Sample records for heart muscle cells

  1. Restoration of heart functions using human embryonic stem cells derived heart muscle cells.

    PubMed

    Gepstein, Lior; Kehat, Izhak

    2005-02-01

    Extract: Recent advances in molecular and cellular biology and specifically in the areas of stem cell biology and tissue engineering have paved the way for the development of a new field in biomedicine, regenerative medicine. This exciting approach seeks to develop new biological solutions, using the mobilization of endogenous stem cells or delivery of exogenous cells to replace or modify the function of diseased, absent, or malfunctioning tissue. The adult heart represents an attractive candidate for these emerging technologies, since adult cardiomyocytes have limited regenerative capacity. Thus, any significant heart cell loss or dysfunction, such as occurs during heart attack, is mostly irreversible and may lead to the development of progressive heart failure, one of the leading causes of world-wide morbidity and mortality. Similarly, dysfunction of the specialized electrical conduction system within the heart may result in inefficient rhythm initiation or impulse conduction, leading to significant slowing of the heart rate, usually requiring the implantation of a permanent electronic pacemaker. Replacement of the dysfunctional myocardium (heart muscle) by implantation of external heart muscle cells is emerging as a novel paradigm for restoration of the myocardial electromechanical properties, but has been significantly hampered by the paucity of cell sources for human heart cells and by the relatively limited evidence for functional integration between grafted and host cells. The recently described human embryonic stem cell (hESC) lines may provide a possible solution for the aforementioned cell sourcing problem.

  2. Loss of Notch3 Signaling in Vascular Smooth Muscle Cells Promotes Severe Heart Failure Upon Hypertension.

    PubMed

    Ragot, Hélène; Monfort, Astrid; Baudet, Mathilde; Azibani, Fériel; Fazal, Loubina; Merval, Régine; Polidano, Evelyne; Cohen-Solal, Alain; Delcayre, Claude; Vodovar, Nicolas; Chatziantoniou, Christos; Samuel, Jane-Lise

    2016-08-01

    Hypertension, which is a risk factor of heart failure, provokes adaptive changes at the vasculature and cardiac levels. Notch3 signaling plays an important role in resistance arteries by controlling the maturation of vascular smooth muscle cells. Notch3 deletion is protective in pulmonary hypertension while deleterious in arterial hypertension. Although this latter phenotype was attributed to renal and cardiac alterations, the underlying mechanisms remained unknown. To investigate the role of Notch3 signaling in the cardiac adaptation to hypertension, we used mice with either constitutive Notch3 or smooth muscle cell-specific conditional RBPJκ knockout. At baseline, both genotypes exhibited a cardiac arteriolar rarefaction associated with oxidative stress. In response to angiotensin II-induced hypertension, the heart of Notch3 knockout and SM-RBPJκ knockout mice did not adapt to pressure overload and developed heart failure, which could lead to an early and fatal acute decompensation of heart failure. This cardiac maladaptation was characterized by an absence of media hypertrophy of the media arteries, the transition of smooth muscle cells toward a synthetic phenotype, and an alteration of angiogenic pathways. A subset of mice exhibited an early fatal acute decompensated heart failure, in which the same alterations were observed, although in a more rapid timeframe. Altogether, these observations indicate that Notch3 plays a major role in coronary adaptation to pressure overload. These data also show that the hypertrophy of coronary arterial media on pressure overload is mandatory to initially maintain a normal cardiac function and is regulated by the Notch3/RBPJκ pathway. © 2016 American Heart Association, Inc.

  3. Clonal analysis reveals a common origin between nonsomite-derived neck muscles and heart myocardium

    PubMed Central

    Lescroart, Fabienne; Hamou, Wissam; Francou, Alexandre; Théveniau-Ruissy, Magali; Kelly, Robert G.; Buckingham, Margaret

    2015-01-01

    Neck muscles constitute a transition zone between somite-derived skeletal muscles of the trunk and limbs, and muscles of the head, which derive from cranial mesoderm. The trapezius and sternocleidomastoid neck muscles are formed from progenitor cells that have expressed markers of cranial pharyngeal mesoderm, whereas other muscles in the neck arise from Pax3-expressing cells in the somites. Mef2c-AHF-Cre genetic tracing experiments and Tbx1 mutant analysis show that nonsomitic neck muscles share a gene regulatory network with cardiac progenitor cells in pharyngeal mesoderm of the second heart field (SHF) and branchial arch-derived head muscles. Retrospective clonal analysis shows that this group of neck muscles includes laryngeal muscles and a component of the splenius muscle, of mixed somitic and nonsomitic origin. We demonstrate that the trapezius muscle group is clonally related to myocardium at the venous pole of the heart, which derives from the posterior SHF. The left clonal sublineage includes myocardium of the pulmonary trunk at the arterial pole of the heart. Although muscles derived from the first and second branchial arches also share a clonal relationship with different SHF-derived parts of the heart, neck muscles are clonally distinct from these muscles and define a third clonal population of common skeletal and cardiac muscle progenitor cells within cardiopharyngeal mesoderm. By linking neck muscle and heart development, our findings highlight the importance of cardiopharyngeal mesoderm in the evolution of the vertebrate heart and neck and in the pathophysiology of human congenital disease. PMID:25605943

  4. Clonal analysis reveals a common origin between nonsomite-derived neck muscles and heart myocardium.

    PubMed

    Lescroart, Fabienne; Hamou, Wissam; Francou, Alexandre; Théveniau-Ruissy, Magali; Kelly, Robert G; Buckingham, Margaret

    2015-02-03

    Neck muscles constitute a transition zone between somite-derived skeletal muscles of the trunk and limbs, and muscles of the head, which derive from cranial mesoderm. The trapezius and sternocleidomastoid neck muscles are formed from progenitor cells that have expressed markers of cranial pharyngeal mesoderm, whereas other muscles in the neck arise from Pax3-expressing cells in the somites. Mef2c-AHF-Cre genetic tracing experiments and Tbx1 mutant analysis show that nonsomitic neck muscles share a gene regulatory network with cardiac progenitor cells in pharyngeal mesoderm of the second heart field (SHF) and branchial arch-derived head muscles. Retrospective clonal analysis shows that this group of neck muscles includes laryngeal muscles and a component of the splenius muscle, of mixed somitic and nonsomitic origin. We demonstrate that the trapezius muscle group is clonally related to myocardium at the venous pole of the heart, which derives from the posterior SHF. The left clonal sublineage includes myocardium of the pulmonary trunk at the arterial pole of the heart. Although muscles derived from the first and second branchial arches also share a clonal relationship with different SHF-derived parts of the heart, neck muscles are clonally distinct from these muscles and define a third clonal population of common skeletal and cardiac muscle progenitor cells within cardiopharyngeal mesoderm. By linking neck muscle and heart development, our findings highlight the importance of cardiopharyngeal mesoderm in the evolution of the vertebrate heart and neck and in the pathophysiology of human congenital disease.

  5. Engineering human ventricular heart muscles based on a highly efficient system for purification of human pluripotent stem cell-derived ventricular cardiomyocytes.

    PubMed

    Li, Bin; Yang, Hui; Wang, Xiaochen; Zhan, Yongkun; Sheng, Wei; Cai, Huanhuan; Xin, Haoyang; Liang, Qianqian; Zhou, Ping; Lu, Chao; Qian, Ruizhe; Chen, Sifeng; Yang, Pengyuan; Zhang, Jianyi; Shou, Weinian; Huang, Guoying; Liang, Ping; Sun, Ning

    2017-09-29

    Most infarctions occur in the left anterior descending coronary artery and cause myocardium damage of the left ventricle. Although current pluripotent stem cells (PSCs) and directed cardiac differentiation techniques are able to generate fetal-like human cardiomyocytes, isolation of pure ventricular cardiomyocytes has been challenging. For repairing ventricular damage, we aimed to establish a highly efficient purification system to obtain homogeneous ventricular cardiomyocytes and prepare engineered human ventricular heart muscles in a dish. The purification system used TALEN-mediated genomic editing techniques to insert the neomycin or EGFP selection marker directly after the myosin light chain 2 (MYL2) locus in human pluripotent stem cells. Purified early ventricular cardiomyocytes were estimated by immunofluorescence, fluorescence-activated cell sorting, quantitative PCR, microelectrode array, and patch clamp. In subsequent experiments, the mixture of mature MYL2-positive ventricular cardiomyocytes and mesenchymal cells were cocultured with decellularized natural heart matrix. Histological and electrophysiology analyses of the formed tissues were performed 2 weeks later. Human ventricular cardiomyocytes were efficiently isolated based on the purification system using G418 or flow cytometry selection. When combined with the decellularized natural heart matrix as the scaffold, functional human ventricular heart muscles were prepared in a dish. These engineered human ventricular muscles can be great tools for regenerative therapy of human ventricular damage as well as drug screening and ventricular-specific disease modeling in the future.

  6. Muscle-Specific Mis-Splicing and Heart Disease Exemplified by RBM20.

    PubMed

    Rexiati, Maimaiti; Sun, Mingming; Guo, Wei

    2018-01-05

    Alternative splicing is an essential post-transcriptional process to generate multiple functional RNAs or proteins from a single transcript. Progress in RNA biology has led to a better understanding of muscle-specific RNA splicing in heart disease. The recent discovery of the muscle-specific splicing factor RNA-binding motif 20 (RBM20) not only provided great insights into the general alternative splicing mechanism but also demonstrated molecular mechanism of how this splicing factor is associated with dilated cardiomyopathy. Here, we review our current knowledge of muscle-specific splicing factors and heart disease, with an emphasis on RBM20 and its targets, RBM20-dependent alternative splicing mechanism, RBM20 disease origin in induced Pluripotent Stem Cells (iPSCs), and RBM20 mutations in dilated cardiomyopathy. In the end, we will discuss the multifunctional role of RBM20 and manipulation of RBM20 as a potential therapeutic target for heart disease.

  7. Regenerating new heart with stem cells

    PubMed Central

    Anversa, Piero; Kajstura, Jan; Rota, Marcello; Leri, Annarosa

    2013-01-01

    This article discusses current understanding of myocardial biology, emphasizing the regeneration potential of the adult human heart and the mechanisms involved. In the last decade, a novel conceptual view has emerged. The heart is no longer considered a postmitotic organ, but is viewed as a self-renewing organ characterized by a resident stem cell compartment responsible for tissue homeostasis and cardiac repair following injury. Additionally, HSCs possess the ability to transdifferentiate and acquire the cardiomyocyte, vascular endothelial, and smooth muscle cell lineages. Both cardiac and hematopoietic stem cells may be used therapeutically in an attempt to reverse the devastating consequences of chronic heart failure of ischemic and nonischemic origin. PMID:23281411

  8. Establishing the framework to support bioartificial heart fabrication using fibrin-based three-dimensional artificial heart muscle.

    PubMed

    Hogan, Matthew; Mohamed, Mohamed; Tao, Ze-Wei; Gutierrez, Laura; Birla, Ravi

    2015-02-01

    Only 3000 heart transplants are performed in the USA every year, leaving some 30 000-70 000 Americans without proper care. Current treatment modalities for heart failure have saved many lives yet still do not correct the underlying problems of congestive heart failure. Tissue engineering represents a potential field of study wherein a combination of cells, scaffolds, and/or bioreactors can be utilized to create constructs to mimic, replace, and/or repair defective tissue. The focus of this study was to generate a bioartificial heart (BAH) model using artificial heart muscle (AHM), composed of fibrin gel and neonatal rat cardiac myocytes, and a decellularized scaffold, formed by subjecting an adult rat heart to a series of decellularization solutions. By suturing the AHM around the outside of the decellularized heart and culturing while suspended in media, we were able to retain functional cardiac cells on the scaffold as evinced by visible contractility. Observed contractility rate was correlated with biopotential measurements to confirm essential functionality of cardiac constructs. Cross-sections of the BAH show successful decellularization of the scaffold and contiguous cell-rich AHM around the perimeter of the heart. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  9. The 'aerobic/resistance/inspiratory muscle training hypothesis in heart failure'.

    PubMed

    Laoutaris, Ioannis D

    2018-01-01

    Evidence from large multicentre exercise intervention trials in heart failure patients, investigating both moderate continuous aerobic training and high intensity interval training, indicates that the 'crème de la crème' exercise programme for this population remains to be found. The 'aerobic/resistance/inspiratory (ARIS) muscle training hypothesis in heart failure' is introduced, suggesting that combined ARIS muscle training may result in maximal exercise pathophysiological and functional benefits in heart failure patients. The hypothesis is based on the decoding of the 'skeletal muscle hypothesis in heart failure' and on revision of experimental evidence to date showing that exercise and functional intolerance in heart failure patients are associated not only with reduced muscle endurance, indication for aerobic training (AT), but also with reduced muscle strength and decreased inspiratory muscle function contributing to weakness, dyspnoea, fatigue and low aerobic capacity, forming the grounds for the addition of both resistance training (RT) and inspiratory muscle training (IMT) to AT. The hypothesis will be tested by comparing all potential exercise combinations, ARIS, AT/RT, AT/IMT, AT, evaluating both functional and cardiac indices in a large sample of heart failure patients of New York Heart Association class II-III and left ventricular ejection fraction ≤35% ad hoc by the multicentre randomized clinical trial, Aerobic Resistance, InSpiratory Training OutcomeS in Heart Failure (ARISTOS-HF trial).

  10. Distinct contributions of the thin and thick filaments to length-dependent activation in heart muscle.

    PubMed

    Zhang, Xuemeng; Kampourakis, Thomas; Yan, Ziqian; Sevrieva, Ivanka; Irving, Malcolm; Sun, Yin-Biao

    2017-02-23

    The Frank-Starling relation is a fundamental auto-regulatory property of the heart that ensures the volume of blood ejected in each heartbeat is matched to the extent of venous filling. At the cellular level, heart muscle cells generate higher force when stretched, but despite intense efforts the underlying molecular mechanism remains unknown. We applied a fluorescence-based method, which reports structural changes separately in the thick and thin filaments of rat cardiac muscle, to elucidate that mechanism. The distinct structural changes of troponin C in the thin filaments and myosin regulatory light chain in the thick filaments allowed us to identify two aspects of the Frank-Starling relation. Our results show that the enhanced force observed when heart muscle cells are maximally activated by calcium is due to a change in thick filament structure, but the increase in calcium sensitivity at lower calcium levels is due to a change in thin filament structure.

  11. Oracle, a novel PDZ-LIM domain protein expressed in heart and skeletal muscle.

    PubMed

    Passier, R; Richardson, J A; Olson, E N

    2000-04-01

    In order to identify novel genes enriched in adult heart, we performed a subtractive hybridization for genes expressed in mouse heart but not in skeletal muscle. We identified two alternative splicing variants of a novel PDZ-LIM domain protein, which we named Oracle. Both variants contain a PDZ domain at the amino-terminus and three LIM domains at the carboxy-terminus. Highest homology of Oracle was found with the human and rat enigma proteins in the PDZ domain (62 and 61%, respectively) and in the LIM domains (60 and 69%, respectively). By Northern hybridization analysis, we showed that expression is highest in adult mouse heart, low in skeletal muscle and undetectable in other adult mouse tissues. In situ hybridization in mouse embryos confirmed and extended these data by showing high expression of Oracle mRNA in atrial and ventricular myocardial cells from E8.5. From E9.5 low expression of Oracle mRNA was detectable in myotomes. These data suggest a role for Oracle in the early development and function of heart and skeletal muscle.

  12. Transplanted hematopoietic stem cells demonstrate impaired sarcoglycan expression after engraftment into cardiac and skeletal muscle.

    PubMed

    Lapidos, Karen A; Chen, Yiyin E; Earley, Judy U; Heydemann, Ahlke; Huber, Jill M; Chien, Marcia; Ma, Averil; McNally, Elizabeth M

    2004-12-01

    Pluripotent bone marrow-derived side population (BM-SP) stem cells have been shown to repopulate the hematopoietic system and to contribute to skeletal and cardiac muscle regeneration after transplantation. We tested BM-SP cells for their ability to regenerate heart and skeletal muscle using a model of cardiomyopathy and muscular dystrophy that lacks delta-sarcoglycan. The absence of delta-sarcoglycan produces microinfarcts in heart and skeletal muscle that should recruit regenerative stem cells. Additionally, sarcoglycan expression after transplantation should mark successful stem cell maturation into cardiac and skeletal muscle lineages. BM-SP cells from normal male mice were transplanted into female delta-sarcoglycan-null mice. We detected engraftment of donor-derived stem cells into skeletal muscle, with the majority of donor-derived cells incorporated within myofibers. In the heart, donor-derived nuclei were detected inside cardiomyocytes. Skeletal muscle myofibers containing donor-derived nuclei generally failed to express sarcoglycan, with only 2 sarcoglycan-positive fibers detected in the quadriceps muscle from all 14 mice analyzed. Moreover, all cardiomyocytes with donor-derived nuclei were sarcoglycan-negative. The absence of sarcoglycan expression in cardiomyocytes and skeletal myofibers after transplantation indicates impaired differentiation and/or maturation of bone marrow-derived stem cells. The inability of BM-SP cells to express this protein severely limits their utility for cardiac and skeletal muscle regeneration.

  13. Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart.

    PubMed

    Wang, Zhong; Zhu, Tong; Qiao, Chunping; Zhou, Liqiao; Wang, Bing; Zhang, Jian; Chen, Chunlian; Li, Juan; Xiao, Xiao

    2005-03-01

    Systemic gene delivery into muscle has been a major challenge for muscular dystrophy gene therapy, with capillary blood vessels posing the principle barrier and limiting vector dissemination. Previous efforts to deliver genes into multiple muscles have relied on isolated vessel perfusion or pharmacological interventions to enforce broad vector distribution. We compared the efficiency of multiple adeno-associated virus (AAV) vectors after a single injection via intraperitoneal or intravenous routes without additional intervention. We show that AAV8 is the most efficient vector for crossing the blood vessel barrier to attain systemic gene transfer in both skeletal and cardiac muscles of mice and hamsters. Serotypes such as AAV1 and AAV6, which demonstrate robust infection in skeletal muscle cells, were less effective in crossing the blood vessel barrier. Gene expression persisted in muscle and heart, but diminished in tissues undergoing rapid cell division, such as neonatal liver. This technology should prove useful for muscle-directed systemic gene therapy.

  14. Myostatin from the heart: local and systemic actions in cardiac failure and muscle wasting

    PubMed Central

    Breitbart, Astrid; Auger-Messier, Mannix; Molkentin, Jeffery D.

    2011-01-01

    A significant proportion of heart failure patients develop skeletal muscle wasting and cardiac cachexia, which is associated with a very poor prognosis. Recently, myostatin, a cytokine from the transforming growth factor-β (TGF-β) family and a known strong inhibitor of skeletal muscle growth, has been identified as a direct mediator of skeletal muscle atrophy in mice with heart failure. Myostatin is mainly expressed in skeletal muscle, although basal expression is also detectable in heart and adipose tissue. During pathological loading of the heart, the myocardium produces and secretes myostatin into the circulation where it inhibits skeletal muscle growth. Thus, genetic elimination of myostatin from the heart reduces skeletal muscle atrophy in mice with heart failure, whereas transgenic overexpression of myostatin in the heart is capable of inducing muscle wasting. In addition to its endocrine action on skeletal muscle, cardiac myostatin production also modestly inhibits cardiomyocyte growth under certain circumstances, as well as induces cardiac fibrosis and alterations in ventricular function. Interestingly, heart failure patients show elevated myostatin levels in their serum. To therapeutically influence skeletal muscle wasting, direct inhibition of myostatin was shown to positively impact skeletal muscle mass in heart failure, suggesting a promising strategy for the treatment of cardiac cachexia in the future. PMID:21421824

  15. Cyclic AMP-dependent signaling system is a primary metabolic target for non-thermal effect of microwaves on heart muscle hydration.

    PubMed

    Narinyan, Lilia; Ayrapetyan, Sinerik

    2017-01-01

    Previously, we have suggested that cell hydration is a universal and extra-sensitive sensor for the structural changes of cell aqua medium caused by the impact of weak chemical and physical factors. The aim of present work is to elucidate the nature of the metabolic messenger through which physiological solution (PS) treated by non-thermal (NT) microwaves (MW) could modulate heart muscle hydration of rats. For this purpose, the effects of NT MW-treated PS on heart muscle hydration, [ 3 H]-ouabain binding with cell membrane, 45 Ca 2+ uptake and intracellular cyclic nucleotides contents in vivo and in vitro experiments were studied. It is shown that intraperitoneal injections of both Sham-treated PS and NT MW-treated PS elevate heart muscle hydration. However, the effect of NT MW-treated PS on muscle hydration is more pronounced than the effect of Sham-treated PS. In vitro experiments NT MW-treated PS has dehydration effect on muscle, which is not changed by decreasing Na + gradients on membrane. Intraperitoneal injection of Sham- and NT MW-treated PS containing 45 Ca 2+ have similar dehydration effect on muscle, while NT MW-treated PS has activation effect on Na + /Ca 2+ exchange in reverse mode. The intraperitoneal injection of NT MW-treated PS depresses [ 3 H]-ouabain binding with its high-affinity membrane receptors, elevates intracellular cAMP and decreases cGMP contents. Based on the obtained data, it is suggested that cAMP-dependent signaling system serves as a primary metabolic target for NT MW effect on heart muscle hydration.

  16. Intercostal and forearm muscle deoxygenation during respiratory fatigue in patients with heart failure: potential role of a respiratory muscle metaboreflex.

    PubMed

    Moreno, A M; Castro, R R T; Silva, B M; Villacorta, H; Sant'Anna Junior, M; Nóbrega, A C L

    2014-11-01

    The purpose of this study was to determine the effect of respiratory muscle fatigue on intercostal and forearm muscle perfusion and oxygenation in patients with heart failure. Five clinically stable heart failure patients with respiratory muscle weakness (age, 66 ± 12 years; left ventricle ejection fraction, 34 ± 3%) and nine matched healthy controls underwent a respiratory muscle fatigue protocol, breathing against a fixed resistance at 60% of their maximal inspiratory pressure for as long as they could sustain the predetermined inspiratory pressure. Intercostal and forearm muscle blood volume and oxygenation were continuously monitored by near-infrared spectroscopy with transducers placed on the seventh left intercostal space and the left forearm. Data were compared by two-way ANOVA and Bonferroni correction. Respiratory fatigue occurred at 5.1 ± 1.3 min in heart failure patients and at 9.3 ± 1.4 min in controls (P<0.05), but perceived effort, changes in heart rate, and in systolic blood pressure were similar between groups (P>0.05). Respiratory fatigue in heart failure reduced intercostal and forearm muscle blood volume (P<0.05) along with decreased tissue oxygenation both in intercostal (heart failure, -2.6 ± 1.6%; controls, +1.6 ± 0.5%; P<0.05) and in forearm muscles (heart failure, -4.5 ± 0.5%; controls, +0.5 ± 0.8%; P<0.05). These results suggest that respiratory fatigue in patients with heart failure causes an oxygen demand/delivery mismatch in respiratory muscles, probably leading to a reflex reduction in peripheral limb muscle perfusion, featuring a respiratory metaboreflex.

  17. NK4 Antagonizes Tbx1/10 to Promote Cardiac versus Pharyngeal Muscle Fate in the Ascidian Second Heart Field

    PubMed Central

    Wang, Wei; Razy-Krajka, Florian; Siu, Eric; Ketcham, Alexandra; Christiaen, Lionel

    2013-01-01

    The heart and head muscles share common developmental origins and genetic underpinnings in vertebrates, including humans. Parts of the heart and cranio-facial musculature derive from common mesodermal progenitors that express NKX2-5, ISL1, and TBX1. This ontogenetic kinship is dramatically reflected in the DiGeorge/Cardio-Velo-Facial syndrome (DGS/CVFS), where mutations of TBX1 cause malformations in the pharyngeal apparatus and cardiac outflow tract. Cardiac progenitors of the first heart field (FHF) do not require TBX1 and segregate precociously from common progenitors of the second heart field (SHF) and pharyngeal muscles. However, the cellular and molecular mechanisms that govern heart versus pharyngeal muscle specification within this lineage remain elusive. Here, we harness the simplicity of the ascidian larva to show that, following asymmetric cell division of common progenitors, NK4/NKX2-5 promotes GATAa/GATA4/5/6 expression and cardiac specification in the second heart precursors by antagonizing Tbx1/10-mediated inhibition of GATAa and activation of Collier/Olf/EBF (COE), the determinant of atrial siphon muscle (ASM) specification. Our results uncover essential regulatory connections between the conserved cardio-pharyngeal factor Tbx1/10 and muscle determinant COE, as well as a mutual antagonism between NK4 and Tbx1/10 activities upstream of GATAa and COE. The latter cross-antagonism underlies a fundamental heart versus pharyngeal muscle fate choice that occurs in a conserved lineage of cardio-pharyngeal progenitors. We propose that this basic ontogenetic motif underlies cardiac and pharyngeal muscle development and evolution in chordates. PMID:24311985

  18. Faster and stronger manifestation of mitochondrial diseases in skeletal muscle than in heart related to cytosolic inorganic phosphate (Pi) accumulation

    PubMed Central

    2016-01-01

    A model of the cell bioenergetic system was used to compare the effect of oxidative phosphorylation (OXPHOS) deficiencies in a broad range of moderate ATP demand in skeletal muscle and heart. Computer simulations revealed that kinetic properties of the system are similar in both cases despite the much higher mitochondria content and “basic” OXPHOS activity in heart than in skeletal muscle, because of a much higher each-step activation (ESA) of OXPHOS in skeletal muscle than in heart. Large OXPHOS deficiencies lead in both tissues to a significant decrease in oxygen consumption (V̇o2) and phosphocreatine (PCr) and increase in cytosolic ADP, Pi, and H+. The main difference between skeletal muscle and heart is a much higher cytosolic Pi concentration in healthy tissue and much higher cytosolic Pi accumulation (level) at low OXPHOS activities in the former, caused by a higher PCr level in healthy tissue (and higher total phosphate pool) and smaller Pi redistribution between cytosol and mitochondria at OXPHOS deficiency. This difference does not depend on ATP demand in a broad range. A much greater Pi increase and PCr decrease during rest-to-moderate work transition in skeletal muscle at OXPHOS deficiencies than at normal OXPHOS activity significantly slows down the V̇o2 on-kinetics. Because high cytosolic Pi concentrations cause fatigue in skeletal muscle and can compromise force generation in skeletal muscle and heart, this system property can contribute to the faster and stronger manifestation of mitochondrial diseases in skeletal muscle than in heart. Shortly, skeletal muscle with large OXPHOS deficiencies becomes fatigued already during low/moderate exercise. PMID:27283913

  19. Faster and stronger manifestation of mitochondrial diseases in skeletal muscle than in heart related to cytosolic inorganic phosphate (Pi) accumulation.

    PubMed

    Korzeniewski, Bernard

    2016-08-01

    A model of the cell bioenergetic system was used to compare the effect of oxidative phosphorylation (OXPHOS) deficiencies in a broad range of moderate ATP demand in skeletal muscle and heart. Computer simulations revealed that kinetic properties of the system are similar in both cases despite the much higher mitochondria content and "basic" OXPHOS activity in heart than in skeletal muscle, because of a much higher each-step activation (ESA) of OXPHOS in skeletal muscle than in heart. Large OXPHOS deficiencies lead in both tissues to a significant decrease in oxygen consumption (V̇o2) and phosphocreatine (PCr) and increase in cytosolic ADP, Pi, and H(+) The main difference between skeletal muscle and heart is a much higher cytosolic Pi concentration in healthy tissue and much higher cytosolic Pi accumulation (level) at low OXPHOS activities in the former, caused by a higher PCr level in healthy tissue (and higher total phosphate pool) and smaller Pi redistribution between cytosol and mitochondria at OXPHOS deficiency. This difference does not depend on ATP demand in a broad range. A much greater Pi increase and PCr decrease during rest-to-moderate work transition in skeletal muscle at OXPHOS deficiencies than at normal OXPHOS activity significantly slows down the V̇o2 on-kinetics. Because high cytosolic Pi concentrations cause fatigue in skeletal muscle and can compromise force generation in skeletal muscle and heart, this system property can contribute to the faster and stronger manifestation of mitochondrial diseases in skeletal muscle than in heart. Shortly, skeletal muscle with large OXPHOS deficiencies becomes fatigued already during low/moderate exercise. Copyright © 2016 the American Physiological Society.

  20. A fetal human heart cardiac-inducing RNA (CIR) promotes the differentiation of stem cells into cardiomyocytes.

    PubMed

    Kochegarov, Andrei; Moses-Arms, Ashley; Lemanski, Larry F

    2015-08-01

    A specific human fetal heart RNA has been discovered, which has the ability to induce myocardial cell formation from mouse embryonic and human-induced pluripotent stem cells in culture. In this study, commercially obtained RNA from human fetal heart was cloned, sequenced, and synthesized using standard laboratory approaches. Molecular analyses of the specific fetal cardiac-inducing RNA (CIR), revealed that it is a fragment of N-sulfoglucosaminesulfohydrolase and the caspase recruitment domain family member 14 precursor. Stem cells transfected with CIRs often form into spindle-shaped cells characteristic of cardiomyocytes,and express the cardiac-specific contractile protein marker, troponin-T, in addition to tropomyosin and α-actinin as detected by immunohistochemical staining. Expression of these contractile proteins showed organization into sarcomeric myofibrils characteristic of striated cardiac muscle cells. Computer analyses of the RNA secondary structures of the active CIR show significant similarities to a RNA from salamander or myofibril-inducing RNA (MIR), which also promotes non-muscle cells to differentiate into cardiac muscle. Thus, these two RNAs, salamander MIR and the newly discovered human-cloned CIR reported here, appear to have evolutionarily conserved secondary structures suggesting that both play major roles in vertebrate heart development and, particularly, in the differentiation of cardiomyocytes from non-muscle cells during development.

  1. The skeletal and heart muscle triacylglycerol lipolysis revisited.

    PubMed

    Knapp, M; Gorski, J

    2017-02-01

    For 40 years, the enzyme hormone sensitive lipase was considered to hydrolyze the first ester bond of the triacylglycerol moiety and thus initiate hydrolysis. However, 12 years ago a new lipolytic enzyme, termed adipose triglyceride lipase was discovered. It was further shown that the process of lipolysis of triacylglycerol to diacylglycerol and fatty acid is initiated by adipose triglyceride lipase and not by hormone sensitive lipase, responsible for hydrolysis of diacylglycerol to monoacyglycerol and fatty acid. Adipose triglyceride lipase is present in all types of cells containing neutral fat. The enzyme is activated by a protein called comparative gene identification-58 and inhibited by a protein called G0/G1 switch protein 2. It has also been discovered that perilipins, the main proteins coating lipid droplets in the cells, are involved in the process of triacylglycerol lipolysis. Five perilipins (1-5) were identified, however, up to now their role has been poorly assessed. In skeletal muscles, exercise and training affect the mRNA expression and protein content of adipose triglyceride lipase, comparative gene identification-58, G0/G1 switch protein 2, perilipin 2 and 5. The effect of exercise/training depends on exercise intensity and type of muscle fiber. An interaction between comparative gene identification-58 and adipose triglyceride lipase seems to be responsible for the enzyme activation during contractile activity. Adipose triglyceride lipase is also responsible for the activation of the first step of triacylglycerol lipolysis in the heart. There is substantial evidence that cardiac triacylglycerol metabolism affects the function of the heart. ATGL gene mutations leads to the development of neutral lipid storage diseases.

  2. Relation of systemic and local muscle exercise capacity to skeletal muscle characteristics in men with congestive heart failure

    NASA Technical Reports Server (NTRS)

    Massie, B. M.; Simonini, A.; Sahgal, P.; Wells, L.; Dudley, G. A.

    1996-01-01

    OBJECTIVES. The present study was undertaken to further characterize changes in skeletal muscle morphology and histochemistry in congestive heart failure and to determine the relation of these changes to abnormalities of systemic and local muscle exercise capacity. BACKGROUND. Abnormalities of skeletal muscle appear to play a role in the limitation of exercise capacity in congestive heart failure, but information on the changes in muscle morphology and biochemistry and their relation to alterations in muscle function is limited. METHODS. Eighteen men with predominantly mild to moderate congestive heart failure (mean +/- SEM New York Heart Association functional class 2.6 +/- 0.2, ejection fraction 24 +/- 2%) and eight age- and gender-matched sedentary control subjects underwent measurements of peak systemic oxygen consumption (VO2) during cycle ergometry, resistance to fatigue of the quadriceps femoris muscle group and biopsy of the vastus lateralis muscle. RESULTS. Peak VO2 and resistance to fatigue were lower in the patients with heart failure than in control subjects (15.7 +/- 1.2 vs. 25.1 +/- 1.5 ml/min-kg and 63 +/- 2% vs. 85 +/- 3%, respectively, both p < 0.001). Patients had a lower proportion of slow twitch, type I fibers than did control subjects (36 +/- 3% vs. 46 +/- 5%, p = 0.048) and a higher proportion of fast twitch, type IIab fibers (18 +/- 3% vs. 7 +/- 2%, p = 0.004). Fiber cross-sectional area was smaller, and single-fiber succinate dehydrogenase activity, a mitochondrial oxidative marker, was lower in patients (both p < or = 0.034). Likewise, the ratio of average fast twitch to slow twitch fiber cross-sectional area was lower in patients (0.780 +/- 0.06 vs. 1.05 +/- 0.08, p = 0.019). Peak VO2 was strongly related to integrated succinate dehydrogenase activity in patients (r = 0.896, p = 0.001). Peak VO2, resistance to fatigue and strength also correlated significantly with several measures of fiber size, especially of fast twitch fibers, in

  3. A muscle stem cell for every muscle: variability of satellite cell biology among different muscle groups

    PubMed Central

    Randolph, Matthew E.; Pavlath, Grace K.

    2015-01-01

    The human body contains approximately 640 individual skeletal muscles. Despite the fact that all of these muscles are composed of striated muscle tissue, the biology of these muscles and their associated muscle stem cell populations are quite diverse. Skeletal muscles are affected differentially by various muscular dystrophies (MDs), such that certain genetic mutations specifically alter muscle function in only a subset of muscles. Additionally, defective muscle stem cells have been implicated in the pathology of some MDs. The biology of muscle stem cells varies depending on the muscles with which they are associated. Here we review the biology of skeletal muscle stem cell populations of eight different muscle groups. Understanding the biological variation of skeletal muscles and their resident stem cells could provide valuable insight into mechanisms underlying the susceptibility of certain muscles to myopathic disease. PMID:26500547

  4. Muscle wasting and cachexia in heart failure: mechanisms and therapies.

    PubMed

    von Haehling, Stephan; Ebner, Nicole; Dos Santos, Marcelo R; Springer, Jochen; Anker, Stefan D

    2017-06-01

    Body wasting is a serious complication that affects a large proportion of patients with heart failure. Muscle wasting, also known as sarcopenia, is the loss of muscle mass and strength, whereas cachexia describes loss of weight. After reaching guideline-recommended doses of heart failure therapies, the most promising approach to treating body wasting seems to be combined therapy that includes exercise, nutritional counselling, and drug treatment. Nutritional considerations include avoiding excessive salt and fluid intake, and replenishment of deficiencies in trace elements. Administration of omega-3 polyunsaturated fatty acids is beneficial in selected patients. High-calorific nutritional supplements can also be useful. The prescription of aerobic exercise training that provokes mild or moderate breathlessness has good scientific support. Drugs with potential benefit in the treatment of body wasting that have been tested in clinical studies in patients with heart failure include testosterone, ghrelin, recombinant human growth hormone, essential amino acids, and β 2 -adrenergic receptor agonists. In this Review, we summarize the pathophysiological mechanisms of muscle wasting and cachexia in heart failure, and highlight the potential treatment strategies. We aim to provide clinicians with the relevant information on body wasting to understand and treat these conditions in patients with heart failure.

  5. Bone Marrow Stromal Cells Generate Muscle Cells and Repair Muscle Degeneration

    NASA Astrophysics Data System (ADS)

    Dezawa, Mari; Ishikawa, Hiroto; Itokazu, Yutaka; Yoshihara, Tomoyuki; Hoshino, Mikio; Takeda, Shin-ichi; Ide, Chizuka; Nabeshima, Yo-ichi

    2005-07-01

    Bone marrow stromal cells (MSCs) have great potential as therapeutic agents. We report a method for inducing skeletal muscle lineage cells from human and rat general adherent MSCs with an efficiency of 89%. Induced cells differentiated into muscle fibers upon transplantation into degenerated muscles of rats and mdx-nude mice. The induced population contained Pax7-positive cells that contributed to subsequent regeneration of muscle upon repetitive damage without additional transplantation of cells. These MSCs represent a more ready supply of myogenic cells than do the rare myogenic stem cells normally found in muscle and bone marrow.

  6. Analysis of Molecular Movement Reveals Latticelike Obstructions to Diffusion in Heart Muscle Cells

    PubMed Central

    Illaste, Ardo; Laasmaa, Martin; Peterson, Pearu; Vendelin, Marko

    2012-01-01

    Intracellular diffusion in muscle cells is known to be restricted. Although characteristics and localization of these restrictions is yet to be elucidated, it has been established that ischemia-reperfusion injury reduces the overall diffusion restriction. Here we apply an extended version of raster image correlation spectroscopy to determine directional anisotropy and coefficients of diffusion in rat cardiomyocytes. Our experimental results indicate that diffusion of a smaller molecule (1127 MW fluorescently labeled ATTO633-ATP) is restricted more than that of a larger one (10,000 MW Alexa647-dextran), when comparing diffusion in cardiomyocytes to that in solution. We attempt to provide a resolution to this counterintuitive result by applying a quantitative stochastic model of diffusion. Modeling results suggest the presence of periodic intracellular barriers situated ∼1 μm apart having very low permeabilities and a small effect of molecular crowding in volumes between the barriers. Such intracellular structuring could restrict diffusion of molecules of energy metabolism, reactive oxygen species, and apoptotic signals, enacting a significant role in normally functioning cardiomyocytes as well as in pathological conditions of the heart. PMID:22385844

  7. FA composition of heart and skeletal muscle during embryonic development of the king penguin.

    PubMed

    Decrock, Frederic; Groscolas, Rene; Speake, Brian K

    2002-04-01

    Since the yolk lipids of the king penguin (Aptenodytes patagonicus) naturally contain the highest concentrations of DHA and EPA yet reported for the eggs of any avian species, the effects of this (n-3)-rich yolk on the FA profiles of the embryonic heart and skeletal muscle were investigated. The concentrations (mg/g wet tissue) of phospholipid (PL) in the developing heart and leg muscle of the penguin doubled between days 27 and 55 from the beginning of egg incubation (i.e., from the halfway stage of embryonic development to 2 d posthatch), whereas no net increase occurred in pectoral muscle. During this period, the concentration of TAG in heart decreased by half but increased two- and sixfold in leg and pectoral muscle, respectively. The most notable change in cholesteryl ester concentration occurred in pectoral muscle, increasing ninefold between days 27 and 55. Arachidonic acid (ARA) was the major polyunsaturate in PL of the penguin's heart, where it formed about 20% (w/w) of FA at day 55. At the equivalent developmental stage, the heart PL of the chicken contained a 1.3-fold greater proportion of ARA, contained a fifth less DHA, and was almost devoid of EPA, whereas the latter FA was a significant component (7% of FA) of penguin heart PL. Similarly, in PL of leg and pectoral muscle, the chicken displayed about 1.4-fold more ARA, up to 50% less DHA, and far less EPA in comparison with the penguin. Thus, although ARA-rich PL profiles are achieved in the heart and muscle of the penguin embryo, these profiles are significantly affected by the high n-3 content of the yolk.

  8. Adaptive responses of heart and skeletal muscle to spermine oxidase overexpression: Evaluation of a new transgenic mouse model.

    PubMed

    Ceci, Roberta; Duranti, Guglielmo; Leonetti, Alessia; Pietropaoli, Stefano; Spinozzi, Federico; Marcocci, Lucia; Amendola, Roberto; Cecconi, Francesco; Sabatini, Stefania; Mariottini, Paolo; Cervelli, Manuela

    2017-02-01

    Spermine oxidase oxidizes spermine to produce H 2 O 2 , spermidine, and 3-aminopropanal. It is involved in cell drug response, apoptosis, and in the etiology of several pathologies, including cancer. Spermine oxidase is an important positive regulator of muscle gene expression and fiber size and, when repressed, leads to muscle atrophy. We have generated a transgenic mouse line overexpressing Smox gene in all organs, named Total-Smox. The spermine oxidase overexpression was revealed by β-Gal staining and reverse-transcriptase/PCR analysis, in all tissues analysed. Spermine oxidase activity resulted higher in Total-Smox than controls. Considering the important role of this enzyme in muscle physiology, we have focused our study on skeletal muscle and heart of Total-Smox mice by measuring redox status and oxidative damage. We assessed the redox homeostasis through the analysis of the reduced/oxidized glutathione ratio. Chronic H 2 O 2 production induced by spermine oxidase overexpression leads to a cellular redox state imbalance in both tissues, although they show different redox adaptation. In skeletal muscle, catalase and glutathione S-transferase activities were significantly increased in Total-Smox mice compared to controls. In the heart, no differences were found in CAT activity level, while GST activity decreased compared to controls. The skeletal muscle showed a lower oxidative damage than in the heart, evaluated by lipid peroxidation and protein carbonylation. Altogether, our findings illustrate that skeletal muscle adapts more efficiently than heart to oxidative stress H 2 O 2 -induced. The Total-Smox line is a new genetic model useful to deepen our knowledge on the role of spermine oxidase in muscle atrophy and muscular pathological conditions like dystrophy. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Muscle wasting and sarcopenia in heart failure and beyond: update 2017.

    PubMed

    Springer, Jochen; Springer, Joshua-I; Anker, Stefan D

    2017-11-01

    Sarcopenia (loss of muscle mass and muscle function) is a strong predictor of frailty, disability and mortality in older persons and may also occur in obese subjects. The prevalence of sarcopenia is increased in patients suffering from chronic heart failure. However, there are currently few therapy options. The main intervention is resistance exercise, either alone or in combination with nutritional support, which seems to enhance the beneficial effects of training. Also, testosterone has been shown to increased muscle power and function; however, a possible limitation is the side effects of testosterone. Other investigational drugs include selective androgen receptor modulators, growth hormone, IGF-1, compounds targeting myostatin signaling, which have their own set of side effects. There are abundant prospective targets for improving muscle function in the elderly with or without chronic heart failure, and the continuing development of new treatment strategies and compounds for sarcopenia and cardiac cachexia makes this field an exciting one. © 2017 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of the European Society of Cardiology.

  10. Muscle electrical stimulation improves neurovascular control and exercise tolerance in hospitalised advanced heart failure patients.

    PubMed

    Groehs, Raphaela V; Antunes-Correa, Ligia M; Nobre, Thais S; Alves, Maria-Janieire Nn; Rondon, Maria Urbana Pb; Barreto, Antônio Carlos Pereira; Negrão, Carlos E

    2016-10-01

    We investigated the effects of muscle functional electrical stimulation on muscle sympathetic nerve activity and muscle blood flow, and, in addition, exercise tolerance in hospitalised patients for stabilisation of heart failure. Thirty patients hospitalised for treatment of decompensated heart failure, class IV New York Heart Association and ejection fraction ≤ 30% were consecutively randomly assigned into two groups: functional electrical stimulation (n = 15; 54 ± 2 years) and control (n = 15; 49 ± 2 years). Muscle sympathetic nerve activity was directly recorded via microneurography and blood flow by venous occlusion plethysmography. Heart rate and blood pressure were evaluated on a beat-to-beat basis (Finometer), exercise tolerance by 6-minute walk test, quadriceps muscle strength by a dynamometer and quality of life by Minnesota questionnaire. Functional electrical stimulation consisted of stimulating the lower limbs at 10 Hz frequency, 150 ms pulse width and 70 mA intensity for 60 minutes/day for 8-10 consecutive days. The control group underwent electrical stimulation at an intensity of < 20 mA. Baseline characteristics were similar between groups, except age that was higher and C-reactive protein and forearm blood flow that were smaller in the functional electrical stimulation group. Functional electrical stimulation significantly decreased muscle sympathetic nerve activity and increased muscle blood flow and muscle strength. No changes were found in the control group. Walking distance and quality of life increased in both groups. However, these changes were greater in the functional electrical stimulation group. Functional electrical stimulation improves muscle sympathetic nerve activity and vasoconstriction and increases exercise tolerance, muscle strength and quality of life in hospitalised heart failure patients. These findings suggest that functional electrical stimulation may be useful to hospitalised patients with

  11. SMAD signaling drives heart and muscle dysfunction in a Drosophila model of muscular dystrophy.

    PubMed

    Goldstein, Jeffery A; Kelly, Sean M; LoPresti, Peter P; Heydemann, Ahlke; Earley, Judy U; Ferguson, Edwin L; Wolf, Matthew J; McNally, Elizabeth M

    2011-03-01

    Loss-of-function mutations in the genes encoding dystrophin and the associated membrane proteins, the sarcoglycans, produce muscular dystrophy and cardiomyopathy. The dystrophin complex provides stability to the plasma membrane of striated muscle during muscle contraction. Increased SMAD signaling due to activation of the transforming growth factor-β (TGFβ) pathway has been described in muscular dystrophy; however, it is not known whether this canonical TGFβ signaling is pathogenic in the muscle itself. Drosophila deleted for the γ/δ-sarcoglycan gene (Sgcd) develop progressive muscle and heart dysfunction and serve as a model for the human disorder. We used dad-lacZ flies to demonstrate the signature of TGFβ activation in response to exercise-induced injury in Sgcd null flies, finding that those muscle nuclei immediately adjacent to muscle injury demonstrate high-level TGFβ signaling. To determine the pathogenic nature of this signaling, we found that partial reduction of the co-SMAD Medea, homologous to SMAD4, or the r-SMAD, Smox, corrected both heart and muscle dysfunction in Sgcd mutants. Reduction in the r-SMAD, MAD, restored muscle function but interestingly not heart function in Sgcd mutants, consistent with a role for activin but not bone morphogenic protein signaling in cardiac dysfunction. Mammalian sarcoglycan null muscle was also found to exhibit exercise-induced SMAD signaling. These data demonstrate that hyperactivation of SMAD signaling occurs in response to repetitive injury in muscle and heart. Reduction of this pathway is sufficient to restore cardiac and muscle function and is therefore a target for therapeutic reduction.

  12. SMAD signaling drives heart and muscle dysfunction in a Drosophila model of muscular dystrophy

    PubMed Central

    Goldstein, Jeffery A.; Kelly, Sean M.; LoPresti, Peter P.; Heydemann, Ahlke; Earley, Judy U.; Ferguson, Edwin L.; Wolf, Matthew J.; McNally, Elizabeth M.

    2011-01-01

    Loss-of-function mutations in the genes encoding dystrophin and the associated membrane proteins, the sarcoglycans, produce muscular dystrophy and cardiomyopathy. The dystrophin complex provides stability to the plasma membrane of striated muscle during muscle contraction. Increased SMAD signaling due to activation of the transforming growth factor-β (TGFβ) pathway has been described in muscular dystrophy; however, it is not known whether this canonical TGFβ signaling is pathogenic in the muscle itself. Drosophila deleted for the γ/δ-sarcoglycan gene (Sgcd) develop progressive muscle and heart dysfunction and serve as a model for the human disorder. We used dad-lacZ flies to demonstrate the signature of TGFβ activation in response to exercise-induced injury in Sgcd null flies, finding that those muscle nuclei immediately adjacent to muscle injury demonstrate high-level TGFβ signaling. To determine the pathogenic nature of this signaling, we found that partial reduction of the co-SMAD Medea, homologous to SMAD4, or the r-SMAD, Smox, corrected both heart and muscle dysfunction in Sgcd mutants. Reduction in the r-SMAD, MAD, restored muscle function but interestingly not heart function in Sgcd mutants, consistent with a role for activin but not bone morphogenic protein signaling in cardiac dysfunction. Mammalian sarcoglycan null muscle was also found to exhibit exercise-induced SMAD signaling. These data demonstrate that hyperactivation of SMAD signaling occurs in response to repetitive injury in muscle and heart. Reduction of this pathway is sufficient to restore cardiac and muscle function and is therefore a target for therapeutic reduction. PMID:21138941

  13. Amphiphile-induced heart muscle-cell (myocyte) injury: effects of intracellular fatty acid overload.

    PubMed

    Janero, D R; Burghardt, C; Feldman, D

    1988-10-01

    Lipid amphiphile toxicity may be an important contributor to myocardial injury, especially during ischemia/reperfusion. In order to investigate directly the potential biochemical and metabolic effects of amphiphile overload on the functioning heart muscle cell (myocyte), a novel model of nonesterified fatty acid (NEFA)-induced myocyte damage has been defined. The model uses intact, beating neonatal rat myocytes in primary monolayer culture as a study object and 5-(tetradecyloxy)-2-furoic acid (TOFA) as a nonmetabolizable fatty acid. Myocytes incubated with TOFA accumulated it as NEFA, and the consequent NEFA amphiphile overload elicited a variety of cellular defects (including decreased beating rate, depletion of high-energy stores and glycogen pools, and breakdown of myocyte membrane phospholipid) and culminated in cell death. The amphiphile-induced cellular pathology could be reversed by removing TOFA from the culture medium, which resulted in intracellular TOFA "wash-out." Although the development and severity of amphiphile-induced myocyte injury could be correlated with both the intracellular TOFA/NEFA content (i.e., the level of TOFA to which the cells were exposed) and the duration of this exposure, removal of amphiphile overload did not inevitably lead to myocyte recovery. TOFA had adverse effects on myocyte mitochondrial function in situ (decoupling of oxidative phosphorylation, impairing respiratory control) and on myocyte oxidative catabolism (transiently increasing fatty acid beta oxidation, citric acid cycle flux, and glucose oxidation). The amphiphile-induced bioenergetic abnormalities appeared to constitute a state of "metabolic anoxia" underlying the progression of myocyte injury to cell death. This anoxic state could be ameliorated to some extent, but not prevented, by carbohydrate catabolism.

  14. Prominent mitochondrial DNA recombination intermediates in human heart muscle.

    PubMed

    Kajander, O A; Karhunen, P J; Holt, I J; Jacobs, H T

    2001-11-01

    Recombination intermediates containing four-way (Holliday) junctions are generated during DNA repair and replication in many systems, including yeast mitochondrial DNA (mtDNA). In contrast, convincing evidence for recombination in mammalian mtDNA is lacking. We have used two-dimensional agarose-gel electrophoresis to analyse non-linear forms of mtDNA in human heart muscle. Replication intermediates from both the coupled and strand-asynchronous mtDNA replication pathways were detected. An additional class of non-linear molecules, with the electrophoretic properties of four-way junctions, was also prominent. These molecules were insensitive to topoisomerase I or RNase H, but were diminished by branch migration or RuvC treatment. Junctional molecules were detected in all regions of the mitochondrial genome, were found in myocardial DNA from young and old adults, but were present at lower levels in skeletal muscle and placenta. We suggest that they could represent intermediates of mtDNA repair, given their prevalence in the oxyradical-rich environment of heart muscle mitochondria.

  15. Oxygen consumption of human heart cells in monolayer culture.

    PubMed

    Sekine, Kaori; Kagawa, Yuki; Maeyama, Erina; Ota, Hiroki; Haraguchi, Yuji; Matsuura, Katsuhisa; Shimizu, Tatsuya

    2014-09-26

    Tissue engineering in cardiovascular regenerative therapy requires the development of an efficient oxygen supply system for cell cultures. However, there are few studies which have examined human cardiomyocytes in terms of oxygen consumption and metabolism in culture. We developed an oxygen measurement system equipped with an oxygen microelectrode sensor and estimated the oxygen consumption rates (OCRs) by using the oxygen concentration profiles in culture medium. The heart is largely made up of cardiomyocytes, cardiac fibroblasts, and cardiac endothelial cells. Therefore, we measured the oxygen consumption of human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs), cardiac fibroblasts, human cardiac microvascular endothelial cell and aortic smooth muscle cells. Then we made correlations with their metabolisms. In hiPSC-CMs, the value of the OCR was 0.71±0.38pmol/h/cell, whereas the glucose consumption rate and lactate production rate were 0.77±0.32pmol/h/cell and 1.61±0.70pmol/h/cell, respectively. These values differed significantly from those of the other cells in human heart. The metabolism of the cells that constitute human heart showed the molar ratio of lactate production to glucose consumption (L/G ratio) that ranged between 1.97 and 2.2. Although the energy metabolism in adult heart in vivo is reported to be aerobic, our data demonstrated a dominance of anaerobic glycolysis in an in vitro environment. With our measuring system, we clearly showed the differences in the metabolism of cells between in vivo and in vitro monolayer culture. Our results regarding cell OCRs and metabolism may be useful for future tissue engineering of human heart. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Chronic obstructive pulmonary disease and chronic heart failure: two muscle diseases?

    PubMed

    Troosters, Thierry; Gosselink, Rik; Decramer, Marc

    2004-01-01

    Chronic obstructive pulmonary disease and congestive heart failure are two increasingly prevalent chronic diseases. Although care for these patients often is provided by different clinical teams, both disease conditions have much in common. In recent decades, more knowledge about the systemic impact of both diseases has become available, highlighting remarkable similarities in terms of prognostic factors and disease management. Rehabilitation programs deal with the systemic consequences of both diseases. Although clinical research also is conducted by various researchers investigating chronic obstructive pulmonary disease and chronic heart failure, it is worthwhile to compare the progress in relation to these two diseases over recent decades. Such comparison, the purpose of the current review, may help clinicians and scientists to learn about progress made in different, yet related, fields. The current review focuses on the similarities observed in the clinical impact of muscle weakness, the mechanisms of muscle dysfunction, the strategies to improve muscle function, and the effects of exercise training on chronic obstructive pulmonary disease and chronic heart failure.

  17. Myotoxic effects of clenbuterol in the rat heart and soleus muscle.

    PubMed

    Burniston, Jatin G; Ng, Yeelan; Clark, William A; Colyer, John; Tan, Lip-Bun; Goldspink, David F

    2002-11-01

    Myocyte-specific necrosis in the heart and soleus muscle of adult male Wistar rats was investigated in response to a single subcutaneous injection of the anabolic beta(2)-adrenergic receptor agonist clenbuterol. Necrosis was immunohistochemically detected by administration of a myosin antibody 1 h before the clenbuterol challenge and quantified by using image analysis. Clenbuterol-induced myocyte necrosis occurred against a background of zero damage in control muscles. In the heart, the clenbuterol-induced necrosis was not uniform, being more abundant in the left subendocardium and peaking 2.4 mm from the apex. After position (2.4 mm from the apex), dose (5 mg clenbuterol/kg), and sampling time (12 h) were optimized, maximum cardiomyocyte necrosis was found to be 1.0 +/- 0.2%. In response to the same parameters (i.e., 5 mg of clenbuterol and sampled at 12 h), skeletal myocyte necrosis was 4.4 +/- 0.8% in the soleus. These data show significant myocyte-specific necrosis in the heart and skeletal muscle of the rat. Such irreversible damage in the heart suggests that clenbuterol may be damaging to long-term health.

  18. Exhaustive exercise--a near death experience for skeletal muscle cells?

    PubMed

    Behringer, Michael; Montag, Johannes; Franz, Alexander; McCourt, Molly L; Mester, Joachim; Nosaka, Kazunori Ken

    2014-12-01

    In sports medicine, muscle enzymes in the blood are frequently used as an indicator of muscle damage. It is commonly assumed that mechanical stress disrupts plasma membrane to an extent that allows large molecules, such as enzymes, to leak into the extracellular space. However, this does not appear to fully explain changes in muscle enzyme activity in the blood after exercise. Apart from this mechanically induced membrane damage, we hypothesize that, under critical metabolic conditions, ATP consuming enzymes like creatine kinase (CK) are "volitionally" expulsed by muscle cells in order to prevent cell death. This would put themselves into a situation comparable to that of CK deficient muscle fibers, which have been shown in animal experiments to be virtually infatigable at the expense of muscle strength. Additionally we expand on this hypothesis with the idea that membrane blebbing is a way for the muscle fibers to store CK in fringe areas of the muscle fiber or to expulse CK from the cytosol by detaching the blebs from the plasma membrane. The blebbing has been shown to occur in heart muscle cells under ischaemic conditions and has been speculated to be an alternative pathway for the expulsion of troponin. The blebbing has also been seen skeletal muscle cells when intracellular calcium concentration increases. Cytoskeletal damage, induced by reactive oxygen species (ROS) or by calcium activated proteases in concert with increasing intracellular pressure, seems to provoke this type of membrane reaction. If these hypotheses are confirmed by future investigations, our current understanding of CK as a blood muscle damage marker will be fundamentally affected. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Analysis of molecular movement reveals latticelike obstructions to diffusion in heart muscle cells.

    PubMed

    Illaste, Ardo; Laasmaa, Martin; Peterson, Pearu; Vendelin, Marko

    2012-02-22

    Intracellular diffusion in muscle cells is known to be restricted. Although characteristics and localization of these restrictions is yet to be elucidated, it has been established that ischemia-reperfusion injury reduces the overall diffusion restriction. Here we apply an extended version of raster image correlation spectroscopy to determine directional anisotropy and coefficients of diffusion in rat cardiomyocytes. Our experimental results indicate that diffusion of a smaller molecule (1127 MW fluorescently labeled ATTO633-ATP) is restricted more than that of a larger one (10,000 MW Alexa647-dextran), when comparing diffusion in cardiomyocytes to that in solution. We attempt to provide a resolution to this counterintuitive result by applying a quantitative stochastic model of diffusion. Modeling results suggest the presence of periodic intracellular barriers situated ∼1 μm apart having very low permeabilities and a small effect of molecular crowding in volumes between the barriers. Such intracellular structuring could restrict diffusion of molecules of energy metabolism, reactive oxygen species, and apoptotic signals, enacting a significant role in normally functioning cardiomyocytes as well as in pathological conditions of the heart. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. Potential of laryngeal muscle regeneration using induced pluripotent stem cell-derived skeletal muscle cells.

    PubMed

    Dirja, Bayu Tirta; Yoshie, Susumu; Ikeda, Masakazu; Imaizumi, Mitsuyoshi; Nakamura, Ryosuke; Otsuki, Koshi; Nomoto, Yukio; Wada, Ikuo; Hazama, Akihiro; Omori, Koichi

    2016-01-01

    Conclusion Induced pluripotent stem (iPS) cells may be a new potential cell source for laryngeal muscle regeneration in the treatment of vocal fold atrophy after recurrent laryngeal nerve paralysis. Objectives Unilateral vocal fold paralysis can lead to degeneration, atrophy, and loss of force of the thyroarytenoid muscle. At present, there are some treatments such as thyroplasty, arytenoid adduction, and vocal fold injection. However, such treatments cannot restore reduced mass of the thyroarytenoid muscle. iPS cells have been recognized as supplying a potential resource for cell transplantation. The aim of this study was to assess the effectiveness of the use of iPS cells for the regeneration of laryngeal muscle through the evaluation of both in vitro and in vivo experiments. Methods Skeletal muscle cells were generated from tdTomato-labeled iPS cells using embryoid body formation. Differentiation into skeletal muscle cells was analyzed by gene expression and immunocytochemistry. The tdTomato-labeled iPS cell-derived skeletal muscle cells were transplanted into the left atrophied thyroarytenoid muscle. To evaluate the engraftment of these cells after transplantation, immunohistochemistry was performed. Results The tdTomato-labeled iPS cells were successfully differentiated into skeletal muscle cells through an in vitro experiment. These cells survived in the atrophied thyroarytenoid muscle after transplantation.

  1. Heterogeneity of adult masseter muscle satellite cells with cardiomyocyte differentiation potential.

    PubMed

    Huang, Wei; Liang, Jialiang; Feng, Yuliang; Jia, Zhanfeng; Jiang, Lin; Cai, Wenfeng; Paul, Christian; Gu, Jianguo G; Stambrook, Peter J; Millard, Ronald W; Zhu, Xiao-Lan; Zhu, Ping; Wang, Yigang

    2018-05-26

    Although resident cardiac stem cells have been reported, regeneration of functional cardiomyocytes (CMs) remains a challenge. The present study identifies an alternative progenitor source for CM regeneration without the need for genetic manipulation or invasive heart biopsy procedures. Unlike limb skeletal muscles, masseter muscles (MM) in the mouse head are developed from Nkx2-5 mesodermal progenitors. Adult masseter muscle satellite cells (MMSCs) display heterogeneity in developmental origin and cell phenotypes. The heterogeneous MMSCs that can be characterized by cell sorting based on stem cell antigen-1 (Sca1) show different lineage potential. While cardiogenic potential is preserved in Sca1 + MMSCs as shown by expression of cardiac progenitor genes (including Nkx2-5), skeletal myogenic capacity is maintained in Sca1 - MMSCs with Pax7 expression. Sca1 + MMSC-derived beating cells express cardiac genes and exhibit CM-like morphology. Electrophysiological properties of MMSC-derived CMs are demonstrated by calcium transients and action potentials. These findings show that MMSCs could serve as a novel cell source for cardiomyocyte replacement. Copyright © 2018. Published by Elsevier Inc.

  2. Gene expression changes controlling distinct adaptations in the heart and skeletal muscle of a hibernating mammal

    PubMed Central

    Vermillion, Katie L.; Anderson, Kyle J.; Hampton, Marshall

    2015-01-01

    Throughout the hibernation season, the thirteen-lined ground squirrel (Ictidomys tridecemlineatus) experiences extreme fluctuations in heart rate, metabolism, oxygen consumption, and body temperature, along with prolonged fasting and immobility. These conditions necessitate different functional requirements for the heart, which maintains contractile function throughout hibernation, and the skeletal muscle, which remains largely inactive. The adaptations used to maintain these contractile organs under such variable conditions serves as a natural model to study a variety of medically relevant conditions including heart failure and disuse atrophy. To better understand how two different muscle tissues maintain function throughout the extreme fluctuations of hibernation we performed Illumina HiSeq 2000 sequencing of cDNAs to compare the transcriptome of heart and skeletal muscle across the circannual cycle. This analysis resulted in the identification of 1,076 and 1,466 differentially expressed genes in heart and skeletal muscle, respectively. In both heart and skeletal muscle we identified a distinct cold-tolerant mechanism utilizing peroxisomal metabolism to make use of elevated levels of unsaturated depot fats. The skeletal muscle transcriptome also shows an early increase in oxidative capacity necessary for the altered fuel utilization and increased oxygen demand of shivering. Expression of the fetal gene expression profile is used to maintain cardiac tissue, either through increasing myocyte size or proliferation of resident cardiomyocytes, while skeletal muscle function and mass are protected through transcriptional regulation of pathways involved in protein turnover. This study provides insight into how two functionally distinct muscles maintain function under the extreme conditions of mammalian hibernation. PMID:25572546

  3. Position Paper of the European Society of Cardiology Working Group Cellular Biology of the Heart: cell-based therapies for myocardial repair and regeneration in ischemic heart disease and heart failure

    PubMed Central

    Madonna, Rosalinda; Van Laake, Linda W.; Davidson, Sean M.; Engel, Felix B.; Hausenloy, Derek J.; Lecour, Sandrine; Leor, Jonathan; Perrino, Cinzia; Schulz, Rainer; Ytrehus, Kirsti; Landmesser, Ulf; Mummery, Christine L.; Janssens, Stefan; Willerson, James; Eschenhagen, Thomas; Ferdinandy, Péter; Sluijter, Joost P.G.

    2016-01-01

    Abstract Despite improvements in modern cardiovascular therapy, the morbidity and mortality of ischaemic heart disease (IHD) and heart failure (HF) remain significant in Europe and worldwide. Patients with IHD may benefit from therapies that would accelerate natural processes of postnatal collateral vessel formation and/or muscle regeneration. Here, we discuss the use of cells in the context of heart repair, and the most relevant results and current limitations from clinical trials using cell-based therapies to treat IHD and HF. We identify and discuss promising potential new therapeutic strategies that include ex vivo cell-mediated gene therapy, the use of biomaterials and cell-free therapies aimed at increasing the success rates of therapy for IHD and HF. The overall aim of this Position Paper of the ESC Working Group Cellular Biology of the Heart is to provide recommendations on how to improve the therapeutic application of cell-based therapies for cardiac regeneration and repair. PMID:27055812

  4. Combined selenium and vitamin C deficiency causes cell death in guinea pig skeletal muscle.

    PubMed

    Hill, Kristina E; Motley, Amy K; May, James M; Burk, Raymond F

    2009-03-01

    Combined antioxidant deficiencies of selenium and vitamin E or vitamin E and vitamin C in guinea pigs result in clinical illness. We hypothesized that combined selenium and vitamin C deficiency would have clinical consequences because in vitro interactions of these antioxidant nutrients have been reported. Because guinea pigs are dependent on dietary vitamin C, weanling male guinea pigs were fed selenium-deficient or control diet for 15 weeks before imposing vitamin C deficiency. Four dietary groups were formed and studied 3 weeks later: controls, vitamin C deficient, selenium deficient, and doubly deficient. Deficiencies were confirmed by determinations of glutathione peroxidase activity and vitamin C concentration in liver and skeletal muscle. Plasma creatine phosphokinase activity and liver, kidney, heart, and quadriceps histopathology were determined. Doubly deficient animals had moderately severe skeletal muscle cell death as judged by histopathology and plasma creatine phosphokinase activity of 6630 +/- 4400 IU/L (control, 70 + or - 5; vitamin C deficient, 95 + or - 110; selenium deficient, 280 + or - 250). Liver, kidney, and heart histology was normal in all groups. Muscle alpha-tocopherol levels were not depressed in the doubly deficient group, but muscle F2 isoprostane concentrations were elevated in them and correlated with markers of cell death. We conclude that combining selenium and vitamin C deficiencies in the guinea pig causes cell death in skeletal muscle that is more severe than the injury caused by selenium deficiency. The elevation of muscle F2 isoprostanes is compatible with the cell death being caused by oxidative stress.

  5. Notch signal reception is required in vascular smooth muscle cells for ductus arteriosus closure

    PubMed Central

    Krebs, Luke T.; Norton, Christine R.; Gridley, Thomas

    2017-01-01

    Summary The ductus arteriosus is an arterial vessel that shunts blood flow away from the lungs during fetal life, but normally occludes after birth to establish the adult circulation pattern. Failure of the ductus arteriosus to close after birth is termed patent ductus arteriosus, and is one of the most common congenital heart defects. Our previous work demonstrated that vascular smooth muscle cell expression of the Jag1 gene, which encodes a ligand for Notch family receptors, is essential for postnatal closure of the ductus arteriosus in mice. However, it was not known what cell population was responsible for receiving the Jag1-mediated signal. Here we show, using smooth muscle cell-specific deletion of the Rbpj gene, which encodes a transcription factor that mediates all canonical Notch signaling, that Notch signal reception in the vascular smooth muscle cell compartment is required for ductus arteriosus closure. These data indicate that homotypic vascular smooth muscle cell interactions are required for proper contractile smooth muscle cell differentiation and postnatal closure of the ductus arteriosus in mice. PMID:26742650

  6. Muscle wasting and sarcopenia in heart failure and beyond: update 2017

    PubMed Central

    Springer, Joshua‐I.; Anker, Stefan D.

    2017-01-01

    Abstract Sarcopenia (loss of muscle mass and muscle function) is a strong predictor of frailty, disability and mortality in older persons and may also occur in obese subjects. The prevalence of sarcopenia is increased in patients suffering from chronic heart failure. However, there are currently few therapy options. The main intervention is resistance exercise, either alone or in combination with nutritional support, which seems to enhance the beneficial effects of training. Also, testosterone has been shown to increased muscle power and function; however, a possible limitation is the side effects of testosterone. Other investigational drugs include selective androgen receptor modulators, growth hormone, IGF‐1, compounds targeting myostatin signaling, which have their own set of side effects. There are abundant prospective targets for improving muscle function in the elderly with or without chronic heart failure, and the continuing development of new treatment strategies and compounds for sarcopenia and cardiac cachexia makes this field an exciting one. PMID:29154428

  7. Gene expression deregulation in postnatal skeletal muscle of TK2 deficient mice reveals a lower pool of proliferating myogenic progenitor cells.

    PubMed

    Paredes, João A; Zhou, Xiaoshan; Höglund, Stefan; Karlsson, Anna

    2013-01-01

    Loss of thymidine kinase 2 (TK2) causes a heterogeneous myopathic form of mitochondrial DNA (mtDNA) depletion syndrome (MDS) in humans that predominantly affects skeletal muscle tissue. In mice, TK2 deficiency also affects several tissues in addition to skeletal muscle, including brain, heart, adipose tissue, kidneys and causes death about 3 weeks after birth. We analysed skeletal muscle and heart muscle tissues of Tk2 knockout mice at postnatal development phase and observed that TK2 deficient pups grew slower and their skeletal muscles appeared significantly underdeveloped, whereas heart was close to normal in size. Both tissues showed mtDNA depletion and mitochondria with altered ultrastructure, as revealed by transmission electron microscopy. Gene expression microarray analysis showed a strong down-regulation of genes involved in cell cycle and cell proliferation in both tissues, suggesting a lower pool of undifferentiated proliferating cells. Analysis of isolated primary myoblasts from Tk2 knockout mice showed slow proliferation, less ability to differentiate and signs of premature senescence, even in absence of mtDNA depletion. Our data demonstrate that TK2 deficiency disturbs myogenic progenitor cells function in postnatal skeletal muscle and we propose this as one of the causes of underdeveloped phenotype and myopathic characteristic of the TK2 deficient mice, in addition to the progressive mtDNA depletion, mitochondrial damage and respiratory chain deficiency in post-mitotic differentiated tissue.

  8. Gene Expression Deregulation in Postnatal Skeletal Muscle of TK2 Deficient Mice Reveals a Lower Pool of Proliferating Myogenic Progenitor Cells

    PubMed Central

    Paredes, João A.; Zhou, Xiaoshan; Höglund, Stefan; Karlsson, Anna

    2013-01-01

    Loss of thymidine kinase 2 (TK2) causes a heterogeneous myopathic form of mitochondrial DNA (mtDNA) depletion syndrome (MDS) in humans that predominantly affects skeletal muscle tissue. In mice, TK2 deficiency also affects several tissues in addition to skeletal muscle, including brain, heart, adipose tissue, kidneys and causes death about 3 weeks after birth. We analysed skeletal muscle and heart muscle tissues of Tk2 knockout mice at postnatal development phase and observed that TK2 deficient pups grew slower and their skeletal muscles appeared significantly underdeveloped, whereas heart was close to normal in size. Both tissues showed mtDNA depletion and mitochondria with altered ultrastructure, as revealed by transmission electron microscopy. Gene expression microarray analysis showed a strong down-regulation of genes involved in cell cycle and cell proliferation in both tissues, suggesting a lower pool of undifferentiated proliferating cells. Analysis of isolated primary myoblasts from Tk2 knockout mice showed slow proliferation, less ability to differentiate and signs of premature senescence, even in absence of mtDNA depletion. Our data demonstrate that TK2 deficiency disturbs myogenic progenitor cells function in postnatal skeletal muscle and we propose this as one of the causes of underdeveloped phenotype and myopathic characteristic of the TK2 deficient mice, in addition to the progressive mtDNA depletion, mitochondrial damage and respiratory chain deficiency in post-mitotic differentiated tissue. PMID:23341978

  9. Extracellular Superoxide Dismutase Ameliorates Skeletal Muscle Abnormalities, Cachexia and Exercise Intolerance in Mice with Congestive Heart Failure

    PubMed Central

    Okutsu, Mitsuharu; Call, Jarrod A.; Lira, Vitor A.; Zhang, Mei; Donet, Jean A.; French, Brent A.; Martin, Kyle S.; Peirce-Cottler, Shayn M.; Rembold, Christopher M.; Annex, Brian H.; Yan, Zhen

    2014-01-01

    Background Congestive heart failure (CHF) is a leading cause of morbidity and mortality, and oxidative stress has been implicated in the pathogenesis of cachexia (muscle wasting) and the hallmark symptom, exercise intolerance. We have previously shown that a nitric oxide (NO)-dependent antioxidant defense renders oxidative skeletal muscle resistant to catabolic wasting. Here, we aimed to identify and determine the functional role of the NO-inducible antioxidant enzyme(s) in protection against cardiac cachexia and exercise intolerance in CHF. Methods and Results We demonstrated that systemic administration of endogenous nitric oxide donor S-Nitrosoglutathione in mice blocked the reduction of extracellular superoxide dismutase (EcSOD) protein expression, the induction of MAFbx/Atrogin-1 mRNA expression and muscle atrophy induced by glucocorticoid. We further showed that endogenous EcSOD, expressed primarily by type IId/x and IIa myofibers and enriched at endothelial cells, is induced by exercise training. Muscle-specific overexpression of EcSOD by somatic gene transfer or transgenesis [muscle creatine kinase (MCK)-EcSOD] in mice significantly attenuated muscle atrophy. Importantly, when crossbred into a mouse genetic model of CHF [α-myosin heavy chain (MHC)-calsequestrin] MCK-EcSOD transgenic mice had significant attenuation of cachexia with preserved whole body muscle strength and endurance capacity in the absence of reduced heart failure. Enhanced EcSOD expression significantly ameliorated CHF-induced oxidative stress, MAFbx/Atrogin-1 mRNA expression, loss of mitochondria and vascular rarefaction in skeletal muscle. Conclusions EcSOD plays an important antioxidant defense function in skeletal muscle against cardiac cachexia and exercise intolerance in CHF. PMID:24523418

  10. Skeletal muscle mass and exercise performance in stable ambulatory patients with heart failure.

    PubMed

    Lang, C C; Chomsky, D B; Rayos, G; Yeoh, T K; Wilson, J R

    1997-01-01

    The purpose of this study was to determine whether skeletal muscle atrophy limits the maximal exercise capacity of stable ambulatory patients with heart failure. Body composition and maximal exercise capacity were measured in 100 stable ambulatory patients with heart failure. Body composition was assessed by using dual-energy X-ray absorption. Peak exercise oxygen consumption (VO2peak) and the anaerobic threshold were measured by using a Naughton treadmill protocol and a Medical Graphics CardioO2 System. VO2peak averaged 13.4 +/- 3.3 ml.min-1.kg-1 or 43 +/- 12% of normal. Lean body mass averaged 52.9 +/- 10.5 kg and leg lean mass 16.5 +/- 3.6 kg. Leg lean mass correlated linearly with VO2peak (r = 0.68, P < 0.01), suggesting that exercise performance is influences by skeletal muscle mass. However, lean body mass was comparable to levels noted in 1,584 normal control subjects, suggesting no decrease in muscle mass. Leg muscle mass was comparable to levels noted in 34 normal control subjects, further supporting this conclusion. These findings suggest that exercise intolerance in stable ambulatory patients with heart failure is not due to skeletal muscle atrophy.

  11. Transmembrane chloride flux in tissue-cultured chick heart cells

    PubMed Central

    1983-01-01

    To evaluate the transmembrane movement of chloride in a preparation of cardiac muscle lacking the extracellular diffusion limitations of natural specimens, intracellular chloride concentration ( [Cl] i) and transmembrane 36Cl efflux have been determined in growth-oriented embryonic chick heart cells in tissue culture. Using the method of isotopic equilibrium, [Cl]i was 25.1 +/- 7.3 mmol x (liter cell water)- 1, comparable to the value of 24.9 +/- 5.4 mmol x (liter cell water)-1 determined by coulometric titration. Two cellular 36Cl compartments were found; one exchanged with a rate constant of 0.67 +/- 0.12 min-1 and was associated with the cardiac muscle cells; the other, attributed to the fibroblasts, exchanged with a rate constant of 0.18 +/- 0.05 min- 1. At 37 degrees C, transmembrane Cl flux of cardiac muscle under steady-state conditions was 30 pmol x cm-2 x s-1. In K-free, normal, or high-Ko solutions, the responses of the membrane potential to changes in external Cl concentration suggested that chloride conductance was low. These results indicate that Cl transport across the myocardial cell membrane is more rapid than K transport and is largely electrically silent. PMID:6864192

  12. Position Paper of the European Society of Cardiology Working Group Cellular Biology of the Heart: cell-based therapies for myocardial repair and regeneration in ischemic heart disease and heart failure.

    PubMed

    Madonna, Rosalinda; Van Laake, Linda W; Davidson, Sean M; Engel, Felix B; Hausenloy, Derek J; Lecour, Sandrine; Leor, Jonathan; Perrino, Cinzia; Schulz, Rainer; Ytrehus, Kirsti; Landmesser, Ulf; Mummery, Christine L; Janssens, Stefan; Willerson, James; Eschenhagen, Thomas; Ferdinandy, Péter; Sluijter, Joost P G

    2016-06-14

    Despite improvements in modern cardiovascular therapy, the morbidity and mortality of ischaemic heart disease (IHD) and heart failure (HF) remain significant in Europe and worldwide. Patients with IHD may benefit from therapies that would accelerate natural processes of postnatal collateral vessel formation and/or muscle regeneration. Here, we discuss the use of cells in the context of heart repair, and the most relevant results and current limitations from clinical trials using cell-based therapies to treat IHD and HF. We identify and discuss promising potential new therapeutic strategies that include ex vivo cell-mediated gene therapy, the use of biomaterials and cell-free therapies aimed at increasing the success rates of therapy for IHD and HF. The overall aim of this Position Paper of the ESC Working Group Cellular Biology of the Heart is to provide recommendations on how to improve the therapeutic application of cell-based therapies for cardiac regeneration and repair. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  13. Strategies for regeneration of heart muscle.

    PubMed

    Guyette, Jacques P; Cohen, Ira S; Gaudette, Glenn R

    2010-01-01

    Regenerative medicine has emerged to the forefront of cardiac research, marrying discoveries in both basic science and engineering to develop viable therapeutic approaches for treating the diseased heart. Signifi cant advancements in gene therapy, stem cell biology, and cardiomyoplasty provide new optimism for regenerating damaged myocardium. Exciting new strategies for endogenous and exogenous regeneration have been proposed. However, questions remain as to whether these approaches can provide enough new myocyte mass to sufficiently restore mechanical function to the heart. In this article, we consider the mechanisms of endogenous cardiomyocyte regeneration and exogenous cell differentiation (with respect to myoblasts, stem cells, and induced pluripotent cells being researched for cell therapies). We begin by reviewing some of the cues that are being harnessed in strategies of gene/cell therapy for regenerating myocardium. We also consider some of the technical challenges that remain in determining new myocyte generation, tracking delivered cells in vivo, and correlating new myocyte contractility with cardiac function. Strategies for regenerating the heart are being realized as both animal and clinical trials suggest that these new approaches provide short-term improvement of cardiac function. However, a more complete understanding of the underlying mechanisms and applications is necessary to sustain longer-term therapeutic success.

  14. Enhanced Skeletal Muscle Expression of EcSOD Mitigates Streptozotocin-Induced Diabetic Cardiomyopathy by Reducing Oxidative Stress and Aberrant Cell Signaling

    PubMed Central

    Call, Jarrod A.; Chain, Kristopher H.; Martin, Kyle S.; Lira, Vitor A.; Okutsu, Mitsuharu; Zhang, Mei; Yan, Zhen

    2015-01-01

    Background Exercise training enhances extracellular superoxide dismutase (EcSOD) expression in skeletal muscle and elicits positive health outcomes in individuals with diabetes. The goal of this study was to determine if enhanced skeletal muscle expression of EcSOD is sufficient to mitigate streptozotocin (STZ)-induced diabetic cardiomyopathy (DCM). Methods and Results Exercise training promotes EcSOD expression in skeletal muscle and provides protection against DCM; however, it is not known if enhanced EcSOD expression in skeletal muscle plays a functional role in this protection. Here, we show that skeletal muscle-specific EcSOD transgenic mice (TG) are protected from cardiac hypertrophy, fibrosis and dysfunction under the condition of type-1 diabetes induced by STZ injection. We also show that both exercise training and muscle-specific transgenic expression of EcSOD result in elevated EcSOD protein in the blood and heart without increased transcription in the heart, suggesting enhanced expression of EcSOD from skeletal muscle redistributes to the heart. Importantly, cardiac tissue in TG mice displayed significantly reduced oxidative stress, aberrant cell signaling and inflammatory cytokine expression compared with wild type mice under the same diabetic condition. Conclusions Enhanced expression of EcSOD in skeletal muscle is sufficient to mitigate STZ-induced DCM through attenuation of oxidative stress, aberrant cell signaling and inflammation, suggesting a cross-organ mechanism by which exercise training improves cardiac function in diabetes. PMID:25504759

  15. American Heart Association

    MedlinePlus

    ... reconsider sleeping in this weekend? Scientists try first gene editing in the body E-cig flavorings may damage heart muscle cells Pregnancy complication tied to heart failure risk Shakopee ... to make MRIs safer One gene may be why some people are fat Is ...

  16. Autonomic mechanisms of muscle metaboreflex control of heart rate.

    PubMed

    O'Leary, D S

    1993-04-01

    Ischemia in active skeletal muscle induces reflex increases in systemic arterial pressure (SAP) and heart rate (HR), termed the muscle metaboreflex. When metaboreflex activation is maintained during postexercise muscle ischemia, SAP remains elevated; however, HR decreases. Why the HR responses differ with metaboreflex activation during exercise vs. during postexercise ischemia while the SAP responses are similar in each setting remains unclear. Two hypotheses were tested: 1) the increase in HR with muscle ischemia occurs predominantly via an increase in sympathetic activity, and 2) sympathetic activity to the heart remains elevated during post-exercise ischemia; however, HR decreases because of an increase in parasympathetic outflow. The muscle metaboreflex was activated in conscious dogs during treadmill exercise (3.2 kph, 0% grade) by progressively decreasing perfusion to the hindlimbs. Experiments were performed before and after muscarinic (atropine) or beta- (atenolol or propranolol) receptor blockade. In control experiments, once beyond the threshold for the reflex, the HR sensitivity of the muscle metaboreflex averaged -2.4 +/- 0.3 beats.min-1.mmHg-1 and the reflex open-loop gain averaged -3.2 +/- 0.3 (calculated as the ratio of the increase in HR or SAP to the decrease in hindlimb perfusion pressure beyond threshold). Atropine had no effect on either HR sensitivity (-2.7 +/- 0.4 beats.min-1.mmHg-1) or open-loop gain (-3.3 +/- 0.5, both P > 0.05 vs. control). However, pretreatment with beta-receptor antagonist significantly decreased both HR sensitivity (-0.7 +/- 0.1 beats.min-1.mmHg-1, P < 0.001) and open-loop gain (-1.9 +/- 0.3, P < 0.01). During postexercise ischemia, HR decreased while SAP remained elevated.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Physiological roles of taurine in heart and muscle

    PubMed Central

    2010-01-01

    Taurine (aminoethane sulfonic acid) is an ubiquitous compound, found in very high concentrations in heart and muscle. Although taurine is classified as an amino acid, it does not participate in peptide bond formation. Nonetheless, the amino group of taurine is involved in a number of important conjugation reactions as well as in the scavenging of hypochlorous acid. Because taurine is a fairly inert compound, it is an ideal modulator of basic processes, such as osmotic pressure, cation homeostasis, enzyme activity, receptor regulation, cell development and cell signalling. The present review discusses several physiological functions of taurine. First, the observation that taurine depletion leads to the development of a cardiomyopathy indicates a role for taurine in the maintenance of normal contractile function. Evidence is provided that this function of taurine is mediated by changes in the activity of key Ca2+ transporters and the modulation Ca2+ sensitivity of the myofibrils. Second, in some species, taurine is an established osmoregulator, however, in mammalian heart the osmoregulatory function of taurine has recently been questioned. Third, taurine functions as an indirect regulator of oxidative stress. Although this action of taurine has been widely discussed, its mechanism of action is unclear. A potential mechanism for the antioxidant activity of taurine is discussed. Fourth, taurine stabilizes membranes through direct interactions with phospholipids. However, its inhibition of the enzyme, phospholipid N-methyltransferase, alters the phosphatidylcholine and phosphatidylethanolamine content of membranes, which in turn affects the function of key proteins within the membrane. Finally, taurine serves as a modulator of protein kinases and phosphatases within the cardiomyocyte. The mechanism of this action has not been studied. Taurine is a chemically simple compound, but it has profound effects on cells. This has led to the suggestion that taurine is an

  18. Physiological roles of taurine in heart and muscle.

    PubMed

    Schaffer, Stephen W; Jong, Chian Ju; Ramila, K C; Azuma, Junichi

    2010-08-24

    Taurine (aminoethane sulfonic acid) is an ubiquitous compound, found in very high concentrations in heart and muscle. Although taurine is classified as an amino acid, it does not participate in peptide bond formation. Nonetheless, the amino group of taurine is involved in a number of important conjugation reactions as well as in the scavenging of hypochlorous acid. Because taurine is a fairly inert compound, it is an ideal modulator of basic processes, such as osmotic pressure, cation homeostasis, enzyme activity, receptor regulation, cell development and cell signalling. The present review discusses several physiological functions of taurine. First, the observation that taurine depletion leads to the development of a cardiomyopathy indicates a role for taurine in the maintenance of normal contractile function. Evidence is provided that this function of taurine is mediated by changes in the activity of key Ca2+ transporters and the modulation Ca2+ sensitivity of the myofibrils. Second, in some species, taurine is an established osmoregulator, however, in mammalian heart the osmoregulatory function of taurine has recently been questioned. Third, taurine functions as an indirect regulator of oxidative stress. Although this action of taurine has been widely discussed, its mechanism of action is unclear. A potential mechanism for the antioxidant activity of taurine is discussed. Fourth, taurine stabilizes membranes through direct interactions with phospholipids. However, its inhibition of the enzyme, phospholipid N-methyltransferase, alters the phosphatidylcholine and phosphatidylethanolamine content of membranes, which in turn affects the function of key proteins within the membrane. Finally, taurine serves as a modulator of protein kinases and phosphatases within the cardiomyocyte. The mechanism of this action has not been studied. Taurine is a chemically simple compound, but it has profound effects on cells. This has led to the suggestion that taurine is an

  19. NG2 Proteoglycan Ablation Reduces Foam Cell Formation and Atherogenesis via Decreased Low-Density Lipoprotein Retention by Synthetic Smooth Muscle Cells.

    PubMed

    She, Zhi-Gang; Chang, Yunchao; Pang, Hong-Bo; Han, Wenlong; Chen, Hou-Zao; Smith, Jeffrey W; Stallcup, William B

    2016-01-01

    Obesity and hyperlipidemia are critical risk factors for atherosclerosis. Because ablation of NG2 proteoglycan in mice leads to hyperlipidemia and obesity, we investigated the impact of NG2 ablation on atherosclerosis in apoE null mice. Immunostaining indicates that NG2 expression in plaque, primarily by synthetic smooth muscle cells, increases during atherogenesis. NG2 ablation unexpectedly results in decreased (30%) plaque development, despite aggravated obesity and hyperlipidemia. Mechanistic studies reveal that NG2-positive plaque synthetic smooth muscle cells in culture can sequester low-density lipoprotein to enhance foam-cell formation, processes in which NG2 itself plays direct roles. In agreement with these observations, low-density lipoprotein retention and lipid accumulation in the NG2/ApoE knockout aorta is 30% less than that seen in the control aorta. These results indicate that synthetic smooth muscle cell-dependent low-density lipoprotein retention and foam cell formation outweigh obesity and hyperlipidemia in promoting mouse atherogenesis. Our study sheds new light on the role of synthetic smooth muscle cells during atherogenesis. Blocking plaque NG2 or altering synthetic smooth muscle cells function may be promising therapeutic strategies for atherosclerosis. © 2015 American Heart Association, Inc.

  20. Satellite Cells and the Muscle Stem Cell Niche

    PubMed Central

    Yin, Hang; Price, Feodor

    2013-01-01

    Adult skeletal muscle in mammals is a stable tissue under normal circumstances but has remarkable ability to repair after injury. Skeletal muscle regeneration is a highly orchestrated process involving the activation of various cellular and molecular responses. As skeletal muscle stem cells, satellite cells play an indispensible role in this process. The self-renewing proliferation of satellite cells not only maintains the stem cell population but also provides numerous myogenic cells, which proliferate, differentiate, fuse, and lead to new myofiber formation and reconstitution of a functional contractile apparatus. The complex behavior of satellite cells during skeletal muscle regeneration is tightly regulated through the dynamic interplay between intrinsic factors within satellite cells and extrinsic factors constituting the muscle stem cell niche/microenvironment. For the last half century, the advance of molecular biology, cell biology, and genetics has greatly improved our understanding of skeletal muscle biology. Here, we review some recent advances, with focuses on functions of satellite cells and their niche during the process of skeletal muscle regeneration. PMID:23303905

  1. Peripheral muscle ergoreceptors and ventilatory response during exercise recovery in heart failure.

    PubMed

    Francis, N; Cohen-Solal, A; Logeart, D

    1999-03-01

    Recent studies have suggested that the increased ventilatory response during exercise in patients with chronic heart failure was related to the activation of muscle metaboreceptors. To address this issue, 23 patients with heart failure and 7 normal subjects performed arm and leg bicycle exercises with and without cuff inflation around the arms or the thighs during recovery. Obstruction slightly reduced ventilation and gas exchange variables at recovery but did not change the kinetics of recovery of these parameters compared with nonobstructed recovery: half-time of ventilation recovery was 175 +/- 54 to 176 +/- 40 s in patients and 155 +/- 66 to 127 +/- 13 s in controls (P < 0.05, patients vs. controls, not significant within each group from baseline to obstructed recovery). We conclude that muscle metaboreceptor activation does not seem to play a role in the exertion hyperventilation of patients with heart failure.

  2. Heart regeneration.

    PubMed

    Breckwoldt, Kaja; Weinberger, Florian; Eschenhagen, Thomas

    2016-07-01

    Regenerating an injured heart holds great promise for millions of patients suffering from heart diseases. Since the human heart has very limited regenerative capacity, this is a challenging task. Numerous strategies aiming to improve heart function have been developed. In this review we focus on approaches intending to replace damaged heart muscle by new cardiomyocytes. Different strategies for the production of cardiomyocytes from human embryonic stem cells or human induced pluripotent stem cells, by direct reprogramming and induction of cardiomyocyte proliferation are discussed regarding their therapeutic potential and respective advantages and disadvantages. Furthermore, different methods for the transplantation of pluripotent stem cell-derived cardiomyocytes are described and their clinical perspectives are discussed. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. [Evaluation of heart impact in the 100 m extreme intensity sport using near-infrared non-invasive muscle oxygen detecting device and sports heart rate detection technology].

    PubMed

    Wang, Pei-Yong; Long, Fei-Xiao; Fu, Lan-Ying; Li, Yue; Ding, Hai-Shu; Qu, An-Lian; Zhou, Xiao-Ping

    2010-02-01

    Using continuous two wavelength near-infrared technology to detect the variation in the consistency of oxygen hemoglobin in the muscle and the sports heart rate wireless real time collection technology, we devised the real time muscle tissue oxygenation and instantaneous heart rate experiment scheme and implemented it for the process of the 100 m run with two parameters given simultaneously. The experiment shows that the concentration of the oxygen hemoglobin in the muscle tissue continues decreasing after the end of the 100 m run, and the time interval between the moment when the concentration of the oxygen hemoglobin attains the minimum value and the moment when the athletes finish the 100 m run is (6.65 +/- 1.10) sec; while the heart rate continues increasing after the end of the 100 m run, and the time interval between the moment when the heart rate attains the maximum value and the moment when the athletes finish the 100 m run is (8.00 +/- 1.57) sec. The results show that the two wavelength near-infrared tissue oxygenation detection technology and the sports heart rate real time collection equipment can accurately measure the sports tissue oxygenation and the heart rate in the extreme intensity sport, and reveal the process of muscle oxygen transportation and consumption and its dynamic character with the heart rate in the extreme intensity sport.

  4. Cell Death and Heart Failure in Obesity: Role of Uncoupling Proteins

    PubMed Central

    Ruiz-Ramírez, Angélica; López-Acosta, Ocarol; Barrios-Maya, Miguel Angel

    2016-01-01

    Metabolic diseases such as obesity, metabolic syndrome, and type II diabetes are often characterized by increased reactive oxygen species (ROS) generation in mitochondrial respiratory complexes, associated with fat accumulation in cardiomyocytes, skeletal muscle, and hepatocytes. Several rodents studies showed that lipid accumulation in cardiac myocytes produces lipotoxicity that causes apoptosis and leads to heart failure, a dynamic pathological process. Meanwhile, several tissues including cardiac tissue develop an adaptive mechanism against oxidative stress and lipotoxicity by overexpressing uncoupling proteins (UCPs), specific mitochondrial membrane proteins. In heart from rodent and human with obesity, UCP2 and UCP3 may protect cardiomyocytes from death and from a state progressing to heart failure by downregulating programmed cell death. UCP activation may affect cytochrome c and proapoptotic protein release from mitochondria by reducing ROS generation and apoptotic cell death. Therefore the aim of this review is to discuss recent findings regarding the role that UCPs play in cardiomyocyte survival by protecting against ROS generation and maintaining bioenergetic metabolism homeostasis to promote heart protection. PMID:27642497

  5. The Popeye domain containing 2 (popdc2) gene in zebrafish is required for heart and skeletal muscle development

    PubMed Central

    Kirchmaier, Bettina C.; Poon, Kar Lai; Schwerte, Thorsten; Huisken, Jan; Winkler, Christoph; Jungblut, Benno; Stainier, Didier Y.; Brand, Thomas

    2013-01-01

    The Popeye domain containing (Popdc) genes encode a family of transmembrane proteins with an evolutionary conserved Popeye domain. These genes are abundantly expressed in striated muscle tissue, however their function is not well understood. In this study we have investigated the role of the popdc2 gene in zebrafish. Popdc2 transcripts were detected in the embryonic myocardium and transiently in the craniofacial and tail musculature. Morpholino oligonucleotide-mediated knockdown of popdc2 resulted in aberrant development of skeletal muscle and heart. Muscle segments in the trunk were irregularly shaped and craniofacial muscles were severely reduced or even missing. In the heart, pericardial edema was prevalent in the morphants and heart chambers were elongated and looping was abnormal. These pathologies in muscle and heart were alleviated after reducing the morpholino concentration. However the heart still was abnormal displaying cardiac arrhythmia at later stages of development. Optical recordings of cardiac contractility revealed irregular ventricular contractions with a 2:1, or 3:1 atrial/ventricular conduction ratio, which caused a significant reduction in heart frequency. Recordings of calcium transients with high spatiotemporal resolution using a transgenic calcium indicator line (Tg(cmlc2:gCaMP)s878) and SPIM microscopy confirmed the presence of a severe arrhythmia phenotype. Our results identify popdc2 as a gene important for striated muscle differentiation and cardiac morphogenesis. In addition it is required for the development of the cardiac conduction system. PMID:22290329

  6. Mechanical stimulation in the engineering of heart muscle.

    PubMed

    Liaw, Norman Yu; Zimmermann, Wolfram-Hubertus

    2016-01-15

    Recreating the beating heart in the laboratory continues to be a formidable bioengineering challenge. The fundamental feature of the heart is its pumping action, requiring considerable mechanical forces to compress a blood filled chamber with a defined in- and outlet. Ventricular output crucially depends on venous loading of the ventricles (preload) and on the force generated by the preloaded ventricles to overcome arterial blood pressure (afterload). The rate of contraction is controlled by the spontaneously active sinus node and transmission of its electrical impulses into the ventricles. The underlying principles for these physiological processes are described by the Frank-Starling mechanism and Bowditch phenomenon. It is essential to consider these principles in the design and evaluation of tissue engineered myocardium. This review focuses on current strategies to evoke mechanical loading in hydrogel-based heart muscle engineering. Copyright © 2015. Published by Elsevier B.V.

  7. THE RENIN-ANGIOTENSIN SYSTEM AND THE BIOLOGY OF SKELETAL MUSCLE: MECHANISMS OF MUSCLE WASTING IN CHRONIC DISEASE STATES.

    PubMed

    Delafontaine, Patrice; Yoshida, Tadashi

    2016-01-01

    Sarcopenia and cachexia are muscle-wasting syndromes associated with aging and with many chronic diseases such as congestive heart failure, diabetes, cancer, chronic obstructive pulmonary disease, and renal failure. While mechanisms are complex, these conditions are often accompanied by elevated angiotensin II (Ang II). We found that Ang II infusion in rodents leads to skeletal muscle wasting via alterations in insulin-like growth factor-1 signaling, increased apoptosis, enhanced muscle protein breakdown via the ubiquitin-proteasome system, and decreased appetite resulting from downregulation of hypothalamic orexigenic neuropeptides orexin and neuropeptide Y. Furthermore, Ang II inhibits skeletal muscle stem cell proliferation, leading to lowered muscle regenerative capacity. Distinct stem cell Ang II receptor subtypes are critical for regulation of muscle regeneration. In ischemic mouse congestive heart failure model skeletal muscle wasting and attenuated muscle regeneration are Ang II dependent. These data suggest that the renin-angiotensin system plays a critical role in mechanisms underlying cachexia in chronic disease states.

  8. Resveratrol improves exercise performance and skeletal muscle oxidative capacity in heart failure.

    PubMed

    Sung, Miranda M; Byrne, Nikole J; Robertson, Ian M; Kim, Ty T; Samokhvalov, Victor; Levasseur, Jody; Soltys, Carrie-Lynn; Fung, David; Tyreman, Neil; Denou, Emmanuel; Jones, Kelvin E; Seubert, John M; Schertzer, Jonathan D; Dyck, Jason R B

    2017-04-01

    We investigated whether treatment of mice with established pressure overload-induced heart failure (HF) with the naturally occurring polyphenol resveratrol could improve functional symptoms of clinical HF such as fatigue and exercise intolerance. C57Bl/6N mice were subjected to either sham or transverse aortic constriction surgery to induce HF. Three weeks postsurgery, a cohort of mice with established HF (%ejection fraction <45) was administered resveratrol (~450 mg·kg -1 ·day -1 ) or vehicle for 2 wk. Although the percent ejection fraction was similar between both groups of HF mice, those mice treated with resveratrol had increased total physical activity levels and exercise capacity. Resveratrol treatment was associated with altered gut microbiota composition, increased skeletal muscle insulin sensitivity, a switch toward greater whole body glucose utilization, and increased basal metabolic rates. Although muscle mass and strength were not different between groups, mice with HF had significant declines in basal and ADP-stimulated O 2 consumption in isolated skeletal muscle fibers compared with sham mice, which was completely normalized by resveratrol treatment. Overall, resveratrol treatment of mice with established HF enhances exercise performance, which is associated with alterations in whole body and skeletal muscle energy metabolism. Thus, our preclinical data suggest that resveratrol supplementation may effectively improve fatigue and exercise intolerance in HF patients. NEW & NOTEWORTHY Resveratrol treatment of mice with heart failure leads to enhanced exercise performance that is associated with altered gut microbiota composition, increased whole body glucose utilization, and enhanced skeletal muscle metabolism and function. Together, these preclinical data suggest that resveratrol supplementation may effectively improve fatigue and exercise intolerance in heart failure via these mechanisms. Copyright © 2017 the American Physiological Society.

  9. Assessment of DNA synthesis in Islet-1{sup +} cells in the adult murine heart

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinberger, Florian, E-mail: f.weinberger@uke.de; Mehrkens, Dennis, E-mail: dennis.mehrkens@uk-koeln.de; Starbatty, Jutta, E-mail: starbatty@uke.uni-hamburg.de

    Highlights: • Islet-1 was expressed in the adult heart. • Islet-1-positive cells did not proliferate in the adult heart. • Sinoatrial node cells did not proliferate in the adult heart. - Abstract: Rationale: Islet-1 positive (Islet-1{sup +}) cardiac progenitor cells give rise to the right ventricle, atria and outflow tract during murine cardiac development. In the adult heart Islet-1 expression is limited to parasympathetic neurons, few cardiomyocytes, smooth muscle cells, within the proximal aorta and pulmonary artery and sinoatrial node cells. Its role in these cells is unknown. Here we tested the hypothesis that Islet-1{sup +} cells retain proliferative activitymore » and may therefore play a role in regenerating specialized regions in the heart. Methods and results: DNA synthesis was analyzed by the incorporation of tritiated thymidine ({sup 3}H-thymidine) in Isl-1-nLacZ mice, a transgenic model with an insertion of a nuclear beta-galactosidase in the Islet-1 locus. Mice received daily injections of {sup 3}H-thymidine for 5 days. DNA synthesis was visualized throughout the heart by dipping autoradiography of cryosections. Colocalization of an nLacZ-signal and silver grains would indicate DNA synthesis in Islet-1{sup +} cells. Whereas Islet{sup −} non-myocyte nuclei were regularly marked by accumulation of silver grains, colocalization with nLacZ-signals was not detected in >25,000 cells analyzed. Conclusions: Islet-1{sup +} cells are quiescent in the adult heart, suggesting that, under normal conditions, even pacemaking cells do not proliferate at higher rates than normal cardiac myocytes.« less

  10. AN EXPERIMENTAL INVESTIGATION OF THE TREATMENT OF WOUNDS OF THE HEART BY MEANS OF SUTURE OF THE HEART MUSCLE

    PubMed Central

    Elsberg, Charles A.

    1899-01-01

    It would, of course, be incorrect to attempt to draw conclusions as to the dangers and the chances of success of suture of cardiac wounds in man from the results obtained by animal experimentation. Animals are placed in very unfavorable conditions after the operation. They are very restless and cannot be kept quiet. Ideal cleanliness is impossible and the animals may infect their wound by rubbing the external wound against the dirt on the floor of their cage. From the animal mortality in these investigations no rigid inferences applicable to human beings can therefore be made. Some conclusions of importance can, however, be drawn. Above all, my experiments seem to show that the mammalian heart will bear a much greater amount of manipulation than has hitherto been suspected. Very large wounds of the heart can heal and the healing process occurs in a manner entirely analogous to that in other muscular tissues. Even an extensive suture of the heart-wall of rabbits and dogs, although we know that thereby a large number of muscle fibres are destroyed and replaced by connective tissue, does not interfere with the function of the cardiac muscle as a whole. Can some of the results in the above recorded experiments be, with some restrictions of course, applied to the human heart? I think that this question must be answered in the affirmative. If we compare the knowledge we possess of wounds of the heart in man, with that obtained from animal experiments, and find that they agree in all essential particulars, then we are justified in reasoning by analogy that suture of wounds of the heart in man will give results similar to those obtained in the animal. In the last few decades, the advances made in all the branches of medicine—especially in pathology, bacteriology and surgery—have been due to a great extent to the generalization of the results of animal experimentation. To the careful and critical investigator, the results obtained in the animal experiment have always

  11. Hierarchical signaling transduction of the immune and muscle cell crosstalk in muscle regeneration.

    PubMed

    Yang, Wenjun; Hu, Ping

    2018-04-01

    The muscle regeneration is a complicated bioprocess that involved in many cell types, including necrotic muscle cells, satellite cells, mesenchymal cells, pericytes, immune cells, and other cell types present at the injury site. Immune cells involved in both innate and adaptive immune responses regulate the progress of muscle regeneration. In this review, we discussed the roles of different immune cells in muscle regeneration. The immune cells regulate muscle regeneration through cytokine production, cell-cell contacts, and general immune environment regulation. We also describe the current known mechanism of how immune cells regulating muscle regeneration. Copyright © 2017. Published by Elsevier Inc.

  12. Muscle Satellite Cell Protein Teneurin‐4 Regulates Differentiation During Muscle Regeneration

    PubMed Central

    Ishii, Kana; Suzuki, Nobuharu; Mabuchi, Yo; Ito, Naoki; Kikura, Naomi; Fukada, So‐ichiro; Okano, Hideyuki; Takeda, Shin'ichi

    2015-01-01

    Abstract Satellite cells are maintained in an undifferentiated quiescent state, but during muscle regeneration they acquire an activated stage, and initiate to proliferate and differentiate as myoblasts. The transmembrane protein teneurin‐4 (Ten‐4) is specifically expressed in the quiescent satellite cells; however, its cellular and molecular functions remain unknown. We therefore aimed to elucidate the function of Ten‐4 in muscle satellite cells. In the tibialis anterior (TA) muscle of Ten‐4‐deficient mice, the number and the size of myofibers, as well as the population of satellite cells, were reduced with/without induction of muscle regeneration. Furthermore, we found an accelerated activation of satellite cells in the regenerated Ten‐4‐deficient TA muscle. The cell culture analysis using primary satellite cells showed that Ten‐4 suppressed the progression of myogenic differentiation. Together, our findings revealed that Ten‐4 functions as a crucial player in maintaining the quiescence of muscle satellite cells. Stem Cells 2015;33:3017–3027 PMID:26013034

  13. Muscle satellite cell heterogeneity and self-renewal

    PubMed Central

    Motohashi, Norio; Asakura, Atsushi

    2014-01-01

    Adult skeletal muscle possesses extraordinary regeneration capacities. After muscle injury or exercise, large numbers of newly formed muscle fibers are generated within a week as a result of expansion and differentiation of a self-renewing pool of muscle stem cells termed muscle satellite cells. Normally, satellite cells are mitotically quiescent and reside beneath the basal lamina of muscle fibers. Upon regeneration, satellite cells are activated, and give rise to daughter myogenic precursor cells. After several rounds of proliferation, these myogenic precursor cells contribute to the formation of new muscle fibers. During cell division, a minor population of myogenic precursor cells returns to quiescent satellite cells as a self-renewal process. Currently, accumulating evidence has revealed the essential roles of satellite cells in muscle regeneration and the regulatory mechanisms, while it still remains to be elucidated how satellite cell self-renewal is molecularly regulated and how satellite cells are important in aging and diseased muscle. The number of satellite cells is decreased due to the changing niche during ageing, resulting in attenuation of muscle regeneration capacity. Additionally, in Duchenne muscular dystrophy (DMD) patients, the loss of satellite cell regenerative capacity and decreased satellite cell number due to continuous needs for satellite cells lead to progressive muscle weakness with chronic degeneration. Thus, it is necessary to replenish muscle satellite cells continuously. This review outlines recent findings regarding satellite cell heterogeneity, asymmetric division and molecular mechanisms in satellite cell self-renewal which is crucial for maintenance of satellite cells as a muscle stem cell pool throughout life. In addition, we discuss roles in the stem cell niche for satellite cell maintenance, as well as related cell therapies for approaching treatment of DMD. PMID:25364710

  14. Molecular mechanisms and treatment targets of muscle wasting and cachexia in heart failure: an overview.

    PubMed

    Ebner, Nicole; Elsner, Sebastian; Springer, Jochen; von Haehling, Stephan

    2014-03-01

    This article aims to describe molecular pathways involved in the development of muscle wasting and cachexia, diagnostic possibilities, and potential treatments that have seen clinical testing in recent heart failure trials. An understanding of the specific changes that cause an anabolic-catabolic imbalance is an essential first step in the development of pharmaceutical intervention strategies aimed at blocking muscle wasting. Skeletal muscle mass and muscle strength are the most important determinants of exercise capacity in patients with heart failure. In contrast to cachexia, muscle wasting is not usually associated with weight loss, implying the need for sophisticated assessment methods to correctly diagnose muscle wasting, for example the use of computed tomography, magnetic resonance imaging, or dual energy X-ray absorptiometry. Simpler techniques such as handgrip strength, exercise testing, or even a biomarker may help in determining patients with a high pre-test probability of muscle wasting. Despite intensive research efforts in the field of muscle wasting during the last couple of decades, no effective treatment of muscle wasting currently exists other than exercise training. This situation remains true even though study of the molecular pathways involved in muscle wasting suggests many therapeutic targets. Easily applicable diagnostic tools may help to identify patients at risk of developing muscle wasting.

  15. Neuromuscular electrical stimulation improves GLUT-4 and morphological characteristics of skeletal muscle in rats with heart failure.

    PubMed

    de Leon, E B; Bortoluzzi, A; Rucatti, A; Nunes, R B; Saur, L; Rodrigues, M; Oliveira, U; Alves-Wagner, A B; Xavier, L L; Machado, U F; Schaan, B D; Dall'Ago, P

    2011-02-01

    Changes in skeletal muscle morphology and metabolism are associated with limited functional capacity in heart failure, which can be attenuated by neuromuscular electrical stimulation (ES). The purpose of the present study was to analyse the effects of ES upon GLUT-4 protein content, fibre structure and vessel density of the skeletal muscle in a rat model of HF subsequent to myocardial infarction. Forty-four male Wistar rats were assigned to one of four groups: sham (S), sham submitted to ES (S+ES), heart failure (HF) and heart failure submitted to ES (HF+ES). The rats in the ES groups were submitted to ES of the left leg during 20 days (2.5 kHz, once a day, 30 min, duty cycle 50%- 15 s contraction/15 s rest). After this period, the left tibialis anterior muscle was collected from all the rats for analysis. HF+ES rats showed lower values of lung congestion when compared with HF rats (P = 0.0001). Although muscle weight was lower in HF rats than in the S group, thus indicating hypotrophy, 20 days of ES led to their recovery (P < 0.0001). In both groups submitted to ES, there was an increase in muscle vessel density (P < 0.04). Additionally, heart failure determined a 49% reduction in GLUT-4 protein content (P < 0.03), which was recovered by ES (P < 0.01). In heart failure, ES improves morphological changes and raises GLUT-4 content in skeletal muscle. © 2010 The Authors. Acta Physiologica © 2010 Scandinavian Physiological Society.

  16. Muscle oxygen transport and utilization in heart failure: implications for exercise (in)tolerance.

    PubMed

    Poole, David C; Hirai, Daniel M; Copp, Steven W; Musch, Timothy I

    2012-03-01

    The defining characteristic of chronic heart failure (CHF) is an exercise intolerance that is inextricably linked to structural and functional aberrations in the O(2) transport pathway. CHF reduces muscle O(2) supply while simultaneously increasing O(2) demands. CHF severity varies from moderate to severe and is assessed commonly in terms of the maximum O(2) uptake, which relates closely to patient morbidity and mortality in CHF and forms the basis for Weber and colleagues' (167) classifications of heart failure, speed of the O(2) uptake kinetics following exercise onset and during recovery, and the capacity to perform submaximal exercise. As the heart fails, cardiovascular regulation shifts from controlling cardiac output as a means for supplying the oxidative energetic needs of exercising skeletal muscle and other organs to preventing catastrophic swings in blood pressure. This shift is mediated by a complex array of events that include altered reflex and humoral control of the circulation, required to prevent the skeletal muscle "sleeping giant" from outstripping the pathologically limited cardiac output and secondarily impacts lung (and respiratory muscle), vascular, and locomotory muscle function. Recently, interest has also focused on the dysregulation of inflammatory mediators including tumor necrosis factor-α and interleukin-1β as well as reactive oxygen species as mediators of systemic and muscle dysfunction. This brief review focuses on skeletal muscle to address the mechanistic bases for the reduced maximum O(2) uptake, slowed O(2) uptake kinetics, and exercise intolerance in CHF. Experimental evidence in humans and animal models of CHF unveils the microvascular cause(s) and consequences of the O(2) supply (decreased)/O(2) demand (increased) imbalance emblematic of CHF. Therapeutic strategies to improve muscle microvascular and oxidative function (e.g., exercise training and anti-inflammatory, antioxidant strategies, in particular) and hence patient

  17. Muscle Contraction.

    PubMed

    Sweeney, H Lee; Hammers, David W

    2018-02-01

    SUMMARYMuscle cells are designed to generate force and movement. There are three types of mammalian muscles-skeletal, cardiac, and smooth. Skeletal muscles are attached to bones and move them relative to each other. Cardiac muscle comprises the heart, which pumps blood through the vasculature. Skeletal and cardiac muscles are known as striated muscles, because the filaments of actin and myosin that power their contraction are organized into repeating arrays, called sarcomeres, that have a striated microscopic appearance. Smooth muscle does not contain sarcomeres but uses the contraction of filaments of actin and myosin to constrict blood vessels and move the contents of hollow organs in the body. Here, we review the principal molecular organization of the three types of muscle and their contractile regulation through signaling mechanisms and discuss their major structural and functional similarities that hint at the possible evolutionary relationships between the cell types. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  18. The Skeletal Muscle Satellite Cell

    PubMed Central

    2011-01-01

    The skeletal muscle satellite cell was first described and named based on its anatomic location between the myofiber plasma and basement membranes. In 1961, two independent studies by Alexander Mauro and Bernard Katz provided the first electron microscopic descriptions of satellite cells in frog and rat muscles. These cells were soon detected in other vertebrates and acquired candidacy as the source of myogenic cells needed for myofiber growth and repair throughout life. Cultures of isolated myofibers and, subsequently, transplantation of single myofibers demonstrated that satellite cells were myogenic progenitors. More recently, satellite cells were redefined as myogenic stem cells given their ability to self-renew in addition to producing differentiated progeny. Identification of distinctively expressed molecular markers, in particular Pax7, has facilitated detection of satellite cells using light microscopy. Notwithstanding the remarkable progress made since the discovery of satellite cells, researchers have looked for alternative cells with myogenic capacity that can potentially be used for whole body cell-based therapy of skeletal muscle. Yet, new studies show that inducible ablation of satellite cells in adult muscle impairs myofiber regeneration. Thus, on the 50th anniversary since its discovery, the satellite cell’s indispensable role in muscle repair has been reaffirmed. PMID:22147605

  19. Engineered Heart Repair.

    PubMed

    Fujita, B; Zimmermann, W-H

    2017-08-01

    There is a pressing need for the development of advanced heart failure therapeutics. Current state-of-the-art is protection from neurohumoral overstimulation, which fails to address the underlying cause of heart failure, namely loss of cardiomyocytes. Implantation of stem cell-derived cardiomyocytes via tissue-engineered myocardium is being advanced to realize the remuscularization of the failing heart. Here, we discuss pharmacological challenges pertaining to the clinical translation of tissue-engineered heart repair with a focus on engineered heart muscle (EHM). © 2017 American Society for Clinical Pharmacology and Therapeutics.

  20. A critical role of nicotinamide phosphoribosyltransferase in human telomerase reverse transcriptase induction by resveratrol in aortic smooth muscle cells

    PubMed Central

    Huang, Peixin; Riordan, Sean M.; Heruth, Daniel P.; Grigoryev, Dmitry N.; Zhang, Li Qin; Ye, Shui Qing

    2015-01-01

    Aging is the predominant risk factor for cardiovascular diseases and contributes to a considerably more severe outcome in patients with acute myocardial infarction. Resveratrol, a polyphenol found in red wine, is a caloric restriction mimetic with potential anti-aging properties which has emerged as a beneficial nutraceutical for patients with cardiovascular disease. Although resveratrol is widely consumed as a nutritional supplement, its mechanism of action remains to be elucidated fully. Here, we report that resveratrol activates human nicotinamide phosphoribosyltransferase (NAMPT), SIRT4 and telomerase reverse transcriptase (hTERT) in human aortic smooth muscle cells. Similar observations were obtained in resveratrol treated C57BL/6J mouse heart and liver tissues. Resverotrol can also augment telomerase activity in both human pulmonary microvascular endothelial cells and A549 cells. Blocking NAMPT and SIRT4 expression prevents induction of hTERT in human aortic smooth muscle cells while overexpression of NAMPT elevates the telomerase activity induced by resveratrol in A549 cells. Together, these results identify a NAMPT-SIRT4-hTERT axis as a novel mechanism by which resveratrol may affect the anti-aging process in human aortic smooth muscle cells, mouse hearts and other cells. These findings enrich our understanding of the positive effects of resveratrol in human cardiovascular diseases. PMID:25926556

  1. SYNTHETIC STRANDS OF CARDIAC MUSCLE

    PubMed Central

    Purdy, Joyce E.; Lieberman, Melvyn; Roggeveen, Anne E.; Kirk, R. Gary

    1972-01-01

    Spontaneously active bundles of cardiac muscle (synthetic strands) were prepared from isolated cells of 11–13-day old embryonic chick hearts which were disaggregated with trypsin. Linear orientation of the cells was obtained by plating them on agar-coated culture dishes in which either grooves were cut in the agar film or a thin line of palladium was deposited over the agar. The influence of cell-to-cell and cell-to-substrate interactions was observed with time lapse cinematography and the formation of the synthetic strand was shown to involve both random and guided cell movements, enlargement of aggregates by accretion and coalescence, and the compact linear arrangement of cells along paths of preferential adhesion. Electron microscope investigations of these strands showed that a dispersed population of heart cells organized into an inner core of muscle cells and an outer sheath of fibroblast-like cells. The muscle cells contained well-developed, but widely spaced myofibrils, a developing sarcoplasmic reticulum associated in part with the myofibrils and in part with the sarcolemma, an abundance of nonmembrane bound ribosomes and glycogen, and a prominent Golgi complex. Numerous specialized contacts were observed between the muscle cells in the strand, e.g., fasciae adherentes, desmosomes, and nexuses. A distinct type of muscle cell characterized by its pale appearance was regularly observed in the strand and was noted to be similar to Purkinje cells described in the adult avian conduction system and in developing chick myocardium. The present findings were compared with other observations of the developing myocardium, in situ, and it was concluded that, by a number or criteria, the muscle cells of the strand were differentiating normally and suitably organized for electrophysiological studies. PMID:4656702

  2. Examination of mitral regurgitation with a goat heart model for the development of intelligent artificial papillary muscle.

    PubMed

    Shiraishi, Y; Yambe, T; Yoshizawa, M; Hashimoto, H; Yamada, A; Miura, H; Hashem, M; Kitano, T; Shiga, T; Homma, D

    2012-01-01

    Annuloplasty for functional mitral or tricuspid regurgitation has been made for surgical restoration of valvular diseases. However, these major techniques may sometimes be ineffective because of chamber dilation and valve tethering. We have been developing a sophisticated intelligent artificial papillary muscle (PM) by using an anisotropic shape memory alloy fiber for an alternative surgical reconstruction of the continuity of the mitral structural apparatus and the left ventricular myocardium. This study exhibited the mitral regurgitation with regard to the reduction in the PM tension quantitatively with an originally developed ventricular simulator using isolated goat hearts for the sophisticated artificial PM. Aortic and mitral valves with left ventricular free wall portions of isolated goat hearts (n=9) were secured on the elastic plastic membrane and statically pressurized, which led to valvular leaflet-papillary muscle positional change and central mitral regurgitation. PMs were connected to the load cell, and the relationship between the tension of regurgitation and PM tension were measured. Then we connected the left ventricular specimen model to our hydraulic ventricular simulator and achieved hemodynamic simulation with the controlled tension of PMs.

  3. Acute phase lipocalin Ex-FABP is involved in heart development and cell survival.

    PubMed

    Gentili, C; Tutolo, G; Zerega, B; Di Marco, E; Cancedda, R; Cancedda, F Descalzi

    2005-03-01

    Ex-FABP is an extracellular fatty acid binding protein, expressed during chicken embryo development in cartilage, muscle fibers, and blood granulocytes. Transfection of chondrocytes and myoblasts with anti-sense Ex-FABP cDNA results in inhibition of cell proliferation and apoptosis induction. Ex-FABP expression is dramatically enhanced by inflammatory stimuli and in pathological conditions. In this paper, by in situ whole mount and immunohistochemistry analysis we show that, at early developmental stage, Ex-FABP is diffuse in all tissues of chick embryos. Particularly high level of transcript and protein are expressed in the heart. During acute phase response (APR) induced by endotoxin LPS injection, a marked increase of Ex-FABP mRNA was observed in embryos, highest Ex-FABP expression being in heart and liver. To investigate in vivo the biological role of Ex-FABP, we have directly microinjected chicken embryos with antibody against Ex-FABP. Almost 70% of chicken embryos died and the target tissue was the heart. We detected in heart of the treated embryos a significant increase of apoptotic cells and high level of fatty acids. We propose that the accumulation of fatty acid, specific ligand of Ex-FABP, in the cell microenvironment is responsible of heart cell death, and we suggest that Ex-FABP may act as a survival protein by playing a role as scavenger for fatty acids. 2004 Wiley-Liss, Inc.

  4. Endothelial Progenitor Cells as a Sole Source for Ex Vivo Seeding of Tissue-Engineered Heart Valves

    PubMed Central

    Mettler, Bret A.; Engelmayr, George C.; Aikawa, Elena; Bischoff, Joyce; Martin, David P.; Exarhopoulos, Alexis; Moses, Marsha A.; Schoen, Frederick J.; Sacks, Michael S.

    2010-01-01

    Purposes: We investigated whether circulating endothelial progenitor cells (EPCs) can be used as a cell source for the creation of a tissue-engineered heart valve (TEHV). Methods: Trileaflet valved conduits were fabricated using nonwoven polyglycolic acid/poly-4-hydroxybutyrate polymer. Ovine peripheral blood EPCs were dynamically seeded onto a valved conduit and incubated for 7, 14, and 21 days. Results: Before seeding, EPCs were shown to express CD31+, eNOS+, and VE-Cadherin+ but not α-smooth muscle actin. Histological analysis demonstrated relatively homogenous cellular ingrowth throughout the valved conduit. TEHV constructs revealed the presence of endothelial cell (EC) markers and α-smooth muscle actin+ cells comparable with native valves. Protein levels were comparable with native valves and exceeded those in unseeded controls. EPC-TEHV demonstrated a temporal pattern of matrix metalloproteinases-2/9 expression and tissue inhibitors of metalloproteinase activities comparable to that of native valves. Mechanical properties of EPC-TEHV demonstrated significantly greater stiffness than that of the unseeded scaffolds and native valves. Conclusions: Circulating EPC appears to have the potential to provide both interstitial and endothelial functions and could potentially serve as a single-cell source for construction of autologous heart valves. PMID:19698056

  5. Sarcopenia, cachexia, and muscle performance in heart failure: Review update 2016.

    PubMed

    Saitoh, Masakazu; Ishida, Junichi; Doehner, Wolfram; von Haehling, Stephan; Anker, Markus S; Coats, Andrew J S; Anker, Stefan D; Springer, Jochen

    2017-07-01

    Cachexia in the context of heart failure (HF) has been termed cardiac cachexia, and represents a progressive involuntary weight loss. Cachexia is mainly the result of an imbalance in the homeostasis of muscle protein synthesis and degradation due to a lower activity of protein synthesis pathways and an over-activation of protein degradation. In addition, muscle wasting leads to of impaired functional capacity, even after adjusting for clinical relevant variables in patients with HF. However, there is no sufficient therapeutic strategy in muscle wasting in HF patients and very few studies in animal models. Exercise training represents a promising intervention that can prevent or even reverse the process of muscle wasting, and worsening the muscle function and performance in HF with muscle wasting and cachexia. The pathological mechanisms and effective therapeutic approach of cardiac cachexia remain uncertain, because of the difficulty to establish animal cardiac cachexia models, thus novel animal models are warranted. Furthermore, the use of improved animal models will lead to a better understanding of the pathways that modulate muscle wasting and therapeutics of muscle wasting of cardiac cachexia. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Decellularised skeletal muscles allow functional muscle regeneration by promoting host cell migration.

    PubMed

    Urciuolo, Anna; Urbani, Luca; Perin, Silvia; Maghsoudlou, Panagiotis; Scottoni, Federico; Gjinovci, Asllan; Collins-Hooper, Henry; Loukogeorgakis, Stavros; Tyraskis, Athanasios; Torelli, Silvia; Germinario, Elena; Fallas, Mario Enrique Alvarez; Julia-Vilella, Carla; Eaton, Simon; Blaauw, Bert; Patel, Ketan; De Coppi, Paolo

    2018-05-30

    Pathological conditions affecting skeletal muscle function may lead to irreversible volumetric muscle loss (VML). Therapeutic approaches involving acellular matrices represent an emerging and promising strategy to promote regeneration of skeletal muscle following injury. Here we investigated the ability of three different decellularised skeletal muscle scaffolds to support muscle regeneration in a xenogeneic immune-competent model of VML, in which the EDL muscle was surgically resected. All implanted acellular matrices, used to replace the resected muscles, were able to generate functional artificial muscles by promoting host myogenic cell migration and differentiation, as well as nervous fibres, vascular networks, and satellite cell (SC) homing. However, acellular tissue mainly composed of extracellular matrix (ECM) allowed better myofibre three-dimensional (3D) organization and the restoration of SC pool, when compared to scaffolds which also preserved muscular cytoskeletal structures. Finally, we showed that fibroblasts are indispensable to promote efficient migration and myogenesis by muscle stem cells across the scaffolds in vitro. This data strongly support the use of xenogeneic acellular muscles as device to treat VML conditions in absence of donor cell implementation, as well as in vitro model for studying cell interplay during myogenesis.

  7. Satellite cells in human skeletal muscle plasticity

    PubMed Central

    Snijders, Tim; Nederveen, Joshua P.; McKay, Bryon R.; Joanisse, Sophie; Verdijk, Lex B.; van Loon, Luc J. C.; Parise, Gianni

    2015-01-01

    Skeletal muscle satellite cells are considered to play a crucial role in muscle fiber maintenance, repair and remodeling. Our knowledge of the role of satellite cells in muscle fiber adaptation has traditionally relied on in vitro cell and in vivo animal models. Over the past decade, a genuine effort has been made to translate these results to humans under physiological conditions. Findings from in vivo human studies suggest that satellite cells play a key role in skeletal muscle fiber repair/remodeling in response to exercise. Mounting evidence indicates that aging has a profound impact on the regulation of satellite cells in human skeletal muscle. Yet, the precise role of satellite cells in the development of muscle fiber atrophy with age remains unresolved. This review seeks to integrate recent results from in vivo human studies on satellite cell function in muscle fiber repair/remodeling in the wider context of satellite cell biology whose literature is largely based on animal and cell models. PMID:26557092

  8. Regulatory T cells and skeletal muscle regeneration.

    PubMed

    Schiaffino, Stefano; Pereira, Marcelo G; Ciciliot, Stefano; Rovere-Querini, Patrizia

    2017-02-01

    Skeletal muscle regeneration results from the activation and differentiation of myogenic stem cells, called satellite cells, located beneath the basal lamina of the muscle fibers. Inflammatory and immune cells have a crucial role in the regeneration process. Acute muscle injury causes an immediate transient wave of neutrophils followed by a more persistent infiltration of M1 (proinflammatory) and M2 (anti-inflammatory/proregenerative) macrophages. New studies show that injured muscle is also infiltrated by a specialized population of regulatory T (Treg) cells, which control both the inflammatory response, by promoting the M1-to-M2 switch, and the activation of satellite cells. Treg cells accumulate in injured muscle in response to specific cytokines, such as IL-33, and promote muscle growth by releasing growth factors, such as amphiregulin. Muscle repair during aging is impaired due to reduced number of Treg cells and can be enhanced by IL-33 supplementation. Migration of Treg cells could also contribute to explain the effect of heterochronic parabiosis, whereby muscle regeneration of aged mice can be improved by a parabiotically linked young partners. In mdx dystrophin-deficient mice, a model of human Duchenne muscular dystrophy, muscle injury, and inflammation is mitigated by expansion of the Treg-cell population but exacerbated by Treg-cell depletion. These findings support the notion that immunological mechanisms are not only essential in the response to pathogenic microbes and tumor cells but also have a wider homeostatic role in tissue repair, and open new perspectives for boosting muscle growth in chronic muscle disease and during aging. © 2016 Federation of European Biochemical Societies.

  9. Cell Migration During Heart Regeneration in Zebrafish

    PubMed Central

    Tahara, Naoyuki; Brush, Michael; Kawakami, Yasuhiko

    2018-01-01

    Zebrafish possess the remarkable ability to regenerate injured hearts as adults, which contrasts the very limited ability in mammals. Although very limited, mammalian hearts do in fact have measurable levels of cardiomyocyte regeneration. Therefore, elucidating mechanisms of zebrafish heart regeneration would provide information of naturally occurring regeneration to potentially apply to mammalian studies, in addition to addressing this biologically interesting phenomenon in itself. Studies over the past 13 years have identified processes and mechanisms of heart regeneration in zebrafish. After heart injury, preexisting cardiomyocytes dedifferentiate, enter the cell cycle, and repair the injured myocardium. This process requires interaction with epicardial cells, endocardial cells, and vascular endothelial cells. Epicardial cells envelope the heart, while endocardial cells make up the inner lining of the heart. They provide paracrine signals to cardiomyocytes to regenerate the injured myocardium, which is vascularized during heart regeneration. In addition, accumulating results suggest that local migration of these major cardiac cell types have roles in heart regeneration. In this review, we summarize the characteristics of various heart injury methods used in the research community and regeneration of the major cardiac cell types. Then, we discuss local migration of these cardiac cell types and immune cells during heart regeneration. PMID:27085002

  10. Nutritional status and its effects on muscle wasting in patients with chronic heart failure: insights from Studies Investigating Co-morbidities Aggravating Heart Failure.

    PubMed

    Saitoh, Masakazu; Dos Santos, Marcelo Rodrigues; Ebner, Nicole; Emami, Amir; Konishi, Masaaki; Ishida, Junichi; Valentova, Miroslava; Sandek, Anja; Doehner, Wolfram; Anker, Stefan D; von Haehling, Stephan

    2016-12-01

    Inadequate nutritional status has been linked to poor outcomes in patients with heart failure (HF). Skeletal muscle wasting affects about 20% of ambulatory patients with HF. The impact of nutritional intake and appetite on skeletal muscle wasting has not been investigated so far. We sought to investigate the impact of nutritional status on muscle wasting and mortality in ambulatory patients with HF. We studied 130 ambulatory patients with HF who were recruited as a part of the Studies Investigating Co-morbidities Aggravating Heart Failure (SICA-HF) program. Muscle wasting was defined according to criteria of sarcopenia, i.e., appendicular skeletal muscle mass two standard deviations below the mean of a healthy reference group aged 18-40 years. Nutritional status was evaluated using the Mini-Nutritional Assessment-Short Form (MNA-SF). Functional capacity was assessed as peak oxygen consumption (peak VO 2 ) by cardiopulmonary exercise testing, 6‑minute walk testing, and the Short Physical Performance Battery (SPPB). At baseline, 19 patients (15%) presented with muscle wasting. Patients with muscle wasting had significantly lower values of peak VO 2 , 6‑minute walk distance, SPPB, and MNA-SF score than patients without (all p < 0.05). In multivariate analysis, MNA-SF remained an independent predictor of muscle wasting after adjustment for age and New York Heart Association class (odds ratio [OR] 0.66; confidence interval [CI] 0.50-0.88; p < 0.01). A total of 16 (12%) patients died during a mean follow-up of 21 months. In Cox regression analysis, MNA-SF (OR 0.80, CI 0.64-0.99, p = 0.04), left ventricular ejection fraction (OR 0.93, CI 0.86-0.99, p = 0.05), and peak VO 2 (OR 0.78, CI 0.65-0.94, p = 0.008) were predictors of death. MNA-SF is an independent predictor of muscle wasting and mortality in ambulatory patients with HF. Nutritional screening should be included as a fundamental part of the overall assessment of these patients.

  11. Loss of niche-satellite cell interactions in syndecan-3 null mice alters muscle progenitor cell homeostasis improving muscle regeneration.

    PubMed

    Pisconti, Addolorata; Banks, Glen B; Babaeijandaghi, Farshad; Betta, Nicole Dalla; Rossi, Fabio M V; Chamberlain, Jeffrey S; Olwin, Bradley B

    2016-01-01

    The skeletal muscle stem cell niche provides an environment that maintains quiescent satellite cells, required for skeletal muscle homeostasis and regeneration. Syndecan-3, a transmembrane proteoglycan expressed in satellite cells, supports communication with the niche, providing cell interactions and signals to maintain quiescent satellite cells. Syndecan-3 ablation unexpectedly improves regeneration in repeatedly injured muscle and in dystrophic mice, accompanied by the persistence of sublaminar and interstitial, proliferating myoblasts. Additionally, muscle aging is improved in syndecan-3 null mice. Since syndecan-3 null myofiber-associated satellite cells downregulate Pax7 and migrate away from the niche more readily than wild type cells, syxndecan-3 appears to regulate satellite cell homeostasis and satellite cell homing to the niche. Manipulating syndecan-3 provides a promising target for development of therapies to enhance muscle regeneration in muscular dystrophies and in aged muscle.

  12. [Analogies between heart and respiratory muscle failure. Importance to clinical practice].

    PubMed

    Köhler, D

    2009-01-01

    Heart failure is an established diagnosis. Respiratory muscle or ventilatory pump failure, however, is less well known. The latter becomes obvious through hypercapnia, caused by hypoventilation. The respiratory centre tunes into hypercapnea in order to prevent the danger of respiratory muscle overload (hypercapnic ventilatory failure). Hypoventilation will consecutively cause hypoxemia but this will not be responsible for performance limitation. One therefore has to distinguish primary hypoxemia evolving from diseases in the lung parenchyma. Here hypoxemia is the key feature and compensatory hyperventilation usually decreases PaCO2 levels. The cardiac as well as the respiratory pump adapt to an inevitable burden caused by chronic disease. In either case organ muscle mass will increase. If the burden exceeds the range of possible physiological adaptation, compensatory mechanisms will set in that are similar in both instances. During periods of overload either muscle system is mainly fueled by muscular glycogen. In the recovery phase (e. g. during sleep) stores are replenished, which can be recognized by down-regulation of the blood pressure in case of the cardiac pumb or by augmentation of hypercapnia through hypoventilation in case of the respiratory pump. The main function of cardiac and respiratory pump is maintenance of oxygen transport. The human body has developed certain compensatory mechanisms to adapt to insufficient oxygen supply especially during periods of overload. These mechanisms include shift of the oxygen binding curve, expression of respiratory chain isoenzymes capable of producing ATP at lower partial pressures of oxygen and the development of polyglobulia. Medically or pharmacologically the cardiac pump can be unloaded with beta blockers, the respiratory pump by application of inspired oxygen. Newer forms of therapy augment the process of recovery. The heart can be supported through bypass surgery or intravascular pump systems, while respiratory

  13. Effects of concurrent physical and cognitive demands on muscle activity and heart rate variability in a repetitive upper-extremity precision task.

    PubMed

    Srinivasan, Divya; Mathiassen, Svend Erik; Hallman, David M; Samani, Afshin; Madeleine, Pascal; Lyskov, Eugene

    2016-01-01

    Most previous studies of concurrent physical and cognitive demands have addressed tasks of limited relevance to occupational work, and with dissociated physical and cognitive task components. This study investigated effects on muscle activity and heart rate variability of executing a repetitive occupational task with an added cognitive demand integral to correct task performance. Thirty-five healthy females performed 7.5 min of standardized repetitive pipetting work in a baseline condition and a concurrent cognitive condition involving a complex instruction for correct performance. Average levels and variabilities of electromyographic activities in the upper trapezius and extensor carpi radialis (ECR) muscles were compared between these two conditions. Heart rate and heart rate variability were also assessed to measure autonomic nervous system activation. Subjects also rated perceived fatigue in the neck-shoulder region, as well as exertion. Concurrent cognitive demands increased trapezius muscle activity from 8.2% of maximum voluntary exertion (MVE) in baseline to 9.0% MVE (p = 0.0005), but did not significantly affect ECR muscle activity, heart rate, heart rate variability, perceived fatigue or exertion. Trapezius muscle activity increased by about 10%, without any accompanying cardiovascular response to indicate increased sympathetic activation. We suggest this slight increase in trapezius muscle activity to be due to changed muscle activation patterns within or among shoulder muscles. The results suggest that it may be possible to introduce modest cognitive demands necessary for correct performance in repetitive precision work without any major physiological effects, at least in the short term.

  14. Cell migration during heart regeneration in zebrafish.

    PubMed

    Tahara, Naoyuki; Brush, Michael; Kawakami, Yasuhiko

    2016-07-01

    Zebrafish possess the remarkable ability to regenerate injured hearts as adults, which contrasts the very limited ability in mammals. Although very limited, mammalian hearts do in fact have measurable levels of cardiomyocyte regeneration. Therefore, elucidating mechanisms of zebrafish heart regeneration would provide information of naturally occurring regeneration to potentially apply to mammalian studies, in addition to addressing this biologically interesting phenomenon in itself. Studies over the past 13 years have identified processes and mechanisms of heart regeneration in zebrafish. After heart injury, pre-existing cardiomyocytes dedifferentiate, enter the cell cycle, and repair the injured myocardium. This process requires interaction with epicardial cells, endocardial cells, and vascular endothelial cells. Epicardial cells envelope the heart, while endocardial cells make up the inner lining of the heart. They provide paracrine signals to cardiomyocytes to regenerate the injured myocardium, which is vascularized during heart regeneration. In addition, accumulating results suggest that local migration of these major cardiac cell types have roles in heart regeneration. In this review, we summarize the characteristics of various heart injury methods used in the research community and regeneration of the major cardiac cell types. Then, we discuss local migration of these cardiac cell types and immune cells during heart regeneration. Developmental Dynamics 245:774-787, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Cardiac Fibroblasts Adopt Osteogenic Fates and Can Be Targeted to Attenuate Pathological Heart Calcification.

    PubMed

    Pillai, Indulekha C L; Li, Shen; Romay, Milagros; Lam, Larry; Lu, Yan; Huang, Jie; Dillard, Nathaniel; Zemanova, Marketa; Rubbi, Liudmilla; Wang, Yibin; Lee, Jason; Xia, Ming; Liang, Owen; Xie, Ya-Hong; Pellegrini, Matteo; Lusis, Aldons J; Deb, Arjun

    2017-02-02

    Mammalian tissues calcify with age and injury. Analogous to bone formation, osteogenic cells are thought to be recruited to the affected tissue and induce mineralization. In the heart, calcification of cardiac muscle leads to conduction system disturbances and is one of the most common pathologies underlying heart blocks. However the cell identity and mechanisms contributing to pathological heart muscle calcification remain unknown. Using lineage tracing, murine models of heart calcification and in vivo transplantation assays, we show that cardiac fibroblasts (CFs) adopt an osteoblast cell-like fate and contribute directly to heart muscle calcification. Small-molecule inhibition of ENPP1, an enzyme that is induced upon injury and regulates bone mineralization, significantly attenuated cardiac calcification. Inhibitors of bone mineralization completely prevented ectopic cardiac calcification and improved post injury heart function. Taken together, these findings highlight the plasticity of fibroblasts in contributing to ectopic calcification and identify pharmacological targets for therapeutic development. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Myosin binding protein-C activates thin filaments and inhibits thick filaments in heart muscle cells

    PubMed Central

    Kampourakis, Thomas; Yan, Ziqian; Gautel, Mathias; Sun, Yin-Biao; Irving, Malcolm

    2014-01-01

    Myosin binding protein-C (MyBP-C) is a key regulatory protein in heart muscle, and mutations in the MYBPC3 gene are frequently associated with cardiomyopathy. However, the mechanism of action of MyBP-C remains poorly understood, and both activating and inhibitory effects of MyBP-C on contractility have been reported. To clarify the function of the regulatory N-terminal domains of MyBP-C, we determined their effects on the structure of thick (myosin-containing) and thin (actin-containing) filaments in intact sarcomeres of heart muscle. We used fluorescent probes on troponin C in the thin filaments and on myosin regulatory light chain in the thick filaments to monitor structural changes associated with activation of demembranated trabeculae from rat ventricle by the C1mC2 region of rat MyBP-C. C1mC2 induced larger structural changes in thin filaments than calcium activation, and these were still present when active force was blocked with blebbistatin, showing that C1mC2 directly activates the thin filaments. In contrast, structural changes in thick filaments induced by C1mC2 were smaller than those associated with calcium activation and were abolished or reversed by blebbistatin. Low concentrations of C1mC2 did not affect resting force but increased calcium sensitivity and reduced cooperativity of force and structural changes in both thin and thick filaments. These results show that the N-terminal region of MyBP-C stabilizes the ON state of thin filaments and the OFF state of thick filaments and lead to a novel hypothesis for the physiological role of MyBP-C in the regulation of cardiac contractility. PMID:25512492

  17. Myosin binding protein-C activates thin filaments and inhibits thick filaments in heart muscle cells.

    PubMed

    Kampourakis, Thomas; Yan, Ziqian; Gautel, Mathias; Sun, Yin-Biao; Irving, Malcolm

    2014-12-30

    Myosin binding protein-C (MyBP-C) is a key regulatory protein in heart muscle, and mutations in the MYBPC3 gene are frequently associated with cardiomyopathy. However, the mechanism of action of MyBP-C remains poorly understood, and both activating and inhibitory effects of MyBP-C on contractility have been reported. To clarify the function of the regulatory N-terminal domains of MyBP-C, we determined their effects on the structure of thick (myosin-containing) and thin (actin-containing) filaments in intact sarcomeres of heart muscle. We used fluorescent probes on troponin C in the thin filaments and on myosin regulatory light chain in the thick filaments to monitor structural changes associated with activation of demembranated trabeculae from rat ventricle by the C1mC2 region of rat MyBP-C. C1mC2 induced larger structural changes in thin filaments than calcium activation, and these were still present when active force was blocked with blebbistatin, showing that C1mC2 directly activates the thin filaments. In contrast, structural changes in thick filaments induced by C1mC2 were smaller than those associated with calcium activation and were abolished or reversed by blebbistatin. Low concentrations of C1mC2 did not affect resting force but increased calcium sensitivity and reduced cooperativity of force and structural changes in both thin and thick filaments. These results show that the N-terminal region of MyBP-C stabilizes the ON state of thin filaments and the OFF state of thick filaments and lead to a novel hypothesis for the physiological role of MyBP-C in the regulation of cardiac contractility.

  18. MicroRNA-133a engineered mesenchymal stem cells augment cardiac function and cell survival in the infarct heart.

    PubMed

    Dakhlallah, Duaa; Zhang, Jianying; Yu, Lianbo; Marsh, Clay B; Angelos, Mark G; Khan, Mahmood

    2015-03-01

    : Cardiovascular disease is the number 1 cause of morbidity and mortality in the United States. The most common manifestation of cardiovascular disease is myocardial infarction (MI), which can ultimately lead to congestive heart failure. Cell therapy (cardiomyoplasty) is a new potential therapeutic treatment alternative for the damaged heart. Recent preclinical and clinical studies have shown that mesenchymal stem cells (MSCs) are a promising cell type for cardiomyoplasty applications. However, a major limitation is the poor survival rate of transplanted stem cells in the infarcted heart. miR-133a is an abundantly expressed microRNA (miRNA) in the cardiac muscle and is downregulated in patients with MI. We hypothesized that reprogramming MSCs using miRNA mimics (double-stranded oligonucleotides) will improve survival of stem cells in the damaged heart. MSCs were transfected with miR-133a mimic and antagomirs, and the levels of miR-133a were measured by quantitative real-time polymerase chain reaction. Rat hearts were subjected to MI and MSCs transfected with miR-133a mimic or antagomir were implanted in the ischemic hearts. Four weeks after MI, cardiac function, cardiac fibrosis, miR-133a levels, and apoptosis-related genes (Apaf-1, Caspase-9, and Caspase-3) were measured in the heart. We found that transfecting MSCs with miR-133a mimic improves survival of MSCs as determined by the MTT assay. Similarly, transplantation of miR-133a mimic transfected MSCs in rat hearts subjected to MI led to a significant increase in cell engraftment, cardiac function, and decreased fibrosis when compared with MSCs only or MI groups. At the molecular level, quantitative real-time polymerase chain reaction data demonstrated a significant decrease in expression of the proapoptotic genes; Apaf-1, caspase-9, and caspase-3 in the miR-133a mimic transplanted group. Furthermore, luciferase reporter assay confirmed that miR-133a is a direct target for Apaf-1. Overall, bioengineering of stem

  19. The role of satellite cells in muscle hypertrophy.

    PubMed

    Blaauw, Bert; Reggiani, Carlo

    2014-02-01

    The role of satellite cells in muscle hypertrophy has long been a debated issue. In the late 1980s it was shown that proteins remain close to the myonucleus responsible for its synthesis, giving rise to the idea of a nuclear domain. This, together with the observation that during various models of muscle hypertrophy there is an activation of the muscle stem cells, i.e. satellite cells, lead to the idea that satellite cell activation is required for muscle hypertrophy. Thus, satellite cells are not only responsible for muscle repair and regeneration, but also for hypertrophic growth. Further support for this line of thinking was obtained after studies showing that irradiation of skeletal muscle, and therefore elimination of all satellite cells, completely prevented overload-induced hypertrophy. Recently however, using different transgenic approaches, it has become clear that muscle hypertrophy can occur without a contribution of satellite cells, even though in most situations of muscle hypertrophy satellite cells are activated. In this review we will discuss the contribution of satellite cells, and other muscle-resident stem cells, to muscle hypertrophy both in mice as well as in humans.

  20. The roles of muscle stem cells in muscle injury, atrophy and hypertrophy.

    PubMed

    Fukada, So-Ichiro

    2018-05-01

    Skeletal muscle is composed of multinuclear cells called myofibers. Muscular dystrophy (a genetic muscle disorder) induces instability in the cell membrane of myofibers and eventually causes myofibre damage. Non-genetic muscle disorders, including sarcopenia, diabetes, bedridden immobility and cancer cachexia, lead to atrophy of myofibres. In contrast, resistance training induces myofibre hypertrophy. Thus, myofibres exhibit a plasticity that is strongly affected by both intrinsic and extrinsic factors. There is no doubt that muscle stem cells (MuSCs, also known as muscle satellite cells) are indispensable for muscle repair/regeneration, but their contributions to atrophy and hypertrophy are still controversial. The present review focuses on the relevance of MuSCs to (i) muscle diseases and (ii) hypertrophy. Further, this review addresses fundamental questions about MuSCs to clarify the onset or progression of these diseases and which might lead to development of a MuSC-based therapy.

  1. Skeletal muscle satellite cells

    NASA Technical Reports Server (NTRS)

    Schultz, E.; McCormick, K. M.

    1994-01-01

    Evidence now suggests that satellite cells constitute a class of myogenic cells that differ distinctly from other embryonic myoblasts. Satellite cells arise from somites and first appear as a distinct myoblast type well before birth. Satellite cells from different muscles cannot be functionally distinguished from one another and are able to provide nuclei to all fibers without regard to phenotype. Thus, it is difficult to ascribe any significant function to establishing or stabilizing fiber type, even during regeneration. Within a muscle, satellite cells exhibit marked heterogeneity with respect to their proliferative behavior. The satellite cell population on a fiber can be partitioned into those that function as stem cells and those which are readily available for fusion. Recent studies have shown that the cells are not simply spindle shaped, but are very diverse in their morphology and have multiple branches emanating from the poles of the cells. This finding is consistent with other studies indicating that the cells have the capacity for extensive migration within, and perhaps between, muscles. Complexity of cell shape usually reflects increased cytoplasmic volume and organelles including a well developed Golgi, and is usually associated with growing postnatal muscle or muscles undergoing some form of induced adaptive change or repair. The appearance of activated satellite cells suggests some function of the cells in the adaptive process through elaboration and secretion of a product. Significant advances have been made in determining the potential secretion products that satellite cells make. The manner in which satellite cell proliferative and fusion behavior is controlled has also been studied. There seems to be little doubt that cellcell coupling is not how satellite cells and myofibers communicate. Rather satellite cell regulation is through a number of potential growth factors that arise from a number of sources. Critical to the understanding of this form

  2. Muscle Stem Cells: A Model System for Adult Stem Cell Biology.

    PubMed

    Cornelison, Ddw; Perdiguero, Eusebio

    2017-01-01

    Skeletal muscle stem cells, originally termed satellite cells for their position adjacent to differentiated muscle fibers, are absolutely required for the process of skeletal muscle repair and regeneration. In the last decade, satellite cells have become one of the most studied adult stem cell systems and have emerged as a standard model not only in the field of stem cell-driven tissue regeneration but also in stem cell dysfunction and aging. Here, we provide background in the field and discuss recent advances in our understanding of muscle stem cell function and dysfunction, particularly in the case of aging, and the potential involvement of muscle stem cells in genetic diseases such as the muscular dystrophies.

  3. Interstitial Cells: Regulators of Smooth Muscle Function

    PubMed Central

    Sanders, Kenton M.; Ward, Sean M.; Koh, Sang Don

    2014-01-01

    Smooth muscles are complex tissues containing a variety of cells in addition to muscle cells. Interstitial cells of mesenchymal origin interact with and form electrical connectivity with smooth muscle cells in many organs, and these cells provide important regulatory functions. For example, in the gastrointestinal tract, interstitial cells of Cajal (ICC) and PDGFRα+ cells have been described, in detail, and represent distinct classes of cells with unique ultrastructure, molecular phenotypes, and functions. Smooth muscle cells are electrically coupled to ICC and PDGFRα+ cells, forming an integrated unit called the SIP syncytium. SIP cells express a variety of receptors and ion channels, and conductance changes in any type of SIP cell affect the excitability and responses of the syncytium. SIP cells are known to provide pacemaker activity, propagation pathways for slow waves, transduction of inputs from motor neurons, and mechanosensitivity. Loss of interstitial cells has been associated with motor disorders of the gut. Interstitial cells are also found in a variety of other smooth muscles; however, in most cases, the physiological and pathophysiological roles for these cells have not been clearly defined. This review describes structural, functional, and molecular features of interstitial cells and discusses their contributions in determining the behaviors of smooth muscle tissues. PMID:24987007

  4. Effect of muscle mass and intensity of isometric contraction on heart rate.

    PubMed

    Gálvez, J M; Alonso, J P; Sangrador, L A; Navarro, G

    2000-02-01

    The purpose of this study was to determine the effect of muscle mass and the level of force on the contraction-induced rise in heart rate. We conducted an experimental study in a sample of 28 healthy men between 20 and 30 yr of age (power: 95%, alpha: 5%). Smokers, obese subjects, and those who performed regular physical activity over a certain amount of energetic expenditure were excluded from the study. The participants exerted two types of isometric contractions: handgrip and turning a 40-cm-diameter wheel. Both were sustained to exhaustion at 20 and 50% of maximal force. Twenty-five subjects finished the experiment. Heart rate increased a mean of 15.1 beats/min [95% confidence interval (CI): 5.5-24.6] from 20 to 50% handgrip contractions, and 20.7 beats/min (95% CI: 11.9-29.5) from 20 to 50% wheel-turn contractions. Heart rate also increased a mean of 13.3 beats/min (95% CI: 10.4-16.1) from handgrip to wheel-turn contractions at 20% maximal force, and 18.9 beats/min (95% CI: 9. 8-28.0) from handgrip to wheel-turn contractions at 50% maximal force. We conclude that the magnitude of the heart rate increase during isometric exercise is related to the intensity of the contraction and the mass of the contracted muscle.

  5. Replication of Muscle Cell Using Bioimprint

    NASA Astrophysics Data System (ADS)

    Samsuri, Fahmi; Mitchell, John S.; Alkaisi, Maan M.; Evans, John J.

    2009-07-01

    In our earlier study a heat-curable PDMS or a UV curable elastomer, was used as the replicating material to introduce Bioimprint methodology to facilitate cell imaging [1-2] But, replicating conditions for thermal polymerization is known to cause cell dehydration during curing. In this study, a new type of polymer was developed for use in living cell replica formation, and it was tested on human muscle cells. The cells were incubated and cultured according to standard biological culturing procedures, and they were grown for about 10 days. The replicas were then separated from the muscle cells and taken for analysis under an Atomic Force Microscope (AFM). The new polymer was designed to be biocompatible with higher resolution and fast curing process compared to other types of silicon-based organic polymers such as polydimethylsiloxane (PDMS). Muscle cell imprints were achieved and higher resolution images were able to show the micro structures of the muscle cells, including the cellular fibers and cell membranes. The AFM is able to image features at nanoscale resolution. This capacity enables a number of characteristics of biological cells to be visualized in a unique manner. Polymer and muscle cells preparations were developed at Hamilton, in collaboration between Plant and Food Research and the Department of Electrical and Computer Engineering, University of Canterbury. Tapping mode was used for the AFM image analysis as it has low tip-sample forces and non-destructive imaging capability. We will be presenting the bioimprinting processes of muscle cells, their AFM imaging and characterization of the newly developed polymer.

  6. Increased adipogenicity of cells from regenerating skeletal muscle.

    PubMed

    Yamanouchi, Keitaro; Yada, Erica; Ishiguro, Naomi; Hosoyama, Tohru; Nishihara, Masugi

    2006-09-10

    Adipose tissue development is observed in some muscle pathologies, however, mechanisms that induce accumulation of this tissue as well as its cellular origin are unknown. The adipogenicity of cells from bupivacaine hydrochloride (BPVC)-treated and untreated muscle was compared in vitro. Culturing cells from both BPVC-treated and untreated muscles in adipogenic differentiation medium (ADM) for 10 days resulted in the appearance of mature adipocytes, but their number was 3.5-fold higher in cells from BPVC-treated muscle. Temporal expressions of PPARgamma and the presence of lipid droplets during adipogenic differentiation were examined. On day 2 of culture in ADM, only cells from BPVC-treated muscle were positive both for PPARgamma and lipid droplets. Pref-1 was expressed in cells from untreated muscle, whereas its expression was absent in cells from BPVC-treated muscle. In ADM, the presence of insulin, which negates an inhibitory effect of Pref-1 on adipogenic differentiation, was required for PPARgamma2 expression in cells from untreated muscle, but not for cells from BPVC-treated muscle. These results indicate that BPVC-induced degenerative/regenerative changes in muscle lead to increased adipogenicity of cells, and suggest that this increased adipogenicity not only involves an increase in the number of cells having adipogenic potential, but also contributes to the progression of these cells toward adipogenic differentiation.

  7. Selective Expansion of Skeletal Muscle Stem Cells from Bulk Muscle Cells in Soft Three‐Dimensional Fibrin Gel

    PubMed Central

    Zhu, Pei; Zhou, Yalu; Wu, Furen; Hong, Yuanfan; Wang, Xin; Shekhawat, Gajendra; Mosenson, Jeffrey

    2017-01-01

    Abstract Muscle stem cells (MuSCs) exhibit robust myogenic potential in vivo, thus providing a promising curative treatment for muscle disorders. Ex vivo expansion of adult MuSCs is highly desired to achieve a therapeutic cell dose because of their scarcity in limited muscle biopsies. Sorting of pure MuSCs is generally required for all the current culture systems. Here we developed a soft three‐dimensional (3D) salmon fibrin gel culture system that can selectively expand mouse MuSCs from bulk skeletal muscle preparations without cell sorting and faithfully maintain their regenerative capacity in culture. Our study established a novel platform for convenient ex vivo expansion of MuSCs, thus greatly advancing stem cell‐based therapies for various muscle disorders. Stem Cells Translational Medicine 2017;6:1412–1423 PMID:28244269

  8. Sorcin modulation of Ca2+ sparks in rat vascular smooth muscle cells

    PubMed Central

    Rueda, Angélica; Song, Ming; Toro, Ligia; Stefani, Enrico; Valdivia, Héctor H

    2006-01-01

    Spontaneous, local Ca2+ release events or Ca2+ sparks by ryanodine receptors (RyRs) are important determinants of vascular tone and arteriolar resistance, but the mechanisms that modulate their properties in smooth muscle are poorly understood. Sorcin, a Ca2+-binding protein that associates with cardiac RyRs and quickly stops Ca2+ release in the heart, provides a potential mechanism to modulate Ca2+ sparks in vascular smooth muscle, but little is known about the functional role of sorcin in this tissue. In this work, we characterized the expression and intracellular location of sorcin in aorta and cerebral artery and gained mechanistic insights into its functional role as a modulator of Ca2+ sparks. Sorcin is present in endothelial and smooth muscle cells, as assessed by immunocytochemical and Western blot analyses. Smooth muscle sorcin translocates from cytosolic to membranous compartments in a Ca2+-dependent manner and associates with RyRs, as shown by coimmunoprecipitation and immunostaining experiments. Ca2+ sparks recorded in saponin-permeabilized vascular myocytes have increased frequency, duration and spatial spread but reduced amplitude with respect to Ca2+ sparks in intact cells, suggesting that permeabilization disrupts the normal organization of RyRs and releases diffusible substances that control Ca2+ spark properties. Perfusion of 2 μm sorcin onto permeabilized myocytes reduced the amplitude, duration and spatial spread of Ca2+ sparks, demonstrating that sorcin effectively regulates Ca2+ signalling in vascular smooth muscle. Together with a dense distribution in the perimeter of the cell along a pool of RyRs, these properties make sorcin a viable candidate to modulate vascular tone in smooth muscle. PMID:16931553

  9. Early chordate origins of the vertebrate second heart field.

    PubMed

    Stolfi, Alberto; Gainous, T Blair; Young, John J; Mori, Alessandro; Levine, Michael; Christiaen, Lionel

    2010-07-30

    The vertebrate heart is formed from diverse embryonic territories, including the first and second heart fields. The second heart field (SHF) gives rise to the right ventricle and outflow tract, yet its evolutionary origins are unclear. We found that heart progenitor cells of the simple chordate Ciona intestinalis also generate precursors of the atrial siphon muscles (ASMs). These precursors express Islet and Tbx1/10, evocative of the splanchnic mesoderm that produces the lower jaw muscles and SHF of vertebrates. Evidence is presented that the transcription factor COE is a critical determinant of ASM fate. We propose that the last common ancestor of tunicates and vertebrates possessed multipotent cardiopharyngeal muscle precursors, and that their reallocation might have contributed to the emergence of the SHF.

  10. Extracellular matrix components direct porcine muscle stem cell behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilschut, Karlijn J.; Haagsman, Henk P.; Roelen, Bernard A.J., E-mail: b.a.j.roelen@uu.nl

    2010-02-01

    In muscle tissue, extracellular matrix proteins, together with the vasculature system, muscle-residence cells and muscle fibers, create the niche for muscle stem cells. The niche is important in controlling proliferation and directing differentiation of muscle stem cells to sustain muscle tissue. Mimicking the extracellular muscle environment improves tools exploring the behavior of primary muscle cells. Optimizing cell culture conditions to maintain muscle commitment is important in stem cell-based studies concerning toxicology screening, ex vivo skeletal muscle tissue engineering and in the enhancement of clinical efficiency. We used the muscle extracellular matrix proteins collagen type I, fibronectin, laminin, and also gelatinmore » and Matrigel as surface coatings of tissue culture plastic to resemble the muscle extracellular matrix. Several important factors that determine myogenic commitment of the primary muscle cells were characterized by quantitative real-time RT-PCR and immunofluorescence. Adhesion of high PAX7 expressing satellite cells was improved if the cells were cultured on fibronectin or laminin coatings. Cells cultured on Matrigel and laminin coatings showed dominant integrin expression levels and exhibited an activated Wnt pathway. Under these conditions both stem cell proliferation and myogenic differentiation capacity were superior if compared to cells cultured on collagen type I, fibronectin and gelatin. In conclusion, Matrigel and laminin are the preferred coatings to sustain the proliferation and myogenic differentiation capacity of the primary porcine muscle stem cells, when cells are removed from their natural environment for in vitro culture.« less

  11. Catechins activate muscle stem cells by Myf5 induction and stimulate muscle regeneration.

    PubMed

    Kim, A Rum; Kim, Kyung Min; Byun, Mi Ran; Hwang, Jun-Ha; Park, Jung Il; Oh, Ho Taek; Kim, Hyo Kyeong; Jeong, Mi Gyeong; Hwang, Eun Sook; Hong, Jeong-Ho

    2017-07-22

    Muscle weakness is one of the most common symptoms in aged individuals and increases risk of mortality. Thus, maintenance of muscle mass is important for inhibiting aging. In this study, we investigated the effect of catechins, polyphenol compounds in green tea, on muscle regeneration. We found that (-)-epicatechin gallate (ECG) and (-)-epigallocatechin-3-gallate (EGCG) activate satellite cells by induction of Myf5 transcription factors. For satellite cell activation, Akt kinase was significantly induced after ECG treatment and ECG-induced satellite cell activation was blocked in the presence of Akt inhibitor. ECG also promotes myogenic differentiation through the induction of myogenic markers, including Myogenin and Muscle creatine kinase (MCK), in satellite and C2C12 myoblast cells. Finally, EGCG administration to mice significantly increased muscle fiber size for regeneration. Taken together, the results suggest that catechins stimulate muscle stem cell activation and differentiation for muscle regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. The molecular mechanism of serum microRNA124b induced coronary heart disease by inducing myocardial cell senescence.

    PubMed

    Guo, M-L; Guo, L-L; Qin, Q-J; Weng, Y-Q; Wang, Y-N; Yao, J; Wang, Y-B; Zhang, X-Z; Ge, Z-M

    2018-04-01

    The incidence and mortality of coronary heart disease are rapidly increasing in recent years. Myocardial cell dysfunction and cell senescence may play a role in coronary heart disease. MicroRNA controls a variety of biological processes, but leaving its role in coronary heart disease has yet to be explored. Patients with coronary heart disease were regarded as subjects, and healthy volunteers as the control, on both of which microRNA124b level of serum was studied by Real-time PCR, and the heart function of patients was detected by using ultrasound. The relationship between serum microRNA124b level and cardiac function was analyzed along with the model of rat coronary artery disease; the level of aging proteins P21 and P53 in cardiac muscle cells was also tested. MicroRNA124b in the serum of patients with coronary heart disease was increased, and the heart function of patients was decreased (p < 0.05). Serum level of microRNA124b in a rat model of coronary heart disease was increased, and the cardiac function was decreased (p < 0.05). When myocardial cell appeared ageing, the level of P21 and P53 was increased, and the level of microRNA124b was related with P53. The level of microRNA124b in the serum of coronary heart disease patients and rat model may be related to the occurrence of coronary heart disease; microRNA124b may lead to the occurrence of coronary heart disease by causing cell senescence.

  13. Augmented vascular smooth muscle cell stiffness and adhesion when hypertension is superimposed on aging.

    PubMed

    Sehgel, Nancy L; Sun, Zhe; Hong, Zhongkui; Hunter, William C; Hill, Michael A; Vatner, Dorothy E; Vatner, Stephen F; Meininger, Gerald A

    2015-02-01

    Hypertension and aging are both recognized to increase aortic stiffness, but their interactions are not completely understood. Most previous studies have attributed increased aortic stiffness to changes in extracellular matrix proteins that alter the mechanical properties of the vascular wall. Alternatively, we hypothesized that a significant component of increased vascular stiffness in hypertension is due to changes in the mechanical and adhesive properties of vascular smooth muscle cells, and that aging would augment the contribution from vascular smooth muscle cells when compared with the extracellular matrix. Accordingly, we studied aortic stiffness in young (16-week-old) and old (64-week-old) spontaneously hypertensive rats and Wistar-Kyoto wild-type controls. Systolic and pulse pressures were significantly increased in young spontaneously hypertensive rats when compared with young Wistar-Kyoto rats, and these continued to rise in old spontaneously hypertensive rats when compared with age-matched controls. Excised aortic ring segments exhibited significantly greater elastic moduli in both young and old spontaneously hypertensive rats versus Wistar-Kyoto rats. were isolated from the thoracic aorta, and stiffness and adhesion to fibronectin were measured by atomic force microscopy. Hypertension increased both vascular smooth muscle cell stiffness and vascular smooth muscle cell adhesion, and these increases were both augmented with aging. By contrast, hypertension did not affect histological measures of aortic collagen and elastin, which were predominantly changed by aging. These findings support the concept that stiffness and adhesive properties of vascular smooth muscle cells are novel mechanisms contributing to the increased aortic stiffness occurring with hypertension superimposed on aging. © 2014 American Heart Association, Inc.

  14. Heart tissue grown in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Lisa Freed and Gordana Vunjak-Novakovic, both of the Massachusetts Institute of Technology (MIT), have taken the first steps toward engineering heart muscle tissue that could one day be used to patch damaged human hearts. Cells isolated from very young animals are attached to a three-dimensional polymer scaffold, then placed in a NASA bioreactor. The cells do not divide, but after about a week start to cornect to form a functional piece of tissue. Functionally connected heart cells that are capable of transmitting electrical signals are the goal for Freed and Vunjak-Novakovic. Electrophysiological recordings of engineered tissue show spontaneous contractions at a rate of 70 beats per minute (a), and paced contractions at rates of 80, 150, and 200 beats per minute respectively (b, c, and d). The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). Credit: NASA and MIT.

  15. Functional heterogeneity of side population cells in skeletal muscle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uezumi, Akiyoshi; Ojima, Koichi; Fukada, So-ichiro

    2006-03-17

    Skeletal muscle regeneration has been exclusively attributed to myogenic precursors, satellite cells. A stem cell-rich fraction referred to as side population (SP) cells also resides in skeletal muscle, but its roles in muscle regeneration remain unclear. We found that muscle SP cells could be subdivided into three sub-fractions using CD31 and CD45 markers. The majority of SP cells in normal non-regenerating muscle expressed CD31 and had endothelial characteristics. However, CD31{sup -}CD45{sup -} SP cells, which are a minor subpopulation in normal muscle, actively proliferated upon muscle injury and expressed not only several regulatory genes for muscle regeneration but also somemore » mesenchymal lineage markers. CD31{sup -}CD45{sup -} SP cells showed the greatest myogenic potential among three SP sub-fractions, but indeed revealed mesenchymal potentials in vitro. These SP cells preferentially differentiated into myofibers after intramuscular transplantation in vivo. Our results revealed the heterogeneity of muscle SP cells and suggest that CD31{sup -}CD45{sup -} SP cells participate in muscle regeneration.« less

  16. A novel angiotensin II type 1 receptor-associated protein induces cellular hypertrophy in rat vascular smooth muscle and renal proximal tubular cells.

    PubMed

    Guo, Deng-Fu; Tardif, Valerie; Ghelima, Karin; Chan, John S D; Ingelfinger, Julie R; Chen, XiangMei; Chenier, Isabelle

    2004-05-14

    Angiotensin II stimulates cellular hypertrophy in cultured vascular smooth muscle and renal proximal tubular cells. This effect is believed to be one of earliest morphological changes of heart and renal failure. However, the precise molecular mechanism involved in angiotensin II-induced hypertrophy is poorly understood. In the present study we report the isolation of a novel angiotensin II type 1 receptor-associated protein. It encodes a 531-amino acid protein. Its mRNA is detected in all human tissues examined but highly expressed in the human kidney, pancreas, heart, and human embryonic kidney cells as well as rat vascular smooth muscle and renal proximal tubular cells. Protein synthesis and relative cell size analyzed by flow cytometry studies indicate that overexpression of the novel angiotensin II type 1 receptor-associated protein induces cellular hypertrophy in cultured rat vascular smooth muscle and renal proximal tubular cells. In contrast, the hypertrophic effects was reversed in renal proximal tubular cell lines expressing the novel gene in the antisense orientation and its dominant negative mutant, which lacks the last 101 amino acids in its carboxyl-terminal tail. The hypertrophic effects are at least in part mediated via protein kinase B activation or cyclin-dependent kinase inhibitor, p27(kip1) protein expression level in vascular smooth muscle, and renal proximal tubular cells. Moreover, angiotensin II could not stimulate cellular hypertrophy in renal proximal tubular cells expressing the novel gene in the antisense orientation and its mutant. These findings may provide new molecular mechanisms to understand hypertrophic agents such as angiotensin II-induced cellular hypertrophy.

  17. Provision of tricuspid valve leaflets by septal papillary muscles in the right ventricle of human and other mammal hearts.

    PubMed

    Jezyk, Damian; Jerzemowski, Janusz; Grzybiak, Marek

    2003-01-01

    Leaflets of the tricuspid valve are provided by tendinous cords extending from the papillary muscles. The situation is complicated with the septal muscles, which generally occur in two groups, one as constant musculus coni arteriosi and the second as other variable septal muscles. We tested whether there is a variability in the provision of the tricuspid valve in different taxonomical groups of mammals. The material examined consisted of 299 hearts of mammals (Primates, Ungulata, Carnivora, Lagomorpha, Rodentia, Marsupialia). The musculus coni arteriosi in the majority of mammals provided only the front leaflet, but among Ungulata and Rodentia it provided simultaneously the front and septal leaflet. The other septal muscles provided the front, septal and even back leaflets. The following regularity was observed: in the hearts of Primates provision of the front leaflet and the front part of the septal leaflet predominated, among Ungulata the muscles provided the middle part of the septal leaflet, but among the other mammals the rest of the septal muscles provided, significantly, the back part of the septal leaflet. Such a provision was characteristic for predators, hares, rodents and marsupials. These circumstances may allow the conclusion to be drawn that there is a taxonomical dependence in the provision of the tricuspid valve in the hearts of the mammals under examination.

  18. Effect of oxidative insult on young and adult cardiac muscle cells in vitro.

    PubMed

    Nag, A C; Sreepathi, P; Lee, M L; Reddan, J R

    1996-01-01

    The effect of hydrogen peroxide on cultured neonatal and adult cardiac myocytes was investigated. On neonatal cardiac myocytes the effect was very pronounced at a low concentration (0.03 mM), whereas the adult cardiac myocytes were resistant to the same concentration of H2O2. Dividing neonatal cardiac myocytes were more susceptible to H2O2 insult than the non-dividing adult cardiac myocytes. At a concentration of 0.1 mM H2O2, the neonatal cardiac myocytes were significantly damaged compared with the adult cardiac myocytes. Cardiac muscle cells from neonatal and adult hearts at high density culture were more tolerant to the oxidative insult by H2O2 than cells in low density culture. The damaging effect of H2O2 was very selective on F-actin in neonatal and adult cardiac muscle cells. The effect of H2O2 on myosin, titin, alpha-actinin, desmin or tubulin was not pronounced. Microscopical studies suggested a more marked protection by catalase than by glutathione reductase in the neonatal cells.

  19. Heart tissue grown in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Lisa Freed and Gordana Vunjak-Novakovic, both of the Massachusetts Institute of Technology (MIT), have taken the first steps toward engineering heart muscle tissue that could one day be used to patch damaged human hearts. Cells isolated from very young animals are attached to a three-dimensional polymer scaffold, then placed in a NASA bioreactor. The cells do not divide, but after about a week start to cornect to form a functional piece of tissue. Here, a transmission electron micrograph of engineered tissue shows a number of important landmarks present in functional heart tissue: (A) well-organized myofilaments (Mfl), z-lines (Z), and abundant glycogen granules (Gly); and (D) intercalcated disc (ID) and desmosomes (DES). The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). Credit: MIT

  20. Cardiac cycle-synchronized electrical muscle stimulator for lower limb training with the potential to reduce the heart's pumping workload

    PubMed Central

    Matsuse, Hiroo; Akimoto, Ryuji; Kamiya, Shiro; Moritani, Toshio; Sasaki, Motoki; Ishizaki, Yuta; Ohtsuka, Masanori; Nakayoshi, Takaharu; Ueno, Takafumi; Shiba, Naoto; Fukumoto, Yoshihiro

    2017-01-01

    Background The lower limb muscle may play an important role in decreasing the heart’s pumping workload. Aging and inactivity cause atrophy and weakness of the muscle, leading to a loss of the heart-assisting role. An electrical lower limb muscle stimulator can prevent atrophy and weakness more effectively than conventional resistance training; however, it has been reported to increase the heart’s pumping workload in some situations. Therefore, more effective tools should be developed. Methods We newly developed a cardiac cycle-synchronized electrical lower limb muscle stimulator by combining a commercially available electrocardiogram monitor and belt electrode skeletal muscle electrical stimulator, making it possible to achieve strong and wide but not painful muscle contractions. Then, we tested the stimulator in 11 healthy volunteers to determine whether the special equipment enabled lower limb muscle training without harming the hemodynamics using plethysmography and a percutaneous cardiac output analyzer. Results In 9 of 11 subjects, the stimulator generated diastolic augmentation waves on the dicrotic notches and end-diastolic pressure reduction waves on the plethysmogram waveforms of the brachial artery, showing analogous waveforms in the intra-aortic balloon pumping heart-assisting therapy. The heart rate, stroke volume, and cardiac output significantly increased during the stimulation. There was no change in the systolic or diastolic blood pressure during the stimulation. Conclusion Cardiac cycle-synchronized electrical muscle stimulation for the lower limbs may enable muscle training without harmfully influencing the hemodynamics and with a potential to reduce the heart’s pumping workload, suggesting a promising tool for effectively treating both locomotor and cardiovascular disorders. PMID:29117189

  1. Electrical Stimulation of Artificial Heart Muscle: A Look Into the Electrophysiologic and Genetic Implications.

    PubMed

    Mohamed, Mohamed A; Islas, Jose F; Schwartz, Robert J; Birla, Ravi K

    Development of tissue-engineered hearts for treatment of myocardial infarction or biologic pacemakers has been hindered by the production of mostly arrhythmic or in-synergistic constructs. Electrical stimulation (ES) of these constructs has been shown to produce tissues with greater twitch force and better adrenergic response. To further our understanding of the mechanisms underlying the effect of ES, we fabricated a bioreactor capable of delivering continuous or intermittent waveforms of various types to multiple constructs simultaneously. In this study, we examined the effect of an intermittent biphasic square wave on our artificial heart muscle (AHM) composed of neonatal rat cardiac cells and fibrin gel. Twitch forces, spontaneous contraction rates, biopotentials, gene expression profiles, and histologic observations were examined for the ES protocol over a 12 day culture period. We demonstrate improved consistency between samples for twitch force and contraction rate, and higher normalized twitch force amplitudes for electrically stimulated AHMs. Improvements in electrophysiology within the AHM were noted by higher conduction velocities and lower latency in electrical response for electrically stimulated AHMs. Genes expressing key electrophysiologic and structural markers peaked at days 6 and 8 of culture, only a few days after the initiation of ES. These results may be used for optimization strategies to establish protocols for producing AHMs capable of replacing damaged heart tissue in either a contractile or electrophysiologic capacity. Optimized AHMs can lead to alternative treatments to heart failure and alleviate the limited donor supply crisis.

  2. Electrical Stimulation of Artificial Heart Muscle: a look into the electrophysiological and genetic implications

    PubMed Central

    Mohamed, Mohamed A; Islas, Jose F; Schwartz, Robert J; Birla, Ravi K

    2016-01-01

    Development of tissue-engineered hearts for treatment of myocardial infarction or biological pacemakers has been hindered by the production of mostly arrhythmic or in-synergistic constructs. Electrical stimulation (ES) of these constructs has been shown to produce tissues with greater twitch force and better adrenergic response. In order to further our understanding of the mechanisms underlying the effect of ES, we fabricated a bioreactor capable of delivering continuous or intermittent waveforms of various types to multiple constructs simultaneously. In this study, we examined the effect of an intermittent biphasic square wave on our artificial heart muscle (AHM) composed of neonatal rat cardiac cells and fibrin gel. Twitch forces, spontaneous contraction rates, biopotentials, gene expression profiles, and histological observations were examined for the ES protocol over a 12 day culture period. We demonstrate improved consistency between samples for twitch force and contraction rate, and higher normalized twitch force amplitudes for electrically stimulated AHM. Improvements in electrophysiology within the AHM was noted by higher conduction velocities and lower latency in electrical response for electrically stimulated AHM. Genes expressing key electrophysiological and structural markers peaked at days 6 and 8 of culture, only a few days after the initiation of ES. These results may be used for optimization strategies to establish protocols for producing AHM capable of replacing damaged heart tissue in either a contractile or electrophysiological capacity. Optimized AHM can lead to alternative treatments to heart failure and alleviate the limited donor supply crisis. PMID:28459744

  3. Immunopathology of experimental Chagas' disease: binding of T cells to Trypanosoma cruzi-infected heart tissue.

    PubMed Central

    Mortatti, R C; Maia, L C; de Oliveira, A V; Munk, M E

    1990-01-01

    The immunopathology of Chagas' disease was studied in the experimental model of chronic infection in C57BL/10JT or mice. Sublethal infection with Trypanosoma cruzi, Y strain, induced specific antibodies and a delayed hypersensitivity response to parasite antigens. Mice developed chronic chagasic myocarditis but not skeletal muscle myositis. Binding of T cells to infected heart tissue was investigated during short-term cocultivation of lymphocytes with heart cryostat sections. T cells from infected mice and from normal controls bound equally to myocardium and liver sections from both infected and normal mice. A search in depth was attempted with cells heavily tagged with 99mTc. Labeled T cells from chagasic mice bound to both normal and infected myocardium slices. 99mTc-labeled T cells from controls gave the same binding values. Glass-adherent spleen cells behaved identically to T cells. Prior treatment of the tissue with serum from chronically infected mice did not increase the number of binding cells. Peritoneal macrophages tagged with 99mTc-sulfur colloid also bound to infected myocardium slices. The binding of macrophages was not changed by pretreatment of infected tissue with anti-T, cruzi antibodies. In short, this work did not detect any population of T cells or macrophages which could bind specifically to infected heart tissue to initiate an autoreactive process. Images PMID:2228230

  4. Study of muscle cell dedifferentiation after skeletal muscle injury of mice with a Cre-Lox system.

    PubMed

    Mu, Xiaodong; Peng, Hairong; Pan, Haiying; Huard, Johnny; Li, Yong

    2011-02-03

    Dedifferentiation of muscle cells in the tissue of mammals has yet to be observed. One of the challenges facing the study of skeletal muscle cell dedifferentiation is the availability of a reliable model that can confidentially distinguish differentiated cell populations of myotubes and non-fused mononuclear cells, including stem cells that can coexist within the population of cells being studied. In the current study, we created a Cre/Lox-β-galactosidase system, which can specifically tag differentiated multinuclear myotubes and myotube-generated mononuclear cells based on the activation of the marker gene, β-galactosidase. By using this system in an adult mouse model, we found that β-galactosidase positive mononuclear cells were generated from β-galactosidase positive multinuclear myofibers upon muscle injury. We also demonstrated that these mononuclear cells can develop into a variety of different muscle cell lineages, i.e., myoblasts, satellite cells, and muscle derived stem cells. These novel findings demonstrated, for the first time, that cellular dedifferentiation of skeletal muscle cells actually occurs in mammalian skeletal muscle following traumatic injury in vivo.

  5. Tissue-specific stem cells: Lessons from the skeletal muscle satellite cell

    PubMed Central

    Brack, Andrew S.; Rando, Thomas A.

    2012-01-01

    In 1961, the satellite cell was first identified when electron microscopic examination of skeletal muscle demonstrated a cell wedged between the plasma membrane of the muscle fiber and the basement membrane. In recent years it has been conclusively demonstrated that the satellite cell is the primary cellular source for muscle regeneration and is equipped with the potential to self renew, thus functioning as a bone fide skeletal muscle stem cell (MuSC). As we move past the 50th anniversary of the satellite cell, we take this opportunity to discuss the current state of the art and dissect the unknowns in the MuSC field. PMID:22560074

  6. Cloning and tissue distribution of rat hear fatty acid binding protein mRNA: identical forms in heart and skeletal muscle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Claffey, K.P.; Herrera, V.L.; Brecher, P.

    1987-12-01

    A fatty acid binding protein (FABP) as been identified and characterized in rat heart, but the function and regulation of this protein are unclear. In this study the cDNA for rat heart FABP was cloned from a lambda gt11 library. Sequencing of the cDNA showed an open reading frame coding for a protein with 133 amino acids and a calculated size of 14,776 daltons. Several differences were found between the sequence determined from the cDNA and that reported previously by protein sequencing techniques. Northern blot analysis using rat heart FABP cDNA as a probe established the presence of an abundantmore » mRNA in rat heart about 0.85 kilobases in length. This mRNA was detected, but was not abundant, in fetal heart tissue. Tissue distribution studies showed a similar mRNA species in red, but not white, skeletal muscle. In general, the mRNA tissue distribution was similar to that of the protein detected by Western immunoblot analysis, suggesting that heart FABP expression may be regulated at the transcriptional level. S1 nuclease mapping studies confirmed that the mRNA hybridized to rat heart FABP cDNA was identical in heart and red skeletal muscle throughout the entire open reading frame. The structural differences between heart FABP and other members of this multigene family may be related to the functional requirements of oxidative muscle for fatty acids as a fuel source.« less

  7. Serum myostatin levels are independently associated with skeletal muscle wasting in patients with heart failure.

    PubMed

    Furihata, Takaaki; Kinugawa, Shintaro; Fukushima, Arata; Takada, Shingo; Homma, Tsuneaki; Masaki, Yoshihiro; Abe, Takahiro; Yokota, Takashi; Oba, Koji; Okita, Koichi; Tsutsui, Hiroyuki

    2016-10-01

    It has been reported that skeletal muscle mass and strength are decreased in patients with heart failure (HF), and HF is associated with both reduced exercise capacity and adverse clinical outcomes. Myostatin has been known as a negative regulator of muscle growth, follistatin as the myostatin antagonist, maintaining tissue homeostasis. We thus determined serum myostatin levels in HF patients and whether they are associated with skeletal muscle wasting. Forty one consecutive HF patients (58±15years old, New York Heart Association class I-III) and 30 age-matched healthy subjects as controls (53±8years old) were studied. Serum myostatin levels were significantly lower in HF patients than controls (18.7±7.4 vs. 23.6±5.2ng/mL, P<0.001). Circumference of the thickest part of the right thigh was significantly small (468±72 vs. 559±37mm, P=0.001) and lower extremity muscular strength was lower in patients with HF (129±55 vs. 219±52N×m, P<0.001). Fourteen HF patients (34%) had muscle wasting. By univariate analysis, higher age, higher serum follistatin, and lower serum myostatin were significantly associated with the presence of muscle wasting. By multivariate analysis, serum myostatin levels were independently associated with muscle wasting (OR=0.77, 95% CI [0.58, 0.93], P=0.02). Serum myostatin levels were significantly decreased in HF patients and associated with lower extremity muscle wasting, suggesting that myostatin may be an important factor for maintaining skeletal muscle mass and strength in HF. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Transplantated mesenchymal stem cells derived from embryonic stem cells promote muscle regeneration and accelerate functional recovery of injured skeletal muscle.

    PubMed

    Ninagawa, Nana Takenaka; Isobe, Eri; Hirayama, Yuri; Murakami, Rumi; Komatsu, Kazumi; Nagai, Masataka; Kobayashi, Mami; Kawabata, Yuka; Torihashi, Shigeko

    2013-08-01

    We previously established that mesenchymal stem cells originating from mouse embryonic stem (ES) cells (E-MSCs) showed markedly higher potential for differentiation into skeletal muscles in vitro than common mesenchymal stem cells (MSCs). Further, the E-MSCs exhibited a low risk for teratoma formation. Here we evaluate the potential of E-MSCs for differentiation into skeletal muscles in vivo and reveal the regeneration and functional recovery of injured muscle by transplantation. E-MSCs were transplanted into the tibialis anterior (TA) muscle 24 h following direct clamping. After transplantation, the myogenic differentiation of E-MSCs, TA muscle regeneration, and re-innervation were morphologically analyzed. In addition, footprints and gaits of each leg under spontaneous walking were measured by CatWalk XT, and motor functions of injured TA muscles were precisely analyzed. Results indicate that >60% of transplanted E-MSCs differentiated into skeletal muscles. The cross-sectional area of the injured TA muscles of E-MSC-transplanted animals increased earlier than that of control animals. E-MSCs also promotes re-innervation of the peripheral nerves of injured muscles. Concerning function of the TA muscles, we reveal that transplantation of E-MSCs promotes the recovery of muscles. This is the first report to demonstrate by analysis of spontaneous walking that transplanted cells can accelerate the functional recovery of injured muscles. Taken together, the results show that E-MSCs have a high potential for differentiation into skeletal muscles in vivo as well as in vitro. The transplantation of E-MSCs facilitated the functional recovery of injured muscles. Therefore, E-MSCs are an efficient cell source in transplantation.

  9. Transplantated Mesenchymal Stem Cells Derived from Embryonic Stem Cells Promote Muscle Regeneration and Accelerate Functional Recovery of Injured Skeletal Muscle

    PubMed Central

    Ninagawa, Nana Takenaka; Isobe, Eri; Hirayama, Yuri; Murakami, Rumi; Komatsu, Kazumi; Nagai, Masataka; Kobayashi, Mami; Kawabata, Yuka

    2013-01-01

    Abstract We previously established that mesenchymal stem cells originating from mouse embryonic stem (ES) cells (E-MSCs) showed markedly higher potential for differentiation into skeletal muscles in vitro than common mesenchymal stem cells (MSCs). Further, the E-MSCs exhibited a low risk for teratoma formation. Here we evaluate the potential of E-MSCs for differentiation into skeletal muscles in vivo and reveal the regeneration and functional recovery of injured muscle by transplantation. E-MSCs were transplanted into the tibialis anterior (TA) muscle 24 h following direct clamping. After transplantation, the myogenic differentiation of E-MSCs, TA muscle regeneration, and re-innervation were morphologically analyzed. In addition, footprints and gaits of each leg under spontaneous walking were measured by CatWalk XT, and motor functions of injured TA muscles were precisely analyzed. Results indicate that >60% of transplanted E-MSCs differentiated into skeletal muscles. The cross-sectional area of the injured TA muscles of E-MSC–transplanted animals increased earlier than that of control animals. E-MSCs also promotes re-innervation of the peripheral nerves of injured muscles. Concerning function of the TA muscles, we reveal that transplantation of E-MSCs promotes the recovery of muscles. This is the first report to demonstrate by analysis of spontaneous walking that transplanted cells can accelerate the functional recovery of injured muscles. Taken together, the results show that E-MSCs have a high potential for differentiation into skeletal muscles in vivo as well as in vitro. The transplantation of E-MSCs facilitated the functional recovery of injured muscles. Therefore, E-MSCs are an efficient cell source in transplantation. PMID:23914336

  10. Mesenchymal Stem Cells from Fetal Heart Attenuate Myocardial Injury after Infarction: An In Vivo Serial Pinhole Gated SPECT-CT Study in Rats

    PubMed Central

    Garikipati, Venkata Naga Srikanth; Jadhav, Sachin; Pal, Lily; Prakash, Prem; Dikshit, Madhu; Nityanand, Soniya

    2014-01-01

    Mesenchymal stem cells (MSC) have emerged as a potential stem cell type for cardiac regeneration after myocardial infarction (MI). Recently, we isolated and characterized mesenchymal stem cells derived from rat fetal heart (fC-MSC), which exhibited potential to differentiate into cardiomyocytes, endothelial cells and smooth muscle cells in vitro. In the present study, we investigated the therapeutic efficacy of intravenously injected fC-MSC in a rat model of MI using multi-pinhole gated SPECT-CT system. fC-MSC were isolated from the hearts of Sprague Dawley (SD) rat fetuses at gestation day 16 and expanded ex vivo. One week after induction of MI, 2×106 fC-MSC labeled with PKH26 dye (n = 6) or saline alone (n = 6) were injected through the tail vein of the rats. Initial in vivo tracking of 99mTc-labeled fC-MSC revealed a focal uptake of cells in the anterior mid-ventricular region of the heart. At 4 weeks of fC-MSC administration, the cells labeled with PKH26 were located in abundance in infarct/peri-infarct region and the fC-MSC treated hearts showed a significant increase in left ventricular ejection fraction and a significant decrease in the end diastolic volume, end systolic volume and left ventricular myo-mass in comparison to the saline treated group. In addition, fC-MSC treated hearts had a significantly better myocardial perfusion and attenuation in the infarct size, in comparison to the saline treated hearts. The engrafted PKH26-fC-MSC expressed cardiac troponin T, endothelial CD31 and smooth muscle sm-MHC, suggesting their differentiation into all major cells of cardiovascular lineage. The fC-MSC treated hearts demonstrated an up-regulation of cardio-protective growth factors, anti-fibrotic and anti-apoptotic molecules, highlighting that the observed left ventricular functional recovery may be due to secretion of paracrine factors by fC-MSC. Taken together, our results suggest that fC-MSC therapy may be a new therapeutic strategy for MI and multi

  11. 3D Cell Printing of Functional Skeletal Muscle Constructs Using Skeletal Muscle-Derived Bioink.

    PubMed

    Choi, Yeong-Jin; Kim, Taek Gyoung; Jeong, Jonghyeon; Yi, Hee-Gyeong; Park, Ji Won; Hwang, Woonbong; Cho, Dong-Woo

    2016-10-01

    Engineered skeletal muscle tissues that mimic the structure and function of native muscle have been considered as an alternative strategy for the treatment of various muscular diseases and injuries. Here, it is demonstrated that 3D cell-printing of decellularized skeletal muscle extracellular matrix (mdECM)-based bioink facilitates the fabrication of functional skeletal muscle constructs. The cellular alignment and the shape of the tissue constructs are controlled by 3D cell-printing technology. mdECM bioink provides the 3D cell-printed muscle constructs with a myogenic environment that supports high viability and contractility as well as myotube formation, differentiation, and maturation. More interestingly, the preservation of agrin is confirmed in the mdECM, and significant increases in the formation of acetylcholine receptor clusters are exhibited in the 3D cell-printed muscle constructs. In conclusion, mdECM bioink and 3D cell-printing technology facilitate the mimicking of both the structural and functional properties of native muscle and hold great promise for producing clinically relevant engineered muscle for the treatment of muscular injuries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Minimally invasive cell-seeded biomaterial systems for injectable/epicardial implantation in ischemic heart disease

    PubMed Central

    Ravichandran, Rajeswari; Venugopal, Jayarama Reddy; Sundarrajan, Subramanian; Mukherjee, Shayanti; Ramakrishna, Seeram

    2012-01-01

    Myocardial infarction (MI) is characterized by heart-wall thinning, myocyte slippage, and ventricular dilation. The injury to the heart-wall muscle after MI is permanent, as after an abundant cell loss the myocardial tissue lacks the intrinsic capability to regenerate. New therapeutics are required for functional improvement and regeneration of the infarcted myocardium, to overcome harmful diagnosis of patients with heart failure, and to overcome the shortage of heart donors. In the past few years, myocardial tissue engineering has emerged as a new and ambitious approach for treating MI. Several left ventricular assist devices and epicardial patches have been developed for MI. These devices and acellular/cellular cardiac patches are employed surgically and sutured to the epicardial surface of the heart, limiting the region of therapeutic benefit. An injectable system offers the potential benefit of minimally invasive release into the myocardium either to restore the injured extracellular matrix or to act as a scaffold for cell delivery. Furthermore, intramyocardial injection of biomaterials and cells has opened new opportunities to explore and also to augment the potentials of this technique to ease morbidity and mortality rates owing to heart failure. This review summarizes the growing body of literature in the field of myocardial tissue engineering, where biomaterial injection, with or without simultaneous cellular delivery, has been pursued to enhance functional and structural outcomes following MI. Additionally, this review also provides a complete outlook on the tissue-engineering therapies presently being used for myocardial regeneration, as well as some perceptivity into the possible issues that may hinder its progress in the future. PMID:23271906

  13. Short-term effects of β2-AR blocker ICI 118,551 on sarcoplasmic reticulum SERCA2a and cardiac function of rats with heart failure.

    PubMed

    Gong, Haibin; Li, Yanfei; Wang, Lei; Lv, Qian; Wang, Xiuli

    2016-09-01

    The study was conducted to examine the effects of ICI 118,551 on the systolic function of cardiac muscle cells of rats in heart failure and determine the molecular mechanism of selective β2-adrenergic receptor (β2-AR) antagonist on these cells. The chronic heart failure model for rats was prepared through abdominal aortic constriction and separate cardiac muscle cells using the collagenase digestion method. The rats were then divided into Sham, HF and HF+ICI 50 nM goups and cultivated for 48 h. β2-AR, Gi/Gs and sarcoplasmic reticulum Ca 2+ -ATPase (SERCA2a) protein expression levels in the cardiac muscle cells were evaluated by western blotting and changes in the systolic function of cardiac muscle cells based on the boundary detection system of contraction dynamics for individual cells was measured. The results showed that compared with the Sham group, the survival rate, percentage of basic contraction and maximum contraction amplitude percentage of cardiac muscle cells with heart failure decreased, Gi protein expression increased while Gs and SERCA2a protein expression decreased. Compared with the HF group, the maximum contraction amplitude percentage of cardiac muscle cells in group HF+ICI 50 nM decreased, the Gi protein expression level increased while the SERCA2a protein expression level decreased. Following the stimulation of Ca 2+ and ISO, the maximum contraction amplitude percentage of cardiac muscle cells in the HF+ICI 50 nM group was lower than that in group HF. This indicated that ICI 118,551 has negative inotropic effects on cardiac muscle cells with heart failure, which may be related to Gi protein. Systolic function of cardiac muscle cells with heart failure can therefore be reduced by increasing Gi protein expression and lowering SERCA2a protein expression.

  14. Changes in extracellular muscle volume affect heart rate and blood pressure responses to static exercise

    NASA Astrophysics Data System (ADS)

    Baum, K.; Essfeld, D.; Stegemann, J.

    To investigate the effect of μg-induced peripheral extracellular fluid reductions on heart rate and blood pressure during isometric exercise, six healthy male subjects performed three calf ergometer test with different extracellular volumes of working muscles. In all tests, body positions during exercise were identical (supine with the knee joint flexed to 900). After a pre-exercise period of 25 min, during which calf volumes were manipulated, subjects had to counteract an external force of 180 N for 5 min. During the pre-exercise period three different protocols were applied. Test A: Subjects rested in the exercise position; test B: Body position was the same as in A but calf volume was increased by venous congestion (cuffs inflated to 80 mm Hg); test C: Calf volumes were decreased by a negative hydrostatic pressure (calves about 40 cm above heart level with the subjects supine). To clamp the changed calf volumes in tests B and C, cuffs were inflated to 300 mm Hg 5 min before the onset of exercise. This occlusion was maintained until termination of exercise. Compared to tests A and B, the reduced volume of test C led to significant increases in heart rate and blood pressure during exercise. Oxygen uptake did not exceed resting levels in B and C until cuffs were deflated, indicating that exclusively calf muscles contributed to the neurogenic peripheral drive. It is concluded that changes in extracellular muscle volume have to be taken into account when comparing heart rate and blood pressure during lg- and μg- exercise.

  15. Muscle satellite cells adopt divergent fates

    PubMed Central

    Zammit, Peter S.; Golding, Jon P.; Nagata, Yosuke; Hudon, Valérie; Partridge, Terence A.; Beauchamp, Jonathan R.

    2004-01-01

    Growth, repair, and regeneration of adult skeletal muscle depends on the persistence of satellite cells: muscle stem cells resident beneath the basal lamina that surrounds each myofiber. However, how the satellite cell compartment is maintained is unclear. Here, we use cultured myofibers to model muscle regeneration and show that satellite cells adopt divergent fates. Quiescent satellite cells are synchronously activated to coexpress the transcription factors Pax7 and MyoD. Most then proliferate, down-regulate Pax7, and differentiate. In contrast, other proliferating cells maintain Pax7 but lose MyoD and withdraw from immediate differentiation. These cells are typically located in clusters, together with Pax7−ve progeny destined for differentiation. Some of the Pax7+ve/MyoD−ve cells then leave the cell cycle, thus regaining the quiescent satellite cell phenotype. Significantly, noncycling cells contained within a cluster can be stimulated to proliferate again. These observations suggest that satellite cells either differentiate or switch from terminal myogenesis to maintain the satellite cell pool. PMID:15277541

  16. Exercise training in chronic heart failure: improving skeletal muscle O2 transport and utilization

    PubMed Central

    Hirai, Daniel M.; Musch, Timothy I.

    2015-01-01

    Chronic heart failure (CHF) impairs critical structural and functional components of the O2 transport pathway resulting in exercise intolerance and, consequently, reduced quality of life. In contrast, exercise training is capable of combating many of the CHF-induced impairments and enhancing the matching between skeletal muscle O2 delivery and utilization (Q̇mO2 and V̇mO2, respectively). The Q̇mO2/V̇mO2 ratio determines the microvascular O2 partial pressure (PmvO2), which represents the ultimate force driving blood-myocyte O2 flux (see Fig. 1). Improvements in perfusive and diffusive O2 conductances are essential to support faster rates of oxidative phosphorylation (reflected as faster V̇mO2 kinetics during transitions in metabolic demand) and reduce the reliance on anaerobic glycolysis and utilization of finite energy sources (thus lowering the magnitude of the O2 deficit) in trained CHF muscle. These adaptations contribute to attenuated muscle metabolic perturbations (e.g., changes in [PCr], [Cr], [ADP], and pH) and improved physical capacity (i.e., elevated critical power and maximal V̇mO2). Preservation of such plasticity in response to exercise training is crucial considering the dominant role of skeletal muscle dysfunction in the pathophysiology and increased morbidity/mortality of the CHF patient. This brief review focuses on the mechanistic bases for improved Q̇mO2/V̇mO2 matching (and enhanced PmvO2) with exercise training in CHF with both preserved and reduced ejection fraction (HFpEF and HFrEF, respectively). Specifically, O2 convection within the skeletal muscle microcirculation, O2 diffusion from the red blood cell to the mitochondria, and muscle metabolic control are particularly susceptive to exercise training adaptations in CHF. Alternatives to traditional whole body endurance exercise training programs such as small muscle mass and inspiratory muscle training, pharmacological treatment (e.g., sildenafil and pentoxifylline), and dietary

  17. Stem cell therapy for ischemic heart diseases.

    PubMed

    Yu, Hong; Lu, Kai; Zhu, Jinyun; Wang, Jian'an

    2017-01-01

    Ischemic heart diseases, especially the myocardial infarction, is a major hazard problem to human health. Despite substantial advances in control of risk factors and therapies with drugs and interventions including bypass surgery and stent placement, the ischemic heart diseases usually result in heart failure (HF), which could aggravate social burden and increase the mortality rate. The current therapeutic methods to treat HF stay at delaying the disease progression without repair and regeneration of the damaged myocardium. While heart transplantation is the only effective therapy for end-stage patients, limited supply of donor heart makes it impossible to meet the substantial demand from patients with HF. Stem cell-based transplantation is one of the most promising treatment for the damaged myocardial tissue. Key recent published literatures and ClinicalTrials.gov. Stem cell-based therapy is a promising strategy for the damaged myocardial tissue. Different kinds of stem cells have their advantages for treatment of Ischemic heart diseases. The efficacy and potency of cell therapies vary significantly from trial to trial; some clinical trials did not show benefit. Diverged effects of cell therapy could be affected by cell types, sources, delivery methods, dose and their mechanisms by which delivered cells exert their effects. Understanding the origin of the regenerated cardiomyocytes, exploring the therapeutic effects of stem cell-derived exosomes and using the cell reprogram technology to improve the efficacy of cell therapy for cardiovascular diseases. Recently, stem cell-derived exosomes emerge as a critical player in paracrine mechanism of stem cell-based therapy. It is promising to exploit exosomes-based cell-free therapy for ischemic heart diseases in the future. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  18. Effects of enhanced external counterpulsation on skeletal muscle gene expression in patients with severe heart failure.

    PubMed

    Melin, Michael; Montelius, Andreas; Rydén, Lars; Gonon, Adrian; Hagerman, Inger; Rullman, Eric

    2018-01-01

    Enhanced external counterpulsation (EECP) is a non-invasive treatment in which leg cuff compressions increase diastolic aortic pressure and coronary perfusion. EECP is offered to patients with refractory angina pectoris and increases physical capacity. Benefits in heart failure patients have been noted, but EECP is still considered to be experimental and its effects must be confirmed. The mechanism of action is still unclear. The aim of this study was to evaluate the effect of EECP on skeletal muscle gene expression and physical performance in patients with severe heart failure. Patients (n = 9) in NYHA III-IV despite pharmacological therapy were subjected to 35 h of EECP during 7 weeks. Before and after, lateral vastus muscle biopsies were obtained, and functional capacity was evaluated with a 6-min walk test. Skeletal muscle gene expression was evaluated using Affymetrix Hugene 1.0 arrays. Maximum walking distance increased by 15%, which is in parity to that achieved after aerobic exercise training in similar patients. Skeletal muscle gene expression analysis using Ingenuity Pathway Analysis showed an increased expression of two networks of genes with FGF-2 and IGF-1 as central regulators. The increase in gene expression was quantitatively small and no overlap with gene expression profiles after exercise training could be detected despite adequate statistical power. EECP treatment leads to a robust improvement in walking distance in patients with severe heart failure and does induce a skeletal muscle transcriptional response, but this response is small and with no significant overlap with the transcriptional signature seen after exercise training. © 2016 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  19. Sonic hedgehog acts cell-autonomously on muscle precursor cells to generate limb muscle diversity

    PubMed Central

    Anderson, Claire; Williams, Victoria C.; Moyon, Benjamin; Daubas, Philippe; Tajbakhsh, Shahragim; Buckingham, Margaret E.; Shiroishi, Toshihiko; Hughes, Simon M.; Borycki, Anne-Gaëlle

    2012-01-01

    How muscle diversity is generated in the vertebrate body is poorly understood. In the limb, dorsal and ventral muscle masses constitute the first myogenic diversification, as each gives rise to distinct muscles. Myogenesis initiates after muscle precursor cells (MPCs) have migrated from the somites to the limb bud and populated the prospective muscle masses. Here, we show that Sonic hedgehog (Shh) from the zone of polarizing activity (ZPA) drives myogenesis specifically within the ventral muscle mass. Shh directly induces ventral MPCs to initiate Myf5 transcription and myogenesis through essential Gli-binding sites located in the Myf5 limb enhancer. In the absence of Shh signaling, myogenesis is delayed, MPCs fail to migrate distally, and ventral paw muscles fail to form. Thus, Shh production in the limb ZPA is essential for the spatiotemporal control of myogenesis and coordinates muscle and skeletal development by acting directly to regulate the formation of specific ventral muscles. PMID:22987640

  20. Brain and muscle Arnt-like 1 promotes skeletal muscle regeneration through satellite cell expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Somik; Yin, Hongshan; Department of Cardiovascular Medicine, Third Affiliated Hospital, Hebei Medical University, Shijiazhuang 050051, Hebei

    Circadian clock is an evolutionarily conserved timing mechanism governing diverse biological processes and the skeletal muscle possesses intrinsic functional clocks. Interestingly, although the essential clock transcription activator, Brain and muscle Arnt-like 1 (Bmal1), participates in maintenance of muscle mass, little is known regarding its role in muscle growth and repair. In this report, we investigate the in vivo function of Bmal1 in skeletal muscle regeneration using two muscle injury models. Bmal1 is highly up-regulated by cardiotoxin injury, and its genetic ablation significantly impairs regeneration with markedly suppressed new myofiber formation and attenuated myogenic induction. A similarly defective regenerative response ismore » observed in Bmal1-null mice as compared to wild-type controls upon freeze injury. Lack of satellite cell expansion accounts for the regeneration defect, as Bmal1{sup −/−} mice display significantly lower satellite cell number with nearly abolished induction of the satellite cell marker, Pax7. Furthermore, satellite cell-derived primary myoblasts devoid of Bmal1 display reduced growth and proliferation ex vivo. Collectively, our results demonstrate, for the first time, that Bmal1 is an integral component of the pro-myogenic response that is required for muscle repair. This mechanism may underlie its role in preserving adult muscle mass and could be targeted therapeutically to prevent muscle-wasting diseases. - Highlights: • Bmal1 is highly inducible by muscle injury and myogenic stimuli. • Genetic ablation of Bmal1 significantly impairs muscle regeneration. • Bmal1 promotes satellite cell expansion during muscle regeneration. • Bmal1-deficient primary myoblasts display attenuated growth and proliferation.« less

  1. Muscle strength differ between patients with diabetes and controls following heart surgery.

    PubMed

    Boban, Marko; Barisic, Mijana; Persic, Viktor; Zekanovic, Drazen; Medved, Igor; Zulj, Marinko; Vcev, Aleskandar

    2016-01-01

    The aim of our study was to analyze muscle strength in patients with recent surgical treatment for ischemic and combined ischemic-valvular heart disease, based on existence of diabetes mellitus. Connections existing between muscle strength and patient characteristics or conventional diagnostic tests were analyzed as well. Study prospectively included consecutive patients scheduled for cardiovascular rehabilitation 0-3months after heart surgery. Diagnostics covered drug utilization, anthropometrics, demographics, echocardiography, conventional laboratory, echocardiography, bioelectrical impedance analysis (BIA), and hand grip test (HGT). HGT was analyzed for dominant hand. Patients with diabetes had significantly weaker muscle strength on HGT than controls; 29.4±12.2kg vs. 38.2±14.7kg (p=0.029), respectively. ROC analysis for HGT and existence of diabetes mellitus were significant; ≤40kg had sensitivity of 89.7% (95%CI: 72.6-97.8), specificity 43.7% (31.9-56.0); AUC 0.669 (0.568-0.760); p=0.002. HGT significantly correlated with hematocrit (Rho CC=0.247; p=0.013), whilst other laboratory or echocardiographic parameters were insignificant (all p>0.05). HGT also correlated with body weight (Rho CC=0.510; p<0.001); height (Rho CC=0.632; p<0.001); waist circumference (Rho CC=0.388; p<0.001); waist-to-hip ratio (Rho CC=0.274; p=0.006) and BIA (Rho CC=-0.412; p<0.001). In postoperative recovery of patients with diabetes, muscle strength assessed by HGT is decreased and in relation with nutritional status. Clinically resourceful connections of HGT were also found to hematocrit and utilization of loop diuretics. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Muscle-derived stem cells isolated as non-adherent population give rise to cardiac, skeletal muscle and neural lineages.

    PubMed

    Arsic, Nikola; Mamaeva, Daria; Lamb, Ned J; Fernandez, Anne

    2008-04-01

    Stem cells with the ability to differentiate in specialized cell types can be extracted from a wide array of adult tissues including skeletal muscle. Here we have analyzed a population of cells isolated from skeletal muscle on the basis of their poor adherence on uncoated or collagen-coated dishes that show multi-lineage differentiation in vitro. When analysed under proliferative conditions, these cells express stem cell surface markers Sca-1 (65%) and Bcrp-1 (80%) but also MyoD (15%), Neuronal beta III-tubulin (25%), GFAP (30%) or Nkx2.5 (1%). Although capable of growing as non-attached spheres for months, when given an appropriate matrix, these cells adhere giving rise to skeletal muscle, neuronal and cardiac muscle cell lineages. A similar cell population could not be isolated from either bone marrow or cardiac tissue suggesting their specificity to skeletal muscle. When injected into damaged muscle, these non-adherent muscle-derived cells are retrieved expressing Pax7, in a sublaminar position characterizing satellite cells and participate in forming new myofibers. These data show that a non-adherent stem cell population can be specifically isolated and expanded from skeletal muscle and upon attachment to a matrix spontaneously differentiate into muscle, cardiac and neuronal lineages in vitro. Although competing with resident satellite cells, these cells are shown to significantly contribute to repair of injured muscle in vivo supporting that a similar muscle-derived non-adherent cell population from human muscle may be useful in treatment of neuromuscular disorders.

  3. Morphological variations of papillary muscles in the mitral valve complex in human cadaveric hearts.

    PubMed

    Gunnal, Sandhya Arvind; Wabale, Rajendra Namdeo; Farooqui, Mujeebuddin Samsamuddin

    2013-01-01

    Papillary muscle rupture and dysfunction can lead to complications of prolapsed mitral valve and mitral regurgitation. Multiple operative procedures of the papillary muscles, such as resection, repositioning and realignment, are carried out to restore normal physiological function. Therefore, it is important to know both the variations and the normal anatomy of papillary muscles. This study was carried out on 116 human cadaveric hearts. The left ventricles were opened along the left border in order to view the papillary muscles. The number, shape, position and pattern of the papillary muscles were observed. In this series, the papillary muscles were mostly found in groups instead of in twos, as is described in standard textbooks. Four different shapes of papillary muscles were identified - conical, broad-apexed, pyramidal and fan-shaped. We also discovered various patterns of papillary muscles. No two mitral valve complexes have the same architectural arrangement. Each case seems to be unique. Therefore, it is important for scientists worldwide to study the variations in the mitral valve complex in order to ascertain the reason behind each specific architectural arrangement. This will enable cardiothoracic surgeons to tailor the surgical procedures according to the individual papillary muscle pattern.

  4. Effective fiber hypertrophy in satellite cell-depleted skeletal muscle

    PubMed Central

    McCarthy, John J.; Mula, Jyothi; Miyazaki, Mitsunori; Erfani, Rod; Garrison, Kelcye; Farooqui, Amreen B.; Srikuea, Ratchakrit; Lawson, Benjamin A.; Grimes, Barry; Keller, Charles; Van Zant, Gary; Campbell, Kenneth S.; Esser, Karyn A.; Dupont-Versteegden, Esther E.; Peterson, Charlotte A.

    2011-01-01

    An important unresolved question in skeletal muscle plasticity is whether satellite cells are necessary for muscle fiber hypertrophy. To address this issue, a novel mouse strain (Pax7-DTA) was created which enabled the conditional ablation of >90% of satellite cells in mature skeletal muscle following tamoxifen administration. To test the hypothesis that satellite cells are necessary for skeletal muscle hypertrophy, the plantaris muscle of adult Pax7-DTA mice was subjected to mechanical overload by surgical removal of the synergist muscle. Following two weeks of overload, satellite cell-depleted muscle showed the same increases in muscle mass (approximately twofold) and fiber cross-sectional area with hypertrophy as observed in the vehicle-treated group. The typical increase in myonuclei with hypertrophy was absent in satellite cell-depleted fibers, resulting in expansion of the myonuclear domain. Consistent with lack of nuclear addition to enlarged fibers, long-term BrdU labeling showed a significant reduction in the number of BrdU-positive myonuclei in satellite cell-depleted muscle compared with vehicle-treated muscle. Single fiber functional analyses showed no difference in specific force, Ca2+ sensitivity, rate of cross-bridge cycling and cooperativity between hypertrophied fibers from vehicle and tamoxifen-treated groups. Although a small component of the hypertrophic response, both fiber hyperplasia and regeneration were significantly blunted following satellite cell depletion, indicating a distinct requirement for satellite cells during these processes. These results provide convincing evidence that skeletal muscle fibers are capable of mounting a robust hypertrophic response to mechanical overload that is not dependent on satellite cells. PMID:21828094

  5. Assessment of skeletal muscle fatigue of road maintenance workers based on heart rate monitoring and myotonometry

    PubMed Central

    Roja, Zenija; Kalkis, Valdis; Vain, Arved; Kalkis, Henrijs; Eglite, Maija

    2006-01-01

    Objective This research work is dedicated to occupational health problems caused by ergonomic risks. The research object was road building industry, where workers have to work very intensively, have long work hours, are working in forced/constrained work postures and overstrain during the work specific parts of their bodies. The aim of this study was to evaluate the work heaviness degree and to estimate the muscle fatigue of workers after one week work cycle. The study group consisted of 10 road construction and maintenance workers and 10 pavers aged between 20 and 60 years. Methods Physical load were analyzed by measuring heart rate (HR), work postures (OWAS) and perceived exertion (RPE). Assessments of the muscles strain and functional state (tone) were carried out using myotonometric (MYO) measurements. The reliability of the statistical processing of heart rate monitoring and myotonometry data was determined using correlating analysis. Results This study showed that that road construction and repairing works should be considered as a hard work according to average metabolic energy consumption 8.1 ± 1.5 kcal/min; paving, in its turn, was a moderately hard work according to 7.2 ± 1.1 kcal/min. Several muscle tone levels were identified allowing subdivision of workers into three conditional categories basing on muscle tone and fatigue: I – absolute muscle relaxation and ability to relax; II – a state of equilibrium, when muscles are able to adapt to the work load and are partly able to relax; and III – muscle fatigue and increased tone. It was also found out that the increase of muscle tone and fatigue mainly depend on workers physical preparedness and length of service, and less – on their age. Conclusion We have concluded that a complex ergonomic analysis consisting of heart rate monitoring, assessment of compulsive working postures and myotonometry is appropriate to assess the work heaviness degree and can provide prognosis of occupational pathology

  6. Isolation of skeletal muscle stem cells by fluorescence-activated cell sorting.

    PubMed

    Liu, Ling; Cheung, Tom H; Charville, Gregory W; Rando, Thomas A

    2015-10-01

    The prospective isolation of purified stem cell populations has dramatically altered the field of stem cell biology, and it has been a major focus of research across tissues in different organisms. Muscle stem cells (MuSCs) are now among the most intensely studied stem cell populations in mammalian systems, and the prospective isolation of these cells has allowed cellular and molecular characterizations that were not dreamed of a decade ago. In this protocol, we describe how to isolate MuSCs from limb muscles of adult mice by fluorescence-activated cell sorting (FACS). We provide a detailed description of the physical and enzymatic dissociation of mononucleated cells from limb muscles, a procedure that is essential in order to maximize cell yield. We also describe a FACS-based method that is used subsequently to obtain highly pure populations of either quiescent or activated MuSCs (VCAM(+)CD31(-)CD45(-)Sca1(-)). The isolation process takes ∼5-6 h to complete. The protocol also allows for the isolation of endothelial cells, hematopoietic cells and mesenchymal stem cells from muscle tissue.

  7. Rejuvenation of the aged muscle stem cell population restores strength to injured aged muscles

    PubMed Central

    Cosgrove, Benjamin D.; Gilbert, Penney M.; Porpiglia, Ermelinda; Mourkioti, Foteini; Lee, Steven P.; Corbel, Stephane Y.; Llewellyn, Michael E.; Delp, Scott L.; Blau, Helen M.

    2014-01-01

    The aged suffer from progressive muscle weakness and regenerative failure. We demonstrate that muscle regeneration is impaired with aging due in part to a cell-autonomous functional decline in skeletal muscle stem cells (MuSCs). Two-thirds of aged MuSCs are intrinsically defective relative to young MuSCs, with reduced capacity to repair myofibers and repopulate the stem cell reservoir in vivo following transplantation due to a higher incidence of cells that express senescence markers and that have elevated p38α/β MAPK activity. We show that these limitations cannot be overcome by transplantation into the microenvironment of young recipient muscles. In contrast, subjecting the aged MuSC population to transient inhibition of p38α/β in conjunction with culture on soft hydrogel substrates rapidly expands the residual functional aged MuSC population, rejuvenating its potential for regeneration, serial transplantation, and strengthening damaged muscles of aged mice. These findings reveal a synergy between biophysical and biochemical cues that provides a paradigm for a localized autologous muscle stem cell therapy in aged individuals. PMID:24531378

  8. Large Cardiac Muscle Patches Engineered From Human Induced-Pluripotent Stem Cell-Derived Cardiac Cells Improve Recovery From Myocardial Infarction in Swine.

    PubMed

    Gao, Ling; Gregorich, Zachery R; Zhu, Wuqiang; Mattapally, Saidulu; Oduk, Yasin; Lou, Xi; Kannappan, Ramaswamy; Borovjagin, Anton V; Walcott, Gregory P; Pollard, Andrew E; Fast, Vladimir G; Hu, Xinyang; Lloyd, Steven G; Ge, Ying; Zhang, Jianyi

    2018-04-17

    Here, we generated human cardiac muscle patches (hCMPs) of clinically relevant dimensions (4 cm × 2 cm × 1.25 mm) by suspending cardiomyocytes, smooth muscle cells, and endothelial cells that had been differentiated from human induced-pluripotent stem cells in a fibrin scaffold and then culturing the construct on a dynamic (rocking) platform. In vitro assessments of hCMPs suggest maturation in response to dynamic culture stimulation. In vivo assessments were conducted in a porcine model of myocardial infarction (MI). Animal groups included: MI hearts treated with 2 hCMPs (MI+hCMP, n=13), MI hearts treated with 2 cell-free open fibrin patches (n=14), or MI hearts with neither experimental patch (n=15); a fourth group of animals underwent sham surgery (Sham, n=8). Cardiac function and infarct size were evaluated by MRI, arrhythmia incidence by implanted loop recorders, and the engraftment rate by calculation of quantitative polymerase chain reaction measurements of expression of the human Y chromosome. Additional studies examined the myocardial protein expression profile changes and potential mechanisms of action that related to exosomes from the cell patch. The hCMPs began to beat synchronously within 1 day of fabrication, and after 7 days of dynamic culture stimulation, in vitro assessments indicated the mechanisms related to the improvements in electronic mechanical coupling, calcium-handling, and force generation, suggesting a maturation process during the dynamic culture. The engraftment rate was 10.9±1.8% at 4 weeks after the transplantation. The hCMP transplantation was associated with significant improvements in left ventricular function, infarct size, myocardial wall stress, myocardial hypertrophy, and reduced apoptosis in the periscar boarder zone myocardium. hCMP transplantation also reversed some MI-associated changes in sarcomeric regulatory protein phosphorylation. The exosomes released from the hCMP appeared to have cytoprotective properties that

  9. Zebrafish cardiac development requires a conserved secondary heart field

    PubMed Central

    Hami, Danyal; Grimes, Adrian C.; Tsai, Huai-Jen; Kirby, Margaret L.

    2011-01-01

    The secondary heart field is a conserved developmental domain in avian and mammalian embryos that contributes myocardium and smooth muscle to the definitive cardiac arterial pole. This field is part of the overall heart field and its myocardial component has been fate mapped from the epiblast to the heart in both mammals and birds. In this study we show that the population that gives rise to the arterial pole of the zebrafish can be traced from the epiblast, is a discrete part of the mesodermal heart field, and contributes myocardium after initial heart tube formation, giving rise to both smooth muscle and myocardium. We also show that Isl1, a transcription factor associated with undifferentiated cells in the secondary heart field in other species, is active in this field. Furthermore, Bmp signaling promotes myocardial differentiation from the arterial pole progenitor population, whereas inhibiting Smad1/5/8 phosphorylation leads to reduced myocardial differentiation with subsequent increased smooth muscle differentiation. Molecular pathways required for secondary heart field development are conserved in teleosts, as we demonstrate that the transcription factor Tbx1 and the Sonic hedgehog pathway are necessary for normal development of the zebrafish arterial pole. PMID:21558385

  10. In vitro myotoxic effects of bupivacaine on rhabdomyosarcoma cells, immortalized and primary muscle cells.

    PubMed

    Metterlein, Thomas; Hoffmann, Petra; Späth, Ruth; Gruber, Michael; Graf, Bernhard M; Zink, Wolfgang

    2015-01-01

    Rhabdomyosarcoma is a rare malignant skeletal muscle tumor. It mainly occurs in children and young adults and has an unsatisfactory prognosis. Prior studies showed a direct myotoxic effect of bupivacaine on differentiated muscle cells in vitro and in vivo. Exact mechanisms of this myotoxicity are still not fully understood, but a myotoxic effect on malignant muscle tumor cells has not been examined so far. Thus, the aim of this study was to examine if bupivacaine has cytotoxic effects on rhabdomyosarcoma cells, immortalized muscle cells and differentiated muscle cells. Cell lines of rhabdomyosarcoma cells, immortalized muscle cells and differentiated muscle cells were established. After microscopic identification, cells were exposed to various concentrations of bupivacaine (500, 1,000, 1,750, 2,500 and 5,000 ppm) for 1 and 2 h, respectively. 24 and 28 h after incubation the cultures were stained with propidium iodid and analyzed by flow cytometry. The fraction of dead cells was calculated for each experiment and the concentration with 50% cell survival (IC50) was computed. Cell groups as well as incubation and recovery time were compared (ANOVA/Bonferroni p < 0.01). The total number of cultured cells was similar for the different local anesthetics and examined concentrations. Increasing concentrations of bupivacaine led to a decrease in survival of muscle cells. IC50 was highest for immortalized cells, followed by rhabdomyosarcoma cells and differentiated cells. Exposure time, but not recovery time, had an influence on survival. Bupivacaine has clear but different cytotoxic effects on various muscle cell types in vitro. Differentiated primary cells seem to be more vulnerable than tumor cells possibly because of more differentiated intracellular structures.

  11. Cardiac muscle organization revealed in 3-D by imaging whole-mount mouse hearts using two-photon fluorescence and confocal microscopy.

    PubMed

    Sivaguru, Mayandi; Fried, Glenn; Sivaguru, Barghav S; Sivaguru, Vignesh A; Lu, Xiaochen; Choi, Kyung Hwa; Saif, M Taher A; Lin, Brian; Sadayappan, Sakthivel

    2015-11-01

    The ability to image the entire adult mouse heart at high resolution in 3-D would provide enormous advantages in the study of heart disease. However, a technique for imaging nuclear/cellular detail as well as the overall structure of the entire heart in 3-D with minimal effort is lacking. To solve this problem, we modified the benzyl alcohol:benzyl benzoate (BABB) clearing technique by labeling mouse hearts with periodic acid Schiff (PAS) stain. We then imaged the hearts with a combination of two-photon fluorescence microscopy and automated tile-scan imaging/stitching. Utilizing the differential spectral properties of PAS, we could identify muscle and nuclear compartments in the heart. We were also able to visualize the differences between a 3-month-old normal mouse heart and a mouse heart that had undergone heart failure due to the expression of cardiac myosin binding protein-C (cMyBP-C) gene mutation (t/t). Using 2-D and 3-D morphometric analysis, we found that the t/t heart had anomalous ventricular shape, volume, and wall thickness, as well as a disrupted sarcomere pattern. We further validated our approach using decellularized hearts that had been cultured with 3T3 fibroblasts, which were tracked using a nuclear label. We were able to detect the 3T3 cells inside the decellularized intact heart tissue, achieving nuclear/cellular resolution in 3-D. The combination of labeling, clearing, and two-photon microscopy together with tiling eliminates laborious and time-consuming physical sectioning, alignment, and 3-D reconstruction.

  12. Diffusion Restrictions Surrounding Mitochondria: A Mathematical Model of Heart Muscle Fibers

    PubMed Central

    Ramay, Hena R.; Vendelin, Marko

    2009-01-01

    Abstract Several experiments on permeabilized heart muscle fibers suggest the existence of diffusion restrictions grouping mitochondria and surrounding ATPases. The specific causes of these restrictions are not known, but intracellular structures are speculated to act as diffusion barriers. In this work, we assume that diffusion restrictions are induced by sarcoplasmic reticulum (SR), cytoskeleton proteins localized near SR, and crowding of cytosolic proteins. The aim of this work was to test whether such localization of diffusion restrictions would be consistent with the available experimental data and evaluate the extent of the restrictions. For that, a three-dimensional finite-element model was composed with the geometry based on mitochondrial and SR structural organization. Diffusion restrictions induced by SR and cytoskeleton proteins were varied with other model parameters to fit the set of experimental data obtained on permeabilized rat heart muscle fibers. There are many sets of model parameters that were able to reproduce all experiments considered in this work. However, in all the sets, <5–6% of the surface formed by SR and associated cytoskeleton proteins is permeable to metabolites. Such a low level of permeability indicates that the proteins should play a dominant part in formation of the diffusion restrictions. PMID:19619458

  13. Identification and functional characterization of muscle satellite cells in Drosophila

    PubMed Central

    Reichert, Heinrich

    2017-01-01

    Work on genetic model systems such as Drosophila and mouse has shown that the fundamental mechanisms of myogenesis are remarkably similar in vertebrates and invertebrates. Strikingly, however, satellite cells, the adult muscle stem cells that are essential for the regeneration of damaged muscles in vertebrates, have not been reported in invertebrates. In this study, we show that lineal descendants of muscle stem cells are present in adult muscle of Drosophila as small, unfused cells observed at the surface and in close proximity to the mature muscle fibers. Normally quiescent, following muscle fiber injury, we show that these cells express Zfh1 and engage in Notch-Delta-dependent proliferative activity and generate lineal descendant populations, which fuse with the injured muscle fiber. In view of strikingly similar morphological and functional features, we consider these novel cells to be the Drosophila equivalent of vertebrate muscle satellite cells. PMID:29072161

  14. Stem Cells for Skeletal Muscle Tissue Engineering.

    PubMed

    Pantelic, Molly N; Larkin, Lisa M

    2018-04-19

    Volumetric muscle loss (VML) is a debilitating condition wherein muscle loss overwhelms the body's normal physiological repair mechanism. VML is particularly common among military service members who have sustained war injuries. Because of the high social and medical cost associated with VML and suboptimal current surgical treatments, there is great interest in developing better VML therapies. Skeletal muscle tissue engineering (SMTE) is a promising alternative to traditional VML surgical treatments that use autogenic tissue grafts, and rather uses isolated stem cells with myogenic potential to generate de novo skeletal muscle tissues to treat VML. Satellite cells are the native precursors to skeletal muscle tissue, and are thus the most commonly studied starting source for SMTE. However, satellite cells are difficult to isolate and purify, and it is presently unknown whether they would be a practical source in clinical SMTE applications. Alternative myogenic stem cells, including adipose-derived stem cells, bone marrow-derived mesenchymal stem cells, perivascular stem cells, umbilical cord mesenchymal stem cells, induced pluripotent stem cells, and embryonic stem cells, each have myogenic potential and have been identified as possible starting sources for SMTE, although they have yet to be studied in detail for this purpose. These alternative stem cell varieties offer unique advantages and disadvantages that are worth exploring further to advance the SMTE field toward highly functional, safe, and practical VML treatments. The following review summarizes the current state of satellite cell-based SMTE, details the properties and practical advantages of alternative myogenic stem cells, and offers guidance to tissue engineers on how alternative myogenic stem cells can be incorporated into SMTE research.

  15. Bioenergetics mechanisms regulating muscle stem cell self-renewal commitment and function.

    PubMed

    Abreu, Phablo

    2018-04-16

    Muscle stem cells or satellite cells are crucial for muscle maintenance and repair. These cells are mitotically quiescent and uniformly express the transcription factor Pax7, intermittently entering the cell cycle to give rise to daughter myogenic precursors cells and fuse with neighboring myofibers or self-renew, replenishing the stem cell pool in adult skeletal muscle. Pivotal roles of muscle stem cells in muscle repair have been uncovered, but it still remains unclear how muscle stem cell self-renewal is molecularly regulated and how muscle stem cells maintain muscle tissue homeostasis. Defects in muscle stem cell regulation to maintain/return to quiescence and self-renew are observed in degenerative conditions such as aging and neuromuscular disease. Recent works has suggested the existence of metabolic regulation and mitochondrial alterations in muscle stem cells, influencing the self-renewal commitment and function. Here I present a brief overview of recent understanding of how metabolic reprogramming governs self-renewal commitment, which is essential for conservation of muscle satellite cell pools throughout life, as well as the implications for regenerative medicine. Copyright © 2018. Published by Elsevier Masson SAS.

  16. Skeletal muscle satellite cells cultured in simulated microgravity

    NASA Technical Reports Server (NTRS)

    Molnar, Greg; Hartzell, Charles R.; Schroedl, Nancy A.; Gonda, Steve R.

    1993-01-01

    Satellite cells are postnatal myoblasts responsible for providing additional nuclei to growing or regenerating muscle cells. Satellite cells retain the capacity to proliferate and differentiate in vitro and therefore provide a useful model to study postnatal muscle development. Most culture systems used to study postnatal muscle development are limited by the two-dimensional (2-D) confines of the culture dish. Limiting proliferation and differentiation of satellite cells in 2-D could potentially limit cell-cell contacts important for developing the level of organization in skeletal muscle obtained in vivo. Culturing satellite cells on microcarrier beads suspended in the High-Aspect-Ratio-Vessel (HARV) designed by NASA provides a low shear, three-dimensional (3-D) environment to study muscle development. Primary cultures established from anterior tibialis muscles of growing rats (approximately 200 gm) were used for all studies and were composed of greater than 75 % satellite cells. Different inoculation densities did not affect the proliferative potential of satellite cells in the HARV. Plating efficiency, proliferation, and glucose utilization were compared between 2-D flat culture and 3-D HARV culture. Plating efficiency (cells attached - cells plated x 100) was similar between the two culture systems. Proliferation was reduced in HARV cultures and this reduction was apparent for both satellite cells and non-satellite cells. Furthermore, reduction in proliferation within the HARV could not be attributed to reduced substrate availability since glucose levels in media from HARV and 2-D cell culture were similar. Morphologically, microcarrier beads within the HARVS were joined together by cells into three-dimensional aggregates composed of greater than 10 beads/aggregate. Aggregation of beads did not occur in the absence of cells. Myotubes were often seen on individual beads or spanning the surface of two beads. In summary, proliferation and differentiation of

  17. PEDF-derived peptide promotes skeletal muscle regeneration through its mitogenic effect on muscle progenitor cells.

    PubMed

    Ho, Tsung-Chuan; Chiang, Yi-Pin; Chuang, Chih-Kuang; Chen, Show-Li; Hsieh, Jui-Wen; Lan, Yu-Wen; Tsao, Yeou-Ping

    2015-08-01

    In response injury, intrinsic repair mechanisms are activated in skeletal muscle to replace the damaged muscle fibers with new muscle fibers. The regeneration process starts with the proliferation of satellite cells to give rise to myoblasts, which subsequently differentiate terminally into myofibers. Here, we investigated the promotion effect of pigment epithelial-derived factor (PEDF) on muscle regeneration. We report that PEDF and a synthetic PEDF-derived short peptide (PSP; residues Ser(93)-Leu(112)) induce satellite cell proliferation in vitro and promote muscle regeneration in vivo. Extensively, soleus muscle necrosis was induced in rats by bupivacaine, and an injectable alginate gel was used to release the PSP in the injured muscle. PSP delivery was found to stimulate satellite cell proliferation in damaged muscle and enhance the growth of regenerating myofibers, with complete regeneration of normal muscle mass by 2 wk. In cell culture, PEDF/PSP stimulated C2C12 myoblast proliferation, together with a rise in cyclin D1 expression. PEDF induced the phosphorylation of ERK1/2, Akt, and STAT3 in C2C12 myoblasts. Blocking the activity of ERK, Akt, or STAT3 with pharmacological inhibitors attenuated the effects of PEDF/PSP on the induction of C2C12 cell proliferation and cyclin D1 expression. Moreover, 5-bromo-2'-deoxyuridine pulse-labeling demonstrated that PEDF/PSP stimulated primary rat satellite cell proliferation in myofibers in vitro. In summary, we report for the first time that PSP is capable of promoting the regeneration of skeletal muscle. The signaling mechanism involves the ERK, AKT, and STAT3 pathways. These results show the potential utility of this PEDF peptide for muscle regeneration. Copyright © 2015 the American Physiological Society.

  18. Monitoring Autophagy in Muscle Stem Cells.

    PubMed

    García-Prat, Laura; Muñoz-Cánoves, Pura; Martínez-Vicente, Marta

    2017-01-01

    Autophagy is critical not only for the cell's adaptive response to starvation but also for cellular homeostasis, by acting as quality-control machinery for cytoplasmic components. This basal autophagic activity is particularly needed in postmitotic cells for survival maintenance. Recently, basal autophagic activity was reported in skeletal muscle stem cells (satellite cells) in their dormant quiescent state. Satellite cells are responsible for growth as well as for regeneration of muscle in response to stresses such as injury or disease. In the absence of stress, quiescence is the stem cell state of these cells throughout life, although which mechanisms maintain long-life quiescence remains largely unknown. Our recent findings showed that autophagy is necessary for quiescence maintenance in satellite cells and for retention of their regenerative functions. Importantly, damaged organelles and proteins accumulated in these cells with aging and this was connected to age-associated defective autophagy. Refueling of autophagy through genetic and pharmacological strategies restored aged satellite cell functions, and these finding have biomedical implications. In this chapter, we describe different experimental strategies to evaluate autophagic activity in satellite cells in resting muscle of mice. They should facilitate our competence to investigate stem cell functions both during tissue homeostasis as in pathological conditions.

  19. Patent ductus arteriosus in mice with smooth muscle-specific Jag1 deletion

    PubMed Central

    Feng, Xuesong; Krebs, Luke T.; Gridley, Thomas

    2010-01-01

    The ductus arteriosus is an arterial vessel that shunts blood flow away from the lungs during fetal life, but normally occludes after birth to establish the adult circulation pattern. Failure of the ductus arteriosus to close after birth is termed patent ductus arteriosus and is one of the most common congenital heart defects. Mice with smooth muscle cell-specific deletion of Jag1, which encodes a Notch ligand, die postnatally from patent ductus arteriosus. These mice exhibit defects in contractile smooth muscle cell differentiation in the vascular wall of the ductus arteriosus and adjacent descending aorta. These defects arise through an inability to propagate the JAG1-Notch signal via lateral induction throughout the width of the vascular wall. Both heterotypic endothelial smooth muscle cell interactions and homotypic vascular smooth muscle cell interactions are required for normal patterning and differentiation of the ductus arteriosus and adjacent descending aorta. This new model for a common congenital heart defect provides novel insights into the genetic programs that underlie ductus arteriosus development and closure. PMID:21068062

  20. Telocytes and putative stem cells in ageing human heart

    PubMed Central

    Popescu, Laurentiu M; Curici, Antoanela; Wang, Enshi; Zhang, Hao; Hu, Shengshou; Gherghiceanu, Mihaela

    2015-01-01

    Tradition considers that mammalian heart consists of about 70% non-myocytes (interstitial cells) and 30% cardiomyocytes (CMs). Anyway, the presence of telocytes (TCs) has been overlooked, since they were described in 2010 (visit http://www.telocytes.com). Also, the number of cardiac stem cells (CSCs) has not accurately estimated in humans during ageing. We used electron microscopy to identify and estimate the number of cells in human atrial myocardium (appendages). Three age-related groups were studied: newborns (17 days–1 year), children (6–17 years) and adults (34–60 years). Morphometry was performed on low-magnification electron microscope images using computer-assisted technology. We found that interstitial area gradually increases with age from 31.3 ± 4.9% in newborns to 41 ± 5.2% in adults. Also, the number of blood capillaries (per mm2) increased with several hundreds in children and adults versus newborns. CMs are the most numerous cells, representing 76% in newborns, 88% in children and 86% in adults. Images of CMs mitoses were seen in the 17-day newborns. Interestingly, no lipofuscin granules were found in CMs of human newborns and children. The percentage of cells that occupy interstitium were (depending on age): endothelial cells 52–62%; vascular smooth muscle cells and pericytes 22–28%, Schwann cells with nerve endings 6–7%, fibroblasts 3–10%, macrophages 1–8%, TCs about 1% and stem cells less than 1%. We cannot confirm the popular belief that cardiac fibroblasts are the most prevalent cell type in the heart and account for about 20% of myocardial volume. Numerically, TCs represent a small fraction of human cardiac interstitial cells, but because of their extensive telopodes, they achieve a 3D network that, for instance, supports CSCs. The myocardial (very) low capability to regenerate may be explained by the number of CSCs, which decreases fivefold by age (from 0.5% to 0.1% in newborns versus adults). PMID:25545142

  1. Trapezius Muscle Load, Heart Rate and Time Pressure during Day and Night Shift in Swiss and Japanese Nurses

    PubMed Central

    NICOLETTI, Corinne; MÜLLER, Christian; TOBITA, Itoko; NAKASEKO, Masaru; LÄUBLI, Thomas

    2014-01-01

    The aim of the present study was to analyze the activity of the trapezius muscle, the heart rate and the time pressure of Swiss and Japanese nurses during day and night shifts. The parameters were measured during a day and a night shift of 17 Swiss and 22 Japanese nurses. The observed rest time of the trapezius muscle was longer for Swiss than for Japanese nurses during both shifts. The 10th and the 50th percentile of the trapezius muscle activity showed a different effect for Swiss than for Japanese nurses. It was higher during the day shift of Swiss nurses and higher during the night shift of Japanese nurses. Heart rate was higher for both Swiss and Japanese nurses during the day. The time pressure was significantly higher for Japanese than for Swiss nurses. Over the duration of the shifts, time pressure increased for Japanese nurses and slightly decreased for those from Switzerland. Considering trapezius muscle activity and time pressure, the nursing profession was more burdening for the examined Japanese nurses than for Swiss nurses. In particular, the night shift for Japanese nurses was characterized by a high trapezius muscle activity and only few rest times for the trapezius muscle. PMID:24633074

  2. Trapezius muscle load, heart rate and time pressure during day and night shift in Swiss and Japanese nurses.

    PubMed

    Nicoletti, Corinne; Müller, Christian; Tobita, Itoko; Nakaseko, Masaru; Läubli, Thomas

    2014-01-01

    The aim of the present study was to analyze the activity of the trapezius muscle, the heart rate and the time pressure of Swiss and Japanese nurses during day and night shifts. The parameters were measured during a day and a night shift of 17 Swiss and 22 Japanese nurses. The observed rest time of the trapezius muscle was longer for Swiss than for Japanese nurses during both shifts. The 10th and the 50th percentile of the trapezius muscle activity showed a different effect for Swiss than for Japanese nurses. It was higher during the day shift of Swiss nurses and higher during the night shift of Japanese nurses. Heart rate was higher for both Swiss and Japanese nurses during the day. The time pressure was significantly higher for Japanese than for Swiss nurses. Over the duration of the shifts, time pressure increased for Japanese nurses and slightly decreased for those from Switzerland. Considering trapezius muscle activity and time pressure, the nursing profession was more burdening for the examined Japanese nurses than for Swiss nurses. In particular, the night shift for Japanese nurses was characterized by a high trapezius muscle activity and only few rest times for the trapezius muscle.

  3. CD133+ cells derived from skeletal muscles of Duchenne muscular dystrophy patients have a compromised myogenic and muscle regenerative capability.

    PubMed

    Meng, Jinhong; Muntoni, Francesco; Morgan, Jennifer

    2018-05-12

    Cell-mediated gene therapy is a possible means to treat muscular dystrophies like Duchenne muscular dystrophy. Autologous patient stem cells can be genetically-corrected and transplanted back into the patient, without causing immunorejection problems. Regenerated muscle fibres derived from these cells will express the missing dystrophin protein, thus improving muscle function. CD133+ cells derived from normal human skeletal muscle contribute to regenerated muscle fibres and form muscle stem cells after their intra-muscular transplantation into an immunodeficient mouse model. But it is not known whether CD133+ cells derived from DMD patient muscles have compromised muscle regenerative function. To test this, we compared CD133+ cells derived from DMD and normal human muscles. DMD CD133+ cells had a reduced capacity to undergo myogenic differentiation in vitro compared with CD133+ cells derived from normal muscle. In contrast to CD133+ cells derived from normal human muscle, those derived from DMD muscle formed no satellite cells and gave rise to significantly fewer muscle fibres of donor origin, after their intra-muscular transplantation into an immunodeficient, non-dystrophic, mouse muscle. DMD CD133+ cells gave rise to more clones of smaller size and more clones that were less myogenic than did CD133+ cells derived from normal muscle. The heterogeneity of the progeny of CD133+ cells, combined with the reduced proliferation and myogenicity of DMD compared to normal CD133+ cells, may explain the reduced regenerative capacity of DMD CD133+ cells. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  4. A Special Population of Regulatory T Cells Potentiates Muscle Repair

    PubMed Central

    Burzyn, Dalia; Kuswanto, Wilson; Kolodin, Dmitriy; Shadrach, Jennifer L.; Cerletti, Massimiliano; Jang, Young; Sefik, Esen; Tan, Tze Guan; Wagers, Amy J.; Benoist, Christophe; Mathis, Diane

    2014-01-01

    SUMMARY Long recognized to be potent suppressors of immune responses, Foxp3+CD4+ regulatory T (Treg) cells are being rediscovered as regulators of nonimmunological processes. We describe a phenotypically and functionally distinct population of Treg cells that rapidly accumulated in the acutely injured skeletal muscle of mice, just as invading myeloidlineage cells switched from a proinflammatory to a proregenerative state. A Treg population of similar phenotype accumulated in muscles of genetically dystrophic mice. Punctual depletion of Treg cells during the repair process prolonged the proinflammatory infiltrate and impaired muscle repair, while treatments that increased or decreased Treg activities diminished or enhanced (respectively) muscle damage in a dystrophy model. Muscle Treg cells expressed the growth factor Amphiregulin, which acted directly on muscle satellite cells in vitro and improved muscle repair in vivo. Thus, Treg cells and their products may provide new therapeutic opportunities for wound repair and muscular dystrophies. PMID:24315098

  5. Effects of moderate heart failure and functional overload on rat plantaris muscle

    NASA Technical Reports Server (NTRS)

    Spangenburg, Espen E.; Lees, Simon J.; Otis, Jeff S.; Musch, Timothy I.; Talmadge, Robert J.; Williams, Jay H.

    2002-01-01

    It is thought that changes in sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) of skeletal muscle contribute to alterations in skeletal muscle function during congestive heart failure (CHF). It is well established that exercise training can improve muscle function. However, it is unclear whether similar adaptations will result from exercise training in a CHF patient. Therefore, the purpose of this study was to determine whether skeletal muscle during moderate CHF adapts to increased activity, utilizing the functional overload (FO) model. Significant increases in plantaris mass of the CHF-FO and sham-FO groups compared with the CHF and control (sham) groups were observed. Ca(2+) uptake rates were significantly elevated in the CHF group compared with all other groups. No differences were detected in Ca(2+) uptake rates between the CHF-FO, sham, and sham-FO groups. Increases in Ca(2+) uptake rates in moderate-CHF rats were not due to changes in SERCA isoform proportions; however, FO may have attenuated the CHF-induced increases through alterations in SERCA isoform expression. Therefore, changes in skeletal muscle Ca(2+) handling during moderate CHF may be due to alterations in regulatory mechanisms, which exercise may override, by possibly altering SERCA isoform expression.

  6. Beta-Adrenergic Receptor Expression in Muscle Cells

    NASA Technical Reports Server (NTRS)

    Young, Ronald B.; Bridge, K.; Vaughn, J. R.

    1999-01-01

    beta-adrenergic receptor (bAR) agonists presumably exert their physiological action on skeletal muscle cells through the bAR. Since the signal generated by the bAR is cyclic AMP (cAMP), experiments were initiated in primary chicken muscle cell cultures to determine if artificial elevation of intracellular cAMP by treatment with forskolin would alter the population of bAR expressed on the surface of muscle cells. Chicken skeletal muscle cells after 7 days in culture were employed for the experiments because muscle cells have attained a steady state with respect to muscle protein metabolism at this stage. Cells were treated with 0-10 uM forskolin for a total of three days. At the end of the 1, 2, and 3 day treatment intervals, the concentration of cAMP and the bAR population were measured. Receptor population was measured in intact muscle cell cultures as the difference between total binding of [H-3]CGP-12177 and non-specific binding of [H-3]CGP-12177 in the presence of 1 uM propranolol. Intracellular cAMP concentration was measured by radioimmunoassay. The concentration of cAMP in forskolin-treated cells increased up to 10-fold in a dose dependent manner. Increasing concentrations of forskolin also led to an increase in (beta)AR population, with a maximum increase of approximately 50% at 10 uM. This increase in (beta)AR population was apparent after only 1 day of treatment, and the pattern of increase was maintained for all 3 days of the treatment period. Thus, increasing the intracellular concentration of cAMP leads to up-regulation of (beta)AR population. Clenbuterol and isoproterenol gave similar effects on bAR population. The effect of forskolin on the quantity and apparent synthesis rate of the heavy chain of myosin (mhc) were also investigated. A maximum increase of 50% in the quantity of mhc was observed at 0.2 UM forskolin, but higher concentrations of forskolin reduced the quantity of mhc back to control levels.

  7. High expression of arachidonate 15-lipoxygenase and proinflammatory markers in human ischemic heart tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magnusson, Lisa U.; Lundqvist, Annika; Asp, Julia

    Highlights: Black-Right-Pointing-Pointer We found a 17-fold upregulation of ALOX15 in the ischemic heart. Black-Right-Pointing-Pointer Incubation of human muscle cells in hypoxia showed a 22-fold upregulation of ALOX15. Black-Right-Pointing-Pointer We observed increased levels of proinflammatory markers in ischemic heart tissue. Black-Right-Pointing-Pointer Suggesting a link between ischemia and inflammation in ischemic heart biopsies. -- Abstract: A common feature of the ischemic heart and atherosclerotic plaques is the presence of hypoxia (insufficient levels of oxygen in the tissue). Hypoxia has pronounced effects on almost every aspect of cell physiology, and the nuclear transcription factor hypoxia inducible factor-1{alpha} (HIF-1{alpha}) regulates adaptive responses to lowmore » concentrations of oxygen in mammalian cells. In our recent work, we observed that hypoxia increases the proinflammatory enzyme arachidonate 15-lipoxygenase (ALOX15B) in human carotid plaques. ALOX15 has recently been shown to be present in the human myocardium, but the effect of ischemia on its expression has not been investigated. Here we test the hypothesis that ischemia of the heart leads to increased expression of ALOX15, and found an almost 2-fold increase in HIF-1{alpha} mRNA expression and a 17-fold upregulation of ALOX15 mRNA expression in the ischemic heart biopsies from patients undergoing coronary bypass surgery compared with non ischemic heart tissue. To investigate the effect of low oxygen concentration on ALOX15 we incubated human vascular muscle cells in hypoxia and showed that expression of ALOX15 increased 22-fold compared with cells incubated in normoxic conditions. We also observed increased mRNA levels of proinflammatory markers in ischemic heart tissue compared with non-ischemic controls. In summary, we demonstrate increased ALOX15 in human ischemic heart biopsies. Furthermore we demonstrate that hypoxia increases ALOX15 in human muscle cells. Our results yield

  8. Electrical stimulation as a biomimicry tool for regulating muscle cell behavior

    PubMed Central

    Ahadian, Samad; Ostrovidov, Serge; Hosseini, Vahid; Kaji, Hirokazu; Ramalingam, Murugan; Bae, Hojae; Khademhosseini, Ali

    2013-01-01

    There is a growing need to understand muscle cell behaviors and to engineer muscle tissues to replace defective tissues in the body. Despite a long history of the clinical use of electric fields for muscle tissues in vivo, electrical stimulation (ES) has recently gained significant attention as a powerful tool for regulating muscle cell behaviors in vitro. ES aims to mimic the electrical environment of electroactive muscle cells (e.g., cardiac or skeletal muscle cells) by helping to regulate cell-cell and cell-extracellular matrix (ECM) interactions. As a result, it can be used to enhance the alignment and differentiation of skeletal or cardiac muscle cells and to aid in engineering of functional muscle tissues. Additionally, ES can be used to control and monitor force generation and electrophysiological activity of muscle tissues for bio-actuation and drug-screening applications in a simple, high-throughput, and reproducible manner. In this review paper, we briefly describe the importance of ES in regulating muscle cell behaviors in vitro, as well as the major challenges and prospective potential associated with ES in the context of muscle tissue engineering. PMID:23823664

  9. Electrical stimulation as a biomimicry tool for regulating muscle cell behavior.

    PubMed

    Ahadian, Samad; Ostrovidov, Serge; Hosseini, Vahid; Kaji, Hirokazu; Ramalingam, Murugan; Bae, Hojae; Khademhosseini, Ali

    2013-01-01

    There is a growing need to understand muscle cell behaviors and to engineer muscle tissues to replace defective tissues in the body. Despite a long history of the clinical use of electric fields for muscle tissues in vivo, electrical stimulation (ES) has recently gained significant attention as a powerful tool for regulating muscle cell behaviors in vitro. ES aims to mimic the electrical environment of electroactive muscle cells (e.g., cardiac or skeletal muscle cells) by helping to regulate cell-cell and cell-extracellular matrix (ECM) interactions. As a result, it can be used to enhance the alignment and differentiation of skeletal or cardiac muscle cells and to aid in engineering of functional muscle tissues. Additionally, ES can be used to control and monitor force generation and electrophysiological activity of muscle tissues for bio-actuation and drug-screening applications in a simple, high-throughput, and reproducible manner. In this review paper, we briefly describe the importance of ES in regulating muscle cell behaviors in vitro, as well as the major challenges and prospective potential associated with ES in the context of muscle tissue engineering.

  10. Cellular dynamics in the muscle satellite cell niche

    PubMed Central

    Bentzinger, C Florian; Wang, Yu Xin; Dumont, Nicolas A; Rudnicki, Michael A

    2013-01-01

    Satellite cells, the quintessential skeletal muscle stem cells, reside in a specialized local environment whose anatomy changes dynamically during tissue regeneration. The plasticity of this niche is attributable to regulation by the stem cells themselves and to a multitude of functionally diverse cell types. In particular, immune cells, fibrogenic cells, vessel-associated cells and committed and differentiated cells of the myogenic lineage have emerged as important constituents of the satellite cell niche. Here, we discuss the cellular dynamics during muscle regeneration and how disease can lead to perturbation of these mechanisms. To define the role of cellular components in the muscle stem cell niche is imperative for the development of cell-based therapies, as well as to better understand the pathobiology of degenerative conditions of the skeletal musculature. PMID:24232182

  11. Application of cell co-culture system to study fat and muscle cells.

    PubMed

    Pandurangan, Muthuraman; Hwang, Inho

    2014-09-01

    Animal cell culture is a highly complex process, in which cells are grown under specific conditions. The growth and development of these cells is a highly unnatural process in vitro condition. Cells are removed from animal tissues and artificially cultured in various culture vessels. Vitamins, minerals, and serum growth factors are supplied to maintain cell viability. Obtaining result homogeneity of in vitro and in vivo experiments is rare, because their structure and function are different. Living tissues have highly ordered complex architecture and are three-dimensional (3D) in structure. The interaction between adjacent cell types is quite distinct from the in vitro cell culture, which is usually two-dimensional (2D). Co-culture systems are studied to analyze the interactions between the two different cell types. The muscle and fat co-culture system is useful in addressing several questions related to muscle modeling, muscle degeneration, apoptosis, and muscle regeneration. Co-culture of C2C12 and 3T3-L1 cells could be a useful diagnostic tool to understand the muscle and fat formation in animals. Even though, co-culture systems have certain limitations, they provide a more realistic 3D view and information than the individual cell culture system. It is suggested that co-culture systems are useful in evaluating the intercellular communication and composition of two different cell types.

  12. Trichinella spiralis: nurse cell formation with emphasis on analogy to muscle cell repair

    PubMed Central

    Wu, Zhiliang; Sofronic-Milosavljevic, Lj; Nagano, Isao; Takahashi, Yuzo

    2008-01-01

    Trichinella infection results in formation of a capsule in infected muscles. The capsule is a residence of the parasite which is composed of the nurse cell and fibrous wall. The process of nurse cell formation is complex and includes infected muscle cell response (de-differentiation, cell cycle re-entry and arrest) and satellite cell responses (activation, proliferation and differentiation). Some events that occur during the nurse cell formation are analogous to those occurring during muscle cell regeneration/repair. This article reviews capsule formation with emphasis on this analogy. PMID:18710582

  13. Heart and skeletal muscle inflammation (HSMI) disease diagnosed on a British Columbia salmon farm through a longitudinal farm study

    PubMed Central

    Ferguson, Hugh W.; Schulze, Angela D.; Kaukinen, Karia H.; Li, Shaorong; Vanderstichel, Raphaël; Wessel, Øystein; Rimstad, Espen; Gardner, Ian A.; Hammell, K. Larry; Miller, Kristina M.

    2017-01-01

    Heart and skeletal muscle inflammation (HSMI) is an emerging disease of marine-farmed Atlantic Salmon (Salmo salar), first recognized in 1999 in Norway, and later also reported in Scotland and Chile. We undertook a longitudinal study involving health evaluation over an entire marine production cycle on one salmon farm in British Columbia (Canada). In previous production cycles at this farm site and others in the vicinity, cardiac lesions not linked to a specific infectious agent or disease were identified. Histologic assessments of both live and moribund fish samples collected at the farm during the longitudinal study documented at the population level the development, peak, and recovery phases of HSMI. The fish underwent histopathological evaluation of all tissues, Twort’s Gram staining, immunohistochemistry, and molecular quantification in heart tissue of 44 agents known or suspected to cause disease in salmon. Our analysis showed evidence of HSMI histopathological lesions over an 11-month timespan, with the prevalence of lesions peaking at 80–100% in sampled fish, despite mild clinical signs with no associated elevation in mortalities reported at the farm level. Diffuse mononuclear inflammation and myodegeneration, consistent with HSMI, was the predominant histologic observation in affected heart and skeletal muscle. Infective agent monitoring identified three agents at high prevalence in salmon heart tissue, including Piscine orthoreovirus (PRV), and parasites Paranucleospora theridion and Kudoa thyrsites. However, PRV alone was statistically correlated with the occurrence and severity of histopathological lesions in the heart. Immunohistochemical staining further localized PRV throughout HSMI development, with the virus found mainly within red blood cells in early cases, moving into the cardiomyocytes within or, more often, on the periphery of the inflammatory reaction during the peak disease, and reducing to low or undetectable levels later in the

  14. Apoptosis in capillary endothelial cells in ageing skeletal muscle

    PubMed Central

    Wang, Huijuan; Listrat, Anne; Meunier, Bruno; Gueugneau, Marine; Coudy-Gandilhon, Cécile; Combaret, Lydie; Taillandier, Daniel; Polge, Cécile; Attaix, Didier; Lethias, Claire; Lee, Kijoon; Goh, Kheng Lim; Béchet, Daniel

    2014-01-01

    The age-related loss of skeletal muscle mass and function (sarcopenia) is a consistent hallmark of ageing. Apoptosis plays an important role in muscle atrophy, and the intent of this study was to specify whether apoptosis is restricted to myofibre nuclei (myonuclei) or occurs in satellite cells or stromal cells of extracellular matrix (ECM). Sarcopenia in mouse gastrocnemius muscle was characterized by myofibre atrophy, oxidative type grouping, delocalization of myonuclei and ECM fibrosis. Terminal deoxynucleotidyl transferase-mediated dUTP nick end-labelling (TUNEL) indicated a sharp rise in apoptosis during ageing. TUNEL coupled with immunostaining for dystrophin, paired box protein-7 (Pax7) or laminin-2α, respectively, was used to identify apoptosis in myonuclei, satellite cells and stromal cells. In adult muscle, apoptosis was not detected in myofibres, but was restricted to stromal cells. Moreover, the age-related rise in apoptotic nuclei was essentially due to stromal cells. Myofibre-associated apoptosis nevertheless occurred in old muscle, but represented < 20% of the total muscle apoptosis. Specifically, apoptosis in old muscle affected a small proportion (0.8%) of the myonuclei, but a large part (46%) of the Pax7+ satellite cells. TUNEL coupled with CD31 immunostaining further attributed stromal apoptosis to capillary endothelial cells. Age-dependent rise in apoptotic capillary endothelial cells was concomitant with altered levels of key angiogenic regulators, perlecan and a perlecan domain V (endorepellin) proteolytic product. Collectively, our results indicate that sarcopenia is associated with apoptosis of satellite cells and impairment of capillary functions, which is likely to contribute to the decline in muscle mass and functionality during ageing. PMID:24245531

  15. Skeletal muscle cells express ICAM-1 after muscle overload and ICAM-1 contributes to the ensuing hypertrophic response.

    PubMed

    Dearth, Christopher L; Goh, Qingnian; Marino, Joseph S; Cicinelli, Peter A; Torres-Palsa, Maria J; Pierre, Philippe; Worth, Randall G; Pizza, Francis X

    2013-01-01

    We previously reported that leukocyte specific β2 integrins contribute to hypertrophy after muscle overload in mice. Because intercellular adhesion molecule-1 (ICAM-1) is an important ligand for β2 integrins, we examined ICAM-1 expression by murine skeletal muscle cells after muscle overload and its contribution to the ensuing hypertrophic response. Myofibers in control muscles of wild type mice and cultures of skeletal muscle cells (primary and C2C12) did not express ICAM-1. Overload of wild type plantaris muscles caused myofibers and satellite cells/myoblasts to express ICAM-1. Increased expression of ICAM-1 after muscle overload occurred via a β2 integrin independent mechanism as indicated by similar gene and protein expression of ICAM-1 between wild type and β2 integrin deficient (CD18-/-) mice. ICAM-1 contributed to muscle hypertrophy as demonstrated by greater (p<0.05) overload-induced elevations in muscle protein synthesis, mass, total protein, and myofiber size in wild type compared to ICAM-1-/- mice. Furthermore, expression of ICAM-1 altered (p<0.05) the temporal pattern of Pax7 expression, a marker of satellite cells/myoblasts, and regenerating myofiber formation in overloaded muscles. In conclusion, ICAM-1 expression by myofibers and satellite cells/myoblasts after muscle overload could serve as a mechanism by which ICAM-1 promotes hypertrophy by providing a means for cell-to-cell communication with β2 integrin expressing myeloid cells.

  16. Skeletal Muscle Cells Express ICAM-1 after Muscle Overload and ICAM-1 Contributes to the Ensuing Hypertrophic Response

    PubMed Central

    Dearth, Christopher L.; Goh, Qingnian; Marino, Joseph S.; Cicinelli, Peter A.; Torres-Palsa, Maria J.; Pierre, Philippe; Worth, Randall G.; Pizza, Francis X.

    2013-01-01

    We previously reported that leukocyte specific β2 integrins contribute to hypertrophy after muscle overload in mice. Because intercellular adhesion molecule-1 (ICAM-1) is an important ligand for β2 integrins, we examined ICAM-1 expression by murine skeletal muscle cells after muscle overload and its contribution to the ensuing hypertrophic response. Myofibers in control muscles of wild type mice and cultures of skeletal muscle cells (primary and C2C12) did not express ICAM-1. Overload of wild type plantaris muscles caused myofibers and satellite cells/myoblasts to express ICAM-1. Increased expression of ICAM-1 after muscle overload occurred via a β2 integrin independent mechanism as indicated by similar gene and protein expression of ICAM-1 between wild type and β2 integrin deficient (CD18-/-) mice. ICAM-1 contributed to muscle hypertrophy as demonstrated by greater (p<0.05) overload-induced elevations in muscle protein synthesis, mass, total protein, and myofiber size in wild type compared to ICAM-1-/- mice. Furthermore, expression of ICAM-1 altered (p<0.05) the temporal pattern of Pax7 expression, a marker of satellite cells/myoblasts, and regenerating myofiber formation in overloaded muscles. In conclusion, ICAM-1 expression by myofibers and satellite cells/myoblasts after muscle overload could serve as a mechanism by which ICAM-1 promotes hypertrophy by providing a means for cell-to-cell communication with β2 integrin expressing myeloid cells. PMID:23505517

  17. Myostatin induces interstitial fibrosis in the heart via TAK1 and p38.

    PubMed

    Biesemann, Nadine; Mendler, Luca; Kostin, Sawa; Wietelmann, Astrid; Borchardt, Thilo; Braun, Thomas

    2015-09-01

    Myostatin, a member of the TGF-β superfamily of secreted growth factors, is a negative regulator of skeletal muscle growth. In the heart, it is expressed at lower levels compared to skeletal muscle but up-regulated under disease conditions. Cre recombinase-mediated inactivation of myostatin in adult cardiomyocytes leads to heart failure and increased mortality but cardiac function of surviving mice is restored after several weeks probably due to compensatory expression in non-cardiomyocytes. To study long-term effects of increased myostatin expression in the heart and to analyze the putative crosstalk between cardiomyocytes and fibroblasts, we overexpressed myostatin in cardiomyocytes. Increased expression of myostatin in heart muscle cells caused interstitial fibrosis via activation of the TAK-1-MKK3/6-p38 signaling pathway, compromising cardiac function in older mice. Our results uncover a novel role of myostatin in the heart and highlight the necessity for tight regulation of myostatin to maintain normal heart function.

  18. Isolation, characterization, and molecular regulation of muscle stem cells

    PubMed Central

    Fukada, So-ichiro; Ma, Yuran; Ohtani, Takuji; Watanabe, Yoko; Murakami, Satoshi; Yamaguchi, Masahiko

    2013-01-01

    Skeletal muscle has great regenerative capacity which is dependent on muscle stem cells, also known as satellite cells. A loss of satellite cells and/or their function impairs skeletal muscle regeneration and leads to a loss of skeletal muscle power; therefore, the molecular mechanisms for maintaining satellite cells in a quiescent and undifferentiated state are of great interest in skeletal muscle biology. Many studies have demonstrated proteins expressed by satellite cells, including Pax7, M-cadherin, Cxcr4, syndecan3/4, and c-met. To further characterize satellite cells, we established a method to directly isolate satellite cells using a monoclonal antibody, SM/C-2.6. Using SM/C-2.6 and microarrays, we measured the genes expressed in quiescent satellite cells and demonstrated that Hesr3 may complement Hesr1 in generating quiescent satellite cells. Although Hesr1- or Hesr3-single knockout mice show a normal skeletal muscle phenotype, including satellite cells, Hesr1/Hesr3-double knockout mice show a gradual decrease in the number of satellite cells and increase in regenerative defects dependent on satellite cell numbers. We also observed that a mouse's genetic background affects the regenerative capacity of its skeletal muscle and have established a line of DBA/2-background mdx mice that has a much more severe phenotype than the frequently used C57BL/10-mdx mice. The phenotype of DBA/2-mdx mice also seems to depend on the function of satellite cells. In this review, we summarize the methodology of direct isolation, characterization, and molecular regulation of satellite cells based on our results. The relationship between the regenerative capacity of satellite cells and progression of muscular disorders is also summarized. In the last part, we discuss application of the accumulating scientific information on satellite cells to treatment of patients with muscular disorders. PMID:24273513

  19. To excite a heart: a bird's view.

    PubMed

    Sommer, J R; Bossen, E; Dalen, H; Dolber, P; High, T; Jewett, P; Johnson, E A; Junker, J; Leonard, S; Nassar, R

    1991-01-01

    Ultrastructural investigations of avian cardiac muscle, including ratite hearts, have provided great insights into the mechanisms as to how excitation leads to contraction in the heart. The geometry of the conduction fibers of ratite hearts confirms earlier observations on birds showing that the geometry of the conduction system and its component cells is adapted to hearts of different sizes and rates of contraction so as to maintain a differential in conduction velocities between the conduction system and the working fibers. The study of the ratite conduction fibers bears out the idea of an inverse relationship between the size of the gap junctions and the input resistance of cardiac cells. The anomalous extended junctional SR typical of all avian hearts, proscribes the notion of direct contact transduction into calcium release for contraction of an excitatory signal propagating at the cell surface. Couplings appear well suited to maintain direct, if transitory, connections to the extracellular space in addition to harboring channels for intracellular calcium release.

  20. Injectable biomimetic liquid crystalline scaffolds enhance muscle stem cell transplantation

    PubMed Central

    Sleep, Eduard; McClendon, Mark T.; Preslar, Adam T.; Chen, Charlotte H.; Sangji, M. Hussain; Pérez, Charles M. Rubert; Haynes, Russell D.; Meade, Thomas J.; Blau, Helen M.; Stupp, Samuel I.

    2017-01-01

    Muscle stem cells are a potent cell population dedicated to efficacious skeletal muscle regeneration, but their therapeutic utility is currently limited by mode of delivery. We developed a cell delivery strategy based on a supramolecular liquid crystal formed by peptide amphiphiles (PAs) that encapsulates cells and growth factors within a muscle-like unidirectionally ordered environment of nanofibers. The stiffness of the PA scaffolds, dependent on amino acid sequence, was found to determine the macroscopic degree of cell alignment templated by the nanofibers in vitro. Furthermore, these PA scaffolds support myogenic progenitor cell survival and proliferation and they can be optimized to induce cell differentiation and maturation. We engineered an in vivo delivery system to assemble scaffolds by injection of a PA solution that enabled coalignment of scaffold nanofibers with endogenous myofibers. These scaffolds locally retained growth factors, displayed degradation rates matching the time course of muscle tissue regeneration, and markedly enhanced the engraftment of muscle stem cells in injured and noninjured muscles in mice. PMID:28874575

  1. Muscle stem cell dysfunction impairs muscle regeneration in a mouse model of Down syndrome.

    PubMed

    Pawlikowski, Bradley; Betta, Nicole Dalla; Elston, Tiffany; Williams, Darian A; Olwin, Bradley B

    2018-03-09

    Down syndrome, caused by trisomy 21, is characterized by a variety of medical conditions including intellectual impairments, cardiovascular defects, blood cell disorders and pre-mature aging phenotypes. Several somatic stem cell populations are dysfunctional in Down syndrome and their deficiencies may contribute to multiple Down syndrome phenotypes. Down syndrome is associated with muscle weakness but skeletal muscle stem cells or satellite cells in Down syndrome have not been investigated. We find that a failure in satellite cell expansion impairs muscle regeneration in the Ts65Dn mouse model of Down syndrome. Ts65Dn satellite cells accumulate DNA damage and over express Usp16, a histone de-ubiquitinating enzyme that regulates the DNA damage response. Impairment of satellite cell function, which further declines as Ts65Dn mice age, underscores stem cell deficiencies as an important contributor to Down syndrome pathologies.

  2. Nuclear fusion-independent smooth muscle differentiation of human adipose-derived stem cells induced by a smooth muscle environment.

    PubMed

    Zhang, Rong; Jack, Gregory S; Rao, Nagesh; Zuk, Patricia; Ignarro, Louis J; Wu, Benjamin; Rodríguez, Larissa V

    2012-03-01

    Human adipose-derived stem cells hASC have been isolated and were shown to have multilineage differentiation capacity. Although both plasticity and cell fusion have been suggested as mechanisms for cell differentiation in vivo, the effect of the local in vivo environment on the differentiation of adipose-derived stem cells has not been evaluated. We previously reported the in vitro capacity of smooth muscle differentiation of these cells. In this study, we evaluate the effect of an in vivo smooth muscle environment in the differentiation of hASC. We studied this by two experimental designs: (a) in vivo evaluation of smooth muscle differentiation of hASC injected into a smooth muscle environment and (b) in vitro evaluation of smooth muscle differentiation capacity of hASC exposed to bladder smooth muscle cells. Our results indicate a time-dependent differentiation of hASC into mature smooth muscle cells when these cells are injected into the smooth musculature of the urinary bladder. Similar findings were seen when the cells were cocultured in vitro with primary bladder smooth muscle cells. Chromosomal analysis demonstrated that microenvironment cues rather than nuclear fusion are responsible for this differentiation. We conclude that cell plasticity is present in hASCs, and their differentiation is accomplished in the absence of nuclear fusion. Copyright © 2011 AlphaMed Press.

  3. Xin, an actin binding protein, is expressed within muscle satellite cells and newly regenerated skeletal muscle fibers.

    PubMed

    Hawke, Thomas J; Atkinson, Daniel J; Kanatous, Shane B; Van der Ven, Peter F M; Goetsch, Sean C; Garry, Daniel J

    2007-11-01

    Xin is a muscle-specific actin binding protein of which its role and regulation within skeletal muscle is not well understood. Here we demonstrate that Xin mRNA is robustly upregulated (>16-fold) within 12 h of skeletal muscle injury and is localized to the muscle satellite cell population. RT-PCR confirmed the expression pattern of Xin during regeneration, as well as within primary muscle myoblast cultures, but not other known stem cell populations. Immunohistochemical staining of single myofibers demonstrate Xin expression colocalized with the satellite cell marker Syndecan-4 further supporting the mRNA expression of Xin in satellite cells. In situ hybridization of regenerating muscle 5-7 days postinjury illustrates Xin expression within newly regenerated myofibers. Promoter-reporter assays demonstrate that known myogenic transcription factors [myocyte enhancer factor-2 (MEF2), myogenic differentiation-1 (MyoD), and myogenic factor-5 (Myf-5)] transactivate Xin promoter constructs supporting the muscle-specific expression of Xin. To determine the role of Xin within muscle precursor cells, proliferation, migration, and differentiation analysis using Xin, short hairpin RNA (shRNA) were undertaken in C2C12 myoblasts. Reducing endogenous Xin expression resulted in a 26% increase (P < 0.05) in cell proliferation and a 20% increase (P < 0.05) in myoblast migratory capacity. Skeletal muscle myosin heavy chain protein levels were increased (P < 0.05) with Xin shRNA administration; however, this was not accompanied by changes in myoglobin protein (another marker of differentiation) nor overt morphological differences relative to differentiating control cells. Taken together, the present findings support the hypothesis that Xin is expressed within muscle satellite cells during skeletal muscle regeneration and is involved in the regulation of myoblast function.

  4. Muscle mitohormesis promotes cellular survival via serine/glycine pathway flux.

    PubMed

    Ost, Mario; Keipert, Susanne; van Schothorst, Evert M; Donner, Verena; van der Stelt, Inge; Kipp, Anna P; Petzke, Klaus-Jürgen; Jove, Mariona; Pamplona, Reinald; Portero-Otin, Manuel; Keijer, Jaap; Klaus, Susanne

    2015-04-01

    Recent studies on mouse and human skeletal muscle (SM) demonstrated the important link between mitochondrial function and the cellular metabolic adaptation. To identify key compensatory molecular mechanisms in response to chronic mitochondrial distress, we analyzed mice with ectopic SM respiratory uncoupling in uncoupling protein 1 transgenic (UCP1-TG) mice as model of muscle-specific compromised mitochondrial function. Here we describe a detailed metabolic reprogramming profile associated with mitochondrial perturbations in SM, triggering an increased protein turnover and amino acid metabolism with induced biosynthetic serine/1-carbon/glycine pathway and the longevity-promoting polyamine spermidine as well as the trans-sulfuration pathway. This is related to an induction of NADPH-generating pathways and glutathione metabolism as an adaptive mitohormetic response and defense against increased oxidative stress. Strikingly, consistent muscle retrograde signaling profiles were observed in acute stress states such as muscle cell starvation and lipid overload, muscle regeneration, and heart muscle inflammation, but not in response to exercise. We provide conclusive evidence for a key compensatory stress-signaling network that preserves cellular function, oxidative stress tolerance, and survival during conditions of increased SM mitochondrial distress, a metabolic reprogramming profile so far only demonstrated for cancer cells and heart muscle. © FASEB.

  5. Abnormalities of Calcium Handling Proteins in Skeletal Muscle Mirror those of the Heart in Humans with Heart Failure: a Shared Mechanism?

    PubMed Central

    Middlekauff, Holly R.; Vigna, Chris; Verity, M. Anthony; Fonarow, Gregg C.; Horwich, Tamara B.; Hamilton, Michele A.; Shieh, Perry; Tupling, A. Russell

    2012-01-01

    Background In the failing human heart, abnormalities of Ca2+ cycling have been described, but there is scant knowledge about Ca2+ handling in the skeletal muscle of humans with HF. We tested the hypothesis that in humans with HF, Ca2+ cycling proteins in skeletal muscle are abnormal. Methods and Results Ten advanced HF patients (50.4±3.7 years), and 9 age matched controls underwent vastus lateralis biopsy. Western blot analysis showed that sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA)2a, which is responsible for Ca2+ sequestration into the sarcoplasmic reticulum(SR), was lower in HF vs controls (4.8±0.5vs7.5±0.8AU, p=0.01). Although phospholamban (PLN), which inhibits SERCA2a, was not different in HF vs controls, phosphorylation (SER16 site) of PLN, which relieves this inhibition, was reduced (0.8±0.1vs3.9±0.9AU, p=0.004). Dihydropyridine receptors were reduced in HF, (2.1±0.4vs3.6±0.5AU, p=0.04). We tested the hypothesis that these abnormalities of Ca2+ handling protein content and regulation were due to increased oxidative stress, but oxygen radical scavenger proteins were not elevated in the skeletal muscle of HF patients. Conclusion In chronic HF, marked abnormalities of Ca2+ handling proteins are present in skeletal muscle, which mirror those in failing heart tissue. This suggests a common mechanism, such as chronic augmentation of sympathetic activity and autophosphorylation of Ca2+-calmodulin-dependent-protein kinase II. PMID:22939042

  6. Biomechanical regulation of in vitro cardiogenesis for tissue-engineered heart repair.

    PubMed

    Zimmermann, Wolfram-Hubertus

    2013-01-01

    The heart is a continuously pumping organ with an average lifespan of eight decades. It develops from the onset of embryonic cardiogenesis under biomechanical load, performs optimally within a defined range of hemodynamic load, and fails if acutely or chronically overloaded. Unloading of the heart leads to defective cardiogenesis in utero, but can also lead to a desired therapeutic outcome (for example, in patients with heart failure under left ventricular assist device therapy). In light of the well-documented relevance of mechanical loading for cardiac physiology and pathology, it is plausible that tissue engineers have integrated mechanical stimulation regimens into protocols for heart muscle construction. To achieve optimal results, physiological principles of beat-to-beat myocardial loading and unloading should be simulated. In addition, heart muscle engineering, in particular if based on pluripotent stem cell-derived cardiomyocytes, may benefit from staggered tonic loading protocols to simulate viscoelastic properties of the prenatal and postnatal myocardial stroma. This review will provide an overview of heart muscle mechanics, summarize observations on the role of mechanical loading for heart development and postnatal performance, and discuss how physiological loading regimens can be exploited to advance myocardial tissue engineering towards a therapeutic application.

  7. Biomechanical regulation of in vitro cardiogenesis for tissue-engineered heart repair

    PubMed Central

    2013-01-01

    The heart is a continuously pumping organ with an average lifespan of eight decades. It develops from the onset of embryonic cardiogenesis under biomechanical load, performs optimally within a defined range of hemodynamic load, and fails if acutely or chronically overloaded. Unloading of the heart leads to defective cardiogenesis in utero, but can also lead to a desired therapeutic outcome (for example, in patients with heart failure under left ventricular assist device therapy). In light of the well-documented relevance of mechanical loading for cardiac physiology and pathology, it is plausible that tissue engineers have integrated mechanical stimulation regimens into protocols for heart muscle construction. To achieve optimal results, physiological principles of beat-to-beat myocardial loading and unloading should be simulated. In addition, heart muscle engineering, in particular if based on pluripotent stem cell-derived cardiomyocytes, may benefit from staggered tonic loading protocols to simulate viscoelastic properties of the prenatal and postnatal myocardial stroma. This review will provide an overview of heart muscle mechanics, summarize observations on the role of mechanical loading for heart development and postnatal performance, and discuss how physiological loading regimens can be exploited to advance myocardial tissue engineering towards a therapeutic application. PMID:24229468

  8. Skeletal Muscle Satellite Cell Activation Following Cutaneous Burn in Rats

    DTIC Science & Technology

    2013-12-01

    satellite cell activation and survival during oxidative stress. J Muscle Res Cell Motil 2011;32(2):99–109. [33] Rathbone CR, Booth FW, Lees SJ. Sirt1 ...Skeletal muscle satellite cell activation following cutaneous burn in rats Xiaowu Wu*, Thomas J. Walters, Christopher R. Rathbone Extremity Trauma...f o Article history: Accepted 15 October 2012 Keywords: Muscle precursor cell Thermal injury Atrophy Skeletal muscle Activation a b s t r a c t

  9. Hyaluronidase 2 Deficiency Causes Increased Mesenchymal Cells, Congenital Heart Defects, and Heart Failure.

    PubMed

    Chowdhury, Biswajit; Xiang, Bo; Liu, Michelle; Hemming, Richard; Dolinsky, Vernon W; Triggs-Raine, Barbara

    2017-01-01

    Hyaluronan (HA) is required for endothelial-to-mesenchymal transition and normal heart development in the mouse. Heart abnormalities in hyaluronidase 2 (HYAL2)-deficient ( Hyal2 - /- ) mice and humans suggested removal of HA is also important for normal heart development. We have performed longitudinal studies of heart structure and function in Hyal2 -/- mice to determine when, and how, HYAL2 deficiency leads to these abnormalities. Echocardiography revealed atrial enlargement, atrial tissue masses, and valvular thickening at 4 weeks of age, as well as diastolic dysfunction that progressed with age, in Hyal2 -/- mice. These abnormalities were associated with increased HA, vimentin-positive cells, and fibrosis in Hyal2 -/- compared with control mice. Based on the severity of heart dysfunction, acute and chronic groups of Hyal2 -/- mice that died at an average of 12 and 25 weeks respectively, were defined. Increased HA levels and mesenchymal cells, but not vascular endothelial growth factor in Hyal2 -/- embryonic hearts, suggest that HYAL2 is important to inhibit endothelial-to-mesenchymal transition. Consistent with this, in wild-type embryos, HYAL2 and HA were readily detected, and HA levels decreased with age. These data demonstrate that disruption of normal HA catabolism in Hyal2 -/- mice causes increased HA, which may promote endothelial-to-mesenchymal transition and proliferation of mesenchymal cells. Excess endothelial-to-mesenchymal transition, resulting in increased mesenchymal cells, is the likely cause of morphological heart abnormalities in both humans and mice. In mice, these abnormalities result in progressive and severe diastolic dysfunction, culminating in heart failure. © 2016 The Authors.

  10. Overexpression of Striated Muscle Activator of Rho Signaling (STARS) Increases C2C12 Skeletal Muscle Cell Differentiation.

    PubMed

    Wallace, Marita A; Della Gatta, Paul A; Ahmad Mir, Bilal; Kowalski, Greg M; Kloehn, Joachim; McConville, Malcom J; Russell, Aaron P; Lamon, Séverine

    2016-01-01

    Skeletal muscle growth and regeneration depend on the activation of satellite cells, which leads to myocyte proliferation, differentiation and fusion with existing muscle fibers. Skeletal muscle cell proliferation and differentiation are tightly coordinated by a continuum of molecular signaling pathways. The striated muscle activator of Rho signaling (STARS) is an actin binding protein that regulates the transcription of genes involved in muscle cell growth, structure and function via the stimulation of actin polymerization and activation of serum-response factor (SRF) signaling. STARS mediates cell proliferation in smooth and cardiac muscle models; however, whether STARS overexpression enhances cell proliferation and differentiation has not been investigated in skeletal muscle cells. We demonstrate for the first time that STARS overexpression enhances differentiation but not proliferation in C2C12 mouse skeletal muscle cells. Increased differentiation was associated with an increase in the gene levels of the myogenic differentiation markers Ckm, Ckmt2 and Myh4, the differentiation factor Igf2 and the myogenic regulatory factors (MRFs) Myf5 and Myf6. Exposing C2C12 cells to CCG-1423, a pharmacological inhibitor of SRF preventing the nuclear translocation of its co-factor MRTF-A, had no effect on myotube differentiation rate, suggesting that STARS regulates differentiation via a MRTF-A independent mechanism. These findings position STARS as an important regulator of skeletal muscle growth and regeneration.

  11. Transcriptome analysis of cattle muscle identifies potential markers for skeletal muscle growth rate and major cell types.

    PubMed

    Guo, Bing; Greenwood, Paul L; Cafe, Linda M; Zhou, Guanghong; Zhang, Wangang; Dalrymple, Brian P

    2015-03-13

    This study aimed to identify markers for muscle growth rate and the different cellular contributors to cattle muscle and to link the muscle growth rate markers to specific cell types. The expression of two groups of genes in the longissimus muscle (LM) of 48 Brahman steers of similar age, significantly enriched for "cell cycle" and "ECM (extracellular matrix) organization" Gene Ontology (GO) terms was correlated with average daily gain/kg liveweight (ADG/kg) of the animals. However, expression of the same genes was only partly related to growth rate across a time course of postnatal LM development in two cattle genotypes, Piedmontese x Hereford (high muscling) and Wagyu x Hereford (high marbling). The deposition of intramuscular fat (IMF) altered the relationship between the expression of these genes and growth rate. K-means clustering across the development time course with a large set of genes (5,596) with similar expression profiles to the ECM genes was undertaken. The locations in the clusters of published markers of different cell types in muscle were identified and used to link clusters of genes to the cell type most likely to be expressing them. Overall correspondence between published cell type expression of markers and predicted major cell types of expression in cattle LM was high. However, some exceptions were identified: expression of SOX8 previously attributed to muscle satellite cells was correlated with angiogenesis. Analysis of the clusters and cell types suggested that the "cell cycle" and "ECM" signals were from the fibro/adipogenic lineage. Significant contributions to these signals from the muscle satellite cells, angiogenic cells and adipocytes themselves were not as strongly supported. Based on the clusters and cell type markers, sets of five genes predicted to be representative of fibro/adipogenic precursors (FAPs) and endothelial cells, and/or ECM remodelling and angiogenesis were identified. Gene sets and gene markers for the analysis of

  12. Cardiomyocyte-Specific Telomere Shortening is a Distinct Signature of Heart Failure in Humans.

    PubMed

    Sharifi-Sanjani, Maryam; Oyster, Nicholas M; Tichy, Elisia D; Bedi, Kenneth C; Harel, Ofer; Margulies, Kenneth B; Mourkioti, Foteini

    2017-09-07

    Telomere defects are thought to play a role in cardiomyopathies, but the specific cell type affected by the disease in human hearts is not yet identified. The aim of this study was to systematically evaluate the cell type specificity of telomere shortening in patients with heart failure in relation to their cardiac disease, age, and sex. We studied cardiac tissues from patients with heart failure by utilizing telomere quantitative fluorescence in situ hybridization, a highly sensitive method with single-cell resolution. In this study, total of 63 human left ventricular samples, including 37 diseased and 26 nonfailing donor hearts, were stained for telomeres in combination with cardiomyocyte- or α-smooth muscle cell-specific markers, cardiac troponin T, and smooth muscle actin, respectively, and assessed for telomere length. Patients with heart failure demonstrate shorter cardiomyocyte telomeres compared with nonfailing donors, which is specific only to cardiomyocytes within diseased human hearts and is associated with cardiomyocyte DNA damage. Our data further reveal that hypertrophic hearts with reduced ejection fraction exhibit the shortest telomeres. In contrast to other reported cell types, no difference in cardiomyocyte telomere length is evident with age. However, under the disease state, telomere attrition manifests in both young and older patients with cardiac hypertrophy. Finally, we demonstrate that cardiomyocyte-telomere length is better sustained in women than men under diseased conditions. This study provides the first evidence of cardiomyocyte-specific telomere shortening in heart failure. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  13. Molecular mechanism of emotional stress-induced and catecholamine-induced heart attack.

    PubMed

    Ueyama, Takashi; Senba, Emiko; Kasamatsu, Ken; Hano, Takuzo; Yamamoto, Katsuhiro; Nishio, Ichiro; Tsuruo, Yoshihiro; Yoshida, Ken-ichi

    2003-01-01

    Emotional or physical stress triggers 'tako-tsubo' cardiomyopathy or 'transient left ventricular apical ballooning', but the pathogenesis is unclear. In response to the immobilization stress of rats, a useful model of emotional stress, rapid activation of p44/p42 mitogen-activated protein kinase was observed in the heart, followed by a transient upregulation of immediate early genes in the smooth muscle cells of coronary arteries, the endothelial cells and the myocardium. Heat shock protein 70 was induced in the aortic and coronary arterial smooth muscle cells and in the myocardium. Natriuretic peptide genes were also upregulated in the myocardium. Sequential gene expression can be considered as an adaptive response to emotional stress. Blocking of both alpha-adrenoceptors and beta-adrenoceptors eliminated the upregulation of immediate early genes induced by stress, while alpha-agonists and beta-agonists upregulated immediate early genes in the perfused heart. Activation of alpha-adrenoceptors and beta-adrenoceptors is the primary trigger of emotional stress-induced molecular changes in the heart.

  14. Analysis of cardiac myosin binding protein-C phosphorylation in human heart muscle.

    PubMed

    Copeland, O'Neal; Sadayappan, Sakthivel; Messer, Andrew E; Steinen, Ger J M; van der Velden, Jolanda; Marston, Steven B

    2010-12-01

    A unique feature of MyBP-C in cardiac muscle is that it has multiple phosphorylation sites. MyBP-C phosphorylation, predominantly by PKA, plays an essential role in modulating contractility as part of the cellular response to β-adrenergic stimulation. In vitro studies indicate MyBP-C can be phosphorylated at Serine 273, 282, 302 and 307 (mouse sequence) but little is known about the level of MyBP-C phosphorylation or the sites phosphorylated in heart muscle. Since current methodologies are limited in specificity and are not quantitative we have investigated the use of phosphate affinity SDS-PAGE together with a total anti MyBP-C antibody and a range of phosphorylation site-specific antibodies for the main sites (Ser-273, -282 and -302). With these newly developed methods we have been able to make a detailed quantitative analysis of MyBP-C phosphorylation in heart tissue in situ. We have found that MyBP-C is highly phosphorylated in non-failing human (donor) heart or mouse heart; tris and tetra-phosphorylated species predominate and less than 10% of MyBP-C is unphosphorylated (0, 9.3 ± 1%: 1P, 13.4 ± 2.7%: 2P, 10.5 ± 3.3%: 3P, 28.7 ± 3.7%: 4P, 36.4 ± 2.7%, n=21). Total phosphorylation was 2.7 ± 0.07 mol Pi/mol MyBP-C. In contrast in failing heart and in myectomy samples from HCM patients the majority of MyBP-C was unphosphorylated. Total phosphorylation levels were 23% of normal in failing heart myofibrils (0, 60.1 ± 2.8%: 1P, 27.8 ± 2.8%: 2P, 4.8 ± 2.0%: 3P, 3.7 ± 1.2%: 4P, 2.8 ± 1.3%, n=19) and 39% of normal in myectomy samples. The site-specific antibodies showed a distinctive distribution pattern of phosphorylation sites in the multiple phosphorylation level species. We found that phosphorylated Ser-273, Ser-282 and Ser-302 were all present in the 4P band of MyBP-C but none of them were significant in the 1P band, indicating that there must be at least one other site of MyBP-C phosphorylation in human heart. The pattern of phosphorylation at the

  15. Latest aspects of aldosterone actions on the heart muscle.

    PubMed

    Kritis, A A; Gouta, C P; Liaretidou, E I; Kallaras, K I

    2016-02-01

    The genomic action of aldosterone has already been known to the scientific community and is well-documented to a satisfactory degree. However, the existence of rapid, non-genomic aldosterone actions has repeatedly been proven. These actions are apparent to a lot of tissues, among which the cardiac tissue, with the cardiac cells being responsible for the secretion of endogenous aldosterone. In the genomic pathway, the connection between the hormone and its receptor results increased reabsorption of sodium and water and excretion of potassium. Thus, the genomic procedure reacts indirectly on cardiovascular system by altering the blood pressure. New studies have shed light on unknown aspects of the non-genomic mechanism, which is sometimes performed by means of mineralocorticoid receptor (MR), while others through an MR-independent pathway. It is believed that aldosterone exerts its non-genomic action with the help of a different receptor, probably a G protein coupled receptor. A possible target is protein kinase C (PKC), and PKCε is postulated increase the permeability of the membrane of the cardiac cells to sodium, resulting in delayed repolarization and prolongation of action potential. These findings totally agree with and account for the serendipitous finding of our laboratory, that there is a positive correlation between plasma aldosterone levels and left ventricle (LV) contraction duration. Also, aldosterone has been proven to exacerbate the oxidative stress and induce vasoconstriction by acting on the vascular resistance and the cardiac output. Finally, this article deals with the role of aldosterone in cardiac fibrosis and the latest aspects of aldosterone actions on the heart muscle as well as providing a historical overview of the landmarks pertaining aldosterone's research.

  16. M-cadherin and its sisters in development of striated muscle.

    PubMed

    Kaufmann, U; Martin, B; Link, D; Witt, K; Zeitler, R; Reinhard, S; Starzinski-Powitz, A

    1999-04-01

    Cadherins are calcium-dependent, transmembrane intercellular adhesion proteins with morphoregulatory functions in the development and maintenance of tissues. In the development of striated muscle, the expression and function of mainly M-, N-, and R-cadherin has been studied so far. While these three cadherins are expressed in skeletal muscle cells, of these only N-cadherin is expressed in cardiac muscle. In this review, M-, N-, and R-cadherin are discussed as important players in the terminal differentiation and possibly also in the commitment of skeletal muscle cells. Furthermore, reports are described which evaluate the essential role of N-cadherin in the formation of heart tissue.

  17. Org-1-dependent lineage reprogramming generates the ventral longitudinal musculature of the Drosophila heart.

    PubMed

    Schaub, Christoph; März, Johannes; Reim, Ingolf; Frasch, Manfred

    2015-02-16

    Only few examples of transdifferentiation, which denotes the conversion of one differentiated cell type to another, are known to occur during normal development, and more often, it is associated with regeneration processes. With respect to muscles, dedifferentiation/redifferentiation processes have been documented during post-traumatic muscle regeneration in blastema of newts as well as during myocardial regeneration. As shown herein, the ventral longitudinal muscles of the adult Drosophila heart arise from specific larval alary muscles in a process that represents the first known example of syncytial muscle transdifferentiation via dedifferentiation into mononucleate myoblasts during normal development. We demonstrate that this unique process depends on the reinitiation of a transcriptional program previously employed for embryonic alary muscle development, in which the factors Org-1 (Drosophila Tbx1) and Tailup (Drosophila Islet1) are key components. During metamorphosis, the action of these factors is combined with cell-autonomous inputs from the ecdysone steroid and the Hox gene Ultrabithorax, which provide temporal and spatial specificity to the transdifferentiation events. Following muscle dedifferentiation, inductive cues, particularly from the remodeling heart tube, are required for the redifferentiation of myoblasts into ventral longitudinal muscles. Our results provide new insights into mechanisms of lineage commitment and cell-fate plasticity during development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Influence of locomotor muscle afferent inhibition on the ventilatory response to exercise in heart failure.

    PubMed

    Olson, Thomas P; Joyner, Michael J; Eisenach, John H; Curry, Timothy B; Johnson, Bruce D

    2014-02-01

    What is the central question of this study? Patients with heart failure often develop ventilatory abnormalities at rest and during exercise, but the mechanisms underlying these abnormalities remain unclear. This study investigated the influence of inhibiting afferent neural feedback from locomotor muscles on the ventilatory response during exercise in heart failure patients. What is the main finding and its importance? Our results suggest that inhibiting afferent feedback from locomotor muscle via intrathecal opioid administration significantly reduces the ventilatory response to exercise in heart failure patients. Patients with heart failure (HF) develop ventilatory abnormalities at rest and during exercise, but the mechanism(s) underlying these abnormalities remain unclear. We examined whether the inhibition of afferent neural feedback from locomotor muscles during exercise reduces exercise ventilation in HF patients. In a randomized, placebo-controlled design, nine HF patients (age, 60 ± 2 years; ejection fraction, 27 ± 2%; New York Heart Association class 2 ± 1) and nine control subjects (age, 63 ± 2 years) underwent constant-work submaximal cycling (65% peak power) with intrathecal fentanyl (impairing the cephalad projection of opioid receptor-sensitive afferents) or sham injection. The hypercapnic ventilatory response was measured to determine whether cephalad migration of fentanyl occurred. There were no differences in hypercapnic ventilatory response within or between groups in either condition. Despite a lack of change in ventilation, tidal volume or respiratory rate, HF patients had a mild increase in arterial carbon dioxide (P(aCO(2)) and a decrease in oxygen (P(aO(2)); P < 0.05 for both) at rest. The control subjects demonstrated no change in P(aCO(2)), P(aO(2)), ventilation, tidal volume or respiratory rate at rest. In response to fentanyl during exercise, HF patients had a reduction in ventilation (63 ± 6 versus 44 ± 3 l min(-1), P < 0.05) due

  19. Mechanical signaling coordinates the embryonic heart

    NASA Astrophysics Data System (ADS)

    Chiou, Kevin; Rocks, Jason; Prosser, Benjamin; Discher, Dennis; Liu, Andrea

    The heart is an active material which relies on robust signaling mechanisms between cells in order to produce well-timed, coordinated beats. Heart tissue is composed primarily of active heart muscle cells (cardiomyocytes) embedded in a passive extracellular matrix. During a heartbeat, cardiomyocyte contractions are coordinated across the heart to form a wavefront that propagates through the tissue to pump blood. In the adult heart, this contractile wave is coordinated via intercellular electrical signaling.Here we present theoretical and experimental evidence for mechanical coordination of embryonic heartbeats. We model cardiomyocytes as mechanically excitable Eshelby inclusions embedded in an overdamped elastic-fluid biphasic medium. For physiological parameters, this model replicates recent experimental measurements of the contractile wavefront which are not captured by electrical signaling models. We additionally challenge our model by pharmacologically blocking gap junctions, inhibiting electrical signaling between myocytes. We find that while adult hearts stop beating almost immediately after gap junctions are blocked, embryonic hearts continue beating even at significantly higher concentrations, providing strong support for a mechanical signaling mechanism.

  20. Single-Cell Resolution of Temporal Gene Expression during Heart Development.

    PubMed

    DeLaughter, Daniel M; Bick, Alexander G; Wakimoto, Hiroko; McKean, David; Gorham, Joshua M; Kathiriya, Irfan S; Hinson, John T; Homsy, Jason; Gray, Jesse; Pu, William; Bruneau, Benoit G; Seidman, J G; Seidman, Christine E

    2016-11-21

    Activation of complex molecular programs in specific cell lineages governs mammalian heart development, from a primordial linear tube to a four-chamber organ. To characterize lineage-specific, spatiotemporal developmental programs, we performed single-cell RNA sequencing of >1,200 murine cells isolated at seven time points spanning embryonic day 9.5 (primordial heart tube) to postnatal day 21 (mature heart). Using unbiased transcriptional data, we classified cardiomyocytes, endothelial cells, and fibroblast-enriched cells, thus identifying markers for temporal and chamber-specific developmental programs. By harnessing these datasets, we defined developmental ages of human and mouse pluripotent stem-cell-derived cardiomyocytes and characterized lineage-specific maturation defects in hearts of mice with heterozygous mutations in Nkx2.5 that cause human heart malformations. This spatiotemporal transcriptome analysis of heart development reveals lineage-specific gene programs underlying normal cardiac development and congenital heart disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Single Cell Gene Expression Profiling of Skeletal Muscle-Derived Cells.

    PubMed

    Gatto, Sole; Puri, Pier Lorenzo; Malecova, Barbora

    2017-01-01

    Single cell gene expression profiling is a fundamental tool for studying the heterogeneity of a cell population by addressing the phenotypic and functional characteristics of each cell. Technological advances that have coupled microfluidic technologies with high-throughput quantitative RT-PCR analyses have enabled detailed analyses of single cells in various biological contexts. In this chapter, we describe the procedure for isolating the skeletal muscle interstitial cells termed Fibro-Adipogenic Progenitors (FAPs ) and their gene expression profiling at the single cell level. Moreover, we accompany our bench protocol with bioinformatics analysis designed to process raw data as well as to visualize single cell gene expression data. Single cell gene expression profiling is therefore a useful tool in the investigation of FAPs heterogeneity and their contribution to muscle homeostasis.

  2. Heart-specific expression of laminopathic mutations in transgenic zebrafish.

    PubMed

    Verma, Ajay D; Parnaik, Veena K

    2017-07-01

    Lamins are key determinants of nuclear organization and function in the metazoan nucleus. Mutations in human lamin A cause a spectrum of genetic diseases that affect cardiac muscle and skeletal muscle as well as other tissues. A few laminopathies have been modeled using the mouse. As zebrafish is a well established model for the study of cardiac development and disease, we have investigated the effects of heart-specific lamin A mutations in transgenic zebrafish. We have developed transgenic lines of zebrafish expressing conserved lamin A mutations that cause cardiac dysfunction in humans. Expression of zlamin A mutations Q291P and M368K in the heart was driven by the zebrafish cardiac troponin T2 promoter. Homozygous mutant embryos displayed nuclear abnormalities in cardiomyocyte nuclei. Expression analysis showed the upregulation of genes involved in heart regeneration in transgenic mutant embryos and a cell proliferation marker was increased in adult heart tissue. At the physiological level, there was deviation of up to 20% from normal heart rate in transgenic embryos expressing mutant lamins. Adult homozygous zebrafish were fertile and did not show signs of early mortality. Our results suggest that transgenic zebrafish models of heart-specific laminopathies show cardiac regeneration and moderate deviations in heart rate during embryonic development. © 2017 International Federation for Cell Biology.

  3. Isolation of Primary Human Skeletal Muscle Cells

    PubMed Central

    Spinazzola, Janelle M.; Gussoni, Emanuela

    2017-01-01

    Primary myoblast culture is a valuable tool in research of muscle disease, pathophysiology, and pharmacology. This protocol describes techniques for dissociation of cells from human skeletal muscle biopsies and enrichment for a highly myogenic population by fluorescence-activated cell sorting (FACS). We also describe methods for assessing myogenicity and population expansion for subsequent in vitro study. PMID:29152538

  4. Semicarbazide-sensitive amine oxidase and extracellular matrix deposition by smooth-muscle cells

    NASA Technical Reports Server (NTRS)

    Langford, Shannon D.; Trent, Margaret B.; Boor, Paul J.

    2002-01-01

    We have recently reported in vivo disruption of collagen and elastin architecture within blood vessel walls resulting from the selective inhibition of the enzyme semicarbazide-sensitive amine oxidase (SSAO). This study further investigates the effects of SSAO inhibition on extracellular matrix deposition by smooth-muscle cells (SMCs) cultured from neonatal rat hearts. SMCs were characterized, SSAO activity was measured, and soluble and insoluble collagen and elastin in the extracellular matrix (ECM) were quantified. Cultured neonatal rat heart SMC exhibited a monotypic synthetic phenotype that likely represents a myofibroblast. Detectable levels of SSAO activity present throughout 30-d culture peaked at 7-14 d, coinciding with the production of ECM. The addition of enzyme inhibitors and alternate SSAO substrates (benzylamine) produced varied and, in some cases, marked changes in SSAO activity as well as in the composition of mature and soluble matrix components. Similar to our previous in vivo findings, in vitro SSAO inhibition produced aberrations in collagen and elastin deposition by heart SMC. Because changes in SSAO activity are associated with cardiovascular pathologic states, this enzyme may play a protective or modulating role by regulating ECM production during pathologic insult.

  5. Regenerative Medicine for the Heart: Perspectives on Stem-Cell Therapy

    PubMed Central

    Cho, Gun-Sik; Fernandez, Laviel

    2014-01-01

    Abstract Significance: Despite decades of progress in cardiovascular biology and medicine, heart disease remains the leading cause of death, and there is no cure for the failing heart. Since heart failure is mostly caused by loss or dysfunction of cardiomyocytes (CMs), replacing dead or damaged CMs with new CMs might be an ideal way to reverse the disease. However, the adult heart is composed mainly of terminally differentiated CMs that have no significant self-regeneration capacity. Recent Advances: Stem cells have tremendous regenerative potential and, thus, current cardiac regenerative research has focused on developing stem cell sources to repair damaged myocardium. Critical Issues: In this review, we examine the potential sources of cells that could be used for heart therapies, including embryonic stem cells and induced pluripotent stem cells, as well as alternative methods for activating the endogenous regenerative mechanisms of the heart via transdifferentiation and cell reprogramming. We also discuss the current state of knowledge of cell purification, delivery, and retention. Future Directions: Efforts are underway to improve the current stem cell strategies and methodologies, which will accelerate the development of innovative stem-cell therapies for heart regeneration. Antioxid. Redox Signal. 21, 2018–2031. PMID:25133793

  6. A Cycle Ergometer Exercise Program Improves Exercise Capacity and Inspiratory Muscle Function in Hospitalized Patients Awaiting Heart Transplantation: a Pilot Study

    PubMed Central

    Forestieri, Patrícia; Guizilini, Solange; Peres, Monique; Bublitz, Caroline; Bolzan, Douglas W.; Rocco, Isadora S.; Santos, Vinícius B.; Moreira, Rita Simone L.; Breda, João R.; de Almeida, Dirceu R.; Carvalho, Antonio Carlos de C.; Arena, Ross; Gomes, Walter J.

    2016-01-01

    Objective The purpose of this study was to evaluate the effect of a cycle ergometer exercise program on exercise capacity and inspiratory muscle function in hospitalized patients with heart failure awaiting heart transplantation with intravenous inotropic support. Methods Patients awaiting heart transplantation were randomized and allocated prospectively into two groups: 1) Control Group (n=11) - conventional protocol; and 2) Intervention Group (n=7) - stationary cycle ergometer exercise training. Functional capacity was measured by the six-minute walk test and inspiratory muscle strength assessed by manovacuometry before and after the exercise protocols. Results Both groups demonstrated an increase in six-minute walk test distance after the experimental procedure compared to baseline; however, only the intervention group had a significant increase (P=0.08 and P=0.001 for the control and intervention groups, respectively). Intergroup comparison revealed a greater increase in the intervention group compared to the control (P<0.001). Regarding the inspiratory muscle strength evaluation, the intragroup analysis demonstrated increased strength after the protocols compared to baseline for both groups; statistical significance was only demonstrated for the intervention group, though (P=0.22 and P<0.01, respectively). Intergroup comparison showed a significant increase in the intervention group compared to the control (P<0.01). Conclusion Stationary cycle ergometer exercise training shows positive results on exercise capacity and inspiratory muscle strength in patients with heart failure awaiting cardiac transplantation while on intravenous inotropic support. PMID:27982348

  7. Exercise training decreases NADPH oxidase activity and restores skeletal muscle mass in heart failure rats.

    PubMed

    Cunha, Telma F; Bechara, Luiz R G; Bacurau, Aline V N; Jannig, Paulo R; Voltarelli, Vanessa A; Dourado, Paulo M; Vasconcelos, Andrea R; Scavone, Cristóforo; Ferreira, Júlio C B; Brum, Patricia C

    2017-04-01

    We have recently demonstrated that NADPH oxidase hyperactivity, NF-κB activation, and increased p38 phosphorylation lead to atrophy of glycolytic muscle in heart failure (HF). Aerobic exercise training (AET) is an efficient strategy to counteract skeletal muscle atrophy in this syndrome. Therefore, we tested whether AET would regulate muscle redox balance and protein degradation by decreasing NADPH oxidase hyperactivity and reestablishing NF-κB signaling, p38 phosphorylation, and proteasome activity in plantaris muscle of myocardial infarcted-induced HF (MI) rats. Thirty-two male Wistar rats underwent MI or fictitious surgery (SHAM) and were randomly assigned into untrained (UNT) and trained (T; 8 wk of AET on treadmill) groups. AET prevented HF signals and skeletal muscle atrophy in MI-T, which showed an improved exercise tolerance, attenuated cardiac dysfunction and increased plantaris fiber cross-sectional area. To verify the role of inflammation and redox imbalance in triggering protein degradation, circulating TNF-α levels, NADPH oxidase profile, NF-κB signaling, p38 protein levels, and proteasome activity were assessed. MI-T showed a reduced TNF-α levels, NADPH oxidase activity, and Nox2 mRNA expression toward SHAM-UNT levels. The rescue of NADPH oxidase activity induced by AET in MI rats was paralleled by reducing nuclear binding activity of the NF-κB, p38 phosphorylation, atrogin-1, mRNA levels, and 26S chymotrypsin-like proteasome activity. Taken together our data provide evidence for AET improving plantaris redox homeostasis in HF associated with a decreased NADPH oxidase, redox-sensitive proteins activation, and proteasome hyperactivity further preventing atrophy. These data reinforce the role of AET as an efficient therapy for muscle wasting in HF. NEW & NOTEWORTHY This study demonstrates, for the first time, the contribution of aerobic exercise training (AET) in decreasing muscle NADPH oxidase activity associated with reduced reactive oxygen

  8. Comparison of transcriptomic responses to pancreas disease (PD) and heart and skeletal muscle inflammation (HSMI) in heart of Atlantic salmon (Salmo salar L).

    PubMed

    Johansen, Lill-Heidi; Thim, Hanna L; Jørgensen, Sven Martin; Afanasyev, Sergey; Strandskog, Guro; Taksdal, Torunn; Fremmerlid, Kjersti; McLoughlin, Marion; Jørgensen, Jorunn B; Krasnov, Aleksei

    2015-10-01

    Pancreas disease (PD) and heart and skeletal muscle inflammation (HSMI) are viral diseases associated with SAV (salmonid alphavirus) and PRV (piscine reovirus), which induce systemic infections and pathologies in cardiac and skeletal muscle tissue of farmed Atlantic salmon (Salmo salar L), resulting in severe morbidity and mortality. While general features of the clinical symptoms and pathogenesis of salmonid viral diseases are relatively well studied, much less is known about molecular mechanisms associated with immunity and disease-specific changes. In this study, transcriptomic analyses of heart tissue from PD and HSMI challenged Atlantic salmon were done, focusing on the mature phases of both diseases at respectively 28-35 and 42-77 days post infection. A large number of immune genes was activated in both trials with prevalence of genes associated with early innate antiviral responses, their expression levels being slightly higher in PD challenged fish. Activation of the IFN axis was in parallel with inflammatory changes that involved diverse humoral and cellular factors. Adaptive immune response genes were more pronounced in fish with HSMI, as suggested by increased expression of a large number of genes associated with differentiation and maturation of B lymphocytes and cytotoxic T cells. A similar down-regulation of non-immune genes such as myofiber and mitochondrial proteins between diseases was most likely reflecting myocardial pathology. A suite of genes important for cardiac function including B-type natriuretic peptide and four neuropeptides displayed differential expression between PD and HSMI. Comparison of results revealed common and distinct features and added to the understanding of both diseases at their mature phases with typical clinical pictures. A number of genes that showed disease-specific changes can be of interest for diagnostics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. The Impact of Aerobic Exercise on the Muscle Stem Cell Response.

    PubMed

    Joanisse, Sophie; Snijders, Tim; Nederveen, Joshua P; Parise, Gianni

    2018-04-16

    Satellite cells are indispensable for skeletal muscle repair and regeneration and are associated with muscle growth in humans. Aerobic exercise training results in improved skeletal muscle health also translating to an increase in satellite cell pool activation. We postulate that aerobic exercise improves satellite cell function in skeletal muscle.

  10. Kinetics of a single cross-bridge in familial hypertrophic cardiomyopathy heart muscle measured by reverse Kretschmann fluorescence

    PubMed Central

    Mettikolla, Prasad; Calander, Nils; Luchowski, Rafal; Gryczynski, Ignacy; Gryczynski, Zygmunt; Borejdo, Julian

    2010-01-01

    Familial hypertrophic cardiomyopathy (FHC) is a serious heart disease that often leads to a sudden cardiac death of young athletes. It is believed that the alteration of the kinetics of interaction between actin and myosin causes FHC by making the heart to pump blood inefficiently. We set out to check this hypothesis ex vivo. During contraction of heart muscle, a myosin cross-bridge imparts periodic force impulses to actin. The impulses are analyzed by fluorescence correlation spectroscopy (FCS) of fluorescently labeled actin. To minimize observation volume and background fluorescence, we carry out FCS measurements in surface plasmon coupled emission mode in a reverse Kretschmann configuration. Fluorescence is a result of near-field coupling of fluorophores excited in the vicinity of the metal-coated surface of a coverslip with the surface plasmons propagating in the metal. Surface plasmons decouple on opposite sides of the metal film and emit in a directional manner as far-field p-polarized radiation. We show that the rate of changes of orientation is significantly faster in contracting cardiac myofibrils of transgenic mice than wild type. These results are consistent with the fact that mutated heart muscle myosin translates actin faster in in vitro motility assays. PMID:20210485

  11. Heart Failure as an Aging-Related Phenotype.

    PubMed

    Morita, Hiroyuki; Komuro, Issei

    2018-01-27

    The molecular pathophysiology of heart failure, which is one of the leading causes of mortality, is not yet fully understood. Heart failure can be regarded as a systemic syndrome of aging-related phenotypes. Wnt/β-catenin signaling and the p53 pathway, both of which are key regulators of aging, have been demonstrated to play a critical role in the pathogenesis of heart failure. Circulating C1q was identified as a novel activator of Wnt/β-catenin signaling, promoting systemic aging-related phenotypes including sarcopenia and heart failure. On the other hand, p53 induces the apoptosis of cardiomyocytes in the failing heart. In these molecular mechanisms, the cross-talk between cardiomyocytes and non-cardiomyocytes (e,g,. endothelial cells, fibroblasts, smooth muscle cells, macrophages) deserves mentioning. In this review, we summarize recent advances in the understanding of the molecular pathophysiology underlying heart failure, focusing on Wnt/β-catenin signaling and the p53 pathway.

  12. Induction of cardiomyocyte-like cells in infarct hearts by gene transfer of Gata4, Mef2c, and Tbx5.

    PubMed

    Inagawa, Kohei; Miyamoto, Kazutaka; Yamakawa, Hiroyuki; Muraoka, Naoto; Sadahiro, Taketaro; Umei, Tomohiko; Wada, Rie; Katsumata, Yoshinori; Kaneda, Ruri; Nakade, Koji; Kurihara, Chitose; Obata, Yuichi; Miyake, Koichi; Fukuda, Keiichi; Ieda, Masaki

    2012-10-12

    After myocardial infarction (MI), massive cell death in the myocardium initiates fibrosis and scar formation, leading to heart failure. We recently found that a combination of 3 cardiac transcription factors, Gata4, Mef2c, and Tbx5 (GMT), reprograms fibroblasts directly into functional cardiomyocytes in vitro. To investigate whether viral gene transfer of GMT into infarcted hearts induces cardiomyocyte generation. Coronary artery ligation was used to generate MI in the mouse. In vitro transduction of GMT retrovirus converted cardiac fibroblasts from the infarct region into cardiomyocyte-like cells with cardiac-specific gene expression and sarcomeric structures. Injection of the green fluorescent protein (GFP) retrovirus into mouse hearts, immediately after MI, infected only proliferating noncardiomyocytes, mainly fibroblasts, in the infarct region. The GFP expression diminished after 2 weeks in immunocompetent mice but remained stable for 3 months in immunosuppressed mice, in which cardiac induction did not occur. In contrast, injection of GMT retrovirus into α-myosin heavy chain (αMHC)-GFP transgenic mouse hearts induced the expression of αMHC-GFP, a marker of cardiomyocytes, in 3% of virus-infected cells after 1 week. A pooled GMT injection into the immunosuppressed mouse hearts induced cardiac marker expression in retrovirus-infected cells within 2 weeks, although few cells showed striated muscle structures. To transduce GMT efficiently in vivo, we generated a polycistronic retrovirus expressing GMT separated by 2A "self-cleaving" peptides (3F2A). The 3F2A-induced cardiomyocyte-like cells in fibrotic tissue expressed sarcomeric α-actinin and cardiac troponin T and had clear cross striations. Quantitative RT-PCR also demonstrated that FACS-sorted 3F2A-transduced cells expressed cardiac-specific genes. GMT gene transfer induced cardiomyocyte-like cells in infarcted hearts.

  13. Development of a nitric oxide-releasing analogue of the muscle relaxant guaifenesin for skeletal muscle satellite cell myogenesis.

    PubMed

    Wang, Guqi; Burczynski, Frank J; Hasinoff, Brian B; Zhang, Kaidong; Lu, Qilong; Anderson, Judy E

    2009-01-01

    Nitric oxide (NO) mediates activation of satellite precursor cells to enter the cell cycle. This provides new precursor cells for skeletal muscle growth and muscle repair from injury or disease. Targeting a new drug that specifically delivers NO to muscle has the potential to promote normal function and treat neuromuscular disease, and would also help to avoid side effects of NO from other treatment modalities. In this research, we examined the effectiveness of the NO donor, iosorbide dinitrate (ISDN), and a muscle relaxant, methocarbamol, in promoting satellite cell activation assayed by muscle cell DNA synthesis in normal adult mice. The work led to the development of guaifenesin dinitrate (GDN) as a new NO donor for delivering nitric oxide to muscle. The results revealed that there was a strong increase in muscle satellite cell activation and proliferation, demonstrated by a significant 38% rise in DNA synthesis after a single transdermal treatment with the new compound for 24 h. Western blot and immunohistochemistry analyses showed that the markers of satellite cell myogenesis, expression of myf5, myogenin, and follistatin, were increased after 24 h oral administration of the compound in adult mice. This research extends our understanding of the outcomes of NO-based treatments aimed at promoting muscle regeneration in normal tissue. The potential use of such treatment for conditions such as muscle atrophy in disuse and aging, and for the promotion of muscle tissue repair as required after injury or in neuromuscular diseases such as muscular dystrophy, is highlighted.

  14. Stimulation of aortic smooth muscle cell mitogenesis by serotonin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemecek, G.M.; Coughlin, S.R.; Handley, D.A.

    1986-02-01

    Bovine aortic smooth muscle cells in vitro responded to 1 nM to 10 ..mu..M serotonin with increased incorporation of (/sup 3/H)thymidine into DNA. The mitogenic effect of serotonin was half-maximal at 80 nM and maximal above 1 ..mu..M. At a concentration of 1 ..mu..M, serotonin stimulated smooth muscle cell mitogenesis to the same extent as human platelet-derived growth factor (PDGF) at 12 ng/ml. Tryptamine was approx. = 1/10th as potent as serotonin as a mitogen for smooth muscle cells. Other indoles that are structurally related to serotonin (D- and L-tryptophan, 5-hydroxy-L-tryptophan, N-acetyl-5-hydroxytryptamine, melatonin, 5-hydroxyindoleacetic acid, and 5-hydroxytryptophol) and quipazine weremore » inactive. The stimulatory effect of serotonin on smooth muscle cell DNA synthesis required prolonged (20-24 hr) exposure to the agonist and was attenuated in the presence of serotonin D receptor antagonists. When smooth muscle cells were incubated with submaximal concentrations of serotonin and PDGF, synergistic rather than additive mitogenic responses were observed. These data indicate that serotonin has a significant mitogenic effect on smooth muscle cells in vitro, which appears to be mediated by specific plasma membrane receptors.« less

  15. Efficient Generation of iPS Cells from Skeletal Muscle Stem Cells

    PubMed Central

    Tan, Kah Yong; Eminli, Sarah; Hettmer, Simone; Hochedlinger, Konrad; Wagers, Amy J.

    2011-01-01

    Reprogramming of somatic cells into inducible pluripotent stem cells generally occurs at low efficiency, although what limits reprogramming of particular cell types is poorly understood. Recent data suggest that the differentiation status of the cell targeted for reprogramming may influence its susceptibility to reprogramming as well as the differentiation potential of the induced pluripotent stem (iPS) cells that are derived from it. To assess directly the influence of lineage commitment on iPS cell derivation and differentiation, we evaluated reprogramming in adult stem cell and mature cell populations residing in skeletal muscle. Our data using clonal assays and a second-generation inducible reprogramming system indicate that stem cells found in mouse muscle, including resident satellite cells and mesenchymal progenitors, reprogram with significantly greater efficiency than their more differentiated daughters (myoblasts and fibroblasts). However, in contrast to previous reports, we find no evidence of biased differentiation potential among iPS cells derived from myogenically committed cells. These data support the notion that adult stem cells reprogram more efficiently than terminally differentiated cells, and argue against the suggestion that “epigenetic memory” significantly influences the differentiation potential of iPS cells derived from distinct somatic cell lineages in skeletal muscle. PMID:22028872

  16. Human Satellite Cell Transplantation and Regeneration from Diverse Skeletal Muscles

    PubMed Central

    Xu, Xiaoti; Wilschut, Karlijn J.; Kouklis, Gayle; Tian, Hua; Hesse, Robert; Garland, Catharine; Sbitany, Hani; Hansen, Scott; Seth, Rahul; Knott, P. Daniel; Hoffman, William Y.; Pomerantz, Jason H.

    2015-01-01

    Summary Identification of human satellite cells that fulfill muscle stem cell criteria is an unmet need in regenerative medicine. This hurdle limits understanding how closely muscle stem cell properties are conserved among mice and humans and hampers translational efforts in muscle regeneration. Here, we report that PAX7 satellite cells exist at a consistent frequency of 2–4 cells/mm of fiber in muscles of the human trunk, limbs, and head. Xenotransplantation into mice of 50–70 fiber-associated, or 1,000–5,000 FACS-enriched CD56+/CD29+ human satellite cells led to stable engraftment and formation of human-derived myofibers. Human cells with characteristic PAX7, CD56, and CD29 expression patterns populated the satellite cell niche beneath the basal lamina on the periphery of regenerated fibers. After additional injury, transplanted satellite cells robustly regenerated to form hundreds of human-derived fibers. Together, these findings conclusively delineate a source of bona-fide endogenous human muscle stem cells that will aid development of clinical applications. PMID:26352798

  17. Matrix metalloproteinase inhibition negatively affects muscle stem cell behavior

    PubMed Central

    Bellayr, Ian; Holden, Kyle; Mu, Xiaodong; Pan, Haiying; Li, Yong

    2013-01-01

    Skeletal muscle is a large and complex system that is crucial for structural support, movement and function. When injured, the repair of skeletal muscle undergoes three phases: inflammation and degeneration, regeneration and fibrosis formation in severe injuries. During fibrosis formation, muscle healing is impaired because of the accumulation of excess collagen. A group of zinc-dependent endopeptidases that have been found to aid in the repair of skeletal muscle are matrix metalloproteinases (MMPs). MMPs are able to assist in tissue remodeling through the regulation of extracellular matrix (ECM) components, as well as contributing to cell migration, proliferation, differentiation and angiogenesis. In the present study, the effect of GM6001, a broad-spectrum MMP inhibitor, on muscle-derived stem cells (MDSCs) is investigated. We find that MMP inhibition negatively impacts skeletal muscle healing by impairing MDSCs in migratory and multiple differentiation abilities. These results indicate that MMP signaling plays an essential role in the wound healing of muscle tissue because their inhibition is detrimental to stem cells residing in skeletal muscle. PMID:23329998

  18. Requirement of myomaker-mediated stem cell fusion for skeletal muscle hypertrophy.

    PubMed

    Goh, Qingnian; Millay, Douglas P

    2017-02-10

    Fusion of skeletal muscle stem/progenitor cells is required for proper development and regeneration, however the significance of this process during adult muscle hypertrophy has not been explored. In response to muscle overload after synergist ablation in mice, we show that myomaker, a muscle specific membrane protein essential for myoblast fusion, is activated mainly in muscle progenitors and not myofibers. We rendered muscle progenitors fusion-incompetent through genetic deletion of myomaker in muscle stem cells and observed a complete reduction of overload-induced hypertrophy. This blunted hypertrophic response was associated with a reduction in Akt and p70s6k signaling and protein synthesis, suggesting a link between myonuclear accretion and activation of pro-hypertrophic pathways. Furthermore, fusion-incompetent muscle exhibited increased fibrosis after muscle overload, indicating a protective role for normal stem cell activity in reducing myofiber strain associated with hypertrophy. These findings reveal an essential contribution of myomaker-mediated stem cell fusion during physiological adult muscle hypertrophy.

  19. The Small Muscle-Specific Protein Csl Modifies Cell Shape and Promotes Myocyte Fusion in an Insulin-like Growth Factor 1–Dependent Manner

    PubMed Central

    Palmer, Steve; Groves, Nicola; Schindeler, Aaron; Yeoh, Thomas; Biben, Christine; Wang, Cheng-Chun; Sparrow, Duncan B.; Barnett, Louise; Jenkins, Nancy A.; Copeland, Neal G.; Koentgen, Frank; Mohun, Tim; Harvey, Richard P.

    2001-01-01

    We have isolated a murine cDNA encoding a 9-kD protein, Chisel (Csl), in a screen for transcriptional targets of the cardiac homeodomain factor Nkx2-5. Csl transcripts were detected in atria and ventricles of the heart and in all skeletal muscles and smooth muscles of the stomach and pulmonary veins. Csl protein was distributed throughout the cytoplasm in fetal muscles, although costameric and M-line localization to the muscle cytoskeleton became obvious after further maturation. Targeted disruption of Csl showed no overt muscle phenotype. However, ectopic expression in C2C12 myoblasts induced formation of lamellipodia in which Csl protein became tethered to membrane ruffles. Migration of these cells was retarded in a monolayer wound repair assay. Csl-expressing myoblasts differentiated and fused normally, although in the presence of insulin-like growth factor (IGF)-1 they showed dramatically enhanced fusion, leading to formation of large dysmorphogenic “myosacs.” The activities of transcription factors nuclear factor of activated T cells (NFAT) and myocyte enhancer–binding factor (MEF)2, were also enhanced in an IGF-1 signaling–dependent manner. The dynamic cytoskeletal localization of Csl and its dominant effects on cell shape and behavior and transcription factor activity suggest that Csl plays a role in the regulatory network through which muscle cells coordinate their structural and functional states during growth, adaptation, and repair. PMID:11381084

  20. Design of a muscle cell-specific expression vector utilising human vascular smooth muscle alpha-actin regulatory elements.

    PubMed

    Keogh, M C; Chen, D; Schmitt, J F; Dennehy, U; Kakkar, V V; Lemoine, N R

    1999-04-01

    The facility to direct tissue-specific expression of therapeutic gene constructs is desirable for many gene therapy applications. We describe the creation of a muscle-selective expression vector which supports transcription in vascular smooth muscle, cardiac muscle and skeletal muscle, while it is essentially silent in other cell types such as endothelial cells, hepatocytes and fibroblasts. Specific transcriptional regulatory elements have been identified in the human vascular smooth muscle cell (VSMC) alpha-actin gene, and used to create an expression vector which directs the expression of genes in cis to muscle cells. The vector contains an enhancer element we have identified in the 5' flanking region of the human VSMC alpha-actin gene involved in mediating VSMC expression. Heterologous pairing experiments have shown that the enhancer does not interact with the basal transcription complex recruited at the minimal SV40 early promoter. Such a vector has direct application in the modulation of VSMC proliferation associated with intimal hyperplasia/restenosis.

  1. Skeletal muscle stem cells from animals I. Basic cell biology

    USDA-ARS?s Scientific Manuscript database

    Skeletal muscle stem cells from food-producing animals have been of interest to agricultural life scientists seeking to develop a better understanding of the molecular regulation of lean tissue (skeletal muscle protein hypertrophy) and intramuscular fat (marbling) development. Enhanced understanding...

  2. [Significance of insulin resistance in the pathogenesis of sarcopenia and chronic heart failure in elderly hypertensive patients].

    PubMed

    Gorshunova, N K; Medvedev, N V

    2016-01-01

    To determine the pathogenic role of insulin resistance in the formation of involutive sarcopenia and chronic heart failure (CHF) were examined 88 elderly patients with arterial hypertension (AH) and 32 elderly patients without cardiovascular disease by methods of carbohydrate metabolism and the level of brain natriuretic peptide precursor evaluation, muscle mass and strength measuring, echocardiography, 6 minute walking test. It was found that in the group of hypertensive patients with low mass and muscle strength significantly increased indices of insulin resistance and more expressed signs of the left ventricle myocardial dysfunction and functional class of heart failure, probably as a result of disorders of energy homeostasis, resulting from the deterioration of glucose into the muscle cells of the heart and skeletal muscles.

  3. Drosophila heart cell movement to the midline occurs through both cell autonomous migration and dorsal closure.

    PubMed

    Haack, Timm; Schneider, Matthias; Schwendele, Bernd; Renault, Andrew D

    2014-12-15

    The Drosophila heart is a linear organ formed by the movement of bilaterally specified progenitor cells to the midline and adherence of contralateral heart cells. This movement occurs through the attachment of heart cells to the overlying ectoderm which is undergoing dorsal closure. Therefore heart cells are thought to move to the midline passively. Through live imaging experiments and analysis of mutants that affect the speed of dorsal closure we show that heart cells in Drosophila are autonomously migratory and part of their movement to the midline is independent of the ectoderm. This means that heart formation in flies is more similar to that in vertebrates than previously thought. We also show that defects in dorsal closure can result in failure of the amnioserosa to properly degenerate, which can physically hinder joining of contralateral heart cells leading to a broken heart phenotype. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Protein Availability and Satellite Cell Dynamics in Skeletal Muscle.

    PubMed

    Shamim, Baubak; Hawley, John A; Camera, Donny M

    2018-06-01

    Human skeletal muscle satellite cells are activated in response to both resistance and endurance exercise. It was initially proposed that satellite cell proliferation and differentiation were only required to support resistance exercise-induced hypertrophy. However, satellite cells may also play a role in muscle fibre remodelling after endurance-based exercise and extracellular matrix regulation. Given the importance of dietary protein, particularly branched chain amino acids, in supporting myofibrillar and mitochondrial adaptations to both resistance and endurance-based training, a greater understanding of how protein intake impacts satellite cell activity would provide further insight into the mechanisms governing skeletal muscle remodelling with exercise. While many studies have investigated the capacity for protein ingestion to increase post-exercise rates of muscle protein synthesis, few investigations have examined the role for protein ingestion to modulate satellite cell activity. Here we review the molecular mechanisms controlling the activation of satellite cells in response to mechanical stress and protein intake in both in vitro and in vivo models. We provide a mechanistic framework that describes how protein ingestion may enhance satellite activity and promote exercise adaptations in human skeletal muscle.

  5. Characterization of Epicardial-Derived Cardiac Interstitial Cells: Differentiation and Mobilization of Heart Fibroblast Progenitors

    PubMed Central

    Ehrbar, Martin; Pérez-Pomares, José M.

    2013-01-01

    The non-muscular cells that populate the space found between cardiomyocyte fibers are known as ‘cardiac interstitial cells’ (CICs). CICs are heterogeneous in nature and include different cardiac progenitor/stem cells, cardiac fibroblasts and other cell types. Upon heart damage CICs soon respond by initiating a reparative response that transforms with time into extensive fibrosis and heart failure. Despite the biomedical relevance of CICs, controversy remains on the ontogenetic relationship existing between the different cell kinds homing at the cardiac interstitium, as well as on the molecular signals that regulate their differentiation, maturation, mutual interaction and role in adult cardiac homeostasis and disease. Our work focuses on the analysis of epicardial-derived cells, the first cell type that colonizes the cardiac interstitium. We present here a characterization and an experimental analysis of the differentiation potential and mobilization properties of a new cell line derived from mouse embryonic epicardium (EPIC). Our results indicate that these cells express some markers associated with cardiovascular stemness and retain part of the multipotent properties of embryonic epicardial derivatives, spontaneously differentiating into smooth muscle, and fibroblast/myofibroblast-like cells. Epicardium-derived cells are also shown to initiate a characteristic response to different growth factors, to display a characteristic proteolytic expression profile and to degrade biological matrices in 3D in vitro assays. Taken together, these data indicate that EPICs are relevant to the analysis of epicardial-derived CICs, and are a god model for the research on cardiac fibroblasts and the role these cells play in ventricular remodeling in both ischemic or non/ischemic myocardial disease. PMID:23349729

  6. Development and epithelial organisation of muscle cells in the sea anemone Nematostella vectensis.

    PubMed

    Jahnel, Stefan M; Walzl, Manfred; Technau, Ulrich

    2014-01-01

    Nematostella vectensis, a member of the cnidarian class Anthozoa, has been established as a promising model system in developmental biology, but while information about the genetic regulation of embryonic development is rapidly increasing, little is known about the cellular organization of the various cell types in the adult. Here, we studied the anatomy and development of the muscular system of N. vectensis to obtain further insights into the evolution of muscle cells. The muscular system of N. vectensis is comprised of five distinct muscle groups, which are differentiated into a tentacle and a body column system. Both systems house longitudinal as well as circular portions. With the exception of the ectodermal tentacle longitudinal muscle, all muscle groups are of endodermal origin. The shape and epithelial organization of muscle cells vary considerably between different muscle groups. Ring muscle cells are formed as epitheliomuscular cells in which the myofilaments are housed in the basal part of the cell, while the apical part is connected to neighboring cells by apical cell-cell junctions. In the longitudinal muscles of the column, the muscular part at the basal side is connected to the apical part by a long and narrow cytoplasmic bridge. The organization of these cells, however, remains epitheliomuscular. A third type of muscle cell is represented in the longitudinal muscle of the tentacle. Using transgenic animals we show that the apical cell-cell junctions are lost during differentiation, resulting in a detachment of the muscle cells to a basiepithelial position. These muscle cells are still located within the epithelium and outside of the basal matrix, therefore constituting basiepithelial myocytes. We demonstrate that all muscle cells, including the longitudinal basiepithelial muscle cells of the tentacle, initially differentiate from regular epithelial cells before they alter their epithelial organisation. A wide range of different muscle cell

  7. Requirement of myomaker-mediated stem cell fusion for skeletal muscle hypertrophy

    PubMed Central

    Goh, Qingnian; Millay, Douglas P

    2017-01-01

    Fusion of skeletal muscle stem/progenitor cells is required for proper development and regeneration, however the significance of this process during adult muscle hypertrophy has not been explored. In response to muscle overload after synergist ablation in mice, we show that myomaker, a muscle specific membrane protein essential for myoblast fusion, is activated mainly in muscle progenitors and not myofibers. We rendered muscle progenitors fusion-incompetent through genetic deletion of myomaker in muscle stem cells and observed a complete reduction of overload-induced hypertrophy. This blunted hypertrophic response was associated with a reduction in Akt and p70s6k signaling and protein synthesis, suggesting a link between myonuclear accretion and activation of pro-hypertrophic pathways. Furthermore, fusion-incompetent muscle exhibited increased fibrosis after muscle overload, indicating a protective role for normal stem cell activity in reducing myofiber strain associated with hypertrophy. These findings reveal an essential contribution of myomaker-mediated stem cell fusion during physiological adult muscle hypertrophy. DOI: http://dx.doi.org/10.7554/eLife.20007.001 PMID:28186492

  8. Intracellular targeting of isoproteins in muscle cytoarchitecture

    PubMed Central

    1988-01-01

    Part of the muscle creatine kinase (MM-CK) in skeletal muscle of chicken is localized in the M-band of myofibrils, while chicken heart cells containing myofibrils and BB-CK, but not expressing MM-CK, do not show this association. The specificity of the MM-CK interaction was tested using cultured chicken heart cells as "living test tubes" by microinjection of in vitro generated MM-CK and hybrid M-CK/B-CK mRNA with SP6 RNA polymerase. The resulting translation products were detected in injected cells with isoprotein-specific antibodies. M-CK molecules and translation products of chimeric cDNA molecules containing the head half of the B-CK and the tail half of the M-CK coding regions were localized in the M-band of the myofibrils. The tail, but not the head portion of M-CK is essential for the association of M-CK with the M-band of myofibrils. We conclude that gross biochemical properties do not always coincide with a molecule's specific functions like the participation in cell cytoarchitecture which may depend on molecular targeting even within the same cellular compartment. PMID:3283147

  9. A specifically designed nanoconstruct associates, internalizes, traffics in cardiovascular cells, and accumulates in failing myocardium: a new strategy for heart failure diagnostics and therapeutics.

    PubMed

    Ruiz-Esparza, Guillermo U; Segura-Ibarra, Victor; Cordero-Reyes, Andrea M; Youker, Keith A; Serda, Rita E; Cruz-Solbes, Ana S; Amione-Guerra, Javier; Yokoi, Kenji; Kirui, Dickson K; Cara, Francisca E; Paez-Mayorga, Jesus; Flores-Arredondo, Jose H; Guerrero-Beltrán, Carlos E; Garcia-Rivas, Gerardo; Ferrari, Mauro; Blanco, Elvin; Torre-Amione, Guillermo

    2016-02-01

    Ongoing inflammation and endothelial dysfunction occurs within the local microenvironment of heart failure, creating an appropriate scenario for successful use and delivery of nanovectors. This study sought to investigate whether cardiovascular cells associate, internalize, and traffic a nanoplatform called mesoporous silicon vector (MSV), and determine its intravenous accumulation in cardiac tissue in a murine model of heart failure. In vitro cellular uptake and intracellular trafficking of MSVs was examined by scanning electron microscopy, confocal microscopy, time-lapse microscopy, and flow cytometry in cardiac myocytes, fibroblasts, smooth muscle cells, and endothelial cells. The MSVs were internalized within the first hours, and trafficked to perinuclear regions in all the cell lines. Cytotoxicity was investigated by annexin V and cell cycle assays. No significant evidence of toxicity was found. In vivo intravenous cardiac accumulation of MSVs was examined by high content fluorescence and confocal microscopy, with results showing increased accumulation of particles in failing hearts compared with normal hearts. Similar to observations in vitro, MSVs were able to associate, internalize, and traffic to the perinuclear region of cardiomyocytes in vivo. Results show that MSVs associate, internalize, and traffic in cardiovascular cells without any significant toxicity. Furthermore, MSVs accumulate in failing myocardium after intravenous administration, reaching intracellular regions of the cardiomyocytes. These findings represent a novel avenue to develop nanotechnology-based therapeutics and diagnostics in heart failure. © 2016 The Authors European Journal of Heart Failure © 2016 European Society of Cardiology.

  10. Cardiorespiratory fitness and muscle strength in late adolescence and long-term risk of early heart failure in Swedish men.

    PubMed

    Lindgren, Martin; Åberg, Maria; Schaufelberger, Maria; Åberg, David; Schiöler, Linus; Torén, Kjell; Rosengren, Annika

    2017-05-01

    Aims To investigate the association between cardiorespiratory fitness (CRF) and muscle strength in late adolescence and the long-term risk of heart failure (HF). Methods A cohort was created of Swedish men enrolled in compulsory military service between 1968 and 2005 with measurements for CRF and muscle strength ( n = 1,226,623; mean age 18.3 years). They were followed until 31 December 2014 for HF hospitalization as recorded in the Swedish national inpatient registry. Results During the follow-up period (median (interquartile range) 28.4 (22.0-37.0) years), 7656 cases of first HF hospitalization were observed (mean ± SD age at diagnosis 50.1 ± 7.9 years). CRF and muscle strength were estimated by maximum capacity cycle ergometer testing and strength exercises (knee extension, elbow flexion and hand grip). Inverse dose-response relationships were found between CRF and muscle strength with HF as a primary or contributory diagnosis with an adjusted hazards ratio (95% confidence interval) of 1.60 (1.44-1.77) for low CRF and 1.45 (1.32-1.58) for low muscle strength categories. The associations of incident HF with CRF and muscle strength persisted, regardless of adjustments for the other potential confounders. The highest risk was observed for HF associated with coronary heart disease, diabetes or hypertension. Conclusions In this longitudinal study of young men, we found inverse and mutually independent associations between CRF and muscle strength with risk of hospitalization for HF. If causal, these results may emphasize the importance of the promotion of CRF and muscle strength in younger populations.

  11. Hypertrophic gene expression induced by chronic stretch of excised mouse heart muscle.

    PubMed

    Raskin, Anna M; Hoshijima, Masahiko; Swanson, Eric; McCulloch, Andrew D; Omens, Jeffrey H

    2009-09-01

    Altered mechanical stress and strain in cardiac myocytes induce modifications in gene expression that affects cardiac remodeling and myocyte contractile function. To study the mechanisms of mechanotransduction in cardiomyocytes, probing alterations in mechanics and gene expression has been an effective strategy. However, previous studies are self-limited due to the general use of isolated neonatal rodent myocytes or intact animals. The main goal of this study was to develop a novel tissue culture chamber system for mouse myocardium that facilitates loading of cardiac tissue, while measuring tissue stress and deformation within a physiological environment. Intact mouse right ventricular papillary muscles were cultured in controlled conditions with superfusate at 95% O2/ 5% CO2, and 34 degrees C, such that cell to extracellular matrix adhesions as well as cell to cell adhesions were undisturbed and both passive and active mechanical properties were maintained without significant changes. The system was able to measure the induction of hypertrophic markers (BNP, ANP) in tissue after 2 hrs and 5 hrs of stretch. ANP induction was highly correlated with the diastolic load of the muscle but not with developed systolic load. Load induced ANP expression was blunted in muscles from muscle-LIM protein knockout mice, in which defective mechanotransduction pathways have been predicted.

  12. Stem cell antigen-1 in skeletal muscle function.

    PubMed

    Bernstein, Harold S; Samad, Tahmina; Cholsiripunlert, Sompob; Khalifian, Saami; Gong, Wenhui; Ritner, Carissa; Aurigui, Julian; Ling, Vivian; Wilschut, Karlijn J; Bennett, Stephen; Hoffman, Julien; Oishi, Peter

    2013-08-15

    Stem cell antigen-1 (Sca-1) is a member of the Ly-6 multigene family encoding highly homologous, glycosyl-phosphatidylinositol-anchored membrane proteins. Sca-1 is expressed on muscle-derived stem cells and myogenic precursors recruited to sites of muscle injury. We previously reported that inhibition of Sca-1 expression stimulated myoblast proliferation in vitro and regulated the tempo of muscle repair in vivo. Despite its function in myoblast expansion during muscle repair, a role for Sca-1 in normal, post-natal muscle has not been thoroughly investigated. We systematically compared Sca-1-/- (KO) and Sca-1+/+ (WT) mice and hindlimb muscles to elucidate the tissue, contractile, and functional effects of Sca-1 in young and aging animals. Comparison of muscle volume, fibrosis, myofiber cross-sectional area, and Pax7+ myoblast number showed little differences between ages or genotypes. Exercise protocols, however, demonstrated decreased stamina in KO versus WT mice, with young KO mice achieving results similar to aging WT animals. In addition, KO mice did not improve with practice, while WT animals demonstrated conditioning over time. Surprisingly, myomechanical analysis of isolated muscles showed that KO young muscle generated more force and experienced less fatigue. However, KO muscle also demonstrated incomplete relaxation with fatigue. These findings suggest that Sca-1 is necessary for muscle conditioning with exercise, and that deficient conditioning in Sca-1 KO animals becomes more pronounced with age.

  13. c-kit+ Cells Minimally Contribute Cardiomyocytes to the Heart

    PubMed Central

    van Berlo, Jop H.; Kanisicak, Onur; Maillet, Marjorie; Vagnozzi, Ronald J.; Karch, Jason; Lin, Suh-Chin J.; Middleton, Ryan C.; Marbán, Eduardo; Molkentin, Jeffery D.

    2014-01-01

    If and how the heart regenerates after an injury event is highly debated. c-kit-expressing cardiac progenitor cells have been reported as the primary source for generation of new myocardium after injury. Here we generated two genetic approaches in mice to examine if endogenous c-kit+ cells contribute differentiated cardiomyocytes to the heart during development, with aging or after injury in adulthood. A cDNA encoding either Cre recombinase or a tamoxifen inducible MerCreMer chimeric protein was targeted to the Kit locus in mice and then bred with reporter lines to permanently mark cell lineage. Endogenous c-kit+ cells did produce new cardiomyocytes within the heart, although at a percentage of ≈0.03% or less, and if a preponderance towards cellular fusion is considered, the percentage falls below ≈0.008%. In contrast, c-kit+ cells amply generated cardiac endothelial cells. Thus, endogenous c-kit+ cells can generate cardiomyocytes within the heart, although likely at a functionally insignificant level. PMID:24805242

  14. Cell Therapy Trials in Congenital Heart Disease.

    PubMed

    Oh, Hidemasa

    2017-04-14

    Dramatic evolution in medical and catheter interventions and complex surgeries to treat children with congenital heart disease (CHD) has led to a growing number of patients with a multitude of long-term complications associated with morbidity and mortality. Heart failure in patients with hypoplastic left heart syndrome predicated by functional single ventricle lesions is associated with an increase in CHD prevalence and remains a significant challenge. Pathophysiological mechanisms contributing to the progression of CHD, including single ventricle lesions and dilated cardiomyopathy, and adult heart disease may inevitably differ. Although therapeutic options for advanced cardiac failure are restricted to heart transplantation or mechanical circulatory support, there is a strong impetus to develop novel therapeutic strategies. As lower vertebrates, such as the newt and zebrafish, have a remarkable ability to replace lost cardiac tissue, this intrinsic self-repair machinery at the early postnatal stage in mice was confirmed by partial ventricular resection. Although the underlying mechanistic insights might differ among the species, mammalian heart regeneration occurs even in humans, with the highest degree occurring in early childhood and gradually declining with age in adulthood, suggesting the advantage of stem cell therapy to ameliorate ventricular dysfunction in patients with CHD. Although effective clinical translation by a variety of stem cells in adult heart disease remains inconclusive with respect to the improvement of cardiac function, case reports and clinical trials based on stem cell therapies in patients with CHD may be invaluable for the next stage of therapeutic development. Dissecting the differential mechanisms underlying progressive ventricular dysfunction in children and adults may lead us to identify a novel regenerative therapy. Future regenerative technologies to treat patients with CHD are exciting prospects for heart regeneration in general

  15. Heart attack first aid

    MedlinePlus

    First aid - heart attack; First aid - cardiopulmonary arrest; First aid - cardiac arrest ... A heart attack occurs when the blood flow that carries oxygen to the heart is blocked. The heart muscle ...

  16. Satellite cell depletion prevents fiber hypertrophy in skeletal muscle.

    PubMed

    Egner, Ingrid M; Bruusgaard, Jo C; Gundersen, Kristian

    2016-08-15

    The largest mammalian cells are the muscle fibers, and they have multiple nuclei to support their large cytoplasmic volumes. During hypertrophic growth, new myonuclei are recruited from satellite stem cells into the fiber syncytia, but it was recently suggested that such recruitment is not obligatory: overload hypertrophy after synergist ablation of the plantaris muscle appeared normal in transgenic mice in which most of the satellite cells were abolished. When we essentially repeated these experiments analyzing the muscles by immunohistochemistry and in vivo and ex vivo imaging, we found that overload hypertrophy was prevented in the satellite cell-deficient mice, in both the plantaris and the extensor digitorum longus muscles. We attribute the previous findings to a reliance on muscle mass as a proxy for fiber hypertrophy, and to the inclusion of a significant number of regenerating fibers in the analysis. We discuss that there is currently no model in which functional, sustainable hypertrophy has been unequivocally demonstrated in the absence of satellite cells; an exception is re-growth, which can occur using previously recruited myonuclei without addition of new myonuclei. © 2016. Published by The Company of Biologists Ltd.

  17. Healthy Muscles Matter

    MedlinePlus

    ... How can I keep my muscles more healthy? Physical activity Muscles that are not used will get smaller ... heart muscle as well! Get 60 minutes of physical activity every day. Get 60 minutes of physical activity ...

  18. Human skeletal muscle-derived stem cells retain stem cell properties after expansion in myosphere culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Yan; Department of Otolaryngology, Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guang Zhou; Li, Yuan

    2011-04-15

    Human skeletal muscle contains an accessible adult stem-cell compartment in which differentiated myofibers are maintained and replaced by a self-renewing stem cell pool. Previously, studies using mouse models have established a critical role for resident stem cells in skeletal muscle, but little is known about this paradigm in human muscle. Here, we report the reproducible isolation of a population of cells from human skeletal muscle that is able to proliferate for extended periods of time as floating clusters of rounded cells, termed 'myospheres' or myosphere-derived progenitor cells (MDPCs). The phenotypic characteristics and functional properties of these cells were determined usingmore » reverse transcription-polymerase chain reaction (RT-PCR), flow cytometry and immunocytochemistry. Our results showed that these cells are clonogenic, express skeletal progenitor cell markers Pax7, ALDH1, Myod, and Desmin and the stem cell markers Nanog, Sox2, and Oct3/4 significantly elevated over controls. They could be maintained proliferatively active in vitro for more than 20 weeks and passaged at least 18 times, despite an average donor-age of 63 years. Individual clones (4.2%) derived from single cells were successfully expanded showing clonogenic potential and sustained proliferation of a subpopulation in the myospheres. Myosphere-derived cells were capable of spontaneous differentiation into myotubes in differentiation media and into other mesodermal cell lineages in induction media. We demonstrate here that direct culture and expansion of stem cells from human skeletal muscle is straightforward and reproducible with the appropriate technique. These cells may provide a viable resource of adult stem cells for future therapies of disease affecting skeletal muscle or mesenchymal lineage derived cell types.« less

  19. Volumetric muscle loss injury repair using in situ fibrin gel cast seeded with muscle-derived stem cells (MDSCs)

    PubMed Central

    Matthias, Nadine; Hunt, Samuel D.; Wu, Jianbo; Lo, Jonathan; Smith Callahan, Laura A.; Li, Yong; Huard, Johnny; Darabi, Radbod

    2018-01-01

    Volumetric muscle defect, caused by trauma or combat injuries, is a major health concern leading to severe morbidity. It is characterized by partial or full thickness loss of muscle and its bio-scaffold, resulting in extensive fibrosis and scar formation. Therefore, the ideal therapeutic option is to use stem cells combined with bio-scaffolds to restore muscle. For this purpose, muscle-derived stem cells (MDSCs) are a great candidate due to their unique multi-lineage differentiation potential. In this study, we evaluated the regeneration potential of MDSCs for muscle loss repair using a novel in situ fibrin gel casting. Muscle defect was created by a partial thickness wedge resection in the tibialis anterior (TA)muscles of NSG mice which created an average of 25% mass loss. If untreated, this defect leads to severe muscle fibrosis. Next, MDSCs were delivered using a novel in situ fibrin gel casting method. Our results demonstrated MDSCs are able to engraft and form new myofibers in the defect when casted along with fibrin gel. LacZ labeled MDSCs were able to differentiate efficiently into new myofibers and significantly increase muscle mass. This was also accompanied by significant reduction of fibrotic tissue in the engrafted muscles. Furthermore, transplanted cells also contributed to new vessel formation and satellite cell seeding. These results confirmed the therapeutic potential of MDSCs and feasibility of direct in situ casting of fibrin/MDSC mixture to repair muscle mass defects. PMID:29331939

  20. Vinpocetine Attenuates the Osteoblastic Differentiation of Vascular Smooth Muscle Cells

    PubMed Central

    Chen, Xiu-Juan; Wang, Na; Yi, Peng-Fei; Song, Min; Zhang, Bo; Wang, Yu-Zhong; Liang, Qiu-Hua

    2016-01-01

    Vascular calcification is an active process of osteoblastic differentiation of vascular smooth muscle cells; however, its definite mechanism remains unknown. Vinpocetine, a derivative of the alkaloid vincamine, has been demonstrated to inhibit the high glucose-induced proliferation of vascular smooth muscle cells; however, it remains unknown whether vinpocetine can affect the osteoblastic differentiation of vascular smooth muscle cells. We hereby investigated the effect of vinpocetine on vascular calcification using a beta-glycerophosphate-induced cell model. Our results showed that vinpocetine significantly reduced the osteoblast-like phenotypes of vascular smooth muscle cells including ALP activity, osteocalcin, collagen type I, Runx2 and BMP-2 expression as well as the formation of mineralized nodule. Vinpocetine, binding to translocation protein, induced phosphorylation of extracellular signal-related kinase and Akt and thus inhibited the translocation of nuclear factor-kappa B into the nucleus. Silencing of translocator protein significantly attenuated the inhibitory effect of vinpocetine on osteoblastic differentiation of vascular smooth muscle cells. Taken together, vinpocetine may be a promising candidate for the clinical therapy of vascular calcification. PMID:27589055

  1. Vinpocetine Attenuates the Osteoblastic Differentiation of Vascular Smooth Muscle Cells.

    PubMed

    Ma, Yun-Yun; Sun, Lin; Chen, Xiu-Juan; Wang, Na; Yi, Peng-Fei; Song, Min; Zhang, Bo; Wang, Yu-Zhong; Liang, Qiu-Hua

    2016-01-01

    Vascular calcification is an active process of osteoblastic differentiation of vascular smooth muscle cells; however, its definite mechanism remains unknown. Vinpocetine, a derivative of the alkaloid vincamine, has been demonstrated to inhibit the high glucose-induced proliferation of vascular smooth muscle cells; however, it remains unknown whether vinpocetine can affect the osteoblastic differentiation of vascular smooth muscle cells. We hereby investigated the effect of vinpocetine on vascular calcification using a beta-glycerophosphate-induced cell model. Our results showed that vinpocetine significantly reduced the osteoblast-like phenotypes of vascular smooth muscle cells including ALP activity, osteocalcin, collagen type I, Runx2 and BMP-2 expression as well as the formation of mineralized nodule. Vinpocetine, binding to translocation protein, induced phosphorylation of extracellular signal-related kinase and Akt and thus inhibited the translocation of nuclear factor-kappa B into the nucleus. Silencing of translocator protein significantly attenuated the inhibitory effect of vinpocetine on osteoblastic differentiation of vascular smooth muscle cells. Taken together, vinpocetine may be a promising candidate for the clinical therapy of vascular calcification.

  2. Mitochondria and heart failure.

    PubMed

    Murray, Andrew J; Edwards, Lindsay M; Clarke, Kieran

    2007-11-01

    Energetic abnormalities in cardiac and skeletal muscle occur in heart failure and correlate with clinical symptoms and mortality. It is likely that the cellular mechanism leading to energetic failure involves mitochondrial dysfunction. Therefore, it is crucial to elucidate the causes of mitochondrial myopathy, in order to improve cardiac and skeletal muscle function, and hence quality of life, in heart failure patients. Recent studies identified several potential stresses that lead to mitochondrial dysfunction in heart failure. Chronically elevated plasma free fatty acid levels in heart failure are associated with decreased metabolic efficiency and cellular insulin resistance. Tissue hypoxia, resulting from low cardiac output and endothelial impairment, can lead to oxidative stress and mitochondrial DNA damage, which in turn causes dysfunction and loss of mitochondrial mass. Therapies aimed at protecting mitochondrial function have shown promise in patients and animal models with heart failure. Despite current therapies, which provide substantial benefit to patients, heart failure remains a relentlessly progressive disease, and new approaches to treatment are necessary. Novel pharmacological agents are needed that optimize substrate metabolism and maintain mitochondrial integrity, improve oxidative capacity in heart and skeletal muscle, and alleviate many of the clinical symptoms associated with heart failure.

  3. Effects of exercise training on brain-derived neurotrophic factor in skeletal muscle and heart of rats post myocardial infarction.

    PubMed

    Lee, Heow Won; Ahmad, Monir; Wang, Hong-Wei; Leenen, Frans H H

    2017-03-01

    What is the central question of this study? Exercise training increases brain-derived neurotrophic factor (BDNF) in the hippocampus, which depends on a myokine, fibronectin type III domain-containing protein 5 (FNDC5). Whether exercise training after myocardial infarction induces parallel increases in FNDC5 and BDNF expression in skeletal muscle and the heart has not yet been studied. What is the main finding and its importance? Exercise training after myocardial infarction increases BDNF protein in skeletal muscle and the non-infarct area of the LV without changes in FNDC5 protein, suggesting that BDNF is not regulated by FNDC5 in skeletal muscle and heart. An increase in cardiac BDNF may contribute to the improvement of cardiac function by exercise training. Exercise training after myocardial infarction (MI) attenuates progressive left ventricular (LV) remodelling and dysfunction, but the peripheral stimuli induced by exercise that trigger these beneficial effects are still unclear. We investigated as possible mediators fibronectin type III domain-containing protein 5 (FNDC5) and brain-derived neurotrophic factor (BDNF) in the skeletal muscle and heart. Male Wistar rats underwent either sham surgery or ligation of the left descending coronary artery, and surviving MI rats were allocated to either a sedentary (Sed-MI) or an exercise group (ExT-MI). Exercise training was done for 4 weeks on a motor-driven treadmill. At the end, LV function was evaluated, and FNDC5 and BDNF mRNA and protein were assessed in soleus muscle, quadriceps and non-, peri- and infarct areas of the LV. At 5 weeks post MI, FNDC5 mRNA was decreased in soleus muscle and all areas of the LV, but FNDC5 protein was increased in the soleus muscle and the infarct area. Mature BDNF (mBDNF) protein was decreased in the infarct area without a change in mRNA. Exercise training attenuated the decrease in ejection fraction and the increase in LV end-diastolic pressure post MI. Exercise training had no

  4. Interactions between neutrophils and macrophages promote macrophage killing of rat muscle cells in vitro

    NASA Technical Reports Server (NTRS)

    Nguyen, Hal X.; Tidball, James G.

    2003-01-01

    Current evidence indicates that the physiological functions of inflammatory cells are highly sensitive to their microenvironment, which is partially determined by the inflammatory cells and their potential targets. In the present investigation, interactions between neutrophils, macrophages and muscle cells that may influence muscle cell death are examined. Findings show that in the absence of macrophages, neutrophils kill muscle cells in vitro by superoxide-dependent mechanisms, and that low concentrations of nitric oxide (NO) protect against neutrophil-mediated killing. In the absence of neutrophils, macrophages kill muscle cells through a NO-dependent mechanism, and the presence of target muscle cells causes a three-fold increase in NO production by macrophages, with no change in the concentration of inducible nitric oxide synthase. Muscle cells that are co-cultured with both neutrophils and macrophages in proportions that are observed in injured muscle show cytotoxicity through a NO-dependent, superoxide-independent mechanism. Furthermore, the concentration of myeloid cells that is necessary for muscle killing is greatly reduced in assays that use mixed myeloid cell populations, rather than uniform populations of neutrophils or macrophages. These findings collectively show that the magnitude and mechanism of muscle cell killing by myeloid cells are modified by interactions between muscle cells and neutrophils, between muscle cells and macrophages and between macrophages and neutrophils.

  5. The molecular signature of muscle stem cells is driven by nutrient availability and innate cell metabolism.

    PubMed

    Ryall, James G; Lynch, Gordon S

    2018-07-01

    To discuss how innate muscle stem-cell metabolism and nutrient availability can provide temporal regulation of chromatin accessibility and transcription. Fluorescence-activated cell sorting coupled with whole transcriptome sequencing revealed for the first time that quiescent and proliferating skeletal muscle stem cells exhibit a process of metabolic reprogramming, from fatty-acid oxidation during quiescence to glycolysis during proliferation. Using a combination of immunofluorescence and chromatin immunoprecipitation sequencing, this shift in metabolism has been linked to altered availability of key metabolites essential for histone (de)acetylation and (de)methylation, including acetyl-CoA, s-adenosylmethionine and α-ketoglutarate. Importantly, these changes in metabolite availability have been linked to muscle stem-cell function. Together, these results provide greater insight into how muscle stem cells interact with their local environment, with important implications for metabolic diseases, skeletal muscle regeneration and cell-transplantation therapies.

  6. Nutrition and muscle catabolism in maintenance hemodialysis: does feeding make muscle cells selective self-eaters?

    PubMed

    Franch, Harold A

    2009-01-01

    Efforts to build muscle by increased protein feeding in hemodialysis patients have been thwarted by parallel increases in both muscle protein synthesis and degradation. The evidence suggests that muscle cells replace older proteins in response to feeding rather than using new proteins to drive muscle cell hypertrophy. This review presents the hypothesis that protein feeding provides an opportunity for muscle to accelerate proteolysis of proteins that have been damaged by oxidation, nitrosylation, and/or glycosylation and to replace damaged mitochondria that contribute to oxidative stress. Increases in proteolysis with feeding are driven by insulin resistance and the increased oxidative stress of mitochondrial respiration. Oxidized proteins and organelles are excellent substrates for degradation by the proteasome, macroautophagy, and chaperone-mediated autophagy: these systems of proteolysis seem to be activated by oxydatiative stress. Replacement of oxidized and other damaged proteins may be a benefit of protein feeding in hemodialysis, but alternative strategies, including exercise, will be required to build muscle.

  7. Nutrition and Muscle Catabolism in Maintenance Hemodialysis: Does Feeding Make Muscle Cells Selective Self-Eaters?

    PubMed Central

    Franch, Harold A.

    2009-01-01

    Efforts to build muscle by increased protein feeding in hemodialysis patients have been thwarted by parallel increases in both muscle protein synthesis and degradation. The evidence suggests that muscle cells replace older proteins in response to feeding rather than using new proteins to drive muscle cell hypertrophy. This review presents the hypothesis that protein feeding provides an opportunity for muscle to accelerate proteolysis of proteins which have been damaged by oxidation, nitrosylation and/or glycosylation and to replace damaged mitochondria that contribute to oxidative stress. Increases in proteolysis with feeding are driven by insulin resistance and the increased oxidative stress of mitochondrial respiration. Oxidized proteins and organelles are excellent substrates for degradation by the proteasome, macroautophagy, and chaperone-mediated autophagy: these systems of proteolysis seem to be activated by oxydatiative stress. Replacement of oxidized and other damaged proteins may be a benefit of protein feeding in hemodialysis, but alternative strategies, including exercise, will be required to build muscle. PMID:19121779

  8. Gene therapy and tissue engineering based on muscle-derived stem cells.

    PubMed

    Deasy, Bridget M; Huard, Johnny

    2002-08-01

    Skeletal muscle represents a convenient source of stem cells for cell-based tissue and genetic engineering. Muscle-derived stem cells (MDSCs) exhibit both multipotentiality and self-renewal capabilities, and are considered to be distinct from the well-studied satellite cell, another type of muscle stem cell that is capable of self-renewal and myogenic lineage differentiation. The MDSC appears to have less restricted differentiation capabilities as compared with the satellite cell, and may be a precursor of the satellite cell. This review considers the evidence for the existence of MDSCs as well as their origin. We will discuss recent investigations highlighting the potential of stem cell transplantation for the treatment of skeletal, cardiac and smooth muscle injuries and disease. We will highlight challenges in bridging the gap between understanding basic stem cell biology and clinical utilization for cell therapy.

  9. Heart Anatomy

    MedlinePlus

    ... aorta, your body’s largest artery. The Conduction System Electrical impulses from your heart muscle (the myocardium) cause your heart to contract. This electrical signal begins in the sinoatrial (SA) node, located ...

  10. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells

    PubMed Central

    Jackson, Kathyjo A.; Majka, Susan M.; Wang, Hongyu; Pocius, Jennifer; Hartley, Craig J.; Majesky, Mark W.; Entman, Mark L.; Michael, Lloyd H.; Hirschi, Karen K.; Goodell, Margaret A.

    2001-01-01

    Myocyte loss in the ischemically injured mammalian heart often leads to irreversible deficits in cardiac function. To identify a source of stem cells capable of restoring damaged cardiac tissue, we transplanted highly enriched hematopoietic stem cells, the so-called side population (SP) cells, into lethally irradiated mice subsequently rendered ischemic by coronary artery occlusion for 60 minutes followed by reperfusion. The engrafted SP cells (CD34–/low, c-Kit+, Sca-1+) or their progeny migrated into ischemic cardiac muscle and blood vessels, differentiated to cardiomyocytes and endothelial cells, and contributed to the formation of functional tissue. SP cells were purified from Rosa26 transgenic mice, which express lacZ widely. Donor-derived cardiomyocytes were found primarily in the peri-infarct region at a prevalence of around 0.02% and were identified by expression of lacZ and α-actinin, and lack of expression of CD45. Donor-derived endothelial cells were identified by expression of lacZ and Flt-1, an endothelial marker shown to be absent on SP cells. Endothelial engraftment was found at a prevalence of around 3.3%, primarily in small vessels adjacent to the infarct. Our results demonstrate the cardiomyogenic potential of hematopoietic stem cells and suggest a therapeutic strategy that eventually could benefit patients with myocardial infarction. PMID:11390421

  11. Induction of apoptosis by pyrrolidinedithiocarbamate and N-acetylcysteine in vascular smooth muscle cells.

    PubMed

    Tsai, J C; Jain, M; Hsieh, C M; Lee, W S; Yoshizumi, M; Patterson, C; Perrella, M A; Cooke, C; Wang, H; Haber, E; Schlegel, R; Lee, M E

    1996-02-16

    Pyrrolidinedithiocarbamate (PDTC) and N-acetylcysteine (NAC) have been used as antioxidants to prevent apoptosis in lymphocytes, neurons, and vascular endothelial cells. We report here that PDTC and NAC induce apoptosis in rat and human smooth muscle cells. In rat aortic smooth muscle cells, PDTC induced cell shrinkage, chromatin condensation, and DNA strand breaks consistent with apoptosis. In addition, overexpression of Bcl-2 suppressed vascular smooth muscle cell death caused by PDTC and NAC. The viability of rat aortic smooth muscle cells decreased within 3 h of treatment with PDTC and was reduced to 30% at 12 h. The effect of PDTC and NAC on smooth muscle cells was not species specific because PDTC and NAC both caused dose-dependent reductions in viability in rat and human aortic smooth muscle cells. In contrast, neither PDTC nor NAC reduced viability in human aortic endothelial cells. The use of antioxidants to induce apoptosis in vascular smooth muscle cells may help prevent their proliferation in arteriosclerotic lesions.

  12. Embryonic stem cells improve skeletal muscle recovery after extreme atrophy in mice.

    PubMed

    Artioli, Guilherme Giannini; De Oliveira Silvestre, João Guilherme; Guilherme, João Paulo Limongi França; Baptista, Igor Luchini; Ramos, Gracielle Vieira; Da Silva, Willian José; Miyabara, Elen Haruka; Moriscot, Anselmo Sigari

    2015-03-01

    We injected embryonic stem cells into mouse tibialis anterior muscles subjected to botulinum toxin injections as a model for reversible neurogenic atrophy. Muscles were exposed to botulinum toxin for 4 weeks and allowed to recover for up to 6 weeks. At the onset of recovery, a single muscle injection of embryonic stem cells was administered. The myofiber cross-sectional area, single twitch force, peak tetanic force, time-to-peak force, and half-relaxation time were determined. Although the stem cell injection did not affect the myofiber cross-sectional area gain in recovering muscles, most functional parameters improved significantly compared with those of recovering muscles that did not receive the stem cell injection. Muscle function recovery was accelerated by embryonic stem cell delivery in this durable neurogenic atrophy model. We conclude that stem cells should be considered a potential therapeutic tool for recovery after extreme skeletal muscle atrophy. © 2014 Wiley Periodicals, Inc.

  13. Purification of cardiac myocytes from human heart biopsies for gene expression analysis.

    PubMed

    Kosloski, L M; Bales, I K; Allen, K B; Walker, B L; Borkon, A M; Stuart, R S; Pak, A F; Wacker, M J

    2009-09-01

    The collection of gene expression data from human heart biopsies is important for understanding the cellular mechanisms of arrhythmias and diseases such as cardiac hypertrophy and heart failure. Many clinical and basic research laboratories conduct gene expression analysis using RNA from whole cardiac biopsies. This allows for the analysis of global changes in gene expression in areas of the heart, while eliminating the need for more complex and technically difficult single-cell isolation procedures (such as flow cytometry, laser capture microdissection, etc.) that require expensive equipment and specialized training. The abundance of fibroblasts and other cell types in whole biopsies, however, can complicate gene expression analysis and the interpretation of results. Therefore, we have designed a technique to quickly and easily purify cardiac myocytes from whole cardiac biopsies for RNA extraction. Human heart tissue samples were collected, and our purification method was compared with the standard nonpurification method. Cell imaging using acridine orange staining of the purified sample demonstrated that >98% of total RNA was contained within identifiable cardiac myocytes. Real-time RT-PCR was performed comparing nonpurified and purified samples for the expression of troponin T (myocyte marker), vimentin (fibroblast marker), and alpha-smooth muscle actin (smooth muscle marker). Troponin T expression was significantly increased, and vimentin and alpha-smooth muscle actin were significantly decreased in the purified sample (n = 8; P < 0.05). Extracted RNA was analyzed during each step of the purification, and no significant degradation occurred. These results demonstrate that this isolation method yields a more purified cardiac myocyte RNA sample suitable for downstream applications, such as real-time RT-PCR, and allows for more accurate gene expression changes in cardiac myocytes from heart biopsies.

  14. Molecular circuitry of stem cell fate in skeletal muscle regeneration, ageing, and disease

    PubMed Central

    Almada, Albert E.; Wagers, Amy J.

    2016-01-01

    Satellite cells are adult myogenic stem cells that function to repair damaged muscle. The enduring capacity for muscle regeneration requires efficient satellite cell expansion after injury, differentiation to produce myoblasts that can reconstitute damaged fibers, and self-renewal to replenish the muscle stem cell pool for subsequent rounds of injury and repair. Emerging studies indicate that misregulations of satellite cell fate and function contribute to age-associated muscle dysfunction and influence the severity of muscle diseases, including Duchenne Muscular Dystrophy (DMD). It has also become apparent that satellite cell fate during muscle regeneration, aging, and in the context of DMD is governed by an intricate network of intrinsic and extrinsic regulators. Targeted manipulation of this network may offer unique opportunities for muscle regenerative medicine. PMID:26956195

  15. Carcinoid heart disease.

    PubMed

    Hassan, Saamir A; Banchs, Jose; Iliescu, Cezar; Dasari, Arvind; Lopez-Mattei, Juan; Yusuf, Syed Wamique

    2017-10-01

    Rare neuroendocrine tumours (NETs) that most commonly arise in the gastrointestinal tract can lead to carcinoid syndrome and carcinoid heart disease. Patients with carcinoid syndrome present with vasomotor changes, hypermotility of the gastrointestinal system, hypotension and bronchospasm. Medical therapy for carcinoid syndrome, typically with somatostatin analogues, can help control symptoms, inhibit tumour progression and prolong survival. Carcinoid heart disease occurs in more than 50% of these patients and is the initial presentation of carcinoid syndrome in up to 20% of patients. Carcinoid heart disease has characteristic findings of plaque-like deposits composed of smooth muscle cells, myofibroblasts, extracellular matrix and an overlying endothelial layer which can lead to valve dysfunction. Valvular dysfunction can lead to oedema, ascites and right-sided heart failure. Medical therapy of carcinoid heart disease is limited to symptom control and palliation. Valve surgery for carcinoid heart disease should be considered for symptomatic patients with controlled metastatic carcinoid syndrome. A multidisciplinary approach is needed to guide optimal management. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  16. Bioengineering an electro-mechanically functional miniature ventricular heart chamber from human pluripotent stem cells.

    PubMed

    Li, Ronald A; Keung, Wendy; Cashman, Timothy J; Backeris, Peter C; Johnson, Bryce V; Bardot, Evan S; Wong, Andy O T; Chan, Patrick K W; Chan, Camie W Y; Costa, Kevin D

    2018-05-01

    Tissue engineers and stem cell biologists have made exciting progress toward creating simplified models of human heart muscles or aligned monolayers to help bridge a longstanding gap between experimental animals and clinical trials. However, no existing human in vitro systems provide the direct measures of cardiac performance as a pump. Here, we developed a next-generation in vitro biomimetic model of pumping human heart chamber, and demonstrated its capability for pharmaceutical testing. From human pluripotent stem cell (hPSC)-derived ventricular cardiomyocytes (hvCM) embedded in collagen-based extracellular matrix hydrogel, we engineered a three-dimensional (3D) electro-mechanically coupled, fluid-ejecting miniature human ventricle-like cardiac organoid chamber (hvCOC). Structural characterization showed organized sarcomeres with myofibrillar microstructures. Transcript and RNA-seq analyses revealed upregulation of key Ca 2+ -handling, ion channel, and cardiac-specific proteins in hvCOC compared to lower-order 2D and 3D cultures of the same constituent cells. Clinically-important, physiologically complex contractile parameters such as ejection fraction, developed pressure, and stroke work, as well as electrophysiological properties including action potential and conduction velocity were measured: hvCOC displayed key molecular and physiological characteristics of the native ventricle, and showed expected mechanical and electrophysiological responses to a range of pharmacological interventions (including positive and negative inotropes). We conclude that such "human-heart-in-a-jar" technology could facilitate the drug discovery process by providing human-specific preclinical data during early stage drug development. Copyright © 2018. Published by Elsevier Ltd.

  17. Differentiation and Application of Induced Pluripotent Stem Cell-Derived Vascular Smooth Muscle Cells.

    PubMed

    Maguire, Eithne Margaret; Xiao, Qingzhong; Xu, Qingbo

    2017-11-01

    Vascular smooth muscle cells (VSMCs) play a role in the development of vascular disease, for example, neointimal formation, arterial aneurysm, and Marfan syndrome caused by genetic mutations in VSMCs, but little is known about the mechanisms of the disease process. Advances in induced pluripotent stem cell technology have now made it possible to derive VSMCs from several different somatic cells using a selection of protocols. As such, researchers have set out to delineate key signaling processes involved in triggering VSMC gene expression to grasp the extent of gene regulatory networks involved in phenotype commitment. This technology has also paved the way for investigations into diseases affecting VSMC behavior and function, which may be treatable once an identifiable culprit molecule or gene has been repaired. Moreover, induced pluripotent stem cell-derived VSMCs are also being considered for their use in tissue-engineered blood vessels as they may prove more beneficial than using autologous vessels. Finally, while several issues remains to be clarified before induced pluripotent stem cell-derived VSMCs can become used in regenerative medicine, they do offer both clinicians and researchers hope for both treating and understanding vascular disease. In this review, we aim to update the recent progress on VSMC generation from stem cells and the underlying molecular mechanisms of VSMC differentiation. We will also explore how the use of induced pluripotent stem cell-derived VSMCs has changed the game for regenerative medicine by offering new therapeutic avenues to clinicians, as well as providing researchers with a new platform for modeling of vascular disease. © 2017 American Heart Association, Inc.

  18. Regulation of the muscle fiber microenvironment by activated satellite cells during hypertrophy

    PubMed Central

    Fry, Christopher S.; Lee, Jonah D.; Jackson, Janna R.; Kirby, Tyler J.; Stasko, Shawn A.; Liu, Honglu; Dupont-Versteegden, Esther E.; McCarthy, John J.; Peterson, Charlotte A.

    2014-01-01

    Our aim in the current study was to determine the necessity of satellite cells for long-term muscle growth and maintenance. We utilized a transgenic Pax7-DTA mouse model, allowing for the conditional depletion of > 90% of satellite cells with tamoxifen treatment. Synergist ablation surgery, where removal of synergist muscles places functional overload on the plantaris, was used to stimulate robust hypertrophy. Following 8 wk of overload, satellite cell-depleted muscle demonstrated an accumulation of extracellular matrix (ECM) and fibroblast expansion that resulted in reduced specific force of the plantaris. Although the early growth response was normal, an attenuation of hypertrophy measured by both muscle wet weight and fiber cross-sectional area occurred in satellite cell-depleted muscle. Isolated primary myogenic progenitor cells (MPCs) negatively regulated fibroblast ECM mRNA expression in vitro, suggesting a novel role for activated satellite cells/MPCs in muscle adaptation. These results provide evidence that satellite cells regulate the muscle environment during growth.—Fry, C. S., Lee, J. D., Jackson, J. R., Kirby, T. J., Stasko, S. A., Liu, H., Dupont-Versteegden, E. E., McCarthy, J. J., Peterson, C. A. Regulation of the muscle fiber microenvironment by activated satellite cells during hypertrophy. PMID:24376025

  19. Stem cells as biological heart pacemakers.

    PubMed

    Gepstein, Lior

    2005-12-01

    Abnormalities in the pacemaker function of the heart or in cardiac impulse conduction may result in the appearance of a slow heart rate, traditionally requiring the implantation of a permanent electronic pacemaker. In recent years, a number of experimental approaches have been developed in an attempt to generate biological alternatives to implantable electronic devices. These strategies include, initially, a number of gene therapy approaches (aiming to manipulate the expression of ionic currents or their modulators and thereby convert quiescent cardiomyocytes into pacemaking cells) and, more recently, the use of cell therapy and tissue engineering. The latter approach explored the possibility of grafting pacemaking cells, either derived directly during the differentiation of human embryonic stem cells or engineered from mesenchymal stem cells, into the myocardium. This review will describe each of these approaches, focusing mainly on the stem cell strategies, their possible advantages and shortcomings, as well as the avenues required to make biological pacemaking a clinical reality.

  20. Heart Diseases and Disorders

    MedlinePlus

    ... the risk of injuries from falling. Circulatory Disorders Heart Attack (Myocardial Infarction ) When arteries become so clogged that ... damage or kill the heart muscle, causing a heart attack . Knowing the symptoms of a heart attack and ...

  1. Injected Human Muscle Precursor Cells Overexpressing PGC-1α Enhance Functional Muscle Regeneration after Trauma

    PubMed Central

    Haralampieva, Deana; Salemi, Souzan; Betzel, Thomas; Dinulovic, Ivana; Krämer, Stefanie D.; Schibli, Roger; Sulser, Tullio; Ametamey, Simon M.

    2018-01-01

    While many groups demonstrated new muscle tissue formation after muscle precursor cell (MPC) injection, the capacity of these cells to heal muscle damage, for example, sphincter in stress urinary incontinence, in long-term is still limited. Therefore, the first goal of our project was to optimize the functional regenerative potential of hMPC by genetic modification to overexpress human peroxisome proliferator-activated receptor gamma coactivator 1-alpha (hPGC-1α), key regulator of exercise-mediated adaptation. Moreover, we aimed at establishing a feasible methodology for noninvasive PET visualization of implanted cells and their microenvironment in muscle crush injury model. PGC-1α-bioengineered muscles showed enhanced marker expression for myogenesis (α-actinin, MyHC, and Desmin), vascularization (VEGF), neuronal (ACHE), and mitochondrial (COXIV) activity. Consistently, use of hPGC-1α_hMPCs produced significantly increased contractile force one to three weeks postinjury. PET imaging showed distinct differences in radiotracer signals ([18F]Fallypride and [11C]Raclopride (both targeting dopamine 2 receptors (D2R)) and [64Cu]NODAGA-RGD (targeting neovascularization)) between GFP_hMPCs and hD2R_hPGC-1α_hMPCs. After muscle harvesting, inflammation levels were in parallel to radiotracer uptake amount, with significantly lower uptake in hPGC-1α overexpressing samples. In summary, we facilitated early functional muscle tissue regeneration, introducing a novel approach to improve skeletal muscle regeneration. Besides successful tracking of hMPCs in muscle crush injuries, we showed that in high-inflammation areas, the specificity of radioligands might be significantly reduced, addressing a possible bottleneck of neovascularization PET imaging. PMID:29531537

  2. Cell-to-cell diffusion of glucose in the mammalian heart is disrupted by high glucose. Implications for the diabetic heart.

    PubMed

    De Mello, Walmor C

    2015-06-10

    The cell-to-cell diffusion of glucose in heart cell pairs isolated from the left ventricle of adult Wistar Kyoto rats was investigated. For this, fluorescent glucose was dialyzed into one cell of the pair using the whole cell clamp technique, and its diffusion from cell-to-cell was investigated by measuring the fluorescence in the dialyzed as well as in non-dialyzed cell as a function of time. The results indicated that: 1) glucose flows easily from cell-to-cell through gap junctions; 2) high glucose solution (25 mM) disrupted chemical communication between cardiac cells and abolished the intercellular diffusion of glucose; 3) the effect of high glucose solution on the cell-to-cell diffusion of glucose was drastically reduced by Bis-1 (10(-9)M) which is a PKC inhibitor; 4) intracellular dialysis of Ang II (100 nM) or increment of intracellular calcium concentration (10(-8)M) also inhibited the intercellular diffusion of glucose; 5) high glucose enhances oxidative stress in heart cells; 6) calculation of gap junction permeability (Pj) (cm/s) indicated a value of 0.74±0.08×10(-4) cm/s (5 animals) for the controls and 0.4±0.001×10(-5) cm/s; n=35 (5 animals) (P<0.05) for cells incubated with high glucose solution for 24h; 7) measurements of Pj for cell pairs treated with high glucose plus Bis-1 (10(-9)M) revealed no significant change of Pj (P>0.05); 8) increase of intracellular Ca(2+) concentration (10(-8)M) drastically decreased Pj (Pj=0.3±0.003×10(-5) cm/s). Conclusions indicate that: 1) glucose flows from cell-to-cell in the heart through gap junctions; 2) high glucose (25 mM) inhibited the intercellular diffusion of glucose-an effect significantly reduced by PKC inhibition; 3) high intracellular Ca(2+) concentration abolished the cell-to-cell diffusion of glucose; 4) intracellular Ang II (100 nM) inhibited the intercellular diffusion of glucose indicating that intracrine Ang II, in part activated by high glucose, severely impairs the exchange of glucose

  3. Volumetric muscle loss injury repair using in situ fibrin gel cast seeded with muscle-derived stem cells (MDSCs).

    PubMed

    Matthias, Nadine; Hunt, Samuel D; Wu, Jianbo; Lo, Jonathan; Smith Callahan, Laura A; Li, Yong; Huard, Johnny; Darabi, Radbod

    2018-03-01

    Volumetric muscle defect, caused by trauma or combat injuries, is a major health concern leading to severe morbidity. It is characterized by partial or full thickness loss of muscle and its bio-scaffold, resulting in extensive fibrosis and scar formation. Therefore, the ideal therapeutic option is to use stem cells combined with bio-scaffolds to restore muscle. For this purpose, muscle-derived stem cells (MDSCs) are a great candidate due to their unique multi-lineage differentiation potential. In this study, we evaluated the regeneration potential of MDSCs for muscle loss repair using a novel in situ fibrin gel casting. Muscle defect was created by a partial thickness wedge resection in the tibialis anterior (TA) muscles of NSG mice which created an average of 25% mass loss. If untreated, this defect leads to severe muscle fibrosis. Next, MDSCs were delivered using a novel in situ fibrin gel casting method. Our results demonstrated MDSCs are able to engraft and form new myofibers in the defect when casted along with fibrin gel. LacZ labeled MDSCs were able to differentiate efficiently into new myofibers and significantly increase muscle mass. This was also accompanied by significant reduction of fibrotic tissue in the engrafted muscles. Furthermore, transplanted cells also contributed to new vessel formation and satellite cell seeding. These results confirmed the therapeutic potential of MDSCs and feasibility of direct in situ casting of fibrin/MDSC mixture to repair muscle mass defects. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Smooth muscle-like tissue constructs with circumferentially oriented cells formed by the cell fiber technology.

    PubMed

    Hsiao, Amy Y; Okitsu, Teru; Onoe, Hiroaki; Kiyosawa, Mahiro; Teramae, Hiroki; Iwanaga, Shintaroh; Kazama, Tomohiko; Matsumoto, Taro; Takeuchi, Shoji

    2015-01-01

    The proper functioning of many organs and tissues containing smooth muscles greatly depends on the intricate organization of the smooth muscle cells oriented in appropriate directions. Consequently controlling the cellular orientation in three-dimensional (3D) cellular constructs is an important issue in engineering tissues of smooth muscles. However, the ability to precisely control the cellular orientation at the microscale cannot be achieved by various commonly used 3D tissue engineering building blocks such as spheroids. This paper presents the formation of coiled spring-shaped 3D cellular constructs containing circumferentially oriented smooth muscle-like cells differentiated from dedifferentiated fat (DFAT) cells. By using the cell fiber technology, DFAT cells suspended in a mixture of extracellular proteins possessing an optimized stiffness were encapsulated in the core region of alginate shell microfibers and uniformly aligned to the longitudinal direction. Upon differentiation induction to the smooth muscle lineage, DFAT cell fibers self-assembled to coiled spring structures where the cells became circumferentially oriented. By changing the initial core-shell microfiber diameter, we demonstrated that the spring pitch and diameter could be controlled. 21 days after differentiation induction, the cell fibers contained high percentages of ASMA-positive and calponin-positive cells. Our technology to create these smooth muscle-like spring constructs enabled precise control of cellular alignment and orientation in 3D. These constructs can further serve as tissue engineering building blocks for larger organs and cellular implants used in clinical treatments.

  5. Smooth Muscle-Like Tissue Constructs with Circumferentially Oriented Cells Formed by the Cell Fiber Technology

    PubMed Central

    Hsiao, Amy Y.; Okitsu, Teru; Onoe, Hiroaki; Kiyosawa, Mahiro; Teramae, Hiroki; Iwanaga, Shintaroh; Kazama, Tomohiko; Matsumoto, Taro; Takeuchi, Shoji

    2015-01-01

    The proper functioning of many organs and tissues containing smooth muscles greatly depends on the intricate organization of the smooth muscle cells oriented in appropriate directions. Consequently controlling the cellular orientation in three-dimensional (3D) cellular constructs is an important issue in engineering tissues of smooth muscles. However, the ability to precisely control the cellular orientation at the microscale cannot be achieved by various commonly used 3D tissue engineering building blocks such as spheroids. This paper presents the formation of coiled spring-shaped 3D cellular constructs containing circumferentially oriented smooth muscle-like cells differentiated from dedifferentiated fat (DFAT) cells. By using the cell fiber technology, DFAT cells suspended in a mixture of extracellular proteins possessing an optimized stiffness were encapsulated in the core region of alginate shell microfibers and uniformly aligned to the longitudinal direction. Upon differentiation induction to the smooth muscle lineage, DFAT cell fibers self-assembled to coiled spring structures where the cells became circumferentially oriented. By changing the initial core-shell microfiber diameter, we demonstrated that the spring pitch and diameter could be controlled. 21 days after differentiation induction, the cell fibers contained high percentages of ASMA-positive and calponin-positive cells. Our technology to create these smooth muscle-like spring constructs enabled precise control of cellular alignment and orientation in 3D. These constructs can further serve as tissue engineering building blocks for larger organs and cellular implants used in clinical treatments. PMID:25734774

  6. Lymphatic Muscle Cells in Rat Mesenteric Lymphatic Vessels of Various Ages

    PubMed Central

    Bridenbaugh, Eric A.; Nizamutdinova, Irina Tsoy; Jupiter, Daniel; Nagai, Takashi; Thangaswamy, Sangeetha; Chatterjee, Victor

    2013-01-01

    Abstract Background Recent studies on aging-associated changes in mesenteric lymph flow in situ demonstrated predominance of the severe negative chronotropic effect of aging on the contractility of aged mesenteric lymphatic vessels (MLV). At the same time, contraction amplitude of the aged vessels was only slightly diminished by aging and can be rapidly stimulated within 5–15 minutes. However, the detailed quantitative evaluation of potential aging-associated changes in muscle cells investiture in MLV has never been performed. Methods and Results In this study we, for the first time, performed detailed evaluation of muscle cells investiture in MLV in reference to the position of lymphatic valve in different zones of lymphangion within various age groups (3-mo, 9-mo and 24-mo Fischer-344 rats). Using visual and quantitative analyses of the images of MLV immunohistochemically labeled for actin, we confirmed that the zones located close upstream (pre-valve zones) and above lymphatic valves (valve zones) possess the lowest investiture of lymphatic muscle cells. Most of the high muscle cells investiture zones exist downstream to the lymphatic valve (post-valve zones). The muscle cells investiture of these zones is not affected by aging, while pre-valve and valve zones demonstrate significant aging-associated decrease in muscle cells investiture. Conclusions The low muscle cells investiture zones in lymphatic vessels consist of predominantly longitudinally oriented muscle cells which are positioned in pre-valve and valve zones and connect adjacent lymphangions. These cells may provide important functional impact on the biomechanics of the lymphatic valve gating and electrical coupling between lymphangions, while their aging-associated changes may delimit adaptive reserves of aged lymphatic vessels. PMID:23531183

  7. Mitochondrial motility and vascular smooth muscle proliferation.

    PubMed

    Chalmers, Susan; Saunter, Christopher; Wilson, Calum; Coats, Paul; Girkin, John M; McCarron, John G

    2012-12-01

    Mitochondria are widely described as being highly dynamic and adaptable organelles, and their movement is thought to be vital for cell function. Yet, in various native cells, including those of heart and smooth muscle, mitochondria are stationary and rigidly structured. The significance of the differences in mitochondrial behavior to the physiological function of cells is unclear and was studied in single myocytes and intact resistance-sized cerebral arteries. We hypothesized that mitochondrial dynamics is controlled by the proliferative status of the cells. High-speed fluorescence imaging of mitochondria in live vascular smooth muscle cells shows that the organelle undergoes significant reorganization as cells become proliferative. In nonproliferative cells, mitochondria are individual (≈ 2 μm by 0.5 μm), stationary, randomly dispersed, fixed structures. However, on entering the proliferative state, mitochondria take on a more diverse architecture and become small spheres, short rod-shaped structures, long filamentous entities, and networks. When cells proliferate, mitochondria also continuously move and change shape. In the intact pressurized resistance artery, mitochondria are largely immobile structures, except in a small number of cells in which motility occurred. When proliferation of smooth muscle was encouraged in the intact resistance artery, in organ culture, the majority of mitochondria became motile and the majority of smooth muscle cells contained moving mitochondria. Significantly, restriction of mitochondrial motility using the fission blocker mitochondrial division inhibitor prevented vascular smooth muscle proliferation in both single cells and the intact resistance artery. These results show that mitochondria are adaptable and exist in intact tissue as both stationary and highly dynamic entities. This mitochondrial plasticity is an essential mechanism for the development of smooth muscle proliferation and therefore presents a novel therapeutic

  8. Aging, metabolism and stem cells: Spotlight on muscle stem cells.

    PubMed

    García-Prat, Laura; Muñoz-Cánoves, Pura

    2017-04-15

    All tissues and organs undergo a progressive regenerative decline as they age. This decline has been mainly attributed to loss of stem cell number and/or function, and both stem cell-intrinsic changes and alterations in local niches and/or systemic environment over time are known to contribute to the stem cell aging phenotype. Advancing in the molecular understanding of the deterioration of stem cell cells with aging is key for targeting the specific causes of tissue regenerative dysfunction at advanced stages of life. Here, we revise exciting recent findings on why stem cells age and the consequences on tissue regeneration, with a special focus on regeneration of skeletal muscle. We also highlight newly identified common molecular pathways affecting diverse types of aging stem cells, such as altered proteostasis, metabolism, or senescence entry, and discuss the questions raised by these findings. Finally, we comment on emerging stem cell rejuvenation strategies, principally emanating from studies on muscle stem cells, which will surely burst tissue regeneration research for future benefit of the increasing human aging population. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. ALS-related misfolded protein management in motor neurons and muscle cells.

    PubMed

    Galbiati, Mariarita; Crippa, Valeria; Rusmini, Paola; Cristofani, Riccardo; Cicardi, Maria Elena; Giorgetti, Elisa; Onesto, Elisa; Messi, Elio; Poletti, Angelo

    2014-12-01

    Amyotrophic Lateral Sclerosis (ALS) is the most common form of adult-onset motor neuron disease. It is now considered a multi-factorial and multi-systemic disorder in which alterations of the crosstalk between neuronal and non-neuronal cell types might influence the course of the disease. In this review, we will provide evidence that dysfunctions of affected muscle cells are not only a marginal consequence of denervation associated to motor neurons loss, but a direct consequence of cell muscle toxicity of mutant SOD1. In muscle, the misfolded state of mutant SOD1 protein, unlike in motor neurons, does not appear to have direct effects on protein aggregation and mitochondrial functionality. Muscle cells are, in fact, more capable than motor neurons to handle misfolded proteins, suggesting that mutant SOD1 toxicity in muscle is not mediated by classical mechanisms of intracellular misfolded proteins accumulation. Several recent works indicate that a higher activation of molecular chaperones and degradative systems is present in muscle cells, which for this reason are possibly able to better manage misfolded mutant SOD1. However, several alterations in gene expression and regenerative potential of skeletal muscles have also been reported as a consequence of the expression of mutant SOD1 in muscle. Whether these changes in muscle cells are causative of ALS or a consequence of motor neuron alterations is not yet clear, but their elucidation is very important, since the understanding of the mechanisms involved in mutant SOD1 toxicity in muscle may facilitate the design of treatments directed toward this specific tissue to treat ALS or at least to delay disease progression. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. The obesity paradox in men with coronary heart disease and heart failure: the role of muscle mass and leptin.

    PubMed

    Wannamethee, S Goya; Shaper, A Gerald; Whincup, Peter H; Lennon, Lucy; Papacosta, Olia; Sattar, Naveed

    2014-01-15

    We have investigated the role of muscle mass, natriuretic peptides and adipokines in explaining the obesity paradox. The obesity paradox relates to the association between obesity and increased survival in patients with coronary heart disease (CHD) or heart failure (HF). Prospective study of 4046 men aged 60-79 years followed up for a mean period of 11 years, during which 1340 deaths occurred. The men were divided according to the presence of doctor diagnosed CHD and HF: (i) no CHD or HF ii), with CHD (no HF) and (iii) with HF. Overweight (BMI 25-9.9 kg/m(2)) and obesity (BMI ≥ 30 kg/m(2)) were associated with lower mortality risk compared to men with normal weight (BMI 18.5-24.9 kg/m(2)) in those with CHD [hazards ratio (HR) 0.71 (0.56,0.91) and 0.77 (0.57,1.04); p=0.04 for trend] and in those with HF [HR 0.57 (0.28,1.16) and 0.41 (0.16,1.09; p=0.04 for trend). Adjustment for muscle mass and NT-proBNP attenuated the inverse association in those with CHD (no HF) [HR 0.78 (0.61,1.01) and 0.96 (0.68,1.36) p=0.60 for trend) but made minor differences to those with HF [p=0.05]. Leptin related positively to mortality in men without HF but inversely to mortality in those with HF; adjustment for leptin abolished the BMI mortality association in men with HF [HR 0.82 (0.31,2.20) and 0.99 (0.27,3.71); p=0.98 for trend]. The lower mortality risk associated with excess weight in men with CHD without HF may be due to higher muscle mass. In men with HF, leptin (possibly reflecting cachexia) explain the inverse association. Copyright © 2013. Published by Elsevier Ireland Ltd.

  11. Sepsis induces long-term metabolic and mitochondrial muscle stem cell dysfunction amenable by mesenchymal stem cell therapy

    PubMed Central

    Rocheteau, P.; Chatre, L.; Briand, D.; Mebarki, M.; Jouvion, G.; Bardon, J.; Crochemore, C.; Serrani, P.; Lecci, P. P.; Latil, M.; Matot, B.; Carlier, P. G.; Latronico, N.; Huchet, C.; Lafoux, A.; Sharshar, T.; Ricchetti, M.; Chrétien, F.

    2015-01-01

    Sepsis, or systemic inflammatory response syndrome, is the major cause of critical illness resulting in admission to intensive care units. Sepsis is caused by severe infection and is associated with mortality in 60% of cases. Morbidity due to sepsis is complicated by neuromyopathy, and patients face long-term disability due to muscle weakness, energetic dysfunction, proteolysis and muscle wasting. These processes are triggered by pro-inflammatory cytokines and metabolic imbalances and are aggravated by malnutrition and drugs. Skeletal muscle regeneration depends on stem (satellite) cells. Herein we show that mitochondrial and metabolic alterations underlie the sepsis-induced long-term impairment of satellite cells and lead to inefficient muscle regeneration. Engrafting mesenchymal stem cells improves the septic status by decreasing cytokine levels, restoring mitochondrial and metabolic function in satellite cells, and improving muscle strength. These findings indicate that sepsis affects quiescent muscle stem cells and that mesenchymal stem cells might act as a preventive therapeutic approach for sepsis-related morbidity. PMID:26666572

  12. Sepsis induces long-term metabolic and mitochondrial muscle stem cell dysfunction amenable by mesenchymal stem cell therapy.

    PubMed

    Rocheteau, P; Chatre, L; Briand, D; Mebarki, M; Jouvion, G; Bardon, J; Crochemore, C; Serrani, P; Lecci, P P; Latil, M; Matot, B; Carlier, P G; Latronico, N; Huchet, C; Lafoux, A; Sharshar, T; Ricchetti, M; Chrétien, F

    2015-12-15

    Sepsis, or systemic inflammatory response syndrome, is the major cause of critical illness resulting in admission to intensive care units. Sepsis is caused by severe infection and is associated with mortality in 60% of cases. Morbidity due to sepsis is complicated by neuromyopathy, and patients face long-term disability due to muscle weakness, energetic dysfunction, proteolysis and muscle wasting. These processes are triggered by pro-inflammatory cytokines and metabolic imbalances and are aggravated by malnutrition and drugs. Skeletal muscle regeneration depends on stem (satellite) cells. Herein we show that mitochondrial and metabolic alterations underlie the sepsis-induced long-term impairment of satellite cells and lead to inefficient muscle regeneration. Engrafting mesenchymal stem cells improves the septic status by decreasing cytokine levels, restoring mitochondrial and metabolic function in satellite cells, and improving muscle strength. These findings indicate that sepsis affects quiescent muscle stem cells and that mesenchymal stem cells might act as a preventive therapeutic approach for sepsis-related morbidity.

  13. The central role of muscle stem cells in regenerative failure with aging

    PubMed Central

    Blau, Helen M; Cosgrove, Benjamin D; Ho, Andrew T V

    2016-01-01

    Skeletal muscle mass, function, and repair capacity all progressively decline with aging, restricting mobility, voluntary function, and quality of life. Skeletal muscle repair is facilitated by a population of dedicated muscle stem cells (MuSCs), also known as satellite cells, that reside in anatomically defined niches within muscle tissues. In adult tissues, MuSCs are retained in a quiescent state until they are primed to regenerate damaged muscle through cycles of self-renewal divisions. With aging, muscle tissue homeostasis is progressively disrupted and the ability of MuSCs to repair injured muscle markedly declines. Until recently, this decline has been largely attributed to extrinsic age-related alterations in the microenvironment to which MuSCs are exposed. However, as highlighted in this Perspective, recent reports show that MuSCs also progressively undergo cell-intrinsic alterations that profoundly affect stem cell regenerative function with aging. A more comprehensive understanding of the interplay of stem cell–intrinsic and extrinsic factors will set the stage for improving cell therapies capable of restoring tissue homeostasis and enhancing muscle repair in the aged. PMID:26248268

  14. Fusogenic micropeptide Myomixer is essential for satellite cell fusion and muscle regeneration.

    PubMed

    Bi, Pengpeng; McAnally, John R; Shelton, John M; Sánchez-Ortiz, Efrain; Bassel-Duby, Rhonda; Olson, Eric N

    2018-04-10

    Regeneration of skeletal muscle in response to injury occurs through fusion of a population of stem cells, known as satellite cells, with injured myofibers. Myomixer, a muscle-specific membrane micropeptide, cooperates with the transmembrane protein Myomaker to regulate embryonic myoblast fusion and muscle formation. To investigate the role of Myomixer in muscle regeneration, we used CRISPR/Cas9-mediated genome editing to generate conditional knockout Myomixer alleles in mice. We show that genetic deletion of Myomixer in satellite cells using a tamoxifen-regulated Cre recombinase transgene under control of the Pax7 promoter abolishes satellite cell fusion and prevents muscle regeneration, resulting in severe muscle degeneration after injury. Satellite cells devoid of Myomixer maintain expression of Myomaker, demonstrating that Myomaker alone is insufficient to drive myoblast fusion. These findings, together with prior studies demonstrating the essentiality of Myomaker for muscle regeneration, highlight the obligatory partnership of Myomixer and Myomaker for myofiber formation throughout embryogenesis and adulthood.

  15. Attraction and repulsion of spiral waves by inhomogeneity of conduction anisotropy--a model of spiral wave interaction with electrical remodeling of heart tissue.

    PubMed

    Kuklik, Pawel; Sanders, Prashanthan; Szumowski, Lukasz; Żebrowski, Jan J

    2013-01-01

    Various forms of heart disease are associated with remodeling of the heart muscle, which results in a perturbation of cell-to-cell electrical coupling. These perturbations may alter the trajectory of spiral wave drift in the heart muscle. We investigate the effect of spatially extended inhomogeneity of transverse cell coupling on the spiral wave trajectory using a simple active media model. The spiral wave was either attracted or repelled from the center of inhomogeneity as a function of cell excitability and gradient of the cell coupling. High levels of excitability resulted in an attraction of the wave to the center of inhomogeneity, whereas low levels resulted in an escape and termination of the spiral wave. The spiral wave drift velocity was related to the gradient of the coupling and the initial position of the wave. In a diseased heart, a region of altered transverse coupling corresponds with local gap junction remodeling that may be responsible for stabilization-destabilization of spiral waves and hence reflect potentially important targets in the treatment of heart arrhythmias.

  16. Comparison of the Effects of Benson Muscle Relaxation and Nature Sounds on the Fatigue in Patients With Heart Failure: A Randomized Controlled Clinical Trial.

    PubMed

    Seifi, Leila; Najafi Ghezeljeh, Tahereh; Haghani, Hamid

    This study was conducted with the aim of comparing the effects of Benson muscle relaxation and nature sounds on fatigue in patients with heart failure. Fatigue and exercise intolerance as prevalent symptoms experienced by patients with heart failure can cause the loss of independence in the activities of daily living. It can also damage self-care and increase dependence to others, which subsequently can reduce the quality of life. This randomized controlled clinical trial was conducted in an urban area of Iran in 2016. Samples were consisted of 105 hospitalized patients with heart failure chosen using a convenience sampling method. They were assigned to relaxation, nature sounds, and control groups using a randomized block design. In addition to routine care, the Benson muscle relaxation and nature sounds groups received interventions in mornings and evenings twice a day for 20 minutes within 3 consecutive days. A 9-item questionnaire was used to collect data regarding fatigue before and after the interventions. Relaxation and nature sounds reduced fatigue in patients with heart failure in comparison to the control group. However, no statistically significant difference was observed between the interventions. Benson muscle relaxation and nature sounds are alternative methods for the reduction of fatigue in patients with heart failure. They are inexpensive and easy to be administered and upon patients' preferences can be used by nurses along with routine nursing interventions.

  17. Lsd1 regulates skeletal muscle regeneration and directs the fate of satellite cells.

    PubMed

    Tosic, Milica; Allen, Anita; Willmann, Dominica; Lepper, Christoph; Kim, Johnny; Duteil, Delphine; Schüle, Roland

    2018-01-25

    Satellite cells are muscle stem cells required for muscle regeneration upon damage. Of note, satellite cells are bipotent and have the capacity to differentiate not only into skeletal myocytes, but also into brown adipocytes. Epigenetic mechanisms regulating fate decision and differentiation of satellite cells during muscle regeneration are not yet fully understood. Here, we show that elevated levels of lysine-specific demethylase 1 (Kdm1a, also known as Lsd1) have a beneficial effect on muscle regeneration and recovery after injury, since Lsd1 directly regulates key myogenic transcription factor genes. Importantly, selective Lsd1 ablation or inhibition in Pax7-positive satellite cells, not only delays muscle regeneration, but changes cell fate towards brown adipocytes. Lsd1 prevents brown adipocyte differentiation of satellite cells by repressing expression of the novel pro-adipogenic transcription factor Glis1. Together, downregulation of Glis1 and upregulation of the muscle-specific transcription program ensure physiological muscle regeneration.

  18. Chronic inflammation in skeletal muscle impairs satellite cells function during regeneration: can physical exercise restore the satellite cell niche?

    PubMed

    Perandini, Luiz Augusto; Chimin, Patricia; Lutkemeyer, Diego da Silva; Câmara, Niels Olsen Saraiva

    2018-06-01

    Chronic inflammation impairs skeletal muscle regeneration. Although many cells are involved in chronic inflammation, macrophages seem to play an important role in impaired muscle regeneration since these cells are associated with skeletal muscle stem cell (namely, satellite cells) activation and fibro-adipogenic progenitor cell (FAP) survival. Specifically, an imbalance of M1 and M2 macrophages seems to lead to impaired satellite cell activation, and these are the main cells that function during skeletal muscle regeneration, after muscle damage. Additionally, this imbalance leads to the accumulation of FAPs in skeletal muscle, with aberrant production of pro-fibrotic factors (e.g., extracellular matrix components), impairing the niche for proper satellite cell activation and differentiation. Treatments aiming to block the inflammatory pro-fibrotic response are partially effective due to their side effects. Therefore, strategies reverting chronic inflammation into a pro-regenerative pattern are required. In this review, we first describe skeletal muscle resident macrophage ontogeny and homeostasis, and explain how macrophages are replenished after muscle injury. We next discuss the potential role of chronic physical activity and exercise in restoring the M1 and M2 macrophage balance and consequently, the satellite cell niche to improve skeletal muscle regeneration after injury. © 2018 Federation of European Biochemical Societies.

  19. Possible Role of Non-Muscle Alpha-Actinins in Muscle Cell Mechanosensitivity

    PubMed Central

    Ogneva, Irina V.; Biryukov, Nikolay S.; Leinsoo, Toomas A.; Larina, Irina M.

    2014-01-01

    The main hypothesis suggested that changes in the external mechanical load would lead to different deformations of the submembranous cytoskeleton and, as a result, dissociation of different proteins from its structure (induced by increased/decreased mechanical stress). The study subjects were fibers of the soleus muscle and cardiomyocytes of Wistar rats. Changes in external mechanical conditions were reconstructed by means of antiorthostatic suspension of the animals by their tails for 6, 12, 18, 24 and 72 hours. Transversal stiffness was measured by atomic force microscopy imaging; beta-, gamma-actin, alpha-actinin 1 and alpha-actinin 4 levels in membranous and cytoplasmic fractions were quantified by Western blot analysis; expression rates of the corresponding genes were studied using RT-PCR. Results: In 6 hours, alpha-actinin 1 and alpha-actinin 4 levels decreased in the membranous fraction of proteins of cardiomyocytes and soleus muscle fibers, respectively, but increased in the cytoplasmic fraction of the abovementioned cells. After 6–12 hours of suspension, the expression rates of beta-, gamma-actin, alpha-actinin 1 and alpha-actinin 4 were elevated in the soleus muscle fibers, but the alpha-actinin 1 expression rate returned to the reference level in 72 hours. After 18–24 hours, the expression rates of beta-actin and alpha-actinin 4 increased in cardiomyocytes, while the alpha-actinin 1 expression rate decreased in soleus muscle fibers. After 12 hours, the beta- and gamma-actin content dropped in the membranous fraction and increased in the cytoplasmic protein fractions from both cardiomyocytes and soleus muscle fibers. The stiffness of both cell types decreased after the same period of time. Further, during the unloading period the concentration of nonmuscle actin and different isoforms of alpha-actinins increased in the membranous fraction from cardiomyocytes. At the same time, the concentration of the abovementioned proteins decreased in the soleus

  20. Intercellular adhesion molecule-1 expression by skeletal muscle cells augments myogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goh, Qingnian; Dearth, Christopher L.; Corbett, Jacob T.

    We previously demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) by skeletal muscle cells after muscle overload contributes to ensuing regenerative and hypertrophic processes in skeletal muscle. The objective of the present study is to reveal mechanisms through which skeletal muscle cell expression of ICAM-1 augments regenerative and hypertrophic processes of myogenesis. This was accomplished by genetically engineering C2C12 myoblasts to stably express ICAM-1, and by inhibiting the adhesive and signaling functions of ICAM-1 through the use of a neutralizing antibody or cell penetrating peptide, respectively. Expression of ICAM-1 by cultured skeletal muscle cells augmented myoblast–myoblast adhesion, myotube formation,more » myonuclear number, myotube alignment, myotube–myotube fusion, and myotube size without influencing the ability of myoblasts to proliferate or differentiate. ICAM-1 augmented myotube formation, myonuclear accretion, and myotube alignment through a mechanism involving adhesion-induced activation of ICAM-1 signaling, as these dependent measures were reduced via antibody and peptide inhibition of ICAM-1. The adhesive and signaling functions of ICAM-1 also facilitated myotube hypertrophy through a mechanism involving myotube–myotube fusion, protein synthesis, and Akt/p70s6k signaling. Our findings demonstrate that ICAM-1 expression by skeletal muscle cells augments myogenesis, and establish a novel mechanism through which the inflammatory response facilitates growth processes in skeletal muscle. - Highlights: • We examined mechanisms through which skeletal muscle cell expression of ICAM-1 facilitates events of in vitro myogenesis. • Expression of ICAM-1 by cultured myoblasts did not influence their ability to proliferate or differentiate. • Skeletal muscle cell expression of ICAM-1 augmented myoblast fusion, myotube alignment, myotube–myotube fusion, and myotube size. • ICAM-1 augmented myogenic processes

  1. Embryonic Stem Cell Therapy of Heart Failure in Genetic Cardiomyopathy

    PubMed Central

    Yamada, Satsuki; Nelson, Timothy J.; Crespo-Diaz, Ruben J.; Perez-Terzic, Carmen; Liu, Xiao-Ke; Miki, Takashi; Seino, Susumu; Behfar, Atta; Terzic, Andre

    2009-01-01

    Pathogenic causes underlying nonischemic cardiomyopathies are increasingly being resolved, yet repair therapies for these commonly heritable forms of heart failure are lacking. A case in point is human dilated cardiomyopathy 10 (CMD10; Online Mendelian Inheritance in Man #608569), a progressive organ dysfunction syndrome refractory to conventional therapies and linked to mutations in cardiac ATP-sensitive K+ (KATP) channel sub-units. Embryonic stem cell therapy demonstrates benefit in ischemic heart disease, but the reparative capacity of this allogeneic regenerative cell source has not been tested in inherited cardiomyopathy. Here, in a Kir6.2-knockout model lacking functional KATP channels, we recapitulated under the imposed stress of pressure overload the gene-environment substrate of CMD10. Salient features of the human malignant heart failure phenotype were reproduced, including compromised contractility, ventricular dilatation, and poor survival. Embryonic stem cells were delivered through the epicardial route into the left ventricular wall of cardiomyopathic stressed Kir6.2-null mutants. At 1 month of therapy, transplantation of 200,000 cells per heart achieved teratoma-free reversal of systolic dysfunction and electrical synchronization and halted maladaptive remodeling, thereby preventing end-stage organ failure. Tracked using the lacZ reporter transgene, stem cells engrafted into host heart. Beyond formation of cardiac tissue positive for Kir6.2, transplantation induced cell cycle activation and halved fibrotic zones, normalizing sarcomeric and gap junction organization within remuscularized hearts. Improved systemic function induced by stem cell therapy translated into increased stamina, absence of anasarca, and benefit to overall survivorship. Embryonic stem cells thus achieve functional repair in nonischemic genetic cardiomyopathy, expanding indications to the therapy of heritable heart failure. PMID:18669912

  2. Mechanical positioning of multiple nuclei in muscle cells.

    PubMed

    Manhart, Angelika; Windner, Stefanie; Baylies, Mary; Mogilner, Alex

    2018-06-01

    Many types of large cells have multiple nuclei. In skeletal muscle fibers, the nuclei are distributed along the cell to maximize their internuclear distances. This myonuclear positioning is crucial for cell function. Although microtubules, microtubule associated proteins, and motors have been implicated, mechanisms responsible for myonuclear positioning remain unclear. We used a combination of rough interacting particle and detailed agent-based modeling to examine computationally the hypothesis that a force balance generated by microtubules positions the muscle nuclei. Rather than assuming the nature and identity of the forces, we simulated various types of forces between the pairs of nuclei and between the nuclei and cell boundary to position the myonuclei according to the laws of mechanics. We started with a large number of potential interacting particle models and computationally screened these models for their ability to fit biological data on nuclear positions in hundreds of Drosophila larval muscle cells. This reverse engineering approach resulted in a small number of feasible models, the one with the best fit suggests that the nuclei repel each other and the cell boundary with forces that decrease with distance. The model makes nontrivial predictions about the increased nuclear density near the cell poles, the zigzag patterns of the nuclear positions in wider cells, and about correlations between the cell width and elongated nuclear shapes, all of which we confirm by image analysis of the biological data. We support the predictions of the interacting particle model with simulations of an agent-based mechanical model. Taken together, our data suggest that microtubules growing from nuclear envelopes push on the neighboring nuclei and the cell boundaries, which is sufficient to establish the nearly-uniform nuclear spreading observed in muscle fibers.

  3. The chromatin-binding protein Smyd1 restricts adult mammalian heart growth

    PubMed Central

    Kimball, Todd; Rasmussen, Tara L.; Rosa-Garrido, Manuel; Chen, Haodong; Tran, Tam; Miller, Mickey R.; Gray, Ricardo; Jiang, Shanxi; Ren, Shuxun; Wang, Yibin; Tucker, Haley O.; Vondriska, Thomas M.

    2016-01-01

    All terminally differentiated organs face two challenges, maintaining their cellular identity and restricting organ size. The molecular mechanisms responsible for these decisions are of critical importance to organismal development, and perturbations in their normal balance can lead to disease. A hallmark of heart failure, a condition affecting millions of people worldwide, is hypertrophic growth of cardiomyocytes. The various forms of heart failure in human and animal models share conserved transcriptome remodeling events that lead to expression of genes normally silenced in the healthy adult heart. However, the chromatin remodeling events that maintain cell and organ size are incompletely understood; insights into these mechanisms could provide new targets for heart failure therapy. Using a quantitative proteomics approach to identify muscle-specific chromatin regulators in a mouse model of hypertrophy and heart failure, we identified upregulation of the histone methyltransferase Smyd1 during disease. Inducible loss-of-function studies in vivo demonstrate that Smyd1 is responsible for restricting growth in the adult heart, with its absence leading to cellular hypertrophy, organ remodeling, and fulminate heart failure. Molecular studies reveal Smyd1 to be a muscle-specific regulator of gene expression and indicate that Smyd1 modulates expression of gene isoforms whose expression is associated with cardiac pathology. Importantly, activation of Smyd1 can prevent pathological cell growth. These findings have basic implications for our understanding of cardiac pathologies and open new avenues to the treatment of cardiac hypertrophy and failure by modulating Smyd1. PMID:27663768

  4. Nonesterified fatty acid accumulation and release during heart muscle-cell (myocyte) injury: modulation by extracellular "acceptor".

    PubMed

    Janero, D R; Burghardt, C

    1989-07-01

    Long-chain nonesterified fatty acid (NEFA) accumulation in the heart muscle cell (myocyte) and NEFA release to the extracellular milieu are considered contributors to the pathogenesis of myocardial injury in a number of cardiovascular disease states. Reported here is a study of the factors which influence and control the interactions among NEFA formation, intracellular NEFA accumulation, and NEFA release to the extracellular compartment by the irreversibly injured myocyte. Under conditions of metabolic inhibition, neonatal rat myocytes in primary monolayer culture became virtually depleted of ATP within 8 h. The metabolically inhibited myocytes evidenced membrane phospholipid degradation and a resultant net accumulation of NEFA produced thereby in the extracellular medium. However, under conditions of nutrient deprivation, the injured myocytes retained the NEFA produced from phospholipid catabolism intracellularly and did not release it to the culture medium, although the extent of myocyte ATP depletion was the same as it had been from metabolic inhibition. Serum could elicit, in a concentration-dependent fashion, the quantitative release of NEFA from metabolically inhibited myocytes to the culture medium but did not influence the net production of NEFA by the injured cells. Similarly, NEFA release from nutrient-deprived myocytes incubated in serum-free, substrate-free medium or in physiological buffer could be induced by supplementing the medium or buffer with bovine serum albumin (BSA), and the extent of NEFA release, but not NEFA formation, was dependent upon the extracellular BSA concentration. No manipulations to media other than changing their serum content or supplementing them with BSA were found to influence the disposition of NEFA produced during phospholipid catabolism in the irreversibly injured, ATP-depleted myocyte. Therefore, although progressive metabolic compromise in the myocyte was correlated with increasing, net NEFA formation, the distribution

  5. Cultured smooth muscle cells of the human vesical sphincter are more sensitive to histamine than are detrusor smooth muscle cells.

    PubMed

    Neuhaus, Jochen; Oberbach, Andreas; Schwalenberg, Thilo; Stolzenburg, Jens-Uwe

    2006-05-01

    To compare histamine receptor expression in cultured smooth muscle cells from the human detrusor and internal sphincter using receptor-specific agonists. Smooth muscle cells from the bladder dome and internal sphincter were cultured from 5 male patients undergoing cystectomy for bladder cancer therapy. Calcium transients in cells stimulated with carbachol, histamine, histamine receptor 1 (H1R)-specific heptanecarboxamide (HTMT), dimaprit (H2R), and R-(alpha)-methylhistamine (H3R) were measured by calcium imaging. Histamine receptor proteins were detected by Western blot analysis and immunocytochemistry. H1R, H2R, and H3R expression was found in tissue and cultured cells. Carbachol stimulated equal numbers of detrusor and sphincter cells (60% and 51%, respectively). Histamine stimulated significantly more cells than carbachol in detrusor (100%) and sphincter (99.34%) cells. Calcium responses to carbachol in detrusor and sphincter cells were comparable and did not differ from those to histamine in detrusor cells. However, histamine and specific agonists stimulated more sphincter cells than did carbachol (P <0.001), and the calcium increase was greater in sphincter cells than in detrusor cells. Single cell analysis revealed comparable H2R responses in detrusor and sphincter cells, but H1R and H3R-mediated calcium reactions were significantly greater in sphincter cells. Histamine very effectively induces calcium release in smooth muscle cells. In sphincter cells, histamine is even more effective than carbachol regarding the number of reacting cells and the intracellular calcium increase. Some of the variability in the outcome of antihistaminic interstitial cystitis therapies might be caused by the ineffectiveness of the chosen antihistaminic or unintentional weakening of sphincteric function.

  6. Local myogenic pulp-derived cell injection enhances craniofacial muscle regeneration in vivo.

    PubMed

    Jung, J E; Song, M J; Shin, S; Choi, Y J; Kim, K H; Chung, C J

    2017-02-01

    To enhance myogenic differentiation in pulp cells isolated from extracted premolars by epigenetic modification using a DNA demethylation agent, 5-aza-2'-deoxycytidine (5-Aza), and to evaluate the potent stimulatory effect of 5-Aza-treated pulp cell injection for craniofacial muscle regeneration in vivo. Pulp cells were isolated from premolars extracted for orthodontic purposes from four adults (age range, 18-22.1 years). Levels of myogenic differentiation and functional contraction response in vitro were compared between pulp cells with or without pre-treatment of 5-Aza. Changes in muscle regeneration in response to green fluorescent protein (GFP)-labelled myogenic pulp cell injection in vivo were evaluated using a cardiotoxin (CTX)-induced muscle injury model of the gastrocnemius as well as the masseter muscle in mice. Pre-treatment of 5-Aza in pulp cells stimulated myotube formation, myogenic differentiation in terms of desmin and myogenin expression, and the level of collagen gel contraction. The local injection of 5-Aza pre-treated myogenic pulp cells was engrafted into the host tissue and indicated signs of enhanced muscle regeneration in both the gastrocnemius and the masseter muscles. The epigenetic modification of pulp cells from extracted premolars and the local injection of myogenic pulp cells may stimulate craniofacial muscles regeneration in vivo. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Dense-body aggregates as plastic structures supporting tension in smooth muscle cells.

    PubMed

    Zhang, Jie; Herrera, Ana M; Paré, Peter D; Seow, Chun Y

    2010-11-01

    The wall of hollow organs of vertebrates is a unique structure able to generate active tension and maintain a nearly constant passive stiffness over a large volume range. These properties are predominantly attributable to the smooth muscle cells that line the organ wall. Although smooth muscle is known to possess plasticity (i.e., the ability to adapt to large changes in cell length through structural remodeling of contractile apparatus and cytoskeleton), the detailed structural basis for the plasticity is largely unknown. Dense bodies, one of the most prominent structures in smooth muscle cells, have been regarded as the anchoring sites for actin filaments, similar to the Z-disks in striated muscle. Here, we show that the dense bodies and intermediate filaments formed cable-like structures inside airway smooth muscle cells and were able to adjust the cable length according to cell length and tension. Stretching the muscle cell bundle in the relaxed state caused the cables to straighten, indicating that these intracellular structures were connected to the extracellular matrix and could support passive tension. These plastic structures may be responsible for the ability of smooth muscle to maintain a nearly constant tensile stiffness over a large length range. The finding suggests that the structural plasticity of hollow organs may originate from the dense-body cables within the smooth muscle cells.

  8. Mitochondria and ageing: role in heart, skeletal muscle and adipose tissue

    PubMed Central

    Boengler, Kerstin; Kosiol, Maik; Mayr, Manuel; Schulz, Rainer

    2017-01-01

    Abstract Age is the most important risk factor for most diseases. Mitochondria play a central role in bioenergetics and metabolism. In addition, several lines of evidence indicate the impact of mitochondria in lifespan determination and ageing. The best‐known hypothesis to explain ageing is the free radical theory, which proposes that cells, organs, and organisms age because they accumulate reactive oxygen species (ROS) damage over time. Mitochondria play a central role as the principle source of intracellular ROS, which are mainly formed at the level of complex I and III of the respiratory chain. Dysfunctional mitochondria generating less ATP have been observed in various aged organs. Mitochondrial dysfunction comprises different features including reduced mitochondrial content, altered mitochondrial morphology, reduced activity of the complexes of the electron transport chain, opening of the mitochondrial permeability transition pore, and increased ROS formation. Furthermore, abnormalities in mitochondrial quality control or defects in mitochondrial dynamics have also been linked to senescence. Among the tissues affected by mitochondrial dysfunction are those with a high‐energy demand and thus high mitochondrial content. Therefore, the present review focuses on the impact of mitochondria in the ageing process of heart and skeletal muscle. In this article, we review different aspects of mitochondrial dysfunction and discuss potential therapeutic strategies to improve mitochondrial function. Finally, novel aspects of adipose tissue biology and their involvement in the ageing process are discussed. PMID:28432755

  9. Effects of voluntary wheel running on satellite cells in the rat plantaris muscle.

    PubMed

    Kurosaka, Mitsutoshi; Naito, Hisashi; Ogura, Yuji; Kojima, Atsushi; Goto, Katsumasa; Katamoto, Shizuo

    2009-01-01

    This study investigated the effects of voluntary wheel running on satellite cells in the rat plantaris muscle. Seventeen 5-week-old male Wistar rats were assigned to a control (n = 5) or training (n = 12) group. Each rat in the training group ran voluntarily in a running-wheel cage for 8 weeks. After the training period, the animals were anesthetized, and the plantaris muscles were removed, weighed, and analyzed immunohistochemically and biochemically. Although there were no significant differences in muscle weight or fiber area between the groups, the numbers of satellite cells and myonuclei per muscle fiber, percentage of satellite cells, and citrate synthase activity were significantly higher in the training group compared with the control group (p < 0.05). The percentage of satellite cells was also positively correlated with distance run in the training group (r = 0.61, p < 0.05). Voluntary running can induce an increase in the number of satellite cells without changing the mean fiber area in the rat plantaris muscle; this increase in satellite cell content is a function of distance run. Key pointsThere is no study about the effect of voluntary running on satellite cells in the rat plantaris muscle.Voluntary running training causes an increase of citrate synthase activity in the rat plantaris muscle but does not affect muscle weight and mean fiber area in the rat plantaris muscle.Voluntary running can induce an increase in the number of satellite cells without hypertrophy of the rat plantaris muscle.

  10. Lessons from the Heart: Individualizing Physical Education with Heart Rate Monitors.

    ERIC Educational Resources Information Center

    Kirkpatrick, Beth; Birnbaum, Burton H.

    Learning about the relationship between heart rate and physical activity is an important aspect of fitness education. Use of a heart rate monitor (HRM) helps a student to understand how stretching and large muscle movements gradually increase the heart rate and blood flow, and enables students to measure their exercise heart rates and set goals…

  11. Effects of Trichothecenes on Cardiac Cell Electrical Function

    DTIC Science & Technology

    1985-12-16

    toxic effects . These studies demonstrated unequivocal reversible effects of certain mycotoxins on heart cell electrical activity. Preliminary studies...muscle cells shown in Figure 8 illustrate the typical effects of trichothecene mycotoxins in canine ventricular cells. T-2 tetraol, for 3xample...false tendon cells and V ventricular muscle cells (shown in Figure 8) illustrate the typical effects of trichothecene mycotoxins in canine cardiac

  12. Role of smooth muscle cells on endothelial cell cytosolic free calcium in porcine coronary arteries.

    PubMed

    Budel, S; Schuster, A; Stergiopoulos, N; Meister, J J; Bény, J L

    2001-09-01

    We tested the hypothesis that the cytosolic free calcium concentration in endothelial cells is under the influence of the smooth muscle cells in the coronary circulation. In the left descending branch of porcine coronary arteries, cytosolic free calcium concentration ([Ca(2+)](i)) was estimated by determining the fluorescence ratio of two calcium probes, fluo 4 and fura red, in smooth muscle and endothelial cells using confocal microscopy. Acetylcholine and potassium, which act directly on smooth muscle cells to increase [Ca(2+)](i), were found to indirectly elevate [Ca(2+)](i) in endothelial cells; in primary cultures of endothelial cells, neither stimulus affected [Ca(2+)](i), yet substance P increased the fluorescence ratio twofold. In response to acetylcholine and potassium, isometric tension developed by arterial strips with intact endothelium was attenuated by up to 22% (P < 0.05) compared with strips without endothelium. These findings suggest that stimuli that increase smooth muscle [Ca(2+)](i) can indirectly influence endothelial cell function in porcine coronary arteries. Such a pathway for negative feedback can moderate vasoconstriction and diminish the potential for vasospasm in the coronary circulation.

  13. Localization of alpha 1-adrenoceptors in rat and human hearts by immunocytochemistry.

    PubMed

    Schulze, W; Fu, M L

    1996-01-01

    The localization of the alpha 1 adrenoceptors (alpha 1-AR) in the heart tissues from rat and human and in the cultured heart cells from neonatal rats was studied by indirect immunofluorescence and postembedding electronmicroscopical immuno-gold technique. With antipeptide antibodies directed against the second extracellular loop of the human alpha 1-AR (AS sequence 192-218), this receptor was found to be localized along the sarcolemma in both human and rat hearts. Similar localization sites were detected in cultivated rat neonatal cardiomyocytes. Beside the localization in cardiomyocytes, alpha 1-AR were identified in endothelial cells of capillaries and smooth muscle cells of coronary vessels, in neuronal endings, in mast cells of cultivated heart cells but not, or in less amount in fibroblasts. Interestingly, in the right atrium of rat heart the localization of alpha 1-AR was found to be near or on atrial natriuretic factor (ANF) granules, providing the basis for the alpha-adrenergic influence on ANF release. The immunocytochemical studies further confirm and complete the findings known by using autoradiographic binding studies with specific ligands.

  14. MOR23 promotes muscle regeneration and regulates cell adhesion and migration

    PubMed Central

    Griffin, Christine A.; Kafadar, Kimberly A.; Pavlath, Grace K.

    2009-01-01

    Summary Odorant receptors (ORs) in the olfactory epithelium bind to volatile small molecules leading to the perception of smell. ORs are expressed in many tissues but their functions are largely unknown. We show multiple ORs display distinct mRNA expression patterns during myogenesis in vitro and muscle regeneration in vivo. Mouse OR23 (MOR23) expression is induced during muscle regeneration when muscle cells are extensively fusing and plays a key role in regulating migration and adhesion of muscle cells in vitro, two processes common during tissue repair. A soluble ligand for MOR23 is secreted by muscle cells in vitro and muscle tissue in vivo. MOR23 is necessary for proper skeletal muscle regeneration as loss of MOR23 leads to increased myofiber branching, commonly associated with muscular dystrophy. Together these data identify a functional role for an OR outside of the nose and suggest a larger role for ORs during tissue repair. PMID:19922870

  15. Nandrolone decanoate increases satellite cell numbers in the chicken pectoralis muscle.

    PubMed

    Allouh, Mohammed Z; Rosser, Benjamin W C

    2010-02-01

    The anabolic androgenic steroid nandrolone decanoate has minimal androgenic effects and, thus, is widely used to induce muscle hypertrophy in both patients and athletes. Although increases in satellite cell numbers and satellite cells giving rise to new myonuclei are associated with hypertrophy in many experimental models, the relationship between nandrolone and satellite cells is poorly understood. Here we test the hypothesis that nandrolone administration is associated with an increase in satellite cell numbers in muscle. Nandrolone was injected at weekly intervals for four weeks into the right pectoralis muscle of female white leghorn chickens aged 63 days post hatch. Age/size/sex matched control birds received saline injections. The contralateral pectoralis was excised for study from each control and nandrolone treated bird. An antibody against Pax7 and immunocytochemical techniques were used to identify satellite cells. Nandrolone significantly increased mean pectoralis mass by approximately 22%, and mean fiber diameter by about 24%. All satellite cell indices that were quantified increased significantly in chicken pectoralis with administration of nandrolone. Nandrolone injected birds had on average higher satellite cell frequencies (#SC nuclei/all nuclei within basal lamina), number of satellite cells per millimeter of fiber, and satellite cell concentrations (closer together). Myonuclei were further apart (less concentrated) in nandrolone injected muscle. However, an overall increase in myonuclear numbers was revealed by a significantly greater mean number of myonuclei per millimeter of fiber in nandrolone injected muscle. Our results suggest that satellite cells may be key cellular vectors for nandrolone induced muscle fiber hypertrophy.

  16. Embryonic stem cell therapy of heart failure in genetic cardiomyopathy.

    PubMed

    Yamada, Satsuki; Nelson, Timothy J; Crespo-Diaz, Ruben J; Perez-Terzic, Carmen; Liu, Xiao-Ke; Miki, Takashi; Seino, Susumu; Behfar, Atta; Terzic, Andre

    2008-10-01

    Pathogenic causes underlying nonischemic cardiomyopathies are increasingly being resolved, yet repair therapies for these commonly heritable forms of heart failure are lacking. A case in point is human dilated cardiomyopathy 10 (CMD10; Online Mendelian Inheritance in Man #608569), a progressive organ dysfunction syndrome refractory to conventional therapies and linked to mutations in cardiac ATP-sensitive K(+) (K(ATP)) channel subunits. Embryonic stem cell therapy demonstrates benefit in ischemic heart disease, but the reparative capacity of this allogeneic regenerative cell source has not been tested in inherited cardiomyopathy. Here, in a Kir6.2-knockout model lacking functional K(ATP) channels, we recapitulated under the imposed stress of pressure overload the gene-environment substrate of CMD10. Salient features of the human malignant heart failure phenotype were reproduced, including compromised contractility, ventricular dilatation, and poor survival. Embryonic stem cells were delivered through the epicardial route into the left ventricular wall of cardiomyopathic stressed Kir6.2-null mutants. At 1 month of therapy, transplantation of 200,000 cells per heart achieved teratoma-free reversal of systolic dysfunction and electrical synchronization and halted maladaptive remodeling, thereby preventing end-stage organ failure. Tracked using the lacZ reporter transgene, stem cells engrafted into host heart. Beyond formation of cardiac tissue positive for Kir6.2, transplantation induced cell cycle activation and halved fibrotic zones, normalizing sarcomeric and gap junction organization within remuscularized hearts. Improved systemic function induced by stem cell therapy translated into increased stamina, absence of anasarca, and benefit to overall survivorship. Embryonic stem cells thus achieve functional repair in nonischemic genetic cardiomyopathy, expanding indications to the therapy of heritable heart failure. Disclosure of potential conflicts of interest is

  17. Engineered Muscle Actuators: Cells and Tissues

    DTIC Science & Technology

    2007-01-10

    tissue culture perfusion bioreactors The UNC group led the development of the final version of the integrated cell culture bioreactor . The system was...construct engineered in vitro from primary mammalian cells (C) The first demonstration of developmental improvements in engineered tendon constitutive...2007 Final Performance Report 1 Nov 2004 - 31 Oct 2006 4. TITLE AND SUBTITLE 5.. CONTRACT NUMBER Engineered Muscle Actuators: Cells and Tissues FA9550

  18. Identification and characterization of a non-satellite cell muscle resident progenitor during postnatal development.

    PubMed

    Mitchell, Kathryn J; Pannérec, Alice; Cadot, Bruno; Parlakian, Ara; Besson, Vanessa; Gomes, Edgar R; Marazzi, Giovanna; Sassoon, David A

    2010-03-01

    Satellite cells are resident myogenic progenitors in postnatal skeletal muscle involved in muscle postnatal growth and adult regenerative capacity. Here, we identify and describe a population of muscle-resident stem cells, which are located in the interstitium, that express the cell stress mediator PW1 but do not express other markers of muscle stem cells such as Pax7. PW1(+)/Pax7(-) interstitial cells (PICs) are myogenic in vitro and efficiently contribute to skeletal muscle regeneration in vivo as well as generating satellite cells and PICs. Whereas Pax7 mutant satellite cells show robust myogenic potential, Pax7 mutant PICs are unable to participate in myogenesis and accumulate during postnatal growth. Furthermore, we found that PICs are not derived from a satellite cell lineage. Taken together, our findings uncover a new and anatomically identifiable population of muscle progenitors and define a key role for Pax7 in a non-satellite cell population during postnatal muscle growth.

  19. 1,5-Disubstituted benzimidazoles that direct cardiomyocyte differentiation from mouse embryonic stem cells

    PubMed Central

    Okolotowicz, Karl J.; Bushway, Paul; Lanier, Marion; Gilley, Cynthia; Cynthia, Mark; Cashman, John R.

    2016-01-01

    Cardiomyopathy is the leading cause of death worldwide. Despite progress in medical treatments, heart transplantation is one of the only current options for those with infarcted heart muscle. Stem cell differentiation technology may afford cell-based therapeutics that may lead to the generation of new, healthy heart muscle cells from undifferentiated stem cells. Our approach is to use small molecules to stimulate stem cell differentiation. Herein, we describe a novel class of 1,5-disubstituted benzimidazoles that induce differentiation of stem cells into cardiac cells. We report on the evaluation in vitro for cardiomyocyte differentiation and describe structure–activity relationship results that led to molecules with drug-like properties. The results of this study show the promise of small molecules to direct stem cell lineage commitment, to probe signaling pathways and to develop compounds for the stimulation of stem cells to repair damaged heart tissue. PMID:26278027

  20. Comparison and analysis of Wuding and avian chicken skeletal muscle satellite cells.

    PubMed

    Tong, H Q; Jiang, Z Q; Dou, T F; Li, Q H; Xu, Z Q; Liu, L X; Gu, D H; Rong, H; Huang, Y; Chen, X B; Jois, M; Te Pas, M F W; Ge, C R; Jia, J J

    2016-10-05

    Chicken skeletal muscle satellite cells are located between the basement membrane and the sarcolemma of mature muscle fibers. Avian broilers have been genetically selected based on their high growth velocity and large muscle mass. The Wuding chicken is a famous local chicken in Yunnan Province that undergoes non-selection breeding and is slow growing. In this study, we aimed to explore differences in the proliferation and differentiation properties of satellite cells isolated from the two chicken breeds. Using immunofluorescence, hematoxylin-eosin staining and real-time polymerase chain reaction analysis, we analyzed the in vitro characteristics of proliferating and differentiating satellite cells isolated from the two chicken breeds. The growth curve of satellite cells was S-shaped, and cells from Wuding chickens entered the logarithmic phase and plateau phase 1 day later than those from Avian chicken. The results also showed that the two skeletal muscle satellite cell lines were positive for Pax7, MyoD and IGF-1. The expression of Pax7 followed a downward trend, whereas that of MyoD and IGF-1 first increased and subsequently decreased in cells isolated from the two chickens. These data indicated that the skeletal muscle satellite cells of Avian chicken grow and differentiate faster than did those of Wuding chickens. We suggest that the methods of breeding selection applied to these breeds regulate the characteristics of skeletal muscle satellite cells to influence muscle growth.

  1. Ureter smooth muscle cell orientation in rat is predominantly longitudinal.

    PubMed

    Spronck, Bart; Merken, Jort J; Reesink, Koen D; Kroon, Wilco; Delhaas, Tammo

    2014-01-01

    In ureter peristalsis, the orientation of the contracting smooth muscle cells is essential, yet current descriptions of orientation and composition of the smooth muscle layer in human as well as in rat ureter are inconsistent. The present study aims to improve quantification of smooth muscle orientation in rat ureters as a basis for mechanistic understanding of peristalsis. A crucial step in our approach is to use two-photon laser scanning microscopy and image analysis providing objective, quantitative data on smooth muscle cell orientation in intact ureters, avoiding the usual sectioning artifacts. In 36 rat ureter segments, originating from a proximal, middle or distal site and from a left or right ureter, we found close to the adventitia a well-defined longitudinal smooth muscle orientation. Towards the lamina propria, the orientation gradually became slightly more disperse, yet the main orientation remained longitudinal. We conclude that smooth muscle cell orientation in rat ureter is predominantly longitudinal, though the orientation gradually becomes more disperse towards the proprial side. These findings do not support identification of separate layers. The observed longitudinal orientation suggests that smooth muscle contraction would rather cause local shortening of the ureter, than cause luminal constriction. However, the net-like connective tissue of the ureter wall may translate local longitudinal shortening into co-local luminal constriction, facilitating peristalsis. Our quantitative, minimally invasive approach is a crucial step towards more mechanistic insight into ureter peristalsis, and may also be used to study smooth muscle cell orientation in other tube-like structures like gut and blood vessels.

  2. Spatial expression of components of a calcitonin receptor-like receptor (CRL) signalling system (CRL, calcitonin gene-related peptide, adrenomedullin, adrenomedullin-2/intermedin) in mouse and human heart valves.

    PubMed

    Pfeil, Uwe; Bharathala, Subhashini; Murtaza, Ghulam; Mermer, Petra; Papadakis, Tamara; Boening, Andreas; Kummer, Wolfgang

    2016-12-01

    Heart valves are highly organized structures determining the direction of blood flow through the heart. Smooth muscle cells within the valve are thought to play an active role during the heart cycle, rather than being just passive flaps. The mature heart valve is composed of extracellular matrix (ECM), various differentiations of valvular interstitial cells (VIC), smooth muscle cells and overlying endothelium. VIC are important for maintaining the structural integrity of the valve, thereby affecting valve function and ECM remodelling. Accumulating evidence suggests an important role of calcitonin receptor-like receptor (CRL) signalling in preventing heart damage under several pathological conditions. Thus we investigate the existence of a putative CRL signalling system in mouse and human heart valves by real-time RT-PCR, laser-assisted microdissection, immunofluorescence and NADPH-diaphorase histochemistry. Mouse and human heart valves expressed mRNAs for the CRL ligands adrenomedullin (AM), adrenomedullin-2 (AM-2) and calcitonin gene-related peptide (CGRP) and for their receptor components, i.e., CRL and receptor-activity-modifying proteins 1-3. Immunofluorescence analysis revealed AM-, AM-2- and CRL-immunolabelling in endothelial cells and VIC, whereas CGRP immunoreactivity was restricted to nerve fibres and some endothelial cells. Nitric oxide synthase activity, as demonstrated by NADPH-diaphorase histochemistry, was shown mainly in valvular endothelial cells in mice, whereas in human aortic valves, VIC and smooth muscle cells were positive. Our results showed the presence of an intrinsic AM/AM-2/CGRP signalling system in murine and human heart valves with distinct cellular localization, suggesting its involvement in the regulation of valve stiffness and ECM production and turnover.

  3. Skeletal Muscle Regeneration, Repair and Remodelling in Aging: The Importance of Muscle Stem Cells and Vascularization.

    PubMed

    Joanisse, Sophie; Nederveen, Joshua P; Snijders, Tim; McKay, Bryon R; Parise, Gianni

    2017-01-01

    Sarcopenia is the age-related loss of skeletal muscle mass and strength. Ultimately, sarcopenia results in the loss of independence, which imposes a large financial burden on healthcare systems worldwide. A critical facet of sarcopenia is the diminished ability for aged muscle to regenerate, repair and remodel. Over the years, research has focused on elucidating underlying mechanisms of sarcopenia and the impaired ability of muscle to respond to stimuli with aging. Muscle-specific stem cells, termed satellite cells (SC), play an important role in maintaining muscle health throughout the lifespan. It is well established that SC are essential in skeletal muscle regeneration, and it has been hypothesized that a reduction and/or dysregulation of the SC pool, may contribute to accelerated loss of skeletal muscle mass that is observed with advancing age. The preservation of skeletal muscle tissue and its ability to respond to stimuli may be impacted by reduced SC content and impaired function observed with aging. Aging is also associated with a reduction in capillarization of skeletal muscle. We have recently demonstrated that the distance between type II fibre-associated SC and capillaries is greater in older compared to younger adults. The greater distance between SC and capillaries in older adults may contribute to the dysregulation in SC activation ultimately impairing muscle's ability to remodel and, in extreme circumstances, regenerate. This viewpoint will highlight the importance of optimal SC activation in addition to skeletal muscle capillarization to maximize the regenerative potential of skeletal muscle in older adults. © 2016 S. Karger AG, Basel.

  4. Sex Differences in Muscle Wasting.

    PubMed

    Anderson, Lindsey J; Liu, Haiming; Garcia, Jose M

    2017-01-01

    With aging and other muscle wasting diseases, men and women undergo similar pathological changes in skeletal muscle: increased inflammation, enhanced oxidative stress, mitochondrial dysfunction, satellite cell senescence, elevated apoptosis and proteasome activity, and suppressed protein synthesis and myocyte regeneration. Decreased food intake and physical activity also indirectly contribute to muscle wasting. Sex hormones also play important roles in maintaining skeletal muscle homeostasis. Testosterone is a potent anabolic factor promoting muscle protein synthesis and muscular regeneration. Estrogens have a protective effect on skeletal muscle by attenuating inflammation; however, the mechanisms of estrogen action in skeletal muscle are less well characterized than those of testosterone. Age- and/or disease-induced alterations in sex hormones are major contributors to muscle wasting. Hence, men and women may respond differently to catabolic conditions because of their hormonal profiles. Here we review the similarities and differences between men and women with common wasting conditions including sarcopenia and cachexia due to cancer, end-stage renal disease/chronic kidney disease, liver disease, chronic heart failure, and chronic obstructive pulmonary disease based on the literature in clinical studies. In addition, the responses in men and women to the commonly used therapeutic agents and their efficacy to improve muscle mass and function are also reviewed.

  5. Intercellular adhesion molecule-1 expression by skeletal muscle cells augments myogenesis.

    PubMed

    Goh, Qingnian; Dearth, Christopher L; Corbett, Jacob T; Pierre, Philippe; Chadee, Deborah N; Pizza, Francis X

    2015-02-15

    We previously demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) by skeletal muscle cells after muscle overload contributes to ensuing regenerative and hypertrophic processes in skeletal muscle. The objective of the present study is to reveal mechanisms through which skeletal muscle cell expression of ICAM-1 augments regenerative and hypertrophic processes of myogenesis. This was accomplished by genetically engineering C2C12 myoblasts to stably express ICAM-1, and by inhibiting the adhesive and signaling functions of ICAM-1 through the use of a neutralizing antibody or cell penetrating peptide, respectively. Expression of ICAM-1 by cultured skeletal muscle cells augmented myoblast-myoblast adhesion, myotube formation, myonuclear number, myotube alignment, myotube-myotube fusion, and myotube size without influencing the ability of myoblasts to proliferate or differentiate. ICAM-1 augmented myotube formation, myonuclear accretion, and myotube alignment through a mechanism involving adhesion-induced activation of ICAM-1 signaling, as these dependent measures were reduced via antibody and peptide inhibition of ICAM-1. The adhesive and signaling functions of ICAM-1 also facilitated myotube hypertrophy through a mechanism involving myotube-myotube fusion, protein synthesis, and Akt/p70s6k signaling. Our findings demonstrate that ICAM-1 expression by skeletal muscle cells augments myogenesis, and establish a novel mechanism through which the inflammatory response facilitates growth processes in skeletal muscle. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Intercellular Adhesion Molecule-1 Expression by Skeletal Muscle Cells Augments Myogenesis

    PubMed Central

    Goh, Qingnian; Dearth, Christopher L.; Corbett, Jacob T.; Pierre, Philippe; Chadee, Deborah N.; Pizza, Francis X.

    2014-01-01

    We previously demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) by skeletal muscle cells after muscle overload contributes to ensuing regenerative and hypertrophic processes in skeletal muscle. The objective of the present study is to reveal mechanisms through which skeletal muscle cell expression of ICAM-1 augments regenerative and hypertrophic processes of myogenesis. This was accomplished by genetically engineering C2C12 myoblasts to stably express ICAM-1, and by inhibiting the adhesive and signaling functions of ICAM-1 through the use of a neutralizing antibody or cell penetrating peptide, respectively. Expression of ICAM-1 by cultured skeletal muscle cells augmented myoblast-myoblast adhesion, myotube formation, myonuclear number, myotube alignment, myotube-myotube fusion, and myotube size without influencing the ability of myoblasts to proliferate or differentiate. ICAM-1 augmented myotube formation, myonuclear accretion, and myotube alignment through a mechanism involving adhesion-induced activation of ICAM-1 signaling, as these dependent measures were reduced via antibody and peptide inhibition of ICAM-1. The adhesive and signaling functions of ICAM-1 also facilitated myotube hypertrophy through a mechanism involving myotube-myotube fusion, protein synthesis, and Akt/p70s6k signaling. Our findings demonstrate that ICAM-1 expression by skeletal muscle cells augments myogenesis, and establish a novel mechanism through which the inflammatory response facilitates growth processes in skeletal muscle. PMID:25281303

  7. Plasticity of the Muscle Stem Cell Microenvironment.

    PubMed

    Dinulovic, Ivana; Furrer, Regula; Handschin, Christoph

    2017-01-01

    Satellite cells (SCs) are adult muscle stem cells capable of repairing damaged and creating new muscle tissue throughout life. Their functionality is tightly controlled by a microenvironment composed of a wide variety of factors, such as numerous secreted molecules and different cell types, including blood vessels, oxygen, hormones, motor neurons, immune cells, cytokines, fibroblasts, growth factors, myofibers, myofiber metabolism, the extracellular matrix and tissue stiffness. This complex niche controls SC biology-quiescence, activation, proliferation, differentiation or renewal and return to quiescence. In this review, we attempt to give a brief overview of the most important players in the niche and their mutual interaction with SCs. We address the importance of the niche to SC behavior under physiological and pathological conditions, and finally survey the significance of an artificial niche both for basic and translational research purposes.

  8. Plasticity of the Muscle Stem Cell Microenvironment

    PubMed Central

    Dinulovic, Ivana; Furrer, Regula; Handschin, Christoph

    2018-01-01

    Satellite cells (SCs) are adult muscle stem cells capable of repairing damaged and creating new muscle tissue throughout life. Their functionality is tightly controlled by a microenvironment composed of a wide variety of factors, such as numerous secreted molecules and different cell types, including blood vessels, oxygen, hormones, motor neurons, immune cells, cytokines, fibroblasts, growth factors, myofibers, myofiber metabolism, the extracellular matrix and tissue stiffness. This complex niche controls SC biology – quiescence, activation, proliferation, differentiation or renewal and return to quiescence. In this review, we attempt to give a brief overview of the most important players in the niche and their mutual interaction with SCs. We address the importance of the niche to SC behavior under physiological and pathological conditions, and finally survey the significance of an artificial niche both for basic and translational research purposes. PMID:29204832

  9. Akt1 deficiency diminishes skeletal muscle hypertrophy by reducing satellite cell proliferation.

    PubMed

    Moriya, Nobuki; Miyazaki, Mitsunori

    2018-05-01

    Skeletal muscle mass is determined by the net dynamic balance between protein synthesis and degradation. Although the Akt/mechanistic target of rapamycin (mTOR)-dependent pathway plays an important role in promoting protein synthesis and subsequent skeletal muscle hypertrophy, the precise molecular regulation of mTOR activity by the upstream protein kinase Akt is largely unknown. In addition, the activation of satellite cells has been indicated as a key regulator of muscle mass. However, the requirement of satellite cells for load-induced skeletal muscle hypertrophy is still under intense debate. In this study, female germline Akt1 knockout (KO) mice were used to examine whether Akt1 deficiency attenuates load-induced skeletal muscle hypertrophy through suppressing mTOR-dependent signaling and satellite cell proliferation. Akt1 KO mice showed a blunted hypertrophic response of skeletal muscle, with a diminished rate of satellite cell proliferation following mechanical overload. In contrast, Akt1 deficiency did not affect the load-induced activation of mTOR signaling and the subsequent enhanced rate of protein synthesis in skeletal muscle. These observations suggest that the load-induced activation of mTOR signaling occurs independently of Akt1 regulation and that Akt1 plays a critical role in regulating satellite cell proliferation during load-induced muscle hypertrophy.

  10. Rules of tissue packing involving different cell types: human muscle organization

    PubMed Central

    Sánchez-Gutiérrez, Daniel; Sáez, Aurora; Gómez-Gálvez, Pedro; Paradas, Carmen; Escudero, Luis M.

    2017-01-01

    Natural packed tissues are assembled as tessellations of polygonal cells. These include skeletal muscles and epithelial sheets. Skeletal muscles appear as a mosaic composed of two different types of cells: the “slow” and “fast” fibres. Their relative distribution is important for the muscle function but little is known about how the fibre arrangement is established and maintained. In this work we capture the organizational pattern in two different healthy muscles: biceps brachii and quadriceps. Here we show that the biceps brachii muscle presents a particular arrangement, based on the different sizes of slow and fast fibres. By contrast, in the quadriceps muscle an unbiased distribution exists. Our results indicate that the relative size of each cellular type imposes an intrinsic organization into natural tessellations. These findings establish a new framework for the analysis of any packed tissue where two or more cell types exist. PMID:28071729

  11. Rules of tissue packing involving different cell types: human muscle organization.

    PubMed

    Sánchez-Gutiérrez, Daniel; Sáez, Aurora; Gómez-Gálvez, Pedro; Paradas, Carmen; Escudero, Luis M

    2017-01-10

    Natural packed tissues are assembled as tessellations of polygonal cells. These include skeletal muscles and epithelial sheets. Skeletal muscles appear as a mosaic composed of two different types of cells: the "slow" and "fast" fibres. Their relative distribution is important for the muscle function but little is known about how the fibre arrangement is established and maintained. In this work we capture the organizational pattern in two different healthy muscles: biceps brachii and quadriceps. Here we show that the biceps brachii muscle presents a particular arrangement, based on the different sizes of slow and fast fibres. By contrast, in the quadriceps muscle an unbiased distribution exists. Our results indicate that the relative size of each cellular type imposes an intrinsic organization into natural tessellations. These findings establish a new framework for the analysis of any packed tissue where two or more cell types exist.

  12. Aerobic training and l-arginine supplementation promotes rat heart and hindleg muscles arteriogenesis after myocardial infarction.

    PubMed

    Ranjbar, Kamal; Rahmani-Nia, Farhad; Shahabpour, Elham

    2016-09-01

    Arteriogenesis is a main defense mechanism to prevent heart and local tissues dysfunction in occlusive artery disease. TGF-β and angiostatin have a pivotal role in arteriogenesis. We tested the hypothesis that aerobic training and l-arginine supplementation promotes cardiac and skeletal muscles arteriogenesis after myocardial infarction (MI) parallel to upregulation of TGF-β and downregulation of angiostatin. For this purpose, 4 weeks after LAD occlusion, 50 male Wistar rats were randomly distributed into five groups: (1) sham surgery without MI (sham, n = 10), (2) control-MI (Con-MI, n = 10), (3) l-arginine-MI (La-MI, n = 10), (4) exercise training-MI (Ex-MI, n = 10), and (5) exercise and l-arginine-MI (Ex + La-MI). Exercise training groups running on a treadmill for 10 weeks with moderate intensity. Rats in the l-arginine-treated groups drank water containing 4 % l-arginine. Arteriolar density with different diameters (11-25, 26-50, 51-75, and 76-150 μm), TGF-β, and angiostatin gene expression were measured in cardiac (area at risk) and skeletal (soleus and gastrocnemius) muscles. Smaller arterioles decreased in cardiac after MI. Aerobic training and l-arginine increased the number of cardiac arterioles with 11-25 and 26-50 μm diameters parallel to TGF-β overexpression. In gastrocnemius muscle, the number of arterioles/mm(2) was only increased in the 11 to 25 μm in response to training with and without l-arginine parallel to angiostatin downregulation. Soleus arteriolar density with different size was not different between experimental groups. Results showed that 10 weeks aerobic exercise training and l-arginine supplementation promotes arteriogenesis of heart and gastrocnemius muscles parallel to overexpression of TGF-β and downregulation of angiostatin in MI rats.

  13. Mammalian target of rapamycin is essential for cardiomyocyte survival and heart development in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Pengpeng; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070; Department of Animal Sciences, Purdue University, West Lafayette, IN 47907

    Highlights: • mTOR is a critical regulator of many biological processes yet its function in heart is not well understood. • MCK-Cre/Mtor{sup flox/flox} mice were established to delete Mtor in cardiomyocytes. • The mTOR-mKO mice developed normally but die prematurely within 5 weeks after birth due to heart disease. • The mTOR-mKO mice had dilated myocardium and increased cell death. • mTOR-mKO hearts had reduced expression of metabolic genes and activation of mTOR target proteins. - Abstract: Mammalian target of rapamycin (mTOR) is a critical regulator of protein synthesis, cell proliferation and energy metabolism. As constitutive knockout of Mtor leadsmore » to embryonic lethality, the in vivo function of mTOR in perinatal development and postnatal growth of heart is not well defined. In this study, we established a muscle-specific mTOR conditional knockout mouse model (mTOR-mKO) by crossing MCK-Cre and Mtor{sup flox/flox} mice. Although the mTOR-mKO mice survived embryonic and perinatal development, they exhibited severe postnatal growth retardation, cardiac muscle pathology and premature death. At the cellular level, the cardiac muscle of mTOR-mKO mice had fewer cardiomyocytes due to apoptosis and necrosis, leading to dilated cardiomyopathy. At the molecular level, the cardiac muscle of mTOR-mKO mice expressed lower levels of fatty acid oxidation and glycolysis related genes compared to the WT littermates. In addition, the mTOR-mKO cardiac muscle had reduced Myh6 but elevated Myh7 expression, indicating cardiac muscle degeneration. Furthermore, deletion of Mtor dramatically decreased the phosphorylation of S6 and AKT, two key targets downstream of mTORC1 and mTORC2 mediating the normal function of mTOR. These results demonstrate that mTOR is essential for cardiomyocyte survival and cardiac muscle function.« less

  14. Vessel-associated stem cells from skeletal muscle: From biology to future uses in cell therapy.

    PubMed

    Sancricca, Cristina; Mirabella, Massimiliano; Gliubizzi, Carla; Broccolini, Aldobrando; Gidaro, Teresa; Morosetti, Roberta

    2010-06-26

    Over the last years, the existence of different stem cells with myogenic potential has been widely investigated. Besides the classical skeletal muscle progenitors represented by satellite cells, numerous multipotent and embryologically unrelated progenitors with a potential role in muscle differentiation and repair have been identified. In order to conceive a therapeutic approach for degenerative muscle disorders, it is of primary importance to identify an ideal stem cell endowed with all the features for a possible use in vivo. Among all emerging populations, vessel-associated stem cells are a novel and promising class of multipotent progenitors of mesodermal origin and with high myogenic potential which seem to best fit all the requirements for a possible cell therapy. In vitro and in vivostudies have already tested the effectiveness and safety of vessel-associated stem cells in animal models. This leads to the concrete possibility in the future to start pilot human clinical trials, hopefully opening the way to a turning point in the treatment of genetic and acquired muscle disorders.

  15. Vessel-associated stem cells from skeletal muscle: From biology to future uses in cell therapy

    PubMed Central

    Sancricca, Cristina; Mirabella, Massimiliano; Gliubizzi, Carla; Broccolini, Aldobrando; Gidaro, Teresa; Morosetti, Roberta

    2010-01-01

    Over the last years, the existence of different stem cells with myogenic potential has been widely investigated. Besides the classical skeletal muscle progenitors represented by satellite cells, numerous multipotent and embryologically unrelated progenitors with a potential role in muscle differentiation and repair have been identified. In order to conceive a therapeutic approach for degenerative muscle disorders, it is of primary importance to identify an ideal stem cell endowed with all the features for a possible use in vivo. Among all emerging populations, vessel-associated stem cells are a novel and promising class of multipotent progenitors of mesodermal origin and with high myogenic potential which seem to best fit all the requirements for a possible cell therapy. In vitro and in vivo studies have already tested the effectiveness and safety of vessel-associated stem cells in animal models. This leads to the concrete possibility in the future to start pilot human clinical trials, hopefully opening the way to a turning point in the treatment of genetic and acquired muscle disorders. PMID:21607121

  16. Myostatin promotes distinct responses on protein metabolism of skeletal and cardiac muscle fibers of rodents.

    PubMed

    Manfredi, L H; Paula-Gomes, S; Zanon, N M; Kettelhut, I C

    2017-10-19

    Myostatin is a novel negative regulator of skeletal muscle mass. Myostatin expression is also found in heart in a much less extent, but it can be upregulated in pathological conditions, such as heart failure. Myostatin may be involved in inhibiting protein synthesis and/or increasing protein degradation in skeletal and cardiac muscles. Herein, we used cell cultures and isolated muscles from rats to determine protein degradation and synthesis. Muscles incubated with myostatin exhibited an increase in proteolysis with an increase of Atrogin-1, MuRF1 and LC3 genes. Extensor digitorum longus muscles and C2C12 myotubes exhibited a reduction in protein turnover. Cardiomyocytes showed an increase in proteolysis by activating autophagy and the ubiquitin proteasome system, and a decrease in protein synthesis by decreasing P70S6K. The effect of myostatin on protein metabolism is related to fiber type composition, which may be associated to the extent of atrophy mediated effect of myostatin on muscle.

  17. Myostatin promotes distinct responses on protein metabolism of skeletal and cardiac muscle fibers of rodents

    PubMed Central

    Manfredi, L.H.; Paula-Gomes, S.; Zanon, N.M.; Kettelhut, I.C.

    2017-01-01

    Myostatin is a novel negative regulator of skeletal muscle mass. Myostatin expression is also found in heart in a much less extent, but it can be upregulated in pathological conditions, such as heart failure. Myostatin may be involved in inhibiting protein synthesis and/or increasing protein degradation in skeletal and cardiac muscles. Herein, we used cell cultures and isolated muscles from rats to determine protein degradation and synthesis. Muscles incubated with myostatin exhibited an increase in proteolysis with an increase of Atrogin-1, MuRF1 and LC3 genes. Extensor digitorum longus muscles and C2C12 myotubes exhibited a reduction in protein turnover. Cardiomyocytes showed an increase in proteolysis by activating autophagy and the ubiquitin proteasome system, and a decrease in protein synthesis by decreasing P70S6K. The effect of myostatin on protein metabolism is related to fiber type composition, which may be associated to the extent of atrophy mediated effect of myostatin on muscle. PMID:29069231

  18. Ubiquinol reduces muscle wasting but not fatigue in tumor-bearing mice.

    PubMed

    Clark, Yvonne Y; Wold, Loren E; Szalacha, Laura A; McCarthy, Donna O

    2015-05-01

    Fatigue is the most common and distressing symptom reported by cancer patients during and after treatment. Tumor growth increases oxidative stress and cytokine production, which causes skeletal muscle wasting and cardiac dysfunction. The purpose of this study was to determine whether treatment with the antioxidant ubiquinol improves muscle mass, cardiac function, and behavioral measures of fatigue in tumor-bearing mice. Adult female mice were inoculated with colon26 tumor cells. Half the control and tumor-bearing mice were administered ubiquinol (500 mg/kg/day) in their drinking water. Voluntary wheel running (i.e., voluntary running activity [VRA]) and grip strength were measured at Days 0, 8, 14, and 17 of tumor growth. Cardiac function was measured using echocardiography on Day 18 or 19. Biomarkers of inflammation, protein degradation, and oxidative stress were measured in serum and heart and gastrocnemius tissue. VRA and grip strength progressively declined in tumor-bearing mice. Muscle mass and myocardial diastolic function were decreased, and expression of proinflammatory cytokines was increased in serum and muscle and heart tissue on Day 19 of tumor growth. Oxidative stress was present only in the heart, while biomarkers of protein degradation were increased only in the gastrocnemius muscle. Ubiquinol increased muscle mass in the tumor-bearing and control animals but had no effect on the expression of biomarkers of inflammation, protein degradation, or oxidative stress or on behavioral measures of fatigue. © The Author(s) 2014.

  19. Mechanosensing of matrix by stem cells: From matrix heterogeneity, contractility, and the nucleus in pore-migration to cardiogenesis and muscle stem cells in vivo.

    PubMed

    Smith, Lucas; Cho, Sangkyun; Discher, Dennis E

    2017-11-01

    Stem cells are particularly 'plastic' cell types that are induced by various cues to become specialized, tissue-functional lineages by switching on the expression of specific gene programs. Matrix stiffness is among the cues that multiple stem cell types can sense and respond to. This seminar-style review focuses on mechanosensing of matrix elasticity in the differentiation or early maturation of a few illustrative stem cell types, with an intended audience of biologists and physical scientists. Contractile forces applied by a cell's acto-myosin cytoskeleton are often resisted by the extracellular matrix and transduced through adhesions and the cytoskeleton ultimately into the nucleus to modulate gene expression. Complexity is added by matrix heterogeneity, and careful scrutiny of the evident stiffness heterogeneity in some model systems resolves some controversies concerning matrix mechanosensing. Importantly, local stiffness tends to dominate, and 'durotaxis' of stem cells toward stiff matrix reveals a dependence of persistent migration on myosin-II force generation and also rigid microtubules that confer directionality. Stem and progenitor cell migration in 3D can be further affected by matrix porosity as well as stiffness, with nuclear size and rigidity influencing niche retention and fate choices. Cell squeezing through rigid pores can even cause DNA damage and genomic changes that contribute to de-differentiation toward stem cell-like states. Contraction of acto-myosin is the essential function of striated muscle, which also exhibit mechanosensitive differentiation and maturation as illustrated in vivo by beating heart cells and by the regenerative mobilization of skeletal muscle stem cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Muscle cooling delays activation of the muscle metaboreflex in humans.

    PubMed

    Ray, C A; Hume, K M; Gracey, K H; Mahoney, E T

    1997-11-01

    Elevation of muscle temperature has been shown to increase muscle sympathetic nerve activity (MSNA) during isometric exercise in humans. The purpose of the present study was to evaluate the effect of muscle cooling on MSNA responses during exercise. Eight subjects performed ischemic isometric handgrip at 30% of maximal voluntary contraction to fatigue followed by 2 min of postexercise muscle ischemia (PEMI), with and without local cooling of the forearm. Local cooling of the forearm decreased forearm muscle temperature from 31.8 +/- 0.4 to 23.1 +/- 0.8 degrees C (P = 0.001). Time to fatigue was not different during the control and cold trials (156 +/- 11 and 154 +/- 5 s, respectively). Arterial pressures and heart rate were not significantly affected by muscle cooling during exercise, although heart rate tended to be higher during the second minute of exercise (P = 0.053) during muscle cooling. Exercise-induced increases in MSNA were delayed during handgrip with local cooling compared with control. However, MSNA responses at fatigue and PEMI were not different between the two conditions. These findings suggest that muscle cooling delayed the activation of the muscle metaboreflex during ischemic isometric exercise but did not prevent its full expression during fatiguing contraction. These results support the concept that muscle temperature can play a role in the regulation of MSNA during exercise.

  1. Neural cell adhesion molecule mediates initial interactions between spinal cord neurons and muscle cells in culture

    PubMed Central

    1983-01-01

    Previous studies in this laboratory have described a cell surface glycoprotein, called neural cell adhesion molecule or N-CAM, that appears to be a ligand in the adhesion between neural membranes. N-CAM antigenic determinants were also shown to be present on embryonic muscle and an N-CAM-dependent adhesion was demonstrated between retinal cell membranes and muscle cells in short-term assays. The present studies indicate that these antigenic determinants are associated with the N-CAM polypeptide, and that rapid adhesion mediated by this molecule occurs between spinal cord membranes and muscle cells. Detailed examination of the effects of anti-(N-CAM) Fab' fragments in cultures of spinal cord with skeletal muscle showed that the Fab' fragments specifically block adhesion of spinal cord neurites and cells to myotubes. The Fab' did not affect binding of neurites to fibroblasts and collagen substrate, and did not alter myotube morphology. These results indicate that N-CAM adhesion is essential for the in vitro establishment of physical associations between nerve and muscle, and suggest that binding involving N-CAM may be an important early step in synaptogenesis. PMID:6863388

  2. Cells, Scaffolds and Their Interactions in Myocardial Tissue Regeneration.

    PubMed

    Gorabi, Armita Mahdavi; Tafti, Seyed Hossein Ahmadi; Soleimani, Masoud; Panahi, Yunes; Sahebkar, Amirhossein

    2017-08-01

    Cardiac regenerative therapy includes several techniques to repair and replace damaged tissues and organs using cells, biomaterials, molecules, or a combination of these factors. Generation of heart muscle is the most important challenge in this field, although it is well known that new advances in stem cell isolation and culture techniques in bioreactors and synthesis of bioactive materials contribute to the creation of cardiac tissue regeneration in vitro. Some investigations in stem cell biology shows that stem cells are an important source for regeneration of heart muscle cells and blood vessels and can thus clinically contribute to the regeneration of damaged heart tissue. The aim of this review was to explain the principles and challenges of myocardial tissue regeneration with an emphasis on stem cells and scaffolds. J. Cell. Biochem. 118: 2454-2462, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Isolation and Purification of Satellite Cells for Skeletal Muscle Tissue Engineering

    PubMed Central

    Syverud, Brian C; Lee, Jonah D; VanDusen, Keith W; Larkin, Lisa M

    2015-01-01

    Engineered skeletal muscle holds promise as a source of graft tissue for the repair of traumatic injuries such as volumetric muscle loss. The resident skeletal muscle stem cell, the satellite cell, has been identified as an ideal progenitor for tissue engineering due to its role as an essential player in the potent skeletal muscle regeneration mechanism. A significant challenge facing tissue engineers, however, is the isolation of sufficiently large satellite cell populations with high purity. The two common isolation techniques, single fiber explant culture and enzymatic dissociation, can yield either a highly pure satellite cell population or a suitably large number or cells but fail to do both simultaneously. As a result, it is often necessary to use a purification technique such as pre-plating or cell sorting to enrich the satellite cell population post-isolation. Furthermore, the absence of complex chemical and biophysical cues influencing the in vivo satellite cell “niche” complicates the culture of isolated satellite cells. Techniques under investigation to maximize myogenic proliferation and differentiation in vitro are described in this article, along with current methods for isolating and purifying satellite cells. PMID:26413555

  4. Muscle progenitor cells proliferation doesn't sufficiently contribute to maintaining stretched soleus muscle mass during gravitational unloading

    NASA Astrophysics Data System (ADS)

    Tarakina, M. V.; Turtikova, O. V.; Nemirovskaya, T. L.; Kokontcev, A. A.; Shenkman, B. S.

    Skeletal muscle work hypertrophy is usually connected with muscle progenitor satellite cells (SC) activation with subsequent incorporation of their nuclei into myofibers. Passive stretch of unloaded muscle was earlier established to prevent atrophic processes and is accompanied by enhanced protein synthesis. We hypothesized that elimination of SC proliferation capacity by γ-irradiation would partly avert stretched muscle fiber capability to maintain their size under the conditions of gravitational unloading. To assess the role of muscle progenitor (satellite) cells in development of passive stretch preventive effect SC proliferation was suppressed by local exposing to ionized radiation (2500 rad), subsequent hindlimb suspension or hindlimb suspension with concomitant passive stretch were carried out. Reduction of myofiber cross-sectional area and decrease in myonuclei number accompanying unloaded muscle atrophy were completely abolished by passive stretch both in irradiated and sham-treated animals. We conclude that SC did not make essential contribution to passive stretch preventive action under the conditions of simulated weightlessness.

  5. Satellite cell proliferation in adult skeletal muscle

    NASA Technical Reports Server (NTRS)

    Morrison, Paul R. (Inventor); Thomason, Donald B. (Inventor); Stancel, George M. (Inventor); Booth, Frank W. (Inventor)

    1995-01-01

    Novel methods of retroviral-mediated gene transfer for the in vivo corporation and stable expression of eukaryotic or prokaryotic foreign genes in tissues of living animals is described. More specifically, methods of incorporating foreign genes into mitotically active cells are disclosed. The constitutive and stable expression of E. coli .beta.-galactosidase gene under the promoter control of the Moloney murine leukemia virus long terminal repeat is employed as a particularly preferred embodiment, by way of example, establishes the model upon which the incorporation of a foreign gene into a mitotically-active living eukaryotic tissue is based. Use of the described methods in therapeutic treatments for genetic diseases, such as those muscular degenerative diseases, is also presented. In muscle tissue, the described processes result in genetically-altered satellite cells which proliferate daughter myoblasts which preferentially fuse to form a single undamaged muscle fiber replacing damaged muscle tissue in a treated animal. The retroviral vector, by way of example, includes a dystrophin gene construct for use in treating muscular dystrophy. The present invention also comprises an experimental model utilizable in the study of the physiological regulation of skeletal muscle gene expression in intact animals.

  6. Satellite-like cells contribute to pax7-dependent skeletal muscle repair in adult zebrafish

    PubMed Central

    Berberoglu, Michael A.; Gallagher, Thomas L.; Morrow, Zachary T.; Talbot, Jared C.; Hromowyk, Kimberly J.; Tenente, Inês M.; Langenau, David M.; Amacher, Sharon L.

    2017-01-01

    Satellite cells, also known as muscle stem cells, are responsible for skeletal muscle growth and repair in mammals. Pax7 and Pax3 transcription factors are established satellite cell markers required for muscle development and regeneration, and there is great interest in identifying additional factors that regulate satellite cell proliferation, differentiation, and/or skeletal muscle regeneration. Due to the powerful regenerative capacity of many zebrafish tissues, even in adults, we are exploring the regenerative potential of adult zebrafish skeletal muscle. Here, we show that adult zebrafish skeletal muscle contains cells similar to mammalian satellite cells. Adult zebrafish satellite-like cells have dense heterochromatin, express Pax7 and Pax3, proliferate in response to injury, and show peak myogenic responses 4–5 days post-injury (dpi). Furthermore, using a pax7a-driven GFP reporter, we present evidence implicating satellite-like cells as a possible source of new muscle. In lieu of central nucleation, which distinguishes regenerating myofibers in mammals, we describe several characteristics that robustly identify newly-forming myofibers from surrounding fibers in injured adult zebrafish muscle. These characteristics include partially overlapping expression in satellite cells and regenerating myofibers of two RNA-binding proteins Rbfox2 and Rbfoxl1, known to regulate embryonic muscle development and function. Finally, by analyzing pax7a; pax7b double mutant zebrafish, we show that Pax7 is required for adult skeletal muscle repair, as it is in the mouse. PMID:28279710

  7. Heart rate at the onset of muscle contraction and during passive muscle stretch in humans: a role for mechanoreceptors

    PubMed Central

    Gladwell, V F; Coote, J H

    2002-01-01

    Previous evidence suggests that the heart rate (HR) increase observed with isometric exercise is dependent on different afferent mechanisms to those eliciting the increase in blood pressure (BP). Central command and muscle metaboreceptors have been shown to contribute to this differential effect. However, in experimental animals passive stretch of the hindlimb increases HR suggesting that small fibre mechanoreceptors could also have a role. This has not been previously shown in humans and was investigated in this study. Healthy human volunteers were instrumented to record BP, ECG, respiration, EMG of rectus femoris and gastrocnemius and contraction force of triceps surae. Voluntary isometric contraction of triceps surae elicited a significant HR change in the first three respiratory cycles at 40 % of maximum voluntary contraction whereas BP did not change significantly until after 30 s. This suggests that different mechanisms are involved in the initiation of the cardiovascular changes. Sustained passive stretch of triceps surae for 1 min, by dorsiflexion of the foot, caused a significant (P < 0.05) increase in HR (5 ± 2.6 beats min−1) with no significant change in BP. A time domain measure of cardiac vagal activity was reduced significantly during passive stretch from 69.7 ± 12.9 to 49.6 ± 8.9 ms. Rapid rhythmic passive stretch (0.5 Hz for 1 min) was without significant effect suggesting that large muscle proprioreceptors are not involved. We conclude that in man small fibre muscle mechanoreceptors responding to stretch, inhibit cardiac vagal activity and thus increase HR. These afferents could contribute to the initial cardiac acceleration in response to muscle contraction. PMID:11986394

  8. The chromatin-binding protein Smyd1 restricts adult mammalian heart growth.

    PubMed

    Franklin, Sarah; Kimball, Todd; Rasmussen, Tara L; Rosa-Garrido, Manuel; Chen, Haodong; Tran, Tam; Miller, Mickey R; Gray, Ricardo; Jiang, Shanxi; Ren, Shuxun; Wang, Yibin; Tucker, Haley O; Vondriska, Thomas M

    2016-11-01

    All terminally differentiated organs face two challenges, maintaining their cellular identity and restricting organ size. The molecular mechanisms responsible for these decisions are of critical importance to organismal development, and perturbations in their normal balance can lead to disease. A hallmark of heart failure, a condition affecting millions of people worldwide, is hypertrophic growth of cardiomyocytes. The various forms of heart failure in human and animal models share conserved transcriptome remodeling events that lead to expression of genes normally silenced in the healthy adult heart. However, the chromatin remodeling events that maintain cell and organ size are incompletely understood; insights into these mechanisms could provide new targets for heart failure therapy. Using a quantitative proteomics approach to identify muscle-specific chromatin regulators in a mouse model of hypertrophy and heart failure, we identified upregulation of the histone methyltransferase Smyd1 during disease. Inducible loss-of-function studies in vivo demonstrate that Smyd1 is responsible for restricting growth in the adult heart, with its absence leading to cellular hypertrophy, organ remodeling, and fulminate heart failure. Molecular studies reveal Smyd1 to be a muscle-specific regulator of gene expression and indicate that Smyd1 modulates expression of gene isoforms whose expression is associated with cardiac pathology. Importantly, activation of Smyd1 can prevent pathological cell growth. These findings have basic implications for our understanding of cardiac pathologies and open new avenues to the treatment of cardiac hypertrophy and failure by modulating Smyd1. Copyright © 2016 the American Physiological Society.

  9. Sleep-Disordered Breathing Exacerbates Muscle Vasoconstriction and Sympathetic Neural Activation in Patients with Systolic Heart Failure.

    PubMed

    Lobo, Denise M L; Trevizan, Patricia F; Toschi-Dias, Edgar; Oliveira, Patricia A; Piveta, Rafael B; Almeida, Dirceu R; Mady, Charles; Bocchi, Edimar A; Lorenzi-Filho, Geraldo; Middlekauff, Holly R; Negrão, Carlos E

    2016-11-01

    Sleep-disordered breathing (SDB) is common in patients with heart failure (HF), and hypoxia and hypercapnia episodes activate chemoreceptors stimulating autonomic reflex responses. We tested the hypothesis that muscle vasoconstriction and muscle sympathetic nerve activity (MSNA) in response to hypoxia and hypercapnia would be more pronounced in patients with HF and SDB than in patients with HF without SDB (NoSBD). Ninety consecutive patients with HF, New York Heart Association functional class II-III, and left ventricular ejection fraction ≤40% were screened for the study. Forty-one patients were enrolled: NoSDB (n=13, 46 [39-53] years) and SDB (n=28, 57 [54-61] years). SDB was characterized by apnea-hypopnea index ≥15 events per hour (polysomnography). Peripheral (10% O 2 and 90% N 2 , with CO 2 titrated) and central (7% CO 2 and 93% O 2 ) chemoreceptors were stimulated for 3 minutes. Forearm and calf blood flow were evaluated by venous occlusion plethysmography, MSNA by microneurography, and blood pressure by beat-to-beat noninvasive technique. Baseline forearm blood flow, forearm vascular conductance, calf blood flow, and calf vascular conductance were similar between groups. MSNA was higher in the SDB group. During hypoxia, the vascular responses (forearm blood flow, forearm vascular conductance, calf blood flow, and calf vascular conductance) were significantly lower in the SDB group compared with the NoSDB group (P<0.01 to all comparisons). Similarly, during hypercapnia, the vascular responses (forearm blood flow, forearm vascular conductance, calf blood flow, and calf vascular conductance) were significantly lower in the SDB group compared with the NoSDB group (P<0.001 to all comparisons). MSNA were higher in response to hypoxia (P=0.024) and tended to be higher to hypercapnia (P=0.066) in the SDB group. Patients with HF and SDB have more severe muscle vasoconstriction during hypoxia and hypercapnia than HF patients without SDB, which seems to be

  10. The physiopathologic interplay between stem cells and tissue niche in muscle regeneration and the role of IL-6 on muscle homeostasis and diseases.

    PubMed

    Forcina, Laura; Miano, Carmen; Musarò, Antonio

    2018-06-01

    Skeletal muscle is a complex, dynamic tissue characterized by an elevated plasticity. Although the adult muscle is mainly composed of multinucleated fibers with post mitotic nuclei, it retains a remarkable ability to regenerate in response to traumatic events. The regenerative potential of the adult skeletal muscle relies in the activity of satellite cells, mononucleated cells residing within the muscle in intimate association with myofibers. Satellite cells normally remain quiescent in their sublaminar position, sporadically entering the cell cycle to guarantee an efficient cellular turnover, by fusing with pre-existing myofibers, and to maintain the stem cell pool. However, after muscle injury satellite cells undergo an extensive increase of their activity in response to environmental stimuli, thereby participating to the regeneration of a functional muscle tissue. Nevertheless, regeneration is affected in several pathologic conditions and by a wide range of environmental signals that are highly variable, not only through time, but also depending on the physiological or pathological conditions of the musculature. Among these factors, the interleukin-6 (IL-6) plays a critical physiopathologic role on muscle homeostasis and diseases. The basis of muscle regeneration and the impact of IL-6 on the physiopathology of skeletal muscle will be discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. 1,5-Disubstituted benzimidazoles that direct cardiomyocyte differentiation from mouse embryonic stem cells.

    PubMed

    Okolotowicz, Karl J; Bushway, Paul; Lanier, Marion; Gilley, Cynthia; Mercola, Mark; Cashman, John R

    2015-09-01

    Cardiomyopathy is the leading cause of death worldwide. Despite progress in medical treatments, heart transplantation is one of the only current options for those with infarcted heart muscle. Stem cell differentiation technology may afford cell-based therapeutics that may lead to the generation of new, healthy heart muscle cells from undifferentiated stem cells. Our approach is to use small molecules to stimulate stem cell differentiation. Herein, we describe a novel class of 1,5-disubstituted benzimidazoles that induce differentiation of stem cells into cardiac cells. We report on the evaluation in vitro for cardiomyocyte differentiation and describe structure-activity relationship results that led to molecules with drug-like properties. The results of this study show the promise of small molecules to direct stem cell lineage commitment, to probe signaling pathways and to develop compounds for the stimulation of stem cells to repair damaged heart tissue. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Maternal blood pressure and heart rate response to pelvic floor muscle training during pregnancy.

    PubMed

    Ferreira, Cristine H; Naldoni, Luciane M V; Ribeiro, Juliana Dos Santos; Meirelles, Maria Cristina C C; Cavalli, Ricardo de Carvalho; Bø, Kari

    2014-07-01

    To assess whether maternal blood pressure (BP) and heart rate (HR) change significantly in response to pelvic floor muscle training during pregnancy. Longitudinal exploratory study with repeated measurements. Twenty-seven nulliparous healthy women of mean age 23.3 years (range 18-36) and mean body mass index 23.4 (range 23.1-29.5). Individual supervised pelvic floor muscle training from gestational week 20 till 36 with assessment of BP and HR at gestational weeks 20, 24, 28, 32 and 36. Systolic and diastolic BP was measured before and after each training session and HR was monitored during each session. Pelvic floor muscle training did not change BP. 77% (n = 21) of participants exceeded 70% of estimated maximum HR during at least one session. The time for exceeding 70% of estimated maximum HR was between 2.2 and 3.2 % of the total exercise session. Increases in BP and HR from gestational weeks 20 till 36 were within normal limits for pregnant women. Pelvic floor muscle training in nulliparous sedentary pregnant women does not increase BP. It significantly increases HR during the exercise sessions, but only for a limited period of time and with no negative long-term effect on BP or HR. © 2014 Nordic Federation of Societies of Obstetrics and Gynecology.

  13. Vitamin K2 improves proliferation and migration of bovine skeletal muscle cells in vitro.

    PubMed

    Rønning, Sissel Beate; Pedersen, Mona Elisabeth; Berg, Ragnhild Stenberg; Kirkhus, Bente; Rødbotten, Rune

    2018-01-01

    Skeletal muscle function is highly dependent on the ability to regenerate, however, during ageing or disease, the proliferative capacity is reduced, leading to loss of muscle function. We have previously demonstrated the presence of vitamin K2 in bovine skeletal muscles, but whether vitamin K has a role in muscle regulation and function is unknown. In this study, we used primary bovine skeletal muscle cells, cultured in monolayers in vitro, to assess a potential effect of vitamin K2 (MK-4) during myogenesis of muscle cells. Cell viability experiments demonstrate that the amount of ATP produced by the cells was unchanged when MK-4 was added, indicating viable cells. Cytotoxicity analysis show that MK-4 reduced the lactate dehydrogenase (LDH) released into the media, suggesting that MK-4 was beneficial to the muscle cells. Cell migration, proliferation and differentiation was characterised after MK-4 incubation using wound scratch analysis, immunocytochemistry and real-time PCR analysis. Adding MK-4 to the cells led to an increased muscle proliferation, increased gene expression of the myogenic transcription factor myod as well as increased cell migration. In addition, we observed a reduction in the fusion index and relative gene expression of muscle differentiation markers, with fewer complex myotubes formed in MK-4 stimulated cells compared to control cells, indicating that the MK-4 plays a significant role during the early phases of muscle proliferation. Likewise, we see the same pattern for the relative gene expression of collagen 1A, showing increased gene expression in proliferating cells, and reduced expression in differentiating cells. Our results also suggest that MK-4 incubation affect low density lipoprotein receptor-related protein 1 (LRP1) and the low-density lipoprotein receptor (LDLR) with a peak in gene expression after 45 min of MK-4 incubation. Altogether, our experiments show that MK-4 has a positive effect on muscle cell migration and

  14. Expression of an insulin-regulatable glucose carrier in muscle and fat endothelial cells

    NASA Astrophysics Data System (ADS)

    Vilaró, Senen; Palacín, Manuel; Pilch, Paul F.; Testar, Xavier; Zorzano, Antonio

    1989-12-01

    INSULIN rapidly stimulates glucose use in the major target tissues, muscle and fat, by modulating a tissue-specific glucose transporter isoform1-6. Access of glucose to the target tissue is restricted by endothelial cells which line the walls of nonfenestrated capillaries of fat and muscle7. Thus, we examined whether the capillary endothelial cells are actively involved in the modulation of glucose availability by these tissues. We report here the abundant expression of the muscle/fat glucose transporter isoform in endothelial cells, using an immunocytochemical analysis with a monoclonal antibody specific for this isoform1. This expression is restricted to endothelial cells from the major insulin target tissues, and it is not detected in brain and liver where insulin does not activate glucose transport. The expression of the muscle/fat transporter isoform in endothelial cells is significantly greater than in the neighbouring muscle and fat cells. Following administration of insulin to animals in vivo, there occurs a rapid increase in the number of muscle/fat transporters present in the lumenal plasma membrane of the capillary endothelial cells. These results document that insulin promotes the translocation of the muscle/fat glucose transporter in endothelial cells. It is therefore likely that endothelial cells play an important role in the regulation of glucose use by the major insulin target tissues in normal and diseased states.

  15. Cell-accurate optical mapping across the entire developing heart.

    PubMed

    Weber, Michael; Scherf, Nico; Meyer, Alexander M; Panáková, Daniela; Kohl, Peter; Huisken, Jan

    2017-12-29

    Organogenesis depends on orchestrated interactions between individual cells and morphogenetically relevant cues at the tissue level. This is true for the heart, whose function critically relies on well-ordered communication between neighboring cells, which is established and fine-tuned during embryonic development. For an integrated understanding of the development of structure and function, we need to move from isolated snap-shot observations of either microscopic or macroscopic parameters to simultaneous and, ideally continuous, cell-to-organ scale imaging. We introduce cell-accurate three-dimensional Ca 2+ -mapping of all cells in the entire electro-mechanically uncoupled heart during the looping stage of live embryonic zebrafish, using high-speed light sheet microscopy and tailored image processing and analysis. We show how myocardial region-specific heterogeneity in cell function emerges during early development and how structural patterning goes hand-in-hand with functional maturation of the entire heart. Our method opens the way to systematic, scale-bridging, in vivo studies of vertebrate organogenesis by cell-accurate structure-function mapping across entire organs.

  16. Cell-accurate optical mapping across the entire developing heart

    PubMed Central

    Meyer, Alexander M; Panáková, Daniela; Kohl, Peter

    2017-01-01

    Organogenesis depends on orchestrated interactions between individual cells and morphogenetically relevant cues at the tissue level. This is true for the heart, whose function critically relies on well-ordered communication between neighboring cells, which is established and fine-tuned during embryonic development. For an integrated understanding of the development of structure and function, we need to move from isolated snap-shot observations of either microscopic or macroscopic parameters to simultaneous and, ideally continuous, cell-to-organ scale imaging. We introduce cell-accurate three-dimensional Ca2+-mapping of all cells in the entire electro-mechanically uncoupled heart during the looping stage of live embryonic zebrafish, using high-speed light sheet microscopy and tailored image processing and analysis. We show how myocardial region-specific heterogeneity in cell function emerges during early development and how structural patterning goes hand-in-hand with functional maturation of the entire heart. Our method opens the way to systematic, scale-bridging, in vivo studies of vertebrate organogenesis by cell-accurate structure-function mapping across entire organs. PMID:29286002

  17. Smooth Muscle-Like Cells Generated from Human Mesenchymal Stromal Cells Display Marker Gene Expression and Electrophysiological Competence Comparable to Bladder Smooth Muscle Cells.

    PubMed

    Brun, Juliane; Lutz, Katrin A; Neumayer, Katharina M H; Klein, Gerd; Seeger, Tanja; Uynuk-Ool, Tatiana; Wörgötter, Katharina; Schmid, Sandra; Kraushaar, Udo; Guenther, Elke; Rolauffs, Bernd; Aicher, Wilhelm K; Hart, Melanie L

    2015-01-01

    The use of mesenchymal stromal cells (MSCs) differentiated toward a smooth muscle cell (SMC) phenotype may provide an alternative for investigators interested in regenerating urinary tract organs such as the bladder where autologous smooth muscle cells cannot be used or are unavailable. In this study we measured the effects of good manufacturing practice (GMP)-compliant expansion followed by myogenic differentiation of human MSCs on the expression of a range of contractile (from early to late) myogenic markers in relation to the electrophysiological parameters to assess the functional role of the differentiated MSCs and found that differentiation of MSCs associated with electrophysiological competence comparable to bladder SMCs. Within 1-2 weeks of myogenic differentiation, differentiating MSCs significantly expressed alpha smooth muscle actin (αSMA; ACTA2), transgelin (TAGLN), calponin (CNN1), and smooth muscle myosin heavy chain (SM-MHC; MYH11) according to qRT-PCR and/or immunofluorescence and Western blot. Voltage-gated Na+ current levels also increased within the same time period following myogenic differentiation. In contrast to undifferentiated MSCs, differentiated MSCs and bladder SMCs exhibited elevated cytosolic Ca2+ transients in response to K+-induced depolarization and contracted in response to K+ indicating functional maturation of differentiated MSCs. Depolarization was suppressed by Cd2+, an inhibitor of voltage-gated Ca2+-channels. The expression of Na+-channels was pharmacologically identified as the Nav1.4 subtype, while the K+ and Ca2+ ion channels were identified by gene expression of KCNMA1, CACNA1C and CACNA1H which encode for the large conductance Ca2+-activated K+ channel BKCa channels, Cav1.2 L-type Ca2+ channels and Cav3.2 T-type Ca2+ channels, respectively. This protocol may be used to differentiate adult MSCs into smooth muscle-like cells with an intermediate-to-late SMC contractile phenotype exhibiting voltage-gated ion channel

  18. Fibronectin Matrix Polymerization Regulates Smooth Muscle Cell Phenotype through a Rac1 Dependent Mechanism

    PubMed Central

    Shi, Feng; Long, Xiaochun; Hendershot, Allison; Miano, Joseph M.; Sottile, Jane

    2014-01-01

    Smooth muscle cells are maintained in a differentiated state in the vessel wall, but can be modulated to a synthetic phenotype following injury. Smooth muscle phenotypic modulation is thought to play an important role in the pathology of vascular occlusive diseases. Phenotypically modulated smooth muscle cells exhibit increased proliferative and migratory properties that accompany the downregulation of smooth muscle cell marker proteins. Extracellular matrix proteins, including fibronectin, can regulate the smooth muscle phenotype when used as adhesive substrates. However, cells produce and organize a 3-dimensional fibrillar extracellular matrix, which can affect cell behavior in distinct ways from the protomeric 2-dimensional matrix proteins that are used as adhesive substrates. We previously showed that the deposition/polymerization of fibronectin into the extracellular matrix can regulate the deposition and organization of other extracellular matrix molecules in vitro. Further, our published data show that the presence of a fibronectin polymerization inhibitor results in increased expression of smooth muscle cell differentiation proteins and inhibits vascular remodeling in vivo. In this manuscript, we used an in vitro cell culture system to determine the mechanism by which fibronectin polymerization affects smooth muscle phenotypic modulation. Our data show that fibronectin polymerization decreases the mRNA levels of multiple smooth muscle differentiation genes, and downregulates the levels of smooth muscle α-actin and calponin proteins by a Rac1-dependent mechanism. The expression of smooth muscle genes is transcriptionally regulated by fibronectin polymerization, as evidenced by the increased activity of luciferase reporter constructs in the presence of a fibronectin polymerization inhibitor. Fibronectin polymerization also promotes smooth muscle cell growth, and decreases the levels of actin stress fibers. These data define a Rac1-dependent pathway wherein

  19. Heart Truth for Women: If You Have Heart Disease

    MedlinePlus

    ... failure and a damaged heart muscle. My experience with heart disease started with typical symptoms. It took me some time to get my strength back, but now I exercise regularly and eat healthy foods. To ... counseling, and training. This part of rehab helps you understand your ...

  20. Atrogin-1 Deficiency Leads to Myopathy and Heart Failure in Zebrafish.

    PubMed

    Bühler, Anja; Kustermann, Monika; Bummer, Tiziana; Rottbauer, Wolfgang; Sandri, Marco; Just, Steffen

    2016-01-30

    Orchestrated protein synthesis and degradation is fundamental for proper cell function. In muscle, impairment of proteostasis often leads to severe cellular defects finally interfering with contractile function. Here, we analyze for the first time the role of Atrogin-1, a muscle-specific E3 ubiquitin ligase known to be involved in the regulation of protein degradation via the ubiquitin proteasome and the autophagy/lysosome systems, in the in vivo model system zebrafish (Danio rerio). We found that targeted inactivation of zebrafish Atrogin-1 leads to progressive impairment of heart and skeletal muscle function and disruption of muscle structure without affecting early cardiogenesis and skeletal muscle development. Autophagy is severely impaired in Atrogin-1-deficient zebrafish embryos resulting in the disturbance of the cytoarchitecture of cardiomyocytes and skeletal muscle cells. These observations are consistent with molecular and ultrastructural findings in an Atrogin-1 knockout mouse and demonstrate that the zebrafish is a suitable vertebrate model to study the molecular mechanisms of Atrogin-1-mediated autophagic muscle pathologies and to screen for novel therapeutically active substances in high-throughput in vivo small compound screens (SCS).

  1. Effects of non-fatiguing respiratory muscle loading induced by expiratory flow limitation during strenuous incremental cycle exercise on metabolic stress and circulating natural killer cells.

    PubMed

    Rolland-Debord, Camille; Morelot-Panzini, Capucine; Similowski, Thomas; Duranti, Roberto; Laveneziana, Pierantonio

    2017-12-01

    Exercise induces release of cytokines and increase of circulating natural killers (NK) lymphocyte during strong activation of respiratory muscles. We hypothesised that non-fatiguing respiratory muscle loading during exercise causes an increase in NK cells and in metabolic stress indices. Heart rate (HR), ventilation (VE), oesophageal pressure (Pes), oxygen consumption (VO 2 ), dyspnoea and leg effort were measured in eight healthy humans (five men and three women, average age of 31 ± 4 years and body weight of 68 ± 10 kg), performing an incremental exercise testing on a cycle ergometer under control condition and expiratory flow limitation (FL) achieved by putting a Starling resistor. Blood samples were obtained at baseline, at peak of exercise and at iso-workload corresponding to that reached at the peak of FL exercise during control exercise. Diaphragmatic fatigue was evaluated by measuring the tension time index of the diaphragm. Respiratory muscle overloading caused an earlier interruption of exercise. Diaphragmatic fatigue did not occur in the two conditions. At peak of flow-limited exercise compared to iso-workload, HR, peak inspiratory and expiratory Pes, NK cells and norepinephrine were significantly higher. The number of NK cells was significantly related to ΔPes (i.e. difference between the most and the less negative Pes) and plasmatic catecholamines. Loading of respiratory muscles is able to cause an increase of NK cells provided that activation of respiratory muscles is intense enough to induce a significant metabolic stress.

  2. Osteogenic differentiation capacity of human skeletal muscle-derived progenitor cells.

    PubMed

    Oishi, Teruyo; Uezumi, Akiyoshi; Kanaji, Arihiko; Yamamoto, Naoki; Yamaguchi, Asami; Yamada, Harumoto; Tsuchida, Kunihiro

    2013-01-01

    Heterotopic ossification (HO) is defined as the formation of ectopic bone in soft tissue outside the skeletal tissue. HO is thought to result from aberrant differentiation of osteogenic progenitors within skeletal muscle. However, the precise origin of HO is still unclear. Skeletal muscle contains two kinds of progenitor cells, myogenic progenitors and mesenchymal progenitors. Myogenic and mesenchymal progenitors in human skeletal muscle can be identified as CD56(+) and PDGFRα(+) cells, respectively. The purpose of this study was to investigate the osteogenic differentiation potential of human skeletal muscle-derived progenitors. Both CD56(+) cells and PDGFRα(+) cells showed comparable osteogenic differentiation potential in vitro. However, in an in vivo ectopic bone formation model, PDGFRα(+) cells formed bone-like tissue and showed successful engraftment, while CD56(+) cells did not form bone-like tissue and did not adapt to an osteogenic environment. Immunohistological analysis of human HO sample revealed that many PDGFRα(+) cells were localized in proximity to ectopic bone formed in skeletal muscle. MicroRNAs (miRNAs) are known to regulate many biological processes including osteogenic differentiation. We investigated the participation of miRNAs in the osteogenic differentiation of PDGFRα(+) cells by using microarray. We identified miRNAs that had not been known to be involved in osteogenesis but showed dramatic changes during osteogenic differentiation of PDGFRα(+) cells. Upregulation of miR-146b-5p and -424 and downregulation of miR-7 during osteogenic differentiation of PDGFRα(+) cells were confirmed by quantitative real-time RT-PCR. Inhibition of upregulated miRNAs, miR-146b-5p and -424, resulted in the suppression of osteocyte maturation, suggesting that these two miRNAs have the positive role in the osteogenesis of PDGFRα(+) cells. Our results suggest that PDGFRα(+) cells may be the major source of HO and that the newly identified miRNAs may

  3. Using Transgenic Zebrafish to Study Muscle Stem/Progenitor Cells.

    PubMed

    Nguyen, Phong D; Currie, Peter D

    2017-01-01

    Understanding muscle stem cell behaviors can potentially provide insights into how these cells act and respond during normal growth and diseased contexts. The zebrafish is an ideal model organism to examine these behaviors in vivo where it would normally be technically challenging in other mammalian models. This chapter will describe the procedures required to successfully conduct live imaging of zebrafish transgenics that has specifically been adapted for skeletal muscle.

  4. Ribose in the heart.

    PubMed

    Herrick, James; St Cyr, John

    2008-01-01

    Every cell needs energy, i.e., adenosine triphosphate (ATP), to carry out its function. Decreased oxygen levels, decreased blood flow, and other stressful conditions can drastically effect the intracellular concentrations of these energy compounds. Skeletal muscle, unlike the heart, can address this drop in ATP by employing the myokinase reaction, ultimately producing ATP with a subsequent elevation in adenosine monophosphate (AMP). Ribose, a naturally occurring 5-carbon monosaccharide, is a key component of RNA, DNA (which has deoxyribose), acetyl coenzyme A, and ATP. Each cell produces its own ribose, involved in the pentose phosphate pathway (PPP), to aid in ATP production. States of ischemia and/or hypoxia can severely lower levels of cellular energy compounds in the heart, with an associated compromise in cellular processes, ultimately reflected in altered function. Ribose appears to provide a solution to the problem in replenishing the depressed ATP levels and improving functional status of patients afflicted with cardiovascular diseases.

  5. AMP-activated Protein Kinase Stimulates Warburg-like Glycolysis and Activation of Satellite Cells during Muscle Regeneration*

    PubMed Central

    Fu, Xing; Zhu, Mei-Jun; Dodson, Mike V.; Du, Min

    2015-01-01

    Satellite cells are the major myogenic stem cells residing inside skeletal muscle and are indispensable for muscle regeneration. Satellite cells remain largely quiescent but are rapidly activated in response to muscle injury, and the derived myogenic cells then fuse to repair damaged muscle fibers or form new muscle fibers. However, mechanisms eliciting metabolic activation, an inseparable step for satellite cell activation following muscle injury, have not been defined. We found that a noncanonical Sonic Hedgehog (Shh) pathway is rapidly activated in response to muscle injury, which activates AMPK and induces a Warburg-like glycolysis in satellite cells. AMPKα1 is the dominant AMPKα isoform expressed in satellite cells, and AMPKα1 deficiency in satellite cells impairs their activation and myogenic differentiation during muscle regeneration. Drugs activating noncanonical Shh promote proliferation of satellite cells, which is abolished because of satellite cell-specific AMPKα1 knock-out. Taken together, AMPKα1 is a critical mediator linking noncanonical Shh pathway to Warburg-like glycolysis in satellite cells, which is required for satellite activation and muscle regeneration. PMID:26370082

  6. Variability in Beta-Adrenergic Receptor Population in Cultured Chicken Muscle Cells

    NASA Technical Reports Server (NTRS)

    Young, Ronald B; Bridge, Kristin Y.; Vaughn, Jeffrey R.

    1998-01-01

    Investigations into expression of the beta-adrenergic receptor (bAR) in chicken skeletal muscle cells in culture were initiated because several beta-adrenergic receptor agonists are known to increase skeletal muscle protein deposition in avian and mammalian species. During initial attempts to study the bAR population on the surface of chicken skeletal muscle cells, we observed a high degree of variability that was later found to be the result of using different batches of horse serum in the cell culture media. The separation between total binding and nonspecific binding in cells grown in two serum samples was approximately two-fold The number of nuclei within multinucleated myotubes was not significantly different in cells grown in the two serum samples. To investigate whether these two sera had an effect on coupling efficiency between bAR population and cAMP production, the ability of these cells to synthesize cAMP was also assessed. Despite the two-fold difference in receptor population, the ability of these cells to synthesize cAMP was not significantly different. Because of the possible link between bAR population and muscle protein, we also determined if the quantity of the major skeletal muscle protein, myosin, was affected by conditions that so drastically affected the bAR population. The quantity of myosin heavy chain was not significantly different.

  7. Targeted deletion of RIC8A in mouse neural precursor cells interferes with the development of the brain, eyes, and muscles.

    PubMed

    Kask, Keiu; Tikker, Laura; Ruisu, Katrin; Lulla, Sirje; Oja, Eva-Maria; Meier, Riho; Raid, Raivo; Velling, Teet; Tõnissoo, Tambet; Pooga, Margus

    2018-04-01

    Autosomal recessive disorders such as Fukuyama congenital muscular dystrophy, Walker-Warburg syndrome, and the muscle-eye-brain disease are characterized by defects in the development of patient's brain, eyes, and skeletal muscles. These syndromes are accompanied by brain malformations like type II lissencephaly in the cerebral cortex with characteristic overmigrations of neurons through the breaches of the pial basement membrane. The signaling pathways activated by laminin receptors, dystroglycan and integrins, control the integrity of the basement membrane, and their malfunctioning may underlie the pathologies found in the rise of defects reminiscent of these syndromes. Similar defects in corticogenesis and neuromuscular disorders were found in mice when RIC8A was specifically removed from neural precursor cells. RIC8A regulates a subset of G-protein α subunits and in several model organisms, it has been reported to participate in the control of cell division, signaling, and migration. Here, we studied the role of RIC8A in the development of the brain, muscles, and eyes of the neural precursor-specific conditional Ric8a knockout mice. The absence of RIC8A severely affected the attachment and positioning of radial glial processes, Cajal-Retzius' cells, and the arachnoid trabeculae, and these mice displayed additional defects in the lens, skeletal muscles, and heart development. All the discovered defects might be linked to aberrancies in cell adhesion and migration, suggesting that RIC8A has a crucial role in the regulation of cell-extracellular matrix interactions and that its removal leads to the phenotype characteristic to type II lissencephaly-associated diseases. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 78: 374-390, 2018. © 2018 Wiley Periodicals, Inc.

  8. BRE facilitates skeletal muscle regeneration by promoting satellite cell motility and differentiation

    PubMed Central

    Xiao, Lihai; Lee, Kenneth Ka Ho

    2016-01-01

    ABSTRACT The function of the Bre gene in satellite cells was investigated during skeletal muscle regeneration. The tibialis anterior leg muscle was experimentally injured in Bre knockout mutant (BRE-KO) mice. It was established that the accompanying muscle regeneration was impaired as compared with their normal wild-type counterparts (BRE-WT). There were significantly fewer pax7+ satellite cells and smaller newly formed myofibers present in the injury sites of BRE-KO mice. Bre was required for satellite cell fusion and myofiber formation. The cell fusion index and average length of newly-formed BRE-KO myofibers were found to be significantly reduced as compared with BRE-WT myofibers. It is well established that satellite cells are highly invasive which confers on them the homing ability to reach the muscle injury sites. Hence, we tracked the migratory behavior of these cells using time-lapse microscopy. Image analysis revealed no difference in directionality of movement between BRE-KO and BRE-WT satellite cells but there was a significant decrease in the velocity of BRE-KO cell movement. Moreover, chemotactic migration assays indicated that BRE-KO satellite cells were significantly less responsive to chemoattractant SDF-1α than BRE-WT satellite cells. We also established that BRE normally protects CXCR4 from SDF-1α-induced degradation. In sum, BRE facilitates skeletal muscle regeneration by enhancing satellite cell motility, homing and fusion. PMID:26740569

  9. Fate of 3H-thymidine labelled myogenic cells in regeneration of muscle isografts.

    PubMed

    Gutmann, E; Mares, V; Stichová, J

    1976-03-05

    Intact and denervated extensor digitorum longus (EDL) muscles of 20-day-old inbred Lewis-Wistar rats were labelled with 3H-thymidine. Ninety minutes after the injection of the isotope 4.0% of the nuclei were labelled in the intact (i.e. innervated) and 9.6% in the muscles, denervated 3 days before administration of the isotope. The labelled EDL muscles were grafted into the bed of the previously removed EDL muscles of inbred animals and these isografts were studied 30 days later. In the EDL muscles, regenerated from innervated isografts only occasionally labelled endothelial cells were found whereas in the muscles regenerated from denervated isografts also parenchymal muscle nuclei were regularly labelled. The incidence of labelled nuclei in the regenerated EDL muscles was, however, about 20 times lower than in the donor EDL muscles. The presen experiments provide a direct proof of utilization of donor satelite cell nuclei for regeneration in grafted muscle tissue. With respect to the low incidence of labelled nuclei in regenerated EDL muscles, other sources of cells apparently also contribute to the regeneration process.

  10. MASTR directs MyoD-dependent satellite cell differentiation during skeletal muscle regeneration

    PubMed Central

    Mokalled, Mayssa H.; Johnson, Aaron N.; Creemers, Esther E.; Olson, Eric N.

    2012-01-01

    In response to skeletal muscle injury, satellite cells, which function as a myogenic stem cell population, become activated, expand through proliferation, and ultimately fuse with each other and with damaged myofibers to promote muscle regeneration. Here, we show that members of the Myocardin family of transcriptional coactivators, MASTR and MRTF-A, are up-regulated in satellite cells in response to skeletal muscle injury and muscular dystrophy. Global and satellite cell-specific deletion of MASTR in mice impairs skeletal muscle regeneration. This impairment is substantially greater when MRTF-A is also deleted and is due to aberrant differentiation and excessive proliferation of satellite cells. These abnormalities mimic those associated with genetic deletion of MyoD, a master regulator of myogenesis, which is down-regulated in the absence of MASTR and MRTF-A. Consistent with an essential role of MASTR in transcriptional regulation of MyoD expression, MASTR activates a muscle-specific postnatal MyoD enhancer through associations with MEF2 and members of the Myocardin family. Our results provide new insights into the genetic circuitry of muscle regeneration and identify MASTR as a central regulator of this process. PMID:22279050

  11. Mechanisms and management of the heart in Myotonic Dystrophy

    PubMed Central

    McNally, Elizabeth M.; Sparano, Dina

    2015-01-01

    Myotonic dystrophy (DM) is the most common form of adult onset muscular dystrophy and is caused by expansion of short nucleotide repeats that, in turn, produce toxic RNA aggregates within cells. DM is multisystemic, and the heart is primary site of pathology. DM patients exhibit cardiac conduction disorders including atrial fibrillation, atrio-ventricular heart block and ventricular arrhythmias. DM patients are also at risk for cardiomyopathy and congestive heart failure. Myotonic dystrophy is also characterized by myotonia, muscle weakness, and profound fatigue. The management of these symptoms requires input from the cardiologist and a team approach to minimize the debilitating aspects of the disorder and optimize cardiac function. PMID:21642660

  12. Retained Myogenic Potency of Human Satellite Cells from Torn Rotator Cuff Muscles Despite Fatty Infiltration.

    PubMed

    Koide, Masashi; Hagiwara, Yoshihiro; Tsuchiya, Masahiro; Kanzaki, Makoto; Hatakeyama, Hiroyasu; Tanaka, Yukinori; Minowa, Takashi; Takemura, Taro; Ando, Akira; Sekiguchi, Takuya; Yabe, Yutaka; Itoi, Eiji

    2018-01-01

    Rotator cuff tears (RCTs) are a common shoulder problem in the elderly that can lead to both muscle atrophy and fatty infiltration due to less physical load. Satellite cells, quiescent cells under the basal lamina of skeletal muscle fibers, play a major role in muscle regeneration. However, the myogenic potency of human satellite cells in muscles with fatty infiltration is unclear due to the difficulty in isolating from small samples, and the mechanism of the progression of fatty infiltration has not been elucidated. The purpose of this study was to analyze the population of myogenic and adipogenic cells in disused supraspinatus (SSP) and intact subscapularis (SSC) muscles of the RCTs from the same patients using fluorescence-activated cell sorting. The microstructure of the muscle with fatty infiltration was observed as a whole mount condition under multi-photon microscopy. Myogenic differentiation potential and gene expression were evaluated in satellite cells. The results showed that the SSP muscle with greater fatty infiltration surrounded by collagen fibers compared with the SSC muscle under multi-photon microscopy. A positive correlation was observed between the ratio of muscle volume to fat volume and the ratio of myogenic precursor to adipogenic precursor. Although no difference was observed in the myogenic potential between the two groups in cell culture, satellite cells in the disused SSP muscle showed higher intrinsic myogenic gene expression than those in the intact SSC muscle. Our results indicate that satellite cells from the disused SSP retain sufficient potential of muscle growth despite the fatty infiltration.

  13. Improved Cell Culture Method for Growing Contracting Skeletal Muscle Models

    NASA Technical Reports Server (NTRS)

    Marquette, Michele L.; Sognier, Marguerite A.

    2013-01-01

    An improved method for culturing immature muscle cells (myoblasts) into a mature skeletal muscle overcomes some of the notable limitations of prior culture methods. The development of the method is a major advance in tissue engineering in that, for the first time, a cell-based model spontaneously fuses and differentiates into masses of highly aligned, contracting myotubes. This method enables (1) the construction of improved two-dimensional (monolayer) skeletal muscle test beds; (2) development of contracting three-dimensional tissue models; and (3) improved transplantable tissues for biomedical and regenerative medicine applications. With adaptation, this method also offers potential application for production of other tissue types (i.e., bone and cardiac) from corresponding precursor cells.

  14. Prosurvival Factors Improve Functional Engraftment of Myogenically Converted Dermal Cells into Dystrophic Skeletal Muscle

    PubMed Central

    Muir, Lindsey A.; Murry, Charles E.

    2016-01-01

    In Duchenne muscular dystrophy (DMD) and other muscle wasting disorders, cell therapies are a promising route for promoting muscle regeneration by supplying a functional copy of the missing dystrophin gene and contributing new muscle fibers. The clinical application of cell-based therapies is resource intensive, and it will therefore be necessary to address key limitations that reduce cell engraftment into muscle tissue. A pressing issue is poor donor cell survival following transplantation, which in preclinical studies limits the ability to effectively test the impact of cell-based therapy on whole muscle function. We, therefore, sought to improve engraftment and the functional impact of in vivo myogenically converted dermal fibroblasts (dFbs) using a prosurvival cocktail (PSC) that includes heat shock followed by treatment with insulin-like growth factor-1, a caspase inhibitor, a Bcl-XL peptide, a KATP channel opener, basic fibroblast growth factor, Matrigel, and cyclosporine A. Advantages of dFbs include compatibility with the autologous setting, ease of isolation, and greater proliferative potential than DMD satellite cells. dFbs expressed tamoxifen-inducible MyoD and carried a mini-dystrophin gene driven by a muscle-specific promoter. After transplantation into muscles of mdx mice, a 70% reduction in donor cells was observed by day 5, and a 94% reduction by day 28. However, treatment with PSC gave a nearly three-fold increase in donor cells in early engraftment, and greatly increased the number of donor-contributed muscle fibers and total engrafted area in transplanted muscles. Furthermore, dystrophic muscles that received dFbs with PSC displayed reduced injury with eccentric contractions and an increase in maximum isometric force. Thus, enhancing survival of myogenic cells increases engraftment and improves structure and function of dystrophic muscle. PMID:27503462

  15. Prosurvival Factors Improve Functional Engraftment of Myogenically Converted Dermal Cells into Dystrophic Skeletal Muscle.

    PubMed

    Muir, Lindsey A; Murry, Charles E; Chamberlain, Jeffrey S

    2016-09-07

    In Duchenne muscular dystrophy (DMD) and other muscle wasting disorders, cell therapies are a promising route for promoting muscle regeneration by supplying a functional copy of the missing dystrophin gene and contributing new muscle fibers. The clinical application of cell-based therapies is resource intensive, and it will therefore be necessary to address key limitations that reduce cell engraftment into muscle tissue. A pressing issue is poor donor cell survival following transplantation, which in preclinical studies limits the ability to effectively test the impact of cell-based therapy on whole muscle function. We, therefore, sought to improve engraftment and the functional impact of in vivo myogenically converted dermal fibroblasts (dFbs) using a prosurvival cocktail (PSC) that includes heat shock followed by treatment with insulin-like growth factor-1, a caspase inhibitor, a Bcl-XL peptide, a K ATP channel opener, basic fibroblast growth factor, Matrigel, and cyclosporine A. Advantages of dFbs include compatibility with the autologous setting, ease of isolation, and greater proliferative potential than DMD satellite cells. dFbs expressed tamoxifen-inducible MyoD and carried a mini-dystrophin gene driven by a muscle-specific promoter. After transplantation into muscles of mdx mice, a 70% reduction in donor cells was observed by day 5, and a 94% reduction by day 28. However, treatment with PSC gave a nearly three-fold increase in donor cells in early engraftment, and greatly increased the number of donor-contributed muscle fibers and total engrafted area in transplanted muscles. Furthermore, dystrophic muscles that received dFbs with PSC displayed reduced injury with eccentric contractions and an increase in maximum isometric force. Thus, enhancing survival of myogenic cells increases engraftment and improves structure and function of dystrophic muscle.

  16. Functional dysregulation of stem cells during aging: a focus on skeletal muscle stem cells.

    PubMed

    García-Prat, Laura; Sousa-Victor, Pedro; Muñoz-Cánoves, Pura

    2013-09-01

    Aging of an organism is associated with the functional decline of tissues and organs, as well as a sharp decline in the regenerative capacity of stem cells. A prevailing view holds that the aging rate of an individual depends on the ratio of tissue attrition to tissue regeneration. Therefore, manipulations that favor the balance towards regeneration may prevent or delay aging. Skeletal muscle is a specialized tissue composed of postmitotic myofibers that contract to generate force. Satellite cells are the adult stem cells responsible for skeletal muscle regeneration. Recent studies on the biology of skeletal muscle and satellite cells in aging have uncovered the critical impact of systemic and niche factors on stem cell functionality and demonstrated the capacity of aged satellite cells to rejuvenate and increase their regenerative potential when exposed to a youthful environment. Here we review the current literature on the coordinated relationship between cell extrinsic and intrinsic factors that regulate the function of satellite cells, and ultimately determine tissue homeostasis and repair during aging, and which encourage the search for new anti-aging strategies. © 2013 The Authors Journal compilation © 2013 FEBS.

  17. Further considerations on in vitro skeletal muscle cell death

    PubMed Central

    Battistelli, Michela; Salucci, Sara; Burattini, Sabrina; Falcieri, Elisabetta

    2013-01-01

    Summary The present review discusses the apoptotic behavior induced by chemical and physical triggers in C2C12 skeletal muscle cells, comparing myoblast to myotube sensitivity, and investigating it by means of morphological, biochemical and cytofluorimetric analyses. After all treatments, myotubes, differently from myoblasts, showed a poor sensitivity to cell death. Intriguingly, in cells exposed to staurosporine, etoposide and UVB radiation, apoptotic and normal nuclei within the same fibercould be revealed. The presence of nuclear-dependent “territorial” death domains in the syncytium could explain a delayed cell death of myotubes compared to mononucleated cells. Moreover, autophagic granules abundantly appeared in myotubes after each treatment. Autophagy could protect muscle cell integrity against chemical and physical stimuli, making C2C12 myotubes, more resistant to cell death induction. PMID:24596689

  18. Tbx1 is required autonomously for cell survival and fate in the pharyngeal core mesoderm to form the muscles of mastication

    PubMed Central

    Kong, Ping; Racedo, Silvia E.; Macchiarulo, Stephania; Hu, Zunju; Carpenter, Courtney; Guo, Tingwei; Wang, Tao; Zheng, Deyou; Morrow, Bernice E.

    2014-01-01

    Velo-cardio-facial/DiGeorge syndrome, also known as 22q11.2 deletion syndrome, is a congenital anomaly disorder characterized by craniofacial anomalies including velo-pharyngeal insufficiency, facial muscle hypotonia and feeding difficulties, in part due to hypoplasia of the branchiomeric muscles. Inactivation of both alleles of mouse Tbx1, encoding a T-box transcription factor, deleted on chromosome 22q11.2, results in reduction or loss of branchiomeric muscles. To identify downstream pathways, we performed gene profiling of microdissected pharyngeal arch one (PA1) from Tbx1+/+ and Tbx1−/− embryos at stages E9.5 (somites 20–25) and E10.5 (somites 30–35). Basic helix–loop–helix (bHLH) transcription factors were reduced, while secondary heart field genes were increased in expression early and were replaced by an increase in expression of cellular stress response genes later, suggesting a change in gene expression patterns or cell populations. Lineage tracing studies using Mesp1Cre and T-Cre drivers showed that core mesoderm cells within PA1 were present at E9.5 but were greatly reduced by E10.5 in Tbx1−/− embryos. Using Tbx1Cre knock-in mice, we found that cells are lost due to apoptosis, consistent with increase in expression of cellular stress response genes at E10.5. To determine whether Tbx1 is required autonomously in the core mesoderm, we used Mesp1Cre and T-Cre mesodermal drivers in combination with inactivate Tbx1 and found reduction or loss of branchiomeric muscles from PA1. These mechanistic studies inform us that Tbx1 is required upstream of key myogenic genes needed for core mesoderm cell survival and fate, between E9.5 and E10.5, resulting in formation of the branchiomeric muscles. PMID:24705356

  19. The microprotein Minion controls cell fusion and muscle formation

    PubMed Central

    Zhang, Qiao; Vashisht, Ajay A.; O'Rourke, Jason; Corbel, Stéphane Y; Moran, Rita; Romero, Angelica; Miraglia, Loren; Zhang, Jia; Durrant, Eric; Schmedt, Christian; Sampath, Srinath C.; Sampath, Srihari C.

    2017-01-01

    Although recent evidence has pointed to the existence of small open reading frame (smORF)-encoded microproteins in mammals, their function remains to be determined. Skeletal muscle development requires fusion of mononuclear progenitors to form multinucleated myotubes, a critical but poorly understood process. Here we report the identification of Minion (microprotein inducer of fusion), a smORF encoding an essential skeletal muscle specific microprotein. Myogenic progenitors lacking Minion differentiate normally but fail to form syncytial myotubes, and Minion-deficient mice die perinatally and demonstrate a marked reduction in fused muscle fibres. The fusogenic activity of Minion is conserved in the human orthologue, and co-expression of Minion and the transmembrane protein Myomaker is sufficient to induce cellular fusion accompanied by rapid cytoskeletal rearrangement, even in non-muscle cells. These findings establish Minion as a novel microprotein required for muscle development, and define a two-component programme for the induction of mammalian cell fusion. Moreover, these data also significantly expand the known functions of smORF-encoded microproteins. PMID:28569745

  20. Ex vivo bupivacaine treatment results in increased adipogenesis of skeletal muscle cells in the rat.

    PubMed

    Yamanouchi, Keitaro; Nakamura, Katsuyuki; Takegahara, Yuki; Nakano, Shin-ichi; Nishihara, Masugi

    2013-11-01

    Intramuscular adipose tissue (IMAT) is observed in some skeletal muscle pathologies. IMAT is implicated not only in the disorders of muscle contraction, but also of metabolism and insulin sensitivity due to its nature as a secretary organ. Several studies indicate the presence of cells with adipogenic potential in skeletal muscle. However, the mechanism of fate specification that triggers these cells to enter an adipogenic program in vivo remains to be solved. In the present study, we examined whether activation of the adipogenic program of muscle-resident cells precedes their proliferation upon muscle injury. For this purpose, muscle injury was induced by injecting bupivacaine (BPVC) to excised skeletal muscle ex vivo. Cells isolated from ex vivo BPVC-treated muscle exhibited higher adipogenic potential than those from saline-treated muscle. Pre-plating exposure of skeletal muscle cells to basic fibroblast growth factor (bFGF) mimicked the effect of ex vivo BPVC-treatment, suggesting that bFGF released from extracellular matrix in response to muscle injury activates their adipogenic program. Interestingly, the number of myotubes were significantly reduced in the culture from BPVC-treated muscle, suggesting that adipocytes negatively regulate myogenesis. © 2013 Japanese Society of Animal Science.

  1. Membrane segregation and downregulation of raft markers during sarcolemmal differentiation in skeletal muscle cells.

    PubMed

    Draeger, A; Monastyrskaya, K; Burkhard, F C; Wobus, A M; Moss, S E; Babiychuk, E B

    2003-10-15

    Muscle contraction implies flexibility in combination with force resistance and requires a high degree of sarcolemmal organization. Smooth muscle cells differentiate largely from mesenchymal precursor cells and gradually assume a highly periodic sarcolemmal organization. Skeletal muscle undergoes an even more striking differentiation programme, leading to cell fusion and alignment into myofibrils. The lipid bilayer of each cell type is further segregated into raft and non-raft microdomains of distinct lipid composition. Considering the extent of developmental rearrangement in skeletal muscle, we investigated sarcolemmal microdomain organization in skeletal and smooth muscle cells. The rafts in both muscle types are characterized by marker proteins belonging to the annexin family which localize to the inner membrane leaflet, as well as glycosyl-phosphatidyl-inositol (GPI)-anchored enzymes attached to the outer leaflet. We demonstrate that the profound structural rearrangements that occur during skeletal muscle maturation coincide with a striking decrease in membrane lipid segregation, downregulation of annexins 2 and 6, and a significant decrease in raft-associated 5'-nucleotidase activity. The relative paucity of lipid rafts in mature skeletal in contrast to smooth muscle suggests that the organization of sarcolemmal microdomains contributes to the muscle-specific differences in stimulatory responses and contractile properties.

  2. Bone-Derived Stem Cells Repair the Heart after Myocardial Infarction Through Transdifferentiation and Paracrine Signaling Mechanisms

    PubMed Central

    Duran, Jason M.; Makarewich, Catherine A.; Sharp, Thomas E.; Starosta, Timothy; Fang, Zhu; Hoffman, Nicholas E.; Chiba, Yumi; Madesh, Muniswamy; Berretta, Remus M.; Kubo, Hajime; Houser, Steven R.

    2013-01-01

    Rationale Autologous bone marrow- or cardiac-derived stem cell therapy for heart disease has demonstrated safety and efficacy in clinical trials but functional improvements have been limited. Finding the optimal stem cell type best suited for cardiac regeneration is key toward improving clinical outcomes. Objective To determine the mechanism by which novel bone-derived stem cells support the injured heart. Methods and Results Cortical bone stem cells (CBSCs) and cardiac-derived stem cells (CDCs) were isolated from EGFP+ transgenic mice and were shown to express c-kit and Sca-1 as well as 8 paracrine factors involved in cardioprotection, angiogenesis and stem cell function. Wild-type C57BL/6 mice underwent sham operation (n=21) or myocardial infarction (MI) with injection of CBSCs (n=67), CDCs (n=36) or saline (n=60). Cardiac function was monitored using echocardiography. Only 2/8 paracrine factors were detected in EGFP+ CBSCs in vivo (basic fibroblast growth factor and vascular endothelial growth factor) and this expression was associated with increased neovascularization of the infarct border zone. CBSC therapy improved survival, cardiac function, regional strain, attenuated remodeling, and decreased infarct size relative to CDC- or saline-treated MI controls. By 6 weeks, EGFP+ cardiomyocytes, vascular smooth muscle and endothelial cells could be identified in CBSC- but not in CDC-treated animals. EGFP+ CBSC-derived isolated myocytes were smaller and more frequently mononucleated, but were functionally indistinguishable from EGFP- myocytes. Conclusions CBSCs improve survival, cardiac function, and attenuate remodeling through two mechanisms:1) secretion of pro-angiogenic factors that stimulate endogenous neovascularization, and 2) differentiation into functional adult myocytes and vascular cells. PMID:23801066

  3. Loss of myogenic potential and fusion capacity of muscle stem cells isolated from contractured muscle in children with cerebral palsy.

    PubMed

    Domenighetti, Andrea A; Mathewson, Margie A; Pichika, Rajeswari; Sibley, Lydia A; Zhao, Leyna; Chambers, Henry G; Lieber, Richard L

    2018-04-25

    Cerebral palsy (CP) is the most common cause of pediatric neurodevelopmental and physical disability in the United States. It is defined as a group of motor disorders caused by a non-progressive perinatal insult to the brain. While the brain lesion is non-progressive, there is a progressive, lifelong impact on skeletal muscles, which are shorter, spastic, and may develop debilitating contractures. Satellite cells are resident muscle stem cells that are indispensable for postnatal growth and regeneration of skeletal muscles. Here we measured the myogenic potential of satellite cells isolated from contractured muscles in children with CP. When compared to typically developing (TD) children, satellite cell-derived myoblasts from CP differentiated more slowly (Slope: 0.013{plus minus}0.013 CP vs. 0.091{plus minus}0.024 TD over 24 hours, P<0.001) and fused less (Fusion Index: 21.3{plus minus}8.6 CP vs. 81.3{plus minus}7.7 TD after 48 hours, P<0.001) after exposure to low-serum conditions that stimulated myotube formation. This impairment was associated with downregulation of several markers important for myoblast fusion and myotube formation, including DNA methylation-dependent inhibition of pro-myogenic Integrin Beta 1D (ITGB1D) protein expression levels (-50% at 42 hours), and ~25% loss of integrin-mediated FAK kinase phosphorylation. The cytidine analog 5-Azacytidine (5-AZA), a demethylating agent, restored ITGB1D levels and promoted myogenesis in CP cultures. Our data demonstrate that muscle contractures in CP are associated with loss of satellite cell myogenic potential that is dependent on DNA methylation patterns affecting expression of genetic programs associated with muscle stem cell differentiation and muscle fiber formation.

  4. Establishment and cryopreservation of a giant panda skeletal muscle-derived cell line.

    PubMed

    Yu, Fang-Jian; Zeng, Chang-Jun; Zhang, Yan; Wang, Cheng-Dong; Xiong, Tie-Yi; Fang, Sheng-Guo; Zhang, He-Min

    2015-06-01

    The giant panda Ailuropoda melanoleuca is an endangered species and is a symbol for wildlife conservation. Although efforts have been made to protect this rare and endangered species through breeding and conservative biology, the long-term preservation of giant panda genome resources (gametes, tissues, organs, genomic libraries, etc.) is still a practical option. In this study, the giant panda skeletal muscle-derived cell line was successfully established via primary explants culture and cryopreservation techniques. The population doubling time of giant panda skeletal cells was approximately 33.8 h, and this population maintained a high cell viability before and after cryopreservation (95.6% and 90.7%, respectively). The two skeletal muscle-specific genes SMYD1 and MYF6 were expressed and detected by RT-PCR in the giant panda skeletal muscle-derived cell line. Karyotyping analysis revealed that the frequencies of giant panda skeletal muscle cells showing a chromosome number of 2n=42 ranged from 90.6∼94.2%. Thus, the giant panda skeletal muscle-derived cell line provides a vital resource and material platform for further studies and is likely to be useful for the protection of this rare and endangered species.

  5. Dystrophic heart failure blocked by membrane sealant poloxamer

    NASA Astrophysics Data System (ADS)

    Yasuda, Soichiro; Townsend, Dewayne; Michele, Daniel E.; Favre, Elizabeth G.; Day, Sharlene M.; Metzger, Joseph M.

    2005-08-01

    Dystrophin deficiency causes Duchenne muscular dystrophy (DMD) in humans, an inherited and progressive disease of striated muscle deterioration that frequently involves pronounced cardiomyopathy. Heart failure is the second leading cause of fatalities in DMD. Progress towards defining the molecular basis of disease in DMD has mostly come from studies on skeletal muscle, with comparatively little attention directed to cardiac muscle. The pathophysiological mechanisms involved in cardiac myocytes may differ significantly from skeletal myofibres; this is underscored by the presence of significant cardiac disease in patients with truncated or reduced levels of dystrophin but without skeletal muscle disease. Here we show that intact, isolated dystrophin-deficient cardiac myocytes have reduced compliance and increased susceptibility to stretch-mediated calcium overload, leading to cell contracture and death, and that application of the membrane sealant poloxamer 188 corrects these defects in vitro. In vivo administration of poloxamer 188 to dystrophic mice instantly improved ventricular geometry and blocked the development of acute cardiac failure during a dobutamine-mediated stress protocol. Once issues relating to optimal dosing and long-term effects of poloxamer 188 in humans have been resolved, chemical-based membrane sealants could represent a new therapeutic approach for preventing or reversing the progression of cardiomyopathy and heart failure in muscular dystrophy.

  6. Store-operated Ca2+ entry in muscle physiology and diseases

    PubMed Central

    Pan, Zui; Brotto, Marco; Ma, Jianjie

    2014-01-01

    Ca2+ release from intracellular stores and influx from extracellular reservoir regulate a wide range of physiological functions including muscle contraction and rhythmic heartbeat. One of the most ubiquitous pathways involved in controlled Ca2+ influx into cells is store-operated Ca2+ entry (SOCE), which is activated by the reduction of Ca2+ concentration in the lumen of endoplasmic or sarcoplasmic reticulum (ER/SR). Although SOCE is pronounced in non-excitable cells, accumulating evidences highlight its presence and important roles in skeletal muscle and heart. Recent discovery of STIM proteins as ER/SR Ca2+ sensors and Orai proteins as Ca2+ channel pore forming unit expedited the mechanistic understanding of this pathway. This review focuses on current advances of SOCE components, regulation and physiologic and pathophysiologic roles in muscles. The specific property and the dysfunction of this pathway in muscle diseases, and new directions for future research in this rapidly growing field are discussed. [BMB Reports 2014; 47(2): 69-79] PMID:24411466

  7. Action of obestatin in skeletal muscle repair: stem cell expansion, muscle growth, and microenvironment remodeling.

    PubMed

    Gurriarán-Rodríguez, Uxía; Santos-Zas, Icía; González-Sánchez, Jessica; Beiroa, Daniel; Moresi, Viviana; Mosteiro, Carlos S; Lin, Wei; Viñuela, Juan E; Señarís, José; García-Caballero, Tomás; Casanueva, Felipe F; Nogueiras, Rubén; Gallego, Rosalía; Renaud, Jean-Marc; Adamo, Sergio; Pazos, Yolanda; Camiña, Jesús P

    2015-06-01

    The development of therapeutic strategies for skeletal muscle diseases, such as physical injuries and myopathies, depends on the knowledge of regulatory signals that control the myogenic process. The obestatin/GPR39 system operates as an autocrine signal in the regulation of skeletal myogenesis. Using a mouse model of skeletal muscle regeneration after injury and several cellular strategies, we explored the potential use of obestatin as a therapeutic agent for the treatment of trauma-induced muscle injuries. Our results evidenced that the overexpression of the preproghrelin, and thus obestatin, and GPR39 in skeletal muscle increased regeneration after muscle injury. More importantly, the intramuscular injection of obestatin significantly enhanced muscle regeneration by simulating satellite stem cell expansion as well as myofiber hypertrophy through a kinase hierarchy. Added to the myogenic action, the obestatin administration resulted in an increased expression of vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor 2 (VEGFR2) and the consequent microvascularization, with no effect on collagen deposition in skeletal muscle. Furthermore, the potential inhibition of myostatin during obestatin treatment might contribute to its myogenic action improving muscle growth and regeneration. Overall, our data demonstrate successful improvement of muscle regeneration, indicating obestatin is a potential therapeutic agent for skeletal muscle injury and would benefit other myopathies related to muscle regeneration.

  8. Neuronal differentiation of stem cells isolated from adult muscle.

    PubMed

    Romero-Ramos, Marina; Vourc'h, Patrick; Young, Henry E; Lucas, Paul A; Wu, Young; Chivatakarn, Onanong; Zaman, Rumina; Dunkelman, Noushin; el-Kalay, Mohammad A; Chesselet, Marie-Françoise

    2002-09-15

    Lineage uncommitted pluripotent stem cells reside in the connective tissue of skeletal muscle. The present study was carried out with pluripotent stem cells (PPSCs) isolated from 6-month old rat muscle. Before differentiation, these cells were vimentin+, CD90+, CD45-, and varied in their expression of CD34. The PPSCs were expanded as non-adherent aggregates under similar conditions to those used to generate neurospheres from embryonic or neural stem cells. The PPSC-derived neurospheres were positive for nestin, an early marker present in neuronal precursors, and expressed the two alternative mRNA forms of the neuroectodermal marker Pax-6, as well as mRNA for Oct-4, a gene related to the pluripotentiality of stem cells. To confirm their neural potential, PPSC-derived neurospheres were plated on coated coverslips under varying conditions: Neurobasal medium with N2 or B27, and either NT3 or BDNF. After 4-6 days the cells expressed neuronal (Tuj1+, NF68), astrocytic (GFAP) and oligodendrocytic (MOSP+, MBP+) markers, both by immunocytochemistry and RT-PCR. In addition, PPSCs were cultured as monolayers under adherent conditions, exposed to growth factors and defined differentiating conditions for 5 hr, and subsequently kept for 2 days in a maturation medium. At this point they gave rise to a mixed population of early neural progenitors (Nestin+ or NG2+), immature and mature neurons (Tuj1+ and NF145+) and myelin producing oligodendrocytes (CNPase + and MOSP+). Our study shows that PPSCs present in adult muscle can overcome germ lineage restrictions and express the molecular characteristics of brain cells. Therefore, PPSCs isolated from adult muscle could provide a novel source for autologous cell replacement in neurodegenerative and demyelinating diseases. Copyright 2002 Wiley-Liss, Inc.

  9. Myostatin inhibition induces muscle fibre hypertrophy prior to satellite cell activation.

    PubMed

    Wang, Qian; McPherron, Alexandra C

    2012-05-01

    Muscle fibres are multinucleated post-mitotic cells that can change dramatically in size during adulthood. It has been debated whether muscle fibre hypertrophy requires activation and fusion of muscle stem cells, the satellite cells. Myostatin (MSTN) is a negative regulator of skeletal muscle growth during development and in the adult, and MSTN inhibition is therefore a potential therapy for muscle wasting diseases, some of which are associated with a depletion of satellite cells. Conflicting results have been obtained in previous analyses of the role of MSTN on satellite cell quiescence. Here, we inhibited MSTN in adult mice with a soluble activin receptor type IIB and analysed the incorporation of new nuclei using 5-bromo-2-deoxyuridine (BrdU) labelling by isolating individual myofibres. We found that satellite cells are activated by MSTN inhibition. By varying the dose and time course for MSTN inhibition, however, we found that myofibre hypertrophy precedes the incorporation of new nuclei, and that the overall number of new nuclei is relatively low compared to the number of total myonuclei. These results reconcile some of the previous work obtained by other methods. In contrast with previous reports, we also found that Mstn null mice do not have increased satellite cell numbers during adulthood and are not resistant to sarcopaenia. Our results support a previously proposed model of hypertrophy in which hypertrophy can precede satellite cell activation. Studies of the metabolic and functional effects of postnatal MSTN inhibition are needed to determine the consequences of increasing the cytoplasm/myonuclear ratio after MSTN inhibition.

  10. Getting a New Heart

    MedlinePlus

    ... may be able to replace it with an artificial (man-made) valve. Cardiac size reduction . During this procedure, your doctor removes a piece of the heart muscle from an enlarged heart. This makes your ...

  11. Impaired Skeletal Muscle Vasodilation during Exercise in Heart Failure with Preserved Ejection Fraction

    PubMed Central

    Lee, Joshua F.; Barrett-O’Keefe, Zachary; Nelson, Ashley D.; Garten, Ryan S.; Ryan, John J.; Nativi-Nicolau, Jose N.; Richardson, Russell S.; Wray, D. Walter

    2016-01-01

    Background Exercise intolerance is a hallmark symptom of heart failure patients with preserved ejection fraction (HFpEF), which may be related to an impaired ability to appropriately increase blood flow to the exercising muscle. Methods We evaluated leg blood flow (LBF, ultrasound Doppler), heart rate (HR), stroke volume (SV), cardiac output (CO), and mean arterial blood pressure (MAP, photoplethysmography) during dynamic, single leg knee-extensor (KE) exercise in HFpEF patients (n = 21; 68 ± 2 yrs) and healthy controls (n = 20; 71 ± 2 yrs). Results HFpEF patients exhibited a marked attrition during KE exercise, with only 60% able to complete the exercise protocol. In participants who completed all exercise intensities (0-5-10-15W; HFpEF, n = 13; Controls, n = 16), LBF was not different at 0W and 5W, but was 15-25% lower in HFpEF compared to controls at 10W and 15W (P < 0.001). Likewise, leg vascular conductance (LVC), an index of vasodilation, was not different at 0W and 5W, but was 15-20% lower in HFpEF compared to controls at 10W and 15W (P < 0.05). In contrast to these peripheral deficits, exercise-induced changes in central variables (HR, SV, CO), as well as MAP, were similar between groups. Conclusions These data reveal a marked reduction in LBF and LVC in HFpEF patients during exercise that cannot be attributed to a disease-related alteration in central hemodynamics, suggesting that impaired vasodilation in the exercising skeletal muscle vasculature may play a key role in the exercise intolerance associated with this patient population. PMID:26970959

  12. Changes in the contractile state, fine structure and metabolism of cardiac muscle cells during the development of rigor mortis.

    PubMed

    Vanderwee, M A; Humphrey, S M; Gavin, J B; Armiger, L C

    1981-01-01

    Transmural slices from the left anterior papillary muscle of dog hearts were maintained for 120 min in a moist atmosphere at 37 degrees C. At 15-min intervals tissue samples were taken for estimation of adenosine triphosphate (ATP) and glucose-6-phosphate (G6P) and for electron microscopic examination. At the same time the deformability under standard load of comparable regions of an adjacent slice of tissue was measured. ATP levels fell rapidly during the first 45 to 75 min after excision of the heart. During a subsequent further decline in ATP, the mean deformability of myocardium fell from 30 to 12% indicating the development of rigor mortis. Conversely, G6P levels increased during the first decline in adenosine triphosphate but remained relatively steady thereafter. Whereas many of the myocardial cells fixed after 5 min contracted on contact with glutaraldehyde, all cells examined after 15 to 40 min were relaxed. A progressive increase in the proportion of contracted cells was observed during the rapid increase in myocardial rigidity. During this late contraction the cells showed morphological evidence of irreversible injury. These findings suggest that ischaemic myocytes contract just before actin and myosin become strongly linked to maintain the state of rigor mortis.

  13. Influence of exercise and aging on extracellular matrix composition in the skeletal muscle stem cell niche.

    PubMed

    Garg, Koyal; Boppart, Marni D

    2016-11-01

    Skeletal muscle is endowed with a remarkable capacity for regeneration, primarily due to the reserve pool of muscle resident satellite cells. The satellite cell is the physiologically quiescent muscle stem cell that resides beneath the basal lamina and adjacent to the sarcolemma. The anatomic location of satellite cells is in close proximity to vasculature where they interact with other muscle resident stem/stromal cells (e.g., mesenchymal stem cells and pericytes) through paracrine mechanisms. This mini-review describes the components of the muscle stem cell niche, as well as the influence of exercise and aging on the muscle stem cell niche. Although exercise promotes ECM reorganization and stem cell accumulation, aging is associated with dense ECM deposition and loss of stem cell function resulting in reduced regenerative capacity and strength. An improved understanding of the niche elements will be valuable to inform the development of therapeutic interventions aimed at improving skeletal muscle regeneration and adaptation over the life span. Copyright © 2016 the American Physiological Society.

  14. Superparamagnetic iron oxide nanoparticles regulate smooth muscle cell phenotype

    PubMed Central

    Angelopoulos, Ioannis; Southern, Paul; Pankhurst, Quentin A.

    2016-01-01

    Abstract Superparamagnetic iron oxide nanoparticles (SPION) are used for an increasing range of biomedical applications, from imaging to mechanical actuation of cells and tissue. The aim of this study was to investigate the loading of smooth muscle cells (SMC) with SPION and to explore what effect this has on the phenotype of the cells. Adherent human SMC were loaded with ∼17 pg of unconjugated, negatively charged, 50 nm SPION. Clusters of the internalized SPION particles were held in discrete cytoplasmic vesicles. Internalized SPION did not cause any change in cell morphology, proliferation, metabolic activity, or staining pattern of actin and calponin, two of the muscle contractile proteins involved in force generation. However, internalized SPION inhibited the increased gene expression of actin and calponin normally observed when cells are incubated under differentiation conditions. The observed change in the control of gene expression of muscle contractile apparatus by SPION has not previously been described. This finding could offer novel approaches for regulating the phenotype of SMC and warrants further investigation. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2412–2419, 2016. PMID:27176658

  15. Evaluation of hematopoietic potential generated by transplantation of muscle-derived stem cells in mice.

    PubMed

    Farace, Francoise; Prestoz, Laetitita; Badaoui, Sabrina; Guillier, Martine; Haond, Celine; Opolon, Paule; Thomas, Jean-Leon; Zalc, Bernard; Vainchenker, William; Turhan, Ali G

    2004-02-01

    Muscle tissue of adult mice has been shown to contain stem cells with hematopoietic repopulation ability in vivo. To determine the functional characteristics of stem cells giving rise to this hematopoietic activity, we have performed hematopoietic reconstitution experiments by the use of muscle versus marrow transplantation in lethally irradiated mice and followed the fate of transplanted cells by Y-chimerism using PCR and fluorescence in situ hybridization (FISH) analysis. We report here that transplantation of murine muscle generate a major hematopoietic chimerism at the level of CFU-C, CFU-S, and terminally-differentiated cells in three generations of lethally irradiated mice followed up to 1 year after transplantation. This potential is totally abolished when muscle grafts were performed by the use of muscle from previously irradiated mice. As compared to marrow transplantation, muscle transplants were able to generate similar potencies to give rise to myeloid, T, B, and natural killer (NK) cells. Interestingly, marrow stem cells that have been generated in primary and then in secondary recipients were able to contribute efficiently to myofibers in the muscle tissue of tertiary recipients. Altogether, our data demonstrate that muscle-derived stem cells present a major hematopoietic repopulating ability with evidence of self-replication in vivo. They are radiation-sensitive and similar to marrow-derived stem cells in terms of their ability to generate multilineage hematopoiesis. Finally, our data demonstrate that muscle-derived hematopoietic stem cells do not lose their ability to contribute to myofiber generation after at least two rounds of serial transplantation, suggesting a potential that is probably equivalent to that generated by marrow transplantation.

  16. Seasonal and flight-related variation of galectin expression in heart, liver and flight muscles of yellow-rumped warblers (Setophaga coronata).

    PubMed

    Bradley, Stefanie S; Dick, Morag F; Guglielmo, Christopher G; Timoshenko, Alexander V

    2017-10-01

    Galectins, a family of multifunctional glycan-binding proteins, are proposed as biomarkers of cellular stress responses. Avian migration is an energetically challenging physical stress, which represents a physiological model of muscular endurance exercises. This study assesses change in galectin gene expression profiles associated with seasonal variation in migratory state and endurance flight in yellow-rumped warblers (Setophaga coronata). Bioinformatics analysis and real-time qPCR were used to analyse the expression of galectins in flight muscle, heart and liver tissues of 15 warblers separated into three groups of winter unflown, and fall migratory flown/unflown birds. Five transcripts similar to chicken and human galectins -1, -2, -3, -4, and -8 were identified in warbler tissues. The expression of these galectins showed no seasonal changes between two experimental groups of birds maintained under unflown winter and fall conditions indicating a minor role of galectins in preparation for migration. However, endurance flight led to a significant elevation of galectin-1 and galectin-3 mRNAs in flight muscles and galectin-3 mRNA in heart tissue while no changes were observed in liver. Different changes were observed for the level of O-GlcNAcylated proteins, which were elevated in flight muscles under winter conditions. These results suggest that secreted galectin-1 and galectin-3 may be active in repair of bird muscles during and following migratory flight and serve as molecular biomarkers of recent arrival from migratory flights in field studies.

  17. Defining the role of mesenchymal stromal cells on the regulation of matrix metalloproteinases in skeletal muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sassoli, Chiara; Nosi, Daniele; Tani, Alessia

    Recent studies indicate that mesenchymal stromal cell (MSC) transplantation improves healing of injured and diseased skeletal muscle, although the mechanisms of benefit are poorly understood. In the present study, we investigated whether MSCs and/or their trophic factors were able to regulate matrix metalloproteinase (MMP) expression and activity in different cells of the muscle tissue. MSCs in co-culture with C2C12 cells or their conditioned medium (MSC-CM) up-regulated MMP-2 and MMP-9 expression and function in the myoblastic cells; these effects were concomitant with the down-regulation of the tissue inhibitor of metalloproteinases (TIMP)-1 and -2 and with increased cell motility. In the singlemore » muscle fiber experiments, MSC-CM administration increased MMP-2/9 expression in Pax-7{sup +} satellite cells and stimulated their mobilization, differentiation and fusion. The anti-fibrotic properties of MSC-CM involved also the regulation of MMPs by skeletal fibroblasts and the inhibition of their differentiation into myofibroblasts. The treatment with SB-3CT, a potent MMP inhibitor, prevented in these cells, the decrease of α-smooth actin and type-I collagen expression induced by MSC-CM, suggesting that MSC-CM could attenuate the fibrogenic response through mechanisms mediated by MMPs. Our results indicate that growth factors and cytokines released by these cells may modulate the fibrotic response and improve the endogenous mechanisms of muscle repair/regeneration. - Highlights: • MSC-CM contains paracrine factors that up-regulate MMP expression and function in different skeletal muscle cells. • MSC-CM promotes myoblast and satellite cell migration, proliferation and differentiation. • MSC-CM negatively interferes with fibroblast-myoblast transition in primary skeletal fibroblasts. • Paracrine factors from MSCs modulate the fibrotic response and improve the endogenous mechanisms of muscle regeneration.« less

  18. AMP deaminase histochemical activity and immunofluorescent isozyme localization in rat skeletal muscle

    NASA Technical Reports Server (NTRS)

    Thompson, J. L.; Sabina, R. L.; Ogasawara, N.; Riley, D. A.

    1992-01-01

    The cellular distribution of AMP deaminase (AMPda) isozymes was documented for rat soleus and plantaris muscles, utilizing immunofluorescence microscopy and immunoprecipitation methods. AMPda is a ubiquitous enzyme existing as three distinct isozymes, A, B and C, which were initially purified from skeletal muscle, liver (and kidney), and heart, respectively. AMPda-A is primarily concentrated subsarcolemmally and intermyofibrillarly within muscle cells, while isozymes B and C are concentrated within non-myofiber elements of muscle tissue. AMPda-B is principally associated with connective tissues surrounding neural elements and the muscle spindle capsule, and AMPda-C is predominantly associated with circulatory elements, such as arterial and venous walls, capillary endothelium, and red blood cells. These specific localizations, combined with documented differences in kinetic properties, suggest multiple functional roles for the AMPda isozymes or temporal segregation of similar AMPda functions. Linkage of the AMPda substrate with adenosine production pathways at the AMP level and the localization of isozyme-C in vascular tissue suggest a regulatory role in the microcirculation.

  19. Vascular smooth muscle cell phenotypic changes in patients with Marfan syndrome.

    PubMed

    Crosas-Molist, Eva; Meirelles, Thayna; López-Luque, Judit; Serra-Peinado, Carla; Selva, Javier; Caja, Laia; Gorbenko Del Blanco, Darya; Uriarte, Juan José; Bertran, Esther; Mendizábal, Yolanda; Hernández, Vanessa; García-Calero, Carolina; Busnadiego, Oscar; Condom, Enric; Toral, David; Castellà, Manel; Forteza, Alberto; Navajas, Daniel; Sarri, Elisabet; Rodríguez-Pascual, Fernando; Dietz, Harry C; Fabregat, Isabel; Egea, Gustavo

    2015-04-01

    Marfan's syndrome is characterized by the formation of ascending aortic aneurysms resulting from altered assembly of extracellular matrix microfibrils and chronic tissue growth factor (TGF)-β signaling. TGF-β is a potent regulator of the vascular smooth muscle cell (VSMC) phenotype. We hypothesized that as a result of the chronic TGF-β signaling, VSMC would alter their basal differentiation phenotype, which could facilitate the formation of aneurysms. This study explores whether Marfan's syndrome entails phenotypic alterations of VSMC and possible mechanisms at the subcellular level. Immunohistochemical and Western blotting analyses of dilated aortas from Marfan patients showed overexpression of contractile protein markers (α-smooth muscle actin, smoothelin, smooth muscle protein 22 alpha, and calponin-1) and collagen I in comparison with healthy aortas. VSMC explanted from Marfan aortic aneurysms showed increased in vitro expression of these phenotypic markers and also of myocardin, a transcription factor essential for VSMC-specific differentiation. These alterations were generally reduced after pharmacological inhibition of the TGF-β pathway. Marfan VSMC in culture showed more robust actin stress fibers and enhanced RhoA-GTP levels, which was accompanied by increased focal adhesion components and higher nuclear localization of myosin-related transcription factor A. Marfan VSMC and extracellular matrix measured by atomic force microscopy were both stiffer than their respective controls. In Marfan VSMC, both in tissue and in culture, there are variable TGF-β-dependent phenotypic changes affecting contractile proteins and collagen I, leading to greater cellular and extracellular matrix stiffness. Altogether, these alterations may contribute to the known aortic rigidity that precedes or accompanies Marfan's syndrome aneurysm formation. © 2015 American Heart Association, Inc.

  20. Muscle regeneration potential and satellite cell activation profile during recovery following hindlimb immobilization in mice.

    PubMed

    Guitart, Maria; Lloreta, Josep; Mañas-Garcia, Laura; Barreiro, Esther

    2018-05-01

    Reduced muscle activity leads to muscle atrophy and function loss in patients and animal models. Satellite cells (SCs) are postnatal muscle stem cells that play a pivotal role in skeletal muscle regeneration following injury. The regenerative potential, satellite cell numbers, and markers during recovery following immobilization of the hindlimb for 7 days were explored. In mice exposed to 7 days of hindlimb immobilization, in those exposed to recovery (7 days, splint removal), and in contralateral control muscles, muscle precursor cells were isolated from all hindlimb muscles (fluorescence-activated cell sorting, FACS) and SCs, and muscle regeneration were identified using immunofluorescence (gastrocnemius and soleus) and electron microscopy (EM, gastrocnemius). Expression of ki67, pax7, myoD, and myogenin was quantified (RT-PCR) from SC FACS yields. Body and grip strength were determined. Following 7 day hindlimb immobilization, a decline in SCs (FACS, immunofluorescence) was observed together with an upregulation of SC activation markers and signs of muscle regeneration including fusion to existing myofibers (EM). Recovery following hindlimb immobilization was characterized by a program of muscle regeneration events. Hindlimb immobilization induced a decline in SCs together with an upregulation of markers of SC activation, suggesting that fusion to existing myofibers takes place during unloading. Muscle recovery induced a significant rise in muscle precursor cells and regeneration events along with reduced SC activation expression markers and a concomitant rise in terminal muscle differentiation expression. These are novel findings of potential applicability for the treatment of disuse muscle atrophy, which is commonly associated with severe chronic and acute conditions. © 2017 Wiley Periodicals, Inc.

  1. Muscle Satellite Cells: Exploring the Basic Biology to Rule Them.

    PubMed

    Almeida, Camila F; Fernandes, Stephanie A; Ribeiro Junior, Antonio F; Keith Okamoto, Oswaldo; Vainzof, Mariz

    2016-01-01

    Adult skeletal muscle is a postmitotic tissue with an enormous capacity to regenerate upon injury. This is accomplished by resident stem cells, named satellite cells, which were identified more than 50 years ago. Since their discovery, many researchers have been concentrating efforts to answer questions about their origin and role in muscle development, the way they contribute to muscle regeneration, and their potential to cell-based therapies. Satellite cells are maintained in a quiescent state and upon requirement are activated, proliferating, and fusing with other cells to form or repair myofibers. In addition, they are able to self-renew and replenish the stem pool. Every phase of satellite cell activity is highly regulated and orchestrated by many molecules and signaling pathways; the elucidation of players and mechanisms involved in satellite cell biology is of extreme importance, being the first step to expose the crucial points that could be modulated to extract the optimal response from these cells in therapeutic strategies. Here, we review the basic aspects about satellite cells biology and briefly discuss recent findings about therapeutic attempts, trying to raise questions about how basic biology could provide a solid scaffold to more successful use of these cells in clinics.

  2. Intracerebral transplants of primary muscle cells: a potential 'platform' for transgene expression in the brain

    NASA Technical Reports Server (NTRS)

    Jiao, S.; Schultz, E.; Wolff, J. A.

    1992-01-01

    After the transplantation of rat primary muscle cells into the caudate or cortex of recipient rats, the muscle cells were able to persist for at least 6 months. Muscle cells transfected with expression plasmids prior to transplantation were able to express reporter genes in the brains for at least 2 months. These results suggest that muscle cells might be a useful 'platform' for transgene expression in the brain.

  3. Muscle glycogen and cell function--Location, location, location.

    PubMed

    Ørtenblad, N; Nielsen, J

    2015-12-01

    The importance of glycogen, as a fuel during exercise, is a fundamental concept in exercise physiology. The use of electron microscopy has revealed that glycogen is not evenly distributed in skeletal muscle fibers, but rather localized in distinct pools. In this review, we present the available evidence regarding the subcellular localization of glycogen in skeletal muscle and discuss this from the perspective of skeletal muscle fiber function. The distribution of glycogen in the defined pools within the skeletal muscle varies depending on exercise intensity, fiber phenotype, training status, and immobilization. Furthermore, these defined pools may serve specific functions in the cell. Specifically, reduced levels of these pools of glycogen are associated with reduced SR Ca(2+) release, muscle relaxation rate, and membrane excitability. Collectively, the available literature strongly demonstrates that the subcellular localization of glycogen has to be considered to fully understand the role of glycogen metabolism and signaling in skeletal muscle function. Here, we propose that the effect of low muscle glycogen on excitation-contraction coupling may serve as a built-in mechanism, which links the energetic state of the muscle fiber to energy utilization. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Drosophila small heat shock protein CryAB ensures structural integrity of developing muscles, and proper muscle and heart performance.

    PubMed

    Wójtowicz, Inga; Jabłońska, Jadwiga; Zmojdzian, Monika; Taghli-Lamallem, Ouarda; Renaud, Yoan; Junion, Guillaume; Daczewska, Malgorzata; Huelsmann, Sven; Jagla, Krzysztof; Jagla, Teresa

    2015-03-01

    Molecular chaperones, such as the small heat shock proteins (sHsps), maintain normal cellular function by controlling protein homeostasis in stress conditions. However, sHsps are not only activated in response to environmental insults, but also exert developmental and tissue-specific functions that are much less known. Here, we show that during normal development the Drosophila sHsp CryAB [L(2)efl] is specifically expressed in larval body wall muscles and accumulates at the level of Z-bands and around myonuclei. CryAB features a conserved actin-binding domain and, when attenuated, leads to clustering of myonuclei and an altered pattern of sarcomeric actin and the Z-band-associated actin crosslinker Cheerio (filamin). Our data suggest that CryAB and Cheerio form a complex essential for muscle integrity: CryAB colocalizes with Cheerio and, as revealed by mass spectrometry and co-immunoprecipitation experiments, binds to Cheerio, and the muscle-specific attenuation of cheerio leads to CryAB-like sarcomeric phenotypes. Furthermore, muscle-targeted expression of CryAB(R120G), which carries a mutation associated with desmin-related myopathy (DRM), results in an altered sarcomeric actin pattern, in affected myofibrillar integrity and in Z-band breaks, leading to reduced muscle performance and to marked cardiac arrhythmia. Taken together, we demonstrate that CryAB ensures myofibrillar integrity in Drosophila muscles during development and propose that it does so by interacting with the actin crosslinker Cheerio. The evidence that a DRM-causing mutation affects CryAB muscle function and leads to DRM-like phenotypes in the fly reveals a conserved stress-independent role of CryAB in maintaining muscle cell cytoarchitecture. © 2015. Published by The Company of Biologists Ltd.

  5. Imbalance between pSmad3 and Notch induces CDK inhibitors in old muscle stem cells.

    PubMed

    Carlson, Morgan E; Hsu, Michael; Conboy, Irina M

    2008-07-24

    Adult skeletal muscle robustly regenerates throughout an organism's life, but as the muscle ages, its ability to repair diminishes and eventually fails. Previous work suggests that the regenerative potential of muscle stem cells (satellite cells) is not triggered in the old muscle because of a decline in Notch activation, and that it can be rejuvenated by forced local activation of Notch. Here we report that, in addition to the loss of Notch activation, old muscle produces excessive transforming growth factor (TGF)-beta (but not myostatin), which induces unusually high levels of TGF-beta pSmad3 in resident satellite cells and interferes with their regenerative capacity. Importantly, endogenous Notch and pSmad3 antagonize each other in the control of satellite-cell proliferation, such that activation of Notch blocks the TGF-beta-dependent upregulation of the cyclin-dependent kinase (CDK) inhibitors p15, p16, p21 and p27, whereas inhibition of Notch induces them. Furthermore, in muscle stem cells, Notch activity determines the binding of pSmad3 to the promoters of these negative regulators of cell-cycle progression. Attenuation of TGF-beta/pSmad3 in old, injured muscle restores regeneration to satellite cells in vivo. Thus a balance between endogenous pSmad3 and active Notch controls the regenerative competence of muscle stem cells, and deregulation of this balance in the old muscle microniche interferes with regeneration.

  6. Ultrastructural findings in lung biopsy material from children with congenital heart defects.

    PubMed Central

    Meyrick, B.; Reid, L.

    1980-01-01

    The ultrastructural features of pulmonary arteries are described in lung biopsy material from 6 children with congenital heart defects. Right ventricular hypertrophy was found in all 6 children and increased pulmonary artery pressure in all but one. The presence of muscle in smaller and more peripheral arteries than expected for the age of the child was detected in all cases. Ultrastructural examination of the peripheral arteries revealed, for the first time, in the nonmuscular regions of human arterial walls, pericytes and intermediate cells (previously shown to be precursor smooth-muscle cells); in addition, new arterial muscle was found in the normally nonmuscular region. In the 4 cases where medial thickness of the normally muscular arteries was increased, the smooth-muscle cells were hypertrophied and the extracellular connective tissue increased. In all cases, junctions between endothelial cells and smooth-muscle cells, intermediate cells, or pericytes were found. These changes are similar to those described in the rat with hypoxia-induced pulmonary hypertension. In addition, in 2 of the 6 cases, bundles of nerve axons in Schwann cell sheaths were found in adventitial layer of small, intraacinar muscular arteries (not previously demonstrated ultrastructurally at this site in the human lung); varicosities with agranular and granular vesicles, probably adrenergic, were also identified. Images Figure 4 Figure 5 Figure 1 Figure 2 Figure 3 PMID:7446706

  7. Hippo signaling impedes adult heart regeneration

    PubMed Central

    Heallen, Todd; Morikawa, Yuka; Leach, John; Tao, Ge; Willerson, James T.; Johnson, Randy L.; Martin, James F.

    2013-01-01

    Heart failure due to cardiomyocyte loss after ischemic heart disease is the leading cause of death in the United States in large part because heart muscle regenerates poorly. The endogenous mechanisms preventing mammalian cardiomyocyte regeneration are poorly understood. Hippo signaling, an ancient organ size control pathway, is a kinase cascade that inhibits developing cardiomyocyte proliferation but it has not been studied postnatally or in fully mature adult cardiomyocytes. Here, we investigated Hippo signaling in adult cardiomyocyte renewal and regeneration. We found that unstressed Hippo-deficient adult mouse cardiomyocytes re-enter the cell cycle and undergo cytokinesis. Moreover, Hippo deficiency enhances cardiomyocyte regeneration with functional recovery after adult myocardial infarction as well as after postnatal day eight (P8) cardiac apex resection and P8 myocardial infarction. In damaged hearts, Hippo mutant cardiomyocytes also have elevated proliferation. Our findings reveal that Hippo signaling is an endogenous repressor of adult cardiomyocyte renewal and regeneration. Targeting the Hippo pathway in human disease might be beneficial for the treatment of heart disease. PMID:24255096

  8. A Method for the Direct Identification of Differentiating Muscle Cells by a Fluorescent Mitochondrial Dye

    PubMed Central

    Miyake, Tetsuaki; McDermott, John C.; Gramolini, Anthony O.

    2011-01-01

    Identification of differentiating muscle cells generally requires fixation, antibodies directed against muscle specific proteins, and lengthy staining processes or, alternatively, transfection of muscle specific reporter genes driving GFP expression. In this study, we examined the possibility of using the robust mitochondrial network seen in maturing muscle cells as a marker of cellular differentiation. The mitochondrial fluorescent tracking dye, MitoTracker, which is a cell-permeable, low toxicity, fluorescent dye, allowed us to distinguish and track living differentiating muscle cells visually by epi-fluorescence microscopy. MitoTracker staining provides a robust and simple detection strategy for living differentiating cells in culture without the need for fixation or biochemical processing. PMID:22174849

  9. Zebrafish heart regeneration: 15 years of discoveries

    PubMed Central

    González‐Rosa, Juan Manuel; Burns, Caroline E.

    2017-01-01

    Abstract Cardiovascular disease is the leading cause of death worldwide. Compared to other organs such as the liver, the adult human heart lacks the capacity to regenerate on a macroscopic scale after injury. As a result, myocardial infarctions are responsible for approximately half of all cardiovascular related deaths. In contrast, the zebrafish heart regenerates efficiently upon injury through robust myocardial proliferation. Therefore, deciphering the mechanisms that underlie the zebrafish heart's endogenous regenerative capacity represents an exciting avenue to identify novel therapeutic strategies for inducing regeneration of the human heart. This review provides a historical overview of adult zebrafish heart regeneration. We summarize 15 years of research, with a special focus on recent developments from this fascinating field. We discuss experimental findings that address fundamental questions of regeneration research. What is the origin of regenerated muscle? How is regeneration controlled from a genetic and molecular perspective? How do different cell types interact to achieve organ regeneration? Understanding natural models of heart regeneration will bring us closer to answering the ultimate question: how can we stimulate myocardial regeneration in humans? PMID:28979788

  10. BAG3: a new player in the heart failure paradigm.

    PubMed

    Knezevic, Tijana; Myers, Valerie D; Gordon, Jennifer; Tilley, Douglas G; Sharp, Thomas E; Wang, JuFang; Khalili, Kamel; Cheung, Joseph Y; Feldman, Arthur M

    2015-07-01

    BAG3 is a cellular protein that is expressed predominantly in skeletal and cardiac muscle but can also be found in the brain and in the peripheral nervous system. BAG3 functions in the cell include: serving as a co-chaperone with members of the heat-shock protein family of proteins to facilitate the removal of misfolded and degraded proteins, inhibiting apoptosis by interacting with Bcl2 and maintaining the structural integrity of the Z-disk in muscle by binding with CapZ. The importance of BAG3 in the homeostasis of myocytes and its role in the development of heart failure was evidenced by the finding that single allelic mutations in BAG3 were associated with familial dilated cardiomyopathy. Furthermore, significant decreases in the level of BAG3 have been found in end-stage failing human heart and in animal models of heart failure including mice with heart failure secondary to trans-aortic banding and in pigs after myocardial infarction. Thus, it becomes relevant to understand the cellular biology and molecular regulation of BAG3 expression in order to design new therapies for the treatment of patients with both hereditary and non-hereditary forms of dilated cardiomyopathy.

  11. A home away from home: challenges and opportunities in engineering in vitro muscle satellite cell niches

    PubMed Central

    Cosgrove, Benjamin D.; Sacco, Alessandra; Gilbert, Penney M.; Blau, Helen M.

    2009-01-01

    Satellite cells are skeletal muscle stem cells with a principal role in postnatal skeletal muscle regeneration. Satellite cells, like many tissue-specific adult stem cells, reside in a quiescent state in an instructive, anatomically defined niche. The satellite cell niche constitutes a distinct membrane-enclosed compartment within the muscle fiber, containing a diversity of biochemical and biophysical signals that influence satellite cell function. A major limitation to the study and clinical utility of satellite cells is that upon removal from the muscle fiber and plating in traditional plastic tissue culture platforms, their muscle stem cell properties are rapidly lost. Clearly, the maintenance of stem cell function is critically dependent on in vivo niche signals, highlighting the need to create novel in vitro microenvironments that allow for the maintenance and propagation of satellite cells while retaining their potential to function as muscle stem cells. Here, we discuss how emerging biomaterials technologies offer great promise for engineering in vitro microenvironments to meet these challenges. In engineered biomaterials, signaling molecules can be presented in a manner that more closely mimics cell-cell and cell-matrix interactions and matrices can be fabricated with diverse rigidities that approximate in vivo tissues. The development of in vitro microenvironments in which niche features can be systematically modulated will be instrumental not only to future insights into muscle stem cell biology and therapeutic approaches to muscle diseases and muscle wasting with aging, but also will provide a paradigm for the analysis of numerous adult tissue-specific stem cells. PMID:19751902

  12. Chamber identity programs drive early functional partitioning of the heart.

    PubMed

    Mosimann, Christian; Panáková, Daniela; Werdich, Andreas A; Musso, Gabriel; Burger, Alexa; Lawson, Katy L; Carr, Logan A; Nevis, Kathleen R; Sabeh, M Khaled; Zhou, Yi; Davidson, Alan J; DiBiase, Anthony; Burns, Caroline E; Burns, C Geoffrey; MacRae, Calum A; Zon, Leonard I

    2015-08-26

    The vertebrate heart muscle (myocardium) develops from the first heart field (FHF) and expands by adding second heart field (SHF) cells. While both lineages exist already in teleosts, the primordial contributions of FHF and SHF to heart structure and function remain incompletely understood. Here we delineate the functional contribution of the FHF and SHF to the zebrafish heart using the cis-regulatory elements of the draculin (drl) gene. The drl reporters initially delineate the lateral plate mesoderm, including heart progenitors. Subsequent myocardial drl reporter expression restricts to FHF descendants. We harnessed this unique feature to uncover that loss of tbx5a and pitx2 affect relative FHF versus SHF contributions to the heart. High-resolution physiology reveals distinctive electrical properties of each heart field territory that define a functional boundary within the single zebrafish ventricle. Our data establish that the transcriptional program driving cardiac septation regulates physiologic ventricle partitioning, which successively provides mechanical advantages of sequential contraction.

  13. Effects of exercise training on circulating and skeletal muscle renin-angiotensin system in chronic heart failure rats.

    PubMed

    Gomes-Santos, Igor Lucas; Fernandes, Tiago; Couto, Gisele Kruger; Ferreira-Filho, Julio César Ayres; Salemi, Vera Maria Cury; Fernandes, Fernanda Barrinha; Casarini, Dulce Elena; Brum, Patricia Chakur; Rossoni, Luciana Venturini; de Oliveira, Edilamar Menezes; Negrao, Carlos Eduardo

    2014-01-01

    Accumulated evidence shows that the ACE-AngII-AT1 axis of the renin-angiotensin system (RAS) is markedly activated in chronic heart failure (CHF). Recent studies provide information that Angiotensin (Ang)-(1-7), a metabolite of AngII, counteracts the effects of AngII. However, this balance between AngII and Ang-(1-7) is still little understood in CHF. We investigated the effects of exercise training on circulating and skeletal muscle RAS in the ischemic model of CHF. Male Wistar rats underwent left coronary artery ligation or a Sham operation. They were divided into four groups: 1) Sedentary Sham (Sham-S), 2) exercise-trained Sham (Sham-Ex), sedentary CHF (CHF-S), and exercise-trained CHF (CHF-Ex). Angiotensin concentrations and ACE and ACE2 activity in the circulation and skeletal muscle (soleus and plantaris) were quantified. Skeletal muscle ACE and ACE2 protein expression, and AT1, AT2, and Mas receptor gene expression were also evaluated. CHF reduced ACE2 serum activity. Exercise training restored ACE2 and reduced ACE activity in CHF. Exercise training reduced plasma AngII concentration in both Sham and CHF rats and increased the Ang-(1-7)/AngII ratio in CHF rats. CHF and exercise training did not change skeletal muscle ACE and ACE2 activity and protein expression. CHF increased AngII levels in both soleus and plantaris muscle, and exercise training normalized them. Exercise training increased Ang-(1-7) in the plantaris muscle of CHF rats. The AT1 receptor was only increased in the soleus muscle of CHF rats, and exercise training normalized it. Exercise training increased the expression of the Mas receptor in the soleus muscle of both exercise-trained groups, and normalized it in plantaris muscle. Exercise training causes a shift in RAS towards the Ang-(1-7)-Mas axis in skeletal muscle, which can be influenced by skeletal muscle metabolic characteristics. The changes in RAS circulation do not necessarily reflect the changes occurring in the RAS of skeletal

  14. Action of Obestatin in Skeletal Muscle Repair: Stem Cell Expansion, Muscle Growth, and Microenvironment Remodeling

    PubMed Central

    Gurriarán-Rodríguez, Uxía; Santos-Zas, Icía; González-Sánchez, Jessica; Beiroa, Daniel; Moresi, Viviana; Mosteiro, Carlos S; Lin, Wei; Viñuela, Juan E; Señarís, José; García-Caballero, Tomás; Casanueva, Felipe F; Nogueiras, Rubén; Gallego, Rosalía; Renaud, Jean-Marc; Adamo, Sergio; Pazos, Yolanda; Camiña, Jesús P

    2015-01-01

    The development of therapeutic strategies for skeletal muscle diseases, such as physical injuries and myopathies, depends on the knowledge of regulatory signals that control the myogenic process. The obestatin/GPR39 system operates as an autocrine signal in the regulation of skeletal myogenesis. Using a mouse model of skeletal muscle regeneration after injury and several cellular strategies, we explored the potential use of obestatin as a therapeutic agent for the treatment of trauma-induced muscle injuries. Our results evidenced that the overexpression of the preproghrelin, and thus obestatin, and GPR39 in skeletal muscle increased regeneration after muscle injury. More importantly, the intramuscular injection of obestatin significantly enhanced muscle regeneration by simulating satellite stem cell expansion as well as myofiber hypertrophy through a kinase hierarchy. Added to the myogenic action, the obestatin administration resulted in an increased expression of vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor 2 (VEGFR2) and the consequent microvascularization, with no effect on collagen deposition in skeletal muscle. Furthermore, the potential inhibition of myostatin during obestatin treatment might contribute to its myogenic action improving muscle growth and regeneration. Overall, our data demonstrate successful improvement of muscle regeneration, indicating obestatin is a potential therapeutic agent for skeletal muscle injury and would benefit other myopathies related to muscle regeneration. PMID:25762009

  15. PITX2 Enhances the Regenerative Potential of Dystrophic Skeletal Muscle Stem Cells.

    PubMed

    Vallejo, Daniel; Hernández-Torres, Francisco; Lozano-Velasco, Estefanía; Rodriguez-Outeiriño, Lara; Carvajal, Alejandra; Creus, Carlota; Franco, Diego; Aránega, Amelia Eva

    2018-04-10

    Duchenne muscular dystrophy (DMD), one of the most lethal genetic disorders, involves progressive muscle degeneration resulting from the absence of DYSTROPHIN. Lack of DYSTROPHIN expression in DMD has critical consequences in muscle satellite stem cells including a reduced capacity to generate myogenic precursors. Here, we demonstrate that the c-isoform of PITX2 transcription factor modifies the myogenic potential of dystrophic-deficient satellite cells. We further show that PITX2c enhances the regenerative capability of mouse DYSTROPHIN-deficient satellite cells by increasing cell proliferation and the number of myogenic committed cells, but importantly also increasing dystrophin-positive (revertant) myofibers by regulating miR-31. These PITX2-mediated effects finally lead to improved muscle function in dystrophic (DMD/mdx) mice. Our studies reveal a critical role for PITX2 in skeletal muscle repair and may help to develop therapeutic strategies for muscular disorders. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. Pharyngeal satellite cells undergo myogenesis under basal conditions and are required for pharyngeal muscle maintenance

    PubMed Central

    Randolph, Matthew E.; Phillips, Brittany L.; Choo, Hyo-Jung; Vest, Katherine E.; Vera, Yandery; Pavlath, Grace K.

    2015-01-01

    The pharyngeal muscles of the nasal, oral, and laryngeal pharynxes are required for swallowing. Pharyngeal muscles are preferentially affected in some muscular dystrophies yet spared in others. Muscle stem cells, called satellite cells, may be critical factors in the development of pharyngeal muscle disorders; however, very little is known about pharyngeal satellite cells (PSC) and their role in pharyngeal muscles. We show that PSC are distinct from the commonly studied hindlimb satellite cells both transcriptionally and biologically. Under basal conditions PSC proliferate, progress through myogenesis, and fuse with pharyngeal myofibers. Furthermore, PSC exhibit biologic differences dependent on anatomic location in the pharynx. Importantly, PSC are required to maintain myofiber size and myonuclear number in pharyngeal myofibers. Together, these results demonstrate that PSC are critical for pharyngeal muscle maintenance and suggest that satellite cell impairment could contribute to pharyngeal muscle pathology associated with various muscular dystrophies and aging. PMID:26178867

  17. Baroreflex modulation of muscle sympathetic nerve activity during posthandgrip muscle ischemia in humans

    NASA Technical Reports Server (NTRS)

    Cui, J.; Wilson, T. E.; Shibasaki, M.; Hodges, N. A.; Crandall, C. G.

    2001-01-01

    To identify whether muscle metaboreceptor stimulation alters baroreflex control of muscle sympathetic nerve activity (MSNA), MSNA, beat-by-beat arterial blood pressure (Finapres), and electrocardiogram were recorded in 11 healthy subjects in the supine position. Subjects performed 2 min of isometric handgrip exercise at 40% of maximal voluntary contraction followed by 2.5 min of posthandgrip muscle ischemia. During muscle ischemia, blood pressure was lowered and then raised by intravenous bolus infusions of sodium nitroprusside and phenylephrine HCl, respectively. The slope of the relationship between MSNA and diastolic blood pressure was more negative (P < 0.001) during posthandgrip muscle ischemia (-201.9 +/- 20.4 units. beat(-1). mmHg(-1)) when compared with control conditions (-142.7 +/- 17.3 units. beat(-1). mmHg(-1)). No significant change in the slope of the relationship between heart rate and systolic blood pressure was observed. However, both curves shifted during postexercise ischemia to accommodate the elevation in blood pressure and MSNA that occurs with this condition. These data suggest that the sensitivity of baroreflex modulation of MSNA is elevated by muscle metaboreceptor stimulation, whereas the sensitivity of baroreflex of modulate heart rate is unchanged during posthandgrip muscle ischemia.

  18. Angiotensin II Infusion Induces Marked Diaphragmatic Skeletal Muscle Atrophy

    PubMed Central

    Rezk, Bashir M.; Yoshida, Tadashi; Semprun-Prieto, Laura; Higashi, Yusuke; Sukhanov, Sergiy; Delafontaine, Patrice

    2012-01-01

    Advanced congestive heart failure (CHF) and chronic kidney disease (CKD) are characterized by increased angiotensin II (Ang II) levels and are often accompanied by significant skeletal muscle wasting that negatively impacts mortality and morbidity. Both CHF and CKD patients have respiratory muscle dysfunction, however the potential effects of Ang II on respiratory muscles are unknown. We investigated the effects of Ang II on diaphragm muscle in FVB mice. Ang II induced significant diaphragm muscle wasting (18.7±1.6% decrease in weight at one week) and reduction in fiber cross-sectional area. Expression of the E3 ubiquitin ligases atrogin-1 and muscle ring finger-1 (MuRF-1) and of the pro-apoptotic factor BAX was increased after 24 h of Ang II infusion (4.4±0.3 fold, 3.1±0.5 fold and 1.6±0.2 fold, respectively, compared to sham infused control) suggesting increased muscle protein degradation and apoptosis. In Ang II infused animals, there was significant regeneration of injured diaphragm muscles at 7 days as indicated by an increase in the number of myofibers with centralized nuclei and high expression of embryonic myosin heavy chain (E-MyHC, 11.2±3.3 fold increase) and of the satellite cell marker M-cadherin (59.2±22.2% increase). Furthermore, there was an increase in expression of insulin-like growth factor-1 (IGF-1, 1.8±0.3 fold increase) in Ang II infused diaphragm, suggesting the involvement of IGF-1 in diaphragm muscle regeneration. Bone-marrow transplantation experiments indicated that although there was recruitment of bone-marrow derived cells to the injured diaphragm in Ang II infused mice (267.0±74.6% increase), those cells did not express markers of muscle stem cells or regenerating myofibers. In conclusion, Ang II causes marked diaphragm muscle wasting, which may be important for the pathophysiology of respiratory muscle dysfunction and cachexia in conditions such as CHF and CKD. PMID:22276172

  19. Bioengineering and Stem Cell Technology in the Treatment of Congenital Heart Disease

    PubMed Central

    Bosman, Alexis; Edel, Michael J.; Blue, Gillian; Dilley, Rodney J.; Harvey, Richard P.; Winlaw, David S.

    2015-01-01

    Congenital heart disease places a significant burden on the individual, family and community despite significant advances in our understanding of aetiology and treatment. Early research in ischaemic heart disease has paved the way for stem cell technology and bioengineering, which promises to improve both structural and functional aspects of disease. Stem cell therapy has demonstrated significant improvements in cardiac function in adults with ischaemic heart disease. This finding, together with promising case studies in the paediatric setting, demonstrates the potential for this treatment in congenital heart disease. Furthermore, induced pluripotent stems cell technology, provides a unique opportunity to address aetiological, as well as therapeutic, aspects of disease. PMID:26239354

  20. Deletion of BMAL1 in Smooth Muscle Cells Protects Mice From Abdominal Aortic Aneurysms.

    PubMed

    Lutshumba, Jenny; Liu, Shu; Zhong, Yu; Hou, Tianfei; Daugherty, Alan; Lu, Hong; Guo, Zhenheng; Gong, Ming C

    2018-05-01

    Abdominal aortic aneurysm (AAA) has high mortality rate when ruptured, but currently, there is no proven pharmacological therapy for AAA because of our poor understanding of its pathogenesis. The current study explored a novel role of smooth muscle cell (SMC) BMAL1 (brain and muscle Arnt-like protein-1)-a transcription factor known to regulate circadian rhythm-in AAA development. SMC-selective deletion of BMAL1 potently protected mice from AAA induced by (1) MR (mineralocorticoid receptor) agonist deoxycorticosterone acetate or aldosterone plus high salt intake and (2) angiotensin II infusion in hypercholesterolemia mice. Aortic BMAL1 was upregulated by deoxycorticosterone acetate-salt, and deletion of BMAL1 in SMCs selectively upregulated TIMP4 (tissue inhibitor of metalloproteinase 4) and suppressed deoxycorticosterone acetate-salt-induced MMP (matrix metalloproteinase) activation and elastin breakages. Moreover, BMAL1 bound to the Timp4 promoter and suppressed Timp4 transcription. These results reveal an important, but previously unexplored, role of SMC BMAL1 in AAA. Moreover, these results identify TIMP4 as a novel target of BMAL1, which may mediate the AAA protective effect of SMC BMAL1 deletion. © 2018 American Heart Association, Inc.

  1. Structure and function of gap junction proteins: role of gap junction proteins in embryonic heart development.

    PubMed

    Ahir, Bhavesh K; Pratten, Margaret K

    2014-01-01

    Intercellular (cell-to-cell) communication is a crucial and complex mechanism during embryonic heart development. In the cardiovascular system, the beating of the heart is a dynamic and key regulatory process, which is functionally regulated by the coordinated spread of electrical activity through heart muscle cells. Heart tissues are composed of individual cells, each bearing specialized cell surface membrane structures called gap junctions that permit the intercellular exchange of ions and low molecular weight molecules. Gap junction channels are essential in normal heart function and they assist in the mediated spread of electrical impulses that stimulate synchronized contraction (via an electrical syncytium) of cardiac tissues. This present review describes the current knowledge of gap junction biology. In the first part, we summarise some relevant biochemical and physiological properties of gap junction proteins, including their structure and function. In the second part, we review the current evidence demonstrating the role of gap junction proteins in embryonic development with particular reference to those involved in embryonic heart development. Genetics and transgenic animal studies of gap junction protein function in embryonic heart development are considered and the alteration/disruption of gap junction intercellular communication which may lead to abnormal heart development is also discussed.

  2. Improved adductor function after canine recurrent laryngeal nerve injury and repair using muscle progenitor cells.

    PubMed

    Paniello, Randal C; Brookes, Sarah; Bhatt, Neel K; Bijangi-Vishehsaraei, Khadijeh; Zhang, Hongji; Halum, Stacey

    2017-12-08

    Muscle progenitor cells (MPCs) can be isolated from muscle samples and grown to a critical mass in culture. They have been shown to survive and integrate when implanted into rat laryngeal muscles. In this study, the ability of MPC implants to enhance adductor function of reinnervated thyroarytenoid muscles was tested in a canine model. Animal study. Sternocleidomastoid muscle samples were harvested from three canines. Muscle progenitor cells were isolated and cultured to 10 7 cells over 4 to 5 weeks, then implanted into right thyroarytenoid muscles after ipsilateral recurrent laryngeal nerve transection and repair. The left sides underwent the same nerve injury, but no cells were implanted. Laryngeal adductor force was measured pretreatment and again 6 months later, and the muscles were harvested for histology. Muscle progenitor cells were successfully cultured from all dogs. Laryngeal adductor force measurements averaged 60% of their baseline pretreatment values in nonimplanted controls, 98% after implantation with MPCs, and 128% after implantation with motor endplate-enhanced MPCs. Histology confirmed that the implanted MPCs survived, became integrated into thyroarytenoid muscle fibers, and were in close contact with nerve endings, suggesting functional innervation. Muscle progenitor cells were shown to significantly enhance adductor function in this pilot canine study. Patient-specific MPC implantation could potentially be used to improve laryngeal function in patients with vocal fold paresis/paralysis, atrophy, and other conditions. Further experiments are planned. NA. Laryngoscope, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  3. Maximal oxygen uptake is proportional to muscle fiber oxidative capacity, from chronic heart failure patients to professional cyclists.

    PubMed

    van der Zwaard, Stephan; de Ruiter, C Jo; Noordhof, Dionne A; Sterrenburg, Renske; Bloemers, Frank W; de Koning, Jos J; Jaspers, Richard T; van der Laarse, Willem J

    2016-09-01

    V̇o2 max during whole body exercise is presumably constrained by oxygen delivery to mitochondria rather than by mitochondria's ability to consume oxygen. Humans and animals have been reported to exploit only 60-80% of their mitochondrial oxidative capacity at maximal oxygen uptake (V̇o2 max). However, ex vivo quantification of mitochondrial overcapacity is complicated by isolation or permeabilization procedures. An alternative method for estimating mitochondrial oxidative capacity is via enzyme histochemical quantification of succinate dehydrogenase (SDH) activity. We determined to what extent V̇o2 max attained during cycling exercise differs from mitochondrial oxidative capacity predicted from SDH activity of vastus lateralis muscle in chronic heart failure patients, healthy controls, and cyclists. V̇o2 max was assessed in 20 healthy subjects and 28 cyclists, and SDH activity was determined from biopsy cryosections of vastus lateralis using quantitative histochemistry. Similar data from our laboratory of 14 chronic heart failure patients and 6 controls were included. Mitochondrial oxidative capacity was predicted from SDH activity using estimated skeletal muscle mass and the relationship between ex vivo fiber V̇o2 max and SDH activity of isolated single muscle fibers and myocardial trabecula under hyperoxic conditions. Mitochondrial oxidative capacity predicted from SDH activity was related (r(2) = 0.89, P < 0.001) to V̇o2 max measured during cycling in subjects with V̇o2 max ranging from 9.8 to 79.0 ml·kg(-1)·min(-1) V̇o2 max measured during cycling was on average 90 ± 14% of mitochondrial oxidative capacity. We conclude that human V̇o2 max is related to mitochondrial oxidative capacity predicted from skeletal muscle SDH activity. Mitochondrial oxidative capacity is likely marginally limited by oxygen supply to mitochondria. Copyright © 2016 the American Physiological Society.

  4. Mechanisms of cell transformation in the embryonic heart.

    PubMed

    Huang, J X; Potts, J D; Vincent, E B; Weeks, D L; Runyan, R B

    1995-03-27

    The process of cell transformation in the heart is a complex one. By use of the invasion bioassay, we have been able to identify several critical components of the cell transformation process in the heart. TGF beta 3 can be visualized as a switch in the environment that contributes to the initial process of cell transformation. Our data show that it is a critical switch in the transformation process. Even so, it is apparently only one of the factors involved. Others may include other TGF beta family members, the ES antigens described by Markwald and co-workers and additional unknown substances. Observing the sensitivity of the process to pertussis toxin, there is likely to be a G-protein-linked receptor involved, yet we have not identified a known ligand for this type of receptor. Clearly, there are several different signal transduction processes involved. The existence of multiple pathways is consistent with the idea that the target endothelial cells receive a variety of environmental imputs, the sum of which will produce cell transformation at the correct time and place. Adjacent endothelial cells of the ventricle that do not undergo cell transformation are apparently refractory to one or more of the stimuli. Figure 4 depicts a summary diagram of this invasion process with localization of most of the molecules mentioned in this narrative. As hypothesized here, elements of the transformation process may recapitulate aspects of gastrulation. Since some conservation of mechanism is expected in cells, it is not surprising that cells undergoing phenotypic change might reutilize mechanisms used previously to produce mesenchyme from the blastodisk. Though we have preliminary data to suggest this point, confirmation of the hypothesis by perturbation of genes such as brachyury, msx-1, etc. will be required to establish this point. The advantage of this hypothesis is that it provides, from the work of others in the area of gastrulation, a ready source of molecules and

  5. Cdc42 and formin activity control non-muscle myosin dynamics during Drosophila heart morphogenesis

    PubMed Central

    Vogler, Georg; Liu, Jiandong; Iafe, Timothy W.; Migh, Ede; Mihály, József

    2014-01-01

    During heart formation, a network of transcription factors and signaling pathways guide cardiac cell fate and differentiation, but the genetic mechanisms orchestrating heart assembly and lumen formation remain unclear. Here, we show that the small GTPase Cdc42 is essential for Drosophila melanogaster heart morphogenesis and lumen formation. Cdc42 genetically interacts with the cardiogenic transcription factor tinman; with dDAAM which belongs to the family of actin organizing formins; and with zipper, which encodes nonmuscle myosin II. Zipper is required for heart lumen formation, and its spatiotemporal activity at the prospective luminal surface is controlled by Cdc42. Heart-specific expression of activated Cdc42, or the regulatory formins dDAAM and Diaphanous caused mislocalization of Zipper and induced ectopic heart lumina, as characterized by luminal markers such as the extracellular matrix protein Slit. Placement of Slit at the lumen surface depends on Cdc42 and formin function. Thus, Cdc42 and formins play pivotal roles in heart lumen formation through the spatiotemporal regulation of the actomyosin network. PMID:25267295

  6. skNAC, a Smyd1-interacting transcription factor, is involved in cardiac development and skeletal muscle growth and regeneration.

    PubMed

    Park, Chong Yon; Pierce, Stephanie A; von Drehle, Morgan; Ivey, Kathryn N; Morgan, Jayson A; Blau, Helen M; Srivastava, Deepak

    2010-11-30

    Cardiac and skeletal muscle development and maintenance require complex interactions between DNA-binding proteins and chromatin remodeling factors. We previously reported that Smyd1, a muscle-restricted histone methyltransferase, is essential for cardiogenesis and functions with a network of cardiac regulatory proteins. Here we show that the muscle-specific transcription factor skNAC is the major binding partner for Smyd1 in the developing heart. Targeted deletion of skNAC in mice resulted in partial embryonic lethality by embryonic day 12.5, with ventricular hypoplasia and decreased cardiomyocyte proliferation that were similar but less severe than in Smyd1 mutants. Expression of Irx4, a ventricle-specific transcription factor down-regulated in hearts lacking Smyd1, also depended on the presence of skNAC. Viable skNAC(-/-) adult mice had reduced postnatal skeletal muscle growth and impaired regenerative capacity after cardiotoxin-induced injury. Satellite cells isolated from skNAC(-/-) mice had impaired survival compared with wild-type littermate satellite cells. Our results indicate that skNAC plays a critical role in ventricular cardiomyocyte expansion and regulates postnatal skeletal muscle growth and regeneration in mice.

  7. miR-378 attenuates muscle regeneration by delaying satellite cell activation and differentiation in mice.

    PubMed

    Zeng, Ping; Han, Wanhong; Li, Changyin; Li, Hu; Zhu, Dahai; Zhang, Yong; Liu, Xiaohong

    2016-09-01

    Skeletal muscle mass and homeostasis during postnatal muscle development and regeneration largely depend on adult muscle stem cells (satellite cells). We recently showed that global overexpression of miR-378 significantly reduced skeletal muscle mass in mice. In the current study, we used miR-378 transgenic (Tg) mice to assess the in vivo functional effects of miR-378 on skeletal muscle growth and regeneration. Cross-sectional analysis of skeletal muscle tissues showed that the number and size of myofibers were significantly lower in miR-378 Tg mice than in wild-type mice. Attenuated cardiotoxin-induced muscle regeneration in miR-378 Tg mice was found to be associated with delayed satellite cell activation and differentiation. Mechanistically, miR-378 was found to directly target Igf1r in muscle cells both in vitro and in vivo These miR-378 Tg mice may provide a model for investigating the physiological and pathological roles of skeletal muscle in muscle-associated diseases in humans, particularly in sarcopenia. © The Author 2016. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Silver nanoparticles administered to chicken affect VEGFA and FGF2 gene expression in breast muscle and heart

    NASA Astrophysics Data System (ADS)

    Hotowy, Anna; Sawosz, Ewa; Pineda, Lane; Sawosz, Filip; Grodzik, Marta; Chwalibog, André

    2012-07-01

    Nanoparticles of colloidal silver (AgNano) can influence gene expression. Concerning trials of AgNano application in poultry nutrition, it is useful to reveal whether they affect the expression of genes crucial for bird development. AgNano were administered to broiler chickens as a water solution in two concentrations (10 and 20 ppm). After dissection of the birds, breast muscles and hearts were collected. Gene expression of FGF2 and VEGFA on the mRNA and protein levels were evaluated using quantitative polymerase chain reaction and enzyme-linked immunosorbent assay methods. The results for gene expression in the breast muscle revealed changes on the mRNA level ( FGF2 was up-regulated, P < 0.05) but not on the protein level. In the heart, 20 ppm of silver nanoparticles in drinking water increased the expression of VEGFA ( P < 0.05), at the same time decreasing FGF2 expression both on the transcriptional and translational levels. Changes in the expression of these genes may lead to histological changes, but this needs to be proven using histological and immunohistochemical examination of tissues. In general, we showed that AgNano application in poultry feeding influences the expression of FGF2 and VEGFA genes on the mRNA and protein levels in growing chicken.

  9. Notch Signaling in Vascular Smooth Muscle Cells

    PubMed Central

    Baeten, J.T.; Lilly, B.

    2018-01-01

    The Notch signaling pathway is a highly conserved pathway involved in cell fate determination in embryonic development and also functions in the regulation of physiological processes in several systems. It plays an especially important role in vascular development and physiology by influencing angiogenesis, vessel patterning, arterial/venous specification, and vascular smooth muscle biology. Aberrant or dysregulated Notch signaling is the cause of or a contributing factor to many vascular disorders, including inherited vascular diseases, such as cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, associated with degeneration of the smooth muscle layer in cerebral arteries. Like most signaling pathways, the Notch signaling axis is influenced by complex interactions with mediators of other signaling pathways. This complexity is also compounded by different members of the Notch family having both overlapping and unique functions. Thus, it is vital to fully understand the roles and interactions of each Notch family member in order to effectively and specifically target their exact contributions to vascular disease. In this chapter, we will review the Notch signaling pathway in vascular smooth muscle cells as it relates to vascular development and human disease. PMID:28212801

  10. Skeletal Muscle-specific G Protein-coupled Receptor Kinase 2 Ablation Alters Isolated Skeletal Muscle Mechanics and Enhances Clenbuterol-stimulated Hypertrophy*

    PubMed Central

    Woodall, Benjamin P.; Woodall, Meryl C.; Luongo, Timothy S.; Grisanti, Laurel A.; Tilley, Douglas G.; Elrod, John W.; Koch, Walter J.

    2016-01-01

    GRK2, a G protein-coupled receptor kinase, plays a critical role in cardiac physiology. Adrenergic receptors are the primary target for GRK2 activity in the heart; phosphorylation by GRK2 leads to desensitization of these receptors. As such, levels of GRK2 activity in the heart directly correlate with cardiac contractile function. Furthermore, increased expression of GRK2 after cardiac insult exacerbates injury and speeds progression to heart failure. Despite the importance of this kinase in both the physiology and pathophysiology of the heart, relatively little is known about the role of GRK2 in skeletal muscle function and disease. In this study we generated a novel skeletal muscle-specific GRK2 knock-out (KO) mouse (MLC-Cre:GRK2fl/fl) to gain a better understanding of the role of GRK2 in skeletal muscle physiology. In isolated muscle mechanics testing, GRK2 ablation caused a significant decrease in the specific force of contraction of the fast-twitch extensor digitorum longus muscle yet had no effect on the slow-twitch soleus muscle. Despite these effects in isolated muscle, exercise capacity was not altered in MLC-Cre:GRK2fl/fl mice compared with wild-type controls. Skeletal muscle hypertrophy stimulated by clenbuterol, a β2-adrenergic receptor (β2AR) agonist, was significantly enhanced in MLC-Cre:GRK2fl/fl mice; mechanistically, this seems to be due to increased clenbuterol-stimulated pro-hypertrophic Akt signaling in the GRK2 KO skeletal muscle. In summary, our study provides the first insights into the role of GRK2 in skeletal muscle physiology and points to a role for GRK2 as a modulator of contractile properties in skeletal muscle as well as β2AR-induced hypertrophy. PMID:27566547

  11. Skeletal Muscle-specific G Protein-coupled Receptor Kinase 2 Ablation Alters Isolated Skeletal Muscle Mechanics and Enhances Clenbuterol-stimulated Hypertrophy.

    PubMed

    Woodall, Benjamin P; Woodall, Meryl C; Luongo, Timothy S; Grisanti, Laurel A; Tilley, Douglas G; Elrod, John W; Koch, Walter J

    2016-10-14

    GRK2, a G protein-coupled receptor kinase, plays a critical role in cardiac physiology. Adrenergic receptors are the primary target for GRK2 activity in the heart; phosphorylation by GRK2 leads to desensitization of these receptors. As such, levels of GRK2 activity in the heart directly correlate with cardiac contractile function. Furthermore, increased expression of GRK2 after cardiac insult exacerbates injury and speeds progression to heart failure. Despite the importance of this kinase in both the physiology and pathophysiology of the heart, relatively little is known about the role of GRK2 in skeletal muscle function and disease. In this study we generated a novel skeletal muscle-specific GRK2 knock-out (KO) mouse (MLC-Cre:GRK2 fl/fl ) to gain a better understanding of the role of GRK2 in skeletal muscle physiology. In isolated muscle mechanics testing, GRK2 ablation caused a significant decrease in the specific force of contraction of the fast-twitch extensor digitorum longus muscle yet had no effect on the slow-twitch soleus muscle. Despite these effects in isolated muscle, exercise capacity was not altered in MLC-Cre:GRK2 fl/fl mice compared with wild-type controls. Skeletal muscle hypertrophy stimulated by clenbuterol, a β 2 -adrenergic receptor (β 2 AR) agonist, was significantly enhanced in MLC-Cre:GRK2 fl/fl mice; mechanistically, this seems to be due to increased clenbuterol-stimulated pro-hypertrophic Akt signaling in the GRK2 KO skeletal muscle. In summary, our study provides the first insights into the role of GRK2 in skeletal muscle physiology and points to a role for GRK2 as a modulator of contractile properties in skeletal muscle as well as β 2 AR-induced hypertrophy. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Cardiac consequences to skeletal muscle-centric therapeutics for Duchenne muscular dystrophy.

    PubMed

    Townsend, DeWayne; Yasuda, Soichiro; Chamberlain, Jeffrey; Metzger, Joseph M

    2009-02-01

    Duchenne muscular dystrophy (DMD) is a fatal disease of muscle deterioration. Duchenne muscular dystrophy affects all striated muscles in the body, including the heart. Recent advances in palliative care, largely directed at improving respiratory function, have extended life but paradoxically further unmasked emergent heart disease in DMD patients. New experimental strategies have shown promise in restoring dystrophin in the skeletal muscles of dystrophin- deficient animals. These strategies often have little or no capacity for restitution of dystrophin in the hearts of these animals. This article draws on both clinical data and recent experimental data to posit that effective skeletal muscle restricted therapies for DMD will paradoxically heighten cardiomyopathy and heart failure in these patients.

  13. Heart Research

    NASA Technical Reports Server (NTRS)

    1991-01-01

    James Antaki and a group of researchers from the University of Pittsburgh School of Medicine used many elements of the Technology Utilization Program while looking for a way to visualize and track material points within the heart muscle. What they needed were tiny artificial "eggs" containing copper sulfate solution, small enough (about 2 mm in diameter) that they would not injure the heart, and large enough to be seen in Magnetic Resonance Imaging (MRI) images; they also had to be biocompatible and tough enough to withstand the beating of the muscle. The group could not make nor buy sufficient containers. After reading an article on microspheres in NASA Tech Briefs, and a complete set of reports on microencapsulation from the Jet Propulsion Laboratory (JPL), JPL put Antaki in touch with Dr.Taylor Wang of Vanderbilt University who helped construct the myocardial markers. The research is expected to lead to improved understanding of how the heart works and what takes place when it fails.

  14. Spire, an actin nucleation factor, regulates cell division during Drosophila heart development.

    PubMed

    Xu, Peng; Johnson, Tamara L; Stoller-Conrad, Jessica R; Schulz, Robert A

    2012-01-01

    The Drosophila dorsal vessel is a beneficial model system for studying the regulation of early heart development. Spire (Spir), an actin-nucleation factor, regulates actin dynamics in many developmental processes, such as cell shape determination, intracellular transport, and locomotion. Through protein expression pattern analysis, we demonstrate that the absence of spir function affects cell division in Myocyte enhancer factor 2-, Tinman (Tin)-, Even-skipped- and Seven up (Svp)-positive heart cells. In addition, genetic interaction analysis shows that spir functionally interacts with Dorsocross, tin, and pannier to properly specify the cardiac fate. Furthermore, through visualization of double heterozygous embryos, we determines that spir cooperates with CycA for heart cell specification and division. Finally, when comparing the spir mutant phenotype with that of a CycA mutant, the results suggest that most Svp-positive progenitors in spir mutant embryos cannot undergo full cell division at cell cycle 15, and that Tin-positive progenitors are arrested at cell cycle 16 as double-nucleated cells. We conclude that Spir plays a crucial role in controlling dorsal vessel formation and has a function in cell division during heart tube morphogenesis.

  15. Sparing of extraocular muscle in aging and muscular dystrophies: A myogenic precursor cell hypothesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kallestad, Kristen M.; Hebert, Sadie L.; McDonald, Abby A.

    2011-04-01

    The extraocular muscles (EOM) are spared from pathology in aging and many forms of muscular dystrophy. Despite many studies, this sparing remains an enigma. The EOM have a distinct embryonic lineage compared to somite-derived muscles, and we have shown that they continuously remodel throughout life, maintaining a population of activated satellite cells even in aging. These data suggested the hypothesis that there is a population of myogenic precursor cells (mpcs) in EOM that is different from those in limb, with either elevated numbers of stem cells and/or mpcs with superior proliferative capacity compared to mpcs in limb. Using flow cytometry,more » EOM and limb muscle mononuclear cells were compared, and a number of differences were seen. Using two different cell isolation methods, EOM have significantly more mpcs per mg muscle than limb skeletal muscle. One specific subpopulation significantly increased in EOM compared to limb was positive for CD34 and negative for Sca-1, M-cadherin, CD31, and CD45. We named these the EOMCD34 cells. Similar percentages of EOMCD34 cells were present in both newborn EOM and limb muscle. They were retained in aged EOM, whereas the population decreased significantly in adult limb muscle and were extremely scarce in aged limb muscle. Most importantly, the percentage of EOMCD34 cells was elevated in the EOM from both the mdx and the mdx/utrophin{sup -/-} (DKO) mouse models of DMD and extremely scarce in the limb muscles of these mice. In vitro, the EOMCD34 cells had myogenic potential, forming myotubes in differentiation media. After determining a media better able to induce proliferation in these cells, a fusion index was calculated. The cells isolated from EOM had a 40% higher fusion index compared to the same cells isolated from limb muscle. The EOMCD34 cells were resistant to both oxidative stress and mechanical injury. These data support our hypothesis that the EOM may be spared in aging and in muscular dystrophies due to a

  16. Isolation and Quantitative Immunocytochemical Characterization of Primary Myogenic Cells and Fibroblasts from Human Skeletal Muscle

    PubMed Central

    Agley, Chibeza C.; Rowlerson, Anthea M.; Velloso, Cristiana P.; Lazarus, Norman L.; Harridge, Stephen D. R.

    2015-01-01

    The repair and regeneration of skeletal muscle requires the action of satellite cells, which are the resident muscle stem cells. These can be isolated from human muscle biopsy samples using enzymatic digestion and their myogenic properties studied in culture. Quantitatively, the two main adherent cell types obtained from enzymatic digestion are: (i) the satellite cells (termed myogenic cells or muscle precursor cells), identified initially as CD56+ and later as CD56+/desmin+ cells and (ii) muscle-derived fibroblasts, identified as CD56– and TE-7+. Fibroblasts proliferate very efficiently in culture and in mixed cell populations these cells may overrun myogenic cells to dominate the culture. The isolation and purification of different cell types from human muscle is thus an important methodological consideration when trying to investigate the innate behavior of either cell type in culture. Here we describe a system of sorting based on the gentle enzymatic digestion of cells using collagenase and dispase followed by magnetic activated cell sorting (MACS) which gives both a high purity (>95% myogenic cells) and good yield (~2.8 x 106 ± 8.87 x 105 cells/g tissue after 7 days in vitro) for experiments in culture. This approach is based on incubating the mixed muscle-derived cell population with magnetic microbeads beads conjugated to an antibody against CD56 and then passing cells though a magnetic field. CD56+ cells bound to microbeads are retained by the field whereas CD56– cells pass unimpeded through the column. Cell suspensions from any stage of the sorting process can be plated and cultured. Following a given intervention, cell morphology, and the expression and localization of proteins including nuclear transcription factors can be quantified using immunofluorescent labeling with specific antibodies and an image processing and analysis package. PMID:25650991

  17. Functional Tissue Engineering: A Prevascularized Cardiac Muscle Construct for Validating Human Mesenchymal Stem Cells Engraftment Potential In Vitro

    PubMed Central

    Fuseler, John W.; Potts, Jay D.; Davis, Jeffrey M.; Price, Robert L.

    2018-01-01

    The influence of somatic stem cells in the stimulation of mammalian cardiac muscle regeneration is still in its early stages, and so far, it has been difficult to determine the efficacy of the procedures that have been employed. The outstanding question remains whether stem cells derived from the bone marrow or some other location within or outside of the heart can populate a region of myocardial damage and transform into tissue-specific differentiated progenies, and also exhibit functional synchronization. Consequently, this necessitates the development of an appropriate in vitro three-dimensional (3D) model of cardiomyogenesis and prompts the development of a 3D cardiac muscle construct for tissue engineering purposes, especially using the somatic stem cell, human mesenchymal stem cells (hMSCs). To this end, we have created an in vitro 3D functional prevascularized cardiac muscle construct using embryonic cardiac myocytes (eCMs) and hMSCs. First, to generate the prevascularized scaffold, human cardiac microvascular endothelial cells (hCMVECs) and hMSCs were cocultured onto a 3D collagen cell carrier (CCC) for 7 days under vasculogenic culture conditions; hCMVECs/hMSCs underwent maturation, differentiation, and morphogenesis characteristic of microvessels, and formed dense vascular networks. Next, the eCMs and hMSCs were cocultured onto this generated prevascularized CCCs for further 7 or 14 days in myogenic culture conditions. Finally, the vascular and cardiac phenotypic inductions were characterized at the morphological, immunological, biochemical, molecular, and functional levels. Expression and functional analyses of the differentiated progenies revealed neo-cardiomyogenesis and neo-vasculogenesis. In this milieu, for instance, not only were hMSCs able to couple electromechanically with developing eCMs but were also able to contribute to the developing vasculature as mural cells, respectively. Hence, our unique 3D coculture system provides us a reproducible

  18. Voluntary physical activity protects from susceptibility to skeletal muscle contraction-induced injury but worsens heart function in mdx mice.

    PubMed

    Hourdé, Christophe; Joanne, Pierre; Medja, Fadia; Mougenot, Nathalie; Jacquet, Adeline; Mouisel, Etienne; Pannerec, Alice; Hatem, Stéphane; Butler-Browne, Gillian; Agbulut, Onnik; Ferry, Arnaud

    2013-05-01

    It is well known that inactivity/activity influences skeletal muscle physiological characteristics. However, the effects of inactivity/activity on muscle weakness and increased susceptibility to muscle contraction-induced injury have not been extensively studied in mdx mice, a murine model of Duchenne muscular dystrophy with dystrophin deficiency. In the present study, we demonstrate that inactivity (ie, leg immobilization) worsened the muscle weakness and the susceptibility to contraction-induced injury in mdx mice. Inactivity also mimicked these two dystrophic features in wild-type mice. In contrast, we demonstrate that these parameters can be improved by activity (ie, voluntary wheel running) in mdx mice. Biochemical analyses indicate that the changes induced by inactivity/activity were not related to fiber-type transition but were associated with altered expression of different genes involved in fiber growth (GDF8), structure (Actg1), and calcium homeostasis (Stim1 and Jph1). However, activity reduced left ventricular function (ie, ejection and shortening fractions) in mdx, but not C57, mice. Altogether, our study suggests that muscle weakness and susceptibility to contraction-induced injury in dystrophic muscle could be attributable, at least in part, to inactivity. It also suggests that activity exerts a beneficial effect on dystrophic skeletal muscle but not on the heart. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  19. Differential gene expression profiling of human adipose stem cells differentiating into smooth muscle-like cells by TGFβ1/BMP4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elçin, Ayşe Eser; Parmaksiz, Mahmut; Dogan, Arin

    Regenerative repair of the vascular system is challenging from the perspectives of translational medicine and tissue engineering. There are fundamental hurdles in front of creating bioartificial arteries, which involve recaputilation of the three-layered structure under laboratory settings. Obtaining and maintaining smooth muscle characteristics is an important limitation, as the transdifferentiated cells fail to display mature phenotype. This study aims to shed light on the smooth muscle differentiation of human adipose stem cells (hASCs). To this end, we first acquired hASCs from lipoaspirate samples. Upon characterization, the cells were induced to differentiate into smooth muscle (SM)-like cells using a variety ofmore » inducer combinations. Among all, TGFβ1/BMP4 combination had the highest differentiation efficiency, based on immunohistochemical analyses. hSM-like cell samples were compared to hASCs and to the positive control, human coronary artery-smooth muscle cells (hCA-SMCs) through gene transcription profiling. Microarray findings revealed the activation of gene groups that function in smooth muscle differentiation, signaling pathways, extracellular modeling and cell proliferation. Our results underline the effectiveness of the growth factors and suggest some potential variables for detecting the SM-like cell characteristics. Evidence in transcriptome level was used to evaluate the TGFβ1/BMP4 combination as a previously unexplored effector for the smooth muscle differentiation of adipose stem cells. - Highlights: • Human adipose stem cells (hASCs) were isolated, characterized and cultured. • Growth factor combinations were evaluated for their effectiveness in differentiation using IHC. • hASCs were differentiated into smooth muscle (SM)-like cells using TGF-β1 and BMP4 combination. • Microarray analysis was performed for hASCs, SM-like cells and coronary artery-SMCs. • Microarray data was used to perform hierarchical clustering and

  20. Fibronectin promotes differentiation of neural crest progenitors endowed with smooth muscle cell potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costa-Silva, Bruno; Programa de Pos-graduacao em Neurociencias, Centro de Ciencias Biologicas, Universidade Federal de Santa Catarina, Campus Universitario - Trindade, 88040-900, Florianopolis, S.C.; Coelho da Costa, Meline

    The neural crest (NC) is a model system used to investigate multipotency during vertebrate development. Environmental factors control NC cell fate decisions. Despite the well-known influence of extracellular matrix molecules in NC cell migration, the issue of whether they also influence NC cell differentiation has not been addressed at the single cell level. By analyzing mass and clonal cultures of mouse cephalic and quail trunk NC cells, we show for the first time that fibronectin (FN) promotes differentiation into the smooth muscle cell phenotype without affecting differentiation into glia, neurons, and melanocytes. Time course analysis indicated that the FN-induced effectmore » was not related to massive cell death or proliferation of smooth muscle cells. Finally, by comparing clonal cultures of quail trunk NC cells grown on FN and collagen type IV (CLIV), we found that FN strongly increased both NC cell survival and the proportion of unipotent and oligopotent NC progenitors endowed with smooth muscle potential. In contrast, melanocytic progenitors were prominent in clonogenic NC cells grown on CLIV. Taken together, these results show that FN promotes NC cell differentiation along the smooth muscle lineage, and therefore plays an important role in fate decisions of NC progenitor cells.« less

  1. Recapitulating muscle disease phenotypes with myotonic dystrophy 1 iPS cells: a tool for disease modeling and drug discovery.

    PubMed

    Mondragon-Gonzalez, Ricardo; Perlingeiro, Rita C R

    2018-06-13

    Myotonic Dystrophy 1 (DM1) is a multi-system disorder primarily affecting the central nervous system, heart and skeletal muscle. It is caused by an expansion of the CTG trinucleotide repeats in the 3' untranslated region of the DMPK gene. Although patient myoblasts have been used for studying the disease in vitro , the invasiveness as well as the low accessibility to muscle biopsies motivate the development of alternative reliable myogenic models. Here, we established two DM1 iPS cell lines from patient-derived fibroblasts, and using the PAX7 conditional expression system, differentiated these into myogenic progenitors, and subsequently, terminally differentiated myotubes. Both DM1 myogenic progenitors and myotubes were found to express the intranuclear RNA foci exhibiting sequestration of MBNL1. Moreover, we found the DM1-related mis-splicing, namely BIN1 exon 11 in DM1 myotubes. We use this model to test a specific therapy, antisense oligonucleotide treatment, and find that this efficiently abolished RNA foci and rescued BIN1 mis-splicing in DM1 iPS cell-derived myotubes. Together, our results demonstrate that myotubes derived from DM1 iPS cells recapitulate the critical molecular features of DM1 and are sensitive to ASO treatment, confirming that these cells can be used for in vitro disease modeling and candidate drug testing or screening. © 2018. Published by The Company of Biologists Ltd.

  2. Panic Attack or Heart Attack?

    MedlinePlus

    ... disease affects your heart's muscle, blood vessels, and electrical system and is the leading cause of death ... An electrocardiogram (EKG or ECG) measures your heart's electrical activity by placing small electrodes on your chest, ...

  3. Cyclic AMP-receptor proteins in heart muscle of rats flown on Cosmos 1887

    NASA Technical Reports Server (NTRS)

    Mednieks, Maija I.; Popova, Irina A.; Grindeland, Richard E.

    1991-01-01

    The cellular compartmentalization of the cyclic AMP-receptor proteins in heart ventricular tissue obtained from rats flown on the Cosmos 1887 is determined. Photoaffinity labeling of soluble and particular cell fractions with a (32P)-8-azido analog of cyclic AMP is followed by electrophoretic separation of the proteins and by autoradiographic identification of the labeled isoforms of cAPK R subunits. It is shown that RII in the particulate subcellular fraction was significantly decreased in heart cells from rats in the flight group when compared to controls. Protein banding patterns in both the cytoplasmic fraction and in a fraction enriched in chromatin-bound proteins exhibited some variability in tissues of individual animals, but showed no changes that could be directly attributed to flight conditions. No significant change was apparent in the distribution of RI or RII cyclic AMP binding in the soluble fractions. It is inferred that the cardiac cell integrity or its protein content is not compromised under flight conditions.

  4. Voltage-dependent inward currents in smooth muscle cells of skeletal muscle arterioles

    PubMed Central

    Shirokov, Roman E.

    2018-01-01

    Voltage-dependent inward currents responsible for the depolarizing phase of action potentials were characterized in smooth muscle cells of 4th order arterioles in mouse skeletal muscle. Currents through L-type Ca2+ channels were expected to be dominant; however, action potentials were not eliminated in nominally Ca2+-free bathing solution or by addition of L-type Ca2+ channel blocker nifedipine (10 μM). Instead, Na+ channel blocker tetrodotoxin (TTX, 1 μM) reduced the maximal velocity of the upstroke at low, but not at normal (2 mM), Ca2+ in the bath. The magnitude of TTX-sensitive currents recorded with 140 mM Na+ was about 20 pA/pF. TTX-sensitive currents decreased five-fold when Ca2+ increased from 2 to 10 mM. The currents reduced three-fold in the presence of 10 mM caffeine, but remained unaltered by 1 mM of isobutylmethylxanthine (IBMX). In addition to L-type Ca2+ currents (15 pA/pF in 20 mM Ca2+), we also found Ca2+ currents that are resistant to 10 μM nifedipine (5 pA/pF in 20 mM Ca2+). Based on their biophysical properties, these Ca2+ currents are likely to be through voltage-gated T-type Ca2+ channels. Our results suggest that Na+ and at least two types (T- and L-) of Ca2+ voltage-gated channels contribute to depolarization of smooth muscle cells in skeletal muscle arterioles. Voltage-gated Na+ channels appear to be under a tight control by Ca2+ signaling. PMID:29694371

  5. Differential Gene Expression Profiling of Dystrophic Dog Muscle after MuStem Cell Transplantation

    PubMed Central

    Babarit, Candice; Larcher, Thibaut; Dubreil, Laurence; Leroux, Isabelle; Zuber, Céline; Ledevin, Mireille; Deschamps, Jack-Yves; Fromes, Yves; Cherel, Yan; Guevel, Laetitia; Rouger, Karl

    2015-01-01

    Background Several adult stem cell populations exhibit myogenic regenerative potential, thus representing attractive candidates for therapeutic approaches of neuromuscular diseases such as Duchenne Muscular Dystrophy (DMD). We have recently shown that systemic delivery of MuStem cells, skeletal muscle-resident stem cells isolated in healthy dog, generates the remodelling of muscle tissue and gives rise to striking clinical benefits in Golden Retriever Muscular Dystrophy (GRMD) dog. This global effect, which is observed in the clinically relevant DMD animal model, leads us to question here the molecular pathways that are impacted by MuStem cell transplantation. To address this issue, we compare the global gene expression profile between healthy, GRMD and MuStem cell treated GRMD dog muscle, four months after allogenic MuStem cell transplantation. Results In the dystrophic context of the GRMD dog, disease-related deregulation is observed in the case of 282 genes related to various processes such as inflammatory response, regeneration, calcium ion binding, extracellular matrix organization, metabolism and apoptosis regulation. Importantly, we reveal the impact of MuStem cell transplantation on several molecular and cellular pathways based on a selection of 31 genes displaying signals specifically modulated by the treatment. Concomitant with a diffuse dystrophin expression, a histological remodelling and a stabilization of GRMD dog clinical status, we show that cell delivery is associated with an up-regulation of genes reflecting a sustained enhancement of muscle regeneration. We also identify a decreased mRNA expression of a set of genes having metabolic functions associated with lipid homeostasis and energy. Interestingly, ubiquitin-mediated protein degradation is highly enhanced in GRMD dog muscle after systemic delivery of MuStem cells. Conclusions Overall, our results provide the first high-throughput characterization of GRMD dog muscle and throw new light on the

  6. Serum Proteases Potentiate BMP-Induced Cell Cycle Re-entry of Dedifferentiating Muscle Cells during Newt Limb Regeneration.

    PubMed

    Wagner, Ines; Wang, Heng; Weissert, Philipp M; Straube, Werner L; Shevchenko, Anna; Gentzel, Marc; Brito, Goncalo; Tazaki, Akira; Oliveira, Catarina; Sugiura, Takuji; Shevchenko, Andrej; Simon, András; Drechsel, David N; Tanaka, Elly M

    2017-03-27

    Limb amputation in the newt induces myofibers to dedifferentiate and re-enter the cell cycle to generate proliferative myogenic precursors in the regeneration blastema. Here we show that bone morphogenetic proteins (BMPs) and mature BMPs that have been further cleaved by serum proteases induce cell cycle entry by dedifferentiating newt muscle cells. Protease-activated BMP4/7 heterodimers that are present in serum strongly induced myotube cell cycle re-entry with protease cleavage yielding a 30-fold potency increase of BMP4/7 compared with canonical BMP4/7. Inhibition of BMP signaling via muscle-specific dominant-negative receptor expression reduced cell cycle entry in vitro and in vivo. In vivo inhibition of serine protease activity depressed cell cycle re-entry, which in turn was rescued by cleaved-mimic BMP. This work identifies a mechanism of BMP activation that generates blastema cells from differentiated muscle. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Skeletal Muscle Satellite Cells Are Committed to Myogenesis and Do Not Spontaneously Adopt Nonmyogenic Fates

    PubMed Central

    Starkey, Jessica D.; Yamamoto, Masakazu; Yamamoto, Shoko; Goldhamer, David J.

    2011-01-01

    The developmental potential of skeletal muscle stem cells (satellite cells) remains controversial. The authors investigated satellite cell developmental potential in single fiber and clonal cultures derived from MyoDiCre/+;R26REYFP/+ muscle, in which essentially all satellite cells are permanently labeled. Approximately 60% of the clones derived from cells that co-purified with muscle fibers spontaneously underwent adipogenic differentiation. These adipocytes stained with Oil-Red-O and expressed the terminal differentiation markers, adipsin and fatty acid binding protein 4, but did not express EYFP and were therefore not of satellite cell origin. Satellite cells mutant for either MyoD or Myf-5 also maintained myogenic programming in culture and did not adopt an adipogenic fate. Incorporation of additional wash steps prior to muscle fiber plating virtually eliminated the non-myogenic cells but did not reduce the number of adherent Pax7+ satellite cells. More than half of the adipocytes observed in cultures from Tie2-Cre mice were recombined, further demonstrating a non-satellite cell origin. Under adipogenesis-inducing conditions, satellite cells accumulated cytoplasmic lipid but maintained myogenic protein expression and did not fully execute the adipogenic differentiation program, distinguishing them from adipocytes observed in muscle fiber cultures. The authors conclude that skeletal muscle satellite cells are committed to myogenesis and do not spontaneously adopt an adipogenic fate. PMID:21339173

  8. Three distinct cell populations express extracellular matrix proteins and increase in number during skeletal muscle fibrosis.

    PubMed

    Chapman, Mark A; Mukund, Kavitha; Subramaniam, Shankar; Brenner, David; Lieber, Richard L

    2017-02-01

    Tissue extracellular matrix (ECM) provides structural support and creates unique environments for resident cells (Bateman JF, Boot-Handford RP, Lamandé SR. Nat Rev Genet 10: 173-183, 2009; Kjaer M. Physiol Rev 84: 649-98, 2004). However, the identities of cells responsible for creating specific ECM components have not been determined. In striated muscle, the identity of these cells becomes important in disease when ECM changes result in fibrosis and subsequent increased tissue stiffness and dysfunction. Here we describe a novel approach to isolate and identify cells that maintain the ECM in both healthy and fibrotic muscle. Using a collagen I reporter mouse, we show that there are three distinct cell populations that express collagen I in both healthy and fibrotic skeletal muscle. Interestingly, the number of collagen I-expressing cells in all three cell populations increases proportionally in fibrotic muscle, indicating that all cell types participate in the fibrosis process. Furthermore, while some profibrotic ECM and ECM-associated genes are significantly upregulated in fibrotic muscle, the fibrillar collagen gene expression profile is not qualitatively altered. This suggests that muscle fibrosis in this model results from an increased number of collagen I-expressing cells and not the initiation of a specific fibrotic collagen gene expression program. Finally, in fibrotic muscle, we show that these collagen I-expressing cell populations differentially express distinct ECM proteins-fibroblasts express the fibrillar components of ECM, fibro/adipogenic progenitors cells differentially express basal laminar proteins, and skeletal muscle progenitor cells differentially express genes important for the satellite cell. Copyright © 2017 the American Physiological Society.

  9. Three distinct cell populations express extracellular matrix proteins and increase in number during skeletal muscle fibrosis

    PubMed Central

    Chapman, Mark A.; Mukund, Kavitha; Subramaniam, Shankar; Brenner, David

    2017-01-01

    Tissue extracellular matrix (ECM) provides structural support and creates unique environments for resident cells (Bateman JF, Boot-Handford RP, Lamandé SR. Nat Rev Genet 10: 173–183, 2009; Kjaer M. Physiol Rev 84: 649–98, 2004). However, the identities of cells responsible for creating specific ECM components have not been determined. In striated muscle, the identity of these cells becomes important in disease when ECM changes result in fibrosis and subsequent increased tissue stiffness and dysfunction. Here we describe a novel approach to isolate and identify cells that maintain the ECM in both healthy and fibrotic muscle. Using a collagen I reporter mouse, we show that there are three distinct cell populations that express collagen I in both healthy and fibrotic skeletal muscle. Interestingly, the number of collagen I-expressing cells in all three cell populations increases proportionally in fibrotic muscle, indicating that all cell types participate in the fibrosis process. Furthermore, while some profibrotic ECM and ECM-associated genes are significantly upregulated in fibrotic muscle, the fibrillar collagen gene expression profile is not qualitatively altered. This suggests that muscle fibrosis in this model results from an increased number of collagen I-expressing cells and not the initiation of a specific fibrotic collagen gene expression program. Finally, in fibrotic muscle, we show that these collagen I-expressing cell populations differentially express distinct ECM proteins—fibroblasts express the fibrillar components of ECM, fibro/adipogenic progenitors cells differentially express basal laminar proteins, and skeletal muscle progenitor cells differentially express genes important for the satellite cell. PMID:27881411

  10. Immortalized human myotonic dystrophy muscle cell lines to assess therapeutic compounds.

    PubMed

    Arandel, Ludovic; Polay Espinoza, Micaela; Matloka, Magdalena; Bazinet, Audrey; De Dea Diniz, Damily; Naouar, Naïra; Rau, Frédérique; Jollet, Arnaud; Edom-Vovard, Frédérique; Mamchaoui, Kamel; Tarnopolsky, Mark; Puymirat, Jack; Battail, Christophe; Boland, Anne; Deleuze, Jean-Francois; Mouly, Vincent; Klein, Arnaud F; Furling, Denis

    2017-04-01

    Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are autosomal dominant neuromuscular diseases caused by microsatellite expansions and belong to the family of RNA-dominant disorders. Availability of cellular models in which the DM mutation is expressed within its natural context is essential to facilitate efforts to identify new therapeutic compounds. Here, we generated immortalized DM1 and DM2 human muscle cell lines that display nuclear RNA aggregates of expanded repeats, a hallmark of myotonic dystrophy. Selected clones of DM1 and DM2 immortalized myoblasts behave as parental primary myoblasts with a reduced fusion capacity of immortalized DM1 myoblasts when compared with control and DM2 cells. Alternative splicing defects were observed in differentiated DM1 muscle cell lines, but not in DM2 lines. Splicing alterations did not result from differentiation delay because similar changes were found in immortalized DM1 transdifferentiated fibroblasts in which myogenic differentiation has been forced by overexpression of MYOD1. As a proof-of-concept, we show that antisense approaches alleviate disease-associated defects, and an RNA-seq analysis confirmed that the vast majority of mis-spliced events in immortalized DM1 muscle cells were affected by antisense treatment, with half of them significantly rescued in treated DM1 cells. Immortalized DM1 muscle cell lines displaying characteristic disease-associated molecular features such as nuclear RNA aggregates and splicing defects can be used as robust readouts for the screening of therapeutic compounds. Therefore, immortalized DM1 and DM2 muscle cell lines represent new models and tools to investigate molecular pathophysiological mechanisms and evaluate the in vitro effects of compounds on RNA toxicity associated with myotonic dystrophy mutations. © 2017. Published by The Company of Biologists Ltd.

  11. Immortalized human myotonic dystrophy muscle cell lines to assess therapeutic compounds

    PubMed Central

    Arandel, Ludovic; Polay Espinoza, Micaela; Matloka, Magdalena; Bazinet, Audrey; De Dea Diniz, Damily; Naouar, Naïra; Rau, Frédérique; Jollet, Arnaud; Edom-Vovard, Frédérique; Mamchaoui, Kamel; Tarnopolsky, Mark; Puymirat, Jack; Battail, Christophe; Boland, Anne; Deleuze, Jean-Francois; Mouly, Vincent; Klein, Arnaud F.

    2017-01-01

    ABSTRACT Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are autosomal dominant neuromuscular diseases caused by microsatellite expansions and belong to the family of RNA-dominant disorders. Availability of cellular models in which the DM mutation is expressed within its natural context is essential to facilitate efforts to identify new therapeutic compounds. Here, we generated immortalized DM1 and DM2 human muscle cell lines that display nuclear RNA aggregates of expanded repeats, a hallmark of myotonic dystrophy. Selected clones of DM1 and DM2 immortalized myoblasts behave as parental primary myoblasts with a reduced fusion capacity of immortalized DM1 myoblasts when compared with control and DM2 cells. Alternative splicing defects were observed in differentiated DM1 muscle cell lines, but not in DM2 lines. Splicing alterations did not result from differentiation delay because similar changes were found in immortalized DM1 transdifferentiated fibroblasts in which myogenic differentiation has been forced by overexpression of MYOD1. As a proof-of-concept, we show that antisense approaches alleviate disease-associated defects, and an RNA-seq analysis confirmed that the vast majority of mis-spliced events in immortalized DM1 muscle cells were affected by antisense treatment, with half of them significantly rescued in treated DM1 cells. Immortalized DM1 muscle cell lines displaying characteristic disease-associated molecular features such as nuclear RNA aggregates and splicing defects can be used as robust readouts for the screening of therapeutic compounds. Therefore, immortalized DM1 and DM2 muscle cell lines represent new models and tools to investigate molecular pathophysiological mechanisms and evaluate the in vitro effects of compounds on RNA toxicity associated with myotonic dystrophy mutations. PMID:28188264

  12. Dietary nitrate supplementation: impact on skeletal muscle vascular control in exercising rats with chronic heart failure

    PubMed Central

    Ferguson, Scott K.; Holdsworth, Clark T.; Colburn, Trenton D.; Wright, Jennifer L.; Craig, Jesse C.; Fees, Alex; Jones, Andrew M.; Allen, Jason D.; Musch, Timothy I.

    2016-01-01

    Chronic heart failure (CHF) results in central and peripheral derangements that ultimately reduce skeletal muscle O2 delivery and impair exercise tolerance. Dietary nitrate (NO3−) supplementation improves skeletal muscle vascular function and tolerance to exercise. We tested the hypothesis that NO3− supplementation would elevate exercising skeletal muscle blood flow (BF) and vascular conductance (VC) in CHF rats. Myocardial infarction (MI) was induced (coronary artery ligation) in young adult male rats. After 21 days of recovery, rats randomly received 5 days of NO3−-rich beetroot juice (CHF + BR, n = 10) or a placebo (CHF, n = 10). Mean arterial pressure (carotid artery catheter) and skeletal muscle BF (radiolabeled microspheres) were measured during treadmill exercise (20 m/min, 5% grade). CHF-induced dysfunction, as determined by myocardial infarction size (29 ± 3% and 33 ± 4% in CHF and CHF + BR, respectively) and left ventricular end-diastolic pressure (18 ± 2 and 18 ± 2 mmHg in CHF and CHF + BR, respectively), and exercising mean arterial pressure (131 ± 3 and 128 ± 4 mmHg in CHF and CHF + BR, respectively) were not different (P > 0.05) between groups. Total exercising hindlimb skeletal muscle BF (95 ± 5 and 116 ± 9 ml·min−1·100 g−1 in CHF and CHF + BR, respectively) and VC (0.75 ± 0.05 and 0.90 ± 0.05 ml·min−1·100 g−1·mmHg−1 in CHF and CHF + BR, respectively) were 22% and 20% greater in BR-supplemented rats, respectively (P < 0.05). During exercise, BF in 9 and VC in 10 hindlimb muscles and muscle portions were significantly greater in the CHF + BR group. These results provide strong evidence that dietary NO3− supplementation improves skeletal muscle vascular function during exercise in rats with CHF and, thus, support the use of BR as a novel therapeutic modality for the treatment of CHF. PMID:27445296

  13. Dietary nitrate supplementation: impact on skeletal muscle vascular control in exercising rats with chronic heart failure.

    PubMed

    Ferguson, Scott K; Holdsworth, Clark T; Colburn, Trenton D; Wright, Jennifer L; Craig, Jesse C; Fees, Alex; Jones, Andrew M; Allen, Jason D; Musch, Timothy I; Poole, David C

    2016-09-01

    Chronic heart failure (CHF) results in central and peripheral derangements that ultimately reduce skeletal muscle O2 delivery and impair exercise tolerance. Dietary nitrate (NO3 (-)) supplementation improves skeletal muscle vascular function and tolerance to exercise. We tested the hypothesis that NO3 (-) supplementation would elevate exercising skeletal muscle blood flow (BF) and vascular conductance (VC) in CHF rats. Myocardial infarction (MI) was induced (coronary artery ligation) in young adult male rats. After 21 days of recovery, rats randomly received 5 days of NO3 (-)-rich beetroot juice (CHF + BR, n = 10) or a placebo (CHF, n = 10). Mean arterial pressure (carotid artery catheter) and skeletal muscle BF (radiolabeled microspheres) were measured during treadmill exercise (20 m/min, 5% grade). CHF-induced dysfunction, as determined by myocardial infarction size (29 ± 3% and 33 ± 4% in CHF and CHF + BR, respectively) and left ventricular end-diastolic pressure (18 ± 2 and 18 ± 2 mmHg in CHF and CHF + BR, respectively), and exercising mean arterial pressure (131 ± 3 and 128 ± 4 mmHg in CHF and CHF + BR, respectively) were not different (P > 0.05) between groups. Total exercising hindlimb skeletal muscle BF (95 ± 5 and 116 ± 9 ml·min(-1)·100 g(-1) in CHF and CHF + BR, respectively) and VC (0.75 ± 0.05 and 0.90 ± 0.05 ml·min(-1)·100 g(-1)·mmHg(-1) in CHF and CHF + BR, respectively) were 22% and 20% greater in BR-supplemented rats, respectively (P < 0.05). During exercise, BF in 9 and VC in 10 hindlimb muscles and muscle portions were significantly greater in the CHF + BR group. These results provide strong evidence that dietary NO3 (-) supplementation improves skeletal muscle vascular function during exercise in rats with CHF and, thus, support the use of BR as a novel therapeutic modality for the treatment of CHF. Copyright © 2016 the American Physiological Society.

  14. Continuous Release of Tumor-Derived Factors Improves the Modeling of Cachexia in Muscle Cell Culture.

    PubMed

    Jackman, Robert W; Floro, Jess; Yoshimine, Rei; Zitin, Brian; Eiampikul, Maythita; El-Jack, Kahlid; Seto, Danielle N; Kandarian, Susan C

    2017-01-01

    Cachexia is strongly associated with a poor prognosis in cancer patients but the biological trigger is unknown and therefore no therapeutics exist. The loss of skeletal muscle is the most deleterious aspect of cachexia and it appears to depend on secretions from tumor cells. Models for studying wasting in cell culture consist of experiments where skeletal muscle cells are incubated with medium conditioned by tumor cells. This has led to candidates for cachectic factors but some of the features of cachexia in vivo are not yet well-modeled in cell culture experiments. Mouse myotube atrophy measured by myotube diameter in response to medium conditioned by mouse colon carcinoma cells (C26) is consistently less than what is seen in muscles of mice bearing C26 tumors with moderate to severe cachexia. One possible reason for this discrepancy is that in vivo the C26 tumor and skeletal muscle share a circulatory system exposing the muscle to tumor factors in a constant and increasing way. We have applied Transwell®-adapted cell culture conditions to more closely simulate conditions found in vivo where muscle is exposed to the ongoing kinetics of constant tumor secretion of active factors. C26 cells were incubated on a microporous membrane (a Transwell® insert) that constitutes the upper compartment of wells containing plated myotubes. In this model, myotubes are exposed to a constant supply of cancer cell secretions in the medium but without direct contact with the cancer cells, analogous to a shared circulation of muscle and cancer cells in tumor-bearing animals. The results for myotube diameter support the idea that the use of Transwell® inserts serves as a more physiological model of the muscle wasting associated with cancer cachexia than the bolus addition of cancer cell conditioned medium. The Transwell® model supports the notion that the dose and kinetics of cachectic factor delivery to muscle play a significant role in the extent of pathology.

  15. FOXP3+ T Cells Recruited to Sites of Sterile Skeletal Muscle Injury Regulate the Fate of Satellite Cells and Guide Effective Tissue Regeneration

    PubMed Central

    Castiglioni, Alessandra; Basso, Veronica; Vezzoli, Michela; Monno, Antonella; Almada, Albert E.; Mondino, Anna; Wagers, Amy J.; Manfredi, Angelo A.; Rovere-Querini, Patrizia

    2015-01-01

    Muscle injury induces a classical inflammatory response in which cells of the innate immune system rapidly invade the tissue. Macrophages are prominently involved in this response and required for proper healing, as they are known to be important for clearing cellular debris and supporting satellite cell differentiation. Here, we sought to assess the role of the adaptive immune system in muscle regeneration after acute damage. We show that T lymphocytes are transiently recruited into the muscle after damage and appear to exert a pro-myogenic effect on muscle repair. We observed a decrease in the cross-sectional area of regenerating myofibers after injury in Rag2-/- γ-chain-/- mice, as compared to WT controls, suggesting that T cell recruitment promotes muscle regeneration. Skeletal muscle infiltrating T lymphocytes were enriched in CD4+CD25+FOXP3+ cells. Direct exposure of muscle satellite cells to in vitro induced Treg cells effectively enhanced their expansion, and concurrently inhibited their myogenic differentiation. In vivo, the recruitment of Tregs to acutely injured muscle was limited to the time period of satellite expansion, with possibly important implications for situations in which inflammatory conditions persist, such as muscular dystrophies and inflammatory myopathies. We conclude that the adaptive immune system, in particular T regulatory cells, is critically involved in effective skeletal muscle regeneration. Thus, in addition to their well-established role as regulators of the immune/inflammatory response, T regulatory cells also regulate the activity of skeletal muscle precursor cells, and are instrumental for the proper regeneration of this tissue. PMID:26039259

  16. Normal Muscle Oxygen Consumption and Fatigability in Sickle Cell Patients Despite Reduced Microvascular Oxygenation and Hemorheological Abnormalities

    PubMed Central

    Waltz, Xavier; Pichon, Aurélien; Lemonne, Nathalie; Mougenel, Danièle; Lalanne-Mistrih, Marie-Laure; Lamarre, Yann; Tarer, Vanessa; Tressières, Benoit; Etienne-Julan, Maryse; Hardy-Dessources, Marie-Dominique; Hue, Olivier; Connes, Philippe

    2012-01-01

    Background/Aim Although it has been hypothesized that muscle metabolism and fatigability could be impaired in sickle cell patients, no study has addressed this issue. Methods We compared muscle metabolism and function (muscle microvascular oxygenation, microvascular blood flow, muscle oxygen consumption and muscle microvascular oxygenation variability, which reflects vasomotion activity, maximal muscle force and local muscle fatigability) and the hemorheological profile at rest between 16 healthy subjects (AA), 20 sickle cell-hemoglobin C disease (SC) patients and 16 sickle cell anemia (SS) patients. Results Muscle microvascular oxygenation was reduced in SS patients compared to the SC and AA groups and this reduction was not related to hemorhelogical abnormalities. No difference was observed between the three groups for oxygen consumption and vasomotion activity. Muscle microvascular blood flow was higher in SS patients compared to the AA group, and tended to be higher compared to the SC group. Multivariate analysis revealed that muscle oxygen consumption was independently associated with muscle microvascular blood flow in the two sickle cell groups (SC and SS). Finally, despite reduced muscle force in sickle cell patients, their local muscle fatigability was similar to that of the healthy subjects. Conclusions Sickle cell patients have normal resting muscle oxygen consumption and fatigability despite hemorheological alterations and, for SS patients only, reduced muscle microvascular oxygenation and increased microvascular blood flow. Two alternative mechanisms can be proposed for SS patients: 1) the increased muscle microvascular blood flow is a way to compensate for the lower muscle microvascular oxygenation to maintain muscle oxygen consumption to normal values or 2) the reduced microvascular oxygenation coupled with a normal resting muscle oxygen consumption could indicate that there is slight hypoxia within the muscle which is not sufficient to limit

  17. Normal muscle oxygen consumption and fatigability in sickle cell patients despite reduced microvascular oxygenation and hemorheological abnormalities.

    PubMed

    Waltz, Xavier; Pichon, Aurélien; Lemonne, Nathalie; Mougenel, Danièle; Lalanne-Mistrih, Marie-Laure; Lamarre, Yann; Tarer, Vanessa; Tressières, Benoit; Etienne-Julan, Maryse; Hardy-Dessources, Marie-Dominique; Hue, Olivier; Connes, Philippe

    2012-01-01

    Although it has been hypothesized that muscle metabolism and fatigability could be impaired in sickle cell patients, no study has addressed this issue. We compared muscle metabolism and function (muscle microvascular oxygenation, microvascular blood flow, muscle oxygen consumption and muscle microvascular oxygenation variability, which reflects vasomotion activity, maximal muscle force and local muscle fatigability) and the hemorheological profile at rest between 16 healthy subjects (AA), 20 sickle cell-hemoglobin C disease (SC) patients and 16 sickle cell anemia (SS) patients. Muscle microvascular oxygenation was reduced in SS patients compared to the SC and AA groups and this reduction was not related to hemorhelogical abnormalities. No difference was observed between the three groups for oxygen consumption and vasomotion activity. Muscle microvascular blood flow was higher in SS patients compared to the AA group, and tended to be higher compared to the SC group. Multivariate analysis revealed that muscle oxygen consumption was independently associated with muscle microvascular blood flow in the two sickle cell groups (SC and SS). Finally, despite reduced muscle force in sickle cell patients, their local muscle fatigability was similar to that of the healthy subjects. Sickle cell patients have normal resting muscle oxygen consumption and fatigability despite hemorheological alterations and, for SS patients only, reduced muscle microvascular oxygenation and increased microvascular blood flow. Two alternative mechanisms can be proposed for SS patients: 1) the increased muscle microvascular blood flow is a way to compensate for the lower muscle microvascular oxygenation to maintain muscle oxygen consumption to normal values or 2) the reduced microvascular oxygenation coupled with a normal resting muscle oxygen consumption could indicate that there is slight hypoxia within the muscle which is not sufficient to limit mitochondrial respiration but increases muscle

  18. Defining the transcriptional signature of skeletal muscle stem cells.

    PubMed

    Yablonka-Reuveni, Z; Day, K; Vine, A; Shefer, G

    2008-04-01

    Satellite cells, the main source of myoblasts in postnatal muscle, are located beneath the myofiber basal lamina. The myogenic potential of satellite cells was initially documented based on their capacity to produce progeny that fused into myotubes. More recently, molecular markers of resident satellite cells were identified, further contributing to defining these cells as myogenic stem cells that produce differentiating progeny and self-renew. Herein, we discuss aspects of the satellite cell transcriptional milieu that have been intensively investigated in our research. We elaborate on the expression patterns of the paired box (Pax) transcription factors Pax3 and Pax7, and on the myogenic regulatory factors myogenic factor 5 (Myf5), myogenic determination factor 1 (MyoD), and myogenin. We also introduce original data on MyoD upregulation in newly activated satellite cells, which precedes the first round of cell proliferation. Such MyoD upregulation occurred even when parent myofibers with their associated satellite cells were exposed to pharmacological inhibitors of hepatocyte growth factor and fibroblast growth factor receptors, which are typically involved in promoting satellite cell proliferation. These observations support the hypothesis that most satellite cells in adult muscle are committed to rapidly entering myogenesis. We also detected expression of serum response factor in resident satellite cells prior to MyoD expression, which may facilitate the rapid upregulation of MyoD. Aspects of satellite cell self-renewal based on the reemergence of cells expressing Pax7, but not MyoD, in myogenic cultures are discussed further herein. We conclude by describing our recent studies using transgenic mice in which satellite cells are traced and isolated based on their expression of green fluorescence protein driven by regulatory elements of the nestin promoter (nestin-green fluorescence protein). This feature provides us with a novel means of studying satellite cell

  19. Resistance training alters skeletal muscle structure and function in human heart failure: effects at the tissue, cellular and molecular levels

    PubMed Central

    Toth, Michael J; Miller, Mark S; VanBuren, Peter; Bedrin, Nicholas G; LeWinter, Martin M; Ades, Philip A; Palmer, Bradley M

    2012-01-01

    Reduced skeletal muscle function in heart failure (HF) patients may be partially explained by altered myofilament protein content and function. Resistance training increases muscle function, although whether these improvements are achieved by correction of myofilament deficits is not known. To address this question, we examined 10 HF patients and 14 controls prior to and following an 18 week high-intensity resistance training programme. Evaluations of whole muscle size and strength, single muscle fibre size, ultrastructure and tension and myosin–actin cross-bridge mechanics and kinetics were performed. Training improved whole muscle isometric torque in both groups, although there were no alterations in whole muscle size or single fibre cross-sectional area or isometric tension. Unexpectedly, training reduced the myofibril fractional area of muscle fibres in both groups. This structural change manifested functionally as a reduction in the number of strongly bound myosin–actin cross-bridges during Ca2+ activation. When post-training single fibre tension data were corrected for the loss of myofibril fractional area, we observed an increase in tension with resistance training. Additionally, training corrected alterations in cross-bridge kinetics (e.g. myosin attachment time) in HF patients back to levels observed in untrained controls. Collectively, our results indicate that improvements in myofilament function in sedentary elderly with and without HF may contribute to increased whole muscle function with resistance training. More broadly, these data highlight novel cellular and molecular adaptations in muscle structure and function that contribute to the resistance-trained phenotype. PMID:22199163

  20. Differential requirement for satellite cells during overload-induced muscle hypertrophy in growing versus mature mice.

    PubMed

    Murach, Kevin A; White, Sarah H; Wen, Yuan; Ho, Angel; Dupont-Versteegden, Esther E; McCarthy, John J; Peterson, Charlotte A

    2017-07-10

    Pax7+ satellite cells are required for skeletal muscle fiber growth during post-natal development in mice. Satellite cell-mediated myonuclear accretion also appears to persist into early adulthood. Given the important role of satellite cells during muscle development, we hypothesized that the necessity of satellite cells for adaptation to an imposed hypertrophic stimulus depends on maturational age. Pax7 CreER -R26R DTA mice were treated for 5 days with vehicle (satellite cell-replete, SC+) or tamoxifen (satellite cell-depleted, SC-) at 2 months (young) and 4 months (mature) of age. Following a 2-week washout, mice were subjected to sham surgery or 10 day synergist ablation overload of the plantaris (n = 6-9 per group). The surgical approach minimized regeneration, de novo fiber formation, and fiber splitting while promoting muscle fiber growth. Satellite cell density (Pax7+ cells/fiber), embryonic myosin heavy chain expression (eMyHC), and muscle fiber cross sectional area (CSA) were evaluated via immunohistochemistry. Myonuclei (myonuclei/100 mm) were counted on isolated single muscle fibers. Tamoxifen treatment depleted satellite cells by ≥90% and prevented myonuclear accretion with overload in young and mature mice (p < 0.05). Satellite cells did not recover in SC- mice after overload. Average muscle fiber CSA increased ~20% in young SC+ (p = 0.07), mature SC+ (p < 0.05), and mature SC- mice (p < 0.05). In contrast, muscle fiber hypertrophy was prevented in young SC- mice. Muscle fiber number increased only in mature mice after overload (p < 0.05), and eMyHC expression was variable, specifically in mature SC+ mice. Reliance on satellite cells for overload-induced hypertrophy is dependent on maturational age, and global responses to overload differ in young versus mature mice.

  1. Contractile activity of human skeletal muscle cells prevents insulin resistance by inhibiting pro-inflammatory signalling pathways.

    PubMed

    Lambernd, S; Taube, A; Schober, A; Platzbecker, B; Görgens, S W; Schlich, R; Jeruschke, K; Weiss, J; Eckardt, K; Eckel, J

    2012-04-01

    Obesity is closely associated with muscle insulin resistance and is a major risk factor for the pathogenesis of type 2 diabetes. Regular physical activity not only prevents obesity, but also considerably improves insulin sensitivity and skeletal muscle metabolism. We sought to establish and characterise an in vitro model of human skeletal muscle contraction, with a view to directly studying the signalling pathways and mechanisms that are involved in the beneficial effects of muscle activity. Contracting human skeletal muscle cell cultures were established by applying electrical pulse stimulation. To induce insulin resistance, skeletal muscle cells were incubated with human adipocyte-derived conditioned medium, monocyte chemotactic protein (MCP)-1 and chemerin. Similarly to in exercising skeletal muscle in vivo, electrical pulse stimulation induced contractile activity in human skeletal muscle cells, combined with the formation of sarcomeres, activation of AMP-activated protein kinase (AMPK) and increased IL-6 secretion. Insulin-stimulated glucose uptake was substantially elevated in contracting cells compared with control. The incubation of skeletal muscle cells with adipocyte-conditioned media, chemerin and MCP-1 significantly reduced the insulin-stimulated phosphorylation of Akt. This effect was abrogated by concomitant pulse stimulation of the cells. Additionally, pro-inflammatory signalling by adipocyte-derived factors was completely prevented by electrical pulse stimulation of the myotubes. We showed that the effects of electrical pulse stimulation on skeletal muscle cells were similar to the effect of exercise on skeletal muscle in vivo in terms of enhanced AMPK activation and IL-6 secretion. In our model, muscle contractile activity eliminates insulin resistance by blocking pro-inflammatory signalling pathways. This novel model therefore provides a unique tool for investigating the molecular mechanisms that mediate the beneficial effects of muscle

  2. Bioenergetic Impairment in Congenital Muscular Dystrophy Type 1A and Leigh Syndrome Muscle Cells

    PubMed Central

    Fontes-Oliveira, Cibely C.; Steinz, Maarten; Schneiderat, Peter; Mulder, Hindrik; Durbeej, Madeleine

    2017-01-01

    Skeletal muscle has high energy requirement and alterations in metabolism are associated with pathological conditions causing muscle wasting and impaired regeneration. Congenital muscular dystrophy type 1A (MDC1A) is a severe muscle disorder caused by mutations in the LAMA2 gene. Leigh syndrome (LS) is a neurometabolic disease caused by mutations in genes related to mitochondrial function. Skeletal muscle is severely affected in both diseases and a common feature is muscle weakness that leads to hypotonia and respiratory problems. Here, we have investigated the bioenergetic profile in myogenic cells from MDC1A and LS patients. We found dysregulated expression of genes related to energy production, apoptosis and proteasome in myoblasts and myotubes. Moreover, impaired mitochondrial function and a compensatory upregulation of glycolysis were observed when monitored in real-time. Also, alterations in cell cycle populations in myoblasts and enhanced caspase-3 activity in myotubes were observed. Thus, we have for the first time demonstrated an impairment of the bioenergetic status in human MDC1A and LS muscle cells, which could contribute to cell cycle disturbance and increased apoptosis. Our findings suggest that skeletal muscle metabolism might be a promising pharmacological target in order to improve muscle function, energy efficiency and tissue maintenance of MDC1A and LS patients. PMID:28367954

  3. Bioengineered constructs combined with exercise enhance stem cell-mediated treatment of volumetric muscle loss

    PubMed Central

    Quarta, Marco; Cromie, Melinda; Chacon, Robert; Blonigan, Justin; Garcia, Victor; Akimenko, Igor; Hamer, Mark; Paine, Patrick; Stok, Merel; Shrager, Joseph B.; Rando, Thomas A.

    2017-01-01

    Volumetric muscle loss (VML) is associated with loss of skeletal muscle function, and current treatments show limited efficacy. Here we show that bioconstructs suffused with genetically-labelled muscle stem cells (MuSCs) and other muscle resident cells (MRCs) are effective to treat VML injuries in mice. Imaging of bioconstructs implanted in damaged muscles indicates MuSCs survival and growth, and ex vivo analyses show force restoration of treated muscles. Histological analysis highlights myofibre formation, neovascularisation, but insufficient innervation. Both innervation and in vivo force production are enhanced when implantation of bioconstructs is followed by an exercise regimen. Significant improvements are also observed when bioconstructs are used to treat chronic VML injury models. Finally, we demonstrate that bioconstructs made with human MuSCs and MRCs can generate functional muscle tissue in our VML model. These data suggest that stem cell-based therapies aimed to engineer tissue in vivo may be effective to treat acute and chronic VML. PMID:28631758

  4. Sprouty1 Regulates Reversible Quiescence of a Self-Renewing Adult Muscle Stem Cell Pool during Regeneration

    PubMed Central

    Shea, Kelly L.; Xiang, Wanyi; LaPorta, Vincent S.; Licht, Jonathan D.; Keller, Charles; Basson, M. Albert; Brack, Andrew S.

    2010-01-01

    Summary Satellite cells are a heterogeneous population of skeletal muscle specific stem cells capable of self-renewal and differentiation after transplantation. Whether quiescent satellite cells can self-renew and contribute to muscle fiber repair in their endogenous environment in normal regenerating muscle has remained unknown. The transcription factor Pax7 is expressed in satellite cells and is critical for establishing the adult satellite cell pool. Using a temporally-inducible genetic lineage tracing approach (Pax7-CreERtm; R26R-lacZ) to fate-map adult satellite cells, we show that in response to injury quiescent adult Pax7+ cells enter the cell cycle; a subpopulation return to quiescence to fully replenish the satellite cell compartment and the others contribute to de novo muscle fiber formation. We demonstrate that Sprouty1 (Spry1), an inhibitor of receptor tyrosine kinase signaling, is robustly expressed in quiescent Pax7+ satellite cells in uninjured adult muscle, down-regulated in proliferating myogenic cells in injured muscles, and re-induced as Pax7+ cells return to quiescence in regenerated muscles. We show through deletion of Spry1 specifically in cycling adult Pax7+ satellite cells, that Spry1 is required for the return to quiescence and homeostasis of the self-renewing Pax7+ satellite cell pool during repair. Satellite cells unable to return to quiescence succumb to apoptosis leading to a diminished self-renewing Pax7-derived satellite cell pool. Our results define a novel role for Spry1 in adult stem cell biology and tissue repair. PMID:20144785

  5. Optimisation of isolation of richly pure and homogeneous primary human colonic smooth muscle cells.

    PubMed

    Tattoli, I; Corleto, V D; Taffuri, M; Campanini, N; Rindi, G; Caprilli, R; Delle Fave, G; Severi, C

    2004-11-01

    Inherent properties of gastrointestinal smooth muscle can be assessed using isolated cell suspensions. Currently available isolation techniques, based on short 2-h enzymatic digestion, however, present the disadvantage of low cellular yield with brief viability. These features are an important limiting factor especially in studies in humans in which tissue may not be available daily and mixing of samples is not recommended. To optimise the isolation procedure of cells from human colon to obtain a richly pure primary smooth muscle cell preparation. Slices of circular muscle layer, obtained from surgical specimens of human colon, were incubated overnight in Dulbecco's modified eagle's medium supplemented with antibiotics, foetal bovine serum, an ATP-regenerating system and collagenase. On the following day, digested muscle strips were suspended in HEPES buffer, and spontaneously dissociated smooth muscle cells were harvested and used either immediately or maintained in suspension for up to 72 h. Cell yield, purity, viability, contractile responses, associated intracellular calcium signals and RNA and protein extraction were evaluated and compared to cell suspensions obtained with the current short digestion protocol. The overnight isolation protocol offers the advantage of obtaining a pure, homogeneous, long-life viable cell suspension that maintains a fully differentiated smooth muscle phenotype unchanged for at least 72 h and that allows multiple functional/biochemical studies and efficient RNA extraction from a single human specimen.

  6. Differentiation of mammalian skeletal muscle cells cultured on microcarrier beads in a rotating cell culture system

    NASA Technical Reports Server (NTRS)

    Torgan, C. E.; Burge, S. S.; Collinsworth, A. M.; Truskey, G. A.; Kraus, W. E.

    2000-01-01

    The growth and repair of adult skeletal muscle are due in part to activation of muscle precursor cells, commonly known as satellite cells or myoblasts. These cells are responsive to a variety of environmental cues, including mechanical stimuli. The overall goal of the research is to examine the role of mechanical signalling mechanisms in muscle growth and plasticity through utilisation of cell culture systems where other potential signalling pathways (i.e. chemical and electrical stimuli) are controlled. To explore the effects of decreased mechanical loading on muscle differentiation, mammalian myoblasts are cultured in a bioreactor (rotating cell culture system), a model that has been utilised to simulate microgravity. C2C12 murine myoblasts are cultured on microcarrier beads in a bioreactor and followed throughout differentiation as they form a network of multinucleated myotubes. In comparison with three-dimensional control cultures that consist of myoblasts cultured on microcarrier beads in teflon bags, myoblasts cultured in the bioreactor exhibit an attenuation in differentiation. This is demonstrated by reduced immunohistochemical staining for myogenin and alpha-actinin. Western analysis shows a decrease, in bioreactor cultures compared with control cultures, in levels of the contractile proteins myosin (47% decrease, p < 0.01) and tropomyosin (63% decrease, p < 0.01). Hydrodynamic measurements indicate that the decrease in differentiation may be due, at least in part, to fluid stresses acting on the myotubes. In addition, constraints on aggregate size imposed by the action of fluid forces in the bioreactor affect differentiation. These results may have implications for muscle growth and repair during spaceflight.

  7. Preventive Effects of Poloxamer 188 on Muscle Cell Damage Mechanics Under Oxidative Stress.

    PubMed

    Wong, Sing Wan; Yao, Yifei; Hong, Ye; Ma, Zhiyao; Kok, Stanton H L; Sun, Shan; Cho, Michael; Lee, Kenneth K H; Mak, Arthur F T

    2017-04-01

    High oxidative stress can occur during ischemic reperfusion and chronic inflammation. It has been hypothesized that such oxidative challenges could contribute to clinical risks such as deep tissue pressure ulcers. Skeletal muscles can be challenged by inflammation-induced or reperfusion-induced oxidative stress. Oxidative stress reportedly can lower the compressive damage threshold of skeletal muscles cells, causing actin filament depolymerization, and reduce membrane sealing ability. Skeletal muscles thus become easier to be damaged by mechanical loading under prolonged oxidative exposure. In this study, we investigated the preventive effect of poloxamer 188 (P188) on skeletal muscle cells against extrinsic oxidative challenges (H 2 O 2 ). It was found that with 1 mM P188 pre-treatment for 1 h, skeletal muscle cells could maintain their compressive damage threshold. The actin polymerization dynamics largely remained stable in term of the expression of cofilin, thymosin beta 4 and profilin. Laser photoporation demonstrated that membrane sealing ability was preserved even as the cells were challenged by H 2 O 2 . These findings suggest that P188 pre-treatment can help skeletal muscle cells retain their normal mechanical integrity in oxidative environments, adding a potential clinical use of P188 against the combined challenge of mechanical-oxidative stresses. Such effect may help to prevent deep tissue ulcer development.

  8. The effect of chronic treadmill exercise and acetaminophen on collagen and cross-linking in rat skeletal muscle and heart.

    PubMed

    Carroll, Chad C; Martineau, Karl; Arthur, Kathryn A; Huynh, Richard T; Volper, Brent D; Broderick, Tom L

    2015-02-15

    The purpose of this study was to determine whether exercise and/or acetaminophen (APAP) alter collagen and cross-linking in the rat gastrocnemius muscle, soleus muscle, and heart. Male Wistar rats (n = 50; 8 wk old) were divided into placebo (PLA) or APAP groups and sedentary (SED) or exercised (RUN) groups. APAP (200 mg/kg) was administered daily by oral gavage. Exercised groups ran on a treadmill 5 days/wk for 8 wk with progression to 60 min/day, 20 m/min, and 8° incline. Tissues were assayed for collagen (hydroxyproline) and hydroxylyslpyridinoline (HP) and lysylpyridinoline (LP) cross-links by HPLC. Collagen content (μg/mg dry weight) was greater in both the gastrocnemius (SED-PLA: 114 ± 16 vs. 244 ± 32; P < 0.001) and soleus (SED-PLA: 51 ± 7 vs. 99 ± 27; P = 0.005) of exercised animals. In contrast, collagen content was not significantly greater in exercised animals treated with APAP (SED-APAP: 113 ± 16 vs. 145 ± 21) and soleus (SED-APAP: 55 ± 8 vs. 57 ± 10). HP cross-linking (mmol/mol collagen) in the gastrocnemius (SED-PLA: 126 ± 28, RUN-PLA: 50 ± 7, SED-APAP: 41 ± 7, and 30 ± 4) and soleus muscles (SED-PLA: 547 ± 107, RUN-PLA: 318 ± 92, SED-APAP: 247 ± 64, and 120 ± 17) was lower in exercised rats compared with sedentary rats (P < 0.05). Cross-linking was further reduced in animals treated with APAP (P < 0.05). Neither heart collagen nor cross-linking was influenced by exercise or APAP (P > 0.05). Our findings suggest that exercise and APAP have tissue-specific effects on muscle collagen. Given the widespread use of APAP as an analgesic and antipyretic, further work in humans is warranted. Copyright © 2015 the American Physiological Society.

  9. Dietary tributyrin, an HDAC inhibitor, promotes muscle growth through enhanced terminal differentiation of satellite cells.

    PubMed

    Murray, Robert L; Zhang, Wei; Iwaniuk, Marie; Grilli, Ester; Stahl, Chad H

    2018-05-01

    Muscle growth and repair rely on two main mechanisms - myonuclear accretion and subsequent protein accumulation. Altering the ability of muscle resident stem cells (satellite cells) to progress through their myogenic lineage can have a profound effect on lifetime muscle growth and repair. The use of the histone deacetylase (HDAC) inhibitor, butyrate, has had positive outcomes on the in vitro promotion of satellite cell myogenesis. In animal models, the use of butyrate has had promising results in treating myopathic conditions as well as improving growth efficiency, but the impact of dietary butyrate on satellite cells and muscle growth has not been elucidated. We investigated the impact of tributyrin, a butyrate prodrug, on satellite cell activity and muscle growth in a piglet model. Satellite cells from tributyrin-treated piglets had altered myogenic potential, and piglets receiving tributyrin had a ~40% increase in DNA:protein ratio after 21 days, indicating the potential for enhanced muscle growth. To assess muscle growth potential, piglets were supplemented tributyrin (0.5%) during either the neonatal phase (d1-d21) and/or the nursery phase (d21-d58) in a 2 × 2 factorial design. Piglets who received tributyrin during the neonatal phase had improved growth performance at the end of the study and had a ~10% larger loin eye area and muscle fiber cross-sectional area. Tributyrin treatment in the nursery phase alone did not have a significant effect on muscle growth or feed efficiency. These findings suggest that tributyrin is a potent promoter of muscle growth via altered satellite cell myogenesis. © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  10. Functional and molecular effects of arginine butyrate and prednisone on muscle and heart in the mdx mouse model of Duchenne Muscular Dystrophy.

    PubMed

    Guerron, Alfredo D; Rawat, Rashmi; Sali, Arpana; Spurney, Christopher F; Pistilli, Emidio; Cha, Hee-Jae; Pandey, Gouri S; Gernapudi, Ramkishore; Francia, Dwight; Farajian, Viken; Escolar, Diana M; Bossi, Laura; Becker, Magali; Zerr, Patricia; de la Porte, Sabine; Gordish-Dressman, Heather; Partridge, Terence; Hoffman, Eric P; Nagaraju, Kanneboyina

    2010-06-21

    The number of promising therapeutic interventions for Duchenne Muscular Dystrophy (DMD) is increasing rapidly. One of the proposed strategies is to use drugs that are known to act by multiple different mechanisms including inducing of homologous fetal form of adult genes, for example utrophin in place of dystrophin. In this study, we have treated mdx mice with arginine butyrate, prednisone, or a combination of arginine butyrate and prednisone for 6 months, beginning at 3 months of age, and have comprehensively evaluated the functional, biochemical, histological, and molecular effects of the treatments in this DMD model. Arginine butyrate treatment improved grip strength and decreased fibrosis in the gastrocnemius muscle, but did not produce significant improvement in muscle and cardiac histology, heart function, behavioral measurements, or serum creatine kinase levels. In contrast, 6 months of chronic continuous prednisone treatment resulted in deterioration in functional, histological, and biochemical measures. Arginine butyrate-treated mice gene expression profiling experiments revealed that several genes that control cell proliferation, growth and differentiation are differentially expressed consistent with its histone deacetylase inhibitory activity when compared to control (saline-treated) mdx mice. Prednisone and combination treated groups showed alterations in the expression of genes that control fibrosis, inflammation, myogenesis and atrophy. These data indicate that 6 months treatment with arginine butyrate can produce modest beneficial effects on dystrophic pathology in mdx mice by reducing fibrosis and promoting muscle function while chronic continuous treatment with prednisone showed deleterious effects to skeletal and cardiac muscle. Our results clearly indicate the usefulness of multiple assays systems to monitor both beneficial and toxic effects of drugs with broad range of in vivo activity.

  11. Functional and Molecular Effects of Arginine Butyrate and Prednisone on Muscle and Heart in the mdx Mouse Model of Duchenne Muscular Dystrophy

    PubMed Central

    Guerron, Alfredo D.; Rawat, Rashmi; Sali, Arpana; Spurney, Christopher F.; Pistilli, Emidio; Cha, Hee-Jae; Pandey, Gouri S.; Gernapudi, Ramkishore; Francia, Dwight; Farajian, Viken; Escolar, Diana M.; Bossi, Laura; Becker, Magali; Zerr, Patricia; de la Porte, Sabine; Gordish-Dressman, Heather; Partridge, Terence; Hoffman, Eric P.; Nagaraju, Kanneboyina

    2010-01-01

    Background The number of promising therapeutic interventions for Duchenne Muscular Dystrophy (DMD) is increasing rapidly. One of the proposed strategies is to use drugs that are known to act by multiple different mechanisms including inducing of homologous fetal form of adult genes, for example utrophin in place of dystrophin. Methodology/Principal Findings In this study, we have treated mdx mice with arginine butyrate, prednisone, or a combination of arginine butyrate and prednisone for 6 months, beginning at 3 months of age, and have comprehensively evaluated the functional, biochemical, histological, and molecular effects of the treatments in this DMD model. Arginine butyrate treatment improved grip strength and decreased fibrosis in the gastrocnemius muscle, but did not produce significant improvement in muscle and cardiac histology, heart function, behavioral measurements, or serum creatine kinase levels. In contrast, 6 months of chronic continuous prednisone treatment resulted in deterioration in functional, histological, and biochemical measures. Arginine butyrate-treated mice gene expression profiling experiments revealed that several genes that control cell proliferation, growth and differentiation are differentially expressed consistent with its histone deacetylase inhibitory activity when compared to control (saline-treated) mdx mice. Prednisone and combination treated groups showed alterations in the expression of genes that control fibrosis, inflammation, myogenesis and atrophy. Conclusions/Significance These data indicate that 6 months treatment with arginine butyrate can produce modest beneficial effects on dystrophic pathology in mdx mice by reducing fibrosis and promoting muscle function while chronic continuous treatment with prednisone showed deleterious effects to skeletal and cardiac muscle. Our results clearly indicate the usefulness of multiple assays systems to monitor both beneficial and toxic effects of drugs with broad range of in vivo

  12. Identification of Skeletal Muscle Satellite Cells by Immunofluorescence with Pax7 and Laminin Antibodies.

    PubMed

    Feng, Xuesong; Naz, Faiza; Juan, Aster H; Dell'Orso, Stefania; Sartorelli, Vittorio

    2018-04-19

    Immunofluorescence is an effective method that helps to identify different cell types on tissue sections. In order to study the desired cell population, antibodies for specific cell markers are applied on tissue sections. In adult skeletal muscle, satellite cells (SCs) are stem cells that contribute to muscle repair and regeneration. Therefore, it is important to visualize and trace the satellite cell population under different physiological conditions. In resting skeletal muscle, SCs reside between the basal lamina and myofiber plasma membrane. A commonly used marker for identifying SCs on the myofibers or in cell culture is the paired box protein Pax7. In this article, an optimized Pax7 immunofluorescence protocol on skeletal muscle sections is presented that minimizes non-specific staining and background. Another antibody that recognizes a protein (laminin) of the basal lamina was also added to help identify SCs. Similar protocols can also be used to perform double or triple labeling with Pax7 and antibodies for additional proteins of interest.

  13. A Novel Method for Differentiation of Human Mesenchymal Stem Cells into Smooth Muscle-Like Cells on Clinically Deliverable Thermally Induced Phase Separation Microspheres

    PubMed Central

    Parmar, Nina; Ahmadi, Raheleh

    2015-01-01

    Muscle degeneration is a prevalent disease, particularly in aging societies where it has a huge impact on quality of life and incurs colossal health costs. Suitable donor sources of smooth muscle cells are limited and minimally invasive therapeutic approaches are sought that will augment muscle volume by delivering cells to damaged or degenerated areas of muscle. For the first time, we report the use of highly porous microcarriers produced using thermally induced phase separation (TIPS) to expand and differentiate adipose-derived mesenchymal stem cells (AdMSCs) into smooth muscle-like cells in a format that requires minimal manipulation before clinical delivery. AdMSCs readily attached to the surface of TIPS microcarriers and proliferated while maintained in suspension culture for 12 days. Switching the incubation medium to a differentiation medium containing 2 ng/mL transforming growth factor beta-1 resulted in a significant increase in both the mRNA and protein expression of cell contractile apparatus components caldesmon, calponin, and myosin heavy chains, indicative of a smooth muscle cell-like phenotype. Growth of smooth muscle cells on the surface of the microcarriers caused no change to the integrity of the polymer microspheres making them suitable for a cell-delivery vehicle. Our results indicate that TIPS microspheres provide an ideal substrate for the expansion and differentiation of AdMSCs into smooth muscle-like cells as well as a microcarrier delivery vehicle for the attached cells ready for therapeutic applications. PMID:25205072

  14. Daikenchuto ameliorates muscle hypercontractility in a murine T-cell-mediated persistent gut motor dysfunction model.

    PubMed

    Akiho, Hirotada; Nakamura, Kazuhiko

    2011-01-01

    Low-grade inflammation and immunological alterations are evident in functional gastrointestinal disorders such as irritable bowel syndrome (IBS). We evaluated the effects of daikenchuto (DKT), a pharmaceutical grade Japanese herbal medicine, on the hypercontractility of intestinal smooth muscle persisting after acute inflammation induced by a T-cell-activating anti-CD3 antibody (αCD3). BALB/c mice were injected with αCD3 (12.5 μg, i.p.), and DKT (2.7 g/kg) was administered orally once daily for 1 week. The contraction of isolated small intestinal muscle strips and muscle cells was examined on day 7 after αCD3 injection. The gene and protein expressions in the small intestines were evaluated by real-time PCR and multiplex immunoassays, respectively, on days 1, 3 and 7 after αCD3 injection. αCD3 injection resulted in significant increases in carbachol-evoked contractility in the muscle strips and isolated smooth muscle cells on day 7. DKT ameliorated the αCD3-induced muscle hypercontractility on day 7 in both the muscle strips and smooth muscle cells. αCD3 injection rapidly up- and downregulated the mRNA and protein expressions of pro- and anti-inflammatory cytokines, respectively. Although the influence of DKT on the mRNA expressions was moderate, the protein expressions of IL-13 and IL-17 were significantly decreased. We observed changes in the intestinal muscle contractility in muscle strips and muscle cells following resolution of inflammation in a T-cell-mediated model of enteropathy. The observed modulation of cytokine expression and function by DKT may lead to the development of new pharmacotherapeutic strategies aimed at a wide variety of gut motor dysfunction disorders. Copyright © 2011 S. Karger AG, Basel.

  15. Major histocompatibility complex class II molecule expression on muscle cells is regulated by differentiation: implications for the immunopathogenesis of muscle autoimmune diseases.

    PubMed

    Mantegazza, R; Gebbia, M; Mora, M; Barresi, R; Bernasconi, P; Baggi, F; Cornelio, F

    1996-08-01

    Major histocompatibility complex (MHC) class II molecules are expressed on myoblasts after interferon-gamma (IFN-gamma) treatment, suggesting a muscle cell involvement in antigen presentation in inflammatory myopathies. However, they were not observed on normal or pathological myofibers. This discrepancy might be related to different responsiveness of developmentally differentiated muscle cells to IFN-gamma. Myoblasts expressed class II transcripts and proteins after IFN-gamma, while myotubes and innervated contracting muscle cells did not show staining for class II molecules. At all cell stages no loss of IFN-gamma receptor was detected indicating that myofiber maturation blocks their capacity to express MHC class II molecules. This suggests that completely differentiated myofibers cannot participate in class II restricted immunological reactions.

  16. Myogenic Maturation by Optical-Training in Cultured Skeletal Muscle Cells.

    PubMed

    Asano, Toshifumi; Ishizuka, Toru; Yawo, Hiromu

    2017-01-01

    Optogenetic techniques are powerful tools for manipulating biological processes in identified cells using light under high temporal and spatial resolutions. Here, we describe an optogenetic training strategy to promote morphological maturation and functional development of skeletal muscle cells in vitro. Optical stimulation with a rhythmical frequency facilitates specific structural alignment of sarcomeric proteins. Optical stimulation also depolarizes the membrane potential, and induces contractile responses in synchrony with the given pattern of light pulses. These results suggest that optogenetic techniques can be employed to manipulate activity-dependent processes during myogenic development and control contraction of photosensitive skeletal muscle cells with high temporal and special precision.

  17. Aging of the skeletal muscle extracellular matrix drives a stem cell fibrogenic conversion.

    PubMed

    Stearns-Reider, Kristen M; D'Amore, Antonio; Beezhold, Kevin; Rothrauff, Benjamin; Cavalli, Loredana; Wagner, William R; Vorp, David A; Tsamis, Alkiviadis; Shinde, Sunita; Zhang, Changqing; Barchowsky, Aaron; Rando, Thomas A; Tuan, Rocky S; Ambrosio, Fabrisia

    2017-06-01

    Age-related declines in skeletal muscle regeneration have been attributed to muscle stem cell (MuSC) dysfunction. Aged MuSCs display a fibrogenic conversion, leading to fibrosis and impaired recovery after injury. Although studies have demonstrated the influence of in vitro substrate characteristics on stem cell fate, whether and how aging of the extracellular matrix (ECM) affects stem cell behavior has not been investigated. Here, we investigated the direct effect of the aged muscle ECM on MuSC lineage specification. Quantification of ECM topology and muscle mechanical properties reveals decreased collagen tortuosity and muscle stiffening with increasing age. Age-related ECM alterations directly disrupt MuSC responses, and MuSCs seeded ex vivo onto decellularized ECM constructs derived from aged muscle display increased expression of fibrogenic markers and decreased myogenicity, compared to MuSCs seeded onto young ECM. This fibrogenic conversion is recapitulated in vitro when MuSCs are seeded directly onto matrices elaborated by aged fibroblasts. When compared to young fibroblasts, fibroblasts isolated from aged muscle display increased nuclear levels of the mechanosensors, Yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ), consistent with exposure to a stiff microenvironment in vivo. Accordingly, preconditioning of young fibroblasts by seeding them onto a substrate engineered to mimic the stiffness of aged muscle increases YAP/TAZ nuclear translocation and promotes secretion of a matrix that favors MuSC fibrogenesis. The findings here suggest that an age-related increase in muscle stiffness drives YAP/TAZ-mediated pathogenic expression of matricellular proteins by fibroblasts, ultimately disrupting MuSC fate. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  18. Know the Warning Signs of a Heart Attack

    MedlinePlus

    ... No. 22 Know the Warning Signs of a Heart Attack What is a heart attack? Aheart attack happens when the blood vessels that ... hurting your heart muscle. Another name for a heart attack is myocardial infarction, or MI. If you have ...

  19. The Satellite Cell in Male and Female, Developing and Adult Mouse Muscle: Distinct Stem Cells for Growth and Regeneration

    PubMed Central

    Neal, Alice; Boldrin, Luisa; Morgan, Jennifer Elizabeth

    2012-01-01

    Satellite cells are myogenic cells found between the basal lamina and the sarcolemma of the muscle fibre. Satellite cells are the source of new myofibres; as such, satellite cell transplantation holds promise as a treatment for muscular dystrophies. We have investigated age and sex differences between mouse satellite cells in vitro and assessed the importance of these factors as mediators of donor cell engraftment in an in vivo model of satellite cell transplantation. We found that satellite cell numbers are increased in growing compared to adult and in male compared to female adult mice. We saw no difference in the expression of the myogenic regulatory factors between male and female mice, but distinct profiles were observed according to developmental stage. We show that, in contrast to adult mice, the majority of satellite cells from two week old mice are proliferating to facilitate myofibre growth; however a small proportion of these cells are quiescent and not contributing to this growth programme. Despite observed changes in satellite cell populations, there is no difference in engraftment efficiency either between satellite cells derived from adult or pre-weaned donor mice, male or female donor cells, or between male and female host muscle environments. We suggest there exist two distinct satellite cell populations: one for muscle growth and maintenance and one for muscle regeneration. PMID:22662253

  20. * Tissue-Specific Extracellular Matrix Enhances Skeletal Muscle Precursor Cell Expansion and Differentiation for Potential Application in Cell Therapy.

    PubMed

    Zhang, Deying; Zhang, Yong; Zhang, Yuanyuan; Yi, Hualin; Wang, Zhan; Wu, Rongpei; He, Dawei; Wei, Guanghui; Wei, Shicheng; Hu, Yun; Deng, Junhong; Criswell, Tracy; Yoo, James; Zhou, Yu; Atala, Anthony

    2017-08-01

    Skeletal muscle precursor cells (MPCs) are considered a key candidate for cell therapy in the treatment of skeletal muscle dysfunction due to injury, disease, or age. However, expansion of a sufficient number of functional skeletal muscle cells in vitro from a small tissue biopsy has been challenging due to changes in phenotypic expression of these cells under traditional culture conditions. Thus, the aim of the study was to develop a better culture system for the expansion and myo-differentiation of MPCs that could further be used for therapy. For this purpose, we developed an ideal method of tissue decellularization and compared the ability of different matrices to support MPC growth and differentiation. Porcine-derived skeletal muscle and liver and kidney extracellular matrix (ECM) were generated by decellularization methods consisting of distilled water, 0.2 mg/mL DNase, or 5% fetal bovine serum. Acellular matrices were further homogenized, dissolved, and combined with a hyaluronic acid-based hydrogel decorated with heparin (ECM-HA-HP). The cell proliferation and myogenic differentiation capacity of human MPCs were assessed when grown on gel alone, ECM, or each ECM-HA-HP substrate. Human MPC proliferation was significantly enhanced when cultured on the ECM-HA-HP substrates compared to the other substrates tested, with the greatest proliferation on the muscle ECM-HA-HP (mECM-HA-HP) substrate. The number of differentiated myotubes was significantly increased on the mECM-HA-HP substrate compared to the other gel-ECM substrates, as well as the numbers of MPCs expressing specific myogenic cell markers (i.e., myosin, desmin, myoD, and myf5). In conclusion, skeletal mECM-HA-HP as a culture substrate provided an optimal culture microenvironment potentially due to its similarity to the in vivo environment. These data suggest a potential use of skeletal muscle-derived ECM gel for the expansion and differentiation of human MPCs for cell-based therapy for skeletal muscle

  1. beta. -adrenergic relaxation of smooth muscle: differences between cells and tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheid, C.R.

    1987-09-01

    The present studies were carried out in an attempt to resolve the controversy about the Na/sup +/ dependence of ..beta..-adrenergic relaxation in smooth muscle. Previous studies on isolated smooth muscle cells from the toad stomach had suggested that at least some of the actions of ..beta..-adrenergic agents, including a stimulatory effect on /sup 45/Ca efflux, were dependent on the presence of a normal transmembrane Na/sup +/ gradient. Studies by other investigators using tissues derived from mammalian sources had suggested that the relaxing effect of ..beta..-adrenergic agents was Na/sup +/ independent. Uncertainty remained as to whether these discrepancies reflected differences betweenmore » cells and tissues or differences between species. Thus, in the present studies, the authors utilized both tissues and cells from the same source, the stomach muscle of the toad Bufo marinus, and assessed the Na/sup +/ dependence of ..beta..-adrenergic relaxation. They found that elimination of a normal Na/sup +/ gradient abolished ..beta..-adrenergic relaxation of isolated cells. In tissues, however, similar manipulations had no effect on relaxation. The reasons for this discrepancy are unclear but do not appear to be attributable to changes in smooth muscle function following enzymatic dispersion. Thus the controversy concerning the mechanisms of ..beta..-adrenergic relaxation may reflect inherent differences between tissues and cells.« less

  2. Two different roles of purified CD45+c-Kit+Sca-1+Lin- cells after transplantation in muscles.

    PubMed

    Yoshimoto, Momoko; Chang, Hsi; Shiota, Mitsutaka; Kobayashi, Hirohiko; Umeda, Katsutsugu; Kawakami, Atsushi; Heike, Toshio; Nakahata, Tatsutoshi

    2005-05-01

    Recent studies have indicated that bone marrow cells can regenerate damaged muscles and that they can adopt phenotypes of other cells by cell fusion. Our direct visualization system gave evidence of massive muscle regeneration by green fluorescent protein (GFP)-labeled CD45+c-Kit+Sca-1+Lin- cells (KSL cells), and we investigated the role of KSL cells in muscle regeneration after transplantation with or without lethal irradiation. In the early phase, GFP signals were clearly observed in all the muscles of only irradiated mice. Transverse cryostat sections showed GFP+myosin+ muscle fibers, along with numerous GFP+ hematopoietic cells in damaged muscle. These phenomena were temporary, and GFP signals had dramatically reduced 30 days after transplantation. After 6 months, GFP+ fibers could hardly be detected, but GFP+c-Met+ mononuclear cells were located beneath the basal lamina where satellite cells usually exist in both conditioned mice. Immunostaining of isolated single fibers revealed GFP+PAX7+, GFP+MyoD+, and GFP+Myf5+ satellite-like cells on the fibers. Single-fiber cultures from these mice showed proliferation of GFP+ fibers. These results indicate two different roles of KSL cells: one leading to regeneration of damaged muscles in the early phase and the other to conversion into satellite cells in the late phase.

  3. Tracking fusion of human mesenchymal stem cells after transplantation to the heart.

    PubMed

    Freeman, Brian T; Kouris, Nicholas A; Ogle, Brenda M

    2015-06-01

    Evidence suggests that transplanted mesenchymal stem cells (MSCs) can aid recovery of damaged myocardium caused by myocardial infarction. One possible mechanism for MSC-mediated recovery is reprogramming after cell fusion between transplanted MSCs and recipient cardiac cells. We used a Cre/LoxP-based luciferase reporter system coupled to biophotonic imaging to detect fusion of transplanted human pluripotent stem cell-derived MSCs to cells of organs of living mice. Human MSCs, with transient expression of a viral fusogen, were delivered to the murine heart via a collagen patch. At 2 days and 1 week later, living mice were probed for bioluminescence indicative of cell fusion. Cell fusion was detected at the site of delivery (heart) and in distal tissues (i.e., stomach, small intestine, liver). Fusion was confirmed at the cellular scale via fluorescence in situ hybridization for human-specific and mouse-specific centromeres. Human cells in organs distal to the heart were typically located near the vasculature, suggesting MSCs and perhaps MSC fusion products have the ability to migrate via the circulatory system to distal organs and engraft with local cells. The present study reveals previously unknown migratory patterns of delivered human MSCs and associated fusion products in the healthy murine heart. The study also sets the stage for follow-on studies to determine the functional effects of cell fusion in a model of myocardial damage or disease. Mesenchymal stem cells (MSCs) are transplanted to the heart, cartilage, and other tissues to recover lost function or at least limit overactive immune responses. Analysis of tissues after MSC transplantation shows evidence of fusion between MSCs and the cells of the recipient. To date, the biologic implications of cell fusion remain unclear. A newly developed in vivo tracking system was used to identify MSC fusion products in living mice. The migratory patterns of fusion products were determined both in the target organ (i

  4. Smooth muscle architecture within cell-dense vascular tissues influences functional contractility.

    PubMed

    Win, Zaw; Vrla, Geoffrey D; Steucke, Kerianne E; Sevcik, Emily N; Hald, Eric S; Alford, Patrick W

    2014-12-01

    The role of vascular smooth muscle architecture in the function of healthy and dysfunctional vessels is poorly understood. We aimed at determining the relationship between vascular smooth muscle architecture and contractile output using engineered vascular tissues. We utilized microcontact printing and a microfluidic cell seeding technique to provide three different initial seeding conditions, with the aim of influencing the cellular architecture within the tissue. Cells seeded in each condition formed confluent and aligned tissues but within the tissues, the cellular architecture varied. Tissues with a more elongated cellular architecture had significantly elevated basal stress and produced more contractile stress in response to endothelin-1 stimulation. We also found a correlation between the contractile phenotype marker expression and the cellular architecture, contrary to our previous findings in non-confluent tissues. Taken with previous results, these data suggest that within cell-dense vascular tissues, smooth muscle contractility is strongly influenced by cell and tissue architectures.

  5. Identification of myogenic-endothelial progenitor cells in the interstitial spaces of skeletal muscle.

    PubMed

    Tamaki, Tetsuro; Akatsuka, Akira; Ando, Kiyoshi; Nakamura, Yoshihiko; Matsuzawa, Hideyuki; Hotta, Tomomitsu; Roy, Roland R; Edgerton, V Reggie

    2002-05-13

    Putative myogenic and endothelial (myo-endothelial) cell progenitors were identified in the interstitial spaces of murine skeletal muscle by immunohistochemistry and immunoelectron microscopy using CD34 antigen. Enzymatically isolated cells were characterized by fluorescence-activated cell sorting on the basis of cell surface antigen expression, and were sorted as a CD34+ and CD45- fraction. Cells in this fraction were approximately 94% positive for Sca-1, and mostly negative (<3% positive) for CD14, 31, 49, 144, c-kit, and FLK-1. The CD34+/45- cells formed colonies in clonal cell cultures and colony-forming units displayed the potential to differentiate into adipocytes, endothelial, and myogenic cells. The CD34+/45- cells fully differentiated into vascular endothelial cells and skeletal muscle fibers in vivo after transplantation. Immediately after sorting, CD34+/45- cells expressed only c-met mRNA, and did not express any other myogenic cell-related markers such as MyoD, myf-5, myf-6, myogenin, M-cadherin, Pax-3, and Pax-7. However, after 3 d of culture, these cells expressed mRNA for all myogenic markers. CD34+/45- cells were distinct from satellite cells, as they expressed Bcrp1/ABCG2 gene mRNA (Zhou et al., 2001). These findings suggest that myo-endothelial progenitors reside in the interstitial spaces of mammalian skeletal muscles, and that they can potentially contribute to postnatal skeletal muscle growth.

  6. Chronic ethanol increases calcium/calmodulin-dependent protein kinaseIIδ gene expression and decreases monoamine oxidase amount in rat heart muscles: Rescue effect of Zingiber officinale (ginger) extract.

    PubMed

    Heshmati, Elaheh; Shirpoor, Alireza; Kheradmand, Fatemeh; Alizadeh, Mohammad; Gharalari, Farzaneh Hosseini

    2018-01-01

    Association between chronic alcohol intake and cardiac abnormality is well known; however, the precise underlying molecular mediators involved in ethanol-induced heart abnormalities remain elusive. This study investigated the effect of chronic ethanol exposure on calcium/calmodulin-dependent protein kinase IIδ (CaMKIIδ) gene expression and monoamine oxidase (MAO) levels and histological changes in rat heart. It was also planned to find out whether Zingiber officinale (ginger) extract mitigated the abnormalities induced by ethanol in rat heart. Male wistar rats were divided into three groups of eight animals each: control, ethanol, and ginger extract treated-ethanol (GETE) groups. After 6 weeks of treatment, the results revealed a significant increase in CaMKIIδtotal and isoforms δ2 and δ3 of CaMKIIδ gene expression as well as a significant decrease in the MAO levels in the ethanol group compared to that in the control group. Moreover, compared to the control group, the ethanol group showed histological changes, such as fibrosis, heart muscle cells proliferation, myocyte hypertrophy, vacuolization, and focal lymphocytic infiltration. Consumption of ginger extract along with ethanol ameliorated CaMKIIδtotal. In addition, compared to the ethanol group, isoforms gene expression changed and increased the reduced MAO levels and mitigated heart structural changes. These findings indicate that ethanol-induced heart abnormalities may, in part, be associated with Ca 2+ homeostasis changes mediated by overexpression of CaMKIIδ gene and the decrease of MAO levels and that these effects can be alleviated by using ginger extract as an antioxidant and anti-inflammatory agent.

  7. Differentiation of Human Adipose Derived Stem Cells into Smooth Muscle Cells Is Modulated by CaMKIIγ

    PubMed Central

    Aji, Kaisaier; Maimaijiang, Munila; Aimaiti, Abudusaimi; Rexiati, Mulati; Azhati, Baihetiya; Tusong, Hamulati

    2016-01-01

    The multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII) is known to participate in maintenance and switches of smooth muscle cell (SMC) phenotypes. However, which isoform of CaMKII is involved in differentiation of adult mesenchymal stem cells into contractile SMCs remains unclear. In the present study, we detected γ isoform of CaMKII in differentiation of human adipose derived stem cells (hASCs) into SMCs that resulted from treatment with TGF-β1 and BMP4 in combination for 7 days. The results showed that CaMKIIγ increased gradually during differentiation of hASCs as determined by real-time PCR and western blot analysis. The siRNA-mediated knockdown of CaMKIIγ decreased the protein levels and transcriptional levels of smooth muscle contractile markers (a-SMA, SM22a, calponin, and SM-MHC), while CaMKIIγ overexpression increases the transcriptional and protein levels of smooth muscle contractile markers. These results suggested that γ isoform of CaMKII plays a significant role in smooth muscle differentiation of hASCs. PMID:27493668

  8. Exercise training dose differentially alters muscle and heart capillary density and metabolic functions in an obese rat with metabolic syndrome.

    PubMed

    Machado, Marcus Vinicius; Vieira, Aline Bomfim; da Conceição, Fabiana Gomes; Nascimento, Alessandro Rodrigues; da Nóbrega, Antonio Claudio Lucas; Tibirica, Eduardo

    2017-12-01

    What is the central question of this study? Regular exercise is recommended as a non-pharmacological approach for the prevention and treatment of metabolic syndrome. However, the impact of different combinations of intensity, duration and frequency of exercise on metabolic syndrome and microvascular density has not been reported. What is the main finding and its importance? We provide evidence on the impact of aerobic exercise dose on metabolic and microvascular alterations in an experimental model of metabolic syndrome induced by high-fat diet. We found that the exercise frequency and duration were the main factors affecting anthropometric and metabolic parameters and microvascular density in the skeletal muscle. Exercise intensity was related only to microvascular density in the heart. We evaluated the effect of the frequency, duration and intensity of exercise training on metabolic parameters and structural capillary density in obese rats with metabolic syndrome. Wistar-Kyoto rats were fed either a standard commercial diet (CON) or a high-fat diet (HFD). Animals that received the HFD were randomly separated into either a sedentary (SED) group or eight different exercise groups that varied according to the frequency, duration and intensity of training. After 12 weeks of aerobic exercise training, the body composition, aerobic capacity, haemodynamic variables, metabolic parameters and capillary density in the heart and skeletal muscle were evaluated. All the exercise training groups showed reduced resting systolic blood pressure and heart rate and normalized fasting glucose. The minimal amount of exercise (90 min per week) produced little effect on metabolic syndrome parameters. A moderate amount of exercise (150 min per week) was required to reduce body weight and improve capillary density. However, only the high amount of exercise (300 min per week) significantly reduced the amount of body fat depots. The three-way ANOVA showed a main effect of exercise

  9. A 310-bp minimal promoter mediates smooth muscle cell-specific expression of telokin.

    PubMed

    Smith, A F; Bigsby, R M; Word, R A; Herring, B P

    1998-05-01

    A cell-specific promoter located in an intron of the smooth muscle myosin light chain kinase gene directs transcription of telokin exclusively in smooth muscle cells. Transgenic mice were generated in which a 310-bp rabbit telokin promoter fragment, extending from -163 to +147, was used to drive expression of simian virus 40 large T antigen. Smooth muscle-specific expression of the T-antigen transgene paralleled that of the endogenous telokin gene in all smooth muscle tissues except uterus. The 310-bp promoter fragment resulted in very low levels of transgene expression in uterus; in contrast, a transgene driven by a 2.4-kb fragment (-2250 to +147) resulted in high levels of transgene expression in uterine smooth muscle. Telokin expression levels correlate with the estrogen status of human myometrial tissues, suggesting that deletion of an estrogen response element (ERE) may account for the low levels of transgene expression driven by the 310-bp rabbit telokin promoter in uterine smooth muscle. Experiments in A10 smooth muscle cells directly showed that reporter gene expression driven by the 2.4-kb, but not 310-bp, promoter fragment could be stimulated two- to threefold by estrogen. This stimulation was mediated through an ERE located between -1447 and -1474. Addition of the ERE to the 310-bp fragment restored estrogen responsiveness in A10 cells. These data demonstrate that in addition to a minimal 310-bp proximal promoter at least one distal cis-acting regulatory element is required for telokin expression in uterine smooth muscle. The distal element may include an ERE between -1447 and -1474.

  10. Skeletal muscle biopsy studies of cardiac patients.

    PubMed

    Fekete, G; Boros, Z; Cserhalmi, L; Apor, P

    1987-01-01

    Eleven patients diagnosed and treated for congestive cardiomyopathy (COCM) of unknown aetiology, and another 10 patients, with congestive alcoholic heart muscle disease (ACOCM) were studied. Muscle biopsy samples were obtained from the vastus lateralis (VL) and the gastrocnemius (G) muscles. In part of the sample muscle the fibre pattern was classified by means of ATPase activity staining, a technique based on the pH lability of the fibres concerned. Fibre typing and area measurements were carried out by light microscope. The other part of the sample was used as muscle homogenate of which the Ca2+-activated ATPase activity as well as citrate synthetase (CS) and aldolase activities were measured. No significant difference was found in these enzyme activities between the two groups of patients. The proportion of the slow twitch (ST) fibres in the VL, mainly in the patients with ACOCM, was lower as compared to data for healthy subjects. A similar tendency was revealed for G. In both muscles tested, the area of ST fibres was smaller in the ACOCM group. The fast twitch (FT) fibre area proved to be slightly different in the two groups of subjects tested. Occurrence of degenerative signs in the histological tests was higher in the ACOCM than in the COCM group. It was concluded that differences in the skeletal muscles of patients with ACOCM and COCM may primarily account for the alcoholism. The disease of the heart muscle has little effect on the function of skeletal muscle. Even so, a low amount or lack of physical activity may have an unfavourable influence on the skeletal muscles of patients with heart muscle disease.

  11. Submaximal Exercise Capacity in Juvenile Dermatomyositis after Longterm Disease: The Contribution of Muscle, Lung, and Heart Involvement.

    PubMed

    Berntsen, Kristin Schjander; Tollisen, Anita; Schwartz, Thomas; Kirkhus, Eva; Aaløkken, Trond Mogens; Lund, May Brit; Flatø, Berit; Sjaastad, Ivar; Sanner, Helga

    2017-06-01

    To compare submaximal exercise capacity in patients with juvenile dermatomyositis (JDM) with controls, and analyze contributions of muscle, heart, and lung impairment in patients. Fifty-nine patients with JDM, with a mean 16.9 years after symptom onset, and 59 sex- and age-matched controls completed a 6-min walk test (6MWT) and a timed up and go (TUG) test. Muscle function, disease activity/damage, and health-related quality of life (HRQOL) were assessed by validated tools; heart function by echocardiography and electrocardiography; and lung function by spirometry, DLCO, and body plethysmography. A thoracic high-resolution computed tomography (HRCT) scan and magnetic resonance imaging of the thighs were completed in patients. The 6MWT distance (6MWD) was 592 ± 81 m in patients versus 649 ± 79 m in controls (p < 0.001), and 563 ± 75 m in active versus 622 ± 76 m in inactive JDM (p = 0.004). The TUG time was 13.1 ± 2.1 s in patients versus 12.3 ± 2.0 s in controls (p = 0.034), and 13.7 ± 2.2 s in active versus 12.5 ± 1.8 s in inactive JDM (p = 0.028). No statistically significant difference was found between inactive JDM and controls in either test. In patients, the Childhood Myositis Assessment Score influenced the 6MWD and TUG time the most, followed by a low DLCO and HRCT pathology in the 6MWT and forced vital capacity in the TUG test. Medical Outcomes Study Short Form-36 physical component summary correlated strongly with both tests. Submaximal exercise capacity was reduced in patients with JDM, particularly those with active disease. This reduction was associated with muscle and lung dysfunction and poorer HRQOL.

  12. Gene and cell-based therapies for heart disease.

    PubMed

    Melo, Luis G; Pachori, Alok S; Kong, Deling; Gnecchi, Massimiliano; Wang, Kai; Pratt, Richard E; Dzau, Victor J

    2004-04-01

    Heart disease remains the prevalent cause of premature death and accounts for a significant proportion of all hospital admissions. Recent developments in understanding the molecular mechanisms of myocardial disease have led to the identification of new therapeutic targets, and the availability of vectors with enhanced myocardial tropism offers the opportunity for the design of gene therapies for both protection and rescue of the myocardium. Genetic therapies have been devised to treat complex diseases such as myocardial ischemia, heart failure, and inherited myopathies in various animal models. Some of these experimental therapies have made a successful transition to clinical trial and are being considered for use in human patients. The recent isolation of endothelial and cardiomyocyte precursor cells from adult bone marrow may permit the design of strategies for repair of the damaged heart. Cell-based therapies may have potential application in neovascularization and regeneration of ischemic and infarcted myocardium, in blood vessel reconstruction, and in bioengineering of artificial organs and prostheses. We expect that advances in the field will lead to the development of safer and more efficient vectors. The advent of genomic screening technology should allow the identification of novel therapeutic targets and facilitate the detection of disease-causing polymorphisms that may lead to the design of individualized gene and cell-based therapies.

  13. Skeletal muscle microvascular oxygenation dynamics in heart failure: exercise training and nitric oxide-mediated function.

    PubMed

    Hirai, Daniel M; Copp, Steven W; Holdsworth, Clark T; Ferguson, Scott K; McCullough, Danielle J; Behnke, Bradley J; Musch, Timothy I; Poole, David C

    2014-03-01

    Chronic heart failure (CHF) impairs nitric oxide (NO)-mediated regulation of skeletal muscle O2 delivery-utilization matching such that microvascular oxygenation falls faster (i.e., speeds PO2mv kinetics) during increases in metabolic demand. Conversely, exercise training improves (slows) muscle PO2mv kinetics following contractions onset in healthy young individuals via NO-dependent mechanisms. We tested the hypothesis that exercise training would improve contracting muscle microvascular oxygenation in CHF rats partly via improved NO-mediated function. CHF rats (left ventricular end-diastolic pressure = 17 ± 2 mmHg) were assigned to sedentary (n = 11) or progressive treadmill exercise training (n = 11; 5 days/wk, 6-8 wk, final workload of 60 min/day at 35 m/min; -14% grade downhill running) groups. PO2mv was measured via phosphorescence quenching in the spinotrapezius muscle at rest and during 1-Hz twitch contractions under control (Krebs-Henseleit solution), sodium nitroprusside (SNP; NO donor; 300 μM), and N(G)-nitro-l-arginine methyl ester (L-NAME, nonspecific NO synthase blockade; 1.5 mM) superfusion conditions. Exercise-trained CHF rats had greater peak oxygen uptake and spinotrapezius muscle citrate synthase activity than their sedentary counterparts (p < 0.05 for both). The overall speed of the PO2mv fall during contractions (mean response time; MRT) was slowed markedly in trained compared with sedentary CHF rats (sedentary: 20.8 ± 1.4, trained: 32.3 ± 3.0 s; p < 0.05), and the effect was not abolished by L-NAME (sedentary: 16.8 ± 1.5, trained: 31.0 ± 3.4 s; p > 0.05). Relative to control, SNP increased MRT in both groups such that trained CHF rats had slower kinetics (sedentary: 43.0 ± 6.8, trained: 55.5 ± 7.8 s; p < 0.05). Improved NO-mediated function is not obligatory for training-induced improvements in skeletal muscle microvascular oxygenation (slowed PO2mv kinetics) following contractions onset in rats with CHF.

  14. Skeletal muscle microvascular oxygenation dynamics in heart failure: exercise training and nitric oxide-mediated function

    PubMed Central

    Copp, Steven W.; Holdsworth, Clark T.; Ferguson, Scott K.; McCullough, Danielle J.; Behnke, Bradley J.; Musch, Timothy I.; Poole, David C.

    2014-01-01

    Chronic heart failure (CHF) impairs nitric oxide (NO)-mediated regulation of skeletal muscle O2 delivery-utilization matching such that microvascular oxygenation falls faster (i.e., speeds PO2mv kinetics) during increases in metabolic demand. Conversely, exercise training improves (slows) muscle PO2mv kinetics following contractions onset in healthy young individuals via NO-dependent mechanisms. We tested the hypothesis that exercise training would improve contracting muscle microvascular oxygenation in CHF rats partly via improved NO-mediated function. CHF rats (left ventricular end-diastolic pressure = 17 ± 2 mmHg) were assigned to sedentary (n = 11) or progressive treadmill exercise training (n = 11; 5 days/wk, 6–8 wk, final workload of 60 min/day at 35 m/min; −14% grade downhill running) groups. PO2mv was measured via phosphorescence quenching in the spinotrapezius muscle at rest and during 1-Hz twitch contractions under control (Krebs-Henseleit solution), sodium nitroprusside (SNP; NO donor; 300 μM), and NG-nitro-l-arginine methyl ester (L-NAME, nonspecific NO synthase blockade; 1.5 mM) superfusion conditions. Exercise-trained CHF rats had greater peak oxygen uptake and spinotrapezius muscle citrate synthase activity than their sedentary counterparts (p < 0.05 for both). The overall speed of the PO2mv fall during contractions (mean response time; MRT) was slowed markedly in trained compared with sedentary CHF rats (sedentary: 20.8 ± 1.4, trained: 32.3 ± 3.0 s; p < 0.05), and the effect was not abolished by L-NAME (sedentary: 16.8 ± 1.5, trained: 31.0 ± 3.4 s; p > 0.05). Relative to control, SNP increased MRT in both groups such that trained CHF rats had slower kinetics (sedentary: 43.0 ± 6.8, trained: 55.5 ± 7.8 s; p < 0.05). Improved NO-mediated function is not obligatory for training-induced improvements in skeletal muscle microvascular oxygenation (slowed PO2mv kinetics) following contractions onset in rats with CHF. PMID:24414070

  15. Proteolysis inhibition by hibernating bear serum leads to increased protein content in human muscle cells.

    PubMed

    Chanon, Stéphanie; Chazarin, Blandine; Toubhans, Benoit; Durand, Christine; Chery, Isabelle; Robert, Maud; Vieille-Marchiset, Aurélie; Swenson, Jon E; Zedrosser, Andreas; Evans, Alina L; Brunberg, Sven; Arnemo, Jon M; Gauquelin-Koch, Guillemette; Storey, Kenneth B; Simon, Chantal; Blanc, Stéphane; Bertile, Fabrice; Lefai, Etienne

    2018-04-03

    Muscle atrophy is one of the main characteristics of human ageing and physical inactivity, with resulting adverse health outcomes. To date, there are still no efficient therapeutic strategies for its prevention and/or treatment. However, during hibernation, bears exhibit a unique ability for preserving muscle in conditions where muscle atrophy would be expected in humans. Therefore, our objective was to determine whether there are components of bear serum which can control protein balance in human muscles. In this study, we exposed cultured human differentiated muscle cells to bear serum collected during winter and summer periods, and measured the impact on cell protein content and turnover. In addition, we explored the signalling pathways that control rates of protein synthesis and degradation. We show that the protein turnover of human myotubes is reduced when incubated with winter bear serum, with a dramatic inhibition of proteolysis involving both proteasomal and lysosomal systems, and resulting in an increase in muscle cell protein content. By modulating intracellular signalling pathways and inducing a protein sparing phenotype in human muscle cells, winter bear serum therefore holds potential for developing new tools to fight human muscle atrophy and related metabolic disorders.

  16. Slow-Adhering Stem Cells Derived from Injured Skeletal Muscle Have Improved Regenerative Capacity

    DTIC Science & Technology

    2011-08-01

    images. Flow Cytometry Assay of Stem Cell Markers SASCs (1 105) isolated from noninjured or injured muscle were collected and washed twice with...muscle. Results of flow cytometry further verified Sca-1 and CD34 expression in isolated SASCs, and a greater percentage of cells were positive for Sca-1...from both injured and control noninjured muscle were analyzed using flow cytometry for the immunofluorescent signal of Sca-1 and CD34. Results

  17. AICAR inhibits oxygen consumption by intact skeletal muscle cells in culture.

    PubMed

    Spangenburg, Espen E; Jackson, Kathryn C; Schuh, Rosemary A

    2013-12-01

    Activation of 5' adenosine monophosphate-activated protein kinase (AMPK) with aminoimidazole carboxamide ribonucleotide (AICAR) increases skeletal muscle glucose uptake and fatty acid oxidation. The purpose of these experiments was to utilize AICAR to enhance palmitate consumption by mitochondria in cultured skeletal muscle cells. In these experiments, we treated C2C12 myotubes or adult single skeletal muscle fibers with varying concentrations of AICAR for different lengths of time. Surprisingly, acute AICAR exposure at most concentrations (0.25-1.5 mM), but not all (0.1 mM), modestly inhibited oxygen consumption even though AICAR increased AMPK phosphorylation. The data suggest that AICAR inhibited oxygen consumption by the cultured muscle in a non-specific manner. The results of these experiments are expected to provide valuable information to investigators interested in using AICAR in cell culture studies.

  18. Myogenic Progenitor Cells Control Extracellular Matrix Production by Fibroblasts during Skeletal Muscle Hypertrophy.

    PubMed

    Fry, Christopher S; Kirby, Tyler J; Kosmac, Kate; McCarthy, John J; Peterson, Charlotte A

    2017-01-05

    Satellite cells, the predominant stem cell population in adult skeletal muscle, are activated in response to hypertrophic stimuli and give rise to myogenic progenitor cells (MPCs) within the extracellular matrix (ECM) that surrounds myofibers. This ECM is composed largely of collagens secreted by interstitial fibrogenic cells, which influence satellite cell activity and muscle repair during hypertrophy and aging. Here we show that MPCs interact with interstitial fibrogenic cells to ensure proper ECM deposition and optimal muscle remodeling in response to hypertrophic stimuli. MPC-dependent ECM remodeling during the first week of a growth stimulus is sufficient to ensure long-term myofiber hypertrophy. MPCs secrete exosomes containing miR-206, which represses Rrbp1, a master regulator of collagen biosynthesis, in fibrogenic cells to prevent excessive ECM deposition. These findings provide insights into how skeletal stem and progenitor cells interact with other cell types to actively regulate their extracellular environments for tissue maintenance and adaptation. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Induction of muscle stem cell quiescence by the secreted niche factor Oncostatin M.

    PubMed

    Sampath, Srinath C; Sampath, Srihari C; Ho, Andrew T V; Corbel, Stéphane Y; Millstone, Joshua D; Lamb, John; Walker, John; Kinzel, Bernd; Schmedt, Christian; Blau, Helen M

    2018-04-18

    The balance between stem cell quiescence and proliferation in skeletal muscle is tightly controlled, but perturbed in a variety of disease states. Despite progress in identifying activators of stem cell proliferation, the niche factor(s) responsible for quiescence induction remain unclear. Here we report an in vivo imaging-based screen which identifies Oncostatin M (OSM), a member of the interleukin-6 family of cytokines, as a potent inducer of muscle stem cell (MuSC, satellite cell) quiescence. OSM is produced by muscle fibers, induces reversible MuSC cell cycle exit, and maintains stem cell regenerative capacity as judged by serial transplantation. Conditional OSM receptor deletion in satellite cells leads to stem cell depletion and impaired regeneration following injury. These results identify Oncostatin M as a secreted niche factor responsible for quiescence induction, and for the first time establish a direct connection between induction of quiescence, stemness, and transplantation potential in solid organ stem cells.

  20. Aggregate Mesenchymal Stem Cell Delivery Ameliorates the Regenerative Niche for Muscle Repair.

    PubMed

    Ruehle, Marissa A; Stevens, Hazel Y; Beedle, Aaron M; Guldberg, Robert E; Call, Jarrod A

    2018-05-18

    Duchenne muscular dystrophy (DMD) is a severe muscle wasting disease due to the absence of the dystrophin protein from the muscle cell membrane which renders the muscle susceptible to continuous damage. In DMD patients, muscle weakness, together with cycles of degeneration/regeneration and replacement with non-contractile tissue, limit mobility and lifespan. Since the loss of dystrophin result in loss of polarity and a reduction in the number of self-renewing satellite cells, it is postulated that these patients could achieve an improved quality of life if delivered cells could restore satellite cell function. In this study we used both an established myotoxic injury model in wildtype (WT) mice and mdx mice alone (spontaneous muscle damage). Single (SC) and aggregated (AGG) mesenchymal stem cells (MSCs) were injected into the gastrocnemius muscles 4 hours after injury (WT mice). The recovery of peak isometric torque was longitudinally assessed over 5 weeks, with earlier takedowns for histological assessment of healing (fiber cross section area and central nucleation) and MSC retention. AGG-treated WT mice had significantly greater torque recovery at day 14 than SC or saline-treated mice and a greater CSA at day 10, compared to SC/saline. AGG-treated mdx mice had a greater peak isometric torque compared to SC/saline. In vitro immunomodulatory factor secretion of AGG-MSCs was higher than SC-MSCs for all tested growth factors with the largest difference observed in hepatocyte growth factor (HGF). Future studies are necessary to pair immunomodulatory factor secretion with functional attributes, to better predict the potential therapeutic value of MSC treatment modalities. This article is protected by copyright. All rights reserved.

  1. Being active when you have heart disease

    MedlinePlus

    Heart disease - activity; CAD - activity; Coronary artery disease - activity; Angina - activity ... Getting regular exercise when you have heart disease is important. Exercise can make your heart muscle stronger. It may also help you be more active without chest pain or ...

  2. Bladder Smooth Muscle Cells Differentiation from Dental Pulp Stem Cells: Future Potential for Bladder Tissue Engineering

    PubMed Central

    Song, Bing; Jiang, Wenkai; Alraies, Amr; Liu, Qian; Gudla, Vijay; Oni, Julia; Wei, Xiaoqing; Sloan, Alastair; Ni, Longxing; Agarwal, Meena

    2016-01-01

    Dental pulp stem cells (DPSCs) are multipotent cells capable of differentiating into multiple cell lines, thus providing an alternative source of cell for tissue engineering. Smooth muscle cell (SMC) regeneration is a crucial step in tissue engineering of the urinary bladder. It is known that DPSCs have the potential to differentiate into a smooth muscle phenotype in vitro with differentiation agents. However, most of these studies are focused on the vascular SMCs. The optimal approaches to induce human DPSCs to differentiate into bladder SMCs are still under investigation. We demonstrate in this study the ability of human DPSCs to differentiate into bladder SMCs in a growth environment containing bladder SMCs-conditioned medium with the addition of the transforming growth factor beta 1 (TGF-β1). After 14 days of exposure to this medium, the gene and protein expression of SMC-specific marker (α-SMA, desmin, and calponin) increased over time. In particular, myosin was present in differentiated cells after 11 days of induction, which indicated that the cells differentiated into the mature SMCs. These data suggested that human DPSCs could be used as an alternative and less invasive source of stem cells for smooth muscle regeneration, a technology that has applications for bladder tissue engineering. PMID:26880982

  3. Effect of ionizing radiation on human skeletal muscle precursor cells

    PubMed Central

    Jurdana, Mihaela; Cemazar, Maja; Pegan, Katarina; Mars, Tomaz

    2013-01-01

    Background Long term effects of different doses of ionizing radiation on human skeletal muscle myoblast proliferation, cytokine signalling and stress response capacity were studied in primary cell cultures. Materials and methods Human skeletal muscle myoblasts obtained from muscle biopsies were cultured and irradiated with a Darpac 2000 X-ray unit at doses of 4, 6 and 8 Gy. Acute effects of radiation were studied by interleukin – 6 (IL-6) release and stress response detected by the heat shock protein (HSP) level, while long term effects were followed by proliferation capacity and cell death. Results Compared with non-irradiated control and cells treated with inhibitor of cell proliferation Ara C, myoblast proliferation decreased 72 h post-irradiation, this effect was more pronounced with increasing doses. Post-irradiation myoblast survival determined by measurement of released LDH enzyme activity revealed increased activity after exposure to irradiation. The acute response of myoblasts to lower doses of irradiation (4 and 6 Gy) was decreased secretion of constitutive IL-6. Higher doses of irradiation triggered a stress response in myoblasts, determined by increased levels of stress markers (HSPs 27 and 70). Conclusions Our results show that myoblasts are sensitive to irradiation in terms of their proliferation capacity and capacity to secret IL-6. Since myoblast proliferation and differentiation are a key stage in muscle regeneration, this effect of irradiation needs to be taken in account, particularly in certain clinical conditions. PMID:24294183

  4. Regulation of myogenesis and skeletal muscle regeneration: effects of oxygen levels on satellite cell activity.

    PubMed

    Chaillou, Thomas; Lanner, Johanna T

    2016-12-01

    Reduced oxygen (O 2 ) levels (hypoxia) are present during embryogenesis and exposure to altitude and in pathologic conditions. During embryogenesis, myogenic progenitor cells reside in a hypoxic microenvironment, which may regulate their activity. Satellite cells are myogenic progenitor cells localized in a local environment, suggesting that the O 2 level could affect their activity during muscle regeneration. In this review, we present the idea that O 2 levels regulate myogenesis and muscle regeneration, we elucidate the molecular mechanisms underlying myogenesis and muscle regeneration in hypoxia and depict therapeutic strategies using changes in O 2 levels to promote muscle regeneration. Severe hypoxia (≤1% O 2 ) appears detrimental for myogenic differentiation in vitro, whereas a 3-6% O 2 level could promote myogenesis. Hypoxia impairs the regenerative capacity of injured muscles. Although it remains to be explored, hypoxia may contribute to the muscle damage observed in patients with pathologies associated with hypoxia (chronic obstructive pulmonary disease, and peripheral arterial disease). Hypoxia affects satellite cell activity and myogenesis through mechanisms dependent and independent of hypoxia-inducible factor-1α. Finally, hyperbaric oxygen therapy and transplantation of hypoxia-conditioned myoblasts are beneficial procedures to enhance muscle regeneration in animals. These therapies may be clinically relevant to treatment of patients with severe muscle damage.-Chaillou, T. Lanner, J. T. Regulation of myogenesis and skeletal muscle regeneration: effects of oxygen levels on satellite cell activity. © FASEB.

  5. Doublecortin marks a new population of transiently amplifying muscle progenitor cells and is required for myofiber maturation during skeletal muscle regeneration.

    PubMed

    Ogawa, Ryo; Ma, Yuran; Yamaguchi, Masahiko; Ito, Takahito; Watanabe, Yoko; Ohtani, Takuji; Murakami, Satoshi; Uchida, Shizuka; De Gaspari, Piera; Uezumi, Akiyoshi; Nakamura, Miki; Miyagoe-Suzuki, Yuko; Tsujikawa, Kazutake; Hashimoto, Naohiro; Braun, Thomas; Tanaka, Teruyuki; Takeda, Shin'ichi; Yamamoto, Hiroshi; Fukada, So-Ichiro

    2015-01-01

    Muscle satellite cells are indispensable for muscle regeneration, but the functional diversity of their daughter cells is unknown. Here, we show that many Pax7(+)MyoD(-) cells locate both beneath and outside the basal lamina during myofiber maturation. A large majority of these Pax7(+)MyoD(-) cells are not self-renewed satellite cells, but have different potentials for both proliferation and differentiation from Pax7(+)MyoD(+) myoblasts (classical daughter cells), and are specifically marked by expression of the doublecortin (Dcx) gene. Transplantation and lineage-tracing experiments demonstrated that Dcx-expressing cells originate from quiescent satellite cells and that the microenvironment induces Dcx in myoblasts. Expression of Dcx seems to be necessary for myofiber maturation because Dcx-deficient mice exhibited impaired myofiber maturation resulting from a decrease in the number of myonuclei. Furthermore, in vitro and in vivo studies suggest that one function of Dcx in myogenic cells is acceleration of cell motility. These results indicate that Dcx is a new marker for the Pax7(+)MyoD(-) subpopulation, which contributes to myofiber maturation during muscle regeneration. © 2015. Published by The Company of Biologists Ltd.

  6. Phenytoin preferentially inhibits L-type calcium currents in whole-cell patch-clamped cardiac and skeletal muscle cells.

    PubMed

    Rivet, M; Bois, P; Cognard, C; Raymond, G

    1990-10-01

    The effect of the anticonvulsant diphenylhydantoin (phenytoin) was tested on the inward calcium currents of whole-cell patch-clamped cells from rat and human muscles and from frog atrium. A concentration of 10 microM phenytoin was required to obtain a threshold inhibitory effect and, even with high concentrations (100 microM), the inhibition was not complete. In skeletal muscle (rat and human cells in culture), phenytoin (30 microM) exerted a more potent effect on the high-threshold calcium current (ICa,L inhibition: 53 +/- 6% mean +/- SDn-1) rather than on the low-threshold one (ICa,T inhibition: 16 +/- 10%). Similar results were obtained on dissociated frog atrial cells. These data are to be contrasted with those previously reported on neuronal cells, where specific inhibition of ICa,T was reported. Thus, the action of phenytoin appears to be different in muscle and nerve so that phenytoin does not appear to be a specific inhibitor of ICa,T.

  7. Aerobic Exercise Training Prevents Heart Failure-Induced Skeletal Muscle Atrophy by Anti-Catabolic, but Not Anabolic Actions

    PubMed Central

    Souza, Rodrigo W. A.; Piedade, Warlen P.; Soares, Luana C.; Souza, Paula A. T.; Aguiar, Andreo F.; Vechetti-Júnior, Ivan J.; Campos, Dijon H. S.; Fernandes, Ana A. H.; Okoshi, Katashi; Carvalho, Robson F.; Cicogna, Antonio C.; Dal-Pai-Silva, Maeli

    2014-01-01

    Background Heart failure (HF) is associated with cachexia and consequent exercise intolerance. Given the beneficial effects of aerobic exercise training (ET) in HF, the aim of this study was to determine if the ET performed during the transition from cardiac dysfunction to HF would alter the expression of anabolic and catabolic factors, thus preventing skeletal muscle wasting. Methods and Results We employed ascending aortic stenosis (AS) inducing HF in Wistar male rats. Controls were sham-operated animals. At 18 weeks after surgery, rats with cardiac dysfunction were randomized to 10 weeks of aerobic ET (AS-ET) or to an untrained group (AS-UN). At 28 weeks, the AS-UN group presented HF signs in conjunction with high TNF-α serum levels; soleus and plantaris muscle atrophy; and an increase in the expression of TNF-α, NFκB (p65), MAFbx, MuRF1, FoxO1, and myostatin catabolic factors. However, in the AS-ET group, the deterioration of cardiac function was prevented, as well as muscle wasting, and the atrophy promoters were decreased. Interestingly, changes in anabolic factor expression (IGF-I, AKT, and mTOR) were not observed. Nevertheless, in the plantaris muscle, ET maintained high PGC1α levels. Conclusions Thus, the ET capability to attenuate cardiac function during the transition from cardiac dysfunction to HF was accompanied by a prevention of skeletal muscle atrophy that did not occur via an increase in anabolic factors, but through anti-catabolic activity, presumably caused by PGC1α action. These findings indicate the therapeutic potential of aerobic ET to block HF-induced muscle atrophy by counteracting the increased catabolic state. PMID:25330387

  8. Alternans Arrhythmias: From Cell to Heart

    PubMed Central

    Weiss, James N.; Nivala, Michael; Garfinkel, Alan; Qu, Zhilin

    2010-01-01

    The goal of systems biology is to relate events at the molecular level to more integrated scales from organelle to cell, tissue and living organism. Here we review how normal and abnormal excitation-contraction (EC) coupling properties emerge from the protein scale, where behaviors are dominated by randomness, to the cell and tissue scales, where heart has to beat with reliable regularity for a life-time. Beginning with the fundamental unit of EC coupling, the couplon where L-type Ca channels in the sarcolemmal membrane adjoin ryanodine receptors in the sarcoplasmic reticulum membrane, we show how a network of couplons with three basic properties (random activation, refractoriness, and recruitment) produces the classical physiological properties of excitation-contraction (EC) coupling and, under pathophysiological conditions, leads to Ca alternans and Ca waves. Moving to the tissue scale, we discuss how cellular Ca alternans and Ca waves promote both reentrant and focal arrhythmias in the heart. Throughout, we emphasize the qualitatively novel properties which emerge at each new scale of integration. PMID:21212392

  9. Circulating smooth muscle progenitor cells in atherosclerosis and plaque rupture: current perspective and methods of analysis.

    PubMed

    Bentzon, Jacob F; Falk, Erling

    2010-01-01

    Smooth muscle cells play a critical role in the development of atherosclerosis and its clinical complications. They were long thought to derive entirely from preexisting smooth muscle cells in the arterial wall, but this understanding has been challenged by the claim that circulating bone marrow-derived smooth muscle progenitor cells are an important source of plaque smooth muscle cells in human and experimental atherosclerosis. This theory is today accepted by many cardiovascular researchers and authors of contemporary review articles. Recently, however, we and others have refuted the existence of bone marrow-derived smooth muscle cells in animal models of atherosclerosis and other arterial diseases based on new experiments with high-resolution microscopy and improved techniques for smooth muscle cell identification and tracking. These studies have also pointed to a number of methodological deficiencies in some of the seminal papers in the field. For those unaccustomed with the methods used in this research area, it must be difficult to decide what to believe and why to do so. In this review, we summarize current knowledge about the origin of smooth muscle cells in atherosclerosis and direct the reader's attention to the methodological challenges that have contributed to the confusion in the field. 2009 Elsevier Inc. All rights reserved.

  10. Transplantation of Embryonic Spinal Cord Derived Cells Helps to Prevent Muscle Atrophy after Peripheral Nerve Injury

    PubMed Central

    Ruven, Carolin; Li, Wen; Li, Heng; Wong, Wai-Man; Wu, Wutian

    2017-01-01

    Injuries to peripheral nerves are frequent in serious traumas and spinal cord injuries. In addition to surgical approaches, other interventions, such as cell transplantation, should be considered to keep the muscles in good condition until the axons regenerate. In this study, E14.5 rat embryonic spinal cord fetal cells and cultured neural progenitor cells from different spinal cord segments were injected into transected musculocutaneous nerve of 200–300 g female Sprague Dawley (SD) rats, and atrophy in biceps brachii was assessed. Both kinds of cells were able to survive, extend their axons towards the muscle and form neuromuscular junctions that were functional in electromyographic studies. As a result, muscle endplates were preserved and atrophy was reduced. Furthermore, we observed that the fetal cells had a better effect in reducing the muscle atrophy compared to the pure neural progenitor cells, whereas lumbar cells were more beneficial compared to thoracic and cervical cells. In addition, fetal lumbar cells were used to supplement six weeks delayed surgical repair after the nerve transection. Cell transplantation helped to preserve the muscle endplates, which in turn lead to earlier functional recovery seen in behavioral test and electromyography. In conclusion, we were able to show that embryonic spinal cord derived cells, especially the lumbar fetal cells, are beneficial in the treatment of peripheral nerve injuries due to their ability to prevent the muscle atrophy. PMID:28264437

  11. Effects of Age and Heart Failure on Human Cardiac Stem Cell Function

    PubMed Central

    Cesselli, Daniela; Beltrami, Antonio P.; D'Aurizio, Federica; Marcon, Patrizia; Bergamin, Natascha; Toffoletto, Barbara; Pandolfi, Maura; Puppato, Elisa; Marino, Laura; Signore, Sergio; Livi, Ugolino; Verardo, Roberto; Piazza, Silvano; Marchionni, Luigi; Fiorini, Claudia; Schneider, Claudio; Hosoda, Toru; Rota, Marcello; Kajstura, Jan; Anversa, Piero; Beltrami, Carlo A.; Leri, Annarosa

    2011-01-01

    Currently, it is unknown whether defects in stem cell growth and differentiation contribute to myocardial aging and chronic heart failure (CHF), and whether a compartment of functional human cardiac stem cells (hCSCs) persists in the decompensated heart. To determine whether aging and CHF are critical determinants of the loss in growth reserve of the heart, the properties of hCSCs were evaluated in 18 control and 23 explanted hearts. Age and CHF showed a progressive decrease in functionally competent hCSCs. Chronological age was a major predictor of five biomarkers of hCSC senescence: telomeric shortening, attenuated telomerase activity, telomere dysfunction-induced foci, and p21Cip1 and p16INK4a expression. CHF had similar consequences for hCSCs, suggesting that defects in the balance between cardiomyocyte mass and the pool of nonsenescent hCSCs may condition the evolution of the decompensated myopathy. A correlation was found previously between telomere length in circulating bone marrow cells and cardiovascular diseases, but that analysis was restricted to average telomere length in a cell population, neglecting the fact that telomere attrition does not occur uniformly in all cells. The present study provides the first demonstration that dysfunctional telomeres in hCSCs are biomarkers of aging and heart failure. The biomarkers of cellular senescence identified here can be used to define the birth date of hCSCs and to sort young cells with potential therapeutic efficacy. PMID:21703415

  12. Comparative analysis of rat mesenchymal stem cells derived from slow and fast skeletal muscle in vitro.

    PubMed

    Okumachi, Etsuko; Lee, Sang Yang; Niikura, Takahiro; Iwakura, Takashi; Dogaki, Yoshihiro; Waki, Takahiro; Takahara, Shunsuke; Ueha, Takeshi; Sakai, Yoshitada; Kuroda, Ryosuke; Kurosaka, Masahiro

    2015-03-01

    Skeletal muscle comprises different kinds of muscle fibres that can be classified as slow and fast fibres. The purpose of this study was to compare the yield, proliferation, and multi-potentiality of rat mesenchymal stem cells (MSCs) from the tibialis anterior (TA; fast muscle) and soleus (SO; slow muscle) in vitro. The TA and SO muscles were harvested, and isolated cells were plated. After two hours, the cells were washed extensively to remove any cell that did not adhere to the cell culture plate. The adherent cells, namely MSCs, were then cultured. Both types of MSCs were differentiated toward the osteogenic, chondrogenic and adipogenic lineages using lineage specific induction factors. The colony-forming unit fibroblast (CFU-F) assay revealed that the SO contained significantly higher quantities of MSCs than the TA. The self-renewal capacity of MSCs derived from the TA was significantly higher at later passages (passage 9-11). Both types of MSCs exhibited similar cell surface antigens to bone marrow (BM)-derived MSCs and were positive for CD29, CD44, and CD90 and negative for CD11b, CD34, and CD45. TA-derived MSCs were superior in terms of osteogenic differentiation capacity, but there was no significant difference in chondrogenic and adipogenic differentiation capacity. Our results demonstrated significant differences in the properties of muscle-derived MSCs from different muscle types (i.e. fast or slow muscles). The greater expandability and osteogenic differentiation ability of TA-derived MSCs suggests that fast muscle may be a better source for generating large numbers of MSCs for bone regeneration.

  13. Competent for commitment: you've got to have heart!

    PubMed

    Jain, Rajan; Epstein, Jonathan A

    2018-01-01

    The mature heart is composed primarily of four different cell types: cardiac myocytes, endothelium, smooth muscle, and fibroblasts. These cell types derive from pluripotent progenitors that become progressively restricted with regard to lineage potential, giving rise to multipotent cardiac progenitor cells and, ultimately, the differentiated cell types of the heart. Recent studies have begun to shed light on the defining characteristics of the intermediary cell types that exist transiently during this developmental process and the extrinsic and cell-autonomous factors that influence cardiac lineage decisions and cellular competence. This information will shape our understanding of congenital and adult cardiac disease and guide regenerative therapeutic approaches. In addition, cardiac progenitor specification can serve as a model for understanding basic mechanisms regulating the acquisition of cellular identity. In this review, we present the concept of "chromatin competence" that describes the potential for three-dimensional chromatin organization to function as the molecular underpinning of the ability of a progenitor cell to respond to inductive lineage cues and summarize recent studies advancing our understanding of cardiac cell specification, gene regulation, and chromatin organization and how they impact cardiac development. © 2018 Jain and Epstein; Published by Cold Spring Harbor Laboratory Press.

  14. TAK1 modulates satellite stem cell homeostasis and skeletal muscle repair

    PubMed Central

    Ogura, Yuji; Hindi, Sajedah M.; Sato, Shuichi; Xiong, Guangyan; Akira, Shizuo; Kumar, Ashok

    2015-01-01

    Satellite cells are resident adult stem cells that are required for regeneration of skeletal muscle. However, signalling mechanisms that regulate satellite cell function are less understood. Here we demonstrate that transforming growth factor-β-activated kinase 1 (TAK1) is important in satellite stem cell homeostasis and function. Inactivation of TAK1 in satellite cells inhibits muscle regeneration in adult mice. TAK1 is essential for satellite cell proliferation and its inactivation causes precocious differentiation. Moreover, TAK1-deficient satellite cells exhibit increased oxidative stress and undergo spontaneous cell death, primarily through necroptosis. TAK1 is required for the activation of NF-κB and JNK in satellite cells. Forced activation of NF-κB improves survival and proliferation of TAK1-deficient satellite cells. Furthermore, TAK1-mediated activation of JNK is essential to prevent oxidative stress and precocious differentiation of satellite cells. Collectively, our study suggests that TAK1 is required for maintaining the pool of satellite stem cells and for regenerative myogenesis. PMID:26648529

  15. Chemotherapy Side Effects: A Cause of Heart Disease?

    MedlinePlus

    ... Can chemotherapy side effects increase the risk of heart disease? Answers from Timothy J. Moynihan, M.D. Chemotherapy side effects may increase the risk of heart disease, including weakening of the heart muscle (cardiomyopathy) and ...

  16. Positive and Negative Regulation of Muscle Cell Identity by Members of the hedgehog and TGF-β Gene Families

    PubMed Central

    Du, Shao Jun; Devoto, Stephen H.; Westerfield, Monte; Moon, Randall T.

    1997-01-01

    We have examined whether the development of embryonic muscle fiber type is regulated by competing influences between Hedgehog and TGF-β signals, as previously shown for development of neuronal cell identity in the neural tube. We found that ectopic expression of Hedgehogs or inhibition of protein kinase A in zebrafish embryos induces slow muscle precursors throughout the somite but muscle pioneer cells only in the middle of the somite. Ectopic expression in the notochord of Dorsalin-1, a member of the TGF-β superfamily, inhibits the formation of muscle pioneer cells, demonstrating that TGF-β signals can antagonize the induction of muscle pioneer cells by Hedgehog. We propose that a Hedgehog signal first induces the formation of slow muscle precursor cells, and subsequent Hedgehog and TGF-β signals exert competing positive and negative influences on the development of muscle pioneer cells. PMID:9314535

  17. Interaction of Vascular Smooth Muscle Cells Under Low Shear Stress

    NASA Technical Reports Server (NTRS)

    Seidel, Charles L.

    1998-01-01

    The blood vessel wall consists of three cellular layers, an outer adventitial, a middle medial and an inner intimal layer. When the blood vessel forms in the embryo it begins as a tube composed of a single cell type called endothelial cells. Over time, other cells are recruited from the surrounding tissue to form additional layers on the outer surface of the endothelial tube. The cells that are recruited are called mesenchymal cells. Mesenchymal cells are responsible for the production of connective tissue that holds the blood vessel together and for developing into vascular smooth muscle cells that are responsible for regulating the diameter of the vessel (1) and therefore, blood flow. In a fully developed blood vessel, the endothelial cells make- up the majority of cells in the intimal layer while the mesenchymal cells make-up the majority of cells in the medial and adventitial layers. Within the medial layer of a mature vessel, cells are organized into multiple circular layers of alternating bands of connective tissue and cells. The cell layer is composed of a mixture of mesenchymal cells that have not developed into smooth muscle cells and fully developed smooth muscle cells (2). The assembly and organization of complex tissues is directed in part by a signaling system composed of proteins on the cell surface called adhesion molecules. Adhesion molecules enable cells to recognize each other as well as the composition of the connective tissue in which they reside (3). It was hypothesized that the different cell types that compose the vascular wall possess different adhesion molecules that enable them to recognize each other and through this recognition system, form the complex layered organization of the vascular wall. In other words, the layered organization is an intrinsic property of the cells. If this hypothesis is correct then the different cells that make up the vessel wall, when mixed together, should organize themselves into a layered structure

  18. Barx2 is Expressed in Satellite Cells and is Required for Normal Muscle Growth and Regeneration

    PubMed Central

    Meech, Robyn; Gonzalez, Katie N.; Barro, Marietta; Gromova, Anastasia; Zhuang, Lizhe; Hulin, Julie-Ann; Makarenkova, Helen P.

    2015-01-01

    Muscle growth and regeneration are regulated through a series of spatiotemporally dependent signaling and transcriptional cascades. Although the transcriptional program controlling myogenesis has been extensively investigated, the full repertoire of transcriptional regulators involved in this process is far from defined. Various homeodomain transcription factors have been shown to play important roles in both muscle development and muscle satellite cell-dependent repair. Here, we show that the homeodomain factor Barx2 is a new marker for embryonic and adult myoblasts and is required for normal postnatal muscle growth and repair. Barx2 is coexpressed with Pax7, which is the canonical marker of satellite cells, and is upregulated in satellite cells after muscle injury. Mice lacking the Barx2 gene show reduced postnatal muscle growth, muscle atrophy, and defective muscle repair. Moreover, loss of Barx2 delays the expression of genes that control proliferation and differentiation in regenerating muscle. Consistent with the in vivo observations, satellite cell-derived myoblasts cultured from Barx2−/− mice show decreased proliferation and ability to differentiate relative to those from wild-type or Barx2+/− mice. Barx2−/− myoblasts show reduced expression of the differentiation-associated factor myogenin as well as cell adhesion and matrix molecules. Finally, we find that mice lacking both Barx2 and dystrophin gene expression have severe early onset myopathy. Together, these data indicate that Barx2 is an important regulator of muscle growth and repair that acts via the control of satellite cell proliferation and differentiation. PMID:22076929

  19. Interleukin-1{beta} regulates cell proliferation and activity of extracellular matrix remodelling enzymes in cultured primary pig heart cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zitta, Karina; Brandt, Berenice; Wuensch, Annegret

    Research highlights: {yields} Levels of IL-1{beta} are increased in the pig myocardium after infarction. {yields} Cultured pig heart cells possess IL-1 receptors. {yields} IL-1{beta} increases cell proliferation of pig heart cells in-vitro. {yields} IL-1{beta} increases MMP-2 and MMP-9 activity in pig heart cells in-vitro. {yields} IL-1{beta} may be important for tissue remodelling events after myocardial infarction. -- Abstract: After myocardial infarction, elevated levels of interleukins (ILs) are found within the myocardial tissue and IL-1{beta} is considered to play a major role in tissue remodelling events throughout the body. In the study presented, we have established a cell culture model ofmore » primary pig heart cells to evaluate the effects of different concentrations of IL-1{beta} on cell proliferation as well as expression and activity of enzymes typically involved in tissue remodelling. Primary pig heart cell cultures were derived from three different animals and stimulated with recombinant pig IL-1{beta}. RNA expression was detected by RT-PCR, protein levels were evaluated by Western blotting, activity of matrix metalloproteinases (MMPs) was quantified by gelatine zymography and cell proliferation was measured using colorimetric MTS assays. Pig heart cells express receptors for IL-1 and application of IL-1{beta} resulted in a dose-dependent increase of cell proliferation (P < 0.05 vs. control; 100 ng/ml; 24 h). Gene expression of caspase-3 was increased by IL-1{beta} (P < 0.05 vs. control; 100 ng/ml; 3 h), and pro-caspase-3 but not active caspase was detected in lysates of pig heart cells by Western blotting. MMP-2 gene expression as well as enzymatic activities of MMP-2 and MMP-9 were increased by IL-1{beta} (P < 0.05 vs. control; 100 ng/ml; 3 h for gene expression, 48 and 72 h for enzymatic activities of MMP-2 and MMP-9, respectively). Our in vitro data suggest that IL-1{beta} plays a major role in the events of tissue remodelling in the heart

  20. mTOR is necessary for proper satellite cell activity and skeletal muscle regeneration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Pengpeng; Department of Animal Sciences, Purdue University, West Lafayette, IN 47907; Liang, Xinrong

    The serine/threonine kinase mammalian target of rapamycin (mTOR) is a key regulator of protein synthesis, cell proliferation and energy metabolism. As constitutive deletion of Mtor gene results in embryonic lethality, the function of mTOR in muscle stem cells (satellite cells) and skeletal muscle regeneration remains to be determined. In this study, we established a satellite cell specific Mtor conditional knockout (cKO) mouse model by crossing Pax7{sup CreER} and Mtor{sup flox/flox} mice. Skeletal muscle regeneration after injury was severely compromised in the absence of Mtor, indicated by increased number of necrotic myofibers infiltrated by Evans blue dye, and reduced number andmore » size of regenerated myofibers in the Mtor cKO mice compared to wild type (WT) littermates. To dissect the cellular mechanism, we analyzed satellite cell-derived primary myoblasts grown on single myofibers or adhered to culture plates. The Mtor cKO myoblasts exhibited defective proliferation and differentiation kinetics when compared to myoblasts derived from WT littermates. At the mRNA and protein levels, the Mtor cKO myoblasts expressed lower levels of key myogenic determinant genes Pax7, Myf5, Myod, Myog than did the WT myoblasts. These results suggest that mTOR is essential for satellite cell function and skeletal muscle regeneration through controlling the expression of myogenic genes. - Highlights: • Pax7{sup CreER} was used to delete Mtor gene in satellite cells. • Satellite cell specific deletion of Mtor impairs muscle regeneration. • mTOR is necessary for satellite cell proliferation and differentiation. • Deletion of Mtor leads to reduced expression of key myogenic genes.« less