Science.gov

Sample records for healthcare informatics computational

  1. Translational Bioinformatics and Healthcare Informatics: Computational and Ethical Challenges

    PubMed Central

    Sethi, Prerna; Theodos, Kimberly

    2009-01-01

    Exponentially growing biological and bioinformatics data sets present a challenge and an opportunity for researchers to contribute to the understanding of the genetic basis of phenotypes. Due to breakthroughs in microarray technology, it is possible to simultaneously monitor the expressions of thousands of genes, and it is imperative that researchers have access to the clinical data to understand the genetics and proteomics of the diseased tissue. This technology could be a landmark in personalized medicine, which will provide storage for clinical and genetic data in electronic health records (EHRs). In this paper, we explore the computational and ethical challenges that emanate from the intersection of bioinformatics and healthcare informatics research. We describe the current situation of the EHR and its capabilities to store clinical and genetic data and then discuss the Genetic Information Nondiscrimination Act. Finally, we posit that the synergy obtained from the collaborative efforts between the genomics, clinical, and healthcare disciplines has potential to enhance and promote faster and more advanced breakthroughs in healthcare. PMID:20169020

  2. Mobile healthcare informatics.

    PubMed

    Siau, Keng; Shen, Zixing

    2006-06-01

    Advances in wireless technology give pace to the rapid development of mobile applications. The coming mobile revolution will bring dramatic and fundamental changes to our daily life. It will influence the way we live, the way we do things, and the way we take care of our health. For the healthcare industry, mobile applications provide a new frontier in offering better care and services to patients, and a more flexible and mobile way of communicating with suppliers and patients. Mobile applications will provide important real time data for patients, physicians, insurers, and suppliers. In addition, it will revolutionalize the way information is managed in the healthcare industry and redefine the doctor - patient communication. This paper discusses different aspects of mobile healthcare. Specifically, it presents mobile applications in healthcare, and discusses possible challenges facing the development of mobile applications. Obstacles in developing mobile healthcare applications include mobile device limitations, wireless networking problems, infrastructure constraints, security concerns, and user distrust. Research issues in resolving or alleviating these problems are also discussed in the paper. PMID:16777784

  3. The new informatics of national healthcare reform.

    PubMed

    Manderscheid, R W; Henderson, M J

    1994-01-01

    The President's Health Security Act has succeeded in attracting America's attention. Several of its initiatives have been well-publicized and hotly debated in Congress. The act also includes a number of implications for healthcare informatics, and devotes an entire chapter to this subject, although this area has not received as much publicity. Every behavioral healthcare provider's information system would be significantly affected by enactment of the Health Security Act. Selected forms and data elements for the management and delivery of behavioral healthcare services would need to be standardized. Organizations of behavioral healthcare providers, managed care companies and purchasers would increasingly share selected patient and subscriber information in aggregated form, for a variety of purposes. As a result, tougher laws to protect patient data privacy will likely be forthcoming. The following article gives an overview of the informatics needs of the soon-to-be reformed American healthcare system, into which behavioral healthcare will be integrated. As part of the larger system, behavioral healthcare services and information systems will need to comply with the same guidelines and requirements, outlined below, as other healthcare providers. Preparation to meet the information demands of the evolving healthcare system will require adaptation of existing computerized information systems, utilization of new technology, consultation with the system's major shareholders and attention to continuous quality improvement processes. PMID:10142491

  4. Healthcare Informatics Schemata: A Paradigm Shift over Time.

    PubMed

    Erdley, W Scott

    2016-01-01

    The schemata "A paradigm shift over time©" (Sackett & Erdley, 2006) a graphic model, visualizes development and progression of informatics in health over time. The model portrays information technology trends, from computers as resource through computational ubiquity, and the shift to social networking and e-Health. The discrepancy between "real" and "proposed" suggests gaps involving issues such as value, interoperability and ontology requiring attention, development and ultimately adoption, hinging on a universal standards framework. The workshop objective is to review previous and current models of healthcare informatics to springboard revisions of the schemata for current and future use. PMID:27332341

  5. Clinical informatics: a workforce priority for 21st century healthcare.

    PubMed

    Smith, Susan E; Drake, Lesley E; Harris, Julie-Gai B; Watson, Kay; Pohlner, Peter G

    2011-05-01

    This paper identifies the contribution of health and clinical informatics in the support of healthcare in the 21st century. Although little is known about the health and clinical informatics workforce, there is widespread recognition that the health informatics workforce will require significant expansion to support national eHealth work agendas. Workforce issues including discipline definition and self-identification, formal professionalisation, weaknesses in training and education, multidisciplinarity and interprofessional tensions, career structure, managerial support, and financial allocation play a critical role in facilitating or hindering the development of a workforce that is capable of realising the benefits to be gained from eHealth in general and clinical informatics in particular. As well as the national coordination of higher level policies, local support of training and allocation of sufficient position hours in appropriately defined roles by executive and clinical managers is essential to develop the health and clinical informatics workforce and achieve the anticipated results from evolving eHealth initiatives. PMID:21612722

  6. An Informatics Blueprint for Healthcare Quality Information Systems

    PubMed Central

    Niland, Joyce C.; Rouse, Layla; Stahl, Douglas C.

    2006-01-01

    There is a critical gap in our nation's ability to accurately measure and manage the quality of medical care. A robust healthcare quality information system (HQIS) has the potential to address this deficiency through the capture, codification, and analysis of information about patient treatments and related outcomes. Because non-technical issues often present the greatest challenges, this paper provides an overview of these socio-technical issues in building a successful HQIS, including the human, organizational, and knowledge management (KM) perspectives. Through an extensive literature review and direct experience in building a practical HQIS (the National Comprehensive Cancer Network Outcomes Research Database system), we have formulated an “informatics blueprint” to guide the development of such systems. While the blueprint was developed to facilitate healthcare quality information collection, management, analysis, and reporting, the concepts and advice provided may be extensible to the development of other types of clinical research information systems. PMID:16622161

  7. Evaluating the AMIA-OHSU 10x10 Program to Train Healthcare Professionals in Medical Informatics

    PubMed Central

    Feldman, Sue S.; Hersh, William

    2008-01-01

    The promise of health information technology (HIT) has led to calls for a larger and better trained work-force in medical informatics. University programs in applied health and biomedical informatics have been evolving in an effort to address the need for health-care professionals to be trained in informatics. One such evolution is the American Medical Informatics Association’s (AMIA) 10x10 program. To assess current delivery and content models, participant satisfaction, and how graduates have benefited from the program in career or education advancement, all students who completed the Oregon Health & Science University (OHSU) offering of the AMIA 10x10 course through the end of 2006 were surveyed. We found that the 10x10 program is approaching AMIA’s goals, and that there are potential areas for content and delivery modifications. Further research in defining the optimal competencies of the medical informatics workforce and its optimal education is needed. PMID:18999199

  8. Excellence in Computational Biology and Informatics — EDRN Public Portal

    Cancer.gov

    9th Early Detection Research Network (EDRN) Scientific Workshop. Excellence in Computational Biology and Informatics: Sponsored by the EDRN Data Sharing Subcommittee Moderator: Daniel Crichton, M.S., NASA Jet Propulsion Laboratory

  9. The Future Impact of Healthcare Services Digitalization on Health Workforce: The Increasing Role of Medical Informatics.

    PubMed

    Lapão, Luís Velez

    2016-01-01

    The digital revolution is gradually transforming our society. What about the effects of digitalization and Internet of Things in healthcare? Among researchers two ideas are dominating, opposing each other. These arguments will be explored and analyzed. A mix-method approach combining literature review with the results from a focus group on eHealth impact on employment is used. Several experts from the WHO and from Health Professional Associations contributed for this analysis. Depending on the type of service it will entail reductions or more need of healthcare workers, yet whatever the scenario medical informatics will play an increasing role. PMID:27577470

  10. The need for a skills-focussed applied healthcare informatics curriculum.

    PubMed Central

    Covvey, H. D.; MacNeill, J. E.

    1999-01-01

    Experience with Information Systems (IS) staff, interactions with healthcare senior management, and discussions with faculty and students have led us to the conclusions that few healthcare organizations have conceptualized and articulated an optimal organizational role for IS (particularly for IS leadership). In this paper we will describe the multi-polar, often conflicting "expectations" faced by many of today's healthcare IS departments, and define a set of useful and sustainable institutional model roles for IS. Then, we will formulate the set of challenges which IS professionals in these roles must be prepared to address. We will use this to propose a challenge-oriented, skills-based, methodology-focussed curriculum in Applied Healthcare Informatics, and delivery mechanisms that suit potential candidates. PMID:10566410

  11. Creating a pipeline of talent for informatics: STEM initiative for high school students in computer science, biology, and biomedical informatics.

    PubMed

    Dutta-Moscato, Joyeeta; Gopalakrishnan, Vanathi; Lotze, Michael T; Becich, Michael J

    2014-01-01

    This editorial provides insights into how informatics can attract highly trained students by involving them in science, technology, engineering, and math (STEM) training at the high school level and continuing to provide mentorship and research opportunities through the formative years of their education. Our central premise is that the trajectory necessary to be expert in the emergent fields in front of them requires acceleration at an early time point. Both pathology (and biomedical) informatics are new disciplines which would benefit from involvement by students at an early stage of their education. In 2009, Michael T Lotze MD, Kirsten Livesey (then a medical student, now a medical resident at University of Pittsburgh Medical Center (UPMC)), Richard Hersheberger, PhD (Currently, Dean at Roswell Park), and Megan Seippel, MS (the administrator) launched the University of Pittsburgh Cancer Institute (UPCI) Summer Academy to bring high school students for an 8 week summer academy focused on Cancer Biology. Initially, pathology and biomedical informatics were involved only in the classroom component of the UPCI Summer Academy. In 2011, due to popular interest, an informatics track called Computer Science, Biology and Biomedical Informatics (CoSBBI) was launched. CoSBBI currently acts as a feeder program for the undergraduate degree program in bioinformatics at the University of Pittsburgh, which is a joint degree offered by the Departments of Biology and Computer Science. We believe training in bioinformatics is the best foundation for students interested in future careers in pathology informatics or biomedical informatics. We describe our approach to the recruitment, training and research mentoring of high school students to create a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics. We emphasize here how mentoring of high school students in pathology informatics and biomedical informatics

  12. Creating a pipeline of talent for informatics: STEM initiative for high school students in computer science, biology, and biomedical informatics

    PubMed Central

    Dutta-Moscato, Joyeeta; Gopalakrishnan, Vanathi; Lotze, Michael T.; Becich, Michael J.

    2014-01-01

    This editorial provides insights into how informatics can attract highly trained students by involving them in science, technology, engineering, and math (STEM) training at the high school level and continuing to provide mentorship and research opportunities through the formative years of their education. Our central premise is that the trajectory necessary to be expert in the emergent fields in front of them requires acceleration at an early time point. Both pathology (and biomedical) informatics are new disciplines which would benefit from involvement by students at an early stage of their education. In 2009, Michael T Lotze MD, Kirsten Livesey (then a medical student, now a medical resident at University of Pittsburgh Medical Center (UPMC)), Richard Hersheberger, PhD (Currently, Dean at Roswell Park), and Megan Seippel, MS (the administrator) launched the University of Pittsburgh Cancer Institute (UPCI) Summer Academy to bring high school students for an 8 week summer academy focused on Cancer Biology. Initially, pathology and biomedical informatics were involved only in the classroom component of the UPCI Summer Academy. In 2011, due to popular interest, an informatics track called Computer Science, Biology and Biomedical Informatics (CoSBBI) was launched. CoSBBI currently acts as a feeder program for the undergraduate degree program in bioinformatics at the University of Pittsburgh, which is a joint degree offered by the Departments of Biology and Computer Science. We believe training in bioinformatics is the best foundation for students interested in future careers in pathology informatics or biomedical informatics. We describe our approach to the recruitment, training and research mentoring of high school students to create a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics. We emphasize here how mentoring of high school students in pathology informatics and biomedical informatics

  13. The Future of Healthcare Informatics: It Is Not What You Think

    PubMed Central

    2012-01-01

    Electronic health records (EHRs) offer many valuable benefits for patient safety, but it becomes apparent that the effective application of healthcare informatics creates problems and unintended consequences. One problem that seems particularly challenging is integration. Painfully missing are low-cost, easy to implement, plug-and-play, nonintrusive integration solutions—healthcare's “killer app.” Why is this? We must stop confusing application integration with information integration. Our goal must be to communicate data (ie, integrate information), not to integrate application functionality via complex and expensive application program interfaces (APIs). Communicating data simply requires a loosely coupled flow of data, as occurs today via email. In contrast, integration is a chief information officer's nightmare. Integrating applications, when we just wanted a bit of information, is akin to killing a gnat with a brick. PMID:24278826

  14. Home informatics in healthcare: assessment guidelines to keep up quality of care and avoid adverse effects.

    PubMed

    Roback, Kerstin; Herzog, Almut

    2003-01-01

    Due to an ageing population and improved treatment possibilities, a shortage in hospital beds is a fact in many countries. Home healthcare schemes using information technology (IT) are under development as a response to this and with the intention to produce a more cost-effective care. So far it has been shown that home healthcare is beneficial to certain patient groups. The trend is a widening of the criteria for admission to home healthcare, which means treatment in the home of more severe conditions that otherwise would require in-hospital care. Home informatics has the potential to become a means of providing good care at home. In this process, it is important to consider what new risks will be encountered when placing electronic equipment in the home care environment. Continuous assessment and guidance is important in order to achieve a safe and effective care. Based on a review of current knowledge this paper presents an inventory of risks and adverse events specific to this area. It was found that risks and adverse events could stem from technology in itself, from human-technology interaction conditions or from the environment in which the technology is placed. As a result from the risk inventory, this paper proposes guidelines for the planning and assessment of IT-based hospital-at-home schemes. These assessment guidelines are specifically aimed at performance improvement and thus to be considered a complement to the more general guidelines on telehomecare adopted by the American Telemedicine Association (ATA) in October 2002. PMID:12775936

  15. Advanced networks and computing in healthcare

    PubMed Central

    Ackerman, Michael

    2011-01-01

    As computing and network capabilities continue to rise, it becomes increasingly important to understand the varied applications for using them to provide healthcare. The objective of this review is to identify key characteristics and attributes of healthcare applications involving the use of advanced computing and communication technologies, drawing upon 45 research and development projects in telemedicine and other aspects of healthcare funded by the National Library of Medicine over the past 12 years. Only projects publishing in the professional literature were included in the review. Four projects did not publish beyond their final reports. In addition, the authors drew on their first-hand experience as project officers, reviewers and monitors of the work. Major themes in the corpus of work were identified, characterizing key attributes of advanced computing and network applications in healthcare. Advanced computing and network applications are relevant to a range of healthcare settings and specialties, but they are most appropriate for solving a narrower range of problems in each. Healthcare projects undertaken primarily to explore potential have also demonstrated effectiveness and depend on the quality of network service as much as bandwidth. Many applications are enabling, making it possible to provide service or conduct research that previously was not possible or to achieve outcomes in addition to those for which projects were undertaken. Most notable are advances in imaging and visualization, collaboration and sense of presence, and mobility in communication and information-resource use. PMID:21486877

  16. Advanced networks and computing in healthcare.

    PubMed

    Ackerman, Michael; Locatis, Craig

    2011-01-01

    As computing and network capabilities continue to rise, it becomes increasingly important to understand the varied applications for using them to provide healthcare. The objective of this review is to identify key characteristics and attributes of healthcare applications involving the use of advanced computing and communication technologies, drawing upon 45 research and development projects in telemedicine and other aspects of healthcare funded by the National Library of Medicine over the past 12 years. Only projects publishing in the professional literature were included in the review. Four projects did not publish beyond their final reports. In addition, the authors drew on their first-hand experience as project officers, reviewers and monitors of the work. Major themes in the corpus of work were identified, characterizing key attributes of advanced computing and network applications in healthcare. Advanced computing and network applications are relevant to a range of healthcare settings and specialties, but they are most appropriate for solving a narrower range of problems in each. Healthcare projects undertaken primarily to explore potential have also demonstrated effectiveness and depend on the quality of network service as much as bandwidth. Many applications are enabling, making it possible to provide service or conduct research that previously was not possible or to achieve outcomes in addition to those for which projects were undertaken. Most notable are advances in imaging and visualization, collaboration and sense of presence, and mobility in communication and information-resource use. PMID:21486877

  17. Developing nurse educators' computer skills towards proficiency in nursing informatics.

    PubMed

    Rajalahti, Elina; Heinonen, Jarmo; Saranto, Kaija

    2014-01-01

    The purpose of this paper is to assess nurse educators' competence development in nursing informatics (NI) and to compare their competence to the NI competence of other healthcare professionals. Electronic health records (EHR) have been in use for many years. However, the adoption of the nursing care plan finally made it possible for nurses in Finland to develop a model for structured documentation with nursing terminology. A total of n = 124 (n = 85 pre-test and n = 39 post-test) participants from Universities of Applied Sciences (UAS), hospitals, hospitals' information management and health centres were surveyed with a e-questionnaire designed to assess the development of their NI competences during the nursing documentation development project. The questionnaire included 145 structured questions and 6 open questions. Data analysis focused on classification and comparison of NI competences through data description and statistical parameters using figures and tables. The basic NI competences of the nurse educators were good at the end of project and the nurse educators had better information literacy and information management competences than other participants. The information retrieval skills varied greatly, but they improved evenly towards the end. The nurse educators mastered better evidence-based nursing and use of nursing process models in their work. PMID:24152130

  18. Measuring Computer Science Knowledge Level of Hungarian Students Specialized in Informatics with Romanian Students Attending a Science Course or a Mathematics-Informatics Course

    ERIC Educational Resources Information Center

    Kiss, Gabor

    2012-01-01

    An analysis of Information Technology knowledge of Hungarian and Romanian students was made with the help of a self developed web based Informatics Test. The goal of this research is an analysis of the Computer Science knowledge level of Hungarian and Romanian students attending a Science course or a Mathematics-Informatics course. Analysed was…

  19. Health Informatics in the Classroom: An Empirical Study to Investigate Higher Education's Response to Healthcare Transformation

    ERIC Educational Resources Information Center

    Ashrafi, Noushin; Kuilboer, Jean-Pierre; Joshi, Chaitanya; Ran, Iris; Pande, Priyanka

    2014-01-01

    The explosive advances in information technology combined with the current climate for health care reform have intensified the need for skilled individuals who can develop, understand, and manage medical information systems in organizations. Health Informatics facilitates quality care at a reasonable cost by allowing access to the right data by…

  20. School Subject Informatics (Computer Science) in Russia: Educational Relevant Areas

    ERIC Educational Resources Information Center

    Khenner, Evgeniy; Semakin, Igor

    2014-01-01

    This article deals with some aspects of studying Informatics in Russian schools. Those aspects are part of the "third dimension" of the Darmstadt model (they are also projected on the other two dimensions of this model) and include evolution of the subject, regulatory norms conforming to the Federal Educational Standards, the learning…

  1. A framework for semantic interoperability in healthcare: a service oriented architecture based on health informatics standards.

    PubMed

    Ryan, Amanda; Eklund, Peter

    2008-01-01

    Healthcare information is composed of many types of varying and heterogeneous data. Semantic interoperability in healthcare is especially important when all these different types of data need to interact. Presented in this paper is a solution to interoperability in healthcare based on a standards-based middleware software architecture used in enterprise solutions. This architecture has been translated into the healthcare domain using a messaging and modeling standard which upholds the ideals of the Semantic Web (HL7 V3) combined with a well-known standard terminology of clinical terms (SNOMED CT). PMID:18487823

  2. Theory development in nursing and healthcare informatics: a model explaining and predicting information and communication technology acceptance by healthcare consumers.

    PubMed

    An, Ji-Young; Hayman, Laura L; Panniers, Teresa; Carty, Barbara

    2007-01-01

    About 110 million American adults are looking for health information and services on the Internet. Identification of the factors influencing healthcare consumers' technology acceptance is requisite to understanding their acceptance and usage behavior of online health information and related services. The purpose of this article is to describe the development of the Information and Communication Technology Acceptance Model (ICTAM). From the literature reviewed, ICTAM was developed with emphasis on integrating multidisciplinary perspectives from divergent frameworks and empirical findings into a unified model with regard to healthcare consumers' acceptance and usage behavior of information and services on the Internet. PMID:17703115

  3. Applications of the pipeline environment for visual informatics and genomics computations

    PubMed Central

    2011-01-01

    Background Contemporary informatics and genomics research require efficient, flexible and robust management of large heterogeneous data, advanced computational tools, powerful visualization, reliable hardware infrastructure, interoperability of computational resources, and detailed data and analysis-protocol provenance. The Pipeline is a client-server distributed computational environment that facilitates the visual graphical construction, execution, monitoring, validation and dissemination of advanced data analysis protocols. Results This paper reports on the applications of the LONI Pipeline environment to address two informatics challenges - graphical management of diverse genomics tools, and the interoperability of informatics software. Specifically, this manuscript presents the concrete details of deploying general informatics suites and individual software tools to new hardware infrastructures, the design, validation and execution of new visual analysis protocols via the Pipeline graphical interface, and integration of diverse informatics tools via the Pipeline eXtensible Markup Language syntax. We demonstrate each of these processes using several established informatics packages (e.g., miBLAST, EMBOSS, mrFAST, GWASS, MAQ, SAMtools, Bowtie) for basic local sequence alignment and search, molecular biology data analysis, and genome-wide association studies. These examples demonstrate the power of the Pipeline graphical workflow environment to enable integration of bioinformatics resources which provide a well-defined syntax for dynamic specification of the input/output parameters and the run-time execution controls. Conclusions The LONI Pipeline environment http://pipeline.loni.ucla.edu provides a flexible graphical infrastructure for efficient biomedical computing and distributed informatics research. The interactive Pipeline resource manager enables the utilization and interoperability of diverse types of informatics resources. The Pipeline client

  4. Recommendations of the International Medical Informatics Association (IMIA) on education in health and medical informatics.

    PubMed

    2000-08-01

    The International Medical Informatics Association (IMIA) agreed on international recommendations in health informatics/medical informatics education. These should help to establish courses, course tracks or even complete programs in this field, to further develop existing educational activities in the various nations and to support international initiatives concerning education in health and medical informatics (HMI), particularly international activities in educating HMI specialists and the sharing of courseware. The IMIA recommendations centre on educational needs for healthcare professionals to acquire knowledge and skills in information processing and information and communication technology. The educational needs are described as a three-dimensional framework. The dimensions are: 1) professionals in healthcare (physicians, nurses, HMI professionals, ...), 2) type of specialisation in health and medical informatics (IT users, HMI specialists) and 3) stage of career progression (bachelor, master, ...). Learning outcomes are defined in terms of knowledge and practical skills for healthcare professionals in their role (a) as IT user and (b) as HMI specialist. Recommendations are given for courses/course tracks in HMI as part of educational programs in medicine, nursing, healthcare management, dentistry, pharmacy, public health, health record administration, and informatics/computer science as well as for dedicated programs in HMI (with bachelor, master or doctor degree). To support education in HMI, IMIA offers to award a certificate for high quality HMI education and supports information exchange on programs and courses in HMI through a WWW server of its Working Group on Health and Medical Informatics Education (http:www.imia.org/wg1). PMID:10992757

  5. Informatics Moments

    ERIC Educational Resources Information Center

    Williams, Kate

    2012-01-01

    The informatics moment is the moment when a person seeks help in using some digital technology that is new to him or her. This article examines the informatics moment in people's everyday lives as they sought help at a branch public library. Four types of literacy were involved: basic literacy (reading and writing), computer literacy (use of a…

  6. The role of clinical informatics in the Agency for Healthcare Research and Quality's efforts to improve patient safety.

    PubMed

    Ortiz, E; Meyer, G; Burstin, H

    2001-01-01

    In 1998, the Institute of Medicine (IOM) issued a report on medical errors, which estimated that up to 98,000 people die in U.S. hospitals each year from errors. This report raised concerns that medical errors have become a national public health problem that should be addressed in the same manner as other epidemics such as heart disease, diabetes, and obesity. In 2001, the IOM released a follow-up report encompassing a broader range of quality issues. They concluded that the U.S. healthcare system is outmoded and incapable of providing consistent, high-quality care. They outlined a strategy for redesigning U.S. healthcare delivery to achieve safe, dependable, high-quality care, which emphasizes information technology as an integral part of the solution. AHRQ's fiscal year 2001 appropriation included an increase of $50 million dollars for initiatives to reduce medical errors and improve patient safety. AHRQ responded to this mandate by developing a series of research solicitations that form an integrated set of activities to design and test best practices for reducing errors in multiple health care settings. This paper discusses the components of this program and the central role of medical informatics research in the Agency's efforts to improve the safety of medical care in America. PMID:11825240

  7. Learning from colleagues about healthcare IT implementation and optimization: lessons from a medical informatics listserv.

    PubMed

    Adams, Martha B; Kaplan, Bonnie; Sobko, Heather J; Kuziemsky, Craig; Ravvaz, Kourosh; Koppel, Ross

    2015-01-01

    Communication among medical informatics communities can suffer from fragmentation across multiple forums, disciplines, and subdisciplines; variation among journals, vocabularies and ontologies; cost and distance. Online communities help overcome these obstacles, but may become onerous when listservs are flooded with cross-postings. Rich and relevant content may be ignored. The American Medical Informatics Association successfully addressed these problems when it created a virtual meeting place by merging the membership of four working groups into a single listserv known as the "Implementation and Optimization Forum." A communication explosion ensued, with thousands of interchanges, hundreds of topics, commentaries from "notables," neophytes, and students--many from different disciplines, countries, traditions. We discuss the listserv's creation, illustrate its benefits, and examine its lessons for others. We use examples from the lively, creative, deep, and occasionally conflicting discussions of user experiences--interchanges about medication reconciliation, open source strategies, nursing, ethics, system integration, and patient photos in the EMR--all enhancing knowledge, collegiality, and collaboration. PMID:25486893

  8. Biomedical Informatics for Computer-Aided Decision Support Systems: A Survey

    PubMed Central

    Belle, Ashwin; Kon, Mark A.; Najarian, Kayvan

    2013-01-01

    The volumes of current patient data as well as their complexity make clinical decision making more challenging than ever for physicians and other care givers. This situation calls for the use of biomedical informatics methods to process data and form recommendations and/or predictions to assist such decision makers. The design, implementation, and use of biomedical informatics systems in the form of computer-aided decision support have become essential and widely used over the last two decades. This paper provides a brief review of such systems, their application protocols and methodologies, and the future challenges and directions they suggest. PMID:23431259

  9. Students' Knowledge, Opinions, and Behaviors Concerning Dental Informatics and Computer Applications.

    ERIC Educational Resources Information Center

    Lang, W. Paul; And Others

    1992-01-01

    A survey of 95 first-year and 91 fourth-year dental students concerning informatics and computer applications in dentistry investigated knowledge of terms and concepts related to hardware, software, electronic communication, and dental applications; opinions concerning use of the technology; and extent of experience in 4 areas of use. (MSE)

  10. A Study of Transformational Change at Three Schools of Nursing Implementing Healthcare Informatics

    ERIC Educational Resources Information Center

    Cornell, Revonda Leota

    2009-01-01

    The "Health Professions Education: A Bridge to Quality" (IOM, 2003) proposed strategies for higher education leaders and faculty to transform their institutions in ways that address the healthcare problems. This study provides higher education leaders and faculty with empirical data about the processes of change involved to implement the core…

  11. Museum Informatics.

    ERIC Educational Resources Information Center

    Marty, Paul F.; Rayward, W. Boyd; Twidale, Michael B.

    2003-01-01

    Discusses museum informatics that studies how information science and technology affect the museum environment. Examines digital technology; information organization and access; digitization, personal computers, and the Internet; data sharing; standards; social impacts of new technologies; collaboration; consortia; multimedia exhibits; virtual…

  12. The politics of healthcare informatics: knowledge management using an electronic medical record system.

    PubMed

    Bar-Lev, Shirly

    2015-03-01

    The design and implementation of an electronic medical record system pose significant epistemological and practical complexities. Despite optimistic assessments of their potential contribution to the quality of care, their implementation has been problematic, and their actual employment in various clinical settings remains controversial. Little is known about how their use actually mediates knowing. Employing a variety of qualitative research methods, this article attempts an answer by illustrating how omitting, editing and excessive reporting were employed as part of nurses' and physicians' political efforts to shape knowledge production and knowledge sharing in a technologically mediated healthcare setting. PMID:25581280

  13. What Is Nursing Informatics?

    ERIC Educational Resources Information Center

    McGonigle, D.; And Others

    Information technology has developed to the point of providing a means to manage nursing and related health-care data effectively for nursing administrators, educators, practitioners, and researchers. Therefore, the newly recognized area of nursing informatics is important to the nursing profession as a whole. Nursing informatics is defined as the…

  14. Qualitative analysis of end user computing strategy and experiences in promoting nursing informatics in Taiwan.

    PubMed

    Hou, I-Ching; Chang, Polun; Wang, Tsen-Yung

    2006-01-01

    The purpose of this study was to analyse end user computing strategy and experiences in promoting nursing informatics in Taiwan. In February 2004, an 8-day NI technology training campaign was held in Taipei for 60 clinical nurses. Excel VBA was used as the tool to teach the clinical nurses, who had never written any programs, but were very interested in informatics. Three projects were determined after detailed discussion and evaluation of clinical needs and technical feasibility between the nurses and the technical support team, which was composed of one experienced informatics professor and one clinical NI assistant. A qualitative analysis was used to interview the three pairs of programming clinical nurses and their direct supervisors with a structured but open questionnaire. Representative concepts were categorized from the data until all were categorized. The concepts were organized under three categories: the purposes, the benefits and the challenges of system development. According to this study, end user computing strategy with Excel VBA was successful so far. PMID:17102334

  15. Computers in a human perspective: an alternative way of teaching informatics to health professionals.

    PubMed

    Schneider, W

    1989-11-01

    An alternative way of teaching informatics, especially health informatics, to health professionals of different categories has been developed and practiced. The essentials of human competence and skill in handling and processing information are presented parallel with the essentials of computer-assisted methodologies and technologies of formal language-based informatics. Requirements on how eventually useful computer-based tools will have to be designed in order to be well adapted to genuine human skill and competence in handling tools in various work contexts are established. On the basis of such a balanced knowledge methods for work analysis are introduced. These include how the existing problems at a workplace can be identified and analyzed in relation to the goals to be achieved. Special emphasis is given to new ways of information analysis, i.e. methods which even allow the comprehension and documentation of those parts of the actually practiced 'human' information handling and processing which are normally overlooked, as e.g. non-verbal communication processes and so-called 'tacit knowledge' based information handling and processing activities. Different ways of problem solving are discussed involving in an integrated human perspective--alternative staffing, enhancement of the competence of the staff, optimal planning of premises as well as organizational and technical means. The main result of this alternative way of education has been a considerably improved user competence which in turn has led to very different designs of computer assistance and man-computer interfaces. It is the purpose of this paper to give a brief outline of the teaching material and a short presentation of the above mentioned results.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2695781

  16. A Bioimage Informatics Based Reconstruction of Breast Tumor Microvasculature with Computational Blood Flow Predictions

    PubMed Central

    Stamatelos, Spyros K.; Kim, Eugene; Pathak, Arvind P.; Popel, Aleksander S.

    2014-01-01

    Induction of tumor angiogenesis is among the hallmarks of cancer and a driver of metastatic cascade initiation. Recent advances in high-resolution imaging enable highly detailed three-dimensional geometrical representation of the whole-tumor microvascular architecture. This enormous increase in complexity of image-based data necessitates the application of informatics methods for the analysis, mining and reconstruction of these spatial graph data structures. We present a novel methodology that combines ex-vivo high-resolution micro-computed tomography imaging data with a bioimage informatics algorithm to track and reconstruct the whole-tumor vasculature of a human breast cancer model. The reconstructed tumor vascular network is used as an input of a computational model that estimates blood flow in each segment of the tumor microvascular network. This formulation involves a well-established biophysical model and an optimization algorithm that ensures mass balance and detailed monitoring of all the vessels that feed and drain blood from the tumor microvascular network. Perfusion maps for the whole-tumor microvascular network are computed. Morphological and hemodynamic indices from different regions are compared to infer their role in overall tumor perfusion. PMID:24342178

  17. Building a Culture of Health Informatics Innovation and Entrepreneurship: A New Frontier.

    PubMed

    Househ, Mowafa; Alshammari, Riyad; Almutairi, Mariam; Jamal, Amr; Alshoaib, Saleh

    2015-01-01

    Entrepreneurship and innovation within the health informatics (HI) scientific community are relatively sluggish when compared to other disciplines such as computer science and engineering. Healthcare in general, and specifically, the health informatics scientific community needs to embrace more innovative and entrepreneurial practices. In this paper, we explore the concepts of innovation and entrepreneurship as they apply to the health informatics scientific community. We also outline several strategies to improve the culture of innovation and entrepreneurship within the health informatics scientific community such as: (I) incorporating innovation and entrepreneurship in health informatics education; (II) creating strong linkages with industry and healthcare organizations; (III) supporting national health innovation and entrepreneurship competitions; (IV) creating a culture of innovation and entrepreneurship within healthcare organizations; (V) developing health informatics policies that support innovation and entrepreneurship based on internationally recognized standards; and (VI) develop an health informatics entrepreneurship ecosystem. With these changes, we conclude that embracing health innovation and entrepreneurship may be more readily accepted over the long-term within the health informatics scientific community. PMID:26153003

  18. Mobile healthcare information management utilizing Cloud Computing and Android OS.

    PubMed

    Doukas, Charalampos; Pliakas, Thomas; Maglogiannis, Ilias

    2010-01-01

    Cloud Computing provides functionality for managing information data in a distributed, ubiquitous and pervasive manner supporting several platforms, systems and applications. This work presents the implementation of a mobile system that enables electronic healthcare data storage, update and retrieval using Cloud Computing. The mobile application is developed using Google's Android operating system and provides management of patient health records and medical images (supporting DICOM format and JPEG2000 coding). The developed system has been evaluated using the Amazon's S3 cloud service. This article summarizes the implementation details and presents initial results of the system in practice. PMID:21097207

  19. Climate Informatics

    NASA Technical Reports Server (NTRS)

    Monteleoni, Claire; Schmidt, Gavin A.; Alexander, Francis J.; Niculescu-Mizil, Alexandru; Steinhaeuser, Karsten; Tippett, Michael; Banerjee, Arindam; Blumenthal, M. Benno; Ganguly, Auroop R.; Smerdon, Jason E.; Tedesco, Marco

    2013-01-01

    The impacts of present and potential future climate change will be one of the most important scientific and societal challenges in the 21st century. Given observed changes in temperature, sea ice, and sea level, improving our understanding of the climate system is an international priority. This system is characterized by complex phenomena that are imperfectly observed and even more imperfectly simulated. But with an ever-growing supply of climate data from satellites and environmental sensors, the magnitude of data and climate model output is beginning to overwhelm the relatively simple tools currently used to analyze them. A computational approach will therefore be indispensable for these analysis challenges. This chapter introduces the fledgling research discipline climate informatics: collaborations between climate scientists and machine learning researchers in order to bridge this gap between data and understanding. We hope that the study of climate informatics will accelerate discovery in answering pressing questions in climate science.

  20. Global health informatics education.

    PubMed

    Hovenga, E J

    2000-01-01

    Health informatics education has evolved since the 1960s with a strong research foundation primarily in medical schools across the USA and Europe. By 1989 health informatics education was provided in some form by at least 20 countries representing five continents. This continues to progress, in Europe with the help of a number of special projects, via the integration of informatics into pre registration health professional courses, undergraduate and post graduate course work and research degree programs. Each program is unique in terms or content and structure reflecting the many foundation disciplines which contribute or are incorporated in the health informatics discipline. Nursing informatics education is not as widespread. Indeed the evidence suggests a poor uptake of informatics by this profession. Advances in computer based educational technologies are making innovative modes of educational delivery possible and are facilitating a shift towards learner centred, flexible and life long learning. Greater cooperation between Universities is recommended. PMID:10947666

  1. Multi-Sensory Informatics Education

    ERIC Educational Resources Information Center

    Katai, Zoltan; Toth, Laszlo; Adorjani, Alpar Karoly

    2014-01-01

    A recent report by the joint Informatics Europe & ACM Europe Working Group on Informatics Education emphasizes that: (1) computational thinking is an important ability that all people should possess; (2) informatics-based concepts, abilities and skills are teachable, and must be included in the primary and particularly in the secondary school…

  2. Healthcare

    ERIC Educational Resources Information Center

    Carnevale, Anthony P.; Smith, Nicole; Gulish, Artem; Beach, Bennett H.

    2012-01-01

    This report, provides detailed analyses and projections of occupations in healthcare fields, and wages earned. In addition, the important skills and work values associated with workers in those fields of healthcare are discussed. Finally, the authors analyze the implications of research findings for the racial, ethnic, and class diversity of the…

  3. [Informatics in the Croatian health care system].

    PubMed

    Kern, Josipa; Strnad, Marija

    2005-01-01

    Informatization process of the Croatian health care system started relatively early. Computer processing of data of persons not covered by health insurance started in 1968 in Zagreb. Remetinec Health Center served as a model of computer data processing (CDP) in primary health care and Sveti Duh General Hospital in inpatient CDP, whereas hospital administration and health service were first introduced to Zagreb University Hospital Center and Sestre Milosrdnice University Hospital. At Varazdin Medical Center CDP for health care services started in 1970. Several registries of chronic diseases have been established: cancer, psychosis, alcoholism, and hospital registries as well as pilot registries of lung tuberculosis patients and diabetics. Health statistics reports on healthcare services, work accidents and sick-leaves as well as on hospital mortality started to be produced by CDP in 1977. Besides alphanumeric data, the modern information technology (IT) can give digital images and signals. Communication in health care system demands a standardized format of all information, especially for telemedicine. In 2000, Technical Committee for Standardization in Medical Informatics was founded in Croatia, in order to monitor the activities of the International Standardization Organization (ISO) and Comite Européen de Normalisation (CEN), and to implement their international standards in the Croatian standardization procedure. The HL7 Croatia has also been founded to monitor developments in the communication standard HL7. So far, the Republic of Croatia has a number of acts regulating informatization in general and consequently the informatization of the health care system (Act on Personal Data Confidentiality, Act on Digital Signature, Act of Standardization) enacted. The ethical aspect of data security and data protection has been covered by the Code of Ethics for medical informaticians. It has been established by the International Medical Informatics Association (IMIA

  4. The future of health informatics.

    PubMed

    Cesnik, B

    1999-07-01

    Whatever a future vision for health informatics entails, it must take into account the evolving nature of the field, a growing trend towards primary and preventive care and the explosive growth in global networking as exemplified by the Internet. While, historically, storage and retrieval of data has been the main target for information systems development, the need to capture knowledge itself is becoming the focus for development. In parallel, education in health informatics for tomorrow's healthcare professionals is now essential. The Asia Pacific Association for Medical Informatics (APAMI) is a regional group of the International Medical Informatics Association (IMIA). While the newest of the IMIA regional organizations, its growth and activities in the Asia Pacific region aim to advance health informatics. Its triennial conferences act as a means of promoting and monitoring the growth of our field in this region, APAMI itself is a part of the future of health informatics. PMID:10471244

  5. Computing Health Quality Measures Using Informatics for Integrating Biology and the Bedside

    PubMed Central

    Murphy, Shawn N

    2013-01-01

    Background The Health Quality Measures Format (HQMF) is a Health Level 7 (HL7) standard for expressing computable Clinical Quality Measures (CQMs). Creating tools to process HQMF queries in clinical databases will become increasingly important as the United States moves forward with its Health Information Technology Strategic Plan to Stages 2 and 3 of the Meaningful Use incentive program (MU2 and MU3). Informatics for Integrating Biology and the Bedside (i2b2) is one of the analytical databases used as part of the Office of the National Coordinator (ONC)’s Query Health platform to move toward this goal. Objective Our goal is to integrate i2b2 with the Query Health HQMF architecture, to prepare for other HQMF use-cases (such as MU2 and MU3), and to articulate the functional overlap between i2b2 and HQMF. Therefore, we analyze the structure of HQMF, and then we apply this understanding to HQMF computation on the i2b2 clinical analytical database platform. Specifically, we develop a translator between two query languages, HQMF and i2b2, so that the i2b2 platform can compute HQMF queries. Methods We use the HQMF structure of queries for aggregate reporting, which define clinical data elements and the temporal and logical relationships between them. We use the i2b2 XML format, which allows flexible querying of a complex clinical data repository in an easy-to-understand domain-specific language. Results The translator can represent nearly any i2b2-XML query as HQMF and execute in i2b2 nearly any HQMF query expressible in i2b2-XML. This translator is part of the freely available reference implementation of the QueryHealth initiative. We analyze limitations of the conversion and find it covers many, but not all, of the complex temporal and logical operators required by quality measures. Conclusions HQMF is an expressive language for defining quality measures, and it will be important to understand and implement for CQM computation, in both meaningful use and population

  6. Origins of Medical Informatics

    PubMed Central

    Collen, Morris F.

    1986-01-01

    Medical informatics is a new knowledge domain of computer and information science, engineering and technology in all fields of health and medicine, including research, education and practice. Medical informatics has evolved over the past 30 years as medicine learned to exploit the extraordinary capabilities of the electronic digital computer to better meet its complex information needs. The first articles on this subject appeared in the 1950s, the number of publications rapidly increased in the 1960s and medical informatics was identified as a new specialty in the 1970s. PMID:3544507

  7. Emergency healthcare process automation using mobile computing and cloud services.

    PubMed

    Poulymenopoulou, M; Malamateniou, F; Vassilacopoulos, G

    2012-10-01

    Emergency care is basically concerned with the provision of pre-hospital and in-hospital medical and/or paramedical services and it typically involves a wide variety of interdependent and distributed activities that can be interconnected to form emergency care processes within and between Emergency Medical Service (EMS) agencies and hospitals. Hence, in developing an information system for emergency care processes, it is essential to support individual process activities and to satisfy collaboration and coordination needs by providing readily access to patient and operational information regardless of location and time. Filling this information gap by enabling the provision of the right information, to the right people, at the right time fosters new challenges, including the specification of a common information format, the interoperability among heterogeneous institutional information systems or the development of new, ubiquitous trans-institutional systems. This paper is concerned with the development of an integrated computer support to emergency care processes by evolving and cross-linking institutional healthcare systems. To this end, an integrated EMS cloud-based architecture has been developed that allows authorized users to access emergency case information in standardized document form, as proposed by the Integrating the Healthcare Enterprise (IHE) profile, uses the Organization for the Advancement of Structured Information Standards (OASIS) standard Emergency Data Exchange Language (EDXL) Hospital Availability Exchange (HAVE) for exchanging operational data with hospitals and incorporates an intelligent module that supports triaging and selecting the most appropriate ambulances and hospitals for each case. PMID:22205383

  8. Protecting the patient by promoting end-user competence in health informatics systems-moves towards a generic health computer user "driving license".

    PubMed

    Rigby, Michael

    2004-03-18

    The effectiveness and quality of health informatics systems' support to healthcare delivery are largely determined by two factors-the suitability of the system installed, and the competence of the users. However, the profile of users of large-scale clinical health systems is significantly different from the profile of end-users in other enterprises such as the finance sector, insurance, travel or retail sales. Work with a mental health provider in Ireland, who was introducing a customized electronic patient record (EPR) system, identified the strong legal and ethical importance of adequately skills for the health professionals and others, who would be the system users. The experience identified the need for a clear and comprehensive generic user qualification at a basic but robust level. The European computer driving license (ECDL) has gained wide recognition as a basic generic qualification for users of computer systems. However, health systems and data have a series of characteristics that differentiate them from other data systems. The logical conclusion was the recognition of a need for an additional domain-specific qualification-an "ECDL Health Supplement". Development of this is now being progressed. PMID:15063374

  9. Supporting patient centered computing through an undergraduate nursing informatics curriculum stage III.

    PubMed Central

    Travis, L. L.; Youngblut, J.

    1993-01-01

    The patient has been one of the focal points of the process followed to design, implement, and evaluate an integrated informatics curriculum in a baccalaureate nursing program. This paper describes the third stage of a process to design the informatics nursing courses. A challenge is to structure the nursing informatics curriculum so as to enhance the patient care process. A number of strategies were used to focus the curriculum, students, and faculty around the patient. The basic components of the framework are information, technology, and clinical care process. The clinical care process which emphasizes the patient is an inherent part of the conceptual framework in all aspects of the curriculum. Therefore the faculty has ensured a blend of information, technology, and the clinical care process throughout the curriculum. PMID:8130578

  10. Informatics Workup.

    PubMed Central

    Naeymi-Rad, F.; Trace, D.; Shoults, K.; Suico, J.; O'Brien, M.; Evens, M.; Carmony, L.; Roberts, R.; Zelanski, R.

    1992-01-01

    We introduce the concept of a Medical Informatics Workup performed by fourth year medical students working in a busy inner-city Emergency Room. These students use portable computers (Macintosh PowerBook 170s connected to a removable cartridge hard drive and CD-ROM drive) to do the patient workups. The PowerBook 170 contains the automated medical record entry software (IMR-E), five expert system software packages, and a program that allows the PowerBook to emulate a PC-compatible computer. With this configuration the student has a portable system that allows for the creation of a computerized medical record at the patient's bedside, along with the ability to analyze the data and generate a list of differential diagnoses. PMID:1482933

  11. Developing curriculum in nursing informatics in Europe.

    PubMed

    Mantas, J

    1998-06-01

    The NIGHTINGALE Project (NIGHTINGALE Project: HC1109 DGXIII Contract and Technical Annex, European Commission, December 1995) which started on the 1st of January, 1996, after the approval of the European Commission, has a 36 month duration. It is essential in planning and implementing a strategy in training the nursing profession in using and applying healthcare information systems. NIGHTINGALE contributes towards the appropriate use of the developed telematics infrastructure across Europe by educating and training nurses in a harmonious way across Europe in the upcoming field of nursing informatics. NIGHTINGALE develops courseware material based on the curriculum development process using multimedia technologies. Computer based training software packages in nursing informatics will be the basis of the training material and the corresponding courses. CD-ROM based training and reference material will also be provided in the courses whereas the traditional booklets, teaching material and textbooks can also play an adequate role in training. NIGHTINGALE will disseminate all information and courseware material freely to all interested parties through the publications of the proceedings of the conferences, through the establishment of the world wide web (WWW) server in nursing informatics for Europe (http://www.dn.uoa.gr/nightingale), which will become a depository of nursing information knowledge across Europe as well as a dissemination node of nursing informatics throughout the European members states for the benefit and welfare of the European citizen. PMID:9726502

  12. What is biomedical informatics?

    PubMed Central

    Bernstam, Elmer V.; Smith, Jack W.; Johnson, Todd R.

    2009-01-01

    Biomedical informatics lacks a clear and theoretically grounded definition. Many proposed definitions focus on data, information, and knowledge, but do not provide an adequate definition of these terms. Leveraging insights from the philosophy of information, we define informatics as the science of information, where information is data plus meaning. Biomedical informatics is the science of information as applied to or studied in the context of biomedicine. Defining the object of study of informatics as data plus meaning clearly distinguishes the field from related fields, such as computer science, statistics and biomedicine, which have different objects of study. The emphasis on data plus meaning also suggests that biomedical informatics problems tend to be difficult when they deal with concepts that are hard to capture using formal, computational definitions. In other words, problems where meaning must be considered are more difficult than problems where manipulating data without regard for meaning is sufficient. Furthermore, the definition implies that informatics research, teaching, and service should focus on biomedical information as data plus meaning rather than only computer applications in biomedicine. PMID:19683067

  13. Genome Informatics

    PubMed Central

    Winslow, Raimond L.; Boguski, Mark S.

    2005-01-01

    This article reviews recent advances in genomics and informatics relevant to cardiovascular research. In particular, we review the status of (1) whole genome sequencing efforts in human, mouse, rat, zebrafish, and dog; (2) the development of data mining and analysis tools; (3) the launching of the National Heart, Lung, and Blood Institute Programs for Genomics Applications and Proteomics Initiative; (4) efforts to characterize the cardiac transcriptome and proteome; and (5) the current status of computational modeling of the cardiac myocyte. In each instance, we provide links to relevant sources of information on the World Wide Web and critical appraisals of the promises and the challenges of an expanding and diverse information landscape. PMID:12750305

  14. Earth Science Informatics - Overview

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2015-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes nearly 150 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies. Remote Sensing; Earth Science Informatics, Data Systems; Data Services; Metadata

  15. Applying analytic hierarchy process to assess healthcare-oriented cloud computing service systems.

    PubMed

    Liao, Wen-Hwa; Qiu, Wan-Li

    2016-01-01

    Numerous differences exist between the healthcare industry and other industries. Difficulties in the business operation of the healthcare industry have continually increased because of the volatility and importance of health care, changes to and requirements of health insurance policies, and the statuses of healthcare providers, which are typically considered not-for-profit organizations. Moreover, because of the financial risks associated with constant changes in healthcare payment methods and constantly evolving information technology, healthcare organizations must continually adjust their business operation objectives; therefore, cloud computing presents both a challenge and an opportunity. As a response to aging populations and the prevalence of the Internet in fast-paced contemporary societies, cloud computing can be used to facilitate the task of balancing the quality and costs of health care. To evaluate cloud computing service systems for use in health care, providing decision makers with a comprehensive assessment method for prioritizing decision-making factors is highly beneficial. Hence, this study applied the analytic hierarchy process, compared items related to cloud computing and health care, executed a questionnaire survey, and then classified the critical factors influencing healthcare cloud computing service systems on the basis of statistical analyses of the questionnaire results. The results indicate that the primary factor affecting the design or implementation of optimal cloud computing healthcare service systems is cost effectiveness, with the secondary factors being practical considerations such as software design and system architecture. PMID:27441149

  16. Informatic nephrology.

    PubMed

    Musso, Carlos; Aguilera, Jerónimo; Otero, Carlos; Vilas, Manuel; Luna, Daniel; de Quirós, Fernán González Bernaldo

    2013-08-01

    Biomedical informatics in Health (BIH) is the discipline in charge of capturing, handling and using information in health and biomedicine in order to improve the processes involved with assistance and management. Informatic nephrology has appeared as a product of the combination between conventional nephrology with BIH and its development has been considerable in the assistance as well as in the academic field. Regarding the former, there is increasing evidence that informatics technology can make nephrological assistance be better in quality (effective, accessible, safe and satisfying), improve patient's adherence, optimize patient's and practitioner's time, improve physical space and achieve health cost reduction. Among its main elements, we find electronic medical and personal health records, clinical decision support system, tele-nephrology, and recording and monitoring devices. Additionally, regarding the academic field, informatics and Internet contribute to education and research in the nephrological field. In conclusion, informatics nephrology represents a new field which will influence the future of nephrology. PMID:23065430

  17. An informatics research agenda to support precision medicine: seven key areas.

    PubMed

    Tenenbaum, Jessica D; Avillach, Paul; Benham-Hutchins, Marge; Breitenstein, Matthew K; Crowgey, Erin L; Hoffman, Mark A; Jiang, Xia; Madhavan, Subha; Mattison, John E; Nagarajan, Radhakrishnan; Ray, Bisakha; Shin, Dmitriy; Visweswaran, Shyam; Zhao, Zhongming; Freimuth, Robert R

    2016-07-01

    The recent announcement of the Precision Medicine Initiative by President Obama has brought precision medicine (PM) to the forefront for healthcare providers, researchers, regulators, innovators, and funders alike. As technologies continue to evolve and datasets grow in magnitude, a strong computational infrastructure will be essential to realize PM's vision of improved healthcare derived from personal data. In addition, informatics research and innovation affords a tremendous opportunity to drive the science underlying PM. The informatics community must lead the development of technologies and methodologies that will increase the discovery and application of biomedical knowledge through close collaboration between researchers, clinicians, and patients. This perspective highlights seven key areas that are in need of further informatics research and innovation to support the realization of PM. PMID:27107452

  18. Behavioral Informatics and Computational Modeling in Support of Proactive Health Management and Care.

    PubMed

    Pavel, Misha; Jimison, Holly B; Korhonen, Ilkka; Gordon, Christine M; Saranummi, Niilo

    2015-12-01

    Health-related behaviors are among the most significant determinants of health and quality of life. Improving health behavior is an effective way to enhance health outcomes and mitigate the escalating challenges arising from an increasingly aging population and the proliferation of chronic diseases. Although it has been difficult to obtain lasting improvements in health behaviors on a wide scale, advances at the intersection of technology and behavioral science may provide the tools to address this challenge. In this paper, we describe a vision and an approach to improve health behavior interventions using the tools of behavioral informatics, an emerging transdisciplinary research domain based on system-theoretic principles in combination with behavioral science and information technology. The field of behavioral informatics has the potential to optimize interventions through monitoring, assessing, and modeling behavior in support of providing tailored and timely interventions. We describe the components of a closed-loop system for health interventions. These components range from fine grain sensor characterizations to individual-based models of behavior change. We provide an example of a research health coaching platform that incorporates a closed-loop intervention based on these multiscale models. Using this early prototype, we illustrate how the optimized and personalized methodology and technology can support self-management and remote care. We note that despite the existing examples of research projects and our platform, significant future research is required to convert this vision to full-scale implementations. PMID:26441408

  19. Behavioral Informatics and Computational Modeling in Support of Proactive Health Management and Care

    PubMed Central

    Jimison, Holly B.; Korhonen, Ilkka; Gordon, Christine M.; Saranummi, Niilo

    2016-01-01

    Health-related behaviors are among the most significant determinants of health and quality of life. Improving health behavior is an effective way to enhance health outcomes and mitigate the escalating challenges arising from an increasingly aging population and the proliferation of chronic diseases. Although it has been difficult to obtain lasting improvements in health behaviors on a wide scale, advances at the intersection of technology and behavioral science may provide the tools to address this challenge. In this paper, we describe a vision and an approach to improve health behavior interventions using the tools of behavioral informatics, an emerging transdisciplinary research domain based on system-theoretic principles in combination with behavioral science and information technology. The field of behavioral informatics has the potential to optimize interventions through monitoring, assessing, and modeling behavior in support of providing tailored and timely interventions. We describe the components of a closed-loop system for health interventions. These components range from fine grain sensor characterizations to individual-based models of behavior change. We provide an example of a research health coaching platform that incorporates a closed-loop intervention based on these multiscale models. Using this early prototype, we illustrate how the optimized and personalized methodology and technology can support self-management and remote care. We note that despite the existing examples of research projects and our platform, significant future research is required to convert this vision to full-scale implementations. PMID:26441408

  20. Training Residents in Medical Informatics.

    ERIC Educational Resources Information Center

    Jerant, Anthony F.

    1999-01-01

    Describes an eight-step process for developing or refining a family-medicine informatics curriculum: needs assessment, review of expert recommendations, enlisting faculty and local institutional support, espousal of a human-centered approach, integrating informatics into the larger curriculum, easy access to computers, practical training, and…

  1. Transformation of health care through innovative use of information technology: challenges for health and medical informatics education.

    PubMed

    Haux, R; Swinkels, W; Ball, M; Knaup, P; Lun, K C

    1998-06-01

    Information storage and processing continues to become increasingly important for health care, and offers enormous potential to be realised in the delivery of health care. Therefore, it is imperative that all health care professionals should learn skills and gain knowledge in the field of health informatics, or medical informatics, respectively. Working Group 1, Health and Medical Informatics Education, of the International Medical Informatics Association (IMIA WG1) seeks to advance the knowledge of how these skills are taught in courses for the various health care professions around the world, and includes physicians, nurses, administrators, and specialists in medical informatics. IMIA WG1 held its 6th International Conference on Health and Medical Education in Newcastle, Australia, in August 1997. The theme of the conference was 'Transformation of Healthcare through Innovative Use of Information Technology'. This special issue of the International Journal of Medical Informatics on Health and Medical Informatics Education contains selected papers presented at the conference. In addition to the central topic, Educating Health Care Professionals in Medical Informatics the topics telematics, distance education and computer based training were also discussed at the conference. PMID:9726487

  2. Mobile cloud-computing-based healthcare service by noncontact ECG monitoring.

    PubMed

    Fong, Ee-May; Chung, Wan-Young

    2013-01-01

    Noncontact electrocardiogram (ECG) measurement technique has gained popularity these days owing to its noninvasive features and convenience in daily life use. This paper presents mobile cloud computing for a healthcare system where a noncontact ECG measurement method is employed to capture biomedical signals from users. Healthcare service is provided to continuously collect biomedical signals from multiple locations. To observe and analyze the ECG signals in real time, a mobile device is used as a mobile monitoring terminal. In addition, a personalized healthcare assistant is installed on the mobile device; several healthcare features such as health status summaries, medication QR code scanning, and reminders are integrated into the mobile application. Health data are being synchronized into the healthcare cloud computing service (Web server system and Web server dataset) to ensure a seamless healthcare monitoring system and anytime and anywhere coverage of network connection is available. Together with a Web page application, medical data are easily accessed by medical professionals or family members. Web page performance evaluation was conducted to ensure minimal Web server latency. The system demonstrates better availability of off-site and up-to-the-minute patient data, which can help detect health problems early and keep elderly patients out of the emergency room, thus providing a better and more comprehensive healthcare cloud computing service. PMID:24316562

  3. Mobile Cloud-Computing-Based Healthcare Service by Noncontact ECG Monitoring

    PubMed Central

    Fong, Ee-May; Chung, Wan-Young

    2013-01-01

    Noncontact electrocardiogram (ECG) measurement technique has gained popularity these days owing to its noninvasive features and convenience in daily life use. This paper presents mobile cloud computing for a healthcare system where a noncontact ECG measurement method is employed to capture biomedical signals from users. Healthcare service is provided to continuously collect biomedical signals from multiple locations. To observe and analyze the ECG signals in real time, a mobile device is used as a mobile monitoring terminal. In addition, a personalized healthcare assistant is installed on the mobile device; several healthcare features such as health status summaries, medication QR code scanning, and reminders are integrated into the mobile application. Health data are being synchronized into the healthcare cloud computing service (Web server system and Web server dataset) to ensure a seamless healthcare monitoring system and anytime and anywhere coverage of network connection is available. Together with a Web page application, medical data are easily accessed by medical professionals or family members. Web page performance evaluation was conducted to ensure minimal Web server latency. The system demonstrates better availability of off-site and up-to-the-minute patient data, which can help detect health problems early and keep elderly patients out of the emergency room, thus providing a better and more comprehensive healthcare cloud computing service. PMID:24316562

  4. Guest editorial. Integrated healthcare information systems.

    PubMed

    Li, Ling; Ge, Ri-Li; Zhou, Shang-Ming; Valerdi, Ricardo

    2012-07-01

    The use of integrated information systems for healthcare has been started more than a decade ago. In recent years, rapid advances in information integration methods have spurred tremendous growth in the use of integrated information systems in healthcare delivery. Various techniques have been used for probing such integrated systems. These techniques include service-oriented architecture (SOA), EAI, workflow management, grid computing, and others. Many applications require a combination of these techniques, which gives rise to the emergence of enterprise systems in healthcare. Development of the techniques originated from different disciplines has the potential to significantly improve the performance of enterprise systems in healthcare. This editorial paper briefly introduces the enterprise systems in the perspective of healthcare informatics. PMID:22760931

  5. Cloud computing technology applied in healthcare for developing large scale flexible solutions.

    PubMed

    Lupşe, Oana Sorina; Vida, Mihaela; Stoicu-Tivadar, Lăcrămioara

    2012-01-01

    An extremely important area in which there is also vital information needed in different locations is the healthcare domain. In the areas of healthcare there is an important exchange of information since there are many departments where a patient can be sent for investigation. In this regard cloud computing is a technology that could really help supporting flexibility, seamless care and financial cuts. PMID:22491119

  6. Spreading Informatics in Educational Technology.

    ERIC Educational Resources Information Center

    Hauser, Zoltan; Kis-Toth, Lajos

    1995-01-01

    Examines developments in information dissemination and educational technology. Highlights include telecommunications, audiovisual media and programmed education, pedagogical technology, advantages of computer-based learning, instructional materials, applied informatics, teacher training, and future perspectives. (AEF)

  7. Basic medical science education must include medical informatics.

    PubMed

    Sarbadhikari, Suptendra Nath

    2004-10-01

    Medical Informatics is the science and art of processing medical information. In this age of "Information Explosion" choosing the useful one is rather difficult, and there lies the scope of electronic database management. However, still many outstanding personnel related to the healthcare sector take pride in being "computer illiterate". The onus of the best use lies on the end-user health care providers only. Another term tele-health encompasses all the e-health and telemedicine services. Computer aided or assisted learning (CAL) is a computer based tutorial method that uses the computer to pose questions, provide remedial information and chart a student through a course. Now the emphasis in medical education, is on problem based learning (PBL) and there CAL could be of utmost help if used judiciously. Basic Medical Education and Research lays the foundation for advancing and applying proper healthcare delivery systems. There is no doubt that deep knowledge of anatomy is mandatory for successful surgery. Also, comprehensive knowledge of physiology is essential for grasping the principles of pathology and pharmacology adequately, to avoid incorrect and inadequate practice of medicine. Similarly, medical informatics is not just a subject to be learnt and forgotten after the first professional MBBS examination. The final aim of every student should not only be to become a good user but also an expert for advancing medical knowledge base through medical informatics. In view of the fast changing world of medical informatics, it is of utmost necessity to formulate a flexible syllabus rather than a rigid one. PMID:15907048

  8. Recommendations for responsible monitoring and regulation of clinical software systems. American Medical Informatics Association, Computer-based Patient Record Institute, Medical Library Association, Association of Academic Health Science Libraries, American Health Information Management Association, American Nurses Association.

    PubMed

    Miller, R A; Gardner, R M

    1997-01-01

    In mid-1996, the FDA called for discussions on regulation of clinical software programs as medical devices. In response, a consortium of organizations dedicated to improving health care through information technology has developed recommendations for the responsible regulation and monitoring of clinical software systems by users, vendors, and regulatory agencies. Organizations assisting in development of recommendations, or endorsing the consortium position include the American Medical Informatics Association, the Computer-based Patient Record Institute, the Medical Library Association, the Association of Academic Health Sciences Libraries, the American Health Information Management Association, the American Nurses Association, the Center for Healthcare Information Management, and the American College of Physicians. The consortium proposes four categories of clinical system risks and four classes of measured monitoring and regulatory actions that can be applied strategically based on the level of risk in a given setting. The consortium recommends local oversight of clinical software systems, and adoption by healthcare information system developers of a code of good business practices. Budgetary and other constraints limit the type and number of systems that the FDA can regulate effectively. FDA regulation should exempt most clinical software systems and focus on those systems posing highest clinical risk, with limited opportunities for competent human intervention. PMID:9391932

  9. Evaluation of Knowledge, Attitude, Practise and Adoption Among Health Care Professionals for Informatics/Computerised Technology Systems.

    PubMed

    Karthik, Kavitha; Munuswamy, Suresh

    2016-01-01

    This proposed study will be conducted in Telangana and Tamil Nadu states in India. Mapping of Health care Professionals by a web-based Delphi technique followed by Focus Group Discussion and Evaluation of Knowledge, Attitude, Practise and Adoption among Health Care Professionals for informatics/computerised technology systems by using structured questionnaire for knowledge and practice and for Attitudes toward Computers in Healthcare (P.A.T.C.H.) Scale will be used to collect the data. This study results will create evidence on present and relevant informatics/computerized technology systems needs and help the research team to develop informatics competencies list and design an online or offline skill up gradation programs for health professionals in India according to their diverse roles in the health care system. The researcher team believes these results will have National relevance to the current focus areas of Government of India and to strengthen the Health Informatics Program offered in IIPH, Hyderabad. PMID:27332450

  10. A Nursing Informatics Research Agenda for 2008–18: Contextual Influences and Key Components

    PubMed Central

    Bakken, Suzanne; Stone, Patricia W.; Larson, Elaine L.

    2008-01-01

    The context for nursing informatics research has changed significantly since the National Institute of Nursing Research-funded Nursing Informatics Research Agenda was published in 1993 and the Delphi study of nursing informatics research priorities reported a decade ago. The authors focus on three specific aspects of context - genomic health care, shifting research paradigms, and social (Web 2.0) technologies - that must be considered in formulating a nursing informatics research agenda. These influences are illustrated using the significant issue of healthcare associated infections (HAI). A nursing informatics research agenda for 2008–18 must expand users of interest to include interdisciplinary researchers; build upon the knowledge gained in nursing concept representation to address genomic and environmental data; guide the reengineering of nursing practice; harness new technologies to empower patients and their caregivers for collaborative knowledge development; develop user-configurable software approaches that support complex data visualization, analysis, and predictive modeling; facilitate the development of middle-range nursing informatics theories; and encourage innovative evaluation methodologies that attend to human-computer interface factors and organizational context. PMID:18922269

  11. A nursing informatics research agenda for 2008-18: contextual influences and key components.

    PubMed

    Bakken, Suzanne; Stone, Patricia W; Larson, Elaine L

    2008-01-01

    The context for nursing informatics research has changed significantly since the National Institute of Nursing Research-funded Nursing Informatics Research Agenda was published in 1993 and the Delphi study of nursing informatics research priorities reported a decade ago. The authors focus on 3 specific aspects of context--genomic health care, shifting research paradigms, and social (Web 2.0) technologies--that must be considered in formulating a nursing informatics research agenda. These influences are illustrated using the significant issue of healthcare associated infections (HAI). A nursing informatics research agenda for 2008-18 must expand users of interest to include interdisciplinary researchers; build upon the knowledge gained in nursing concept representation to address genomic and environmental data; guide the reengineering of nursing practice; harness new technologies to empower patients and their caregivers for collaborative knowledge development; develop user-configurable software approaches that support complex data visualization, analysis, and predictive modeling; facilitate the development of middle-range nursing informatics theories; and encourage innovative evaluation methodologies that attend to human-computer interface factors and organizational context. PMID:18922269

  12. Bioimage Informatics for Big Data.

    PubMed

    Peng, Hanchuan; Zhou, Jie; Zhou, Zhi; Bria, Alessandro; Li, Yujie; Kleissas, Dean Mark; Drenkow, Nathan G; Long, Brian; Liu, Xiaoxiao; Chen, Hanbo

    2016-01-01

    Bioimage informatics is a field wherein high-throughput image informatics methods are used to solve challenging scientific problems related to biology and medicine. When the image datasets become larger and more complicated, many conventional image analysis approaches are no longer applicable. Here, we discuss two critical challenges of large-scale bioimage informatics applications, namely, data accessibility and adaptive data analysis. We highlight case studies to show that these challenges can be tackled based on distributed image computing as well as machine learning of image examples in a multidimensional environment. PMID:27207370

  13. Health Informatics.

    ERIC Educational Resources Information Center

    Russell, Marie; Brittain, J. Michael

    2002-01-01

    Identifies current trends and issues in health informatics with examples of applications, particularly in English-speaking countries. Topics include health systems, professionals, and patients; consumer health information; electronic medical records; nursing; privacy and confidentiality; finding and using information; the Internet; e-mail;…

  14. Health Informatics.

    ERIC Educational Resources Information Center

    MacDougall, Jennifer; Brittain, J. Michael

    1994-01-01

    Examines recent developments in health informatics from a historical and global perspective relating to information management through the interdisciplinary application of information science and technology for the benefits of patients, staff, scientists, managers, and caregivers. Highlights include competition; the World Health Organization;…

  15. TeleMed: Wide-area, secure, collaborative object computing with Java and CORBA for healthcare

    SciTech Connect

    Forslund, D.W.; George, J.E.; Gavrilov, E.M.

    1998-12-31

    Distributed computing is becoming commonplace in a variety of industries with healthcare being a particularly important one for society. The authors describe the development and deployment of TeleMed in a few healthcare domains. TeleMed is a 100% Java distributed application build on CORBA and OMG standards enabling the collaboration on the treatment of chronically ill patients in a secure manner over the Internet. These standards enable other systems to work interoperably with TeleMed and provide transparent access to high performance distributed computing to the healthcare domain. The goal of wide scale integration of electronic medical records is a grand-challenge scale problem of global proportions with far-reaching social benefits.

  16. Comparative effectiveness research and medical informatics.

    PubMed

    D'Avolio, Leonard W; Farwell, Wildon R; Fiore, Louis D

    2010-12-01

    As is the case for environmental, ecological, astronomical, and other sciences, medical practice and research finds itself in a tsunami of data. This data deluge, due primarily to the introduction of digitalization in routine medical care and medical research, affords the opportunity for improved patient care and scientific discovery. Medical informatics is the subdiscipline of medicine created to make greater use of information in order to improve healthcare. The 4 areas of medical informatics research (information access, structure, analysis, and interaction) are used as a framework to discuss the overlap in information needs of comparative effectiveness research and potential contributions of medical informatics. Examples of progress from the medical informatics literature and the Veterans Affairs Healthcare System are provided. PMID:21184865

  17. Informatics in Radiology (infoRAD): personal computer security: part 2. Software Configuration and file protection.

    PubMed

    Caruso, Ronald D

    2004-01-01

    Proper configuration of software security settings and proper file management are necessary and important elements of safe computer use. Unfortunately, the configuration of software security options is often not user friendly. Safe file management requires the use of several utilities, most of which are already installed on the computer or available as freeware. Among these file operations are setting passwords, defragmentation, deletion, wiping, removal of personal information, and encryption. For example, Digital Imaging and Communications in Medicine medical images need to be anonymized, or "scrubbed," to remove patient identifying information in the header section prior to their use in a public educational or research environment. The choices made with respect to computer security may affect the convenience of the computing process. Ultimately, the degree of inconvenience accepted will depend on the sensitivity of the files and communications to be protected and the tolerance of the user. PMID:15371625

  18. Risks and Crises for Healthcare Providers: The Impact of Cloud Computing

    PubMed Central

    Glasberg, Ronald; Hartmann, Michael; Tamm, Gerrit

    2014-01-01

    We analyze risks and crises for healthcare providers and discuss the impact of cloud computing in such scenarios. The analysis is conducted in a holistic way, taking into account organizational and human aspects, clinical, IT-related, and utilities-related risks as well as incorporating the view of the overall risk management. PMID:24707207

  19. Risks and crises for healthcare providers: the impact of cloud computing.

    PubMed

    Glasberg, Ronald; Hartmann, Michael; Draheim, Michael; Tamm, Gerrit; Hessel, Franz

    2014-01-01

    We analyze risks and crises for healthcare providers and discuss the impact of cloud computing in such scenarios. The analysis is conducted in a holistic way, taking into account organizational and human aspects, clinical, IT-related, and utilities-related risks as well as incorporating the view of the overall risk management. PMID:24707207

  20. Fragment informatics and computational fragment-based drug design: an overview and update.

    PubMed

    Sheng, Chunquan; Zhang, Wannian

    2013-05-01

    Fragment-based drug design (FBDD) is a promising approach for the discovery and optimization of lead compounds. Despite its successes, FBDD also faces some internal limitations and challenges. FBDD requires a high quality of target protein and good solubility of fragments. Biophysical techniques for fragment screening necessitate expensive detection equipment and the strategies for evolving fragment hits to leads remain to be improved. Regardless, FBDD is necessary for investigating larger chemical space and can be applied to challenging biological targets. In this scenario, cheminformatics and computational chemistry can be used as alternative approaches that can significantly improve the efficiency and success rate of lead discovery and optimization. Cheminformatics and computational tools assist FBDD in a very flexible manner. Computational FBDD can be used independently or in parallel with experimental FBDD for efficiently generating and optimizing leads. Computational FBDD can also be integrated into each step of experimental FBDD and help to play a synergistic role by maximizing its performance. This review will provide critical analysis of the complementarity between computational and experimental FBDD and highlight recent advances in new algorithms and successful examples of their applications. In particular, fragment-based cheminformatics tools, high-throughput fragment docking, and fragment-based de novo drug design will provide the focus of this review. We will also discuss the advantages and limitations of different methods and the trends in new developments that should inspire future research. PMID:22430881

  1. Health Informatics

    PubMed Central

    Stead, William W.; Lorenzi, Nancy M.

    1999-01-01

    Informatics and information technology do not appear to be valued by the health industry to the degree that they are in other industries. The agenda for health informatics should be presented so that value to the health system is linked directly to required investment. The agenda should acknowledge the foundation provided by the current health system and the role of financial issues, system impediments, policy, and knowledge in effecting change. The desired outcomes should be compelling, such as improved public health, improved quality as perceived by consumers, and lower costs. Strategies to achieve these outcomes should derive from the differentia of health, opportunities to leverage other efforts, and lessons from successes inside and outside the health industry. Examples might include using logistics to improve quality, mass customization to adapt to individual values, and system thinking to change the game to one that can be won. The justification for the informatics infrastructure of a virtual health care data bank, a national health care knowledge base, and a personal clinical health record flows naturally from these strategies. PMID:10495093

  2. Polymer Informatics

    NASA Astrophysics Data System (ADS)

    Adams, Nico

    Polymers are arguably the most important set of materials in common use. The increasing adoption of both combinatorial as well as high-throughput approaches, coupled with an increasing amount of interdisciplinarity, has wrought tremendous change in the field of polymer science. Yet the informatics tools required to support and further enhance these changes are almost completely absent. In the first part of the chapter, a critical analysis of the challenges facing modern polymer informatics is provided. It is argued, that most of the problems facing the field today are rooted in the current scholarly communication process and the way in which chemists and polymer scientists handle and publish data. Furthermore, the chapter reviews existing modes of representing and communicating polymer information and discusses the impact, which the emergence of semantic technologies will have on the way in which scientific and polymer data is published and transmitted. In the second part, a review of the use of informatics tools for the prediction of polymer properties and in silico design of polymers is offered.

  3. Hand-held computers in healthcare: what software programs are available?

    PubMed

    Gillingham, Wayne; Holt, Alec; Gillies, John

    2002-09-27

    The technology sector of healthcare is entering a new evolutionary phase. The medical community has an obligation to the public to provide the safest, most effective healthcare possible. This is more achievable with the use of computer technology at the point of care, and small, portable devices could fulfil this role. A PriceWaterhouse Coopers 2001 survey on information technology in physician practices found that 60% of respondents say that physicians in their organisation use personal digital assistants (PDAs), compared with 26% in the 2000 technology survey. This trend is expected to continue to the point where these devices will have their position on a physician s desk next to the stethoscope. Once this electronic evolution occurs, doctors will be able to practice medicine with greater ease and safety. In our opinion, the new generation of PDA mobile devices will be the tools to enable a transformation of healthcare to a paperless, wireless world. This article focuses on uses of PDAs in healthcare, whether by the registrar, consultant, nurse, student, teacher, patient, medical or surgical director. Current PDA healthcare software is categorised and discussed in the following five groups: 1) reference/text book; 2) calculator; 3) patient management/logbook; 4) personal clinical/study notebook; 5) utility software. PMID:12386664

  4. Cognitive hacking and intelligence and security informatics

    NASA Astrophysics Data System (ADS)

    Thompson, Paul

    2004-08-01

    This paper describes research on cognitive and semantic attacks on computer systems and their users. Several countermeasures against such attacks are described, including a description of a prototype News Verifier system. It is argued that because misinformation and deception play a much more significant role in intelligence and security informatics than in other informatics disciplines such as science, medicine, and the law, a new science of intelligence and security informatics must concern itself with semantic attacks and countermeasures.

  5. Evaluation of Secure Computation in a Distributed Healthcare Setting.

    PubMed

    Kimura, Eizen; Hamada, Koki; Kikuchi, Ryo; Chida, Koji; Okamoto, Kazuya; Manabe, Shirou; Kuroda, Tomohiko; Matsumura, Yasushi; Takeda, Toshihiro; Mihara, Naoki

    2016-01-01

    Issues related to ensuring patient privacy and data ownership in clinical repositories prevent the growth of translational research. Previous studies have used an aggregator agent to obscure clinical repositories from the data user, and to ensure the privacy of output using statistical disclosure control. However, there remain several issues that must be considered. One such issue is that a data breach may occur when multiple nodes conspire. Another is that the agent may eavesdrop on or leak a user's queries and their results. We have implemented a secure computing method so that the data used by each party can be kept confidential even if all of the other parties conspire to crack the data. We deployed our implementation at three geographically distributed nodes connected to a high-speed layer two network. The performance of our method, with respect to processing times, suggests suitability for practical use. PMID:27577361

  6. Medical libraries and computers. The role of medical libraries in medical informatics.

    PubMed

    Matheson, N W

    1986-12-01

    The classic function of health sciences libraries is to build and maintain a knowledge base and to provide timely access to that collective memory for the purpose of learning, teaching, caring for patients, conducting research or managing an organization. The formats and representation of that knowledge base are changing rapidly, as are the methods and techniques for gaining access to information. Medical libraries have long used computers for cataloging and controlling records but are now shifting to acquiring, managing and distributing bibliographic and full-text information to local library "networks." PMID:3811353

  7. An Observational and Computational Variable Tagging System for Climate Change Informatics

    NASA Astrophysics Data System (ADS)

    Pouchard, L. C.; Lenhardt, W.; Branstetter, M. L.; Runciman, A.; Wang, D.; Kao, S.; King, A. W.; Climate Change Informatics Team

    2010-12-01

    As climate change science uses diverse data from observations and computational results to model and validate earth systems from global to local scale, understand complex processes, and perform integrated assessments, adaptable and accessible information systems that integrate these observations and model results are required. The data processing tasks associated with the simultaneous use of observation and modeling data are time-consuming because scientists are typically familiar with one or the other, but rarely both. Each data domain has its own portal, its own metadata formats, and its own query-building methods for obtaining datasets. The exact definition of variables and observational parameters may require substantial searches for unfamiliar topics. The dearth of formal descriptions such as ontologies compounds the problem and negatively impacts the advancement of science for each aspect of studying climate change. Our Observational and Computational Variable Tagging System aims to address these challenges through facilitating the quick identification of datasets of interest across archives by associating variables with tags or keywords from a controlled vocabulary. The prototype currently offers the ability to search by tags, variable names, and annotations. Names, plain text descriptions, units, dimensions, and a link to each dataset are returned. The information is aggregated from various locations at the source of origin. Keywords from NASA’s Global Change Master Directory provide built-in suggestions for tags. These features ensure accuracy and disambiguation. For the target application, the system tags variables and stores data from the Community Climate System Model (CCSM), International Boundary Water Commission, US Geological Survey, National Oceanic and Atmospheric Administration, and NASA. Our tagging system allows users to identify variable names and descriptions of observational and computational data from a single Web interface. Our system

  8. Playable Serious Games for Studying and Programming Computational STEM and Informatics Applications of Distributed and Parallel Computer Architectures

    ERIC Educational Resources Information Center

    Amenyo, John-Thones

    2012-01-01

    Carefully engineered playable games can serve as vehicles for students and practitioners to learn and explore the programming of advanced computer architectures to execute applications, such as high performance computing (HPC) and complex, inter-networked, distributed systems. The article presents families of playable games that are grounded in…

  9. Bebras--A Sustainable Community Building Model for the Concept Based Learning of Informatics and Computational Thinking

    ERIC Educational Resources Information Center

    Dagiene, Valentina; Stupuriene, Gabriele

    2016-01-01

    As an international informatics contest, or challenge, Bebras has started the second decade of its existence. The contest attracts more and more countries every year, recently there have been over 40 participating countries. From a single contest-focused annual event Bebras developed to a multifunctional challenge and an activities-based…

  10. Medical Informatics in Academic Health Science Centers.

    ERIC Educational Resources Information Center

    Frisse, Mark E.

    1992-01-01

    An analysis of the state of medical informatics, the application of computer and information technology to biomedicine, looks at trends and concerns, including integration of traditionally distinct enterprises (clinical information systems, financial information, scholarly support activities, infrastructures); informatics career choice and…

  11. The Teaching of Informatics for Business Students

    ERIC Educational Resources Information Center

    Sora, Sebastian A.

    2008-01-01

    Informatics is a branch of computer science that concerns itself, in actuality, with the use of information systems. The objective of this paper is to focus on the business curriculum for graduate students and their gaining proficiency in informatics so that they can understand the concept of information, the access of information, the use of…

  12. Thermal noise informatics: totally secure communication via a wire, zero-power communication, and thermal noise driven computing

    NASA Astrophysics Data System (ADS)

    Kish, Laszlo B.; Mingesz, Robert; Gingl, Zoltan

    2007-06-01

    Very recently, it has been shown that Gaussian thermal noise and its artificial versions (Johnson-like noises) can be utilized as an information carrier with peculiar properties therefore it may be proper to call this topic Thermal Noise Informatics. Zero Power (Stealth) Communication, Thermal Noise Driven Computing, and Totally Secure Classical Communication are relevant examples. In this paper, while we will briefly describe the first and the second subjects, we shall focus on the third subject, the secure classical communication via wire. This way of secure telecommunication utilizes the properties of Johnson(-like) noise and those of a simple Kirchhoff's loop. The communicator is unconditionally secure at the conceptual (circuit theoretical) level and this property is (so far) unique in communication systems based on classical physics. The communicator is superior to quantum alternatives in all known aspects, except the need of using a wire. In the idealized system, the eavesdropper can extract zero bit of information without getting uncovered. The scheme is naturally protected against the man-in-the-middle attack. The communication can take place also via currently used power lines or phone (wire) lines and it is not only a point-to-point communication like quantum channels but network-ready. We report that a pair of Kirchhoff-Loop-Johnson(-like)-Noise communicators, which is able to work over variable ranges, was designed and built. Tests have been carried out on a model-line with ranges beyond the ranges of any known direct quantum communication channel and they indicate unrivalled signal fidelity and security performance. This simple device has single-wire secure key generation/sharing rates of 0.1, 1, 10, and 100 bit/second for copper wires with diameters/ranges of 21 mm / 2000 km, 7 mm / 200 km, 2.3 mm / 20 km, and 0.7 mm / 2 km, respectively and it performs with 0.02% raw-bit error rate (99.98 % fidelity). The raw-bit security of this practical system

  13. 77 FR 38294 - Patient Safety Organizations: Delisting for Cause for Medical Informatics

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-27

    ... HUMAN SERVICES Agency for Healthcare Research and Quality Patient Safety Organizations: Delisting for Cause for Medical Informatics AGENCY: Agency for Healthcare Research and Quality (AHRQ), HHS. ACTION: Notice of Delisting. SUMMARY: AHRQ has delisted Medical Informatics as a Patient Safety Organization...

  14. The Role of Informatics in Health Care Reform

    PubMed Central

    Liu, Yueyi I.

    2012-01-01

    Improving healthcare quality while simultaneously reducing cost has become a high priority of healthcare reform. Informatics is crucial in tackling this challenge. The American Recovery and Reinvestment Act of 2009 mandates adaptation and “meaningful use (MU)” of health information technology. In this review, we will highlight several areas in which informatics can make significant contributions, with a focus on radiology. We also discuss informatics related to the increasing imperatives of state and local regulations (such as radiation dose tracking) and quality initiatives. PMID:22771052

  15. What informatics is and isn't.

    PubMed

    Friedman, Charles P

    2013-01-01

    The term informatics is currently enveloped in chaos. One way to clarify the meaning of informatics is to identify the competencies associated with training in the field, but this approach can conceal the whole that the competencies atomistically describe. This work takes a different approach by offering three higher-level visions of what characterizes the field, viewing informatics as: (1) cross-training between basic informational sciences and an application domain, (2) the relentless pursuit of making people better at what they do, and (3) a field encompassing four related types of activities. Applying these perspectives to describe what informatics is, one can also conclude that informatics is not: tinkering with computers, analysis of large datasets per se, employment in circumscribed health IT workforce roles, the practice of health information management, or anything done using a computer. PMID:23059730

  16. Bringing nursing informatics into the undergraduate classroom.

    PubMed

    Vanderbeek, J; Ulrich, D; Jaworski, R; Werner, L; Hergert, D; Beery, T; Baas, L

    1994-01-01

    Nursing informatics is not formally addressed in most undergraduate nursing education programs. Nurses usually rely on their employer and/or device vendors to provide this education. Few nurses are able to capitalize on the potential of computer technology because they have not been sufficiently exposed to nursing informatics during their nursing education. Biomedical computer technology/informatics needs to be brought into the classroom, away from the pressures of the work environment. Informatics training needs to be incorporated into undergraduate nursing education through an integrated systems approach, combining elements of nursing, systems analysis, and engineering. In this article, a university-based state-of-the-art classroom and education plan using an integrated approach to educate nurses in nursing informatics is described. PMID:7954066

  17. Workarounds to computer access in healthcare organizations: you want my password or a dead patient?

    PubMed

    Koppel, Ross; Smith, Sean; Blythe, Jim; Kothari, Vijay

    2015-01-01

    Workarounds to computer access in healthcare are sufficiently common that they often go unnoticed. Clinicians focus on patient care, not cybersecurity. We argue and demonstrate that understanding workarounds to healthcare workers' computer access requires not only analyses of computer rules, but also interviews and observations with clinicians. In addition, we illustrate the value of shadowing clinicians and conducing focus groups to understand their motivations and tradeoffs for circumvention. Ethnographic investigation of the medical workplace emerges as a critical method of research because in the inevitable conflict between even well-intended people versus the machines, it's the people who are the more creative, flexible, and motivated. We conducted interviews and observations with hundreds of medical workers and with 19 cybersecurity experts, CIOs, CMIOs, CTO, and IT workers to obtain their perceptions of computer security. We also shadowed clinicians as they worked. We present dozens of ways workers ingeniously circumvent security rules. The clinicians we studied were not "black hat" hackers, but just professionals seeking to accomplish their work despite the security technologies and regulations. PMID:25676976

  18. Medical imaging, PACS, and imaging informatics: retrospective.

    PubMed

    Huang, H K

    2014-01-01

    Historical reviews of PACS (picture archiving and communication system) and imaging informatics development from different points of view have been published in the past (Huang in Euro J Radiol 78:163-176, 2011; Lemke in Euro J Radiol 78:177-183, 2011; Inamura and Jong in Euro J Radiol 78:184-189, 2011). This retrospective attempts to look at the topic from a different angle by identifying certain basic medical imaging inventions in the 1960s and 1970s which had conceptually defined basic components of PACS guiding its course of development in the 1980s and 1990s, as well as subsequent imaging informatics research in the 2000s. In medical imaging, the emphasis was on the innovations at Georgetown University in Washington, DC, in the 1960s and 1970s. During the 1980s and 1990s, research and training support from US government agencies and public and private medical imaging manufacturers became available for training of young talents in biomedical physics and for developing the key components required for PACS development. In the 2000s, computer hardware and software as well as communication networks advanced by leaps and bounds, opening the door for medical imaging informatics to flourish. Because many key components required for the PACS operation were developed by the UCLA PACS Team and its collaborative partners in the 1980s, this presentation is centered on that aspect. During this period, substantial collaborative research efforts by many individual teams in the US and in Japan were highlighted. Credits are due particularly to the Pattern Recognition Laboratory at Georgetown University, and the computed radiography (CR) development at the Fuji Electric Corp. in collaboration with Stanford University in the 1970s; the Image Processing Laboratory at UCLA in the 1980s-1990s; as well as the early PACS development at the Hokkaido University, Sapporo, Japan, in the late 1970s, and film scanner and digital radiography developed by Konishiroku Photo Ind. Co. Ltd

  19. Informatics applied to cytology

    PubMed Central

    Hornish, Maryanne; Goulart, Robert A.

    2008-01-01

    Automation and emerging information technologies are being adopted by cytology laboratories to augment Pap test screening and improve diagnostic accuracy. As a result, informatics, the application of computers and information systems to information management, has become essential for the successful operation of the cytopathology laboratory. This review describes how laboratory information management systems can be used to achieve an automated and seamless workflow process. The utilization of software, electronic databases and spreadsheets to perform necessary quality control measures are discussed, as well as a Lean production system and Six Sigma approach, to reduce errors in the cytopathology laboratory. PMID:19495402

  20. The origins of informatics.

    PubMed Central

    Collen, M F

    1994-01-01

    This article summarizes the origins of informatics, which is based on the science, engineering, and technology of computer hardware, software, and communications. In just four decades, from the 1950s to the 1990s, computer technology has progressed from slow, first-generation vacuum tubes, through the invention of the transistor and its incorporation into microprocessor chips, and ultimately, to fast, fourth-generation very-large-scale-integrated silicon chips. Programming has undergone a parallel transformation, from cumbersome, first-generation, machine languages to efficient, fourth-generation application-oriented languages. Communication has evolved from simple copper wires to complex fiberoptic cables in computer-linked networks. The digital computer has profound implications for the development and practice of clinical medicine. PMID:7719803

  1. Implementation and evaluation of an efficient secure computation system using ‘R’ for healthcare statistics

    PubMed Central

    Chida, Koji; Morohashi, Gembu; Fuji, Hitoshi; Magata, Fumihiko; Fujimura, Akiko; Hamada, Koki; Ikarashi, Dai; Yamamoto, Ryuichi

    2014-01-01

    Background and objective While the secondary use of medical data has gained attention, its adoption has been constrained due to protection of patient privacy. Making medical data secure by de-identification can be problematic, especially when the data concerns rare diseases. We require rigorous security management measures. Materials and methods Using secure computation, an approach from cryptography, our system can compute various statistics over encrypted medical records without decrypting them. An issue of secure computation is that the amount of processing time required is immense. We implemented a system that securely computes healthcare statistics from the statistical computing software ‘R’ by effectively combining secret-sharing-based secure computation with original computation. Results Testing confirmed that our system could correctly complete computation of average and unbiased variance of approximately 50 000 records of dummy insurance claim data in a little over a second. Computation including conditional expressions and/or comparison of values, for example, t test and median, could also be correctly completed in several tens of seconds to a few minutes. Discussion If medical records are simply encrypted, the risk of leaks exists because decryption is usually required during statistical analysis. Our system possesses high-level security because medical records remain in encrypted state even during statistical analysis. Also, our system can securely compute some basic statistics with conditional expressions using ‘R’ that works interactively while secure computation protocols generally require a significant amount of processing time. Conclusions We propose a secure statistical analysis system using ‘R’ for medical data that effectively integrates secret-sharing-based secure computation and original computation. PMID:24763677

  2. Development of a Flexible and Extensible Computer-based Simulation Platform for Healthcare Students.

    PubMed

    Bindoff, Ivan; Cummings, Elizabeth; Ling, Tristan; Chalmers, Leanne; Bereznicki, Luke

    2015-01-01

    Accessing appropriate clinical placement positions for all health profession students can be expensive and challenging. Increasingly simulation, in a range of modes, is being used to enhance student learning and prepare them for clinical placement. Commonly these simulations are focused on the use of simulated patient mannequins which typically presented as single-event scenarios, difficult to organise, and usually scenarios include only a single healthcare profession. Computer based simulation is relatively under-researched and under-utilised but is beginning to demonstrate potential benefits. This paper describes the development and trialling of an entirely virtual 3D simulated environment for inter-professional student education. PMID:25676952

  3. Consumer Health Informatics: Health Information Technology for Consumers.

    ERIC Educational Resources Information Center

    Jimison, Holly Brugge; Sher, Paul Phillip

    1995-01-01

    Explains consumer health informatics and describes the technology advances, the computer programs that are currently available, and the basic research that addresses both the effectiveness of computer health informatics and its impact on the future direction of health care. Highlights include commercial computer products for consumers and…

  4. Building a computer program to support children, parents, and distraction during healthcare procedures.

    PubMed

    Hanrahan, Kirsten; McCarthy, Ann Marie; Kleiber, Charmaine; Ataman, Kaan; Street, W Nick; Zimmerman, M Bridget; Ersig, Anne L

    2012-10-01

    This secondary data analysis used data mining methods to develop predictive models of child risk for distress during a healthcare procedure. Data used came from a study that predicted factors associated with children's responses to an intravenous catheter insertion while parents provided distraction coaching. From the 255 items used in the primary study, 44 predictive items were identified through automatic feature selection and used to build support vector machine regression models. Models were validated using multiple cross-validation tests and by comparing variables identified as explanatory in the traditional versus support vector machine regression. Rule-based approaches were applied to the model outputs to identify overall risk for distress. A decision tree was then applied to evidence-based instructions for tailoring distraction to characteristics and preferences of the parent and child. The resulting decision support computer application, titled Children, Parents and Distraction, is being used in research. Future use will support practitioners in deciding the level and type of distraction intervention needed by a child undergoing a healthcare procedure. PMID:22805121

  5. Advanced Extravehicular Mobility Unit Informatics Software Design

    NASA Technical Reports Server (NTRS)

    Wright, Theodore

    2014-01-01

    This is a description of the software design for the 2013 edition of the Advanced Extravehicular Mobility Unit (AEMU) Informatics computer assembly. The Informatics system is an optional part of the space suit assembly. It adds a graphical interface for displaying suit status, timelines, procedures, and caution and warning information. In the future it will display maps with GPS position data, and video and still images captured by the astronaut.

  6. Building Informatics Environment

    Energy Science and Technology Software Center (ESTSC)

    2008-06-02

    The Building Informatics Environment is a modeling environment based on the Modelica language. The environment allows users to create a computer model of a building and its energy systems with various time scales and physical resolutions. The environment can be used for rapid development of, e.g., demand controls algorithms, new HVAC system solutions and new operational strategies (controls, fault detection and diagnostics). Models for building energy and control systems are made available in the environment.more » The models can be used as provided, or they can be changed and/or linked with each other in order to model the effects that a particular user is interested in.« less

  7. Medical Informatics Education & Research in Greece

    PubMed Central

    Chouvarda, I.

    2015-01-01

    Summary Objectives This paper aims to present an overview of the medical informatics landscape in Greece, to describe the Greek ehealth background and to highlight the main education and research axes in medical informatics, along with activities, achievements and pitfalls. Methods With respect to research and education, formal and informal sources were investigated and information was collected and presented in a qualitative manner, including also quantitative indicators when possible. Results Greece has adopted and applied medical informatics education in various ways, including undergraduate courses in health sciences schools as well as multidisciplinary postgraduate courses. There is a continuous research effort, and large participation in EU-wide initiatives, in all the spectrum of medical informatics research, with notable scientific contributions, although technology maturation is not without barriers. Wide-scale deployment of eHealth is anticipated in the healthcare system in the near future. While ePrescription deployment has been an important step, ICT for integrated care and telehealth have a lot of room for further deployment. Conclusions Greece is a valuable contributor in the European medical informatics arena, and has the potential to offer more as long as the barriers of research and innovation fragmentation are addressed and alleviated. PMID:26123910

  8. Current Status of Nursing Informatics Education in Korea

    PubMed Central

    Jeon, Eunjoo; Kim, Jeongeun; Lee, Ji-Hyun; Kim, Jungha; Jin, Meiling; Ahn, Shinae; Jun, Jooyeon; Song, Healim; On, Jeongah; Jung, Hyesil; Hong, Yeong Joo; Yim, Suran

    2016-01-01

    Objectives This study presents the current status of nursing informatics education, the content covered in nursing informatics courses, the faculty efficacy, and the barriers to and additional supports for teaching nursing informatics in Korea. Methods A set of questionnaires consisting of an 18-item questionnaire for nursing informatics education, a 6-item questionnaire for faculty efficacy, and 2 open-ended questions for barriers and additional supports were sent to 204 nursing schools via email and the postal service. Nursing schools offering nursing informatics were further asked to send their syllabuses. The subjects taught were analyzed using nursing informatics competency categories and other responses were tailed using descriptive statistics. Results A total of 72 schools (35.3%) responded to the survey, of which 38 reported that they offered nursing informatics courses in their undergraduate nursing programs. Nursing informatics courses at 11 schools were taught by a professor with a degree majoring in nursing informatics. Computer technology was the most frequently taught subject (27 schools), followed by information systems used for practice (25 schools). The faculty efficacy was 3.76 ± 0.86 (out of 5). The most frequently reported barrier to teaching nursing informatics (n = 9) was lack of awareness of the importance of nursing informatics. Training and educational opportunities was the most requested additional support. Conclusions Nursing informatics education has increased during the last decade in Korea. However, the proportions of faculty with degrees in nursing informatics and number of schools offering nursing informatics courses have not increased much. Thus, a greater focus is needed on training faculty and developing the courses. PMID:27200224

  9. Assessment of Universal Healthcare Coverage in a District of North India: A Rapid Cross-Sectional Survey Using Tablet Computers

    PubMed Central

    Singh, Tarundeep; Roy, Pritam; Jamir, Limalemla; Gupta, Saurav; Kaur, Navpreet; Jain, D. K.; Kumar, Rajesh

    2016-01-01

    Objective A rapid survey was carried out in Shaheed Bhagat Singh Nagar District of Punjab state in India to ascertain health seeking behavior and out-of-pocket health expenditures. Methods Using multistage cluster sampling design, 1,008 households (28 clusters x 36 households in each cluster) were selected proportionately from urban and rural areas. Households were selected through a house-to-house survey during April and May 2014 whose members had (a) experienced illness in the past 30 days, (b) had illness lasting longer than 30 days, (c) were hospitalized in the past 365 days, or (d) had women who were currently pregnant or experienced childbirth in the past two years. In these selected households, trained investigators, using a tablet computer-based structured questionnaire, enquired about the socio-demographics, nature of illness, source of healthcare, and healthcare and household expenditure. The data was transmitted daily to a central server using wireless communication network. Mean healthcare expenditures were computed for various health conditions. Catastrophic healthcare expenditure was defined as more than 10% of the total annual household expenditure on healthcare. Chi square test for trend was used to compare catastrophic expenditures on hospitalization between households classified into expenditure quartiles. Results The mean monthly household expenditure was 15,029 Indian Rupees (USD 188.2). Nearly 14.2% of the household expenditure was on healthcare. Fever, respiratory tract diseases, gastrointestinal diseases were the common acute illnesses, while heart disease, diabetes mellitus, and respiratory diseases were the more common chronic diseases. Hospitalizations were mainly due to cardiovascular diseases, gastrointestinal problems, and accidents. Only 17%, 18%, 20% and 31% of the healthcare for acute illnesses, chronic illnesses, hospitalizations and childbirth was sought in the government health facilities. Average expenditure in government health

  10. Satisfaction with web-based training in an integrated healthcare delivery network: do age, education, computer skills and attitudes matter?

    PubMed Central

    Atreja, Ashish; Mehta, Neil B; Jain, Anil K; Harris, CM; Ishwaran, Hemant; Avital, Michel; Fishleder, Andrew J

    2008-01-01

    Background Healthcare institutions spend enormous time and effort to train their workforce. Web-based training can potentially streamline this process. However the deployment of web-based training in a large-scale setting with a diverse healthcare workforce has not been evaluated. The aim of this study was to evaluate the satisfaction of healthcare professionals with web-based training and to determine the predictors of such satisfaction including age, education status and computer proficiency. Methods Observational, cross-sectional survey of healthcare professionals from six hospital systems in an integrated delivery network. We measured overall satisfaction to web-based training and response to survey items measuring Website Usability, Course Usefulness, Instructional Design Effectiveness, Computer Proficiency and Self-learning Attitude. Results A total of 17,891 healthcare professionals completed the web-based training on HIPAA Privacy Rule; and of these, 13,537 completed the survey (response rate 75.6%). Overall course satisfaction was good (median, 4; scale, 1 to 5) with more than 75% of the respondents satisfied with the training (rating 4 or 5) and 65% preferring web-based training over traditional instructor-led training (rating 4 or 5). Multivariable ordinal regression revealed 3 key predictors of satisfaction with web-based training: Instructional Design Effectiveness, Website Usability and Course Usefulness. Demographic predictors such as gender, age and education did not have an effect on satisfaction. Conclusion The study shows that web-based training when tailored to learners' background, is perceived as a satisfactory mode of learning by an interdisciplinary group of healthcare professionals, irrespective of age, education level or prior computer experience. Future studies should aim to measure the long-term outcomes of web-based training. PMID:18922178

  11. Impact of medical informatics on medical education.

    PubMed

    Hou, S M

    1999-11-01

    In recent years, medical informatics has become a well-recognized branch of medicine. It is a multidisciplinary science that combines information technology and various specialties of medicine. The impact of medical informatics on medical education is advancing along with the rapid developments in computer science. Departments of medical informatics or similar divisions have appeared in schools of medicine in Taiwan in the past 5 years. At National Taiwan University College of Medicine, we offer curricula in basic computer concepts, network concepts, operating systems, word processing, database and data processing, computer media resources, multimedia computer statistics, intelligent health information systems, medical diagnostic support systems, and electronic medical record systems. Distance learning has also been favorably accepted on this campus. Recently, we proposed the concept of a virtual medical campus, which will break the physical barriers of time and space. We expect this revolution to influence every aspect of medicine, especially medical education. PMID:10705693

  12. Earth Science Informatics Comes of Age

    NASA Technical Reports Server (NTRS)

    Jodha, Siri; Khalsa, S.; Ramachandran, Rahul

    2014-01-01

    The volume and complexity of Earth science data have steadily increased, placing ever-greater demands on researchers, software developers and data managers tasked with handling such data. Additional demands arise from requirements being levied by funding agencies and governments to better manage, preserve and provide open access to data. Fortunately, over the past 10-15 years significant advances in information technology, such as increased processing power, advanced programming languages, more sophisticated and practical standards, and near-ubiquitous internet access have made the jobs of those acquiring, processing, distributing and archiving data easier. These advances have also led to an increasing number of individuals entering the field of informatics as it applies to Geoscience and Remote Sensing. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of data, information, and knowledge. Informatics also encompasses the use of computers and computational methods to support decisionmaking and other applications for societal benefits.

  13. A structural equation modeling approach for the adoption of cloud computing to enhance the Malaysian healthcare sector.

    PubMed

    Ratnam, Kalai Anand; Dominic, P D D; Ramayah, T

    2014-08-01

    The investments and costs of infrastructure, communication, medical-related equipments, and software within the global healthcare ecosystem portray a rather significant increase. The emergence of this proliferation is then expected to grow. As a result, information and cross-system communication became challenging due to the detached independent systems and subsystems which are not connected. The overall model fit expending over a sample size of 320 were tested with structural equation modelling (SEM) using AMOS 20.0 as the modelling tool. SPSS 20.0 is used to analyse the descriptive statistics and dimension reliability. Results of the study show that system utilisation and system impact dimension influences the overall level of services of the healthcare providers. In addition to that, the findings also suggest that systems integration and security plays a pivotal role for IT resources in healthcare organisations. Through this study, a basis for investigation on the need to improvise the Malaysian healthcare ecosystem and the introduction of a cloud computing platform to host the national healthcare information exchange has been successfully established. PMID:24957398

  14. Health Informatics: An Overview.

    ERIC Educational Resources Information Center

    MacDougall, Jennifer; And Others

    1996-01-01

    Reviews literature related to health informatics and health information management. Provides examples covering types of information, library and information services outcomes, training of informatics professionals, areas of application, the impact of evidence based medicine, professional issues, integrated information systems, and the needs of the…

  15. Enzyme Informatics

    PubMed Central

    Alderson, Rosanna G.; Ferrari, Luna De; Mavridis, Lazaros; McDonagh, James L.; Mitchell, John B. O.; Nath, Neetika

    2012-01-01

    Over the last 50 years, sequencing, structural biology and bioinformatics have completely revolutionised biomolecular science, with millions of sequences and tens of thousands of three dimensional structures becoming available. The bioinformatics of enzymes is well served by, mostly free, online databases. BRENDA describes the chemistry, substrate specificity, kinetics, preparation and biological sources of enzymes, while KEGG is valuable for understanding enzymes and metabolic pathways. EzCatDB, SFLD and MACiE are key repositories for data on the chemical mechanisms by which enzymes operate. At the current rate of genome sequencing and manual annotation, human curation will never finish the functional annotation of the ever-expanding list of known enzymes. Hence there is an increasing need for automated annotation, though it is not yet widespread for enzyme data. In contrast, functional ontologies such as the Gene Ontology already profit from automation. Despite our growing understanding of enzyme structure and dynamics, we are only beginning to be able to design novel enzymes. One can now begin to trace the functional evolution of enzymes using phylogenetics. The ability of enzymes to perform secondary functions, albeit relatively inefficiently, gives clues as to how enzyme function evolves. Substrate promiscuity in enzymes is one example of imperfect specificity in protein-ligand interactions. Similarly, most drugs bind to more than one protein target. This may sometimes result in helpful polypharmacology as a drug modulates plural targets, but also often leads to adverse side-effects. Many cheminformatics approaches can be used to model the interactions between druglike molecules and proteins in silico. We can even use quantum chemical techniques like DFT and QM/MM to compute the structural and energetic course of enzyme catalysed chemical reaction mechanisms, including a full description of bond making and breaking. PMID:23116471

  16. (Bio)Medical Informatics in the Next Decade

    PubMed Central

    Rindfleisch, Thomas C.

    1998-01-01

    Even though medical informatics is most often viewed from the perspective of its host disciplines in clinical and biologic medicine, it has an identity and agenda of its own. This paper is an attempt to promote discussion about the long-term role and agenda for medical informatics as a discipline into the next decade. The discussion has two main lines of argument, one about the “engineering” goals of informatics and the other about the “basic research” goals. These are, of course, influenced by ongoing developments in computing, communications, and software infrastructures, but informatics is now mature enough that many of its goals transcend these changes. PMID:9760389

  17. Continuous quality improvement and medical informatics: the convergent synergy.

    PubMed

    Werth, G R; Connelly, D P

    1992-01-01

    Continuous quality improvement (CQI) and medical informatics specialists need to converge their efforts to create synergy for improving health care. Health care CQI needs medical informatics' expertise and technology to build the information systems needed to manage health care organizations according to quality improvement principles. Medical informatics needs CQI's philosophy and methods to build health care information systems that can evolve to meet the changing needs of clinicians and other stakeholders. This paper explores the philosophical basis for convergence of CQI and medical informatics efforts, and then examines a clinical computer workstation development project that is applying a combined approach. PMID:1482948

  18. Computer-Supported Feedback Message Tailoring for Healthcare Providers in Malawi: Proof-of-Concept

    PubMed Central

    Landis-Lewis, Zach; Douglas, Gerald P; Hochheiser, Harry; Kam, Matthew; Gadabu, Oliver; Bwanali, Mwatha; Jacobson, Rebecca S

    2015-01-01

    Although performance feedback has the potential to help clinicians improve the quality and safety of care, healthcare organizations generally lack knowledge about how this guidance is best provided. In low-resource settings, tools for theory-informed feedback tailoring may enhance limited clinical supervision resources. Our objectives were to establish proof-of-concept for computer-supported feedback message tailoring in Malawi, Africa. We conducted this research in five stages: clinical performance measurement, modeling the influence of feedback on antiretroviral therapy (ART) performance, creating a rule-based message tailoring process, generating tailored messages for recipients, and finally analysis of performance and message tailoring data. We retrospectively generated tailored messages for 7,448 monthly performance reports from 11 ART clinics. We found that tailored feedback could be routinely generated for four guideline-based performance indicators, with 35% of reports having messages prioritized to optimize the effect of feedback. This research establishes proof-of-concept for a novel approach to improving the use of clinical performance feedback in low-resource settings and suggests possible directions for prospective evaluations comparing alternative designs of feedback messages. PMID:26958217

  19. The next generation Internet and health care: a civics lesson for the informatics community.

    PubMed Central

    Shortliffe, E. H.

    1998-01-01

    The Internet provides one of the most compelling examples of the way in which government research investments can, in time, lead to innovations of broad social and economic impact. This paper reviews the history of the Internet's evolution, emphasizing in particular its relationship to medical informatics and to the nation's health-care system. Current national research programs are summarized and the need for more involvement by the informatics community and by federal health-care agencies is emphasized. PMID:9929176

  20. The Biodiversity Informatics Potential Index

    PubMed Central

    2011-01-01

    Background Biodiversity informatics is a relatively new discipline extending computer science in the context of biodiversity data, and its development to date has not been uniform throughout the world. Digitizing effort and capacity building are costly, and ways should be found to prioritize them rationally. The proposed 'Biodiversity Informatics Potential (BIP) Index' seeks to fulfill such a prioritization role. We propose that the potential for biodiversity informatics be assessed through three concepts: (a) the intrinsic biodiversity potential (the biological richness or ecological diversity) of a country; (b) the capacity of the country to generate biodiversity data records; and (c) the availability of technical infrastructure in a country for managing and publishing such records. Methods Broadly, the techniques used to construct the BIP Index were rank correlation, multiple regression analysis, principal components analysis and optimization by linear programming. We built the BIP Index by finding a parsimonious set of country-level human, economic and environmental variables that best predicted the availability of primary biodiversity data accessible through the Global Biodiversity Information Facility (GBIF) network, and constructing an optimized model with these variables. The model was then applied to all countries for which sufficient data existed, to obtain a score for each country. Countries were ranked according to that score. Results Many of the current GBIF participants ranked highly in the BIP Index, although some of them seemed not to have realized their biodiversity informatics potential. The BIP Index attributed low ranking to most non-participant countries; however, a few of them scored highly, suggesting that these would be high-return new participants if encouraged to contribute towards the GBIF mission of free and open access to biodiversity data. Conclusions The BIP Index could potentially help in (a) identifying countries most likely to

  1. High Throughput Computing Impact on Meta Genomics (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    SciTech Connect

    Gore, Brooklin

    2011-10-12

    This presentation includes a brief background on High Throughput Computing, correlating gene transcription factors, optical mapping, genotype to phenotype mapping via QTL analysis, and current work on next gen sequencing.

  2. High Throughput Computing Impact on Meta Genomics (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Gore, Brooklin [Morgridge Institute for Research

    2013-01-22

    This presentation includes a brief background on High Throughput Computing, correlating gene transcription factors, optical mapping, genotype to phenotype mapping via QTL analysis, and current work on next gen sequencing.

  3. Health informatics and the delivery of care to older people.

    PubMed

    Koch, Sabine; Hägglund, Maria

    2009-07-20

    In the light of an aging society, effective delivery of healthcare will be more dependent on different technological solutions supporting the decentralization of healthcare, higher patient involvement and increased societal demands. The aim of this article is therefore, to describe the role of health informatics in the care of elderly people and to give an overview of the state of the art in this field. Based on a review of the existing scientific literature, 29 review articles from the last 15 years and 119 original articles from the last 5 years were selected and further analysed. Results show that review articles cover the fields of information technology in the home environment, integrated health information systems, public health systems, consumer health informatics and non-technology oriented topics such as nutrition, physical behaviour, medication and the aging process in general. Articles presenting original data can be divided into 5 major clusters: information systems and decision support, consumer health informatics, emerging technologies, home telehealth, and informatics methods. Results show that health informatics in elderly care is an expanding field of interest but we still do lack knowledge about the elderly person's needs of technology and how it should best be designed. Surprisingly, few studies cover gender differences related to technology use. Further cross-disciplinary research is needed that relates informatics and technology to different stages of the aging process and that evaluates the effects of technical solutions. PMID:19487092

  4. Next generation informatics for big data in precision medicine era.

    PubMed

    Zhang, Yuji; Zhu, Qian; Liu, Hongfang

    2015-01-01

    The rise of data-intensive biology, advances in informatics technology, and changes in the way health care is delivered has created an compelling opportunity to allow us investigate biomedical questions in the context of "big data" and develop knowledge systems to support precision medicine. To promote such data mining and informatics technology development in precision medicine, we hosted two international informatics workshops in 2014: 1) the first workshop on Data Mining in Biomedical informatics and Healthcare, in conjunction with the 18th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2014), and 2) the first workshop on Translational biomedical and clinical informatics, in conjunction with the 8th International Conference on Systems Biology and the 4th Translational Bioinformatics Conference (ISB/TBC 2014). This thematic issue of BioData Mining presents a series of selected papers from these two international workshops, aiming to address the data mining needs in the informatics field due to the deluge of "big data" generated by next generation biotechnologies such as next generation sequencing, metabolomics, and proteomics, as well as the structured and unstructured biomedical and healthcare data from electronic health records. We are grateful for the BioData Mining's willingness to produce this forward-looking thematic issue. PMID:26539249

  5. Big Data and Biomedical Informatics: A Challenging Opportunity

    PubMed Central

    2014-01-01

    Summary Big data are receiving an increasing attention in biomedicine and healthcare. It is therefore important to understand the reason why big data are assuming a crucial role for the biomedical informatics community. The capability of handling big data is becoming an enabler to carry out unprecedented research studies and to implement new models of healthcare delivery. Therefore, it is first necessary to deeply understand the four elements that constitute big data, namely Volume, Variety, Velocity, and Veracity, and their meaning in practice. Then, it is mandatory to understand where big data are present, and where they can be beneficially collected. There are research fields, such as translational bioinformatics, which need to rely on big data technologies to withstand the shock wave of data that is generated every day. Other areas, ranging from epidemiology to clinical care, can benefit from the exploitation of the large amounts of data that are nowadays available, from personal monitoring to primary care. However, building big data-enabled systems carries on relevant implications in terms of reproducibility of research studies and management of privacy and data access; proper actions should be taken to deal with these issues. An interesting consequence of the big data scenario is the availability of new software, methods, and tools, such as map-reduce, cloud computing, and concept drift machine learning algorithms, which will not only contribute to big data research, but may be beneficial in many biomedical informatics applications. The way forward with the big data opportunity will require properly applied engineering principles to design studies and applications, to avoid preconceptions or over-enthusiasms, to fully exploit the available technologies, and to improve data processing and data management regulations. PMID:24853034

  6. Big data and biomedical informatics: a challenging opportunity.

    PubMed

    Bellazzi, R

    2014-01-01

    Big data are receiving an increasing attention in biomedicine and healthcare. It is therefore important to understand the reason why big data are assuming a crucial role for the biomedical informatics community. The capability of handling big data is becoming an enabler to carry out unprecedented research studies and to implement new models of healthcare delivery. Therefore, it is first necessary to deeply understand the four elements that constitute big data, namely Volume, Variety, Velocity, and Veracity, and their meaning in practice. Then, it is mandatory to understand where big data are present, and where they can be beneficially collected. There are research fields, such as translational bioinformatics, which need to rely on big data technologies to withstand the shock wave of data that is generated every day. Other areas, ranging from epidemiology to clinical care, can benefit from the exploitation of the large amounts of data that are nowadays available, from personal monitoring to primary care. However, building big data-enabled systems carries on relevant implications in terms of reproducibility of research studies and management of privacy and data access; proper actions should be taken to deal with these issues. An interesting consequence of the big data scenario is the availability of new software, methods, and tools, such as map-reduce, cloud computing, and concept drift machine learning algorithms, which will not only contribute to big data research, but may be beneficial in many biomedical informatics applications. The way forward with the big data opportunity will require properly applied engineering principles to design studies and applications, to avoid preconceptions or over-enthusiasms, to fully exploit the available technologies, and to improve data processing and data management regulations. PMID:24853034

  7. Emerging Vaccine Informatics

    PubMed Central

    He, Yongqun; Rappuoli, Rino; De Groot, Anne S.; Chen, Robert T.

    2010-01-01

    Vaccine informatics is an emerging research area that focuses on development and applications of bioinformatics methods that can be used to facilitate every aspect of the preclinical, clinical, and postlicensure vaccine enterprises. Many immunoinformatics algorithms and resources have been developed to predict T- and B-cell immune epitopes for epitope vaccine development and protective immunity analysis. Vaccine protein candidates are predictable in silico from genome sequences using reverse vaccinology. Systematic transcriptomics and proteomics gene expression analyses facilitate rational vaccine design and identification of gene responses that are correlates of protection in vivo. Mathematical simulations have been used to model host-pathogen interactions and improve vaccine production and vaccination protocols. Computational methods have also been used for development of immunization registries or immunization information systems, assessment of vaccine safety and efficacy, and immunization modeling. Computational literature mining and databases effectively process, mine, and store large amounts of vaccine literature and data. Vaccine Ontology (VO) has been initiated to integrate various vaccine data and support automated reasoning. PMID:21772787

  8. Informatics and the clinical laboratory.

    PubMed

    Jones, Richard G; Johnson, Owen A; Batstone, Gifford

    2014-08-01

    The nature of pathology services is changing under the combined pressures of increasing workloads, cost constraints and technological advancement. In the face of this, laboratory systems need to meet new demands for data exchange with clinical electronic record systems for test requesting and results reporting. As these needs develop, new challenges are emerging especially with respect to the format and content of the datasets which are being exchanged. If the potential for the inclusion of intelligent systems in both these areas is to be realised, the continued dialogue between clinicians and laboratory information specialists is of paramount importance. Requirements of information technology (IT) in pathology, now extend well beyond the provision of purely analytical data. With the aim of achieving seamless integration of laboratory data into the total clinical pathway, 'Informatics' - the art and science of turning data into useful information - is becoming increasingly important in laboratory medicine. Informatics is a powerful tool in pathology - whether in implementing processes for pathology modernisation, introducing new diagnostic modalities (e.g. proteomics, genomics), providing timely and evidence-based disease management, or enabling best use of limited and often costly resources. Providing appropriate information to empowered and interested patients - which requires critical assessment of the ever-increasing volume of information available - can also benefit greatly from appropriate use of informatics in enhancing self-management of long term conditions. The increasing demands placed on pathology information systems in the context of wider developmental change in healthcare delivery are explored in this review. General trends in medical informatics are reflected in current priorities for laboratory medicine, including the need for unified electronic records, computerised order entry, data security and recovery, and audit. We conclude that there is a

  9. The Influence of Computers and Informatics on Mathematics and Its Teaching. Science and Technology Education Series, 44.

    ERIC Educational Resources Information Center

    Cornu, Bernard, Ed.; Ralston, Anthony, Ed.

    In 1985 the International Commission on Mathematical Instruction (ICMI) published the first edition of a book of studies on the topic of the influence of computers on mathematics and the teaching of mathematics. This document is an updated version of that book and includes five articles from the 1985 ICMI conference at Strasbourg, France; reports…

  10. HRP's Healthcare Spin-Offs Through Computational Modeling and Simulation Practice Methodologies

    NASA Technical Reports Server (NTRS)

    Mulugeta, Lealem; Walton, Marlei; Nelson, Emily; Peng, Grace; Morrison, Tina; Erdemir, Ahmet; Myers, Jerry

    2014-01-01

    substantial interest by the broader medical community though institutions like the National Institutes of Health (NIH) and the Food and Drug Administration (FDA) to develop similar standards and guidelines applicable to the larger medical operations and research community. DISCUSSION: Similar to NASA, many leading government agencies, health institutions and medical product developers around the world are recognizing the potential of computational M&S to support clinical research and decision making. In this light, substantial investments are being made in computational medicine and notable discoveries are being realized [8]. However, there is a lack of broadly applicable practice guidance for the development and implementation of M&S in clinical care and research in a manner that instills confidence among medical practitioners and biological researchers [9,10]. In this presentation, we will give an overview on how HRP is working with the NIH's Interagency Modeling and Analysis Group (IMAG), the FDA and the American Society of Mechanical Engineers (ASME) to leverage NASA's biomedical VV&C processes to establish a new regulatory standard for Verification and Validation in Computational Modeling of Medical Devices, and Guidelines for Credible Practice of Computational Modeling and Simulation in Healthcare.

  11. The Integration of Nursing Informatics in Delaware Nursing Education Programs

    ERIC Educational Resources Information Center

    Wheeler, Bernadette

    2016-01-01

    Over the past decade, there has been a conversion to electronic health records (EHRs) in an effort to improve patient care, access, and efficiency. The goal, which has been supported by federal initiatives, is to meaningfully use informatics to improve the safety and quality of patient care as a major force in improving healthcare. How nurses…

  12. Informatics in Turkey

    NASA Technical Reports Server (NTRS)

    Cakir, Serhat

    1994-01-01

    In the last twenty years the rapid change in the informatics sector has had economic and social impact on private and government activities. The Supreme Council for Science and Technology of Turkey assigned highest priority to the informatics in its meeting in February 1993. With this advice TUBITAK (The Scientific and Technical Research Council of Turkey) intends to give a strong impulse to development of a research policy in this field.

  13. Clinical Microbiology Informatics

    PubMed Central

    Sintchenko, Vitali; Rauch, Carol A.; Pantanowitz, Liron

    2014-01-01

    SUMMARY The clinical microbiology laboratory has responsibilities ranging from characterizing the causative agent in a patient's infection to helping detect global disease outbreaks. All of these processes are increasingly becoming partnered more intimately with informatics. Effective application of informatics tools can increase the accuracy, timeliness, and completeness of microbiology testing while decreasing the laboratory workload, which can lead to optimized laboratory workflow and decreased costs. Informatics is poised to be increasingly relevant in clinical microbiology, with the advent of total laboratory automation, complex instrument interfaces, electronic health records, clinical decision support tools, and the clinical implementation of microbial genome sequencing. This review discusses the diverse informatics aspects that are relevant to the clinical microbiology laboratory, including the following: the microbiology laboratory information system, decision support tools, expert systems, instrument interfaces, total laboratory automation, telemicrobiology, automated image analysis, nucleic acid sequence databases, electronic reporting of infectious agents to public health agencies, and disease outbreak surveillance. The breadth and utility of informatics tools used in clinical microbiology have made them indispensable to contemporary clinical and laboratory practice. Continued advances in technology and development of these informatics tools will further improve patient and public health care in the future. PMID:25278581

  14. Nursing informatics: the future now.

    PubMed

    Mamta

    2014-01-01

    Technological advancements in the health care field have always impacted the health care practices. Nursing practice has also been greatly influenced by the technology. In the recent years, use of information technology including computers, handheld digital devices, internet has advanced the nursing by bridging the gap from nursing as an art to nursing as science. In every sphere of nursing practice, nursing research, nursing education and nursing informatics play a very important role. If used properly it is a way to save time, helping to provide quality nursing care and increases the proficiency of nursing personnel. PMID:25924417

  15. Clinical fellowship training in pathology informatics: A program description

    PubMed Central

    Gilbertson, John R.; McClintock, David S.; Lee, Roy E.; Onozato, Maristela; Kuo, Frank C.; Beckwith, Bruce A.; Yagi, Yukako; Dighe, Anand S.; Gudewicz, Tom M.; Le, Long P.; Wilbur, David C.; Kim, Ji Yeon; Brodsky, Victor B.; Black-Schaffer, Stephen

    2012-01-01

    Background: In 2007, our healthcare system established a clinical fellowship program in pathology informatics. In 2011, the program benchmarked its structure and operations against a 2009 white paper “Program requirements for fellowship education in the subspecialty of clinical informatics”, endorsed by the Board of the American Medical Informatics Association (AMIA) that described a proposal for a general clinical informatics fellowship program. Methods: A group of program faculty members and fellows compared each of the proposed requirements in the white paper with the fellowship program's written charter and operations. The majority of white paper proposals aligned closely with the rules and activities in our program and comparison was straightforward. In some proposals, however, differences in terminology, approach, and philosophy made comparison less direct, and in those cases, the thinking of the group was recorded. After the initial evaluation, the remainder of the faculty reviewed the results and any disagreements were resolved. Results: The most important finding of the study was how closely the white paper proposals for a general clinical informatics fellowship program aligned with the reality of our existing pathology informatics fellowship. The program charter and operations of the program were judged to be concordant with the great majority of specific white paper proposals. However, there were some areas of discrepancy and the reasons for the discrepancies are discussed in the manuscript. Conclusions: After the comparison, we conclude that the existing pathology informatics fellowship could easily meet all substantive proposals put forth in the 2009 clinical informatics program requirements white paper. There was also agreement on a number of philosophical issues, such as the advantages of multiple fellows, the need for core knowledge and skill sets, and the need to maintain clinical skills during informatics training. However, there were other

  16. Medical informatics and telemedicine: A vision

    NASA Technical Reports Server (NTRS)

    Clemmer, Terry P.

    1991-01-01

    The goal of medical informatics is to improve care. This requires the commitment and harmonious collaboration between the computer scientists and clinicians and an integrated database. The vision described is how medical information systems are going to impact the way medical care is delivered in the future.

  17. Software engineering education in medical informatics.

    PubMed

    Leven, F J

    1989-11-01

    Requirements and approaches of Software Engineering education in the field of Medical Informatics are described with respect to the impact of (1) experiences characterizing the "software misery", (2) status and tendencies in software methodology, and (3) educational status and needs in computer science education influenced by the controversy "theoretical versus practical education". Special attention is directed toward the growing importance of analysis, design methods, and techniques in the professional spectrum of Medical Informatics, the relevance of general principles of systems engineering in health care, the potential of non-procedural programming paradigms, and the intersection of Artificial Intelligence and education. Realizations of and experiences with programs in the field of Software Engineering are reported with respect to special requirements in Medical Informatics. PMID:2695780

  18. Innovation in transformative nursing leadership: nursing informatics competencies and roles.

    PubMed

    Remus, Sally; Kennedy, Margaret Ann

    2012-12-01

    In a recent brief to the Canadian Nurses Association's National Expert Commission on the Health of Our Nation, the Academy of Canadian Executive Nurses (ACEN) discussed leadership needs in the Canadian healthcare system, and promoted the pivotal role of nursing executives in transforming Canada's healthcare system into an integrated patient-centric system. Included among several recommendations was the need to develop innovative leadership competencies that enable nurse leaders to lead and advance transformative health system change. This paper focuses on an emerging "avant-garde executive leadership competency" recommended for today's health leaders to guide health system transformation. Specifically, this competency is articulated as "state of the art communication and technology savvy," and it implies linkages between nursing informatics competencies and transformational leadership roles for nurse executive. The authors of this paper propose that distinct nursing informatics competencies are required to augment traditional executive skills to support transformational outcomes of safe, integrated, high-quality care delivery through knowledge-driven care. International trends involving nursing informatics competencies and the evolution of new corporate informatics roles, such as chief nursing informatics officers (CNIOs), are demonstrating value and advanced transformational leadership as nursing executive roles that are informed by clinical data. PMID:23803423

  19. A hypergraphic model of medical informatics: curriculum development guide.

    PubMed Central

    Chi, X.; Pavilcek, K.

    1999-01-01

    Medical informatics, as a descriptive, scientific study, must be mathematically or theoretically described. Is it important to define a model for medical informatics? The answer is worth pursuing. The medical informatics profession stands to benefit three-fold: first, by clarifying the vagueness of the definition of medical informatics, secondly, by identifying the scope and content for educational programs, and, thirdly, by defining career opportunities for its graduates. Existing medical informatics curricula are not comparable. Consequently, the knowledge and skills of graduates from these programs are difficult to assess. The challenge is to promote academics that develops graduates for prospective employers to fulfill the criteria of the health care industry and, simultaneously, compete with computer science programs that produce information technology graduates. In order to meet this challenge, medical informatics programs must have unique curricula that distinguishes its graduates. The solution is to educate students in a comparable manner across the domain of medical informatics. This paper discusses a theoretical model for medical informatics. Images Figure PMID:10566316

  20. Massive Open Online Course for Health Informatics Education

    PubMed Central

    2014-01-01

    Objectives This paper outlines a new method of teaching health informatics to large numbers of students from around the world through a Massive Open Online Course (MOOC). Methods The Health Informatics Forum is one of examples of MOOCs through a social networking site for educating health informatics students and professionals. It is running a MOOC for students from around the world that uses creative commons licenced content funded by the US government and developed by five US universities. The content is delivered through narrated lectures with slides that can be viewed online with discussion threads on the forum for class interactions. Students can maintain a professional profile, upload photos and files, write their own blog posts and post discussion threads on the forum. Results The Health Informatics Forum MOOC has been accessed by 11,316 unique users from 127 countries from August 2, 2012 to January 24, 2014. Most users accessed the MOOC via a desktop computer, followed by tablets and mobile devices and 55% of users were female. Over 400,000 unique users have now accessed the wider Health Informatics Forum since it was established in 2008. Conclusions Advances in health informatics and educational technology have both created a demand for online learning material in health informatics and a solution for providing it. By using a MOOC delivered through a social networking platform it is hoped that high quality health informatics education will be able to be delivered to a large global audience of future health informaticians without cost. PMID:24872906

  1. Informatics and the Clinical Laboratory

    PubMed Central

    Jones, Richard G; Johnson, Owen A; Batstone, Gifford

    2014-01-01

    The nature of pathology services is changing under the combined pressures of increasing workloads, cost constraints and technological advancement. In the face of this, laboratory systems need to meet new demands for data exchange with clinical electronic record systems for test requesting and results reporting. As these needs develop, new challenges are emerging especially with respect to the format and content of the datasets which are being exchanged. If the potential for the inclusion of intelligent systems in both these areas is to be realised, the continued dialogue between clinicians and laboratory information specialists is of paramount importance. Requirements of information technology (IT) in pathology, now extend well beyond the provision of purely analytical data. With the aim of achieving seamless integration of laboratory data into the total clinical pathway, ‘Informatics’ – the art and science of turning data into useful information – is becoming increasingly important in laboratory medicine. Informatics is a powerful tool in pathology – whether in implementing processes for pathology modernisation, introducing new diagnostic modalities (e.g. proteomics, genomics), providing timely and evidence-based disease management, or enabling best use of limited and often costly resources. Providing appropriate information to empowered and interested patients – which requires critical assessment of the ever-increasing volume of information available – can also benefit greatly from appropriate use of informatics in enhancing self-management of long term conditions. The increasing demands placed on pathology information systems in the context of wider developmental change in healthcare delivery are explored in this review. General trends in medical informatics are reflected in current priorities for laboratory medicine, including the need for unified electronic records, computerised order entry, data security and recovery, and audit. We conclude that

  2. Case-based medical informatics

    PubMed Central

    Pantazi, Stefan V; Arocha, José F; Moehr, Jochen R

    2004-01-01

    Background The "applied" nature distinguishes applied sciences from theoretical sciences. To emphasize this distinction, we begin with a general, meta-level overview of the scientific endeavor. We introduce the knowledge spectrum and four interconnected modalities of knowledge. In addition to the traditional differentiation between implicit and explicit knowledge we outline the concepts of general and individual knowledge. We connect general knowledge with the "frame problem," a fundamental issue of artificial intelligence, and individual knowledge with another important paradigm of artificial intelligence, case-based reasoning, a method of individual knowledge processing that aims at solving new problems based on the solutions to similar past problems. We outline the fundamental differences between Medical Informatics and theoretical sciences and propose that Medical Informatics research should advance individual knowledge processing (case-based reasoning) and that natural language processing research is an important step towards this goal that may have ethical implications for patient-centered health medicine. Discussion We focus on fundamental aspects of decision-making, which connect human expertise with individual knowledge processing. We continue with a knowledge spectrum perspective on biomedical knowledge and conclude that case-based reasoning is the paradigm that can advance towards personalized healthcare and that can enable the education of patients and providers. We center the discussion on formal methods of knowledge representation around the frame problem. We propose a context-dependent view on the notion of "meaning" and advocate the need for case-based reasoning research and natural language processing. In the context of memory based knowledge processing, pattern recognition, comparison and analogy-making, we conclude that while humans seem to naturally support the case-based reasoning paradigm (memory of past experiences of problem-solving and

  3. Laboratory computing--process and information management supporting high-quality, cost-effective healthcare.

    PubMed

    Buffone, G J; Moreau, D R

    1995-09-01

    One currently observes many healthcare institutions rushing to reengineer and install information systems with the expectation of achieving enhanced efficiency, competitiveness, and, it is hoped, higher patient satisfaction resulting from timely, high-quality care. Unfortunately, information system concepts, design, and implementation have not yet addressed the complexity of representing and managing clinical processes. As a result, much of the synergy one might expect to derive from understanding and designing clinical processes to gain efficiency and quality while maintaining humanness is not readily achievable by implementing traditional information systems. In this presentation, with laboratory services as an example, we describe a conceptually different information systems model, which we believe would aid care-givers in their efforts to deliver compassionate, quality care while addressing the highly competitive nature of market-driven healthcare. PMID:7656450

  4. Informatics in Infection Control.

    PubMed

    Lin, Michael Y; Trick, William E

    2016-09-01

    Informatics tools are becoming integral to routine infection control activities. Informatics has the potential to improve infection control outcomes in surveillance, prevention, and connections with public health. Surveillance activities include fully or semiautomated surveillance of infections, surveillance of device use, and hospital/ward outbreak investigation. Prevention activities include awareness of multidrug-resistant organism carriage on admission, enhanced interfacility communication, identifying inappropriate infection precautions, reducing device use, and antimicrobial stewardship. Public health activities include electronic communicable disease reporting, syndromic surveillance, and regional outbreak detection. The challenge for infection control personnel is in translating the knowledge gained from electronic surveillance systems into action. PMID:27515146

  5. Molecular Pathology Informatics.

    PubMed

    Roy, Somak

    2015-06-01

    Molecular informatics (MI) is an evolving discipline that will support the dynamic landscape of molecular pathology and personalized medicine. MI provides a fertile ground for development of clinical solutions to bridge the gap between clinical informatics and bioinformatics. Rapid adoption of next generation sequencing (NGS) in the clinical arena has triggered major endeavors in MI that are expected to bring a paradigm shift in the practice of pathology. This brief review presents a broad overview of various aspects of MI, particularly in the context of NGS based testing. PMID:26065793

  6. Biomedical informatics and translational medicine

    PubMed Central

    2010-01-01

    Biomedical informatics involves a core set of methodologies that can provide a foundation for crossing the "translational barriers" associated with translational medicine. To this end, the fundamental aspects of biomedical informatics (e.g., bioinformatics, imaging informatics, clinical informatics, and public health informatics) may be essential in helping improve the ability to bring basic research findings to the bedside, evaluate the efficacy of interventions across communities, and enable the assessment of the eventual impact of translational medicine innovations on health policies. Here, a brief description is provided for a selection of key biomedical informatics topics (Decision Support, Natural Language Processing, Standards, Information Retrieval, and Electronic Health Records) and their relevance to translational medicine. Based on contributions and advancements in each of these topic areas, the article proposes that biomedical informatics practitioners ("biomedical informaticians") can be essential members of translational medicine teams. PMID:20187952

  7. About the beginnings of medical informatics in europe.

    PubMed

    Roger France, Francis

    2014-02-01

    The term "Informatics" was created in 1962 from two words, information and automatic, and covers all techniques, information concepts and applications of computers. Among them, medicine is the field where we will describe some factors of development in Europe since the late sixties. It took some time for obtaining the acceptance of this new terminology worldwide, but today medical informatics is a well defined discipline which had a tremendous development last decades. This paper tries to recall the context and events from the beginning of medical informatics in Europe. PMID:24648614

  8. Informatics: A Brief Survey.

    ERIC Educational Resources Information Center

    He, Shaoyi

    2003-01-01

    Provides a brief survey of informatics, defined as the application of information technology to various fields, with respect to its historical background, disciplinary identity, fundamental aspects, applications, and challenges. Highlights include biological, clinical, dental, environmental, geomatics, health, legal, management, medical, museum,…

  9. Recommendations of the International Medical Informatics Association (IMIA) on education in health and medical informatics.

    PubMed

    2004-01-01

    The International Medical Informatics Association (IMIA) agreed on international recommendations in health informatics / medical informatics education. These should help to establish courses, course tracks or even complete programs in this field, to further develop existing educational activities in the various nations and to support international initiatives concerning education in health and medical informatics (HMI), particularly international activities in educating HMI specialists and the sharing of courseware. The IMIA recommendations centre on educational needs for health care professionals to acquire knowledge and skills in information processing and information and communication technology. The educational needs are described as a three-dimensional framework. The dimensions are: 1) professionals in health care (physicians, nurses, HMI professionals, ...), 2) type of specialisation in health and medical informatics (IT users, HMI specialists) and 3) stage of career progression (bachelor, master, ...). Learning outcomes are defined in terms of knowledge and practical skills for health care professionals in their role (a) as IT user and (b) as HMI specialist. Recommendations are given for courses/course tracks in HMI as part of educational programs in medicine, nursing, health care management, dentistry, pharmacy, public health, health record administration, and informatics/computer science as well as for dedicated programs in HMI (with bachelor, master or doctor degree). To support education in HMI, IMIA offers to award a certificate for high quality HMI education and supports information exchange on programs and courses in HMI through a WWW server of its Working Group on Health and Medical Informatics Education (http://www.imia.org/wg1). PMID:15718686

  10. Consumer Informatics in Chronic Illness

    PubMed Central

    Tetzlaff, Linda

    1997-01-01

    Abstract Objective: To explore the informatic requirements in the home care of chronically ill patients. Design: A number of strategies were deployed to help evoke a picture of home care informatics needs: A detailed questionnaire evaluating informational needs and assessing programmable technologies was distributed to a clinic population of parents of children with cancer. Open ended questionnaires were distributed to medical staff and parents soliciting a list of questions asked of medical staff. Parent procedure training was observed to evaluate the training dialog, and parents were observed interacting with a prototype information and education computer offering. Results: Parents' concerns ranged from the details of managing day to day, to conceptual information about disease and treatment, to management of psychosocial problems. They sought information to solve problems and to provide emotional support, which may create conflicts of interest when the material is threatening. Whether they preferred to be informed by a doctor, nurse, or another parent depended on the nature of the information. Live interaction was preferred to video, which was preferred to text for all topics. Respondents used existing technologies in a straightforward way but were enthusiastic about the proposed use of computer technology to support home care. Multimedia solutions appear to complement user needs and preferences. Conclusion: Consumers appear positively disposed toward on-line solutions. On-line systems can offer breadth, depth and timeliness currently unattainable. Patients should be involved in the formation and development process in much the same way that users are involved in usercentered computer interface design. A generic framework for patient content is presented that could be applied across multiple disorders. PMID:9223035

  11. [Basic data in informatics illustrated by their application in surgery].

    PubMed

    Lambotte, L

    1986-01-01

    As an introduction to a study day devoted to informatic in surgery, some basis knowledges are summarized: architecture and function of computers, programmation language, data bases. They are illustrated by various applications made in the "Cliniques St Luc" te Brussel namely patient monitoring, artificial pancreas, office system and operating room management system. The future use of local area network is proposed in order to achieve medical department independence and the needed cooperation between all users of medical and hospital informatic. PMID:3788377

  12. Materials informatics: a journey towards material design and synthesis.

    PubMed

    Takahashi, Keisuke; Tanaka, Yuzuru

    2016-06-28

    Materials informatics has been gaining popularity with the rapid development of computational materials science. However, collaborations between information science and materials science have not yet reached the success. There are several issues which need to be overcome in order to establish the field of materials informatics. Construction of material big data, implementation of machine learning, and platform design for materials discovery are discussed with potential solutions. PMID:27292550

  13. Meeting the challenges--the role of medical informatics in an ageing society.

    PubMed

    Koch, Sabine

    2006-01-01

    The objective of this paper is to identify trends and new technological developments that appear due to an ageing society and to relate them to current research in the field of medical informatics. A survey of the current literature reveals that recent technological advances have been made in the fields of "telecare and home-monitoring", "smart homes and robotics" and "health information systems and knowledge management". Innovative technologies such as wearable devices, bio- and environmental sensors and mobile, humanoid robots do already exist and ambient assistant living environments are being created for an ageing society. However, those technologies have to be adapted to older people's self-care processes and coping strategies, and to support new ways of healthcare delivery. Medical informatics can support this process by providing the necessary information infrastructure, contribute to standardisation, interoperability and security issues and provide modelling and simulation techniques for educational purposes. Research fields of increasing importance with regard to an ageing society are, moreover, the fields of knowledge management, ubiquitous computing and human-computer interaction. PMID:17108500

  14. The history of pathology informatics: A global perspective

    PubMed Central

    Park, Seung; Parwani, Anil V.; Aller, Raymond D.; Banach, Lech; Becich, Michael J.; Borkenfeld, Stephan; Carter, Alexis B.; Friedman, Bruce A.; Rojo, Marcial Garcia; Georgiou, Andrew; Kayser, Gian; Kayser, Klaus; Legg, Michael; Naugler, Christopher; Sawai, Takashi; Weiner, Hal; Winsten, Dennis; Pantanowitz, Liron

    2013-01-01

    Pathology informatics has evolved to varying levels around the world. The history of pathology informatics in different countries is a tale with many dimensions. At first glance, it is the familiar story of individuals solving problems that arise in their clinical practice to enhance efficiency, better manage (e.g., digitize) laboratory information, as well as exploit emerging information technologies. Under the surface, however, lie powerful resource, regulatory, and societal forces that helped shape our discipline into what it is today. In this monograph, for the first time in the history of our discipline, we collectively perform a global review of the field of pathology informatics. In doing so, we illustrate how general far-reaching trends such as the advent of computers, the Internet and digital imaging have affected pathology informatics in the world at large. Major drivers in the field included the need for pathologists to comply with national standards for health information technology and telepathology applications to meet the scarcity of pathology services and trained people in certain countries. Following trials by a multitude of investigators, not all of them successful, it is apparent that innovation alone did not assure the success of many informatics tools and solutions. Common, ongoing barriers to the widespread adoption of informatics devices include poor information technology infrastructure in undeveloped areas, the cost of technology, and regulatory issues. This review offers a deeper understanding of how pathology informatics historically developed and provides insights into what the promising future might hold. PMID:23869286

  15. The history of pathology informatics: A global perspective.

    PubMed

    Park, Seung; Parwani, Anil V; Aller, Raymond D; Banach, Lech; Becich, Michael J; Borkenfeld, Stephan; Carter, Alexis B; Friedman, Bruce A; Rojo, Marcial Garcia; Georgiou, Andrew; Kayser, Gian; Kayser, Klaus; Legg, Michael; Naugler, Christopher; Sawai, Takashi; Weiner, Hal; Winsten, Dennis; Pantanowitz, Liron

    2013-01-01

    Pathology informatics has evolved to varying levels around the world. The history of pathology informatics in different countries is a tale with many dimensions. At first glance, it is the familiar story of individuals solving problems that arise in their clinical practice to enhance efficiency, better manage (e.g., digitize) laboratory information, as well as exploit emerging information technologies. Under the surface, however, lie powerful resource, regulatory, and societal forces that helped shape our discipline into what it is today. In this monograph, for the first time in the history of our discipline, we collectively perform a global review of the field of pathology informatics. In doing so, we illustrate how general far-reaching trends such as the advent of computers, the Internet and digital imaging have affected pathology informatics in the world at large. Major drivers in the field included the need for pathologists to comply with national standards for health information technology and telepathology applications to meet the scarcity of pathology services and trained people in certain countries. Following trials by a multitude of investigators, not all of them successful, it is apparent that innovation alone did not assure the success of many informatics tools and solutions. Common, ongoing barriers to the widespread adoption of informatics devices include poor information technology infrastructure in undeveloped areas, the cost of technology, and regulatory issues. This review offers a deeper understanding of how pathology informatics historically developed and provides insights into what the promising future might hold. PMID:23869286

  16. The State of Information and Communication Technology and Health Informatics in Ghana

    PubMed Central

    Achampong, Emmanuel Kusi

    2012-01-01

    Information and Communication Technology (ICT) has become a major tool in delivery of health services and has had an innovative impact on quality of life. ICT is affecting the way healthcare is delivered to clients. In this paper, we discuss the state of ICT and health informatics in Ghana. We also discuss the state of various relevant infrastructures for the successful implementation of ehealth projects. We analyse the past and present state of health informatics in Ghana, in comparison to other African countries. We also review the challenges facing successful implementation of health informatics projects in Ghana and suggest possible solutions. PMID:23569633

  17. The state of information and communication technology and health informatics in ghana.

    PubMed

    Achampong, Emmanuel Kusi

    2012-01-01

    Information and Communication Technology (ICT) has become a major tool in delivery of health services and has had an innovative impact on quality of life. ICT is affecting the way healthcare is delivered to clients. In this paper, we discuss the state of ICT and health informatics in Ghana. We also discuss the state of various relevant infrastructures for the successful implementation of ehealth projects. We analyse the past and present state of health informatics in Ghana, in comparison to other African countries. We also review the challenges facing successful implementation of health informatics projects in Ghana and suggest possible solutions. PMID:23569633

  18. Healthcare information technology and economics

    PubMed Central

    Bates, David W; Berner, Eta S; Bernstam, Elmer V; Covvey, H Dominic; Frisse, Mark E; Graf, Thomas; Greenes, Robert A; Hoffer, Edward P; Kuperman, Gil; Lehmann, Harold P; Liang, Louise; Middleton, Blackford; Omenn, Gilbert S; Ozbolt, Judy

    2013-01-01

    At the 2011 American College of Medical Informatics (ACMI) Winter Symposium we studied the overlap between health IT and economics and what leading healthcare delivery organizations are achieving today using IT that might offer paths for the nation to follow for using health IT in healthcare reform. We recognized that health IT by itself can improve health value, but its main contribution to health value may be that it can make possible new care delivery models to achieve much larger value. Health IT is a critically important enabler to fundamental healthcare system changes that may be a way out of our current, severe problem of rising costs and national deficit. We review the current state of healthcare costs, federal health IT stimulus programs, and experiences of several leading organizations, and offer a model for how health IT fits into our health economic future. PMID:22781191

  19. Tools for medical informatics.

    PubMed

    Hindel, R

    1992-05-01

    Informatics uses words, terms and expressions of various scientific disciplines. The proposed tools, hermeneutics and phenomenology, generate a basis for quality control by establishing the authenticity and validity of such expressions. Without such tools there is the danger that poorly defined expressions obscure true meaning and prevent progress. The method is demonstrated on "objects" as used in "object oriented programming" and on "open systems" as used in the International Standards Organization model for "open system interconnection." PMID:1623046

  20. Use of a Proven Framework for Computer Decision Support within the Intermountain Healthcare Network.

    PubMed

    Evans, R Scott; Lloyd, James F; Johnson, Kyle V; Howe, Stephen; Tripp, Jacob S

    2015-01-01

    Hospitalized patients in the U.S. do not always receive optimal care. In light of this, Computerized Decision Support (CDS) has been recommended to for the improvement of patient care. A number of methodologies, standards, and frameworks have been developed to facilitate the development and interoperability of computerized clinical guidelines and CDS logic. In addition, Health Information Exchange using Service-Oriented Architecture holds some promise to help realize that goal. We have used a framework at Intermountain Healthcare that employs familiar programming languages and technology to develop over 40 CDS applications during the past 13 years, which clinicians are dependent on each day. This paper describes the framework, technology, and CDS application development methods, while providing three distinct examples of applications that illustrate the need and use of the framework for patient care improvement. The main limitation of this framework is its dependence on point-to-point interfaces to access patient data. We look forward to the use of validated and accessible Service-Oriented Architecture to facilitate patient data access across diverse databases. PMID:26262053

  1. A core curriculum for clinical fellowship training in pathology informatics

    PubMed Central

    McClintock, David S.; Levy, Bruce P.; Lane, William J.; Lee, Roy E.; Baron, Jason M.; Klepeis, Veronica E.; Onozato, Maristela L.; Kim, JiYeon; Dighe, Anand S.; Beckwith, Bruce A.; Kuo, Frank; Black-Schaffer, Stephen; Gilbertson, John R.

    2012-01-01

    Background: In 2007, our healthcare system established a clinical fellowship program in Pathology Informatics. In 2010 a core didactic course was implemented to supplement the fellowship research and operational rotations. In 2011, the course was enhanced by a formal, structured core curriculum and reading list. We present and discuss our rationale and development process for the Core Curriculum and the role it plays in our Pathology Informatics Fellowship Training Program. Materials and Methods: The Core Curriculum for Pathology Informatics was developed, and is maintained, through the combined efforts of our Pathology Informatics Fellows and Faculty. The curriculum was created with a three-tiered structure, consisting of divisions, topics, and subtopics. Primary (required) and suggested readings were selected for each subtopic in the curriculum and incorporated into a curated reading list, which is reviewed and maintained on a regular basis. Results: Our Core Curriculum is composed of four major divisions, 22 topics, and 92 subtopics that cover the wide breadth of Pathology Informatics. The four major divisions include: (1) Information Fundamentals, (2) Information Systems, (3) Workflow and Process, and (4) Governance and Management. A detailed, comprehensive reading list for the curriculum is presented in the Appendix to the manuscript and contains 570 total readings (current as of March 2012). Discussion: The adoption of a formal, core curriculum in a Pathology Informatics fellowship has significant impacts on both fellowship training and the general field of Pathology Informatics itself. For a fellowship, a core curriculum defines a basic, common scope of knowledge that the fellowship expects all of its graduates will know, while at the same time enhancing and broadening the traditional fellowship experience of research and operational rotations. For the field of Pathology Informatics itself, a core curriculum defines to the outside world, including

  2. NOSTOS: a paper-based ubiquitous computing healthcare environment to support data capture and collaboration.

    PubMed

    Bång, Magnus; Larsson, Anders; Eriksson, Henrik

    2003-01-01

    In this paper, we present a new approach to clinical workplace computerization that departs from the window-based user interface paradigm. NOSTOS is an experimental computer-augmented work environment designed to support data capture and teamwork in an emergency room. NOSTOS combines multiple technologies, such as digital pens, walk-up displays, headsets, a smart desk, and sensors to enhance an existing paper-based practice with computer power. The physical interfaces allow clinicians to retain mobile paper-based collaborative routines and still benefit from computer technology. The requirements for the system were elicited from situated workplace studies. We discuss the advantages and disadvantages of augmenting a paper-based clinical work environment. PMID:14728131

  3. Demographic Differences and Attitudes toward Computers among Healthcare Professionals Earning Continuing Education Credits On-Line

    ERIC Educational Resources Information Center

    Mitra, Ananda; Joshi, Suchi; Kemper, Kathi J.; Woods, Charles; Gobble, Jessica

    2006-01-01

    The use of technology, such as the Web, has become an increasingly popular means for disseminating professional development and continuing education. Often, these methods assume a set of attitudes and skills related to the computer as a pedagogic and communication tool. We argue that it is, however, important to measure the actual attitudes of…

  4. Another HISA--the new standard: health informatics--service architecture.

    PubMed

    Klein, Gunnar O; Sottile, Pier Angelo; Endsleff, Frederik

    2007-01-01

    In addition to the meaning as Health Informatics Society of Australia, HISA is the acronym used for the new European Standard: Health Informatics - Service Architecture. This EN 12967 standard has been developed by CEN - the federation of 29 national standards bodies in Europe. This standard defines the essential elements of a Service Oriented Architecture and a methodology for localization particularly useful for large healthcare organizations. It is based on the Open Distributed Processing (ODP) framework from ISO 10746 and contains the following parts: Part 1: Enterprise viewpoint. Part 2: Information viewpoint. Part 3: Computational viewpoint. This standard is now also the starting point for the consideration for an International standard in ISO/TC 215. The basic principles with a set of health specific middleware services as a common platform for various applications for regional health information systems, or large integrated hospital information systems, are well established following a previous prestandard. Examples of large scale deployments in Sweden, Denmark and Italy are described. PMID:17911763

  5. The Renewed Promise of Medical Informatics.

    PubMed

    van Bemmel, J H; McCray, A T

    2016-01-01

    The promise of the field of Medical Informatics has been great and its impact has been significant. In 1999, the Yearbook editors of the International Medical Informatics Association (IMIA) - also the authors of the present paper - sought to assess this impact by selecting a number of seminal papers in the field, and asking experts to comment on these articles. In particular, it was requested whether and how the expectations, represented by these papers, had been fulfilled since their publication several decades earlier. Each expert was also invited to comment on what might be expected in the future. In the present paper, these areas are briefly reviewed again. Where did these early papers have an impact and where were they not as successful as originally expected? It should be noted that the extraordinary developments in computer technology observed in the last two decades could not have been foreseen by these early researchers. In closing, some of the possibilities and limitations of research in medical informatics are outlined in the context of a framework that considers six levels of computer applications in medicine and health care. For each level, some predictions are made for the future, concluded with thoughts on fruitful areas for ongoing research in the field. PMID:27199195

  6. Latvian Education Informatization System LIIS

    ERIC Educational Resources Information Center

    Bicevskis, Janis; Andzans, Agnis; Ikaunieks, Evalds; Medvedis, Inga; Straujums, Uldis; Vezis, Viesturs

    2004-01-01

    The Latvian Education Informatization System LIIS project covers the whole information grid: education content, management, information services, infrastructure and user training at several levels--schools, school boards and Ministry of Education and Science. Informatization is the maintained process of creating the technical, economical and…

  7. The 2005 Australian Informatics Competition

    ERIC Educational Resources Information Center

    Clark, David

    2006-01-01

    This article describes the Australian Informatics Competition (AIC), a non-programming competition aimed at identifying students with potential in programming and algorithmic design. It is the first step in identifying students to represent Australia at the International Olympiad in Informatics. The main aim of the AIC is to increase awareness of…

  8. NOSTOS: A Paper–Based Ubiquitous Computing Healthcare Environment to Support Data Capture and Collaboration

    PubMed Central

    Bång, Magnus; Larsson, Anders; Eriksson, Henrik

    2003-01-01

    In this paper, we present a new approach to clinical workplace computerization that departs from the window–based user interface paradigm. NOSTOS is an experimental computer–augmented work environment designed to support data capture and teamwork in an emergency room. NOSTOS combines multiple technologies, such as digital pens, walk–up displays, headsets, a smart desk, and sensors to enhance an existing paper–based practice with computer power. The physical interfaces allow clinicians to retain mobile paper–based collaborative routines and still benefit from computer technology. The requirements for the system were elicited from situated workplace studies. We discuss the advantages and disadvantages of augmenting a paper–based clinical work environment. PMID:14728131

  9. Self-assessment of nursing informatics competencies for doctor of nursing practice students.

    PubMed

    Choi, Jeungok; Zucker, Donna M

    2013-01-01

    This study examined the informatics competencies of doctor of nursing practice (DNP) students and whether these competencies differed between DNP students in the post-baccalaureate (BS) and post-master's (MS) tracks. Self-reported informatics competencies were collected from 132 DNP students (68 post-BS and 64 post-MS students) in their first year in the program (2007 to 2010). Students were assessed in 18 areas of 3 competency categories: computer skills, informatics knowledge, and informatics skills. Post-BS students were competent in 4 areas (computer skills in communication, systems, documentation, and informatics knowledge about impact of information management), whereas post-MS students were competent in only 1 area (computer skills in communication). Students in both tracks reported computer skills in decision support as their least competent area. Overall, post-BS students reported slightly higher than or similar competency scores as post-MS students, but scores were statistically significant in only 3 of 18 areas. The assessment indicated that knowledge and skills on informatics competencies need to be improved, especially in computer skills for data access and use of decision support systems. Strategies are suggested to integrate competencies into existing informatics course and DNP curricula. Further studies are recommended using an objective measure of informatics competencies. PMID:24267932

  10. Nursing informatics competencies: bibliometric analysis.

    PubMed

    Kokol, Peter; Blažun, Helena; Vošner, Janez; Saranto, Kaija

    2014-01-01

    Information and communication technology is developing rapidly and it is incorporated in many health care processes, but in spite of that fact we can still notice that nursing informatics competencies had received limited attention in basic nursing education curricula in Europe and especially in Eastern European countries. The purpose of the present paper is to present the results of a bibliometric analysis of the nursing informatics competencies scientific literature production. We applied the bibliometrics analysis to the corpus of 332 papers found in SCOPUS, related to nursing informatics competencies. The results showed that there is a positive trend in the number of published papers per year, indicating the increased research interest in nursing informatics competencies. Despite the fact that the first paper was published in Denmark, the most prolific country regarding the research in nursing informatics competencies is United States as are their institutions and authors. PMID:24943565

  11. Creating advanced health informatics certification.

    PubMed

    Gadd, Cynthia S; Williamson, Jeffrey J; Steen, Elaine B; Fridsma, Douglas B

    2016-07-01

    In 2005, AMIA leaders and members concluded that certification of advanced health informatics professionals would offer value to individual practitioners, organizations that hire them, and society at large. AMIA's work to create advanced informatics certification began by leading a successful effort to create the clinical informatics subspecialty for American Board of Medical Specialties board-certified physicians. Since 2012, AMIA has been working to establish advanced health informatics certification (AHIC) for all health informatics practitioners regardless of their primary discipline. In November 2015, AMIA completed the first of 3 key tasks required to establish AHIC, with the AMIA Board of Directors' endorsement of proposed eligibility requirements. This AMIA Board white paper describes efforts to establish AHIC, reports on the current status of AHIC components, and provides a context for the proposed AHIC eligibility requirements. PMID:27358327

  12. Medical informatics and health care organizations.

    PubMed

    Holden, F M

    1991-01-01

    A dialogue between upper management and operational elements over an organization's informatics policies and procedures could take place in an environment in which both parties could succeed. Excellent patient care practices can exist in organizational settings where upper management is not concerned with the specifics of the medical care process. But as the medical care process itself becomes costly, complex, and part of the purview of upper management, solutions to ambiguous informatics policies and practices need to be found. As the discussion of cost determination suggests, a comprehensive "top-down" solution may not be feasible. Allowing patient care expertise to drive the design and implementation of clinical computing modules without unduly restrictive specifications from above is probably the best way to proceed. But if the organization needs to know the specifics of a treatment episode, then the informatics definitions specific to treatment episodes need to be unambiguous and consistently applied. As the discussion of Social Security numbers suggests, communication of information across various parts of the organization not only requires unambiguous data structure definitions, but also suggests that the communication process not be dependent on the content of the messages. Both ideas--consistent data structure definitions for essential data and open system communication architectures--are current in the medical informatician's vocabulary. The same ideas are relevant to the management and operation of large and diffuse health care enterprises. The lessons we are learning about informatics policy and practice controls in clinical computing need to be applied to the enterprise as a whole. PMID:1921663

  13. Professional development of health informatics in Northern Ireland.

    PubMed

    McCullagh, Paul; McAllister, Gerry; Hanna, Paul; Finlay, Dewar; Comac, Paul

    2011-01-01

    This paper addresses the assessment and verification of health informatics professional competencies. Postgraduate provision in Health Informatics was targeted at informatics professionals working full-time in the National Health Service, in Northern Ireland, United Kingdom. Many informatics health service positions do not require a formal informatics background, and as we strive for professionalism, a recognized qualification provides important underpinning. The course, delivered from a computing perspective, builds upon work-based achievement and provides insight into emerging technologies associated with the 'connected health' paradigm. The curriculum was designed with collaboration from the Northern Ireland Health and Social Care ICT Training Group. Material was delivered by blended learning using a virtual learning environment and face-to-face sessions. Professional accreditation was of high importance. The aim was to provide concurrent qualifications: a postgraduate certificate, awarded by the University of Ulster and a professional certificate validated and accredited by a professional body comprising experienced health informatics professionals. Providing both qualifications puts significant demands upon part-time students, and a balance must be achieved for successful completion. PMID:21893745

  14. Electronic Personal Health Record Use Among Nurses in the Nursing Informatics Community.

    PubMed

    Gartrell, Kyungsook; Trinkoff, Alison M; Storr, Carla L; Wilson, Marisa L

    2015-07-01

    An electronic personal health record is a patient-centric tool that enables patients to securely access, manage, and share their health information with healthcare providers. It is presumed the nursing informatics community would be early adopters of electronic personal health record, yet no studies have been identified that examine the personal adoption of electronic personal health record's for their own healthcare. For this study, we sampled nurse members of the American Medical Informatics Association and the Healthcare Information and Management Systems Society with 183 responding. Multiple logistic regression analysis was used to identify those factors associated with electronic personal health record use. Overall, 72% were electronic personal health record users. Users tended to be older (aged >50 years), be more highly educated (72% master's or doctoral degrees), and hold positions as clinical informatics specialists or chief nursing informatics officers. Those whose healthcare providers used electronic health records were significantly more likely to use electronic personal health records (odds ratio, 5.99; 95% confidence interval, 1.40-25.61). Electronic personal health record users were significantly less concerned about privacy of health information online than nonusers (odds ratio, 0.32; 95% confidence interval, 0.14-0.70) adjusted for ethnicity, race, and practice region. Informatics nurses, with their patient-centered view of technology, are in prime position to influence development of electronic personal health records. Our findings can inform policy efforts to encourage informatics and other professional nursing groups to become leaders and users of electronic personal health record; such use could help them endorse and engage patients to use electronic personal health records. Having champions with expertise in and enthusiasm for the new technology can promote the adoptionof electronic personal health records among healthcare providers as well as

  15. Postcards from the imaging informatics road. Despite policy complexities, diagnostic imaging informatics makes progress on multiple fronts.

    PubMed

    Hagland, Mark

    2011-11-01

    The current strategic landscape for imaging informatics is one filled with great contrasts and paradoxes. On the one hand, because imaging informatics was not explicitly addressed in Stage 1 of the meaningful use requirements under the American Recovery and Reinvestment Act/Health Information Technology for Economic and Clinical Health Act (ARRA-HITECH) legislation, it instantly lost some of the environment of turbo-charged energy characterized by areas that were directly addressed by the HITECH Act, such as quality data reporting, care management, and of course, core electronic health record (EHR) development. On the other hand, an interesting combination of factors--rapidly advancing technology, the expansion of the image archiving concept across different medical specialties, and the inclusion of diagnostic image-sharing as one element in the development of health information exchange (HIE) arrangements nationwide--is nonetheless pushing imaging informatics forward towards new innovations. The five articles below provide readers with different glimpses of the path ahead for imaging informatics. The first presents a look at the current policy and reimbursement landscape. Each of the four subsequent articles delve into different aspects of innovation, from a process developed at a public hospital to improve and speed up the diagnostic process for trauma patients, to a radiology-specific financial analytics solution in the group practice setting, to an advance in cardiology information systems, to a self-developed federated image viewing platform at one of the nation's largest integrated health systems. Each of those initiatives is very different; yet it is clear that a great deal of innovation is taking place across the US. healthcare system when it comes to imaging informatics. With a landscape filled with uncertainties and potential policy, reimbursement, and industry shifts in the offing, CIOs, CMIOs, and other healthcare IT leaders will need to think very

  16. Which Way with Informatics in High Schools in the Netherlands? The Dutch Dilemma

    ERIC Educational Resources Information Center

    van Diepen, Nico; Perrenet, Jacob; Zwaneveld, Bert

    2011-01-01

    Informatics is currently being taught in high schools all over the world. In the Dutch curriculum, computer literacy is taught in the lower grades as a compulsory subject, Informatics is taught as an elective in the higher grades of some schools. As a follow-up to the outline of Grgurina and Tolboom (2008), the discussion about the future of…

  17. A Primer on Aspects of Cognition for Medical Informatics

    PubMed Central

    Patel, Vimla L.; Arocha, José F.; Kaufman, David R.

    2001-01-01

    As a multidisciplinary field, medical informatics draws on a range of disciplines, such as computer science, information science, and the social and cognitive sciences. The cognitive sciences can provide important insights into the nature of the processes involved in human– computer interaction and help improve the design of medical information systems by providing insight into the roles that knowledge, memory, and strategies play in a variety of cognitive activities. In this paper, the authors survey literature on aspects of medical cognition and provide a set of claims that they consider to be important in medical informatics. PMID:11418539

  18. Partnership to promote interprofessional education and practice for population and public health informatics: A case study.

    PubMed

    Rajamani, Sripriya; Westra, Bonnie L; Monsen, Karen A; LaVenture, Martin; Gatewood, Laël Cranmer

    2015-01-01

    Team-based healthcare delivery models, which emphasize care coordination, patient engagement, and utilization of health information technology, are emerging. To achieve these models, expertise in interprofessional education, collaborative practice across professions, and informatics is essential. This case study from informatics programs in the Academic Health Center (AHC) at the University of Minnesota and the Office of Health Information Technology (OHIT) at the Minnesota Department of Health presents an academic-practice partnership, which focuses on both interprofessionalism and informatics. Outcomes include the Minnesota Framework for Interprofessional Biomedical Health Informatics, comprising collaborative curriculum development, teaching and research, practicums to promote competencies, service to advance biomedical health informatics, and collaborative environments to facilitate a learning health system. Details on these Framework categories are presented. Partnership success is due to interprofessional connections created with emphasis on informatics and to committed leadership across partners. A limitation of this collaboration is the need for formal agreements outlining resources and roles, which are vital for sustainability. This partnership addresses a recommendation on the future of interprofessionalism: that both education and practice sectors be attuned to each other's expectations and evolving trends. Success strategies and lessons learned from collaborations, such as that of the AHC-OHIT that promote both interprofessionalism and informatics, need to be shared. PMID:26120895

  19. Clinical Research Informatics and Electronic Health Record Data

    PubMed Central

    Horvath, M. M.; Rusincovitch, S. A.

    2014-01-01

    Summary Objectives The goal of this survey is to discuss the impact of the growing availability of electronic health record (EHR) data on the evolving field of Clinical Research Informatics (CRI), which is the union of biomedical research and informatics. Results Major challenges for the use of EHR-derived data for research include the lack of standard methods for ensuring that data quality, completeness, and provenance are sufficient to assess the appropriateness of its use for research. Areas that need continued emphasis include methods for integrating data from heterogeneous sources, guidelines (including explicit phenotype definitions) for using these data in both pragmatic clinical trials and observational investigations, strong data governance to better understand and control quality of enterprise data, and promotion of national standards for representing and using clinical data. Conclusions The use of EHR data has become a priority in CRI. Awareness of underlying clinical data collection processes will be essential in order to leverage these data for clinical research and patient care, and will require multi-disciplinary teams representing clinical research, informatics, and healthcare operations. Considerations for the use of EHR data provide a starting point for practical applications and a CRI research agenda, which will be facilitated by CRI’s key role in the infrastructure of a learning healthcare system. PMID:25123746

  20. Dental Informatics in India: Time to Embrace the Change.

    PubMed

    Chhabra, Kumar Gaurav; Mulla, Salma H; Deolia, Shravani Govind; Chhabra, Chaya; Singh, Jagjeet; Marwaha, Baldeep Singh

    2016-03-01

    Dental informatics is comparatively a juvenile and new field that has noteworthy potential for supporting clinical care, research, education and management. This field utilizes computer science, information sciences and the application of same to espouse dentistry. However, in the under-developed and developing countries almost most of the dentists are unacquainted about dental informatics, its goals, what it is capable of achieving and by what means they can get involved into it. Despite of emerging advances, certain conflicts also go along with it such as, professional under representation, security issues of the stored information due to universal access to computers high speed internet connections. Endnote software was used as resource material to collect literature which was carefully arranged in a synchronized way. Hence, the purpose of this review was to give an overall scenario of dental informatics, its applications, challenges and recommendations for further enhancement in this area. PMID:27135022

  1. Dental Informatics in India: Time to Embrace the Change

    PubMed Central

    Mulla, Salma H.; Deolia, Shravani Govind; Chhabra, Chaya; Singh, Jagjeet; Marwaha, Baldeep Singh

    2016-01-01

    Dental informatics is comparatively a juvenile and new field that has noteworthy potential for supporting clinical care, research, education and management. This field utilizes computer science, information sciences and the application of same to espouse dentistry. However, in the under-developed and developing countries almost most of the dentists are unacquainted about dental informatics, its goals, what it is capable of achieving and by what means they can get involved into it. Despite of emerging advances, certain conflicts also go along with it such as, professional under representation, security issues of the stored information due to universal access to computers high speed internet connections. Endnote software was used as resource material to collect literature which was carefully arranged in a synchronized way. Hence, the purpose of this review was to give an overall scenario of dental informatics, its applications, challenges and recommendations for further enhancement in this area. PMID:27135022

  2. Case study: factors in defining the nurse informatics specialist role.

    PubMed

    Hassett, Margaret

    2006-01-01

    Healthcare organizations, consultant groups, vendor companies, and academic institutions feel the challenge to enhance user experiences with information systems. To meet this challenge, organizations and companies are looking to better understand and utilize a variety of informatics roles to further marketing, business, or healthcare goals. Nursing is one practice area that can support the successful integration of information systems development, implementation, support, and user experience. However, the definition and development of such a role or position has met with mixed success. This article explores some of the issues and influences related to the role's development. The issues, impacts, and influences have been identified based on healthcare business assessment, job description analysis, employment and project evaluations, and professional standards set by the American Nurses Association. PMID:16669586

  3. Informatics — EDRN Public Portal

    Cancer.gov

    The EDRN provides a comprehensive informatics activity which includes a number of tools and an integrated knowledge environment for capturing, managing, integrating, and sharing results from across EDRN's cancer biomarker research network.

  4. Computational Toxicology

    EPA Science Inventory

    Computational toxicology’ is a broad term that encompasses all manner of computer-facilitated informatics, data-mining, and modeling endeavors in relation to toxicology, including exposure modeling, physiologically based pharmacokinetic (PBPK) modeling, dose-response modeling, ...

  5. Social care informatics - the missing partner in ehealth.

    PubMed

    Rigby, Michael; Hill, Penny; Koch, Sabine; Kärki, Jarmo

    2009-01-01

    To the individual, social care can be an essential part of maintaining health, as is reflected by the WHO definition of health as being one of wellbeing. However, health informatics currently narrowly restricts itself to health organizations' activities. Digital records in social care are increasing, raising the need to recognize the area of social care informatics. This new domain needs support and nurture, whilst the delivery of social and related care needs to be harmonized with healthcare delivery. In turn, this raises important new issues as to how to best support the citizen, especially when they are dependent, including issues of information sharing, service co-ordination, sharing of meaning and objectives, and of respect for autonomy. PMID:19745313

  6. From Bed to Bench: Bridging from Informatics Practice to Theory

    PubMed Central

    Lehmann, C.U.

    2014-01-01

    Summary Background In 2009, Applied Clinical Informatics (ACI) – focused on applications in clinical informatics – was launched as a companion journal to Methods of Information in Medicine (MIM). Both journals are official journals of the International Medical Informatics Association. Objectives To explore which congruencies and interdependencies exist in publications from theory to practice and from practice to theory and to determine existing gaps. Major topics discussed in ACI and MIM were analyzed. We explored if the intention of publishing companion journals to provide an information bridge from informatics theory to informatics practice and vice versa could be supported by this model. In this manuscript we will report on congruencies and interdependences from practice to theory and on major topics in MIM. Methods Retrospective, prolective observational study on recent publications of ACI and MIM. All publications of the years 2012 and 2013 were indexed and analyzed. Results Hundred and ninety-six publications were analyzed (ACI 87, MIM 109). In MIM publications, modelling aspects as well as methodological and evaluation approaches for the analysis of data, information, and knowledge in biomedicine and health care were frequently raised – and often discussed from an interdisciplinary point of view. Important themes were ambient-assisted living, anatomic spatial relations, biomedical informatics as scientific discipline, boosting, coding, computerized physician order entry, data analysis, grid and cloud computing, health care systems and services, health-enabling technologies, health information search, health information systems, imaging, knowledge-based decision support, patient records, signal analysis, and web science. Congruencies between journals could be found in themes, but with a different focus on content. Interdependencies from practice to theory, found in these publications, were only limited. Conclusions Bridging from informatics theory to

  7. Next generation neonatal health informatics with Artemis.

    PubMed

    McGregor, Carolyn; Catley, Christina; James, Andrew; Padbury, James

    2011-01-01

    This paper describes the deployment of a platform to enable processing of currently uncharted high frequency, high fidelity, synchronous data from medical devices. Such a platform would support the next generation of informatics solutions for neonatal intensive care. We present Artemis, a platform for real-time enactment of clinical knowledge as it relates to multidimensional data analysis and clinical research. Through specific deployment examples at two different neonatal intensive care units, we demonstrate that Artemis supports: 1) instantiation of clinical rules; 2) multidimensional analysis; 3) distribution of services for critical care via cloud computing; and 4) accomplishing 1 through 3 using current technology without a negative impact on patient care. PMID:21893725

  8. Recommendations of the International Medical Informatics Association (IMIA) on Education in Biomedical and Health Informatics. First Revision.

    PubMed

    Mantas, John; Ammenwerth, Elske; Demiris, George; Hasman, Arie; Haux, Reinhold; Hersh, William; Hovenga, Evelyn; Lun, K C; Marin, Heimar; Martin-Sanchez, Fernando; Wright, Graham

    2010-01-01

    Objective: The International Medical Informatics Association (IMIA) agreed on revising the existing international recommendations in health informatics/medical informatics education. These should help to establish courses, course tracks or even complete programs in this field, to further develop existing educational activities in the various nations and to support international initiatives concerning education in biomedical and health informatics (BMHI), particularly international activities in educating BMHI specialists and the sharing of courseware. Method: An IMIA task force, nominated in 2006, worked on updating the recommendations' first version. These updates have been broadly discussed and refined by members of IMIA's National Member Societies, IMIA's Academic Institutional Members and by members of IMIA's Working Group on Health and Medical Informatics Education. Results and Conclusions: The IMIA recommendations center on educational needs for health care professionals to acquire knowledge and skills in information processing and information and communication technology. The educational needs are described as a three-dimensional framework. The dimensions are: 1) professionals in health care (e.g. physicians, nurses, BMHI professionals), 2) type of specialization in BMHI (IT users, BMHI specialists), and 3) stage of career progression (bachelor, master, doctorate). Learning outcomes are defined in terms of knowledge and practical skills for health care professionals in their role a) as IT user and b) as BMHI specialist. Recommendations are given for courses/course tracks in BMHI as part of educational programs in medicine, nursing, health care management, dentistry, pharmacy, public health, health record administration, and informatics/computer science as well as for dedicated programs in BMHI (with bachelor, master or doctor degree). To support education in BMHI, IMIA offers to award a certificate for high-quality BMHI education. It supports information

  9. Understanding public health informatics competencies for mid-tier public health practitioners: a web-based survey.

    PubMed

    Hsu, Chiehwen Ed; Dunn, Kim; Juo, Hsin-Hsuan; Danko, Rick; Johnson, Drew; Mas, Francisco Soto; Sheu, Jiunn-Jye

    2012-03-01

    literature indicating that there exists an expressed need for clarification of the public health practitioner's job-specific informatics competency. Findings of expressed needs for basic computer literacy training and community-based practice were consistent with those of the literature. Additional training and resources should be allocated to address the competency of leadership, management, community-based practice and policy advocacy skills for mid-tier public health practitioners to perform their jobs more effectively. Only when healthcare organizations properly identify PHI competency needs will public health practitioners likely improve their overall informatics skills while improving diversification for contribution across multiple settings. PMID:22447878

  10. Clinical research informatics: a conceptual perspective

    PubMed Central

    Weng, Chunhua

    2012-01-01

    Clinical research informatics is the rapidly evolving sub-discipline within biomedical informatics that focuses on developing new informatics theories, tools, and solutions to accelerate the full translational continuum: basic research to clinical trials (T1), clinical trials to academic health center practice (T2), diffusion and implementation to community practice (T3), and ‘real world’ outcomes (T4). We present a conceptual model based on an informatics-enabled clinical research workflow, integration across heterogeneous data sources, and core informatics tools and platforms. We use this conceptual model to highlight 18 new articles in the JAMIA special issue on clinical research informatics. PMID:22523344

  11. About the Beginnings of Medical Informatics in Europe

    PubMed Central

    Roger France, Francis

    2014-01-01

    The term “Informatics” was created in 1962 from two words, information and automatic, and covers all techniques, information concepts and applications of computers. Among them, medicine is the field where we will describe some factors of development in Europe since the late sixties. It took some time for obtaining the acceptance of this new terminology worldwide, but today medical informatics is a well defined discipline which had a tremendous development last decades. This paper tries to recall the context and events from the beginning of medical informatics in Europe. PMID:24648614

  12. Informatics and Telematics in Health. Present and Potential Uses.

    ERIC Educational Resources Information Center

    World Health Organization, Geneva (Switzerland).

    This report focuses on technical issues associated with informatics--a term covering all aspects of the development and operations of information systems, the supporting computer methodology and technology, and the supporting telecommunications links. The first of six chapters discusses the purpose of the report together with basic assumptions…

  13. Informatics--Preparation for the Realities of the Future.

    ERIC Educational Resources Information Center

    Kotze, Paula

    The paper describes the informatics curriculum (the study of computer hardware and software as a tool in problem solving) in a special school for gifted children in South Africa. The program's aims (including development of a structured approach to general problem solving and stimulation of pupil interest in technology) are listed and discussed. A…

  14. Informatics Teaching from the Students' Point of View

    ERIC Educational Resources Information Center

    Zahorec, Jan; Haskova, Alena

    2013-01-01

    Branches of science and technical/engineering study have for a long time been the less favoured disciplines and students have not been interested in studying them. Informatics/computer education, based on its character, belongs to these disciplines, but on the contrary it belongs rather to the group of popular school subjects. The paper presents…

  15. BING: biomedical informatics pipeline for Next Generation Sequencing.

    PubMed

    Kriseman, Jeffrey; Busick, Christopher; Szelinger, Szabolcs; Dinu, Valentin

    2010-06-01

    High throughput parallel genomic sequencing (Next Generation Sequencing, NGS) shifts the bottleneck in sequencing processes from experimental data production to computationally intensive informatics-based data analysis. This manuscript introduces a biomedical informatics pipeline (BING) for the analysis of NGS data that offers several novel computational approaches to 1. image alignment, 2. signal correlation, compensation, separation, and pixel-based cluster registration, 3. signal measurement and base calling, 4. quality control and accuracy measurement. These approaches address many of the informatics challenges, including image processing, computational performance, and accuracy. These new algorithms are benchmarked against the Illumina Genome Analysis Pipeline. BING is the one of the first software tools to perform pixel-based analysis of NGS data. When compared to the Illumina informatics tool, BING's pixel-based approach produces a significant increase in the number of sequence reads, while reducing the computational time per experiment and error rate (<2%). This approach has the potential of increasing the density and throughput of NGS technologies. PMID:19925883

  16. Healthcare pioneers lead the way.

    PubMed

    Young, J K

    1992-04-01

    Using the Pioneer space program as a metaphor for the spirit of adventure, the vision and the innovation embodied by all Computers in Healthcare Pioneers, CIH names four new Pioneers for 1992. These new Pioneers as well as our 13 current Pioneers will be honored at the Seventh Annual Computers in Healthcare Conference and Exposition May 27 and 28 in San Diego. PMID:10117853

  17. Medical Informatics in Croatia – a Historical Survey

    PubMed Central

    Dezelic, Gjuro; Kern, Josipa; Petrovecki, Mladen; Ilakovac, Vesna; Hercigonja-Szekeres, Mira

    2014-01-01

    A historical survey of medical informatics (MI) in Croatia is presented from the beginnings in the late sixties of the 20th century to the present time. Described are MI projects, applications in clinical medicine and public health, start and development of MI research and education, beginnings of international cooperation, establishment of the Croatian Society for MI and its membership to EFMI and IMIA. The current status of computerization of the Croatian healthcare system is sketched as well as the present graduate and postgraduate study MI curricula. The information contained in the paper shows that MI in Croatia developed and still develops along with its advancement elsewhere. PMID:24648620

  18. The Brazilian health informatics and information policy: building the consensus.

    PubMed

    Leão, Beatriz F; Costa, Cláudio G; Facchini, Luiz Augusto; Bandarra, Ernani B; Gonçalves, Sibele F; Bretas Jr, Nilo; Ferla, Alcindo

    2004-01-01

    This paper describes the construction of the Brazilian Health Information Policy. The Introduction gives an overview of the health informatics scenario in the country and the motivation for the definition of a national policy for the area. The process adopted and the strategies to reach consensus among the different players of the healthcare arena are discussed. The interface with the national health card project and the standards already established are also depicted. The current document and the strategies so far proposed are presented with their respective time table and goals. At the end, a comparison with other national initiatives is drawn. PMID:15361004

  19. Bioimage informatics for experimental biology

    PubMed Central

    Swedlow, Jason R.; Goldberg, Ilya G.; Eliceiri, Kevin W.

    2012-01-01

    Over the last twenty years there have been great advances in light microscopy with the result that multi-dimensional imaging has driven a revolution in modern biology. The development of new approaches of data acquisition are reportedly frequently, and yet the significant data management and analysis challenges presented by these new complex datasets remains largely unsolved. Like the well-developed field of genome bioinformatics, central repositories are and will be key resources, but there is a critical need for informatics tools in individual laboratories to help manage, share, visualize, and analyze image data. In this article we present the recent efforts by the bioimage informatics community to tackle these challenges and discuss our own vision for future development of bioimage informatics solution. PMID:19416072

  20. Using informatics to capture older adults’ wellness

    PubMed Central

    Demiris, George; Thompson, Hilaire J.; Reeder, Blaine; Wilamowska, Katarzyna; Zaslavsky, Oleg

    2014-01-01

    Purpose The aim of this paper is to demonstrate how informatics applications can support the assessment and visualization of older adults’ wellness. A theoretical framework is presented that informs the design of a technology enhanced screening platform for wellness. We highlight an ongoing pilot demonstration in an assisted living facility where a community room has been converted into a living laboratory for the use of diverse technologies (including a telehealth component to capture vital signs and customized questionnaires, a gait analysis component and cognitive assessment software) to assess the multiple aspects of wellness of older adults. Methods A demonstration project was introduced in an independent retirement community to validate our theoretical framework of informatics and wellness assessment for older adults. Subjects are being recruited to attend a community room and engage in the use of diverse technologies to assess cognitive performance, physiological and gait variables as well as psychometrics pertaining to social and spiritual components of wellness for a period of eight weeks. Data are integrated from various sources into one study database and different visualization approaches are pursued to efficiently display potential correlations between different parameters and capture overall trends of wellness. Results Preliminary findings indicate that older adults are willing to participate in technology-enhanced interventions and embrace different information technology applications given appropriate and customized training and hardware and software features that address potential functional limitations and inexperience with computers. Conclusion Informatics can advance health care for older adults and support a holistic assessment of older adults’ wellness. The described framework can support decision making, link formal and informal caregiving networks and identify early trends and patterns that if addressed could reduce adverse health events

  1. Healthcare compunetics.

    PubMed

    Marsh, Andy; Laxminarayan, Swamy; Bos, Lodewijk

    2004-01-01

    Changes in life expectancy, healthy life expectancy and health seeking behaviour are having an impact on the demand for care. Such changes could occur across the whole population, or for specific groups. Changes for specific groups will be particularly affected by policy initiatives, while both these and wider changes will be affected by people's levels of engagement with their health and the health service itself. Levels of education, income and media coverage of health issues are also important. These factors could also encourage an increase in people caring for themselves and their families or community. People are now expecting a patient-centred service with safe high quality treatment, comfortable accommodation services, fast access and an integrated joined-up system. The uptake of integrated Information and Communication technologies (ICT) will be crucial. Healthcare Compunetics, the combination of computing and networking customised for medical and care, will provide the common policy and framework for combined multi-disciplinary research, development, implementation and usage. PMID:15747899

  2. Big Data: Are Biomedical and Health Informatics Training Programs Ready?

    PubMed Central

    Hersh, W.; Ganesh, A. U. Jai

    2014-01-01

    Summary Objectives The growing volume and diversity of health and biomedical data indicate that the era of Big Data has arrived for healthcare. This has many implications for informatics, not only in terms of implementing and evaluating information systems, but also for the work and training of informatics researchers and professionals. This article addresses the question: What do biomedical and health informaticians working in analytics and Big Data need to know? Methods We hypothesize a set of skills that we hope will be discussed among academic and other informaticians. Results The set of skills includes: Programming - especially with data-oriented tools, such as SQL and statistical programming languages; Statistics - working knowledge to apply tools and techniques; Domain knowledge - depending on one’s area of work, bioscience or health care; and Communication - being able to understand needs of people and organizations, and articulate results back to them. Conclusions Biomedical and health informatics educational programs must introduce concepts of analytics, Big Data, and the underlying skills to use and apply them into their curricula. The development of new coursework should focus on those who will become experts, with training aiming to provide skills in “deep analytical talent” as well as those who need knowledge to support such individuals. PMID:25123740

  3. Evidence-based Patient Choice and Consumer health informatics in the Internet age

    PubMed Central

    2001-01-01

    In this paper we explore current access to and barriers to health information for consumers. We discuss how computers and other developments in information technology are ushering in the era of consumer health informatics , and the potential that lies ahead. It is clear that we witness a period in which the public will have unprecedented ability to access information and to participate actively in evidence-based health care. We propose that consumer health informatics be regarded as a whole new academic discipline, one that should be devoted to the exploration of the new possibilities that informatics is creating for consumers in relation to health and health care issues. PMID:11720961

  4. Informatics for multi-disciplinary ocean sciences

    NASA Astrophysics Data System (ADS)

    Pearlman, Jay; Delory, Eric; Pissierssens, Peter; Raymond, Lisa; Simpson, Pauline; Waldmann, Christoph; Williams 3rd, Albert; Yoder, Jim

    2014-05-01

    Ocean researchers must work across disciplines to provide clear and understandable assessments of the state of the ocean. With advances in technology, not only in observation, but also communication and computer science, we are in a new era where we can answer questions at the time and space scales that are relevant to our state of the art research needs. This presentation will address three areas of the informatics of the end-to-end process: sensors and information extraction in the sensing environment; using diverse data for understanding selected ocean processes; and supporting open data initiatives. A National Science Foundation funded Ocean Observations Research Coordination Network (RCN) is addressing these areas from the perspective of improving interdisciplinary research. The work includes an assessment of Open Data Access with a paper in preparation. Interoperability and sensors is a new activity that couples with European projects, COOPEUS and NeXOS, in looking at sensors and related information systems for a new generation of measurement capability. A working group on synergies of in-situ and satellite remote sensing is analyzing approaches for more effective use of these measurements. This presentation will examine the steps forward for data exchange and for addressing gaps in communication and informatics.

  5. Policy Implications of Education Informatics

    ERIC Educational Resources Information Center

    Carr, Jo Ann; O'Brien, Nancy P.

    2010-01-01

    Background/Context: This concluding article identifies the policy implications of education informatics and explores impacts of current copyright laws, legislative structures, publishing practices, and education organizations. Synthesizing the discussions in the preceding articles, this article highlights the importance of designing information…

  6. Mission and Sustainability of Informatics for Integrating Biology and the Bedside (i2b2)

    PubMed Central

    Murphy, Shawn; Wilcox, Adam

    2014-01-01

    Introduction: A visible example of a successfully disseminated research project in the healthcare space is Informatics for Integrating Biology and the Bedside, or i2b2. The project serves to provide the software that can allow a researcher to do direct, self-serve queries against the electronic healthcare data form a hospital. The goals of these queries are to find cohorts of patients that fit specific profiles, while providing for patient privacy and discretion. Sustaining this resource and keeping its direction has always been a challenge, but ever more so as the ten year National Centers for Biomedical Computing (NCBCs) sunset their funding. Findings: Building on the i2b2 structures has helped the dissemination plans for grants leveraging it because it is a disseminated national resource. While this has not directly increased the support of i2b2 internally, it has increased the ability of institutions to leverage the resource and generally leads to increased institutional support. Discussion: The successful development, use, and dissemination i2b2 has been significant in clinical research and informatics. Its evolution has been from a local research data infrastructure to one disseminated more broadly than any other product of the National Centers for Biomedical Computing, and an infrastructure spawning larger investments than were originally used to create it. Throughout this, there were two main lessons about the benefits of dissemination: that people have great creativity in utilizing a resource in different ways and that broader system use can make the system more robust. One option for long-term sustainability of the central authority would be to translate the function to an industry partner. Another option currently being pursued is to create a foundation that would be a central authority for the project. Conclusion: Over the past 10 years, i2b2 has risen to be an important staple in the toolkit of health care researchers. There are now over 110 hospitals

  7. Health informatics community priming in a small nation: the New Zealand experience.

    PubMed

    Parry, David; Hunter, Inga; Honey, Michelle; Holt, Alec; Day, Karen; Kirk, Ray; Cullen, Rowena

    2013-01-01

    New Zealand (NZ) has a rapidly expanding health information technology (IT) development industry and wide-ranging use of informatics, especially in the primary health sector. The New Zealand government through the National Health IT Board (NHITB) has promised to provide shared care health records of core information for all New Zealanders by 2014. One of the major barriers to improvement in IT use in healthcare is the dearth of trained and interested clinicians, management and technical workforce. Health Informatics New Zealand (HINZ) and the academic community in New Zealand are attempting to remedy this by raising awareness of health informatics at the grass roots level via free "primer" workshops and by developing a sustainable cross-institutional model of educational opportunities. Support from the NHITB has been forthcoming, and the workshops start in early 2013. This poster presents the process, development and preliminary findings of this work. PMID:23920724

  8. Rethinking the role and impact of health information technology: informatics as an interventional discipline.

    PubMed

    Payne, Philip R O; Lussier, Yves; Foraker, Randi E; Embi, Peter J

    2016-01-01

    Recent advances in the adoption and use of health information technology (HIT) have had a dramatic impact on the practice of medicine. In many environments, this has led to the ability to achieve new efficiencies and levels of safety. In others, the impact has been less positive, and is associated with both: 1) workflow and user experience dissatisfaction; and 2) perceptions of missed opportunities relative to the use of computational tools to enable data-driven and precise clinical decision making. Simultaneously, the "pipeline" through which new diagnostic tools and therapeutic agents are being developed and brought to the point-of-care or population health is challenged in terms of both cost and timeliness. Given the confluence of these trends, it can be argued that now is the time to consider new ways in which HIT can be used to deliver health and wellness interventions comparable to traditional approaches (e.g., drugs, devices, diagnostics, and behavioral modifications). Doing so could serve to fulfill the promise of what has been recently promoted as "precision medicine" in a rapid and cost-effective manner. However, it will also require the health and life sciences community to embrace new modes of using HIT, wherein the use of technology becomes a primary intervention as opposed to enabler of more conventional approaches, a model that we refer to in this commentary as "interventional informatics". Such a paradigm requires attention to critical issues, including: 1) the nature of the relationships between HIT vendors and healthcare innovators; 2) the formation and function of multidisciplinary teams consisting of technologists, informaticians, and clinical or scientific subject matter experts; and 3) the optimal design and execution of clinical studies that focus on HIT as the intervention of interest. Ultimately, the goal of an "interventional informatics" approach can and should be to substantially improve human health and wellness through the use of data

  9. Examining the Impact of Non-Technical Security Management Factors on Information Security Management in Health Informatics

    ERIC Educational Resources Information Center

    Imam, Abbas H.

    2013-01-01

    Complexity of information security has become a major issue for organizations due to incessant threats to information assets. Healthcare organizations are particularly concerned with security owing to the inherent vulnerability of sensitive information assets in health informatics. While the non-technical security management elements have been at…

  10. Clinical health informatics education for a 21st Century World.

    PubMed

    Liaw, Siaw Teng; Gray, Kathleen

    2010-01-01

    This chapter gives an educational overview of: * health informatics competencies in medical, nursing and allied clinical health professions * health informatics learning cultures and just-in-time health informatics training in clinical work settings * major considerations in selecting or developing health informatics education and training programs for local implementation * using elearning effectively to meet the objectives of health informatics education. PMID:20407180

  11. Nursing Informatics: Decades of Contribution to Health Informatics

    PubMed Central

    Mæland Knudsen, Lina Merete

    2013-01-01

    Objectives In this paper we present a contemporary understanding of "nursing informatics" and relate it to applications in three specific contexts, hospitals, community health, and home dwelling, to illustrate achievements that contribute to the overall schema of health informatics. Methods We identified literature through database searches in MEDLINE, EMBASE, CINAHL, and the Cochrane Library. Database searching was complemented by one author search and hand searches in six relevant journals. The literature review helped in conceptual clarification and elaborate on use that are supported by applications in different settings. Results Conceptual clarification of nursing data, information and knowledge has been expanded to include wisdom. Information systems and support for nursing practice benefits from conceptual clarification of nursing data, information, knowledge, and wisdom. We introduce three examples of information systems and point out core issues for information integration and practice development. Conclusions Exploring interplays of data, information, knowledge, and wisdom, nursing informatics takes a practice turn, accommodating to processes of application design and deployment for purposeful use by nurses in different settings. Collaborative efforts will be key to further achievements that support task shifting, mobility, and ubiquitous health care. PMID:23882413

  12. Establishing health informatics as a recognised and respected profession in the UK National Health Service.

    PubMed

    Millen, Di

    2003-01-01

    The delivery of healthcare is an information dependent process. National government modernisation targets, and drives to improve the effectiveness and efficiency of care delivery systems and processes have the better use of information and IT at their heart. If we are to realise the benefits information and IT developments can bring, we have to ensure we have a suitable cadre of well educated, proactive professional specialists who understand the business of healthcare. The English NHS has an attrition rate of something like 43% amongst its ICT specialists, and there are recruitment and retention problems in a range of other informatics disciplines like medical records, project management and strategic management. A 1999-2000 survey indicated the reasons for recruitment and retention problems. One agreed solution has been to work towards establishing health informatics as a recognised and respected national profession. This is in addition to other national work to establish career pathways, make health informatics as a profession "mainstream", and to provide development opportunities at all levels. This paper sets out the background to the establishment of a profession in UK health services, outlines progress to date, and summarises other national development activity to support health informatics professionals. PMID:14664092

  13. Public Health Platforms: An Emerging Informatics Approach to Health Professional Learning and Development

    PubMed Central

    Gray, Kathleen

    2016-01-01

    Health informatics has a major role to play in optimising the management and use of data, information and knowledge in health systems. As health systems undergo digital transformation, it is important to consider informatics approaches not only to curriculum content but also to the design of learning environments and learning activities for health professional learning and development. An example of such an informatics approach is the use of large-scale, integrated public health platforms on the Internet as part of health professional learning and development. This article describes selected examples of such platforms, with a focus on how they may influence the direction of health professional learning and development. Significance for public health The landscape of healthcare systems, public health systems, health research systems and professional education systems is fragmented, with many gaps and silos. More sophistication in the management of health data, information, and knowledge, based on public health informatics expertise, is needed to tackle key issues of prevention, promotion and policy-making. Platform technologies represent an emerging large-scale, highly integrated informatics approach to public health, combining the technologies of Internet, the web, the cloud, social technologies, remote sensing and/or mobile apps into an online infrastructure that can allow more synergies in work within and across these systems. Health professional curricula need updating so that the health workforce has a deep and critical understanding of the way that platform technologies are becoming the foundation of the health sector. PMID:27190977

  14. Public Health Platforms: An Emerging Informatics Approach to Health Professional Learning and Development.

    PubMed

    Gray, Kathleen

    2016-04-26

    Health informatics has a major role to play in optimising the management and use of data, information and knowledge in health systems. As health systems undergo digital transformation, it is important to consider informatics approaches not only to curriculum content but also to the design of learning environments and learning activities for health professional learning and development. An example of such an informatics approach is the use of large-scale, integrated public health platforms on the Internet as part of health professional learning and development. This article describes selected examples of such platforms, with a focus on how they may influence the direction of health professional learning and development. Significance for public healthThe landscape of healthcare systems, public health systems, health research systems and professional education systems is fragmented, with many gaps and silos. More sophistication in the management of health data, information, and knowledge, based on public health informatics expertise, is needed to tackle key issues of prevention, promotion and policy-making. Platform technologies represent an emerging large-scale, highly integrated informatics approach to public health, combining the technologies of Internet, the web, the cloud, social technologies, remote sensing and/or mobile apps into an online infrastructure that can allow more synergies in work within and across these systems. Health professional curricula need updating so that the health workforce has a deep and critical understanding of the way that platform technologies are becoming the foundation of the health sector. PMID:27190977

  15. p-medicine: A Medical Informatics Platform for Integrated Large Scale Heterogeneous Patient Data

    PubMed Central

    Marés, J.; Shamardin, L.; Weiler, G.; Anguita, A.; Sfakianakis, S.; Neri, E.; Zasada, S.J.; Graf, N.; Coveney, P.V.

    2014-01-01

    Secure access to patient data is becoming of increasing importance, as medical informatics grows in significance, to both assist with population health studies, and patient specific medicine in support of treatment. However, assembling the many different types of data emanating from the clinic is in itself a difficulty, and doing so across national borders compounds the problem. In this paper we present our solution: an easy to use distributed informatics platform embedding a state of the art data warehouse incorporating a secure pseudonymisation system protecting access to personal healthcare data. Using this system, a whole range of patient derived data, from genomics to imaging to clinical records, can be assembled and linked, and then connected with analytics tools that help us to understand the data. Research performed in this environment will have immediate clinical impact for personalised patient healthcare. PMID:25954394

  16. Three Decades of Research on Computer Applications in Health Care

    PubMed Central

    Michael Fitzmaurice, J.; Adams, Karen; Eisenberg, John M.

    2002-01-01

    The Agency for Healthcare Research and Quality and its predecessor organizations—collectively referred to here as AHRQ—have a productive history of funding research and development in the field of medical informatics, with grant investments since 1968 totaling $107 million. Many computerized interventions that are commonplace today, such as drug interaction alerts, had their genesis in early AHRQ initiatives. This review provides a historical perspective on AHRQ investment in medical informatics research. It shows that grants provided by AHRQ resulted in achievements that include advancing automation in the clinical laboratory and radiology, assisting in technology development (computer languages, software, and hardware), evaluating the effectiveness of computer-based medical information systems, facilitating the evolution of computer-aided decision making, promoting computer-initiated quality assurance programs, backing the formation and application of comprehensive data banks, enhancing the management of specific conditions such as HIV infection, and supporting health data coding and standards initiatives. Other federal agencies and private organizations have also supported research in medical informatics, some earlier and to a greater degree than AHRQ. The results and relative roles of these related efforts are beyond the scope of this review. PMID:11861630

  17. How can we improve Science, Technology, Engineering, and Math education to encourage careers in Biomedical and Pathology Informatics?

    PubMed Central

    Uppal, Rahul; Mandava, Gunasheil; Romagnoli, Katrina M.; King, Andrew J.; Draper, Amie J.; Handen, Adam L.; Fisher, Arielle M.; Becich, Michael J.; Dutta-Moscato, Joyeeta

    2016-01-01

    The Computer Science, Biology, and Biomedical Informatics (CoSBBI) program was initiated in 2011 to expose the critical role of informatics in biomedicine to talented high school students.[1] By involving them in Science, Technology, Engineering, and Math (STEM) training at the high school level and providing mentorship and research opportunities throughout the formative years of their education, CoSBBI creates a research infrastructure designed to develop young informaticians. Our central premise is that the trajectory necessary to be an expert in the emerging fields of biomedical informatics and pathology informatics requires accelerated learning at an early age.In our 4th year of CoSBBI as a part of the University of Pittsburgh Cancer Institute (UPCI) Academy (http://www.upci.upmc.edu/summeracademy/), and our 2nd year of CoSBBI as an independent informatics-based academy, we enhanced our classroom curriculum, added hands-on computer science instruction, and expanded research projects to include clinical informatics. We also conducted a qualitative evaluation of the program to identify areas that need improvement in order to achieve our goal of creating a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics in the era of big data and personalized medicine. PMID:26955500

  18. How can we improve Science, Technology, Engineering, and Math education to encourage careers in Biomedical and Pathology Informatics?

    PubMed

    Uppal, Rahul; Mandava, Gunasheil; Romagnoli, Katrina M; King, Andrew J; Draper, Amie J; Handen, Adam L; Fisher, Arielle M; Becich, Michael J; Dutta-Moscato, Joyeeta

    2016-01-01

    The Computer Science, Biology, and Biomedical Informatics (CoSBBI) program was initiated in 2011 to expose the critical role of informatics in biomedicine to talented high school students.[1] By involving them in Science, Technology, Engineering, and Math (STEM) training at the high school level and providing mentorship and research opportunities throughout the formative years of their education, CoSBBI creates a research infrastructure designed to develop young informaticians. Our central premise is that the trajectory necessary to be an expert in the emerging fields of biomedical informatics and pathology informatics requires accelerated learning at an early age.In our 4(th) year of CoSBBI as a part of the University of Pittsburgh Cancer Institute (UPCI) Academy (http://www.upci.upmc.edu/summeracademy/), and our 2nd year of CoSBBI as an independent informatics-based academy, we enhanced our classroom curriculum, added hands-on computer science instruction, and expanded research projects to include clinical informatics. We also conducted a qualitative evaluation of the program to identify areas that need improvement in order to achieve our goal of creating a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics in the era of big data and personalized medicine. PMID:26955500

  19. Translational informatics: an industry perspective

    PubMed Central

    2012-01-01

    Translational informatics (TI) is extremely important for the pharmaceutical industry, especially as the bar for regulatory approval of new medications is set higher and higher. This paper will explore three specific areas in the drug development lifecycle, from tools developed by precompetitive consortia to standardized clinical data collection to the effective delivery of medications using clinical decision support, in which TI has a major role to play. Advancing TI will require investment in new tools and algorithms, as well as ensuring that translational issues are addressed early in the design process of informatics projects, and also given higher weight in funding or publication decisions. Ultimately, the source of translational tools and differences between academia and industry are secondary, as long as they move towards the shared goal of improving health. PMID:22237867

  20. Quantitative and Qualitative Evaluation of The Structural Designing of Medical Informatics Dynamic Encyclopedia

    PubMed Central

    Safdari, Reza; Shahmoradi, Leila; Hosseini-beheshti, Molouk-sadat; Nejad, Ahmadreza Farzaneh; Hosseiniravandi, Mohammad

    2015-01-01

    Introduction: Encyclopedias and their compilation have become so prevalent as a valid cultural medium in the world. The daily development of computer industry and the expansion of various sciences have made indispensable the compilation of electronic, specialized encyclopedias, especially the web-based ones. Materials and Methods: This is an applied-developmental study conducted in 2014. First, the main terms in the field of medical informatics were gathered using MeSH Online 2014 and the supplementary terms of each were determined, and then the tree diagram of the terms was drawn based on their relationship in MeSH. Based on the studies done by the researchers, the tree diagram of the encyclopedia was drawn with respect to the existing areas in this field, and the terms gathered were put in related domains. Findings: In MeSH, 75 preferred terms together with 249 supplementary ones were indexed. One of the informatics’ sub-branches is biomedical informatics and health which itself consists of three sub-divisions of bioinformatics, clinical informatics, and health informatics. Medical informatics which is a subdivision of clinical informatics has developed from the three fields of medical sciences, management and social sciences, and computational sciences and mathematics. Results and Discussion: Medical Informatics is created of confluence and fusion and applications of the three major scientific branches include health and biological sciences, social sciences and management sciences, computing and mathematical sciences, and according to that the structure of MeSH is weak for future development of Encyclopedia of Medical Informatics. PMID:26635440

  1. Eligibility requirements for advanced health informatics certification.

    PubMed

    Gadd, Cynthia S; Williamson, Jeffrey J; Steen, Elaine B; Andriole, Katherine P; Delaney, Connie; Gumpper, Karl; LaVenture, Martin; Rosendale, Doug; Sittig, Dean F; Thyvalikakath, Thankam; Turner, Peggy; Fridsma, Douglas B

    2016-07-01

    AMIA is leading the effort to strengthen the health informatics profession by creating an advanced health informatics certification (AHIC) for individuals whose informatics work directly impacts the practice of health care, public health, or personal health. The AMIA Board of Directors has endorsed a set of proposed AHIC eligibility requirements that will be presented to the future AHIC certifying entity for adoption. These requirements specifically establish who will be eligible to sit for the AHIC examination and more generally signal the depth and breadth of knowledge and experience expected from certified individuals. They also inform the development of the accreditation process and provide guidance to graduate health informatics programs as well as individuals interested in pursuing AHIC. AHIC eligibility will be determined by practice focus, education in primary field and health informatics, and significant health informatics experience. PMID:27358328

  2. The Scope and Direction of Health Informatics

    NASA Technical Reports Server (NTRS)

    McGinnis, Patrick J.

    2001-01-01

    Health Informatics (HI) is a dynamic discipline based upon the medical sciences, information sciences, and cognitive sciences. Its domain is can broadly be defined as medical information management. The purpose of this paper is to provide an overview of this domain, discuss the current "state of the art" , and indicate the likely growth areas for health informatics. The sources of information utilized in this paper are selected publications from the literature of Health Informatics, HI 5300: Introduction to Health Informatics, which is a course from the Department of Health Informatics at the University of Texas Houston Health Sciences Center, and the author's personal experience in practicing telemedicine and implementing an electronic medical record at the NASA Johnson Space Center. The conclusion is that the direction of Health Informatics is in the direction of data management, transfer, and representation via electronic medical records and the Internet.

  3. Health informatics: managing information to deliver value.

    PubMed

    Ball, M J; Douglas, J V; Lillis, J

    2001-01-01

    Can informatics improve health? This paper answers yes, exploring its components, benefits, and effect on a wide variety of health-related activities. We first examine how information technology enables health informatics, supporting information management and knowledge creation through its four cornerstones. Success factors in using informatics are covered next, including human factors, the role of trained health informaticians, and the importance of matching informatics initiatives with business goals and establishing and measuring value. We demonstrate the potential effect of the Internet on health services through such e-health applications as enterprise-wide patient records, state-of-the-art call centers, and data repositories. For current evidence that informatics is already improving health, we turn to such topics as disease management, telehealth, patient safety, and decision support. As more organizations move informatics from theory into practice and realize its value, they will transform inefficient processes and improve care for all. PMID:11604752

  4. The scope and direction of health informatics

    NASA Technical Reports Server (NTRS)

    McGinnis, Patrick J.

    2002-01-01

    Health Informatics (HI) is a dynamic discipline based on the medical sciences, information sciences, and cognitive sciences. Its domain can broadly be defined as medical information management. The purpose of this paper is to provide an overview of this domain, discuss the current "state of the art," and indicate the likely growth areas for health informatics. The sources of information used in this paper are selected publications from the literature of Health Informatics, HI 5300: Introduction to Health Informatics, which is a course from the Department of Health Informatics at the University of Texas Houston Health Sciences Center, and the author's personal experience in practicing telemedicine and implementing an electronic medical record at the NASA-Johnson Space Center. The conclusion is that the direction of Health Informatics is in the direction of data management, transfer, and representation via electronic medical records and the Internet.

  5. The ongoing evolution of the core curriculum of a clinical fellowship in pathology informatics.

    PubMed

    Quinn, Andrew M; Klepeis, Veronica E; Mandelker, Diana L; Platt, Mia Y; Rao, Luigi K F; Riedlinger, Gregory; Baron, Jason M; Brodsky, Victor; Kim, Ji Yeon; Lane, William; Lee, Roy E; Levy, Bruce P; McClintock, David S; Beckwith, Bruce A; Kuo, Frank C; Gilbertson, John R

    2014-01-01

    The Partners HealthCare system's Clinical Fellowship in Pathology Informatics (Boston, MA, USA) faces ongoing challenges to the delivery of its core curriculum in the forms of: (1) New classes of fellows annually with new and varying educational needs and increasingly fractured, enterprise-wide commitments; (2) taxing electronic health record (EHR) and laboratory information system (LIS) implementations; and (3) increasing interest in the subspecialty at the academic medical centers (AMCs) in what is a large health care network. In response to these challenges, the fellowship has modified its existing didactic sessions and piloted both a network-wide pathology informatics lecture series and regular "learning laboratories". Didactic sessions, which had previously included more formal discussions of the four divisions of the core curriculum: Information fundamentals, information systems, workflow and process, and governance and management, now focus on group discussions concerning the fellows' ongoing projects, updates on the enterprise-wide EHR and LIS implementations, and directed questions about weekly readings. Lectures are given by the informatics faculty, guest informatics faculty, current and former fellows, and information systems members in the network, and are open to all professional members of the pathology departments at the AMCs. Learning laboratories consist of small-group exercises geared toward a variety of learning styles, and are driven by both the fellows and a member of the informatics faculty. The learning laboratories have created a forum for discussing real-time and real-world pathology informatics matters, and for incorporating awareness of and timely discussions about the latest pathology informatics literature. These changes have diversified the delivery of the fellowship's core curriculum, increased exposure of faculty, fellows and trainees to one another, and more equitably distributed teaching responsibilities among the entirety of the

  6. The ongoing evolution of the core curriculum of a clinical fellowship in pathology informatics

    PubMed Central

    Quinn, Andrew M.; Klepeis, Veronica E.; Mandelker, Diana L.; Platt, Mia Y.; Rao, Luigi K. F.; Riedlinger, Gregory; Baron, Jason M.; Brodsky, Victor; Kim, Ji Yeon; Lane, William; Lee, Roy E.; Levy, Bruce P.; McClintock, David S.; Beckwith, Bruce A.; Kuo, Frank C.; Gilbertson, John R.

    2014-01-01

    The Partners HealthCare system's Clinical Fellowship in Pathology Informatics (Boston, MA, USA) faces ongoing challenges to the delivery of its core curriculum in the forms of: (1) New classes of fellows annually with new and varying educational needs and increasingly fractured, enterprise-wide commitments; (2) taxing electronic health record (EHR) and laboratory information system (LIS) implementations; and (3) increasing interest in the subspecialty at the academic medical centers (AMCs) in what is a large health care network. In response to these challenges, the fellowship has modified its existing didactic sessions and piloted both a network-wide pathology informatics lecture series and regular “learning laboratories”. Didactic sessions, which had previously included more formal discussions of the four divisions of the core curriculum: Information fundamentals, information systems, workflow and process, and governance and management, now focus on group discussions concerning the fellows’ ongoing projects, updates on the enterprise-wide EHR and LIS implementations, and directed questions about weekly readings. Lectures are given by the informatics faculty, guest informatics faculty, current and former fellows, and information systems members in the network, and are open to all professional members of the pathology departments at the AMCs. Learning laboratories consist of small-group exercises geared toward a variety of learning styles, and are driven by both the fellows and a member of the informatics faculty. The learning laboratories have created a forum for discussing real-time and real-world pathology informatics matters, and for incorporating awareness of and timely discussions about the latest pathology informatics literature. These changes have diversified the delivery of the fellowship's core curriculum, increased exposure of faculty, fellows and trainees to one another, and more equitably distributed teaching responsibilities among the entirety of

  7. Engaging clinicians in health informatics projects.

    PubMed

    Caballero Muñoz, Erika; Hullin Lucay Cossio, Carola M

    2010-01-01

    This chapter gives an educational overview of: * The importance of the engagement of clinicians within a health informatics project * Strategies required for an effective involvement of clinicians throughout a change management process within a clinical context for the implementation of a health informatics project * The critical aspects for a successful implementation of a health informatics project that involves clinicians as end users * Key factors during the administration of changes during the implementation of an informatics project for an information system in clinical practice. PMID:20407162

  8. Perspectives from Nurse Managers on Informatics Competencies

    PubMed Central

    Cui, Dan; Zhu, Xuemei; Zhao, Qiuli; Xiao, Ningning; Shen, Xiaoying

    2014-01-01

    Background and Purpose. Nurse managers are in an excellent position for providing leadership and support within the institutions they serve and are often responsible for accessing information that is vital to the improvement of health facility processes and patients' outcomes. Therefore, competency in informatics is essential. The purposes of this study are to examine current informatics competency levels of nurse managers and to identify the variables that influence these competencies. Methods. A questionnaire designed to assess demographic information and nursing informatics competency was completed by 68 nurse managers. Multiple linear regression analysis was conducted to analyze the factors influencing informatics competency. Results. Descriptive analysis of the data revealed that informatics competency of these nurse managers was in the moderate range (77.65 ± 8.14). Multiple linear regression analysis indicated that level of education, nursing administration experience, and informatics education/training were significant factors affecting competency levels. Conclusion. The factors identified in this study can serve as a reference for nurse managers who were wishing to improve their informatics competency, hospital administrators seeking to provide appropriate training, and nursing educators who were making decisions about nursing informatics curricula. These findings suggest that efforts to enhance the informatics competency of nurse managers have marked potential benefits. PMID:24790565

  9. Comparative BioInformatics and Computational Toxicology

    EPA Science Inventory

    Reflecting the numerous changes in the field since the publication of the previous edition, this third edition of Developmental Toxicology focuses on the mechanisms of developmental toxicity and incorporates current technologies for testing in the risk assessment process.

  10. Health informatics and community health: support for patients as collaborators in care.

    PubMed

    Brennan, P F

    1999-12-01

    Health informatics has much to offer community health care. Computer networks and telecommunications provide particular support that can enhance the collaboration among clinicians, care providers and patients. Special-purpose computer tools referred to as Consumer Health Informatics (CHI) represent the application of computer and information technologies specifically to support the health information and communication needs of patients and lay persons. Research projects like ComputerLink and CHESS demonstrate that CHI is acceptable to patients and promotes self-care and disease management. Three grand challenges must be faced to insure realization of the promise of health informatics to community health care: development of knowledge management and information discovery tools for patients, insurance of health information literacy for all persons, and re-engineering clinical practice to capitalize on patients as full partners in health care. PMID:10805012

  11. The Chief Clinical Informatics Officer (CCIO)

    PubMed Central

    Sengstack, Patricia; Thyvalikakath, Thankam Paul; Poikonen, John; Middleton, Blackford; Payne, Thomas; Lehmann, Christoph U

    2016-01-01

    Summary Introduction The emerging operational role of the “Chief Clinical Informatics Officer” (CCIO) remains heterogeneous with individuals deriving from a variety of clinical settings and backgrounds. The CCIO is defined in title, responsibility, and scope of practice by local organizations. The term encompasses the more commonly used Chief Medical Informatics Officer (CMIO) and Chief Nursing Informatics Officer (CNIO) as well as the rarely used Chief Pharmacy Informatics Officer (CPIO) and Chief Dental Informatics Officer (CDIO). Background The American Medical Informatics Association (AMIA) identified a need to better delineate the knowledge, education, skillsets, and operational scope of the CCIO in an attempt to address the challenges surrounding the professional development and the hiring processes of CCIOs. Discussion An AMIA task force developed knowledge, education, and operational skillset recommendations for CCIOs focusing on the common core aspect and describing individual differences based on Clinical Informatics focus. The task force concluded that while the role of the CCIO currently is diverse, a growing body of Clinical Informatics and increasing certification efforts are resulting in increased homogeneity. The task force advised that 1.) To achieve a predictable and desirable skillset, the CCIO must complete clearly defined and specified Clinical Informatics education and training. 2.) Future education and training must reflect the changing body of knowledge and must be guided by changing day-to-day informatics challenges. Conclusion A better defined and specified education and skillset for all CCIO positions will motivate the CCIO workforce and empower them to perform the job of a 21st century CCIO. Formally educated and trained CCIOs will provide a competitive advantage to their respective enterprise by fully utilizing the power of Informatics science. PMID:27081413

  12. Eco-informatics and natural resource management

    USGS Publications Warehouse

    Cushing, J.B.; Wilson, T.; Borning, A.; Delcambre, L.; Bowker, G.; Frame, M.; Schnase, J.; Sonntag, W.; Fulop, J.; Hert, C.; Hovy, E.; Jones, J.; Landis, E.; Schweik, C.; Brandt, L.; Gregg, V.; Spengler, S.

    2006-01-01

    This project highlight reports on the 2004 workshop [1], as well as follow-up activities in 2005 and 2006, regarding how informatics tools can help manage natural resources and decide policy. The workshop was sponsored jointly by sponsored by the NSF, NBII, NASA, and EPA, and attended by practitioners from government and non-government agencies, and university researchers from the computer, social, and ecological sciences. The workshop presented the significant information technology (IT) problems that resource managers face when integrating ecological or environmental information to make decisions. These IT problems fall into five categories: data presentation, data gaps, tools, indicators, and policy making and implementation. To alleviate such problems, we recommend informatics research in four IT areas, as defined in this abstract and our final report: modeling and simulation, data quality, information integration and ontologies, and social and human aspects. Additionally, we recommend that funding agencies provide infrastructure and some changes in funding habits to assure cycles of innovation in the domain were addressed. Follow-on activities to the workshop subsequent to dg.o 2005 included: an invited talk presenting workshop results at DILS 2005, publication of the workshop final report by the NBII [1], and a poster at the NBII All Hands Meeting (Oct. 2005). We also expect a special issue of the JIIS to appear in 2006 that addresses some of these questions. As we go to press, no solicitation by funding agencies has as yet been published, but various NASA and NBII, and NSF cyber-infrastructure and DG research efforts now underway address the above issues.

  13. Measuring nursing informatics competencies of practicing nurses in Korea: Nursing Informatics Competencies Questionnaire.

    PubMed

    Chung, Seon Yoon; Staggers, Nancy

    2014-12-01

    Informatics competencies are a necessity for contemporary nurses. However, few researchers have investigated informatics competencies for practicing nurses. A full set of Informatics competencies, an instrument to measure these competencies, and potential influencing factors have yet to be identified for practicing nurses. The Nursing Informatics Competencies Questionnaire was designed, tested for psychometrics, and used to measure beginning and experienced levels of practice. A pilot study using 54 nurses ensured item comprehension and clarity. Internal consistency and face and content validity were established. A cross-sectional survey was then conducted on 230 nurses in Seoul, Korea, to determine construct validity, describe a complete set of informatics competencies, and explore possible influencing factors on existing informatics competencies. Principal components analysis, descriptive statistics, and multiple regression were used for data analysis. Principal components analysis gives support for the Nursing Informatics Competencies Questionnaire construct validity. Survey results indicate that involvement in a managerial position and self-directed informatics-related education may be more influential for improving informatics competencies, whereas general clinical experience and workplace settings are not. This study provides a foundation for understanding how informatics competencies might be integrated throughout nurses' work lives and how to develop appropriate strategies to support nurses in their informatics practice in clinical settings. PMID:25393832

  14. Health Informatics: Developing a Masters Programme in Rwanda based on the IMIA Educational Recommendations and the IMIA Knowledge Base.

    PubMed

    Wright, Graham; Verbeke, Frank; Nyssen, Marc; Betts, Helen

    2015-01-01

    Since 2011, the Regional e-Health Center of Excellence in Rwanda (REHCE) has run an MSc in Health Informatics programme (MSc HI). A programme review was commissioned in February 2014 after 2 cohorts of students completed the post-graduate certificate and diploma courses and most students had started preparatory activity for their master dissertation. The review developed a method for mapping course content on health informatics competences and knowledge units. Also the review identified and measured knowledge gaps and content redundancy. Using this method, we analyzed regulatory and programme documents combined with stakeholder interviews, and demonstrated that the existing MSc HI curriculum did not completely address the needs of the Rwandan health sector. Teaching strategies did not always match students' expectations. Based on a detailed Rwandan health informatics needs assessment, International Medical Informatics Association (IMIA)'s Recommendations on Education in Biomedical and Health Informatics and the IMIA Health Informatics Knowledge Base, a new curriculum was developed and provided a better competences match for the specifics of healthcare in the Central African region. The new approved curriculum will be implemented in the 2014/2015 academic year and options for regional extension of the programme to Eastern DRC (Bukavu) and Burundi (Bujumbura) are being investigated. PMID:26262106

  15. Medical Informatics: Market for IS/IT.

    ERIC Educational Resources Information Center

    Morris, Theodore Allan

    2002-01-01

    Uses co-occurrence analysis of INSPEC classification codes and thesaurus terms assigned to medical informatics (biomedical information) journal articles and proceedings papers to reveal a more complete perspective of how information science and information technology (IS/IT) authors view medical informatics. Discusses results of cluster analysis…

  16. The Impact of Medical Informatics on Librarianship.

    ERIC Educational Resources Information Center

    Dalrymple, Prudence W.

    The thesis of this paper is that the growth of the field of medical informatics, while seemingly a potential threat to medical librarianship, is in fact an opportunity for librarianship to both extend its reach and also to further define its unique characteristics in contrast to those of medical informatics. Furthermore, because medical…

  17. Informatics Education in Italian Secondary Schools

    ERIC Educational Resources Information Center

    Bellettini, Carlo; Lonati, Violetta; Malchiodi, Dario; Monga, Mattia; Morpurgo, Anna; Torelli, Mauro; Zecca, Luisa

    2014-01-01

    This article describes the state of informatics education in the Italian secondary schools, highlighting how the learning objectives set up by the Ministry of Education are difficult to meet, due to the fact that the subject is often taught by teachers not holding an informatics degree, the lack of suitable teaching material and the expectations…

  18. Teaching Some Informatics Concepts Using Formal System

    ERIC Educational Resources Information Center

    Yang, Sojung; Park, Seongbin

    2014-01-01

    There are many important issues in informatics and many agree that algorithms and programming are most important issues that need to be included in informatics education (Dagiene and Jevsikova, 2012). In this paper, we propose how some of these issues can be easily taught using the notion of a formal system which consists of axioms and inference…

  19. Nutrition Informatics Applications in Clinical Practice: a Systematic Review

    PubMed Central

    North, Jennifer C.; Jordan, Kristine C.; Metos, Julie; Hurdle, John F.

    2015-01-01

    Nutrition care and metabolic control contribute to clinical patient outcomes. Biomedical informatics applications represent a way to potentially improve quality and efficiency of nutrition management. We performed a systematic literature review to identify clinical decision support and computerized provider order entry systems used to manage nutrition care. Online research databases were searched using a specific set of keywords. Additionally, bibliographies were referenced for supplemental citations. Four independent reviewers selected sixteen studies out of 364 for review. These papers described adult and neonatal nutrition support applications, blood glucose management applications, and other nutrition applications. Overall, results indicated that computerized interventions could contribute to improved patient outcomes and provider performance. Specifically, computer systems in the clinical setting improved nutrient delivery, rates of malnutrition, weight loss, blood glucose values, clinician efficiency, and error rates. In conclusion, further investigation of informatics applications on nutritional and performance outcomes utilizing rigorous study designs is recommended. PMID:26958233

  20. Nanoinformatics: new challenges for biomedical informatics at the nano level.

    PubMed

    De La Iglesia, Diana; Chiesa, Stefano; Kern, Josipa; Maojo, Victor; Martin-Sanchez, Fernando; Potamias, George; Moustakis, Vassilis; Mitchell, Joyce A

    2009-01-01

    Over the last decades Nanotechnology has promised to advance science and technology in many areas. Within medicine, Nanomedicine promises to deliver new methods for diagnosis, prognosis and therapy. As the amount of available information is rapidly growing, new Biomedical Informatics approaches have to be developed to satisfy the increasing demand on data and knowledge management. In 2007, a new sub-discipline, already named "Nanoinformatics", was created with support from the US National Science Foundation. In Europe, a project named ACTION-Grid was launched in 2008 with support from the European Commission to analyze the challenges and agenda for developing Nanoinformatics as a discipline related to Nanotechnology, Biomedicine and Informatics. For MIE 2009, members of this consortium proposed a workshop to discuss the scientific and strategic issues associated with this topic. Nanoinformatics aims to create a bridge between Nanomedicine and Information Technology applying computational methods to manage the information created in the nanomedical domain. PMID:19745461

  1. A training network for introducing telemedicine, telecare and hospital informatics in the Adriatic-Danube-Black Sea region.

    PubMed

    Anogeianaki, Antonia; Ilonidis, George; Anogianakis, George; Lianguris, John; Katsaros, Kyriakos; Pseftogianni, Dimitra; Klisarova, Anelia; Negrev, Negrin

    2004-01-01

    DIMNET is a training mechanism for a region of central Europe. The aim is to upgrade the information technology skills of local hospital personnel and preserve their employability following the introduction of medical informatics. DIMNET uses Internet-based virtual classrooms to provide a 200-hour training course in medical informatics. Training takes place in the cities of Drama, Kavala, Xanthi and Varna. So far, more than 600 people have benefited from the programme. Initial results are encouraging. DIMNET promotes a new vocational training culture in the Balkans and is supported by local governments that perceive health-care as a fulcrum for economic development. PMID:15603593

  2. Factors in the development of clinical informatics competence in early career health sciences professionals in Australia: a qualitative study.

    PubMed

    Gray, Kathleen; Sim, Jenny

    2011-03-01

    This paper reports on a qualitative study investigating how Australian health professionals may be developing and deploying essential clinical informatics capabilities in the first 5 years of their professional practice. It explores the experiences of four professionals in applying what they have learned formally and informally during their university education and during workplace learning and training. This study is based on a broad review of the literature on clinical informatics education and training; its findings support international analyses and suggest that new strategic efforts among stakeholders in the healthcare system are required to make progress in building workforce capacity in this field, in Australia and elsewhere. PMID:20544387

  3. Five Periods in Development of Medical Informatics

    PubMed Central

    Masic, Izet

    2014-01-01

    Medical informatics, as scientific discipline, has to do with all aspects of understanding and promoting the effective organization, analysis, management, and use of information in health care. While the field of Medical informatics shares the general scope of these interests with some other health care specialities and disciplines, Medical (Health) informatics has developed its own areas of emphasis and approaches that have set it apart from other disciplines and specialities. For the last fifties of 20th century and some more years of 21st century, Medical informatics had the five time periods of characteristic development. In this paper author shortly described main scientific innovations and inventors who created development of Medical informatics. PMID:24648619

  4. Five periods in development of medical informatics.

    PubMed

    Masic, Izet

    2014-02-01

    Medical informatics, as scientific discipline, has to do with all aspects of understanding and promoting the effective organization, analysis, management, and use of information in health care. While the field of Medical informatics shares the general scope of these interests with some other health care specialities and disciplines, Medical (Health) informatics has developed its own areas of emphasis and approaches that have set it apart from other disciplines and specialities. For the last fifties of 20th century and some more years of 21st century, Medical informatics had the five time periods of characteristic development. In this paper author shortly described main scientific innovations and inventors who created development of Medical informatics. PMID:24648619

  5. Building nursing informatics courses on the Web.

    PubMed

    Dounavis, P; Karistinou, E; Mantas, J

    1998-01-01

    The Information Technology is rapidly being integrated into Educational Institutions and Health Care Environments. Although the use of computer for education and training is not new to the academic society, further prospects are available through the use of emerging technologies as the Multimedia and the World Wide Web. In today's rapidly changing healthcare environment, the need for high quality, cost effective education for employees, consumers, and students is gaining increased attention. The development of customised computer-based training programs has long been beyond the capabilities or financial resources of most healthcare organisations; however, with recent advancements in technology, this situation is rapidly changing. The Nurses represent the greater part of the Health Care Professionals thus the education of this group is of outmost importance for the health-care environments. The World Wide Web can be used as an educational tool in order to have better-educated Nurses not only by supporting the Academic institutions but also by providing Distance Learning Education covering new aspects of the Nursing Science. The purpose of this paper is to increase the understanding of the ways in which the emerging technologies of Multimedia and the World Wide Web can enhance the learning process, and also provide education at a distance. PMID:10179616

  6. A Repository of Codes of Ethics and Technical Standards in Health Informatics

    PubMed Central

    Zaïane, Osmar R.

    2014-01-01

    We present a searchable repository of codes of ethics and standards in health informatics. It is built using state-of-the-art search algorithms and technologies. The repository will be potentially beneficial for public health practitioners, researchers, and software developers in finding and comparing ethics topics of interest. Public health clinics, clinicians, and researchers can use the repository platform as a one-stop reference for various ethics codes and standards. In addition, the repository interface is built for easy navigation, fast search, and side-by-side comparative reading of documents. Our selection criteria for codes and standards are two-fold; firstly, to maintain intellectual property rights, we index only codes and standards freely available on the internet. Secondly, major international, regional, and national health informatics bodies across the globe are surveyed with the aim of understanding the landscape in this domain. We also look at prevalent technical standards in health informatics from major bodies such as the International Standards Organization (ISO) and the U. S. Food and Drug Administration (FDA). Our repository contains codes of ethics from the International Medical Informatics Association (IMIA), the iHealth Coalition (iHC), the American Health Information Management Association (AHIMA), the Australasian College of Health Informatics (ACHI), the British Computer Society (BCS), and the UK Council for Health Informatics Professions (UKCHIP), with room for adding more in the future. Our major contribution is enhancing the findability of codes and standards related to health informatics ethics by compilation and unified access through the health informatics ethics repository. PMID:25422725

  7. Data interchange standards in healthcare IT--computable semantic interoperability: now possible but still difficult, do we really need a better mousetrap?

    PubMed

    Mead, Charles N

    2006-01-01

    The following article on HL7 Version 3 will give readers a glimpse into the significant differences between "what came before"--that is, HL7 Version 2.x--and "what today and the future will bring," which is the HL7 Version 3 family of data interchange specifications. The difference between V2.x and V3 is significant, and it exists because the various stakeholders in the HL7 development process believe that the increased depth, breadth, and, to some degree, complexity that characterize V3 are necessary to solve many of today's and tomorrow's increasingly wide, deep and complex healthcare information data interchange requirements. Like many healthcare or technology discussions, this discussion has its own vocabulary of somewhat obscure, but not difficult, terms. This article will define the minimum set that is necessary for readers to appreciate the relevance and capabilities of HL7 Version 3, including how it is different than HL7 Version 2. After that, there will be a brief overview of the primary motivations for HL7 Version 3 in the presence of the unequivocal success of Version 2. In this context, the article will give readers an overview of one of the prime constructs of Version 3, the Reference Information Model (RIM). There are 'four pillars that are necessary but not sufficient to obtain computable semantic interoperability." These four pillars--a cross-domain information model; a robust data type specification; a methodology for separating domain-specific terms from, as well as binding them to, the common model; and a top-down interchange specification methodology and tools for using 1, 2, 3 and defining Version 3 specification--collectively comprise the "HL7 Version 3 Toolkit." Further, this article will present a list of questions and answers to help readers assess the scope and complexity of the problems facing healthcare IT today, and which will further enlighten readers on the "reality" of HL7 Version 3. The article will conclude with a "pseudo

  8. Addressing healthcare.

    PubMed

    Daly, Rich

    2013-02-11

    Though President Barack Obama has rarely made healthcare references in his State of the Union addresses, health policy experts are hoping he changes that strategy this year. "The question is: Will he say anything? You would hope that he would, given that that was the major issue he started his presidency with," says Dr. James Weinstein, left, of the Dartmouth-Hitchcock health system. PMID:23487896

  9. Unobtrusive sensing and wearable devices for health informatics.

    PubMed

    Zheng, Ya-Li; Ding, Xiao-Rong; Poon, Carmen Chung Yan; Lo, Benny Ping Lai; Zhang, Heye; Zhou, Xiao-Lin; Yang, Guang-Zhong; Zhao, Ni; Zhang, Yuan-Ting

    2014-05-01

    The aging population, prevalence of chronic diseases, and outbreaks of infectious diseases are some of the major challenges of our present-day society. To address these unmet healthcare needs, especially for the early prediction and treatment of major diseases, health informatics, which deals with the acquisition, transmission, processing, storage, retrieval, and use of health information, has emerged as an active area of interdisciplinary research. In particular, acquisition of health-related information by unobtrusive sensing and wearable technologies is considered as a cornerstone in health informatics. Sensors can be weaved or integrated into clothing, accessories, and the living environment, such that health information can be acquired seamlessly and pervasively in daily living. Sensors can even be designed as stick-on electronic tattoos or directly printed onto human skin to enable long-term health monitoring. This paper aims to provide an overview of four emerging unobtrusive and wearable technologies, which are essential to the realization of pervasive health information acquisition, including: (1) unobtrusive sensing methods, (2) smart textile technology, (3) flexible-stretchable-printable electronics, and (4) sensor fusion, and then to identify some future directions of research. PMID:24759283

  10. Advancing Climate Change and Impacts Science Through Climate Informatics

    NASA Astrophysics Data System (ADS)

    Lenhardt, W.; Pouchard, L. C.; King, A. W.; Branstetter, M. L.; Kao, S.; Wang, D.

    2010-12-01

    This poster will outline the work to date on developing a climate informatics capability at Oak Ridge National Laboratory (ORNL). The central proposition of this effort is that the application of informatics and information science to the domain of climate change science is an essential means to bridge the realm of high performance computing (HPC) and domain science. The goal is to facilitate knowledge capture and the creation of new scientific insights. For example, a climate informatics capability will help with the understanding and use of model results in domain sciences that were not originally in the scope. From there, HPC can also benefit from feedback as the new approaches may lead to better parameterization in the models. In this poster we will summarize the challenges associated with climate change science that can benefit from the systematic application of informatics and we will highlight our work to date in creating the climate informatics capability to address these types of challenges. We have identified three areas that are particularly challenging in the context of climate change science: 1) integrating model and observational data across different spatial and temporal scales, 2) model linkages, i.e. climate models linked to other models such as hydrologic models, and 3) model diagnostics. Each of these has a methodological component and an informatics component. Our project under way at ORNL seeks to develop new approaches and tools in the context of linking climate change and water issues. We are basing our work on the following four use cases: 1) Evaluation/test of CCSM4 biases in hydrology (precipitation, soil water, runoff, river discharge) over the Rio Grande Basin. User: climate modeler. 2) Investigation of projected changes in hydrology of Rio Grande Basin using the VIC (Variable Infiltration Capacity Macroscale) Hydrologic Model. User: watershed hydrologist/modeler. 3) Impact of climate change on agricultural productivity of the Rio Grande