de Groh, Eric D.; Swanhart, Lisa M.; Cosentino, Chiara Cianciolo; Jackson, Rachel L.; Dai, Weixiang; Kitchens, Carolyn A.; Day, Billy W.; Smithgall, Thomas E.

    2010-01-01

    One of the first hallmarks of kidney regeneration is the reactivation of genes normally required during organogenesis. Identification of chemicals with the potential to enhance this reactivation could therapeutically promote kidney regeneration. Here, we found that 4-(phenylthio)butanoic acid (PTBA) expanded the expression domains of molecular markers of kidney organogenesis in zebrafish. PTBA exhibits structural and functional similarity to the histone deacetylase (HDAC) inhibitors 4-phenylbutanoic acid and trichostatin A; treatment with these HDAC inhibitors also expanded the renal progenitor cell population. Analyses in vitro and in vivo confirmed that PTBA functions as an inhibitor of HDAC activity. Furthermore, PTBA-mediated renal progenitor cell expansion required retinoic acid signaling. In summary, these results support a mechanistic link among renal progenitor cells, HDAC, and the retinoid pathway. Whether PTBA holds promise as a therapeutic agent to promote renal regeneration requires further study. PMID:20378823

  14. Histone Deacetylase Inhibitors: Inducers of Differentiation or Apoptosis of Transformed Cells

    Microsoft Academic Search

    Paul A. Marks; Victoria M. Richon; Richard A. Rifkind

    Histone deacetylase (HDAC) inhibitors have been shown to be potent inducers of growth arrest, differentiation, and\\/or apoptotic cell death of transformed cells in vitro and in vivo. One class of HDAC inhibitors, hydroxamic acid-based hy- brid polar compounds (HPCs), induce differentiation at mi- cromolar or lower concentrations. Studies (x-ray crystallo- graphic) showed that the catalytic site of HDAC has a

  15. Targeting macrophage Histone deacetylase 3 stabilizes atherosclerotic lesions.

    PubMed

    Hoeksema, Marten A; Gijbels, Marion Jj; Van den Bossche, Jan; van der Velden, Saskia; Sijm, Ayestha; Neele, Annette E; Seijkens, Tom; Stöger, J Lauran; Meiler, Svenja; Boshuizen, Marieke Cs; Dallinga-Thie, Geesje M; Levels, Johannes Hm; Boon, Louis; Mullican, Shannon E; Spann, Nathanael J; Cleutjens, Jack P; Glass, Chris K; Lazar, Mitchell A; de Vries, Carlie Jm; Biessen, Erik Al; Daemen, Mat Jap; Lutgens, Esther; de Winther, Menno Pj

    2014-09-01

    Macrophages are key immune cells found in atherosclerotic plaques and critically shape atherosclerotic disease development. Targeting the functional repertoire of macrophages may hold novel approaches for future atherosclerosis management. Here, we describe a previously unrecognized role of the epigenomic enzyme Histone deacetylase 3 (Hdac3) in regulating the atherosclerotic phenotype of macrophages. Using conditional knockout mice, we found that myeloid Hdac3 deficiency promotes collagen deposition in atherosclerotic lesions and thus induces a stable plaque phenotype. Also, macrophages presented a switch to anti-inflammatory wound healing characteristics and showed improved lipid handling. The pro-fibrotic phenotype was directly linked to epigenetic regulation of the Tgfb1 locus upon Hdac3 deletion, driving smooth muscle cells to increased collagen production. Moreover, in humans, HDAC3 was the sole Hdac upregulated in ruptured atherosclerotic lesions, Hdac3 associated with inflammatory macrophages, and HDAC3 expression inversely correlated with pro-fibrotic TGFB1 expression. Collectively, we show that targeting the macrophage epigenome can improve atherosclerosis outcome and we identify Hdac3 as a potential novel therapeutic target in cardiovascular disease. PMID:25007801

  16. Targeting macrophage Histone deacetylase 3 stabilizes atherosclerotic lesions

    PubMed Central

    Hoeksema, Marten A; Gijbels, Marion JJ; Van den Bossche, Jan; van der Velden, Saskia; Sijm, Ayestha; Neele, Annette E; Seijkens, Tom; Stöger, J Lauran; Meiler, Svenja; Boshuizen, Marieke CS; Dallinga-Thie, Geesje M; Levels, Johannes HM; Boon, Louis; Mullican, Shannon E; Spann, Nathanael J; Cleutjens, Jack P; Glass, Chris K; Lazar, Mitchell A; de Vries, Carlie JM; Biessen, Erik AL; Daemen, Mat JAP; Lutgens, Esther; de Winther, Menno PJ

    2014-01-01

    Macrophages are key immune cells found in atherosclerotic plaques and critically shape atherosclerotic disease development. Targeting the functional repertoire of macrophages may hold novel approaches for future atherosclerosis management. Here, we describe a previously unrecognized role of the epigenomic enzyme Histone deacetylase 3 (Hdac3) in regulating the atherosclerotic phenotype of macrophages. Using conditional knockout mice, we found that myeloid Hdac3 deficiency promotes collagen deposition in atherosclerotic lesions and thus induces a stable plaque phenotype. Also, macrophages presented a switch to anti-inflammatory wound healing characteristics and showed improved lipid handling. The pro-fibrotic phenotype was directly linked to epigenetic regulation of the Tgfb1 locus upon Hdac3 deletion, driving smooth muscle cells to increased collagen production. Moreover, in humans, HDAC3 was the sole Hdac upregulated in ruptured atherosclerotic lesions, Hdac3 associated with inflammatory macrophages, and HDAC3 expression inversely correlated with pro-fibrotic TGFB1 expression. Collectively, we show that targeting the macrophage epigenome can improve atherosclerosis outcome and we identify Hdac3 as a potential novel therapeutic target in cardiovascular disease. PMID:25007801

  17. Histone deacetylase 10 promotes autophagy-mediated cell survival

    PubMed Central

    Oehme, Ina; Linke, Jan-Peter; Böck, Barbara C.; Milde, Till; Lodrini, Marco; Hartenstein, Bettina; Wiegand, Inga; Eckert, Christian; Roth, Wilfried; Kool, Marcel; Kaden, Sylvia; Gröne, Hermann-Josef; Schulte, Johannes H.; Lindner, Sven; Hamacher-Brady, Anne; Brady, Nathan R.; Deubzer, Hedwig E.; Witt, Olaf

    2013-01-01

    Tumor cells activate autophagy in response to chemotherapy-induced DNA damage as a survival program to cope with metabolic stress. Here, we provide in vitro and in vivo evidence that histone deacetylase (HDAC)10 promotes autophagy-mediated survival in neuroblastoma cells. We show that both knockdown and inhibition of HDAC10 effectively disrupted autophagy associated with sensitization to cytotoxic drug treatment in a panel of highly malignant V-MYC myelocytomatosis viral-related oncogene, neuroblastoma derived-amplified neuroblastoma cell lines, in contrast to nontransformed cells. HDAC10 depletion in neuroblastoma cells interrupted autophagic flux and induced accumulation of autophagosomes, lysosomes, and a prominent substrate of the autophagic degradation pathway, p62/sequestosome 1. Enforced HDAC10 expression protected neuroblastoma cells against doxorubicin treatment through interaction with heat shock protein 70 family proteins, causing their deacetylation. Conversely, heat shock protein 70/heat shock cognate 70 was acetylated in HDAC10-depleted cells. HDAC10 expression levels in high-risk neuroblastomas correlated with autophagy in gene-set analysis and predicted treatment success in patients with advanced stage 4 neuroblastomas. Our results demonstrate that HDAC10 protects cancer cells from cytotoxic agents by mediating autophagy and identify this HDAC isozyme as a druggable regulator of advanced-stage tumor cell survival. Moreover, these results propose a promising way to considerably improve treatment response in the neuroblastoma patient subgroup with the poorest outcome. PMID:23801752

  18. Metabolism as a key to histone deacetylase inhibition

    PubMed Central

    Rajendran, Praveen; Williams, David E.; Ho, Emily; Dashwood, Roderick H.

    2012-01-01

    There is growing interest in the epigenetic mechanisms that are dysregulated in cancer and other human pathologies. Under this broad umbrella, modulators of histone deacetylase (HDAC) activity have gained interest as both cancer chemopreventive and therapeutic agents. Of the first generation, FDA-approved HDAC inhibitors to have progressed to clinical trials, vorinostat represents a “direct acting” compound with structural features suitable for docking into the HDAC pocket, whereas romidepsin can be considered a prodrug that undergoes reductive metabolism to generate the active intermediate (a zinc-binding thiol). It is now evident that other agents, including those in the human diet, can be converted by metabolism to intermediates that affect HDAC activity. Examples are cited of short-chain fatty acids, seleno-?-keto acids, small molecule thiols, mercapturic acid metabolites, indoles, and polyphenols. The findings are discussed in the context of putative endogenous HDAC inhibitors generated by intermediary metabolism (e.g. pyruvate), the yin–yang of HDAC inhibition versus HDAC activation, and the screening assays that might be most appropriate for discovery of novel HDAC inhibitors in the future. PMID:21599534

  19. Histone deacetylase 3 binds to and regulates the GCMa transcription factor

    Microsoft Academic Search

    Hsiao-Ching Chuang; Ching-Wen Chang; Geen-Dong Chang; Tso-Pang Yao; Hungwen Chen

    2006-01-01

    Human GCMa transcription factor regulates expression of syncytin, a placental fusogenic protein mediating trophoblastic fusion. Recently, we have demonstrated that CBP-mediated GCMa acetylation underlies the activated cAMP\\/PKA signaling pathway that stimulates trophoblastic fusion. Because protein acetylation is a reversible modification governed by histone acetyltransferases (HATs) and histone deacetylase (HDACs), in this study we investigated the key HDACs responsible for deacetylation

  20. Synthesis and Structure Activity Relationship of 3-Hydroxypyridin-2-thione Based Histone Deacetylase Inhibitors

    PubMed Central

    Sodji, Quaovi H.; Patil, Vishal; Kornacki, James R.; Mrksich, Milan; Oyelere, Adegboyega K.

    2014-01-01

    We have previously identified 3-hydroxypyridin-2-thione (3HPT) as a novel zinc binding group for histone deacetylase (HDAC) inhibition. Early structure activity relationship (SAR) studies led to various small molecules possessing selective inhibitory activity against HDAC6 or HDAC8 but are devoid of HDAC1 inhibition. To further delineate the depth of the SAR of 3HPT-derived HDAC inhibitors (HDACi), we have extended the SAR studies to include the linker region and the surface recognition group to optimize the HDAC inhibition. The current efforts resulted in the identification of two lead compounds 10d and 14e with potent HDAC6 and HDAC8 activities, but that are inactive against HDAC1. These new HDACi possess anti-cancer activities against various cancer cell lines including Jurkat J-?1 against which SAHA and the previously disclosed 3HPT-derived HDACi were inactive. PMID:24304348

  1. Selectively Targeting Prostate Cancer with Antiandrogen Equipped Histone Deacetylase Inhibitors

    PubMed Central

    Gryder, Berkley E.; Akbashev, Michelle J.; Rood, Michael K.; Raftery, Eric D.; Meyers, Warren M.; Dillard, Paulette; Khan, Shafiq; Oyelere, Adegboyega K.

    2013-01-01

    Diverse cellular processes relevant to cancer progression are regulated by the acetylation status of proteins. Among such processes is chromatin remodeling via histone proteins, controlled by opposing histone deacetylase (HDAC) and histone acetyltransferase (HAT) enzymes. Histone deacetylase inhibitors (HDACi) show great promise in preclinical cancer models, but clinical trials treating solid tumors have failed to improve patient survival. This is due in part to an inability of HDACi to effectively accumulate in cancerous cells. To address this problem we designed HDACi with secondary pharmacophores to facilitate selective accumulation in malignant cells. We present the first example of HDACi compounds targeted to prostate tumors by equipping them with the additional ability to bind the androgen receptor (AR) with non-steroidal antiandrogen moieties. Leads among these new dual-acting molecules bind to the AR and halt AR transcriptional activity at lower concentrations than clinical antiandrogens. They inhibit key isoforms of HDAC with low nanomolar potency. Fluorescent microscopy reveals varying degrees of AR nuclear localization in response to these compounds that correlates with their HDAC activity. These biological properties translate into potent anticancer activity against hormone dependent (AR+) LNCaP and to a lesser extent against hormone independent (AR?) DU145 prostate cancer, while having greatly reduced toxicity in non-cancerous cells. This illustrates that engaging multiple biological targets with a single chemical probe can achieve both potent and cell-type selective responses. PMID:24004176

  2. Histone acetyltransferases and histone deacetylases in B- and T-cell development, physiology and malignancy

    PubMed Central

    Haery, Leila; Thompson, Ryan C.; Gilmore, Thomas D.

    2015-01-01

    The development of B and T cells from hematopoietic precursors and the regulation of the functions of these immune cells are complex processes that involve highly regulated signaling pathways and transcriptional control. The signaling pathways and gene expression patterns that give rise to these developmental processes are coordinated, in part, by two opposing classes of broad-based enzymatic regulators: histone acetyltransferases (HATs) and histone deacetylases (HDACs). HATs and HDACs can modulate gene transcription by altering histone acetylation to modify chromatin structure, and by regulating the activity of non-histone substrates, including an array of immune-cell transcription factors. In addition to their role in normal B and T cells, dysregulation of HAT and HDAC activity is associated with a variety of B- and T-cell malignancies. In this review, we describe the roles of HATs and HDACs in normal B- and T-cell physiology, describe mutations and dysregulation of HATs and HDACs that are implicated lymphoma and leukemia, and discuss HAT and HDAC inhibitors that have been explored as treatment options for leukemias and lymphomas.

  3. Cloning, expression, and biochemical characterization of a new histone deacetylase-like protein from Thermus caldophilus GK24

    SciTech Connect

    Song, Young Mi [Chemical Genomics Laboratory, Department of Biotechnology, College of Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Kim, You Sun [Chemical Genomics Laboratory, Department of Biotechnology, College of Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Kim, Dooil [Korea Research Institute of Bioscience and Biotechnology, Daejon 305-600 (Korea, Republic of); Lee, Dae Sil [Korea Research Institute of Bioscience and Biotechnology, Daejon 305-600 (Korea, Republic of); Kwon, Ho Jeong [Chemical Genomics Laboratory, Department of Biotechnology, College of Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)]. E-mail: kwonhj@yonsei.ac.kr

    2007-09-14

    Histone deactylases (HDACs) are members of an ancient enzyme family found in eukaryotes as well as in prokaryotes such as archaebacteria and eubacteria. We here report a new histone deacetylase (Tca HDAC) that was cloned from the genomic library of Thermus caldophilus GK24 based on homology analysis with human histone deacetylase1 (HDAC1). The gene contains an open reading frame encoding 375 amino acids with a calculated molecular mass of 42,188 Da and the deduced amino acid sequence of Tca HDAC showed a 31% homology to human HDAC1. The Tca HDAC gene was over-expressed in Escherichia coli using a Glutathione-S transferase (GST) fusion vector (pGEX-4T-1) and the purified protein showed a deacetylase activity toward the fluorogenic substrate for HDAC. Moreover, the enzyme activity was inhibited by trichostatin A, a specific HDAC inhibitor, in a dose-dependent manner. Optimum temperature and pH of the enzyme was found to be approximately 70 {sup o}C and 7.0, respectively. In addition, zinc ion is required for catalytic activity of the enzyme. Together, these data demonstrate that Tca HDAC is a new histone deacetylase-like enzyme from T. caldophilus GK24 and will be a useful tool for deciphering the role of HDAC in the prokaryote and development of new biochemical reactions.

  4. Histone Acetylation and CREB Binding Protein Are Required for Neuronal Resistance against Ischemic Injury

    E-print Network

    Yildirim, Ferah

    Epigenetic transcriptional regulation by histone acetylation depends on the balance between histone acetyltransferase (HAT) and deacetylase activities (HDAC). Inhibition of HDAC activity provides neuroprotection, indicating ...

  5. Cloning and characterization of histone deacetylase from Babesia bovis.

    PubMed

    Munkhjargal, Tserendorj; Aboulaila, Mahmoud; Ueno, Akio; Sivakumar, Thillaiampalam; Nakano, Yuka; Yokoyama, Miki; Yokoyama, Naoaki; Igarashi, Ikuo

    2012-12-21

    The effect of inhibitors of histone deacetylase (HDAC) on Apicomplexa has been previously reported with the discovery of apicidin, a cyclic tetrapeptide having broad-spectrum antiparasitic activity. In the current study, we expressed Babesia bovis (B. bovis) recombinant-HDAC 3 (rBbHDAC3) as a GST-fusion protein in Escherichia coli (E. coli) and found that it was antigenic. An antiserum against the recombinant protein was generated in mice. The mice serum demonstrated the presence of HDAC in B. bovis by a Western blot assay. The murine anti-rBbHDAC3 reacted with B. bovis, Babesia bigemina (B. bigemina), Theileria equi (T. equi), and Babeisa caballi (B. caballi) merozoites in the indirect fluorescent antibody test (IFAT). Furthermore, the HDAC-enzymatic activity of the rBbHDAC3 protein was evaluated by a colorimetric assay. The enzymatic activity of rBbHDAC3 was inhibited by 100 ng/ml of apicidin, and the inhibitory effect of apicidin was dose-dependent. The inhibition of BbHDAC3 by apicidin was confirmed by Western blot, IFAT, and reverse transcription-polymerase chain reaction (RT-PCR). Finally, apicidin potentially inhibited the in vitro growth of Babesia parasites. The lower IC(50) values of apicidin against apicomplexan parasites than those of mammalian cells point to HDAC as an excellent drug target. The findings of the present study indicate that BbHDAC3 is a potential target for apicidin and might be a promising target for the development of novel anti-babesial drugs. PMID:22818786

  6. Isolation of a novel histone deacetylase reveals that class I and class II deacetylases promote SMRT-mediated repression

    PubMed Central

    Kao, Hung-Ying; Downes, Michael; Ordentlich, Peter; Evans, Ronald M.

    2000-01-01

    The transcriptional corepressor SMRT functions by mediating the repressive effect of transcription factors involved in diverse signaling pathways. The mechanism by which SMRT represses basal transcription has been proposed to involve the indirect recruitment of histone deacetylase HDAC1 via the adaptor mSin3A. In contrast to this model, a two-hybrid screen on SMRT-interacting proteins resulted in the isolation of the recently described HDAC5 and a new family member termed HDAC7. Molecular and biochemical results indicate that this interaction is direct and in vivo evidence colocalizes SMRT, mHDAC5, and mHDAC7 to a distinct nuclear compartment. Surprisingly, HDAC7 can interact with mSin3A in yeast and in mammalian cells, suggesting association of multiple repression complexes. Taken together, our results provide the first evidence that SMRT-mediated repression is promoted by class I and class II histone deacetylases and that SMRT can recruit class II histone deacetylases in a mSin3A-independent fashion. PMID:10640276

  7. Comparative modeling and benchmarking data sets for human histone deacetylases and sirtuin families.

    PubMed

    Xia, Jie; Tilahun, Ermias Lemma; Kebede, Eyob Hailu; Reid, Terry-Elinor; Zhang, Liangren; Wang, Xiang Simon

    2015-02-23

    Histone deacetylases (HDACs) are an important class of drug targets for the treatment of cancers, neurodegenerative diseases, and other types of diseases. Virtual screening (VS) has become fairly effective approaches for drug discovery of novel and highly selective histone deacetylase inhibitors (HDACIs). To facilitate the process, we constructed maximal unbiased benchmarking data sets for HDACs (MUBD-HDACs) using our recently published methods that were originally developed for building unbiased benchmarking sets for ligand-based virtual screening (LBVS). The MUBD-HDACs cover all four classes including Class III (Sirtuins family) and 14 HDAC isoforms, composed of 631 inhibitors and 24609 unbiased decoys. Its ligand sets have been validated extensively as chemically diverse, while the decoy sets were shown to be property-matching with ligands and maximal unbiased in terms of "artificial enrichment" and "analogue bias". We also conducted comparative studies with DUD-E and DEKOIS 2.0 sets against HDAC2 and HDAC8 targets and demonstrate that our MUBD-HDACs are unique in that they can be applied unbiasedly to both LBVS and SBVS approaches. In addition, we defined a novel metric, i.e. NLBScore, to detect the "2D bias" and "LBVS favorable" effect within the benchmarking sets. In summary, MUBD-HDACs are the only comprehensive and maximal-unbiased benchmark data sets for HDACs (including Sirtuins) that are available so far. MUBD-HDACs are freely available at http://www.xswlab.org/ . PMID:25633490

  8. Expression of class I histone deacetylases during chick and mouse development

    PubMed Central

    MURKO, CHRISTINA; LAGGER, SABINE; STEINER, MARIANNE; SEISER, CHRISTIAN; SCHOEFER, CHRISTIAN; PUSCH, OLIVER

    2011-01-01

    Histone deacetylases (HDACs) are a family of enzymes which regulate the acetylation state of nucleosomal histones, as well as non-histone proteins. By altering local chromatin architecture, HDACs play important roles in shaping cell differentiation and morphogenesis. Expression of class I HDACs during early chick development has so far not been analyzed. Here, we report the expression profile of chick class I HDACs from the onset of gastrulation (HH2) to day 4 of development and compare it to relevant stages during mouse development. Visualized by in situ hybridization to whole mount embryos and tissue sections, we found tissue-specific overlapping temporal and spatial expression domains for all four class I HDACs in chick and mouse, although species-specific differences could be identified. All class I HDACs in both species are highly expressed in the developing brain. In particular, HDAC1 is expressed at sites of anterior and posterior neural tube closure most obvious in the hot spot-like expression of HDAC1 in HH12 chicken embryos. A significant species-specific spatio-temporal expression pattern was observed for HDAC8. Whereas HDAC8 is exclusively found in fore- and midbrain regions during early mouse embryogenesis, the chick ortholog shows an expanded expression pattern, suggesting a more diversified role of HDAC8 in the chick system. Our results present a basis for further functional analysis of class I HDACs in chick development. PMID:20979029

  9. Histone deacetylase expression patterns in developing murine optic nerve

    PubMed Central

    2014-01-01

    Background Histone deacetylases (HDACs) play important roles in glial cell development and in disease states within multiple regions of the central nervous system. However, little is known about HDAC expression or function within the optic nerve. As a first step in understanding the role of HDACs in optic nerve, this study examines the spatio-temporal expression patterns of methylated histone 3 (K9), acetylated histone 3 (K18), and HDACs 1–6 and 8–11 in the developing murine optic nerve head. Results Using RT-qPCR, western blot and immunofluorescence, three stages were analyzed: embryonic day 16 (E16), when astrocyte precursors are found in the optic stalk, postnatal day 5 (P5), when immature astrocytes and oligodendrocytes are found throughout the optic nerve, and P30, when optic nerve astrocytes and oligodendrocytes are mature. Acetylated and methylated histone H3 immunoreactivity was co-localized in the nuclei of most SOX2 positive glia within the optic nerve head and adjacent optic nerve at all developmental stages. HDACs 1–11 were expressed in the optic nerve glial cells at all three stages of optic nerve development in the mouse, but showed temporal differences in overall levels and subcellular localization. HDACs 1 and 2 were predominantly nuclear throughout optic nerve development and glial cell maturation. HDACs 3, 5, 6, 8, and 11 were predominantly cytoplasmic, but showed nuclear localization in at least one stage of optic nerve development. HDACs 4, 9 and10 were predominantly cytoplasmic, with little to no nuclear expression at any time during the developmental stages examined. Conclusions Our results showing that HDACs 1, 2, 3, 5, 6, 8, and 11 were each localized to the nuclei of SOX2 positive glia at some stages of optic nerve development and maturation and extend previous reports of HDAC expression in the aging optic nerve. These HDACs are candidates for further research to understand how chromatin remodeling through acetylation, deacetylation and methylation contributes to glial development as well as their injury response. PMID:25011550

  10. HdaA, a Major Class 2 Histone Deacetylase of Aspergillus nidulans, Affects Growth under Conditions of Oxidative Stress

    Microsoft Academic Search

    Martin Tribus; Johannes Galehr; Patrick Trojer; Gerald Brosch; Peter Loidl; Florentine Marx; Hubertus Haas; Stefan Graessle

    2005-01-01

    Histone deacetylases (HDACs) catalyze the removal of acetyl groups from the -amino group of distinct lysine residues in the amino-terminal tail of core histones. Since the acetylation status of core histones plays a crucial role in fundamental processes in eukaryotic organisms, such as replication and regulation of transcription, recent research has focused on the enzymes responsible for the acetylation\\/deacetylation of

  11. Dysregulation of Histone Acetyltransferases and Deacetylases in Cardiovascular Diseases

    PubMed Central

    Wang, Yonggang; Miao, Xiao; Liu, Yucheng; Li, Fengsheng; Liu, Quan; Sun, Jian; Cai, Lu

    2014-01-01

    Cardiovascular disease (CVD) remains a leading cause of mortality worldwide despite advances in its prevention and management. A comprehensive understanding of factors which contribute to CVD is required in order to develop more effective treatment options. Dysregulation of epigenetic posttranscriptional modifications of histones in chromatin is thought to be associated with the pathology of many disease models, including CVD. Histone acetyltransferases (HATs) and deacetylases (HDACs) are regulators of histone lysine acetylation. Recent studies have implicated a fundamental role of reversible protein acetylation in the regulation of CVDs such as hypertension, pulmonary hypertension, diabetic cardiomyopathy, coronary artery disease, arrhythmia, and heart failure. This reversible acetylation is governed by enzymes that HATs add or HDACs remove acetyl groups respectively. New evidence has revealed that histone acetylation regulators blunt cardiovascular and related disease states in certain cellular processes including myocyte hypertrophy, apoptosis, fibrosis, oxidative stress, and inflammation. The accumulating evidence of the detrimental role of histone acetylation in cardiac disease combined with the cardioprotective role of histone acetylation regulators suggests that the use of histone acetylation regulators may serve as a novel approach to treating the millions of patients afflicted by cardiac diseases worldwide. PMID:24693336

  12. Ex Vivo Response to Histone Deacetylase (HDAC) Inhibitors of the HIV Long Terminal Repeat (LTR) Derived from HIV-Infected Patients on Antiretroviral Therapy

    PubMed Central

    Lu, Hao K.; Gray, Lachlan R.; Wightman, Fiona; Ellenberg, Paula; Khoury, Gabriela; Cheng, Wan-Jung; Mota, Talia M.; Wesselingh, Steve; Gorry, Paul R.; Cameron, Paul U.

    2014-01-01

    Histone deacetylase inhibitors (HDACi) can induce human immunodeficiency virus (HIV) transcription from the HIV long terminal repeat (LTR). However, ex vivo and in vivo responses to HDACi are variable and the activity of HDACi in cells other than T-cells have not been well characterised. Here, we developed a novel assay to determine the activity of HDACi on patient-derived HIV LTRs in different cell types. HIV LTRs from integrated virus were amplified using triple-nested Alu-PCR from total memory CD4+ T-cells (CD45RO+) isolated from HIV-infected patients prior to and following suppressive antiretroviral therapy. NL4-3 or patient-derived HIV LTRs were cloned into the chromatin forming episomal vector pCEP4, and the effect of HDACi investigated in the astrocyte and epithelial cell lines SVG and HeLa, respectively. There were no significant differences in the sequence of the HIV LTRs isolated from CD4+ T-cells prior to and after 18 months of combination antiretroviral therapy (cART). We found that in both cell lines, the HDACi panobinostat, trichostatin A, vorinostat and entinostat activated patient-derived HIV LTRs to similar levels seen with NL4-3 and all patient derived isolates had similar sensitivity to maximum HDACi stimulation. We observed a marked difference in the maximum fold induction of luciferase by HDACi in HeLa and SVG, suggesting that the effect of HDACi may be influenced by the cellular environment. Finally, we observed significant synergy in activation of the LTR with vorinostat and the viral protein Tat. Together, our results suggest that the LTR sequence of integrated virus is not a major determinant of a functional response to an HDACi. PMID:25409334

  13. Histone Deacetylase Inhibitors Enhance Memory and Synaptic Plasticity via CREB: CBP-Dependent Transcriptional Activation

    PubMed Central

    Vecsey, Christopher G.; Hawk, Joshua D.; Lattal, K. Matthew; Stein, Joel M.; Fabian, Sara A.; Attner, Michelle A.; Cabrera, Sara M.; McDonough, Conor B.; Brindle, Paul K.; Abel, Ted; Wood, Marcelo A.

    2010-01-01

    Histone deacetylase (HDAC) inhibitors increase histone acetylation and enhance both memory and synaptic plasticity. The current model for the action of HDAC inhibitors assumes that they alter gene expression globally and thus affect memory processes in a nonspecific manner. Here, we show that the enhancement of hippocampus-dependent memory and hippocampal synaptic plasticity by HDAC inhibitors is mediated by the transcription factor cAMP response element-binding protein (CREB) and the recruitment of the transcriptional coactivator and histone acetyltransferase CREB-binding protein (CBP) via the CREB-binding domain of CBP. Furthermore, we show that the HDAC inhibitor trichostatin A does not globally alter gene expression but instead increases the expression of specific genes during memory consolidation. Our results suggest that HDAC inhibitors enhance memory processes by the activation of key genes regulated by the CREB:CBP transcriptional complex. PMID:17553985

  14. Inhibition of Histone Deacetylase 3 Causes Replication Stress in Cutaneous T Cell Lymphoma

    PubMed Central

    Wells, Christina E.; Bhaskara, Srividya; Stengel, Kristy R.; Zhao, Yue; Sirbu, Bianca; Chagot, Benjamin; Cortez, David; Khabele, Dineo; Chazin, Walter J.; Cooper, Andrew; Jacques, Vincent; Rusche, James; Eischen, Christine M.; McGirt, Laura Y.; Hiebert, Scott W.

    2013-01-01

    Given the fundamental roles of histone deacetylases (HDACs) in the regulation of DNA repair, replication, transcription and chromatin structure, it is fitting that therapies targeting HDAC activities are now being explored as anti-cancer agents. In fact, two histone deacetylase inhibitors (HDIs), SAHA and Depsipeptide, are FDA approved for single-agent treatment of refractory cutaneous T cell lymphoma (CTCL). An important target of these HDIs, histone deacetylase 3 (HDAC3), regulates processes such as DNA repair, metabolism, and tumorigenesis through the regulation of chromatin structure and gene expression. Here we show that HDAC3 inhibition using a first in class selective inhibitor, RGFP966, resulted in decreased cell growth in CTCL cell lines due to increased apoptosis that was associated with DNA damage and impaired S phase progression. Through isolation of proteins on nascent DNA (iPOND), we found that HDAC3 was associated with chromatin and is present at and around DNA replication forks. DNA fiber labeling analysis showed that inhibition of HDAC3 resulted in a significant reduction in DNA replication fork velocity within the first hour of drug treatment. These results suggest that selective inhibition of HDAC3 could be useful in treatment of CTCL by disrupting DNA replication of the rapidly cycling tumor cells, ultimately leading to cell death. PMID:23894374

  15. Screening of selective histone deacetylase inhibitors by proteochemometric modeling

    PubMed Central

    2012-01-01

    Background Histone deacetylase (HDAC) is a novel target for the treatment of cancer and it can be classified into three classes, i.e., classes I, II, and IV. The inhibitors selectively targeting individual HDAC have been proved to be the better candidate antitumor drugs. To screen selective HDAC inhibitors, several proteochemometric (PCM) models based on different combinations of three kinds of protein descriptors, two kinds of ligand descriptors and multiplication cross-terms were constructed in our study. Results The results show that structure similarity descriptors are better than sequence similarity descriptors and geometry descriptors in the leftacterization of HDACs. Furthermore, the predictive ability was not improved by introducing the cross-terms in our models. Finally, a best PCM model based on protein structure similarity descriptors and 32-dimensional general descriptors was derived (R2 = 0.9897, Qtest2 = 0.7542), which shows a powerful ability to screen selective HDAC inhibitors. Conclusions Our best model not only predict the activities of inhibitors for each HDAC isoform, but also screen and distinguish class-selective inhibitors and even more isoform-selective inhibitors, thus it provides a potential way to discover or design novel candidate antitumor drugs with reduced side effect. PMID:22913517

  16. Preclinical studies on histone deacetylase inhibitors as therapeutic reagents for endometrial and ovarian cancers

    PubMed Central

    Singh, Brahma N; Zhou, Hongyuan; Li, Jinping; Tipton, Tracy; Wang, Bin; Shao, Guo; Gilbert, E Nickolas; Li, Qiang; Jiang, Shi-Wen

    2012-01-01

    Histone deacetylases (HDACs) remove acetyl groups from lysine residues of histones and the deacetylation allows for tighter electrostatic interactions between DNA and histones, leading to a more compact chromatin conformation with limited access for transactivators and the suppression of transcription. HDAC mRNA and protein overexpression was observed in endometrial and ovarian cancers. Numerous in vitro studies have shown that HDAC inhibitors, through their actions on histone and nonhistone proteins, are able to reactivate the tumor suppressor genes, inhibit cell cycle progression and induce cell apoptosis in endometrial and ovarian cancer cell cultures. Results from mou se xenograft models also demonstrated the potency of HDAC inhibitors as anticancer reagents when used as single agent or in combination with classical chemotherapy drugs. PMID:22112317

  17. A Novel Histone Deacetylase Inhibitor Reduces Abdominal Aortic Aneurysm Formation in Angiotensin II-Infused Apolipoprotein E-Deficient Mice

    Microsoft Academic Search

    Antony Vinh; Tracey A. Gaspari; Hong Bin Liu; Lovisha F. Dousha; Robert E. Widdop; Anthony E. Dear

    2008-01-01

    Background\\/Aims: Aberrant expression of components of the matrix metalloproteinase (MMP) enzyme system is implicated in abdominal aortic aneurysm (AAA) formation. We aimed to investigate the influence of a novel histone deacetylase (HDAC) inhibitor (HDACi) metacept-1 (MCT-1), previously documented to reduce MMP expression, on HDAC activity and MMP expression in aortic smooth muscle cells and the in vivo incidence of AAAs.

  18. Functional significance of histone deacetylase diversity

    Microsoft Academic Search

    Saadi Khochbin; André Verdel; Claudie Lemercier; Daphné Seigneurin-Berny

    2001-01-01

    Nucleocytoplasmic shuttling of histone deacetylases is emerging as a major step in determining the composition, and hence the activity, of the corresponding nuclear regulatory complexes. This shuttling process is one of the distinctive characteristics of these enzymes, themselves belonging to structurally and functionally different classes. Considering the specific features of each class of deacetylases, it is possible to determine how

  19. Histone deacetylases govern cellular mechanisms underlying behavioral and synaptic plasticity in the developing and adult brain

    PubMed Central

    Morris, Michael J.; Karra, Aroon S.; Monteggia, Lisa M.

    2010-01-01

    Histone deacetylases (HDACs) are a family of enzymes that alter gene expression patterns by modifying chromatin architecture. There are 11 mammalian HDACs that are classified by homology into four subfamilies, all with distinct expression patterns in brain. Through the use of pharmacological HDAC inhibitors, and more recently HDAC knockout mice, the role of these enzymes in the central nervous system are starting to be elucidated. We will discuss the latest findings on the specific or redundant roles of individual HDACs in brain as well as the impact of HDAC function on complex behavior, with a focus on learning, memory formation, and affective behavior. Potential HDAC-mediated cellular mechanisms underlying those behaviors are discussed. PMID:20555253

  20. Role of histone deacetylases and their inhibitors in cancer biology and treatment.

    PubMed

    Beumer, Jan H; Tawbi, Hussein

    2010-08-01

    Histone deacetylase (HDAC) inhibitors constitute a new group of epigenetic agents that has gained much attention in cancer drug development. Research in the field of epigenetics is furthering our understanding of malignant behavior and providing novel targets to improve the outcomes of cancer therapy. In this review we present an overview of the complex landscape of HDAC inhibitor development starting from a discussion of the various HDAC isotypes and their roles in cancer biology, to mechanisms of action of HDAC inhibitors and their current state of development. The large gamut of HDACs are classified into 3 classes of "classical HDACs" and the "sirtuins" but in general lack specificity of deacetylation targets as they deacetylate both histone and non-histone targets. This non-specifity underlies the pleiotropic effects of HDAC inhibitors that does not stop at alteration of gene expression but extends into a wide array of cellular (nuclear and/or cytoplasmic) processes. The potential of HDAC inhibitors for cancer therapy has been explored in preclinical models and has reached the clinic as some agents are FDA-approved in hematologic malignancies where they function as differentiation agents. In solid tumors, HDAC inhibitors are used in combination with chemotherapy, which raises issues of mechanisms of potentiation and optimal administration (schedule and dose). Lastly, we discuss the need for biomarker development which will facilitate and guide the rational development of HDAC inhibitors as anticancer therapy. PMID:20406169

  1. Histone deacetylase inhibitor, butyrate, attenuates lipopolysaccharide-induced acute lung injury in mice

    Microsoft Academic Search

    Yun-Feng Ni; Jian Wang; Xiao-Long Yan; Feng Tian; Jin-Bo Zhao; Yun-Jie Wang; Tao Jiang

    2010-01-01

    BACKGROUND: Histone deacetylase (HDAC) inhibitors, developed as promising anti-tumor drugs, exhibit their anti-inflammatory properties due to their effects on reduction of inflammatory cytokines. OBJECTIVE: To investigate the protective effect of butyrate, a HDAC inhibitor, on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. METHODS: ALI was induced in Balb\\/c mice by intratracheally instillation of LPS (1 mg\\/kg). Before 1 hour

  2. Targeting Histone Deacetylases for Cancer Therapy: From Molecular Mechanisms to Clinical Implications

    PubMed Central

    Li, Zhiming; Zhu, Wei-Guo

    2014-01-01

    Genetic abnormalities have been conventionally considered as hallmarks of cancer. However, studies over the past decades have demonstrated that epigenetic regulation also participates in the development of cancer. The fundamental patterns of epigenetic components, such as DNA methylation and histone modifications, are frequently altered in tumor cells. Acetylation is one of the best characterized modifications of histones, which is controlled by histone acetyltransferases (HATs) and histone deacetylases (HDACs). HDACs are a group of enzymes which catalyze the removal of the acetyl groups of both histones and non-histone proteins. HDACs are involved in modulating most key cellular processes, including transcriptional regulation, apoptosis, DNA damage repair, cell cycle control, autophagy, metabolism, senescence and chaperone function. Because HDACs have been found to function incorrectly in cancer, various HDAC inhibitors are being investigated to act as cancer chemotherapeutics. The primary purpose of this paper is to summarize recent studies of the links between HDACs and cancer, and further discuss the underlying mechanisms of anti-tumor activities of HDAC inhibitors and clinical implications. PMID:25013383

  3. Prefrontal Cortical Dysfunction After Overexpression of Histone Deacetylase 1

    PubMed Central

    Jakovcevski, Mira; Bharadwaj, Rahul; Straubhaar, Juerg; Gao, Guangping; Gavin, David P.; Jakovcevski, Igor; Mitchell, Amanda C.; Akbarian, Schahram

    2013-01-01

    Background Postmortem brain studies have shown that HDAC1—a lysine deacetylase with broad activity against histones and nonhistone proteins—is frequently expressed at increased levels in prefrontal cortex (PFC) of subjects diagnosed with schizophrenia and related disease. However, it remains unclear whether upregulated expression of Hdac1 in the PFC could affect cognition and behavior. Methods Using adeno-associated virus, an Hdac1 transgene was expressed in young adult mouse PFC, followed by behavioral assays for working and long-term memory, repetitive activity, and response to novelty. Prefrontal cortex transcriptomes were profiled by microarray. Antipsychotic drug effects were explored in mice treated for 21 days with haloperidol or clozapine. Results Hdac1 overexpression in PFC neurons and astrocytes resulted in robust impairments in working memory, increased repetitive behaviors, and abnormal locomotor response profiles in novel environments. Long-term memory remained intact. Over 300 transcripts showed subtle but significant changes in Hdac1-overexpressing PFC. Major histocompatibility complex class II (MHC II)-related transcripts, including HLA-DQA1/H2-Aa, HLA-DQB1/H2-Ab1, and HLA-DRB1/H2-Eb1, located in the chromosome 6p21.3-22.1 schizophrenia and bipolar disorder risk locus, were among the subset of genes with a more robust (>1.5-fold) downregulation in expression. Hdac1 levels declined during the course of normal PFC development. Antipsychotic drug treatment, including the atypical clozapine, did not affect Hdac1 levels in PFC but induced expression of multiple MHC II transcripts. Conclusions Excessive HDAC1 activity, due to developmental defects or other factors, is associated with behavioral alterations and dysregulated expression of MHC II and other gene transcripts in the PFC. PMID:23664640

  4. Role of histone deacetylase 2 and its posttranslational modifications in cardiac hypertrophy

    PubMed Central

    Eom, Gwang Hyeon; Kook, Hyun

    2015-01-01

    Cardiac hypertrophy is a form of global remodeling, although the initial step seems to be an adaptation to increased hemodynamic demands. The characteristics of cardiac hypertrophy include the functional reactivation of the arrested fetal gene program, where histone deacetylases (HDACs) are closely linked in the development of the process. To date, mammalian HDACs are divided into four classes: I, II, III, and IV. By structural similarities, class II HDACs are then subdivided into IIa and IIb. Among class I and II HDACs, HDAC2, 4, 5, and 9 have been reported to be involved in hypertrophic responses; HDAC4, 5, and 9 are negative regulators, whereas HDAC2 is a pro-hypertrophic mediator. The molecular function and regulation of class IIa HDACs depend largely on the phosphorylation-mediated cytosolic redistribution, whereas those of HDAC2 take place primarily in the nucleus. In response to stresses, posttranslational modification (PTM) processes, dynamic modifications after the translation of proteins, are involved in the regulation of the activities of those hypertrophy-related HDACs. In this article, we briefly review 1) the activation of HDAC2 in the development of cardiac hypertrophy and 2) the PTM of HDAC2 and its implications in the regulation of HDAC2 activity. [BMB Reports 2015; 48(3): 131-138] PMID:25388210

  5. Sulforaphane inhibits histone deacetylase in vivo and suppresses tumorigenesis in Apcmin mice

    Microsoft Academic Search

    Melinda C. Myzak; W. Mohaiza Dashwood; Gayle A. Orner; Emily Ho; Roderick H. Dashwood

    2006-01-01

    Sulforaphane (SFN) is an isothiocyanate from broccoli that induces phase 2 detoxification enzymes. We recently reported that SFN acts as a histone deacetylase (HDAC) inhibitor in human colon cancer cells in vitro, and the present study sought to extend these findings in vivo. In mice treated with a single oral dose of 10 µmol SFN, there was significant inhibition of

  6. Systemic or Intrahippocampal Delivery of Histone Deacetylase Inhibitors Facilitates Fear Extinction

    E-print Network

    Wood, Marcelo A.

    Systemic or Intrahippocampal Delivery of Histone Deacetylase Inhibitors Facilitates Fear Extinction and hippocampus-dependent memory. Little is known about the effects of HDAC inhibitors on extinction, a learning-min) contextual extinction session causes context-evoked fear to decrease to levels observed

  7. Molecular and biologic characterization and drug sensitivity of pan-histone deacetylase inhibitor-resistant acute myeloid leukemia cells

    Microsoft Academic Search

    Warren Fiskus; Rekha Rao; Pravina Fernandez; Bryan Herger; Yonghua Yang; Jianguang Chen; Ravindra Kolhe; Aditya Mandawat; Yongchao Wang; Rajeshree Joshi; Kelly Eaton; Pearl Lee; Peter Atadja; Stephen Peiper; Kapil Bhalla

    2008-01-01

    Hydroxamic acid analog pan-histone deacetylase (HDAC) inhibitors (HA-HDIs) have shown preclinical and clinical activ- ity against human acute leukemia. Here we describe HA-HDI-resistant human acute myeloid leukemia (AML) HL-60 (HL- 60\\/LR) cells that are resistant to LAQ824, vorinostat, LBH589, and sodium butyrate. HL-60\\/LR cells show increased expres- sion of HDACs 1, 2, and 4 but lack HDAC6 expression, with concomitant

  8. Radiosensitization of colorectal carcinoma cell lines by histone deacetylase inhibition

    PubMed Central

    Flatmark, Kjersti; Nome, Ragnhild V; Folkvord, Sigurd; Bratland, Åse; Rasmussen, Heidi; Ellefsen, Mali Strand; Fodstad, Øystein; Ree, Anne Hansen

    2006-01-01

    Background The tumor response to preoperative radiotherapy of locally advanced rectal cancer varies greatly, warranting the use of experimental models to assay the efficacy of molecular targeting agents in rectal cancer radiosensitization. Histone deacetylase (HDAC) inhibitors, agents that cause hyperacetylation of histone proteins and thereby remodeling of chromatin structure, may override cell cycle checkpoint responses to DNA damage and amplify radiation-induced tumor cell death. Methods Human colorectal carcinoma cell lines were exposed to ionizing radiation and HDAC inhibitors, and cell cycle profiles and regulatory factors, as well as clonogenicity, were analyzed. Results In addition to G2/M phase arrest following irradiation, the cell lines displayed cell cycle responses typical for either intact or defective p53 function (the presence or absence, respectively, of radiation-induced expression of the cell cycle inhibitor p21 and subsequent accumulation of G1 phase cells). In contrast, histone acetylation was associated with complete depletion of the G1 population of cells with functional p53 but accumulation of both G1 and G2/M populations of cells with defective p53. The cellular phenotypes upon HDAC inhibition were consistent with the observed repression of Polo-like kinase-1, a regulatory G2/M phase kinase. Following pre-treatment with HDAC inhibitors currently undergoing clinical investigation, the inhibitory effect of ionizing radiation on clonogenicity was significantly amplified. Conclusion In these experimental models, HDAC inhibition sensitized the tumor cells to ionizing radiation, which is in accordance with the concept of increased probability of tumor cell death when chromatin structure is modified. PMID:16887021

  9. Cocaine induces the expression of MEF2C transcription factor in rat striatum through activation of SIK1 and phosphorylation of the histone deacetylase HDAC5.

    PubMed

    Dietrich, Jean-Bernard; Takemori, Hiroshi; Grosch-Dirrig, Sylvie; Bertorello, Alejandro; Zwiller, Jean

    2012-01-01

    Distinct forms of MEF2 transcription factor act as positive or negative regulators of dendritic spine formation, with MEF2C playing a key regulator role in synapse plasticity. We report here that acute cocaine treatment of rats induced the expression of MEF2C in the striatum through a recently discovered transduction pathway. Repeated injections were found to induce MEF2C to a lesser extent. The mechanism by which MEF2C was induced involves the subsequent activation of the salt-inducible kinase SIK1 and the phosphorylation of HDAC5, a member of the class IIa of HDACs. Cocaine activated SIK1 by phosphorylation on Thr-182 residue, which was accompanied by the nuclear import of the kinase. In the nuclear compartment, SIK1 then phosphorylated HDAC5 causing the shuttling of its phospho-form from the nucleus to the cytoplasm of striatal cells. Activation of SIK1 by cocaine was further validated by the phosphorylation of TORC1/3, which was followed by the shuttling of TORC proteins from the nucleus to the cytoplasm. Activation of MEF2C was assessed by measuring the expression of the MEF2C gene itself, since the gene is known to be under the control of its own product. Since MEF2C plays a key role in memory/learning processes, activation of this pathway by cocaine is probably involved in plasticity mechanisms whereby the drug establishes its long-term effects such as drug dependence. PMID:21954104

  10. Histone deacetylase 1 and 3 regulate the mesodermal lineage commitment of mouse embryonic stem cells.

    PubMed

    Lv, Weiying; Guo, Xudong; Wang, Guiying; Xu, Yanxin; Kang, Jiuhong

    2014-01-01

    The important role of histone acetylation alteration has become increasingly recognized in mesodermal lineage differentiation and development. However, the contribution of individual histone deacetylases (HDACs) to mesoderm specification remains poorly understood. In this report, we found that trichostatin A (TSA), an inhibitor of histone deacetylase (HDACi), could induce early differentiation of embryonic stem cells (ESCs) and promote mesodermal lineage differentiation. Further analysis showed that the expression levels of HDAC1 and 3 are decreased gradually during ESCs differentiation. Ectopic expression of HDAC1 or 3 significantly inhibited differentiation into the mesodermal lineage. By contrast, loss of either HDAC1 or 3 enhanced the mesodermal differentiation of ESCs. Additionally, we demonstrated that the activity of HDAC1 and 3 is indeed required for the regulation of mesoderm gene expression. Furthermore, HDAC1 and 3 were found to interact physically with the T-box transcription factor T/Bry, which is critical for mesodermal lineage commitment. These findings indicate a key mechanism for the specific role of HDAC1 and 3 in mammalian mesoderm specification. PMID:25412078

  11. Cigarette smoking reduces histone deacetylase 2 expression, enhances cytokine expression, and inhibits glucocorticoid actions in alveolar macrophages

    Microsoft Academic Search

    K. Ito; S. Lim; G. Caramori; K. F. Chung; P. J. Barnes; I. M. Adcock

    2001-01-01

    Cigarette smoke is the major cause of chronic obstructive pulmonary disease (COPD), a chronic inflammatory disease of the airway. The increased expression of inflammatory proteins results from enhanced gene transcription, as these mediators are induced in a cell-specific manner. Changes in transcription depend on chromatin remodeling and the relative activities of histone acetyl-transferases (HATs) and histone deacetylases (HDACs). We have

  12. Transcriptional Analysis of Histone Deacetylase Family Members Reveal Similarities Between Differentiating and Aging Spermatogonial Stem Cells

    PubMed Central

    Kofman, Amber E.; Huszar, Jessica M.

    2013-01-01

    The differentiation of adult stem cells involves extensive chromatin remodeling, mediated in part by the gene products of histone deacetylase (HDAC) family members. While the transcriptional downregulation of HDACs can impede stem cell self-renewal in certain contexts, it may also promote stem cell maintenance under other circumstances. In self-renewing, differentiating, and aging spermatogonial stem cells (SSCs), the gene expression dynamics of HDACs have not yet been characterized. To gain further insight with these studies, we analyzed the transcriptional profiles of six HDAC family members, previously identified to be the most highly expressed in self-renewing SSCs, during stem cell differentiation and aging. Here we discovered that in both differentiating and aging SSCs the expression of Sirt4 increases, while the expression of Hdac2, Hdac6, and Sirt1 decreases. When SSCs are exposed to the lifespan-enhancing drug rapamycin in vivo, the resultant HDAC gene expression patterns are opposite of those seen in the differentiating and aging SSCs, with increased Hdac2, Hdac6, and Sirt1 and decreased Hdac8, Hdac9, and Sirt4. Our findings suggest that HDACs important for stem cell maintenance and oxidative capacity are downregulated as adult stem cells differentiate or age. These results provide important insights into the epigenetic regulation of stem cell differentiation and aging in mammals. PMID:22729928

  13. 14-3-3 regulates the nuclear import of class IIa histone deacetylases

    SciTech Connect

    Nishino, Tomonori G. [Chemical Genetics Laboratory/Chemical Genomics Research Group, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Department of Biotechnology, University of Tokyo, Bunkyo-ku, Tokyo 113-8657 (Japan); Miyazaki, Masaya [Department of Biotechnology, University of Tokyo, Bunkyo-ku, Tokyo 113-8657 (Japan); Hoshino, Hideto [Department of Biotechnology, University of Tokyo, Bunkyo-ku, Tokyo 113-8657 (Japan); Japan Science and Technology Corporation (JST), CREST Research Project, 5-sanbancho, Chiyodaku, Tokyo 102-0075 (Japan); Miwa, Yoshihiro [Department of Molecular Pharmacology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, 305-8575 (Japan); JST, PRESTO Research Project, Kawaguchi, Saitama 332-0012 (Japan); Horinouchi, Sueharu [Department of Biotechnology, University of Tokyo, Bunkyo-ku, Tokyo 113-8657 (Japan); Yoshida, Minoru [Chemical Genetics Laboratory/Chemical Genomics Research Group, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Department of Biotechnology, University of Tokyo, Bunkyo-ku, Tokyo 113-8657 (Japan); Japan Science and Technology Corporation (JST), CREST Research Project, 5-sanbancho, Chiyodaku, Tokyo 102-0075 (Japan)], E-mail: yoshidam@riken.jp

    2008-12-19

    Class IIa histone deacetylases (HDACs) form complexes with a class of transcriptional repressors in the nucleus. While screening for compounds that could block the association of HDAC4 with the BTB domain-containing transcriptional repressor Bach2, we discovered that phorbol 12-myristate 13-acetate (PMA) induced the cytoplasmic retention of HDAC4 mutants lacking a nuclear export signal (NES). Although PMA treatment and PKD overexpression has been proposed to facilitate the nuclear export of class IIa HDACs by creating 14-3-3 binding sites containing phosphoserines, our experiments using HDAC mutants demonstrated that PMA greatly reduces nuclear import. PMA treatment repressed the NLS activity in a manner dependent on 14-3-3 binding. These results suggest that nuclear HDAC4 is not tethered in the nucleus, but instead shuttles between the nucleus and the cytoplasm. Phosphorylation-induced 14-3-3 binding biases the balance of nucleo-cytoplasmic shuttling toward the cytoplasm by inhibiting nuclear import.

  14. Class II Histone Deacetylases Act as Signal-Responsive Repressors of Cardiac Hypertrophy

    PubMed Central

    Zhang, Chun Li; McKinsey, Timothy A.; Chang, Shurong; Antos, Christopher L.; Hill, Joseph A.; Olson, Eric N.

    2015-01-01

    Summary The heart responds to stress signals by hypertrophic growth, which is accompanied by activation of the MEF2 transcription factor and reprogramming of cardiac gene expression. We show here that class II histone deacetylases (HDACs), which repress MEF2 activity, are substrates for a stress-responsive kinase specific for conserved serines that regulate MEF2-HDAC interactions. Signal-resistant HDAC mutants lacking these phosphorylation sites are refractory to hypertrophic signaling and inhibit cardiomyocyte hypertrophy. Conversely, mutant mice lacking the class II HDAC, HDAC9, are sensitized to hypertrophic signals and exhibit stress-dependent cardiomegaly. Thus, class II HDACs act as signal-responsive suppressors of the transcriptional program governing cardiac hypertrophy and heart failure. PMID:12202037

  15. 3-Hydroxypyridin-2-thione as Novel Zinc Binding Group for Selective Histone Deacetylase Inhibition

    PubMed Central

    Patil, Vishal; Sodji, Quaovi H.; Kornacki, James R.; Mrksich, Milan; Oyelere, Adegboyega K.

    2013-01-01

    Small molecules bearing hydroxamic acid as the zinc binding group (ZBG) have been the most effective histone deacetylase inhibitor (HDACi) to date. However, concerns about the pharmacokinetic liabilities of the hydroxamic acid moiety have stimulated research efforts aimed at finding alternative non-hydroxamate ZBGs. We have identified 3-hydroxypyridin-2-thione (3-HPT) as a novel ZBG that is compatible with HDAC inhibition. 3-HPT inhibits HDAC 6 and HDAC 8 with an IC50 of 681 nM and 3675 nM respectively. Remarkably, 3-HPT gives no inhibition of HDAC 1. Subsequent optimization led to several novel 3HPT-based HDACi that are selective for HDAC 6 and HDAC 8. Furthermore, a subset of these inhibitors induces apoptosis in various cancer cell lines. PMID:23547652

  16. 3-Hydroxypyridin-2-thione as novel zinc binding group for selective histone deacetylase inhibition.

    PubMed

    Patil, Vishal; Sodji, Quaovi H; Kornacki, James R; Mrksich, Milan; Oyelere, Adegboyega K

    2013-05-01

    Small molecules bearing hydroxamic acid as the zinc binding group (ZBG) have been the most effective histone deacetylase inhibitors (HDACi) to date. However, concerns about the pharmacokinetic liabilities of the hydroxamic acid moiety have stimulated research efforts aimed at finding alternative nonhydroxamate ZBGs. We have identified 3-hydroxypyridin-2-thione (3-HPT) as a novel ZBG that is compatible with HDAC inhibition. 3-HPT inhibits HDAC 6 and HDAC 8 with an IC50 of 681 and 3675 nM, respectively. Remarkably, 3-HPT gives no inhibition of HDAC 1. Subsequent optimization led to several novel 3HPT-based HDACi that are selective for HDAC 6 and HDAC 8. Furthermore, a subset of these inhibitors induces apoptosis in various cancer cell lines. PMID:23547652

  17. Design and synthesis of mono and bicyclic tetrapeptides thioester as potent inhibitor of histone deacetylases.

    PubMed

    Hoque, Md Ashraful; Islam, Md Shahidul; Islam, Md Nurul; Kato, Tamaki; Nishino, Norikazu; Ito, Akihiro; Yoshida, Minoru

    2014-10-01

    Inhibitors of histone deacetylases (HDACs) are a promising class of anticancer agents that have an effect on gene regulation. The naturally occurring cyclic depsipeptide FK228 containing disulfide and Largazole possessing thioester functionalities act as pro-drugs and share the same HDAC inhibition mechanism in cell. Inspired from these facts, we have reported bicyclic tetrapeptide disulfide HDAC inhibitors resembling FK228 with potent activity and enhanced selectivity. In the present study, we report the design and synthesis of several mono and bicyclic tetrapeptide thioester HDAC inhibitors that share the inhibition mechanism similar to Largazole. Most of the compounds showed HDAC1 and HDAC4 inhibition and p21 promoting activity in nanomolar ranges. Among these the monocyclic peptides 1, 2 and bicyclic peptide, 4 are notable demanding more advanced research to be promising anticancer drug candidates. PMID:25048030

  18. FOXP3+ regulatory T cell development and function require histone/protein deacetylase 3

    PubMed Central

    Wang, Liqing; Liu, Yujie; Han, Rongxiang; Beier, Ulf H.; Bhatti, Tricia R.; Akimova, Tatiana; Greene, Mark I.; Hiebert, Scott W.; Hancock, Wayne W.

    2015-01-01

    Treg dysfunction is associated with a variety of inflammatory diseases. Treg populations are defined by expression of the oligomeric transcription factor FOXP3 and inability to produce IL-2, a cytokine required for T cell maintenance and survival. FOXP3 activity is regulated post-translationally by histone/protein acetyltransferases and histone/protein deacetylases (HDACs). Here, we determined that HDAC3 mediates both the development and function of the two main Treg subsets, thymus-derived Tregs and induced Tregs (iTregs). We determined that HDAC3 and FOXP3 physically interact and that HDAC3 expression markedly reduces Il2 promoter activity. In murine models, conditional deletion of Hdac3 during thymic Treg development restored Treg production of IL-2 and blocked the suppressive function of Tregs. HDAC3-deficient mice died from autoimmunity by 4–6 weeks of age; however, injection of WT FOXP3+ Tregs prolonged survival. Adoptive transfer of Hdac3-deficient Tregs, unlike WT Tregs, did not control T cell proliferation in naive mice and did not prevent allograft rejection or colitis. HDAC3 also regulated the development of iTregs, as HDAC3-deficient conventional T cells were not converted into iTregs under polarizing conditions and produced large amounts of IL-2, IL-6, and IL-17. We conclude that HDAC3 is essential for the normal development and suppressive functions of thymic and peripheral FOXP3+ Tregs. PMID:25642770

  19. Targeting histone deacetylases: perspectives for epigenetic-based therapy in cardio-cerebrovascular disease

    PubMed Central

    Wang, Zi-Ying; Qin, Wen; Yi, Fan

    2015-01-01

    Although the pathogenesis of cardio-cerebrovascular disease (CCVD) is multifactorial, an increasing number of experimental and clinical studies have highlighted the importance of histone deacetylase (HDAC)-mediated epigenetic processes in the development of cardio-cerebrovascular injury. HDACs are a family of enzymes to balance the acetylation activities of histone acetyltransferases on chromatin remodeling and play essential roles in regulating gene transcription. To date, 18 mammalian HDACs are identified and grouped into four classes based on similarity to yeast orthologs. The zinc-dependent HDAC family currently consists of 11 members divided into three classes (class I, II, and IV) on the basis of structure, sequence homology, and domain organization. In comparison, class III HDACs (also known as the sirtuins) are composed of a family of NAD+-dependent protein-modifying enzymes related to the Sir2 gene. HDAC inhibitors are a group of compounds that block HDAC activities typically by binding to the zinc-containing catalytic domain of HDACs and have displayed anti-inflammatory and antifibrotic effects in the cardio-cerebrovascular system. In this review, we summarize the current knowledge about classifications, functions of HDACs and their roles and regulatory mechanisms in the cardio-cerebrovascular system. Pharmacological targeting of HDAC-mediated epigenetic processes may open new therapeutic avenues for the treatment of CCVD. PMID:25870619

  20. Boric acid inhibits embryonic histone deacetylases: A suggested mechanism to explain boric acid-related teratogenicity

    SciTech Connect

    Di Renzo, Francesca [Department of Biology, University of Milan, Via Celoria, 26. 20133 Milan (Italy); Cappelletti, Graziella [Department of Biology, University of Milan, Via Celoria, 26. 20133 Milan (Italy); Broccia, Maria L. [Department of Biology, University of Milan, Via Celoria, 26. 20133 Milan (Italy); Giavini, Erminio [Department of Biology, University of Milan, Via Celoria, 26. 20133 Milan (Italy); Menegola, Elena [Department of Biology, University of Milan, Via Celoria, 26. 20133 Milan (Italy)]. E-mail: elena.menegola@unimi.it

    2007-04-15

    Histone deacetylases (HDAC) control gene expression by changing histonic as well as non histonic protein conformation. HDAC inhibitors (HDACi) are considered to be among the most promising drugs for epigenetic treatment for cancer. Recently a strict relationship between histone hyperacetylation in specific tissues of mouse embryos exposed to two HDACi (valproic acid and trichostatin A) and specific axial skeleton malformations has been demonstrated. The aim of this study is to verify if boric acid (BA), that induces in rodents malformations similar to those valproic acid and trichostatin A-related, acts through similar mechanisms: HDAC inhibition and histone hyperacetylation. Pregnant mice were treated intraperitoneally with a teratogenic dose of BA (1000 mg/kg, day 8 of gestation). Western blot analysis and immunostaining were performed with anti hyperacetylated histone 4 (H4) antibody on embryos explanted 1, 3 or 4 h after treatment and revealed H4 hyperacetylation at the level of somites. HDAC enzyme assay was performed on embryonic nuclear extracts. A significant HDAC inhibition activity (compatible with a mixed type partial inhibition mechanism) was evident with BA. Kinetic analyses indicate that BA modifies substrate affinity by a factor {alpha} = 0.51 and maximum velocity by a factor {beta} = 0.70. This work provides the first evidence for HDAC inhibition by BA and suggests such a molecular mechanism for the induction of BA-related malformations.

  1. Enhanced Radiation-Induced Cell Killing and Prolongation of H2AX Foci Expression by the Histone Deacetylase Inhibitor MS275

    Microsoft Academic Search

    Kevin Camphausen; William Burgan; Michael Cerra; Kelli A. Oswald; Jane B. Trepel; Min-Jung Lee; Philip J. Tofilon

    2004-01-01

    Histone deacetylase (HDAC) inhibitors are undergoing clinical evalu- ation for cancer therapy. Because HDAC modulates chromatin structure and gene expression, parameters considered to influence radioresponse, we have investigated the effects of the HDAC inhibitor MS-275 on the radiosensitivity of two human tumor cell lines (DU145 prostate carcinoma and U251 glioma). Acetylation status of histones H3 and H4 was deter- mined

  2. Therapy for latent human immunodeficiency virus type 1 infection: the role of histone deacetylase inhibitors

    PubMed Central

    McManamy, Mary E Manson; Hakre, Shweta; Verdin, Eric M; Margolis, David M

    2014-01-01

    Persistence of human immunodeficiency virus type 1 (HIV-1) in latently infected CD4+ T cells prevents eradication in HIV-infected treated patients. Latency is characterized by a reversible silencing of transcription of integrated HIV-1. Several molecular mechanisms have been described which contribute to latency, including the establishment and maintenance of repressive chromatin on the HIV-1 promoter. Histone deacetylation is a landmark modification associated with transcriptional repression of the HIV-1 promoter and inhibition of histone deacetylase enzymes (HDACs) reactivates latent HIV-1. Here we review the different HDAC inhibitors that have been studied in HIV-1 latency and their therapeutic potential in reactivating latent HIV-1. PMID:24318952

  3. Thailandepsins: Bacterial Products with Potent Histone Deacetylase Inhibitory Activities and Broad-Spectrum Antiproliferative Activities

    PubMed Central

    Wang, Cheng; Henkes, Leonhard M.; Doughty, Leah B.; He, Min; Wang, Difei; Meyer-Almes, Franz-Josef; Cheng, Yi-Qiang

    2011-01-01

    Histone deacetylase (HDAC) inhibitors have emerged as a new class of anticancer drugs, with one synthetic compound, SAHA (vorinostat, Zolinza®; 1), and one natural product, FK228 (depsipeptide, romidepsin, Istodax®; 2), approved by FDA for clinical use. Our studies of FK228 biosynthesis in Chromobacterium violaceum No. 968 led to the identification of a cryptic biosynthetic gene cluster in the genome of Burkholderia thailandensis E264. Genome mining and genetic manipulation of this gene cluster further led to the discovery of two new products, thailandepsin A (6) and thailandepsin B (7). HDAC inhibition assays showed that thailandepsins have selective inhibition profiles different from that of FK228, with comparable inhibitory activities to those of FK228 toward human HDAC1, HDAC2, HDAC3, HDAC6, HDAC7 and HDAC9, but weaker inhibitory activities than FK228 toward HDAC4 and HDAC8, the later of which could be beneficial. NCI-60 anticancer screening assays showed that thailandepsins possess broad-spectrum antiproliferative activities with GI50 for over 90% of the tested cell lines at low nanomolar concentrations, and potent cytotoxic activities towards certain types of cell lines, particularly for those derived from colon, melanoma, ovarian and renal cancers. Thailandepsins thus represent new naturally produced HDAC inhibitors that are promising for anticancer drug development. PMID:21793558

  4. Class I histone deacetylase activity is required for proliferation of renal epithelial cells

    PubMed Central

    Tang, Jinhua; Yan, Yanli; Zhao, Ting C.; Bayliss, George; Yan, Haidong

    2013-01-01

    The process of renal regeneration after acute kidney injury is thought to recapitulate renal development, and proliferation of renal proximal tubular cells (RPTCs) is a critical step in the regenerative response. Recent studies indicate that class I histone deacetylases (HDACs) are required for embryonic kidney gene expression, growth, and differentiation. The role and underlying mechanisms of class I HDAC activation in RPTC proliferation, however, remain unclear. In this study, we used cultured RPTCs to examine this issue since four class I HDAC isoforms (1, 2, 3, and 8) are abundantly expressed in this cell type. Blocking class I HDAC activity with a highly selective inhibitor, MS-275, induced global histone H3 hyperacetylation, reduced RPTC proliferation, and diminished expression of cyclin D1 and proliferating cell nuclear antigen. Silencing HDAC1, 3, or 8 with small interfering RNA resulted in similar biological effects. Activation of epidermal growth factor receptor (EGFR) and signal transducers and activators of transcription 3 (STAT3) was required for RPTC proliferation, and STAT3 functioned downstream of EGFR. Treatment with MS-275 or knockdown of HDAC1, 3, or 8 suppressed EGFR expression and phosphorylation, and silencing HDAC1 and 3 also reduced STAT3 phosphorylation. However, HDAC2 downregulation did not affect RPTC proliferation and phosphorylation of EGFR and STAT3. Collectively, these data reveal a critical role of class I HDACs in mediating proliferation of renal epithelial cells through activation of the EGFR/STAT3 signaling pathway. PMID:23698124

  5. Histone deacetylase 3 binds to and regulates the GCMa transcription factor

    PubMed Central

    Chuang, Hsiao-Ching; Chang, Ching-Wen; Chang, Geen-Dong; Yao, Tso-Pang; Chen, Hungwen

    2006-01-01

    Human GCMa transcription factor regulates expression of syncytin, a placental fusogenic protein mediating trophoblastic fusion. Recently, we have demonstrated that CBP-mediated GCMa acetylation underlies the activated cAMP/PKA signaling pathway that stimulates trophoblastic fusion. Because protein acetylation is a reversible modification governed by histone acetyltransferases (HATs) and histone deacetylase (HDACs), in this study we investigated the key HDACs responsible for deacetylation of GCMa and thus the reduction in GCMa activity to avoid unwanted fusion events that may have adverse effects on placental morphogenesis. We herein demonstrate that the HDAC inhibitor, trichostatin A (TSA), increases the level of acetylated GCMa and that HDAC1, 3, 4 and 5 interact with and deacetylate GCMa. Glutathione S-transferase (GST) pull-down assays further verified direct interaction between GCMa and HDAC3 or CBP and HDAC3. HDAC3 counteracts the transcriptional coactivator activity of CBP and the enhancement effect of CBP on GCMa-mediated transcriptional activation. Correlatively, we found in placental cells that HDAC3 associates with the proximal GCMa-binding site (pGBS) in the syncytin promoter and dissociates from pGBS in the presence of forskolin, which stimulates the association of CBP and GCMa with pGBS. Our studies support that trophoblastic fusion in placental morphogenesis depends on the regulation of GCMa activity by HAT and HDAC. PMID:16528103

  6. Aberrant HDAC2-Mediated Histone Modifications and Synaptic Plasticity in the Amygdala Predisposes to Anxiety and Alcoholism

    PubMed Central

    Moonat, Sachin; Sakharkar, Amul J.; Zhang, Huaibo; Tang, Lei; Pandey, Subhash C.

    2013-01-01

    Background Epigenetic mechanisms have been implicated in psychiatric disorders, including alcohol dependence. However, the epigenetic basis and role of specific histone deacetylase (HDAC) isoforms in the genetic predisposition to anxiety and alcoholism is unknown. Methods We measured amygdaloid HDAC activity, levels of HDAC isoforms and histone H3 acetylation in selectively-bred alcohol-preferring (P) and -nonpreferring (NP) rats. We employed HDAC2 siRNA infusion into the central nucleus of amygdala (CeA) of P rats to determine the causal role of HDAC2 in anxiety-like and alcohol-drinking behaviors. Chromatin immunoprecipitation analysis was performed to examine the histone acetylation status of brain-derived neurotrophic factor (BDNF) and activity-regulated cytoskeleton associated protein (Arc) genes. Golgi-Cox staining was performed to measure dendritic spine density. Results We found that P rats innately display higher nuclear HDAC activity and HDAC2, but not HDAC 1, 3, 4, 5, and 6 protein levels, and lower acetylation of H3-K9, but not H3-K14, in the CeA and medial nucleus of amygdala (MeA) compared with NP rats. Acute ethanol exposure decreased amygdaloid HDAC activity and HDAC2 protein levels, increased global and gene (BDNF and Arc)-specific histone acetylation and attenuated anxiety-like behaviors in P rats, but had no effects in NP rats. HDAC2 knockdown in the CeA attenuated anxiety-like behaviors and voluntary alcohol, but not sucrose, consumption in P rats and increased histone acetylation of BDNF and Arc with a resultant increase in protein levels that correlated with increased dendritic spine density. Conclusions These novel data demonstrate the role of HDAC2-mediated epigenetic mechanisms in anxiety and alcoholism. PMID:23485013

  7. Discovery of pyridone-based histone deacetylase inhibitors: approaches for metabolic stability.

    PubMed

    Cho, Misun; Choi, Eunhyun; Yang, Jee Sun; Lee, Chulho; Seo, Jeong Jea; Kim, Beom Seok; Oh, Soo Jin; Kim, Hwan Mook; Lee, Kiho; Park, Song-Kyu; Kwon, Ho Jeong; Han, Gyoonhee

    2013-02-01

    Histone deacetylases (HDACs) are important enzymes in epigenetic regulation and are therapeutic targets for cancer. Most zinc-dependent HDACs induce proliferation, dedifferentiation, and anti-apoptotic effects in cancer cells. We designed and synthesized a new series of pyridone-based HDAC inhibitors that have a pyridone ring in the core structure and a conjugated system with an olefin connecting the hydroxamic acid moiety. Consequently, most of the selected pyridone-based HDAC inhibitors showed similar or higher inhibition profiles in addition to remarkable metabolic stability against hydrolysis relative to the corresponding lactam-based HDAC inhibitors. Furthermore, the selectivity of the novel pyridine-based compounds was evaluated across all of the HDAC isoforms. One of these compounds, (E)-N-hydroxy-3-{1-[3-(naphthalen-2-yl)propyl]-2-oxo-1,2-dihydropyridin-3-yl}acrylamide, exhibited the highest level of HDAC inhibition (IC(50) =0.07 ?M), highly selective inhibition of class I HDAC1 and class II HDAC6 enzymes, metabolic stability in mouse liver microsomal studies, and effective growth inhibition of various cancer cell lines. Docking studies indicated that a long alkyl linker and bulky hydrophobic cap groups affect in vitro activities. Overall, the findings reported herein regarding pyridone-based HDAC inhibitors can be used to guide future research efforts to develop new and effective anticancer therapeutics. PMID:23292995

  8. Regulation of Histone Deacetylase 4 Expression by the SP Family of Transcription FactorsD?

    PubMed Central

    Liu, Fang; Pore, Nabendu; Kim, Mijin; Voong, K. Ranh; Dowling, Melissa; Maity, Amit; Kao, Gary D.

    2006-01-01

    Histone deacetylases mediate critical cellular functions but relatively little is known about mechanisms controlling their expression, including expression of HDAC4, a class II HDAC implicated in the modulation of cellular differentiation and viability. Endogenous HDAC4 mRNA, protein levels and promoter activity were all readily repressed by mithramycin, suggesting regulation by GC-rich DNA sequences. We validated consensus binding sites for Sp1/Sp3 transcription factors in the HDAC4 promoter through truncation studies and targeted mutagenesis. Specific and functional binding by Sp1/Sp3 at these sites was confirmed with chromatin immunoprecipitation (ChIP) and electromobility shift assays (EMSA). Cotransfection of either Sp1 or Sp3 with a reporter driven by the HDAC4 promoter led to high activities in SL2 insect cells (which lack endogenous Sp1/Sp3). In human cells, restored expression of Sp1 and Sp3 up-regulated HDAC4 protein levels, whereas levels were decreased by RNA-interference-mediated knockdown of either protein. Finally, variable levels of Sp1 were in concordance with that of HDAC4 in a number of human tissues and cancer cell lines. These studies together characterize for the first time the activity of the HDAC4 promoter, through which Sp1 and Sp3 modulates expression of HDAC4 and which may contribute to tissue or cell-line-specific expression of HDAC4. PMID:16280357

  9. Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation

    PubMed Central

    McKinsey, Timothy A.; Zhang, Chun-Li; Lu, Jianrong; Olson, Eric N.

    2015-01-01

    Members of the myocyte enhancer factor-2 (MEF2) family of transcription factors associate with myogenic basic helix–loop– helix transcription factors such as MyoD to activate skeletal myogenesis1. MEF2 proteins also interact with the class II histone deacetylases HDAC4 and HDAC5, resulting in repression of MEF2-dependent genes2–4. Execution of the muscle differentiation program requires release of MEF2 from repression by HDACs, which are expressed constitutively in myoblasts and myotubes5. Here we show that HDAC5 shuttles from the nucleus to the cytoplasm when myoblasts are triggered to differentiate. Calcium/ calmodulin-dependent protein kinase (CaMK) signalling, which stimulates myogenesis5 and prevents formation of MEF2–HDAC complexes4, also induces nuclear export ofHDAC4 and HDAC5 by phosphorylation of these transcriptional repressors. An HDAC5 mutant lacking two CaMK phosphorylation sites is resistant to CaMK-mediated nuclear export and acts as a dominant inhibitor of skeletal myogenesis, whereas a cytoplasmic HDAC5 mutant is unable to block efficiently the muscle differentiation program. Our results highlight a mechanism for transcriptional regulation through signal- and differentiation-dependent nuclear export of a chromatin-remodelling enzyme, and suggest that nucleo cytoplasmic trafficking of HDACs is involved in the control of cellular differentiation. PMID:11081517

  10. Histone Deacetylases Inhibitors in the Treatment of Retinal Degenerative Diseases: Overview and Perspectives

    PubMed Central

    Dai, Xufeng; Du, Wei; Pang, Ji-jing

    2015-01-01

    Retinal degenerative diseases are one of the important refractory ophthalmic diseases, featured with apoptosis of photoreceptor cells. Histone acetylation and deacetylation can regulate chromosome assembly, gene transcription, and posttranslational modification, which are regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), respectively. The histone deacetylase inhibitors (HDACis) have the ability to cause hyperacetylation of histone and nonhistone proteins, resulting in a variety of effects on cell proliferation, differentiation, anti-inflammation, and anti-apoptosis. Several HDACis have been approved for clinical trials to treat cancer. Studies have shown that HDACis have neuroprotective effects in nervous system damage. In this paper, we will summarize the neuroprotective effects of common HDACis in retinal degenerative diseases and make a prospect to the applications of HDACis in the treatment of retinal degenerative diseases in the future. PMID:26137316

  11. HDACiDB: a database for histone deacetylase inhibitors.

    PubMed

    Murugan, Kasi; Sangeetha, Shanmugasamy; Ranjitha, Shanmugasamy; Vimala, Antony; Al-Sohaibani, Saleh; Rameshkumar, Gopal

    2015-01-01

    An histone deacetylase (HDAC) inhibitor database (HDACiDB) was constructed to enable rapid access to data relevant to the development of epigenetic modulators (HDAC inhibitors [HDACi]), helping bring precision cancer medicine a step closer. Thousands of HDACi targeting HDACs are in various stages of development and are being tested in clinical trials as monotherapy and in combination with other cancer agents. Despite the abundance of HDACi, information resources are limited. Tools for in silico experiments on specific HDACi prediction, for designing and analyzing the generated data, as well as custom-made specific tools and interactive databases, are needed. We have developed an HDACiDB that is a composite collection of HDACi and currently comprises 1,445 chemical compounds, including 419 natural and 1,026 synthetic ones having the potential to inhibit histone deacetylation. Most importantly, it will allow application of Lipinski's rule of five drug-likeness and other physicochemical property-based screening of the inhibitors. It also provides easy access to information on their source of origin, molecular properties, drug likeness, as well as bioavailability with relevant references cited. Being the first comprehensive database on HDACi that contains all known natural and synthetic HDACi, the HDACiDB may help to improve our knowledge concerning the mechanisms of actions of available HDACi and enable us to selectively target individual HDAC isoforms and establish a new paradigm for intelligent epigenetic cancer drug design. The database is freely available on the http://hdacidb.bioinfo.au-kbc.org.in/hdacidb/website. PMID:25945037

  12. Design and synthesis of orally bioavailable aminopyrrolidinone histone deacetylase 6 inhibitors.

    PubMed

    Lin, Xianfeng; Chen, Wenming; Qiu, Zongxing; Guo, Lei; Zhu, Wei; Li, Wentao; Wang, Zhanguo; Zhang, Weixing; Zhang, Zhenshan; Rong, Yiping; Zhang, Meifang; Yu, Lingjie; Zhong, Sheng; Zhao, Rong; Wu, Xihan; Wong, Jason C; Tang, Guozhi

    2015-03-26

    Histone deacetylase 6 (HDAC6) removes the acetyl group from lysine residues in a number of non-histone substrates and plays important roles in microtubule dynamics and chaperone activities. There is growing interest in identifying HDAC6-selective inhibitors as chemical biology tools and ultimately as new therapeutic agents. Herein we report the design, synthesis, and phenotypic screening of a novel class of 3-aminopyrrolidinone-based hydroxamic acids as HDAC6 inhibitors. In particular, the ?-methyl-substituted enantiomer 33 (3-S) showed significant in-cell tubulin acetylation (Tub-Ac) with an EC50 of 0.30 ?M but limited impact on p21 levels at various concentrations. In enzyme inhibition assays, 33 demonstrated high selectivity for HDAC6 with an IC50 of 0.017 ?M and selectivity indexes of 10 against HDAC8 and over 4000 against HDAC1-3 isoforms. Moreover, 33 has suitable drug metabolism and pharmacokinetics properties compared with other hydroxamic acid-based HDAC inhibitors, warranting further biological studies and development as a selective HDAC6 inhibitor. PMID:25734520

  13. 3,3'-Diindolylmethane, but not indole-3-carbinol, inhibits histone deacetylase activity in prostate cancer cells.

    PubMed

    Beaver, Laura M; Yu, Tian-Wei; Sokolowski, Elizabeth I; Williams, David E; Dashwood, Roderick H; Ho, Emily

    2012-09-15

    Increased consumption of cruciferous vegetables is associated with a reduced risk of developing prostate cancer. Indole-3-carbinol (I3C) and 3,3'-diindolylmethane (DIM) are phytochemicals derived from cruciferous vegetables that have shown promise in inhibiting prostate cancer in experimental models. Histone deacetylase (HDAC) inhibition is an emerging target for cancer prevention and therapy. We sought to examine the effects of I3C and DIM on HDACs in human prostate cancer cell lines: androgen insensitive PC-3 cells and androgen sensitive LNCaP cells. I3C modestly inhibited HDAC activity in LNCaP cells by 25% but no inhibition of HDAC activity was detected in PC-3 cells. In contrast, DIM significantly inhibited HDAC activity in both cell lines by as much as 66%. Decreases in HDAC activity correlated with increased expression of p21, a known target of HDAC inhibitors. DIM treatment caused a significant decrease in the expression of HDAC2 protein in both cancer cell lines but no significant change in the protein levels of HDAC1, HDAC3, HDAC4, HDAC6 or HDAC8 was detected. Taken together, these results show that inhibition of HDAC activity by DIM may contribute to the phytochemicals' anti-proliferative effects in the prostate. The ability of DIM to target aberrant epigenetic patterns, in addition to its effects on detoxification of carcinogens, may make it an effective chemopreventive agent by targeting multiple stages of prostate carcinogenesis. PMID:22800507

  14. 3,3?-Diindolylmethane, but not indole-3-carbinol, inhibits histone deacetylase activity in prostate cancer cells

    SciTech Connect

    Beaver, Laura M., E-mail: beaverl@onid.orst.edu [Linus Pauling Institute, Oregon State University, 307 Linus Pauling Science Center, Corvallis, OR 97331 (United States); School of Biological and Population Health Sciences, Oregon State University, 103 Milam Hall, Corvallis, OR 97331 (United States); Yu, Tian-Wei, E-mail: david.yu@oregonstate.edu [Linus Pauling Institute, Oregon State University, 307 Linus Pauling Science Center, Corvallis, OR 97331 (United States)] [Linus Pauling Institute, Oregon State University, 307 Linus Pauling Science Center, Corvallis, OR 97331 (United States); Sokolowski, Elizabeth I., E-mail: sokolowe@onid.orst.edu [School of Biological and Population Health Sciences, Oregon State University, 103 Milam Hall, Corvallis, OR 97331 (United States); Williams, David E., E-mail: david.williams@oregonstate.edu [Linus Pauling Institute, Oregon State University, 307 Linus Pauling Science Center, Corvallis, OR 97331 (United States); Department of Environmental and Molecular Toxicology, Oregon State University, 1007 Agriculture and Life Sciences Building, Corvallis, OR 97331 (United States); Dashwood, Roderick H., E-mail: rod.dashwood@oregonstate.edu [Linus Pauling Institute, Oregon State University, 307 Linus Pauling Science Center, Corvallis, OR 97331 (United States); Department of Environmental and Molecular Toxicology, Oregon State University, 1007 Agriculture and Life Sciences Building, Corvallis, OR 97331 (United States); Ho, Emily, E-mail: Emily.Ho@oregonstate.edu [Linus Pauling Institute, Oregon State University, 307 Linus Pauling Science Center, Corvallis, OR 97331 (United States) [Linus Pauling Institute, Oregon State University, 307 Linus Pauling Science Center, Corvallis, OR 97331 (United States); School of Biological and Population Health Sciences, Oregon State University, 103 Milam Hall, Corvallis, OR 97331 (United States)

    2012-09-15

    Increased consumption of cruciferous vegetables is associated with a reduced risk of developing prostate cancer. Indole-3-carbinol (I3C) and 3,3?-diindolylmethane (DIM) are phytochemicals derived from cruciferous vegetables that have shown promise in inhibiting prostate cancer in experimental models. Histone deacetylase (HDAC) inhibition is an emerging target for cancer prevention and therapy. We sought to examine the effects of I3C and DIM on HDACs in human prostate cancer cell lines: androgen insensitive PC-3 cells and androgen sensitive LNCaP cells. I3C modestly inhibited HDAC activity in LNCaP cells by 25% but no inhibition of HDAC activity was detected in PC-3 cells. In contrast, DIM significantly inhibited HDAC activity in both cell lines by as much as 66%. Decreases in HDAC activity correlated with increased expression of p21, a known target of HDAC inhibitors. DIM treatment caused a significant decrease in the expression of HDAC2 protein in both cancer cell lines but no significant change in the protein levels of HDAC1, HDAC3, HDAC4, HDAC6 or HDAC8 was detected. Taken together, these results show that inhibition of HDAC activity by DIM may contribute to the phytochemicals' anti-proliferative effects in the prostate. The ability of DIM to target aberrant epigenetic patterns, in addition to its effects on detoxification of carcinogens, may make it an effective chemopreventive agent by targeting multiple stages of prostate carcinogenesis. -- Highlights: ? DIM inhibits HDAC activity and decreases HDAC2 expression in prostate cancer cells. ? DIM is significantly more effective than I3C at inhibiting HDAC activity. ? I3C has no effect on HDAC protein expression. ? Inhibition of HDAC activity by DIM is associated with increased p21 expression. ? HDAC inhibition may be a novel epigenetic mechanism for cancer prevention with DIM.

  15. MicroRNA-1 regulates chondrocyte phenotype by repressing histone deacetylase 4 during growth plate development.

    PubMed

    Li, Pengcui; Wei, Xiaochun; Guan, Yingjie; Chen, Qian; Zhao, Tingcun; Sun, Changqi; Wei, Lei

    2014-09-01

    MicroRNAs (miRs) are noncoding RNAs (17-25 nt) that control translation and/or mRNA degradation. Using Northern blot analysis, we identified that miR-1 is specifically expressed in growth plate cartilage in addition to muscle tissue, but not in brain, intestine, liver, or lung. We obtained the first evidence that miR-1 is highly expressed in the hypertrophic zone of the growth plate, with an 8-fold increase compared with the proliferation zone; this location coincides with the Ihh and Col X expression regions in vivo. MiR-1 significantly induces chondrocyte proliferation and differentiation. We further identified histone deacetylase 4 (HDAC4) as a target of miR-1. HDAC4 negatively regulates chondrocyte hypertrophy by inhibiting Runx2, a critical transcription factor for chondrocyte hypertrophy. MiR-1 inhibits both endogenous HDAC4 protein by 2.2-fold and the activity of a reporter gene bearing the 3'-untranslated region (UTR) of HDAC4 by 3.3-fold. Conversely, knockdown of endogenous miR-1 relieves the repression of HDAC4. Deletion of the miR-1 binding site in HDAC4 3'-UTR or mutated miR-1 abolishes miR-1-mediated inhibition of the reporter gene activity. Overexpression of HDAC4 reverses miR-1 induction of chondrocyte differentiation markers Col X and Ihh. HDAC4 inhibits Runx2 promoter activity in a dosage-dependent manner. Thus, miR-1 plays an important role in the regulation of the chondrocyte phenotype during the growth plate development via direct targeting of HDAC4. - Li, P., Wei, X., Guan, Y., Chen, Q., Zhao, T., Sun, C., Wei, L. MicroRNA-1 regulates chondrocyte phenotype by repressing histone deacetylase 4 during growth plate development. PMID:24858276

  16. Roles of histone deacetylases in epigenetic regulation: emerging paradigms from studies with inhibitors

    PubMed Central

    2012-01-01

    The zinc-dependent mammalian histone deacetylase (HDAC) family comprises 11 enzymes, which have specific and critical functions in development and tissue homeostasis. Mounting evidence points to a link between misregulated HDAC activity and many oncologic and nononcologic diseases. Thus the development of HDAC inhibitors for therapeutic treatment garners a lot of interest from academic researchers and biotechnology entrepreneurs. Numerous studies of HDAC inhibitor specificities and molecular mechanisms of action are ongoing. In one of these studies, mass spectrometry was used to characterize the affinities and selectivities of HDAC inhibitors toward native HDAC multiprotein complexes in cell extracts. Such a novel approach reproduces in vivo molecular interactions more accurately than standard studies using purified proteins or protein domains as targets and could be very useful in the isolation of inhibitors with superior clinical efficacy and decreased toxicity compared to the ones presently tested or approved. HDAC inhibitor induced-transcriptional reprogramming, believed to contribute largely to their therapeutic benefits, is achieved through various and complex mechanisms not fully understood, including histone deacetylation, transcription factor or regulator (including HDAC1) deacetylation followed by chromatin remodeling and positive or negative outcome regarding transcription initiation. Although only a very low percentage of protein-coding genes are affected by the action of HDAC inhibitors, about 40% of noncoding microRNAs are upregulated or downregulated. Moreover, a whole new world of long noncoding RNAs is emerging, revealing a new class of potential targets for HDAC inhibition. HDAC inhibitors might also regulate transcription elongation and have been shown to impinge on alternative splicing. PMID:22414492

  17. The Biology of HDAC3

    Microsoft Academic Search

    Edward Seto

    Histone deacetylase 3 (HDAC3) is one of four members of the human class I histone deacetylases that repress transcription\\u000a by deacetylation of histones. This review describes our current knowledge regarding its structure, function, mechanisms of\\u000a action, and regulation.

  18. The histone deacetylase inhibitor valproic acid sensitizes human and canine osteosarcoma to doxorubicin

    Microsoft Academic Search

    Luke A. Wittenburg; Liam Bisson; Barbara J. Rose; Christopher Korch; Douglas H. Thamm

    2011-01-01

    Purpose  Osteosarcoma (OS) remains an incurable and ultimately fatal disease in many patients, and novel forms of therapy are needed.\\u000a Improved models of OS that more closely mimic human disease would provide more robust information regarding the utility of\\u000a novel therapies. Spontaneous OS in dogs may provide such a model. Pharmacologic inhibition of histone deacetylase (HDAC) enzymes\\u000a has a variety of

  19. Postradiation Sensitization of the Histone Deacetylase Inhibitor Valproic Acid

    PubMed Central

    Chinnaiyan, Prakash; Cerna, David; Burgan, William E.; Beam, Katie; Williams, Eli S.; Camphausen, Kevin; Tofilon, Philip J.

    2012-01-01

    Purpose Preclinical studies evaluating histone deacetylase (HDAC) inhibitor-induced radiosensitization have largely focused on the preirradiation setting based on the assumption that enhanced radiosensitivity was mediated by changes in gene expression. Our previous investigations identified maximal radiosensitization when cells were exposed to HDAC inhibitors in both the preradiation and postradiation setting. We now expand on these studies to determine whether postirradiation exposure alone affects radiosensitivity. Experimental Design The effects of the HDAC inhibitor valproic acid (VA) on postirradiation sensitivity in human glioma cell lines were evaluated using a clonogenic assay, exposing cells to VA up to 24 h after irradiation. DNA damage repair was evaluated using ?H2AX and 53BP1foci and cell cycle phase distribution was analyzed by flow cytometry. Western blot of acetylated ?H2AX was done following histone extraction on AUT gels. Results VA enhanced radiosensitivity when delivered up to 24 h after irradiation. Cells accumulated in G2-M following irradiation, although they returned to baseline at 24 h, mitigating the role of cell cycle redistribution in postirradiation sensitization by VA. At12 h after irradiation, significant ?H2AX and 53BP1foci dispersal was shown in the control, although cells exposed to VA after irradiation maintained foci expression. VA alone had no effect on the acetylation or phosphorylation of H2AX, although it did acetylate radiation-induced ?H2AX. Conclusions These results indicate that VA enhances radiosensitivity at times up to 24 h after irradiation, which has direct clinical application. PMID:18765532

  20. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington's disease

    Microsoft Academic Search

    Emma Hockly; Victoria M. Richon; Benjamin Woodman; Donna L. Smith; Xianbo Zhou; Eddie Rosa; Kirupa Sathasivam; Shabnam Ghazi-Noori; Amarbirpal Mahal; Philip A. S. Lowden; Joan S. Steffan; J. Lawrence Marsh; Leslie M. Thompson; Cathryn M. Lewis; Paul A. Marks; Gillian P. Bates

    2003-01-01

    Huntington's disease (HD) is an inherited, progressive neurological disorder that is caused by a CAG\\/polyglutamine repeat expansion and for which there is no effective therapy. Recent evidence indicates that transcriptional dysregulation may contribute to the molecular pathogenesis of this disease. Supporting this view, administration of histone deacetylase (HDAC) inhibitors has been shown to rescue lethality and photoreceptor neurodegeneration in a

  1. Histone deacetylase 3 inhibition improves glycaemia and insulin secretion in obese diabetic rats.

    PubMed

    Lundh, M; Galbo, T; Poulsen, S S; Mandrup-Poulsen, T

    2015-07-01

    Failure of pancreatic ? cells to compensate for insulin resistance is a prerequisite for the development of type 2 diabetes. Sustained elevated circulating levels of free fatty acids and glucose contribute to ?-cell failure. Selective inhibition of histone deacetylase (HDAC)-3 protects pancreatic ? cells against inflammatory and metabolic insults in vitro. In the present study, we tested the ability of a selective HDAC3 inhibitor, BRD3308, to reduce hyperglycaemia and increase insulin secretion in a rat model of type 2 diabetes. At diabetes onset, an ambulatory hyperglycaemic clamp was performed. HDAC3 inhibition improved hyperglycaemia over the study period without affecting weight gain. At the end of the hyperglycaemic clamp, circulating insulin levels were significantly higher in BRD3308-treated rats. Pancreatic insulin staining and contents were also significantly higher. These findings highlight HDAC3 as a key therapeutic target for ?-cell protection in type 2 diabetes. PMID:25846481

  2. Thermodynamics of ligand binding to histone deacetylase like amidohydrolase from Bordetella/Alcaligenes.

    PubMed

    Meyners, Christian; Baud, Matthias G J; Fuchter, Matthew J; Meyer-Almes, Franz-Josef

    2014-03-01

    Thermodynamic studies on ligand-protein binding have become increasingly important in the process of drug design. In combination with structural data and molecular dynamics simulations, thermodynamic studies provide relevant information about the mode of interaction between compounds and their target proteins and therefore build a sound basis for further drug optimization. Using the example of histone deacetylases (HDACs), particularly the histone deacetylase like amidohydrolase (HDAH) from Bordetella/Alcaligenes, a novel sensitive competitive fluorescence resonance energy transfer-based binding assay was developed and the thermodynamics of interaction of both fluorescent ligands and inhibitors to histone deacetylase like amidohydrolase were investigated. The assay consumes only small amounts of valuable target proteins and is suitable for fast kinetic and mechanistic studies as well as high throughput screening applications. Binding affinity increased with increasing length of aliphatic spacers (n = 4-7) between the hydroxamate moiety and the dansyl head group of ligand probes. Van't Hoff plots revealed an optimum in enthalpy contribution to the free energy of binding for the dansyl-ligand with hexyl spacer. The selectivity in the series of dansyl-ligands against human class I HDAC1 but not class II HDACs 4 and 6 increased with the ratio of ?H(0)/?G(0). The data clearly emphasize the importance of thermodynamic signatures as useful general guidance for the optimization of ligands or rational drug design. PMID:24446380

  3. Application of p21 and klf2 reporter gene assays to identify selective histone deacetylase inhibitors for cancer therapy.

    PubMed

    Wong, Jason C; Guo, Lei; Peng, Zhenghong; Zhang, Weixing; Zhang, Nan; Lai, Wayne; Zhang, Zhenshan; Zhang, Chao; Zhang, Xiongwen; Song, Shan; Pan, Desi; Xie, Chuanming; Li, Jia; Ning, Zhiqing; Lu, Xianping; He, Yun; Chen, Li

    2011-01-01

    Novel 2-aminoanilide histone deacetylase (HDAC) inhibitors were designed to increase their contact with surface residues surrounding the HDAC active site compared to the contacts made by existing clinical 2-aminoanilides such as SNDX-275, MGCD0103, and Chidamide. Their HDAC selectivity was assessed using p21 and klf2 reporter gene assays in HeLa and A204 cells, respectively, which provide a cell-based readout for the inhibition of HDACs associated either with the p21 or klf2 promoter. A subset of the designed compounds selectively induced p21 over klf2 relative to the clinical reference compound SNDX-275. A representative lead compound from this subset had antiproliferative effects in cancer cells associated with induction of acetylated histone H4, endogenous p21, cell cycle arrest, and apoptosis. The p21- versus klf2-selective compounds described herein may provide a chemical starting point for developing clinically-differentiated HDAC inhibitors for cancer therapy. PMID:21145737

  4. Histone deacetylase regulation of immune gene expression in tumor cells

    Microsoft Academic Search

    A. Nazmul H. Khan; Thomas B. Tomasi

    2008-01-01

    Epigenetic modifications of chromatin, such as histone acetylation, are involved in repression of tumor antigens and multiple\\u000a immune genes that are thought to facilitate tumor escape. The status of acetylation in a cell is determined by the balance\\u000a of the activities of histone acetyltransferases and histone deacetylases. Inhibitors of histone deacetylase (HDACi) can enhance\\u000a the expression of immunologically important molecules

  5. Histone Deacetylase Classes I and II Regulate Kaposi's Sarcoma-Associated Herpesvirus Reactivation

    PubMed Central

    Shin, Hye Jin; DeCotiis, Jennifer; Giron, Mario; Palmeri, Diana

    2014-01-01

    In primary effusion lymphoma (PEL) cells infected with latent Kaposi's sarcoma-associated herpesvirus (KSHV), the promoter of the viral lytic switch gene, Rta, is organized into bivalent chromatin, similar to cellular developmental switch genes. Histone deacetylase (HDAC) inhibitors (HDACis) reactivate latent KSHV and dramatically remodel the viral genome topology and chromatin architecture. However, reactivation is not uniform across a population of infected cells. We sought to identify an HDACi cocktail that would uniformly reactivate KSHV and reveal the regulatory HDACs. Using HDACis with various specificities, we found that class I HDACis were sufficient to reactivate the virus but differed in potency. Valproic acid (VPA) was the most effective HDACi, inducing lytic cycle gene expression in 75% of cells, while trichostatin A (TSA) induced less widespread lytic gene expression and inhibited VPA-stimulated reactivation. VPA was only slightly superior to TSA in inducing histone acetylation of Rta's promoter, but only VPA induced significant production of infectious virus, suggesting that HDAC regulation after Rta expression has a dramatic effect on reactivation progression. Ectopic HDACs 1, 3, and 6 inhibited TPA-stimulated KSHV reactivation. Surprisingly, ectopic HDACs 1 and 6 stimulated reactivation independently, suggesting that the stoichiometries of HDAC complexes are critical for the switch. Tubacin, a specific inhibitor of the ubiquitin-binding, proautophagic HDAC6, also inhibited VPA-stimulated reactivation. Immunofluorescence indicated that HDAC6 is expressed diffusely throughout latently infected cells, but its expression level and nuclear localization is increased during reactivation. Overall, our data suggest that inhibition of HDAC classes I and IIa and maintenance of HDAC6 (IIb) activity are required for optimal KSHV reactivation. PMID:24227836

  6. Modulation of histone deacetylase activity by dietary isothiocyanates and allyl sulfides: studies with sulforaphane and garlic organosulfur compounds.

    PubMed

    Nian, Hui; Delage, Barbara; Ho, Emily; Dashwood, Roderick H

    2009-04-01

    Histone deacetylase (HDAC) inhibitors reactivate epigenetically-silenced genes in cancer cells, triggering cell cycle arrest and apoptosis. Recent evidence suggests that dietary constituents can act as HDAC inhibitors, such as the isothiocyanates found in cruciferous vegetables and the allyl compounds present in garlic. Broccoli sprouts are a rich source of sulforaphane (SFN), an isothiocyanate that is metabolized via the mercapturic acid pathway and inhibits HDAC activity in human colon, prostate, and breast cancer cells. In mouse preclinical models, SFN inhibited HDAC activity and induced histone hyperacetylation coincident with tumor suppression. Inhibition of HDAC activity also was observed in circulating peripheral blood mononuclear cells obtained from people who consumed a single serving of broccoli sprouts. Garlic organosulfur compounds can be metabolized to allyl mercaptan (AM), a competitive HDAC inhibitor that induced rapid and sustained histone hyperacetylation in human colon cancer cells. Inhibition of HDAC activity by AM was associated with increased histone acetylation and Sp3 transcription factor binding to the promoter region of the P21WAF1 gene, resulting in elevated p21 protein expression and cell cycle arrest. Collectively, the results from these studies, and others reviewed herein, provide new insights into the relationships between reversible histone modifications, diet, and cancer chemoprevention. PMID:19197985

  7. Unique functional roles for class I and class II histone deacetylases in central nervous system development and function

    PubMed Central

    Morris, Michael J.; Monteggia, Lisa M.

    2013-01-01

    Non-specific pharmacological inhibition of the histone deacetylase (HDAC) family of enzymes has largely beneficial effects in a variety of diverse contexts including cancer, cognitive function, and neurodegeneration. This review will discuss the role of individual HDAC isoforms in brain function during development and in the adult. Importantly class I and class II HDACs exhibit distinct cellular and subcellular expression patterns and utilize different signaling pathways to influence their substrates. Moreover, dissociable phenotypic outcomes emerge following manipulation of individual HDACs in the brain. To date, pharmacological inhibitors capable of targeting individual HDACs have proven difficult to develop, an obstacle that must be overcome to unlock the substantial clinical promise of manipulating endogenous HDAC isoforms in the central nervous system. PMID:23466417

  8. Histone deacetylase 2 cell autonomously suppresses excitatory and enhances inhibitory synaptic function in CA1 pyramidal neurons.

    PubMed

    Hanson, Jesse E; Deng, Lunbin; Hackos, David H; Lo, Shih-Ching; Lauffer, Benjamin E; Steiner, Pascal; Zhou, Qiang

    2013-04-01

    Histone deacetylase 2 (HDAC2) negatively regulates excitatory synapse number and memory performance. However, whether HDAC2 regulation of excitatory synapses occurs in a cell-autonomous manner and whether HDAC2 regulates inhibitory synaptic functions are not well understood. To examine these aspects of HDAC2 function, we used sparse transfection of rat hippocampal slice cultures and whole-cell recordings in pyramidal neurons. HDAC2 knockdown (KD) in single postsynaptic pyramidal neurons enhanced, whereas HDAC2 overexpression (OE) reduced, excitatory synaptic transmission. Postsynaptic KD of HDAC2 also facilitated expression of long-term potentiation induced by subthreshold induction stimuli, without altering long-term depression. In contrast, HDAC2 KD reduced, whereas HDAC2 OE enhanced, inhibitory synaptic transmission. Alterations of postsynaptic GABA(A) receptors (GABA(A)Rs) likely underlie the impact of HDAC2 on inhibitory transmission. Consistent with this, we observed reduced transcript and protein levels of the GABA(A)R ?2 subunit and reduced surface expression of the ?2 subunit after HDAC2 KD. Furthermore, we observed a reduction in synaptic but not tonic GABA(A)R currents by HDAC2 KD, suggesting that HDAC2 selectively affects synaptic abundance of functional GABA(A)Rs. Immunostaining for postsynaptic GABA(A)Rs confirmed that HDAC2 KD and OE can regulate the synaptic abundance of these receptors. Together, these results highlight a role for HDAC2 in suppressing synaptic excitation and enhancing synaptic inhibition of hippocampal neurons. Therefore, a shift in the balance of synaptic excitation versus inhibition favoring excitation could contribute to the beneficial effects of reducing HDAC2 function in wild-type mice or of inhibiting HDACs in models of cognitive impairment. PMID:23554474

  9. Histone Deacetylase-3 Mediates Positive Feedback Relationship between Anaphylaxis and Tumor Metastasis*

    PubMed Central

    Eom, Sangkyung; Kim, Youngmi; Park, Deokbum; Lee, Hansoo; Lee, Yun Sil; Choe, Jongseon; Kim, Young Myeong; Jeoung, Dooil

    2014-01-01

    Allergic inflammation has been known to enhance the metastatic potential of tumor cells. The role of histone deacetylase-3 (HDAC3) in allergic skin inflammation was reported. We investigated HDAC3 involvement in the allergic inflammation-promotion of metastatic potential of tumor cells. Passive systemic anaphylaxis (PSA) induced HDAC3 expression and Fc?RI signaling in BALB/c mice. PSA enhanced the tumorigenic and metastatic potential of mouse melanoma cells in HDAC3- and monocyte chemoattractant protein 1-(MCP1)-dependent manner. The PSA-mediated enhancement of metastatic potential involved the induction of HDAC3, MCP1, and CD11b (a macrophage marker) expression in the lung tumor tissues. We examined an interaction between anaphylaxis and tumor growth and metastasis at the molecular level. Conditioned medium from antigen-stimulated bone marrow-derived mouse mast cell cultures induced the expression of HDAC3, MCP1, and CCR2, a receptor for MCP1, in B16F1 mouse melanoma cells and enhanced migration and invasion potential of B16F1 cells. The conditioned medium from B16F10 cultures induced the activation of Fc?RI signaling in lung mast cells in an HDAC3-dependent manner. Fc?RI signaling was observed in lung tumors derived from B16F10 cells. Target scan analysis predicted HDAC3 to be as a target of miR-384, and miR-384 and HDAC3 were found to form a feedback regulatory loop. miR-384, which is decreased by PSA, negatively regulated HDAC3 expression, allergic inflammation, and the positive feedback regulatory loop between anaphylaxis and tumor metastasis. We show the miR-384/HDAC3 feedback loop to be a novel regulator of the positive feedback relationship between anaphylaxis and tumor metastasis. PMID:24619412

  10. Histone deacetylase 8 is deregulated in urothelial cancer but not a target for efficient treatment

    PubMed Central

    2014-01-01

    Background Previous studies have shown that class-I histone deacetylase (HDAC) 8 mRNA is upregulated in urothelial cancer tissues and urothelial cancer cell lines compared to benign controls. Using urothelial cancer cell lines we evaluated whether specific targeting of HDAC8 might be a therapeutic option in bladder cancer treatment. Methods We conducted siRNA-mediated knockdown and specific pharmacological inhibition of HDAC8 with the three different inhibitors compound 2, compound 5, and compound 6 in several urothelial carcinoma cell lines with distinct HDAC8 expression profiles. Levels of HDAC and marker proteins were determined by western blot analysis and mRNA levels were measured by quantitative real-time PCR. Cellular effects of HDAC8 suppression were analyzed by ATP assay, flow cytometry, colony forming assay and migration assay. Results Efficient siRNA-mediated knockdown of HDAC8 reduced proliferation up to 45%. The HDAC8 specific inhibitors compound 5 and compound 6 significantly reduced viability of all urothelial cancer cell lines (IC50 9 – 21 ?M). Flow cytometry revealed only a slight increase in the sub-G1 fraction indicating a limited induction of apoptosis. Expression of thymidylate synthase was partly reduced; PARP-cleavage was not detected. The influence of the pharmacological inhibition on clonogenic growth and migration show a cell line- and inhibitor-dependent reduction with the strongest effects after treatment with compound 5 and compound 6. Conclusions Deregulation of HDAC8 is frequent in urothelial cancer, but neither specific pharmacological inhibition nor siRNA-mediated knockdown of HDAC8 impaired viability of urothelial cancer cell lines in a therapeutic useful manner. Accordingly, HDAC8 on its own is not a promising drug target in bladder cancer. PMID:25011684

  11. Histone deacetylase inhibitor for NUT midline carcinoma.

    PubMed

    Maher, Ossama M; Christensen, Anthony M; Yedururi, Sireesha; Bell, Diana; Tarek, Nidale

    2015-04-01

    NUT Midline carcinoma (NMC) is a rare and invariably fatal poorly differentiated carcinoma characterized by chromosomal rearrangement involving the nuclear protein of the testis (NUT) gene. Current approaches do not provide durable response. We report a case of widely metastatic NMC in a 17-year-old female who, following an initial response to combination chemotherapy developed rapid disease progression. Treatment with vorinostat, a histone deacetylase inhibitor (HDACi) resulted in an objective response, yet she died in less than one year from initial diagnosis. This report shows a potentially promising activity of HDACi in the treatment of NMC that needs further exploration. PMID:25557064

  12. Antifibrotic activity of an inhibitor of histone deacetylases in DOCA-salt hypertensive rats

    PubMed Central

    Iyer, Abishek; Fenning, Andrew; Lim, Junxian; Le, Giang T; Reid, Robert C; Halili, Maria A; Fairlie, David P; Brown, Lindsay

    2010-01-01

    Background and purpose: Histone deacetylases (HDACs) silence genes by deacetylating lysine residues in histones and other proteins. HDAC inhibitors represent a new class of compounds with anti-inflammatory activity. This study investigated whether treatment with a broad spectrum HDAC inhibitor, suberoylanilide hydroxamic acid (SAHA), would prevent cardiac fibrosis, part of the cardiovascular remodelling in deoxycorticosterone acetate (DOCA)-salt rats. Experimental approach: Control and DOCA-salt rats were treated with SAHA (25 mg·kg?1·day?1 s.c.) for 32 days. Changes in cardiovascular structure and function were assessed by blood pressure in vivo and in Langendorff perfused hearts, ventricular papillary muscle and in aortic rings in vitro. Left ventricular collagen deposition was assessed by histology. Key results: Administration of SAHA to DOCA-salt rats attenuated the following parameters: the increased concentration of over 20 pro-inflammatory cytokines in plasma, increased inflammatory cell infiltration and interstitial collagen deposition, increased passive diastolic stiffness in perfused hearts, prolongation of action potential duration at 20% and 90% of repolarization in papillary muscle, development of left ventricular hypertrophy, systolic hypertension and changes in vascular dysfunction. Conclusions and implications: The HDAC inhibitor, SAHA, attenuated the cardiovascular remodelling associated with DOCA-salt hypertensive rats and improved cardiovascular structure and function, especially fibrosis, in the heart and blood vessels, possibly by suppressing inflammation. Control of cardiac histone or non-histone protein acetylation is a potential therapeutic approach to preventing cardiac remodelling, especially cardiac fibrosis. PMID:20180942

  13. Effects of the Histone Deacetylase Inhibitor Valproic Acid on Human Pericytes In Vitro

    PubMed Central

    Friman, Tomas; Dencker, Lennart; Sundberg, Christian; Scholz, Birger

    2011-01-01

    Microvascular pericytes are of key importance in neoformation of blood vessels, in stabilization of newly formed vessels as well as maintenance of angiostasis in resting tissues. Furthermore, pericytes are capable of differentiating into pro-fibrotic collagen type I producing fibroblasts. The present study investigates the effects of the histone deacetylase (HDAC) inhibitor valproic acid (VPA) on pericyte proliferation, cell viability, migration and differentiation. The results show that HDAC inhibition through exposure of pericytes to VPA in vitro causes the inhibition of pericyte proliferation and migration with no effect on cell viability. Pericyte exposure to the potent HDAC inhibitor Trichostatin A caused similar effects on pericyte proliferation, migration and cell viability. HDAC inhibition also inhibited pericyte differentiation into collagen type I producing fibroblasts. Given the importance of pericytes in blood vessel biology a qPCR array focusing on the expression of mRNAs coding for proteins that regulate angiogenesis was performed. The results showed that HDAC inhibition promoted transcription of genes involved in vessel stabilization/maturation in human microvascular pericytes. The present in vitro study demonstrates that VPA influences several aspects of microvascular pericyte biology and suggests an alternative mechanism by which HDAC inhibition affects blood vessels. The results raise the possibility that HDAC inhibition inhibits angiogenesis partly through promoting a pericyte phenotype associated with stabilization/maturation of blood vessels. PMID:21966390

  14. Holocarboxylase synthetase interacts physically with nuclear receptor co-repressor, histone deacetylase 1 and a novel splicing variant of histone deacetylase 1 to repress repeats.

    PubMed

    Liu, Dandan; Zempleni, Janos

    2014-08-01

    HLCS (holocarboxylase synthetase) is a nuclear protein that catalyses the binding of biotin to distinct lysine residues in chromatin proteins. HLCS-dependent epigenetic marks are over-represented in repressed genomic loci, particularly in repeats. Evidence is mounting that HLCS is a member of a multi-protein gene repression complex, which determines its localization in chromatin. In the present study we tested the hypothesis that HLCS interacts physically with N-CoR (nuclear receptor co-repressor) and HDAC1 (histone deacetylase 1), thereby contributing toward the removal of H3K9ac (Lys?-acetylated histone H3) gene activation marks and the repression of repeats. Physical interactions between HLCS and N-CoR, HDAC1 and a novel splicing variant of HDAC1 were confirmed by co-immunoprecipitation, limited proteolysis and split luciferase complementation assays. When HLCS was overexpressed, the abundance of H3K9ac marks decreased by 50% and 68% in LTRs (long terminal repeats) 15 and 22 respectively in HEK (human embryonic kidney)-293 cells compared with the controls. This loss of H3K9ac marks was linked with an 83% decrease in mRNA coding for LTRs. Similar patterns were seen in pericentromeric alpha satellite repeats in chromosomes 1 and 4. We conclude that interactions of HLCS with N-CoR and HDACs contribute towards the transcriptional repression of repeats, presumably increasing genome stability. PMID:24840043

  15. Structure-based optimization of phenylbutyrate-derived histone deacetylase inhibitors.

    PubMed

    Lu, Qiang; Wang, Da-Sheng; Chen, Chang-Shi; Hu, Yuan-Dong; Chen, Ching-Shih

    2005-08-25

    Previously, we developed a strategy to develop a novel class of histone deacetylase (HDAC) inhibitors by tethering short-chain fatty acids with Zn(2+)-chelating motifs, which led to N-hydroxy-4-(4-phenylbutyryl-amino)benzamide (HTPB), a hydroxamate-tethered phenylbutyrate derivative with sub-micromolar potency in inhibiting HDAC activity and cancer cell proliferation. In this study, we carried out structure-based optimization of HTPB by using the framework generated by the structure of histone deacetylase-like protein (HDLP)-trichostatin A (TSA) complexes. Docking of HTPB into the HDLP binding domain suggested that the hydrophobic microenvironment encompassed by Phe-198 and Phe-200 could be exploited for structural optimization. This premise was corroborated by the greater potency of (S)-(+)-N-hydroxy-4-(3-methyl-2-phenylbutyrylamino)-benzamide [(S)-11] (IC(50) in HDAC inhibition, 16 nM), of which the isopropyl moiety was favorable in interacting with this hydrophobic motif. (S)-11 at concentrations as low as 0.1 microM was effective in causing histone hyperacetylation and p21(WAF/CIP1) overexpression and suppressing proliferation in cancer cells. PMID:16107152

  16. The role of butyrate, a histone deacetylase inhibitor in diabetes mellitus: experimental evidence for therapeutic intervention.

    PubMed

    Khan, Sabbir; Jena, Gopabandhu

    2015-06-01

    The contribution of epigenetic mechanisms in diabetes mellitus (DM), ?-cell reprogramming and its complications is an emerging concept. Recent evidence suggests that there is a link between DM and histone deacetylases (HDACs), because HDAC inhibitors promote ?-cell differentiation, proliferation, function and improve insulin resistance. Moreover, gut microbes and diet-derived products can alter the host epigenome. Furthermore, butyrate and butyrate-producing microbes are decreased in DM. Butyrate is a short-chain fatty acid produced from the fermentation of dietary fibers by microbiota and has been proven as an HDAC inhibitor. The present review provides a pragmatic interpretation of chromatin-dependent and independent complex signaling/mechanisms of butyrate for the treatment of Type 1 and Type 2 DM, with an emphasis on the promising strategies for its drugability and therapeutic implication. PMID:26111036

  17. Antitumor histone deacetylase inhibitors suppress cutaneous radiation syndrome: Implications for increasing therapeutic gain in cancer radiotherapy.

    PubMed

    Chung, Yih Lin; Wang, Ae-June; Yao, Lin-Fen

    2004-03-01

    Radiotherapy is an effective treatment for head and neck, skin, anogenital, and breast cancers. However, radiation-induced skin morbidity limits the therapeutic benefits. A low-toxicity approach to selectively reduce skin morbidity without compromising tumor killing by radiotherapy is needed. We found that the antitumor agents known as histone deacetylase (HDAC) inhibitors (phenylbutyrate, trichostatin A, and valproic acid) could suppress cutaneous radiation syndrome. The effects of HDAC inhibitors in promoting the healing of wounds caused by radiation and in decreasing later skin fibrosis and tumorigenesis were correlated with suppression of the aberrant expression of radiation-induced transforming growth factor beta and tumor necrosis factor alpha. Our findings implicate that the inhibition of HDAC may provide a novel strategy to increase the therapeutic gain in cancer radiotherapy by not only inhibiting tumor growth but also protecting normal tissues. PMID:15026552

  18. Tropolones As Lead-Like Natural Products: The Development of Potent and Selective Histone Deacetylase Inhibitors

    PubMed Central

    2013-01-01

    Natural products have long been recognized as a rich source of potent therapeutics but further development is often limited by high structural complexity and high molecular weight. In contrast, at the core of the thujaplicins is a lead-like tropolone scaffold characterized by relatively low molecular weight, ample sites for diversification, and metal-binding functionality poised for targeting a range of metalloenzyme drug targets. Here, we describe the development of this underutilized scaffold for the discovery of tropolone derivatives that function as isozyme-selective inhibitors of the validated anticancer drug target, histone deacetylase (HDAC). Several monosubstituted tropolones display remarkable levels of selectivity for HDAC2 and potently inhibit the growth of T-cell lymphocyte cell lines. The tropolones represent a new chemotype of isozyme-selective HDAC inhibitors. PMID:24900743

  19. Histone deacetylase inhibition regulates inflammation and enhances Tregs after allogeneic hematopoietic cell transplantation in humans.

    PubMed

    Choi, Sung Won; Gatza, Erin; Hou, Guoqing; Sun, Yaping; Whitfield, Joel; Song, Yeohan; Oravecz-Wilson, Katherine; Tawara, Isao; Dinarello, Charles A; Reddy, Pavan

    2015-01-29

    We examined immunological responses in patients receiving histone deacetylase (HDAC) inhibition (vorinostat) for graft-versus-host disease prophylaxis after allogeneic hematopoietic cell transplant. Vorinostat treatment increased histone acetylation in peripheral blood mononuclear cells (PBMCs) from treated patients, confirming target HDAC inhibition. HDAC inhibition reduced proinflammatory cytokine levels in plasma and from PBMCs and decreased ex vivo responses of PBMCs to proinflammatory TLR-4 stimuli, but did not alter the number or response of conventional T cells to nonspecific stimuli. However, the numbers of regulatory T cells (Tregs) were increased, which revealed greater demethylation of the Foxp3 T regulatory-specific demethylation region. Vorinostat-treated patients showed increased expression of CD45RA and CD31 on Tregs, and these Tregs demonstrated greater suppression on a per cell basis. Consistent with preclinical findings, HDAC inhibition also increased signal transducer and activator of transcription 3 acetylation and induced indoleamine-2,3-dioxygenase. Our data demonstrate that HDAC inhibition reduces inflammatory responses of PBMC but enhances Tregs after allo-HCT. PMID:25428224

  20. Histone deacetylase inhibition regulates inflammation and enhances Tregs after allogeneic hematopoietic cell transplantation in humans

    PubMed Central

    Choi, Sung Won; Gatza, Erin; Hou, Guoqing; Sun, Yaping; Whitfield, Joel; Song, Yeohan; Oravecz-Wilson, Katherine; Tawara, Isao; Dinarello, Charles A.

    2015-01-01

    We examined immunological responses in patients receiving histone deacetylase (HDAC) inhibition (vorinostat) for graft-versus-host disease prophylaxis after allogeneic hematopoietic cell transplant. Vorinostat treatment increased histone acetylation in peripheral blood mononuclear cells (PBMCs) from treated patients, confirming target HDAC inhibition. HDAC inhibition reduced proinflammatory cytokine levels in plasma and from PBMCs and decreased ex vivo responses of PBMCs to proinflammatory TLR-4 stimuli, but did not alter the number or response of conventional T cells to nonspecific stimuli. However, the numbers of regulatory T cells (Tregs) were increased, which revealed greater demethylation of the Foxp3 T regulatory-specific demethylation region. Vorinostat-treated patients showed increased expression of CD45RA and CD31 on Tregs, and these Tregs demonstrated greater suppression on a per cell basis. Consistent with preclinical findings, HDAC inhibition also increased signal transducer and activator of transcription 3 acetylation and induced indoleamine-2,3-dioxygenase. Our data demonstrate that HDAC inhibition reduces inflammatory responses of PBMC but enhances Tregs after allo-HCT. PMID:25428224

  1. A novel histone deacetylase inhibitor Chidamide induces apoptosis of human colon cancer cells

    SciTech Connect

    Liu, Lin [Department of Oncology, Zhong-Da Hospital of Southeast University, Nanjing 210009, Jiangsu (China)] [Department of Oncology, Zhong-Da Hospital of Southeast University, Nanjing 210009, Jiangsu (China); Chen, Baoan, E-mail: wenyu811@126.com [Department of Oncology, Zhong-Da Hospital of Southeast University, Nanjing 210009, Jiangsu (China)] [Department of Oncology, Zhong-Da Hospital of Southeast University, Nanjing 210009, Jiangsu (China); Qin, Shukui [Chinese PLA Cancer Center, The 81st PLA Hospital, Nanjing 210002, Jiangsu (China)] [Chinese PLA Cancer Center, The 81st PLA Hospital, Nanjing 210002, Jiangsu (China); Li, Suyi; He, Xiangming [Department of Oncology, Zhong-Da Hospital of Southeast University, Nanjing 210009, Jiangsu (China)] [Department of Oncology, Zhong-Da Hospital of Southeast University, Nanjing 210009, Jiangsu (China); Qiu, Shaomin; Zhao, Wei; Zhao, Hong [Department of Internal Medicine, Nanjing Municipal Cancer Hospital, Nanjing 210003, Jiangsu (China)] [Department of Internal Medicine, Nanjing Municipal Cancer Hospital, Nanjing 210003, Jiangsu (China)

    2010-02-05

    Many studies have demonstrated that histone deacetylase (HDAC) inhibitors induce various tumor cells to undergo apoptosis, and such inhibitors have been used in different clinical trials against different human cancers. In this study, we designed and synthesized a novel HDAC inhibitor, Chidamide. We showed that Chidamide was able to increase the acetylation levels of histone H3 and to inhibit the PI3K/Akt and MAPK/Ras signaling pathways, which resulted in arresting colon cancer cells at the G1 phase of the cell cycle and promoting apoptosis. As a result, the proliferation of colon cancer cells was suppressed in vitro. Our data support the potential application of Chidamide as an anticancer agent in treating colon cancer. Future studies are needed to demonstrate its in vivo efficacy.

  2. An enzyme-coupled assay measuring acetate production for profiling histone deacetylase specificity.

    PubMed

    Wolfson, Noah A; Pitcairn, Carol Ann; Sullivan, Eric D; Joseph, Caleb G; Fierke, Carol A

    2014-07-01

    Histone deacetylases catalyze the hydrolysis of an acetyl group from post-translationally modified acetyl-lysine residues in a wide variety of essential cellular proteins, including histones. Because these lysine modifications can alter the activity and properties of affected proteins, aberrant acetylation/deacetylation may contribute to disease states. Many fundamental questions regarding the substrate specificity and regulation of these enzymes have yet to be answered. Here, we optimize an enzyme-coupled assay to measure low micromolar concentrations of acetate, coupling acetate production to the formation of NADH (nicotinamide adenine dinucleotide, reduced form) that is measured by changes in either absorbance or fluorescence. Using this assay, we measured the steady-state kinetics of peptides representing the H4 histone tail and demonstrate that a C-terminally conjugated methylcoumarin enhances the catalytic efficiency of deacetylation catalyzed by cobalt(II)-bound histone deacetylase 8 [Co(II)-HDAC8] compared with peptide substrates containing a C-terminal carboxylate, amide, and tryptophan by 50-, 2.8-, and 2.3-fold, respectively. This assay can be adapted for a high-throughput screening format to identify HDAC substrates and inhibitors. PMID:24674948

  3. Discovery of Potent and Selective Histone Deacetylase Inhibitors via Focused Combinatorial Libraries of Cyclic ?3?-Tetrapeptides

    PubMed Central

    Olsen, Christian A.; Ghadiri, M. Reza

    2009-01-01

    Histone deacetylase (HDAC) inhibitors are powerful tools in understanding epigenetic regulation and have proven especially promising for the treatment of various cancers, but the discovery of potent, isoform-selective HDAC inhibitors has been a major challenge. We recently developed a cyclic ?3?-tetrapeptide scaffold for the preparation of HDAC inhibitors with novel selectivity profiles [Montero, A.; Beierle, J. M.; Olsen, C. A.; Ghadiri, M. R. J. Am. Chem. Soc. 2009, 131, 3033]. In this study, we elaborate this scaffold with respect to side chain diversity by synthesizing one-bead–one-compound combinatorial libraries of cyclic tetrapeptide analogs and applying two generations of these focused libraries to the discovery of potent HDAC ligands using a convenient screening platform. Our studies led to the first HDAC6–selective cyclic tetrapeptide analog, which extends the use of cyclic tetrapeptides to the class-II HDAC isoforms. These findings highlight the persistent potential of cyclic tetrapeptides as epigenetic modulators and possible anticancer-drug lead compounds. PMID:19705846

  4. Histone Deacetylase Inhibitors Improve the Replication of Oncolytic Herpes Simplex Virus in Breast Cancer Cells

    PubMed Central

    Cody, James J.; Markert, James M.; Hurst, Douglas R.

    2014-01-01

    New therapies are needed for metastatic breast cancer patients. Oncolytic herpes simplex virus (oHSV) is an exciting therapy being developed for use against aggressive tumors and established metastases. Although oHSV have been demonstrated safe in clinical trials, a lack of sufficient potency has slowed the clinical application of this approach. We utilized histone deacetylase (HDAC) inhibitors, which have been noted to impair the innate antiviral response and improve gene transcription from viral vectors, to enhance the replication of oHSV in breast cancer cells. A panel of chemically diverse HDAC inhibitors were tested at three different doses (<, ?=?, and >LD50) for their ability to modulate the replication of oHSV in breast cancer cells. Several of the tested HDAC inhibitors enhanced oHSV replication at low multiplicity of infection (MOI) following pre-treatment of the metastatic breast cancer cell line MDA-MB-231 and the oHSV-resistant cell line 4T1, but not in the normal breast epithelial cell line MCF10A. Inhibitors of class I HDACs, including pan-selective compounds, were more effective for increasing oHSV replication compared to inhibitors that selectively target class II HDACs. These studies demonstrate that select HDAC inhibitors increase oHSV replication in breast cancer cells and provides support for pre-clinical evaluation of this combination strategy. PMID:24651853

  5. Sonic Hedgehog-Induced Histone Deacetylase Activation Is Required for Cerebellar Granule Precursor Hyperplasia in Medulloblastoma

    PubMed Central

    Lee, Seung Joon; Lindsey, Stephan; Graves, Bruce; Yoo, Soonmoon; Olson, James M.; Langhans, Sigrid A.

    2013-01-01

    Medulloblastoma, the most common pediatric brain tumor, is thought to arise from deregulated proliferation of cerebellar granule precursor (CGP) cells. Sonic hedgehog (Shh) is the primary mitogen that regulates proliferation of CGP cells during the early stages of postnatal cerebellum development. Aberrant activation of Shh signaling during this time has been associated with hyperplasia of CGP cells and eventually may lead to the development of medulloblastoma. The molecular targets of Shh signaling involved in medulloblastoma formation are still not well-understood. Here, we show that Shh regulates sustained activation of histone deacetylases (HDACs) and that this activity is required for continued proliferation of CGP cells. Suppression of HDAC activity not only blocked the Shh-induced CGP proliferation in primary cell cultures, but also ameliorated aberrant CGP proliferation at the external germinal layer (EGL) in a medulloblastoma mouse model. Increased levels of mRNA and protein of several HDAC family members were found in medulloblastoma compared to wild type cerebellum suggesting that HDAC activity is required for the survival/progression of tumor cells. The identification of a role of HDACs in the early steps of medulloblastoma formation suggests there may be a therapeutic potential for HDAC inhibitors in this disease. PMID:23951168

  6. Histone Deacetylase Inhibitor Enhances Recovery after AKI

    PubMed Central

    Cianciolo Cosentino, Chiara; Skrypnyk, Nataliya I.; Brilli, Lauren L.; Chiba, Takuto; Novitskaya, Tatiana; Woods, Clara; West, James; Korotchenko, Vasiliy N.; McDermott, Lee; Day, Billy W.; Davidson, Alan J.; Harris, Raymond C.; de Caestecker, Mark P.

    2013-01-01

    At present, there are no effective therapies to ameliorate injury, accelerate recovery, or prevent postinjury fibrosis after AKI. Here, we sought to identify candidate compounds that accelerate recovery after AKI by screening for small molecules that increase proliferation of renal progenitor cells in zebrafish embryos. One compound identified from this screen was the histone deacetylase inhibitor methyl-4-(phenylthio)butanoate, which we subsequently administered to zebrafish larvae and mice 24–48 hours after inducing AKI. In zebrafish, treatment with the compound increased larval survival and proliferation of renal tubular epithelial cells. In mice, treatment accelerated recovery, reduced postinjury tubular atrophy and interstitial fibrosis, and increased the regenerative capacity of actively cycling renal tubular cells by decreasing the number of cells in G2/M arrest. These data suggest that accelerating recovery may be a viable approach to treating AKI and provide proof of concept that a screen in zebrafish embryos can identify therapeutic candidates for kidney injury. PMID:23620402

  7. Active, phosphorylated fingolimod inhibits histone deacetylases and facilitates fear extinction memory

    PubMed Central

    Hait, Nitai C; Wise, Laura E; Allegood, Jeremy C; O’Brien, Megan; Avni, Dorit; Reeves, Thomas M; Knapp, Pamela E; Lu, Junyan; Luo, Cheng; Miles, Michael F; Milstien, Sheldon; Lichtman, Aron H; Spiegel, Sarah

    2014-01-01

    FTY720 (fingolimod), an FDA-approved drug for treatment of multiple sclerosis, has beneficial effects in the CNS that are not yet well understood, independent of its effects on immune cell trafficking. We show that FTY720 enters the nucleus, where it is phosphorylated by sphingosine kinase 2 (SphK2), and that nuclear FTY720-P binds and inhibits class I histone deacetylases (HDACs), enhancing specific histone acetylations. FTY720 is also phosphorylated in mice and accumulates in the brain, including the hippocampus, inhibits HDACs and enhances histone acetylation and gene expression programs associated with memory and learning, and rescues memory deficits independently of its immunosuppressive actions. Sphk2?/? mice have lower levels of hippocampal sphingosine-1-phosphate, an endogenous HDAC inhibitor, and reduced histone acetylation, and display deficits in spatial memory and impaired contextual fear extinction. Thus, sphingosine-1-phosphate and SphK2 play specific roles in memory functions and FTY720 may be a useful adjuvant therapy to facilitate extinction of aversive memories. PMID:24859201

  8. Crebinostat: A Novel Cognitive Enhancer that Inhibits Histone Deacetylase Activity and Modulates Chromatin-Mediated Neuroplasticity

    PubMed Central

    Fass, Daniel M.; Reis, Surya A.; Ghosh, Balaram; Hennig, Krista M.; Joseph, Nadine F.; Zhao, Wen-Ning; Nieland, Thomas J.F.; Guan, Ji-Song; Kuhnle, Chelsea E. Groves; Tang, Weiping; Barker, Douglas D.; Mazitschek, Ralph; Schreiber, Stuart L.; Tsai, Li-Huei; Haggarty, Stephen J.

    2012-01-01

    Long-term memory formation is known to be critically dependent upon de novo gene expression in the brain. As a consequence, pharmacological enhancement of the transcriptional processes mediating long-term memory formation provides a potential therapeutic strategy for cognitive disorders involving aberrant neuroplasticity. Here we focus on the identification and characterization of small molecule inhibitors of histone deacetylases (HDACs) as enhancers of CREB (cAMP response element-binding protein)-regulated transcription and modulators of chromatin-mediated neuroplasticity. Using a CREB reporter gene cell line, we screened a library of small molecules structurally related to known HDAC inhibitors leading to the identification of a probe we termed crebinostat that produced robust activation of CREB-mediated transcription. Further characterization of crebinostat revealed its potent inhibition of the deacetylase activity of recombinant class I HDACs 1, 2, 3, and class IIb HDAC6, with weaker inhibition of the class I HDAC8 and no significant inhibition of the class IIa HDACs 4, 5, 7, and 9. In cultured mouse primary neurons, crebinostat potently induced acetylation of both histone H3 and histone H4 as well as enhanced the expression of the CREB target gene Egr1 (early growth response 1). Using a hippocampus-dependent, contextual fear conditioning paradigm, mice systemically administered crebinostat for a ten day time period exhibited enhanced memory. To gain insight into the molecular mechanisms of memory enhancement by HDAC inhibitors, whole genome transcriptome profiling of cultured mouse primary neurons treated with crebinostat, combined with bioinformatic analyses of CREB-target genes, was performed revealing a highly connected protein-protein interaction network reflecting modules of genes important to synaptic structure and plasticity. Consistent with these findings, crebinostat treatment increased the density of synapsin-1 punctae along dendrites in cultured neurons. Finally, crebinostat treatment of cultured mouse primary neurons was found to upregulate Bdnf (brain-derived neurotrophic factor) and Grn (granulin) and downregulate Mapt (tau) gene expression—genes implicated in aging-related cognitive decline and cognitive disorders. Taken together, these results demonstrate that crebinostat provides a novel probe to modulate chromatin-mediated neuroplasticity and further suggests that pharmacological optimization of selective of HDAC inhibitors may provide an effective therapeutic approach for human cognitive disorders. PMID:22771460

  9. Trichostatin A induces 5-lipoxygenase promoter activity and mRNA expression via inhibition of histone deacetylase 2 and 3

    PubMed Central

    Pufahl, Laura; Katryniok, Careen; Schnur, Nicole; Sorg, Bernd L; Metzner, Julia; Grez, Manuel; Steinhilber, Dieter

    2012-01-01

    Abstract The 5-lipoxygenase (5-LO) is the key enzyme in the formation of leukotrienes. We have previously shown that the histone deacetylase (HDAC) inhibitor trichostatin A (TSA) activates 5-LO transcription via recruitment of Sp1, Sp3 and RNA polymerase II to the proximal promoter. To identify the HDACs involved in the regulation of 5-LO promoter activity isoform-specific HDAC inhibitors were applied. 5-LO promoter activity and mRNA expression were up-regulated by the class I HDAC inhibitors apicidin and MS-275 but not by class II inhibitors. Knockdown of HDAC 1, 2 and 3 revealed that HDAC2 and HDAC3 but not HDAC1 is involved in the up-regulation of 5-LO mRNA expression. To analyse the chromatin modifications at the 5-LO promoter associated with HDAC inhibition, the time course of 5-LO mRNA induction by trichostatin A was investigated and the concomitant changes in histone modifications at the 5-LO promoter in HL-60, U937 and Mono Mac6 cells were determined. Chromatin immunoprecipitation analysis revealed that trichostatin A increases acetylation of histones H3 and H4 at the 5-LO core promoter in HL-60 and U937 cells whereas no significant changes were observed in Mono Mac6 cells. The appearance of H3 and H4 acetylation preceded the 5-LO mRNA induction whereas in all three cell lines, induction of 5-LO mRNA expression correlated with histone H3 lysine 4 trimethylation (H3K4me3), a marker for transcriptional activity of gene promoters. PMID:21883892

  10. Histone Deacetylase Inhibitors Equipped with Estrogen Receptor Modulation Activity

    PubMed Central

    Gryder, Berkley E.; Rood, Michael K.; Johnson, Kenyetta A.; Patil, Vishal; Raftery, Eric D.; Yao, Li-Pan D.; Rice, Marcie; Azizi, Bahareh; Doyle, Donald F.; Oyelere, Adegboyega K.

    2013-01-01

    We described a set of novel histone deacetylase inhibitors (HDACi) equipped with either an antagonist or an agonist of the estrogen receptor (ER) to confer selective activity against breast cancers. These bifunctional compounds potently inhibit HDAC at nanomolar concentrations, and either agonize or antagonize ER? and ER?. The ER antagonist activities of tamoxifen-HDACi conjugates (Tam-HDACi) are nearly identical to those of tamoxifen. Conversely, ethynyl-estradiol HDACi conjugates (EED-HDACi) have attenuated ER agonist activities relative to the parent ethynyl-estradiol. In silico docking analysis provides structural basis for the trends of ER agonism/antagonism and ER subtype selectivity. Excitingly, lead Tam-HDACi conjugates show anticancer activity that is selectively more potent against MCF-7 (ER? positive breast) compared to MDA-MB-231 (triple negative breast cancer), DU145 (prostate cancer) or Vero (non-cancerous cell line). This dual-targeting approach illustrates the utility of designing small molecules with an emphasis on cell-type selectivity, not merely improved potency, working towards a higher therapeutic index at the earliest stages of drug development. PMID:23786452

  11. Regulation of neuronal gene expression and survival by basal NMDA receptor activity: a role for histone deacetylase 4.

    PubMed

    Chen, Yelin; Wang, Yuanyuan; Modrusan, Zora; Sheng, Morgan; Kaminker, Joshua S

    2014-11-12

    Neuronal gene expression is modulated by activity via calcium-permeable receptors such as NMDA receptors (NMDARs). While gene expression changes downstream of evoked NMDAR activity have been well studied, much less is known about gene expression changes that occur under conditions of basal neuronal activity. In mouse dissociated hippocampal neuronal cultures, we found that a broad NMDAR antagonist, AP5, induced robust gene expression changes under basal activity, but subtype-specific antagonists did not. While some of the gene expression changes are also known to be downstream of stimulated NMDAR activity, others appear specific to basal NMDAR activity. The genes altered by AP5 treatment of basal cultures were enriched for pathways related to class IIa histone deacetylases (HDACs), apoptosis, and synapse-related signaling. Specifically, AP5 altered the expression of all three class IIa HDACs that are highly expressed in the brain, HDAC4, HDAC5, and HDAC9, and also induced nuclear accumulation of HDAC4. HDAC4 knockdown abolished a subset of the gene expression changes induced by AP5, and led to neuronal death under long-term tetrodotoxin or AP5 treatment in rat hippocampal organotypic slice cultures. These data suggest that basal, but not evoked, NMDAR activity regulates gene expression in part through HDAC4, and, that HDAC4 has neuroprotective functions under conditions of low NMDAR activity. PMID:25392500

  12. Regulation of Neuronal Gene Expression and Survival by Basal NMDA Receptor Activity: A Role for Histone Deacetylase 4

    PubMed Central

    Chen, Yelin; Wang, Yuanyuan; Modrusan, Zora

    2014-01-01

    Neuronal gene expression is modulated by activity via calcium-permeable receptors such as NMDA receptors (NMDARs). While gene expression changes downstream of evoked NMDAR activity have been well studied, much less is known about gene expression changes that occur under conditions of basal neuronal activity. In mouse dissociated hippocampal neuronal cultures, we found that a broad NMDAR antagonist, AP5, induced robust gene expression changes under basal activity, but subtype-specific antagonists did not. While some of the gene expression changes are also known to be downstream of stimulated NMDAR activity, others appear specific to basal NMDAR activity. The genes altered by AP5 treatment of basal cultures were enriched for pathways related to class IIa histone deacetylases (HDACs), apoptosis, and synapse-related signaling. Specifically, AP5 altered the expression of all three class IIa HDACs that are highly expressed in the brain, HDAC4, HDAC5, and HDAC9, and also induced nuclear accumulation of HDAC4. HDAC4 knockdown abolished a subset of the gene expression changes induced by AP5, and led to neuronal death under long-term tetrodotoxin or AP5 treatment in rat hippocampal organotypic slice cultures. These data suggest that basal, but not evoked, NMDAR activity regulates gene expression in part through HDAC4, and, that HDAC4 has neuroprotective functions under conditions of low NMDAR activity. PMID:25392500

  13. ?-Catenin–Histone Deacetylase Interactions Regulate the Transition of LEF1 from a Transcriptional Repressor to an Activator

    PubMed Central

    Billin, Andrew N.; Thirlwell, Hilary; Ayer, Donald E.

    2000-01-01

    Recent evidence suggests that certain LEF/TCF family members act as repressors in the absence of Wnt signaling. We show here that repression by LEF1 requires histone deacetylase (HDAC) activity. Further, LEF1 associates in vivo with HDAC1, and transcription of a model LEF1-dependent target gene is modulated by the ratio of HDAC1 to ?-catenin, implying that repression by LEF1 is mediated by promoter-targeted HDAC. Consistent with this hypothesis, under repression conditions the promoter region of a LEF1 target gene is hypoacetylated. By contrast, when the reporter is activated, its promoter becomes hyperacetylated. Coexpression of ?-catenin with LEF1 and HDAC1 results in the formation of a ?-catenin/HDAC1 complex. Surprisingly, the enzymatic activity of HDAC1 associated with ?-catenin is attenuated. Together, these findings imply that activation of LEF1-dependent genes by ?-catenin involves a two-step mechanism. First, HDAC1 is dissociated from LEF1 and its enzymatic activity is attenuated. This first step yields a promoter that is inactive but poised for activation. Second, once HDAC1-dependent repression has been overridden, ?-catenin binds LEF1 and the ?-catenin–LEF1 complex is competent to activate the expression of downstream target genes. PMID:10958684

  14. PET imaging demonstrates histone deacetylase target engagement and clarifies brain penetrance of known and novel small molecule inhibitors in rat.

    PubMed

    Schroeder, F A; Wang, C; Van de Bittner, G C; Neelamegam, R; Takakura, W R; Karunakaran, A; Wey, H Y; Reis, S A; Gale, J; Zhang, Y L; Holson, E B; Haggarty, S J; Hooker, J M

    2014-10-15

    Histone deacetylase (HDAC) enzymes have been demonstrated as critical components in maintaining chromatin homeostasis, CNS development, and normal brain function. Evidence in mouse models links HDAC expression to learning, memory, and mood-related behaviors; small molecule HDAC inhibitor tool compounds have been used to demonstrate the importance of specific HDAC subtypes in modulating CNS-disease-related behaviors in rodents. So far, no direct evidence exists to understand the quantitative changes in HDAC target engagement that are necessary to alter biochemistry and behavior in a living animal. Understanding the relationship between target engagement and in vivo effect is essential in refining new ways to alleviate disease. We describe here, using positron emission tomography (PET) imaging of rat brain, the in vivo target engagement of a subset of class I/IIb HDAC enzymes implicated in CNS-disease (HDAC subtypes 1, 2, 3, and 6). We found marked differences in the brain penetrance of tool compounds from the hydroxamate and benzamide HDAC inhibitor classes and resolved a novel, highly brain penetrant benzamide, CN147, chronic treatment with which resulted in an antidepressant-like effect in a rat behavioral test. Our work highlights a new translational path for understanding the molecular and behavioral consequences of HDAC target engagement. PMID:25188794

  15. Noninvasive Magnetic Resonance Spectroscopic Pharmacodynamic Markers of a Novel Histone Deacetylase Inhibitor, LAQ824, in Human Colon Carcinoma Cells and Xenografts1

    Microsoft Academic Search

    Yuen-Li Chung; Helen Troy; Rebecca Kristeleit; Wynne Aherne; L. Elizabeth Jackson; Peter Atadja; John R. Griffiths; Ian R. Judson; Paul Workman; Martin O. Leach; Mounia Beloueche-Babari

    The aim of this work was to use phosphorus magnetic resonance spectroscopy (31P MRS) to investigate the phar- macodynamic effects of LAQ824, a histone deacetylase (HDAC) inhibitor. Human HT29 colon carcinoma cells were examined by 31P MRS after treatment with LAQ824 and another HDAC inhibitor, suberoylanilide hydroxamic acid. HT29 xenografts and tumor extracts were also examined using 31P MRS, pre-

  16. A Novel Histone Deacetylase Complex in the Control of Transcription and Genome Stability

    PubMed Central

    Zilio, Nicola; Codlin, Sandra; Vashisht, Ajay A.; Bitton, Danny A.; Head, Steven R.; Wohlschlegel, James A.; Bähler, Jürg

    2014-01-01

    The acetylation state of histones, controlled by histone acetyltransferases (HATs) and deacetylases (HDACs), profoundly affects DNA transcription and repair by modulating chromatin accessibility to the cellular machinery. The Schizosaccharomyces pombe HDAC Clr6 (human HDAC1) binds to different sets of proteins that define functionally distinct complexes: I, I?, and II. Here, we determine the composition, architecture, and functions of a new Clr6 HDAC complex, I??, delineated by the novel proteins Nts1, Mug165, and Png3. Deletion of nts1 causes increased sensitivity to genotoxins and deregulated expression of Tf2 elements, long noncoding RNA, and subtelomeric and stress-related genes. Similar, but more pervasive, phenotypes are observed upon Clr6 inactivation, supporting the designation of complex I?? as a mediator of a key subset of Clr6 functions. We also reveal that with the exception of Tf2 elements, the genome-wide loading sites and loci regulated by Clr6 I? do not correlate. Instead, Nts1 loads at genes that are expressed in midmeiosis, following oxidative stress, or are periodically expressed. Collective data suggest that Clr6 I?? has (i) indirect effects on gene expression, conceivably by mediating higher-order chromatin organization of subtelomeres and Tf2 elements, and (ii) direct effects on the transcription of specific genes in response to certain cellular or environmental stimuli. PMID:25002536

  17. Inhibition of Plasmodium falciparum proliferation in vitro by double-stranded RNA directed against malaria histone deacetylase

    SciTech Connect

    Sriwilaijaroen, N. [Faculty of Medicine, Thammasat University (Rangsit Campus), Pathumthani 12120 (Thailand); Boonma, S. [Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Attasart, P. [Institute of Molecular Biology and Genetics, Mahidol University, Salaya, Nakornpathom 73170 (Thailand); Pothikasikorn, J. [Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Panyim, S. [Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Institute of Molecular Biology and Genetics, Mahidol University, Salaya, Nakornpathom 73170 (Thailand); Noonpakdee, W. [Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand)], E-mail: scwnp@mahidol.ac.th

    2009-04-03

    Acetylation and deacetylation of histones play important roles in transcription regulation, cell cycle progression and development events. The steady state status of histone acetylation is controlled by a dynamic equilibrium between competing histone acetylase and deacetylase (HDAC). We have used long PfHDAC-1 double-stranded (ds)RNA to interfere with its cognate mRNA expression and determined the effect on malaria parasite growth and development. Chloroquine- and pyrimethamine-resistant Plasmodium falciparum K1 strain was exposed to 1-25 {mu}g of dsRNA/ml of culture for 48 h and growth was determined by [{sup 3}H]-hypoxanthine incorporation and microscopic examination. Parasite culture treated with 10 {mu}g/ml pfHDAC-1 dsRNA exhibited 47% growth inhibition when compared with either untreated control or culture treated with an unrelated dsRNA. PfHDAC-1 dsRNA specifically blocked maturation of trophozoite to schizont stages and decreased PfHDAC-1 transcript 44% in treated trophozoites. These results indicate the potential of HDAC-1 as a target for development of novel antimalarials.

  18. Histone deacetylase inhibitory effect of Brazilian propolis and its association with the antitumor effect in Neuro2a cells

    PubMed Central

    Ishiai, Shinobu; Tahara, Wataru; Yamamoto, Etsuko; Yamamoto, Rindai; Nagai, Kaoru

    2014-01-01

    Propolis is a resinous product produced by honey bees and is known to have antitumor functions. On the other hand, histone deacetylase (Hdac) inhibitors have recently attracted attention for their antitumor effects. In this study, we examined whether Brazilian green propolis has an Hdac inhibitory activity and its contribution on antitumor effects. By in vitro Hdac activity assay, Brazilian propolis extract (BPE) significantly inhibited the enzyme activity. Actually, BPE treatment increased the intracellular histone acetylation in Neuro2a cells. Regarding antitumor effect in Neuro2a cells, BPE treatment significantly decreased cell viability. An Hdac activator theophylline significantly attenuated the effect. Then, we analyzed whether the decreasing effect on cell number was caused by cell death or growth retardation. By live/dead cell staining, BPE treatment significantly increased the dead cell number. By cell cycle analysis, BPE treatment retarded cell cycle at the M-phase. Both of these cellular effects were suppressed by addition of theophylline. These data indicate that BPE induced both cell death and growth retardation via Hdac inhibitory activity. We demonstrated that Brazilian propolis bears regulatory functions on histone acetylation via Hdac inhibition, and the effect contributes antitumor functions. Our data suggest that intake of Brazilian propolis shows preventing effects against cancer. PMID:25473514

  19. Histone Deacetylase Complex1 Expression Level Titrates Plant Growth and Abscisic Acid Sensitivity in Arabidopsis[C][W][OPEN

    PubMed Central

    Perrella, Giorgio; Lopez-Vernaza, Manuel A.; Carr, Craig; Sani, Emanuela; Gosselé, Veronique; Verduyn, Christoph; Kellermeier, Fabian; Hannah, Matthew A.; Amtmann, Anna

    2013-01-01

    Histone deacetylation regulates gene expression during plant stress responses and is therefore an interesting target for epigenetic manipulation of stress sensitivity in plants. Unfortunately, overexpression of the core enzymes (histone deacetylases [HDACs]) has either been ineffective or has caused pleiotropic morphological abnormalities. In yeast and mammals, HDACs operate within multiprotein complexes. Searching for putative components of plant HDAC complexes, we identified a gene with partial homology to a functionally uncharacterized member of the yeast complex, which we called Histone Deacetylation Complex1 (HDC1). HDC1 is encoded by a single-copy gene in the genomes of model plants and crops and therefore presents an attractive target for biotechnology. Here, we present a functional characterization of HDC1 in Arabidopsis thaliana. We show that HDC1 is a ubiquitously expressed nuclear protein that interacts with at least two deacetylases (HDA6 and HDA19), promotes histone deacetylation, and attenuates derepression of genes under water stress. The fast-growing HDC1-overexpressing plants outperformed wild-type plants not only on well-watered soil but also when water supply was reduced. Our findings identify HDC1 as a rate-limiting component of the histone deacetylation machinery and as an attractive tool for increasing germination rate and biomass production of plants. PMID:24058159

  20. Targeted cancer therapy: giving histone deacetylase inhibitors all they need to succeed

    PubMed Central

    Gryder, Berkley E; Sodji, Quaovi H; Oyelere, Adegboyega K

    2012-01-01

    Histone deacetylase inhibitors (HDACis) have now emerged as a powerful new class of small-molecule therapeutics acting through the regulation of the acetylation states of histone proteins (a form of epigenetic modulation) and other non-histone protein targets. Over 490 clinical trials have been initiated in the last 10 years, culminating in the approval of two structurally distinct HDACis – SAHA (vorinostat, Zolinza™) and FK228 (romidepsin, Istodax™). However, the current HDACis have serious limitations, including ineffectively low concentrations in solid tumors and cardiac toxicity, which is hindering their progress in the clinic. Herein, we review the primary paradigms being pursued to overcome these hindrances, including HDAC isoform selectivity, localized administration, and targeting cap groups to achieve selective tissue and cell type distribution. PMID:22416777

  1. Structural Basis of the Antiproliferative Activity of Largazole a Depsipeptide Inhibitor of the Histone Deacetylases

    SciTech Connect

    K Cole; D Dowling; M Boone; A Phillips; D Christianson

    2011-12-31

    Largazole is a macrocyclic depsipeptide originally isolated from the marine cyanobacterium Symploca sp., which is indigenous to the warm, blue-green waters of Key Largo, Florida (whence largazole derives its name). Largazole contains an unusual thiazoline-thiazole ring system that rigidifies its macrocyclic skeleton, and it also contains a lipophilic thioester side chain. Hydrolysis of the thioester in vivo yields largazole thiol, which exhibits remarkable antiproliferative effects and is believed to be the most potent inhibitor of the metal-dependent histone deacetylases (HDACs). Here, the 2.14 {angstrom}-resolution crystal structure of the HDAC8-largazole thiol complex is the first of an HDAC complexed with a macrocyclic inhibitor and reveals that ideal thiolate-zinc coordination geometry is the key chemical feature responsible for its exceptional affinity and biological activity. Notably, the core structure of largazole is conserved in romidepsin, a depsipeptide natural product formulated as the drug Istodax recently approved for cancer chemotherapy. Accordingly, the structure of the HDAC8-largazole thiol complex is the first to illustrate the mode of action of a new class of therapeutically important HDAC inhibitors.

  2. Loop Interactions and Dynamics Tune the Enzymatic Activity of the Human Histone Deacetylase 8

    PubMed Central

    2013-01-01

    The human histone deacetylase 8 (HDAC8) is a key hydrolase in gene regulation and has been identified as a drug target for the treatment of several cancers. Previously the HDAC8 enzyme has been extensively studied using biochemical techniques, X-ray crystallography, and computational methods. Those investigations have yielded detailed information about the active site and have demonstrated that the substrate entrance surface is highly dynamic. Yet it has remained unclear how the dynamics of the entrance surface tune and influence the catalytic activity of HDAC8. Using long time scale all atom molecular dynamics simulations we have found a mechanism whereby the interactions and dynamics of two loops tune the configuration of functionally important residues of HDAC8 and could therefore influence the activity of the enzyme. We subsequently investigated this hypothesis using a well-established fluorescence activity assay and a noninvasive real-time progression assay, where deacetylation of a p53 based peptide was observed by nuclear magnetic resonance spectroscopy. Our work delivers detailed insight into the dynamic loop network of HDAC8 and provides an explanation for a number of experimental observations. PMID:24171457

  3. Novel histone deacetylase inhibitors in clinical trials as anti-cancer agents

    PubMed Central

    2010-01-01

    Histone deacetylases (HDACs) can regulate expression of tumor suppressor genes and activities of transcriptional factors involved in both cancer initiation and progression through alteration of either DNA or the structural components of chromatin. Recently, the role of gene repression through modulation such as acetylation in cancer patients has been clinically validated with several inhibitors of HDACs. One of the HDAC inhibitors, vorinostat, has been approved by FDA for treating cutaneous T-cell lymphoma (CTCL) for patients with progressive, persistent, or recurrent disease on or following two systemic therapies. Other inhibitors, for example, FK228, PXD101, PCI-24781, ITF2357, MGCD0103, MS-275, valproic acid and LBH589 have also demonstrated therapeutic potential as monotherapy or combination with other anti-tumor drugs in CTCL and other malignancies. At least 80 clinical trials are underway, testing more than eleven different HDAC inhibitory agents including both hematological and solid malignancies. This review focuses on recent development in clinical trials testing HDAC inhibitors as anti-tumor agents. PMID:20132536

  4. Protein Aggregates Are Recruited to Aggresome by Histone Deacetylase 6 via Unanchored Ubiquitin C Termini

    SciTech Connect

    Ouyang, Hui; Ali, Yousuf O.; Ravichandran, Mani; Dong, Aiping; Qiu, Wei; MacKenzie, Farrell; Dhe-Paganon, Sirano; Arrowsmith, Cheryl H.; Zhai, R. Grace (UHN); (Toronto); (Miami-MED)

    2012-07-11

    The aggresome pathway is activated when proteasomal clearance of misfolded proteins is hindered. Misfolded polyubiquitinated protein aggregates are recruited and transported to the aggresome via the microtubule network by a protein complex consisting of histone deacetylase 6 (HDAC6) and the dynein motor complex. The current model suggests that HDAC6 recognizes protein aggregates by binding directly to polyubiquitinated proteins. Here, we show that there are substantial amounts of unanchored ubiquitin in protein aggregates with solvent-accessible C termini. The ubiquitin-binding domain (ZnF-UBP) of HDAC6 binds exclusively to the unanchored C-terminal diglycine motif of ubiquitin instead of conjugated polyubiquitin. The unanchored ubiquitin C termini in the aggregates are generated in situ by aggregate-associated deubiquitinase ataxin-3. These results provide structural and mechanistic bases for the role of HDAC6 in aggresome formation and further suggest a novel ubiquitin-mediated signaling pathway, where the exposure of ubiquitin C termini within protein aggregates enables HDAC6 recognition and transport to the aggresome.

  5. Histone deacetylase inhibition destabilizes the multi-potent state of uncommitted adipose-derived mesenchymal stromal cells.

    PubMed

    Dudakovic, Amel; Camilleri, Emily T; Lewallen, Eric A; McGee-Lawrence, Meghan E; Riester, Scott M; Kakar, Sanjeev; Montecino, Martin; Stein, Gary S; Ryoo, Hyun-Mo; Dietz, Allan B; Westendorf, Jennifer J; van Wijnen, Andre J

    2015-01-01

    Human adipose-derived mesenchymal stromal cells (AMSCs) grown in platelet lysate are promising agents for therapeutic tissue regeneration. Here, we investigated whether manipulation of epigenetic events by the clinically relevant histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) alters differentiation of AMSCs. The multipotency of AMSCs was validated by their ability to differentiate into osteogenic, chondrogenic, and adipogenic lineages. High-throughput RNA sequencing and RT-qPCR established that human histone deacetylases (HDAC1 to HDAC11, and SIRT1 to SIRT7) are differentially expressed in AMSCs. SAHA induces hyper-acetylation of histone H3 and H4, stimulates protein expression of the HDAC-responsive gene SLC9A3R1/NHERF1 and modulates the AKT/FOXO1 pathway. Biologically, SAHA interferes with osteogenic, chondrogenic and adipogenic lineage commitment of multipotent AMSCs. Mechanistically, SAHA-induced loss of differentiation potential of uncommitted AMSCs correlates with multiple changes in the expression of principal transcription factors that control mesenchymal or pluripotent states. We propose that SAHA destabilizes the multi-potent epigenetic state of uncommitted human AMSCs by hyper-acetylation and perturbation of key transcription factor pathways. Furthermore, AMSCs grown in platelet lysate may provide a useful biological model for screening of new HDAC inhibitors that control the biological fate of human mesenchymal stromal cells. PMID:24912092

  6. Preclinical anti-arthritic study and pharmacokinetic properties of a potent histone deacetylase inhibitor MPT0G009.

    PubMed

    Hsieh, I-N; Liou, J-P; Lee, H-Y; Lai, M-J; Li, Y-H; Yang, C-R

    2014-01-01

    The pathology of rheumatoid arthritis includes synoviocyte proliferation and inflammatory mediator expression, which may result from dysregulated epigenetic control by histone deacetylase (HDAC). Thus, HDAC inhibitors may be useful for treating inflammatory disease. This was a preclinical study of the HDAC inhibitor, MPT0G009. The IC50 values of MPT0G009 for HDAC1, 2, 3, 6 and 8 enzymatic activities were significantly lower than those for the currently marketed HDAC inhibitor suberoylanilide hydroxamic acid (SAHA; vorinostat). In addition, MPT0G009 markedly inhibited cytokine secretion and macrophage colony-stimulating factor/receptor activator of nuclear factor kappa B ligand-induced osteoclastogenesis by macrophages (50 ng/ml each). These MPT0G009 effects on cytokine secretion and osteoclast formation were reduced by the overexpression of HDAC 1 (class I HDAC) and 6 (class II HDAC) in cells, suggesting that these effects were due to the inhibition of its activity. In an in vivo rat model, oral administration of MPT0G009 (25 mg/kg) significantly inhibited paw swelling and bone destruction. Furthermore, compared with SAHA, MPT0G009 exhibited longer half-life (9.53 h for oral administration) and higher oral bioavailability (13%) in rats. These results established the preclinical anti-arthritic efficacy and pharmacokinetic parameters of MPT0G009, which may provide a new therapeutic approach for treating inflammatory arthritis. PMID:24722291

  7. The histone deacetylase inhibitor SAHA acts in synergism with fenretinide and doxorubicin to control growth of rhabdoid tumor cells

    PubMed Central

    2013-01-01

    Background Rhabdoid tumors are highly aggressive malignancies affecting infants and very young children. In many instances these tumors are resistant to conventional type chemotherapy necessitating alternative approaches. Methods Proliferation assays (MTT), apoptosis (propidium iodide/annexin V) and cell cycle analysis (DAPI), RNA expression microarrays and western blots were used to identify synergism of the HDAC (histone deacetylase) inhibitor SAHA with fenretinide, tamoxifen and doxorubicin in rhabdoidtumor cell lines. Results HDAC1 and HDAC2 are overexpressed in primary rhabdoid tumors and rhabdoid tumor cell lines. Targeting HDACs in rhabdoid tumors induces cell cycle arrest and apoptosis. On the other hand HDAC inhibition induces deregulated gene programs (MYCC-, RB program and the stem cell program) in rhabdoid tumors. These programs are in general associated with cell cycle progression. Targeting these activated pro-proliferative genes by combined approaches of HDAC-inhibitors plus fenretinide, which inhibits cyclinD1, exhibit strong synergistic effects on induction of apoptosis. Furthermore, HDAC inhibition sensitizes rhabdoid tumor cell lines to cell death induced by chemotherapy. Conclusion Our data demonstrate that HDAC inhibitor treatment in combination with fenretinide or conventional chemotherapy is a promising tool for the treatment of chemoresistant rhabdoid tumors. PMID:23764045

  8. Image-guided synthesis reveals potent blood-brain barrier permeable histone deacetylase inhibitors.

    PubMed

    Seo, Young Jun; Kang, Yeona; Muench, Lisa; Reid, Alicia; Caesar, Shannon; Jean, Logan; Wagner, Florence; Holson, Edward; Haggarty, Stephen J; Weiss, Philipp; King, Payton; Carter, Pauline; Volkow, Nora D; Fowler, Joanna S; Hooker, Jacob M; Kim, Sung Won

    2014-07-16

    Recent studies have revealed that several histone deacetylase (HDAC) inhibitors, which are used to study/treat brain diseases, show low blood-brain barrier (BBB) penetration. In addition to low HDAC potency and selectivity observed, poor brain penetrance may account for the high doses needed to achieve therapeutic efficacy. Here we report the development and evaluation of highly potent and blood-brain barrier permeable HDAC inhibitors for CNS applications based on an image-guided approach involving the parallel synthesis and radiolabeling of a series of compounds based on the benzamide HDAC inhibitor, MS-275 as a template. BBB penetration was optimized by rapid carbon-11 labeling and PET imaging in the baboon model and using the imaging derived data on BBB penetration from each compound to feed back into the design process. A total of 17 compounds were evaluated, revealing molecules with both high binding affinity and BBB permeability. A key element conferring BBB penetration in this benzamide series was a basic benzylic amine. These derivatives exhibited 1-100 nM inhibitory activity against recombinant human HDAC1 and HDAC2. Three of the carbon-11 labeled aminomethyl benzamide derivatives showed high BBB penetration (?0.015%ID/cc) and regional binding heterogeneity in the brain (high in thalamus and cerebellum). Taken together this approach has afforded a strategy and a predictive model for developing highly potent and BBB permeable HDAC inhibitors for CNS applications and for the discovery of novel candidate molecules for small molecule probes and drugs. PMID:24780082

  9. Effect of C7-substitution of 1-arylsulfonyl-5-(N-hydroxyacrylamide)indolines on the selectivity towards a subclass of histone deacetylases.

    PubMed

    Lee, Hsueh-Yun; Wang, Li-Ting; Li, Yu-Hsuan; Pan, Shiow-Lin; Chen, Yi-Lin; Teng, Che-Ming; Liou, Jing-Ping

    2014-11-28

    This study focused on the substitution effect at position C7 of 1-arylsulfonyl-5-(N-hydroxyacrylamide)indolines. Compound 9, (E)-3-(7-amino-1-(4-methoxyphenylsulfonyl)indolin-5-yl)-N-hydroxyacrylamide, displayed 4- to 14-fold more potent antiproliferative activity than vorinostat (SAHA, 1). Notably, 9 possessed specific histone deacetylase (HDAC) inhibitory activity toward HDAC1 and HDAC2, but had no effect on HDAC6, indicating that 9 has the potential to be developed as a class I HDAC inhibitor. In a xenograft tumor model, 9 suppressed the growth of HCT116 cells at 100 mg kg(?1), which led to a TGI (tumor growth inhibition) of 40.3%. Taken together, the C7 substitutions have a crucial effect on class I HDACs, which is beneficial for synthesizing efficient anticancer agents. PMID:25277250

  10. Honokiol induces cell cycle arrest and apoptosis via inhibiting class I histone deacetylases in acute myeloid leukemia.

    PubMed

    Li, Hai-Ying; Ye, Hai-Ge; Chen, Chi-Qi; Yin, Li-Hui; Wu, Jian-Bo; He, Li-Cai; Gao, Shen-Meng

    2015-02-01

    Honokiol, a constituent of Magnolia officinalis, has been reported to possess potent anti-cancer activity through targeting multiple signaling pathways in numerous malignancies including acute myeloid leukemia (AML). However, the underlying mechanisms remain to be defined. Here, we report that honokiol effectively decreased enzyme activity of histone deacetylases (HDACs) and reduced the protein expression of class I HDACs in leukemic cells. Moreover, treatment with proteasome inhibitor MG132 prevented honokiol-induced degradation of class I HDACs. Importantly, honokiol increased the levels of p21/waf1 and Bax via triggering acetylation of histone in the regions of p21/waf1 and Bax promoter. Honokiol induced apoptosis, decreased activity of HDACs, and significantly inhibited the clonogenic activity of hematopoietic progenitors in bone marrow mononuclear cells from patients with AML. However, honokiol did not decrease the activity of HDACs and induce apoptosis in normal hematopoietic progenitors from unbilicial cord blood. Finally, honokiol dramatically reduced tumorigenicity in a xenograft leukemia model. Collectively, our findings demonstrate that honokiol has anti-leukemia activity through inhibiting HDACs. Thus, being a relative non-toxic agent, honokiol may serve as a novel natural agent for cancer prevention and therapy in leukemia. PMID:25187418

  11. Histone Deacetylase 6 Inhibits Influenza A Virus Release by Downregulating the Trafficking of Viral Components to the Plasma Membrane via Its Substrate, Acetylated Microtubules

    PubMed Central

    Cheung, Chen-Yi

    2014-01-01

    ABSTRACT Mammalian cells produce many proteins, such as IFITM3, ISG15, MxA, and viperin, that inhibit influenza A virus (IAV) infection. Here, we show that a new class of host protein, histone deacetylase 6 (HDAC6), inhibits IAV infection. We found that HDAC6-overexpressing cells release about 3-fold less IAV progeny, whereas HDAC6-depleted cells release about 6-fold more IAV progeny. The deacetylase activity of HDAC6 played a role in its anti-IAV function as tubacin, a specific small-molecule inhibitor of HDAC6, increased the release of IAV progeny in a dose-dependent manner. Further, as visualized by electron microscopy, tubacin-treated cells showed an increase in IAV budding at the plasma membrane, the site of IAV assembly. Tubacin is a domain-specific inhibitor and binds to one of the two HDAC6 catalytic domains possessing tubulin deacetylase activity. This indicated the potential involvement of acetylated microtubules in the trafficking of viral components to the plasma membrane. Indeed, as quantified by flow cytometry, there was about a 2.0- to 2.5-fold increase and about a 2.0-fold decrease in the amount of viral envelope protein hemagglutinin present on the plasma membrane of tubacin-treated/HDAC6-depleted and HDAC6-overexpressing cells, respectively. In addition, the viral ribonucleoprotein complex was colocalized with acetylated microtubule filaments, and viral nucleoprotein coimmunoprecipitated with acetylated tubulin. Together, our findings indicate that HDAC6 is an anti-IAV host factor and exerts its anti-IAV function by negatively regulating the trafficking of viral components to the host cell plasma membrane via its substrate, acetylated microtubules. IMPORTANCE Host cells produce many proteins that have the natural ability to restrict influenza virus infection. Here, we discovered that another host protein, histone deacetylase 6 (HDAC6), inhibits influenza virus infection. We demonstrate that HDAC6 exerts its anti-influenza virus function by negatively regulating the trafficking of viral components to the site of influenza virus assembly via its substrate, acetylated microtubules. HDAC6 is a multisubstrate enzyme and regulates multiple cellular pathways, including the ones leading to various cancers, neurodegenerative diseases, and inflammatory disorders. Therefore, several drugs targeting HDAC6 are under clinical development for the treatment of a wide range of diseases. Influenza virus continues to be a major global public health problem due to regular emergence of drug-resistant and novel influenza virus strains in humans. As an alternative antiviral strategy, HDAC6 modulators could be employed to stimulate the anti-influenza virus potential of endogenous HDAC6 to inhibit influenza virus infection. PMID:25031336

  12. Hyposensitivity to Gamma-Aminobutyric Acid in the Ventral Tegmental Area During Alcohol Withdrawal: Reversal by Histone Deacetylase Inhibitors

    PubMed Central

    Arora, Devinder S; Nimitvilai, Sudarat; Teppen, Tara L; McElvain, Maureen A; Sakharkar, Amul J; You, Chang; Pandey, Subhash C; Brodie, Mark S

    2013-01-01

    Putative dopaminergic (pDAergic) ventral tegmental area (VTA) neurons have an important role in alcohol addiction. Acute ethanol increases the activity of pDAergic neurons, and withdrawal from repeated ethanol administration produces a decreased sensitivity of pDAergic VTA neurons to GABA. Recent studies show that behavioral changes induced by chronic alcohol are reversed by inhibitors of histone deacetylases (HDACs). Whether HDAC-induced histone modifications regulate changes in GABA sensitivity of VTA pDAergic neurons during withdrawal is unknown. Here, we investigated modulation of withdrawal-induced changes in GABA sensitivity of pDAergic VTA neurons by HDAC inhibitors (HDACi), and also measured the levels of HDAC2, histone (H3-K9) acetylation, and GABA-A?1 receptor (GABA (A-?1) R) subunit in VTA during ethanol withdrawal. Mice were injected intraperitoneally (ip) with either ethanol (3.5?g/kg) or saline twice daily for 3 weeks. In recordings from pDAergic VTA neurons in brain slices from ethanol-withdrawn mice, sensitivity to GABA (50–500??M) was reduced. In brain slices from ethanol-withdrawn mice incubated with the HDACi SAHA (vorinostat) or trichostatin A (TSA) for 2 h, the hyposensitivity of pDAergic VTA neurons to GABA was significantly attenuated. There was no effect of TSA or SAHA on GABA sensitivity of pDAergic VTA neurons from saline-treated mice. In addition, ethanol withdrawal was associated with an increase in levels of HDAC2 and a decrease in histone (H3-K9) acetylation and levels of GABA (A-?1) R subunits in the VTA. Therefore, blockade of upregulation of HDAC2 by HDACi normalizes GABA hyposensitivity of pDAergic neurons developed during withdrawal after chronic ethanol treatment, which suggests the possibility that inhibition of HDACs can reverse ethanol-induced neuroadaptational changes in reward circuitry. PMID:23474591

  13. Hyposensitivity to gamma-aminobutyric acid in the ventral tegmental area during alcohol withdrawal: reversal by histone deacetylase inhibitors.

    PubMed

    Arora, Devinder S; Nimitvilai, Sudarat; Teppen, Tara L; McElvain, Maureen A; Sakharkar, Amul J; You, Chang; Pandey, Subhash C; Brodie, Mark S

    2013-08-01

    Putative dopaminergic (pDAergic) ventral tegmental area (VTA) neurons have an important role in alcohol addiction. Acute ethanol increases the activity of pDAergic neurons, and withdrawal from repeated ethanol administration produces a decreased sensitivity of pDAergic VTA neurons to GABA. Recent studies show that behavioral changes induced by chronic alcohol are reversed by inhibitors of histone deacetylases (HDACs). Whether HDAC-induced histone modifications regulate changes in GABA sensitivity of VTA pDAergic neurons during withdrawal is unknown. Here, we investigated modulation of withdrawal-induced changes in GABA sensitivity of pDAergic VTA neurons by HDAC inhibitors (HDACi), and also measured the levels of HDAC2, histone (H3-K9) acetylation, and GABA-A?1 receptor (GABA (A-?1) R) subunit in VTA during ethanol withdrawal. Mice were injected intraperitoneally (ip) with either ethanol (3.5 g/kg) or saline twice daily for 3 weeks. In recordings from pDAergic VTA neurons in brain slices from ethanol-withdrawn mice, sensitivity to GABA (50-500 ?M) was reduced. In brain slices from ethanol-withdrawn mice incubated with the HDACi SAHA (vorinostat) or trichostatin A (TSA) for 2 h, the hyposensitivity of pDAergic VTA neurons to GABA was significantly attenuated. There was no effect of TSA or SAHA on GABA sensitivity of pDAergic VTA neurons from saline-treated mice. In addition, ethanol withdrawal was associated with an increase in levels of HDAC2 and a decrease in histone (H3-K9) acetylation and levels of GABA (A-?1) R subunits in the VTA. Therefore, blockade of upregulation of HDAC2 by HDACi normalizes GABA hyposensitivity of pDAergic neurons developed during withdrawal after chronic ethanol treatment, which suggests the possibility that inhibition of HDACs can reverse ethanol-induced neuroadaptational changes in reward circuitry. PMID:23474591

  14. Antitumor Action of a Novel Histone Deacetylase Inhibitor, YF479, in Breast Cancer1

    PubMed Central

    Zhang, Tao; Chen, Yihua; Li, Jingjie; Yang, Feifei; Wu, Haigang; Dai, Fujun; Hu, Meichun; Lu, Xiaoling; Peng, Yi; Liu, Mingyao; Zhao, Yongxiang; Yi, Zhengfang

    2014-01-01

    Accumulating evidence demonstrates important roles for histone deacetylase in tumorigenesis (HDACs), highlighting them as attractive targets for antitumor drug development. Histone deactylase inhibitors (HDACIs), which have shown favorable anti-tumor activity with low toxicity in clinical investigations, are a promising class of anticancer therapeutics. Here, we screened our compound library to explore small molecules that possess anti-HDAC activity and identified a novel HDACI, YF479. Suberoylanilide hydroxamic acid (SAHA), which was the first approved HDAC inhibitor for clinical treatment by the FDA, was as positive control in our experiments. We further demonstrated YF479 abated cell viability, suppressed colony formation and tumor cell motility in vitro. To investigate YF479 with superior pharmacodynamic properties, we developed spontaneous and experimental breast cancer animal models. Our results showed YF479 significantly inhibited breast tumor growth and metastasis in vivo. Further study indicated YF479 suppressed both early and end stages of metastatic progression. Subsequent adjuvant chemotherapy animal experiment revealed the elimination of local-regional recurrence (LRR) and distant metastasis by YF479. More important, YF479 remarkably prolonged the survival of tumor-bearing mice. Intriguingly, YF479 displayed more potent anti-tumor activity in vitro and in vivo compared with SAHA. Together, our results suggest that YF479, a novel HDACI, inhibits breast tumor growth, metastasis and recurrence. In light of these results, YF479 may be an effective therapeutic option in clinical trials for patients burdened by breast cancer. PMID:25220594

  15. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, protects dopaminergic neurons from neurotoxin-induced damage

    PubMed Central

    Chen, SH; Wu, HM; Ossola, B; Schendzielorz, N; Wilson, BC; Chu, CH; Chen, SL; Wang, Q; Zhang, D; Qian, L; Li, X; Hong, JS; Lu, RB

    2012-01-01

    BACKGROUND AND PURPOSE Prevention or disease-modifying therapies are critical for the treatment of neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and Huntington's disease. However, no such intervention is currently available. Growing evidence has demonstrated that administration of histone deacetylase (HDAC) inhibitors ameliorates a wide range of neurologic and psychiatric disorders in experimental models. Suberoylanilide hydroxamic acid (SAHA) was the first HDAC inhibitor approved by the Food and Drug Administration for the sole use of cancer therapy. The purpose of this study was to explore the potential new indications of SAHA for therapy of neurodegenerative diseases in in vitro Parkinson's disease models. EXPERIMENTAL APPROACH Mesencephalic neuron–glia cultures and reconstituted cultures were used to investigate neurotrophic and neuroprotective effects of SAHA. We measured toxicity in dopaminergic neurons, using dopamine uptake assay and morphological analysis and expression of neurotrophic substances by enzyme-linked immunosorbent assay and real-time RT PCR. KEY RESULTS In mesencephalic neuron–glia cultures, SAHA displayed dose- and time-dependent prolongation of the survival and protection against neurotoxin-induced neuronal death of dopaminergic neurons. Mechanistic studies revealed that the neuroprotective effects of SAHA were mediated in part by promoting release of neurotrophic factors from astroglia through inhibition of histone deacetylation. CONCLUSION AND IMPLICATIONS The novel neurotrophic and neuroprotective effects of SAHA demonstrated in this study suggest that further study of this HDAC inhibitor could provide a new therapeutic approach to the treatment of neurodegenerative diseases. PMID:21726209

  16. Antidepressants and mood stabilizers effects on histone deacetylase expression in C57BL/6 mice: Brain region specific changes.

    PubMed

    Ookubo, Masanori; Kanai, Hirohiko; Aoki, Harusuke; Yamada, Naoto

    2013-09-01

    To determine whether treatment with various antidepressants or mood stabilizers leads to region-specific changes, we investigated the effects of their subchronic (14 days of intraperitoneal injection) administration on the tissue concentration of monoamines, dopamine, serotonin, and norepinephrine, and the protein expression of acetylated histone H3 (AcH3) and histone deacetylases (HDACs) in the mouse striatum (ST), nucleus accumbens (Acb), hippocampus (Hip), cingulate cortex (Cg), and amygdala (Amy). Subchronic administration with the antidepressants (S)-citalopram oxalate (ECM), duloxetine hydrochloride (DLX), and mirtazapine (MIR) commonly induced significant increases in dopamine and serotonin levels in the ST and Cg. By contrast, no common profiles for dopamine, serotonin, or norepinephrine were identified in the Acb, Hip, or Amy. Treatment with sodium valproate (VPA), lithium chloride (Li), lamotrigine (LTG), levetiracetam (LTM), olanzapine (OLZ), clozapine (CLZ), clomipramine (CLM), ECM, and DLX induced significant increases in AcH3 expression in the Acb, while treatment with CLM, ECM, DLX, MIR, carbamazepine (CBZ), LTG, LTM, OLZ, or CLZ induced significant increases in HDAC2 and HDAC3 in the ST. CLM, MIR, VPA, CBZ, LTG, LTM, OLZ, or CLZ induced significant increases in HDAC3 in the Cg, and ECM, DLX, MIR, VPA, CBZ, LTG, LTM, or OLZ resulted in significant increases in HDAC5 in the Amy. Collectively, the changes of monoamine content were restricted for mood stabilizer effects, but increased expression of HDAC2, HDAC3, or HDAC5 in the ST, Cg, or Amy was often found, supporting the possibility that antidepressant-like effects involve epigenetic modifications associated with changes in HDAC expression. PMID:23777937

  17. Rational combination treatment with histone deacetylase inhibitors and immunomodulatory drugs in multiple myeloma

    PubMed Central

    Hideshima, T; Cottini, F; Ohguchi, H; Jakubikova, J; Gorgun, G; Mimura, N; Tai, Y-T; Munshi, N C; Richardson, P G; Anderson, K C

    2015-01-01

    Immunomodulatory drugs (IMiDs) thalidomide, lenalidomide (Len) and pomalidomide trigger anti-tumor activities in multiple myeloma (MM) by targetting cereblon and thereby impacting IZF1/3, c-Myc and IRF4. Histone deacetylase inhibitors (HDACi) also downregulate c-Myc. We therefore determined whether IMiDs with HDACi trigger significant MM cell growth inhibition by inhibiting or downregulating c-Myc. Combination treatment of Len with non-selective HDACi suberoylanilide hydroxamic acid or class-I HDAC-selective inhibitor MS275 induces synergic cytotoxicity, associated with downregulation of c-Myc. Unexpectedly, we observed that decreased levels of cereblon (CRBN), a primary target protein of IMiDs, was triggered by these agents. Indeed, sequential treatment of MM cells with MS275 followed by Len shows less efficacy than simultaneous treatment with this combination. Importantly ACY1215, an HDAC6 inhibitor with minimal effects on class-I HDACs, together with Len induces synergistic MM cytotoxicity without alteration of CRBN expression. Our results showed that only modest class-I HDAC inhibition is able to induce synergistic MM cytotoxicity in combination with Len. These studies may provide the framework for utilizing HDACi in combination with Len to both avoid CRBN downregulation and enhance anti-MM activities. PMID:25978432

  18. Novel histone deacetylase inhibitor NCH-51 activates latent HIV-1 gene expression.

    PubMed

    Victoriano, Ann Florence B; Imai, Kenichi; Togami, Hiroaki; Ueno, Takaharu; Asamitsu, Kaori; Suzuki, Takayoshi; Miyata, Naoki; Ochiai, Kuniyasu; Okamoto, Takashi

    2011-04-01

    Pharmacological manipulations to purge human immunodeficiency virus (HIV) from latent reservoirs have been considered as an adjuvant therapeutic approach to highly-active antiretroviral therapy for the eradication of HIV. Our novel histone deacetylase inhibitor NCH-51 induced expression of latent HIV-1 with minimal cytotoxicity. Using chromatin immunoprecipitation assays, we observed a reduction of HDAC1 occupancy, histone hyperacetylation and the recruitment of positive transcription factors at the HIV-1 promoter in latently infected-cells under the treatment with NCH-51. Mutation studies of the long terminal repeat (LTR) revealed NCH-51 mediated gene expression through the Sp1 sites. When Sp1 expression was knocked-down by small interfering RNA, the NCH-51-mediated activation of a stably integrated HIV-1 LTR was attenuated. Moreover, the Sp1 inhibitor mithramycin A abolished the effects of NCH-51. PMID:21402072

  19. The histone deacetylase inhibitor valproic acid sensitizes human and canine osteosarcoma to doxorubicin

    PubMed Central

    Bisson, Liam; Rose, Barbara J.; Korch, Christopher; Thamm, Douglas H.

    2010-01-01

    Purpose Osteosarcoma (OS) remains an incurable and ultimately fatal disease in many patients, and novel forms of therapy are needed. Improved models of OS that more closely mimic human disease would provide more robust information regarding the utility of novel therapies. Spontaneous OS in dogs may provide such a model. Pharmacologic inhibition of histone deacetylase (HDAC) enzymes has a variety of anti-tumor effects but may demonstrate the most utility when utilized in combination with standard cytotoxic therapies. We sought to determine the in vitro and in vivo effects of the HDAC inhibitor valproic acid (VPA) on doxorubicin (DOX) sensitivity in canine and human OS. Methods We evaluated the in vitro anti-proliferative and apoptotic effects of VPA/DOX combination treatment, alterations in histone acetylation and nuclear DOX accumulation resulting from VPA treatment, and the in vivo efficacy of combination therapy in a xenograft model. Results Treatment of canine and human OS cell lines with clinically achievable VPA concentrations resulted in increased histone acetylation but modest anti-proliferative effects. Pre-incubation with VPA followed by doxorubicin (DOX) resulted in significant growth inhibition and potentiation of apoptosis, associated with a dose-dependent increase in nuclear DOX accumulation. The combination of VPA and DOX was superior to either monotherapy in a canine OS xenograft model. Conclusion These results demonstrate a rationale for the addition of HDAC inhibitors to current protocols for the treatment of OS and illustrate the similarities in response to HDAC inhibitors between human and canine OS, lending further credibility to the canine OS model. PMID:20306194

  20. Histone deacetylases 1 and 2 regulate DNA replication and DNA repair: potential targets for genome stability-mechanism-based therapeutics for a subset of cancers.

    PubMed

    Bhaskara, Srividya

    2015-06-18

    Histone deacetylases 1 and 2 (HDAC1,2) belong to the class I HDAC family, which are targeted by the FDA-approved small molecule HDAC inhibitors currently used in cancer therapy. HDAC1,2 are recruited to DNA break sites during DNA repair and to chromatin around forks during DNA replication. Cancer cells use DNA repair and DNA replication as survival mechanisms and to evade chemotherapy-induced cytotoxicity. Hence, it is vital to understand how HDAC1,2 function during the genome maintenance processes (DNA replication and DNA repair) in order to gain insights into the mode-of-action of HDAC inhibitors in cancer therapeutics. The first-in-class HDAC1,2-selective inhibitors and Hdac1,2 conditional knockout systems greatly facilitated dissecting the precise mechanisms by which HDAC1,2 control genome stability in normal and cancer cells. In this perspective, I summarize the findings on the mechanistic functions of class I HDACs, specifically, HDAC1,2 in genome maintenance, unanswered questions for future investigations and views on how this knowledge could be harnessed for better-targeted cancer therapeutics for a subset of cancers. PMID:25942572

  1. The tumor suppressor kinase LKB1 activates the downstream kinases SIK2 and SIK3 to stimulate nuclear export of class IIa histone deacetylases.

    PubMed

    Walkinshaw, Donald R; Weist, Ryan; Kim, Go-Woon; You, Linya; Xiao, Lin; Nie, Jianyun; Li, Cathy S; Zhao, Songping; Xu, Minghong; Yang, Xiang-Jiao

    2013-03-29

    Histone deacetylases 4 (HDAC4), -5, -7, and -9 form class IIa within the HDAC superfamily and regulate diverse physiological and pathological cellular programs. With conserved motifs for phosphorylation-dependent 14-3-3 binding, these deacetylases serve as novel signal transducers that are able to modulate histone acetylation and gene expression in response to extracellular cues. Here, we report that in a PKA-sensitive manner the tumor suppressor kinase LKB1 acts through salt-inducible kinase 2 (SIK2) and SIK3 to promote nucleocytoplasmic trafficking of class IIa HDACs. Both SIK2 and SIK3 phosphorylate the deacetylases at the conserved motifs and stimulate 14-3-3 binding. SIK2 activates MEF2-dependent transcription and relieves repression of myogenesis by the deacetylases. Distinct from SIK2, SIK3 induces nuclear export of the deacetylases independent of kinase activity and 14-3-3 binding. These findings highlight the difference among members of the SIK family and indicate that LKB1-dependent SIK activation constitutes an important signaling module upstream from class IIa deacetylases for regulating cellular programs controlled by MEF2 and other transcription factors. PMID:23393134

  2. Histone deacetylase 10 suppresses proliferation and invasion by inhibiting the phosphorylation of ?-catenin and serves as an independent prognostic factor for human clear cell renal cell carcinoma

    PubMed Central

    Fan, Wenxing; Huang, Jie; Xiao, Hua

    2015-01-01

    Objective: Histone deacetylase (HDAC) is a tumor suppressor gene in various carcinomas; however, the effect of HDAC10 on human renal cell carcinoma (RCC) remains unknown. In the current study we analyzed the expression and function of HDAC10 in human clear cell RCC. Methods: RCC tissues from 145 patients who underwent radical nephrectomies were evaluated. HDAC10 protein and mRNA expression was examined by immunohistochemistry and quantitative RT-PCR, respectively. HDAC10 expression was increased by stable transfection with a vector containing full-length cDNA of HDAC10, and HDAC10 expression was decreased by siRNA in two RCC cell lines. Proliferation analysis of RCC cells in vitro was investigated using the WST-1 assay, and the invasion assay was performed using a 24-well Transwell chamber. The phosphorylation of ?-catenin induced by HDAC10 was evaluated by Western blot. Results: HDAC10 expression in RCC tissues was significantly down-regulated compared to normal kidney tissues. Moreover, the low level of HDAC10 expression was uniformly associated with advanced clinical stage, larger tumor diameter, higher pathologic grade, and metastatic RCC. In addition, decreased expression of HDAC10 significantly prompted the proliferation and invasion of RCC cells in vitro. Although HDAC10 did not regulate the expression of ?-catenin, HDAC10 suppressed the phosphorylation of ?-catenin in RCC cells. Conclusions: HDAC10 expression is suppressed in human clear cell RCC and is involved in development and metastasis of RCC. The findings herein suggest that HDAC10 is an independent predictive factor for RCC prognosis, and restoring HDAC10 expression may be a new therapeutic strategy for advanced RCC.

  3. Histone deacetylase inhibitors induce attenuation of Wnt signaling and TCF7L2 depletion in colorectal carcinoma cells.

    PubMed

    Götze, Silke; Coersmeyer, Monique; Müller, Oliver; Sievers, Sonja

    2014-10-01

    Histone deacetylase inhibitors (HDIs) specifically affect cancer cells by inducing cell cycle arrest, activate apoptotic pathways and re-activate epigenetically silenced tumor suppressor genes, but their pleiotropic mode of action is not fully understood. Despite the clinical effects of HDIs in the treatment of hematological malignancies, their potency against solid tumors is still unclear. We investigated the effects and mechanisms of HDI action in colorectal carcinoma cell lines with an activated Wnt signaling pathway, which is implicated in different aspects of tumorigenesis, including cell proliferation, apoptosis, angiogenesis and metastasis. We assessed the effects of HDI treatment in colorectal carcinoma cell lines by measuring histone hyperacetylation, cell viability and expression of Wnt target genes. Upon treatment with HDIs of the hydroxamate class, we found attenuation of Wnt signaling with concomitant induction of apoptosis and colorectal cancer cell death. Strikingly, the effects of HDIs on Wnt signaling were independent of histone hyperacetylation, thus we investigated the role of non-histone target proteins of histone deacetylases (HDACs). The compounds TSA and SAHA induced a rapid proteasome-dependent depletion of the Wnt transcription factor TCF7L2, which may be mediated by inhibition of HDAC 6 and 10. Our findings provide a molecular rationale for the use of HDIs against colorectal carcinomas with activated Wnt signaling. PMID:25050608

  4. Inhibition of Glyceroneogenesis by Histone Deacetylase 3 Contributes to Lipodystrophy in Mice with Adipose Tissue Inflammation

    PubMed Central

    Zhang, Jin; Henagan, Tara M.; Gao, Zhanguo

    2011-01-01

    We have reported that the nuclear factor-?B (NF-?B) induces chronic inflammation in the adipose tissue of p65 transgenic (Tg) mice, in which the NF-?B subunit p65 (RelA) is overexpressed from the adipocyte protein 2 (aP2) gene promoter. Tg mice suffer a mild lipodystrophy and exhibit deficiency in adipocyte differentiation. To understand molecular mechanism of the defect in adipocytes, we investigated glyceroneogenesis by examining the activity of cytosolic phosphoenolpyruvate carboxykinase (PEPCK) in adipocytes. In aP2-p65 Tg mice, Pepck expression is inhibited at both the mRNA and protein levels in adipose tissue. The mRNA reduction is a consequence of transcriptional inhibition but not alteration in mRNA stability. The Pepck gene promoter is inhibited by NF-?B, which enhances the corepressor activity through activation of histone deacetylase 3 (HDAC3) in the nucleus. HDAC3 suppresses Pepck transcription by inhibiting the transcriptional activators, peroxisome proliferator-activated receptor-?, and cAMP response element binding protein. The NF-?B activity is abolished by Hdac3 knockdown or inhibition of HDAC3 catalytic activity. In a chromatin immunoprecipitation assay, HDAC3 interacts with peroxisome proliferator-activated receptor-? and cAMP response element binding protein in the Pepck promoter when NF-?B is activated by TNF-?. These results suggest that HDAC3 mediates NF-?B activity to repress Pepck transcription. This mechanism is responsible for inhibition of glyceroneogenesis in adipocytes, which contributes to lipodystrophy in the aP2-p65 Tg mice. PMID:21406501

  5. Histone deacetylase 1 phosphorylation at S421 and S423 is constitutive in vivo, but dispensable in vitro

    SciTech Connect

    Karwowska-Desaulniers, Paulina [Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202 (United States); Ketko, Anastasia [Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202 (United States); Kamath, Nayana [Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202 (United States); Pflum, Mary Kay H. [Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202 (United States)]. E-mail: pflum@chem.wayne.edu

    2007-09-21

    Histone Deacetylase 1 (HDAC1) is a transcriptional regulator associated with proliferation, apoptosis, and tumorigenesis, although its precise cellular role is unclear. HDAC1 was previously characterized as a phosphoprotein where mutation of phosphorylated S421 and S423 resulted in a loss of deacetylase activity and protein association. Here, the role of phosphorylation in regulating HDAC1 function was examined using phospho-specific antibodies. The antibody studies revealed that phosphorylation at S421 and S423 is constant during the cell cycle, under stress conditions, or in the presence of kinase or phosphatase inhibitors. Further, phosphorylation is dispensable for catalysis or protein association in vitro, as revealed by phosphatase studies. Truncation mutants of HDAC1 demonstrated that binding to Sin3A is promoted by S421 and S423 phosphorylation, while interaction with RbAp48 is not. Taken together, the data are consistent with constitutive phosphorylation of HDAC1 at S421 and S423 in vivo, which is dispensable for activity in vitro.

  6. In Silico Investigation of Traditional Chinese Medicine Compounds to Inhibit Human Histone Deacetylase 2 for Patients with Alzheimer's Disease

    PubMed Central

    Hung, Tzu-Chieh; Lee, Wen-Yuan; Chen, Kuen-Bao; Chan, Yueh-Chiu; Lee, Cheng-Chun

    2014-01-01

    Human histone deacetylase 2 (HDAC2) has been identified as being associated with Alzheimer's disease (AD), a neuropathic degenerative disease. In this study, we screen the world's largest Traditional Chinese Medicine (TCM) database for natural compounds that may be useful as lead compounds in the search for inhibitors of HDAC2 function. The technique of molecular docking was employed to select the ten top TCM candidates. We used three prediction models, multiple linear regression (MLR), support vector machine (SVM), and the Bayes network toolbox (BNT), to predict the bioactivity of the TCM candidates. Molecular dynamics simulation provides the protein-ligand interactions of compounds. The bioactivity predictions of pIC50 values suggest that the TCM candidatesm, (?)-Bontl ferulate, monomethylcurcumin, and ningposides C, have a greater effect on HDAC2 inhibition. The structure variation caused by the hydrogen bonds and hydrophobic interactions between protein-ligand interactions indicates that these compounds have an inhibitory effect on the protein. PMID:25045700

  7. Mitochondrial Apoptosis and FAK Signaling Disruption by a Novel Histone Deacetylase Inhibitor, HTPB, in Antitumor and Antimetastatic Mouse Models

    PubMed Central

    Shieh, Jiunn-Min; Wei, Tzu-Tang; Tang, Yen-An; Huang, Sin-Ming; Wen, Wei-Ling; Chen, Mei-Yu; Cheng, Hung-Chi; Salunke, Santosh B.; Chen, Ching-Shih; Lin, Pinpin; Chen, Chien-Tien; Wang, Yi-Ching

    2012-01-01

    Background Compound targeting histone deacetylase (HDAC) represents a new era in molecular cancer therapeutics. However, effective HDAC inhibitors for the treatment of solid tumors remain to be developed. Methodology/Principal Findings Here, we propose a novel HDAC inhibitor, N-Hydroxy-4-(4-phenylbutyryl-amino) benzamide (HTPB), as a potential chemotherapeutic drug for solid tumors. The HDAC inhibition of HTPB was confirmed using HDAC activity assay. The antiproliferative and anti-migratory mechanisms of HTPB were investigated by cell proliferation, flow cytometry, DNA ladder, caspase activity, Rho activity, F-actin polymerization, and gelatin-zymography for matrix metalloproteinases (MMPs). Mice with tumor xenograft and experimental metastasis model were used to evaluate effects on tumor growth and metastasis. Our results indicated that HTPB was a pan-HDAC inhibitor in suppressing cell viability specifically of lung cancer cells but not of the normal lung cells. Upon HTPB treatment, cell cycle arrest was induced and subsequently led to mitochondria-mediated apoptosis. HTPB disrupted F-actin dynamics via downregulating RhoA activity. Moreover, HTPB inhibited activity of MMP2 and MMP9, reduced integrin-?1/focal adhesion complex formation and decreased pericellular poly-fibronectin assemblies. Finally, intraperitoneal injection or oral administration of HTPB efficiently inhibited A549 xenograft tumor growth in vivo without side effects. HTPB delayed lung metastasis of 4T1 mouse breast cancer cells. Acetylation of histone and non-histone proteins, induction of apoptotic-related proteins and de-phosphorylation of focal adhesion kinase were confirmed in treated mice. Conclusions/Significance These results suggested that intrinsic apoptotic pathway may involve in anti-tumor growth effects of HTPB in lung cancer cells. HTPB significantly suppresses tumor metastasis partly through inhibition of integrin-?1/FAK/MMP/RhoA/F-actin pathways. We have provided convincing preclinical evidence that HTPB is a potent HDAC targeted inhibitor and is thus a promising candidate for lung cancer chemotherapy. PMID:22279574

  8. Histone Deacetylase Inhibitors (HDACi) Cause the Selective Depletion of Bromodomain Containing Proteins (BCPs)*

    PubMed Central

    Mackmull, Marie-Therese; Iskar, Murat; Parca, Luca; Singer, Stephan; Bork, Peer; Ori, Alessandro; Beck, Martin

    2015-01-01

    Histone deacetylases (HDACs) and acetyltransferases control the epigenetic regulation of gene expression through modification of histone marks. Histone deacetylase inhibitors (HDACi) are small molecules that interfere with histone tail modification, thus altering chromatin structure and epigenetically controlled pathways. They promote apoptosis in proliferating cells and are promising anticancer drugs. While some HDACi have already been approved for therapy and others are in different phases of clinical trials, the exact mechanism of action of this drug class remains elusive. Previous studies have shown that HDACis cause massive changes in chromatin structure but only moderate changes in gene expression. To what extent these changes manifest at the protein level has never been investigated on a proteome-wide scale. Here, we have studied HDACi-treated cells by large-scale mass spectrometry based proteomics. We show that HDACi treatment affects primarily the nuclear proteome and induces a selective decrease of bromodomain-containing proteins (BCPs), the main readers of acetylated histone marks. By combining time-resolved proteome and transcriptome profiling, we show that BCPs are affected at the protein level as early as 12 h after HDACi treatment and that their abundance is regulated by a combination of transcriptional and post-transcriptional mechanisms. Using gene silencing, we demonstrate that the decreased abundance of BCPs is sufficient to mediate important transcriptional changes induced by HDACi. Our data reveal a new aspect of the mechanism of action of HDACi that is mediated by an interplay between histone acetylation and the abundance of BCPs. Data are available via ProteomeXchange with identifier PXD001660 and NCBI Gene Expression Omnibus with identifier GSE64689. PMID:25755299

  9. Anti-inflammatory effects of budesonide in human lung fibroblast are independent of histone deacetylase 2

    PubMed Central

    Wang, Xingqi; Nelson, Amy; Weiler, Zachary M; Patil, Amol; Sato, Tadashi; Kanaji, Nobuhiro; Nakanishi, Masanori; Michalski, Joel; Farid, Maha; Basma, Hesham; LeVan, Tricia D; Miller-Larsson, Anna; Wieslander, Elisabet; Muller, Kai-Christian; Holz, Olaf; Magnussen, Helgo; Rabe, Klaus F; Liu, Xiangde; Rennard, Stephen I

    2013-01-01

    Objective and design Reduced expression of histone deacetylase 2 (HDAC2) in alveolar macrophages and epithelial cells may account for reduced response of chronic obstructive pulmonary disease (COPD) patients to glucocorticoids. HDAC2 expression and its role in mediating glucocorticoid effects on fibroblast functions, however, has not been fully studied. This study was designed to investigate whether HDAC2 mediates glucocorticoid effects on release of inflammatory cytokines and matrix metalloproteinases (MMPs) from human lung fibroblasts. Methods Human lung fibroblasts (HFL-1 cells) were stimulated with interleukin (IL)-1 ? plus tumor necrosis factor (TNF)-? in the presence or absence of the glucocorticoid budesonide. Cytokines (IL-6 and IL-8) were quantified by enzyme linked immunosorbent assay (ELISA) and MMPs (MMP-1 and MMP-3) by immunoblotting in culture medium. The role of HDAC2 was investigated using a pharmacologic inhibitor as well as a small interfering ribonucleic acid (siRNA) targeting HDAC2. Results We have demonstrated that budesonide concentration-dependently (10?10–10?7 M) inhibited IL-6, IL-8, MMP-1, and MMP-3 release by HFL-1 cells in response to IL-1? plus TNF-?. While an HDAC inhibitor significantly blocked the inhibitory effect of budesonide on human bronchial epithelial cells (HBECs) and monocytes (THP-1 cells), it did not block the inhibitory effect of budesonide on release of cytokines and MMPs from HFL-1 cells. Similarly, an HDAC2-siRNA blocked budesonide inhibition of cytokine release in HBECs, but it did not block the inhibitory effect of budesonide on HFL-1 cytokine and MMP release. Furthermore, budesonide significantly blocked release of cytokines and MMPs to a similar degree in normal and COPD lung fibroblasts as well as in HFL-1 cells exposed or not exposed to cigarette smoke extract. Conclusion These findings suggest that, in contrast to airway epithelial cells and monocytes/macrophages, HDAC2 is not required for budesonide to inhibit MMP and cytokine release by lung fibroblasts and this inhibitory pathway appears to be intact in cultured fibroblasts from COPD patients. These results also suggest that budesonide has the potential to modulate fibroblast-mediated tissue remodeling following airway inflammation in COPD, which is mediated via an HDAC2 independent pathway. PMID:24062615

  10. Zn2+-chelating motif-tethered short-chain fatty acids as a novel class of histone deacetylase inhibitors.

    PubMed

    Lu, Qiang; Yang, Ya-Ting; Chen, Chang-Shi; Davis, Melanie; Byrd, John C; Etherton, Mark R; Umar, Asad; Chen, Ching-Shih

    2004-01-15

    Among various classes of histone deacetylase (HDAC) inhibitors, short-chain fatty acids exhibit the least potency, with IC(50) in the millimolar range. We rationalized that this weak potency was, in part, attributable to their inability to access the zinc cation in the HDAC active-site pocket, which is pivotal to the deacetylation catalysis. We thus explored the structural optimization of valproate, butyrate, phenylacetate, and phenylbutyrate by coupling them with Zn(2+)-chelating motifs (hydroxamic acid and o-phenylenediamine) through aromatic omega-amino acid linkers. This strategy has led to a novel class of Zn(2+)-chelating, motif-tethered, short-chain fatty acids that exhibited varying degrees of HDAC inhibitory potency. One hydroxamate-tethered phenylbutyrate compound, N-hydroxy-4-(4-phenylbutyrylamino)benzamide (HTPB), displayed nanomolar potency in inhibiting HDAC activity. Exposure of several cancer cell lines to HTPB at the submicromolar level showed reduced cell proliferation accompanied by histone hyperacetylation and elevated p21(WAF/CIP1) expression, which are hallmark features associated with intracellular HDAC inhibition. PMID:14711316

  11. In Vivo PET-imaging of Histone Deacetylases by 18F-Suberoylanilide Hydroxamic Acid (18F-SAHA)1

    PubMed Central

    Hendricks, J. Adam; Keliher, Edmund J.; Marinelli, Brett; Reiner, Thomas; Weissleder, Ralph; Mazitschek, Ralph

    2011-01-01

    Histone deacetylases (HDACs) are a group of enzymes that modulate gene expression and cell state by deacetylation of both histone and non-histone proteins. A variety of HDAC inhibitors (HDACi) have already undergone clinical testing in cancer. Real-time in vivo imaging of HDACs and their inhibition would be invaluable; however, the development of appropriate imaging agents has remained a major challenge. Here, we describe the development and evaluation of 18F-suberoylanilide hydroxamic acid (18F-SAHA 1a), a close analog of the most clinically relevant HDACi, suberoylanilide hydroxamic acid (SAHA). We demonstrate that 1a has near identical biochemical activity profiles to SAHA, and report findings from pharmacokinetic studies. Using a murine ovarian cancer model, we likewise show that HDACi target binding efficacy can be quantitated within 24 hours of administration. 1a thus represents the first 18F-positron emission tomography (PET) HDAC imaging agent, which also exhibits low nanomolar potency and is pharmacologically analogous to a clinically relevant HDACi. PMID:21721525

  12. mTOR kinase inhibitors synergize with histone deacetylase inhibitors to kill B-cell acute lymphoblastic leukemia cells

    PubMed Central

    Beagle, Brandon R.; Nguyen, Duc M.; Mallya, Sharmila; Tang, Sarah S.; Lu, Mengrou; Zeng, Zhihong; Konopleva, Marina; Vo, Thanh-Trang; Fruman, David A.

    2015-01-01

    High activity of the mechanistic target of rapamycin (mTOR) is associated with poor prognosis in pre-B-cell acute lymphoblastic leukemia (B-ALL), suggesting that inhibiting mTOR might be clinically useful. However, emerging data indicate that mTOR inhibitors are most effective when combined with other target agents. One strategy is to combine with histone deacetylase (HDAC) inhibitors, since B-ALL is often characterized by epigenetic changes that silence the expression of pro-apoptotic factors. Here we tested combinations of mTOR and pan-HDAC inhibitors on B-ALL cells, including both Philadelphia chromosome-positive (Ph+) and non-Ph cell lines. We found that mTOR kinase inhibitors (TOR-KIs) synergize with HDAC inhibitors to cause apoptosis in B-ALL cells and the effect is greater when compared to rapamycin plus HDAC inhibitors. The combination of TOR-KIs with the clinically approved HDAC inhibitor vorinostat increased apoptosis in primary pediatric B-ALL cells in vitro. Mechanistically, TOR-KI and HDAC inhibitor combinations increased expression of pro-death genes, including targets of the Forkhead Box O (FOXO) transcription factors, and increased sensitivity to apoptotic triggers at the mitochondria. These findings suggest that targeting epigenetic factors can unmask the cytotoxic potential of TOR-KIs towards B-ALL cells. PMID:25576920

  13. Structure of Prokaryotic Polyamine Deacetylase Reveals Evolutionary Functional Relationships with Eukaryotic Histone Deacetylases

    SciTech Connect

    P Lombardi; H Angell; D Whittington; E Flynn; K Rajashankar; D Christianson

    2011-12-31

    Polyamines are a ubiquitous class of polycationic small molecules that can influence gene expression by binding to nucleic acids. Reversible polyamine acetylation regulates nucleic acid binding and is required for normal cell cycle progression and proliferation. Here, we report the structures of Mycoplana ramosa acetylpolyamine amidohydrolase (APAH) complexed with a transition state analogue and a hydroxamate inhibitor and an inactive mutant complexed with two acetylpolyamine substrates. The structure of APAH is the first of a histone deacetylase-like oligomer and reveals that an 18-residue insert in the L2 loop promotes dimerization and the formation of an 18 {angstrom} long 'L'-shaped active site tunnel at the dimer interface, accessible only to narrow and flexible substrates. The importance of dimerization for polyamine deacetylase function leads to the suggestion that a comparable dimeric or double-domain histone deacetylase could catalyze polyamine deacetylation reactions in eukaryotes.

  14. Carbocysteine restores steroid sensitivity by targeting histone deacetylase 2 in a thiol/GSH-dependent manner.

    PubMed

    Song, Yun; Lu, Hao-Zhong; Xu, Jian-Rong; Wang, Xiao-Lin; Zhou, Wei; Hou, Li-Na; Zhu, Liang; Yu, Zhi-Hua; Chen, Hong-Zhuan; Cui, Yong-Yao

    2015-01-01

    Steroid insensitivity is commonly observed in patients with chronic obstructive pulmonary disease. Here, we report the effects and mechanisms of carbocysteine (S-CMC), a mucolytic agent, in cellular and animal models of oxidative stress-mediated steroid insensitivity. The following results were obtained: oxidative stress induced higher levels of interleukin-8 (IL-8) and tumor necrosis factor alpha (TNF-?), which are insensitive to dexamethasone (DEX). The failure of DEX was improved by the addition of S-CMC by increasing histone deacetylase 2 (HDAC2) expression/activity. S-CMC also counteracted the oxidative stress-induced increase in reactive oxygen species (ROS) levels and decreases in glutathione (GSH) levels and superoxide dismutase (SOD) activity. Moreover, oxidative stress-induced events were decreased by the thiol-reducing agent dithiothreitol (DTT), enhanced by the thiol-oxidizing agent diamide, and the ability of DEX was strengthened by DTT. In addition, the oxidative stress-induced decrease in HDAC2 activity was counteracted by S-CMC by increasing thiol/GSH levels, which exhibited a direct interaction with HDAC2. S-CMC treatment increased HDAC2 recruitment and suppressed H4 acetylation of the IL-8 promoter, and this effect was further ablated by addition of buthionine sulfoximine, a specific inhibitor of GSH synthesis. Our results indicate that S-CMC restored steroid sensitivity by increasing HDAC2 expression/activity in a thiol/GSH-dependent manner and suggest that S-CMC may be useful in a combination therapy with glucocorticoids for treatment of steroid-insensitive pulmonary diseases. PMID:25500537

  15. Inhibiting histone deacetylase 6 partly protects cultured rat cortical neurons from oxygen-glucose deprivation-induced necroptosis

    PubMed Central

    YUAN, LIMING; WANG, ZHEN; LIU, LIHUA; JIAN, XIAOHONG

    2015-01-01

    Necroptosis has an important role in ischemia-reperfusion damage. The expression of histone deacetylase 6 (HDAC6) is upregulated in neurons following ischemia-reperfusion, however, whether HDAC6 is closely involved in the necroptosis, which occurs during ischemia-reperfusion damage remains to be elucidated. In the present study, the roles of HDAC6 in the necroptosis of cultured rat cortical neurons were investigated in a oxygen-glucose deprivation (OGD) model. The results demonstrated that OGD induced marked necroptosis of cultured rat cortical neurons and upregulated the expression of HDAC6 in the cultured neurons, compared with the control (P<0.05). The necroptosis inhibitor, necrostatin-1 (Nec-1), decreased The expression of HDAC6 in the OGD-treated cultured neurons, accompanied by the inhibition of necroptosis. Further investigation revealed that, compared with OGD treatment alone, inhibiting the activity of HDAC6 with tubacin, a specific HDAC6 inhibitor, reduced the OGD-induced necroptosis of the cultured rat cortical neurons (P<0.05), which was similar to the change following treatment with Nec-1 (P>0.05). In addition, inhibiting the activity of HDAC6 reversed the OGD-induced increase of reactive oxygen species (ROS) and the OGD-induced decrease of acetylated tubulin in the cultured rat cortical neurons (P<0.05), compared with the neurons treated with OGD alone). The levels of acetylated tubulin in the cultured neurons following treatment with OGD and tubacin were significantly higher than those in the control (P<0.05). These results suggested that HDAC6 was involved in the necroptosis of neurons during ischemia-reperfusion by modulating the levels of ROS and acetylated tubulin. PMID:25976407

  16. Inhibiting histone deacetylase 6 partly protects cultured rat cortical neurons from oxygen?glucose deprivation?induced necroptosis.

    PubMed

    Yuan, Liming; Wang, Zhen; Liu, Lihua; Jian, Xiaohong

    2015-08-01

    Necroptosis has an important role in ischemia?reperfusion damage. The expression of histone deacetylase 6 (HDAC6) is upregulated in neurons following ischemia?reperfusion, however, whether HDAC6 is closely involved in the necroptosis, which occurs during ischemia?reperfusion damage remains to be elucidated. In the present study, the roles of HDAC6 in the necroptosis of cultured rat cortical neurons were investigated in a oxygen?glucose deprivation (OGD) model. The results demonstrated that OGD induced marked necroptosis of cultured rat cortical neurons and upregulated the expression of HDAC6 in the cultured neurons, compared with the control (P<0.05). The necroptosis inhibitor, necrostatin?1 (Nec?1), decreased The expression of HDAC6 in the OGD?treated cultured neurons, accompanied by the inhibition of necroptosis. Further investigation revealed that, compared with OGD treatment alone, inhibiting the activity of HDAC6 with tubacin, a specific HDAC6 inhibitor, reduced the OGD?induced necroptosis of the cultured rat cortical neurons (P<0.05), which was similar to the change following treatment with Nec?1 (P>0.05). In addition, inhibiting the activity of HDAC6 reversed the OGD?induced increase of reactive oxygen species (ROS) and the OGD?induced decrease of acetylated tubulin in the cultured rat cortical neurons (P<0.05), compared with the neurons treated with OGD alone). The levels of acetylated tubulin in the cultured neurons following treatment with OGD and tubacin were significantly higher than those in the control (P<0.05). These results suggested that HDAC6 was involved in the necroptosis of neurons during ischemia?reperfusion by modulating the levels of ROS and acetylated tubulin. PMID:25976407

  17. Histone deacetylase inhibition attenuates cardiac hypertrophy and fibrosis through acetylation of mineralocorticoid receptor in spontaneously hypertensive rats.

    PubMed

    Kang, Seol-Hee; Seok, Young Mi; Song, Min-ji; Lee, Hae-Ahm; Kurz, Thomas; Kim, InKyeom

    2015-05-01

    Inhibition of histone deacetylases (HDACs) by valproic acid (VPA) attenuates inflammatory, hypertrophic, and fibrotic responses in the hearts of spontaneously hypertensive rats (SHRs); however, the molecular mechanism is still unclear. We hypothesized that HDAC inhibition (HDACi) attenuates cardiac hypertrophy and fibrosis through acetylation of mineralocorticoid receptor (MR) in SHRs. Seven-week-old SHRs and Wistar-Kyoto rats were treated with an HDAC class I inhibitor (0.71% w/v in drinking water; VPA) for 11 weeks. Sections of heart were visualized after trichrome stain as well as H&E stain. Histone modifications, such as acetylation (H3Ac [acetylated histone 3]) and fourth lysine trimethylation (H3K4me3) of histone 3, and recruitment of MR and RNA polymerase II (Pol II) into promoters of target genes were measured by quantitative real-time polymerase chain reaction after chromatin immunoprecipitation assay. MR acetylation was determined by Western blot with anti-acetyl-lysine antibody after immunoprecipitation with anti-MR antibody. Treatment with VPA attenuated cardiac hypertrophy and fibrosis. Although treatment with VPA increased H3Ac and H3K4me3 on promoter regions of MR target genes, expression of MR target genes as well as recruitment of MR and Pol II on promoters of target genes were decreased. Although HDACi did not affect MR expression, it increased MR acetylation. These results indicate that HDACi attenuates cardiac hypertrophy and fibrosis through acetylation of MR in spontaneously hypertensive rats. PMID:25667225

  18. Conditional Deletion of Histone Deacetylase-4 in the Central Nervous System Has No Major Effect on Brain Architecture or Neuronal Viability

    PubMed Central

    Price, Valerie; Wang, Lulu; D’Mello, Santosh R.

    2013-01-01

    Evidence from different laboratories using cell culture and in vivo model systems indicates that histone deacetylase-4 (HDAC4) plays an essential role in maintaining neuronal survival. Indeed, HDAC4 null knockout mice, which die within 2 weeks of birth, display cerebellar degeneration, whereas RNAi-mediated knockdown of HDAC4 expression in the retina of normal mice leads to apoptosis of retinal neurons. As a step toward analyzing the role of HDAC4 in the regulation of neuronal survival in more detail, we generated two separate lines of conditional knockout mice by breeding HDAC4-flox mice with mice expressing Cre recombinase through a Thy1 or nestin promoter. Surprisingly, both Thy1-Cre/ HDAC4?/? mice, in which HDAC4 is ablated in neurons of the cortex and hippocampus, as well as Nes-Cre/ HDAC4?/? mice, in which HDAC4 is ablated in neural progenitor cells of the CNS, appear normal at birth, have normal body weight, are fertile, and perform normally in locomotor activity assays. Histological analysis of the brains of Nes-Cre/HDAC4?/? mice revealed no obvious abnormalities in cytoarchitecture. Immunohistological analysis of tyrosine hydroxylase and calbindin also showed no discernible defects. Terminal deoxynucleotidyl transferase dUTP nick end-labeling staining showed no difference in the level of neuronal death in the cortex and cerebellum of Nes-Cre/HDAC4?/? mice compared with controls. These results indicate that neurons are less dependent on HDAC4 expression for their survival than previously believed and suggest that neuronal death observed in HDAC4 null knockout mice and after RNAi injection may result from HDAC4 deficiency PMID:23239283

  19. Gene expression profiling in response to the histone deacetylase inhibitor BL1521 in neuroblastoma

    SciTech Connect

    Ruijter, Annemieke J.M. de [Academic Medical Centre, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Department of Pediatrics/Emma Children's Hospital and Clinical Chemistry, PO Box 22700, 1100 DE Amsterdam (Netherlands); Meinsma, Rutger J. [Academic Medical Centre, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Department of Pediatrics/Emma Children's Hospital and Clinical Chemistry, PO Box 22700, 1100 DE Amsterdam (Netherlands); Bosma, Peter [Leiden Genome Technology Centre, Leiden University Medical Centre, Leiden (Netherlands); Kemp, Stephan [Academic Medical Centre, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Department of Pediatrics/Emma Children's Hospital and Clinical Chemistry, PO Box 22700, 1100 DE Amsterdam (Netherlands); Caron, Huib N. [Academic Medical Centre, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Department of Pediatrics/Emma Children's Hospital and Clinical Chemistry, PO Box 22700, 1100 DE Amsterdam (Netherlands); Kuilenburg, Andre B.P. van [Academic Medical Centre, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Department of Pediatrics/Emma Children's Hospital and Clinical Chemistry, PO Box 22700, 1100 DE Amsterdam (Netherlands)]. E-mail: a.b.vankuilenburg@amc.uva.nl

    2005-10-01

    Neuroblastoma is a childhood tumor with a poor survival in advanced stage disease despite intensive chemotherapeutic regimes. The new histone deacetylase (HDAC) inhibitor BL1521 has shown promising results in neuroblastoma. Inhibition of HDAC resulted in a decrease in proliferation and metabolic activity, induction of apoptosis and differentiation of neuroblastoma cells. In order to elucidate the mechanism mediating the effects of BL1521 on neuroblastoma cells, we investigated the gene expression profile of an MYCN single copy (SKNAS) and an MYCN amplified (IMR32) neuroblastoma cell line after treatment with BL1521 using the Affymetrix oligonucleotide array U133A. An altered expression of 255 genes was observed in both neuroblastoma cell lines. The majority of these genes were involved in gene expression, cellular metabolism, and cell signaling. We observed changes in the expression of vital genes belonging to the cell cycle (cyclin D1 and CDK4) and apoptosis (BNIP3, BID, and BCL2) pathway in response to BL1521. The expression of 37 genes was altered by both BL1521 and Trichostatin A, which could indicate a common gene set regulated by different HDAC inhibitors. BL1521 treatment changed the expression of a number of MYCN-associated genes. Several genes in the Wnt and the Delta/Notch pathways were changed in response to BL1521 treatment, suggesting that BL1521 is able to induce the differentiation of neuroblastoma cells into a more mature phenotype.

  20. Inhibition of histone deacetylase activity attenuates renal fibroblast activation and interstitial fibrosis in obstructive nephropathy

    PubMed Central

    Pang, Maoyin; Kothapally, Jagan; Mao, Haiping; Tolbert, Evelyn; Ponnusamy, Murugavel; Chin, Y. Eugene

    2009-01-01

    Activation of renal interstitial fibroblasts is critically involved in the development of tubulointerstitial fibrosis in chronic kidney diseases. In this study, we investigated the effect of trichostatin A (TSA), a specific histone deacetylase (HDAC) inhibitor, on the activation of renal interstitial fibroblasts in a rat renal interstitial fibroblast line (NRK-49F) and the development of renal fibrosis in a murine model of unilateral ureteral obstruction (UUO). ?-Smooth muscle actin (?-SMA) and fibronectin, two hallmarks of fibroblast activation, were highly expressed in cultured NRK-49F cells, and their expression was inhibited in the presence of TSA. Similarly, administration of TSA suppressed the expression of ?-SMA and fibronectin and attenuated the accumulation of renal interstitial fibroblasts in the kidney after the obstructive injury. Activation of renal interstitial fibroblasts was accompanied by phosphorylation of signal transducer and activator of transcription 3 (STAT3), and TSA treatment also abolished these responses. Furthermore, inhibition of the STAT3 pathway with AG490 inhibited expression of ?-SMA and fibronectin in NRK-49F cells. Finally, TSA treatment inhibited tubular cell apoptosis and caspase-3 activation in the obstructive kidney. Collectively, we suggest that pharmacological HDAC inhibition may induce antifibrotic activity by inactivation of renal interstitial fibroblasts and inhibition of renal tubular cell death. STAT3 may mediate those actions of HDACs. PMID:19640900

  1. Histone Deacetylase Inhibitor (HDACi) Suberoylanilide Hydroxamic Acid (SAHA)-mediated Correction of ?1-Antitrypsin Deficiency*

    PubMed Central

    Bouchecareilh, Marion; Hutt, Darren M.; Szajner, Patricia; Flotte, Terence R.; Balch, William E.

    2012-01-01

    ?1-Antitrypsin (?1AT) deficiency (?1ATD) is a consequence of defective folding, trafficking, and secretion of ?1AT in response to a defect in its interaction with the endoplasmic reticulum proteostasis machineries. The most common and severe form of ?1ATD is caused by the Z-variant and is characterized by the accumulation of ?1AT polymers in the endoplasmic reticulum of the liver leading to a severe reduction (>85%) of ?1AT in the serum and its anti-protease activity in the lung. In this organ ?1AT is critical for ensuring tissue integrity by inhibiting neutrophil elastase, a protease that degrades elastin. Given the limited therapeutic options in ?1ATD, a more detailed understanding of the folding and trafficking biology governing ?1AT biogenesis and its response to small molecule regulators is required. Herein we report the correction of Z-?1AT secretion in response to treatment with the histone deacetylase (HDAC) inhibitor suberoylanilide hydroxamic acid (SAHA), acting in part through HDAC7 silencing and involving a calnexin-sensitive mechanism. SAHA-mediated correction restores Z-?1AT secretion and serpin activity to a level 50% that observed for wild-type ?1AT. These data suggest that HDAC activity can influence Z-?1AT protein traffic and that SAHA may represent a potential therapeutic approach for ?1ATD and other protein misfolding diseases. PMID:22995909

  2. Class-IIa Histone Deacetylase Inhibition Promotes the Growth of Neural Processes and Protects Them Against Neurotoxic Insult.

    PubMed

    Collins, Louise M; Adriaanse, Luc J; Theratile, Surabhi D; Hegarty, Shane V; Sullivan, Aideen M; O'Keeffe, Gerard W

    2015-06-01

    Small molecule histone deacetylase inhibitors (HDIs) hold much promise as pharmacological modifiers of the epigenetic status of the central nervous system (CNS), given their ability to cross the blood-brain barrier. This is particularly relevant given the lack of disease-modifying therapies for many neurodegenerative diseases and that epigenetic perturbations are increasingly recognised as playing a key role in their pathophysiology. In particular, emerging evidence in recent years has shown that epigenetic dysregulation may contribute to dopaminergic neuronal death in Parkinson's disease. As a result, a number of pan-HDIs have been explored as potential neuroprotective agents for dopaminergic neurons. However, it is not known if the neuroprotective effects of pan-histone deacetylase (HDAC) inhibition are a general phenomenon or if these effects require inhibition of specific classes of HDACs. Here, we examine the ability of class-specific HDIs to promote neurite growth in a variety of cellular contexts. We find that MC1568, a class IIa-specific HDI, promotes neurite growth and arbourisation and protects neurite arbours against neurotoxic insult. Furthermore, we show that class IIa-specific HDAC inhibition results in activation of the canonical Smad signalling pathway, which is known to promote the survival and growth of midbrain dopaminergic neurons. These results demonstrate the potential of class IIa-specific HDIs as regulators of neuronal structure and suggest they should be examined in animal models of Parkinson's disease as the next stage in rationalising their use as a potential therapy for this disorder. PMID:25065734

  3. Histone Deacetylases Exert Class-Specific Roles in Conditioning the Brain and Heart Against Acute Ischemic Injury

    PubMed Central

    Aune, Sverre E.; Herr, Daniel J.; Kutz, Craig J.; Menick, Donald R.

    2015-01-01

    Ischemia-reperfusion (IR) injury comprises a significant portion of morbidity and mortality from heart and brain diseases worldwide. This enduring clinical problem has inspired myriad reports in the scientific literature of experimental interventions seeking to elucidate the pathology of IR injury. Elective cardiac surgery presents perhaps the most viable scenario for protecting the heart and brain from IR injury due to the opportunity to condition the organs prior to insult. The physiological parameters for the preconditioning of vital organs prior to insult through mechanical and pharmacological maneuvers have been heavily examined. These investigations have revealed new insights into how preconditioning alters cellular responses to IR injury. However, the promise of preconditioning remains unfulfilled at the clinical level, and research seeking to implicate cell signals essential to this protection continues. Recent discoveries in molecular biology have revealed that gene expression can be controlled through posttranslational modifications, without altering the chemical structure of the genetic code. In this scenario, gene expression is repressed by enzymes that cause chromatin compaction through catalytic removal of acetyl moieties from lysine residues on histones. These enzymes, called histone deacetylases (HDACs), can be inhibited pharmacologically, leading to the de-repression of protective genes. The discovery that HDACs can also alter the function of non-histone proteins through posttranslational deacetylation has expanded the potential impact of HDAC inhibitors for the treatment of human disease. HDAC inhibitors have been applied in a very small number of experimental models of IR. However, the scientific literature contains an increasing number of reports demonstrating that HDACs converge on preconditioning signals in the cell. This review will describe the influence of HDACs on major preconditioning signaling pathways in the heart and brain.

  4. Gene expression mapping of histone deacetylases and co-factors, and correlation with survival time and 1H-HRMAS metabolomic profile in human gliomas.

    PubMed

    Dali-Youcef, Nassim; Froelich, Sébastien; Moussallieh, François-Marie; Chibbaro, Salvatore; Noël, Georges; Namer, Izzie J; Heikkinen, Sami; Auwerx, Johan

    2015-01-01

    Primary brain tumors are presently classified based on imaging and histopathological techniques, which remains unsatisfaying. We profiled here by quantitative real time PCR (qRT-PCR) the transcripts of eighteen histone deacetylases (HDACs) and a subset of transcriptional co-factors in non-tumoral brain samples from 15 patients operated for epilepsia and in brain tumor samples from 50 patients diagnosed with grade II oligodendrogliomas (ODII, n = 9), grade III oligodendrogliomas (ODIII, n = 22) and glioblastomas (GL, n = 19). Co-factor transcripts were significantly different in tumors as compared to non-tumoral samples and distinguished different molecular subgroups of brain tumors, regardless of tumor grade. Among all patients studied, the expression of HDAC1 and HDAC3 was inversely correlated with survival, whereas the expression of HDAC4, HDAC5, HDAC6, HDAC11 and SIRT1 was significantly and positively correlated with survival time of patients with gliomas. (1)H-HRMAS technology revealed metabolomically distinct groups according to the expression of HDAC1, HDAC4 and SIRT1, suggesting that these genes may play an important role in regulating brain tumorigenesis and cancer progression. Our study hence identified different molecular fingerprints for subgroups of histopathologically similar brain tumors that may enable the prediction of outcome based on the expression level of co-factor genes and could allow customization of treatment. PMID:25791281

  5. Histone deacetylase 3 represses p15{sup INK4b} and p21{sup WAF1/cip1} transcription by interacting with Sp1

    SciTech Connect

    Huang Weifeng [Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024 (China); Tan Dapeng [Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024 (China); Wang Xiuli [Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024 (China); Han Songyan [Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024 (China); Tan Jiang [Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024 (China); Zhao Yanmei [Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024 (China); Lu Jun [Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024 (China)]. E-mail: ycsuo@nenu.edu.cn; Huang Baiqu [Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024 (China)

    2006-01-06

    Histone deacetylase 3 (HDAC3) has been implicated to play roles in governing cell proliferation. Here we demonstrated that the overexpression of HDAC3 repressed transcription of p15{sup INK4b} and p21{sup WAF1/cip1} genes in 293T cells, and that the recruitment of HDAC3 to the promoter regions of these genes was critical to this repression. We also showed that HDAC3 repressed GAL4-Sp1 transcriptional activity, and that Sp1 was co-immunoprecipitated with FLAG-tagged HDAC3. We conclude that HDAC3 can repress p15{sup INK4b} and p21{sup WAF1/cip1} transcription by interacting with Sp1. Furthermore, knockdown of HDAC3 by RNAi up-regulated the transcriptional expression of p15{sup INK4b}, but not that of p21{sup WAF1/cip1}, implicating the different roles of HDAC3 in repression of p15{sup INK4b} and p21{sup WAF1/cip1} transcription. Data from this study indicate that the inhibition of p15{sup INK4b} and p21{sup WAF1/cip1} may be one of the mechanisms by which HDAC3 participates in cell cycle regulation and oncogenesis.

  6. Overview of Histone Deacetylase Inhibitors in Haematological Malignancies

    PubMed Central

    Bishton, Mark J.; Johnstone, Ricky W.; Dickinson, Michael; Harrison, Simon; Prince, H. Miles

    2010-01-01

    Histone deacetylase inhibitors (HDACi) can induce hyperacetylation of both histone and non-histone target resulting in epigenetic reprogramming and altered activity, stability and localisation of non-histone proteins to ultimately mediate diverse biological effects on cancer cells and their microenvironment. Clinical trials have demonstrated single agent HDACi to have activity in hematological malignancies, in particular T-cell lymphoma and Hodgkin lymphoma. Combination strategies with standard therapies based on pre-clinical data are being employed with significant success due to their excellent side effect profile. Correlative studies will provide valuable information on the sub-groups of patients more likely to respond or be resistant to HDACi therapy, while long-term monitoring for toxicities is also needed.

  7. Histone deacetylase inhibitors in the treatment of cancer: overview and perspectives.

    PubMed

    Giannini, Giuseppe; Cabri, Walter; Fattorusso, Caterina; Rodriquez, Manuela

    2012-07-01

    Histone deacetylase inhibitors (HDACis) are one of the last frontiers in pharmaceutical research. Several classes of HDACi have been identified. Although more than 20 HDACi are under preclinical and clinical investigation as single agents and in combination therapies against different cancers, just two of them were approved by the US FDA: Zolinza(®) and Istodax(®), both licensed for the treatment of cutaneous T-cell lymphoma, the latter also of peripheral T-cell lymphoma. Since HDAC enzymes act by forming multiprotein complexes (clusters), containing cofactors, the main problem in designing new HDACi is that the inhibition activity evaluated on isolated enzyme isoforms does not match the in vivo outcomes. In the coming years, the research will be oriented toward a better understanding of the functioning of these protein complexes as well as the development of new screening assays, with the final goal to obtain new drug candidates for the treatment of cancer. PMID:22857533

  8. A Novel Histone Deacetylase Inhibitor Exhibits Antitumor Activity via Apoptosis Induction, F-Actin Disruption and Gene Acetylation in Lung Cancer

    PubMed Central

    Tang, Yen-An; Wen, Wei-Ling; Chang, Jer-Wei; Wei, Tzi-Tang; Tan, Yi-Hung Carol; Salunke, Santosh; Chen, Chien-Tien; Chen, Ching-Shih; Wang, Yi-Ching

    2010-01-01

    Background Lung cancer is the leading cause of cancer mortality worldwide, yet the therapeutic strategy for advanced non-small cell lung cancer (NSCLC) is limitedly effective. In addition, validated histone deacetylase (HDAC) inhibitors for the treatment of solid tumors remain to be developed. Here, we propose a novel HDAC inhibitor, OSU-HDAC-44, as a chemotherapeutic drug for NSCLC. Methodology/Principal Findings The cytotoxicity effect of OSU-HDAC-44 was examined in three human NSCLC cell lines including A549 (p53 wild-type), H1299 (p53 null), and CL1-1 (p53 mutant). The antiproliferatative mechanisms of OSU-HDAC-44 were investigated by flow cytometric cell cycle analysis, apoptosis assays and genome-wide chromatin-immunoprecipitation-on-chip (ChIP-on-chip) analysis. Mice with established A549 tumor xenograft were treated with OSU-HDAC-44 or vehicle control and were used to evaluate effects on tumor growth, cytokinesis inhibition and apoptosis. OSU-HDAC-44 was a pan-HDAC inhibitor and exhibits 3–4 times more effectiveness than suberoylanilide hydroxamic acid (SAHA) in suppressing cell viability in various NSCLC cell lines. Upon OSU-HDAC-44 treatment, cytokinesis was inhibited and subsequently led to mitochondria-mediated apoptosis. The cytokinesis inhibition resulted from OSU-HDAC-44-mediated degradation of mitosis and cytokinesis regulators Auroroa B and survivin. The deregulation of F-actin dynamics induced by OSU-HDAC-44 was associated with reduction in RhoA activity resulting from srGAP1 induction. ChIP-on-chip analysis revealed that OSU-HDAC-44 induced chromatin loosening and facilitated transcription of genes involved in crucial signaling pathways such as apoptosis, axon guidance and protein ubiquitination. Finally, OSU-HDAC-44 efficiently inhibited A549 xenograft tumor growth and induced acetylation of histone and non-histone proteins and apoptosis in vivo. Conclusions/Significance OSU-HDAC-44 significantly suppresses tumor growth via induction of cytokinesis defect and intrinsic apoptosis in preclinical models of NSCLC. Our data provide compelling evidence that OSU-HDAC-44 is a potent HDAC targeted inhibitor and can be tested for NSCLC chemotherapy. PMID:20856855

  9. Effect of the angiotensin II receptor blocker valsartan on cardiac hypertrophy and myocardial histone deacetylase expression in rats with aortic constriction

    PubMed Central

    XU, WEI-PING; YAO, TONG-QING; JIANG, YI-BO; ZHANG, MAO-ZHEN; WANG, YUE-PENG; YU, YING; LI, JING-XIANG; LI, YI-GANG

    2015-01-01

    The aim of the present study was to observe the myocardial expression of members of the histone deacetylase (HDAC) family (HDAC2, HDAC5 and HDAC9) in rats with or without myocardial hypertrophy (MH) in the presence and absence of the angiotensin II receptor blocker valsartan. Adult male Wistar rats were randomly divided into three groups (n=6/group): Sham-operated control rats, treated with distilled water (1 ml/day) through gavage; rats with MH (established through aortic constriction), treated with distilled water (1 ml/day) through gavage; and MH + valsartan rats, treated with 20 mg/kg/day valsartan through gavage. Treatments commenced one day after surgery and continued for eight weeks. Body weight (BW), heart weight (HW) and plasma atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) levels were determined, and the myocardial expression of HDAC2, HDAC5 and HDAC9 was analyzed through a reverse transcription semi-quantitative polymerase chain reaction. The BWs of the rats in the three groups were similar at baseline; however, after eight weeks the BW of the rats in the MH + valsartan group was significantly reduced compared with that of the MH rats. Furthermore, the HW/BW ratio and plasma ANP and BNP levels were increased, the myocardial HDAC2 expression was significantly upregulated and the HDAC5 and HDAC9 expression was significantly downregulated in the MH rats compared with those in the control rats; however, these changes were significantly attenuated by valsartan. Modulation of myocardial HDAC5, HDAC9 and HDAC2 expression may therefore be one of the anti-hypertrophic mechanisms of valsartan in this rat MH model. PMID:26136964

  10. Inhibition of class I histone deacetylase activity represses matrix metalloproteinase-2 and -9 expression and preserves LV function postmyocardial infarction.

    PubMed

    Mani, Santhosh K; Kern, Christine B; Kimbrough, Denise; Addy, Benjamin; Kasiganesan, Harinath; Rivers, William T; Patel, Risha K; Chou, James C; Spinale, Francis G; Mukherjee, Rupak; Menick, Donald R

    2015-06-01

    Left ventricular (LV) remodeling, after myocardial infarction (MI), can result in LV dilation and LV pump dysfunction. Post-MI induction of matrix metalloproteinases (MMPs), particularly MMP-2 and MMP-9, have been implicated as causing deleterious effects on LV and extracellular matrix remodeling in the MI region and within the initially unaffected remote zone. Histone deacetylases (HDACs) are a class of enzymes that affect the transcriptional regulation of genes during pathological conditions. We assessed the efficacy of both class I/IIb- and class I-selective HDAC inhibitors on MMP-2 and MMP-9 abundance and determined if treatment resulted in the attenuation of adverse LV and extracellular matrix remodeling and improved LV pump function post-MI. MI was surgically induced in MMP-9 promoter reporter mice and randomized for treatment with a class I/IIb HDAC inhibitor for 7 days post-MI. After MI, LV dilation, LV pump dysfunction, and activation of the MMP-9 gene promoter were significantly attenuated in mice treated with either the class I/IIb HDAC inhibitor tichostatin A or suberanilohydroxamic acid (voronistat) compared with MI-only mice. Immunohistological staining and zymographic levels of MMP-2 and MMP-9 were reduced with either tichostatin A or suberanilohydroxamic acid treatment. Class I HDAC activity was dramatically increased post-MI. Treatment with the selective class I HDAC inhibitor PD-106 reduced post-MI levels of both MMP-2 and MMP-9 and attenuated LV dilation and LV pump dysfunction post-MI, similar to class I/IIb HDAC inhibition. Taken together, these unique findings demonstrate that selective inhibition of class I HDACs may provide a novel therapeutic means to attenuate adverse LV remodeling post-MI. PMID:25795711

  11. Nitric oxide determines mesodermic differentiation of mouse embryonic stem cells by activating class IIa histone deacetylases: potential therapeutic implications in a mouse model of hindlimb ischemia.

    PubMed

    Spallotta, Francesco; Rosati, Jessica; Straino, Stefania; Nanni, Simona; Grasselli, Annalisa; Ambrosino, Valeria; Rotili, Dante; Valente, Sergio; Farsetti, Antonella; Mai, Antonello; Capogrossi, Maurizio C; Gaetano, Carlo; Illi, Barbara

    2010-03-31

    In human endothelial cells, nitric oxide (NO) results in class IIa histone deacetylases (HDACs) activation and marked histone deacetylation. It is unknown whether similar epigenetic events occur in embryonic stem cells (ESC) exposed to NO and how this treatment could influence ESC therapeutic potential during tissue regeneration.This study reports that the NO-dependent class IIa HDACs subcellular localization and activity decreases the global acetylation level of H3 histones in ESC and that this phenomenon is associated with the inhibition of Oct4, Nanog, and KLF4 expression. Further, a NO-induced formation of macromolecular complexes including HDAC3, 4, 7, and protein phosphatase 2A (PP2A) have been detected. These processes correlated with the expression of the mesodermal-specific protein brachyury (Bry) and the appearance of several vascular and skeletal muscle differentiation markers. These events were abolished by the class IIa-specific inhibitor MC1568 and by HDAC4 or HDAC7 short interfering RNA (siRNA). The ability of NO to induce mesodermic/cardiovascular gene expression prompted us to evaluate the regenerative potential of these cells in a mouse model of hindlimb ischemia. We found that NO-treated ESCs injected into the cardiac left ventricle selectively localized in the ischemic hindlimb and contributed to the regeneration of muscular and vascular structures. These findings establish a key role for NO and class IIa HDACs modulation in ESC mesodermal commitment and enhanced regenerative potential in vivo. PMID:20073046

  12. Rapid changes in histone deacetylases and inflammatory gene expression in expert meditators

    PubMed Central

    Kaliman, Perla; Álvarez-López, María Jesús; Cosín-Tomás, Marta; Rosenkranz, Melissa A.; Lutz, Antoine; Davidson, Richard J.

    2013-01-01

    BACKGROUND A growing body of research shows that mindfulness meditation can alter neural, behavioral and biochemical processes. However, the mechanisms responsible for such clinically relevant effects remain elusive. METHODS Here we explored the impact of a day of intensive practice of mindfulness meditation in experienced subjects (n= 19) on the expression of circadian, chromatin modulatory and inflammatory genes in peripheral blood mononuclear cells (PBMCs). In parallel, we analyzed a control group of subjects with no meditation experience who engaged in leisure activities in the same environment (n= 21). PBMCs from all participants were obtained before (t1) and after (t2) the intervention (t2-t1= 8 hours) and gene expression was analyzed using custom pathway focused quantitative-real time PCR assays. Both groups were also presented with the Trier Social Stress Test (TSST). RESULTS Core clock gene expression at baseline (t1) was similar between groups and their rhythmicity was not influenced in meditators by the intensive day of practice. Similarly, we found that all the epigenetic regulatory enzymes and inflammatory genes analyzed exhibited similar basal expression levels in the two groups. In contrast, after the brief intervention we detected reduced expression of histone deacetylase genes (HDAC2, 3 and 9), alterations in global modification of histones (H4ac; H3K4me3) and decreased expression of pro-inflammatory genes (RIPK2 and COX2) in meditators compared with controls. We found that the expression of RIPK2 and HDAC2 genes was associated with a faster cortisol recovery to the TSST in both groups. CONCLUSIONS The regulation of HDACs and inflammatory pathways may represent some of the mechanisms underlying the therapeutic potential of mindfulness-based interventions. Our findings set the foundation for future studies to further assess meditation strategies for the treatment of chronic inflammatory conditions. PMID:24485481

  13. Histone deacetylase inhibition increases levels of choline kinase alpha and phosphocholine facilitating non-invasive imaging in human cancers

    PubMed Central

    Beloueche-Babari, Mounia; Arunan, Vaitha; Troy, Helen; te Poele, Robert H; Fong, Anne-Christine Wong Te; Jackson, L Elizabeth; Payne, Geoffrey S; Griffiths, John R; Judson, Ian R; Workman, Paul; Leach, Martin O; Chung, Yuen-Li

    2012-01-01

    Histone deacetylase (HDAC) inhibitors are currently approved for cutaneous T-cell lymphoma and are in mid-late stage trials for other cancers. The HDAC inhibitors LAQ824 and SAHA increase phosphocholine (PC) levels in human colon cancer cells and tumor xenografts as observed by magnetic resonance spectroscopy (MRS). In this study, we show that belinostat, an HDAC inhibitor with an alternative chemical scaffold, also caused a rise in cellular PC content that was detectable by 1H and 31P MRS in prostate and colon carcinoma cells. In addition, 1H MRS showed an increase in branched chain amino acid and alanine concentrations. 13C-choline labeling indicated that the rise in PC resulted from increased de novo synthesis and correlated with an induction of choline kinase ? (ChoK?) expression. Furthermore, metabolic labeling experiments with 13C-glucose showed that differential glucose routing favored alanine formation at the expense of lactate production. Additional analysis revealed increases in the choline/water and phosphomonoester (including PC)/total phosphate ratios in vivo. Together, our findings provide mechanistic insights into the impact of HDAC inhibition on cancer cell metabolism and highlight PC as a candidate non-invasive imaging biomarker for monitoring the action of HDAC inhibitors. PMID:22194463

  14. Histone deacetylase inhibitors are potent inducers of gene expression in latent EBV and sensitize lymphoma cells to nucleoside antiviral agents

    PubMed Central

    Ghosh, Sajal K.; Perrine, Susan P.; Williams, Robert M.

    2012-01-01

    Induction of EBV lytic-phase gene expression, combined with exposure to an antiherpes viral drug, represents a promising targeted therapeutic approach to EBV-associated lymphomas. Short-chain fatty acids or certain chemotherapeutics have been used to induce EBV lytic-phase gene expression in cultured cells and mouse models, but these studies generally have not translated into clinical application. The recent success of a clinical trial with the pan-histone deacetylase (pan-HDAC) inhibitor arginine butyrate and the antiherpes viral drug ganciclovir in the treatment of EBV lymphomas prompted us to investigate the potential of several HDAC inhibitors, including some new, highly potent compounds, to sensitize EBV+ human lymphoma cells to antiviral agents in vitro. Our study included short-chain fatty acids (sodium butyrate and valproic acid); hydroxamic acids (oxamflatin, Scriptaid, suberoyl anilide hydroxamic acid, panobinostat [LBH589], and belinostat [PXD101]); the benzamide MS275; the cyclic tetrapeptide apicidin; and the recently discovered HDAC inhibitor largazole. With the exception of suberoyl anilide hydroxamic acid and PXD101, all of the other HDAC inhibitors effectively sensitized EBV+ lymphoma cells to ganciclovir. LBH589, MS275, and largazole were effective at nanomolar concentrations and were 104 to 105 times more potent than butyrate. The effectiveness and potency of these HDAC inhibitors make them potentially applicable as sensitizers to antivirals for the treatment of EBV-associated lymphomas. PMID:22160379

  15. Highly active combination of BRD4 antagonist and histone deacetylase inhibitor against human acute myelogenous leukemia cells.

    PubMed

    Fiskus, Warren; Sharma, Sunil; Qi, Jun; Valenta, John A; Schaub, Leasha J; Shah, Bhavin; Peth, Karissa; Portier, Bryce P; Rodriguez, Melissa; Devaraj, Santhana G T; Zhan, Ming; Sheng, Jianting; Iyer, Swaminathan P; Bradner, James E; Bhalla, Kapil N

    2014-05-01

    The bromodomain and extra-terminal (BET) protein family members, including BRD4, bind to acetylated lysines on histones and regulate the expression of important oncogenes, for example, c-MYC and BCL2. Here, we demonstrate the sensitizing effects of the histone hyperacetylation-inducing pan-histone deacetylase (HDAC) inhibitor panobinostat on human acute myelogenous leukemia (AML) blast progenitor cells (BPC) to the BET protein antagonist JQ1. Treatment with JQ1, but not its inactive enantiomer (R-JQ1), was highly lethal against AML BPCs expressing mutant NPM1c+ with or without coexpression of FLT3-ITD or AML expressing mixed lineage leukemia fusion oncoprotein. JQ1 treatment reduced binding of BRD4 and RNA polymerase II to the DNA of c-MYC and BCL2 and reduced their levels in the AML cells. Cotreatment with JQ1 and the HDAC inhibitor panobinostat synergistically induced apoptosis of the AML BPCs, but not of normal CD34(+) hematopoietic progenitor cells. This was associated with greater attenuation of c-MYC and BCL2, while increasing p21, BIM, and cleaved PARP levels in the AML BPCs. Cotreatment with JQ1 and panobinostat significantly improved the survival of the NOD/SCID mice engrafted with OCI-AML3 or MOLM13 cells (P < 0.01). These findings highlight cotreatment with a BRD4 antagonist and an HDAC inhibitor as a potentially efficacious therapy of AML. PMID:24435446

  16. Beneficial effects of sodium butyrate in 6-OHDA induced neurotoxicity and behavioral abnormalities: Modulation of histone deacetylase activity.

    PubMed

    Sharma, Sorabh; Taliyan, Rajeev; Singh, Sumel

    2015-09-15

    Parkinson's disease (PD) is the second most common neurodegenerative disorder. Recent studies have investigated the involvement of epigenetic modifications in PD. Histone deacetylase (HDAC) inhibitors have been reported to be beneficial in cognitive and motor deficit states. The present study was designed to investigate the effect of sodium butyrate, a HDAC inhibitor in 6-hydroxydopamine (6-OHDA) - induced experimental PD like symptoms in rats. To produce motor deficit, 6-OHDA was administered unilaterally in the right medial forebrain bundle. Three weeks after 6-OHDA administration, the rats were challenged with apomorphine. Following this, the animals were treated with sodium butyrate (150 and 300mg/kg i.p.) once daily for 14 days. Movement abnormalities were assessed by battery of behavioral tests. Biochemically, oxidative stress markers, neuroinflammation and dopamine were measured in striatal brain homogenate. Further, to explore the molecular mechanism(s), we measured the level of global H3 histone acetylation and brain derived neurotrophic factor (BDNF). 6-OHDA administration results in significant motor deficit along with reduction in striatal dopamine level. 6-OHDA treated rats showed elevated oxidative stress and neuroinflammatory markers. Treatment with sodium butyrate results in significant attenuation of motor deficits and increased striatal dopamine level. Moreover, sodium butyrate treatment attenuated the oxidative stress and neuroinflammatory markers. These effects occur concurrently with increased global H3 histone acetylation and BDNF levels. Thus, the observed results of the present study are indicative for the therapeutic potential of HDAC inhibitors in PD. PMID:26048426

  17. Effect of histone deacetylase inhibitors trichostatin A and valproic acid on hair cell regeneration in zebrafish lateral line neuromasts

    PubMed Central

    He, Yingzi; Cai, Chengfu; Tang, Dongmei; Sun, Shan; Li, Huawei

    2014-01-01

    In humans, auditory hair cells are not replaced when injured. Thus, cochlear hair cell loss causes progressive and permanent hearing loss. Conversely, non-mammalian vertebrates are capable of regenerating lost sensory hair cells. The zebrafish lateral line has numerous qualities that make it well-suited for studying hair cell development and regeneration. Histone deacetylase (HDAC) activity has been shown to have an important role in regenerative processes in vertebrates, but its function in hair cell regeneration in vivo is not fully understood. Here, we have examined the role of HDAC activity in hair cell regeneration in the zebrafish lateral line. We eliminated lateral line hair cells of 5-day post-fertilization larvae using neomycin and then treated the larvae with HDAC inhibitors. To assess hair cell regeneration, we used 5-bromo-2-deoxyuridine (BrdU) incorporation in zebrafish larvae to label mitotic cells after hair cell loss. We found that pharmacological inhibition of HDACs using trichostatin A (TSA) or valproic acid (VPA) increased histone acetylation in the regenerated neuromasts following neomycin-induced damage. We also showed that treatment with TSA or VPA decreased the number of supporting cells and regenerated hair cells in response to hair cell damage. Additionally, BrdU immunostaining and western blot analysis showed that TSA or VPA treatment caused a significant decrease in the percentage of S-phase cells and induced p21Cip1 and p27Kip1 expression, both of which are likely to explain the decrease in the amount of newly regenerated hair cells in treated embryos. Finally, we showed that HDAC inhibitors induced no observable cell death in neuromasts as measured by cleaved caspase-3 immunohistochemistry and western blot analysis. Taken together, our results demonstrate that HDAC activity has an important role in the regeneration of hair cells in the lateral line. PMID:25431550

  18. 1-Arylsulfonyl-5-(N-hydroxyacrylamide)tetrahydroquinolines as potent histone deacetylase inhibitors suppressing the growth of prostate cancer cells.

    PubMed

    Liu, Yi-Min; Lee, Hsueh-Yun; Chen, Chun-Han; Lee, Chia-Hua; Wang, Li-Ting; Pan, Shiow-Lin; Lai, Mei-Jung; Yeh, Teng-Kuang; Liou, Jing-Ping

    2015-01-01

    This study describes the development of a series of 1-arylsulfonyl-6-(N-hydroxyacrylamide)tetrahydroquinolines, potent histone deacetylase (HDAC) inhibitors which are cytotoxic to PC-3 cells. (E)-N-hydroxy-3-(1-(4-methoxyphenylsulfonyl)-1,2,3,4-tetrahydroquinolin-6-yl)acrylamide (11) exhibits marked anti-HDAC and antiproliferative activity, and is slightly more effective than N(1)-hydroxy-N(8)-phenyloctanediamide (SAHA, Vorinostat, 1). In a xenograft tumor model, 11, at doses of 100 or 200 mg/kg orally, suppresses the growth of PC-3 cells and leads to tumor growth inhibition of 38.8% and 57.9%, respectively. Compound 11 is a lead compound for further development of potential prostate cancer inhibitors. PMID:25462248

  19. Liganded Peroxisome Proliferator-Activated Receptors (PPARs) Preserve Nuclear Histone Deacetylase 5 Levels in Endothelin-Treated Sprague-Dawley Rat Cardiac Myocytes

    PubMed Central

    Zhang, Haining; Shao, Zongjun; Alibin, Caroline P.; Acosta, Crystal; Anderson, Hope D.

    2014-01-01

    Ligand activation of peroxisome proliferator-activated receptors (PPARs) prevents cardiac myocyte hypertrophy, and we previously reported that diacylglycerol kinase zeta (DGK?) is critically involved. DGK? is an intracellular lipid kinase that catalyzes phosphorylation of diacylglycerol; by attenuating DAG signaling, DGK? suppresses protein kinase C (PKC) and G-protein signaling. Here, we investigated how PPAR-DGK? signaling blocks activation of the hypertrophic gene program. We focused on export of histone deacetylase 5 (HDAC5) from the nucleus, a key event during hypertrophy, since crosstalk occurs between PPARs and other members of the HDAC family. Using cardiac myocytes isolated from Sprague-Dawley rats, we determined that liganded PPARs disrupt endothelin-1 (ET1)-induced nuclear export of HDAC5 in a manner that is dependent on DGK?. When DGK?-mediated PKC inhibition was circumvented using a constitutively-active PKC? mutant, PPARs failed to block ET1-induced nuclear retention of HDAC5. Liganded PPARs also prevented (i) activation of protein kinase D (the downstream effector of PKC), (ii) HDAC5 phosphorylation at 14-3-3 protein chaperone binding sites (serines 259 and 498), and (iii) physical interaction between HDAC5 and 14-3-3, all of which are consistent with blockade of nucleo-cytoplasmic shuttling of HDAC5. Finally, the ability of PPARs to prevent neutralization of HDAC5 activity was associated with transcriptional repression of hypertrophic genes. This occurred by first, reduced MEF2 transcriptional activity and second, augmented deacetylation of histone H3 associated with hypertrophic genes expressing brain natriuretic peptide, ?-myosin heavy chain, skeletal muscle ?-actin, and cardiac muscle ?-actin. Our findings identify spatial regulation of HDAC5 as a target for liganded PPARs, and to our knowledge, are the first to describe a mechanistic role for nuclear DGK? in cardiac myocytes. In conclusion, these results implicate modulation of HDAC5 as a mechanism by which liganded PPARs suppress the hypertrophic gene program. PMID:25514029

  20. NR4A nuclear receptors support memory enhancement by histone deacetylase inhibitors

    PubMed Central

    Hawk, Joshua D.; Bookout, Angie L.; Poplawski, Shane G.; Bridi, Morgan; Rao, Allison J.; Sulewski, Michael E.; Kroener, Brian T.; Manglesdorf, David J.; Abel, Ted

    2012-01-01

    The formation of a long-lasting memory requires a transcription-dependent consolidation period that converts a short-term memory into a long-term memory. Nuclear receptors compose a class of transcription factors that regulate diverse biological processes, and several nuclear receptors have been implicated in memory formation. Here, we examined the potential contribution of nuclear receptors to memory consolidation by measuring the expression of all 49 murine nuclear receptors after learning. We identified 13 nuclear receptors with increased expression after learning, including all 3 members of the Nr4a subfamily. These CREB-regulated Nr4a genes encode ligand-independent “orphan” nuclear receptors. We found that blocking NR4A activity in memory-supporting brain regions impaired long-term memory but did not impact short-term memory in mice. Further, expression of Nr4a genes increased following the memory-enhancing effects of histone deacetylase (HDAC) inhibitors. Blocking NR4A signaling interfered with the ability of HDAC inhibitors to enhance memory. These results demonstrate that the Nr4a gene family contributes to memory formation and is a promising target for improving cognitive function. PMID:22996661

  1. Indole-3-ethylsulfamoylphenylacrylamides: potent histone deacetylase inhibitors with anti-inflammatory activity.

    PubMed

    Mehndiratta, Samir; Hsieh, Yi-Ling; Liu, Yi-Min; Wang, Amber Weiching; Lee, Hsueh-Yun; Liang, Lung-Yu; Kumar, Sunil; Teng, Che-Ming; Yang, Chia-Ron; Liou, Jing-Ping

    2014-10-01

    A series of 2-methyl-1H-indol-3-ethylsulfamoylphenylacrylamides based on LBH589-PXD101 core have been synthesized and evaluated for their histone deacetylase (HDAC) inhibitory and anti-inflammatory activity. In vitro, compounds 9-12 show 2.6-fold better HDAC inhibition and 3-fold better IL-6 suppression compared to LBH589·HCl (1·HCl). Furthermore, these compounds did not show apparent cell viability suppression on macrophages while in contrast, treatment with 1·HCl resulted in significant reduction in cell viability as demonstrated by an MTT assay. Repressed expression of iNOS, COX-2 and reduced phosphorylation of p65 revealed the inhibitory effect of these analogues on inflammatory mediator release which is related to inhibited NF-?B signals. (N-Hydroxy-3-{3-[2-(2-methyl-1H-indol-3-yl)-ethylsulfamoyl]-phenyl}-acrylamide) (9), exhibited ability superior to that of 1·HCl, was able to reduce carrageenan-induced acute inflammation in an animal model. Compounds 9-12 have potential anti-inflammatory activity and compound 9 can serve as lead compound for further development. PMID:25113875

  2. Biosynthesis and role in virulence of the histone deacetylase inhibitor depudecin from Alternaria brassicicola.

    PubMed

    Wight, Wanessa D; Kim, Kwang-Hyung; Lawrence, Christopher B; Walton, Jonathan D

    2009-10-01

    Depudecin, an eleven-carbon linear polyketide made by the pathogenic fungus Alternaria brassicicola, is an inhibitor of histone deacetylase (HDAC). A chemically unrelated HDAC inhibitor, HC toxin, was earlier shown to be a major virulence factor in the interaction between Cochliobolus carbonum and its host, maize. In order to test whether depudecin is also a virulence factor for A. brassicicola, we identified the genes for depudecin biosynthesis and created depudecin-minus mutants. The depudecin gene cluster contains six genes (DEP1 to DEP6), which are predicted to encode a polyketide synthase (AbPKS9 or DEP5), a transcription factor (DEP6), two monooxygenases (DEP2 and DEP4), a transporter of the major facilitator superfamily (DEP3), and one protein of unknown function (DEP1). The involvement in depudecin production of DEP2, DEP4, DEP5, and DEP6 was demonstrated by targeted gene disruption. DEP6 is required for expression of DEP1 through DEP5 but not the immediate flanking genes, thus defining a coregulated depudecin biosynthetic cluster. The genes flanking the depudecin gene cluster but not the cluster itself are conserved in the same order in the related fungi Stagonospora nodorum and Pyrenophora tritici-repentis. Depudecin-minus mutants have a small (10%) but statistically significant reduction in virulence on cabbage (Brassica oleracea) but not on Arabidopsis. The role of depudecin in virulence is, therefore, less dramatic than that of HC toxin. PMID:19737099

  3. Histone deacetylase inhibitors induce apoptosis in myeloid leukemia by suppressing autophagy

    PubMed Central

    Stankov, Metodi V.; Khatib, Mona El; Thakur, Basant Kumar; Heitmann, Kirsten; Panayotova-Dimitrova, Diana; Schoening, Jennifer; Bourquin, Jean-Pierre; Schweitzer, Nora; Leverkus, Martin; Welte, Karl; Reinhardt, Dirk; Li, Zhe; Orkin, Stuart H.; Behrens, Georg M.N.; Klusmann, Jan-Henning

    2014-01-01

    Histone deacetylase (HDAC)-inhibitors (HDACis) are well characterized anti-cancer agents with promising results in clinical trials. However, mechanistically little is known regarding their selectivity in killing malignant cells while sparing normal cells. Gene expression-based chemical genomics identified HDACis as being particularly potent against Down syndrome associated myeloid leukemia (DS-AMKL) blasts. Investigating the anti-leukemic function of HDACis revealed their transcriptional and posttranslational regulation of key autophagic proteins, including ATG7. This leads to suppression of autophagy, a lysosomal degradation process that can protect cells against damaged or unnecessary organelles and protein aggregates. DS-AMKL cells exhibit low baseline autophagy due to mTOR activation. Consequently, HDAC inhibition repressed autophagy below a critical threshold, which resulted in accumulation of mitochondria, production of reactive oxygen species, DNA-damage and apoptosis. Those HDACi-mediated effects could be reverted upon autophagy activation or aggravated upon further pharmacological or genetic inhibition. Our findings were further extended to other major acute myeloid leukemia subgroups with low basal level autophagy. The constitutive suppression of autophagy due to mTOR activation represents an inherent difference between cancer and normal cells. Thus, via autophagy suppression, HDACis deprive cells of an essential pro-survival mechanism, which translates into an attractive strategy to specifically target cancer cells. PMID:24080946

  4. Inhibition of iNOS expression and NO production by anti-inflammatory steroids. Reversal by histone deacetylase inhibitors.

    PubMed

    Hämäläinen, Mari; Lilja, Riikka; Kankaanranta, Hannu; Moilanen, Eeva

    2008-01-01

    In inflammation, nitric oxide (NO) is produced by inducible nitric oxide synthase (iNOS) induced by bacterial products and cytokines, and NO acts as a regulatory and pro-inflammatory mediator. Glucocorticoids are powerful anti-inflammatory agents that inhibit the expression of iNOS and various other inflammatory factors. Histone deacetylation has been recently described as a novel mechanism how glucocorticoids down-regulate transcriptional activation of some inflammatory genes. The aim of the present study was to investigate the effects of inhibitors of histone deacetylation on the suppressive effects of glucocorticoids on NO production and iNOS expression. Dexamethasone and a dissociated glucocorticoid RU24858 inhibited NO production, and iNOS protein and mRNA expression in macrophages exposed to bacterial lipopolysaccharide (LPS). In the presence of a glucocorticoid receptor (GR) antagonist mifepristone, dexamethasone and RU24858 had no effect on NO production. The role of histone deacetylation in the glucocorticoid effect was studied by using three structurally different inhibitors of histone deacetylases (HDACs): trichostatin A, apicidin and MC1293. HDAC inhibitors reversed the effects of dexamethasone and RU24858 on iNOS expression and NO production. Stably transfected A549/8 cells containing luciferase gene under the control of human iNOS promoter were used in promoter-activity studies. iNOS promoter activity induced by IL-1beta was inhibited by dexamethasone and the inhibitory effect was reversed by HDAC inhibitor trichostatin A. The results suggest that glucocorticoids inhibit iNOS expression and NO production by a GR-mediated and GRE-independent manner through histone deacetylation and transcriptional silencing. PMID:17913526

  5. Histone deacetylase inhibitors modulate the transcriptional regulation of guanylyl cyclase/natriuretic peptide receptor-a gene: interactive roles of modified histones, histone acetyltransferase, p300, AND Sp1.

    PubMed

    Kumar, Prerna; Tripathi, Satyabha; Pandey, Kailash N

    2014-03-01

    Atrial natriuretic peptide (ANP) binds guanylyl cyclase-A/natriuretic peptide receptor-A (GC-A/NPRA) and produces the intracellular second messenger, cGMP, which regulates cardiovascular homeostasis. We sought to determine the function of histone deacetylases (HDACs) in regulating Npr1 (coding for GC-A/NPRA) gene transcription, using primary mouse mesangial cells treated with class-specific HDAC inhibitors (HDACi). Trichostatin A, a pan inhibitor, and mocetinostat (MGCD0103), a class I HDAC inhibitor, significantly enhanced Npr1 promoter activity (by 8- and 10-fold, respectively), mRNA levels (4- and 5.3-fold, respectively), and NPRA protein (2.7- and 3.5-fold, respectively). However, MC1568 (class II HDAC inhibitor) had no discernible effect. Overexpression of HDAC1 and HDAC2 significantly attenuated Npr1 promoter activity, whereas HDAC3 and HDAC8 had no effect. HDACi-treated cultured cells in vitro and intact animals in vivo showed significantly reduced binding of HDAC1 and -2 and increased accumulation of acetylated H3-K9/14 and H4-K12 at the Npr1 promoter. Deletional analyses of the Npr1 promoter along with ectopic overexpression and inhibition of Sp1 confirmed that HDACi-induced Npr1 gene transcription is accomplished by Sp1 activation. Furthermore, HDACi attenuated the interaction of Sp1 with HDAC1/2 and promoted Sp1 association with p300 and p300/cAMP-binding protein-associated factor; it also promoted the recruitment of p300 and p300/cAMP-binding protein-associated factor to the Npr1 promoter. Our results demonstrate that trichostatin A and MGCD0103 enhanced Npr1 gene expression through inhibition of HDAC1/2 and increased both acetylation of histones (H3-K9/14, H4-K12) and Sp1 by p300, and their recruitment to Npr1 promoter. Our findings define a novel epigenetic regulatory mechanism that governs Npr1 gene transcription. PMID:24451378

  6. Human Cytomegalovirus pUL97 Regulates the Viral Major Immediate Early Promoter by Phosphorylation-Mediated Disruption of Histone Deacetylase 1 Binding

    PubMed Central

    Bigley, Tarin M.; Reitsma, Justin M.; Mirza, Shama P.

    2013-01-01

    Human cytomegalovirus (HCMV) is a common agent of congenital infection and causes severe disease in immunocompromised patients. Current approved therapies focus on inhibiting viral DNA replication. The HCMV kinase pUL97 contributes to multiple stages of viral infection including DNA replication, controlling the cell cycle, and virion maturation. Our studies demonstrate that pUL97 also functions by influencing immediate early (IE) gene expression during the initial stages of infection. Inhibition of kinase activity using the antiviral compound maribavir or deletion of the UL97 gene resulted in decreased expression of viral immediate early genes during infection. Expression of pUL97 was sufficient to transactivate IE1 gene expression from the viral genome, which was dependent on viral kinase activity. We observed that pUL97 associates with histone deacetylase 1 (HDAC1). HDAC1 is a transcriptional corepressor that acts to silence expression of viral genes. We observed that inhibition or deletion of pUL97 kinase resulted in increased HDAC1 and decreased histone H3 lysine 9 acetylation associating with the viral major immediate early (MIE) promoter. IE expression during pUL97 inhibition or deletion was rescued following inhibition of deacetylase activity. HDAC1 associates with chromatin by protein-protein interactions. Expression of active but not inactive pUL97 kinase decreased HDAC1 interaction with the transcriptional repressor protein DAXX. Finally, using mass spectrometry, we found that HDAC1 is uniquely phosphorylated upon expression of pUL97. Our results support the conclusion that HCMV pUL97 kinase regulates viral immediate early gene expression by phosphorylation-mediated disruption of HDAC1 binding to the MIE promoter. PMID:23616659

  7. Histone deacetylase 6 inhibition improves memory and reduces total tau levels in a mouse model of tau deposition

    PubMed Central

    2014-01-01

    Introduction Tau pathology is associated with a number of age-related neurodegenerative disorders. Few treatments have been demonstrated to diminish the impact of tau pathology in mouse models and none are yet effective in humans. Histone deacetylase 6 (HDAC6) is an enzyme that removes acetyl groups from cytoplasmic proteins, rather than nuclear histones. Its substrates include tubulin, heat shock protein 90 and cortactin. Tubastatin A is a selective inhibitor of HDAC6. Modification of tau pathology by specific inhibition of HDAC6 presents a potential therapeutic approach in tauopathy. Methods We treated rTg4510 mouse models of tau deposition and non-transgenic mice with tubastatin (25 mg/kg) or saline (0.9%) from 5 to 7 months of age. Cognitive behavior analysis, histology and biochemical analysis were applied to access the effect of tubastatin on memory, tau pathology and neurodegeneration (hippocampal volume). Results We present data showing that tubastatin restored memory function in rTg4510 mice and reversed a hyperactivity phenotype. We further found that tubastatin reduced the levels of total tau, both histologically and by western analysis. Reduction in total tau levels was positively correlated with memory improvement in these mice. However, there was no impact on phosphorylated forms of tau, either by histology or western analysis, nor was there an impact on silver positive inclusions histologically. Conclusion Potential mechanisms by which HDAC6 inhibitors might benefit the rTg4510 mouse include stabilization of microtubules secondary to increased tubulin acetylation, increased degradation of tau secondary to increased acetylation of HSP90 or both. These data support the use of HDAC6 inhibitors as potential therapeutic agents against tau pathology. PMID:24576665

  8. Preclinical Studies in the mdx Mouse Model of Duchenne Muscular Dystrophy with the Histone Deacetylase Inhibitor Givinostat

    PubMed Central

    Consalvi, Silvia; Mozzetta, Chiara; Bettica, Paolo; Germani, Massimiliano; Fiorentini, Francesco; Del Bene, Francesca; Rocchetti, Maurizio; Leoni, Flavio; Monzani, Valmen; Mascagni, Paolo; Puri, Pier Lorenzo; Saccone, Valentina

    2013-01-01

    Previous work has established the existence of dystrophin–nitric oxide (NO) signaling to histone deacetylases (HDACs) that is deregulated in dystrophic muscles. As such, pharmacological interventions that target HDACs (that is, HDAC inhibitors) are of potential therapeutic interest for the treatment of muscular dystrophies. In this study, we explored the effectiveness of long-term treatment with different doses of the HDAC inhibitor givinostat in mdx mice—the mouse model of Duchenne muscular dystrophy (DMD). This study identified an efficacy for recovering functional and histological parameters within a window between 5 and 10 mg/kg/d of givinostat, with evident reduction of the beneficial effects with 1 mg/kg/d dosage. The long-term (3.5 months) exposure of 1.5-month-old mdx mice to optimal concentrations of givinostat promoted the formation of muscles with increased cross-sectional area and reduced fibrotic scars and fatty infiltration, leading to an overall improvement of endurance performance in treadmill tests and increased membrane stability. Interestingly, a reduced inflammatory infiltrate was observed in muscles of mdx mice exposed to 5 and 10 mg/kg/d of givinostat. A parallel pharmacokinetic/pharmacodynamic analysis confirmed the relationship between the effective doses of givinostat and the drug distribution in muscles and blood of treated mice. These findings provide the preclinical basis for an immediate translation of givinostat into clinical studies with DMD patients. PMID:23552722

  9. Targeted inhibition of histone deacetylases and hedgehog signaling suppress tumor growth and homologous recombination in aerodigestive cancers

    PubMed Central

    Chun, Stephen G; Park, Hyunsil; Pandita, Raj K; Horikoshi, Nobuo; Pandita, Tej K; Schwartz, David L; Yordy, John S

    2015-01-01

    Standard combined modality therapies for aerodigestive tract malignancies have suboptimal outcomes, and targeting cancer-specific molecular pathways in combination with radiation could improve the therapeutic ratio. Dysregulation of epigenetic modulators such as histone deacetylases (HDACs), and developmental morphogens such as the hedgehog (HH) pathway have been implicated in aerodigestive tumor progression and metastasis. We hypothesized that simultaneous targeting of HDACs and the HH-pathway mediator Smoothened (Smo) represents an opportunity to overcome therapeutic resistance in these cancers. We evaluated the effects of the HDAC inhibitor SAHA and Smo inhibitor GDC-0449 with radiation in multiple aerodigestive cancer cell lines. Isobologram analyses showed that SAHA and GDC-0449 synergistically suppressed cancer cell proliferation in vitro. SAHA and GDC-0449 cooperatively enhanced G0/G1 cell cycle arrest which was associated with up-regulation of p21waf. GDC-0449 prevented SAHA-induced up-regulation of Gli-1 and Gli-2. Both Smo and Ptc-1 expression was cooperatively suppressed by SAHA and GDC-0449. The combination of SAHA and GDC-0449 induced radiation sensitization with 2 Gy as determined by colony formation assays and cytogenetic analyses, which correlated with higher residual ?-H2AX and 53BP1 foci. In mouse tumor xenografts of the SqCC/Y1 cell line, SAHA and GDC-0449 delayed tumor growth longer and prolonged survival more than either agent alone. In summary, we have identified synergistic effect of HDAC and HH signaling for radiosensitization to improve therapeutic outcomes for aerodigestive malignancies.

  10. Histone Deacetylase Inhibitor Romidepsin Has Differential Activity in Core Binding Factor Acute Myeloid Leukemia

    PubMed Central

    Odenike, Olatoyosi M.; Alkan, Serhan; Sher, Dorie; Godwin, John E.; Huo, Dezheng; Brandt, Stephen J.; Green, Margaret; Xie, Jingping; Zhang, Yanming; Vesole, David H.; Stiff, Patrick; Wright, John; Larson, Richard A.; Stock, Wendy

    2015-01-01

    Purpose Recruitment of histone deacetylases (HDAC) is a mechanism of transcriptional repression implicated in the differentiation block in acute myeloid leukemia (AML). We hypothesized that the HDAC inhibitor romidepsin could cause transcriptional derepression, up-regulation of specific target genes in AML, and differentiation of the leukemic clone. The primary objectives of the study were to evaluate the safety and efficacy of romidepsin in advanced AML. Experimental Design Twenty patients were stratified into cohort A or B based on the absence or presence of chromosomal abnormalities known to recruit HDACs, including those involving core binding factor (CBF). Romidepsin was administered i.v. at 13 mg/m2/d on days 1,8, and 15 of a 28-day cycle. Pharmacodynamic endpoints were evaluated at serial time points. Results Common adverse effects noted were grade 1 to 2 nausea, anorexia, and fatigue. No objective evidence of antileukemic activity was seen in cohort A. In cohort B, although there were no clinical responses by standard criteria, antileukemic activity was observed in 5 of 7 patients. Two patients had clearance of bone marrow blasts and 3 patients had a >50% decrease in bone marrow blasts. Furthermore, in cohort B, at 24 h, there was a significant increase in MDR1 (P = 0.005), p15 (P = 0.01), and p14 (P < 0.0001) expression. In cohort A, although there was a trend toward up-regulation of MDR1, p15, and p14 expression, these changes were not statistically significant. Conclusion Romidepsin has differential antileukemic and molecular activity in CBF AML. Development of this agent in CBF AML should focus on combinations that target related mechanisms of gene silencing such as DNA methylation. PMID:18981008

  11. The paradox of histone deacetylase inhibitor-mediated modulation of cellular responses to radiation.

    PubMed

    Karagiannis, Tom C; El-Osta, Assam

    2006-02-01

    Given the widespread use of radiotherapy in cancer, there has been a longstanding interest in the development of chemical compounds that can modify cellular responses to ionizing radiation. Additionally, recent terrorism threats suggesting attacks with 'dirty bombs' containing combinations of radioactive isotopes with conventional explosives, has increased the interest in compounds that can protect from radiation injury. Histone deacetylase inhibitors represent a new class of compounds that can modulate the effects of radiation. Research with histone deacetylase inhibitors has largely focussed on the consequences of their ability to alter gene transcription via histone acetylation and on their properties as anti-cancer agents. They have been shown to cause cell cycle and growth arrest, differentiation and in certain cases apoptosis in cell cultures and in vivo. In addition to their intrinsic anti-cancer properties, numerous studies have demonstrated that histone deacetylase inhibitors can modulate cellular responses to other toxicity-inducing modalities including ionizing radiation. The consensus is that histone deacetylase inhibitors markedly enhance the sensitivity of cells to radiation by altering numerous molecular pathways. Intriguingly, a report has also shown that histone deacetylase inhibitors can reduce radiation induced acute and late skin damage using a well-established animal model of cutaneous radiation syndrome. Hence, there is an emerging interest in potential use of histone deacetylase inhibitors as radiation sensitizers or protectors. This review focuses on the different mechanisms by which histone deacetylase inhibitors modify cellular responses to ionizing radiation. PMID:16418577

  12. Gcn5 Modulates the Cellular Response to Oxidative Stress and Histone Deacetylase Inhibition.

    PubMed

    Gaupel, Ann-Christin; Begley, Thomas J; Tenniswood, Martin

    2015-09-01

    To identify chemical genetic interactions underlying the mechanism of action of histone deacetylase inhibitors (HDACi) a yeast deletion library was screened for hypersensitive deletion mutants that confer increased sensitivity to the HDACi, CG-1521. The screen demonstrated that loss of GCN5 or deletion of components of the Gcn5 histone acetyltransferase (HAT) complex, SAGA, sensitizes yeast to CG-1521-induced cell death. Expression profiling after CG-1521 treatment reveals increased expression of genes involved in metabolism and oxidative stress response, and oxidative stress response mutants are hypersensitive to CG-1521 treatment. Accumulation of reactive oxygen species and increased cell death are enhanced in the gcn5? deletion mutant, and are abrogated by anti-oxidants, indicating a central role of oxidative stress in CG-1521-induced cell death. In human cell lines, siRNA mediated knockdown of GCN5 or PCAF, or chemical inhibition of GCN5 enzymatic activity, increases the sensitivity to CG-1521 and SAHA. These data suggest that the combination of HDAC and GCN5/PCAF inhibitors can be used for cancer treatment. J. Cell. Biochem. 116: 1982-1992, 2015. © 2015 Wiley Periodicals, Inc. PMID:25755069

  13. Immunomodulatory effects of deacetylase inhibitors: therapeutic targeting of FOXP3+ regulatory T cells

    Microsoft Academic Search

    Liqing Wang; Edwin F. de Zoeten; Mark I. Greene; Wayne W. Hancock

    2009-01-01

    Classical zinc-dependent histone deacetylases (HDACs) catalyse the removal of acetyl groups from histone tails and also from many non-histone proteins, including the transcription factor FOXP3, a key regulator of the development and function of regulatory T cells. Many HDAC inhibitors are in cancer clinical trials, but a subset of HDAC inhibitors has important anti-inflammatory or immunosuppressive effects that might be

  14. Allyl mercaptan, a garlic-derived organosulfur compound, inhibits histone deacetylase and enhances Sp3 binding on the P21WAF1 promoter

    PubMed Central

    Nian, Hui; Delage, Barbara; Pinto, John T.; Dashwood, Roderick H.

    2008-01-01

    Histone deacetylase (HDAC) inhibitors have the potential to derepress epigenetically silenced genes in cancer cells, leading to cell cycle arrest and apoptosis. In the present study, we screened several garlic-derived small organosulfur compounds for their ability to inhibit HDAC activity in vitro. Among the organosulfur compounds examined, allyl mercaptan (AM) was the most potent HDAC inhibitor. Molecular modeling, structure activity and enzyme kinetics studies with purified human HDAC8 provided evidence for a competitive mechanism (Ki?=?24 ?M AM). In AM-treated human colon cancer cells, HDAC inhibition was accompanied by a rapid and sustained accumulation of acetylated histones in total cellular chromatin. Chromatin immunoprecipitation assays confirmed the presence of hyperacetylated histone H3 on the P21WAF1 gene promoter within 4 h of AM exposure, and there was increased binding of the transcription factor Sp3. At a later time, 24 h after AM treatment, there was enhanced binding of p53 in the distal enhancer region of the P21WAF1 gene promoter. These findings suggest a primary role for Sp3 in driving P21 gene expression after HDAC inhibition by AM, followed by the subsequent recruitment of p53. Induction of p21Waf1 protein expression was detected at time points between 3 and 72 h after AM treatment and coincided with growth arrest in G1 of the cell cycle. The results are discussed in the context of other anticarcinogenic mechanisms ascribed to garlic organosulfur compounds and the metabolic conversion of such compounds to potential HDAC inhibitors in situ. PMID:18628250

  15. Association between histone deacetylases and the loss of cochlear hair cells: Role of the former in noise-induced hearing loss.

    PubMed

    Wen, Li-Ting; Wang, Jie; Wang, Ye; Chen, Fu-Quan

    2015-08-01

    Noise-induced hearing loss (NIHL) is one of the most frequent disabilities in industrialized countries. It has been demonstrated that hair cell loss in the auditory end organ may account for the majority of ear pathological conditions. Previous studies have indicated that histone deacetylases (HDACs) play an important role in neurodegenerative diseases, including hearing impairment, in older persons. Thus, we hypothesized that the inhibition of HDACs would prevent hair cell loss and, consequently, NIHL. In the present study, a CBA/J mouse model of NIHL was established. Following an injection with the HDAC inhibitor, suberoylanilide hydroxamic acid (SAHA), the expression levels of HDAC1, HDAC4 and acetyl-histone H3 (Lys9) (H3?AcK9) were measured. The number of hair cells was quantified and their morphology was observed. The results revealed that 1 h following exposure to 110 dB SPL broadband noise, there was a significant increase in HDAC1 and HDAC4 expression, and a marked decrease in the H3?AcK9 protein levels, as shown by western blot analysis. Pre-treatment with SAHA significantly inhibited these effects. Two weeks following exposure to noise, the mice exhibited significant hearing impairment and an obvious loss in the number of outer hair cells. An abnormal cell morphology with cilia damage was also observed. Pre-treatment with SAHA markedly attenuated these noise?induced effects. Taken together, the findings of our study suggest that HDAC expression is associated with outer hair cell function and plays a significant role in NIHL. Our data indicate that SAHA may be a potential therapeutic agent for the prevention of NIHL. PMID:26046130

  16. HDAC inhibitors restore the capacity of aged mice to respond to haloperidol through modulation of histone acetylation.

    PubMed

    Montalvo-Ortiz, Janitza L; Keegan, Jack; Gallardo, Christopher; Gerst, Nicolas; Tetsuka, Kazuhiro; Tucker, Chris; Matsumoto, Mitsuyuki; Fang, Deyu; Csernansky, John G; Dong, Hongxin

    2014-05-01

    Antipsychotic drugs are widely prescribed to elderly patients for the treatment of a variety of psychopathological conditions, including psychosis and the behavioral disturbances associated with dementia. However, clinical experience suggests that these drugs may be less efficacious in the elderly individuals than in the young. Recent studies suggest that aging may be associated with epigenetic changes and that valproic acid (VPA), a histone deacetylase inhibitor, may reverse such changes. However, it is not yet known whether HDAC inhibitors can modulate age-related epigenetic changes that may impact antipsychotic drug action. In this study, we analyzed conditioned avoidance response (CAR) and c-Fos expression patterns to elucidate the effect of HDAC inhibitors VPA and entinostat (MS-275) on behavioral and molecular markers of the effects of haloperidol (HAL) in aged mice. Our results showed that HAL administration failed to suppress the avoidance response during the CAR test, suggesting an age-related decrease in drug efficacy. In addition, HAL-induced c-Fos expression in the nucleus accumbens shell and prefrontal cortex was significantly lower in aged mice as compared with young mice. Pretreatment with VPA and MS-275 significantly improved HAL effects on the CAR test in aged mice. Also, VPA and MS-275 pretreatment restored HAL-induced increases in c-Fos expression in the nucleus accumbens shell and prefrontal cortex of aged mice to levels comparable with those observed in young mice. Lastly, but most importantly, increases in c-Fos expression and HAL efficacy in the CAR test of the HAL+VPA and HAL+MS-275 groups were correlated with elevated histone acetylation at the c-fos promoter region in aged mice. These findings suggest that pretreatment with VPA or MS-275 increases the behavioral and molecular effects of HAL in aged mice and that these effects occur via modulation of age-related histone hypoacetylation in the nucleus accumbens shell and prefrontal cortex. PMID:24366052

  17. Histone Deacetylase Inhibitors Globally Enhance H3/H4 Tail Acetylation Without Affecting H3 Lysine 56 Acetylation

    PubMed Central

    Drogaris, Paul; Villeneuve, Valérie; Pomiès, Christelle; Lee, Eun-Hye; Bourdeau, Véronique; Bonneil, Éric; Ferbeyre, Gerardo; Verreault, Alain; Thibault, Pierre

    2012-01-01

    Histone deacetylase inhibitors (HDACi) represent a promising avenue for cancer therapy. We applied mass spectrometry (MS) to determine the impact of clinically relevant HDACi on global levels of histone acetylation. Intact histone profiling revealed that the HDACi SAHA and MS-275 globally increased histone H3 and H4 acetylation in both normal diploid fibroblasts and transformed human cells. Histone H3 lysine 56 acetylation (H3K56ac) recently elicited much interest and controversy due to its potential as a diagnostic and prognostic marker for a broad diversity of cancers. Using quantitative MS, we demonstrate that H3K56ac is much less abundant than previously reported in human cells. Unexpectedly, in contrast to H3/H4 N-terminal tail acetylation, H3K56ac did not increase in response to inhibitors of each class of HDACs. In addition, we demonstrate that antibodies raised against H3K56ac peptides cross-react against H3 N-terminal tail acetylation sites that carry sequence similarity to residues flanking H3K56. PMID:22355734

  18. The Histone Deacetylase Inhibitor Vorinostat (SAHA) Increases the Susceptibility of Uninfected CD4+ T Cells to HIV by Increasing the Kinetics and Efficiency of Postentry Viral Events

    PubMed Central

    Lucera, Mark B.; Tilton, Carisa A.; Mao, Hongxia; Dobrowolski, Curtis; Tabler, Caroline O.; Haqqani, Aiman A.; Karn, Jonathan

    2014-01-01

    ABSTRACT Latently infected cells remain a primary barrier to eradication of HIV-1. Over the past decade, a better understanding of the molecular mechanisms by which latency is established and maintained has led to the discovery of a number of compounds that selectively reactivate latent proviruses without inducing polyclonal T cell activation. Recently, the histone deacetylase (HDAC) inhibitor vorinostat has been demonstrated to induce HIV transcription from latently infected cells when administered to patients. While vorinostat will be given in the context of antiretroviral therapy (ART), infection of new cells by induced virus remains a clinical concern. Here, we demonstrate that vorinostat significantly increases the susceptibility of CD4+ T cells to infection by HIV in a dose- and time-dependent manner that is independent of receptor and coreceptor usage. Vorinostat does not enhance viral fusion with cells but rather enhances the kinetics and efficiency of postentry viral events, including reverse transcription, nuclear import, and integration, and enhances viral production in a spreading-infection assay. Selective inhibition of the cytoplasmic class IIb HDAC6 with tubacin recapitulated the effect of vorinostat. These findings reveal a previously unknown cytoplasmic effect of HDAC inhibitors promoting productive infection of CD4+ T cells that is distinct from their well-characterized effects on nuclear histone acetylation and long-terminal-repeat (LTR) transcription. Our results indicate that careful monitoring of patients and ART intensification are warranted during vorinostat treatment and indicate that HDAC inhibitors that selectively target nuclear class I HDACs could reactivate latent HIV without increasing the susceptibility of uninfected cells to HIV. IMPORTANCE HDAC inhibitors, particularly vorinostat, are currently being investigated clinically as part of a “shock-and-kill” strategy to purge latent reservoirs of HIV. We demonstrate here that vorinostat increases the susceptibility of uninfected CD4+ T cells to infection with HIV, raising clinical concerns that vorinostat may reseed the viral reservoirs it is meant to purge, particularly under conditions of suboptimal drug exposure. We demonstrate that vorinostat acts following viral fusion and enhances the kinetics and efficiency of reverse transcription, nuclear import, and integration. The effect of vorinostat was recapitulated using the cytoplasmic histone deacetylase 6 (HDAC6) inhibitor tubacin, revealing a novel and previously unknown cytoplasmic mechanism of HDAC inhibitors on HIV replication that is distinct from their well-characterized effects of long-terminal-repeat (LTR)-driven gene expression. Moreover, our results suggest that treatment of patients with class I-specific HDAC inhibitors could induce latent viruses without increasing the susceptibility of uninfected cells to HIV. PMID:25008921

  19. The histone deacetylase inhibitor sodium butyrate decreases excessive ethanol intake in dependent animals.

    PubMed

    Simon-O'Brien, Emmanuelle; Alaux-Cantin, Stéphanie; Warnault, Vincent; Buttolo, Romain; Naassila, Mickaël; Vilpoux, Catherine

    2015-07-01

    Converging evidence indicates that epigenetic mechanisms are involved in drug addiction, and that enzymes involved in chromatin remodeling may represent interesting targets in addiction treatment. No study has addressed whether histone deacetylase (HDAC) inhibitors (HDACi) can reduce excessive ethanol intake or prevent relapse in alcohol-dependent animals. Here, we assessed the effects of two HDACi, sodium butyrate (NaB) and MS-275, in the operant ethanol self-administration paradigm in dependent and non-dependent rats. To characterize some of the epigenetic mechanisms associated with alcohol dependence and NaB treatment, we measured the levels of histone H3 acetylation in different brain areas of dependent and non-dependent rats, submitted or not to NaB treatment. Our results demonstrated that (1) NaB and MS-275 strongly decreased excessive alcohol intake of dependent rats in the operant ethanol self-administration paradigm but not of non-dependent rats; (2) NaB reduced excessive drinking and prevented the escalation of ethanol intake in the intermittent access to 20% ethanol paradigm; and (3) NaB completely blocked the increase of ethanol consumption induced by an alcohol deprivation, thus demonstrating a preventive effect of NaB on relapse. The mapping of cerebral histone H3 acetylation revealed a hyperacetylation in the amygdala and cortical areas in dependent rats. Interestingly, NaB did not exacerbate the hyperacetylation observed in these regions, but instead restored it, specifically in cortical areas. Altogether, our results clearly demonstrated the efficacy of NaB in preventing excessive ethanol intake and relapse and support the hypothesis that HDACi may have a potential use in alcohol addiction treatment. PMID:25041570

  20. Novel oral histone deacetylase inhibitor, MPT0E028, displays potent growth-inhibitory activity against human B-cell lymphoma in vitro and in vivo

    PubMed Central

    Huang, Han-Li; Peng, Chieh-Yu; Lai, Mei-Jung; Chen, Chun-Han; Lee, Hsueh-Yun; Wang, Jing-Chi; Liou, Jing-Ping; Pan, Shiow-Lin; Teng, Che-Ming

    2015-01-01

    Histone deacetylase (HDAC) inhibitor has been a promising therapeutic option in cancer therapy due to its ability to induce growth arrest, differentiation, and apoptosis. In this study, we demonstrated that MPT0E028, a novel HDAC inhibitor, reduces the viability of B-cell lymphomas by inducing apoptosis and shows a more potent HDAC inhibitory effect compared to SAHA, the first HDAC inhibitor approved by the FDA. In addition to HDACs inhibition, MPT0E028 also possesses potent direct Akt targeting ability as measured by the kinome diversity screening assay. Also, MPT0E028 reduces Akt phosphorylation in B-cell lymphoma with an IC50 value lower than SAHA. Transient transfection assay revealed that both targeting HDACs and Akt contribute to the apoptosis induced by MPT0E028, with both mechanisms functioning independently. Microarray analysis also shows that MPT0E028 may regulate many oncogenes expression (e.g., TP53, MYC, STAT family). Furthermore, in vivo animal model experiments demonstrated that MPT0E028 (50–200 mg/kg, po, qd) prolongs the survival rate of mice bearing human B-cell lymphoma Ramos cells and inhibits tumor growth in BJAB xenograft model. In summary, MPT0E028 possesses strong in vitro and in vivo activity against malignant cells, representing a potential therapeutic approach for cancer therapy. PMID:25669976

  1. Effects of a selection of histone deacetylase inhibitors on mast cell activation and airway and colonic smooth muscle contraction.

    PubMed

    Assem, El-Sayed K; Peh, Kheng H; Wan, Beatrice Y C; Middleton, Brian J; Dines, Jon; Marson, Charles M

    2008-12-20

    Studies of histone deacetylase (HDAC) inhibitors, novel anticancer drugs, in models of autoimmune diseases, asthma, and inflammatory bowel disease suggest that HDAC inhibitors may also have useful anti-inflammatory effects. Accordingly, in vitro studies relevant to asthma and inflammatory bowel disease were conducted using a selection of HDAC inhibitors: suberoylanilide hydroxamic acid (SAHA, Vorinostat), and a related branched hydroxamic acid, diamide (1), MGCD0103 and two short chain fatty acid derivatives: sodium butyrate (of use in inflammatory bowel disease) and sodium valproate. The ability of those HDAC inhibitors to modulate antigen- or agonist-induced contraction of isolated guinea pig tracheal rings and colon, agonist-induced contraction of rat colon, and histamine release from rat peritoneal mast cells was examined. Pre-incubation (up to 6 h) with 10-40 microM of SAHA, diamide (1), or MGCD0103 caused significant inhibition of the antigen-induced contraction of sensitised guinea pig tracheal rings as well as inhibition of the contraction induced by histamine, 5-hydroxytryptamine and carbachol (G-protein coupled receptor agonists), while sodium butyrate (1 mM) and sodium valproate (100 microM) were weak inhibitors. Contraction of tracheal rings by sodium fluoride (NaF, a non-selective G-protein activator), KCl and a peroxyl radical generator was blocked by MGCD0103. Additionally, MGCD0103 significantly inhibited antigen-induced histamine release from IgE antibody-sensitised rat peritoneal mast cells, and NaF-induced histamine release, as well as inhibiting NaF-induced colon contraction. Those various effects appear to involve modulation of cell signaling, probably involving G-protein coupled pathways, and further support the development of HDAC inhibitors as anti-inflammatory agents. PMID:18805511

  2. Phase II trial of the histone deacetylase inhibitor romidepsin in patients with recurrent/metastatic head and neck cancer

    PubMed Central

    Haigentz, Missak; Kim, Mimi; Sarta, Catherine; Lin, Juan; Keresztes, Roger S.; Culliney, Bruce; Gaba, Anu G.; Smith, Richard V.; Shapiro, Geoffrey I.; Chirieac, Lucian R.; Mariadason, John M.; Belbin, Thomas J.; Greally, John M.; Wright, John J.; Haddad, Robert I.

    2012-01-01

    Objectives Patients with advanced squamous cell carcinoma of the head and neck (SCCHN) have limited treatment options. Inhibition of histone deacetylases (HDACs) represents a novel therapeutic approach warranting additional investigation in solid tumors. Methods A phase II trial of single agent romidepsin, an HDAC inhibitor, was performed in 14 patients with SCCHN who provided consent for pre- and post-therapy samples of accessible tumor, blood and uninvolved oral mucosa. Romidepsin was administered at 13 mg/m2 as a 4-hour intravenous infusion on days 1, 8 and 15 of 28 day cycles, with response assessment by RECIST every 8 weeks. Results Objective responses were not observed, although 2 heavily pretreated patients had brief clinical disease stabilization. Observed toxicities were expected, including frequent severe fatigue. Immunohistochemical analysis of 7 pre- and post-treatment tumor pairs demonstrated induction of p21Waf1/Cip1 characteristic of HDAC inhibition, as well as decreased Ki67 staining. Exploratory microarray analyses of mucosal and tumor samples detected changes in gene expression following romidepsin treatment that were most commonly associated with regulation of transcription, cell cycle control, signal transduction, and electron transport. Treatment with romidepsin did not alter the extent of DNA methylation of candidate gene loci (including CDH1 and hMLH1) in SCCHN tumors. Conclusions Single agent romidepsin has limited activity for the treatment of SCCHN but can effectively achieve tumor-associated HDAC inhibition. Although tolerability of romidepsin in this setting may be limiting, further evaluation of other HDAC inhibitors in combination with active therapies may be justified. PMID:22748449

  3. The histone deacetylase inhibitor sodium butyrate modulates acquisition and extinction of cocaine-induced conditioned place preference

    PubMed Central

    Raybuck, Jonathan D.; McCleery, Ellen J.; Cunningham, Christopher L.; Wood, Marcelo A.; Lattal, K. Matthew

    2013-01-01

    Despite decades of research on treatments for cocaine dependence, relapse rates following many behavioral and drug-based therapies remain high. This may be in part because cocaine-associated cues and contexts can invoke powerful drug cravings years after quitting. Recent studies suggest that drugs that promote cognitive function can enhance the formation of memories involving cocaine and other substances. One target of these drugs is facilitating histone acetylation to promote learning by increasing gene transcription that supports memory formation. Here, we investigate the effects of the histone deacetylase (HDAC) inhibitor sodium butyrate (NaBut) on cocaine-induced conditioned place preference (CPP) in C57BL/6 mice. After establishing a graded dose-response curve (2, 5, & 20 mg/kg) for cocaine-induced CPP, we examined the effects of different doses of NaBut (0, 0.3, 0.6, & 1.2 g/kg) on conditioning, extinction, and post-extinction reconditioning of CPP. A high dose of NaBut (1.2 g/kg) enhanced initial acquisition of cocaine CPP, but there were no effects of NaBut on reconditioning of extinguished CPP. Effects of NaBut on extinction were more complex, with a low-dose (0.3 g/kg) facilitating extinction and a high dose (1.2 g/kg) weakening extinction evident by preference at a retention test. These findings suggest that HDAC inhibition may have dose dependent effects on different components of cocaine CPP, with implications for (1) involvement of histone acetylation in context-drug learning, (2) interpretation of acute and chronic drug effects, and (3) the targeting of different types of learning in therapeutic application of HDAC inhibitors. PMID:23454534

  4. HDAC8: a multifaceted target for therapeutic interventions.

    PubMed

    Chakrabarti, Alokta; Oehme, Ina; Witt, Olaf; Oliveira, Guilherme; Sippl, Wolfgang; Romier, Christophe; Pierce, Raymond J; Jung, Manfred

    2015-07-01

    Histone deacetylase 8 (HDAC8) is a class I histone deacetylase implicated as a therapeutic target in various diseases, including cancer, X-linked intellectual disability, and parasitic infections. It is a structurally well-characterized enzyme that also deacetylates nonhistone proteins. In cancer, HDAC8 is a major 'epigenetic player' that is linked to deregulated expression or interaction with transcription factors critical to tumorigenesis. In the parasite Schistosoma mansoni and in viral infections, HDAC8 is a novel target to subdue infection. The current challenge remains in the development of potent selective inhibitors that would specifically target HDAC8 with fewer adverse effects compared with pan-HDAC inhibitors. Here, we review HDAC8 as a drug target and discuss inhibitors with respect to their structural features and therapeutic interventions. PMID:26013035

  5. A Systematic Assessment of Radiation Dose Enhancement by 5-Aza-2'-Deoxycytidine and Histone Deacetylase Inhibitors in Head-and-Neck Squamous Cell Carcinoma

    SciTech Connect

    Schutter, Harlinde de; Kimpe, Marlies; Isebaert, Sofie [Laboratory of Experimental Radiotherapy, Leuvens Kanker Instituut, University Hospitals Leuven, Leuven (Belgium); Nuyts, Sandra [Laboratory of Experimental Radiotherapy, Leuvens Kanker Instituut, University Hospitals Leuven, Leuven (Belgium); Department of Radiation Oncology, Leuvens Kanker Instituut, University Hospitals Leuven, Leuven (Belgium)], E-mail: sandra.nuyts@uzleuven.be

    2009-03-01

    Purpose: Investigations of epigenetic drugs have shown that radiotherapy can be successfully combined with histone deacetylase inhibitors (HDAC-Is) for the treatment of head-and-neck squamous cell carcinoma (HNSCC). Whether the reversal of epigenetic silencing by demethylating agents with or without HDAC-Is can also act as radiosensitizing remains unclear. This study therefore aimed to investigate whether 5-aza-2'-deoxycytidine (DAC) alone or in combination with the HDAC-Is trichostatin A, LBH589, or MGCD0103 could radiosensitize HNSCC tumor cell lines. Methods and Materials: Histone acetylation status and expression of epigenetically silenced genes at the DNA, RNA, and protein levels were assessed as measures of drug effectiveness in six HNSCC cell lines. Based on their colony-forming capacity, colony assays were performed in four of six cell lines to evaluate the radiosensitizing potential of DAC with or without HDAC-Is. Additional assays of cell survival, apoptosis, cell proliferation, and DNA damage were performed. Results: Radiosensitization was observed in two HNSCC cell lines treated with noncytotoxic doses of DAC with or without HDAC-Is before irradiation. The radiosensitizing doses induced histone hyperacetylation and reversal of gene silencing to variable extents and increased radiation-induced cell-cycle arrest. Conclusions: A role for low-dose DAC with or without HDAC-Is as radiosensitizers in HNSCC seems promising and is supportive of future clinical use, especially for combinations of DAC with LBH589 or MGCD0103, although the mechanisms by which they work will require further study.

  6. HDAC3: taking the SMRT-N-CoRrect road to repression

    Microsoft Academic Search

    P Karagianni; J Wong

    2007-01-01

    Known histone deacetylases (HDACs) are divided into different classes, and HDAC3 belongs to Class I. Through forming multiprotein complexes with the corepressors SMRT and N-CoR, HDAC3 regulates the transcription of a plethora of genes. A growing list of nonhistone substrates extends the role of HDAC3 beyond transcriptional repression. Here, we review data on the composition, regulation and mechanism of action

  7. Correlation between MMP-13 and HDAC7 expression in human knee osteoarthritis

    Microsoft Academic Search

    Reiji Higashiyama; Shigeru Miyaki; Satoshi Yamashita; Teruhito Yoshitaka; Görel Lindman; Yoshiaki Ito; Takahisa Sasho; Kazuhisa Takahashi; Martin Lotz; Hiroshi Asahara

    2010-01-01

    Recent studies suggest that histone deacetylase (HDAC) inhibitors may therapeutically prevent cartilage degradation in osteoarthritis\\u000a (OA). Matrix metalloproteinase-13 (MMP-13) plays an important role in the pathogenesis of this disease and in the present\\u000a study we investigated the correlation between HDACs and MMP-13. Comparing the expression of different HDACs in cartilage from\\u000a OA patients and healthy donors, HDAC7 showed a significant

  8. HDAC6 inhibition enhances 17-AAG-mediated abrogation of hsp90 chaperone function in human leukemia cells

    Microsoft Academic Search

    Rekha Rao; Warren Fiskus; Yonghua Yang; Pearl Lee; Rajeshree Joshi; Pravina Fernandez; Aditya Mandawat; Peter Atadja; James E. Bradner; Kapil Bhalla

    2008-01-01

    Histone deacetylase 6 (HDAC6) is a heat shock protein 90 (hsp90) deacetylase. Treatment with pan-HDAC inhibitors or depletion of HDAC6 by siRNA induces hyperacetylation and inhibits ATP bind- ing and chaperone function of hsp90. Treatment with 17-allylamino-demothoxy geldanamycin (17-AAG) also inhibits ATP binding and chaperone function of hsp90, resulting in polyubiquitylation and protea- somal degradation of hsp90 client pro- teins.

  9. Evaluation of novel histone deacetylase inhibitors as therapeutic agents for colorectal adenocarcinomas compared to established regimens with the histoculture drug response assay

    Microsoft Academic Search

    Jin C. Kim; Dae D. Kim; Yoo M. Lee; Tae W. Kim; Dong H. Cho; Moon B. Kim; Seong G. Ro; Seon Y. Kim; Yong S. Kim; Jung S. Lee

    2009-01-01

    Background and aims  This study was to evaluate the efficacy of histone deacetylase (HDAC) inhibitors in colorectal cancer together with other\\u000a established regimens.\\u000a \\u000a \\u000a \\u000a Materials and methods  Chemosensitivities of 114 colorectal cancer patients to established regimens (fluorouracil (5-FU with leucovorin (FL), capecitabine,\\u000a FL with irinotecan (FLIRI), and FL with oxaliplatin (FLOX)) as well as five hydroxamic acid derivatives (suberoylanilide hydroxamic\\u000a acid, PXD101, and

  10. Polyphenols from green tea inhibit the growth of melanoma cells through inhibition of class I histone deacetylases and induction of DNA damage

    PubMed Central

    Prasad, Ram; Katiyar, Santosh K.

    2015-01-01

    Melanoma is the leading cause of skin cancer-related deaths. We have examined the effect of green tea polyphenols (GTPs), a natural mixture of epicatechin monomers, on melanoma cancer cell growth and the molecular mechanism underlying these effects using different human melanoma cell lines as an in vitro model. Treatment of melanoma cell lines (A375, Hs294t, SK-Mel28 and SK-Mel119) with GTPs significantly inhibited the cell viability as well as colony formation ability of melanoma cells in a dose-dependent manner. These effects of GTPs were associated with a significant inhibition of histone deacetylase (HDAC) activity, reduction in the levels of class I HDAC proteins, enhancement of histone acetyltransferase (HAT) activity and induction of DNA damage, as detected by Comet assay, in melanoma cells. GTPs-induced decrease in the levels of class I HDAC proteins is mediated through proteasomal degradation. Valproic acid, an inhibitor of HDACs, exhibited a similar pattern of reduced viability and induction of death of melanoma cells. Treatment of A375 and Hs294t cells with GTPs resulted in a decrease in the levels of cyclins and cyclin dependent kinases of G1 phase of cell cycle whereas upregulated the levels of tumor suppressor proteins (Cip1/WAF1/p21, p16 and p53). PMID:25821561

  11. Depletion of histone deacetylase 1 inhibits metastatic abilities of gastric cancer cells by regulating the miR-34a/CD44 pathway.

    PubMed

    Lin, Lele; Jiang, Hongpeng; Huang, Mingkui; Hou, Xu; Sun, Xuepu; Jiang, Xian; Dong, Xuesong; Sun, Xueying; Zhou, Baoguo; Qiao, Haiquan

    2015-08-01

    Overexpression of histone deacetylases (HDACs) is associated with higher metastatic rates and a poor prognosis in gastric cancer. However, the underlying mechanisms involved remain unclear. The present study aimed to investigate the molecular pathways that are involved in HDAC1-mediated metastatic activities in gastric cancer cells. First we used a microRNA (miRNA or miR) microarray to screen potential miRNAs whose expression can be altered by HDAC1 depletion. Of these miRNAs, miR-34a is important as it is often inactivated in cancer cells and acts as a tumor suppressor for various types of cancer. The reverse transcription?quantitative polymerase chain reaction (RT?qPCR) results confirmed that miR-34a was upregulated by HDAC1 knockdown. Cells depleted of HDAC1 had lower abilities to migrate, invade and adhere, which were restored by a miR-34a antagomiR. Depletion of HDAC1 also resulted in impaired microfilaments and microtubules, while co-transfection of the miR-34a antagomiR attenuated these changes in the cellular cytoskeleton. The HDAC1/miR-34a axis regulated the expression and activation of CD44 and its downstream factors including Bcl-2, Ras homolog family member A (RhoA), LIM domain kinase 1 (LIMK-1) and matrix metalloproteinase (MMP)-2. The latter three proteins were responsible for the organization of tubulin and actin cytoskeleton and the formation of cellular pseudopodia. In conclusion, results of the present study indicated that HDAC1 depletion inhibits the metastatic abilities of gastric cancer cells by regulating the miRNA-34a/CD44 pathway, which may be a potential target for the treatment of gastric cancer. PMID:26035691

  12. The Histone Deacetylase Inhibitor MS275 Promotes Differentiation or Apoptosis in Human Leukemia Cells through a Process Regulated by Generation of Reactive Oxygen Species and Induction of p21CIP1\\/WAF1 1

    Microsoft Academic Search

    Roberto R. Rosato; Jorge A. Almenara; Steven Grant

    2003-01-01

    Effects of the histone deacetylase (HDAC) inhibitor MS-275 have been examined in human leukemia and lymphoma cells (U937, HL-60, K562, and Jurkat) as well as in primary acute myelogenous leukemia blasts in relation to differentiation and apoptosis. MS-275 displayed dose-depen- dent effects in each of the cell lines. When administered at a low concen- tration (e.g., 1 M), MS-275 exhibited

  13. Antidepressant action of HDAC inhibition in the prefrontal cortex.

    PubMed

    Covington, H E; Maze, I; Vialou, V; Nestler, E J

    2015-07-01

    Previous research has demonstrated antidepressant-like effects in rodents upon intracerebral inhibition of histone deacetylases (HDACs). Such effects have been reported for local HDAC inhibition in the nucleus accumbens, hippocampus, and amygdala. However, the effect of HDAC inhibition within the medial prefrontal cortex, which is integral to depression-related symptoms and their treatment, remains unknown. Here we show that local infusion of the highly selective HDAC inhibitor, MS-275, into the medial prefrontal cortex exerts robust antidepressant-like effects in the chronic social defeat stress paradigm in mice. These findings provide further impetus for the assessment of HDAC inhibitors for the treatment of depression. PMID:25907440

  14. Noninvasive Magnetic Resonance Spectroscopic Pharmacodynamic Markers of a Novel Histone Deacetylase Inhibitor, LAQ824, in Human Colon Carcinoma Cells and Xenografts1

    PubMed Central

    Chung, Yuen-Li; Troy, Helen; Kristeleit, Rebecca; Aherne, Wynne; Jackson, L Elizabeth; Atadja, Peter; Griffiths, John R; Judson, Ian R; Workman, Paul; Leach, Martin O; Beloueche-Babari, Mounia

    2008-01-01

    The aim of this work was to use phosphorus magnetic resonance spectroscopy (31P MRS) to investigate the pharmacodynamic effects of LAQ824, a histone deacetylase (HDAC) inhibitor. Human HT29 colon carcinoma cells were examined by 31P MRS after treatment with LAQ824 and another HDAC inhibitor, suberoylanilide hydroxamic acid. HT29 xenografts and tumor extracts were also examined using 31P MRS, pre- and post-LAQ824 treatment. Histone H3 acetylation was determined using Western blot analysis, and tumor microvessel density by immunohistochemical staining of CD31. Phosphocholine showed a significant increase in HT29 cells after treatment with LAQ824 and suberoylanilide hydroxamic acid. In vivo, the ratio of phosphomonoester/total phosphorus (TotP) signal was significantly increased in LAQ824-treated HT29 xenografts, and this ratio was inversely correlated with changes in tumor volume. Statistically significant decreases in intracellular pH, ?-nucleoside triphosphate (?-NTP)/TotP, and ?-NTP/inorganic phosphate (Pi) and an increase in Pi/TotP were also seen in LAQ824-treated tumors. Tumor extracts showed many significant metabolic changes after LAQ824 treatment, in parallel with increased histone acetylation and decreased microvessel density. Treatment with LAQ824 resulted in altered phospholipid metabolism and compromised tumor bioenergetics. The phosphocholine and phosphomonoester increases may have the potential to act as pharmacodynamic markers for noninvasively monitoring tumor response after treatment with LAQ824 or other HDAC inhibitors. PMID:18392140

  15. Specific inhibition of histone deacetylase 8 reduces gene expression and production of proinflammatory cytokines in vitro and in vivo.

    PubMed

    Li, Suzhao; Fossati, Gianluca; Marchetti, Carlo; Modena, Daniela; Pozzi, Pietro; Reznikov, Leonid L; Moras, Maria Luisa; Azam, Tania; Abbate, Antonio; Mascagni, Paolo; Dinarello, Charles A

    2015-01-23

    ITF2357 (generic givinostat) is an orally active, hydroxamic-containing histone deacetylase (HDAC) inhibitor with broad anti-inflammatory properties, which has been used to treat children with systemic juvenile idiopathic arthritis. ITF2357 inhibits both Class I and II HDACs and reduces caspase-1 activity in human peripheral blood mononuclear cells and the secretion of IL-1? and other cytokines at 25-100 nm; at concentrations >200 nm, ITF2357 is toxic in vitro. ITF3056, an analog of ITF2357, inhibits only HDAC8 (IC50 of 285 nm). Here we compared the production of IL-1?, IL-1?, TNF?, and IL-6 by ITF2357 with that of ITF3056 in peripheral blood mononuclear cells stimulated with lipopolysaccharide (LPS), heat-killed Candida albicans, or anti-CD3/anti-CD28 antibodies. ITF3056 reduced LPS-induced cytokines from 100 to 1000 nm; at 1000 nm, the secretion of IL-1? was reduced by 76%, secretion of TNF? was reduced by 88%, and secretion of IL-6 was reduced by 61%. The intracellular levels of IL-1? were 30% lower. There was no evidence of cell toxicity at ITF3056 concentrations of 100-1000 nm. Gene expression of TNF? was markedly reduced (80%), whereas IL-6 gene expression was 40% lower. Although anti-CD3/28 and Candida stimulation of IL-1? and TNF? was modestly reduced, IFN? production was 75% lower. Mechanistically, ITF3056 reduced the secretion of processed IL-1? independent of inhibition of caspase-1 activity; however, synthesis of the IL-1? precursor was reduced by 40% without significant decrease in IL-1? mRNA levels. In mice, ITF3056 reduced LPS-induced serum TNF? by 85% and reduced IL-1? by 88%. These data suggest that specific inhibition of HDAC8 results in reduced inflammation without cell toxicity. PMID:25451941

  16. Unspliced X-box-binding Protein 1 (XBP1) Protects Endothelial Cells from Oxidative Stress through Interaction with Histone Deacetylase 3*

    PubMed Central

    Martin, Daniel; Li, Yi; Yang, Junyao; Wang, Gang; Margariti, Andriana; Jiang, Zhixin; Yu, Hui; Zampetaki, Anna; Hu, Yanhua; Xu, Qingbo; Zeng, Lingfang

    2014-01-01

    It is well known that atherosclerosis occurs geographically at branch points where disturbed flow predisposes to the development of plaque via triggering of oxidative stress and inflammatory reactions. In this study, we found that disturbed flow activated anti-oxidative reactions via up-regulating heme oxygenase 1 (HO-1) in an X-box-binding protein 1 (XBP1) and histone deacetylase 3 (HDAC3)-dependent manner. Disturbed flow concomitantly up-regulated the unspliced XBP1 (XBP1u) and HDAC3 in a VEGF receptor and PI3K/Akt-dependent manner. The presence of XBP1 was essential for the up-regulation of HDAC3 protein. Overexpression of XBP1u and/or HDAC3 activated Akt1 phosphorylation, Nrf2 protein stabilization and nuclear translocation, and HO-1 expression. Knockdown of XBP1u decreased the basal level and disturbed flow-induced Akt1 phosphorylation, Nrf2 stabilization, and HO-1 expression. Knockdown of HDAC3 ablated XBP1u-mediated effects. The mammalian target of rapamycin complex 2 (mTORC2) inhibitor, AZD2014, ablated XBP1u or HDAC3 or disturbed flow-mediated Akt1 phosphorylation, Nrf2 nuclear translocation, and HO-1 expression. Neither actinomycin D nor cycloheximide affected disturbed flow-induced up-regulation of Nrf2 protein. Knockdown of Nrf2 abolished XBP1u or HDAC3 or disturbed flow-induced HO-1 up-regulation. Co-immunoprecipitation assays demonstrated that XBP1u physically bound to HDAC3 and Akt1. The region of amino acids 201 to 323 of the HDAC3 protein was responsible for the binding to XBP1u. Double immunofluorescence staining revealed that the interactions between Akt1 and mTORC2, Akt1 and HDAC3, Akt1 and XBP1u, HDAC3, and XBP1u occurred in the cytosol. Thus, we demonstrate that XBP1u and HDAC3 exert a protective effect on disturbed flow-induced oxidative stress via up-regulation of mTORC2-dependent Akt1 phosphorylation and Nrf2-mediated HO-1 expression. PMID:25190803

  17. Histone Deacetylase Inhibitor Romidepsin Inhibits De Novo HIV-1 Infections.

    PubMed

    Jønsson, Kasper L; Tolstrup, Martin; Vad-Nielsen, Johan; Kjær, Kathrine; Laustsen, Anders; Andersen, Morten N; Rasmussen, Thomas A; Søgaard, Ole S; Østergaard, Lars; Denton, Paul W; Jakobsen, Martin R

    2015-07-01

    Adjunct therapy with the histone deacetylase inhibitor (HDACi) romidepsin increases plasma viremia in HIV patients on combination antiretroviral therapy (cART). However, a potential concern is that reversing HIV latency with an HDACi may reactivate the virus in anatomical compartments with suboptimal cART concentrations, leading to de novo infection of susceptible cells in these sites. We tested physiologically relevant romidepsin concentrations known to reactivate latent HIV in order to definitively address this concern. We found that romidepsin significantly inhibited HIV infection in peripheral blood mononuclear cells and CD4(+) T cells but not in monocyte-derived macrophages. In addition, romidepsin impaired HIV spreading in CD4(+) T cell cultures. When we evaluated the impact of romidepsin on quantitative viral outgrowth assays with primary resting CD4(+) T cells, we found that resting CD4(+) T cells exposed to romidepsin exhibited reduced proliferation and viability. This significantly lowered assay sensitivity when measuring the efficacy of romidepsin as an HIV latency reversal agent. Altogether, our data indicate that romidepsin-based HIV eradication strategies are unlikely to reseed a latent T cell reservoir, even under suboptimal cART conditions, because romidepsin profoundly restricts de novo HIV infections. PMID:25896701

  18. Autophagy induction by histone deacetylase inhibitors inhibits HIV type 1.

    PubMed

    Campbell, Grant R; Bruckman, Rachel S; Chu, Yen-Lin; Spector, Stephen A

    2015-02-20

    Histone deacetylase inhibitors (HDACi) are being evaluated in a "shock-and-kill" therapeutic approach to reverse human immunodeficiency virus type-1 (HIV) latency from CD4(+) T cells. Using this approach, HDACi have induced HIV RNA synthesis in latently infected cells from some patients. The hope is that the increase in viral production will lead to killing of the infected cell either by the virus itself or by the patient's immune system, a "sterilizing cure." Although administered within the context of combination antiretroviral therapy, the infection of bystander cells remains a concern. In this study, we investigated the effect of HDACi (belinostat, givinostat, panobinostat, romidepsin, and vorinostat) on the productive infection of macrophages. We demonstrate that the HDACi tested do not alter the initial susceptibility of macrophages to HIV infection. However, we demonstrate that HDACi decrease HIV release from macrophages in a dose-dependent manner (belinostat < givinostat < vorinostat < panobinostat < romidepsin) via degradation of intracellular HIV through the canonical autophagy pathway. This mechanism involves unc-51-like autophagy-activating kinase 1 (ULK1) and the inhibition of the mammalian target of rapamycin and requires the formation of autophagosomes and their maturation into autolysosomes in the absence of increased cell death. These data provide further evidence in support of a role for autophagy in the control of HIV infection and suggest that careful consideration of off-target effects will be essential if HDACi are to be a component of a multipronged approach to eliminate latently infected cells. PMID:25540204

  19. Blocking the Class I Histone Deacetylase Ameliorates Renal Fibrosis and Inhibits Renal Fibroblast Activation via Modulating TGF-Beta and EGFR Signaling

    PubMed Central

    Liu, Na; He, Song; Ma, Li; Ponnusamy, Murugavel; Tang, Jinhua; Tolbert, Evelyn; Bayliss, George; Zhao, Ting C.; Yan, Haidong; Zhuang, Shougang

    2013-01-01

    Background Histone deacetylase (HDAC) inhibitors are promising anti-fibrosis drugs; however, nonselective inhibition of class I and class II HDACs does not allow a detailed elucidation of the individual HDAC functions in renal fibrosis. In this study, we investigated the effect of MS-275, a selective class I HDAC inhibitor, on the development of renal fibrosis in a murine model of unilateral ureteral obstruction (UUO) and activation of cultured renal interstitial fibroblasts. Methods/Findings The UUO model was established by ligation of the left ureter and the contralateral kidney was used as a control. At seven days after UUO injury, kidney developed fibrosis as indicated by deposition of collagen fibrils and increased expression of collagen I, fibronectin and alpha-smooth muscle actin (alpha-SMA). Administration of MS-275 inhibited all these fibrotic responses and suppressed UUO-induced production of transforming growth factor-beta1 (TGF-beta), increased expression of TGF-beta receptor I, and phosphorylation of Smad-3. MS-275 was also effective in suppressing phosphorylation and expression of epidermal growth factor receptor (EGFR) and its downstream signaling molecule, signal transducer and activator of transcription-3. Moreover, class I HDAC inhibition reduced the number of renal tubular cells arrested in the G2/M phase of the cell cycle, a cellular event associated with TGF-beta1overproduction. In cultured renal interstitial fibroblasts, MS-275 treatment inhibited TGF-beta induced phosphorylation of Smad-3, differentiation of renal fibroblasts to myofibroblasts and proliferation of myofibroblasts. Conclusions and Significance These results demonstrate that class I HDACs are critically involved in renal fibrogenesis and renal fibroblast activation through modulating TGF-beta and EGFR signaling and suggest that blockade of class I HDAC may be a useful treatment for renal fibrosis. PMID:23342059

  20. Brainstem brain-derived neurotrophic factor signaling is required for histone deacetylase inhibitor-induced pain relief.

    PubMed

    Tao, Wenjuan; Chen, Quan; Wang, Lu; Zhou, Wenjie; Wang, Yunping; Zhang, Zhi

    2015-06-01

    Our previous study demonstrated that persistent pain can epigenetically suppress the transcription of Gad2 [encoding glutamic acid decarboxylase 65 (GAD65)] and consequently impair the inhibitory function of GABAergic synapses in central pain-modulating neurons. This contributes to the development of persistent pain sensitization. Histone deacetylase (HDAC) inhibitors increased GAD65 activity considerably, restored GABA synaptic function, and rendered sensitized pain behavior less pronounced. However, the molecular mechanisms by which HDAC regulates GABAergic transmission through GAD65 under pain conditions are unknown. This work showed that HDAC inhibitor-induced increases in colocalization of GAD65 and synaptic protein synapsin I on the presynaptic axon terminals of the nucleus raphe magnus (NRM) were blocked by a TrkB receptor antagonist K252a [(9S,10R,12R)-2,3,9,10,11,12-hexahydro-10-hydroxy-9-methyl-1-oxo-9,12-epoxy-1H-diindolo[1,2,3-fg:3',2',1'-kl]pyrrolo[3,4-i][1,6]benzodiazocine-10-carboxylic acid methyl ester], indicating that BDNF-TrkB signaling may be required in GAD65 modulation of GABA synaptic function. At the brain-derived neurotrophic factor (BDNF) promoter, HDAC inhibitors induced significant increases in H3 hyperacetylation, consistent with the increase in BDNF mRNA and total proteins. Although exogenous BDNF facilitated GABA miniature inhibitory postsynaptic currents and GAD65 accumulation in NRM neuronal synapses in normal rats, it failed to do so in animals subjected to persistent inflammation. In addition, blockade of the TrkB receptor with K252a has no effect on miniature inhibitory postsynaptic currents and synaptic GAD65 accumulation under normal conditions. In addition, the analgesic effects of HDAC inhibitors on behavior were blocked by NRM infusion of K252a. These findings suggest that BDNF-TrkB signaling is required for drugs that reverse the epigenetic effects of chronic pain at the gene level, such as HDAC inhibitors. PMID:25852071

  1. Role of histone deacetylase activity in the developing lateral line neuromast of zebrafish larvae

    PubMed Central

    He, Yingzi; Mei, Honglin; Yu, Huiqian; Sun, Shan; Ni, Wenli; Li, Huawei

    2014-01-01

    Histone deacetylases are involved in many biological processes and have roles in regulating cell behaviors such as cell cycle entry, cell proliferation and apoptosis. However, the effect of histone deacetylases on the development of hair cells (HCs) has not been fully elucidated. In this study, we examined the influence of histone deacetylases on the early development of neuromasts in the lateral line of zebrafish. Hair cell development was evaluated by fluorescent immunostaining in the absence or presence of histone deacetylase inhibitors. Our results suggested that pharmacological inhibition of histone deacetylases with inhibitors, including trichostatin A, valproic acid and MS-275, reduced the numbers of both HCs and supporting cells in neuromasts. We also found that the treatment of zebrafish larvae with inhibitors caused accumulation of histone acetylation and suppressed proliferation of neuromast cells. Real-time PCR results showed that the expression of both p21 and p27 mRNA was increased following trichostatin A treatment and the increase in p53 mRNA was modest under the same conditions. However, the expression of p53 mRNA was significantly increased by treatment with a high concentration of trichostatin A. A high concentration of trichostatin A also led to increased cell death in neuromasts as detected in a TUNEL assay. Moreover, the nuclei of most of these pyknotic cells were immunohistochemically positive for cleaved caspase-3. These results suggest that histone deacetylase activity is involved in lateral line development in the zebrafish and might have a role in neuromast formation by altering cell proliferation through the expression of cell cycle regulatory proteins. PMID:24810423

  2. Differentiation therapy for the treatment of t(8;21) acute myeloid leukemia using histone deacetylase inhibitors.

    PubMed

    Bots, Michael; Verbrugge, Inge; Martin, Benjamin P; Salmon, Jessica M; Ghisi, Margherita; Baker, Adele; Stanley, Kym; Shortt, Jake; Ossenkoppele, Gert J; Zuber, Johannes; Rappaport, Amy R; Atadja, Peter; Lowe, Scott W; Johnstone, Ricky W

    2014-02-27

    Epigenetic modifying enzymes such as histone deacetylases (HDACs), p300, and PRMT1 are recruited by AML1/ETO, the pathogenic protein for t(8;21) acute myeloid leukemia (AML), providing a strong molecular rationale for targeting these enzymes to treat this disease. Although early phase clinical assessment indicated that treatment with HDAC inhibitors (HDACis) may be effective in t(8;21) AML patients, rigorous preclinical studies to identify the molecular and biological events that may determine therapeutic responses have not been performed. Using an AML mouse model driven by expression of AML1/ETO9a (A/E9a), we demonstrated that treatment of mice bearing t(8;21) AML with the HDACi panobinostat caused a robust antileukemic response that did not require functional p53 nor activation of conventional apoptotic pathways. Panobinostat triggered terminal myeloid differentiation via proteasomal degradation of A/E9a. Importantly, conditional A/E9a deletion phenocopied the effects of panobinostat and other HDACis, indicating that destabilization of A/E9a is critical for the antileukemic activity of these agents. PMID:24415537

  3. A new histone deacetylase inhibitor improves liver fibrosis in BDL rats through suppression of hepatic stellate cells

    PubMed Central

    Park, Ki Cheong; Park, Ji Hyun; Jeon, Jeong Yong; Kim, Sang Yong; Kim, Jung Min; Lim, Chang Yong; Lee, Tae Hyung; Kim, Hyung Kwan; Lee, Hyun Gyu; Kim, Sung Min; Kwon, Ho Jeong; Suh, Jin Suck; Kim, Seung Won; Choi, Seung Hoon

    2014-01-01

    Background and Purpose Activation of hepatic stellate cells (HSCs) is a crucial step in the pathogenesis of hepatic fibrosis. Histone deacetylase (HDAC) is an attractive target in liver fibrosis because it plays a key role in gene expression and cell differentiation. We have developed a HDAC inhibitor, N-hydroxy-7-(2-naphthylthio)heptanomide (HNHA), and investigated the anti-fibrotic activity of HNHA in vitro and in vivo. Experimental Approach We investigated the anti-fibrotic effect of HNHA on mouse and human HSC activation in vitro and in the liver of bile duct-ligated (BDL) rats in vivo using cell proliferation assays, cell cycle analysis, biochemical assay, immunohistochemistry and Western blots. Liver pathology was assessed with histochemical techniques. Key Results HNHA inhibited proliferation and arrested the cell cycle via p21 induction in HSCs. In addition, HNHA induced apoptosis of HSCs, which was correlated with reduced COX-2 expression, NF-?B activation and cell death signals. HNHA restored liver function and decreased the accumulation of extracellular matrix in the liver via suppression of HSC activation in BDL rats in vivo. HNHA administration also increased survival in BDL rats. Conclusions and Implications HNHA improved liver function, suppressed liver fibrosis and increased survival of BDL rats, accompanied by reduction of cell growth, activation and survival of HSCs. These findings show that HNHA may be a potent anti-fibrosis agent against hepatic fibrosis because of its multi-targeted inhibition of HSC activity in vivo and in vitro. PMID:24467283

  4. Histone deacetylase inhibitor, trichostatin A, affects gene expression patterns during morphogenesis of chicken limb buds in vivo.

    PubMed

    Zhao, Wanghong; Dai, Fangping; Bonafede, Alexander; Schafer, Stefan; Jung, Manfred; Yusuf, Faisal; Gamel, Anton J; Wang, Jianlin; Brand-Saberi, Beate

    2009-01-01

    Acetylation is one of the key chromatin modifications that control gene transcription during embryonic development and tumorigenesis. The types of genes sensitive to such modifications in vivo are not known to date. We investigated the expression of a number of genes involved in embryonic development after treatment with trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, in the limbs of chicken embryos. Our results show that TSA affects the expression profiles of some genes that play important roles during limb development. The expression of BMP4, SF/HGF and Twist1 increased, whereas the expression of BMP2, FGF8, Shh, Scleraxis, Myf5 and MyoD was decreased or even inhibited. In contrast, the expression of Pax3, Paraxis, Msx1, CREB, and PCNA was not affected. Our results indicate that the chicken embryo can serve as an effective in vivo model for studying the effect of HDAC inhibitors on gene expression and can be helpful for understanding the role of chromatin remodeling and epigenetic control of gene expression. PMID:19147985

  5. Extensive and varied modifications in histone H2B of wildtype and histone deacetylase 1-mutant Neurospora crassa

    PubMed Central

    Anderson, D.C.; Green, George R.; Smith, Kristina; Selker, Eric U.

    2010-01-01

    DNA methylation is deficient in a histone deacetylase 1 (HDA11) mutant (hda-1) strain of Neurospora crassa with inactivated histone deacetylase 1. Difference 2D gels identified the primary histone deacetylase 1 target as histone H2B. Acetylation was identified by LC/MS/MS at 5 different lysines in wild type H2B, and at 11 lysines in hda-1 H2B, suggesting Neurospora H2B is a complex combination of different acetylated species. Individual 2D gel spots were shifted by single lysine acetylations. FTICR MS-observed methylation ladders identify an ensemble of 20–25 or more modified forms for each 2D gel spot. Twelve different lysines or arginines were methylated in H2B from wild type or hda-1; only two were in the N-terminal tail. Arginines were modified by monomethylation, dimethylation or deimination. H2B from wild type and hda-1 ensembles may thus differ by acetylation at multiple sites, and by additional modifications. Combined with asymmetry-generated diversity in H2B structural states in nucleosome core particles, the extensive modifications identified here can create substantial histone-generated structural diversity in nucleosome core particles. PMID:20462202

  6. Anticancer Activity of MPT0E028, a Novel Potent Histone Deacetylase Inhibitor, in Human Colorectal Cancer HCT116 Cells In Vitro and In Vivo

    PubMed Central

    Tsai, An-Chi; Peng, Chieh-Yu; Lai, Mei-Jung; Wang, Jing-Chi; Pan, Shiow-Lin; Teng, Che-Ming; Liou, Jing-Ping

    2012-01-01

    Recently, histone deacetylase (HDAC) inhibitors have emerged as a promising class of drugs for treatment of cancers, especially subcutaneous T-cell lymphoma. In this study, we demonstrated that MPT0E028, a novel N-hydroxyacrylamide-derived HDAC inhibitor, inhibited human colorectal cancer HCT116 cell growth in vitro and in vivo. The results of NCI-60 screening showed that MPT0E028 inhibited proliferation in both solid and hematological tumor cell lines at micromolar concentrations, and was especially potent in HCT116 cells. MPT0E028 had a stronger apoptotic activity and inhibited HDACs activity more potently than SAHA, the first therapeutic HDAC inhibitor proved by FDA. In vivo murine model, the growth of HCT116 tumor xenograft was delayed and inhibited after treatment with MPT0E028 in a dose-dependent manner. Based on in vivo study, MPT0E028 showed stronger anti-cancer efficacy than SAHA. No significant body weight difference or other adverse effects were observed in both MPT0E028-and SAHA-treated groups. Taken together, our results demonstrate that MPT0E028 has several properties and is potential as a promising anti-cancer therapeutic drug. PMID:22928010

  7. Utilization of Boron Compounds for the Modification of Suberoyl Anilide Hydroxamic Acid as Inhibitor of Histone Deacetylase Class II Homo sapiens

    PubMed Central

    Bakri, Ridla; Parikesit, Arli Aditya; Satriyanto, Cipta Prio; Kerami, Djati; Tambunan, Usman Sumo Friend

    2014-01-01

    Histone deacetylase (HDAC) has a critical function in regulating gene expression. The inhibition of HDAC has developed as an interesting anticancer research area that targets biological processes such as cell cycle, apoptosis, and cell differentiation. In this study, an HDAC inhibitor that is available commercially, suberoyl anilide hydroxamic acid (SAHA), has been modified to improve its efficacy and reduce the side effects of the compound. Hydrophobic cap and zinc-binding group of these compounds were substituted with boron-based compounds, whereas the linker region was substituted with p-aminobenzoic acid. The molecular docking analysis resulted in 8 ligands with ?Gbinding value more negative than the standards, SAHA and trichostatin A (TSA). That ligands were analyzed based on the nature of QSAR, pharmacological properties, and ADME-Tox. It is conducted to obtain a potent inhibitor of HDAC class II Homo sapiens. The screening process result gave one best ligand, Nova2 (513246-99-6), which was then further studied by molecular dynamics simulations. PMID:25214833

  8. NL-103, a novel dual-targeted inhibitor of histone deacetylases and hedgehog pathway, effectively overcomes vismodegib resistance conferred by Smo mutations

    PubMed Central

    Zhao, Jie; Quan, Haitian; Xie, Chengying; Lou, Liguang

    2014-01-01

    Misregulation of hedgehog (Hh) signaling has been implicated in the pathogenesis of basal cell carcinoma (BCC) and medulloblastoma. Vismodegib, an orally bioavailable Hh signal pathway inhibitor targeting Smo, has been approved for the treatment of advanced BCC. However, acquired drug resistance to vismodegib induced by point mutation in Smo is emerging as a major problem to vismodegib treatment. In this study, we designed and synthesized a novel chimeric compound NL-103, which comprises structural elements of Hh pathway inhibitor vismodegib, and histone deacetylase (HDAC) inhibitor vorinostat. NL-103 simultaneously and significantly inhibited both HDACs and Hh pathway. Importantly, NL-103, as well as vorinostat, effectively overcame vismodegib resistance induced by Smoothened point mutations. Moreover, NL-103 and vorinostat, but not vismodegib, significantly downregulated the expression of Gli2 which plays an important role in Hh pathway. These results indicate that HDAC inhibitory activity is essential for NL-103 to overcome vismodegib resistance and that dual inhibition of HDAC and Hh signaling pathway may be a rational strategy for overcoming vismodegib resistance. Our findings suggest that NL-103 may be a promising compound for clinical development as a more effective Hh pathway inhibitor. PMID:25505589

  9. Histone deacetylase 6–mediated selective autophagy regulates COPD-associated cilia dysfunction

    PubMed Central

    Lam, Hilaire C.; Cloonan, Suzanne M.; Bhashyam, Abhiram R.; Haspel, Jeffery A.; Singh, Anju; Sathirapongsasuti, J. Fah; Cervo, Morgan; Yao, Hongwei; Chung, Anna L.; Mizumura, Kenji; An, Chang Hyeok; Shan, Bin; Franks, Jonathan M.; Haley, Kathleen J.; Owen, Caroline A.; Tesfaigzi, Yohannes; Washko, George R.; Quackenbush, John; Silverman, Edwin K.; Rahman, Irfan; Kim, Hong Pyo; Mahmood, Ashfaq; Biswal, Shyam S.; Ryter, Stefan W.; Choi, Augustine M.K.

    2013-01-01

    Chronic obstructive pulmonary disease (COPD) involves aberrant airway inflammatory responses to cigarette smoke (CS) that are associated with epithelial cell dysfunction, cilia shortening, and mucociliary clearance disruption. Exposure to CS reduced cilia length and induced autophagy in vivo and in differentiated mouse tracheal epithelial cells (MTECs). Autophagy-impaired (Becn1+/– or Map1lc3B–/–) mice and MTECs resisted CS-induced cilia shortening. Furthermore, CS increased the autophagic turnover of ciliary proteins, indicating that autophagy may regulate cilia homeostasis. We identified cytosolic deacetylase HDAC6 as a critical regulator of autophagy-mediated cilia shortening during CS exposure. Mice bearing an X chromosome deletion of Hdac6 (Hdac6–/Y) and MTECs from these mice had reduced autophagy and were protected from CS-induced cilia shortening. Autophagy-impaired Becn1–/–, Map1lc3B–/–, and Hdac6–/Y mice or mice injected with an HDAC6 inhibitor were protected from CS-induced mucociliary clearance (MCC) disruption. MCC was preserved in mice given the chemical chaperone 4-phenylbutyric acid, but was disrupted in mice lacking the transcription factor NRF2, suggesting that oxidative stress and altered proteostasis contribute to the disruption of MCC. Analysis of human COPD specimens revealed epigenetic deregulation of HDAC6 by hypomethylation and increased protein expression in the airways. We conclude that an autophagy-dependent pathway regulates cilia length during CS exposure and has potential as a therapeutic target for COPD. PMID:24200693

  10. A phase I-II study of the histone deacetylase inhibitor vorinostat plus sequential weekly paclitaxel and doxorubicin-cyclophosphamide in locally advanced breast cancer.

    PubMed

    Tu, Yifan; Hershman, Dawn L; Bhalla, Kapil; Fiskus, Warren; Pellegrino, Christine M; Andreopoulou, Eleni; Makower, Della; Kalinsky, Kevin; Fehn, Karen; Fineberg, Susan; Negassa, Abdissa; Montgomery, Leslie L; Wiechmann, Lisa S; Alpaugh, R Katherine; Huang, Min; Sparano, Joseph A

    2014-07-01

    Histone deacetylases (HDACs) are a family of enzymes that regulate chromatin remodeling and gene transcription. Vorinostat is a panHDAC inhibitor that sensitizes breast cancer cells to taxanes and trastuzumab by suppressing HDAC6 and Hsp90 client proteins. Fifty-five patients with clinical stage IIA-IIIC breast cancer received 12 weekly doses of paclitaxel (80 mg/m(2)) plus vorinostat (200-300 mg PO BID) on days 1-3 of each paclitaxel dose plus trastuzumab (for Her2/neu positive disease only), followed by doxorubicin/cyclophosphamide (60/600 mg/m(2) every 2 weeks plus pegfilgrastim). The primary study endpoint was pathologic complete response (pCR). pCR occurred in 13 of 24 evaluable patients with Her2-positive disease (54, 95 % confidence intervals [CI] 35-72 %), which met the prespecified study endpoint. pCR occurred in 4 of 15 patients with triple negative disease (27, 95 % CI 11-52 %) and none of 12 patients with ER-positive, Her2/neu negative disease (0, 95 % CI 0-24 %), which did not meet the prespecified endpoint. ER-positive tumors exhibited lower Ki67 and higher Hsp70 expression, and HDAC6, Hsp70, p21, and p27 expression were not predictive of response. Vorinostat increased acetylation of Hsp90 and alpha tubulin, and reduced expression of Hsp90 client proteins and HDAC6 in the primary tumor. Combination of vorinostat with weekly paclitaxel plus trastuzumab followed by doxorubicin-cyclophosphamide is associated with a high pCR rate in locally advanced Her2/neu positive breast cancer. Consistent with cell line and xenograft data, vorinostat increased acetylation of Hsp90 and alpha tubulin, and decreased Hsp90 client protein and HDAC6 expression in human breast cancers in vivo. PMID:24903226

  11. An intrinsically disordered region of methyl-CpG binding domain protein 2 (MBD2) recruits the histone deacetylase core of the NuRD complex

    PubMed Central

    Desai, Megha A.; Webb, Heather D.; Sinanan, Leander M.; Scarsdale, J. Neel; Walavalkar, Ninad M.; Ginder, Gordon D.; Williams, David C.

    2015-01-01

    The MBD2-NuRD (Nucleosome Remodeling and Deacetylase) complex is an epigenetic reader of DNA methylation that regulates genes involved in normal development and neoplastic diseases. To delineate the architecture and functional interactions of the MBD2-NuRD complex, we previously solved the structures of MBD2 bound to methylated DNA and a coiled-coil interaction between MBD2 and p66? that recruits the CHD4 nucleosome remodeling protein to the complex. The work presented here identifies novel structural and functional features of a previously uncharacterized domain of MBD2 (MBD2IDR). Biophysical analyses show that the MBD2IDR is an intrinsically disordered region (IDR). However, despite this inherent disorder, MBD2IDR increases the overall binding affinity of MBD2 for methylated DNA. MBD2IDR also recruits the histone deacetylase core components (RbAp48, HDAC2 and MTA2) of NuRD through a critical contact region requiring two contiguous amino acid residues, Arg286 and Leu287. Mutating these residues abrogates interaction of MBD2 with the histone deacetylase core and impairs the ability of MBD2 to repress the methylated tumor suppressor gene PRSS8 in MDA-MB-435 breast cancer cells. These findings expand our knowledge of the multi-dimensional interactions of the MBD2-NuRD complex that govern its function. PMID:25753662

  12. Enhanced radiation-induced cell killing and prolongation of gammaH2AX foci expression by the histone deacetylase inhibitor MS-275.

    PubMed

    Camphausen, Kevin; Burgan, William; Cerra, Michael; Oswald, Kelli A; Trepel, Jane B; Lee, Min-Jung; Tofilon, Philip J

    2004-01-01

    Histone deacetylase (HDAC) inhibitors are undergoing clinical evaluation for cancer therapy. Because HDAC modulates chromatin structure and gene expression, parameters considered to influence radioresponse, we have investigated the effects of the HDAC inhibitor MS-275 on the radiosensitivity of two human tumor cell lines (DU145 prostate carcinoma and U251 glioma). Acetylation status of histones H3 and H4 was determined as a function of time after MS-275 addition to and removal from culture medium. Histone acetylation increased by 6 h after MS-275 addition, reaching a maximum between 24 and 48 h of exposure; providing fresh drug-free medium then resulted in a decrease in histone acetylation that began by 6 h and approached untreated levels by 16 h. Treatment of cells with MS-275 for 48 h followed by irradiation had little or no effect on radiation-induced cell death. However, exposure to MS-275 before and after irradiation resulted in an increase in radiosensitivity with dose enhancement factors of 1.9 and 1.3 for DU145 and U251 cells, respectively. This MS-275 treatment protocol did not result in a redistribution of the cells into a more radiosensitive phase of the cell cycle or in an increase in apoptosis. However, MS-275 did modify the time course of gammaH2AX expression in irradiated cells. Whereas there was no significant difference in radiation-induced gammaH2AX foci at 6 h, the number of cells expressing gammaH2AX foci was significantly greater in the MS-275-treated cells at 24 h after irradiation. These results indicate that MS-275 can enhance radiosensitivity and suggest that this effect may involve an inhibition of DNA repair. PMID:14729640

  13. Ets-2 repressor factor recruits histone deacetylase to silence human cytomegalovirus immediate-early gene expression in non-permissive cells.

    PubMed

    Wright, Edward; Bain, Mark; Teague, Linda; Murphy, Jane; Sinclair, John

    2005-03-01

    Previous work from this laboratory has shown that expression of human cytomegalovirus (HCMV) immediate-early (IE) genes from the major immediate-early promoter (MIEP) is likely to be regulated by chromatin remodelling around the promoter affecting the acetylation state of core histone tails. The HCMV MIEP contains sequences that bind cellular transcription factors responsible for its negative regulation in undifferentiated, non-permissive cells. Ets-2 repressor factor (ERF) is one such factor that binds to such sequences and represses IE gene expression. Although it is not known how cellular transcription factors such as ERF mediate transcriptional repression of the MIEP, it is likely to involve differentiation-specific co-factors. In this study, the mechanism by which ERF represses HCMV IE gene expression was analysed. ERF physically interacts with the histone deacetylase, HDAC1, both in vitro and in vivo and this physical interaction between ERF and HDAC1 mediates repression of the MIEP. This suggests that silencing of viral IE gene expression, associated with histone deacetylation events around the MIEP, is mediated by differentiation-dependent cellular factors such as ERF, which specifically recruit chromatin remodellers to the MIEP in non-permissive cells. PMID:15722512

  14. Histone Deacetylase Inhibitor Romidepsin Induces HIV Expression in CD4 T Cells from Patients on Suppressive Antiretroviral Therapy at Concentrations Achieved by Clinical Dosing

    PubMed Central

    Wei, Datsen George; Chiang, Vicki; Fyne, Elizabeth; Balakrishnan, Mini; Barnes, Tiffany; Graupe, Michael; Hesselgesser, Joseph; Irrinki, Alivelu; Murry, Jeffrey P.; Stepan, George; Stray, Kirsten M.; Tsai, Angela; Yu, Helen; Spindler, Jonathan; Kearney, Mary; Spina, Celsa A.; McMahon, Deborah; Lalezari, Jacob; Sloan, Derek; Mellors, John; Geleziunas, Romas; Cihlar, Tomas

    2014-01-01

    Persistent latent reservoir of replication-competent proviruses in memory CD4 T cells is a major obstacle to curing HIV infection. Pharmacological activation of HIV expression in latently infected cells is being explored as one of the strategies to deplete the latent HIV reservoir. In this study, we characterized the ability of romidepsin (RMD), a histone deacetylase inhibitor approved for the treatment of T-cell lymphomas, to activate the expression of latent HIV. In an in vitro T-cell model of HIV latency, RMD was the most potent inducer of HIV (EC50?=?4.5 nM) compared with vorinostat (VOR; EC50?=?3,950 nM) and other histone deacetylase (HDAC) inhibitors in clinical development including panobinostat (PNB; EC50?=?10 nM). The HIV induction potencies of RMD, VOR, and PNB paralleled their inhibitory activities against multiple human HDAC isoenzymes. In both resting and memory CD4 T cells isolated from HIV-infected patients on suppressive combination antiretroviral therapy (cART), a 4-hour exposure to 40 nM RMD induced a mean 6-fold increase in intracellular HIV RNA levels, whereas a 24-hour treatment with 1 µM VOR resulted in 2- to 3-fold increases. RMD-induced intracellular HIV RNA expression persisted for 48 hours and correlated with sustained inhibition of cell-associated HDAC activity. By comparison, the induction of HIV RNA by VOR and PNB was transient and diminished after 24 hours. RMD also increased levels of extracellular HIV RNA and virions from both memory and resting CD4 T-cell cultures. The activation of HIV expression was observed at RMD concentrations below the drug plasma levels achieved by doses used in patients treated for T-cell lymphomas. In conclusion, RMD induces HIV expression ex vivo at concentrations that can be achieved clinically, indicating that the drug may reactivate latent HIV in patients on suppressive cART. PMID:24722454

  15. Transcriptional regulation of human osteopontin promoter by histone deacetylase inhibitor, trichostatin A in cervical cancer cells

    Microsoft Academic Search

    Priyanka Sharma; Santosh Kumar; Gopal C Kundu

    2010-01-01

    BACKGROUND: Trichostatin A (TSA), a potent inhibitor of histone deacetylases exhibits strong anti-tumor and growth inhibitory activities, but its mechanism(s) of action is not completely understood. Osteopontin (OPN) is a secreted glycoprotein which has long been associated with tumor metastasis. Elevated OPN expression in various metastatic cancer cells and the surrounding stromal cells often correlates with enhanced tumor formation and

  16. The E7 oncoprotein associates with Mi2 and histone deacetylase activity to promote cell growth.

    PubMed Central

    Brehm, A; Nielsen, S J; Miska, E A; McCance, D J; Reid, J L; Bannister, A J; Kouzarides, T

    1999-01-01

    E7 is the main transforming protein of human papilloma virus type 16 (HPV16) which is implicated in the formation of cervical cancer. The transforming activity of E7 has been attributed to its interaction with the retinoblastoma (Rb) tumour suppressor. However, Rb binding is not sufficient for transformation by E7. Mutations within a zinc finger domain, which is dispensable for Rb binding, also abolish E7 transformation functions. Here we show that HPV16 E7 associates with histone deacetylase in vitro and in vivo, via its zinc finger domain. Using a genetic screen, we identify Mi2beta, a component of the recently identified NURD histone deacetylase complex, as a protein that binds directly to the E7 zinc finger. A zinc finger point mutant which is unable to bind Mi2beta and histone deacetylase but is still able to bind Rb fails to overcome cell cycle arrest in osteosarcoma cells. Our results suggest that the binding to a histone deacetylase complex is an important parameter for the growthpromoting activity of the human papilloma virus E7 protein. This provides the first indication that viral oncoproteins control cell proliferation by targeting deacetylation pathways. PMID:10228159

  17. A phosphorescent rhenium(I) histone deacetylase inhibitor: mitochondrial targeting and paraptosis induction.

    PubMed

    Ye, Rui-Rong; Tan, Cai-Ping; Lin, Yan-Nan; Ji, Liang-Nian; Mao, Zong-Wan

    2015-05-14

    In this report, we designed a histone deacetylase-targeted phosphorescent Re(I) complex ReLMito. Colocalization studies suggested that ReLMito could specially localize to mitochondria. We also demonstrated that ReLMito could induce paraptosis in cancer cells. These features endowed the complex with potential to induce and monitor mitochondrial morphological changes during the paraptosis simultaneously. PMID:25882790

  18. HDAC4 blocks autophagy to trigger podocyte injury: non-epigenetic action in diabetic nephropathy

    PubMed Central

    Wei, Qingqing; Dong, Zheng

    2014-01-01

    Histone deacetylases (HDACs) have been implicated in the pathogenesis of kidney diseases including diabetic nephropathy (DN); however, the underlying mechanism is poorly understood. In this issue, Wang et. al. have unraveled the changes in expression of various HDACs in DN and demonstrated that HDAC4 specifically contributes to podocyte injury in this disease. Mechanistically, HDAC4 deacetylates STAT1 to suppress autophagy, an essential cellular process for the function and viability of podocytes. The development of HDAC isoform-specific inhibitors may provide efficacious therapeutics for DN and related renal diseases. PMID:25265947

  19. Modulation of human gamma/delta T-cell activation and phenotype by histone deacetylase inhibitors.

    PubMed

    Bhat, Jaydeep; Oberg, Hans-Heinrich; Kabelitz, Dieter

    2015-07-01

    Histone deacetylase inhibitors have been shown to possess therapeutic potential in various pathophysiological conditions. Valproic acid (VPA), a known histone deacetylase class I inhibitor, has been studied for its influence on immune cell functions. However, the potential impact of VPA on human ?? T-cells remains unknown. Here we investigated the effects of VPA on the proliferation and the immunophenotype of human ?? T-cells. We observed dose-dependent inhibition of proliferation, associated with significant cell death as revealed by flow cytometry. The cellular response to VPA clearly showed differential modulation of cell surface markers on ?? T-cells when compared to ?? T-cells. Furthermore, histone H3 acetylation was detected in ?? T-cells even at toxic concentrations of VPA. Our investigations focusing on the impact of VPA on human ?? T-cells will be helpful in understanding its safety profile in clinical application, particularly in the context of ?? T-cell-targeted immunotherapy. PMID:25708484

  20. The phosphorylated prodrug FTY720 is a histone deacetylase inhibitor that reactivates ER? expression and enhances hormonal therapy for breast cancer.

    PubMed

    Hait, N C; Avni, D; Yamada, A; Nagahashi, M; Aoyagi, T; Aoki, H; Dumur, C I; Zelenko, Z; Gallagher, E J; Leroith, D; Milstien, S; Takabe, K; Spiegel, S

    2015-01-01

    Estrogen receptor-? (ER?)-negative breast cancer is clinically aggressive and does not respond to conventional hormonal therapies. Strategies that lead to re-expression of ER? could sensitize ER?-negative breast cancers to selective ER modulators. FTY720 (fingolimod, Gilenya), a sphingosine analog, is the Food and Drug Administration (FDA)-approved prodrug for treatment of multiple sclerosis that also has anticancer actions that are not yet well understood. We found that FTY720 is phosphorylated in breast cancer cells by nuclear sphingosine kinase 2 and accumulates there. Nuclear FTY720-P is a potent inhibitor of class I histone deacetylases (HDACs) that enhances histone acetylations and regulates expression of a restricted set of genes independently of its known effects on canonical signaling through sphingosine-1-phosphate receptors. High-fat diet (HFD) and obesity, which is now endemic, increase breast cancer risk and have been associated with worse prognosis. HFD accelerated the onset of tumors with more advanced lesions and increased triple-negative spontaneous breast tumors and HDAC activity in MMTV-PyMT transgenic mice. Oral administration of clinically relevant doses of FTY720 suppressed development, progression and aggressiveness of spontaneous breast tumors in these mice, reduced HDAC activity and strikingly reversed HFD-induced loss of estrogen and progesterone receptors in advanced carcinoma. In ER?-negative human and murine breast cancer cells, FTY720 reactivated expression of silenced ER? and sensitized them to tamoxifen. Moreover, treatment with FTY720 also re-expressed ER? and increased therapeutic sensitivity of ER?-negative syngeneic breast tumors to tamoxifen in vivo more potently than a known HDAC inhibitor. Our work suggests that a multipronged attack with FTY720 is a novel combination approach for effective treatment of both conventional hormonal therapy-resistant breast cancer and triple-negative breast cancer. PMID:26053034

  1. The synergistic effects of DNA-damaging drugs cisplatin and etoposide with a histone deacetylase inhibitor valproate in high-risk neuroblastoma cells.

    PubMed

    Groh, Tomas; Hrabeta, Jan; Khalil, Mohammed Ashraf; Doktorova, Helena; Eckschlager, Tomas; Stiborova, Marie

    2015-07-01

    High-risk neuroblastoma remains one of the most important therapeutic challenges for pediatric oncologists. New agents or regimens are urgently needed to improve the treatment outcome of this fatal tumor. We examined the effect of histone deacetylase (HDAC) inhibitors in a combination with other chemotherapeutics on a high-risk neuroblastoma UKF-NB-4 cell line. Treatment of UKF-NB-4 cells with DNA-damaging chemotherapeutics cisplatin or etoposide combined with the HDAC inhibitor valproate (VPA) resulted in the synergistic antitumor effect. This was associated with caspase-3-dependent induction of apoptosis. Another HDAC inhibitor trichostatin A and a derivative of VPA that does not exhibit HDAC inhibitory activity, valpromide, lacked this effect. The synergism was only induced when VPA was combined with cytostatics targeted to cellular DNA; VPA does not potentiate the cytotoxicity of the anticancer drug vincristine that acts by a mechanism different from that of DNA damage. The VPA-mediated sensitization of UKF-NB-4 cells to cisplatin or etoposide was dependent on the sequence of drug administration; the potentiating effect was only produced either by simultaneous treatment with these drugs or when the cells were pretreated with cisplatin or etoposide before their exposure to VPA. The synergistic effects of VPA with cisplatin or etoposide were associated with changes in the acetylation status of histones H3 and H4. The results of this study provide a rationale for clinical evaluation of the combination of VPA and cisplatin or etoposide for treating children suffering from high-risk neuroblastoma. PMID:25963435

  2. HDAC3 is a negative regulator of cocaine-context associated memory formation

    PubMed Central

    Rogge, George A.; Singh, Harsimran; Dang, Richard; Wood, Marcelo A.

    2013-01-01

    Cocaine-induced neuroplasticity mediated by histone acetylating and deacetylating enzymes may contribute to addiction-like behaviors. For example, over expression of histone deacetylases (HDACs) 4 or 5 in the nucleus accumbens (NAc) suppresses cocaine-induced conditioned place preference (CPP) acquisition in mice. HDAC4 and HDAC5 are known to interact with HDAC3, but the role of HDAC3 in cocaine-induced behaviors has never been examined. In this study, we address the hypothesis that HDAC3 is a negative regulator of cocaine-context associated memory formation in mice. We examined the role of HDAC3 during the conditioning phase of CPP, when the mouse has the opportunity to form an associative memory between the cocaine-paired context and the subjective effects of cocaine. To address this hypothesis, Hdac3flox/flox and Hdac3+/+ mice (generated from a C57B/L6 background) were infused intra-NAc with AAV-Cre recombinase to create focal, homozygous Hdac3 deletions. Hdac3flox/flox mice exhibit significantly enhanced CPP acquisition, which correlates with increased gene expression during the consolidation phase of acquisition. Increased gene expression of c-Fos and Nr4a2 correlated with decreased HDAC3 occupancy and increased histone H4 lysine 8 (H4K8) acetylation at their promoters. Together, results from this study demonstrate that HDAC3 negatively regulates cocaine-induced CPP acquisition. PMID:23575859

  3. HDAC3 and the molecular brake pad hypothesis.

    PubMed

    McQuown, Susan C; Wood, Marcelo A

    2011-07-01

    Successful transcription of specific genes required for long-term memory processes involves the orchestrated effort of not only transcription factors, but also very specific enzymatic protein complexes that modify chromatin structure. Chromatin modification has been identified as a pivotal molecular mechanism underlying certain forms of synaptic plasticity and memory. The best-studied form of chromatin modification in the learning and memory field is histone acetylation, which is regulated by histone acetyltransferases and histone deacetylases (HDACs). HDAC inhibitors have been shown to strongly enhance long-term memory processes, and recent work has aimed to identify contributions of individual HDACs. In this review, we focus on HDAC3 and discuss its recently defined role as a negative regulator of long-term memory formation. HDAC3 is part of a corepressor complex and has direct interactions with Class II HDACs that may be important for its molecular and behavioral consequences. And last, we propose the "molecular brake pad" hypothesis of HDAC function. The HDACs and associated corepressor complexes may function in neurons, in part, as "molecular brake pads." HDACs are localized to promoters of active genes and act as a persistent clamp that requires strong activity-dependent signaling to temporarily release these complexes (or brake pads) to activate gene expression required for long-term memory formation. Thus, HDAC inhibition removes the "molecular brake pads" constraining the processes necessary for long-term memory and results in strong, persistent memory formation. PMID:21521655

  4. Histone Deacetylase 1/Sp1/MicroRNA-200b Signaling Accounts for Maintenance of Cancer Stem-Like Cells in Human Lung Adenocarcinoma

    PubMed Central

    Pan, Ban-Zhou; De, Wei; Wang, Rui; Chen, Long-Bang

    2014-01-01

    The presence of cancer stem-like cells (CSCs) is one of the mechanisms responsible for chemoresistance that has been a major hindrance towards lung adenocarcinoma (LAD) treatment. Recently, we have identified microRNA (miR)-200b as a key regulator of chemoresistance in human docetaxel-resistant LAD cells. However, whether miR-200b has effects on regulating CSCs remains largely unclear and needs to be further elucidated. Here, we showed that miR-200b was significantly downregulated in CD133+/CD326+ cells that exhibited properties of CSCs derived from docetaxel-resistant LAD cells. Also, restoration of miR-200b could inhibit maintenance and reverse chemoresistance of CSCs. Furthermore, suppressor of zeste-12 (Suz-12) was identified as a direct and functional target of miR-200b, and silencing of Suz-12 phenocopied the effects of miR-200b on CSCs. Additionally, overexpression of histone deacetylase (HDAC) 1 was identified as a pivotal mechanism responsible for miR-200b repression in CSCs through a specificity protein (Sp) 1-dependent mechanism, and restoration of miR-200b by HDAC1 repression significantly suppressed CSCs formation and reversed chemoresistance of CSCs by regulating Suz-12-E-cadherin signaling. Also, downregulation of HDAC1 or upregulation of miR-200b reduced the in vivo tumorigenicity of CSCs. Finally, Suz-12 was inversely correlated with miR-200b, positively correlated with HDAC1 and up-regulated in docetaxel-resistant LAD tissues compared with docetaxel-sensitive tissues. Taken together, the HDAC1/miR-200b/Suz-12-E-cadherin signaling might account for maintenance of CSCs and formation of chemoresistant phenotype in docetaxel-resistant LAD cells. PMID:25279705

  5. The STAT3 inhibitor WP1066 reverses the resistance of chronic lymphocytic leukemia cells to histone deacetylase inhibitors induced by interleukin-6.

    PubMed

    Lu, Kang; Fang, Xiao-sheng; Feng, Li-li; Jiang, Yu-jie; Zhou, Xiang-xiang; Liu, Xin; Li, Pei-pei; Chen, Na; Ding, Mei; Wang, Na; Zhang, Jie; Wang, Xin

    2015-04-10

    Interleukin-6 (IL-6) is a pleiotropic cytokine produced by a variety of cell types, including fibroblasts, endothelial cells, lymphocytes, and bone marrow stromal cells (BMSCs). Levels of IL-6 are increased in serum of CLL patients and correlated with adverse clinical features and short survival. In our study, we observed that IL-6 induced the resistance of CLL cells to pan-histone deacetylase (HDAC) inhibitors vorinostat (SAHA) and panobinostat (LBH589). Furthermore, low concentrations of SAHA and LBH589 enhanced the activation of the signal transducer and activator of transcription 3 (STAT3) signaling pathway induced by IL-6 in CLL cells. All of these effects were blocked by the STAT3-selective inhibitor, WP1066. Meanwhile, WP1066 decreased the expressions of Mcl-1 and Bcl-xL protein induced by IL-6 with or without low concentrations of HDAC inhibitors. Co-culture of CLL cells with BMSCs could also facilitate the activation of STAT3 and protected CLL cells from apoptosis when treated with HDAC inhibitors, and this cytoprotection was reversed by WP1066. The present study indicated that IL-6 or co-culture with BMSCs prevented HDAC inhibitor-induced apoptosis of CLL cells. This prevention was mediated by activation of the STAT3 signaling pathway. Moreover, WP1066 reversed the resistance of CLL cells to SAHA and LBH589 induced by either IL-6 or co-culture with BMSCs. Our findings suggest that targeting the STAT3 pathway may be a novel way to improve the efficacy of the HDAC inhibitor in CLL patients by overcoming antiapoptotic signaling of the microenvironment. PMID:25636517

  6. INSM1 functions as a transcriptional repressor of the neuroD/?2 gene through the recruitment of cyclin D1 and histone deacetylases

    PubMed Central

    Liu, Wei-Dong; Wang, Hong-Wei; Muguira, Michelle; Breslin, Mary B.; Lan, Michael S.

    2006-01-01

    INSM1/IA-1 (insulinoma-associated 1) is a developmentally regulated zinc-finger transcription factor, exclusively expressed in the foetal pancreas and nervous system, and in tumours of neuroendocrine origin. We have identified an INSM1 binding site in the neuroD/?2 promoter and demonstrated transcriptional repressor activity of INSM1 by transient transfection assay. A chromatin immunoprecipitation assay confirmed that in vivo INSM1 is situated on the promoter region of the neuroD/?2 gene. In an attempt to elucidate the molecular mechanism of transcriptional repression by the INSM1 gene, cyclin D1 was identified as an interacting protein by using a 45-day-old human foetal brain cDNA library and a yeast two-hybrid screen. The physical association between INSM1 and cyclin D1 was confirmed by in vitro and in vivo pull-down assay. Cyclin D1 co-operates with INSM1 and suppresses neuroD/?2 promoter activity. Co-immunoprecipitation of INSM1, cyclin D1 and HDACs (histone deacetylases) in mammalian cells revealed that INSM1 interacts with HDAC-1 and -3 and that this interaction is mediated through cyclin D1. Overexpression of cyclin D1 and HDAC-3 significantly enhanced the transcriptional repression activity of INSM1 on the neuroD/?2 promoter. A further chromatin immunoprecipitation assay confirmed that HDAC-3 occupies this same region of the neuroD/?2 promoter, by forming a transcription complex with INSM1. Thus we conclude that INSM1 recruits cyclin D1 and HDACs, which confer transcriptional repressor activity. PMID:16569215

  7. Blockade of the ERK pathway enhances the therapeutic efficacy of the histone deacetylase inhibitor MS-275 in human tumor xenograft models

    SciTech Connect

    Sakamoto, Toshiaki; Ozaki, Kei-ichi; Fujio, Kohsuke; Kajikawa, Shu-hei [Laboratory of Cell Regulation, Department of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521 (Japan)] [Laboratory of Cell Regulation, Department of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521 (Japan); Uesato, Shin-ichi [Department of Biotechnology, Faculty of Engineering, Kansai University, Osaka 564-8680 (Japan)] [Department of Biotechnology, Faculty of Engineering, Kansai University, Osaka 564-8680 (Japan); Watanabe, Kazushi [Proubase Technology Inc., Kanagawa 211-0063 (Japan)] [Proubase Technology Inc., Kanagawa 211-0063 (Japan); Tanimura, Susumu [Laboratory of Cell Regulation, Department of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521 (Japan)] [Laboratory of Cell Regulation, Department of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521 (Japan); Koji, Takehiko [Department of Histology and Cell Biology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523 (Japan)] [Department of Histology and Cell Biology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523 (Japan); Kohno, Michiaki, E-mail: kohnom@nagasaki-u.ac.jp [Laboratory of Cell Regulation, Department of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521 (Japan) [Laboratory of Cell Regulation, Department of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521 (Japan); Proubase Technology Inc., Kanagawa 211-0063 (Japan); Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto 606-8501 (Japan)

    2013-04-19

    Highlights: •Blockade of the ERK pathway enhances the anticancer efficacy of HDAC inhibitors. •MEK inhibitors sensitize human tumor xenografts to HDAC inhibitor cytotoxicity. •Such the enhanced efficacy is achieved by a transient blockade of the ERK pathway. •This drug combination provides a promising therapeutic strategy for cancer patients. -- Abstract: The ERK pathway is up-regulated in various human cancers and represents a prime target for mechanism-based approaches to cancer treatment. Specific blockade of the ERK pathway alone induces mostly cytostatic rather than pro-apoptotic effects, however, resulting in a limited therapeutic efficacy of the ERK kinase (MEK) inhibitors. We previously showed that MEK inhibitors markedly enhance the ability of histone deacetylase (HDAC) inhibitors to induce apoptosis in tumor cells with constitutive ERK pathway activation in vitro. To evaluate the therapeutic efficacy of such drug combinations, we administered the MEK inhibitor PD184352 or AZD6244 together with the HDAC inhibitor MS-275 in nude mice harboring HT-29 or H1650 xenografts. Co-administration of the MEK inhibitor markedly sensitized the human xenografts to MS-275 cytotoxicity. A dose of MS-275 that alone showed only moderate cytotoxicity thus suppressed the growth of tumor xenografts almost completely as well as induced a marked reduction in tumor cellularity when administered with PD184352 or AZD6244. The combination of the two types of inhibitor also induced marked oxidative stress, which appeared to result in DNA damage and massive cell death, specifically in the tumor xenografts. The enhanced therapeutic efficacy of the drug combination was achieved by a relatively transient blockade of the ERK pathway. Administration of both MEK and HDAC inhibitors represents a promising chemotherapeutic strategy with improved safety for cancer patients.

  8. Histone post-translational modifications induced by histone deacetylase inhibition in transcriptional control units of NIS gene.

    PubMed

    Baldan, Federica; Lavarone, Elisa; Di Loreto, Carla; Filetti, Sebastiano; Russo, Diego; Damante, Giuseppe; Puppin, Cinzia

    2014-08-01

    Histone post-translational modifications (HPTMs) play a major role in control of gene transcription. Among them, histone acetylation and methylation have been extensively investigated. Histone acetylation at different residues is generally associated to active gene transcription. In contrast, histone methylation can be associated either to transcriptional activation or repression, depending primarily on the histone residue that is subjected to the modification. Herein, effects of the histone deacetylase inhibitor SAHA on the sodium-iodide symporter (NIS) gene expression were investigated in breast cancer cells (MDA157 and MDA468). SAHA treatment induces high increase of NIS mRNA levels in MDA468 cells (300-fold), but moderate increase in MDA157 cells (fivefold). Histone H3 HPTMs (acetylation and methylations) on transcriptional units of NIS gene were investigated in these cell lines upon SAHA treatment. Our data indicate that HPTMs, particularly the H3 lysine 27 trimethylation, may operate in contrast to current models that relate epigenetic modifications with transcriptional activity. PMID:24844212

  9. Role of histone deacetylases in regulation of phenotype of ovine newborn pulmonary arterial smooth muscle cells

    PubMed Central

    Yang, Qiwei; Dahl, Mar Janna; Albeitine, Kurt H.; Ramchandran, Ramaswamy; Sun, Miranda; Raj, J. Usha

    2013-01-01

    Objective Pulmonary arterial hypertension, characterized by pulmonary vascular remodeling and vasoconstriction, is associated with excessive proliferative changes in the pulmonary vascular wall. However the role of HDACs in phenotypic alteration of pulmonary arterial smooth muscle cell (PASMC) is largely unknown. Material and methods PASMC were isolated from newborn sheep. Cell cycle analysis was performed by flow cytometry. The mRNA and protein expression was measured by real-time PCR and Western blot analysis. Wound-healing scratch assay was used to measure cell migration. The contractility of newborn PASMCs was determined by Gel contraction assay. Chromatin immunoprecipitation was used to examine histone modifications along the p21 promoter region. Global DNA methylation was measured by Liquid chromatography-mass spectroscopy. Results Inhibition of class I and II HDAC by apicidin and HDACi VIII suppressed proliferation of newborn PASMC and induced cell cycle arrest in G1 phase. Acetyl H3 level was increased in the newborn PASMC treated with apicidin and HDACi VIII. This was accompanied with increased expression of p21, and decreased expression of CCND1 but not p53. HDAC inhibition alters the histone codes around the p21 promoter region in NPASMC. Apicidin inhibited serum-induced cell migration, modulated the profiling of the expression of genes encoding pro-oxidant and antioxidant enzymes. Contractility and global DNA methylation level of newborn PASMCs was also markedly modulated by apicidin. Conclusion Our results demonstrate that class I HDAC is largely involved in phenotypic alteration of newborn PASMC. PMID:24460719

  10. Dissecting the Mechanism of Histone Deacetylase Inhibitors to Enhance the Activity of Zinc Finger Nucleases Delivered by Integrase-Defective Lentiviral Vectors

    PubMed Central

    Joglekar, Alok V.; Stein, Libby; Ho, Michelle; Hoban, Megan D.; Hollis, Roger P.

    2014-01-01

    Abstract Integrase-defective lentiviral vectors (IDLVs) have been of limited success in the delivery of zinc finger nucleases (ZFNs) to human cells, due to low expression. A reason for reduced gene expression has been proposed to involve the epigenetic silencing of vector genomes, carried out primarily by histone deacetylases (HDACs). In this study, we tested valproic acid (VPA), a known HDAC inhibitor (HDACi), for its ability to increase transgene expression from IDLVs, especially in the context of ZFN delivery. Using ZFNs targeting the human adenosine deaminase (ADA) gene in K562 cells, we demonstrated that treatment with VPA enhanced ZFN expression by up to 3-fold, resulting in improved allelic disruption at the ADA locus. Furthermore, three other U.S. Food and Drug Administration-approved HDACis (vorinostat, givinostat, and trichostatin-A) exhibited a similar effect on the activity of ZFN-IDLVs in K562 cells. In primary human CD34+ cells, VPA- and vorinostat-treated cells showed higher levels of expression of both green fluorescent protein (GFP) as well as ZFNs from IDLVs. A major mechanism for the effects of HDAC inhibitors on improving expression was from their modulation of the cell cycle, and the influence of heterochromatinization was determined to be a lesser contributing factor. PMID:24568341

  11. Trichostatin A, a histone deacetylase inhibitor, reverses epithelial-mesenchymal transition in colorectal cancer SW480 and prostate cancer PC3 cells.

    PubMed

    Wang, Xiaoxiong; Xu, Jun; Wang, Hao; Wu, Long; Yuan, Weiqi; Du, Jun; Cai, Shaohui

    2015-01-01

    Trichostatin A (TSA) is a kind of classical histone deacetylase (HDAC) inhibitor. In this study, we reported the reversal effects of TSA on EMT and investigated the possible involved molecular mechanisms in SW480 and PC3 cells. Firstly, we observed that TSA induced the reversal process of epithelial-mesenchymal transition (EMT) in SW480 and PC3 cells, resulting in attenuated cell invasion and migration abilities. TSA-induced EMT reversal was characterized by up-regulation of E-cadherin and down-regulation of Vimentin. Then, treatment with TSA also decreased the expression of transcription factor Slug. Furthermore, over-expression of Slug significantly caused down-regulation of E-cadherin and up-regulation of Vimentin. Meanwhile, TSA treatment in Slug-expressing cells could prevent these changes. These findings suggested that Slug played a crucial role in TSA-induced EMT reversal. Additionally, the study showed that TSA could induce the increase of HDAC1 and HDAC2 on the Slug gene promoter, which might be responsible for the suppression of Slug. Overall, TSA could reverse EMT in SW480 and PC3 cells and TSA-mediated down-regulation of Slug was involved in the reversal process. PMID:25434997

  12. Entinostat, a novel histone deacetylase inhibitor is active in B-cell lymphoma and enhances the anti-tumour activity of rituximab and chemotherapy agents.

    PubMed

    Frys, Sarah; Simons, Zachary; Hu, Qiang; Barth, Matthew J; Gu, Juan J; Mavis, Cory; Skitzki, Joseph; Song, Liu; Czuczman, Myron S; Hernandez-Ilizaliturri, Francisco J

    2015-05-01

    Histone deacetylases (HDACs) inhibitors are active in T-cell lymphoma and are undergoing pre-clinical and clinical testing in other neoplasms. Entinostat is an orally bioavailable class I HDAC inhibitor with a long half-life, which is under evaluation in haematological and solid tumour malignancies. To define the activity and biological effects of entinostat in B-cell lymphoma we studied its anti-tumour activity in several rituximab-sensitive or -resistant pre-clinical models. We demonstrated that entinostat is active in rituximab-sensitive cell lines (RSCL), rituximab-resistant cell lines (RRCL) and primary tumour cells isolated from lymphoma patients (n = 36). Entinostat exposure decreased Bcl-XL (BCL2L1) levels and induced apoptosis in cells. In RSCL and RRCL, entinostat induced p21 (CDKN1A) expression leading to G1 cell cycle arrest and exhibited additive effects when combined with bortezomib or cytarabine. Caspase inhibition diminished entinostat activity in some primary tumour cells suggesting that entinostat has dual mechanisms-of-action. In addition, entinostat increased the expression of CD20 and adhesion molecules. Perhaps related to these effects, we observed a synergistic activity between entinostat and rituximab in a lymphoma-bearing severe combined immunodeficiency (SCID) mouse model. Our data suggests that entinostat is an active HDAC inhibitor that potentiates rituximab activity in vivo and supports its further clinical development in B-cell lymphoma. PMID:25712263

  13. Class I histone deacetylase inhibition ameliorates social cognition and cell adhesion molecule plasticity deficits in a rodent model of autism spectrum disorder.

    PubMed

    Foley, Andrew G; Gannon, Shane; Rombach-Mullan, Nanette; Prendergast, Alison; Barry, Claire; Cassidy, Andrew W; Regan, Ciaran M

    2012-09-01

    In utero exposure of rodents to valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, has been proposed to induce an adult phenotype with behavioural characteristics reminiscent of those observed in autism spectrum disorder (ASD). We have evaluated the face validity of this model in terms of social cognition deficits which are a major core symptom of ASD. We employed the social approach avoidance paradigm as a measure of social reciprocity, detection of biological motion that is crucial to social interactions, and spatial learning as an indicator of dorsal stream processing of social cognition and found each parameter to be significantly impaired in Wistar rats with prior in utero exposure to VPA. We found no significant change in the expression of neural cell adhesion molecule polysialylation state (NCAM PSA), a measure of construct validity, but a complete inability to increase its glycosylation state which is necessary to mount the neuroplastic response associated with effective spatial learning. Finally, in all cases, we found chronic HDAC inhibition, with either pan-specific or HDAC1-3 isoform-specific inhibitors, to significantly ameliorate deficits in both social cognition and its associated neuroplastic response. We conclude that in utero exposure to VPA provides a robust animal model for the social cognitive deficits of ASD and a potential screen for the development of novel therapeutics for this condition. PMID:22683514

  14. Chrysin: a histone deacetylase 8 inhibitor with anticancer activity and a suitable candidate for the standardization of Chinese propolis.

    PubMed

    Sun, Li-Ping; Chen, Ai-Ling; Hung, Hsiao-Chiao; Chien, Yin-Huan; Huang, Jing-Shi; Huang, Chung-Yang; Chen, Yue-Wen; Chen, Chia-Nan

    2012-11-28

    Chinese propolis (CP) is a natural product collected by honeybees and a health food raw material. Previous studies have shown that CP exhibits a broad spectrum of biological activities including anticancer, antioxidant, antibacterial, anti-inflammatory, and antiviral activities. The focuses of the present study were the standardization of CP and the possible mechanisms of its active anticancer ingredients. Nine samples of CP were collected from different locations in China. Analyses of the CP samples revealed that all 9 had similar chemical compositions. Parameters analyzed included the CP extract dry weight, total phenolic content, and DPPH free radical scavenging activities. The active anticancer ingredient was isolated, characterized against human MDA-MB-231 breast cancer cells, and identified as chyrsin, a known potent anticancer compound. Chrysin is present at high levels in all 9 of the CP samples, constituting approximately 2.52% to 6.38% of the CP extracts. However, caffeic acid phenethyl ester (CAPE), another potent active ingredient is present in low levels in 9 samples of CP, constituting approximately 0.08% to 1.71% of the CP extracts. Results from analyses of enzymatic activity indicated that chrysin is a histone deacetylase inhibitor (HDACi) and that it markedly inhibited HDAC8 enzymatic activity (EC(50) = 40.2 ?M). In vitro analyses demonstrated that chrysin significantly suppressed cell growth and induced differentiation in MDA-MB-231 cells. In a xenograft animal model (MDA-MB-231 cells), orally administered chrysin (90 mg/kg/day) significantly inhibited tumor growth. Despite the geographical diversity of the 9 samples' botanical origins, their chemical compositions and several analyzed parameters were similar, suggesting that CP is standardized, with chrysin being the major active ingredient. Overall, in vitro and in vivo data indicated that chrysin is an HDAC8 inhibitor, which can significantly inhibit tumor growth. Data also suggested that chrysin might represent a suitable candidate for standardization of CP. PMID:23134323

  15. Synthesis and biological evaluation of piperamide analogues as HDAC inhibitors.

    PubMed

    Luo, Yu; Liu, Hao-Min; Su, Ming-Bo; Sheng, Li; Zhou, Yu-Bo; Li, Jia; Lu, Wei

    2011-08-15

    Two natural piperamides (piperlonguminine and refrofractamide A) and their derivatives were synthesized and evaluated for inhibitory activity against histone deacetylases, as well as the HCT-116 human colon cancer cell line. The preliminary structure activity relationship was discussed. Compounds featuring a hydroxamic acid moiety exhibited moderate HDAC activity and in vitro cytotoxicity. PMID:21745740

  16. Histone deacetylase inhibitors reverse gene silencing in Friedreich's ataxia

    Microsoft Academic Search

    David Herman; Kai Jenssen; Ryan Burnett; Elisabetta Soragni; Susan L Perlman; Joel M Gottesfeld

    2006-01-01

    Expansion of GAA·TTC triplets within an intron in FXN (the gene encoding frataxin) leads to transcription silencing, forming the molecular basis for the neurodegenerative disease Friedreich's ataxia. Gene silencing at expanded FXN alleles is accompanied by hypoacetylation of histones H3 and H4 and trimethylation of histone H3 at Lys9, observations that are consistent with a heterochromatin-mediated repression mechanism. We describe

  17. Neuronal developmental gene and miRNA signatures induced by histone deacetylase inhibitors in human embryonic stem cells.

    PubMed

    Meganathan, K; Jagtap, S; Srinivasan, S P; Wagh, V; Hescheler, J; Hengstler, J; Leist, M; Sachinidis, A

    2015-01-01

    Human embryonic stem cells (hESCs) may be applied to develop human-relevant sensitive in vitro test systems for monitoring developmental toxicants. The aim of this study was to identify potential developmental toxicity mechanisms of the histone deacetylase inhibitors (HDAC) valproic acid (VPA), suberoylanilide hydroxamic acid (SAHA) and trichostatin A (TSA) relevant to the in vivo condition using a hESC model in combination with specific differentiation protocols and genome-wide gene expression and microRNA profiling. Analysis of the gene expression data showed that VPA repressed neural tube and dorsal forebrain (OTX2, ISL1, EMX2 and SOX10)-related transcripts. In addition, VPA upregulates axonogenesis and ventral forebrain-associated genes, such as SLIT1, SEMA3A, DLX2/4 and GAD2. HDACi-induced expression of miR-378 and knockdown of miR-378 increases the expression of OTX2 and EMX2, which supports our hypothesis that HDACi targets forebrain markers through miR-378. In conclusion, multilineage differentiation in vitro test system is very sensitive for monitoring molecular activities relevant to in vivo neuronal developmental toxicity. Moreover, miR-378 seems to repress the expression of the OTX2 and EMX2 and therefore could be a regulator of the development of neural tube and dorsal forebrain neurons. PMID:25950486

  18. Histone Deacetylases as Transcriptional Activators? Role Reversal in Inducible Gene Regulation

    NSDL National Science Digital Library

    Inna Nusinzon (Northwestern University and Evanston Northwestern Healthcare; Department of Medicine and Department of Biochemistry, Molecular Biology, and Cell Biology and Department of Medicine REV)

    2005-08-09

    Posttranslational modifications regulate the activity, stability, and localization of proteins that can confer both positive and negative regulation to diverse biological systems. Acetylation is a protein modification that regulates eukaryotic gene expression. The addition of acetyl groups to nuclear proteins (such as histones and transcription factors) by histone acetyltransferase enzymes is frequently associated with activation of gene expression, whereas removal of acetyl groups by deacetylase enzymes is commonly associated with transcriptional repression. This article describes a number of exceptions to this general paradigm, indicating a previously unrecognized dynamic complexity in gene regulation by reversible acetylation.

  19. Reducing HDAC6 ameliorates cognitive deficits in a mouse model for Alzheimer's disease

    PubMed Central

    Govindarajan, Nambirajan; Rao, Pooja; Burkhardt, Susanne; Sananbenesi, Farahnaz; Schlüter, Oliver M; Bradke, Frank; Lu, Jianrong; Fischer, André

    2013-01-01

    Histone deacetylases (HDACs) are currently being discussed as promising therapeutic targets to treat neurodegenerative diseases. However, the role of specific HDACs in cognition and neurodegeneration remains poorly understood. Here, we investigate the function of HDAC6, a class II member of the HDAC superfamily, in the adult mouse brain. We report that mice lacking HDAC6 are cognitively normal but reducing endogenous HDAC6 levels restores learning and memory and ?-tubulin acetylation in a mouse model for Alzheimer's disease (AD). Our data suggest that this therapeutic effect is, at least in part, linked to the observation that loss of HDAC6 renders neurons resistant to amyloid-?-mediated impairment of mitochondrial trafficking. Thus, our study suggests that targeting HDAC6 could be a suitable strategy to ameliorate cognitive decline observed in AD. PMID:23184605

  20. Class I histone deacetylase-mediated repression of the proximal promoter of the activity-regulated cytoskeleton-associated protein gene regulates its response to brain-derived neurotrophic factor.

    PubMed

    Fukuchi, Mamoru; Nakashima, Fukumi; Tabuchi, Akiko; Shimotori, Masataka; Tatsumi, Saori; Okuno, Hiroyuki; Bito, Haruhiko; Tsuda, Masaaki

    2015-03-13

    We examined the transcriptional regulation of the activity-regulated cytoskeleton-associated protein gene (Arc), focusing on BDNF-induced Arc expression in cultured rat cortical cells. Although the synaptic activity-responsive element (SARE), located -7 kbp upstream of the Arc transcription start site, responded to NMDA, BDNF, or FGF2, the proximal region of the promoter (Arc/-1679) was activated by BDNF or FGF2, but not by NMDA, suggesting the presence of at least two distinct Arc promoter regions, distal and proximal, that respond to extracellular stimuli. Specificity protein 4 (SP4) and early growth response 1 (EGR1) controlled Arc/-1679 transcriptional activity via the region encompassing -169 to -37 of the Arc promoter. We found that trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, significantly enhanced the inductive effects of BDNF or FGF2, but not those of NMDA on Arc expression. Inhibitors of class I/IIb HDACs, SAHA, and class I HDACs, MS-275, but not of class II HDACs, MC1568, enhanced BDNF-induced Arc expression. The enhancing effect of TSA was mediated by the region from -1027 to -1000 bp, to which serum response factor (SRF) and HDAC1 bound. The binding of HDAC1 to this region was reduced by TSA. Thus, Arc expression was suppressed by class I HDAC-mediated mechanisms via chromatin modification of the proximal promoter whereas the inhibition of HDAC allowed Arc expression to be markedly enhanced in response to BDNF or FGF2. These results contribute to our understanding of the physiological role of Arc expression in neuronal functions such as memory consolidation. PMID:25623071

  1. Combined proteasome and histone deacetylase inhibition in non–small cell lung cancer

    Microsoft Academic Search

    Chadrick E Denlinger; Michael D Keller; Marty W Mayo; R. Michael Broad; David R Jones

    2004-01-01

    ObjectiveInhibitors of histone deacetylases are potent inducers of cell-cycle arrest and apoptosis in certain malignancies. We have previously demonstrated that chemotherapy activates the antiapoptotic transcription factor nuclear factor ?B in non–small cell lung cancer and fails to induce significant levels of apoptosis. We hypothesize that nuclear factor ?B inhibition with the proteasome inhibitor bortezomib (formerly known as PS-341) will sensitize

  2. Combination therapy of established cancer using a histone deacetylase inhibitor and a TRAIL receptor agonist

    Microsoft Academic Search

    Ailsa J. Frew; Ralph K. Lindemann; Ben P. Martin; Christopher J. P. Clarke; Janelle Sharkey; Desiree A. Anthony; Kellie-Marie Banks; Nicole M. Haynes; Pradnya Gangatirkar; Kym Stanley; Jessica E. Bolden; Kazuyoshi Takeda; Hideo Yagita; J. Paul Secrist; Mark J. Smyth; Ricky W. Johnstone

    2008-01-01

    Histone deacetylase inhibitors (HDACi) and agents such as recombinant tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and agonistic anti-TRAIL receptor (TRAIL-R) antibodies are anticancer agents that have shown promise in preclinical settings and in early phase clinical trials as monotherapies. Although HDACi and activators of the TRAIL pathway have different molecular targets and mechanisms of action, they share the ability to

  3. Effects of downregulated HDAC6 expression on the proliferation of lung cancer cells

    SciTech Connect

    Kamemura, Kazuo [Chemical Genetics Laboratory, RIKEN Advanced Science Institute, Wako, Saitama 351-0198 (Japan); Japan Science and Technology Corporation, CREST Research Project, Kawaguchi, Saitama 332-0012 (Japan); Ito, Akihiro [Chemical Genetics Laboratory, RIKEN Advanced Science Institute, Wako, Saitama 351-0198 (Japan); Chemical Genomics Research Group, RIKEN Advanced Science Institute, Wako, Saitama 351-0198 (Japan)], E-mail: akihiro-i@riken.jp; Shimazu, Tadahiro [Chemical Genetics Laboratory, RIKEN Advanced Science Institute, Wako, Saitama 351-0198 (Japan); Matsuyama, Akihisa [Chemical Genetics Laboratory, RIKEN Advanced Science Institute, Wako, Saitama 351-0198 (Japan); Chemical Genomics Research Group, RIKEN Advanced Science Institute, Wako, Saitama 351-0198 (Japan); Japan Science and Technology Corporation, CREST Research Project, Kawaguchi, Saitama 332-0012 (Japan); Maeda, Satoko [Chemical Genetics Laboratory, RIKEN Advanced Science Institute, Wako, Saitama 351-0198 (Japan); Yao, Tso-Pang [Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710 (United States); Horinouchi, Sueharu [Department of Biotechnology, University of Tokyo, Tokyo 113-8657 (Japan); Khochbin, Saadi [INSERM U309, Institut Albert Bonniot, Faculte de Medecine, Domaine de la Merci, 38706 La Tronche Cedex (France); Yoshida, Minoru [Chemical Genetics Laboratory, RIKEN Advanced Science Institute, Wako, Saitama 351-0198 (Japan); Chemical Genomics Research Group, RIKEN Advanced Science Institute, Wako, Saitama 351-0198 (Japan); Japan Science and Technology Corporation, CREST Research Project, Kawaguchi, Saitama 332-0012 (Japan); Department of Biotechnology, University of Tokyo, Tokyo 113-8657 (Japan)

    2008-09-12

    Histone deacetylase 6 (HDAC6) is a multifunctional, cytosolic protein deacetylase that primarily acts on {alpha}-tubulin. Here we report that stable knockdown of HDAC6 expression causes a decrease in the steady-state level of receptor tyrosine kinases, such as epidermal growth factor receptor (EGFR) and platelet-derived growth factor receptor {alpha}, in A549 lung cancer cells. The decreased levels of in EGFR in HDAC6-knockdown cells, which correlated with increased acetylation of microtubules, were due to increased turnover of EGFR protein. Despite the decrease in EGFR levels, A549 cells lacking functional HDAC6 appeared to grow normally, probably due to increased expression of extracellular signal-regulated kinases 1 and 2. Indeed, HDAC6-knockdown cells were more sensitive than control cells to the MEK inhibitor U0126. These results suggest that HDAC6 inhibitors combined with inhibitors of growth factor signaling may be useful as cancer therapy.

  4. The Rpd3\\/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men

    Microsoft Academic Search

    Xiang-Jiao Yang; Edward Seto

    2008-01-01

    Protein lysine deacetylases have a pivotal role in numerous biological processes and can be divided into the Rpd3\\/Hda1 and sirtuin families, each having members in diverse organisms including prokaryotes. In vertebrates, the Rpd3\\/Hda1 family contains 11 members, traditionally referred to as histone deacetylases (HDAC) 1–11, which are further grouped into classes I, II and IV. Whereas most class I HDACs

  5. Antineoplastic effects of the DNA methylation inhibitor hydralazine and the histone deacetylase inhibitor valproic acid in cancer cell lines

    Microsoft Academic Search

    Alma Chavez-Blanco; Carlos Perez-Plasencia; Enrique Perez-Cardenas; Claudia Carrasco-Legleu; Edgar Rangel-Lopez; Blanca Segura-Pacheco; Lucia Taja-Chayeb; Catalina Trejo-Becerril; Aurora Gonzalez-Fierro; Myrna Candelaria; Gustavo Cabrera; Alfonso Duenas-Gonzalez

    2006-01-01

    BACKGROUND: Among the epigenetic alterations occurring in cancer, DNA hypermethylation and histone hypoacetylation are the focus of intense research because their pharmacological inhibition has shown to produce antineoplastic activity in a variety of experimental models. The objective of this study was to evaluate the combined antineoplastic effect of the DNA methylation inhibitor hydralazine and the histone deacetylase inhibitor valproic acid

  6. Coordinated changes of histone modifications and HDAC mobilization regulate the induction of MHC class II genes by Trichostatin A

    Microsoft Academic Search

    Manolis Gialitakis; Androniki Kretsovali; Charalampos Spilianakis; Lara Kravariti; Reinhard Hoffmann; Antonis K. Hatzopoulos; Joseph Papamatheakis

    2006-01-01

    The deacetylase inhibitor Trichostatin A (TSA) induces the transcription of the Major Histocom- patibility Class II (MHC II) DRA gene in a way independ- ent of the master coactivator CIITA. To analyze the molecular mechanisms by which this epigenetic regulator stimulates MHC II expression, we used chromatin immunoprecipitation (ChIP) assays to monitor the alterations in histone modifications that correlate with

  7. Synergistic epigenetic reactivation of estrogen receptor-? (ER?) by combined green tea polyphenol and histone deacetylase inhibitor in ER?-negative breast cancer cells

    PubMed Central

    2010-01-01

    Background The status of estrogen receptor-? (ER?) is critical to the clinical prognosis and therapeutic approach in breast cancer. ER?-negative breast cancer is clinically aggressive and has a poor prognosis because of the lack of hormone target-directed therapies. Previous studies have shown that epigenetic regulation plays a major role in ER? silencing in human breast cancer cells. Dietary green tea polyphenol, (-)-epigallocatechin-3-gallate (EGCG), is believed to be an anticancer agent in part through its regulation of epigenetic processes. Results In our current studies, we found that EGCG can reactivate ER? expression in ER?-negative MDA-MB-231 breast cancer cells. Combination studies using EGCG with the histone deacetylase (HDAC) inhibitor, trichostatin A (TSA), revealed a synergistic effect of reactivation of ER? expression in ER?-negative breast cancer cells. Reactivation of ER? expression by EGCG and TSA treatment was found to sensitize ER?-dependent cellular responses to activator 17?-estradiol (E2) and antagonist tamoxifen in ER?-negative breast cancer cells. We also found that EGCG can lead to remodeling of the chromatin structure of the ER? promoter by altering histone acetylation and methylation status thereby resulting in ER? reactivation. A decreased binding of the transcription repressor complex, Rb/p130-E2F4/5-HDAC1-SUV39H1-DNMT1, in the regulatory region of the ER? promoter also contributes to ER? transcriptional activation through treatment with EGCG and/or TSA. Conclusions Collectively, these studies show that green tea EGCG can restore ER? expression by regulating epigenetic mechanisms, and this effect is enhanced when combined with an HDAC inhibitor. This study will facilitate more effective uses of combination approaches in breast cancer therapy and will help to explore more effective chemotherapeutic strategies toward hormone-resistant breast cancer. PMID:20946668

  8. Molecular Mechanism of the Cell Death Induced by the Histone Deacetylase Pan Inhibitor LBH589 (Panobinostat) in Wilms Tumor Cells

    PubMed Central

    Fang, Fang; Jun, Lu; Gang, Li; Lan, Cao; Na-Na, Wang; Xiao-Juan, Du; Li-Chao, Sun; Wen-Li, Zhao; Pei-Fang, Xiao; He, Zhao; Guang-Hao, Su; Yan-Hong, Li; Yi-Ping, Li; Yun-Yun, Xu; Hui-Ting, Zhou; Yi, Wu; Mei-Fang, Jin; Lin, Liu; Jian, Ni; Shao-Yan, Hu; Xue-Ming, Zhu; Xing, Feng; Jian, Wang; Jian, Pan

    2015-01-01

    Background Wilms tumor (WT) is an embryonic kidney cancer, for which histone acetylation might be a therapeutic target. LBH589, a novel targeted agent, suppresses histone deacetylases in many tumors. This study investigated the antitumor activity of LBH589 in SK-NEP-1 and G401 cells. Methods SK-NEP-1 and G401 cell growth was assessed by CCK-8 and in nude mice experiments. Annexin V/propidium iodide staining followed by flow cytometry detected apoptosis in cell culture. Gene expressions of LBH589-treated tumor cells were analyzed using an Arraystar Human LncRNA Array. The Multi Experiment View cluster software analyzed the expression data. Differentially expressed genes from the cluster analyses were imported into the Ingenuity Pathway Analysis tool. Results LBH589 inhibited cell proliferation of SK-NEP-1 and G401 cells in a dose-dependent manner. Annexin V, TUNEL and Hochest 33342 staining analysis showed that LBH589-treated cells showed more apoptotic features compared with the control. LBH589 treatment inhibited the growth of SK-NEP-1 xenograft tumors in nude mice. Arraystar Human LncRNA Array analysis of genes and lncRNAs regulated by LBH589 identified 6653 mRNAs and 8135 lncRNAs in LBH589-treated SK-NEP-1 cells. The most enriched gene ontology terms were those involved in nucleosome assembly. KEGG pathway analysis identified cell cycle proteins, including CCNA2, CCNB2, CCND1, CCND2, CDK4, CDKN1B and HDAC2, etc. Ingenuity Pathway Analysis identified important upstream molecules: HIST2H3C, HIST1H4A, HIST1A, HIST1C, HIST1D, histone H1, histone H3, RPRM, HSP70 and MYC. Conclusions LBH589 treatment caused apoptosis and inhibition of cell proliferation of SK-NEP-1and G401 cells. LBH589 had a significant effect and few side effects on SK-NEP-1 xenograft tumors. Expression profiling, and GO, KEGG and IPA analyses identified new targets and a new “network” of genes responding to LBH589 treatment in SK-NEP-1 cells. RPRM, HSP70 and MYC may be important regulators during LBH589 treatment. Our results provide new clues to the proapoptotic mechanism of LBH589. PMID:26176219

  9. Phylogenetic analysis, subcellular localization, and expression patterns of RPD3/HDA1 family histone deacetylases in plants

    PubMed Central

    Alinsug, Malona V; Yu, Chun-Wei; Wu, Keqiang

    2009-01-01

    Background Although histone deacetylases from model organisms have been previously identified, there is no clear basis for the classification of histone deacetylases under the RPD3/HDA1 superfamily, particularly on plants. Thus, this study aims to reconstruct a phylogenetic tree to determine evolutionary relationships between RPD3/HDA1 histone deacetylases from six different plants representing dicots with Arabidopsis thaliana, Populus trichocarpa, and Pinus taeda, monocots with Oryza sativa and Zea mays, and the lower plants with Physcomitrella patens. Results Sixty two histone deacetylases of RPD3/HDA1 family from the six plant species were phylogenetically analyzed to determine corresponding orthologues. Three clusters were formed separating Class I, Class II, and Class IV. We have confirmed lower and higher plant orthologues for AtHDA8 and AtHDA14, classifying both genes as Class II histone deacetylases in addition to AtHDA5, AtHDA15, and AtHDA18. Since Class II histone deacetylases in other eukaryotes have been known to undergo nucleocytoplasmic transport, it remains unknown whether such functional regulation also happens in plants. Thus, bioinformatics studies using different programs and databases were conducted to predict their corresponding localization sites, nuclear export signal, nuclear localization signal, as well as expression patterns. We also found new conserved domains in most of the RPD3/HDA1 histone deacetylases which were similarly conserved in its corresponding orthologues. Assessing gene expression patterns using Genevestigator, it appears that RPD3/HDA1 histone deacetylases are expressed all throughout the plant parts and developmental stages of the plant. Conclusion The RPD3/HDA1 histone deacetylase family in plants is divided into three distinct groups namely, Class I, Class II, and Class IV suggesting functional diversification. Class II comprises not only AtHDA5, AtHDA15, and AtHDA18 but also includes AtHDA8 and AtHDA14. New conserved domains have also been identified in most of the RPD3/HDA1 family indicating further versatile roles other than histone deacetylation. PMID:19327164

  10. aPKC phosphorylation of HDAC6 results in increased deacetylation activity.

    PubMed

    Du, Yifeng; Seibenhener, Michael L; Yan, Jin; Jiang, Jianxiong; Wooten, Michael C

    2015-01-01

    The Class II histone deacetylase, HDAC6, has been shown to be involved in cell motility, aggresome formation and mitochondria transport. HDAC6 deacetylase activity regulates ?-tubulin acetylation levels and thus plays a critical role in these processes. In turn, HDAC6 activity can be regulated by interaction with various proteins including multiple kinases. Kinase mediated phosphorylation of HDAC6 can lead to either increased or reduced activity. Our previous research has shown that sequestosome1/p62 (SQSTM1/p62) interacts with HDAC6 and regulates its activity. As SQSTM1/p62 is a scaffolding protein known to interact directly with the zeta isoform of Protein Kinase C (PKC?), we sought to examine if HDAC6 could be a substrate for PKC? phosphorylation and if so, how its activity might be regulated. Our data demonstrate that HDAC6 is not only present in a protein complex with PKC? but can also be phosphorylated by PKC?. We also show that specific phosphorylation of HDAC6 by PKC? increases HDAC6 deacetylase activity resulting in reduced acetylated tubulin levels. Our findings provide novel insight into the molecular mechanism by which HDAC6, PKC? and SQSTM1/p62 function together in protein aggregate clearance. These results also highlight a new research direction which may prove fruitful for understanding the underlying cause of several neurodegenerative diseases. PMID:25860570

  11. Computational Exploration of Zinc Binding Groups for HDAC Inhibition

    PubMed Central

    Chen, Kai; Xu, Liping

    2013-01-01

    Histone deacetylases (HDACs) emerged as important drug targets in epigenetics. The most common HDAC inhibitors use hydroxamic acids as zinc binding groups despite unfavorable pharmacokinetic properties. A two-stage protocol of M05-2X calculations of a library of 48 fragments in a small model active site, followed by QM/MM hybrid calculations of the full enzyme with selected binders is used to prospectively select potential bidentate zinc binders. The energetics and interaction patterns of several zinc binders not previously used for the inhibition of HDACs are discussed. PMID:23586590

  12. New and emerging HDAC inhibitors for cancer treatment

    PubMed Central

    West, Alison C.; Johnstone, Ricky W.

    2014-01-01

    Epigenetic enzymes are often dysregulated in human tumors through mutation, altered expression, or inappropriate recruitment to certain loci. The identification of these enzymes and their partner proteins has driven the rapid development of small-molecule inhibitors that target the cancer epigenome. Herein, we discuss the influence of aberrantly regulated histone deacetylases (HDACs) in tumorigenesis. We examine HDAC inhibitors (HDACis) targeting class I, II, and IV HDACs that are currently under development for use as anticancer agents following the FDA approval of two HDACis, vorinostat and romidepsin. PMID:24382387

  13. Effects of histone deacetylase inhibitors, sodium phenyl butyrate and vitamin B3, in combination with retinoic acid on granulocytic differentiation of human promyelocytic leukemia HL-60 cells.

    PubMed

    Merzvinskyte, Rasa; Treigyte, Grazina; Savickiene, Jurate; Magnusson, Karl-Eric; Navakauskiene, Ruta

    2006-12-01

    Water-soluble vitamin B3, niacin, and its related compounds were suggested to be applicable for medical use. In this article, we examined the anti-leukemic effects of two distinct histone deacetylase (HDAC1 and Sir2) inhibitors, sodium phenyl butyrate (PB) and vitamin B3, respectively, on human promyelocytic leukemia cells HL-60, using HDACIs alone and in combination with all trans retinoic acid (RA). We demonstrated that the HDACI combinations exert different effects on cell cycle arrest and differentiation as determined by nitro blue reduction and the expression of the early myeloid differentiation marker CD11b. The most beneficial effects were found by use of 6-h pretreatment with PB and vitamin B3 before the exposition to RA alone or in combination with vitamin B3, showing significant acceleration and a high level of granulocytic differentiation. The effects were associated with a rapid histone H4 acetylation and later histone H3 modifications. Our results suggest that the use of two HDACI altogether before the induction of differentiation and acting via chromatin remodeling may be promising for the treatment of acute promyelocytic leukemia. PMID:17341628

  14. Apicidin: A novel antiprotozoal agent that inhibits parasite?histone?deacetylase

    PubMed Central

    Darkin-Rattray, Sandra?J.; Gurnett, Anne?M.; Myers, Robert?W.; Dulski, Paula?M.; Crumley, Tami?M.; Allocco, John?J.; Cannova, Christine; Meinke, Peter?T.; Colletti, Steven?L.; Bednarek, Maria?A.; Singh, Sheo?B.; Goetz, Michael?A.; Dombrowski, Anne?W.; Polishook, Jon?D.; Schmatz, Dennis?M.

    1996-01-01

    A novel fungal metabolite, apicidin [cyclo(N-O-methyl-l-tryptophanyl-l-isoleucinyl-d-pipecolinyl-l-2-amino-8-oxodecanoyl)], that exhibits potent, broad spectrum antiprotozoal activity in vitro against Apicomplexan parasites has been identified. It is also orally and parenterally active in vivo against Plasmodium berghei malaria in mice. Many Apicomplexan parasites cause serious, life-threatening human and animal diseases, such as malaria, cryptosporidiosis, toxoplasmosis, and coccidiosis, and new therapeutic agents are urgently needed. Apicidin’s antiparasitic activity appears to be due to low nanomolar inhibition of Apicomplexan histone deacetylase (HDA), which induces hyperacetylation of histones in treated parasites. The acetylation–deacetylation of histones is a thought to play a central role in transcriptional control in eukaryotic cells. Other known HDA inhibitors were also evaluated and found to possess antiparasitic activity, suggesting that HDA is an attractive target for the development of novel antiparasitic agents. PMID:8917558

  15. Histone H3 lysine 36 methylation antagonizes silencing in Saccharomyces cerevisiae independently of the Rpd3S histone deacetylase complex.

    PubMed

    Tompa, Rachel; Madhani, Hiten D

    2007-02-01

    In yeast, methylation of histone H3 on lysine 36 (H3-K36) is catalyzed by the NSD1 leukemia oncoprotein homolog Set2. The histone deacetylase complex Rpd3S is recruited to chromatin via binding of the chromodomain protein Eaf3 to methylated H3-K36 to prevent erroneous transcription initiation. Here we identify a distinct function for H3-K36 methylation. We used random mutagenesis of histones H3 and H4 followed by a reporter-based screen to identify residues necessary to prevent the ectopic spread of silencing from the silent mating-type locus HMRa into flanking euchromatin. Mutations in H3-K36 or deletion of SET2 caused ectopic silencing of a heterochromatin-adjacent reporter. Transcriptional profiling revealed that telomere-proximal genes are enriched for those that display decreased expression in a set2Delta strain. Deletion of SIR4 rescued the expression defect of 26 of 37 telomere-proximal genes with reduced expression in set2Delta cells, implying that H3-K36 methylation prevents the spread of telomeric silencing. Indeed, Sir3 spreads from heterochromatin into neighboring euchromatin in set2Delta cells. Furthermore, genetic experiments demonstrated that cells lacking the Rpd3S-specific subunits Eaf3 or Rco1 did not display the anti-silencing phenotype of mutations in SET2 or H3-K36. Thus, antagonism of silencing is independent of the only known effector of this conserved histone modification. PMID:17179083

  16. Histone H3 Lysine 36 Methylation Antagonizes Silencing in Saccharomyces cerevisiae Independently of the Rpd3S Histone Deacetylase Complex

    PubMed Central

    Tompa, Rachel; Madhani, Hiten D.

    2007-01-01

    In yeast, methylation of histone H3 on lysine 36 (H3-K36) is catalyzed by the NSD1 leukemia oncoprotein homolog Set2. The histone deacetylase complex Rpd3S is recruited to chromatin via binding of the chromodomain protein Eaf3 to methylated H3-K36 to prevent erroneous transcription initiation. Here we identify a distinct function for H3-K36 methylation. We used random mutagenesis of histones H3 and H4 followed by a reporter-based screen to identify residues necessary to prevent the ectopic spread of silencing from the silent mating-type locus HMRa into flanking euchromatin. Mutations in H3-K36 or deletion of SET2 caused ectopic silencing of a heterochromatin-adjacent reporter. Transcriptional profiling revealed that telomere-proximal genes are enriched for those that display decreased expression in a set2? strain. Deletion of SIR4 rescued the expression defect of 26 of 37 telomere-proximal genes with reduced expression in set2? cells, implying that H3-K36 methylation prevents the spread of telomeric silencing. Indeed, Sir3 spreads from heterochromatin into neighboring euchromatin in set2? cells. Furthermore, genetic experiments demonstrated that cells lacking the Rpd3S-specific subunits Eaf3 or Rco1 did not display the anti-silencing phenotype of mutations in SET2 or H3-K36. Thus, antagonism of silencing is independent of the only known effector of this conserved histone modification. PMID:17179083

  17. Androgen receptor regulates nuclear trafficking and nuclear domain residency of corepressor HDAC7 in a ligand-dependent fashion

    SciTech Connect

    Karvonen, Ulla [Biomedicum Helsinki, Institute of Biomedicine, University of Helsinki, PO Box 63, FI-00014 Helsinki (Finland); Jaenne, Olli A. [Biomedicum Helsinki, Institute of Biomedicine, University of Helsinki, PO Box 63, FI-00014 Helsinki (Finland); Department of Clinical Chemistry, Helsinki University Central Hospital, FI-00290 Helsinki (Finland); Palvimo, Jorma J. [Biomedicum Helsinki, Institute of Biomedicine, University of Helsinki, PO Box 63, FI-00014 Helsinki (Finland) and Institute of Biomedicine/Medical Biochemistry, University of Kuopio, PO Box 1627, FI-70211 Kuopio (Finland)]. E-mail: jorma.palvimo@uku.fi

    2006-10-01

    In addition to chromosomal proteins, histone deacetylases (HDACs) target transcription factors in transcriptional repression. Here, we show that the class II HDAC family member HDAC7 is an efficient corepressor of the androgen receptor (AR). HDAC7 resided in the cytoplasm in the absence of AR or a cognate ligand, but hormone-occupancy of AR induced nuclear transfer of HDAC7. Nuclear colocalization pattern of AR and HDAC7 was dependent on the nature of the ligand. In the presence of testosterone, a portion of HDAC7 localized to pearl-like nuclear domains, whereas AR occupied with antagonistic ligands cyproterone acetate- or casodex (bicalutamide) recruited HDAC7 from these domains to colocalize with the receptor in speckles and nucleoplasm in a more complete fashion. Ectopic expression of PML-3 relieved the repressive effect of HDAC7 on AR function by sequestering HDAC7 to PML-3 domains. AR acetylation at Lys630/632/633 was not the target of HDAC7 repression, since repression of AR function was independent of these acetylation sites. Moreover, the deacetylase activity of HDAC7 was in part dispensable in the repression of AR function. In sum, our results identify HDAC7 as a novel AR corepressor whose subcellular and subnuclear compartmentalization can be regulated in an androgen-selective manner.

  18. Holocarboxylase synthetase acts as a biotin-independent transcriptional repressor interacting with HDAC1, HDAC2 and HDAC7.

    PubMed

    Trujillo-Gonzalez, Isis; Cervantes-Roldan, Rafael; Gonzalez-Noriega, Alfonso; Michalak, Colette; Reyes-Carmona, Sandra; Barrios-Garcia, Tonatiuh; Meneses-Morales, Ivan; Leon-Del-Rio, Alfonso

    2014-03-01

    In human cells, HCS catalyzes the biotinylation of biotin-dependent carboxylases and mediates the transcriptional control of genes involved in biotin metabolism through the activation of a cGMP-dependent signal transduction pathway. HCS also targets to the cell nucleus in association with lamin-B suggesting additional gene regulatory functions. Studies from our laboratory in Drosophila melanogaster showed that nuclear HCS is associated with heterochromatin bands enriched with the transcriptionally repressive mark histone 3 trimethylated at lysine 9. Further, HCS was shown to be recruited to the core promoter of the transcriptionally inactive hsp70 gene suggesting that it may participate in the repression of gene expression, although the mechanism involved remained elusive. In this work, we expressed HCS as a fusion protein with the DNA-binding domain of GAL4 to evaluate its effect on the transcription of a luciferase reporter gene. We show that HCS possesses transcriptional repressor activity in HepG2 cells. The transcriptional function of HCS was shown by in vitro pull down and in vivo co-immunoprecipitation assays to depend on its interaction with the histone deacetylases HDAC1, HDAC2 and HDAC7. We show further that HCS interaction with HDACs and its function in transcriptional repression is not affected by mutations impairing its biotin-ligase activity. We propose that nuclear HCS mediates events of transcriptional repression through a biotin-independent mechanism that involves its interaction with chromatin-modifying protein complexes that include histone deacetylases. PMID:24239178

  19. HDAC11 is a novel drug target in carcinomas.

    PubMed

    Deubzer, Hedwig E; Schier, Marie C; Oehme, Ina; Lodrini, Marco; Haendler, Bernard; Sommer, Anette; Witt, Olaf

    2013-05-01

    Inhibition of histone deacetylase (HDAC) activity as stand-alone or combination therapy represents a promising therapeutic approach in oncology. The pan- or class I HDAC inhibitors (HDACi) currently approved or in clinical studies for oncology give rise to dose-limiting toxicities, presumably because of the inhibition of several HDACs. This could potentially be overcome by selective blockade of single HDAC family members. Here we report that HDAC11, the most recently identified zinc-dependent HDAC, is overexpressed in several carcinomas as compared to corresponding healthy tissues. HDAC11 depletion is sufficient to cause cell death and to inhibit metabolic activity in HCT-116 colon, PC-3 prostate, MCF-7 breast and SK-OV-3 ovarian cancer cell lines. The antitumoral effect induced can be mimicked by enforced expression of a catalytically impaired HDAC11 variant, suggesting that inhibition of the enzymatic activity of HDAC11 by small molecules could trigger the desired phenotypic changes. HDAC11 depletion in normal cells causes no changes in metabolic activity and viability, strongly suggesting that tumor-selective effects can be achieved. Altogether, our data show that HDAC11 plays a critical role in cancer cell survival and may represent a novel drug target in oncology. PMID:23024001

  20. The histone deacetylase inhibitor valproic acid sensitizes diffuse large B-cell lymphoma cell lines to CHOP-induced cell death.

    PubMed

    Ageberg, Malin; Rydström, Karin; Relander, Thomas; Drott, Kristina

    2013-01-01

    Epigenetic code modifications by histone deacetylase inhibitors (HDACis) have recently been proposed as potential new therapies for hematological malignancies. Diffuse large B-cell lymphoma (DLBCL) is the most common form of aggressive lymphoma. At present, standard first line treatment for DLBCL patients is the antracycline-based chemotherapy regimen CHOP (cyclophosphamide, doxorubicin, vincristine and prednisone) combined with the monoclonal anti-CD20 antibody rituximab (R-CHOP). Since only 50-60% of patients reach a long-time cure by this treatment, there is an urgent need for novel treatment strategies to increase the response and long-term remission to initial R-CHOP therapy. In this study, we investigated the effect of the HDAC inhibitor valproic acid (VPA) on DLBCL cell lines. To elucidate the effects of VPA on chemo-sensitivity, we used a cell-line based model of CHOP-refractory DLBCL. All five DLBCL cell lines treated with VPA alone or in combination with CHOP showed decreased viability and proliferation. The VPA-induced sensitization of DLBCL cells to cytotoxic treatment resulted in increased number of apoptotic cell as judged by annexin V-positivity and the presence of cleaved caspase-3. In addition, pretreatment with VPA resulted in a significantly increased DNA-damage as compared to CHOP alone. In summary, HDAC inhibitors such as VPA, are promising therapeutic agents in combination with R-CHOP for patients with DLBCL. PMID:23573362

  1. Histone deacetylase inhibitor treatment induces 'BRCAness' and synergistic lethality with PARP inhibitor and cisplatin against human triple negative breast cancer cells.

    PubMed

    Ha, Kyungsoo; Fiskus, Warren; Choi, Dong Soon; Bhaskara, Srividya; Cerchietti, Leandro; Devaraj, Santhana G T; Shah, Bhavin; Sharma, Sunil; Chang, Jenny C; Melnick, Ari M; Hiebert, Scott; Bhalla, Kapil N

    2014-07-30

    There is an unmet need to develop new, more effective and safe therapies for the aggressive forms of triple negative breast cancers (TNBCs). While up to 20% of women under 50 years of age with TNBC harbor germline mutations in BRCA1, and these tumors are sensitive to treatment with poly(ADP) ribose polymerase inhibitors, a majority of TNBCs lack BRCA1 mutations or loss of expression. Findings presented here demonstrate that by attenuating the levels of DNA damage response and homologous recombination proteins, pan-histone deacetylase inhibitor (HDI) treatment induces 'BRCAness' and sensitizes TNBC cells lacking BRCA1 to lethal effects of PARP inhibitor or cisplatin. Treatment with HDI also induced hyperacetylation of nuclear hsp90. Similar effects were observed following shRNA-mediated depletion of HDAC3, confirming its role as the deacetylase for nuclear HSP90. Furthermore, cotreatment with HDI and ABT-888 induced significantly more DNA strand breaks than either agent alone, and synergistically induced apoptosis of TNBC cells. Notably, co-treatment with HDI and ABT-888 significantly reduced in vivo tumor growth and markedly improved the survival of mice bearing TNBC cell xenografts. These findings support the rationale to interrogate the clinical activity of this novel combination against human TNBC, irrespective of its expression of mutant BRCA1. PMID:25026298

  2. The antitumor histone deacetylase inhibitor suberoylanilide hydroxamic acid exhibits antiinflammatory properties via suppression of cytokines

    PubMed Central

    Leoni, Flavio; Zaliani, Andrea; Bertolini, Giorgio; Porro, Giulia; Pagani, Paolo; Pozzi, Pietro; Donà, Giancarlo; Fossati, Gianluca; Sozzani, Silvano; Azam, Tania; Bufler, Philip; Fantuzzi, Giamila; Goncharov, Igor; Kim, Soo-Hyun; Pomerantz, Benjamin J.; Reznikov, Leonid L.; Siegmund, Britta; Dinarello, Charles A.; Mascagni, Paolo

    2002-01-01

    Suberoylanilide hydroxamic acid (SAHA) is a hydroxamic acid-containing hybrid polar molecule; SAHA specifically binds to and inhibits the activity of histone deacetylase. Although SAHA, like other inhibitors of histone deacetylase, exhibits antitumor effects by increasing expression of genes regulating tumor survival, we found that SAHA reduces the production of proinflammatory cytokines in vivo and in vitro. A single oral administration of SAHA to mice dose-dependently reduced circulating TNF-?, IL-1-?, IL-6, and IFN-? induced by lipopolysaccharide (LPS). Administration of SAHA also reduced hepatic cellular injury in mice following i.v. injection of Con A. SAHA inhibited nitric oxide release in mouse macrophages stimulated by the combination of TNF-? plus IFN-?. Human peripheral blood mononuclear cells stimulated with LPS in the presence of SAHA released less TNF-?, IL-1-?, IL-12, and IFN-? (50% reduction at 100–200 nM). The production of IFN-? stimulated by IL-18 plus IL-12 was also inhibited by SAHA (85% at 200 nM). However, SAHA did not affect LPS-induced synthesis of the IL-1-? precursor, the IL-1 receptor antagonist, or the chemokine IL-8. In addition, IFN-? induced by anti-CD3 was not suppressed by SAHA. Steady-state mRNA levels for LPS-induced TNF-? and IFN-? in peripheral blood mononuclear cells were markedly decreased, whereas IL-8 and IL-1-? mRNA levels were unaffected. Because SAHA exhibits antiinflammatory properties in vivo and in vitro, inhibitors of histone deacetylase may stimulate the expression of genes that control the synthesis of cytokines and nitric oxide or hyperacetylate other targets. PMID:11867742

  3. HD-MB03 is a novel Group 3 medulloblastoma model demonstrating sensitivity to histone deacetylase inhibitor treatment.

    PubMed

    Milde, Till; Lodrini, Marco; Savelyeva, Larissa; Korshunov, Andrey; Kool, Marcel; Brueckner, Lena M; Antunes, André S L M; Oehme, Ina; Pekrun, Arnulf; Pfister, Stefan M; Kulozik, Andreas E; Witt, Olaf; Deubzer, Hedwig E

    2012-12-01

    Medulloblastomas are the most common malignant brain tumors in childhood. Emerging evidence suggests that medulloblastoma comprises at least four distinct diseases (WNT, SHH, Group 3 and 4) with different biology, clinical presentation, and outcome, with especially poor prognosis in Group 3. The tight connection of biology and clinical behavior in patients emphasizes the need for subgroup-specific preclinical models in order to develop treatments tailored to each subgroup. Herein we report on the novel cell line HD-MB03, isolated from tumor material of a patient with metastasized Group 3 medulloblastoma, and preclinical testing of different histone deacetylase inhibitors (HDACis) in this model. HD-MB03 cells grow long term in vitro and form metastatic tumors in vivo upon orthotopic transplantation. HD-MB03 cells reflect the original Group 3 medulloblastoma at the histological and molecular level, showing large cell morphology, similar expression patterns for markers Ki67, p53, and glial fibrillary acidic protein (GFAP), a gene expression profile most closely matching Group 3 medulloblastomas, and persistence of typical molecular alterations, i.e., isochromosome 17q [i(17q)] and MYC amplification. Protein expression analysis of HDACs 2, 5, 8, and 9 as well as the predictive marker HR23B showed intermediate to strong expression, suggesting sensitivity to HDACis. Indeed, treatment with HDACis Helminthosporium carbonum (HC)-toxin, vorinostat, and panobinostat revealed high sensitivity to this novel drug class, as well as a radiation-sensitizing effect with significantly increased cell death upon concomitant treatment. In summary, our data indicate that HD-MB03 is a suitable preclinical model for Group 3 medulloblastoma, and HDACis could represent a therapeutic option for this subgroup. PMID:23054560

  4. HDAC4 Promotes Growth of Colon Cancer Cells via Repression of p21

    PubMed Central

    Wilson, Andrew J.; Byun, Do-Sun; Nasser, Shannon; Murray, Lucas B.; Ayyanar, Kanyalakshmi; Arango, Diego; Figueroa, Maria; Melnick, Ari; Kao, Gary D.; Augenlicht, Leonard H.

    2008-01-01

    The class II Histone deacetylase (HDAC), HDAC4, is expressed in a tissue-specific manner, and it represses differentiation of specific cell types. We demonstrate here that HDAC4 is expressed in the proliferative zone in small intestine and colon and that its expression is down-regulated during intestinal differentiation in vivo and in vitro. Subcellular localization studies demonstrated HDAC4 expression was predominantly nuclear in proliferating HCT116 cells and relocalized to the cytoplasm after cell cycle arrest. Down-regulating HDAC4 expression by small interfering RNA (siRNA) in HCT116 cells induced growth inhibition and apoptosis in vitro, reduced xenograft tumor growth, and increased p21 transcription. Conversely, overexpression of HDAC4 repressed p21 promoter activity. p21 was likely a direct target of HDAC4, because HDAC4 down-regulation increased p21 mRNA when protein synthesis was inhibited by cycloheximide. The importance of p21 repression in HDAC4-mediated growth promotion was demonstrated by the failure of HDAC4 down-regulation to induce growth arrest in HCT116 p21-null cells. HDAC4 down-regulation failed to induce p21 when Sp1 was functionally inhibited by mithramycin or siRNA-mediated down-regulation. HDAC4 expression overlapped with that of Sp1, and a physical interaction was demonstrated by coimmunoprecipitation. Chromatin immunoprecipitation (ChIP) and sequential ChIP analyses demonstrated Sp1-dependent binding of HDAC4 to the proximal p21 promoter, likely directed through the HDAC4–HDAC3–N-CoR/SMRT corepressor complex. Consistent with increased transcription, HDAC4 or SMRT down-regulation resulted in increased histone H3 acetylation at the proximal p21 promoter locus. These studies identify HDAC4 as a novel regulator of colon cell proliferation through repression of p21. PMID:18632985

  5. Histone deacetylase inhibitors increase glucocerebrosidase activity in Gaucher disease by modulation of molecular chaperones

    PubMed Central

    Yang, Chunzhang; Rahimpour, Shervin; Lu, Jie; Pacak, Karel; Ikejiri, Barbara; Brady, Roscoe O.; Zhuang, Zhengping

    2013-01-01

    Gaucher disease is caused by mutations of the GBA gene that encodes the lysosomal enzyme glucocerebrosidase (GCase). GBA mutations often result in protein misfolding and premature degradation, but usually exert less effect on catalytic activity. In this study, we identified the molecular mechanism by which histone deacetylase inhibitors increase the quantity and activity of GCase. Specifically, these inhibitors limit the deacetylation of heat shock protein 90, resulting in less recognition of the mutant peptide and GCase degradation. These findings provide insight into a possible therapeutic strategy for Gaucher disease and other genetic disorders by modifying molecular chaperone and protein degradation pathways. PMID:23277556

  6. Histone deacetylase inhibitors increase glucocerebrosidase activity in Gaucher disease by modulation of molecular chaperones.

    PubMed

    Yang, Chunzhang; Rahimpour, Shervin; Lu, Jie; Pacak, Karel; Ikejiri, Barbara; Brady, Roscoe O; Zhuang, Zhengping

    2013-01-15

    Gaucher disease is caused by mutations of the GBA gene that encodes the lysosomal enzyme glucocerebrosidase (GCase). GBA mutations often result in protein misfolding and premature degradation, but usually exert less effect on catalytic activity. In this study, we identified the molecular mechanism by which histone deacetylase inhibitors increase the quantity and activity of GCase. Specifically, these inhibitors limit the deacetylation of heat shock protein 90, resulting in less recognition of the mutant peptide and GCase degradation. These findings provide insight into a possible therapeutic strategy for Gaucher disease and other genetic disorders by modifying molecular chaperone and protein degradation pathways. PMID:23277556

  7. Activity of MGCD290, a Hos2 histone deacetylase inhibitor, in combination with azole antifungals against opportunistic fungal pathogens.

    PubMed

    Pfaller, M A; Messer, S A; Georgopapadakou, N; Martell, L A; Besterman, J M; Diekema, D J

    2009-12-01

    We report on the in vitro activity of the Hos2 fungal histone deacetylase (HDAC) inhibitor MGCD290 (MethylGene, Inc.) in combination with azoles against azole-resistant yeasts and molds. Susceptibility testing was performed by the CLSI M27-A3 and M38-A2 broth microdilution methods. Testing of the combinations (MGCD290 in combination with fluconazole, posaconazole, or voriconazole) was performed by the checkerboard method. The fractional inhibitory concentrations were determined and were defined as <0.5 for synergy, >or=0.5 but <4 for indifference, and >or=4 for antagonism. Ninety-one isolates were tested, as follows: 30 Candida isolates, 10 Aspergillus isolates, 15 isolates of the Zygomycetes order, 10 Cryptococcus neoformans isolates, 8 Rhodotorula isolates, 8 Fusarium isolates, 5 Trichosporon isolates, and 5 Scedosporium isolates. MGCD290 showed modest activity when it was used alone (MICs, 1 to 8 microg/ml) and was mostly active against azole-resistant yeasts, but the MICs against molds were high (16 to >32 microg/ml). MGCD290 was synergistic with fluconazole against 55 (60%) of the 91 isolates, with posaconazole against 46 (51%) of the 91 isolates, and with voriconazole against 48 (53%) of the 91 isolates. Synergy between fluconazole and MGCD290 was observed against 26/30 (87%) Candida isolates. All 23 of the 91 Candida isolates that were not fluconazole susceptible demonstrated a reduced fluconazole MIC that crossed an interpretive breakpoint (e.g., resistant [MIC, >or=64 microg/ml] to susceptible [MIC, HDAC inhibitor-azole combinations is indicated. PMID:19794038

  8. HDAC4 governs a transcriptional program essential for synaptic plasticity and memory

    PubMed Central

    Sando, Richard; Gounko, Natalia; Pieraut, Simon; Liao, Lujian; Yates, John; Maximov, Anton

    2012-01-01

    SUMMARY Neuronal activity influences genes involved in circuit development and information processing. However, the molecular basis of this process remains poorly understood. We found that HDAC4, a histone deacetylase that shuttles between the nucleus and cytoplasm, controls a transcriptional program essential for synaptic plasticity and memory. The nuclear import of HDAC4 and its association with chromatin is negatively regulated by NMDA receptors. In the nucleus, HDAC4 represses genes encoding constituents of central synapses, thereby affecting synaptic architecture and strength. Furthermore, we show that a truncated form of HDAC4 encoded by an allele associated with mental retardation is a gain-of-function nuclear repressor that abolishes transcription and synaptic transmission despite the loss of the deacetylase domain. Accordingly, mice carrying a mutant that mimics this allele exhibit deficits in neurotransmission and spatial memory. These studies elucidate a mechanism of experience-dependent plasticity and define the biological role of HDAC4 in the brain. PMID:23141539

  9. Histone deacetylase inhibition alters dendritic cells to assume a tolerogenic phenotype and ameliorates arthritis in SKG mice

    Microsoft Academic Search

    Kenta Misaki; Akio Morinobu; Jun Saegusa; Shimpei Kasagi; Masaaki Fujita; Yoshiaki Miyamoto; Fumichika Matsuki; Shunichi Kumagai

    2011-01-01

    Introduction  The purpose of this study was to elucidate the effects of histone deacetylase inhibition on the phenotype and function of\\u000a dendritic cells and on arthritis in SKG mice.\\u000a \\u000a \\u000a \\u000a \\u000a Methods  Arthritis was induced in SKG mice by zymosan A injection. Trichostatin A, a histone deacetylase inhibitor, was administered\\u000a and its effects on arthritis were evaluated by joint swelling and histological evaluation. Interleukin-17

  10. Targeting histone deacetylase in lung cancer for early diagnosis: 18F-FAHA PET/CT imaging of NNK-treated A/J mice model

    PubMed Central

    Tang, Wayland; Kuruvilla, Sharon A; Galitovskiy, Valentin; Pan, Min-Liang; Grando, Sergei A; Mukherjee, Jogeshwar

    2014-01-01

    Elevated levels of histone deacetylases (HDACs) have been indicated in the development of some cancers. HDAC has been imaged using 18F-FAHA and may serve as a marker to study epigenetics. We report evaluation of 18F-FAHA as a probe in the early diagnosis of lung cancer using 18F-FAHA PET/CT studies of A/J mice treated with NNK. 18F-FAHA radiosynthesis was carried out in specific activity of ~2 Ci/?mol. A/J mice were divided into 2 groups: 1. Controls; 2. NNK treatment group with NNK (100 mg/kg, ip, weekly for 4 wks). Mice were injected 100-200 ?Ci i.v. 18F-FAHA and then scanned in Inveon PET/CT under anesthesia using 2.0% isoflurane. Midbrain, cerebellum and brainstem uptake of 18F-FAHA was displaced by the known HDAC inhibitor, suberanilohydroxamic acid (SAHA) with less than 10% activity remaining. CT revealed presence of lung nodules in 8 to 10-month old NNK mice while control mice were free of tumors. Little uptake of 18F-FAHA was observed in the control mice lungs while significant 18F-FAHA uptake occurred in the lungs of NNK-treated mice with tumor/nontumor >2.0. Ex vivo scans of the excised NNK and control mice lungs confirmed presence of extensive amounts of lung nodules seen by CT and confirmed by 18F-FAHA in the NNK mice with tumor/nontumor >6.0. Our preliminary imaging studies with A/J mice lung cancer model suggest 18F-FAHA PET may allow the study of epigenetic mechanisms involved in NNK-induced tumorigenesis in the lungs. PMID:24982818

  11. Effect of ginsenoside Rh2 on the migratory ability of HepG2 liver carcinoma cells: Recruiting histone deacetylase and inhibiting activator protein 1 transcription factors

    PubMed Central

    SHI, QINGQIANG; LI, JING; FENG, ZIQIANG; ZHAO, LVCUI; LUO, LIAN; YOU, ZHIMEI; LI, DANYANG; XIA, JING; ZUO, GUOWEI; CHEN, DILONG

    2014-01-01

    In previous experiments, ginsenoside Rh2 induced apoptosis and cell cycle arrest, which indicates a potential role for ginsenoside Rh2 in anticancer treatment. The effect of ginsenoside Rh2 on cancer is marked and ginsenoside Rh2 has been shown to inhibit pancreatic tumor migratory ability. In the present study, Transwell chambers were used in order to investigate whether ginsenoside Rh2 inhibits the migratory ability of HepG2 liver carcinoma cells. Furthermore, to analyze activator protein 1 (AP-1) transcription factor expression following Rh2 treatment, ten plasmids encoding Renilla luciferase coupled to the transcription factors were transiently transfected into the HepG2 cells and luciferase was detected by the Luciferase Reporter Assay system reagent. The results indicated that ginsenoside Rh2 inhibited HepG2 cell migratory ability. The expression levels of AP-1 transcription factors were increased in HepG2 cells following induction by phorbol 12-myristate 13-acetate, but ginsenoside Rh2 suppressed this induced AP-1 expression. AP-1 transcription factors recruit histone deacetylase (HDAC)4 and affect its transcription, thus, the expression levels of HDAC4 were also analyzed, and these were found to be increased in the Rh2 treatment group. Matrix metalloproteinase 3 (MMP3), a gene downstream of AP-1, was then investigated, and the treatment group expressed reduced levels of MMP3 gene and protein. Therefore, the inhibitory effect of ginsenoside Rh2 on the migratory ability of HepG2 may be presumed to occur by the recruitment of HDAC and the resulting inhibition of AP-1 transcription factors, in order to reduce the expression levels of MMP3 gene and protein. PMID:25051397

  12. Effect of ginsenoside Rh2 on the migratory ability of HepG2 liver carcinoma cells: recruiting histone deacetylase and inhibiting activator protein 1 transcription factors.

    PubMed

    Shi, Qingqiang; Li, Jing; Feng, Ziqiang; Zhao, Lvcui; Luo, Lian; You, Zhimei; Li, Danyang; Xia, Jing; Zuo, Guowei; Chen, Dilong

    2014-10-01

    In previous experiments, ginsenoside Rh2 induced apoptosis and cell cycle arrest, which indicates a potential role for ginsenoside Rh2 in anticancer treatment. The effect of ginsenoside Rh2 on cancer is marked and ginsenoside Rh2 has been shown to inhibit pancreatic tumor migratory ability. In the present study, Transwell chambers were used in order to investigate whether ginsenoside Rh2 inhibits the migratory ability of HepG2 liver carcinoma cells. Furthermore, to analyze activator protein 1 (AP-1) transcription factor expression following Rh2 treatment, ten plasmids encoding Renilla luciferase coupled to the transcription factors were transiently transfected into the HepG2 cells and luciferase was detected by the Luciferase Reporter Assay system reagent. The results indicated that ginsenoside Rh2 inhibited HepG2 cell migratory ability. The expression levels of AP-1 transcription factors were increased in HepG2 cells following induction by phorbol 12-myristate 13-acetate, but ginsenoside Rh2 suppressed this induced AP?1 expression. AP-1 transcription factors recruit histone deacetylase (HDAC)4 and affect its transcription, thus, the expression levels of HDAC4 were also analyzed, and these were found to be increased in the Rh2 treatment group. Matrix metalloproteinase 3 (MMP3), a gene downstream of AP-1, was then investigated, and the treatment group expressed reduced levels of MMP3 gene and protein. Therefore, the inhibitory effect of ginsenoside Rh2 on the migratory ability of HepG2 may be presumed to occur by the recruitment of HDAC and the resulting inhibition of AP?1 transcription factors, in order to reduce the expression levels of MMP3 gene and protein. PMID:25051397

  13. Partial inhibition of histone deacetylase in active chromatin by HMG 14 and HMG 17.

    PubMed Central

    Reeves, R; Candido, E P

    1980-01-01

    Digestion of isolated Friend erythroleukemic cell nuclei with DNase I under conditions which selectively destroy the DNA of transcriptionally "active" genes releases into the supernatant fraction proteins of the non-histone "High Mobility Group" (HMGs). Two of these, HMG-14 and HMG-17(identified by solubility in trichloroacetic acid, electrophoretic mobility on SDS-polyacrylamide gels and by amino acid composition) will partially inhibit the endogenous mouse cell histone deacetylase enzymes when added to in vitro assay mixtures. Other closely related proteins do not share this inhibitory ability and thus the reaction with the enzymes appears to be specific. Since these two HMG proteins appear to be preferentially associated with the "active" fraction of chromatin, these findings have important implications for possible models of eukaryotic gene regulatory mechanisms. Images PMID:6448990

  14. HDAC4 integrates PTH and sympathetic signaling in osteoblasts.

    PubMed

    Obri, Arnaud; Makinistoglu, Munevver Parla; Zhang, Hong; Karsenty, Gerard

    2014-06-23

    Parathyroid hormone (PTH) and the sympathetic tone promote Rankl expression in osteoblasts and osteoclast differentiation by enhancing cyclic adenosine monophosphate production through an unidentified transcription factor for PTH and through ATF4 for the sympathetic tone. How two extracellular cues using the same second messenger in the same cell elicit different transcriptional events is unknown. In this paper, we show that PTH favors Rankl expression by triggering the ubiquitination of HDAC4, a class II histone deacetylase, via Smurf2. HDAC4 degradation releases MEF2c, which transactivates the Rankl promoter. Conversely, sympathetic signaling in osteoblasts favors the accumulation of HDAC4 in the nucleus and its association with ATF4. In this context, HDAC4 increases Rankl expression. Because of its ability to differentially connect two extracellular cues to the genome of osteoblasts, HDAC4 is a critical regulator of osteoclast differentiation. PMID:24934156

  15. Murine hematopoietic stem cell dormancy controlled by induction of a novel short form of PSF1 by histone deacetylase inhibitors.

    PubMed

    Han, Yinglu; Gong, Zhi-Yuan; Takakura, Nobuyuki

    2015-06-10

    Hematopoietic stem cells (HSCs) can survive long-term in a state of dormancy. Little is known about how histone deacetylase inhibitors (HDACi) affect HSC kinetics. Here, we use trichostatin A (TSA), a histone deacetylase inhibitor, to enforce histone acetylation and show that this suppresses cell cycle entry by dormant HSCs. Previously, we found that haploinsufficiency of PSF1, a DNA replication factor, led to attenuation of the bone marrow (BM) HSC pool size and lack of acute proliferation after 5-FU ablation. Because PSF1 protein is present in CD34(+) transiently amplifying HSCs but not in CD34(-) long-term reconstituting-HSCs which are resting in a dormant state, we analyzed the relationship between dormancy and PSF1 expression, and how a histone deacetylase inhibitor affects this. We found that CD34(+) HSCs produce long functional PSF1 (PSF1a) but CD34(-) HSCs produce a shorter possibly non-functional PSF1 (PSF1b, c, dominantly PSF1c). Using PSF1a-overexpressing NIH-3T3 cells in which the endogenous PSF1 promoter is suppressed, we found that TSA treatment promotes production of the shorter form of PSF1 possibly by inducing recruitment of E2F family factors upstream of the PSF1 transcription start site. Our data document one mechanism by which histone deacetylase inhibitors affect the dormancy of HSCs by regulating the DNA replication factor PSF1. PMID:25933513

  16. MYCN and HDAC2 cooperate to repress miR-183 signaling in neuroblastoma.

    PubMed

    Lodrini, Marco; Oehme, Ina; Schroeder, Christina; Milde, Till; Schier, Marie C; Kopp-Schneider, Annette; Schulte, Johannes H; Fischer, Matthias; De Preter, Katleen; Pattyn, Filip; Castoldi, Mirco; Muckenthaler, Martina U; Kulozik, Andreas E; Westermann, Frank; Witt, Olaf; Deubzer, Hedwig E

    2013-07-01

    MYCN is a master regulator controlling many processes necessary for tumor cell survival. Here, we unravel a microRNA network that causes tumor suppressive effects in MYCN-amplified neuroblastoma cells. In profiling studies, histone deacetylase (HDAC) inhibitor treatment most strongly induced miR-183. Enforced miR-183 expression triggered apoptosis, and inhibited anchorage-independent colony formation in vitro and xenograft growth in mice. Furthermore, the mechanism of miR-183 induction was found to contribute to the cell death phenotype induced by HDAC inhibitors. Experiments to identify the HDAC(s) involved in miR-183 transcriptional regulation showed that HDAC2 depletion induced miR-183. HDAC2 overexpression reduced miR-183 levels and counteracted the induction caused by HDAC2 depletion or HDAC inhibitor treatment. MYCN was found to recruit HDAC2 in the same complexes to the miR-183 promoter, and HDAC2 depletion enhanced promoter-associated histone H4 pan-acetylation, suggesting epigenetic changes preceded transcriptional activation. These data reveal miR-183 tumor suppressive properties in neuroblastoma that are jointly repressed by MYCN and HDAC2, and suggest a novel way to bypass MYCN function. PMID:23625969

  17. MYCN and HDAC2 cooperate to repress miR-183 signaling in neuroblastoma

    PubMed Central

    Lodrini, Marco; Oehme, Ina; Schroeder, Christina; Milde, Till; Schier, Marie C.; Kopp-Schneider, Annette; Schulte, Johannes H.; Fischer, Matthias; De Preter, Katleen; Pattyn, Filip; Castoldi, Mirco; Muckenthaler, Martina U.; Kulozik, Andreas E.; Westermann, Frank; Witt, Olaf; Deubzer, Hedwig E.

    2013-01-01

    MYCN is a master regulator controlling many processes necessary for tumor cell survival. Here, we unravel a microRNA network that causes tumor suppressive effects in MYCN-amplified neuroblastoma cells. In profiling studies, histone deacetylase (HDAC) inhibitor treatment most strongly induced miR-183. Enforced miR-183 expression triggered apoptosis, and inhibited anchorage-independent colony formation in vitro and xenograft growth in mice. Furthermore, the mechanism of miR-183 induction was found to contribute to the cell death phenotype induced by HDAC inhibitors. Experiments to identify the HDAC(s) involved in miR-183 transcriptional regulation showed that HDAC2 depletion induced miR-183. HDAC2 overexpression reduced miR-183 levels and counteracted the induction caused by HDAC2 depletion or HDAC inhibitor treatment. MYCN was found to recruit HDAC2 in the same complexes to the miR-183 promoter, and HDAC2 depletion enhanced promoter-associated histone H4 pan-acetylation, suggesting epigenetic changes preceded transcriptional activation. These data reveal miR-183 tumor suppressive properties in neuroblastoma that are jointly repressed by MYCN and HDAC2, and suggest a novel way to bypass MYCN function. PMID:23625969

  18. Arabidopsis DNA methyltransferase AtDNMT2 associates with histone deacetylase AtHD2s activity

    SciTech Connect

    Song, Yuan [Key Laboratory of Arid and Grassland Agroecology, Ministry of Education, School of Life Science, Lanzhou University, Lanzhou 730000 (China) [Key Laboratory of Arid and Grassland Agroecology, Ministry of Education, School of Life Science, Lanzhou University, Lanzhou 730000 (China); Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, Canada N5V4T3 (Canada); Wu, Keqiang [Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan (China)] [Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan (China); Dhaubhadel, Sangeeta [Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, Canada N5V4T3 (Canada)] [Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, Canada N5V4T3 (Canada); An, Lizhe, E-mail: lizhean@lzu.edu.cn [Key Laboratory of Arid and Grassland Agroecology, Ministry of Education, School of Life Science, Lanzhou University, Lanzhou 730000 (China)] [Key Laboratory of Arid and Grassland Agroecology, Ministry of Education, School of Life Science, Lanzhou University, Lanzhou 730000 (China); Tian, Lining, E-mail: tianl@agr.gc.ca [Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, Canada N5V4T3 (Canada)] [Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, Canada N5V4T3 (Canada)

    2010-05-28

    DNA methyltransferase2 (DNMT2) is always deemed to be enigmatic, because it contains highly conserved DNA methyltransferase motifs but lacks the DNA methylation catalytic capability. Here we show that Arabidopsis DNA methyltransferase2 (AtDNMT2) is localized in nucleus and associates with histone deacetylation. Bimolecular fluorescence complementation and pull-down assays show AtDNMT2 interacts with type-2 histone deacetylases (AtHD2s), a unique type of histone deacetylase family in plants. Through analyzing the expression of AtDNMT2: ss-glucuronidase (GUS) fusion protein, we demonstrate that AtDNMT2 has the ability to repress gene expression at transcription level. Meanwhile, the expression of AtDNMT2 gene is altered in athd2c mutant plants. We propose that AtDNMT2 possibly involves in the activity of histone deacetylation and plant epigenetic regulatory network.

  19. Short-Chain Fatty Acids from Periodontal Pathogens Suppress Histone Deacetylases, EZH2, and SUV39H1 To Promote Kaposi's Sarcoma-Associated Herpesvirus Replication

    PubMed Central

    Yu, Xiaolan; Shahir, Abdel-Malek; Sha, Jingfeng; Feng, Zhimin; Eapen, Betty; Nithianantham, Stanley; Das, Biswajit; Karn, Jonathan; Weinberg, Aaron; Bissada, Nabil F.

    2014-01-01

    ABSTRACT Periodontal pathogens such as Porphyromonas gingivalis and Fusobacterium nucleatum produce five different short-chain fatty acids (SCFAs) as metabolic by-products. We detect significantly higher levels of SCFAs in the saliva of patients with severe periodontal disease. The different SCFAs stimulate lytic gene expression of Kaposi's sarcoma-associated herpesvirus (KSHV) dose dependently and synergistically. SCFAs inhibit class-1/2 histone deacetylases (HDACs) and downregulate expression of silent information regulator-1 (SIRT1). SCFAs also downregulate expression of enhancer of zeste homolog2 (EZH2) and suppressor of variegation 3-9 homolog1 (SUV39H1), which are two histone N-lysine methyltransferases (HLMTs). By suppressing the different components of host epigenetic regulatory machinery, SCFAs increase histone acetylation and decrease repressive histone trimethylations to transactivate the viral chromatin. These new findings provide mechanistic support that SCFAs from periodontal pathogens stimulate KSHV replication and infection in the oral cavity and are potential risk factors for development of oral Kaposi's sarcoma (KS). IMPORTANCE About 20% of KS patients develop KS lesions first in the oral cavity, while other patients never develop oral KS. It is not known if the oral microenvironment plays a role in oral KS tumor development. In this work, we demonstrate that a group of metabolic by-products, namely, short-chain fatty acids, from bacteria that cause periodontal disease promote lytic replication of KSHV, the etiological agent associated with KS. These new findings provide mechanistic support that periodontal pathogens create a unique microenvironment in the oral cavity that contributes to KSHV replication and development of oral KS. PMID:24501407

  20. Reassessing the effects of histone deacetylase inhibitors on hippocampal memory and cognitive aging.

    PubMed

    Castellano, James F; Fletcher, Bonnie R; Patzke, Holger; Long, Jeffrey M; Sewal, Angila; Kim, David H; Kelley-Bell, Bennett; Rapp, Peter R

    2014-08-01

    Converging results link histone acetylation dynamics to hippocampus-dependent memory, including evidence that histone deacetylase inhibitor (HDACi) administration enhances long-term memory. Previously, we demonstrated that aging disrupts the coordinated epigenetic response to recent experience observed in the young adult hippocampus. Here, we extended that work to test the cognitive effects of a novel, brain-penetrant HDACi (EVX001688; EVX) that we confirmed yields robust, relatively long lasting dose-dependent increases in histone acetylation in the hippocampus. In young rats, acute systemic EVX administration, scheduled to yield elevated histone acetylation levels during training in a contextual fear conditioning (CFC) task, had no effect on memory retention at 24 h at any dose examined (10, 30, or 60 mg/kg). Pretraining injection of another HDACi, sodium butyrate, also failed to affect fear memory, and CFC training itself had no influence on hippocampal histone acetylation at 1 hour in mice or two strains of rats. EVX administration before water maze training in young rats yielded a modest effect such that the middle dose produced marginally better 24-h retention than either the low or high dose, but only a small numerical benefit relative to vehicle. Guided by those findings, a final experiment tested the influence of pretraining EVX treatment on age-related spatial memory impairment. The results, revealing no effect on performance, are consistent with the idea that effective procognitive HDACi treatments in aging may require intervention aimed at restoring coordinated epigenetic regulation rather than bulk increases in hippocampal histone acetylation. PMID:24753063

  1. Histone deacetylase inhibitors induce TAP, LMP, Tapasin genes and MHC class I antigen presentation by melanoma cells

    Microsoft Academic Search

    A. Nazmul H. Khan; Christopher J. Gregorie; Thomas B. Tomasi

    2008-01-01

    Histone deacetylase inhibitors (HDACi), including trichostatin A (TSA) and valproic acid, can alter the acetylation of histones\\u000a in chromatin and enhance gene transcription. Previously we demonstrated that HDACi-treated tumor cells are capable of presenting\\u000a antigen via the MHC class II pathway. In this study, we show that treatment with HDACi enhances the expression of molecules\\u000a (TAP1, TAP2, LMP2, LMP7, Tapasin

  2. HDAC Inhibition Decreases the Expression of EGFR in Colorectal Cancer Cells

    Microsoft Academic Search

    Chia-Wei Chou; Ming-Shiang Wu; Wei-Chien Huang; Ching-Chow Chen; Chris Chan

    2011-01-01

    Epidermal growth factor receptor (EGFR), a receptor tyrosine kinase which promotes cell proliferation and survival, is abnormally overexpressed in numerous tumors of epithelial origin, including colorectal cancer (CRC). EGFR monoclonal antibodies have been shown to increase the median survival and are approved for the treatment of colorectal cancer. Histone deacetylases (HDACs), frequently overexpressed in colorectal cancer and several malignancies, are

  3. Improved total synthesis of the potent HDAC inhibitor FK228 (FR-901228).

    PubMed

    Greshock, Thomas J; Johns, Deidre M; Noguchi, Yasuo; Williams, Robert M

    2008-02-21

    A scaleable synthesis of the potent histone deacetylase (HDAC) inhibitor FK228 is described. A reliable strategy for preparing the key beta-hydroxy mercapto heptenoic acid partner was accomplished in nine steps and 13% overall yield. A Noyori asymmetric hydrogen-transfer reaction established the hydroxyl stereochemistry in >99:1 er via the reduction of a propargylic ketone. PMID:18205373

  4. A Histone Deacetylase Complex Mediates Biofilm Dispersal and Drug Resistance in Candida albicans

    PubMed Central

    Fox, Emily P.; Hartooni, Nairi; Mitchell, Kaitlin F.; Hnisz, Denes; Andes, David R.; Kuchler, Karl; Johnson, Alexander D.

    2014-01-01

    ABSTRACT Biofilms are resilient, surface-associated communities of cells with specialized properties (e.g., resistance to drugs and mechanical forces) that are distinct from those of suspension (planktonic) cultures. Biofilm formation by the opportunistic human fungal pathogen Candida albicans is medically relevant because C. albicans infections are highly correlated with implanted medical devices, which provide efficient substrates for biofilm formation; moreover, biofilms are inherently resistant to antifungal drugs. Biofilms are also important for C. albicans to colonize diverse niches of the human host. Here, we describe four core members of a conserved histone deacetylase complex in C. albicans (Set3, Hos2, Snt1, and Sif2) and explore the effects of their mutation on biofilm formation. We find that these histone deacetylase complex members are needed for proper biofilm formation, including dispersal of cells from biofilms and multifactorial drug resistance. Our results underscore the importance of the physical properties of biofilms in contributing to drug resistance and dispersal and lay a foundation for new strategies to target biofilm dispersal as a potential antifungal intervention. PMID:24917598

  5. Histone deacetylases inhibitor trichostatin A modulates the extracellular release of APE1/Ref-1

    SciTech Connect

    Choi, Sunga; Lee, Yu Ran; Park, Myoung Soo; Joo, Hee Kyoung; Cho, Eun Jung; Kim, Hyo Shin; Kim, Cuk Seong; Park, Jin Bong [Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-747 (Korea, Republic of)] [Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-747 (Korea, Republic of); Irani, Kaikobad [Cardiovascular Institute, University of Pittsburgh, Pittsburgh, PA 15213 (United States)] [Cardiovascular Institute, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Jeon, Byeong Hwa, E-mail: bhjeon@cnu.ac.kr [Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-747 (Korea, Republic of)

    2013-06-07

    Highlights: •Trichostatin A (TSA) increased APE1/Ref-1 secretion in HEK293 cells. •Lysine-mutated APE1/Ref-1 (K6R/K7R) was not secreted by TSA. •TSA induced cytoplasmic translocation of APE1/Ref-1. •APE1/Ref-1 is a protein whose secretion is governed by lysine acetylation. -- Abstract: Apurinic/apyrimidinic endonuclease 1/Redox factor-1 (APE1/Ref-1) can be acetylated via post-translational modification. We investigated the effect of an inhibitor of histone deacetylases on the extracellular release of APE1/Ref-1 in HEK293 cells. Trichostatin A (TSA), an inhibitor of histone deacetylases, induced APE1/Ref-1 secretion without changing cell viability. In a fluorescence quantitative assay, the secreted APE1/Ref-1 was estimated to be about 10 ng/mL in response to TSA (1 ?M). However, TSA did not induce the secretion of lysine-mutated APE1/Ref-1 (K6R/K7R). TSA also caused nuclear to cytoplasmic translocation of APE1/Ref-1. Taken together, these findings suggest that APE1/Ref-1 is a protein whose secretion is governed by lysine acetylation.

  6. Renoprotective Effect of Combined Inhibition of Angiotensin-Converting Enzyme and Histone Deacetylase

    PubMed Central

    Zhong, Yifei; Chen, Edward Y.; Liu, Ruijie; Chuang, Peter Y.; Mallipattu, Sandeep K.; Tan, Christopher M.; Clark, Neil R.; Deng, Yueyi; Klotman, Paul E.

    2013-01-01

    The Connectivity Map database contains microarray signatures of gene expression derived from approximately 6000 experiments that examined the effects of approximately 1300 single drugs on several human cancer cell lines. We used these data to prioritize pairs of drugs expected to reverse the changes in gene expression observed in the kidneys of a mouse model of HIV-associated nephropathy (Tg26 mice). We predicted that the combination of an angiotensin-converting enzyme (ACE) inhibitor and a histone deacetylase inhibitor would maximally reverse the disease-associated expression of genes in the kidneys of these mice. Testing the combination of these inhibitors in Tg26 mice revealed an additive renoprotective effect, as suggested by reduction of proteinuria, improvement of renal function, and attenuation of kidney injury. Furthermore, we observed the predicted treatment-associated changes in the expression of selected genes and pathway components. In summary, these data suggest that the combination of an ACE inhibitor and a histone deacetylase inhibitor could have therapeutic potential for various kidney diseases. In addition, this study provides proof-of-concept that drug-induced expression signatures have potential use in predicting the effects of combination drug therapy. PMID:23559582

  7. Activation of Kaposi's Sarcoma-Associated Herpesvirus (KSHV) by Inhibitors of Class III Histone Deacetylases: Identification of Sirtuin 1 as a Regulator of the KSHV Life Cycle

    PubMed Central

    Li, Qiuhua; He, Meilan; Zhou, Fuchun; Ye, Fengchun

    2014-01-01

    ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV) establishes persistent latent infection in immunocompetent hosts. Disruption of KSHV latency results in viral lytic replication, which promotes the development of KSHV-related malignancies in immunocompromised individuals. While inhibitors of classes I and II histone deacetylases (HDACs) potently reactivate KSHV from latency, the role of class III HDAC sirtuins (SIRTs) in KSHV latency remains unclear. Here, we examined the effects of inhibitors of SIRTs, nicotinamide (NAM) and sirtinol, on KSHV reactivation from latency. Treatment of latently KSHV-infected cells with NAM or sirtinol induced transcripts and proteins of the master lytic transactivator RTA (ORF50), early lytic genes ORF57 and ORF59, and late lytic gene ORF65 and increased the production of infectious virions. NAM increased the acetylation of histones H3 and H4 as well as the level of the active histone H3 trimethyl Lys4 (H3K4me3) mark but decreased the level of the repressive histone H3 trimethyl Lys27 (H3K27me3) mark in the RTA promoter. Consistent with these results, we detected SIRT1 binding to the RTA promoter. Importantly, knockdown of SIRT1 was sufficient to increase the expression of KSHV lytic genes. Accordingly, the level of the H3K4me3 mark in the RTA promoter was increased following SIRT1 knockdown, while that of the H3K27me3 mark was decreased. Furthermore, SIRT1 interacted with RTA and inhibited RTA transactivation of its own promoter and that of its downstream target, the viral interleukin-6 gene. These results indicate that SIRT1 regulates KSHV latency by inhibiting different stages of viral lytic replication and link the cellular metabolic state with the KSHV life cycle. IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is the causal agent of several malignancies, including Kaposi's sarcoma, commonly found in immunocompromised patients. While latent infection is required for the development of KSHV-induced malignancies, viral lytic replication also promotes disease progression. However, the mechanism controlling KSHV latent versus lytic replication remains unclear. In this study, we found that class III histone deacetylases (HDACs), also known as SIRTs, whose activities are linked to the cellular metabolic state, mediate KSHV replication. Inhibitors of SIRTs can reactivate KSHV from latency. SIRTs mediate KSHV latency by epigenetically silencing a key KSHV lytic replication activator, RTA. We found that one of the SIRTs, SIRT1, binds to the RTA promoter to mediate KSHV latency. Knockdown of SIRT1 is sufficient to induce epigenetic remodeling and KSHV lytic replication. SIRT1 also interacts with RTA and inhibits RTA's transactivation function, preventing the expression of its downstream genes. Our results indicate that SIRTs regulate KSHV latency by inhibiting different stages of viral lytic replication and link the cellular metabolic state with the KSHV life cycle. PMID:24672028

  8. Ex vivo therapy of malignant melanomas transplanted into organotypic brain slice cultures using inhibitors of histone deacetylases

    Microsoft Academic Search

    Annett Hölsken; Ilker Y. Eyüpoglu; Mike Lueders; Christian Tränkle; Detlef Dieckmann; Rolf Buslei; Eric Hahnen; Ingmar Blümcke; Florian A. Siebzehnrübl

    2006-01-01

    Disease progression in patients suffering from malignant melanomas is often determined by metastatic spreading into brain parenchyma. Systemic chemotherapy regimens are, therefore, mandatory for successful treatment. Most recently, inhibitors of histone deacetylases (HDACi) have been shown to significantly inhibit melanoma progression. Here, mouse as well as human melanoma cells were transplanted into rodent hippocampal slice cultures in order to translate

  9. Chemical targeting of the innate antiviral response by histone deacetylase inhibitors renders refractory cancers sensitive to viral oncolysis

    Microsoft Academic Search

    Thi Lien-Anh Nguyên; Hesham Abdelbary; Meztli Arguello; Caroline Breitbach; Simon Leveille; Jean-Simon Diallo; Amber Yasmeen; Tarek A. Bismar; David Kirn; Theresa Falls; Valerie E. Snoulten; Barbara C. Vanderhyden; Joel Werier; Harold Atkins; Markus J. V. Vähä-Koskela; David F. Stojdl; John C. Bell; John Hiscott

    2008-01-01

    Intratumoral innate immunity can play a significant role in blocking the effective therapeutic spread of a number of oncolytic viruses (OVs). Histone deacetylase inhibitors (HDIs) are known to influence epigenetic modifications of chromatin and can blunt the cellular antiviral response. We reasoned that pretreatment of tumors with HDIs could enhance the replication and spread of OVs within malignancies. Here, we

  10. Epigenetic regulation of the NR4A orphan nuclear receptor NOR1 by histone acetylation.

    PubMed

    Zhao, Yue; Nomiyama, Takashi; Findeisen, Hannes M; Qing, Hua; Aono, Jun; Jones, Karrie L; Heywood, Elizabeth B; Bruemmer, Dennis

    2014-12-20

    The nuclear receptor NOR1 is an immediate-early response gene implicated in the transcriptional control of proliferation. Since the expression level of NOR1 is rapidly induced through cAMP response element binding (CREB) protein-dependent promoter activation, we investigated the contribution of histone acetylation to this transient induction. We demonstrate that NOR1 transcription is induced by histone deacetylase (HDAC) inhibition and by depletion of HDAC1 and HDAC3. HDAC inhibition activated the NOR1 promoter, increased histone acetylation and augmented the recruitment of phosphorylated CREB to the promoter. Furthermore, HDAC inhibition increased Ser133 phosphorylation of CREB and augmented NOR1 protein stability. These data outline previously unrecognized mechanisms of NOR1 regulation and illustrate a key role for histone acetylation in the rapid induction of NOR1. PMID:25451221

  11. Histone Deacetylase Inhibition Promotes Osteoblast Maturation by Altering the Histone H4 Epigenome and Reduces Akt Phosphorylation*

    PubMed Central

    Dudakovic, Amel; Evans, Jared M.; Li, Ying; Middha, Sumit; McGee-Lawrence, Meghan E.; van Wijnen, Andre J.; Westendorf, Jennifer J.

    2013-01-01

    Bone has remarkable regenerative capacity, but this ability diminishes during aging. Histone deacetylase inhibitors (HDIs) promote terminal osteoblast differentiation and extracellular matrix production in culture. The epigenetic events altered by HDIs in osteoblasts may hold clues for the development of new anabolic treatments for osteoporosis and other conditions of low bone mass. To assess how HDIs affect the epigenome of committed osteoblasts, MC3T3 cells were treated with suberoylanilide hydroxamic acid (SAHA) and subjected to microarray gene expression profiling and high-throughput ChIP-Seq analysis. As expected, SAHA induced differentiation and matrix calcification of osteoblasts in vitro. ChIP-Seq analysis revealed that SAHA increased histone H4 acetylation genome-wide and in differentially regulated genes, except for the 500 bp upstream of transcriptional start sites. Pathway analysis indicated that SAHA increased the expression of insulin signaling modulators, including Slc9a3r1. SAHA decreased phosphorylation of insulin receptor ?, Akt, and the Akt substrate FoxO1, resulting in FoxO1 stabilization. Thus, SAHA induces genome-wide H4 acetylation and modulates the insulin/Akt/FoxO1 signaling axis, whereas it promotes terminal osteoblast differentiation in vitro. PMID:23940046

  12. Histone deacetylase inhibition promotes osteoblast maturation by altering the histone H4 epigenome and reduces Akt phosphorylation.

    PubMed

    Dudakovic, Amel; Evans, Jared M; Li, Ying; Middha, Sumit; McGee-Lawrence, Meghan E; van Wijnen, Andre J; Westendorf, Jennifer J

    2013-10-01

    Bone has remarkable regenerative capacity, but this ability diminishes during aging. Histone deacetylase inhibitors (HDIs) promote terminal osteoblast differentiation and extracellular matrix production in culture. The epigenetic events altered by HDIs in osteoblasts may hold clues for the development of new anabolic treatments for osteoporosis and other conditions of low bone mass. To assess how HDIs affect the epigenome of committed osteoblasts, MC3T3 cells were treated with suberoylanilide hydroxamic acid (SAHA) and subjected to microarray gene expression profiling and high-throughput ChIP-Seq analysis. As expected, SAHA induced differentiation and matrix calcification of osteoblasts in vitro. ChIP-Seq analysis revealed that SAHA increased histone H4 acetylation genome-wide and in differentially regulated genes, except for the 500 bp upstream of transcriptional start sites. Pathway analysis indicated that SAHA increased the expression of insulin signaling modulators, including Slc9a3r1. SAHA decreased phosphorylation of insulin receptor ?, Akt, and the Akt substrate FoxO1, resulting in FoxO1 stabilization. Thus, SAHA induces genome-wide H4 acetylation and modulates the insulin/Akt/FoxO1 signaling axis, whereas it promotes terminal osteoblast differentiation in vitro. PMID:23940046

  13. Cancer cells' epigenetic composition and predisposition to histone deacetylase inhibitor sensitization.

    PubMed

    Nalabothula, Narasimharao; Carrier, France

    2011-04-01

    Normal cells are up to ten times more resistant to histone deacetylase inhibitors (HDACis)-induced cell death compared with transformed cells. The molecular processes underlying this selectivity for cancer cells are still not well understood. Although a differential response to oxidative stress and capacity to repair damaged DNA have been described in some systems, these cannot fully account for the sensitivity of cancer cells to HDACis since the heterogeneity of cancer cells prompts differential sensitivities to reactive oxygen species and generates a panoply of defective DNA repair mechanisms within given histologies, cancer cell lines and tumor xenografts. It seems also unlikely that the influence of HDACis on cancer treatments reside primarily on gene transcription, since gene-expression profiling aimed at defining correlation with response to HDACis in cancer cells indicates that less than 5% to approximately 20% of transcribed genes are altered by HDACis treatment. Moreover, the altered genes vary from cell line to cell line and between different HDACis. Therefore, no consistent picture of a target(s) or pathway(s) modulated by HDACis has emerged. One consistent parameter that has however been observed in peripheral blood mononuclear cells of patients treated with HDACi is the accumulation of acetylated histones. Because one of the primary functions of histone acetylation is to increase chromatin accessibility, this article will explore the possibility that intrinsic molecular and structural characteristics of cancer cells provide a selective advantage for HDACis sensitivity. PMID:21743813

  14. C2H2 zinc finger-SET histone methyltransferase is a plant-specific chromatin modifier

    E-print Network

    Citovsky, Vitaly

    C2H2 zinc finger-SET histone methyltransferase is a plant-specific chromatin modifier Alexander thaliana factors, a SWIRM domain polyamine oxidase protein, AtSWP1, and a plant-specific C2H2 zinc finger, a zinc finger protein (You et al., 2001) with still unknown function, histone deacetylases (HDAC), and Co

  15. Class IIa HDACs: from important roles in differentiation to possible implications in tumourigenesis

    PubMed Central

    Clocchiatti, Andrea; Florean, Cristina; Brancolini, Claudio

    2011-01-01

    Abstract Histone deacetylases (HDACs) are important regulators of gene expression. Specific structural features and distinct regulative mechanisms rationalize the separation of the 18 different human HDACs into four classes. The class II comprises a heterogeneous group of nuclear and cytosolic HDACs involved in the regulation of several cellular functions, not just limited to transcriptional repression. In particular, HDAC4, 5, 7 and 9 belong to the subclass IIa and share many transcriptional partners, including members of the MEF2 family. Genetic studies in mice have disclosed the fundamental contribution of class IIa HDACs to specific developmental/differentiation pathways. In this review, we discuss about the recent literature, which hints a role of class IIa HDACs in the development, growth and aggressiveness of cancer cells. PMID:21435179

  16. Sepsis and glucocorticoids upregulate p300 and downregulate HDAC6 expression and activity in skeletal muscle

    PubMed Central

    Alamdari, Nima; Smith, Ira J.; Aversa, Zaira

    2010-01-01

    Muscle wasting during sepsis is in part regulated by glucocorticoids. In recent studies, treatment of cultured muscle cells in vitro with dexamethasone upregulated expression and activity of p300, a histone acetyl transferase (HAT), and reduced expression and activity of the histone deacetylases-3 (HDAC3) and -6, changes that favor hyperacetylation. Here, we tested the hypothesis that sepsis and glucocorticoids regulate p300 and HDAC3 and -6 in skeletal muscle in vivo. Because sepsis-induced metabolic changes are particularly pronounced in white, fast-twitch skeletal muscle, most experiments were performed in extensor digitorum longus muscles. Sepsis in rats upregulated p300 mRNA and protein levels, stimulated HAT activity, and reduced HDAC6 expression and HDAC activity. The sepsis-induced changes in p300 and HDAC expression were prevented by the glucocorticoid receptor antagonist RU38486. Treatment of rats with dexamethasone increased expression of p300 and HAT activity, reduced expression of HDAC3 and -6, and inhibited HDAC activity. Finally, treatment with the HDAC inhibitor trichostatin A resulted in increased muscle proteolysis and expression of the ubiquitin ligase atrogin-1. Taken together, our results suggest for the first time that sepsis-induced muscle wasting may be regulated by glucocorticoid-dependent hyperacetylation caused by increased p300 and reduced HDAC expression and activity. The recent development of pharmacological HDAC activators may provide a novel avenue to prevent and treat muscle wasting in sepsis and other catabolic conditions. PMID:20538901

  17. Tumour-suppressive microRNA-874 contributes to cell proliferation through targeting of histone deacetylase 1 in head and neck squamous cell carcinoma

    PubMed Central

    Nohata, N; Hanazawa, T; Kinoshita, T; Inamine, A; Kikkawa, N; Itesako, T; Yoshino, H; Enokida, H; Nakagawa, M; Okamoto, Y; Seki, N

    2013-01-01

    Background: Our recent studies of microRNA (miRNA) expression signature demonstrated that microRNA-874 (miR-874) was significantly downregulated in maxillary sinus squamous cell carcinoma (MSSCC), and a putative tumour-suppressive miRNA in human cancers. Our aim of this study was to investigate the functional significance of miR-874 in cancer cells and to identify novel miR-874-mediated cancer pathways and responsible genes in head and neck squamous cell carcinoma (HNSCC). Methods: Gain-of-function studies using mature miR-874 were performed to investigate cell proliferation and cell cycle distribution in HNSCC cell lines (SAS and FaDu). To identify miR-874-mediated molecular pathways and targets, we utilised gene expression analysis and in silico database analysis. Loss-of-function assays were performed to investigate the functional significance of miR-874 target genes. Results: Expression levels of miR-874 were significantly downregulated in HNSCC tissues (including oral, pharyngeal and laryngeal SCCs) compared with normal counterpart epithelia. Restoration of miR-874 in SAS and FaDu cell lines revealed significant inhibition of cell proliferation and induction of G2/M arrest and cell apoptosis. Our expression data and in silico analysis demonstrated that miR-874 modulated the cell cycle pathway. Moreover, histone deacetylase 1 (HDAC1) was a candidate target of miR-874 regulation. Luciferase reporter assays showed that miR-874 directly regulated HDAC1. Silencing of the HDAC1 gene significantly inhibited cell proliferation and induced G2/M arrest and cell apoptosis in SAS cells. Conclusions: Downregulation of miR-874 was a frequent event in HNSCC. miR-874 acted as a tumour suppressor and directly targeted HDAC1. Recognition of tumour-suppressive miRNA-mediated cancer pathways provides new insights into the potential mechanisms of HNSCC oncogenesis and suggests novel therapeutic strategies for the disease. PMID:23558898

  18. Inhibition of HDAC2 Protects the Retina From Ischemic Injury

    PubMed Central

    Fan, Jie; Alsarraf, Oday; Dahrouj, Mohammad; Platt, Kenneth A.; Chou, C. James; Rice, Dennis S.; Crosson, Craig E.

    2013-01-01

    Purpose. Protein acetylation is an essential mechanism in regulating transcriptional and inflammatory events. Studies have shown that nonselective histone deacetylase (HDAC) inhibitors can protect the retina from ischemic injury in rats. However, the role of specific HDAC isoforms in retinal degenerative processes remains obscure. The purpose of this study was to investigate the role of HDAC2 isoform in a mouse model of ischemic retinal injury. Methods. Localization of HDAC2 in mice retinas was evaluated by immunohistochemical analyses. To investigate whether selective reduction in HDAC2 activity can protect the retina from ischemic injury, Hdac2+/? mice were utilized. Electroretinographic (ERG) and morphometric analyses were used to assess retinal function and morphology. Results. Our results demonstrated that HDAC2 is primarily localized in nuclei in inner nuclear and retinal ganglion cell layers, and HDAC2 activity accounted for approximately 35% of the total activities of HDAC1, 2, 3, and 6 in the retina. In wild-type mice, ERG a- and b-waves from ischemic eyes were significantly reduced when compared to pre-ischemia baseline values. Morphometric examination of these eyes revealed significant degeneration of inner retinal layers. In Hdac2+/? mice, ERG a- and b-waves from ischemic eyes were significantly greater than those measured in ischemic eyes from wild-type mice. Morphologic measurements demonstrated that Hdac2+/? mice exhibit significantly less retinal degeneration than wild-type mice. Conclusions. This study demonstrated that suppressing HDAC2 expression can effectively reduce ischemic retinal injury. Our results support the idea that the development of selective HDAC2 inhibitors may provide an efficacious treatment for ischemic retinal injury. PMID:23696608

  19. Functional Connection between Deimination and Deacetylation of Histones?

    PubMed Central

    Denis, Hélène; Deplus, Rachel; Putmans, Pascale; Yamada, Michiyuki; Métivier, Raphaël; Fuks, François

    2009-01-01

    Histone methylation plays key roles in regulating chromatin structure and function. The recent identification of enzymes that antagonize or remove histone methylation offers new opportunities to appreciate histone methylation plasticity in the regulation of epigenetic pathways. Peptidylarginine deiminase 4 (PADI4; also known as PAD4) was the first enzyme shown to antagonize histone methylation. PADI4 functions as a histone deiminase converting a methylarginine residue to citrulline at specific sites on the tails of histones H3 and H4. This activity is linked to repression of the estrogen-regulated pS2 promoter. Very little is known as to how PADI4 silences gene expression. We show here that PADI4 associates with the histone deacetylase 1 (HDAC1). Kinetic chromatin immunoprecipitation assays revealed that PADI4 and HDAC1, and the corresponding activities, associate cyclically and coordinately with the pS2 promoter during repression phases. Knockdown of HDAC1 led to decreased H3 citrullination, concomitantly with increased histone arginine methylation. In cells with a reduced HDAC1 and a slightly decreased PADI4 level, these effects were more pronounced. Our data thus suggest that PADI4 and HDAC1 collaborate to generate a repressive chromatin environment on the pS2 promoter. These findings further substantiate the “transcriptional clock” concept, highlighting the dynamic connection between deimination and deacetylation of histones. PMID:19581286

  20. Small molecule regulation of Sir2 protein deacetylases Olivera Grubisha1

    E-print Network

    Denu, John

    at telomeres, rDNA and the silent mating type loci, and for maintaining genome integrity [5,6]. In addition deacetylases. Abbreviations CR, caloric restriction; ERCs, extrachromosomal rDNA circles; HDAC, histone damage-responsive Fork- head transcription factors [10­12] and p53 [13­15], promoting cell survival under

  1. Histone deacetylase inhibitors modulate miRNA and mRNA expression, block metaphase, and induce apoptosis in inflammatory breast cancer cells.

    PubMed

    Chatterjee, Namita; Wang, Wei-Lin Winnie; Conklin, Tucker; Chittur, Sridar; Tenniswood, Martin

    2013-07-01

    To develop new therapies for inflammatory breast cancer (IBC) we have compared the effects of two hydroxamic acid-based histone deacetylase (HDAC) inhibitors, CG-1521 and Trichostatin A (TSA) on the biology of two IBC cell lines: SUM149PT and SUM190PT. CG-1521 and TSA induce dose (0-10 µM) and time-dependent (0-96 h) increases in the proportion of cells undergoing cell cycle arrest and apoptosis in the presence or absence of 17?-estradiol. In SUM 149PT cells, both CG-1521 and TSA increase the levels of acetylated ?-tubulin; however the morphological effects are different: CG-1521 blocks mitotic spindle formation and prevents abscission during cytokinesis while TSA results in an increase in cell size. In SUM190PT cells CG-1521 does not cause an increase in acetylated-?-tubulin and even though TSA significantly increases the levels of acetylated tubulin, neither inhibitor alters the morphology of the cells. Microarray analysis demonstrates that CG-1521 modulates the expression of 876 mRNAs and 63 miRNAs in SUM149PT cells, and 1227 mRNAs and 35 miRNAs in SUM190PT cells. Only 9% of the genes are commonly modulated in both cell lines, suggesting that CG-1521 and TSA target different biological processes in the two cell lines most likely though the inhibition of different HDACs in these cell lines. Gene ontology (GO) analysis reveals that CG-1521 affects the expression of mRNAs that encode proteins associated with the spindle assembly checkpoint, chromosome segregation, and microtubule-based processes in both cell lines and has cell-type specific effects on lipid biosynthesis, response to DNA damage, and cell death. PMID:23792638

  2. The Australian fruit Illawarra plum (Podocarpus elatus Endl., Podocarpaceae) inhibits telomerase, increases histone deacetylase activity and decreases proliferation of colon cancer cells.

    PubMed

    Symonds, Erin L; Konczak, Izabela; Fenech, Michael

    2013-06-28

    Fruit antioxidants have many health benefits including prevention of cancer development. The native Australian bush fruit Illawarra plum (Podocarpus elatus Endl., Podocarpaceae) has a high content of anthocyanin-rich phenolics, with an antioxidant capacity at levels higher than most fruits. In the present study the molecular mechanisms of the anti-proliferative activity of Illawarra plum on colorectal cancer cells were investigated. Non-tumorigenic young adult mouse colonic (YAMC) cells and tumorigenic human colonic (HT-29) cells were treated with a polyphenolic-rich Illawarra plum extract (0-1000 microg/ml). Illawarra plum had anti-proliferative properties in only the cancer cells, with growth suppressed in a dose- and time-dependent manner. Treatment of HT-29 cells with Illawarra plum extract (500 mg/ml; 24 h) was also associated with a 2-fold increase in apoptosis, and a cell cycle delay in the S phase (P < 0.01). Assessment of biomarkers for DNA damage revealed that plum treatment caused a 93% down-regulation of telomerase activity (P < 0.001) and a decrease in telomere length (up to 75%; P < 0.01). Treatment with Illawarra plum extract also induced morphological alterations to HT-29 cells that were suggestive of induction of autophagy, as the formation of cytoplasmic vacuoles was observed in many cells. This could be induced by the increased (6-fold) histone deacetylase (HDAC) activity (P < 0.001) and the trend for increased expression of the class III HDAC sirtuin 1. The present study has shown that Illawarra plum extract is able to reduce the proliferation of colon cancer cells by altering the cell cycle, increasing apoptosis and possibly inducing autophagy. The active ingredients in Illawarra plum may provide an alternative chemoprevention strategy to conventional chemotherapy. PMID:23069328

  3. Treatment of Nasopharyngeal Carcinoma Cells with the Histone-Deacetylase Inhibitor Abexinostat: Cooperative Effects with Cis-platin and Radiotherapy on Patient-Derived Xenografts

    PubMed Central

    Jimenez-Pailhès, Anne-Sophie; Lelièvre, Hélène; Lo, Kwok-Wai; Ferrand, François-Régis; Gattolliat, Charles-Henry; Jacquet-Bescond, Anne; Kraus-Berthier, Laurence; Depil, Stéphane; Busson, Pierre

    2014-01-01

    EBV-related nasopharyngeal carcinomas (NPCs) still raise serious therapeutic problems. The therapeutic potential of the histone-deacetylase (HDAC) inhibitor Abexinostat was investigated using 5 preclinical NPC models including 2 patient-derived xenografts (C15 and C17). The cytotoxicity of Abexinostat used either alone or in combination with cis-platin or irradiation was assessed in vitro by MTT and clonogenic assays using 2 EBV-negative (CNE1 and HONE1) and 3 EBV-positive NPC models (C15, C17 and C666-1). Subsequently, the 3 EBV-positive models were used under the form of xenografts to assess the impact of systemic treatments by Abexinostat or combinations of Abexinostat with cis-platin or irradiation. Several cell proteins known to be affected by HDAC inhibitors and the small viral non-coding RNA EBER1 were investigated in the treated tumors. Synergistic cytotoxic effects of Abexinostat combined with cis-platin or irradiation were demonstrated in vitro for each NPC model. When using xenografts, Abexinostat by itself (12.5 mg/kg, BID, 4 days a week for 3 weeks) had significant anti-tumor effects against C17. Cooperative effects with cis-platin (2 mg/kg, IP, at days 3, 10 and 17) and irradiation (1Gy) were observed for the C15 and C17 xenografts. Simultaneously two types of biological alterations were induced in the tumor tissue, especially in the C17 model: a depletion of the DNA-repair protein RAD51 and a stronger in situ detection of the small viral RNA EBER1. Overall, these results support implementation of phase I/II clinical trials of Abexinostat for the treatment of NPC. A depletion of RAD51 is likely to contribute to the cooperation of Abexinostat with DNA damaging agents. Reduction of RAD51 combined to enhanced detection of EBER 1 might be helpful for early assessment of tumor response. PMID:24618637

  4. HDAC4 as a potential therapeutic target in neurodegenerative diseases: a summary of recent achievements.

    PubMed

    Mielcarek, Michal; Zielonka, Daniel; Carnemolla, Alisia; Marcinkowski, Jerzy T; Guidez, Fabien

    2015-01-01

    For the past decade protein acetylation has been shown to be a crucial post-transcriptional modification involved in the regulation of protein functions. Histone acetyltransferases (HATs) mediate acetylation of histones which results in the nucleosomal relaxation associated with gene expression. The reverse reaction, histone deacetylation, is mediated by histone deacetylases (HDACs) leading to chromatin condensation followed by transcriptional repression. HDACs are divided into distinct classes: I, IIa, IIb, III, and IV, on the basis of size and sequence homology, as well as formation of distinct repressor complexes. Implications of HDACs in many diseases, such as cancer, heart failure, and neurodegeneration, have identified these molecules as unique and attractive therapeutic targets. The emergence of HDAC4 among the members of class IIa family as a major player in synaptic plasticity raises important questions about its functions in the brain. The characterization of HDAC4 specific substrates and molecular partners in the brain will not only provide a better understanding of HDAC4 biological functions but also might help to develop new therapeutic strategies to target numerous malignancies. In this review we highlight and summarize recent achievements in understanding the biological role of HDAC4 in neurodegenerative processes. PMID:25759639

  5. The Activation of Beta-Catenin by Wnt Signaling Mediates the Effects of Histone Deacetylase Inhibitors

    PubMed Central

    Bordonaro, Michael; Lazarova, Darina L.; Sartorelli, Alan C.

    2013-01-01

    Most colorectal carcinomas (CRCs) exhibit constitutively active Wnt signaling. We have reported that (a) the histone deacetylase inhibitor (HDACi)2 sodium butyrate (NaB) modulates the canonical Wnt transcriptional activity of CRC cells in vitro and (b) a linear relationship exists between the increase in Wnt transcriptional activity and the levels of apoptosis in ten CRC cell lines treated with NaB. Herein we report that structurally different HDACis modulate Wnt signaling in CRC cells and a mechanism involved in this action is an increase in beta-catenin that is dephosphorylated at Ser-37 and Thr-41 residues. The increase of active (Ser-37 and Thr-41 dephosphorylated) beta-catenin in CRC cells treated with HDACis is initiated at the ligand level and the inhibition of this increase suppresses Wnt signaling and lowers the levels of apoptosis. CRC cells that develop resistance to the apoptotic effects of HDACis exhibit lower levels of active beta-catenin compared to apoptosis-sensitive parental cells and this resistance is reversed by increasing the levels of active beta-catenin. Results from comparative studies between HDACi-resistant and HDACi-sensitive cells suggest that non-histone targets of HDACis mediate the effects on Wnt signaling and apoptosis. PMID:17359971

  6. Sensitization to UV-induced apoptosis by the histone deacetylase inhibitor trichostatin A (TSA)

    SciTech Connect

    Kim, Myoung Sook [Department of Otolaryngology-Head and Neck Surgery, Head and Neck Cancer Research Division, Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States); Baek, Jin Hyen; Chakravarty, Devulapalli [Biochemistry and Molecular Biology Department, School of Medicine, and Greenebaum Cancer Center, University of Maryland, 108 North Greene Street, Room 330, Baltimore, MD 21201-1503 (United States); Sidransky, David [Department of Otolaryngology-Head and Neck Surgery, Head and Neck Cancer Research Division, Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States); Carrier, France [Biochemistry and Molecular Biology Department, School of Medicine, and Greenebaum Cancer Center, University of Maryland, 108 North Greene Street, Room 330, Baltimore, MD 21201-1503 (United States)]. E-mail: fcarr001@umaryland.edu

    2005-05-15

    UV-induced apoptosis is a protective mechanism that is primarily caused by DNA damage. Cyclobutane pyrimidine dimers (CPD) and 6-4 photoproducts are the main DNA adducts triggered by UV radiation. Because the formation of DNA lesions in the chromatin is modulated by the structure of the nucleosomes, we postulated that modification of chromatin compaction could affect the formation of the lesions and consequently apoptosis. To verify this possibility we treated human colon carcinoma RKO cells with the histone deacetylase inhibitor trichostatin A (TSA) prior to exposure to UV radiation. Our data show that pre-treatment with TSA increased UV killing efficiency by more than threefold. This effect correlated with increased formation of CPDs and consequently apoptosis. On the other hand, TSA treatment after UV exposure rather than before had no more effect than UV radiation alone. This suggests that a primed (opened) chromatin status is required to sensitize the cells. Moreover, TSA sensitization to UV-induced apoptosis is p53 dependent. p53 and acetylation of the core histones may thus contribute to UV-induced apoptosis by modulating the formation of DNA lesions on chromatin.

  7. Chromatin Modulation by Histone Deacetylase Inhibitors: Impact on Cellular Sensitivity to Ionizing Radiation

    PubMed Central

    Carrier, France

    2014-01-01

    It is well established that cells are more sensitive to ionizing radiation during the G2/M phase of the cell cycle when their chromatin is highly compacted. However, highly compacted chromatin is less susceptible to DNA Double Strand Breaks (DSBs) than relaxed chromatin. Therefore, it is now becoming apparent that it is the cell capacity to repair its damaged DNA and refold its chromatin into its original compacted status that primarily affects the overall cellular sensitivity to ionizing radiation. The Histone Deacetylase Inhibitors (HDACIs) are a new class of anticancer agents that relax chromatin structure by increasing the levels of histone acetylation. The effect of HDACIs on normal and cancer cells sensitivity to ionizing radiation differs. Reports have indicated that HDACIs can protect normal cells while simultaneously sensitize cancer cells to ionizing radiation. This difference may stem from the individual characteristic of the normal and cancer cells chromatin structure. This review discusses this possibility and addresses the role of HDACIs in radiation therapy. PMID:24648865

  8. Profiling the anti-protozoal activity of anti-cancer HDAC inhibitors against Plasmodium and Trypanosoma parasites.

    PubMed

    Engel, Jessica A; Jones, Amy J; Avery, Vicky M; Sumanadasa, Subathdrage D M; Ng, Susanna S; Fairlie, David P; Adams, Tina S; Andrews, Katherine T

    2015-12-01

    Histone deacetylase (HDAC) enzymes work together with histone acetyltransferases (HATs) to reversibly acetylate both histone and non-histone proteins. As a result, these enzymes are involved in regulating chromatin structure and gene expression as well as other important cellular processes. HDACs are validated drug targets for some types of cancer, with four HDAC inhibitors clinically approved. However, they are also showing promise as novel drug targets for other indications, including malaria and other parasitic diseases. In this study the in vitro activity of four anti-cancer HDAC inhibitors was examined against parasites that cause malaria and trypanosomiasis. Three of these inhibitors, suberoylanilide hydroxamic acid (SAHA; vorinostat(®)), romidepsin (Istodax(®)) and belinostat (Beleodaq(®)), are clinically approved for the treatment of T-cell lymphoma, while the fourth, panobinostat, has recently been approved for combination therapy use in certain patients with multiple myeloma. All HDAC inhibitors were found to inhibit the growth of asexual-stage Plasmodium falciparum malaria parasites in the nanomolar range (IC50 10-200 nM), while only romidepsin was active at sub-?M concentrations against bloodstream form Trypanosoma brucei brucei parasites (IC50 35 nM). The compounds were found to have some selectivity for malaria parasites compared with mammalian cells, but were not selective for trypanosome parasites versus mammalian cells. All compounds caused hyperacetylation of histone and non-histone proteins in P. falciparum asexual stage parasites and inhibited deacetylase activity in P. falciparum nuclear extracts in addition to recombinant PfHDAC1 activity. P. falciparum histone hyperacetylation data indicate that HDAC inhibitors may differentially affect the acetylation profiles of histone H3 and H4. PMID:26199860

  9. Profiling the anti-protozoal activity of anti-cancer HDAC inhibitors against Plasmodium and Trypanosoma parasites

    PubMed Central

    Engel, Jessica A.; Jones, Amy J.; Avery, Vicky M.; Sumanadasa, Subathdrage D.M.; Ng, Susanna S.; Fairlie, David P.; Adams, Tina S.; Andrews, Katherine T.

    2015-01-01

    Histone deacetylase (HDAC) enzymes work together with histone acetyltransferases (HATs) to reversibly acetylate both histone and non-histone proteins. As a result, these enzymes are involved in regulating chromatin structure and gene expression as well as other important cellular processes. HDACs are validated drug targets for some types of cancer, with four HDAC inhibitors clinically approved. However, they are also showing promise as novel drug targets for other indications, including malaria and other parasitic diseases. In this study the in vitro activity of four anti-cancer HDAC inhibitors was examined against parasites that cause malaria and trypanosomiasis. Three of these inhibitors, suberoylanilide hydroxamic acid (SAHA; vorinostat®), romidepsin (Istodax®) and belinostat (Beleodaq®), are clinically approved for the treatment of T-cell lymphoma, while the fourth, panobinostat, has recently been approved for combination therapy use in certain patients with multiple myeloma. All HDAC inhibitors were found to inhibit the growth of asexual-stage Plasmodium falciparum malaria parasites in the nanomolar range (IC50 10–200 nM), while only romidepsin was active at sub-?M concentrations against bloodstream form Trypanosoma brucei brucei parasites (IC50 35 nM). The compounds were found to have some selectivity for malaria parasites compared with mammalian cells, but were not selective for trypanosome parasites versus mammalian cells. All compounds caused hyperacetylation of histone and non-histone proteins in P. falciparum asexual stage parasites and inhibited deacetylase activity in P. falciparum nuclear extracts in addition to recombinant PfHDAC1 activity. P. falciparum histone hyperacetylation data indicate that HDAC inhibitors may differentially affect the acetylation profiles of histone H3 and H4. PMID:26199860

  10. HDAC3 controls gap 2/mitosis progression in adult neural stem/progenitor cells by regulating CDK1 levels.

    PubMed

    Jiang, Yindi; Hsieh, Jenny

    2014-09-16

    The maintenance of the resident adult neural stem/progenitor cell (NSPC) pool depends on the precise balance of proliferation, differentiation, and maintenance of the undifferentiated state. Identifying the mechanisms that regulate this balance in adult hippocampal NSPCs can provide insight into basic stem cell self-renewal principles important for tissue homeostasis and preventing tumor formation. Pharmacological inhibition of histone deacetylases (HDACs), a class of histone-modifying enzymes, have promising effects in cancer cells, yet the specific roles of individual HDACs in stem cell proliferation is unclear. Here using conditional KO (cKO) mice and in vitro cell culture, we show that histone deacetylase 3 (HDAC3) is required for the proliferation of adult NSPCs. Detailed cell cycle analysis of NSPCs from Hdac3 cKO mice reveals a defect in cell cycle progression through the gap 2/mitosis (G2/M) but not the S phase. Moreover, HDAC3 controls G2/M phase progression mainly through posttranslational stabilization of the G2/M cyclin-dependent kinase 1 (CDK1). These results demonstrate that HDAC3 plays a critical role in NSPC proliferation and suggest that strategies aimed at pharmacological modulation of HDAC3 may be beneficial for tissue regeneration and controlling tumor cell growth. PMID:25161285

  11. HDAC8 and STAT3 repress BMF gene activity in colon cancer cells

    PubMed Central

    Kang, Y; Nian, H; Rajendran, P; Kim, E; Dashwood, W M; Pinto, J T; Boardman, L A; Thibodeau, S N; Limburg, P J; Löhr, C V; Bisson, W H; Williams, D E; Ho, E; Dashwood, R H

    2014-01-01

    Histone deacetylase (HDAC) inhibitors are undergoing clinical trials as anticancer agents, but some exhibit resistance mechanisms linked to anti-apoptotic Bcl-2 functions, such as BH3-only protein silencing. HDAC inhibitors that reactivate BH3-only family members might offer an improved therapeutic approach. We show here that a novel seleno-?-keto acid triggers global histone acetylation in human colon cancer cells and activates apoptosis in a p21-independent manner. Profiling of multiple survival factors identified a critical role for the BH3-only member Bcl-2-modifying factor (Bmf). On the corresponding BMF gene promoter, loss of HDAC8 was associated with signal transducer and activator of transcription 3 (STAT3)/specificity protein 3 (Sp3) transcription factor exchange and recruitment of p300. Treatment with a p300 inhibitor or transient overexpression of exogenous HDAC8 interfered with BMF induction, whereas RNAi-mediated silencing of STAT3 activated the target gene. This is the first report to identify a direct target gene of HDAC8 repression, namely, BMF. Interestingly, the repressive role of HDAC8 could be uncoupled from HDAC1 to trigger Bmf-mediated apoptosis. These findings have implications for the development of HDAC8-selective inhibitors as therapeutic agents, beyond the reported involvement of HDAC8 in childhood malignancy. PMID:25321483

  12. HDAC8 and STAT3 repress BMF gene activity in colon cancer cells.

    PubMed

    Kang, Y; Nian, H; Rajendran, P; Kim, E; Dashwood, W M; Pinto, J T; Boardman, L A; Thibodeau, S N; Limburg, P J; Löhr, C V; Bisson, W H; Williams, D E; Ho, E; Dashwood, R H

    2014-01-01

    Histone deacetylase (HDAC) inhibitors are undergoing clinical trials as anticancer agents, but some exhibit resistance mechanisms linked to anti-apoptotic Bcl-2 functions, such as BH3-only protein silencing. HDAC inhibitors that reactivate BH3-only family members might offer an improved therapeutic approach. We show here that a novel seleno-?-keto acid triggers global histone acetylation in human colon cancer cells and activates apoptosis in a p21-independent manner. Profiling of multiple survival factors identified a critical role for the BH3-only member Bcl-2-modifying factor (Bmf). On the corresponding BMF gene promoter, loss of HDAC8 was associated with signal transducer and activator of transcription 3 (STAT3)/specificity protein 3 (Sp3) transcription factor exchange and recruitment of p300. Treatment with a p300 inhibitor or transient overexpression of exogenous HDAC8 interfered with BMF induction, whereas RNAi-mediated silencing of STAT3 activated the target gene. This is the first report to identify a direct target gene of HDAC8 repression, namely, BMF. Interestingly, the repressive role of HDAC8 could be uncoupled from HDAC1 to trigger Bmf-mediated apoptosis. These findings have implications for the development of HDAC8-selective inhibitors as therapeutic agents, beyond the reported involvement of HDAC8 in childhood malignancy. PMID:25321483

  13. Adamantanyl-Histone Deacetylase Inhibitor H6CAHA Exhibits Favorable Pharmacokinetics and Augments Prostate Cancer Radiation Sensitivity

    Microsoft Academic Search

    Zacharoula Konsoula; Hong Cao; Alfredo Velena; Mira Jung

    2011-01-01

    Purpose: To evaluate pharmacological properties of H6CAHA, an adamantyl-hydroxamate histone deacetylase inhibitor, and to investigate its effect on prostate cancer cells following exposure to -radiation in vitro and in vivo. Methods and Materials: H6CAHA was assessed for in vitro solubility, lipophilicity and growth inhibition, and in vivo plasma pharmacokinetics. The effect of H6CAHA on radiation clonogenic survival and DNA damage

  14. Alteration of ethanol tolerance caused by the deficiency in the genes associated with histone deacetylase complex in budding yeast.

    PubMed

    Matsuda, Takao; Fujimura, Shuki; Suda, Hiroshi; Matsufuji, Yoshimi; Nakagawa, Junichi

    2011-01-01

    Upon exposure to 8% ethanol, survival and growth of yeast strains deficient in histone deacetylase complex genes was examined. Of the 18 mutants tested, the ?sir3 and ?sir4 strains showed higher resistance to ethanol, while the ?rco1, ?hos3, ?hda2, and ?hst1 strains were more sensitive than the wild type. Furthermore, these ethanol-resistant patterns varied under aerobic and anaerobic culture conditions. PMID:21897015

  15. Energy Metabolism in H460 Lung Cancer Cells: Effects of Histone Deacetylase Inhibitors

    PubMed Central

    Amoêdo, Nívea Dias; Rodrigues, Mariana Figueiredo; Pezzuto, Paula; Galina, Antonio; da Costa, Rodrigo Madeiro; de Almeida, Fábio Ceneviva Lacerda; El-Bacha, Tatiana; Rumjanek, Franklin David

    2011-01-01

    Background Tumor cells are characterized by accelerated growth usually accompanied by up-regulated pathways that ultimately increase the rate of ATP production. These cells can suffer metabolic reprogramming, resulting in distinct bioenergetic phenotypes, generally enhancing glycolysis channeled to lactate production. In the present work we showed metabolic reprogramming by means of inhibitors of histone deacetylase (HDACis), sodium butyrate and trichostatin. This treatment was able to shift energy metabolism by activating mitochondrial systems such as the respiratory chain and oxidative phosphorylation that were largely repressed in the untreated controls. Methodology/Principal Findings Various cellular and biochemical parameters were evaluated in lung cancer H460 cells treated with the histone deacetylase inhibitors (HDACis), sodium butyrate (NaB) and trichostatin A (TSA). NaB and TSA reduced glycolytic flux, assayed by lactate release by H460 cells in a concentration dependent manner. NaB inhibited the expression of glucose transporter type 1 (GLUT 1), but substantially increased mitochondria bound hexokinase (HK) activity. NaB induced increase in HK activity was associated to isoform HK I and was accompanied by 1.5 fold increase in HK I mRNA expression and cognate protein biosynthesis. Lactate dehydrogenase (LDH) and pyruvate kinase (PYK) activities were unchanged by HDACis suggesting that the increase in the HK activity was not coupled to glycolytic flux. High resolution respirometry of H460 cells revealed NaB-dependent increased rates of oxygen consumption coupled to ATP synthesis. Metabolomic analysis showed that NaB altered the glycolytic metabolite profile of intact H460 cells. Concomitantly we detected an activation of the pentose phosphate pathway (PPP). The high O2 consumption in NaB-treated cells was shown to be unrelated to mitochondrial biogenesis since citrate synthase (CS) activity and the amount of mitochondrial DNA remained unchanged. Conclusion NaB and TSA induced an increase in mitochondrial function and oxidative metabolism in H460 lung tumor cells concomitant with a less proliferative cellular phenotype. PMID:21789245

  16. Circadian Epigenomic Remodeling and Hepatic Lipogenesis: Lessons from HDAC3

    PubMed Central

    Sun, Zheng; Feng, Dan; Everett, Logan J.; Bugge, Anne; Lazar, Mitchell A.

    2013-01-01

    Circadian rhythms have evolved to anticipate metabolic needs across the 24-hour light/dark cycle. This is accomplished by circadian expression of metabolic genes orchestrated by transcription factors through chromatin remodeling and histone modifications. Our recent genome-wide study on histone deacetylase 3 (HDAC3) in mouse liver provides novel insights into the molecular link between circadian rhythm and hepatic de novo lipogenesis. We found that liver-specific knockout of HDAC3 in adult mouse display severe hepatic steatosis associated with enhanced de novo lipogenesis and increased expression of lipogenic genes. Genome-wide analysis (ChIP-seq) revealed a pronounced circadian pattern of HDAC3 occupancy on genes involved in lipid metabolism, which is inversely related to histone acetylation and RNA polymerase II recruitment at these sites. The cistromes of HDAC3 and its binding partner, nuclear receptor co-repressor (NCoR), significantly overlap with that of Rev-erb?, a nuclear receptor directly involved in the core circadian machinery. Knockout of Rev-erb? in mouse also leads to hepatic steatosis and enhanced de novo lipogenesis. Collectively, these data suggest that the circadian epigenomic remodeling controlled by HDAC3, and largely directed by Rev-erb?, is essential for homeostasis of the lipogenic process in liver. PMID:21900149

  17. Mitogen-activated protein kinase p38 induces HDAC4 degradation in hypertrophic chondrocytes.

    PubMed

    Zhou, Jingming; Li, Pengcui; Chen, Qian; Wei, Xiaochun; Zhao, Ting; Wang, Zhengke; Wei, Lei

    2015-02-01

    Histone deacetylase 4 (HDAC4) is a critical negative regulator for chondrocyte hypertrophy by binding to and inhibiting Runx2, a critical transcription factor for chondrocyte hypertrophy. It is unclear how HDAC4 expression and stability are regulated during growth plate development. We report here that inhibition of mitogen-activated protein kinase (MAPK) p38 by dominant negative p38 or p38 inhibitor prevents HDAC4 degradation. Mutation of a potential caspase-2 and 3 cleavage site Asp289 stabilizes HDAC4 in chondrocytes. In contrast, constitutively active MAPK kinase 6 (constitutive activator of p38) transgenic mice exhibit decreased HDAC4 content in vivo. We also observed that p38 stimulates caspase-3 activity in chondrocytes. Inhibition of p38 or caspases reduced HDAC4 degradation. HDAC4 inhibited Runx2 promoter activity in a dose-dependent manner and caspase inhibitors further enhanced this inhibition by preventing HDAC4 degradation. Overall, these results demonstrate that p38 promotes HDAC4 degradation by increasing caspase-mediated cleavage, which releases Runx2 from a repressive influence of HDAC4 and promotes the chondrocyte hypertrophy and bone formation. PMID:25447540

  18. Regulation of HLA-DR peptide occupancy by histone deacetylase inhibitors

    PubMed Central

    Cronin, Kevin; Escobar, Hernando; Szekeres, Karoly; Reyes-Vargas, Eduardo; Rockwood, Alan L.; Lloyd, Mark C.; Delgado, Julio C.; Blanck, George

    2013-01-01

    Numerous molecular effects have been attributed to histone deacetylase inhibitors (HDACI’s), including the induction of major histocompatibility (MHC) genes. Here we report that one FDA approved HDACI, Vorinostat, and a second HDACI currently in clinical trials, Entinostat, reduce the ratio of class II associated invariant peptide (CLIP) to the MHC class II molecule, HLA-DR, indicating an increase in the non-CLIP peptides bound to HLA-DR. The HDACI effects are apparent with immortalized B-cells, HLA-DR constitutive melanoma cells and with melanoma cells expressing HLA-DR due to transformation with an expression vector for the HLA-DR gene co-activator, CIITA. Entinostat treatment leads to upregulation of Cathepsin L1, and the HLA-DR peptidome of the Entinostat treated cells is consistent with increased Cathepsin L1 mediated proteolysis. These results indicate that HDACI treatments may alter the HLA-DR peptidome of cells in patients and provide a way to identify novel immunogens for vaccinations and the study of autoantigens. PMID:23328677

  19. Thrombocytopenia induced by the histone deacetylase inhibitor abexinostat involves p53-dependent and -independent mechanisms

    PubMed Central

    Ali, A; Bluteau, O; Messaoudi, K; Palazzo, A; Boukour, S; Lordier, L; Lecluse, Y; Rameau, P; Kraus-Berthier, L; Jacquet-Bescond, A; Lelièvre, H; Depil, S; Dessen, P; Solary, E; Raslova, H; Vainchenker, W; Plo, I; Debili, N

    2013-01-01

    Abexinostat is a pan histone deacetylase inhibitor (HDACi) that demonstrates efficacy in malignancy treatment. Like other HDACi, this drug induces a profound thrombocytopenia whose mechanism is only partially understood. We have analyzed its effect at doses reached in patient plasma on in vitro megakaryopoiesis derived from human CD34+ cells. When added at day 0 in culture, abexinostat inhibited CFU-MK growth, megakaryocyte (MK) proliferation and differentiation. These effects required only a short incubation period. Decreased proliferation was due to induction of apoptosis and was not related to a defect in TPO/MPL/JAK2/STAT signaling. When added later (day 8), the compound induced a dose-dependent decrease (up to 10-fold) in proplatelet (PPT) formation. Gene profiling from MK revealed a silencing in the expression of DNA repair genes with a marked RAD51 decrease at protein level. DNA double-strand breaks were increased as attested by elevated ?H2AX phosphorylation level. Moreover, ATM was phosphorylated leading to p53 stabilization and increased BAX and p21 expression. The use of a p53 shRNA rescued apoptosis, and only partially the defect in PPT formation. These results suggest that HDACi induces a thrombocytopenia by a p53-dependent mechanism along MK differentiation and a p53-dependent and -independent mechanism for PPT formation. PMID:23887629

  20. Inhibition of histone deacetylase activates side population cells in kidney and partially reverses chronic renal injury.

    PubMed

    Imai, Naohiko; Hishikawa, Keiichi; Marumo, Takeshi; Hirahashi, Junichi; Inowa, Toshihiko; Matsuzaki, Yumi; Okano, Hideyuki; Kitamura, Tadaichi; Salant, David; Fujita, Toshiro

    2007-10-01

    Bone morphogenic protein (BMP)-7 is expressed in the adult kidney and reverses chronic renal injury when given exogenously. Here, we report that a histone deacetylase inhibitor, trichostatin A (TSA), attenuates chronic renal injury, in part, by augmenting the expression of BMP-7 in kidney side population (SP) cells. We induced accelerated nephrotoxic serum nephritis (NTN) in C57BL/6 mice and treated them with TSA for 3 weeks. Compared with vehicle-treated NTN mice, treatment with TSA prevented the progression of proteinuria, glomerulosclerosis, interstitial fibrosis, and loss of kidney SP cells. Basal gene expression of renoprotective factors such as BMP-7, vascular endothelial growth factor, and hepatocyte growth factor was significantly higher in kidney SP cells as compared with non-SP cells. Treatment with TSA significantly upregulated the expression of BMP-7 in SP cells but not in non-SP cells. Moreover, initiation of treatment with TSA after 3 weeks of NTN (for 3 weeks, until 6 weeks) partially but significantly reversed renal dysfunction. Our results indicate an important role of SP cells in the kidney as one of the possible generator cells of BMP-7 and TSA as a stimulator of the cells in reversing chronic renal disease. Disclosure of potential conflicts of interest is found at the end of this article. PMID:17641247

  1. A Putative Histone Deacetylase Modulates the Biosynthesis of Pestalotiollide B and Conidiation in Pestalotiopsis microspora.

    PubMed

    Niu, Xueliang; Hao, Xiaoran; Hong, Zhangyong; Chen, Longfei; Yu, Xi; Zhu, Xudong

    2015-05-28

    Fungi of the genus Pestalotiopsis have drawn attention for their capability to produce an array of bioactive secondary metabolites that have potential for drug development. Here, we report the determination of a polyketide derivative compound, pestalotiollide B, in the culture of the saprophytic fungus Pestalotiopsis microspora NK17. Structural information acquired by analyses with a set of spectroscopic and chromatographic techniques suggests that pestalotiollide B has the same skeleton as the penicillide derivatives, dibenzodioxocinones, which are inhibitors of cholesterol ester transfer protein (CETP), and as purpactins A and C', inhibitors of acyl-CoA:cholesterol acyltransferase (ACAT). Strain NK17 can make a fairly high yield of pestalotiollide B (i.e., up to 7.22 mg/l) in a constitutive manner in liquid culture. Moreover, we found that a putative histone deacetylase gene, designated as hid1, played a role in the biosynthesis of pestalotiollide B. In the hid1 null mutant, the yield of pestalotiollide B increased approximately 2-fold to 15.90 mg/l. In contrast, deletion of gene hid1 led to a dramatic decrease of conidia production of the fungus. These results suggest that hid1 is a modulator, concerting secondary metabolism and development such as conidiation in P. microspora. Our work may help with the investigation into the biosynthesis of pestalotiollide B and the development for new CETP and ACAT inhibitors. PMID:25394605

  2. Histone Deacetylase Inhibitors Facilitate Dihydroartemisinin-Induced Apoptosis in Liver Cancer In Vitro and In Vivo

    PubMed Central

    Zhang, Chris Zhiyi; Pan, Yinghua; Cao, Yun; Lai, Paul B. S.; Liu, Lili; Chen, George Gong; Yun, Jingping

    2012-01-01

    Liver cancer ranks in prevalence and mortality among top five cancers worldwide. Accumulating interests have been focused in developing new strategies for liver cancer treatment. We have previously showed that dihydroartemisinin (DHA) exhibited antitumor activity towards liver cancer. In this study, we demonstrated that histone deacetylase inhibitors (HDACi) significantly augmented the antineoplastic effect of DHA via increasing apoptosis in vitro and in vivo. Inhibition of ERK phosphorylation contributed to DHA-induced apoptosis, due to the fact that inhibitor of ERK phosphorylation (PD98059) increased DHA-induced apoptosis. Compared with DHA alone, the combined treatment with DHA and HDACi reduced mitochondria membrane potential, released cytochrome c into cytoplasm, increased p53 and Bak, decreased Mcl-1 and p-ERK, activated caspase 3 and PARP, and induced apoptotic cells. Furthermore, we showed that HDACi pretreatment facilitated DHA-induced apoptosis. In Hep G2-xenograft carrying nude mice, the intraperitoneal injection of DHA and SAHA resulted in significant inhibition of xenograft tumors. Results of TUNEL and H&E staining showed more apoptosis induced by combined treatment. Immunohistochemistry data revealed the activation of PARP, and the decrease of Ki-67, p-ERK and Mcl-1. Taken together, our data suggest that the combination of HDACi and DHA offers an antitumor effect on liver cancer, and this combination treatment should be considered as a promising strategy for chemotherapy. PMID:22761917

  3. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition

    PubMed Central

    Chang, Pamela V.; Hao, Liming; Offermanns, Stefan; Medzhitov, Ruslan

    2014-01-01

    Given the trillions of microbes that inhabit the mammalian intestines, the host immune system must constantly maintain a balance between tolerance to commensals and immunity against pathogens to avoid unnecessary immune responses against otherwise harmless bacteria. Misregulated responses can lead to inflammatory bowel diseases such as ulcerative colitis or Crohn's disease. The mechanisms by which the immune system maintains this critical balance remain largely undefined. Here, we demonstrate that the short-chain fatty acid n-butyrate, which is secreted in high amounts by commensal bacteria, can modulate the function of intestinal macrophages, the most abundant immune cell type in the lamina propria. Treatment of macrophages with n-butyrate led to the down-regulation of lipopolysaccharide-induced proinflammatory mediators, including nitric oxide, IL-6, and IL-12, but did not affect levels of TNF-? or MCP-1. These effects were independent of toll-like receptor signaling and activation of G-protein–coupled receptors, two pathways that could be affected by short-chain fatty acids. In this study, we provide several lines of evidence that suggest that these effects are due to the inhibition of histone deacetylases by n-butyrate. These findings elucidate a pathway in which the host may maintain tolerance to intestinal microbiota by rendering lamina propria macrophages hyporesponsive to commensal bacteria through the down-regulation of proinflammatory effectors. PMID:24390544

  4. Identification of novel targets for PGC-1{alpha} and histone deacetylase inhibitors in neuroblastoma cells

    SciTech Connect

    Cowell, Rita M. [Department of Psychiatry, University of Alabama, Birmingham, AL 35294 (United States); Department of Neurology, University of Michigan, Ann Arbor, MI 48109 (United States)], E-mail: rcowell@uab.edu; Talati, Pratik [Department of Psychiatry, University of Alabama, Birmingham, AL 35294 (United States); Blake, Kathryn R. [Department of Neurology, University of Michigan, Ann Arbor, MI 48109 (United States); Meador-Woodruff, James H. [Department of Psychiatry, University of Alabama, Birmingham, AL 35294 (United States); Russell, James W. [Department of Neurology, University of Michigan, Ann Arbor, MI 48109 (United States); Department of Neurology, University of Maryland and VA Maryland Health Care System, Baltimore, MD 21201 (United States)

    2009-02-06

    Recent evidence suggests that the transcriptional coactivator peroxisome proliferator activated receptor {gamma} coactivator 1{alpha} (PGC-1{alpha}) is involved in the pathology of Huntington's Disease (HD). While animals lacking PGC-1{alpha} express lower levels of genes involved in antioxidant defense and oxidative phosphorylation in the brain, little is known about other targets for PGC-1{alpha} in neuronal cells and whether there are ways to pharmacologically target PGC-1{alpha} in neurons. Here, PGC-1{alpha} overexpression in SH-SY5Y neuroblastoma cells upregulated expression of genes involved in mitochondrial function, glucose transport, fatty acid metabolism, and synaptic function. Overexpression also decreased vulnerability to hydrogen peroxide-induced cell death and caspase 3 activation. Treatment of cells with the histone deacetylase inhibitors (HDACi's) trichostatin A and valproic acid upregulated PGC-1{alpha} and glucose transporter 4 (GLUT4). These results suggest that PGC-1{alpha} regulates multiple pathways in neurons and that HDACi's may be good candidates to target PGC-1{alpha} and GLUT4 in HD and other neurological disorders.

  5. Histone deacetylase SIRT1 modulates and deacetylates DNA base excision repair enzyme thymine DNA glycosylase

    PubMed Central

    Madabushi, Amrita; Hwang, Bor-Jang; Jin, Jin; Lu, A-Lien

    2015-01-01

    Thymine DNA glycosylase (TDG) is an essential multifunctional enzyme involved in DNA base excision repair, DNA demethylation, and transcription regulation. TDG is the predominant enzyme to remove thymine from T/G mispair, which arises due to deamination of 5-methylcytosine at the CpG dinucleotide, thereby preventing C to T mutations. SIRT1 is a member of class III NAD+-dependent histone/protein deacetylases. In this study, we demonstrate that SIRT1 interacts with the residues 67–110 of human TDG (hTDG). In addition, SIRT1 enhances TDG glycosylase activity and deacetylates acetylated TDG. TDG acetylation weakens its interaction with SIRT1. Although acetylated TDG has reduced glycosylase activity toward T/G, 5-formylcytosine/G, and 5-carboxylcytosine/G, it has a stronger activity toward 5-fluorouracil/G substrate as compared to unmodified TDG. SIRT1 weakly stimulates acetylated hTDG activity toward T/G, 5-formylcytosine/G, and 5-carboxylcytosine/G as compared to control hTDG. Sirt1 knockout mouse embryonic fibroblast cells have higher levels of TDG expression and acetylation. The physical and functional interactions between SIRT1 and TDG may mediate DNA repair, gene expression, and FU-mediated cytotoxicity. PMID:23952905

  6. Histone deacetylase inhibitor, valproic acid, radiosensitizes the C6 glioma cell line in vitro

    PubMed Central

    ZHOU, YONG; XU, YING; WANG, HAN; NIU, JUNJIE; HOU, HUAYING; JIANG, YUHUA

    2014-01-01

    Valproic acid (VPA) is a well-tolerated drug that is used to treat seizure disorders and that has recently been shown to inhibit histone deacetylase. The present study investigated the effects of VPA on the radiosensitization of the rat C6 glioma cell line in vitro. To select an appropriate treatment concentration and time, MTT and flow cytometry assays were performed to measure the inhibitory effects of VPA at various concentrations and incubation time-points. The radiosensitizing effect of VPA was determined using clonogenic experiments. VPA- and radiation-induced C6 apoptosis was analyzed using quantitative polymerase chain reaction and western blot analysis. Cell proliferation was significantly inhibited by VPA in a time- and dose-dependent manner (P<0.05). VPA enhanced radiation-induced C6 cell death and there was clear inhibition of clonogenic formation [sensitizer enhancement ratio (SER), 1.30]. This effect was closely associated with the concentration of VPA. VPA treatment decreased the mRNA and protein levels of Bcl-2, whereas increased changes were detected with Bax. At a concentration of 0.5 mmol/l, VPA had a low toxicity and enhanced the radiosensitization of the C6 cells. VPA may radiosensitize glioma cells by inhibiting cellular proliferation and inducing apoptosis by regulating apoptosis-related molecular changes. PMID:24348849

  7. Regulation of CRADD-caspase 2 cascade by histone deacetylase 1 in gastric cancer

    PubMed Central

    Shen, Qi; Tang, Wanfen; Sun, Jie; Feng, Lifeng; Jin, Hongchuan; Wang, Xian

    2014-01-01

    CRADD, also referred as RAIDD, is an adaptor protein that could interact with both caspase 2 and RIP that can promote apoptosis once activated. HDAC inhibitors are promising anti-cancer agents by inducing apoptosis of various cancer cells. In this study, we found that CRADD was induced by TSA (trichostatin A) to activate caspase 2-dependent apoptosis. CRADD was downregulated in gastric cancer and the restoration of its expression suppressed the viability of gastric cancer cells. HDAC1 was responsible for its downregulation in gastric cancer since HDAC1 siRNA upregulated CRADD expression and HDAC1 directly bound to the promoter of CRADD. Therefore, the high expression of HDAC1 can downregulate CRADD to confer gastric cancer cells the resistance to caspase 2-dependent apoptosis. HDAC inhibitors, potential anti-cancer drugs under investigation, can promote caspase 2-dependent apoptosis by inducing the expression of CRADD. PMID:25360218

  8. Design, synthesis and biological evaluation of colchicine derivatives as novel tubulin and histone deacetylase dual inhibitors.

    PubMed

    Zhang, Xuan; Kong, Yannan; Zhang, Jie; Su, Mingbo; Zhou, Yubo; Zang, Yi; Li, Jia; Chen, Yi; Fang, Yanfen; Zhang, Xiongwen; Lu, Wei

    2015-05-01

    A new class of colchicine derivatives were designed and synthesized as tubulin-HDAC dual inhibitors. Biological evaluations of these hybrids included the inhibitory activity of HDAC, tubulin polymerization analysis, in vitro cell cycle analysis in HCT-116 cells and cytotoxicity against different cancer cell lines. Hybrid 6d behaved as potent HDAC-tubulin dual inhibitor and showed comparable cytotoxicity with colchicine. Compound 11a exhibited powerful tubulin inhibitory activity, moderate anti-HDAC activity and the most potent cytotoxicity (IC50 = 2-105 nM). PMID:25805446

  9. Nuclear localization signal domain of HDAC3 is necessary and sufficient for the expression regulation of MDR1

    PubMed Central

    Park, Hyunmi; Kim, Youngmi; Park, Deokbum; Jeoung, Dooil

    2014-01-01

    Histone acetylation/deacetylation has been known to be associated with the transcriptional regulation of various genes. The role of histone deacetylase-3 in the expression regulation of MDR1 was investigated. The expression level of HDAC3 showed an inverse relationship with the expression level of MDR1. Wild-type HDAC3, but not catalytic mutant HDAC3S424A, negatively regulated the expression of MDR1. Wild-type HDAC3, but not catalytic mutant HDAC3S424A, showed binding to the promoter sequences of HDAC3. HDAC3 regulated the expression level, and the binding of Ac-H3K9/14 and Ac-H4K16 around the MDR1 promoter sequences. The nuclear localization signal domain of HDAC3 was necessary, and sufficient for the binding of HDAC3 to the MDR1 promoter sequences and for conferring sensitivity to microtubule-targeting drugs. [BMB Reports 2014; 47(6): 342-347] PMID:24286324

  10. Inactivation of HDAC1 or HDAC2 induces gamma globin expression without altering cell cycle or proliferation.

    PubMed

    Esrick, Erica B; McConkey, Marie; Lin, Katherine; Frisbee, Alyse; Ebert, Benjamin L

    2015-07-01

    Other than hydroxyurea, no pharmacologic agents are clinically available for fetal hemoglobin (HbF) induction in sickle cell disease (SCD). An optimal candidate would induce HbF without causing cell cycle inhibition and would act independently of hydroxyurea in order to yield additional HbF induction when combined. We explored whether inhibition of histone deacetylase (HDAC) 1 or HDAC2 could achieve these goals. In human erythroid progenitor cells, shRNA knockdown of the HDAC1 or HDAC2 genes induced gamma globin, without altering cellular proliferation in vitro, and without altering cell cycle phase. Treatment with hydroxyurea in combination with HDAC2 knockdown yielded a further increase in gamma globin expression. Additionally, when CD34+ cells were treated with both hydroxyurea and MS-275 (an inhibitor of HDAC 1, 2, and 3), an additive induction of relative gamma globin expression was achieved. Our findings support further clinical investigation of HDAC inhibitors in combination with hydroxyurea in SCD patients. Am. J. Hematol. 90:624-628, 2015. © 2015 Wiley Periodicals, Inc. PMID:25808664

  11. Valproic acid, but not levetiracetam, selectively decreases HDAC7 and HDAC2 expression in human ovarian cancer cells.

    PubMed

    Kwieci?ska, Patrycja; Wróbel, Anna; Taubøll, Erik; Gregoraszczuk, Ewa ?ucja

    2014-01-13

    Histone deacetylases (HDACs) are often overexpressed in cancer cells, leading to altered expression and activity of numerous proteins involved in carcinogenesis. Recent evidence suggests that expression of class I HDACs is increased in ovarian carcinomas and plays a significant role in carcinogenesis and resistance to chemotherapeutic agents. Two compounds, valproic acid (VPA) and levetiracetam (LEV), exhibit HDAC inhibitor (HDACI) activity in various cell types, but data concerning their activity in ovarian cancer are lacking. Here we compared the effects of VPA and LEV as HDACIs, using a human ovarian cancer cell line, OVCAR-3. Cells were cultured with VPA or LEV at concentrations between 1 and 10 mM for 1-24h. HDAC activity was determined by fluorometric assay and confirmed by western blotting. Expression of HDAC genes was determined by real-time PCR and HDAC proteins expression was evaluated by western blotting. Additionally, we used high-performance liquid chromatography to determine whether OVCAR-3 cells can metabolize LEV to its major metabolite, 2-pyrrolidinone-n-butyric acid (PBA), which might exert HDACI activity. LEV, however, had no apparent effect on HDAC activity, or gene and protein expression. The OVCAR-3 cell line was able to metabolize LEV to PBA, but the effect was small. Our observations suggest that VPA should be considered as a possible adjunctive drug in ovarian cancer treatment. PMID:24200999

  12. Histone deacetylase 11: A novel epigenetic regulator of myeloid derived suppressor cell expansion and function.

    PubMed

    Sahakian, Eva; Powers, John J; Chen, Jie; Deng, Susan L; Cheng, Fengdong; Distler, Allison; Woods, David M; Rock-Klotz, Jennifer; Sodre, Andressa L; Youn, Je-In; Woan, Karrune V; Villagra, Alejandro; Gabrilovich, Dmitry; Sotomayor, Eduardo M; Pinilla-Ibarz, Javier

    2015-02-01

    Myeloid-derived suppressor cells (MDSCs), a heterogeneous population of cells capable of suppressing anti-tumor T cell function in the tumor microenvironment, represent an imposing obstacle in the development of cancer immunotherapeutics. Thus, identifying elements essential to the development and perpetuation of these cells will undoubtedly improve our ability to circumvent their suppressive impact. HDAC11 has emerged as a key regulator of IL-10 gene expression in myeloid cells, suggesting that this may represent an important targetable axis through which to dampen MDSC formation. Using a murine transgenic reporter model system where eGFP expression is controlled by the HDAC11 promoter (Tg-HDAC11-eGFP), we provide evidence that HDAC11 appears to function as a negative regulator of MDSC expansion/function in vivo. MDSCs isolated from EL4 tumor-bearing Tg-HDAC11-eGFP display high expression of eGFP, indicative of HDAC11 transcriptional activation at steady state. In striking contrast, immature myeloid cells in tumor-bearing mice display a diminished eGFP expression, implying that the transition of IMC to MDSC's require a decrease in the expression of HDAC11, where we postulate that it acts as a gate-keeper of myeloid differentiation. Indeed, tumor-bearing HDAC11-knockout mice (HDAC11-KO) demonstrate a more suppressive MDSC population as compared to wild-type (WT) tumor-bearing control. Notably, the HDAC11-KO tumor-bearing mice exhibit enhanced tumor growth kinetics when compare to the WT control mice. Thus, through a better understanding of this previously unknown role of HDAC11 in MDSC expansion and function, rational development of targeted epigenetic modifiers may allow us to thwart a powerful barrier to efficacious immunotherapies. PMID:25155994

  13. Identification of a novel human testicular interstitial gene, RNF148, and its expression regulated by histone deacetylases.

    PubMed

    Liu, Y Q; Tao, D C; Liao, S Y; Yang, Y; Ma, Y X; Zhang, S Z

    2013-01-01

    Multiple genes are restrictively expressed in mammalian testicular tissues, and they play important roles in the complex process of spermatogenesis. Investigation of these genes and their expression regulation mechanisms is valuable to elucidate the molecular process of spermatogenesis. In this study, we identified a novel human gene, ring finger protein 148 (RNF148) that is abundantly expressed in testes and slightly expressed in pancreas. In situ hybridization analysis showed that RNF148 messenger RNA was mainly present in the interstitial cells of human testicular tissues, and immunohistochemical analysis confirmed protein levels in that location. Treatment with histone deacetylase inhibitor trichostatin A activated the expression of RNF148 messenger RNA in a time- and concentration-dependent manner in HEK293T and HeLa cells, neither of which normally express RNF148. Chromatin immunoprecipitation analysis showed that trichostatin A treatment increased the binding of acetylated histone H3 to the RNF148 gene promoter. We identified a novel human testicular interstitial gene and observed that histone deacetylases regulate RNF148 expression. PMID:24089095

  14. A general requirement for the Sin3-Rpd3 histone deacetylase complex in regulating silencing in Saccharomyces cerevisiae.

    PubMed Central

    Sun, Z W; Hampsey, M

    1999-01-01

    The Sin3-Rpd3 histone deacetylase complex, conserved between human and yeast, represses transcription when targeted by promoter-specific transcription factors. SIN3 and RPD3 also affect transcriptional silencing at the HM mating loci and at telomeres in yeast. Interestingly, however, deletion of the SIN3 and RPD3 genes enhances silencing, implying that the Sin3-Rpd3 complex functions to counteract, rather than to establish or maintain, silencing. Here we demonstrate that Sin3, Rpd3, and Sap30, a novel component of the Sin3-Rpd3 complex, affect silencing not only at the HMR and telomeric loci, but also at the rDNA locus. The effects on silencing at all three loci are dependent upon the histone deacetylase activity of Rpd3. Enhanced silencing associated with sin3Delta, rpd3Delta, and sap30Delta is differentially dependent upon Sir2 and Sir4 at the telomeric and rDNA loci and is also dependent upon the ubiquitin-conjugating enzyme Rad6 (Ubc2). We also show that the Cac3 subunit of the CAF-I chromatin assembly factor and Sin3-Rpd3 exert antagonistic effects on silencing. Strikingly, deletion of GCN5, which encodes a histone acetyltransferase, enhances silencing in a manner similar to deletion of RPD3. A model that integrates the effects of rpd3Delta, gcn5Delta, and cac3Delta on silencing is proposed. PMID:10388812

  15. p15RS/RPRD1A (p15INK4b-related Sequence/Regulation of Nuclear Pre-mRNA Domain-containing Protein 1A) Interacts with HDAC2 in Inhibition of the Wnt/?-Catenin Signaling Pathway.

    PubMed

    Liu, Chunxiao; Zhang, Yanquan; Li, Jun; Wang, Yinyin; Ren, Fangli; Zhou, Yifan; Wu, Yinyuan; Feng, Yarui; Zhou, Yu; Su, Fuqin; Jia, Baoqing; Wang, Dong; Chang, Zhijie

    2015-04-10

    We previously reported that p15RS (p15INK4b-related sequence), a regulation of nuclear pre-mRNA domain containing protein, inhibited Wnt signaling by interrupting the formation of the ?-catenin·TCF4 complex. However, how p15RS functions as an intrinsic repressor to repress transcription remains unclear. In this study, we show that p15RS, through a specific interaction with HDAC2 (histone deacetylase 2), a deacetylase that regulates gene transcription, maintains histone H3 in a deacetylated state in the promoter region of Wnt-targeted genes where ?-catenin·TCF4 is bound. We observed that histone deacetylase inhibitors impair the ability of p15RS in inhibiting Wnt/?-catenin signaling. Depletion of HDAC2 markedly disabled p15RS inhibition of Wnt/?-catenin-mediated transcription. Interestingly, overexpression of p15RS decreases the level of acetylated histone H3 in the c-MYC promoter. Finally, we demonstrate that p15RS significantly enhances the association of HDAC2 and TCF4 and enhances the occupancy of HDAC2 to DNA, resulting in the deacetylation of histone H3 and the failure of ?-catenin interaction. We propose that p15RS acts as an intrinsic transcriptional repressor for Wnt/?-catenin-mediated gene transcription at least partially through recruiting HDAC2 to occupy the promoter and maintaining deacetylated histone H3. PMID:25697359

  16. Histone Deacetylase Inhibition Enhances Adenoviral Vector Transduction in Inner Ear Tissue

    PubMed Central

    Taura, Akiko; Taura, Kojiro; Choung, Yun-Hoon; Masuda, Masatsugu; Pak, Kwang; Chavez, Eduardo; Ryan, Allen F.

    2010-01-01

    Adenovirus vectors (AdVs) are efficient tools for gene therapy in many tissues. Several studies have demonstrated successful transgene transduction with AdVs in the inner ear of rodents (Kawamoto et al., 2003). However, toxicity of AdVs (Morral et al., 2002) or lack of tropism to important cell types such as hair cells (Shou et al., 2003) appears to limit their experimental and potential clinical utility. Histone deacetylase inhibitors (HDIs) are known to enhance AdV-mediated transgene expression in various organs (Dion et al., 1997), but their effects in the inner ear have not been documented. We investigated the ability of one HDI, trichostatin A (TSA), to enhance AdV-mediated transgene expression in inner ear tissue. We cultured neonatal rat macular and cochlear explants, and transduced them with an AdV encoding green fluorescent protein (Ad-GFP) under the control of a constitutive promoter for 24hrs. In the absence of TSA, GFP expression was limited, and very few hair cells were transduced. TSA did not enhance transduction when applied at the onset of Ad-GFP transduction. However, administration of TSA during or just after Ad-GFP application increased GFP expression in supporting cells approximately 4-fold. Moreover, vestibular hair cell transduction was enhanced approximately 6-fold, and that of inner hair cells by more than 17-fold. These results suggest that TSA increases AdV-mediated transgene expression in the inner ear, including the successful transduction of hair cells. HDIs, some of which are currently under clinical trials (Bakke et al., 2002), could be useful tools in overcoming current limitations of gene therapy in the inner ear using Ad-GFP. PMID:20060033

  17. Histone deacetylase inhibitors epigenetically promote reparative events in primary dental pulp cells

    SciTech Connect

    Duncan, Henry F., E-mail: Hal.Duncan@dental.tcd.ie [Division of Restorative Dentistry and Periodontology, Dublin Dental University Hospital, Trinity College Dublin, Lincoln Place, Dublin 2 (Ireland); Smith, Anthony J. [Oral Biology, School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, Birmingham (United Kingdom); Fleming, Garry J.P. [Material Science Unit, Division of Oral Biosciences, Dublin Dental University Hospital, Trinity College Dublin, Dublin (Ireland); Cooper, Paul R. [Oral Biology, School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, Birmingham (United Kingdom)

    2013-06-10

    Application of histone deacetylase inhibitors (HDACi) to cells epigenetically alters their chromatin structure and induces transcriptional and cellular reparative events. This study investigated the application of two HDACi, valproic acid (VPA) and trichostatin A (TSA) on the induction of repair-associated responses in primary dental pulp cell (DPC) cultures. Flow cytometry demonstrated that TSA (100 nM, 400 nM) significantly increased cell viability. Neither HDACi was cytotoxic, although cell growth analysis revealed significant anti-proliferative effects at higher concentrations for VPA (>0.5 mM) and TSA (>50 nM). While high-content-analysis demonstrated that HDACi did not significantly induce caspase-3 or p21 activity, p53-expression was increased by VPA (3 mM, 5 mM) at 48 h. HDACi-exposure induced mineralization per cell dose-dependently to a plateau level (VPA-0.125 mM and TSA-25 nM) with accompanying increases in mineralization/dentinogenic-associated gene expression at 5 days (DMP-1, BMP-2/-4, Nestin) and 10 days (DSPP, BMP-2/-4). Both HDACis, at a range of concentrations, significantly stimulated osteopontin and BMP-2 protein expression at 10 and 14 days further supporting the ability of HDACi to promote differentiation. HDACi exert different effects on primary compared with transformed DPCs and promote mineralization and differentiation events without cytotoxic effects. These novel data now highlight the potential in restorative dentistry for applying low concentrations of HDACi in vital pulp treatment. -- Highlights: • Valproic acid and trichostatin A promoted mineralization in primary pulp cells. • Cell viability, apoptosis, caspase-3, p21 unaltered; p53 increased by valproic acid. • Trichostatin A increased cell viability at 24 h at selected concentrations. • Altered cell toxicity and differentiation between primary and transformed cells. • HDACi-induced the differentiation marker proteins osteopontin and BMP-2.

  18. A model of sensitivity and resistance to histone deacetylase inhibitors in diffuse large B cell lymphoma

    PubMed Central

    Tula-Sanchez, Ana A; Havas, Aaron P; Alonge, Peter J; Klein, Mary E; Doctor, Samantha R; Pinkston, William; Glinsmann-Gibson, Betty J; Rimsza, Lisa M; Smith, Catharine L

    2013-01-01

    Diffuse large B cell lymphoma (DLBCL) is an aggressive form of non-Hodgkin lymphoma. While the initial treatment strategy is highly effective, relapse occurs in 40% of cases. Histone deacetylase inhibitors (HDACi) are a promising class of anti-cancer drugs but their single agent efficacy against relapsed DLBCL has been variable, ranging from few complete/partial responses to some stable disease. However, most patients showed no response to HDACi monotherapy for unknown reasons. Here we show that sensitivity and resistance to the hydroxamate HDACi, PXD101, can be modeled in DLBCL cell lines. Sensitivity is characterized by G2/M arrest and apoptosis and resistance by reversible G1 growth arrest. These responses to PXD101 are independent of several negative prognostic indicators such as DLBCL subtype, BCL2 and MYC co-expression, and p53 mutation, suggesting that HDACi might be used effectively against highly aggressive DLBCL tumors if they are combined with other therapeutics that overcome HDACi resistance. Our investigation of mechanisms underlying HDACi resistance showed that cyclin-dependent kinase inhibitors (CKIs), p21 and p27, are upregulated by PXD101 in a sustained fashion in resistant cell lines concomitant with decreased activity of the cyclin E/cdk2 complex and decreased Rb phosphorylation. PXD101 treatment results in increased association of CKI with the cyclin E/cdk2 complex in resistant cell lines but not in a sensitive line, indicating that the CKIs play a key role in G1 arrest. The results suggest several treatment strategies that might increase the efficacy of HDACi against aggressive DLBCL. PMID:23982416

  19. Histone deacetylase inhibitor trichostatin A enhances myogenesis by coordinating muscle regulatory factors and myogenic repressors

    SciTech Connect

    Hagiwara, Hiroki [Department of Neurology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605 (Japan) [Department of Neurology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605 (Japan); Department of Medical Science, Teikyo University of Science, 2-2-1 Senjusakuragi, Adachi-ku, Tokyo 120-0045 (Japan); Saito, Fumiaki, E-mail: f-saito@med.teikyo-u.ac.jp [Department of Neurology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605 (Japan)] [Department of Neurology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605 (Japan); Masaki, Toshihiro [Department of Neurology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605 (Japan) [Department of Neurology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605 (Japan); Department of Medical Science, Teikyo University of Science, 2-2-1 Senjusakuragi, Adachi-ku, Tokyo 120-0045 (Japan); Ikeda, Miki; Nakamura-Ohkuma, Ayami; Shimizu, Teruo; Matsumura, Kiichiro [Department of Neurology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605 (Japan)] [Department of Neurology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605 (Japan)

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer We investigated the effect of TSA, one of most potent HDACIs, on myogenesis using the C2C12 skeletal muscle cell line. Black-Right-Pointing-Pointer TSA enhances the expression of myosin heavy chain without affecting DAPC expression. Black-Right-Pointing-Pointer TSA enhances the expression of the early MRFs, Myf5 and MEF2, and suppresses the late MRF, myogenin, after 24 h treatment. Black-Right-Pointing-Pointer TSA enhances the expression of the myogenic repressors, Ids, which inhibit myogenic differentiation. Black-Right-Pointing-Pointer TSA promotes myogenesis by coordinating the expression of MRFs and myogenic repressors. -- Abstract: Histone deacetylase inhibitors (HDACIs) are known to promote skeletal muscle formation. However, their mechanisms that include effects on the expression of major muscle components such as the dystrophin-associated proteins complex (DAPC) or myogenic regulatory factors (MRFs) remain unknown. In this study, we investigated the effects of HDACIs on skeletal muscle formation using the C2C12 cell culture system. C2C12 myoblasts were exposed to trichostatin A (TSA), one of the most potent HDACIs, and differentiation was subsequently induced. We found that TSA enhances the expression of myosin heavy chain without affecting DAPC expression. In addition, TSA increases the expression of the early MRFs, Myf5 and MEF2, whereas it suppresses the expression of the late MRF, myogenin. Interestingly, TSA also enhances the expression of Id1, Id2, and Id3 (Ids). Ids are myogenic repressors that inhibit myogenic differentiation. These findings suggest that TSA promotes gene expression in proliferation and suppresses it in the differentiation stage of muscle formation. Taken together, our data demonstrate that TSA enhances myogenesis by coordinating the expression of MRFs and myogenic repressors.

  20. Histone deacetylase inhibitors epigenetically promote reparative events in primary dental pulp cells.

    PubMed

    Duncan, Henry F; Smith, Anthony J; Fleming, Garry J P; Cooper, Paul R

    2013-06-10

    Application of histone deacetylase inhibitors (HDACi) to cells epigenetically alters their chromatin structure and induces transcriptional and cellular reparative events. This study investigated the application of two HDACi, valproic acid (VPA) and trichostatin A (TSA) on the induction of repair-associated responses in primary dental pulp cell (DPC) cultures. Flow cytometry demonstrated that TSA (100 nM, 400 nM) significantly increased cell viability. Neither HDACi was cytotoxic, although cell growth analysis revealed significant anti-proliferative effects at higher concentrations for VPA (>0.5 mM) and TSA (>50 nM). While high-content-analysis demonstrated that HDACi did not significantly induce caspase-3 or p21 activity, p53-expression was increased by VPA (3 mM, 5 mM) at 48 h. HDACi-exposure induced mineralization per cell dose-dependently to a plateau level (VPA-0.125 mM and TSA-25 nM) with accompanying increases in mineralization/dentinogenic-associated gene expression at 5 days (DMP-1, BMP-2/-4, Nestin) and 10 days (DSPP, BMP-2/-4). Both HDACis, at a range of concentrations, significantly stimulated osteopontin and BMP-2 protein expression at 10 and 14 days further supporting the ability of HDACi to promote differentiation. HDACi exert different effects on primary compared with transformed DPCs and promote mineralization and differentiation events without cytotoxic effects. These novel data now highlight the potential in restorative dentistry for applying low concentrations of HDACi in vital pulp treatment. PMID:23562654

  1. Loss of the proteins Bak and Bax prevents apoptosis mediated by histone deacetylase inhibitors

    PubMed Central

    Ierano, Caterina; Chakraborty, Arup R; Nicolae, Alina; Bahr, Julian C; Zhan, Zhirong; Pittaluga, Stefania; Bates, Susan E; Robey, Robert W

    2013-01-01

    Burkitt lymphoma is characterized by deregulation of c-myc, and therapies targeting c-myc are under investigation as treatments. Histone deacetylase inhibitors are known to abrogate c-myc expression, leading us to examine their effect in a series of Burkitt lymphoma cell lines. While treatment with romidepsin, panobinostat, vorinostat, or belinostat for 48 h resulted in complete cell death in the Ramos and ST486 lines, CA46 and DG75 cells were resistant. In parallel studies, CA46 and DG75 cells were also insensitive to 48 h treatment with the Aurora kinase inhibitors (AKIs) MLN8237 (alisertib), VX-680 (tozasertib), or ZM447439. Bax knockdown is known to lead to HDI resistance, and we found that loss of Bax or both Bak and Bax correlated with resistance to both AKIs and HDIs in the Burkitt cell lines. As proof-of-concept to evaluate the contribution of Bax and Bak to HDI-mediated apoptosis, we found that apoptosis was unaffected in HCT-116 colon carcinoma cells lacking Bak, blunted in cells lacking Bax, and nearly completely abrogated in cells lacking both Bak and Bax compared with wild-type cells. To explore potential clinical variations in Bak and Bax expression, a series of samples from 16 patients diagnosed with Burkitt lymphoma was examined. While the majority of samples were positive for both Bak and Bax, some (3/16) expressed low levels of both proteins. We thus conclude that HDI-mediated and AKI-mediated apoptosis requires mitochondrial engagement, and that baseline Bax and Bak expression may serve as biomarkers for patients with Burkitt lymphoma likely to respond to HDI treatment. PMID:23966164

  2. Identification and functional significance of genes regulated by structurally different histone deacetylase inhibitors

    PubMed Central

    Peart, Melissa J.; Smyth, Gordon K.; van Laar, Ryan K.; Bowtell, David D.; Richon, Victoria M.; Marks, Paul A.; Holloway, Andrew J.; Johnstone, Ricky W.

    2005-01-01

    Histone deacetylase inhibitors (HDACis) inhibit tumor cell growth and survival, possibly through their ability to regulate the expression of specific proliferative and/or apoptotic genes. However, the HDACi-regulated genes necessary and/or sufficient for their biological effects remain undefined. We demonstrate that the HDACis suberoylanilide hydroxamic acid (SAHA) and depsipeptide regulate a highly overlapping gene set with at least 22% of genes showing altered expression over a 16-h culture period. SAHA and depsipeptide coordinately regulated the expression of several genes within distinct apoptosis and cell cycle pathways. Multiple genes within the Myc, type ? TGF, cyclin/cyclin-dependent kinase, TNF, Bcl-2, and caspase pathways were regulated in a manner that favored induction of apoptosis and decreased cellular proliferation. APAF-1, a gene central to the intrinsic apoptotic pathway, was induced by SAHA and depsipeptide and shown to be important, but not essential, for HDACi-induced cell death. Overexpression of p16INK4A and arrest of cells in G1 can suppress HDACi-mediated apoptosis. Although p16INK4A did not affect the genome-wide transcription changes mediated by SAHA, a small number of apoptotic genes, including BCLXL and B-MYB, were differentially regulated in a manner consistent with attenuated HDACi-mediated apoptosis in arrested cells. We demonstrate that different HDACi alter transcription of a large and common set of genes that control diverse molecular pathways important for cell survival and proliferation. The ability of HDACi to target multiple apoptotic and cell proliferation pathways may provide a competitive advantage over other chemotherapeutic agents because suppression/loss of a single pathway may not confer resistance to these agents. PMID:15738394

  3. HDAC3 is essential for DNA replication in hematopoietic progenitor cells

    PubMed Central

    Summers, Alyssa R.; Fischer, Melissa A.; Stengel, Kristy R.; Zhao, Yue; Kaiser, Jonathan F.; Wells, Christina E.; Hunt, Aubrey; Bhaskara, Srividya; Luzwick, Jessica W.; Sampathi, Shilpa; Chen, Xi; Thompson, Mary Ann; Cortez, David; Hiebert, Scott W.

    2013-01-01

    Histone deacetylase 3 (HDAC3) contributes to the regulation of gene expression, chromatin structure, and genomic stability. Because HDAC3 associates with oncoproteins that drive leukemia and lymphoma, we engineered a conditional deletion allele in mice to explore the physiological roles of Hdac3 in hematopoiesis. We used the Vav-Cre transgenic allele to trigger recombination, which yielded a dramatic loss of lymphoid cells, hypocellular bone marrow, and mild anemia. Phenotypic and functional analysis suggested that Hdac3 was required for the formation of the earliest lymphoid progenitor cells in the marrow, but that the marrow contained 3–5 times more multipotent progenitor cells. Hdac3–/– stem cells were severely compromised in competitive bone marrow transplantation. In vitro, Hdac3–/– stem and progenitor cells failed to proliferate, and most cells remained undifferentiated. Moreover, one-third of the Hdac3–/– stem and progenitor cells were in S phase 2 hours after BrdU labeling in vivo, suggesting that these cells were impaired in transit through the S phase. DNA fiber-labeling experiments indicated that Hdac3 was required for efficient DNA replication in hematopoietic stem and progenitor cells. Thus, Hdac3 is required for the passage of hematopoietic stem/progenitor cells through the S phase, for stem cell functions, and for lymphopoiesis. PMID:23921131

  4. Suberoylanilide Hydroxamic Acid, an Inhibitor of Histone Deacetylase, Enhances Radiosensitivity and Suppresses Lung Metastasis in Breast Cancer In Vitro and In Vivo

    PubMed Central

    Yeh, Ya-Ling; Wang, Yi-Ching; Huang, Wei-Jan; Chen, Yi-An; Chiou, Yi-Shiou; Lin, Pinpin; Wang, Ying-Jan

    2013-01-01

    Triple-negative breast cancer (TNBC), defined by the absence of an estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 expression, is associated with an early recurrence of disease and poor outcome. Furthermore, the majority of deaths in breast cancer patients are from metastases instead of from primary tumors. In this study, MCF-7 (an estrogen receptor-positive human breast cancer cell line), MDA-MB-231 (a human TNBC cell line) and 4T1 (a mouse TNBC cell line) were used to investigate the anti-cancer effects of ionizing radiation (IR) combined with suberoylanilide hydroxamic acid (SAHA, an inhibitor of histone deacetylase (HDAC)) and to determine the underlying mechanisms of these effects in vitro and in vivo. We also evaluated the ability of SAHA to inhibit the metastasis of 4T1 cells. We found that IR combined with SAHA showed increased therapeutic efficacy when compared with either treatment alone in MCF-7, MDA-MB-231 and 4T1 cells. Moreover, the combined treatment enhanced DNA damage through the inhibition of DNA repair proteins. The combined treatment was induced primarily through autophagy and ER stress. In an orthotopic breast cancer mouse model, the combination treatment showed a greater inhibition of tumor growth. In addition, SAHA inhibited the migration and invasion abilities of 4T1 cells and inhibited breast cancer cell migration by inhibiting the activity of MMP-9. In an in vivo experimental metastasis mouse model, SAHA significantly inhibited lung metastasis. SAHA not only enhances radiosensitivity but also suppresses lung metastasis in breast cancer. These novel findings suggest that SAHA alone or combined with IR could serve as a potential therapeutic strategy for breast cancer. PMID:24130769

  5. Benzofused hydroxamic acids: useful fragments for the preparation of histone deacetylase inhibitors. Part 2: 7-fluorobenzothiophenes and benzofurans.

    PubMed

    Marastoni, Elena; Bartoli, Sandra; Berettoni, Marco; Cipollone, Amalia; Ettorre, Alessandro; Fincham, Christopher I; Mauro, Sandro; Paris, Marielle; Porcelloni, Marina; Bigioni, Mario; Binaschi, Monica; Nardelli, Federica; Parlani, Massimo; Maggi, Carlo A; Paoli, Paola; Rossi, Patrizia; Fattori, Daniela

    2015-04-01

    In the search for a new class of histone deacetylase inhibitors, we prepared a series of very simple benzofused hydroxamic acids to find an anchoring fragment of minimal molecular weight: they showed very good ligand efficiencies. Following these findings, classical fragment growing work was performed to increase binding energy and selective cytotoxicity. In the second phase of the work, information from the SARs of the benzothiophene series and data available in literature, we explored the in vitro pharmacological properties of the 6-substituted-7-fluoro-benzothiophene hydroxamates and the 5-susbtituted-benzofuran hydroxamates. PMID:25746815

  6. Discovery of inhibitors of Schistosoma mansoni HDAC8 by combining homology modeling, virtual screening, and in vitro validation.

    PubMed

    Kannan, Srinivasaraghavan; Melesina, Jelena; Hauser, Alexander-Thomas; Chakrabarti, Alokta; Heimburg, Tino; Schmidtkunz, Karin; Walter, Alexandra; Marek, Martin; Pierce, Raymond J; Romier, Christophe; Jung, Manfred; Sippl, Wolfgang

    2014-10-27

    Schistosomiasis, caused by S. mansoni, is a tropical disease that affects over 200 million people worldwide. A novel approach for targeting eukaryotic parasites is to tackle their dynamic epigenetic machinery that is necessary for the extensive phenotypic changes during their life cycle. We recently identified S. mansoni histone deacetylase 8 (smHDAC8) as a potential target for antiparasitic therapy. Here we present results from a virtual screening campaign on smHDAC8. Besides hydroxamates, several sulfonamide-thiazole derivatives were identified by a target-based virtual screening using a homology model of smHDAC8. In vitro testing of 75 compounds identified 8 hydroxamates as potent and lead-like inhibitors of the parasitic HDAC8. Solving of the crystal structure of smHDAC8 with two of the virtual screening hits confirmed the predicted binding mode. PMID:25243797

  7. Dose dependent expression of HDAC4 causes variable expressivity in a novel inherited case of brachydactyly mental retardation syndrome.

    PubMed

    Morris, Benjamin; Etoubleau, Cécile; Bourthoumieu, Sylvie; Reynaud-Perrine, Sandrine; Laroche, Cécile; Lebbar, Aziza; Yardin, Catherine; Elsea, Sarah H

    2012-08-01

    Histone deacetylase 4 (HDAC4) serves important roles in multiple human systems, including neurological, cardiac, and skeletal functions. Mutation or deletion of HDAC4 causes brachydactyly mental retardation syndrome (BDMR), a disorder that includes intellectual disability, behavioral abnormalities, autism spectrum disorder, and craniofacial and skeletal anomalies, including brachydactyly type E. We present a case of familial BDMR, including a parent with mild symptoms of the disorder and a child exhibiting a more severe phenotype. Cytogenetic testing showed a cryptic balanced translocation in the mother that resulted in a 2q37.1 monosomy and a 10q26.1 trisomy in the son. Gene expression analyses demonstrated 67% HDAC4 expression in the mother and 23% HDAC4 expression in the son relative to normal controls, lending evidence to the hypothesis that HDAC4 modulates severity of this disorder in a dosage-dependent manner. PMID:22753018

  8. HDAC4 inhibits cell cycle progression and protects neurons from cell death

    PubMed Central

    Majdzadeh, Nazanin; Wang, Lulu; Morrison, Brad E.; Bassel-Duby, Rhonda; Olson, Eric N.; D’Mello, Santosh R.

    2009-01-01

    HDAC4 is a Class II histone deacetylase (HDAC) that is highly expressed in the brain but whose functional significance in the brain is not known. We show that forced expression of HDAC4 in cerebellar granule neurons protects them against low potassium-induced apoptosis. HDAC4 also partially protects cultured cortical neurons from 6-hydroxydopamine-induced neurotoxicity and HT22 neuroblastoma cells from death induced by oxidative stress. HDAC4-mediated neuroprotection does not require its HDAC catalytic domain and cannot be inhibited by chemical inhibitors of HDACs. Neuroprotection by HDAC4 also does not require the Raf-MEK-ERK or the PI-3 kinase - Akt signaling pathways, and occurs despite the activation of c-jun, an event that is generally believed to condemn neurons to die. The protective action of HDAC4 occurs in the nucleus and is mediated by a region that contains the nuclear localization signal. HDAC4 inhibits the activity of cyclin-dependent kinase-1 (CDK1) and the progression of proliferating HEK293T and HT22 cells through the cell cycle. Mice lacking HDAC4 have elevated CDK1 activity and display cerebellar abnormalities including a progressive loss of Purkinje neurons postnatally in posterior lobes. Surviving Purkinje neurons in these lobes have duplicated soma. Furthermore, large numbers of cells within these affected lobes incorporate BrdU, indicating cell cycle progression. These abnormalities along with the ability of HDAC4 to inhibit CDK1 and cell cycle progression in cultured cells suggest that neuroprotection by HDAC4 is mediated by preventing abortive cell cycle progression. PMID:18498087

  9. HDAC2 regulates atypical antipsychotic responses through the modulation of mGlu2 promoter activity

    PubMed Central

    Kurita, Mitsumasa; Holloway, Terrell; García-Bea, Aintzane; Kozlenkov, Alexey; Friedman, Allyson K.; Moreno, José L.; Heshmati, Mitra; Golden, Sam A.; Kennedy, Pamela J.; Takahashi, Nagahide; Dietz, David M.; Mocci, Giuseppe; Gabilondo, Ane M.; Hanks, James; Umali, Adrienne; Callado, Luis F.; Gallitano, Amelia L.; Neve, Rachael L.; Shen, Li; Buxbaum, Joseph D.; Han, Ming-Hu; Nestler, Eric J.; Meana, J. Javier; Russo, Scott J.; González-Maeso, Javier

    2012-01-01

    Histone deacetylases (HDACs) compact chromatin structure and repress gene transcription. In schizophrenia, clinical studies demonstrate that HDAC inhibitors are efficacious when given in combination with atypical antipsychotics. However, the molecular mechanism that integrates a better response to antipsychotics with changes in chromatin structure remains unknown. Here we show that chronic atypical antipsychotics down-regulate the expression of mGlu2, an effect that is associated with decreased histone acetylation at its promoter in mouse and human frontal cortex. This epigenetic change occurs in concert with a 5-HT2A receptor-dependent up-regulation and increased binding of HDAC2 to the mGlu2 promoter. Viral-mediated over-expression of HDAC2 in frontal cortex decreases mGlu2 transcription and its electrophysiological properties, thereby increasing psychosis-like behavior. Conversely, HDAC inhibitors prevent the repressive histone modifications induced at the mGlu2 promoter by atypical antipsychotics, and augment their therapeutic-like effects. These observations support the view of HDAC2 as a promising new target to improve schizophrenia treatment. PMID:22864611

  10. HDAC1 activates FoxO and is both sufficient and required for skeletal muscle atrophy

    PubMed Central

    Beharry, Adam W.; Sandesara, Pooja B.; Roberts, Brandon M.; Ferreira, Leonardo F.; Senf, Sarah M.; Judge, Andrew R.

    2014-01-01

    ABSTRACT The Forkhead box O (FoxO) transcription factors are activated, and necessary for the muscle atrophy, in several pathophysiological conditions, including muscle disuse and cancer cachexia. However, the mechanisms that lead to FoxO activation are not well defined. Recent data from our laboratory and others indicate that the activity of FoxO is repressed under basal conditions via reversible lysine acetylation, which becomes compromised during catabolic conditions. Therefore, we aimed to determine how histone deacetylase (HDAC) proteins contribute to activation of FoxO and induction of the muscle atrophy program. Through the use of various pharmacological inhibitors to block HDAC activity, we demonstrate that class I HDACs are key regulators of FoxO and the muscle-atrophy program during both nutrient deprivation and skeletal muscle disuse. Furthermore, we demonstrate, through the use of wild-type and dominant-negative HDAC1 expression plasmids, that HDAC1 is sufficient to activate FoxO and induce muscle fiber atrophy in vivo and is necessary for the atrophy of muscle fibers that is associated with muscle disuse. The ability of HDAC1 to cause muscle atrophy required its deacetylase activity and was linked to the induction of several atrophy genes by HDAC1, including atrogin-1, which required deacetylation of FoxO3a. Moreover, pharmacological inhibition of class I HDACs during muscle disuse, using MS-275, significantly attenuated both disuse muscle fiber atrophy and contractile dysfunction. Together, these data solidify the importance of class I HDACs in the muscle atrophy program and indicate that class I HDAC inhibitors are feasible countermeasures to impede muscle atrophy and weakness. PMID:24463822

  11. Drugging the schistosome zinc-dependent HDACs: current progress and future perspectives.

    PubMed

    Marek, Martin; Oliveira, Guilherme; Pierce, Raymond J; Jung, Manfred; Sippl, Wolfgang; Romier, Christophe

    2015-04-01

    Schistosomes, like many eukaryotic pathogens, typically display morphologically distinct stages during their life cycles. Epigenetic mechanisms underlie the pathogens' morphological transformations, and the targeting of epigenetics-driven cellular programs therefore represents an Achilles' heel of parasites. To speed up the search for new antiparasitic agents, drugs validated for other diseases can be rationally optimized into antiparasitic therapeutics. Specifically, zinc-dependent histone deacetylases (HDACs) are the most explored targets for epigenetic therapies, notably for anticancer treatments. This review focuses on the development of drug-leads inhibiting HDACs from schistosomes. More precisely, current progress on Schistosoma mansoni HDAC8 (smHDAC8) provided a proof of concept that targeting epigenetic enzymes is a valid approach to treat diseases caused by schistosomes, and possibly other eukaryotic pathogens. PMID:25996070

  12. Mutagenesis Study Reveals the Rim of Catalytic Entry Site of HDAC4 and -5 as the Major Binding Surface of SMRT Corepressor

    PubMed Central

    Kim, Gwang Sik; Jung, Ha-Eun; Kim, Jeong-Sun; Lee, Young Chul

    2015-01-01

    Histone deacetylases (HDACs) play a pivotal role in eukaryotic gene expression by modulating the levels of acetylation of chromatin and related transcription factors. In contrast to class I HDACs (HDAC1, -2, -3 and -8), the class IIa HDACs (HDAC4, -5, -7 and -9) harbor cryptic deacetylases activity and recruit the SMRT-HDAC3 complex to repress target genes in vivo. In this regard, the specific interaction between the HDAC domain of class IIa HDACs and the C-terminal region of SMRT repression domain 3 (SRD3c) is known to be critical, but the molecular basis of this interaction has not yet been addressed. Here, we used an extensive mutant screening system, named the “partitioned one- plus two-hybrid system”, to isolate SRD3c interaction-defective (SRID) mutants over the entire catalytic domains of HDAC4 (HDAC4c) and -5. The surface presentation of the SRID mutations on the HDAC4c structure revealed that most of the mutations were mapped to the rim surface of the catalytic entry site, strongly suggesting this mutational hot-spot region as the major binding surface of SRD3c. Notably, among the HDAC4c surface residues required for SRD3c binding, some residues (C667, C669, C751, D759, T760 and F871) are present only in class IIa HDACs, providing the molecular basis for the specific interactions between SRD3c and class IIa enzymes. To investigate the functional consequence of SRID mutation, the in vitro HDAC activities of HDAC4 mutants immuno-purified from HEK293 cells were measured. The levels of HDAC activity of the HDAC4c mutants were substantially decreased compared to wild-type. Consistent with this, SRID mutations of HDAC4c prevented the association of HDAC4c with the SMRT-HDAC3 complex in vivo. Our findings may provide structural insight into the binding interface of HDAC4 and -5 with SRD3c, as a novel target to design modulators specific to these enzymes. PMID:26161557

  13. Histone Acetylation Modifiers in the Pathogenesis of Alzheimer’s Disease

    PubMed Central

    Lu, Xi; Wang, Li; Yu, Caijia; Yu, Daohai; Yu, Gang

    2015-01-01

    It is becoming more evident that histone acetylation, as one of the epigenetic modifications or markers, plays a key role in the etiology of Alzheimer’s disease (AD). Histone acetylases and histone deacetylases (HDACs) are the well-known covalent enzymes that modify the reversible acetylation of lysine residues in histone amino-terminal domains. In AD, however, the roles of these enzymes are controversial. Some recent studies indicate that HDAC inhibitors are neuroprotective by regulating memory and synaptic dysfunctions in cellular and animal models of AD; while on the other hand, increase of histone acetylation have been implicated in AD pathology. In this review, we focus on the recent advances on the roles of histone acetylation covalent enzymes in AD and discuss how targeting these enzymes can ultimately lead to therapeutic approaches for treating AD. PMID:26136662

  14. HDAC turnover, CtIP acetylation and dysregulated DNA damage signaling in colon cancer cells treated with sulforaphane and related dietary isothiocyanates.

    PubMed

    Rajendran, Praveen; Kidane, Ariam I; Yu, Tian-Wei; Dashwood, Wan-Mohaiza; Bisson, William H; Löhr, Christiane V; Ho, Emily; Williams, David E; Dashwood, Roderick H

    2013-06-01

    Histone deacetylases (HDACs) and acetyltransferases have important roles in the regulation of protein acetylation, chromatin dynamics and the DNA damage response. Here, we show in human colon cancer cells that dietary isothiocyanates (ITCs) inhibit HDAC activity and increase HDAC protein turnover with the potency proportional to alkyl chain length, i.e., AITC < sulforaphane (SFN) < 6-SFN < 9-SFN. Molecular docking studies provided insights into the interactions of ITC metabolites with HDAC3, implicating the allosteric site between HDAC3 and its co-repressor. ITCs induced DNA double-strand breaks and enhanced the phosphorylation of histone H2AX, ataxia telangiectasia and Rad3-related protein (ATR) and checkpoint kinase-2 (CHK2). Depending on the ITC and treatment conditions, phenotypic outcomes included cell growth arrest, autophagy and apoptosis. Coincident with the loss of HDAC3 and HDAC6, as well as SIRT6, ITCs enhanced the acetylation and subsequent degradation of critical repair proteins, such as CtIP, and this was recapitulated in HDAC knockdown experiments. Importantly, colon cancer cells were far more susceptible than non-cancer cells to ITC-induced DNA damage, which persisted in the former case but was scarcely detectable in non-cancer colonic epithelial cells under the same conditions. Future studies will address the mechanistic basis for dietary ITCs preferentially exploiting HDAC turnover mechanisms and faulty DNA repair pathways in colon cancer cells vs. normal cells. PMID:23770684

  15. Sumoylation of HDAC2 promotes NF-?B-dependent gene expression

    PubMed Central

    Wagner, Tobias; Kiweler, Nicole; Wolff, Katharina; Knauer, Shirley K.; Brandl, André; Hemmerich, Peter; Dannenberg, Jan-Hermen; Heinzel, Thorsten; Schneider, Günter; Krämer, Oliver H.

    2015-01-01

    The transcription factor nuclear factor-?B (NF-?B) is crucial for the maintenance of homeostasis. It is incompletely understood how nuclear NF-?B and the crosstalk of NF-?B with other transcription factors are controlled. Here, we demonstrate that the epigenetic regulator histone deacetylase 2 (HDAC2) activates NF-?B in transformed and primary cells. This function depends on both, the catalytic activity and an intact HDAC2 sumoylation motif. Several mechanisms account for the induction of NF-?B through HDAC2. The expression of wild-type HDAC2 can increase the nuclear presence of NF-?B. In addition, the ribosomal S6 kinase 1 (RSK1) and the tumor suppressor p53 contribute to the regulation of NF-?B by HDAC2. Moreover, TP53 mRNA expression is positively regulated by wild-type HDAC2 but not by sumoylation-deficient HDAC2. Thus, sumoylation of HDAC2 integrates NF-?B signaling involving p53 and RSK1. Since HDAC2-dependent NF-?B activity protects colon cancer cells from genotoxic stress, our data also suggest that high HDAC2 levels, which are frequently found in tumors, are linked to chemoresistance. Accordingly, inhibitors of NF-?B and of the NF-?B/p53-regulated anti-apoptotic protein survivin significantly sensitize colon carcinoma cells expressing wild-type HDAC2 to apoptosis induced by the genotoxin doxorubicin. Hence, the HDAC2-dependent signaling node we describe here may offer an interesting therapeutic option. PMID:25704882

  16. HDAC5 promotes colorectal cancer cell proliferation by up-regulating DLL4 expression

    PubMed Central

    He, Ping; Liang, Jiexiong; Shao, Tiansong; Guo, Yang; Hou, Yingchen; Li, Yang

    2015-01-01

    The histone deacetylase (HDACs) family contains a family of enzymes, which are involved in modulating a wide range of cellular processes, such as proliferation, differentiation, apoptosis, and cell cycle progression. However, the biological function of HDAC5 in colorectal cancer has not been well established. In the current research, our data showed that the mRNA and protein levels of HDAC5 were up-regulated in human colorectal cancer cell lines. CCK-8 assay showed that overexpression of HDAC5 significantly promoted the proliferation of colorectal cancer cell lines including SW480 and HCT116. On the contrary, HDAC5 knockdown using small interfering RNA suppressed cell growth in colorectal tumor cells. At the molecular level, we demonstrated that HDAC5 promoted the expression of DLL4. In addition, down-regulation of DLL4 diminished the proliferative effects of HDAC5 in human colorectal cancer cells. Taken together, these results suggest that HDAC5 elevates the proliferation of colorectal cancer cells through up-regulation of DLL4. The current study might provide novel potential therapeutic targets in the treatment of colorectal cancer.

  17. HDAC7 Inhibits Osteoclastogenesis by Reversing RANKL-Triggered ?-Catenin Switch

    PubMed Central

    Jin, Zixue; Wei, Wei; Dechow, Paul C.

    2013-01-01

    The bone-resorbing osteoclast is essential for skeletal remodeling, yet its deregulation contributes to diseases such as osteoporosis and cancer bone metastasis. Here we identify histone deacetylase 7 (HDAC7) as a key negative regulator of osteoclastogenesis and bone resorption using both in vitro cellular and molecular analyses and in vivo characterization of conditional HDAC7-knockout mice. Bone marrow osteoclast differentiation assays reveal that HDAC7 overexpression suppresses, whereas HDAC7 deletion enhances, osteoclastogenesis. Mechanistically, in the absence of receptor activator of nuclear factor ?-B ligand (RANKL), HDAC7 attenuates ?-catenin function and cyclin D1 expression, thereby reducing precursor proliferation; upon RANKL activation, HDAC7 suppresses NFATc1 and prevents ?-catenin down-regulation, thereby blocking osteoclast differentiation. Consequently, HDAC7 deletion in the osteoclast lineage results in a 26% reduction in bone mass (P = 0.003) owing to 102% elevated bone resorption (P = 0.01). These findings are clinically significant in light of the remarkable therapeutic potentials of HDAC inhibitors for several diseases such as cancer, diabetes, and neurodegeneration. PMID:23204328

  18. HR23B is a biomarker for tumor sensitivity to HDAC inhibitor-based therapy

    PubMed Central

    Khan, Omar; Fotheringham, Susan; Wood, Victoria; Stimson, Lindsay; Zhang, Chunlei; Pezzella, Francesco; Duvic, Madeleine; Kerr, David J.; La Thangue, Nicholas B.

    2010-01-01

    Histone deacetylase (HDAC) inhibitors are emergent cancer drugs. HR23B is a candidate cancer biomarker identified in a genome-wide loss-of-function screen which influences sensitivity to HDAC inhibitors. Because HDAC inhibitors have found clinical utility in cutaneous T-cell lymphoma (CTCL), we evaluated the role of HR23B in CTCL cells. Our results show that HR23B governs the sensitivity of CTCL cells to HDAC inhibitors. Furthermore, proteasome activity is deregulated in HDAC inhibitor-treated CTCL cells through a mechanism dependent upon HR23B, and HDAC inhibitors sensitize CTCL cells to the effects of proteasome inhibitors. The predictive power of HR23B for clinical response to HDAC inhibitors was investigated through an analysis of a unique collection of CTCL biopsies taken from a phase II clinical trial, where there was a frequent coincidence between HR23B expression and clinical response to HDAC inhibitor. Our study supports the personalized medicine approach for treating cancer and the increasing drive to translate laboratory-based findings into clinical utility. PMID:20308564

  19. The Class I Histone Deacetylase Inhibitor MS-275 Prevents Pancreatic Beta Cell Death Induced by Palmitate

    PubMed Central

    Plaisance, Valérie; Rolland, Laure; Gmyr, Valéry; Annicotte, Jean-Sébastien; Kerr-Conte, Julie; Pattou, François; Abderrahmani, Amar

    2014-01-01

    Elevation of the dietary saturated fatty acid palmitate contributes to the reduction of functional beta cell mass in the pathogenesis of type 2 diabetes. The diabetogenic effect of palmitate is achieved by increasing beta cell death through induction of the endoplasmic reticulum (ER) stress markers including activating transcription factor 3 (Atf3) and CAAT/enhancer-binding protein homologous protein-10 (Chop). In this study, we investigated whether treatment of beta cells with the MS-275, a HDAC1 and HDAC3 activity inhibitor which prevents beta cell death elicited by cytokines, is beneficial for combating beta cell dysfunction caused by palmitate. We show that culture of isolated human islets and MIN6 cells with MS-275 reduced apoptosis evoked by palmitate. The protective effect of MS-275 was associated with the attenuation of the expression of Atf3 and Chop. Silencing of HDAC3, but not of HDAC1, mimicked the effects of MS-275 on the expression of the two ER stress markers and apoptosis. These data point to HDAC3 as a potential drug target for preserving beta cells against lipotoxicity in diabetes. PMID:25610877

  20. High-frequency epigenetic repression and silencing of retroviruses can be antagonized by histone deacetylase inhibitors and transcriptional activators, but uniform reactivation in cell clones is restricted by additional mechanisms.

    PubMed

    Katz, Richard A; Jack-Scott, Emily; Narezkina, Anna; Palagin, Ivan; Boimel, Pamela; Kulkosky, Joseph; Nicolas, Emmanuelle; Greger, James G; Skalka, Anna Marie

    2007-03-01

    Integrated retroviral DNA is subject to epigenetic gene silencing, but the viral and host cell properties that influence initiation, maintenance, and reactivation are not fully understood. Here we describe rapid and high-frequency epigenetic repression and silencing of integrated avian sarcoma virus (ASV)-based vector DNAs in human HeLa cells. Initial studies utilized a vector carrying the strong human cytomegalovirus (hCMV) immediate-early (IE) promoter to drive expression of a green fluorescent protein (GFP) reporter gene, and cells were sorted into two populations based on GFP expression [GFP(+) and GFP(-)]. Two potent epigenetic effects were observed: (i) a very broad distribution of GFP intensities among cells in the GFP(+) population as well as individual GFP(+) clones and (ii) high-frequency GFP reporter gene silencing in GFP(-) cells. We previously showed that histone deacetylases (HDACs) can associate with ASV DNA soon after infection and may act to repress viral transcription at the level of chromatin. Consistent with this finding, we report here that treatment with the histone deacetylase inhibitor trichostatin A (TSA) induces GFP activation in GFP(-) cells and can also increase GFP expression in GFP(+) cells. In the case of the GFP(-) populations, we found that after removal of TSA, GFP silencing was reestablished in a subset of cells. We used that finding to enrich for stable GFP(-) cell populations in which viral GFP reporter expression could be reactivated by TSA; furthermore, we found that the ability to isolate such populations was independent of the promoter driving the GFP gene. In such enriched cultures, hCMV IE-driven, but not the viral long terminal repeat-driven, silent GFP reporter expression could be reactivated by the transcriptional activator prostratin. Microscopy-based studies using synchronized cells revealed variegated reactivation in cell clones, indicating that secondary epigenetic effects can restrict reactivation from silencing. Furthermore we found that entry into S phase was not required for reactivation. We conclude that HDACs can act rapidly to initiate and maintain promoter-independent retroviral epigenetic repression and silencing but that reactivation can be restricted by additional mechanisms. PMID:17202206

  1. The histone deacetylase SIRT6 controls embryonic stem cell fate via TET-mediated production of 5-hydroxymethylcytosine.

    PubMed

    Etchegaray, Jean-Pierre; Chavez, Lukas; Huang, Yun; Ross, Kenneth N; Choi, Jiho; Martinez-Pastor, Barbara; Walsh, Ryan M; Sommer, Cesar A; Lienhard, Matthias; Gladden, Adrianne; Kugel, Sita; Silberman, Dafne M; Ramaswamy, Sridhar; Mostoslavsky, Gustavo; Hochedlinger, Konrad; Goren, Alon; Rao, Anjana; Mostoslavsky, Raul

    2015-05-01

    How embryonic stem cells (ESCs) commit to specific cell lineages and yield all cell types of a fully formed organism remains a major question. ESC differentiation is accompanied by large-scale histone and DNA modifications, but the relations between these epigenetic categories are not understood. Here we demonstrate the interplay between the histone deacetylase sirtuin 6 (SIRT6) and the ten-eleven translocation enzymes (TETs). SIRT6 targets acetylated histone H3 at Lys 9 and 56 (H3K9ac and H3K56ac), while TETs convert 5-methylcytosine into 5-hydroxymethylcytosine (5hmC). ESCs derived from Sirt6 knockout (S6KO) mice are skewed towards neuroectoderm development. This phenotype involves derepression of OCT4, SOX2 and NANOG, which causes an upregulation of TET-dependent production of 5hmC. Genome-wide analysis revealed neural genes marked with 5hmC in S6KO ESCs, thereby implicating TET enzymes in the neuroectoderm-skewed differentiation phenotype. We demonstrate that SIRT6 functions as a chromatin regulator safeguarding the balance between pluripotency and differentiation through Tet-mediated production of 5hmC. PMID:25915124

  2. HDAC3 impacts multiple oncogenic pathways in colon cancer cells with effects on Wnt and vitamin D signaling

    PubMed Central

    Godman, Cassandra A.; Joshi, Rashmi; Tierney, Brendan R.; Greenspan, Emily; Rasmussen, Theodore P.; Wang, Hsin-wei; Shin, Dong-Guk; Rosenberg, Daniel W.; Giardina, Charles

    2008-01-01

    Histone deacetylase 3 (HDAC3) is over-expressed in approximately half of all colon adenocarcinomas. We took an RNAi approach to determine how HDAC3 influenced chromatin modifications and the expression of growth regulatory genes in colon cancer cells. A survey of histone modifications revealed that HDAC3 knockdown in SW480 cells significantly increased histone H4-K12 acetylation, a modification present during chromatin assembly that has been implicated in imprinting. This modification was found to be most prominent in proliferating cells in the intestinal crypt and in APCMin tumors, but was less pronounced in the tumors that over-express HDAC3. Gene expression profiling of SW480 revealed that HDAC3 shRNA impacted the expression of genes in the Wnt and vitamin D signaling pathways. The impact of HDAC3 on Wnt signaling was complex, with both positive and negative effects observed. However, long-term knockdown of HDAC3 suppressed ?-catenin translocation from the plasma membrane to the nucleus, and increased expression of Wnt inhibitors TLE1, TLE4 and SMO. HDAC3 knockdown also enhanced expression of the TLE1 and TLE4 repressors in HT-29 and HCT116 cells. HDAC3 shRNA enhanced expression of the vitamin D receptor in SW480 and HCT116 cells, and rendered SW480 cells sensitive to 1,25-dihydroxyvitamin D3. We propose that HDAC3 over-expression alters the epigenetic programming of colon cancer cells to impact intracellular Wnt signaling and their sensitivity to external growth regulation by vitamin D. PMID:18769117

  3. Compensatory regulation of HDAC5 in muscle maintains metabolic adaptive responses and metabolism in response to energetic stress.

    PubMed

    McGee, Sean L; Swinton, Courtney; Morrison, Shona; Gaur, Vidhi; Campbell, Duncan E; Jorgensen, Sebastian B; Kemp, Bruce E; Baar, Keith; Steinberg, Gregory R; Hargreaves, M

    2014-08-01

    Some gene deletions or mutations have little effect on metabolism and metabolic adaptation because of redundancy and/or compensation in metabolic pathways. The mechanisms for redundancy and/or compensation in metabolic adaptation in mammalian cells are unidentified. Here, we show that in mouse muscle and myogenic cells, compensatory regulation of the histone deacetylase (HDAC5) transcriptional repressor maintains metabolic integrity. HDAC5 phosphorylation regulated the expression of diverse metabolic genes and glucose metabolism in mouse C2C12 myogenic cells. However, loss of AMP-activated protein kinase (AMPK), a HDAC5 kinase, in muscle did not affect HDAC5 phosphorylation in mouse skeletal muscle during exercise, but resulted in a compensatory increase (32.6%) in the activation of protein kinase D (PKD), an alternate HDAC5 kinase. Constitutive PKD activation in mouse C2C12 myogenic cells regulated metabolic genes and glucose metabolism. Although aspects of this response were HDAC5 phosphorylation dependent, blocking HDAC5 phosphorylation when PKD was active engaged an alternative compensatory adaptive mechanism, which involved post-transcriptional reductions in HDAC5 mRNA (-93.1%) and protein. This enhanced the expression of a specific subset of metabolic genes and mitochondrial metabolism. These data show that compensatory regulation of HDAC5 maintains metabolic integrity in mammalian cells and reinforces the importance of preserving the cellular metabolic adaptive response. PMID:24732133

  4. Induction of truncated form of tenascin-X (XB-S) through dissociation of HDAC1 from SP-1/HDAC1 complex in response to hypoxic conditions

    SciTech Connect

    Kato, Akari; Endo, Toshiya; Abiko, Shun; Ariga, Hiroyoshi [Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo 060-0812 (Japan); Matsumoto, Ken-ichi [Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo 060-0812 (Japan)], E-mail: kematsum@pharm.hokudai.ac.jp

    2008-08-15

    ABSTRACT: XB-S is an amino-terminal truncated protein of tenascin-X (TNX) in humans. The levels of the XB-S transcript, but not those of TNX transcripts, were increased upon hypoxia. We identified a critical hypoxia-responsive element (HRE) localized to a GT-rich element positioned from - 1410 to - 1368 in the XB-S promoter. Using an electrophoretic mobility shift assay (EMSA), we found that the HRE forms a DNA-protein complex with Sp1 and that GG positioned in - 1379 and - 1378 is essential for the binding of the nuclear complex. Transfection experiments in SL2 cells, an Sp1-deficient model system, with an Sp1 expression vector demonstrated that the region from - 1380 to - 1371, an HRE, is sufficient for efficient activation of the XB-S promoter upon hypoxia. The EMSA and a chromatin immunoprecipitation (ChIP) assay showed that Sp1 together with the transcriptional repressor histone deacetylase 1 (HDAC1) binds to the HRE of the XB-S promoter under normoxia and that hypoxia causes dissociation of HDAC1 from the Sp1/HDAC1 complex. The HRE promoter activity was induced in the presence of a histone deacetylase inhibitor, trichostatin A, even under normoxia. Our results indicate that the hypoxia-induced activation of the XB-S promoter is regulated through dissociation of HDAC1 from an Sp1-binding HRE site.

  5. Rapid changes in histone deacetylases and inflammatory gene expression in expert

    E-print Network

    Wisconsin at Madison, University of

    Minds, University of Wisconsin-Madison, WI 53705-2280, USA e Lyon Neuroscience Research Center, INSERM U November 2013 Psychoneuroendocrinology (2014) 40, 96--107 KEYWORDS Mindfulness; Meditation; Epigenetics; Inflammation; HDAC; Stress Summary Background: A growing body of research shows that mindfulness meditation can

  6. Histone deacetylase inhibitor trichostatin A and proteasome inhibitor PS-341 synergistically induce apoptosis in pancreatic cancer cells

    SciTech Connect

    Bai Jirong [Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 0221 (United States)]. E-mail: jbai@bidmc.harvard.edu; Demirjian, Aram [Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 0221 (United States); Sui Jianhua [Dana-Farber Cancer Institute, Harvard Medical School, 330 Brookline Avenue, Boston, MA 0221 (United States); Marasco, Wayne [Dana-Farber Cancer Institute, Harvard Medical School, 330 Brookline Avenue, Boston, MA 0221 (United States); Callery, Mark P. [Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 0221 (United States)]. E-mail: mcallery@bidmc.harvard.ede

    2006-10-06

    Pancreatic cancer is a common and lethal malignancy. Pancreatic cancer cells overexpress multiple anti-apoptotic factors and death receptor decoys, and are strongly resistant to radiation and to 5-fluorouracil (5-FU)- or gemcitabine (Gem)-based chemotherapy regimens. We have found that low-dose proteasome inhibitor PS-341 and histone deacetylase inhibitor trichostatin A (TSA) synergistically induce cytotoxicity in a panel of eight diverse pancreatic cancer cell lines. Combining TSA with PS-341 effectively inactivated NF{kappa}B signaling, downregulated the predominant endogenous anti-apoptotic factor Bcl-XL overexpression, and disrupted MAP kinase pathway. The combined drug regimen effectively inflicted an average of 71.5% apoptotic cell death (55.2-80%) in diverse pancreatic cancer cell lines by activating the intrinsic apoptotic pathway. Conclusion: the TSA/PS-341 regimen may represent a potential novel therapeutic strategy for pancreatic cancer.

  7. Design, synthesis and biological evaluation of 1,4-benzodiazepine-2,5-dione-based HDAC inhibitors.

    PubMed

    Loudni, Lynda; Roche, Joëlle; Potiron, Vincent; Clarhaut, Jonathan; Bachmann, Christian; Gesson, Jean-Pierre; Tranoy-Opalinski, Isabelle

    2007-09-01

    New histone deacetylase inhibitors have been synthesized and evaluated for their activity against non-small lung cancer cell line H661. These compounds have been designed with diversely substituted 1,4-benzodiazepine-2,5-dione moieties as cyclic peptide mimic cap structures, and a hydroxamate side chain. Biological evaluations demonstrated that benzodiazepine-based HDACi bearing an aromatic substituent at the N1 position exhibited promising antiproliferative and HDAC-inhibitory activities. PMID:17624773

  8. Development block of golden hamster ICSI embryos is associated with decreased expression of HDAC1, HSPA1A and MYC.

    PubMed

    Pan, Xiaoyan; Kong, Delong; Liu, Limei; Gao, Fei; Zhang, Xueming; Tang, Bo; Li, Ziyi

    2014-11-01

    We have investigated the mechanism for embryo development block in vitro and to improve the development rate of golden hamster embryos in vitro. Intracytoplasmic sperm injection (ICSI) technique was used to produce golden hamster ICSI embryos. The changes in the histone acetylation and the expression of histone deacetylase and related genes were analyzed by immunocytochemical staining and real-time PCR both in golden hamster in vivo embryos and in ICSI embryos. Aged oocytes significantly increased the oocyte spontaneous activation rate. In vitro cultured ICSI embryos suffered from severe development block in M199TE medium. Expression of histone deacetylase 1 (HDAC1) was significantly decreased in the nuclei of the arrested ICSI 2-cell embryos, and its nuclear and cytoplasmic expression pattern was also markedly altered. The acetylation level of H4K5, however, was not significantly changed between golden hamster in vivo embryos and ICSI embryos. HSPA1A and MYC, the marker genes for zygotic genome activation (ZGA), were transcriptionally decreased in arrested ICSI 2-cell embryos. Transcription of HDAC1 was also downregulated in these embryos, whereas the mRNA expression of the proapoptotic gene, BAX, was not changed. These results indicate that the golden hamster ICSI embryo development block during ZGA is associated with decreased nuclear expression and altered expression of HDAC1. HSPA1A, MYC, and HDAC1 mRNA levels, which decrease, resulting in ZGA failure. PMID:24890342

  9. Ligand Based Pharmacophore Modeling and Virtual Screening Studies to Design Novel HDAC2 Inhibitors.

    PubMed

    Kandakatla, Naresh; Ramakrishnan, Geetha

    2014-01-01

    Histone deacetylases 2 (HDAC2), Class I histone deacetylase (HDAC) family, emerged as an important therapeutic target for the treatment of various cancers. A total of 48 inhibitors of two different chemotypes were used to generate pharmacophore model using 3D QSAR pharmacophore generation (HypoGen algorithm) module in Discovery Studio. The best HypoGen model consists of four pharmacophore features namely, one hydrogen bond acceptor (HBA), and one hydrogen donor (HBD), one hydrophobic (HYP) and one aromatic centres, (RA). This model was validated against 20 test set compounds and this model was utilized as a 3D query for virtual screening to validate against NCI and Maybridge database and the hits further screened by Lipinski's rule of 5, and a total of 382 hit compounds from NCI and 243 hit compounds from Maybridge were found and were subjected to molecular docking in the active site of HDAC2 (PDB: 3MAX). Finally eight hit compounds, NSC108392, NSC127064, NSC110782, and NSC748337 from NCI database and MFCD01935795, MFCD00830779, MFCD00661790, and MFCD00124221 from Maybridge database, were considered as novel potential HDAC2 inhibitors. PMID:25525429

  10. SCARECROW-LIKE15 interacts with HISTONE DEACETYLASE19 and is essential for repressing the seed maturation programme

    PubMed Central

    Gao, Ming-Jun; Li, Xiang; Huang, Jun; Gropp, Gordon M.; Gjetvaj, Branimir; Lindsay, Donna L.; Wei, Shu; Coutu, Cathy; Chen, Zhixiang; Wan, Xiao-Chun; Hannoufa, Abdelali; Lydiate, Derek J.; Gruber, Margaret Y.; Chen, Z. Jeffrey; Hegedus, Dwayne D.

    2015-01-01

    Epigenetic regulation of gene expression is critical for controlling embryonic properties during the embryo-to-seedling phase transition. Here we report that a HISTONE DEACETYLASE19 (HDA19)-associated regulator, SCARECROW-LIKE15 (SCL15), is essential for repressing the seed maturation programme in vegetative tissues. SCL15 is expressed in and GFP-tagged SCL15 predominantly localizes to, the vascular bundles particularly in the phloem companion cells and neighbouring specialized cells. Mutation of SCL15 leads to a global shift in gene expression in seedlings to a profile resembling late embryogenesis in seeds. In scl15 seedlings, many genes involved in seed maturation are markedly derepressed with concomitant accumulation of seed 12S globulin; this is correlated with elevated levels of histone acetylation at a subset of seed-specific loci. SCL15 physically interacts with HDA19 and direct targets of HDA19–SCL15 association are identified. These studies reveal that SCL15 acts as an HDA19-associated regulator to repress embryonic traits in seedlings. PMID:26129778

  11. Cyclophilin A and Ess1 interact with and regulate silencing by the Sin3–Rpd3 histone deacetylase

    PubMed Central

    Arévalo-Rodríguez, Miguel; Cardenas, Maria E.; Wu, Xiaoyun; Hanes, Steven D.; Heitman, Joseph

    2000-01-01

    Three families of prolyl isomerases have been identified: cyclophilins, FK506-binding proteins (FKBPs) and parvulins. All 12 cyclophilins and FKBPs are dispensable for growth in yeast, whereas the one parvulin homolog, Ess1, is essential. We report here that cyclophilin A becomes essential when Ess1 function is compromised. We also show that overexpression of cyclophilin A suppresses ess1 conditional and null mutations, and that cyclophilin A enzymatic activity is required for suppression. These results indicate that cyclophilin A and Ess1 function in parallel pathways and act on common targets by a mechanism that requires prolyl isomerization. Using genetic and biochemical approaches, we found that one of these targets is the Sin3–Rpd3 histone deacetylase complex, and that cyclophilin A increases and Ess1 decreases disruption of gene silencing by this complex. We show that conditions that favor acetylation over deacetylation suppress ess1 mutations. Our findings support a model in which Ess1 and cyclophilin A modulate the activity of the Sin3–Rpd3 complex, and excess histone deacetylation causes mitotic arrest in ess1 mutants. PMID:10899127

  12. A synthetic inhibitor of histone deacetylase, MS-27-275, with marked in vivo antitumor activity against human tumors

    PubMed Central

    Saito, Akiko; Yamashita, Takashi; Mariko, Yukiyasu; Nosaka, Yasuhito; Tsuchiya, Katsutoshi; Ando, Tomoyuki; Suzuki, Tsuneji; Tsuruo, Takashi; Nakanishi, Osamu

    1999-01-01

    Synthetic benzamide derivatives were investigated for their ability to inhibit histone deacetylase (HDA). In this study, one of the most active benzamide derivatives, MS-27-275, was examined with regard to its biological properties and antitumor efficacy. MS-27-275 inhibited partially purified human HDA and caused hyperacetylation of nuclear histones in various tumor cell lines. It behaved in a manner similar to other HDA inhibitors, such as sodium butyrate and trichostatin A; MS-27-275 induced p21WAF1/CIP1 and gelsolin and changed the cell cycle distribution, decrease of S-phase cells, and increase of G1-phase cells. The in vitro sensitivity spectrum of MS-27-275 against various human tumor cell lines showed a pattern different than that of a commonly used antitumor agent, 5-fluorouracil, and, of interest, the accumulation of p21WAF1/CIP1 tended to be faster and greater in the cell lines sensitive to MS-27-275. MS-27-275 administered orally strongly inhibited the growth in seven of eight tumor lines implanted into nude mice, although most of these did not respond to 5-fluorouracil. A structurally analogous compound to MS-27-275 without HDA-inhibiting activity showed neither the biological effects in cell culture nor the in vivo therapeutic efficacy. These results suggest that MS-27-275 acts as an antitumor agent through HDA inhibition