Sample records for heat integrated heat

  1. Heat Integrate Heat Engines in Process Plants

    E-print Network

    Hindmarsh, E.; Boland, D.; Townsend, D. W.

    but not across the pinch. As the Figures illustrate, this appropriate integra tion leads to substantial reductions in utility re quirements over the inappropriately integrated case, Figure 9. Inappropriate integration means the heat 480 ESL-IE-86... Press. i (9) Linnhoff, B. and Hindmarsh, E., "The Pilch Design Method for Heat Exchanger Networkds, "Chern. Eng. Sci., 745-763, 1983. (10) Hindmarsh, E. and Townsend, D.W., "Heat'Integra tion and Distillation Systems into Tota~ Flow sheets - A...

  2. Integrating preconcentrator heat controller

    DOEpatents

    Bouchier, Francis A. (Albuquerque, NM); Arakaki, Lester H. (Edgewood, NM); Varley, Eric S. (Albuquerque, NM)

    2007-10-16

    A method and apparatus for controlling the electric resistance heating of a metallic chemical preconcentrator screen, for example, used in portable trace explosives detectors. The length of the heating time-period is automatically adjusted to compensate for any changes in the voltage driving the heating current across the screen, for example, due to gradual discharge or aging of a battery. The total deposited energy in the screen is proportional to the integral over time of the square of the voltage drop across the screen. Since the net temperature rise, .DELTA.T.sub.s, of the screen, from beginning to end of the heating pulse, is proportional to the total amount of heat energy deposited in the screen during the heating pulse, then this integral can be calculated in real-time and used to terminate the heating current when a pre-set target value has been reached; thereby providing a consistent and reliable screen temperature rise, .DELTA.T.sub.s, from pulse-to-pulse.

  3. Process Integration of Industrial Heat Pumps 

    E-print Network

    Priebe, S. J.; Chappell, R. N.

    1986-01-01

    The integration of heat pumps into industrial processes shows potential for energy savings. Heat pumps must, however, be integrated properly relative to the process pinch and the unit operations in the process. The shape of the grand composite curve...

  4. Heat Integration and Heat Recovery at a Large Chemical Manufacturing Plant 

    E-print Network

    Togna, K .A.

    2012-01-01

    opportunities for heat recovery and heat integration were identified. A feasibility study and economic analysis were performed on the two opportunities, and both projects were implemented. The first project utilized the heat contained in a distillation process...

  5. Energy Integrated Lighting-Heating-Cooling System.

    ERIC Educational Resources Information Center

    Meckler, Gershon; And Others

    1964-01-01

    Energy balance problems in the design of office buildings are analyzed. Through the use of integrated systems utilizing dual purpose products, a controlled environment with minimum expenditure of energy, equipment and space can be provided. Contents include--(1) office building occupancy loads, (2) office building heating load analysis, (3) office…

  6. Boundary integral operators for the heat equation

    Microsoft Academic Search

    Martin Costabel

    1990-01-01

    We study the integral operators on the lateral boundary of a space-time cylinder that are given by the boundary values and the normal derivatives of the single and double layer potentials defined with the fundamental solution of the heat equation. For Lipschitz cylinders we show that the 2×2 matrix of these operators defines a bounded and positive definite bilinear form

  7. Active heat transfer enhancement in integrated fan heat sinks

    E-print Network

    Staats, Wayne Lawrence

    2012-01-01

    Modern computer processors require significant cooling to achieve their full performance. The "efficiency" of heat sinks is also becoming more important: cooling of electronics consumes 1% of worldwide electricity use by ...

  8. Integrated Heat Switch/Oxide Sorption Compressor

    NASA Technical Reports Server (NTRS)

    Bard, Steven

    1989-01-01

    Thermally-driven, nonmechanical compressor uses container filled with compressed praseodymium cerium oxide powder (PrCeOx) to provide high-pressure flow of oxygen gas for driving closed-cycle Joule-Thomson-expansion refrigeration unit. Integrated heat switch/oxide sorption compressor has no moving parts except check valves, which control flow of oxygen gas between compressor and closed-cycle Joule-Thomson refrigeration system. Oxygen expelled from sorbent at high pressure by evacuating heat-switch gap and turning on heater.

  9. Integration of heat pumps into industrial processes

    Microsoft Academic Search

    R. N. Chappell; S. J. Priebe

    1989-01-01

    The Department of Energy and others have funded studies to assess the potential for energy savings using industrial heat pumps. The studies included classifications of heat pumps, economic evaluations, and placement of heat pumps in industrial processes. Pinch technology was used in the placement studies to determine the placement, size, and type of heat pumps for a given applications. There

  10. Process Integration Study [Advanced Industrial Heat Pump Applications and Evaluations

    Microsoft Academic Search

    Eastwood

    1992-01-01

    This work was carried out in two phases: Phase 1; identification of opportunities for heat pumps in industrial applications and Phase 2; evaluation of heat pumps in industrial applications. In Phase 1, pinch analysis was applied to several industrial sites to identify the best opportunities for heat pumping and other forms of heat integration. In Phase 2, more detailed analyses

  11. Integrated micro heat sink for power multichip module

    Microsoft Academic Search

    Charlotte Gillot; Christian Schaeffer; Alain Bricard

    2000-01-01

    Today, more and more compact converters with high current are required. The thermal environment is a key point to meet these requirements: the heat sink must be integrated as closely as possible to heat sources. Liquid-cooled microchannel heat sinks are very efficient and well adapted to the cooling of power components. Thus, a high-performance micro heat sink was made and

  12. Performance of Integrated Hydronic Heating Systems.

    SciTech Connect

    BUTCHER,T.A.

    2007-12-20

    A variety of system configurations are used in North America to meet the heating and domestic hot water needs of single-family homes. This includes, for example: warm air furnaces with electric water heaters; boilers with integrated hot water coils; and boilers with 'indirect' hot water storage tanks. Integrated hydronic systems which provide both heat and hot water are more popular only in the Northeast and mid-Atlantic regions. For those making decisions about configurations of these integrated hydronic systems, including control options, little information is available concerning the annual energy cost implications of these decisions. This report presents results of a project to use a direct load emulation approach to measure the performance of hydronic systems, develop performance curves, and to provide decision tools to consumers. This is a laboratory measurement system involving direct energy input and output measurements under different load patterns. These results are then used to develop performance correlations for specific systems that can be used to predict energy use in specific applications. A wide range of system types have been tested under this project including conventional boilers with 'tankless' internal coils for domestic hot water production, boilers with indirect external storage tanks, tank type water heaters which may also be used for space heating, condensing oil- and gas-fired systems, and systems with custom control features. It is shown that low load and idle energy losses can have a very large impact on the total annual energy use and that the potential energy savings associated with replacing old equipment with newer, high efficiency equipment with low losses at idle or low load can be in the 25% range. These savings are larger than simple combustion efficiency measurements would indicate.

  13. Core heating analysis of fast ignition targets by integrated simulations

    Microsoft Academic Search

    T. Johzaki; H. Nagatomo; H. Sakagami; Y. Sentoku; T. Nakamura; K. Mima; Y. Nakao; T. Yokota

    2006-01-01

    A coupled PIC and Fokker-Planck hierarchical simulation model for analysis of fast ignition core heating was checked by comparing the heating profile with collisional PIC simulations. The integrated simulations using FI3 code were carried out for the recent fast heating experiments and showed that the dense core (rho > 10 g\\/cc) is heated up to 0.45 keV by the fast

  14. Development of a Heat Transfer Model for the Integrated Facade Heating 

    E-print Network

    Gong, X.; Archer, D. H.; Claridge, D. E.

    2007-01-01

    the heat transfer process of facade heating (mullion radiators) in a pilot research project in Pittsburgh, PA. The heat transfer model for facade heating is developed and verified by measured data. The comparison shows that the heat transfer model predicts...

  15. Integrated Approach to Revamping Heat Exchangers Networks

    E-print Network

    Glass, K. E.; Dhole, V.; Wang, Y.

    geometry configurations for a given set of process conditions. Develop simulation model (in Aspen Plus) incorporating rigorous heat exchanger (Aspen Hetran) models for the 1) Validate existing preheat train performance & evaluate the existing and de...-bottlenecked cases de-bottlenecked performance Initiate pinch analysis (using Aspen Pinch) directly 2) Determine feasible energy saving from (Aspen Plus) simulation results Heat exchanger network pinch analysis (using Aspen Pinch) incorporating rigorous (Aspen...

  16. Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters

    SciTech Connect

    Sparn, B.; Hudon, K.; Christensen, D.

    2011-09-01

    This report discusses how a significant opportunity for energy savings is domestic hot water heating, where an emerging technology has recently arrived in the U.S. market: the residential integrated heat pump water heater. A laboratory evaluation is presented of the five integrated HPWHs available in the U.S. today.

  17. An Integrated Low Level Heat Recovery System 

    E-print Network

    Sierra, A. V., Jr.

    1981-01-01

    . The system will recover during normal operations 106 million BTU's per hour of thermal energy presently being lost to water. Sixty two percent of the energy recovered is from heat sources having a temperature of less than 375o F. The recovered energy...

  18. A solar air collector with integrated latent heat thermal storage

    NASA Astrophysics Data System (ADS)

    Charvat, Pavel; Ostry, Milan; Mauder, Tomas; Klimes, Lubomir

    2012-04-01

    Simulations of the behaviour of a solar air collector with integrated latent heat thermal storage were performed. The model of the collector was created with the use of coupling between TRNSYS 17 and MATLAB. Latent heat storage (Phase Change Material - PCM) was integrated with the solar absorber. The model of the latent heat storage absorber was created in MATLAB and the model of the solar air collector itself was created in TRNSYS with the use of TYPE 56. The model of the latent heat storage absorber allows specification of the PCM properties as well as other parameters. The simulated air collector was the front and back pass collector with the absorber in the middle of the air cavity. Two variants were considered for comparison; the light-weight absorber made of sheet metal and the heat-storage absorber with the PCM. Simulations were performed for the climatic conditions of the Czech Republic (using TMY weather data).

  19. Integral-type solar-assisted heat pump water heater

    Microsoft Academic Search

    B. J. Huang; J. P. Chyng

    1999-01-01

    An integral-type solar-assisted heat pump water heater (ISAHP) is designed and tested in the present study. The storage tank and the Rankine cycle unit are integrated together to make a more compact size. A thermosyphon loop is used to transfer the heat from the condenser to the water storage tank. The highest COP obtained in the tests is 3.83.

  20. Integrated heat pipe-thermal storage system performance evaluation

    Microsoft Academic Search

    E. Keddy; J. T. Sena; M. Merrigan; Gary Heidenreich

    1987-01-01

    An integrated thermal energy storage (TES) system, developed as a part of an organic Rankine cycle solar dynamic power system is described, and the results of the performance verification tests of this TES system are presented. The integrated system consists of potassium heat-pipe elements that incorporate TES canisters within the vapor space, along with an organic fluid heater tube used

  1. Performance characteristics of integral type solar-assisted heat pump

    Microsoft Academic Search

    B. J. Huang; J. P. Chyng

    2001-01-01

    The characteristic of an integral type solar-assisted heat pump water heater (ISAHP) is investigated in the present study. The ISAHP consists of a Rankine refrigeration cycle and a thermosyphon loop that are integrated together to form a package heater. Both solar and ambient air energies are absorbed at the collector\\/evaporator and pumped to the storage tank via a Rankine refrigeration

  2. Model of a thermal energy storage device integrated into a solar assisted heat pump system for space heating

    Microsoft Academic Search

    Viorel Badescu

    2003-01-01

    Details about modelling a sensible heat thermal energy storage (TES) device integrated into a space heating system are given. The two main operating modes are described. Solar air heaters provide thermal energy for driving a vapor compression heat pump. The TES unit ensures a more efficient usage of the collected solar energy. The TES operation is modeled by using two

  3. The design and fabrication of a Stirling engine heat exchanger module with an integral heat pipe

    Microsoft Academic Search

    Jeffrey G. Schreiber

    1988-01-01

    The conceptual design of a free-piston Stirling Space Engine (SSE) intended for space power applications has been generated. The engine was designed to produce 25 kW of electric power with heat supplied by a nuclear reactor. A novel heat exchanger module was designed to reduce the number of critical joints in the heat exchanger assembly while also incorporating a heat

  4. Performance of a Thermoelectric Device with Integrated Heat Exchangers

    NASA Astrophysics Data System (ADS)

    Barry, Matthew M.; Agbim, Kenechi A.; Chyu, Minking K.

    2015-06-01

    Thermoelectric devices (TEDs) convert heat directly into electrical energy, making them well suited for waste heat recovery applications. An integrated thermoelectric device (iTED) is a restructured TED that allows more heat to enter the p-n junctions, thus producing a greater power output . An iTED has heat exchangers incorporated into the hot-side interconnectors with flow channels directing the working fluid through the heat exchangers. The iTED was constructed of p- and n-type bismuth-telluride semiconductors and copper interconnectors and rectangular heat exchangers. The performance of the iTED in terms of , produced voltage and current , heat input and conversion efficiency for various flow rates (), inlet temperatures (C) ) and load resistances () with a constant cold-side temperature ( = 0C) was conducted experimentally. An increase in had a greater effect on the performance than did an increase in . A 3-fold increase in resulted in a 3.2-, 3.1-, 9.7-, 3.5- and 2.8-fold increase in and respectively. For a constant of 50C, a 3-fold increase in from 3300 to 9920 resulted in 1.6-, 1.6-, 2.6-, 1.5- and 1.9-fold increases in , , , and respectively.

  5. Test results of a Stirling engine utilizing heat exchanger modules with an integral heat pipe

    Microsoft Academic Search

    Robert C. Skupinski; Leonard K. Tower; Frank J. Madi; Kevin D. Brusk

    1993-01-01

    The Heat Pipe Stirling Engine (HP-1000), a free-piston Stirling engine incorporating three heat exchanger modules, each having a sodium filled heat pipe, has been tested at the NASA-Lewis Research Center as part of the Civil Space Technology Initiative (CSTI). The heat exchanger modules were designed to reduce the number of potential flow leak paths in the heat exchanger assembly and

  6. Heating with waste heat

    SciTech Connect

    Beabout, R.W.

    1986-09-02

    Most of the power consumed in the gaseous diffusion process is converted into heat of compression, which is removed from the process gas and rejected into the atmosphere by recirculating cooling water over cooling towers. The water being handled through the X-333 and X-330 Process Buildings can be heated to 140 to 150/sup 0/F for heating use. The Gas Centrifuge Enrichment Plant is provided with a recirculating heating water (RHW) system which uses X-330 water and wasted heat. The RHW flow is diagrammed. (DLC)

  7. Test results of a Stirling engine utilizing heat exchanger modules with an integral heat pipe

    SciTech Connect

    Skupinski, R.C.; Tower, L.K.; Madi, F.J.; Brusk, K.D.

    1993-04-01

    The Heat Pipe Stirling Engine (HP-1000), a free-piston Stirling engine incorporating three heat exchanger modules, each having a sodium filled heat pipe, has been tested at the NASA-Lewis Research Center as part of the Civil Space Technology Initiative (CSTI). The heat exchanger modules were designed to reduce the number of potential flow leak paths in the heat exchanger assembly and incorporate a heat pipe as the link between the heat source and the engine. An existing RE-1000 free-piston Stirling engine was modified to operate using the heat exchanger modules. This paper describes heat exchanger module and engine performance during baseline testing. Condenser temperature profiles, brake power, and efficiency are presented and discussed.

  8. Integrated heat pipe-thermal storage system performance evaluation

    NASA Astrophysics Data System (ADS)

    Keddy, E.; Sena, J. T.; Merrigan, M.; Heidenreich, Gary

    An integrated thermal energy storage (TES) system, developed as a part of an organic Rankine cycle solar dynamic power system is described, and the results of the performance verification tests of this TES system are presented. The integrated system consists of potassium heat-pipe elements that incorporate TES canisters within the vapor space, along with an organic fluid heater tube used as the condenser region of the heat pipe. The heat pipe assembly was operated through the range of design conditions from the nominal design input of 4.8 kW to a maximum of 5.7 kW. The performance verification tests show that the system meets the functional requirements of absorbing the solar energy reflected by the concentrator, transporting the energy to the organic Rankine heater, providing thermal storage for the eclipse phase, and allowing uniform discharge from the thermal storage to the heater.

  9. Integrated heat pipe-thermal storage system performance evaluation

    NASA Technical Reports Server (NTRS)

    Keddy, E.; Sena, J. T.; Merrigan, M.; Heidenreich, Gary

    1987-01-01

    An integrated thermal energy storage (TES) system, developed as a part of an organic Rankine cycle solar dynamic power system is described, and the results of the performance verification tests of this TES system are presented. The integrated system consists of potassium heat-pipe elements that incorporate TES canisters within the vapor space, along with an organic fluid heater tube used as the condenser region of the heat pipe. The heat pipe assembly was operated through the range of design conditions from the nominal design input of 4.8 kW to a maximum of 5.7 kW. The performance verification tests show that the system meets the functional requirements of absorbing the solar energy reflected by the concentrator, transporting the energy to the organic Rankine heater, providing thermal storage for the eclipse phase, and allowing uniform discharge from the thermal storage to the heater.

  10. Development of a Residential Ground-Source Integrated Heat Pump

    SciTech Connect

    Rice, C Keith [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Hern, Shawn [ClimateMaster, Inc.] [ClimateMaster, Inc.; McDowell, Tim [Thermal Energy System Specialists, LLC] [Thermal Energy System Specialists, LLC; Munk, Jeffrey D [ORNL] [ORNL; Shen, Bo [ORNL] [ORNL

    2013-01-01

    A residential-size ground-source integrated heat pump (GSIHP) system has been developed and is currently being field tested. The system is a nominal 2-ton (7 kW) cooling capacity, variable-speed unit, which is multi-functional, e.g. space cooling, space heating, dedicated water heating, and simultaneous space cooling and water heating. High-efficiency brushless permanent-magnet (BPM) motors are used for the compressor, indoor blower, and pumps to obtain the highest component performance and system control flexibility. Laboratory test data were used to calibrate a vapor-compression simulation model (HPDM) for each of the four primary modes of operation. The model was used to optimize the internal control options and to simulate the selected internal control strategies, such as controlling to a constant air supply temperature in the space heating mode and a fixed water temperature rise in water heating modes. Equipment performance maps were generated for each operation mode as functions of all independent variables for use in TRNSYS annual energy simulations. These were performed for the GSIHP installed in a well-insulated 2600 ft2(242 m2) house and connected to a vertical ground loop heat exchanger(GLHE). We selected a 13 SEER (3.8 CSPF )/7.7 HSPF (2.3 HSPF, W/W) ASHP unit with 0.90 Energy Factor (EF) resistance water heater as the baseline for energy savings comparisons. The annual energy simulations were conducted over five US climate zones. In addition, appropriate ground loop sizes were determined for each location to meet 10-year minimum and maximum design entering water temperatures (EWTs) to the equipment. The prototype GSIHP system was predicted to use 52 to 59% less energy than the baseline system while meeting total annual space conditioning and water heating loads.

  11. Integral cooling garment for protection against heat stress

    SciTech Connect

    Zafred, P.R.

    1988-04-19

    An integral cooling garment for the protection of a person's body from ambient heat is described comprising: an outer lining, a permeable inner lining, and gas-conductivity tubes therebetween; and a container for containing fluidized carbon dioxide and comprising a pressure reducing valve.

  12. Site-wide process integration for low grade heat recovery

    Microsoft Academic Search

    Ankur Kapil; Igor Bulatov; Robin Smith; Jin-Kuk Kim

    2011-01-01

    Large quantities of unrecovered low-grade heat are wasted across the process industry. Wide range of technologies and design options for recovering low grade heat are available, including heat pumps, organic Rankine cycle (ORC), energy recovery from gas turbine exhaust, absorption refrigeration, and boiler feed water heating. However, it is not straightforward to identify the most appropriate technology to be implemented,

  13. Performance characteristics of pulsating heat pipes as integral thermal spreaders

    Microsoft Academic Search

    Honghai Yang; Sameer Khandekar; Manfred Groll

    2009-01-01

    In the recent past, Pulsating Heat Pipes (PHPs) have attracted the attention of many researchers as viable candidates for enhanced heat transfer through passive two-phase heat transfer mechanism. Although a complete theoretical understanding of operational characteristics of this device is not yet achieved, there are many emerging niche applications, ranging from electronics thermal management to compact heat exchangers. For a

  14. Water heating system

    Microsoft Academic Search

    Yoshino

    1984-01-01

    A water heating system comprising an outdoor heat exchanger including a heat collection chamber, solar collector panels, collector fins, an evaporator for passing refrigerant therethrough to perform the heat exchange between the refrigerant and the heat transferred from the panels and fins to evaporate the refrigerant. The panels, fins and evaporator are incorporated integrally in the heat collection chamber. A

  15. 77 FR 74027 - Certain Integrated Circuit Packages Provided with Multiple Heat-Conducting Paths and Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-12

    ...Certain Integrated Circuit Packages Provided with Multiple Heat- Conducting Paths and Products Containing Same; Commission...of certain integrated circuit packages provided with multiple heat-conducting paths and products containing same by reason...

  16. Appling a heat pump to integrate heat sources and a perform assessment

    Microsoft Academic Search

    Chi-I Tuan; Ting-Chien Chen; Yi-Lung Yeh; Chi-Jen Chen

    2011-01-01

    A heat pump is a high-efficiency energy converting system, which can combine endothermic and exothermic functions. This study used a heat pump, combining an air conditioner and a boiler, in a factory to assess the energy utilization efficiency. The result showed that when the heat pump was used the entire year, 96,824 L of fuel oil, 136,953 kW of electricity,

  17. Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters

    SciTech Connect

    Sparn, B.; Hudon, K.; Christensen, D.

    2014-06-01

    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of US climate regions. HPWHs are expected to provide significant energy savings in certain climate zones when compared to typical electric resistance water heaters. Results show that this technology is a viable option in most climates, but differences in control schemes and design features impact the performance of the units tested. Tests were conducted to map heat pump performance across the operating range and to determine the logic used to control the heat pump and the backup electric heaters. Other tests performed include two unique draw profile tests, reduced air flow performance tests and the standard DOE rating tests. The results from all these tests are presented here for all five units tested. The results of these tests will be used to improve the EnergyPlus heat pump water heater for use in BEopt(tm) whole-house building simulations.

  18. Control of a Industrial Heat Integrated Distillation Column T. Larsson and S. Skogestad

    E-print Network

    Skogestad, Sigurd

    Control of a Industrial Heat Integrated Distillation Column T. Larsson and S. Skogestad Department integrated distillation columns are used to reduce the energy consumption for separation. The heat inte- grated distillation columns will behave differently than two normal heat integrated distillation column

  19. Control of a Industrial Heat Integrated Distillation Column T. Larsson and S. Skogestad

    E-print Network

    Skogestad, Sigurd

    Control of a Industrial Heat Integrated Distillation Column T. Larsson and S. Skogestad Department integrated distillation columns are used to reduce the energy consumption for separation. The heat inte­ grated distillation columns will behave differently than two normal heat integrated distillation column

  20. Process Integration Study of Cache Valley Cheese Plant [Advanced Industrial Heat Pump Applications and Evaluations

    Microsoft Academic Search

    Eastwood

    1991-01-01

    This work has carried out in two phases: Phase 1; identification of opportunities for heat pumps in industrial applications and Phase 2; evaluation of heat pumps in industrial applications. In Phase 1, pinch analysis was applied to several industrial sites to identify the best opportunities for heat pumping and other forms of heat integration. In Phase 2, more detailed analyses

  1. Heat Pipes

    ERIC Educational Resources Information Center

    Lewis, J.

    1975-01-01

    Describes the construction, function, and applications of heat pipes. Suggests using the heat pipe to teach principles related to heat transfer and gives sources for obtaining instructional kits for this purpose. (GS)

  2. Coronal heating

    NASA Technical Reports Server (NTRS)

    Wentzel, D. G.

    1981-01-01

    Theoretical arguments for coronal heating that take into account coronal structure are reviewed. Heating by the dissipation of electrical currents and heating by dissipation of waves are discussed. Loop structures in the solar corona are described.

  3. Measured Space Conditioning and Water Heating Performance of a Ground-Source Integrated Heat Pump in a Residential Application

    SciTech Connect

    Munk, Jeffrey D [ORNL] [ORNL; Ally, Moonis Raza [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Gehl, Anthony C [ORNL] [ORNL

    2014-01-01

    In an effort to reduce residential building energy consumption, a ground-source integrated heat pump was developed to meet a home s entire space conditioning and water heating needs, while providing 50% energy savings relative to a baseline suite of minimum efficiency equipment. A prototype 7.0 kW system was installed in a 344 m2 research house with simulated occupancy in Oak Ridge, TN. The equipment was monitored from June 2012 through January 2013.

  4. Ground Source Integrated Heat Pump (GS-IHP) Development

    SciTech Connect

    Baxter, V. D. [ORNL; Rice, K. [ORNL; Murphy, R. [ORNL; Munk, J. [ORNL; Ally, Moonis [ORNL; Shen, Bo [ORNL; Craddick, William [ORNL; Hearn, Shawn A. [ClimateMaster, Inc.

    2013-05-24

    Between October 2008 and May 2013 ORNL and ClimateMaster, Inc. (CM) engaged in a Cooperative Research and Development Agreement (CRADA) to develop a groundsource integrated heat pump (GS-IHP) system for the US residential market. A initial prototype was designed and fabricated, lab-tested, and modeled in TRNSYS (SOLAR Energy Laboratory, et al, 2010) to predict annual performance relative to 1) a baseline suite of equipment meeting minimum efficiency standards in effect in 2006 (combination of air-source heat pump (ASHP) and resistance water heater) and 2) a state-of-the-art (SOA) two-capacity ground-source heat pump with desuperheater water heater (WH) option (GSHPwDS). Predicted total annual energy savings, while providing space conditioning and water heating for a 2600 ft{sup 2} (242 m{sup 2}) house at 5 U.S. locations, ranged from 52 to 59%, averaging 55%, relative to the minimum efficiency suite. Predicted energy use for water heating was reduced 68 to 78% relative to resistance WH. Predicted total annual savings for the GSHPwDS relative to the same baseline averaged 22.6% with water heating energy use reduced by 10 to 30% from desuperheater contributions. The 1st generation (or alpha) prototype design for the GS-IHP was finalized in 2010 and field test samples were fabricated for testing by CM and by ORNL. Two of the alpha units were installed in 3700 ft{sup 2} (345 m{sup 2}) houses at the ZEBRAlliance site in Oak Ridge and field tested during 2011. Based on the steady-state performance demonstrated by the GS-IHPs it was projected that it would achieve >52% energy savings relative to the minimum efficiency suite at this specific site. A number of operational issues with the alpha units were identified indicating design changes needed to the system before market introduction could be accomplished. These were communicated to CM throughout the field test period. Based on the alpha unit test results and the diagnostic information coming from the field test experience, CM developed a 2nd generation (or beta) prototype in 2012. Field test verification units were fabricated and installed at the ZEBRAlliance site in Oak Ridge in May 2012 and at several sites near CM headquarters in Oklahoma. Field testing of the units continued through February 2013. Annual performance analyses of the beta unit (prototype 2) with vertical well ground heat exchangers (GHX) in 5 U.S. locations predict annual energy savings of 57% to 61%, averaging 59% relative to the minimum efficiency suite and 38% to 56%, averaging 46% relative to the SOA GSHPwDS. Based on the steady-state performance demonstrated by the test units it was projected that the 2nd generation units would achieve ~58% energy savings relative to the minimum efficiency suite at the Zebra Alliance site with horizontal GHX. A new product based on the beta unit design was announced by CM in 2012 – the Trilogy 40® Q-mode™ (http://cmdealernet.com/trilogy_40.html). The unit was formally introduced in a March 2012 press release (see Appendix A) and was available for order beginning in December 2012.

  5. Heat shock factors: integrators of cell stress, development and lifespan

    Microsoft Academic Search

    Malin Åkerfelt; Richard I. Morimoto; Lea Sistonen

    2010-01-01

    Heat shock factors (HSFs) are essential for all organisms to survive exposures to acute stress. They are best known as inducible transcriptional regulators of genes encoding molecular chaperones and other stress proteins. Four members of the HSF family are also important for normal development and lifespan-enhancing pathways, and the repertoire of HSF targets has thus expanded well beyond the heat

  6. Heat pumps

    Microsoft Academic Search

    Heap

    1983-01-01

    An updated version of the 1979 first edition of this work for designers, specifiers, suppliers, installers, and users of heat pumps. Its aim is to assist in the reassessment of energy costs and cost relativities of the various applications of heat pumps. It presents the development of the heat pump markets, research into advanced heat pump systems, and development of

  7. Control of thermally integrated incineration–waste heat recovery systems, a case study

    Microsoft Academic Search

    R. S. Ettouney; M. A. El-Rifai; S. A. El-Behairy

    2005-01-01

    Thermally integrated incineration–waste heat recovery systems should feature operational flexibility. The objectives of pollutants’ destruction and satisfaction of thermal demand are to be fulfilled simultaneously, despite disturbances in the waste stream throughput and in the heat load. A rigorous steady state model relating the relevant process variables is developed on the basis of extensive heat balance computations for an industrial

  8. Development of an integrated heat pipe-thermal storage system for a solar receiver

    Microsoft Academic Search

    E. Keddy; J. Tom Sena; M. Merrigan; Gary Heidenreich; Steve Johnson

    1988-01-01

    An integrated heat pipe-thermal storage system was developed as part of the Organic Rankine Cycle Solar Dynamic Power System solar receiver for space station application. The solar receiver incorporates potassium heat pipe elements to absorb and transfer the solar energy within the receiver cavity. The heat pipes contain thermal energy storage (TES) canisters within the vapor space with a toluene

  9. Combined cycle with low-quality heat integration and water injection into the compressed air

    Microsoft Academic Search

    Nikos Aronis; Reinhard Leithner

    2004-01-01

    The water injection after the compressor into the combustion air of a gas turbine and its evaporation by low-quality heat was analysed for different types of low-temperature heat sources and water-vapour contents of the pressurised air. To integrate low-quality heat—for example solar heat—into a conventional combined cycle efficiently and economically, the cycle must be changed in such a way that

  10. Vapor compression CuCl heat pump integrated with a thermochemical water splitting cycle

    Microsoft Academic Search

    C. Zamfirescu; G. F. Naterer; I. Dincer

    2011-01-01

    In this paper, the feasibility of using cuprous chloride (CuCl) as a working fluid in a new high temperature heat pump with vapor compression is analyzed. The heat pump is integrated with a copper–chlorine (Cu–Cl) thermochemical water splitting cycle for internal heat recovery, temperature upgrades and hydrogen production. The minimum temperature of heat supply necessary for driving the water splitting

  11. Activated-Carbon Sorbent With Integral Heat-Transfer Device

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Yavrouian, Andre

    1996-01-01

    Prototype adsorption device used, for example, in adsorption heat pump, to store natural gas to power automobile, or to separate components of fluid mixtures. Device includes activated carbon held together by binder and molded into finned heat-transfer device providing rapid heating or cooling to enable rapid adsorption or desorption of fluids. Concepts of design and fabrication of device equally valid for such other highly thermally conductive devices as copper-finned tubes, and for such other high-surface-area sorbents as zeolites or silicates.

  12. Heat release in the cryogenic system of a superconducting integrated detector and the influence of heat on its operation

    NASA Astrophysics Data System (ADS)

    Kinev, N. V.; Koshelets, V. P.

    2013-03-01

    Heat release in the cryogenic system of a subterahertz-range superconducting integrated detector at ?4.2 K is studied, and the influence of the released heat on its main characteristics is estimated. The detector chip mounted on a silicon lens is connected to a bias board by aluminum wires 25 ?m in diameter, which are fixed by ultrasonic bonding. They are necessary for setting a bias current through the working components of the detector and represent an integral part of the system. The contact resistance between the wires and contact pads of the microchip is measured. The contact resistance is found to considerably exceed the resistance of the aluminum wire and, hence, makes a major contribution to heat release in the system. A "multipoint contact with one wire" technique is suggested. Tests show its efficiency: the contact resistance decreases considerably compared with the standard approach.

  13. Internal-integral sodium return line for sodium heat engine

    DOEpatents

    Hunt, Thomas K. (Ann Arbor, MI)

    1985-01-01

    A thermoelectric generator device which converts heat energy to electrical energy. An alkali metal is used with a solid electrolyte and a portion of the return line for the alkali metal is located within the generator vacuum space.

  14. A Zero Emission Mechanical Seal with Integral Micro Heat Exchanger 

    E-print Network

    Khonsari, M.

    2005-01-01

    are all manifestations of surface damage that emanate from heat and eventually result in the leakage of the process fluid to the ambient. Accordingly, adverse environmental impact, safety concerns, and economic loss due to forced shut down...

  15. Calculation of heat capacities of light and heavy water by path-integral molecular dynamics

    Microsoft Academic Search

    Motoyuki Shiga; Wataru Shinoda

    2005-01-01

    As an application of atomistic simulation methods to heat capacities, path-integral molecular dynamics has been used to calculate the constant-volume heat capacities of light and heavy water in the gas, liquid, and solid phases. While the classical simulation based on conventional molecular dynamics has estimated the heat capacities too high, the quantum simulation based on path-integral molecular dynamics has given

  16. Parallel heat transport in integrable and chaotic magnetic fields

    SciTech Connect

    Castillo-Negrete, D. del; Chacon, L. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-8071 (United States)

    2012-05-15

    The study of transport in magnetized plasmas is a problem of fundamental interest in controlled fusion, space plasmas, and astrophysics research. Three issues make this problem particularly challenging: (i) The extreme anisotropy between the parallel (i.e., along the magnetic field), {chi}{sub ||} , and the perpendicular, {chi}{sub Up-Tack }, conductivities ({chi}{sub ||} /{chi}{sub Up-Tack} may exceed 10{sup 10} in fusion plasmas); (ii) Nonlocal parallel transport in the limit of small collisionality; and (iii) Magnetic field lines chaos which in general complicates (and may preclude) the construction of magnetic field line coordinates. Motivated by these issues, we present a Lagrangian Green's function method to solve the local and non-local parallel transport equation applicable to integrable and chaotic magnetic fields in arbitrary geometry. The method avoids by construction the numerical pollution issues of grid-based algorithms. The potential of the approach is demonstrated with nontrivial applications to integrable (magnetic island), weakly chaotic (Devil's staircase), and fully chaotic magnetic field configurations. For the latter, numerical solutions of the parallel heat transport equation show that the effective radial transport, with local and non-local parallel closures, is non-diffusive, thus casting doubts on the applicability of quasilinear diffusion descriptions. General conditions for the existence of non-diffusive, multivalued flux-gradient relations in the temperature evolution are derived.

  17. Parallel heat transport in integrable and chaotic magnetic fields

    SciTech Connect

    Del-Castillo-Negrete, Diego B [ORNL; Chacon, Luis [ORNL

    2012-01-01

    The study of transport in magnetized plasmas is a problem of fundamental interest in controlled fusion, space plasmas, and astrophysics research. Three issues make this problem particularly chal- lenging: (i) The extreme anisotropy between the parallel (i.e., along the magnetic field), , and the perpendicular, , conductivities ( / may exceed 1010 in fusion plasmas); (ii) Magnetic field lines chaos which in general complicates (and may preclude) the construction of magnetic field line coordinates; and (iii) Nonlocal parallel transport in the limit of small collisionality. Motivated by these issues, we present a Lagrangian Green s function method to solve the local and non-local parallel transport equation applicable to integrable and chaotic magnetic fields in arbitrary geom- etry. The method avoids by construction the numerical pollution issues of grid-based algorithms. The potential of the approach is demonstrated with nontrivial applications to integrable (magnetic island chain), weakly chaotic (devil s staircase), and fully chaotic magnetic field configurations. For the latter, numerical solutions of the parallel heat transport equation show that the effective radial transport, with local and non-local closures, is non-diffusive, thus casting doubts on the appropriateness of the applicability of quasilinear diffusion descriptions. General conditions for the existence of non-diffusive, multivalued flux-gradient relations in the temperature evolution are derived.

  18. An Overview of Opportunities for Waste Heat Recovery and Thermal Integration in the Primary Aluminum Industry

    NASA Astrophysics Data System (ADS)

    Nowicki, Cassandre; Gosselin, Louis

    2012-08-01

    Efficient smelters currently consume roughly 13 MWh of electricity per ton of aluminum, while roughly half of that energy is lost as thermal waste. Although waste heat is abundant, current thermal integration in primary aluminum facilities remains limited. This is due to both the low quality of waste heat available and the shortage of potential uses within reasonable distance of identified waste heat sources. In this article, we present a mapping of both heat dissipation processes and heat demands around a sample facility (Alcoa Deschambault Quebec smelter). Our primary aim is to report opportunities for heat recovery and integration in the primary aluminum industry. We consider potential heat-to-sink pairings individually and assess their thermodynamic potential for producing energy savings.

  19. INTEGRATED CO2 HEAT PUMP SYSTEMS FOR SPACE HEATING AND HOT WATER HEATING IN LOW-ENERGY HOUSES AND PASSIVE HOUSES

    Microsoft Academic Search

    J. STENE

    Low-energy and passive houses are superinsulated and air-tight buildings where the space heating demand is considerably lower than that of buildings constructed in accordance with common buildings codes. Due to the low space heating demand, the annual heating demand for domestic hot water (DHW) typically consti- tutes 50 to 85% of the total annual heating demand in the residence. A

  20. Integrating heat recovery from milk powder spray dryer exhausts in the dairy industry

    Microsoft Academic Search

    Martin J. Atkins; Michael R. W. Walmsley; James R. Neale

    2011-01-01

    Heat recovery from milk powder spray dryer exhausts has proven challenging due to both economic and thermodynamic constraints. Integrating the dryer with the rest of the process (e.g. evaporation stages) can increase the viability of exhaust recovery. Several potential integration schemes for a milk powder plant have been investigated. Indirect heat transfer via a coupled loop between the spray dryer

  1. Process integration in bioprocess indystry: waste heat recovery in yeast and ethyl alcohol plant

    Microsoft Academic Search

    P. Raškovi?; A. Anastasovski; Lj. Markovska; V. Meško

    2010-01-01

    The process integration of the bioprocess plant for production of yeast and alcohol was studied. Preliminary energy audit of the plant identified the huge amount of thermal losses, caused by waste heat in exhausted process streams, and reviled the great potential for energy efficiency improvement by heat recovery system. Research roadmap, based on process integration approach, is divided on six

  2. Waste heat

    SciTech Connect

    Moore, N.L.

    1985-07-01

    This is a survey of waste heat recovery in US industry. Future prospects depend on the price of fossil fuels. Fuel and energy consumption in the year 2000 is summarized. Areas of greatest growth in waste heat recovery will be in high-temperature recuperation, heat pumps and cogeneration. (DLC)

  3. Heat pumps

    Microsoft Academic Search

    R. D. Heap

    1979-01-01

    With increasing energy costs and changing cost relativities, potential heat pump applications deserve a thorough reassessment. Such a reassessment is the objective of this book. The topics covered include the general, historical, and theoretical background material; vapor compression equipment; general aspects of system design, with particular reference to the design of space heating systems employing heat pumps; domestic, commercial, and

  4. Integration and Optimization of Trigeneration Systems with Solar Energy, Biofuels, Process Heat and Fossil Fuels

    E-print Network

    Tora, Eman

    2012-02-14

    at developing a systematic approach to integrate solar energy into industrial processes to drive thermal energy transfer systems producing power, cool, and heat. Solar energy is needed to be integrated with other different energy sources (biofuels, fossil fuels...

  5. Possibilities of Heat Pump Integration for the Renovation of Dwelling Houses

    NASA Astrophysics Data System (ADS)

    Martinaitis, Vytautas; Siupsinskas, Giedrius

    2011-01-01

    The technical solutions for the installation of heat pumps in individual houses are well known, but its integration in the existing systems in dwelling houses is not common. Heat pump technology is referred to as renewable but would have technical, economic and environmental impact on the whole existing heat supply system in a dwelling house. The aim of this article is to investigate the possibility of using heat pumps for supplying heat to the existing residential buildings. This article examines the possibilities to supplement the engineering systems with additional heat pumps. The smallest heat pump end-user group is the dwelling stairwell. The possibility to use heat pumps in a separate apartment has not been analysed. This article analyses the integration of heat pumps for residential heat supply in the building. The primary heat source is the exhaust air or wastewater. All calculations have been made for several real existing dwelling houses in Birštonas town (Lithuania) within the framework of the CONCERTO Eco-Life project. The analysis also provides economic and environmental assessment of the alternatives. This research was supported by EC FP7 CONCERTO program ("Sustainable Zero Carbon ECO-Town Developments Improving Quality of Life across EU - ECO-Life" (ECO-Life Project) Contract No. TREN/FP7EN/239497/"ECOLIFE").

  6. Fully-Integrated Numerical Analysis of Micro-Injection Molding with Localized Induction Heating

    NASA Astrophysics Data System (ADS)

    Park, Keun; Eom, Hyeju; Ik Lee, Sang

    2010-06-01

    High-frequency induction is an efficient way to heat mold surface by electromagnetic induction in a non-contact procedure. Due to its capability of rapid heating and cooling of mold surface, it has been recently applied to the injection molding of micro/nano structures. The present study investigates a localized heating method involving the selective use of mold materials to enhance the heating efficiency of high-frequency induction heating. A composite injection mold consisting of ferromagnetic material and paramagnetic material is used for localized induction heating. The feasibility of the localized heating method is investigated through numerical analyses in terms of its heating efficiency for localized mold surfaces and the resulting flow characteristics in a micro-channel. To take into account the effects of thermal boundary conditions of the localized induction heating, a fully-integrated numerical analysis effectively connecting electromagnetic field calculation, heat transfer analysis, thermal stress analysis, and injection molding simulation is carried out. The proposed integrated simulation is applied to the injection molding of a rectangular strip containing micro-channels, and the resulting mold heating capacity and replication characteristics of the micro-channels are compared with experimental findings in order to verify the validity of the proposed simulation.

  7. Solar heating of integrated greenhouse-animal shelter systems

    SciTech Connect

    Ben-Abdallah, N.

    1983-01-01

    An analytical procedure to determine the effectiveness of greenhouses as solar collectors was presented. This procedure was used to predict the effect of several construction parameters on solar radiation input to greenhouses. The orientation of the greenhouse was found to be the most effective construction parameter controlling solar radiation input to greenhouses. The effective albedo of the plant canopy was also found to be a significant factor. A new solar greenhouse design, suitable for high latitude regions was developed. The results showed that an internal solar collector could be incorporated as an integral part of the greenhouse design. The concept developed could be used as a free-standing greenhouse or in a combination with livestock building. The efficiency of the solar input was investigated for the conventional and the shed greenhouses, both as a free-standing unit and a greenhouse-animal shelter system, using computer simulation analyses. The results indicated that the efficiency of solar input is highly dependent on location; the effect of location on the shed type design is more profound. A typical case of a greenhouse-hog barn production system was investigated using computer simulation analyses. The results showed that such a food production system achieves a significant reduction in conventional fuel consumption due to both animal waste heat recovery and solar energy utilization.

  8. Design and development of integral heat pipe/thermal energy storage devices. [used with spacecraft cryocoolers

    NASA Technical Reports Server (NTRS)

    Mahefkey, E. T.; Richter, R.

    1981-01-01

    The major design and performance test subtasks in the development of small (200 to 1,000 whr) integral heat pipe/thermal energy storage devices for use with thermally driven spacecraft cryo-coolers are described. The design of the integral heat pipe/thermal energy storage device was based on a quasi steady resistance heat transfer, lumped capacitance model. Design considerations for the heat pipe and thermal storage annuli are presented. The thermomechanical stress and insulation system design for the device are reviewed. Experimental correlations are described, as are the plans for the further development of the concept.

  9. Integrated Fast-Ignition Core-Heating Experiments on OMEGA

    NASA Astrophysics Data System (ADS)

    Theobald, W.

    2010-11-01

    Integrated fast-ignition core-heating experiments are carried out at the Omega Laser Facility. Plastic (CD) shell targets with a re-entrant gold cone are compressed with a ˜20-kJ, UV low-adiabat laser pulse. A 1-kJ, 10-ps pulse from OMEGA EP generates fast electrons in the hollow cone that are transported into the compressed core. The experiments demonstrate a significant enhancement of the neutron yield. The neutron-yield enhancement caused by the high-intensity pulse is 1.5 x 10^7, which is more than 150% of the implosion yield. For the first time, measurements of the breakout time of the compression-induced shock wave through the cone were performed for the same targets as used in the integrated experiments. The shock breakout was measured to be ˜100 ps after peak neutron production. The experiments demonstrate that the cone tip is intact at the time when the short-pulse laser interacts with the cone. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement Nos. DE-FC52-08NA28302, DE-FC02-04ER54789, and DE-FG02-05ER54839. [4pt] In collaboration with A. A. Solodov, K. S. Anderson, R. Betti (LLE/FSC); C. Stoeckl, T.R. Boehly, R.S. Craxton, J.A. Delettrez, V.Yu. Glebov, J.P. Knauer, F.J. Marshall, K.L. Marshall, D.D. Meyerhofer,^ P.M. Nilson, T.C. Sangster, W. Seka (LLE); F.N. Beg (UCSD), H. Habara (ILE), P.K. Patel (LLNL), R.B. Stephens (GA); J.A. Frenje, N. Sinenian (PSFC/MIT).

  10. Counter flow cooling drier with integrated heat recovery

    Microsoft Academic Search

    Shivvers; Steve D

    2009-01-01

    A drier apparatus for removing water or other liquids from various materials includes a mixer, drying chamber, separator and regenerator and a method for use of the apparatus. The material to be dried is mixed with a heated media to form a mixture which then passes through the chamber. While passing through the chamber, a comparatively cool fluid is passed

  11. New configurations of a heat recovery absorption heat pump integrated with a natural gas boiler for boiler efficiency improvement

    SciTech Connect

    Qu, Ming [Purdue University, West Lafayette, IN; Abdelaziz, Omar [ORNL; Yin, Hongxi [Southeast University, Nanjing, China

    2014-11-01

    Conventional natural gas-fired boilers exhaust flue gas direct to the atmosphere at 150 200 C, which, at such temperatures, contains large amount of energy and results in relatively low thermal efficiency ranging from 70% to 80%. Although condensing boilers for recovering the heat in the flue gas have been developed over the past 40 years, their present market share is still less than 25%. The major reason for this relatively slow acceptance is the limited improvement in the thermal efficiency of condensing boilers. In the condensing boiler, the temperature of the hot water return at the range of 50 60 C, which is used to cool the flue gas, is very close to the dew point of the water vapor in the flue gas. Therefore, the latent heat, the majority of the waste heat in the flue gas, which is contained in the water vapor, cannot be recovered. This paper presents a new approach to improve boiler thermal efficiency by integrating absorption heat pumps with natural gas boilers for waste heat recovery (HRAHP). Three configurations of HRAHPs are introduced and discussed. The three configurations are modeled in detail to illustrate the significant thermal efficiency improvement they attain. Further, for conceptual proof and validation, an existing hot water-driven absorption chiller is operated as a heat pump at operating conditions similar to one of the devised configurations. An overall system performance and economic analysis are provided for decision-making and as evidence of the potential benefits. These three configurations of HRAHP provide a pathway to achieving realistic high-efficiency natural gas boilers for applications with process fluid return temperatures higher than or close to the dew point of the water vapor in the flue gas.

  12. Heat-pump-centered integrated community energy systems: Systems development, Consolidated Natural Gas Service Company

    Microsoft Academic Search

    N. R. Baker; T. D. Donakowski; R. B. Foster; D. L. Sala; R. R. Tison; T. P. Whaley; B. D. Yudow; P. F. Swenson

    1980-01-01

    The heat actuated heat pump centered integrated community energy system (HAHP-ICES) is described. The system utilizes a gas fired, engine-driven, heat pump and commercial buildings, and offers several advantages over the more conventional equipment it is intended to supplant. The general nonsite specific application assumes a hypothetical community of one 59,000 cu ft office building and five 24 unit, low

  13. Development of an integrated heat pipe-thermal storage system for a solar receiver

    NASA Astrophysics Data System (ADS)

    Keddy, E.; Sena, J. Tom; Merrigan, M.; Heidenreich, Gary; Johnson, Steve

    1988-06-01

    An integrated heat pipe-thermal storage system was developed as part of the Organic Rankine Cycle Solar Dynamic Power System solar receiver for space station application. The solar receiver incorporates potassium heat pipe elements to absorb and transfer the solar energy within the receiver cavity. The heat pipes contain thermal energy storage (TES) canisters within the vapor space with a toluene heater tube used as the condenser region of the heat pipe. During the insolation period of the earth orbit, solar energy is delivered to the heat pipe. Part of this thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of earth orbit, the stored energy in the TES units is transferred by the potassium vapor to the toluene heater tube. A developmental heat pipe element was constructed that contains axial arteries and a distribution wick connecting the toluene heater and the TES units to the solar insolation surface of the heat pipe. Tests were conducted to demonstrate the heat pipe, TES units, and the heater tube operation. The heat pipe element was operated at design input power of 4.8 kW. Thermal cycle tests were conducted to demonstrate the successful charge and discharge of the TES units. Axial power flux levels up to 15 watts/sq cm were demonstrated and transient tests were conducted on the heat pipe element. Details of the heat pipe development and test procedures are presented.

  14. Development of an integrated heat pipe-thermal storage system for a solar receiver

    NASA Technical Reports Server (NTRS)

    Keddy, E.; Sena, J. Tom; Merrigan, M.; Heidenreich, Gary; Johnson, Steve

    1988-01-01

    An integrated heat pipe-thermal storage system was developed as part of the Organic Rankine Cycle Solar Dynamic Power System solar receiver for space station application. The solar receiver incorporates potassium heat pipe elements to absorb and transfer the solar energy within the receiver cavity. The heat pipes contain thermal energy storage (TES) canisters within the vapor space with a toluene heater tube used as the condenser region of the heat pipe. During the insolation period of the earth orbit, solar energy is delivered to the heat pipe. Part of this thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of earth orbit, the stored energy in the TES units is transferred by the potassium vapor to the toluene heater tube. A developmental heat pipe element was constructed that contains axial arteries and a distribution wick connecting the toluene heater and the TES units to the solar insolation surface of the heat pipe. Tests were conducted to demonstrate the heat pipe, TES units, and the heater tube operation. The heat pipe element was operated at design input power of 4.8 kW. Thermal cycle tests were conducted to demonstrate the successful charge and discharge of the TES units. Axial power flux levels up to 15 watts/sq cm were demonstrated and transient tests were conducted on the heat pipe element. Details of the heat pipe development and test procedures are presented.

  15. Application of Nyström method to a Fredholm integral equation describing induction heating

    NASA Astrophysics Data System (ADS)

    Rak, Josef

    2015-05-01

    An induction heating problem can be described by a Fredholm Integral Equation of the second kind. The equation is used to compute the eddy current of density. One method for solving such an equation is the Nyström method. It is based on the approximation of the integral in an equation by the numerical integration rule. This paper shows application of the Nyström method to an induction heating problem. Results of the Nyström method are compared with an alternative method.

  16. A Novel Integrated Frozen Soil Thermal Energy Storage and Ground-Source Heat Pump System 

    E-print Network

    Jiang, Y.; Yao, Y.; Rong, L.; Ma, Z.

    2006-01-01

    In this paper, a novel integrated frozen soil thermal energy storage and ground-source heat pump (IFSTS&GSHP) system in which the GHE can act as both cold thermal energy storage device and heat exchanger for GSHP is first presented. The IFSTS...

  17. CHP INTEGRATION (OR IES): MAXIMIZING THE EFFICIENCY OF DISTRIBUTED GENERATION WITH WASTE HEAT RECOVERY

    Microsoft Academic Search

    D. T. Rizy; A. Zaltash; S. D. Labinov; A. Y. Petrov; E. A. Vineyard; R. L. Linkous

    A laboratory facility for testing combined cooling\\/heating and power (CHP) or more currently referred to as Integrated Energy Systems (IES) has been commissioned at the Oak Ridge National Laboratory (ORNL). The scope of the facility is to test distributed generation (DG) with thermally-activated (TA) technologies for waste heat recovery. The designation of the IES Laboratory Facility as a \\

  18. High pressure ratio cryocooler with integral expander and heat exchanger

    Microsoft Academic Search

    J. A. Crunkleton; J. L. Smith Jr.; Y. Iwasa

    1988-01-01

    A new 1 W, 4.2 K cryocooler is under development that is intended to miniaturize helium temperature refrigeration systems using a high-pressure-ratio Collins-type cycle. The configuration resulted from optimization studies of a saturated vapor compression (SCV) cycle that employs miniature parallel-plate heat exchangers. The basic configuration is a long displacer in a close-fitting, thin-walled cylinder. The displacer-to-cylinder gap is the

  19. Heat Transfer

    NSDL National Science Digital Library

    Integrated Teaching and Learning Program,

    Students explore heat transfer and energy efficiency using the context of energy efficient houses. They gain a solid understanding of the three types of heat transfer: radiation, convection and conduction, which are explained in detail and related to the real world. They learn about the many ways solar energy is used as a renewable energy source to reduce the emission of greenhouse gasses and operating costs. Students also explore ways in which a device can capitalize on the methods of heat transfer to produce a beneficial result. They are given the tools to calculate the heat transferred between a system and its surroundings.

  20. Counter flow cooling drier with integrated heat recovery

    DOEpatents

    Shivvers, Steve D. (Prole, IA)

    2009-08-18

    A drier apparatus for removing water or other liquids from various materials includes a mixer, drying chamber, separator and regenerator and a method for use of the apparatus. The material to be dried is mixed with a heated media to form a mixture which then passes through the chamber. While passing through the chamber, a comparatively cool fluid is passed counter current through the mixture so that the mixture becomes cooler and drier and the fluid becomes hotter and more saturated with moisture. The mixture is then separated into drier material and media. The media is transferred to the regenerator and heated therein by the hot fluid from the chamber and supplemental heat is supplied to bring the media to a preselected temperature for mixing with the incoming material to be dried. In a closed loop embodiment of the apparatus, the fluid is also recycled from the regenerator to the chamber and a chiller is utilized to reduce the temperature of the fluid to a preselected temperature and dew point temperature.

  1. Development of integrated high temperature sensor for simultaneous measurement of wall heat flux and temperature

    NASA Astrophysics Data System (ADS)

    Li, Long; Wang, Jing; Fan, Xuejun

    2012-07-01

    In this paper, an integrated water-cooled sensor has been developed to simultaneously measure the heat flux and temperature at the wall of a scramjet combustor. The upgrade sensor was designed based on the principle of Gardon heat-flux gauge with many improvements. The sensor was well calibrated by both conductive heating sources and blackbody cavity device. The effects of structural material and dimensions on the sensor's responses were examined. Both the experimental measurements and numerical simulation were conducted and showed that the new sensor has the maximum measure ability of heat flux of 400 W/cm2 and stagnation temperatures up to 1920 K along with satisfactory response time.

  2. Optimal Operation System of the Integrated District Heating System with Multiple Regional Branches

    NASA Astrophysics Data System (ADS)

    Kim, Ui Sik; Park, Tae Chang; Kim, Lae-Hyun; Yeo, Yeong Koo

    This paper presents an optimal production and distribution management for structural and operational optimization of the integrated district heating system (DHS) with multiple regional branches. A DHS consists of energy suppliers and consumers, district heating pipelines network and heat storage facilities in the covered region. In the optimal management system, production of heat and electric power, regional heat demand, electric power bidding and sales, transport and storage of heat at each regional DHS are taken into account. The optimal management system is formulated as a mixed integer linear programming (MILP) where the objectives is to minimize the overall cost of the integrated DHS while satisfying the operation constraints of heat units and networks as well as fulfilling heating demands from consumers. Piecewise linear formulation of the production cost function and stairwise formulation of the start-up cost function are used to compute nonlinear cost function approximately. Evaluation of the total overall cost is based on weekly operations at each district heat branches. Numerical simulations show the increase of energy efficiency due to the introduction of the present optimal management system.

  3. Optimization of Heat Exchanger Cleaning 

    E-print Network

    Siegell, J. H.

    1986-01-01

    The performance of heat integration systems is quantified in terms of the amount of heat that is recovered. This decreases with time due to increased fouling of the heat exchange surface. Using the "Total Fouling Related Expenses (TFRE)" approach...

  4. Analysis of orbital heat transfer

    NASA Technical Reports Server (NTRS)

    Buna, T.

    1974-01-01

    Graphical representation of orbital heat balance in form of polar diagrams is obtained from integral expressions of orbital heat transfer whereby quantities of heat are represented as areas swept by ""thermal radii.''

  5. Heat Problems.

    ERIC Educational Resources Information Center

    Connors, G. Patrick

    Heat problems and heat cramps related to jogging can be caused by fluid imbalances, medications, dietary insufficiency, vomiting or diarrhea, among other factors. If the condition keeps reoccurring, the advice of a physician should be sought. Some preventive measures that can be taken include: (1) running during the cooler hours of the day; (2)…

  6. Heat stroke.

    PubMed

    Leon, Lisa R; Bouchama, Abderrezak

    2015-04-01

    Heat stroke is a life-threatening condition clinically diagnosed as a severe elevation in body temperature with central nervous system dysfunction that often includes combativeness, delirium, seizures, and coma. Classic heat stroke primarily occurs in immunocompromised individuals during annual heat waves. Exertional heat stroke is observed in young fit individuals performing strenuous physical activity in hot or temperature environments. Long-term consequences of heat stroke are thought to be due to a systemic inflammatory response syndrome. This article provides a comprehensive review of recent advances in the identification of risk factors that predispose to heat stroke, the role of endotoxin and cytokines in mediation of multi-organ damage, the incidence of hypothermia and fever during heat stroke recovery, clinical biomarkers of organ damage severity, and protective cooling strategies. Risk factors include environmental factors, medications, drug use, compromised health status, and genetic conditions. The role of endotoxin and cytokines is discussed in the framework of research conducted over 30 years ago that requires reassessment to more clearly identify the role of these factors in the systemic inflammatory response syndrome. We challenge the notion that hypothalamic damage is responsible for thermoregulatory disturbances during heat stroke recovery and highlight recent advances in our understanding of the regulated nature of these responses. The need for more sensitive clinical biomarkers of organ damage is examined. Conventional and emerging cooling methods are discussed with reference to protection against peripheral organ damage and selective brain cooling. PMID:25880507

  7. Optimal design of ground source heat pump system integrated with phase change cooling storage tank in an office building 

    E-print Network

    Zhu, N.

    2014-01-01

    heat pump system integrated with phase change cooling storage technology could save energy and shift peak load. This paper studied the optimal design of a ground source heat pump system integrated with phase change thermal storage tank in an office... heat pump system integrated with solar ESL-IC-14-09-18 Proceedings of the 14th International Conference for Enhanced Building Operations, Beijing, China, September 14-17, 2014 heating storage technology, and it is concluded that the system save energy...

  8. Adding rectifying\\/stripping section type heat integration to a pressure-swing distillation (PSD) process

    Microsoft Academic Search

    Kejin Huang; Lan Shan; Qunxiong Zhu; Jixin Qian

    2008-01-01

    This paper studies the economical effect of considering rectifying\\/stripping section type heat integration in a pressure-swing distillation (PSD) process separating a binary homogeneous pressure-sensitive azeotrope. The schemes for arranging heat integration between the rectifying section and the stripping section of the high- and low-pressure distillation columns, respectively, are derived and an effective procedure is devised for the conceptual process design

  9. Process for producing an activated carbon adsorbent with integral heat transfer apparatus

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Yavrouian, Andre H. (Inventor)

    1996-01-01

    A process for producing an integral adsorbent-heat exchanger apparatus useful in ammonia refrigerant heat pump systems. In one embodiment, the process wets an activated carbon particles-solvent mixture with a binder-solvent mixture, presses the binder wetted activated carbon mixture on a metal tube surface and thereafter pyrolyzes the mixture to form a bonded activated carbon matrix adjoined to the tube surface. The integral apparatus can be easily and inexpensively produced by the process in large quantities.

  10. Heat exchangers and the performance of heat pumps – Analysis of a heat pump database

    Microsoft Academic Search

    D. S. Kim; I. Moretti; M. Monsberger

    2011-01-01

    Heat pumping is a highly energy-efficient technology that could help reduce energy and environmental problems. The efficiency of a heat pump greatly depends on the individual and integral performance of the components inside. In this study, heat pump performance is investigated with a special focus on heat exchangers. Experimental data obtained from comprehensive heat pump measurements performed at the Austrian

  11. PCB-Integrated Heat Exchanger for Cooling Electronics Using Microchannels Fabricated With the Direct-Write Method

    Microsoft Academic Search

    Ramzi Bey Oueslati; Daniel Therriault; Sylvain Martel

    2008-01-01

    The electronic industry has a growing need for efficient heat dissipation mechanisms such as micro heat exchanger systems. This active cooling approach requires the integration of microfluidic components near the main heat sources of the electronic devices. Despite the investigation of several micro-cooling configurations, their commercial utilization by the electronic industry is rather limited due to complex fabrication and integration

  12. Aluminum Silicon Carbide (AlSiC) Microprocessor Lids and Heat Sinks for Integrated Thermal Management Solutions

    Microsoft Academic Search

    Mark A. Occhionero; Robert A. Hay; Richard W. Adams; Kevin P. Fennessy; Glenn Sundberg

    The next generation microprocessor assemblies will require integrated thermal management design solutions as the device density and clock speeds increase. These solutions will include a heat spreader, or lid, that is in contact with the heat generating microprocessor in the total packaging assembly. The materials choice for these integrated heat spreader solutions must provide the following material property attributes. •

  13. Heat collector

    DOEpatents

    Merrigan, Michael A. (Santa Cruz, NM)

    1984-01-01

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  14. Design and analysis of high-performance air-cooled heat exchanger with an integrated capillary-pumped loop heat pipe

    Microsoft Academic Search

    Matthew McCarthy; Teresa Peters; Jon Allison; Alonso Espinosa; David Jenicek; Arthur Kariya; Catherine Koveal; John G. Brisson; Jeffrey H. Lang; Evelyn N. Wang

    2010-01-01

    We report the design and analysis of a high-power air-cooled heat exchanger capable of dissipating over 1000 W with 33 W of input electrical power and an overall thermal resistance of less than 0.05 K\\/W. The novelty of the design combines the blower and heat sink into an integrated compact unit (4\\

  15. The DOE Heat-Pump-Centered Integrated Community Energy Systems Project

    NASA Astrophysics Data System (ADS)

    Calm, J. M.

    1982-03-01

    The Heat-Pump-Centered Integrated Community Energy Systems Project seeks to conserve energy by developing heat pump systems for district heating and cooling. Seven contractor teams were involved in concept development and subsequent application feasibility studies. A technical and economic assessment of the systems developed was performed based on the results of these and two related studies. The assessment concludes that district heating and cooling with heat pumps can conserve energy resources, and particularly nonrenewable fuels, in an environmentally and economically attractive way. The application potential is believed to be broad, and the energy savings of widespread implementation would be substantial. No one system is universally applicable, but many options exists. Market forces are already promoting many of the required technologies, but further research, development, and demonstration could accelerate implementation.

  16. Enhancing flow boiling heat transfer in microchannels for thermal management with monolithically-integrated silicon nanowires.

    PubMed

    Li, D; Wu, G S; Wang, W; Wang, Y D; Liu, Dong; Zhang, D C; Chen, Y F; Peterson, G P; Yang, Ronggui

    2012-07-11

    Thermal management has become a critical issue for high heat flux electronics and energy systems. Integrated two-phase microchannel liquid-cooling technology has been envisioned as a promising solution, but with great challenges in flow instability. In this work, silicon nanowires were synthesized in situ in parallel silicon microchannel arrays for the first time to suppress the flow instability and to augment flow boiling heat transfer. Significant enhancement in flow boiling heat transfer performance was demonstrated for the nanowire-coated microchannel heat sink, such as an early onset of nucleate boiling, a delayed onset of flow oscillation, suppressed oscillating amplitudes of temperature and pressure drop, and an increased heat transfer coefficient. PMID:22694316

  17. Reducing CO2 emissions and energy consumption of heat-integrated distillation systems.

    PubMed

    Gadalla, Mamdouh A; Olujic, Zarko; Jansens, Peter J; Jobson, Megan; Smith, Robin

    2005-09-01

    Distillation systems are energy and power intensive processes and contribute significantly to the greenhouse gases emissions (e.g. carbon dioxide). Reducing CO2 emissions is an absolute necessity and expensive challenge to the chemical process industries in orderto meetthe environmental targets as agreed in the Kyoto Protocol. A simple model for the calculation of CO2 emissions from heat-integrated distillation systems is introduced, considering typical process industry utility devices such as boilers, furnaces, and turbines. Furnaces and turbines consume large quantities of fuels to provide electricity and process heats. As a result, they produce considerable amounts of CO2 gas to the atmosphere. Boilers are necessary to supply steam for heating purposes; besides, they are also significant emissions contributors. The model is used in an optimization-based approach to optimize the process conditions of an existing crude oil atmospheric tower in order to reduce its CO2 emissions and energy demands. It is also applied to generate design options to reduce the emissions from a novel internally heat-integrated distillation column (HIDiC). A gas turbine can be integrated with these distillation systems for larger emissions reduction and further energy savings. Results show that existing crude oil installations can save up to 21% in energy and 22% in emissions, when the process conditions are optimized. Additionally, by integrating a gas turbine, the total emissions can be reduced further by 48%. Internal heat-integrated columns can be a good alternative to conventional heat pump and other energy intensive close boiling mixtures separations. Energy savings can reach up to 100% with respect to reboiler heat requirements. Emissions of these configurations are cut down by up to 83%, compared to conventional units, and by 36%, with respect to heat pump alternatives. Importantly, cost savings and more profit are gained in parallel to emissions minimization. PMID:16190250

  18. Development of an integrated heat pipe-thermal storage system for a solar receiver

    NASA Astrophysics Data System (ADS)

    Keddy, E. S.; Sena, J. T.; Merrigan, M. A.; Heidenreich, G.; Johnson, S.

    1987-07-01

    The Organic Rankine Cycle (ORC) Solar Dynamic Power System (SDPS) is one of the candidates for Space Station prime power application. In the low Earth orbit of the Space Station approximately 34 minutes of the 94-minute orbital period is spent in eclipse with no solar energy input to the power system. For this period the SDPS will use thermal energy storage (TES) material to provide a constant power output. An integrated heat-pipe thermal storage receiver system is being developed as part of the ORC-SDPS solar receiver. This system incorporates potassium heat pipe elements to absorb and transfer the solar energy within the receiver cavity. The heat pipes contain the TES canisters within the potassium vapor space with the toluene heater tube used as the condenser region of the heat pipe. During the insolation period of the Earth orbit, solar energy is delivered to the heat pipe in the ORC-SDPS receiver cavity. The heat pipe transforms the non-uniform solar flux incident in the heat pipe surface within the receiver cavity to an essentially uniform flux at the potassium vapor condensation interface in the heat pipe. During solar insolation, part of the thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of the orbit, the balance stored in the TES units is transferred by the potassium vapor to the toluene heater tube.

  19. Development of an integrated heat pipe-thermal storage system for a solar receiver

    NASA Technical Reports Server (NTRS)

    Keddy, E. S.; Sena, J. T.; Merrigan, M. A.; Heidenreich, G.; Johnson, S.

    1987-01-01

    The Organic Rankine Cycle (ORC) Solar Dynamic Power System (SDPS) is one of the candidates for Space Station prime power application. In the low Earth orbit of the Space Station approximately 34 minutes of the 94-minute orbital period is spent in eclipse with no solar energy input to the power system. For this period the SDPS will use thermal energy storage (TES) material to provide a constant power output. An integrated heat-pipe thermal storage receiver system is being developed as part of the ORC-SDPS solar receiver. This system incorporates potassium heat pipe elements to absorb and transfer the solar energy within the receiver cavity. The heat pipes contain the TES canisters within the potassium vapor space with the toluene heater tube used as the condenser region of the heat pipe. During the insolation period of the Earth orbit, solar energy is delivered to the heat pipe in the ORC-SDPS receiver cavity. The heat pipe transforms the non-uniform solar flux incident in the heat pipe surface within the receiver cavity to an essentially uniform flux at the potassium vapor condensation interface in the heat pipe. During solar insolation, part of the thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of the orbit, the balance stored in the TES units is transferred by the potassium vapor to the toluene heater tube.

  20. Biodiesel production process from microalgae oil by waste heat recovery and process integration.

    PubMed

    Song, Chunfeng; Chen, Guanyi; Ji, Na; Liu, Qingling; Kansha, Yasuki; Tsutsumi, Atsushi

    2015-10-01

    In this work, the optimization of microalgae oil (MO) based biodiesel production process is carried out by waste heat recovery and process integration. The exergy analysis of each heat exchanger presented an efficient heat coupling between hot and cold streams, thus minimizing the total exergy destruction. Simulation results showed that the unit production cost of optimized process is 0.592$/L biodiesel, and approximately 0.172$/L biodiesel can be avoided by heat integration. Although the capital cost of the optimized biodiesel production process increased 32.5% and 23.5% compared to the reference cases, the operational cost can be reduced by approximately 22.5% and 41.6%. PMID:26133477

  1. Liquid over-feeding refrigeration system and method with integrated accumulator-expander-heat exchanger

    Microsoft Academic Search

    V. C. Mei; F. C. Chen

    1997-01-01

    A refrigeration system is described having a vapor compression cycle utilizing a liquid over-feeding operation with an integrated accumulator-expander-heat exchanger. Hot, high-pressure liquid refrigerant from the condenser passes through one or more lengths of capillary tubing substantially immersed in a pool liquid refrigerant in the accumulator-expander-heat exchanger for simultaneously sub-cooling and expanding the liquid refrigerant while vaporizing liquid refrigerant from

  2. Liquid over-feeding refrigeration system and method with integrated accumulator-expander-heat exchanger

    Microsoft Academic Search

    Viung C. Mei; Fang C. Chen

    1997-01-01

    A refrigeration system having a vapor compression cycle utilizing a liquid over-feeding operation with an integrated accumulator-expander-heat exchanger. Hot, high-pressure liquid refrigerant from the condenser passes through one or more lengths of capillary tubing substantially immersed in a pool liquid refrigerant in the accumulator-expander-heat exchanger for simultaneously sub-cooling and expanding the liquid refrigerant while vaporizing liquid refrigerant from the pool

  3. Application of fuel cells with heat recovery for integrated utility systems

    NASA Technical Reports Server (NTRS)

    Shields, V.; King, J. M., Jr.

    1975-01-01

    This paper presents the results of a study of fuel cell powerplants with heat recovery for use in an integrated utility system. Such a design provides for a low pollution, noise-free, highly efficient integrated utility. Use of the waste heat from the fuel cell powerplant in an integrated utility system for the village center complex of a new community results in a reduction in resource consumption of 42 percent compared to conventional methods. In addition, the system has the potential of operating on fuels produced from waste materials (pyrolysis and digester gases); this would provide further reduction in energy consumption.

  4. Heat pipe waste heat recovery boilers

    Microsoft Academic Search

    D. A. Littwin; J. McCurley

    1981-01-01

    The use of heat pipes as transport devices in waste heat recovery boilers is examined. Test results show that heat pipes can efficiently extract heat from the hot gas stream and transfer it inside the pressure vessel for the steam generation process. The benefits of incorporating heat pipes into the design of waste heat recovery boilers include a highly compact

  5. Latent heat in soil heat flux measurements

    Microsoft Academic Search

    J. L. Heitman; R. Horton; T. J. Sauer; T. S. Ren; X. Xiao

    2010-01-01

    The surface energy balance includes a term for soil heat flux. Soil heat flux is difficult to measure because it includes conduction and convection heat transfer processes. Accurate representation of soil heat flux is an important consideration in many modeling and measurement applications. Yet, there remains uncertainty about what comprises soil heat flux and how surface and subsurface heat fluxes

  6. Calculation of heat capacities of light and heavy water by path-integral molecular dynamics.

    PubMed

    Shiga, Motoyuki; Shinoda, Wataru

    2005-10-01

    As an application of atomistic simulation methods to heat capacities, path-integral molecular dynamics has been used to calculate the constant-volume heat capacities of light and heavy water in the gas, liquid, and solid phases. While the classical simulation based on conventional molecular dynamics has estimated the heat capacities too high, the quantum simulation based on path-integral molecular dynamics has given reasonable results based on the simple point-charge/flexible potential model. The calculated heat capacities (divided by the Boltzmann constant) in the quantum simulation are 3.1 in the vapor H2O at 300 K, 6.9 in the liquid H2O at 300 K, and 4.1 in the ice Ih H2O at 250 K, respectively, which are comparable to the experimental data of 3.04, 8.9, and 4.1, respectively. The quantum simulation also reproduces the isotope effect. The heat capacity in the liquid D2O has been calculated to be 10% higher than that of H2O, while it is 13% higher in the experiment. The results demonstrate that the path-integral simulation is a promising approach to quantitatively evaluate the heat capacities for molecular systems, taking account of quantum-mechanical vibrations as well as strongly anharmonic motions. PMID:16223309

  7. Transient performance evaluation of an integrated heat pipe-thermal storage system

    NASA Technical Reports Server (NTRS)

    Keddy, E.; Sena, J. T.; Merrigan, M.; Heidenreich, Gary; Johnson, Steve

    1988-01-01

    Transient performance tests of an integrated heat pipe-thermal storage system have been conducted. This system was developed as a part of an Organic Rankine Cycle-Solar Dynamic Power System receiver for future power systems. The integrated system consists of potassium heat pipe elements that incorporate thermal energy storage canisters within the vapor space and an organic fluid (toluene) heater tube used as the condenser region of the heat pipe. The transient performance tests determined the operating characteristics and power input limits of the integrated heat pipe-thermal storage unit under conditions corresponding to re-acquisition of the sun during emergence from eclipse conditions and to the initial start-up of the solar dynamic power system. The tests demonstrated that the heat pipe-thermal storage element is not limited under conditions corresponding to emergence from eclipse during normal orbital operations and the heat pipe will successfully start-up from the frozen condition with full input power at the onset. Details of the test procedures and results of the tests are presented in this paper.

  8. Integrated Thermal Protection Systems and Heat Resistant Structures

    NASA Technical Reports Server (NTRS)

    Pichon, Thierry; Lacoste, Marc; Barreteau, R.; Glass, David E.

    2006-01-01

    In the early stages of NASA's Exploration Initiative, Snecma Propulsion Solide was funded under the Exploration Systems Research & Technology program to develop a CMC heatshield, a deployable decelerator, and an ablative heat shield for reentry vehicles. Due to changes within NASA's Exploration Initiative, this task was cancelled in early FY06. This paper will give an overview of the work that was accomplished prior to cancellation. The Snecma team consisted of MT Aerospace, Germany, and Materials Research & Design (MR&D), NASA Langley, NASA Dryden, and NASA Ames in the United States. An Apollo-type capsule was chosen as the reference vehicle for the work. NASA Langley generated the trajectory and aerothermal loads. Snecma and MT Aerospace began the design of a ceramic aft heatshield (CAS) utilizing C/SiC panels as the capsule heatshield. MR&D led the design of a C/SiC deployable decelerator, NASA Ames led the characterization of several ablators, NASA Dryden led the development of a heath management system and the high temperature structures testing, and NASA Langley led the insulation characterization. Though the task was pre-maturely cancelled, a significant quantity of work was accomplished.

  9. First university owned district heating system using biomass heat

    E-print Network

    Northern British Columbia, University of

    used for core campus heating. To demonstrate syngas production and biomass campus heating Main CampusHighlights · First university owned district heating system using biomass heat · Capacity: 15 MMBtu/hr · Fuel: Local wood residue · Integrated research laboratory · LEED Gold building Biomass Gasification

  10. Heat pumps in complex heat and power systems: Final report

    Microsoft Academic Search

    E. Hindmarsh; S. M. Ranade

    1989-01-01

    This report documents the results of an investigation into the placement of heat pumps in complex heat and power systems. The primary goal of this project was the development of a systematic procedure for determining the appropriate integration of heat pumps in industrial sites. Pinch technology, heat pump theory and site utility system theory form the foundation of this work.

  11. Lunar base heat pump

    NASA Technical Reports Server (NTRS)

    Goldman, Jeffrey H.; Tetreault, R.; Fischbach, D.; Walker, D.

    1994-01-01

    A heat pump is a device which elevates the temperature of a heat flow by a means of an energy input. By doing this, the heat pump can cause heat to transfer faster from a warm region to a cool region, or it can cause heat to flow from a cool region to a warmer region. The second case is the one which finds vast commercial applications such as air conditioning, heating, and refrigeration. Aerospace applications of heat pumps include both cases. The NASA Johnson Space Center is currently developing a Life Support Systems Integration Facility (LSSIF, previously SIRF) to provide system-level integration, operational test experience, and performance data that will enable NASA to develop flight-certified hardware for future planetary missions. A high lift heat pump is a significant part of the TCS hardware development associated with the LSSIF. The high lift heat pump program discussed here is being performed in three phases. In Phase 1, the objective is to develop heat pump concepts for a lunar base, a lunar lander, and for a ground development unit for the SIRF. In Phase 2, the design of the SIRF ground test unit is being performed, including identification and evaluation of safety and reliability issues. In Phase 3, the SIRF unit will be manufactured, tested, and delivered to the NASA Johnson Space Center.

  12. A quasi-steady state mathematical model of an integrated ground source heat pump for building space control

    Microsoft Academic Search

    J. M. Corberan; D. P. Finn; C. M. Montagud; F. T. Murphy; K. C. Edwards

    2011-01-01

    This paper is concerned with the development of a mathematical model, capable of describing the quasi-steady state performance of an integrated ground source heat pump, which is used for heating and cooling of an institutional building located in a Mediterranean climate. The model is structured on functional basis according to the heat pump vapour compression or primary circuit, a secondary

  13. Development of integrated high temperature sensor for simultaneous measurement of wall heat flux and temperature.

    PubMed

    Li, Long; Wang, Jing; Fan, Xuejun

    2012-07-01

    In this paper, an integrated water-cooled sensor has been developed to simultaneously measure the heat flux and temperature at the wall of a scramjet combustor. The upgrade sensor was designed based on the principle of Gardon heat-flux gauge with many improvements. The sensor was well calibrated by both conductive heating sources and blackbody cavity device. The effects of structural material and dimensions on the sensor's responses were examined. Both the experimental measurements and numerical simulation were conducted and showed that the new sensor has the maximum measure ability of heat flux of 400 W/cm(2) and stagnation temperatures up to 1920 K along with satisfactory response time. PMID:22852712

  14. Heat Pipe Thermal Conditioning Panel

    NASA Technical Reports Server (NTRS)

    Saaski, E. W.

    1973-01-01

    The development, fabrication, and evaluation of heat pipe thermal conditioning panels are discussed. The panels were designed and fabricated to be compatible with several planned NASA space vehicles, in terms of panel size, capacity, temperature gradients, and integration with various heat exchangers and electronic components. It was satisfactorily demonstrated that the heat pipe thermal conditioning panel meets the thermal efficiency and heat transport requirements.

  15. Heat-pump-centered integrated community energy systems. System development, Consolidated Natural Gas Service Company, interim report

    Microsoft Academic Search

    R. R. Tison; N. R. Baker; B. D. Yudow; D. L. Sala; T. D. Donakowski; P. F. Swenson

    1979-01-01

    Heat-pump-centered integrated community energy systems are energy systems for communities that provide heating, cooling, and\\/or other thermal energy services through the use of heat pumps. Since heat pumps primarily transfer energy from existing and otherwise probably unused sources, rather than convert it from electrical or chemical to thermal form, HP-ICES offer a significant potential for energy savings. Results of the

  16. Measurements of the Influence of Integral Length Scale on Stagnation Region Heat Transfer

    NASA Technical Reports Server (NTRS)

    Vanfossen, G. James; Ching, Chang Y.

    1994-01-01

    The purpose was twofold: first, to determine if a length scale existed that would cause the greatest augmentation in stagnation region heat transfer for a given turbulence intensity and second, to develop a prediction tool for stagnation heat transfer in the presence of free stream turbulence. Toward this end, a model with a circular leading edge was fabricated with heat transfer gages in the stagnation region. The model was qualified in a low turbulence wind tunnel by comparing measurements with Frossling's solution for stagnation region heat transfer in a laminar free stream. Five turbulence generating grids were fabricated; four were square mesh, biplane grids made from square bars. Each had identical mesh to bar width ratio but different bar widths. The fifth grid was an array of fine parallel wires that were perpendicular to the axis of the cylindrical leading edge. Turbulence intensity and integral length scale were measured as a function of distance from the grids. Stagnation region heat transfer was measured at various distances downstream of each grid. Data were taken at cylinder Reynolds numbers ranging from 42,000 to 193,000. Turbulence intensities were in the range 1.1 to 15.9 percent while the ratio of integral length scale to cylinder diameter ranged from 0.05 to 0.30. Stagnation region heat transfer augmentation increased with decreasing length scale. An optimum scale was not found. A correlation was developed that fit heat transfer data for the square bar grids to within +4 percent. The data from the array of wires were not predicted by the correlation; augmentation was higher for this case indicating that the degree of isotropy in the turbulent flow field has a large effect on stagnation heat transfer. The data of other researchers are also compared with the correlation.

  17. Flash Heating

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    2000-03-01

    Meteorites contain millimeter-sized objects called chondrules. They were melted in the solar nebula, the cloud of gas and dust in which the Sun and planets formed. Numerous experiments on rock powders have been done to understand the melting process and the cooling rates chondrules experienced. Most meteorite specialists believe that chondrules formed by flash heating, with almost instantaneous melting, though the length of time they remained molten is uncertain. Can conventional laboratory furnaces heat rock powders rapidly enough to flash melt them? Susan Maharaj and Roger Hewins (Rutgers University, New Brunswick) tested this idea by inserting tiny wires of pure elements (which have precise melting temperatures) into compressed rock powders about 3.5 mm in diameter, and placing the samples into a furnace heated to a range of temperatures. They found that at 1600 C, a sample took only six seconds to reach 1538 C. When placed into a furnace at 1500 C, samples took ten seconds to reach 1495 C. This shows that the flash heating process can be studied in conventional laboratory furnaces.

  18. Integration of Radioisotope Heat Source with Stirling Engine and Cooler for Venus Internal-Structure Mission

    SciTech Connect

    Schock, Alfred

    1993-10-01

    The primary mission goal is to perform long-term seismic measurements on Venus, to study its largely unknown internal structure. The principal problem is that most payload components cannot long survive Venus's harsh environment, 90 bars at 500 degrees C. To meet the mission life goal, such components must be protected by a refrigerated payload bay. JPL Investigators have proposed a mission concept employing a lander with a spherical payload bay cooled to 25 degrees C by a Stirling cooler powered by a radioisotope-heated Sitrling engine. To support JPL's mission study, NASA/Lewis and MTI have proposed a conceptual design for a hydraulically coupled Stirling engine and cooler, and Fairchild Space - with support of the Department of Energy - has proposed a design and integration scheme for a suitable radioisotope heat source. The key integration problem is to devise a simple, light-weight, and reliable scheme for forcing the radioisotope decay heat to flow through the Stirling engine during operation on Venus, but to reject that heat to the external environment when the Stirling engine and cooler are not operating (e.g., during the cruise phase, when the landers are surrounded by heat shields needed for protection during subsequent entry into the Venusian atmosphere.) A design and integration scheme for achieving these goals, together with results of detailed thermal analyses, are described in this paper. There are 7 copies in the file.

  19. The integration of water loop heat pump and building structural thermal storage systems

    SciTech Connect

    Marseille, T.J.; Schliesing, J.S.

    1991-10-01

    Many commercial buildings need heat in one part and, at the same time, cooling in another part. Even more common is the need for heating during one part of the day and cooling during another in the same spaces. If that energy could be shifted or stored for later use, significant energy might be saved. If a building's heating and cooling subsystems could be integrated with the building's structural mass and used to collect, store, and deliver energy, the energy might be save cost-effectively. To explore this opportunity, researchers at the Pacific Northwest Laboratory (PNL) examined the thermal interactions between the heating, ventilating, and air-conditioning (HVAC) system and the structure of a commercial building. Computer models were developed to simulate the interactions in an existing building located in Seattle, Washington, to determine how these building subsystems could be integrated to improve energy efficiency. The HVAC subsystems in the existing building were modeled. These subsystems consist of decentralized water-source heat pumps (WSHP) in a closed water loop, connected to cooling towers for heat rejection during cooling mode and boilers to augment heating. An initial base case'' computer model of the Seattle building, as-built, was developed. Metered data available for the building were used to calibrate this model to ensure that the analysis would provide information that closely reflected the operation of a real building. The HVAC system and building structure were integrated in the model using the concrete floor slabs as thermal storage media. The slabs may be actively charged during off-peak periods with the chilled water in the loop and then either actively or passively discharged into the conditioned space during peak periods. 21 refs., 37 figs., 17 tabs.

  20. Dynamic Complexity Study of Nuclear Reactor and Process Heat Application Integration

    SciTech Connect

    J'Tia Patrice Taylor; David E. Shropshire

    2009-09-01

    Abstract This paper describes the key obstacles and challenges facing the integration of nuclear reactors with process heat applications as they relate to dynamic issues. The paper also presents capabilities of current modeling and analysis tools available to investigate these issues. A pragmatic approach to an analysis is developed with the ultimate objective of improving the viability of nuclear energy as a heat source for process industries. The extension of nuclear energy to process heat industries would improve energy security and aid in reduction of carbon emissions by reducing demands for foreign derived fossil fuels. The paper begins with an overview of nuclear reactors and process application for potential use in an integrated system. Reactors are evaluated against specific characteristics that determine their compatibility with process applications such as heat outlet temperature. The reactor system categories include light water, heavy water, small to medium, near term high-temperature, and far term high temperature reactors. Low temperature process systems include desalination, district heating, and tar sands and shale oil recovery. High temperature processes that support hydrogen production include steam reforming, steam cracking, hydrogen production by electrolysis, and far-term applications such as the sulfur iodine chemical process and high-temperature electrolysis. A simple static matching between complementary systems is performed; however, to gain a true appreciation for system integration complexity, time dependent dynamic analysis is required. The paper identifies critical issues arising from dynamic complexity associated with integration of systems. Operational issues include scheduling conflicts and resource allocation for heat and electricity. Additionally, economic and safety considerations that could impact the successful integration of these systems are considered. Economic issues include the cost differential arising due to an integrated system and the economic allocation of electricity and heat resources. Safety issues include changes in regulatory constraints imposed on the facilities. Modeling and analysis tools, such as System Dynamics for time dependent operational and economic issues and RELAP5 3D for chemical transient affects, are evaluated. The results of this study advance the body of knowledge toward integration of nuclear reactors and process heat applications.

  1. 77 FR 39735 - Certain Integrated Circuit Packages Provided With Multiple Heat-Conducting Paths and Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-05

    ...Circuit Packages Provided With Multiple Heat- Conducting Paths and Products Containing...circuit packages provided with multiple heat-conducting paths and products containing...circuit packages provided with multiple heat-conducting paths and products...

  2. 77 FR 33486 - Certain Integrated Circuit Packages Provided With Multiple Heat-Conducting Paths and Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-06

    ...Circuit Packages Provided With Multiple Heat- Conducting Paths and Products Containing...Circuit Packages Provided With Multiple Heat-Conducting Paths and Products Containing...circuit packages provided with multiple heat-conducting paths and products...

  3. Geothermal district heating systems

    NASA Astrophysics Data System (ADS)

    Budney, G. S.; Childs, F.

    1982-06-01

    Ten district heating demonstration projects and their present status are described. The projects are Klamath County YMCA, Susanville District Heating, Klamath Falls District Heating, Reno Salem Plaza Condominium, El Centro Community Center Heating/Cooling, Haakon School and Business District Heating, St. Mary's Hospital, Diamond Ring Ranch, Pagosa Springs District Heating, and Boise District Heating.

  4. Waste heat recovery using heat pipe heat exchanger for heating automobile using exhaust gas

    Microsoft Academic Search

    Feng Yang; Xiugan Yuan; Guiping Lin

    2003-01-01

    The feasibility of using heat pipe heat exchangers for heating applying automotive exhaust gas is studied and the calculation method is developed. Practical heat pipe heat exchanger is set up for heating HS663, a large bus. Simple experiments are carried out to examine the performance of the heat exchanger. It is shown that the experimental results, which indicate the benefit

  5. Emerging heat pipe applications

    Microsoft Academic Search

    A. Basuilis; D. J. Formiller

    1978-01-01

    The article discusses the application of heat pipes in various industrial, military, and space projects. Several types of heat pipes are described, including simple cylindrical heat pipes, switching heat pipes, thermal diodes, variable conductance heat pipes, and vapor chambers. Potential future applications of heat pipes are identified in the fields of electronics, spacecraft thermal control, heat pipe recovery systems, and

  6. Ceramic heat pipe heat exchangers

    Microsoft Academic Search

    W. A. Ranken

    1976-01-01

    High-temperature strength, resistance to corrosive atmospheres, and moderate cost combine to make ceramic materials an obvious choice for construction of high-temperature thermal energy recuperator systems. Despite these advantages, ceramic recuperators are steadily being replaced by metallic units at considerable sacrifice in maximum air or fuel preheat temperatures and hence in recovery efficiency. By constructing a recuperator from ceramic heat pipes,

  7. Fuel-efficiency of hydrogen and heat storage technologies for integration of fluctuating renewable energy sources

    Microsoft Academic Search

    Brian Vad Mathiesen; Henrik Lund

    2005-01-01

    This paper presents the methodology and results of analysing the use of different energy storage technologies in the task of integration of fluctuating renewable energy sources (RES) into the electricity supply. The analysis is done on the complete electricity system including renewable energy sources as well as power plants and CHP (combined heat and power production). Emphasis is put on

  8. DIRECT INTEGRATION APPROACH FOR SIMULTANEOUSLY ESTIMATING TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY AND HEAT CAPACITY

    Microsoft Academic Search

    C. H. Huang; M. N. Özi?ik

    1991-01-01

    One of the difficulties in the solution of inverse heat conduction problems is that of making sufficiently accurate initial guesses for the unknowns in order to start the iterations. In this work a direct integration method is developed for determining good initial guesses for the unknown property coefficients within about 10% error. The Levenberg-Marquardt method is then applied to refine

  9. Extension of a modified integral method to boundary conditions of prescribed surface heat flux

    Microsoft Academic Search

    J. Sucec

    1979-01-01

    The paper presents a rationale whereby the double integral method (DIM) is applicable to problems in which the boundary derivative is a given known quantity. Attention is given to the application of the DIM to some representative problems, viz. a simple steady-state forced convection problem, an aerodynamic heating problem, and a transient forced convection problem. Also, one of the basic

  10. Geothermal heating

    SciTech Connect

    Aureille, M.

    1982-01-01

    The aim of the study is to demonstrate the viability of geothermal heating projects in energy and economic terms and to provide nomograms from which an initial estimate may be made without having to use data-processing facilities. The effect of flow rate and temperature of the geothermal water on drilling and on the network, and the effect of climate on the type of housing are considered.

  11. Heat Transfer

    NSDL National Science Digital Library

    Ms. Leslie Van (Montgomery Blair High School)

    2006-04-01

    In this inquiry activity students explore how heat transfers from one substance to another This inquiry activity was developed by a K-12 science teacher in the American Physiological SocietyÂ?s 2006 Frontiers in Physiology Program. The NSES Standards addressed by this activity are current as of the year of development. For more information on the Frontiers in Physiology Program, please visit www.frontiersinphys.org.

  12. Industrial Waste Heat Recovery Using Heat Pipes

    E-print Network

    Ruch, M. A.

    1981-01-01

    For almost a decade now, heat pipes with secondary finned surfaces have been utilized in counter flow heat exchangers to recover sensible energy from industrial exhaust gases. Over 3,000 such heat exchangers are now in service, recovering...

  13. Industrial Waste Heat Recovery Using Heat Pipes 

    E-print Network

    Ruch, M. A.

    1981-01-01

    For almost a decade now, heat pipes with secondary finned surfaces have been utilized in counter flow heat exchangers to recover sensible energy from industrial exhaust gases. Over 3,000 such heat exchangers are now in service, recovering...

  14. Heat pipe heat exchanger design considerations

    Microsoft Academic Search

    K. T. Feldman; D. C. Lu

    1976-01-01

    Typical heat pipe heat exchangers (HPHX) are described, along with their advantages, uses, and some problems in HPHX design, and a computer HPHX analysis program is discussed with required input data. The computer program is being developed for analysis of heat exchange performance by finned-tube HPHX and thread-puddle-artery heat pipes. Copper-water heat pipes and carbon steel-Dowtherm A heat pipes are

  15. Notes on Changes to Heat Content Integrals between

    E-print Network

    additions and data quality control, both at NODC and by originators. Substantial quality control has been were formally completed with additional data and quality control in WOA09. 3. Changes due to revised globally integrated B) current database (World Ocean Database, WOD updated through June, 2010), L09

  16. Solar power converter with pool boiling receiver and integral heat exchanger

    Microsoft Academic Search

    D. B. Osborn; R. L. Pons

    1982-01-01

    A solar converter is disclosed which has particular applicability at the focal point of a parabolic concentrator. The converter absorbs solar thermal radiation in a cavity type receiver and transports the heat via a secondary fluid to a heat exchanger which contains a primary (I.E., working) fluid used for process heating or to power a heat engine employing either stirling,

  17. Regenerative Hydride Heat Pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    1992-01-01

    Hydride heat pump features regenerative heating and single circulation loop. Counterflow heat exchangers accommodate different temperatures of FeTi and LaNi4.7Al0.3 subloops. Heating scheme increases efficiency.

  18. Conversion of heating system for integral quench carburizing furnace saves energy

    SciTech Connect

    Swintek, A.

    1989-06-01

    An integral quench carburizing furnace converted to a natural-gas-fired, single-ended radiant-tube recuperative-type burner is economical to operate and maintain. Use of single-ended radiant tube (SER) burner technology is one of the keys to the energy savings; conversion to natural gas operation is the other. A small, inside tube housing a nozzle-mix burner provides the heat transfer surface area for preheating the combustion air. A larger, outer tube - housing the entire inner-tube assembly - allows a sufficient radiant surface area to heat the furnace and the load. A counterflow combustion air/exhaust effect is created that maximizes the heat transfer from the waste exhaust to the combustion air, making the preheat system extremely efficient. The preheated combustion air supplied to an SER tube burner assembly ranges from 850{degree} to 1,100{degree}F, generating fuel savings of 35-55%.

  19. Numerical investigation of premixed combustion in a porous burner with integrated heat exchanger

    NASA Astrophysics Data System (ADS)

    Farzaneh, Meisam; Shafiey, Mohammad; Ebrahimi, Reza; Shams, Mehrzad

    2012-07-01

    In this paper, we perform a numerical analysis of a two-dimensional axisymmetric problem arising in premixed combustion in a porous burner with integrated heat exchanger. The physical domain consists of two zones, porous and heat exchanger zones. Two dimensional Navier-Stokes equations, gas and solid energy equations, and chemical species transport equations are solved and heat release is described by a multistep kinetics mechanism. The solid matrix is modeled as a gray medium, and the finite volume method is used to solve the radiative transfer equation to calculate the local radiation source/sink in the solid phase energy equation. Special attention is given to model heat transfer between the hot gas and the heat exchanger tube. Thus, the corresponding terms are added to the energy equations of the flow and the solid matrix. Gas and solid temperature profiles and species mole fractions on the burner centerline, predicted 2D temperature fields, species concentrations and streamlines are presented. Calculated results for temperature profiles are compared to experimental data. It is shown that there is good agreement between the numerical solutions and the experimental data and it is concluded that the developed numerical program is an excellent tool to investigate combustion in porous burner.

  20. Finite element methods for integrated aerodynamic heating analysis

    NASA Technical Reports Server (NTRS)

    Morgan, K.; Peraire, J.

    1991-01-01

    This report gives a description of the work which has been undertaken during the second year of a three year research program. The objectives of the program are to produce finite element based procedures for the solution of the large scale practical problems which are of interest to the Aerothermal Loads Branch (ALB) at NASA Langley Research Establishment. The problems of interest range from Euler simulations of full three dimensional vehicle configurations to local analyses of three dimensional viscous laminar flow. Adaptive meshes produced for both steady state and transient problems are to be considered. An important feature of the work is the provision of specialized techniques which can be used at ALB for the development of an integrated fluid/thermal/structural modeling capability.

  1. Finite element methods for integrated aerodynamic heating analysis

    NASA Technical Reports Server (NTRS)

    Peraire, J.

    1990-01-01

    Over the past few years finite element based procedures for the solution of high speed viscous compressible flows were developed. The objective of this research is to build upon the finite element concepts which have already been demonstrated and to develop these ideas to produce a method which is applicable to the solution of large scale practical problems. The problems of interest range from three dimensional full vehicle Euler simulations to local analysis of three-dimensional viscous laminar flow. Transient Euler flow simulations involving moving bodies are also to be included. An important feature of the research is to be the coupling of the flow solution methods with thermal/structural modeling techniques to provide an integrated fluid/thermal/structural modeling capability. The progress made towards achieving these goals during the first twelve month period of the research is presented.

  2. Heat exchanger

    DOEpatents

    Brackenbury, P.J.

    1983-12-08

    A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

  3. Heat pumps. Second edition

    Microsoft Academic Search

    D. A. Reay; D. B. A. Mac Michael

    1986-01-01

    This book provides a revised and extended account of the design, manufacture and use of heat pumps in industrial and domestic applications. Topics covered include the following: history of the heat pump; heat pump theory; practical design; design problem areas; heat pump applications domestic; heat pumps in commercial and municipal buildings; and heat pump applications in industry.

  4. Heat recovery method

    SciTech Connect

    Richarts, F.

    1985-04-16

    Heat is recovered by combining a heat transfer system including heat exchangers interconnected in a circulatory system, with a heat pump system. The heat pump system is preferably operated in accordance with the Lorenz-Principle. It is not necessary to divide the heat carrier circuit of the heat pump into two or three separate circulatory circuits. The heat carrier circuit of the heat pump can thus continue to operate unchanged even if the heat pump is switched off. For this purpose the warm heat carrier coming from a discharge fluid cooler, is heated further in a condenser of the heat pump and the cold heat carrier coming from a preheater or cooler group, is cooled further in an evaporator of the heat pump.

  5. Microchannel heat sink assembly

    DOEpatents

    Bonde, Wayne L. (Livermore, CA); Contolini, Robert J. (Pleasanton, CA)

    1992-01-01

    The present invention provides a microchannel heat sink with a thermal range from cryogenic temperatures to several hundred degrees centigrade. The heat sink can be used with a variety of fluids, such as cryogenic or corrosive fluids, and can be operated at a high pressure. The heat sink comprises a microchannel layer preferably formed of silicon, and a manifold layer preferably formed of glass. The manifold layer comprises an inlet groove and outlet groove which define an inlet manifold and an outlet manifold. The inlet manifold delivers coolant to the inlet section of the microchannels, and the outlet manifold receives coolant from the outlet section of the microchannels. In one embodiment, the manifold layer comprises an inlet hole extending through the manifold layer to the inlet manifold, and an outlet hole extending through the manifold layer to the outlet manifold. Coolant is supplied to the heat sink through a conduit assembly connected to the heat sink. A resilient seal, such as a gasket or an O-ring, is disposed between the conduit and the hole in the heat sink in order to provide a watetight seal. In other embodiments, the conduit assembly may comprise a metal tube which is connected to the heat sink by a soft solder. In still other embodiments, the heat sink may comprise inlet and outlet nipples. The present invention has application in supercomputers, integrated circuits and other electronic devices, and is suitable for cooling materials to superconducting temperatures.

  6. Heat exchange system for recycling waste heat

    Microsoft Academic Search

    A. A. Giuffre; A. F. Giuffre

    1982-01-01

    Design of heat exchange system for recycling waste heat, such as that leaving a building stack or flue, to supply heat where needed, such as to incoming fresh air or to tempered stored water of the building water storage system, wherein the building has a source of heat at a constant temperature (such as a furnace, a cooking facility, or

  7. NREL's Building-Integrated Supercomputer Provides Heating and Efficient Computing (Fact Sheet)

    SciTech Connect

    Not Available

    2014-09-01

    NREL's Energy Systems Integration Facility (ESIF) is meant to investigate new ways to integrate energy sources so they work together efficiently, and one of the key tools to that investigation, a new supercomputer, is itself a prime example of energy systems integration. NREL teamed with Hewlett-Packard (HP) and Intel to develop the innovative warm-water, liquid-cooled Peregrine supercomputer, which not only operates efficiently but also serves as the primary source of building heat for ESIF offices and laboratories. This innovative high-performance computer (HPC) can perform more than a quadrillion calculations per second as part of the world's most energy-efficient HPC data center.

  8. Heat-pump-centered Integrated Community Energy Systems: systems development, Consolidated Natural Gas Service Company. Final report

    Microsoft Academic Search

    N. R. Baker; T. D. Donakowski; R. B. Foster; D. L. Sala; R. R. Tison; T. P. Whaley; B. D. Yudow; P. F. Swenson

    1980-01-01

    The Heat-Actuated Heat Pump Centered Integrated Community Energy System (HAHP-ICES) utilizes a gas-fired, engine-driven, heat pump and commercial buildings, and offers several advantages over the more conventional equipment it is intended to supplant. The general non-site-specific application assumes a hypothetical community of one 59,000 ft² office building and five 24-unit, low-rise apartment buildings located in a region with a climate

  9. Exergetic modeling and assessment of solar assisted domestic hot water tank integrated ground-source heat pump systems for residences

    Microsoft Academic Search

    Arif Hepbasli

    2007-01-01

    The present study deals with the exergetic modeling and performance evaluation of solar assisted domestic hot water tank integrated ground-source heat pump (GSHP) systems for residences for the first time to the best of the author's knowledge. The model is applied to a system, which mainly consists of (i) a water-to-water heat pump unit (ii) a ground heat exchanger system

  10. Heat-pump-centered integrated community energy systems: System development assessment

    NASA Astrophysics Data System (ADS)

    Calm, J. M.; Sapienza, G. R.; Biederman, N. P.

    1981-03-01

    An assessment of district heating systems employing heat pumps to enable use of low-temperature energy sources is presented. These systems operate as thermal utilities to provide space heating and may also supply space cooling, service-water heating, and other thermal services. Natural sources including solar and geothermal heat, heat stored on an annual cycle from summer cooling, and otherwise-wasted heat from industrial and commercial processes may be effectively used by the systems described. Fifteen system analyses are examined. The assessment concludes that district heating with heat pumps can conserve energy resources, and particularly scarce fuels, in an environmental and economically attractive way. The application potential is believed to be broad, and the energy savings of widespread implementation would be substantial. No one system is universally applicable, but many system options exist. Market forces are already promoting many of the required technologies, but further research, development, and demonstration could accelerate implementation.

  11. Heat-pump-centered integrated community energy systems: System development summary

    NASA Astrophysics Data System (ADS)

    Calm, J. M.

    1980-02-01

    An introduction to district heating systems employing heat pumps to enable use of low temperature energy sources is presented. These systems operate as thermal utilities to provide space heating and may also supply space cooling, service water heating, and other thermal services. Otherwise wasted heat from industrial and commercial processes, natural sources including solar and geothermal heat, and heat stored on an annual cycle from summer cooling may be effectively utilized by the systems described. More than one quarter of the energy consumed in the United States is used to heat and cool buildings and to heat service water. Natural gas and oil provide approximately 83% of this energy. The systems described show potential to reduce net energy consumption for these services by 20 to 50% and to allow fuel substitution with less scarce resources not practical in smaller, individual building systems. Seven studies performed for the system development phase are summarized.

  12. Electrophoretic Behavior in Relation to the Structural Integrity of Codfish Parvalbumin upon Heat Treatment.

    PubMed

    de Jongh, Harmen H J; de Los Reyes Jimenez, Marta; Baumert, Joseph L; Taylor, Steve L; Koppelman, Stef J

    2015-05-13

    This work evaluates the impact of heat processing of parvalbumin, a major fish allergen, on the consequences for quantitative analysis of this protein embedded in different matrices during heating (either isolated, in an aqueous extract, or in whole fillets) to assess potential health risks. It is shown that oligomerization of parvalbumin does occur, but only upon heat treatment above 80 °C. This coincides with the ability of the isolated protein to refold up to this temperature in a fully reversible way, as demonstrated by circular dichroism analysis. In autoclaved samples a disintegration of the protein structure is observed. The situation becomes different when parvalbumin is embedded in a matrix with other constituents, as in fish extracts or whole fillets. The electrophoretic analysis of parvalbumin (SDS-PAGE and immunoblotting) is largely determined by complexation with other proteins resulting in insoluble materials caused by the partial unfolding of the parvalbumin at elevated temperatures. This effect is more strongly observed for cod fish extract, compared to whole cod fillets, as in the latter situation the integrity of the tissue hampers this interprotein complexation. Moreover, it is shown by ELISA analysis of heat-treated samples that using blotting procedures where disintegration of complexes may be promoted, restoring some of the IgG-binding propensity, may provide false outcomes. It was concluded that antibody binding to parvalbumin is dominated by the potential to form heat-induced complexes with other proteins. The possibly less-soluble or extractable character of these complexes may provide confusing information regarding potential health risks of fish and fish protein-containing food composites when such heat-treated samples are analyzed by immunochemical assays. PMID:25880570

  13. Geothermal heat pumps for heating and cooling

    SciTech Connect

    Garg, S.C.

    1994-03-01

    Naval Facilities Engineering Service Center (NFESC) has been tasked by Naval Shore Facilities Energy Office to evaluate the NAS Patuxent River ground-source heat pump (GHP) installation. A large part of a building`s energy consumption consists of heating and air conditioning for occupant comfort. The space heating requirements are normally met by fossil-fuel-fired equipment or electric resistance heating. Cooling is provided by either air conditioners or heat pumps, both using electricity as an energy source.

  14. Geothermal heat pumps for heating and cooling

    NASA Astrophysics Data System (ADS)

    Garg, Suresh C.

    1994-03-01

    Naval Facilities Engineering Service Center (NFESC) has been tasked by Naval Shore Facilities Energy Office to evaluate the NAS Patuxent River ground-source heat pump (GHP) installation. A large part of a building's energy consumption consists of heating and air conditioning for occupant comfort. The space heating requirements are normally met by fossil-fuel-fired equipment or electric resistance heating. Cooling is provided by either air conditioners or heat pumps, both using electricity as an energy source.

  15. Air-Source Integrated Heat Pump for Near-Zero Energy Houses: Technology Status Report

    SciTech Connect

    Murphy, Richard W [ORNL; Rice, C Keith [ORNL; Baxter, Van D [ORNL; Craddick, William G [ORNL

    2007-07-01

    This report documents the development of an air-source integrated heat pump (AS-IHP) through the third quarter of FY2007. It describes the design, analyses and testing of the AS-IHP, and provides performance specifications for a field test prototype and proposed control strategy. The results obtained so far continue to support the AS-IHP being a promising candidate to meet the energy service needs for DOE's development of a Zero Energy Home (ZEH) by the year 2020.

  16. Conversion of heating system for integral quench carburizing furnace saves energy

    Microsoft Academic Search

    Swintek

    1989-01-01

    An integral quench carburizing furnace converted to a natural-gas-fired, single-ended radiant-tube recuperative-type burner is economical to operate and maintain. Use of single-ended radiant tube (SER) burner technology is one of the keys to the energy savings; conversion to natural gas operation is the other. A small, inside tube housing a nozzle-mix burner provides the heat transfer surface area for preheating

  17. Thulium-170 heat source

    SciTech Connect

    Walter, C.E.; Van Konynenburg, R.; Van Sant, J.H.

    1992-01-21

    This patent describes an isotopic heat source. It comprises; at least one isotopic fuel stack, comprising alternating layers of: thulium oxide; and a low atomic weight diluent for thulium oxide; a heat block defining holes into which the fuel stacks can be placed; at least one heat pipe for heat removal, with the heat pipe being positioned in the heat block in thermal connection with the fuel stack; and a structural container surrounding the heat block.

  18. Nonazeotropic Heat Pump

    NASA Technical Reports Server (NTRS)

    Ealker, David H.; Deming, Glenn

    1991-01-01

    Heat pump collects heat from water circulating in heat-rejection loop, raises temperature of collected heat, and transfers collected heat to water in separate pipe. Includes sealed motor/compressor with cooling coils, evaporator, and condenser, all mounted in outer housing. Gradients of temperature in evaporator and condenser increase heat-transfer efficiency of vapor-compression cycle. Intended to recover relatively-low-temperature waste heat and use it to make hot water.

  19. On-Line Monitoring and Diagnostics of the Integrity of Nuclear Plant Steam Generators and Heat Exchangers, Volumes 1, 2

    Microsoft Academic Search

    Belle R. Upadhyaya; J. Wesley Hines; Baofu Lu; Xuedong Huang; Penha; L. Rosani; Perillo; R. Sergio; Ke Zhao

    2005-01-01

    The overall purpose of this Nuclear Engineering Education Research (NEER) project was to integrate new, innovative, and existing technologies to develop a fault diagnostics and characterization system for nuclear plant steam generators (SG) and heat exchangers (HX). Issues related to system level degradation of SG and HX tubing, including tube fouling, performance under reduced heat transfer area, and the damage

  20. On-Line Monitoring and Diagnostics of the Integrity of Nuclear Plant Steam Generators and Heat Exchangers

    Microsoft Academic Search

    Belle R. Upadhyaya; J. Wesley Hines

    2004-01-01

    The overall purpose of this Nuclear Engineering Education Research (NEER) project was to integrate new, innovative, and existing technologies to develop a fault diagnostics and characterization system for nuclear plant steam generators (SG) and heat exchangers (HX). Issues related to system level degradation of SG and HX tubing, including tube fouling, performance under reduced heat transfer area, and the damage

  1. An experimental integrated absorption heat pump effluent purification system. Part I: operating on water\\/lithium bromide solutions

    Microsoft Academic Search

    S. Santoyo-Gutiérrez; J. Siqueiros; C. L. Heard; E. Santoyo; F. A. Holland

    1999-01-01

    The merits of single stage absorption heat pumps coupled to simple distillation for effluent treatment are discussed. An experimental integrated absorption heat pump effluent purification system (IAHPEPS) was built and operated with water–lithium bromide as a working mixture. This unit has been used to raise the temperature and hence, the vapour pressure of the impure water contained in one vessel,

  2. Exact path-integral evaluation of the heat distribution function of a trapped brownian oscillator.

    PubMed

    Chatterjee, Debarati; Cherayil, Binny J

    2010-11-01

    Using path integrals, we derive an exact expression--valid at all times t--for the distribution P(Q,t) of the heat fluctuations Q of a brownian particle trapped in a stationary harmonic well. We find that P(Q,t) can be expressed in terms of a modified Bessel function of zeroth order that in the limit t?? exactly recovers the heat distribution function obtained recently by Imparato [Phys. Rev. E 76, 050101(R) (2007)] from the approximate solution to a Fokker-Planck equation. This long-time result is in very good agreement with experimental measurements carried out by the same group on the heat effects produced by single micron-sized polystyrene beads in a stationary optical trap. An earlier exact calculation of the heat distribution function of a trapped particle moving at a constant speed v was carried out by van Zon and Cohen [Phys. Rev. E 69, 056121 (2004)]; however, this calculation does not provide an expression for P(Q,t) itself, but only its Fourier transform (which cannot be analytically inverted), nor can it be used to obtain P(Q,t) for the case v=0 . PMID:21230434

  3. Heat-Of-Reaction Chemical Heat Pumps--Possible Configurations 

    E-print Network

    Kirol, L. D.

    1986-01-01

    Chemical heat pumps utilize working fluids which undergo reversible chemical changes. Mechanically driven reactive heat pump cycles or, alternatively, heat driven heat pumps in which either heat engine or heat pump working fluid is reactive...

  4. Process Integration Study of the Decatur HFCS Plant for American Fructose Company, Decatur, AL [Advanced Industrial Heat Pump Applications and Evaluations

    Microsoft Academic Search

    Eastwood

    1989-01-01

    This work has carried out in two phases: Phase 1, identification of opportunities for heat pumps in industrial applications and Phase 2; evaluation of heat pumps in industrial applications. In Phase 1, pinch analysis was applied to several industrial sites to identify the best opportunities for heat pumping and other forms of heat integration. In Phase 2, more detailed analyses

  5. Combined heat and power plant integrated with mobilized thermal energy storage (M-TES) system

    Microsoft Academic Search

    Weilong Wang; Yukun Hu; Jinyue Yan; Jenny Nyström; Erik Dahlquist

    2010-01-01

    Energy consumption for space and tap water heating in residential and service sectors accounts for one third of the total\\u000a energy utilization in Sweden. District heating (DH) is used to supply heat to areas with high energy demand. However, there\\u000a are still detached houses and sparse areas that are not connected to a DH network. In such areas, electrical heating

  6. Heat pipe with embedded wick structure

    DOEpatents

    Adkins, D.R.; Shen, D.S.; Tuck, M.R.; Palmer, D.W.; Grafe, V.G.

    1998-06-23

    A heat pipe has an embedded wick structure that maximizes capillary pumping capability. Heat from attached devices such as integrated circuits evaporates working fluid in the heat pipe. The vapor cools and condenses on a heat dissipation surface. The condensate collects in the wick structure, where capillary pumping returns the fluid to high heat areas. 7 figs.

  7. Heat pipe with embedded wick structure

    DOEpatents

    Adkins, Douglas Ray (Albuquerque, NM); Shen, David S. (Albuquerque, NM); Tuck, Melanie R. (Albuquerque, NM); Palmer, David W. (Albuquerque, NM); Grafe, V. Gerald (Corrales, NM)

    1999-01-01

    A heat pipe has an embedded wick structure that maximizes capillary pumping capability. Heat from attached devices such as integrated circuits evaporates working fluid in the heat pipe. The vapor cools and condenses on a heat dissipation surface. The condensate collects in the wick structure, where capillary pumping returns the fluid to high heat areas.

  8. Solar heating apparatus

    Microsoft Academic Search

    Trihey

    1976-01-01

    Solar heating apparatus is presented for heating a heat transfer medium comprising a support structure, a light absorbing surface arranged to transmit heat to a heat transfer medium, focusing means mounted on said support structure for focusing solar energy upon the light absorbing surface, and tracking means for tracking movement of the sun and moving the focusing means relative to

  9. Heat pipe technology

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A bibliography of heat pipe technology to provide a summary of research projects conducted on heat pipes is presented. The subjects duscussed are: (1) heat pipe applications, (2) heat pipe theory, (3) design and fabrication, (4) testing and operation, (5) subject and author index, and (6) heat pipe related patents.

  10. Reverse cycle heat pump

    Microsoft Academic Search

    Harnish

    1977-01-01

    A reverse cycle heat pump is provided with a heat exchanger which provides refrigerant subcooling with no thermodynamic losses. The heat exchanger is arranged such that it is operative only during the heating cycle to permit optimum charging of the system and allow operation during the cooling cycle with no excess refrigerant in the system accumulator. The heat exchanger is

  11. Heating efficiency evaluation with mimicking plasma conditions of integrated fast-ignition experiment

    NASA Astrophysics Data System (ADS)

    Fujioka, Shinsuke; Johzaki, Tomoyuki; Arikawa, Yasunobu; Zhang, Zhe; Morace, Alessio; Ikenouchi, Takahito; Ozaki, Tetsuo; Nagai, Takahiro; Abe, Yuki; Kojima, Sadaoki; Sakata, Shohei; Inoue, Hiroaki; Utsugi, Masaru; Hattori, Shoji; Hosoda, Tatsuya; Lee, Seung Ho; Shigemori, Keisuke; Hironaka, Youichiro; Sunahara, Atsushi; Sakagami, Hitoshi; Mima, Kunioki; Fujimoto, Yasushi; Yamanoi, Kohei; Norimatsu, Takayoshi; Tokita, Shigeki; Nakata, Yoshiki; Kawanaka, Junji; Jitsuno, Takahisa; Miyanaga, Noriaki; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Nagatomo, Hideo; Azechi, Hiroshi

    2015-06-01

    A series of experiments were carried out to evaluate the energy-coupling efficiency from heating laser to a fuel core in the fast-ignition scheme of laser-driven inertial confinement fusion. Although the efficiency is determined by a wide variety of complex physics, from intense laser plasma interactions to the properties of high-energy density plasmas and the transport of relativistic electron beams (REB), here we simplify the physics by breaking down the efficiency into three measurable parameters: (i) energy conversion ratio from laser to REB, (ii) probability of collision between the REB and the fusion fuel core, and (iii) fraction of energy deposited in the fuel core from the REB. These three parameters were measured with the newly developed experimental platform designed for mimicking the plasma conditions of a realistic integrated fast-ignition experiment. The experimental results indicate that the high-energy tail of REB must be suppressed to heat the fuel core efficiently.

  12. Inhomogeneous temperature problems inside a Li/SOCl2 cell - Homogenization by integrated heat pipes

    NASA Astrophysics Data System (ADS)

    Lefriec, C.; Suleiman, A.; Alexandre, A.

    1992-07-01

    The effect of the temperature gradient on the electrical capacity of the lithium/thionyl chloride (Li/SOCl2) cells and the dependence of internal heat generation on the temperature level were investigated by studying the thermal behavior of a cell constituted by a number of couples stacken in a stainless steel cylinder during a discharge profile. It is shown that the temperature gradient between couples affected the depth of discharge, indicating that this gradient must be limited to prevent discrepancy in couple's voltage and inversion phenomenon. It was found that a cooling concept based on integrated heat pipes is effective in reducing the temperature gradient and in yielding homogeneous cell behavior in overdischarge.

  13. Study of heat sources interacting in integrated circuits by laser mirage effect

    SciTech Connect

    Perpiñà, X.; Jordà, X.; Vellvehi, M. [Centre Nacional de Microelectrònica IMB-CNM (CSIC), Campus UAB, 08193 Bellaterra (Barcelona) (Spain); Altet, J. [Departament d'Enginyeria Electrònica, Universitat Politècnica de Catalunya, Barcelona 08034 (Spain)

    2014-08-25

    This work exploits the mirage effect to analyze multiple heat sources thermally interacting in an integrated circuit (IC) by means of a probe IR laser beam, which strikes on the die lateral walls and passes through the die substrate. Under such conditions, the criteria for locating such hot spots, as well as their relative power dissipation, are discussed on the basis of a theoretical model inferred in this work. Finally, the technique feasibility is shown in a real application scenario, obtaining 5-?m spatial lateral resolution and an error in power dissipation measurements below 5%. This method may become a practical alternative to usual off-chip techniques for inspecting hot spots in ICs and to experimentally characterize heat flow in the semiconductor substrate.

  14. Control of heat source in a heat conduction problem

    NASA Astrophysics Data System (ADS)

    Lyashenko, V.; Kobilskaya, E.

    2014-11-01

    The mathematical model of thermal processes during the heat treatment of a moving axisymmetric environment, for example wire. is considered. The wire is heated by internal constantly or periodically operating heat source. It is presented in the form of initial-boundary value problem for the unsteady heat equation with internal constantly or periodically operating heat source. The purpose of the work is the definition of control parameter of temperature field of a moving area, which is heated by internal heat source. The control parameters are determined by solving a nonlocal problem for the heat equation. The problem of getting an adequate temperature distribution throughout the heating area is considered. Therefore, a problem of heat source control is solved, in particular, control by electric current. Control of the heat source allows to maintain the necessary, from a technological point of view, temperature in the heating area. In this paper, to find additional information about the source of heat. The integral condition is used in the control problem. Integral condition, which is considered in the work, determines the energy balance of the heating zone and connects the desired temperature distribution in the internal points of area with temperatures at the boundaries. Control quality in an extremum formulation of the problem is assessed using the quadratic functional. In function space, from a physical point of view, proposed functional is the absolute difference between the actual emission of energy and absorbed energy in the heating zone. The absorbed energy is calculated by solving of the boundary value problem. Methods of determining the control parameters of temperature field are proposed. The resulting problem is solved by iterative methods. At different physical conditions, numerical calculations are carried out, control parameters of the heat treatment process are obtained.

  15. Heat Pump for High School Heat Recovery 

    E-print Network

    Huang, K.; Wang, H.; Zhou, X.

    2006-01-01

    The heat pump system used for recycling and reusing waste heat in s high school bathroom was minutely analyzed in its coefficient of performance, onetime utilization ratio of energy, economic property and so on. The results showed that this system...

  16. Alternative heat sources for heat pumps

    NASA Astrophysics Data System (ADS)

    1984-09-01

    Solar assisted, water source, and ground source heat pumps are described as alternatives to air to air heat pumps for use in a broader range of climates. Publications for further information on these systems are listed.

  17. Heat Pump for High School Heat Recovery

    E-print Network

    Huang, K.; Wang, H.; Zhou, X.

    2006-01-01

    The heat pump system used for recycling and reusing waste heat in s high school bathroom was minutely analyzed in its coefficient of performance, onetime utilization ratio of energy, economic property and so on. The results showed that this system...

  18. Structural, Thermal, and Safety Analysis of Isotope Heat Source and Integrated Heat Exchangers for 6-kWe Dynamic Isotope Power System (DIPS)

    SciTech Connect

    Schock, Alfred

    1989-01-01

    The design of the 30-kWt isotope heat source integrated with a Rankine boiler and a Brayton gas heater, which was described in the preceding paper in these proceedings, was subjected to structural, thermal, and safety analyses. The present paper describes and discusses the results of these analyses. Detailed structural analyses of the heat source integrated with the boiler and gas heater showed positive safety margins at all locations during the launch. Detailed thermal analyses showed acceptable temperatures at all locations, during assembly, transfer and orbital operations. Reentry thermal analyses showed that the clads have acceptable peak and impact temperatures. Loss-of-cooling analyses indicated the feasibility of a passive safety concept for preventing over temperatures. Static structural analysis showed positive safety margins at all locations, and dynamic analysis showed that there were no low-frequency resources. Continuum-mechanics code analyses of the effects of the impact of Solid Rocket Booster (SRB) fragments on the heat source and of the very unlikely impact of the full heat source on concrete indicated relatively modest fuel clad deformations and little or no fuel release.

  19. Babies and heat rashes

    MedlinePLUS

    Heat rashes and babies; Prickly heat rash; Red miliaria ... To avoid heat rash , keep your baby cool and dry during warm weather. Some helpful suggestions: During the hot season, dress your baby in lightweight, soft, cotton clothing. Cotton ...

  20. Stirling and Vuilleumier heat pumps

    SciTech Connect

    Wurm, J.

    1990-01-01

    The book discuses the design, application, and performance evaluation of integrated engine-refrigerator heat pumps and provides an overview of heat pump theory, including a unique comparative analysis of six integrated Stirling and Vuilleumier heat pumps and their advantages in applications. It also evaluates the effect of key components on performance; lists and documents computer programs for comparative analysis; and summarizes current hardware development programs.

  1. Regenerative adsorbent heat pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative adsorbent heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system and at least a portion of the heat of adsorption. A series of at least four compressors containing an adsorbent is provided. A large amount of heat is transferred from compressor to compressor so that heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  2. Ground-Source Integrated Heat Pump for Near-Zero Energy Houses: Technology Status Report

    SciTech Connect

    Murphy, Richard W [ORNL; Rice, C Keith [ORNL; Baxter, Van D [ORNL; Craddick, William G [ORNL

    2007-09-01

    The energy service needs of a net-zero-energy house (ZEH) include space heating and cooling, water heating, ventilation, dehumidification, and humidification, depending on the requirements of the specific location. These requirements differ in significant ways from those of current housing. For instance, the most recent DOE buildings energy data (DOE/BED 2007) indicate that on average {approx}43% of residential buildings primary energy use is for space heating and cooling, vs. {approx}12% for water heating (about a 3.6:1 ratio). In contrast, for the particular prototype ZEH structures used in the analyses in this report, that ratio ranges from about 0.3:1 to 1.6:1 depending on location. The high-performance envelope of a ZEH results in much lower space heating and cooling loads relative to current housing and also makes the house sufficiently air-tight to require mechanical ventilation for indoor air quality. These envelope characteristics mean that the space conditioning load will be closer in size to the water heating load, which depends on occupant behavior and thus is not expected to drop by any significant amount because of an improved envelope. In some locations such as the Gulf Coast area, additional dehumidification will almost certainly be required during the shoulder and cooling seasons. In locales with heavy space heating needs, supplemental humidification may be needed because of health concerns or may be desired for improved occupant comfort. The U.S. Department of Energy (DOE) has determined that achieving their ZEH goal will require energy service equipment that can meet these needs while using 50% less energy than current equipment. One promising approach to meeting this requirement is through an integrated heat pump (IHP) - a single system based on heat pumping technology. The energy benefits of an IHP stem from the ability to utilize otherwise wasted energy; for example, heat rejected by the space cooling operation can be used for water heating. With the greater energy savings the cost of the more energy efficient components required for the IHP can be recovered more quickly than if they were applied to individual pieces of equipment to meet each individual energy service need. An IHP can be designed to use either outdoor air or geothermal resources (e.g., ground, ground water, surface water) as the environmental energy source/sink. Based on a scoping study of a wide variety of possible approaches to meeting the energy service needs for a ZEH, DOE selected the IHP concept as the most promising and has supported research directed toward the development of both air- and ground-source versions. This report describes the ground-source IHP (GS-IHP) design and includes the lessons learned and best practices revealed by the research and development (R&D) effort throughout. Salient features of the GS-IHP include a variable-speed rotary compressor incorporating a brushless direct current permanent magnet motor which provides all refrigerant compression, a variable-speed fan for the indoor section, a multiple-speed ground coil circuit pump, and a single-speed pump for water heating operation. Laboratory IHP testing has thus far used R-22 because of the availability of the needed components that use this refrigerant. It is expected that HFC R-410A will be used for any products arising from the IHP concept. Data for a variable-speed compressor that uses R-410A has been incorporated into the DOE/ORNL Mark VI Heat Pump Design Model (HPDM). HPDM was then linked to TRNSYS, a time-series-dependent simulation model capable of determining the energy use of building cooling and heating equipment as applied to a defined house on a sub-hourly basis. This provided a highly flexible design analysis capability for advanced heat pump equipment; however, the program also took a relatively long time to run. This approach was used with the initial prototype design reported in Murphy et al. (2007a) and in the business case analysis of Baxter (2007).

  3. Integrated heat pipe concept for Li/SOCl2 cells cooling

    NASA Astrophysics Data System (ADS)

    Suleiman, A.; Alexandre, A.; Firmin, J. L.

    1991-12-01

    A new thermal control system based on heat pipe to support the development of a primary lithium/thionyl chloride (Li/SOCl2) battery designed for future space applications is shown. Performances of the used heat pipe are considered and range performances of a traditional cell cooling concept based on the use of an aluminum pipe put around the cell and fixed to a coldplate is shown. A mock up was carried out and compared to thermal model of the whole system using ESACAP software. This model includes about 120 nodes to present the cell and the aluminum pipe. These results are compared to those of the proposed new cooling concept based on a grooved nickel/F11 heat pipe integrated in the cell. In this case, a mock up was performed and a corresponding nodal model was built. The experimental and modeling results show that the new concept decreases thermal gradient and weight and increases the available current discharge rate compared with the traditional cooling concept.

  4. Integrated simulations of implosion, electron transport, and heating for direct-drive fast-ignition targets

    SciTech Connect

    Solodov, A. A.; Anderson, K. S.; Betti, R.; Gotcheva, V.; Myatt, J.; Delettrez, J. A.; Skupsky, S.; Theobald, W.; Stoeckl, C. [Fusion Science Center and Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States)

    2009-05-15

    A thorough understanding of future integrated fast-ignition experiments combining compression and heating of high-density thermonuclear fuel requires hybrid (fluid+particle) simulations of the implosion and ignition process. Different spatial and temporal scales need to be resolved to model the entire fast-ignition experiment. The two-dimensional (2D) axisymmetric hydrocode DRACO[P. B. Radha et al., Phys. Plasmas 12, 056307 (2005)] and the 2D/three-dimensional hybrid particle-in-cell code LSP[D. R. Welch et al., Nucl. Instrum. Methods Phys. Res. A 464, 134 (2001)] have been integrated to simulate the implosion and heating of direct-drive, fast-ignition fusion targets. DRACO includes the physics required to simulate compression, ignition, and burn of fast-ignition targets. LSP simulates the transport of hot electrons from the place where they are generated to the dense fuel core where their energy is absorbed. The results from integrated simulations of cone-in-shell CD targets designed for fast-ignition experiments on OMEGA [T. R. Boehly et al., Opt. Commun. 133, 495 (1997); C. Stoeckl et al., Fusion Sci. Technol. 49, 367 (2006)] are presented. Target heating and neutron yields are computed. The results from LSP simulations of electron transport in solid-density plastic targets are also presented. They confirm an increase in the electron divergence angle with the laser intensity in the current experiments. The self-generated resistive magnetic field is found to collimate the hot-electron beam and increase the coupling efficiency of hot electrons with the target. Resistive filamentation of the hot-electron beam is also observed.

  5. Integrated modelling of transitions in mechanical conditions during casting and heat treatment

    NASA Astrophysics Data System (ADS)

    Thorborg, J.; Klinkhammer, J.; Heitzer, M.

    2015-06-01

    The mechanical material behaviour of a cast component changes significantly during casting and heat treatment. The big difference in temperature levels during the different process steps causes different deformation mechanisms to be active. The thermal gradients promote transient stresses that can lead to inelastic deformations, residual stresses and in some cases to defects in the final part. It is a big challenge to make a reasonable transition in the mechanical model, and hence material data, when modelling several different coupled process steps. It is important to use an integrated approach where the transition is included in the full load history of the part. When industrial examples are considered, the sequence of process steps typically also changes the thermal and mechanical boundary conditions significantly e.g. going from being mechanically constrained during casting to being supported point-wise during the heat treatment process. This change includes mapping of results and obtaining equilibrium in a new global system, where the further reaction forces from the supports must be handled with contact conditions to e.g. predict deformations due to gravity during solution heat treatment. The work presented in this paper is focused on modelling the mechanical fields, taking into account the changes in the mechanical material model at different temperature levels, and the transition in mechanical behaviour when the microstructure is changing during the different steps of the heat treatment process. The approach used is based on a unified model where creep effects are considered at high temperature and rate effects are included in general during cooling. Proposals are made to include cooling rate sensitivity, annealing and precipitation hardening via modification of mechanical properties in the different process steps.

  6. An integrated heat pipe-thermal storage design for a solar receiver

    NASA Astrophysics Data System (ADS)

    Keddy, E.; Sena, J. T.; Woloshun, K.; Merrigan, M. A.; Heidenreich, G.

    Light-weight heat pipe wall elements that incorporate a thermal storage subassembly within the vapor space are being developed as part of the Organic Rankine Cycle Solar Dynamic Power System (ORC-SDPS) receiver for the Space Station application. The operating temperature of the heat pipe elements is in the 770 to 810 K range with a design power throughput of 4.8 kW per pipe. The total heat pipe length is 1.9 M. The Rankine cycle boiler heat transfer surfaces are positioned within the heat pipe vapor space, providing a relatively constant temperature input to the vaporizer. The heat pipe design employs axial arteries and distribution wicked thermal storage units with potassium as the working fluid. Performance predictions for this configuration have been conducted and the design characterized as a function of artery geometry, distribution wick thickness, porosity, pore size, and permeability.

  7. Retrofit Integrated Space & Water Heating: Field Assessment, Minneapolis, Minnesota (Fact Sheet)

    SciTech Connect

    Not Available

    2014-05-01

    This project analyzed combined condensing water heaters or boilers and hydronic air coils to provide high efficiency domestic hot water and forced air space heating. Called 'Combi' systems, they provided similar space and water heating performance less expensively than installing two condensing appliances. The system's installed costs were cheaper than installing a condensing furnace and either a condensing tankless or condensing storage water heater. However, combi costs must mature and be reduced before they are competitive with a condensing furnace and power vented water heater (EF of 0.60). Better insulation and tighter envelopes are reducing space heating loads for new and existing homes. For many homes, decreased space heating loads make it possible for both space and domestic water heating loads to be provided with a single heating plant. These systems can also eliminate safety issues associated with natural draft appliances through the use of one common sealed combustion vent.

  8. Heat-of-reaction chemical heat pumps: Possible configurations

    Microsoft Academic Search

    L. D. Kirol

    1986-01-01

    Chemical heat pumps utilize working fluids which undergo reversible chemical changes. Mechanically driven reactive heat pump cycles or, alternatively, heat driven heat pumps in which either heat engine or heat pump working fluid is reactive, are considered. As such, chemical heat pumps can be classified by: (1) drive (electric drive, waste heat drive, or prime energy drive), (2) operating mode

  9. Prototype of a thermally driven heat pump based on integrated Organic Rankine Cycles (ORC)

    Microsoft Academic Search

    J. Demierre; S. Henchoz; D. Favrat

    The concept studied in this work is a low power ORC–ORC heat pump system (providing about 20 kW heat at the condenser) and that is composed of an ORC power cycle driving a reversed ORC heat pump cycle, both cycles using the same fluid. The centrifugal compressor and the radial in-flow turbine are directly coupled on the same shaft rotating on

  10. Rotary magnetic heat pump

    DOEpatents

    Kirol, L.D.

    1987-02-11

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

  11. Heat release rate calorimetry

    Microsoft Academic Search

    Edwin E. Smith

    1996-01-01

    A simple, theoretically sound method for eliminating the effects of internal heat absorption on rate of heat release is described for the Ohio State University (OSU) Release Rate apparatus. By monitoring the temperature of metal walls and calculating the heat loss to surroundings caused by changes in wall temperature due to heat absorption, a complete energy balance on the system

  12. Rotary magnetic heat pump

    DOEpatents

    Kirol, Lance D. (Shelly, ID)

    1988-01-01

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation.

  13. Loop heat pipes

    Microsoft Academic Search

    Yu. F. Maydanik

    2005-01-01

    Loop heat pipes (LHPs) are two-phase heat-transfer devices with capillary pumping of a working fluid. They possess all the main advantages of conventional heat pipes, but owing to the original design and special properties of the capillary structure are capable of transferring heat efficiency for distances up to several meters at any orientation in the gravity field, or to several

  14. Nature's Heat Exchangers.

    ERIC Educational Resources Information Center

    Barnes, George

    1991-01-01

    Discusses the heat-transfer systems of different animals. Systems include heat conduction into the ground, heat transferred by convection, heat exchange in lizards, fish and polar animals, the carotid rete system, electromagnetic radiation from animals and people, and plant and animal fiber optics. (MDH)

  15. Solar Heating Equipment

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Solar Unlimited, Inc.'s suncatcher line includes a variety of solar arrays, derived from NASA's satellite program: water heating only, partial home heating, or water and whole house central heating. Solar Unlimited developed a set of vigorous requirements to avoid problems common to solar heating technologies.

  16. Solar heat pump

    NASA Astrophysics Data System (ADS)

    Hermanson, R.

    Brief discussions of the major components of a solar powered, chemical ground source heat pump are presented. The components discussed are the solar collectors and the chemical heat storage battery. Sodium sulfide is the medium used for heat storage. Catalog information which provides a description of all of the heat pump systems is included.

  17. Ceramic heat pipe development

    NASA Astrophysics Data System (ADS)

    Merrigan, M.

    1980-12-01

    Progress in developing ceramic heat pipe recuperators for recovering heat from industrial processing furnaces is reported. Information is included on the design, materials procurement, fabrication, materials testing, performance testing, performance and cost of ceramic heat pipes, especially tungsten-coated silicon carbide and Sic-W-Mo heat pipes.

  18. Ceramic heat pipe development

    Microsoft Academic Search

    M. Merrigan

    1980-01-01

    Progress in developing ceramic heat pipe recuperators for recovering heat from industrial processing furnaces is reported. Information is included on the design, materials procurement, fabrication, materials testing, performance testing, performance and cost of ceramic heat pipes, especially tungsten-coated silicon carbide and Sic-W-Mo heat pipes.

  19. Dual mode heat exchanger

    NASA Astrophysics Data System (ADS)

    Altoz, F. E.

    1985-12-01

    The invention comprises a compact, light weight, dual mode heat transfer device. The dual mode heat transfer device provides for air cooling of heat dissipating electronic components at moderate aircraft speeds and when available ambient air is below a preselected temperature. At elevated aircraft speeds when the ambient air temperature is above the preselected temperature a coolant liquid is converted to steam or vapor in order to cool the heat dissipating electronic components. A preferred embodiment of the invention includes a cold plate for conducting heat away from the heat dissipating components and radiator fins for dissipating cold plate heat to a air cooling flow.

  20. Thulium-170 heat source

    SciTech Connect

    Walter, C.E.; Van Konynenburg, R.; VanSant, J.H.

    1990-09-06

    An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

  1. Thulium-170 heat source

    DOEpatents

    Walter, Carl E. (Pleasanton, CA); Van Konynenburg, Richard (Livermore, CA); VanSant, James H. (Tracy, CA)

    1992-01-01

    An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

  2. Heat Treating Apparatus

    DOEpatents

    De Saro, Robert (Annandale, NJ); Bateman, Willis (Sutton Colfield, GB)

    2002-09-10

    Apparatus for heat treating a heat treatable material including a housing having an upper opening for receiving a heat treatable material at a first temperature, a lower opening, and a chamber therebetween for heating the heat treatable material to a second temperature higher than the first temperature as the heat treatable material moves through the chamber from the upper to the lower opening. A gas supply assembly is operatively engaged to the housing at the lower opening, and includes a source of gas, a gas delivery assembly for delivering the gas through a plurality of pathways into the housing in countercurrent flow to movement of the heat treatable material, whereby the heat treatable material passes through the lower opening at the second temperature, and a control assembly for controlling conditions within the chamber to enable the heat treatable material to reach the second temperature and pass through the lower opening at the second temperature as a heated material.

  3. Integrated heat recovery\\/power burner for cogeneration systems. Phase 1 - design. Topical report, April 1985July 1986

    Microsoft Academic Search

    A. J. Kubasco; J. VerShaw; J. Boland; W. Plzak; G. Natvig

    1986-01-01

    Development of an advanced heat recovery unit and absorption chiller, and integration of these and other optimized components into a low cost, compact, packaged cogeneration system, are described. An enhanced 'second generation' heat recovery unit (HRU) that can take advantage of the high-efficiency natural gas-fired lean-burn engine was designed. The HRU will have the capability to supplementally fire the exhaust

  4. Thermoelectric heat exchange element

    DOEpatents

    Callas, James J. (Peoria, IL); Taher, Mahmoud A. (Peoria, IL)

    2007-08-14

    A thermoelectric heat exchange module includes a first substrate including a heat receptive side and a heat donative side and a series of undulatory pleats. The module may also include a thermoelectric material layer having a ZT value of 1.0 or more disposed on at least one of the heat receptive side and the heat donative side, and an electrical contact may be in electrical communication with the thermoelectric material layer.

  5. Using MathCad to Evaluate Exact Integral Formulations of Spacecraft Orbital Heats for Primitive Surfaces at Any Orientation

    NASA Technical Reports Server (NTRS)

    Pinckney, John

    2010-01-01

    With the advent of high speed computing Monte Carlo ray tracing techniques has become the preferred method for evaluating spacecraft orbital heats. Monte Carlo has its greatest advantage where there are many interacting surfaces. However Monte Carlo programs are specialized programs that suffer from some inaccuracy, long calculation times and high purchase cost. A general orbital heating integral is presented here that is accurate, fast and runs on MathCad, a generally available engineering mathematics program. The integral is easy to read, understand and alter. The integral can be applied to unshaded primitive surfaces at any orientation. The method is limited to direct heating calculations. This integral formulation can be used for quick orbit evaluations and spot checking Monte Carlo results.

  6. Use of the exergy concept for design improvement of heat exchangers and heat exchanger networks

    Microsoft Academic Search

    Ranasinghe

    1989-01-01

    The second law of thermodynamics, through the exergy concept, allows us to quantify and rationally coat the consumption of exergy (irreversibility) used to drive the heat exchange process and the effluent losses of exergy in a heat exchanger. For systems with a network of heat exchangers, the exergy concept recognizes that properly integrated heat pumps reduce the heat transfer irreversibility;

  7. Increase of COP for heat transformer in water purification systems. Part I – Increasing heat source temperature

    Microsoft Academic Search

    J. Siqueiros; R. J. Romero

    2007-01-01

    The integration of a water purification system in a heat transformer allows a fraction of heat obtained by the heat transformer to be recycled, increasing the heat source temperature. Consequently, the evaporator and generator temperatures are also increased. For any operating conditions, keeping the condenser and absorber temperatures and also the heat load to the evaporator and generator, a higher

  8. Integrated computational study of ultra-high heat flux cooling using cryogenic micro-solid nitrogen spray

    NASA Astrophysics Data System (ADS)

    Ishimoto, Jun; Oh, U.; Tan, Daisuke

    2012-10-01

    A new type of ultra-high heat flux cooling system using the atomized spray of cryogenic micro-solid nitrogen (SN2) particles produced by a superadiabatic two-fluid nozzle was developed and numerically investigated for application to next generation super computer processor thermal management. The fundamental characteristics of heat transfer and cooling performance of micro-solid nitrogen particulate spray impinging on a heated substrate were numerically investigated and experimentally measured by a new type of integrated computational-experimental technique. The employed Computational Fluid Dynamics (CFD) analysis based on the Euler-Lagrange model is focused on the cryogenic spray behavior of atomized particulate micro-solid nitrogen and also on its ultra-high heat flux cooling characteristics. Based on the numerically predicted performance, a new type of cryogenic spray cooling technique for application to a ultra-high heat power density device was developed. In the present integrated computation, it is clarified that the cryogenic micro-solid spray cooling characteristics are affected by several factors of the heat transfer process of micro-solid spray which impinges on heated surface as well as by atomization behavior of micro-solid particles. When micro-SN2 spraying cooling was used, an ultra-high cooling heat flux level was achieved during operation, a better cooling performance than that with liquid nitrogen (LN2) spray cooling. As micro-SN2 cooling has the advantage of direct latent heat transport which avoids the film boiling state, the ultra-short time scale heat transfer in a thin boundary layer is more possible than in LN2 spray. The present numerical prediction of the micro-SN2 spray cooling heat flux profile can reasonably reproduce the measurement results of cooling wall heat flux profiles. The application of micro-solid spray as a refrigerant for next generation computer processors is anticipated, and its ultra-high heat flux technology is expected to result in an extensive improvement in the effective cooling performance of large scale supercomputer systems.

  9. Interface Film Resistivities for Heat and Mass TransferssIntegral Relations Verified by Non-equilibrium Molecular Dynamics

    E-print Network

    Kjelstrup, Signe

    Interface Film Resistivities for Heat and Mass TransferssIntegral Relations Verified by Non; In Final Form: July 6, 2006 Integral relations that predict interface film transfer coefficients) the interface film, where transport processes are driven by jumps in temperature and chemical potential; and (3

  10. On-Chip Thermal Management With Microchannel Heat Sinks and Integrated Micropumps

    Microsoft Academic Search

    Suresh V. Garimella; Vishal Singhal; Dong Liu

    2006-01-01

    Liquid-cooled microchannel heat sinks are regarded as being amongst the most effective solutions for handling high levels of heat dissipation in space-constrained electronics. However, obstacles to their successful incorporation into products have included their high pumping requirements and the limits on available space which precludes the use of conventional pumps. Moreover, the transport characteristics of microchannels can be different from

  11. Model calculations on a flat-plate solar heat collector with integrated solar cells

    Microsoft Academic Search

    Trond Bergene; Ole Martin Løvvik

    1995-01-01

    A detailed physical model of a hybrid photovoltaic\\/thermal system is proposed, and algorithms for making quantitative predictions regarding the performance of the system are presented. The motivation for the present work is that solar cells act as good heat collectors and are fairly good selective absorbers. Additionally, most solar cells increase their efficiency when heat is drawn from the cells.

  12. Investigation of a radiantly heated and cooled office with an integrated desiccant ventilation unit 

    E-print Network

    Gong, Xiangyang

    2009-05-15

    of Simulated Results with Measured Data................................................19 2.5 Heating Capacity of Mullion Radiators.........................................................................27 2.6 Cooling Capacity of Mullion Radiators... for Four Different Hot Water Conditions.................. 30 2.21 Inner Surface Temperature Distributions at the Midpoint of the Window Height .... 31 2.22 Heating Capacity of Mullions at Four Different Values of Tube Wall Thermal Resistance...

  13. Integrated single and two-phase micro heat sinks under IGBT chips

    Microsoft Academic Search

    Charlotte Gillot; Luc Meysenc; Christian Schaeffer; Alain Bricard

    1999-01-01

    Experiments have been performed to assess the feasibility of single and two-phase micro heat exchangers applied to the cooling of insulated gate bipolar transistor (IGBT) power components. After a brief recall of the principal characteristics of such heat exchangers, prototypes that have been built and tested are described. Then, the experimental measurements are compared to the predictions of the thermal

  14. Design Optimization of Loop Heat Pipes with Cylindrical Evaporator and Integral Reservoir for Space Application

    Microsoft Academic Search

    Valeri V. Vlassov; Fabiano L. de Sousa; Roger R. Riehl

    2008-01-01

    Design optimization of a LHP system for a space application is considered. The system is composed of the LHP itself, an interface with the heat source (saddle) and a radiator. The criterion is minimal system mass while meeting the operational requirements. The optimization is performed with simultaneous consideration of hot and cold conditions with respect to imposed heat loads to

  15. Experimental Research on Solar Assisted Heat Pump Heating System with Latent Heat Storage 

    E-print Network

    Han, Z.; Zheng, M.; Liu, W.; Wang, F.

    2006-01-01

    Assisted Heat Pump Heating System with Latent Heat Storage. In this system, solar energy is the major heat source for a heat pump, and the supplementary heat source is soil. The disagreement in time between the space heat load and heat collected by solar...

  16. An innovative system for heating and cooling a gymnasium using integrated photovoltaic-thermal solar collectors

    SciTech Connect

    Fanchiotti, A. [Terza Univ. di Roma (Italy); Herkel, S.; Laukamp, H. [Fraunhofer-Inst., Freiburg (Germany); Priolo, C. [Conphoebus, Piano d`Arci (Italy)

    1996-11-01

    The paper describes a new solar energy based system to heat and cool a gymnasium and to generate electricity in the city of Palermo, Italy. The gymnasium will be built in 1996 as part of the structures that will host the Universiadi Games in 1997. Main objectives of the project are: (a) to grant better environmental conditions in the area occupied by the public, with limited use of fossil energy; (b) to reduce the temperature of the photovoltaic elements, thus increasing their efficiency. The system consists of an array of 203 m{sup 2} integrated photovoltaic-thermal solar air collectors. In the winter mode of operation, the heated air is passed through the concrete benches where the public is seated. In the summer mode of operation outside air is evaporatively cooled, passed through the benches, then exhausted to the outside after passing through the collectors. The paper presents some of the results obtained by simulating the system at the design stage for winter conditions.

  17. The heat pipe heat exchangers: Design, technology and applications

    Microsoft Academic Search

    S. Chadourne

    1991-01-01

    The Heat Pipe Heat Exchanger (HPHE) is a relatively new and very attractice heat exchanger type. For a good understanding of this very special heat exchanger, a minimum knowledge of the heat pipes is required. The heat pipe and thermosyphon basic theory (including the calculation of the thermal limits) is summarized. Some information concerning the heat pipe technological aspects is

  18. Numerical study of heat pipe application in heat recovery systems

    Microsoft Academic Search

    Song Lin; John Broadbent; Ryan McGlen

    2005-01-01

    Heat pipes are two-phase heat transfer devices with extremely high effective thermal conductivity. They can be cylindrical or planar in structure. Heat pipes can be embedded in a metal cooling plate, which is attached to the heat source, and can also be assembled with a fin stack for fluid heat transfer. Due to the high heat transport capacity, heat exchangers

  19. Fluid heating system with storage of electric heat

    Microsoft Academic Search

    McKenney

    1981-01-01

    A heating system includes a heat storage tank containing a heat transfer fluid (Water) electrically heated to a high temperature. A tube\\/shell heat exchanger having a pair of fluid flow paths arranged in counter flow relationship is provided for extraction of heat from storage tank by the circulation of the heat transfer fluid therethrough. Conduit means connect the outlet of

  20. Initial findings: The integration of water loop heat pump and building structural thermal storage systems

    SciTech Connect

    Marseille, T.J.; Johnson, B.K.; Wallin, R.P.; Chiu, S.A.; Crawley, D.B.

    1989-01-01

    This report is one in a series of reports describing research activities in support of the US Department of Energy (DOE) Commercial Building System Integration Research Program. The goal of the program is to develop the scientific and technical basis for improving integrated decision-making during design and construction. Improved decision-making could significantly reduce buildings' energy use by the year 2010. The objectives of the Commercial Building System Integration Research Program are: to identify and quantify the most significant energy-related interactions among building subsystems; to develop the scientific and technical basis for improving energy related interactions in building subsystems; and to provide guidance to designers, owners, and builders for improving the integration of building subsystems for energy efficiency. The lead laboratory for this program is the Pacific Northwest Laboratory. A wide variety of expertise and resources from industry, academia, other government entities, and other DOE laboratories are used in planning, reviewing and conducting research activities. Cooperative and complementary research, development, and technology transfer activities with other interested organizations are actively pursued. In this report, the interactions of a water loop heat pump system and building structural mass and their effect on whole-building energy performance is analyzed. 10 refs., 54 figs., 1 tab.

  1. Experimental investigations of the performance of a solar air collector with latent heat thermal storage integrated with the solar absorber

    NASA Astrophysics Data System (ADS)

    Charvat, P.; Pech, O.; Hejcik, J.

    2013-04-01

    The paper deals with experimental investigations of the performance of a solar air collector with latent heat thermal storage integrated with the solarabsorber. The main purpose of heat storage in solar thermal systems is to store heat when the supply of solar heat exceeds demand and release it when otherwise. A number of heat storage materials can be used for this purpose; the phase change materials among them. Short-term latent heat thermal storage integrated with the solar absorber can stabilize the air temperature at the outlet of the collector on cloudy days when solar radiation intensity incident on a solar collector fluctuates significantly. Two experimental front-and-back pass solar air collectors of the same dimensions have been built for the experimental investigations. One collector had a "conventional" solar absorber made of a metal sheet while the solar absorber of the other collector consisted of containers filled with organic phase change material. The experimental collectors were positioned side by side during the investigations to ensure the same operating conditions (incident solar radiation, outdoor temperature).

  2. Save by absorption heat pumping

    SciTech Connect

    Davidson, W.F.; Campagne, W.V.L.

    1987-12-01

    The author compares absorption heat pumping (AHP) to mechanical vapor compressor (MVC) heat pumping. The moving part of the AHP is a pump easy to maintain and inexpensive to spare. The mechanical component of the MVC is a vapor compressor which requires more maintenance and is cost-prohibitive to spare. Also, in the MVC system, a purified product stream is heat pumped in an open compressor, thus risking product contamination. In the AHP system, the cold and hot utilities are heat pumped. Therefore, product integrity with an AHP system is well protected as in a conventional fractionation column.

  3. Heat storage device

    SciTech Connect

    Gawron, K.; Mahdjuri, F.; Schroder, J.

    1980-09-02

    A heat storage device is described that is comprised of a closed reservoir within which is positioned a flexible closed container of smaller volume. The flexible container encloses a liquefiable heat-accumulating material; and the reservoir is provided with a heat-transport medium outside of the flexible container. The heat-transport medium always remains in the liquid phase and, upon solidification and shrinkage of the heat-accumulating material, fills the spaces thus formed between the flexible container and the reservoir wall in order to maintain adequate transfer of heat.

  4. Heat transfer system

    DOEpatents

    McGuire, Joseph C. (Richland, WA)

    1982-01-01

    A heat transfer system for a nuclear reactor. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  5. Heat transfer system

    DOEpatents

    Not Available

    1980-03-07

    A heat transfer system for a nuclear reactor is described. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  6. Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes - Business Case Assessment

    SciTech Connect

    Baxter, Van D [ORNL

    2007-05-01

    The long range strategic goal of the Department of Energy's Building Technologies (DOE/BT) Program is to create, by 2020, technologies and design approaches that enable the construction of net-zero energy homes at low incremental cost (DOE/BT 2005). A net zero energy home (NZEH) is a residential building with greatly reduced needs for energy through efficiency gains, with the balance of energy needs supplied by renewable technologies. While initially focused on new construction, these technologies and design approaches are intended to have application to buildings constructed before 2020 as well resulting in substantial reduction in energy use for all building types and ages. DOE/BT's Emerging Technologies (ET) team is working to support this strategic goal by identifying and developing advanced heating, ventilating, air-conditioning, and water heating (HVAC/WH) technology options applicable to NZEHs. Although the energy efficiency of heating, ventilating, and air-conditioning (HVAC) equipment has increased substantially in recent years, new approaches are needed to continue this trend. Dramatic efficiency improvements are necessary to enable progress toward the NZEH goals, and will require a radical rethinking of opportunities to improve system performance. The large reductions in HVAC energy consumption necessary to support the NZEH goals require a systems-oriented analysis approach that characterizes each element of energy consumption, identifies alternatives, and determines the most cost-effective combination of options. In particular, HVAC equipment must be developed that addresses the range of special needs of NZEH applications in the areas of reduced HVAC and water heating energy use, humidity control, ventilation, uniform comfort, and ease of zoning. In FY05 ORNL conducted an initial Stage 1 (Applied Research) scoping assessment of HVAC/WH systems options for future NZEHs to help DOE/BT identify and prioritize alternative approaches for further development. Eleven system concepts with central air distribution ducting and nine multi-zone systems were selected and their annual and peak demand performance estimated for five locations: Atlanta (mixed-humid), Houston (hot-humid), Phoenix (hot-dry), San Francisco (marine), and Chicago (cold). Performance was estimated by simulating the systems using the TRNSYS simulation engine (Solar Energy Laboratory et al. 2006) in two 1800-ft{sup 2} houses--a Building America (BA) benchmark house and a prototype NZEH taken from BEopt results at the take-off (or crossover) point (i.e., a house incorporating those design features such that further progress towards ZEH is through the addition of photovoltaic power sources, as determined by current BEopt analyses conducted by NREL). Results were summarized in a project report, 'HVAC Equipment Design options for Near-Zero-Energy Homes--A Stage 2 Scoping Assessment', ORNL/TM-2005/194 (Baxter 2005). The 2005 study report describes the HVAC options considered, the ranking criteria used, and the system rankings by priority. Table 1 summarizes the energy savings potential of the highest scoring options from the 2005 study for all five locations. All system options were scored by the ORNL building equipment research team and by William Goetzler of Navigant Consulting. These scores were reviewed by DOE/BT's Residential Integration program leaders and Building America team members. Based on these results, the two centrally ducted integrated heat pump (IHP) systems (air source and ground source versions) were selected for advancement to Stage 2 (Exploratory Development) business case assessments in FY06. This report describes results of these business case assessments. It is a compilation of three separate reports describing the initial business case study (Baxter 2006a), an update to evaluate the impact of an economizer cooling option (Baxter 2006b), and a second update to evaluate the impact of a winter humidification option (Baxter 2007). In addition it reports some corrections made subsequent to release of the first two reports to correct so

  7. Proportional and Integral Thermal Control System for Large Scale Heating Tests

    NASA Technical Reports Server (NTRS)

    Fleischer, Van Tran

    2015-01-01

    The National Aeronautics and Space Administration Armstrong Flight Research Center (Edwards, California) Flight Loads Laboratory is a unique national laboratory that supports thermal, mechanical, thermal/mechanical, and structural dynamics research and testing. A Proportional Integral thermal control system was designed and implemented to support thermal tests. A thermal control algorithm supporting a quartz lamp heater was developed based on the Proportional Integral control concept and a linearized heating process. The thermal control equations were derived and expressed in terms of power levels, integral gain, proportional gain, and differences between thermal setpoints and skin temperatures. Besides the derived equations, user's predefined thermal test information generated in the form of thermal maps was used to implement the thermal control system capabilities. Graphite heater closed-loop thermal control and graphite heater open-loop power level were added later to fulfill the demand for higher temperature tests. Verification and validation tests were performed to ensure that the thermal control system requirements were achieved. This thermal control system has successfully supported many milestone thermal and thermal/mechanical tests for almost a decade with temperatures ranging from 50 F to 3000 F and temperature rise rates from -10 F/s to 70 F/s for a variety of test articles having unique thermal profiles and test setups.

  8. Heat Wave Safety Checklist

    MedlinePLUS

    ... heat has caused more deaths than all other weather events, including floods. A heat wave is a ... stroke include hot, red skin which may be dry or moist; changes in consciousness; vomiting; and high ...

  9. Monogroove liquid heat exchanger

    NASA Technical Reports Server (NTRS)

    Brown, Richard F. (Inventor); Edelstein, Fred (Inventor)

    1990-01-01

    A liquid supply control is disclosed for a heat transfer system which transports heat by liquid-vapor phase change of a working fluid. An assembly (10) of monogroove heat pipe legs (15) can be operated automatically as either heat acquisition devices or heat discharge sources. The liquid channels (27) of the heat pipe legs (15) are connected to a reservoir (35) which is filled and drained by respective filling and draining valves (30, 32). Information from liquid level sensors (50, 51) on the reservoir (35) is combined (60) with temperature information (55) from the liquid heat exchanger (12) and temperature information (56) from the assembly vapor conduit (42) to regulate filling and draining of the reservoir (35), so that the reservoir (35) in turn serves the liquid supply/drain needs of the heat pipe legs (15), on demand, by passive capillary action (20, 28).

  10. Specifying Waste Heat Boilers 

    E-print Network

    Ganapathy, V.

    1992-01-01

    Waste heat boilers or Heat Recovery Steam Generators (HRSGs) as they are often called are used to recover energy from waste gas streams in chemical plants, refineries, kilns, incineration systems and cogeneration and combined cycle plants...

  11. Heat pump advances

    Microsoft Academic Search

    1989-01-01

    This article describes new heat pump units that offer increased comfort as well as energy savings. Hydrotech 2000, a high-efficiency air-source heat pump developed by Carrier Corporation and the Electric Power Research Institute, combines domestic water heating with air conditioning; in addition, the system's compressor and blower use variable-speed motors. This reduces electric consumption by matching the heat pump's output

  12. Abrasion resistant heat pipe

    DOEpatents

    Ernst, D.M.

    1984-10-23

    A specially constructed heat pipe is described for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

  13. Abrasion resistant heat pipe

    DOEpatents

    Ernst, Donald M. (Leola, PA)

    1984-10-23

    A specially constructed heat pipe for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

  14. Solar heat receiver

    DOEpatents

    Hunt, A.J.; Hansen, L.J.; Evans, D.B.

    1982-09-29

    A receiver is described for converting solar energy to heat a gas to temperatures from 700 to 900/sup 0/C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

  15. Solar heat receiver

    DOEpatents

    Hunt, Arlon J. (Oakland, CA); Hansen, Leif J. (Berkeley, CA); Evans, David B. (Orinda, CA)

    1985-01-01

    A receiver for converting solar energy to heat a gas to temperatures from 700.degree.-900.degree. C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

  16. Mass and Heat Recovery 

    E-print Network

    Hindawai, S. M.

    2010-01-01

    uses. Figure (1) showing the mass and heat recovery system (MHRS) layout . This layout can divided to four (4) sections : 1. Mass and heat collection (MHC) . 2. Mass and heat storage unit (MHSU) . 3. Heat recovery unit (HRU) . 4. Mass... recovery unit (MRU) . ESL-IC-10-10-56 Proceedings of the Tenth International Conference for Enhanced Building Operations, Kuwait, October 26-28, 2010 - 2 - ESL-IC-10-10-56 Proceedings of the Tenth International Conference for Enhanced...

  17. Effects of supplemental zinc amino acid complex on gut integrity in heat-stressed growing pigs.

    PubMed

    Sanz Fernandez, M V; Pearce, S C; Gabler, N K; Patience, J F; Wilson, M E; Socha, M T; Torrison, J L; Rhoads, R P; Baumgard, L H

    2014-01-01

    Heat stress (HS) jeopardizes livestock health and productivity and both may in part be mediated by reduced intestinal integrity. Dietary zinc improves a variety of bowel diseases, which are characterized by increased intestinal permeability. Study objectives were to evaluate the effects of supplemental zinc amino acid complex (ZnAA) on intestinal integrity in heat-stressed growing pigs. Crossbred gilts (43±6 kg BW) were ad libitum fed one of three diets: (1) control (ZnC; 120 ppm Zn as ZnSO4; n=13), (2) control+100 ppm Zn as ZnAA (Zn220; containing a total of 220 ppm Zn; n=14), and (3) control+200 ppm Zn as ZnAA (Zn320; containing a total of 320 ppm Zn; n=16). After 25 days on their respective diets, all pigs were exposed to constant HS conditions (36°C, ?50% humidity) for either 1 or 7 days. At the end of the environmental exposure, pigs were euthanized and blood and intestinal tissues were harvested immediately after sacrifice. As expected, HS increased rectal temperature (P?0.01; 40.23°C v. 38.93°C) and respiratory rate (P?0.01; 113 v. 36 bpm). Pigs receiving ZnAA tended to have increased rectal temperature (P=0.07; +0.27°C) compared with ZnC-fed pigs. HS markedly reduced feed intake (FI; P?0.01; 59%) and caused BW loss (2.10 kg), but neither variable was affected by dietary treatment. Fresh intestinal segments were assessed ex vivo for intestinal integrity. As HS progressed from days 1 to 7, both ileal and colonic transepithelial electrical resistance (TER) decreased (P?0.05; 34% and 22%, respectively). This was mirrored by an increase in ileal and colonic permeability to the macromolecule dextran (P?0.01; 13- and 56-fold, respectively), and increased colonic lipopolysaccharide permeability (P?0.05; threefold) with time. There was a quadratic response (P?0.05) to increasing ZnAA on ileal TER, as it was improved (P?0.05; 56%) in Zn220-fed pigs compared with ZnC. This study demonstrates that HS progressively compromises the intestinal barrier and supplementing ZnAA at the appropriate dose can improve aspects of small intestinal integrity during severe HS. PMID:24229744

  18. Heat Transfer Guest Editorial

    E-print Network

    Kandlikar, Satish

    Journal of Heat Transfer Guest Editorial We are indeed delighted in bringing out this special issue was showcased in diverse areas such as traditional heat and mass transfer, lab-on-chip, sensors, biomedical applica- tions, micromixers, fuel cells, and microdevices. Selected papers in the field of heat transfer

  19. Champagne Heat Pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    2004-01-01

    The term champagne heat pump denotes a developmental heat pump that exploits a cycle of absorption and desorption of carbon dioxide in an alcohol or other organic liquid. Whereas most heat pumps in common use in the United States are energized by mechanical compression, the champagne heat pump is energized by heating. The concept of heat pumps based on other absorption cycles energized by heat has been understood for years, but some of these heat pumps are outlawed in many areas because of the potential hazards posed by leakage of working fluids. For example, in the case of the water/ammonia cycle, there are potential hazards of toxicity and flammability. The organic-liquid/carbon dioxide absorption/desorption cycle of the champagne heat pump is similar to the water/ammonia cycle, but carbon dioxide is nontoxic and environmentally benign, and one can choose an alcohol or other organic liquid that is also relatively nontoxic and environmentally benign. Two candidate nonalcohol organic liquids are isobutyl acetate and amyl acetate. Although alcohols and many other organic liquids are flammable, they present little or no flammability hazard in the champagne heat pump because only the nonflammable carbon dioxide component of the refrigerant mixture is circulated to the evaporator and condenser heat exchangers, which are the only components of the heat pump in direct contact with air in habitable spaces.

  20. Heat pumps in distillation

    Microsoft Academic Search

    1976-01-01

    The methods used and results obtained in evaluating the economics of substituting heat pumps for conventional distillation process design are presented. From this study it was concluded that: heat pumps have extensive applicability to distillation whenever direct refrigeration or chilled water are required for condensation; heat pumps have limited, but very real ranges of applicability when reboiler temperatures are above

  1. Waste heat recovery boiler

    Microsoft Academic Search

    E. Yanai; T. Kuribayashi

    1987-01-01

    A waste heat recovery boiler is described which utilizes an exhaust gas of a gas turbine and generates steam for driving a steam turbine. The improvement wherein at least two denitrating devices for removing NO\\/sub x\\/ components in the exhaust gas therefrom are disposed inside the waste heat recovery boiler. The waste heat recovery boiler is equipped with fuel economizers

  2. Heat Loss Calculation Exercise

    NSDL National Science Digital Library

    Garrison, Kirk

    This class exercise from Kirk Garrison is intended for construction students learning about home insulation and heating. The class will learn to calculate heat loss in a home by using an online home heat loss calculator. This exercise document includes student worksheets. This document may be downloaded in PDF file format.

  3. Solar heated anaerobic digestor

    Microsoft Academic Search

    Rhoades

    1980-01-01

    A solar heated anaerobic digestor is provided, adapted to utilize organic material capable of decomposing to produce methane gas and a liquid fertilizer. The sealed anaerobic digestor is wrapped with a layer of heat absorptive material followed by a series of abutting removable panels of insulative material. Insulative panels may be temporarily removed to expose the heat absorptive material to

  4. Heated graphite cylinder electrodes

    Microsoft Academic Search

    Jian-Jun Sun; Liang Guo; De-Feng Zhang; Wen-Hui Yin; Guo-Nan Chen

    2007-01-01

    A new heated graphite cylinder electrode (HGCE) has been successfully fabricated, which arrangement is similar to that of the heated metal (Pt or Au) wire electrode invented by Grundler. The cylinders’ diameters range from ca. 95 to 300?m obtained by grinding the commercial available pencil graphite. HGCEs demonstrate rapid responses to the heating up and high thermal stability during being

  5. Heat pipe technology issues

    Microsoft Academic Search

    M. A. Merrigan

    1984-01-01

    Critical high temperature, high power applications in space nuclear power designs are near the current state of the art of heat pipe technology in terms of power density, operating temperature, and lifetime. Recent heat pipe development work at Los Alamos National Laboratory involved performance testing of typical space reactor heat pipe designs to power levels in excess of 19 kW\\/cm(2)

  6. High heat flux loop heat pipes

    NASA Technical Reports Server (NTRS)

    North, Mark T.; Sarraf, David B.; Rosenfeld, John H.; Maidanik, Yuri F.; Vershinin, Sergey

    1997-01-01

    Loop heat pipes (LHPs) can transport very large thermal power loads over long distances, through flexible, small diameter tubes against gravitational heads. In order to overcome the evaporator limit of LHPs, which is of about 0.07 MW/sq m, work was carried out to improve the efficiency by threefold to tenfold. The vapor passage geometry for the high heat flux conditions is shown. A bidisperse wick material within the circumferential vapor passages was used. Along with heat flux enhancement, several underlying issues were demonstrated, including the fabrication of bidisperse powder with controlled properties and the fabrication of a device geometry capable of replacing vapor passages with bidisperse powder.

  7. Integrated modelling of steady-state scenarios and heating and current drive mixes for ITER

    SciTech Connect

    Murakami, Masanori [ORNL; Park, Jin Myung [ORNL; Giruzzi, G. [CEA, IRFM, France; Garcia, J. [CEA Cadarache, St. Paul lex Durance, France; Bonoli, P. T. [Massachusetts Institute of Technology (MIT); Budny, R. V. [Princeton Plasma Physics Laboratory (PPPL); Doyle, E. J. [University of California, Los Angeles; Fukuyama, A. [Kyoto University, Japan; Ferron, J.R. [General Atomics, San Diego; Hayashi, N. [Japan Atomic Energy Agency (JAEA), Naka; Honda, M. [Japan Atomic Energy Agency (JAEA), Naka; Hubbard, A. [MIT Plasma Science & Fusion Center, Cambridge, MA 02139 USA; Hong, R. M. [General Atomics, San Diego; Ide, S. [Japan Atomic Energy Agency (JAEA), Naka; Imbeaux, F. [CEA Cadarache, St. Paul lex Durance, France; Jaeger, Erwin Frederick [ORNL; Jernigan, Thomas C [ORNL; Luce, T.C. [General Atomics, San Diego; Na, Y S [Seoul National University of Technology, Korea; Oikawa, T. [ITER Organization, Saint Paul Lez Durance, France; Osborne, T.H. [General Atomics, San Diego; Parail, V. [Association EURATOM-CCFE, Abingdon, UK; Polevoi, A. [ITER Organization, Saint Paul Lez Durance, France; Prater, R. [General Atomics; Sips, A C C [Max Planck Institute for Plasma Physics, Garching, Germany; Shafer, M. W. [University of Wisconsin, Madison; Snipes, J. A. [ITER Organization, Cadarache, France; St. John, H. E. [ITER Organization, Saint Paul Lez Durance, France; Snyder, P. B. [General Atomics, San Diego; Voitsekhovitch, I [UKAEA Fusion, Culham UK

    2011-01-01

    Recent progress on ITER steady-state (SS) scenario modelling by the ITPA-IOS group is reviewed. Code-to-code benchmarks as the IOS group's common activities for the two SS scenarios (weak shear scenario and internal transport barrier scenario) are discussed in terms of transport, kinetic profiles, and heating and current drive (CD) sources using various transport codes. Weak magnetic shear scenarios integrate the plasma core and edge by combining a theory-based transport model (GLF23) with scaled experimental boundary profiles. The edge profiles (at normalized radius rho = 0.8-1.0) are adopted from an edge-localized mode-averaged analysis of a DIII-D ITER demonstration discharge. A fully noninductive SS scenario is achieved with fusion gain Q = 4.3, noninductive fraction f(NI) = 100%, bootstrap current fraction f(BS) = 63% and normalized beta beta(N) = 2.7 at plasma current I(p) = 8MA and toroidal field B(T) = 5.3 T using ITER day-1 heating and CD capability. Substantial uncertainties come from outside the radius of setting the boundary conditions (rho = 0.8). The present simulation assumed that beta(N)(rho) at the top of the pedestal (rho = 0.91) is about 25% above the peeling-ballooning threshold. ITER will have a challenge to achieve the boundary, considering different operating conditions (T(e)/T(i) approximate to 1 and density peaking). Overall, the experimentally scaled edge is an optimistic side of the prediction. A number of SS scenarios with different heating and CD mixes in a wide range of conditions were explored by exploiting the weak-shear steady-state solution procedure with the GLF23 transport model and the scaled experimental edge. The results are also presented in the operation space for DT neutron power versus stationary burn pulse duration with assumed poloidal flux availability at the beginning of stationary burn, indicating that the long pulse operation goal (3000s) at I(p) = 9 MA is possible. Source calculations in these simulations have been revised for electron cyclotron current drive including parallel momentum conservation effects and for neutral beam current drive with finite orbit and magnetic pitch effects.

  8. Integrated modelling of steady-state scenarios and heating and current drive mixes for ITER

    NASA Astrophysics Data System (ADS)

    Murakami, M.; Park, J. M.; Giruzzi, G.; Garcia, J.; Bonoli, P.; Budny, R. V.; Doyle, E. J.; Fukuyama, A.; Hayashi, N.; Honda, M.; Hubbard, A.; Ide, S.; Imbeaux, F.; Jaeger, E. F.; Luce, T. C.; Na, Y.-S.; Oikawa, T.; Osborne, T. H.; Parail, V.; Polevoi, A.; Prater, R.; Sips, A. C. C.; Snipes, J.; St. John, H. E.; Snyder, P. B.; Voitsekhovitch, I.; ITPA/Integrated Operation Scenario Group

    2011-10-01

    Recent progress on ITER steady-state (SS) scenario modelling by the ITPA-IOS group is reviewed. Code-to-code benchmarks as the IOS group's common activities for the two SS scenarios (weak shear scenario and internal transport barrier scenario) are discussed in terms of transport, kinetic profiles, and heating and current drive (CD) sources using various transport codes. Weak magnetic shear scenarios integrate the plasma core and edge by combining a theory-based transport model (GLF23) with scaled experimental boundary profiles. The edge profiles (at normalized radius ? = 0.8-1.0) are adopted from an edge-localized mode-averaged analysis of a DIII-D ITER demonstration discharge. A fully noninductive SS scenario is achieved with fusion gain Q = 4.3, noninductive fraction fNI = 100%, bootstrap current fraction fBS = 63% and normalized beta ?N = 2.7 at plasma current Ip = 8 MA and toroidal field BT = 5.3 T using ITER day-1 heating and CD capability. Substantial uncertainties come from outside the radius of setting the boundary conditions (? = 0.8). The present simulation assumed that ?N (?) at the top of the pedestal (? = 0.91) is about 25% above the peeling-ballooning threshold. ITER will have a challenge to achieve the boundary, considering different operating conditions (Te/Ti ? 1 and density peaking). Overall, the experimentally scaled edge is an optimistic side of the prediction. A number of SS scenarios with different heating and CD mixes in a wide range of conditions were explored by exploiting the weak-shear steady-state solution procedure with the GLF23 transport model and the scaled experimental edge. The results are also presented in the operation space for DT neutron power versus stationary burn pulse duration with assumed poloidal flux availability at the beginning of stationary burn, indicating that the long pulse operation goal (3000 s) at Ip = 9 MA is possible. Source calculations in these simulations have been revised for electron cyclotron current drive including parallel momentum conservation effects and for neutral beam current drive with finite orbit and magnetic pitch effects.

  9. Research on the Technology of Integrated Recovery and Collaborative Power Generation for Sintering Dual Waste Heat Source

    Microsoft Academic Search

    Bin Zhao; Yuzhu Zhang; Changqing Hu; Shibin Wan

    2010-01-01

    With the establishment of national iron and steel project and the urgent demand of energy-saving and emission-reducing, Integrated recovering the sensible heat of sintering machine's flue gas and sintering mine effectively to generate power has become problems that are starve for figuring out. Regarding the work process of sintering in iron and steel industry as the target of research, this

  10. COP prediction for the integration of a water purification process in a heat transformer: with and without energy recycling

    Microsoft Academic Search

    J. A. Hernández; D. Juárez-Romero; L. I. Morales; J. Siqueiros

    2008-01-01

    A predictive model for a water purification process integrated in an absorption heat transformer, using an artificial neural network, is proposed in order to obtain on-line predictions of the coefficient of performance (COP). This model takes into account the input and output temperatures for each one of the four components (absorber, generator, evaporator, and condenser), as well as two pressure

  11. The use of heat pumps in district heat supply

    NASA Astrophysics Data System (ADS)

    Winkens, H. P.

    1985-04-01

    The cost elements of heat pump heat supply stations are examined and the optimum relationship between peak load boiler and heat pump output is shown. The dependence of plant size and temperature on heat generating costs is indicated and the costs of heat distribution and heat transfer are analysed. The possibility of a combined system of chop and heat pumps for the transport of heat over larger distances is shown.

  12. Heat pipe cooling system with sensible heat sink

    NASA Technical Reports Server (NTRS)

    Silverstein, Calvin C.

    1988-01-01

    A heat pipe cooling system which employs a sensible heat sink is discussed. With this type of system, incident aerodynamic heat is transported via a heat pipe from the stagnation region to the heat sink and absorbed by raising the temperature of the heat sink material. The use of a sensible heat sink can be advantageous for situations where the total mission heat load is limited, as it is during re-entry, and a suitable radiation sink is not available.

  13. Solar heated anaerobic digestor

    SciTech Connect

    Rhoades, D.

    1980-09-09

    A solar heated anaerobic digestor is provided, adapted to utilize organic material capable of decomposing to produce methane gas and a liquid fertilizer. The sealed anaerobic digestor is wrapped with a layer of heat absorptive material followed by a series of abutting removable panels of insulative material. Insulative panels may be temporarily removed to expose the heat absorptive material to solar radiation and may be replaced when the solar radiation diminishes. A layer of transparent material wrapped in outwardly spaced relation around the insulatng panels is capable of transmitting solar radiation while providing protection against environmental elements. Additional heating means extending into the digestor provide auxiliary heat as required.

  14. Urban heat island

    NASA Technical Reports Server (NTRS)

    Kim, Hongsuk H.

    1991-01-01

    The phenomenon of urban heat island was investigated by the use of LANDSAT Thematic Mapper data sets collected over the metropolitan area of Washington DC (U.S.). By combining the retrieved spectral albedos and temperatures, urban modification on radiation budgets of five surface categories were analyzed. The surface radiation budget imagery of the area show that urban heating is attributable to a large heat flux from the rapidly heating surfaces of asphalt, bare soil and short grass. In summer, symptoms of diurnal heating begin to appear by mid morning and can be about 10 degrees warmer than nearby woodlands in summer.

  15. Composite heat pipe development status: Development of lightweight prototype carbon-carbon heat pipe with integral fins and metal foil liner

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; Rovang, Richard D.

    1995-01-01

    This report discusses development and proof-of-concept testing of a new lightweight carbon-carbon (C-C) space radiator heat pipe, carried out under the NASA Civil Space Technology Initiative (CSTI) High Capacity Power Program. The prototype heat pipe, equipped with a niobium-zirconium foil liner, was filled with potassium working fluid and tested for 11 hours, including startup from ambient temperature with the working fluid initially in the frozen state to near 700 K condenser temperature. Steady-state heat pipe input power during testing was facility limited to about 300 watts. Post test inspection showed the heat pipe to be in excellent condition after eight thermal cycles from ambient to steady-state operating temperature. Utilization of other liner materials and working fluids would greatly extend the spectrum of service temperatures for this technology, with potential applications ranging from small spacecraft heat rejection to aircraft and terrestrial uses.

  16. Electromagnetic heating of Io

    NASA Astrophysics Data System (ADS)

    Colburn, D. S.

    1980-12-01

    The electromagnetic heating of the Io interior is considered as an alternative to tidal dissipation to account for the observed volcanic activity. The characteristics of the time-varying magnetic field of Jupiter as seen from Io are discussed, and the range of possible rock conductivities is examined. Interior heating due to the transverse electric and transverse magnetic modes is calculated. It is found that the TM mode appears to be insignificant as a heating source due to the high conductivity of the ionosphere, even when TM heating is concentrated in local hot regions. The TE mode is a more promising source of heating, although electromagnetic heating by either mode does not appear significant in comparison with other heat sources at present.

  17. Deployable Heat Pipe Radiator

    NASA Technical Reports Server (NTRS)

    Edelstein, F.

    1975-01-01

    A 1.2- by 1.8-m variable conductance heat pipe radiator was designed, built, and tested. The radiator has deployment capability and can passively control Freon-21 fluid loop temperatures under varying loads and environments. It consists of six grooved variable conductance heat pipes attached to a 0.032-in. aluminum panel. Heat is supplied to the radiator via a fluid header or a single-fluid flexible heat pipe header. The heat pipe header is an artery design that has a flexible section capable of bending up to 90 degrees. Radiator loads as high as 850 watts were successfully tested. Over a load variation of 200 watts, the outlet temperature of the Freon-21 fluid varied by 7 F. An alternate control system was also investigated which used a variable conductance heat pipe header attached to the heat pipe radiator panel.

  18. Miniature Heat Pipes

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Small Business Innovation Research contracts from Goddard Space Flight Center to Thermacore Inc. have fostered the company work on devices tagged "heat pipes" for space application. To control the extreme temperature ranges in space, heat pipes are important to spacecraft. The problem was to maintain an 8-watt central processing unit (CPU) at less than 90 C in a notebook computer using no power, with very little space available and without using forced convection. Thermacore's answer was in the design of a powder metal wick that transfers CPU heat from a tightly confined spot to an area near available air flow. The heat pipe technology permits a notebook computer to be operated in any position without loss of performance. Miniature heat pipe technology has successfully been applied, such as in Pentium Processor notebook computers. The company expects its heat pipes to accommodate desktop computers as well. Cellular phones, camcorders, and other hand-held electronics are forsible applications for heat pipes.

  19. Active microchannel heat exchanger

    DOEpatents

    Tonkovich, Anna Lee Y. (Pasco, WA) [Pasco, WA; Roberts, Gary L. (West Richland, WA) [West Richland, WA; Call, Charles J. (Pasco, WA) [Pasco, WA; Wegeng, Robert S. (Richland, WA) [Richland, WA; Wang, Yong (Richland, WA) [Richland, WA

    2001-01-01

    The present invention is an active microchannel heat exchanger with an active heat source and with microchannel architecture. The microchannel heat exchanger has (a) an exothermic reaction chamber; (b) an exhaust chamber; and (c) a heat exchanger chamber in thermal contact with the exhaust chamber, wherein (d) heat from the exothermic reaction chamber is convected by an exothermic reaction exhaust through the exhaust chamber and by conduction through a containment wall to the working fluid in the heat exchanger chamber thereby raising a temperature of the working fluid. The invention is particularly useful as a liquid fuel vaporizer and/or a steam generator for fuel cell power systems, and as a heat source for sustaining endothermic chemical reactions and initiating exothermic reactions.

  20. Nanofluid heat capacities

    NASA Astrophysics Data System (ADS)

    Starace, Anne K.; Gomez, Judith C.; Wang, Jun; Pradhan, Sulolit; Glatzmaier, Greg C.

    2011-12-01

    Significant increases in the heat capacity of heat transfer fluids are needed not only to reduce the costs of liquid heating and cooling processes, but also to bring clean energy producing technologies like concentrating solar power (CSP) to price parity with conventional energy generation. It has been postulated that nanofluids could have higher heat capacities than conventional fluids. In this work, nano- and micron-sized particles were added to five base fluids (poly-? olefin, mineral oil, ethylene glycol, a mixture of water and ethylene glycol, and calcium nitrate tetrahydrate), and the resulting heat capacities were measured and compared with those of the neat base fluids and the weighted average of the heat capacities of the components. The particles used were inert metals and metal oxides that did not undergo any phase transitions over the temperature range studied. In the nanofluids studied here, we found no increase in heat capacity upon the addition of the particles larger than the experimental error.

  1. Heat tube device

    NASA Technical Reports Server (NTRS)

    Khattar, Mukesh K. (inventor)

    1990-01-01

    The present invention discloses a heat tube device through which a working fluid can be circulated to transfer heat to air in a conventional air conditioning system. The heat tube device is disposable about a conventional cooling coil of the air conditioning system and includes a plurality of substantially U-shaped tubes connected to a support structure. The support structure includes members for allowing the heat tube device to be readily positioned about the cooling coil. An actuatable adjustment device is connected to the U-shaped tubes for allowing, upon actuation thereof, for the heat tubes to be simultaneously rotated relative to the cooling coil for allowing the heat transfer from the heat tube device to air in the air conditioning system to be selectively varied.

  2. Heat Recovery from Coal Gasifiers

    E-print Network

    Wen, H.; Lou, S. C.

    1981-01-01

    and convection waste heat boilers. Medium level waste heat leaving fixed bed type gasifiers can be recovered more economically by convection type boilers or shell and tube heat exchangers. An economic analysis for the steam generation and process heat exchanger...

  3. Ultrananocrystalline diamond tip integrated onto a heated atomic force microscope cantilever This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-print Network

    King, William P.

    Ultrananocrystalline diamond tip integrated onto a heated atomic force microscope cantilever.1088/0957-4484/23/49/495302 Ultrananocrystalline diamond tip integrated onto a heated atomic force microscope cantilever Hoe Joon Kim1, Nicolaie Urbana-Champaign, Urbana, IL 61801, USA 2 Advanced Diamond Technologies Inc., Romeoville, IL 60446, USA 3

  4. NEP heat pipe radiators. [Nuclear Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Ernst, D. M.

    1979-01-01

    This paper covers improvements of heat pipe radiators for the thermionic NEP design. Liquid metal heat pipes are suitable as spacecraft radiator elements because of high thermal conductance, low mass and reliability, but the NEP thermionic system design was too large and difficult to fabricate. The current integral collector-radiator design consisting of several layers of thermionic converters, the annular-tangential collector heat pipe, the radiator heat pipe, and the transition zone designed to minimize the temperature difference between the collector heat pipe and radiator heat pipe are described. Finally, the design of micrometeoroid armor protection and the fabrication of the stainless steel annular heat pipe with a tangential arm are discussed, and it is concluded that the heat rejection system for the thermionic NEP system is well advanced, but the collector-radiator heat pipe transition and the 8 to 10 m radiator heat pipe with two bends require evaluation.

  5. THE INTEGRATION OF PROCESS HEAT APPLICATIONS TO HIGH TEMPERATURE GAS REACTORS

    SciTech Connect

    Michael G. McKellar

    2011-11-01

    A high temperature gas reactor, HTGR, can produce industrial process steam, high-temperature heat-transfer gases, and/or electricity. In conventional industrial processes, these products are generated by the combustion of fossil fuels such as coal and natural gas, resulting in significant emissions of greenhouse gases such as carbon dioxide. Heat or electricity produced in an HTGR could be used to supply process heat or electricity to conventional processes without generating any greenhouse gases. Process heat from a reactor needs to be transported by a gas to the industrial process. Two such gases were considered in this study: helium and steam. For this analysis, it was assumed that steam was delivered at 17 MPa and 540 C and helium was delivered at 7 MPa and at a variety of temperatures. The temperature of the gas returning from the industrial process and going to the HTGR must be within certain temperature ranges to maintain the correct reactor inlet temperature for a particular reactor outlet temperature. The returning gas may be below the reactor inlet temperature, ROT, but not above. The optimal return temperature produces the maximum process heat gas flow rate. For steam, the delivered pressure sets an optimal reactor outlet temperature based on the condensation temperature of the steam. ROTs greater than 769.7 C produce no additional advantage for the production of steam.

  6. Design Optimization of Loop Heat Pipes with Cylindrical Evaporator and Integral Reservoir for Space Application

    NASA Astrophysics Data System (ADS)

    Vlassov, Valeri V.; de Sousa, Fabiano L.; Riehl, Roger R.

    2008-01-01

    Design optimization of a LHP system for a space application is considered. The system is composed of the LHP itself, an interface with the heat source (saddle) and a radiator. The criterion is minimal system mass while meeting the operational requirements. The optimization is performed with simultaneous consideration of hot and cold conditions with respect to imposed heat loads to the evaporator and external heat fluxes over the radiator panel. The design parameters of the system optimized are the active length of the evaporator, internal and external diameters of the primary wick, volume and size of the reservoir, thickness and width of the saddle, diameters and tube thickness of the transport lines and condenser, length of the condenser, dimensions of the radiator panel and the amount of the LHP working fluid charged. The LHP mass and optimal design parameters are obtained for three working fluids: ammonia, propylene and acetone; a comparative study of the optimal mass characteristics is performed. Fixed parameters are the required values of transferred heat loads, incident external heat fluxes for the hot and cold cases, length of the transport lines, material and fluid properties. Constraints include temperature limits for the attached equipment and the capillary limits of the LHP. A special steady state mathematical model was developed for the calculation of the LHP performance parameters and a global search metaheuristic, called Generalized Extremal Optimization (GEO), is used as the optimization tool.

  7. Optimization of cross flow heat exchangers for thermoelectric waste heat recovery

    Microsoft Academic Search

    Douglas T. Crane; Gregory S. Jackson

    2004-01-01

    Thermoelectric waste heat recovery is investigated for current thermoelectric materials with advanced heat exchangers. Numerical heat exchanger models integrated with models for Bi2Te3 thermoelectric modules are validated against experimental data from previous cross flow heat exchanger studies as well as experiments using thermoelectrics between counterflow hot water and cooling air flow channels. The models are used in optimization studies of

  8. Optimization of Heat Exchangers

    SciTech Connect

    Ivan Catton

    2010-10-01

    The objective of this research is to develop tools to design and optimize heat exchangers (HE) and compact heat exchangers (CHE) for intermediate loop heat transport systems found in the very high temperature reator (VHTR) and other Generation IV designs by addressing heat transfer surface augmentation and conjugate modeling. To optimize heat exchanger, a fast running model must be created that will allow for multiple designs to be compared quickly. To model a heat exchanger, volume averaging theory, VAT, is used. VAT allows for the conservation of mass, momentum and energy to be solved for point by point in a 3 dimensional computer model of a heat exchanger. The end product of this project is a computer code that can predict an optimal configuration for a heat exchanger given only a few constraints (input fluids, size, cost, etc.). As VAT computer code can be used to model characteristics )pumping power, temperatures, and cost) of heat exchangers more quickly than traditional CFD or experiment, optimization of every geometric parameter simultaneously can be made. Using design of experiment, DOE and genetric algorithms, GE, to optimize the results of the computer code will improve heat exchanger disign.

  9. Heat pump system

    DOEpatents

    Swenson, Paul F.; Moore, Paul B.

    1983-06-21

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  10. Heat pump system

    DOEpatents

    Swenson, Paul F. (Shaker Heights, OH); Moore, Paul B. (Fedhaven, FL)

    1983-01-01

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  11. Laser heated thermoluminescence dosimetry

    SciTech Connect

    Justus, B.L.; Huston, A.L. [Naval Research Laboratory, Washington, DC (United States)

    1996-06-01

    We report a novel laser-heated thermoluminescence dosimeter that is radically different from previous laser-heated dosimeters. The dosimeter is a semiconductor and metal ion doped silica glass that has excellent optical transparency. The high optical quality of the glass essentially eliminates laser power loss due to light scattering. This efficient utilization of the laser power permits operation of the dosimeter without strong absorption of the laser, as is required in traditional laser-heated dosimetry. Our laser-heated dosimeter does not rely on the diffusion of heat from a separate, highly absorbing substrate, but operates via intimate, localized heating within the glass dosimeter due to the absorption of the laser light by rare earth ion dopants in the glass. Following absorption of the laser light, the rare earth ions transfer energy to the surrounding glass via nonradiative relaxation processes, resulting in rapid, localized temperature increases sufficient to release all the filled traps near the ions. As the heat diffuses radially away from the rare earth ions the temperature plummets dramatically on a manometer distance scale and the release of additional filled traps subsides. A key distinguishing feature of this laser-heated dosimeter is the ability to read the dose information more than once. While laser-heating provides complete information about the radiation exposure experienced by the glass due to the release of locally heated traps, the process leaves the remaining filled bulk traps undisturbed. The bulk traps can be read using traditional bulk heating methods and can provide a direct determination of an accumulated dose, measured following any number of laser-heated readouts. Laser-heated dosimetry measurements have been performed using a solid state diode laser for the readout following radiation exposure with a {sup 60}Co source.

  12. Silicon Heat Pipe Array

    NASA Technical Reports Server (NTRS)

    Yee, Karl Y.; Ganapathi, Gani B.; Sunada, Eric T.; Bae, Youngsam; Miller, Jennifer R.; Beinsford, Daniel F.

    2013-01-01

    Improved methods of heat dissipation are required for modern, high-power density electronic systems. As increased functionality is progressively compacted into decreasing volumes, this need will be exacerbated. High-performance chip power is predicted to increase monotonically and rapidly with time. Systems utilizing these chips are currently reliant upon decades of old cooling technology. Heat pipes offer a solution to this problem. Heat pipes are passive, self-contained, two-phase heat dissipation devices. Heat conducted into the device through a wick structure converts the working fluid into a vapor, which then releases the heat via condensation after being transported away from the heat source. Heat pipes have high thermal conductivities, are inexpensive, and have been utilized in previous space missions. However, the cylindrical geometry of commercial heat pipes is a poor fit to the planar geometries of microelectronic assemblies, the copper that commercial heat pipes are typically constructed of is a poor CTE (coefficient of thermal expansion) match to the semiconductor die utilized in these assemblies, and the functionality and reliability of heat pipes in general is strongly dependent on the orientation of the assembly with respect to the gravity vector. What is needed is a planar, semiconductor-based heat pipe array that can be used for cooling of generic MCM (multichip module) assemblies that can also function in all orientations. Such a structure would not only have applications in the cooling of space electronics, but would have commercial applications as well (e.g. cooling of microprocessors and high-power laser diodes). This technology is an improvement over existing heat pipe designs due to the finer porosity of the wick, which enhances capillary pumping pressure, resulting in greater effective thermal conductivity and performance in any orientation with respect to the gravity vector. In addition, it is constructed of silicon, and thus is better suited for the cooling of semiconductor devices.

  13. Passive solar heating and natural cooling of an earth-integrated design

    SciTech Connect

    Barnes, P.R.; Shapira, H.B.

    1980-01-01

    The Joint Institute for Heavy Ion Research is being designed with innovative features that will greatly reduce its energy consumption for heating, cooling, and lighting. A reference design has been studied and the effects of extending the overhang during summer and fall, varying glazing area, employing RIB, and reducing internal heat by natural lighting have been considered. The use of RIB and the extendable overhang increases the optimum window glazing area and the solar heating fraction. A mass-storage wall which will likely be included in the final design has also been considered. A figure of merit for commercial buildings is the total annual energy consumption per unit area of floor space. A highly efficient office building in the Oak Ridge area typically uses 120 to 160 kWhr/m/sup 2/. The Joint Institute reference design with natural lighting, an annual average heat pump coefficient of performance (COP) equal to 1.8, RIB, and the extendable overhang uses 71 kWhr/m/sup 2/. This figure was determined from NBSLD simulations corrected for the saving from RIB. The internal heat energy from lighting and equipment used in the simulation was 1653 kWhrs/month (high natural lighting case) which is much lower than conventional office buildings. This value was adopted because only a portion of the building will be used as office space and efforts will be made to keep internal heat generation low. The mass-storage wall and ambient air cooling will reduce energy consumption still further. The combined savings of the innovative features in the Joint Institute building are expected to result in a very energy efficient design. The building will be instrumented to monitor its performance and the measured data will provide a means of evaluating the energy-saving features. The efficiency of the design will be experimentally verified over the next several years.

  14. Existing and Past Methods of Test and Rating Standards Related to Integrated Heat Pump Technologies

    SciTech Connect

    Reedy, Wayne R. [Sentech, Inc.

    2010-07-01

    This report evaluates existing and past US methods of test and rating standards related to electrically operated air, water, and ground source air conditioners and heat pumps, 65,000 Btu/hr and under in capacity, that potentiality incorporate a potable water heating function. Two AHRI (formerly ARI) standards and three DOE waivers were identified as directly related. Six other AHRI standards related to the test and rating of base units were identified as of interest, as they would form the basis of any new comprehensive test procedure. Numerous other AHRI and ASHRAE component test standards were also identified as perhaps being of help in developing a comprehensive test procedure.

  15. Cryogenic Heat Pipe Experiment (CRYOHP)

    NASA Astrophysics Data System (ADS)

    McIntosh, Roy

    The objective of the CRYOHP experiment is to conduct a shuttle experiment that demonstrates the reliable operation of two oxygen heat pipes in microgravity. The experiment will perform the following tasks: (1) demonstrate startup of the pipes from the supercritical state; (2) measure the heat transport capacity of the pipes; (3) measure evaporator and condenser film coefficients; and (4) work shuttle safety issues. The approach for the experiment is as follows: (1) fly two axially grooved oxygen heat pipes attached to mechanical stirling cycle tactical coolers; (2) integrate experiment in hitch-hiker canister; and (3) fly on shuttle and control from ground.

  16. Plasma heat pump and heat engine

    SciTech Connect

    Avinash, K. [Centre for Space Plasma and Aeronomic Research, University of Alabama, Huntsville, Alabama 35899 (United States) and Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2010-08-15

    A model system where cold charged particles are locally confined in a volume V{sub P} within a warm plasma of volume V (V{sub P}<heat and vice versa. Two applications of this theory are, first we propose a pumping device which heats plasmas by an adiabatic/isothermal compression of fields. Heating power ranging from a few hundred watts to a few kilowatts is possible with the present day technology. Second, we discuss the feasibility of constructing an electrostatic heat engine which converts plasma heat into mechanical work via plasma electric fields. Effects of P{sub E} are shown to be observable in colloidal solutions.

  17. Waste heat recovery using heat pipe heat exchanger (HPHE) for surgery rooms in hospitals

    Microsoft Academic Search

    S. H. Noie-Baghban; G. R. Majideian

    2000-01-01

    Research has been carried out on the theory, design and construction of heat pipes, especially their use in heat pipe heat exchangers for energy recovery, reduction of air pollution and environmental conservation. A heat pipe heat exchanger has been designed and constructed for heat recovery in hospital and laboratories, where the air must be changed up to 40 times per

  18. Hybrid cycle power plant with heat accumulator for storing heat exchange fluid transferring heat between cycles

    Microsoft Academic Search

    Pacault

    1976-01-01

    An installation for producing motive power, operating on a hybrid cycle of gas and vapor such as steam is described. The installation has a heat accumulator for storing a heat-exchange fluid which can also act as a fluid fuel for a heat source adapted to heat the fluid of the heat accumulator. Heat can be drawn from the accumulator in

  19. Electrohydrodynamic heat pipe experiments

    NASA Technical Reports Server (NTRS)

    Jones, T. B.; Perry, M. P.

    1974-01-01

    Experiments with two electrohydrodynamic heat pipes are reported. Both devices employ an electromechanical flow structure for axial liquid flow and a capillary wicking structure for (1) collection of condensed liquid at the cooled end and (2) distribution of this liquid at the heated end. One device has circumferential grooving for the capillary structure and the other has feltmetal wicking. The experiments successfully demonstrate the electrohydrodynamic heat pipe concept. Compatibility of the two circumferential wick structures with an axial electromechanical flow structure is also demonstrated. A significant mismatch of the capillary groove and electrohydrodynamic pumping capabilities results in severe hydrodynamic burn-out limiting in the first heat pipe. Both devices have very poor over-all thermal conductances of the order of 1-2 W/deg C, reflecting the generally poor heat-transfer properties of the dielectric working fluids required in electrohydrodynamic heat pipes.

  20. Water-heating dehumidifier

    DOEpatents

    Tomlinson, John J. (Knoxville, TN)

    2006-04-18

    A water-heating dehumidifier includes a refrigerant loop including a compressor, at least one condenser, an expansion device and an evaporator including an evaporator fan. The condenser includes a water inlet and a water outlet for flowing water therethrough or proximate thereto, or is affixed to the tank or immersed into the tank to effect water heating without flowing water. The immersed condenser design includes a self-insulated capillary tube expansion device for simplicity and high efficiency. In a water heating mode air is drawn by the evaporator fan across the evaporator to produce cooled and dehumidified air and heat taken from the air is absorbed by the refrigerant at the evaporator and is pumped to the condenser, where water is heated. When the tank of water heater is full of hot water or a humidistat set point is reached, the water-heating dehumidifier can switch to run as a dehumidifier.

  1. What's waste heat worth

    SciTech Connect

    Campagne, W.V.L.

    1982-07-01

    An evaluation technique to determine the monetary revenue, in dollars, of a waste heat recovery project is introduced. This evaluation technique shows how to translate the heat transferred from a donor stream (waste heat) to a recipient stream, into a dollar loss for the donor and a dollar gain for the recipient. It is this ratio of dollar gain over dollar loss which reflects the fuel recovery ratio, and which determines the efficiency of the waste heat recovery. This evaluation technique is based on the premise that waste heat recovery can be equated to potential steam savings and thus, the fuel value in dollars of the waste heat as a function of its temperature can be related to that of steam. 4 refs.

  2. Heat illness in Cyprus.

    PubMed

    Bricknell, M C

    1994-06-01

    Heat illness in the Armed Forces is an emotive issue. No specific service-wide system currently exists to monitor the incidence of heat illness. Within British Forces Cyprus medical policy guidelines for physical activity at various Wet Bulb Globe Temperature (WBGT) readings were issued in 1988. A local system for reporting heat casualties was introduced in August 1989. This paper examined retrospectively the reports of heat illness casualties from August 1988 to December 1992 in Cyprus. There was a reduction in reported incidents causing heat casualties over the period studied from 18 incidents in 1990 to 8 in 1992. There was also a reduction in the maximum recorded WBGT reading for each incident. From these results it would seem that there may have been a reduction in preventable heat casualties attributable to commanders following the WBGT guidelines. PMID:8907832

  3. Heat-pipe Earth.

    PubMed

    Moore, William B; Webb, A Alexander G

    2013-09-26

    The heat transport and lithospheric dynamics of early Earth are currently explained by plate tectonic and vertical tectonic models, but these do not offer a global synthesis consistent with the geologic record. Here we use numerical simulations and comparison with the geologic record to explore a heat-pipe model in which volcanism dominates surface heat transport. These simulations indicate that a cold and thick lithosphere developed as a result of frequent volcanic eruptions that advected surface materials downwards. Declining heat sources over time led to an abrupt transition to plate tectonics. Consistent with model predictions, the geologic record shows rapid volcanic resurfacing, contractional deformation, a low geothermal gradient across the bulk of the lithosphere and a rapid decrease in heat-pipe volcanism after initiation of plate tectonics. The heat-pipe Earth model therefore offers a coherent geodynamic framework in which to explore the evolution of our planet before the onset of plate tectonics. PMID:24067709

  4. Induction Heating Systems

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Induction heating technology, a magnetic non-deforming process, was developed by Langley researchers to join plastic and composite components in space. Under NASA license, Inductron Corporation uses the process to produce induction heating systems and equipment for numerous applications. The Torobonder, a portable system, comes with a number of interchangeable heads for aircraft repair. Other developments are the E Heating Head, the Toroid Joining Gun, and the Torobrazer. These products perform bonding applications more quickly, safely and efficiently than previous methods.

  5. NCSX Plasma Heating Methods

    SciTech Connect

    H.W. Kugel; D. Spong; R. Majeski; M. Zarnstorff

    2003-02-28

    The NCSX (National Compact Stellarator Experiment) has been designed to accommodate a variety of heating systems, including ohmic heating, neutral-beam injection, and radio-frequency. Neutral beams will provide one of the primary heating methods for NCSX. In addition to plasma heating, beams are also expected to provide a means for external control over the level of toroidal plasma rotation velocity and its profile. The plan is to provide 3 MW of 50 keV balanced neutral-beam tangential injection with pulse lengths of 500 msec for initial experiments, and to be upgradeable to pulse lengths of 1.5 sec. Subsequent upgrades will add 3 MW of neutral-beam injection. This Chapter discusses the NCSX neutral-beam injection requirements and design issues, and shows how these are provided by the candidate PBX-M (Princeton Beta Experiment-Modification) neutral-beam injection system. In addition, estimations are given for beam-heating efficiencies, scaling of heating efficiency with machine size an d magnetic field level, parameter studies of the optimum beam-injection tangency radius and toroidal injection location, and loss patterns of beam ions on the vacuum chamber wall to assist placement of wall armor and for minimizing the generation of impurities by the energetic beam ions. Finally, subsequent upgrades could add an additional 6 MW of radio-frequency heating by mode-conversion ion-Bernstein wave (MCIBW) heating, and if desired as possible future upgrades, the design also will accommodate high-harmonic fast-wave and electron-cyclotron heating. The initial MCIBW heating technique and the design of the radio-frequency system lend themselves to current drive, so that if current drive became desirable for any reason only minor modifications to the heating system described here would be needed. The radio-frequency system will also be capable of localized ion heating (bulk or tail), and possibly ion-Bernstein-wave-generated sheared flows.

  6. NCSX Plasma Heating Methods

    SciTech Connect

    Kugel, H. W.; Spong, D.; Majeski, R.; Zarnstorff, M.

    2008-01-18

    The National Compact Stellarator Experiment (NCSX) has been designed to accommodate a variety of heating systems, including ohmic heating, neutral beam injection, and radio-frequency (rf). Neutral beams will provide one of the primary heating methods for NCSX. In addition to plasma heating, neutral beams are also expected to provide a means for external control over the level of toroidal plasma rotation velocity and its profile. The experimental plan requires 3 MW of 50-keV balanced neutral beam tangential injection with pulse lengths of 500 ms for initial experiments, to be upgradeable to pulse lengths of 1.5 s. Subsequent upgrades will add 3MW of neutral beam injection (NBI). This paper discusses the NCSX NBI requirements and design issues and shows how these are provided by the candidate PBX-M NBI system. In addition, estimations are given for beam heating efficiencies, scaling of heating efficiency with machine size and magnetic field level, parameter studies of the optimum beam injection tangency radius and toroidal injection location, and loss patterns of beam ions on the vacuum chamber wall to assist placement of wall armor and for minimizing the generation of impurities by the energetic beam ions. Finally, subsequent upgrades could add an additional 6 MW of rf heating by mode conversion ion Bernstein wave (MCIBW) heating, and if desired as possible future upgrades, the design also will accommodate high-harmonic fast-wave and electron cyclotron heating. The initial MCIBW heating technique and the design of the rf system lend themselves to current drive, so if current drive became desirable for any reason, only minor modifications to the heating system described here would be needed. The rf system will also be capable of localized ion heating (bulk or tail), and possiblyIBW-generated sheared flows.

  7. Heating steels in vacuum

    Microsoft Academic Search

    Marmer

    1983-01-01

    It is recommended that high-strength and corrosion-resistant steels be heated in an electric vacuum furnace. Absence of oxidation and decarburization, decrease in the deformation of the part, increase in service life, plus safety, and nontoxicity in the shop, are cited as advantages. Annealing, carburizing, hardening, brazing, and sintering--all detailed-can be more efficiently accomplished in vacuum heating. As vacuum heating requires

  8. Industrial Heat Recovery - 1982 

    E-print Network

    Csathy, D.

    1982-01-01

    limit, for natural circulation boil ers, is the available static head which determines the total resistance of the circulating system. For higher pressure boilers, taller, narrow boilers (with fewer tubes and More static head) are nreferrable from... 2000 psi~ Heat Flux When the heat flux reaches the point at which there is a departure from nucleate boiling, the tube wall temperature will rise sharply and subsequent tube failure may result. This critical heat flux is a function of several...

  9. Integrated carbon dioxide/sludge gasification using waste heat from hot slags: syngas production and sulfur dioxide fixation.

    PubMed

    Sun, Yongqi; Zhang, Zuotai; Liu, Lili; Wang, Xidong

    2015-04-01

    The integrated CO2/sludge gasification using the waste heat in hot slags, was explored with the aim of syngas production, waste heat recovery and sewage sludge disposal. The results demonstrated that hot slags presented multiple roles on sludge gasification, i.e., not only a good heat carrier (500-950 °C) but also an effective desulfurizer (800-900 °C). The total gas yields increased from 0.022 kg/kgsludge at 500 °C to 0.422 kg/kgsludge at 900 °C; meanwhile, the SO2 concentration at 900 °C remarkably reduced from 164 ppm to 114 ppm by blast furnace slags (BFS) and 93 ppm by steel slags (SS), respectively. A three-stage reaction was clarified including volatile release, char transformation and fixed carbon using Gaussian fittings and the kinetic model was analyzed. Accordingly, a decline process using the integrated method was designed and the optimum slag/sludge ratio was deduced. These deciphered results appealed potential ways of reasonable disposal of sewage sludge and efficient recovery of waste heat from hot slags. PMID:25647028

  10. Energy Integrated Design of Lighting, Heating, and Cooling Systems and Its Effect on Building Energy Requirements

    Microsoft Academic Search

    Gershon Meckler

    1967-01-01

    The continuous control of interior environment with today's requirements for higher lighting levels has greatly altered the way in which energy is consumed in buildings. In order to optimize the energy input and achieve environmental control, we must utilize the systems approach. The lighting, heating, and cooling systems must be interrelated so that we can utilize available internal energy to

  11. Integrated use of solar panels and a waste heat scavenger. Progress report

    Microsoft Academic Search

    J. H. Jarrell; B. R. Miller; W. M. Jr. Smathers

    1980-01-01

    The objectives of this project were to: (1) install energy measurement devices on commercially available solar collectors and a heat scavenger attached to the dairy refrigeration system; and (2) make the results of the demonstration available to other dairy farmers. The objectives have been accomplished. Measurement devices have been installed and are currently establishing a data base on system performance.

  12. Heat pipe technology issues

    SciTech Connect

    Merrigan, M.A.

    1984-04-01

    Critical high temperature, high power applications in space nuclear power designs are near the current state of the art of heat pipe technology in terms of power density, operating temperature, and lifetime. Recent heat pipe development work at Los Alamos National Laboratory has involved performance testing of typical space reactor heat pipe designs to power levels in excess of 19 kW/cm/sup 2/ axially and 300 W/cm/sup 2/ radially at temperatures in the 1400 to 1500 K range. Operation at conditions in the 10 kW/cm/sup 2/ range has been sustained for periods of up to 1000 hours without evidence of performance degradation. The effective length for heat transport in these heat pipes was from 1.0 to 1.5 M. Materials used were molybdenum alloys with lithium employed as the heat pipe operating fluid. Shorter, somewhat lower power, molybdenum heat pipes have been life tested at Los Alamos for periods of greater than 25,000 hours at 1700 K with lithium and 20,000 hours at 1500/sup 0/K with sodium. These life test demonstrations and the attendant performance limit investigations provide an experimental basis for heat pipe application in space reactor design and represent the current state-of-the-art of high temperature heat pipe technology.

  13. Heat rejection system

    DOEpatents

    Smith, Gregory C. (Richland, WA); Tokarz, Richard D. (Richland, WA); Parry, Jr., Harvey L. (Richland, WA); Braun, Daniel J. (Richland, WA)

    1980-01-01

    A cooling system for rejecting waste heat consists of a cooling tower incorporating a plurality of coolant tubes provided with cooling fins and each having a plurality of cooling channels therein, means for directing a heat exchange fluid from the power plant through less than the total number of cooling channels to cool the heat exchange fluid under normal ambient temperature conditions, means for directing water through the remaining cooling channels whenever the ambient temperature rises above the temperature at which dry cooling of the heat exchange fluid is sufficient and means for cooling the water.

  14. Solar heated anaerobic digester

    SciTech Connect

    Rhoades, D.

    1980-09-09

    The title digester is adapted to utilize organic waste material capable of decomposing to produce CH/sub 4/ and a liquid fertilizer. The sealed anaerobic digester is wrapped with a layer of heat-absorptive material followed by a series of abutting removable panels of insulative material. Insulative panels may be temporarily removed to expose the heat-absorptive material to solar radiation and may be replaced when the solar radiation diminishes. A layer of transparent material wrapped in outwardly spaced relation around the insulating panels is capable of transmitting solar radiation while providing protection against environmental elements. Additional heating means extending into the digester provide auxiliary heat as required.

  15. Heat Capacity Analysis Report

    SciTech Connect

    A. Findikakis

    2004-11-01

    The purpose of this report is to provide heat capacity values for the host and surrounding rock layers for the waste repository at Yucca Mountain. The heat capacity representations provided by this analysis are used in unsaturated zone (UZ) flow, transport, and coupled processes numerical modeling activities, and in thermal analyses as part of the design of the repository to support the license application. Among the reports that use the heat capacity values estimated in this report are the ''Multiscale Thermohydrologic Model'' report, the ''Drift Degradation Analysis'' report, the ''Ventilation Model and Analysis Report, the Igneous Intrusion Impacts on Waste Packages and Waste Forms'' report, the ''Dike/Drift Interactions report, the Drift-Scale Coupled Processes (DST and TH Seepage) Models'' report, and the ''In-Drift Natural Convection and Condensation'' report. The specific objective of this study is to determine the rock-grain and rock-mass heat capacities for the geologic stratigraphy identified in the ''Mineralogic Model (MM3.0) Report'' (BSC 2004 [DIRS 170031], Table 1-1). This report provides estimates of the heat capacity for all stratigraphic layers except the Paleozoic, for which the mineralogic abundance data required to estimate the heat capacity are not available. The temperature range of interest in this analysis is 25 C to 325 C. This interval is broken into three separate temperature sub-intervals: 25 C to 95 C, 95 C to 114 C, and 114 C to 325 C, which correspond to the preboiling, trans-boiling, and postboiling regimes. Heat capacity is defined as the amount of energy required to raise the temperature of a unit mass of material by one degree (Nimick and Connolly 1991 [DIRS 100690], p. 5). The rock-grain heat capacity is defined as the heat capacity of the rock solids (minerals), and does not include the effect of water that exists in the rock pores. By comparison, the rock-mass heat capacity considers the heat capacity of both solids and pore water. For temperatures in the trans-boiling regime (95 C to 114 C), the additional energy required to vaporize the pore water is accounted for in the rock-mass heat capacity. The rock-grain heat capacities are intended to be used in models and analyses that explicitly account for the thermodynamic effects of the water within the rock porosity. The rock-mass heat capacities are intended to be used in models and analyses that do not explicitly account for these thermodynamic effects, particularly boiling. The term specific heat is often used synonymously with heat capacity; however, the latter term is used throughout this document.

  16. Heat flux measurements

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.; Weikle, Donald H.

    1989-01-01

    A new automated, computer controlled heat flux measurement facility is described. Continuous transient and steady-state surface heat flux values varying from about 0.3 to 6 MW/sq m over a temperature range of 100 to 1200 K can be obtained in the facility. An application of this facility is the development of heat flux gauges for continuous fast transient surface heat flux measurement on turbine blades operating in space shuttle main engine turbopumps. The facility is useful for durability testing at fast temperature transients.

  17. Microtube strip heat exchanger

    SciTech Connect

    Doty, F.D.

    1991-07-08

    During the last quarter, Doty Scientific, Inc. (DSI) continued to make progress on the microtube strip (MTS) heat exchanger. DSI completed a heat exchanger stress analysis of the ten-module heat exchanger bank; and, performed a shell-side flow inhomogeneity analysis of the three-module heat exchanger bank. The company produced 50 tubestrips using an in-house CNC milling machine and began pressing them onto tube arrays. DSI revised some of the tooling required to encapsulate a tube array and press tubestrips into the array to improve some of the prototype tooling. 2 refs., 4 figs.

  18. External artery heat pipe

    NASA Technical Reports Server (NTRS)

    Gernert, Nelson J. (Inventor); Ernst, Donald M. (Inventor); Shaubach, Robert M. (Inventor)

    1989-01-01

    An improved heat pipe with an external artery. The longitudinal slot in the heat pipe wall which interconnects the heat pipe vapor space with the external artery is completely filled with sintered wick material and the wall of the external artery is also covered with sintered wick material. This added wick structure assures that the external artery will continue to feed liquid to the heat pipe evaporator even if a vapor bubble forms within and would otherwise block the liquid transport function of the external artery.

  19. Composite heat pipe development status: Development of lightweight prototype carbon-carbon heat pipe with integral fins and metal foil liner

    Microsoft Academic Search

    Albert J. Juhasz; Richard D. Rovang

    1995-01-01

    This report discusses development and proof-of-concept testing of a new lightweight carbon-carbon (C-C) space radiator heat pipe, carried out under the NASA Civil Space Technology Initiative (CSTI) High Capacity Power Program. The prototype heat pipe, equipped with a niobium-zirconium foil liner, was filled with potassium working fluid and tested for 11 hours, including startup from ambient temperature with the working

  20. To Heat or Not to Heat?

    NSDL National Science Digital Library

    CREAM GK-12 Program, Engineering Education Research Center, College of Engineering and Architecture,

    Students are introduced to various types of energy with a focus on thermal energy and types of heat transfer as they are challenged to design a better travel thermos that is cost efficient, aesthetically pleasing and meets the design objective of keeping liquids hot. They base their design decisions on material properties such thermal conductivity, cost and function. These engineering and science concepts are paired with student experiences to build an understanding of heat transfer as it plays a role in their day-to-day lives. While this introduction only shows the top-level concepts surrounding the mathematics associated with heat transfer; the skills become immediately useful as students apply what they know to solve an engineering challenge.

  1. Integrated heat pipe-thermal storage design for a solar receiver. [Constant power source with heat from sun or from storage

    SciTech Connect

    Keddy, E.S.; Sena, J.T.; Woloshun, K.; Merrigan, M.A.; Heidenreich, G.

    1986-01-01

    Light-weight heat pipe wall elements that incorporate a thermal storage subassembly within the vapor space are being developed as part of the Organic Rankine Cycle Solar Dynamic Power Systems (ORC-SDPS) receiver for the space station application. The operating temperature of he heat pipe elements is in the 770 to 810/sup 0/K range with a design power throughput of 4.8 kW per pipe. The total heat pipe length is 1.9 M. The Rankine cycle boiler heat transfer surfaces are positioned within the heat pipe vapor space, providing a relatively constant temperature input to the vaporizer. The heat pipe design employs axial arteries and distribution wicked thermal storage units with potassium as the working fluid. Stainless steel is used as the containment tube and screen material. Performance predictions for this configuration have been conducted and the design characterized as a function of artery geometry, distribution wick thickness, porosity, pore size, and permeability. Details of the analysis and of fabrication and assembly procedures are presented. 2 refs., 8 figs.

  2. Towards a new generation heat exchanger models

    Microsoft Academic Search

    Geert W. Haarlemmer; Jérôme Pigourier

    2008-01-01

    In the quest for more dependable process models, attending to small detail and integrating increasing their internal complexity will improve dynamic behavior and simulation accuracy. Although detailed heat exchanger models in dedicated steady state design programs are common, steady state process models and dynamic simulations have been based largely on shorteut heat exchanger calculations. However, detailed heat exchanger models can

  3. THERMOCHEMICAL HEAT STORAGE FOR CONCENTRATED; SOLAR POWER

    Microsoft Academic Search

    2011-01-01

    Thermal energy storage (TES) is an integral part of a concentrated solar power (CSP) system. It enables plant operators to generate electricity beyond on sun hours and supply power to the grid to meet peak demand. Current CSP sensible heat storage systems employ molten salts as both the heat transfer fluid and the heat storage media. These systems have an

  4. Heat transfer characteristics of a radical heat pipe

    NASA Astrophysics Data System (ADS)

    Kaminaga, Fumito; Okamoto, Yoshizo; Yotsukura, Terumitsu; Ito, Haruhiko; Saito, Takasi; Amezawa, Hiroo

    1990-03-01

    Heat transfer characteristics of a newly designed heat pipe which transports thermal energy in a radial direction of the heat pipe are examined experimentally, using Freon R-113 working fluid. The heat pipe produces a much higher overall heat transmission than the current heat pipe due to a direct contact condensation instead of a filmwise condensation. An unheated vapor space above a heated section and a higher charge rate over 70 percent are required to use it in a wide range of heat flux. A normal screen wick presents an insufficient capillary force to pump up the working fluid to the heated section against the gravity force.

  5. Tidal Heating in Enceladus

    NASA Astrophysics Data System (ADS)

    Meyer, Jennifer; Wisdom, J.

    2007-07-01

    The heating in Enceladus in an equilibrium resonant configuration with other saturnian satellites can be estimated independently of the physical properties of Enceladus. Our results update the values obtained for the equilibrium tidal heating found by Lissauer et al. (1984) and Peale (2003). We find that equilibrium tidal heating cannot account for the heat that is observed to be coming from Enceladus, and current heating rates are even less for conventional estimates of the Love number for Enceladus. Even allowing for a much larger dynamic Love number, as can occur in viscoelastic models (Ross and Schubert, 1989), the equilibrium tidal heating is less than the heat observed to be coming from Enceladus. One resolution is that the tidal equilibrium is unstable and that the system oscillates about equilibrium. Yoder (1981) suggested that Enceladus might oscillate about equilibrium if the Q of Enceladus is stress dependent. An alternate suggestion was made by Ojakangas and Stevenson (1986), who emphasized the possible temperature dependence of Q. In these models Enceladus would now be releasing heat stored during a recent high eccentricity phase. However, we have shown that the Ojakangas and Stevenson model does not produce oscillations for parameters appropriate for Enceladus. Other low-order resonance configurations are possible for the saturnian satellites in the past. These include the 3:2 Mimas-Enceladus and the 3:4 Enceladus-Tethys resonances. The latter resonance has no equilibrium because the orbits are diverging, and the former has an equilibrium heating rate of only 0.48 GW. So equilibrium heating at past resonances is no more successful at explaining past resurfacing events than equilibrium heating is at explaining the present activity.

  6. Planetary heat flow measurements.

    PubMed

    Hagermann, Axel

    2005-12-15

    The year 2005 marks the 35th anniversary of the Apollo 13 mission, probably the most successful failure in the history of manned spaceflight. Naturally, Apollo 13's scientific payload is far less known than the spectacular accident and subsequent rescue of its crew. Among other instruments, it carried the first instrument designed to measure the flux of heat on a planetary body other than Earth. The year 2005 also should have marked the launch of the Japanese LUNAR-A mission, and ESA's Rosetta mission is slowly approaching comet Churyumov-Gerasimenko. Both missions carry penetrators to study the heat flow from their target bodies. What is so interesting about planetary heat flow? What can we learn from it and how do we measure it?Not only the Sun, but all planets in the Solar System are essentially heat engines. Various heat sources or heat reservoirs drive intrinsic and surface processes, causing 'dead balls of rock, ice or gas' to evolve dynamically over time, driving convection that powers tectonic processes and spawns magnetic fields. The heat flow constrains models of the thermal evolution of a planet and also its composition because it provides an upper limit for the bulk abundance of radioactive elements. On Earth, the global variation of heat flow also reflects the tectonic activity: heat flow increases towards the young ocean ridges, whereas it is rather low on the old continental shields. It is not surprising that surface heat flow measurements, or even estimates, where performed, contributed greatly to our understanding of what happens inside the planets. In this article, I will review the results and the methods used in past heat flow measurements and speculate on the targets and design of future experiments. PMID:16286290

  7. Lunar Base Heat Pump

    NASA Technical Reports Server (NTRS)

    Walker, D.; Fischbach, D.; Tetreault, R.

    1996-01-01

    The objective of this project was to investigate the feasibility of constructing a heat pump suitable for use as a heat rejection device in applications such as a lunar base. In this situation, direct heat rejection through the use of radiators is not possible at a temperature suitable for lde support systems. Initial analysis of a heat pump of this type called for a temperature lift of approximately 378 deg. K, which is considerably higher than is commonly called for in HVAC and refrigeration applications where heat pumps are most often employed. Also because of the variation of the rejection temperature (from 100 to 381 deg. K), extreme flexibility in the configuration and operation of the heat pump is required. A three-stage compression cycle using a refrigerant such as CFC-11 or HCFC-123 was formulated with operation possible with one, two or three stages of compression. Also, to meet the redundancy requirements, compression was divided up over multiple compressors in each stage. A control scheme was devised that allowed these multiple compressors to be operated as required so that the heat pump could perform with variable heat loads and rejection conditions. A prototype heat pump was designed and constructed to investigate the key elements of the high-lift heat pump concept. Control software was written and implemented in the prototype to allow fully automatic operation. The heat pump was capable of operation over a wide range of rejection temperatures and cooling loads, while maintaining cooling water temperature well within the required specification of 40 deg. C +/- 1.7 deg. C. This performance was verified through testing.

  8. Heat pipe heat exchangers as energy recovery devices

    Microsoft Academic Search

    Ruch

    1976-01-01

    Counterflow heat exchangers comprised of a bundle of heat pipes with secondary finned surfaces attached offer attractive advantages as energy recovery units. With no moving parts and wide design flexibility, these heat pipe heat exchangers are finding ever increasing usage in air-to-air heat recovery. Three general classes of applications can be identified: using energy recovery from process exhaust to regenerate

  9. Proceedings of Heat Transfer 2003: ASME Summer Heat Transfer Conference

    E-print Network

    Kandlikar, Satish

    Proceedings of Heat Transfer 2003: ASME Summer Heat Transfer Conference Las Vegas, Nevada, USA July 21-23, 2003 HT2003-47449 HEAT TRANSFER FROM A MOVING AND EVAPORATING MENISCUS ON A HEATED SURFACE meniscus with complete evaporation of water without any meniscus break-up. The experimental heat transfer

  10. 24 CFR 3280.506 - Heat loss/heat gain.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...Development 5 2010-04-01 2010-04-01 false Heat loss/heat gain. 3280.506 Section 3280.506 Housing and...SAFETY STANDARDS Thermal Protection § 3280.506 Heat loss/heat gain. The manufactured home heat...

  11. 24 CFR 3280.506 - Heat loss/heat gain.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...Development 5 2011-04-01 2011-04-01 false Heat loss/heat gain. 3280.506 Section 3280.506 Housing and...SAFETY STANDARDS Thermal Protection § 3280.506 Heat loss/heat gain. The manufactured home heat...

  12. IMPLEMENTING GROUND SOURCE HEAT PUMP AND GROUND LOOP HEAT EXCHANGER

    E-print Network

    IMPLEMENTING GROUND SOURCE HEAT PUMP AND GROUND LOOP HEAT EXCHANGER MODELS IN THE ENERGYPLUS #12;ii IMPLEMENTING GROUND SOURCE HEAT PUMP AND GROUND LOOP HEAT EXCHANGER MODELS IN THE ENERGYPLUS............................................................... 2 1.3. Overview of the Parameter Estimation Water-to-Water Heat Pump Model ........... 5 1

  13. Heat pipes and use of heat pipes in furnace exhaust

    DOEpatents

    Polcyn, Adam D. (Pittsburgh, PA)

    2010-12-28

    An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

  14. SAFE Reactor Brayton Cycle Primary Heat Exchangers

    Microsoft Academic Search

    Robert S. Reid; Michael G. Houts

    2002-01-01

    Gas cooling of power-dense nuclear reactor cores can produce large thermal and stress gradients through sensible temperature changes in the coolant. In-core heat pipes remove heat isothermally and reduce the severity of these gradients. The modular SAFE reactor concept consists of numerous heat pipes that permit core re-assembly during test and preflight integration. The redundancy inherent in the modular heat

  15. NREL Tests Integrated Heat Pump Water Heater Performance in Different Climates (Fact Sheet)

    SciTech Connect

    Not Available

    2012-01-01

    This technical highlight describes NREL tests to capture information about heat pump performance across a wide range of ambient conditions for five heat pump water heaters (HPWH). These water heaters have the potential to significantly reduce water heater energy use relative to traditional electric resistance water heaters. These tests have provided detailed performance data for these appliances, which have been used to evaluate the cost of saved energy as a function of climate. The performance of HPWHs is dependent on ambient air temperature and humidity and the logic controlling the heat pump and the backup resistance heaters. The laboratory tests were designed to measure each unit's performance across a range of air conditions and determine the specific logic controlling the two heat sources, which has a large effect on the comfort of the users and the energy efficiency of the system. Unlike other types of water heaters, HPWHs are both influenced by and have an effect on their surroundings. Since these effects are complex and different for virtually every house and climate region, creating an accurate HPWH model from the data gathered during the laboratory tests was a main goal of the project. Using the results from NREL's laboratory tests, such as the Coefficient of Performance (COP) curves for different air conditions as shown in Figure 1, an existing HPWH model is being modified to produce more accurate whole-house simulations. This will allow the interactions between the HPWH and the home's heating and cooling system to be evaluated in detail, for any climate region. Once these modeling capabilities are in place, a realistic cost-benefit analysis can be performed for a HPWH installation anywhere in the country. An accurate HPWH model will help to quantify the savings associated with installing a HPWH in the place of a standard electric water heater. In most locations, HPWHs are not yet a cost-effective alternative to natural gas water heaters. The detailed system performance maps that were developed by this testing program will be used to: (1) Target regions of the country that would benefit most from this technology; (2) Identify improvements in current systems to maximize homeowner cost savings; and (3) Explore opportunities for development of advanced hot water heating systems.

  16. Prediction of heat transfer coefficient during condensation of water and R-134a on single horizontal integral-fin tubes

    Microsoft Academic Search

    Ravi Kumar; H. K. Varma; Bikash Mohanty; K. N. Agrawal

    2002-01-01

    This paper presents a few salient features of an investigation carried out to study the heat transfer augmentation during condensation of water and R-134a vapor on horizontal integral-fin tubes. The experimental investigation was performed on two different experimental set-ups for water and R-134a. The test-sections were manufactured by machining fins over plain copper tubes of 24.4 ± 0.6 mm outside

  17. Pressure swing distillation for separation of homogeneous azeotropic mixtures in a mass- and heat- integrated column system: operation performance

    Microsoft Academic Search

    Jens-Uwe Repke; Andreas Klein; F. Forner; Gunter Wozny

    2004-01-01

    The separation of a homogeneous azeotropic mixture using pressure swing distillation process is deficient investigated, therefore industrial applications are limited. The dynamic behaviour of a heat- and mass-integrated pressure swing distillation column system to separate an acetonitrile\\/water mixture is analysed. Different control structures are developed and compared by using a rigorous dynamic model written in gProms®. A first validation of

  18. Heat Transfer Discussion: "Heat Transfer and Wall

    E-print Network

    Kandlikar, Satish

    flow boiling curve extending from the single-phase region at point C to the fully developed boiling During Subcooled Flow Nucleate Boiling­A Review" (Warrier, G.R., and Dhir, V.K., 2006, Journal of Heat in the partial boiling region, along with Eqs. 13 - 14 . The authors of 1 further state that Kandlikar 3 in 1998

  19. Vacuum powered heat exchanger

    SciTech Connect

    Ruffolo, R.F.

    1986-06-24

    In an internal combustion engine including an oil lubrication system, a liquid cooling system, and an improved air intake system is described. The improved air intake system comprises: a housing including a first opening in one end, which opening is open to the atmosphere and a second opening comprising an air outlet opening in the other end open to the air intake manifold of the engine, a heat exchanger positioned in the first opening. The heat exchanger consists of a series of coils positioned in the flow path of the atmospheric air as it enters the housing, the heat exchanger being fluidly connected to either the engine lubrication system or the cooling system to provide a warm heat source for the incoming air to the housing, acceleration means positioned in the housing downstream of the heat exchanger, the acceleration means comprising a honeycomb structure positioned across the air intake flow path. The honey-comb structure includes a multitude of honey combed mini-venturi cells through which the heated air flows in an accelerated mode, a removable air filter positioned between the heat exchanger and the acceleration means and a single opening provided in the housing through which the air filter can be passed and removed, and additional openings in the housing positioned downstream of the heat exchanger and upstream of the air filter, the additional openings including removable flaps for opening and closing the openings to control the temperature of the air flowing through the housing.

  20. DHE (Downhole Heat Exchangers)

    Microsoft Academic Search

    G. Culver

    1990-01-01

    The use of downhole heat exchangers (DHE) for residential or commercial space and domestic water heating and other applications has several desirable features. Systems are nearly or completely passive -- that is, no or very little geothermal water or steam is produced from the well either reducing or completely eliminating surface environmental concerns and the need for disposal systems or

  1. Modelling microwave heating

    Microsoft Academic Search

    James M Hill; Timothy R Marchant

    1996-01-01

    Although microwave radiation is best known for heating food in the kitchen, in recent years it has found new applications in many industrial processes, such as those involving melting, smelting, sintering, drying, and joining. Heating by microwave radiation constitutes a highly coupled nonlinear problem giving rise to new and unexpected physical behavior, the best known of which is the appearance

  2. Microwave heating of foodstuffs

    Microsoft Academic Search

    M. E. C. Oliveira; A. S. Franca

    2002-01-01

    The temperature distribution in a product submitted to microwave radiation is governed by the interaction and absorption of radiation by the medium and the accompanying transport processes due to the dissipation of electromagnetic energy into heat. Thus, modeling of microwave heating involves coupling the models for microwave power absorption and temperature distribution inside the product. In this study, a model

  3. Battery heating system

    Microsoft Academic Search

    C. Silvertown; W. Sinclair

    1980-01-01

    A battery heating system is comprised of a number of storage batteries and an alternator driven by a variable speed prime mover connected to supply ac heating current to the batteries. The system is arranged so that the ac current is substantially constant over the working speed range of the prime mover.

  4. Heat and Motion.

    ERIC Educational Resources Information Center

    Pearlman, Norman

    Unlike many elementary presentations on heat, this monograph is not restricted to explaining thermal behavior in only macroscopic terms, but also developes the relationships between thermal properties and atomic behavior. "It relies at the start on intuition about heat at the macroscopic level. Familiarity with the particle model of mechanics,…

  5. Plumbing and Heating Curriculum.

    ERIC Educational Resources Information Center

    EASTCONN Regional Educational Services Center, North Windham, CT.

    Theory and experience in the following areas are included in this plumbing curriculum: (1) plumbing fixtures and heating; (2) city water service; (3) fixture roughing; (4) venting; and (5) solar heating systems. The plumbing program manual includes the following sections: (1) general objectives for grades 10, 11, and 12; (2) a list of 33 major…

  6. Acoustic Heating Peter Ulmschneider

    E-print Network

    Ulmschneider, Peter

    Acoustic Heating Peter Ulmschneider lnstitut fiir Theoretische Astrophysik der Universitat Heidelberg Im Neuenheimer Feld 561, 6900 Heidelberg 1, Federal Republic of Germany. Abstract. Acoustic shock waves are a viable and prevalent heating mechanism both in early- and in late-type stars. Acoustic

  7. Introductory heat-transfer

    NASA Technical Reports Server (NTRS)

    Widener, Edward L.

    1992-01-01

    The objective is to introduce some concepts of thermodynamics in existing heat-treating experiments using available items. The specific objectives are to define the thermal properties of materials and to visualize expansivity, conductivity, heat capacity, and the melting point of common metals. The experimental procedures are described.

  8. Heat Transfer Technical Brief

    E-print Network

    Banerjee, Debjyoti

    % higher heat flux at Leidenfrost point (film boiling regime) compared to control experiments. HoweverJournal of Heat Transfer Technical Brief Pool Boiling Experiments on Multiwalled Carbon Nanotube with verti- cally aligned multiwalled carbon nanotubes (MWCNT) "forests" and were used for pool boiling

  9. Basic Comfort Heating Principles.

    ERIC Educational Resources Information Center

    Dempster, Chalmer T.

    The material in this beginning book for vocational students presents fundamental principles needed to understand the heating aspect of the sheet metal trade and supplies practical experience to the student so that he may become familiar with the process of determining heat loss for average structures. Six areas covered are: (1) Background…

  10. Applying industrial heat pumps

    Microsoft Academic Search

    1993-01-01

    Industry uses as little as 20% of the heat content of the fuels it burns. Much of the remainder escapes to the environment and is lost. Capturing this waste heat from industrial processes or refrigeration equipment could cut a plant's operating costs, extend global energy supplies, and reduce emissions. Today, more than 1500 U.S. plants in a wide range of

  11. Heat storage material

    SciTech Connect

    Mita, N.; Murai, Y.; Sato, A.

    1982-01-05

    A heat storage material having a melting point in the range of 90* to 100* C is described. It is excellent in that it is neither corrosiv inflammable nor toxic. The heat storage material comprises a mixture of dimethyl terephthalate and one member selected from the group consisting of dimethyl fumarate and dihydroanthracene.

  12. Solar heat transport fluid

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The progress made in the development and delivery of noncorrosive fluid subsystems is discussed. These subsystems are to be compatible with closed-loop solar heating or combined heating and hot water systems. They are also to be compatible with both metallic and non-metallic plumbing systems. The performance testing of a number of fluids is described.

  13. Heat Shield in Pieces

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This image from NASA's Mars Exploration Rover Opportunity shows the remains of the rover's heat shield, broken into two key pieces, the main piece on the left side and a broken-off flank piece near the middle of the image. The heat shield impact site is identified by the circle of red dust on the right side of the picture. In this view, Opportunity is approximately 20 meters (66 feet) away from the heat shield, which protected it while hurtling through the martian atmosphere.

    In the far left of the image, a meteorite called 'Heat Shield Rock,' sits nearby, The Sun is reflecting off the silver-colored underside of the internal thermal blankets of the heat shield.

    The rover spent 36 sols investigating how the severe heating during entry through the atmosphere affected the heat shield. The most obvious is the fact that the heat shield inverted upon impact.

    This is an approximately true-color rendering of the scene acquired around 1:22 p.m. local solar time on Opportunity sol 324 (Dec. 21, 2004) in an image mosaic using panoramic filters at wavelengths of 750, 530, and 430 nanometers.

  14. Passive Vaporizing Heat Sink

    NASA Technical Reports Server (NTRS)

    Knowles, TImothy R.; Ashford, Victor A.; Carpenter, Michael G.; Bier, Thomas M.

    2011-01-01

    A passive vaporizing heat sink has been developed as a relatively lightweight, compact alternative to related prior heat sinks based, variously, on evaporation of sprayed liquids or on sublimation of solids. This heat sink is designed for short-term dissipation of a large amount of heat and was originally intended for use in regulating the temperature of spacecraft equipment during launch or re-entry. It could also be useful in a terrestrial setting in which there is a requirement for a lightweight, compact means of short-term cooling. This heat sink includes a hermetic package closed with a pressure-relief valve and containing an expendable and rechargeable coolant liquid (e.g., water) and a conductive carbon-fiber wick. The vapor of the liquid escapes when the temperature exceeds the boiling point corresponding to the vapor pressure determined by the setting of the pressure-relief valve. The great advantage of this heat sink over a melting-paraffin or similar phase-change heat sink of equal capacity is that by virtue of the =10x greater latent heat of vaporization, a coolant-liquid volume equal to =1/10 of the paraffin volume can suffice.

  15. Scraped Surface Heat Exchangers

    Microsoft Academic Search

    Chetan S. Rao; Richard W. Hartel

    2006-01-01

    Scraped surface heat exchangers (SSHEs) are commonly used in the food, chemical, and pharmaceutical industries for heat transfer, crystallization, and other continuous processes. They are ideally suited for products that are viscous, sticky, that contain particulate matter, or that need some degree of crystallization. Since these characteristics describe a vast majority of processed foods, SSHEs are especially suited for pumpable

  16. Solar heated anaerobic digester

    Microsoft Academic Search

    Rhoades

    1980-01-01

    The title digester is adapted to utilize organic waste material capable of decomposing to produce CHâ and a liquid fertilizer. The sealed anaerobic digester is wrapped with a layer of heat-absorptive material followed by a series of abutting removable panels of insulative material. Insulative panels may be temporarily removed to expose the heat-absorptive material to solar radiation and may be

  17. Design and Assembly of an Integrated Metabolic Heat Regenerated Temperature Swing Adsorption (MTSA) Subassembly Engineering Development Unit

    NASA Technical Reports Server (NTRS)

    Padilla, Sebastian A.; Powers, Aaron; Iacomini, Christie S.; Bower, Chad E.; Paul, Heather L.

    2012-01-01

    Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal and carbon dioxide (CO2) control for a Portable Life Support System (PLSS), as well as water recycling. The core of the MTSA technology is a sorbent bed that removes CO2 from the PLSS ventilation loop gas via a temperature swing. A Condensing Icing Heat eXchanger (CIHX) is used to warm the sorbent while also removing water from the ventilation loop gas. A Sublimation Heat eXchanger (SHX) is used to cool the sorbent. Research was performed to explore an MTSA designed for both lunar and Martian operations. Previously the sorbent bed, CIHX, and SHX had been built and tested individually on a scale relevant to PLSS operations, but they had not been done so as an integrated subassembly. Design and analysis of an integrated subassembly was performed based on this prior experience and an updated transient system model. Focus was on optimizing the design for Martian operations, but the design can also be used in lunar operations. An Engineering Development Unit (EDU) of an integrated MTSA subassembly was assembled based on the design. Its fabrication is discussed. Some details on the differences between the as-assembled EDU and the future flight unit are considered.

  18. Design and Assembly of an Integrated Metabolic Heat Regenerated Temperature Swing Adsorption (MTSA) Subassembly Engineering Development Unit

    NASA Technical Reports Server (NTRS)

    Padilla, Sebastian A.; Powers, Aaron; Iacomini, Christie S.; Paul, Heather L.

    2011-01-01

    Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal and carbon dioxide (CO2) control for a Portable Life Support System (PLSS), as well as water recycling. The core of the MTSA technology is a sorbent bed that removes CO2 from the PLSS ventilation loop gas via a temperature swing. A Condensing Ice Heat eXchanger (CIHX) is used to warm the sorbent while also removing water from the ventilation loop gas. A Sublimation Heat eXchanger (SHX) is used to cool the sorbent. Research was performed to explore an MTSA designed for both lunar and Martian operations. Previously each the sorbent bed, CIHX, and SHX had been built and tested individually on a scale relevant to PLSS operations, but they had not been done so as an integrated subassembly. Design and analysis of an integrated subassembly was performed based on this prior experience and an updated transient system model. Focus was on optimizing the design for Martian operations, but the design can also be used in lunar operations. An Engineering Development Unit (EDU) of an integrated MTSA subassembly was assembled based on the design. Its fabrication is discussed. Some details on the differences between the as-assembled EDU to the future flight unit are considered.

  19. Heat pipe development status

    SciTech Connect

    Merrigan, M.A.

    1984-01-01

    Test heat pipes have been operated in the 1400 K to 1700 K range for periods in excess of 20,000 hours with the objective of understanding and controlling corrosion and failure mechanisms. The results of a post test analysis of one of these heat pipes that was operated for 25,216 hours at 1700 K are reviewed and the implications for heat pipe lifetime discussed. An in-process report of an investigation of transient heat pipe behavior is presented. This investigation is being conducted as a result of restart problems encountered during life test of a 2 m. radiation cooled heat pipe. The results of a series of shut-down tests from power and temperature are given and probable causes of the restart problem discussed.

  20. Heat flux microsensor measurements

    NASA Astrophysics Data System (ADS)

    Terrell, J. P.; Hager, J. M.; Onishi, S.; Diller, T. E.

    1992-12-01

    A thin-film heat flux sensor has been fabricated on a stainless steel substrate. The thermocouple elements of the heat flux sensor were nickel and nichrome, and the temperature resistance sensor was platinum. The completed heat flux microsensor was calibrated at the AEDC radiation facility. The gage output was linear with heat flux with no apparent temperature effect on sensitivity. The gage was used for heat flux measurements at the NASA Langley Vitiated Air Test Facility. Vitiated air was expanded to Mach 3.0 and hydrogen fuel was injected. Measurements were made on the wall of a diverging duct downstream of the injector during all stages of the hydrogen combustion tests. Because the wall and the gage were not actively cooled, the wall temperature reached over 1000 C (1900 F) during the most severe test.

  1. Heat flux microsensor measurements

    NASA Technical Reports Server (NTRS)

    Terrell, J. P.; Hager, J. M.; Onishi, S.; Diller, T. E.

    1992-01-01

    A thin-film heat flux sensor has been fabricated on a stainless steel substrate. The thermocouple elements of the heat flux sensor were nickel and nichrome, and the temperature resistance sensor was platinum. The completed heat flux microsensor was calibrated at the AEDC radiation facility. The gage output was linear with heat flux with no apparent temperature effect on sensitivity. The gage was used for heat flux measurements at the NASA Langley Vitiated Air Test Facility. Vitiated air was expanded to Mach 3.0 and hydrogen fuel was injected. Measurements were made on the wall of a diverging duct downstream of the injector during all stages of the hydrogen combustion tests. Because the wall and the gage were not actively cooled, the wall temperature reached over 1000 C (1900 F) during the most severe test.

  2. Waste heat recovery boiler

    SciTech Connect

    Yanai, E.; Kuribayashi, T.

    1987-09-15

    A waste heat recovery boiler is described which utilizes an exhaust gas of a gas turbine and generates steam for driving a steam turbine. The improvement wherein at least two denitrating devices for removing NO/sub x/ components in the exhaust gas therefrom are disposed inside the waste heat recovery boiler. The waste heat recovery boiler is equipped with fuel economizers for preheating feed water by the exhaust gas, rear and front evaporators for evaporating the pre-heated feed water, a superheater for heating the vaporized feed water and generating the driving steam for the steam turbine, all of the constituent members being disposed sequentially from a downstream side to an upstream side of the exhaust gas, and wherein the denitrating devices are disposed between at least two evaporators and between the front evaporator and the superheater.

  3. Heat Flow Measurement

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Heat gauges are used to measure heat flow in industrial activities. They must periodically be certified by instruments designed to provide a heat flux measurement standard. CSTAR, a NASA CCDS, and REMTECH have developed a portable heat flux checker/calibrator. The Q-CHEC can be carried to the heat gauge for certification, reducing out of service time for the gauge and eliminating the need for a replacement gauge during certification. It can provide an "end-to-end" check of the instrumentation measurement system or be used as a standalone calibrator. Because Q-CHEC offers on-site capability to detect and eliminate measurement errors, measurements do not have to be repeated, and money is saved.

  4. Heat Pipe Systems

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The heat pipe was developed to alternately cool and heat without using energy or any moving parts. It enables non-rotating spacecraft to maintain a constant temperature when the surface exposed to the Sun is excessively hot and the non Sun-facing side is very cold. Several organizations, such as Tropic-Kool Engineering Corporation, joined NASA in a subsequent program to refine and commercialize the technology. Heat pipes have been installed in fast food restaurants in areas where humid conditions cause materials to deteriorate quickly. Moisture removal was increased by 30 percent in a Clearwater, FL Burger King after heat pipes were installed. Relative humidity and power consumption were also reduced significantly. Similar results were recorded by Taco Bell, which now specifies heat pipe systems in new restaurants in the Southeast.

  5. Greenhouse gas emission and exergy assessments of an integrated organic Rankine cycle with a biomass combustor for combined cooling, heating and power production

    Microsoft Academic Search

    Fahad A. Al-Sulaiman; Feridun Hamdullahpur; Ibrahim Dincer

    2011-01-01

    In this study, greenhouse gas emission and exergy assessments of an integrated organic Rankine cycle (ORC) with a biomass combustor for combined cooling, heating, and power production as a trigeneration system are conducted. This trigeneration system consists of a biomass combustor, an ORC, a single-effect absorption chiller, and a heat exchanger. Four special cases are considered in this comprehensive study,

  6. Air circuit with heating pump

    Microsoft Academic Search

    H. Holik; H. J. Bauder; H. Brugger; A. Reinhart; K. H. Spott

    1980-01-01

    A pump which draws energy from exhaust air from a paper drying process to heat up the blow air was studied. The use of a heat pump instead of a steam heated exchanger can reduce primary energy consumption for blown air heating by more than half and the costs for air heating up to half. The amortization times for the

  7. Modular axial grooved heat pipes

    Microsoft Academic Search

    H. Koch; H. Kreeb; M. Perdu

    1976-01-01

    A modular axial grooved heat pipe system operable between 100 and 400 K was developed. Accent was placed on typical space application problems such as assembly of two heat pipes (interface problems), circular heat pipes, construction of radiators, long life behavior, and cryogenic heat pipes. Results of performance tests on this heat pipe system designed for a space radiator to

  8. A Heat Flux Instrument for Measuring Venus Surface Heat Flow

    NASA Astrophysics Data System (ADS)

    Pauken, M.; Smrekar, S.

    2015-04-01

    An instrument has been developed to measure the surface heat flow on Venus. Heat flow measurement would provide a better understanding of the evolutionary development of Venus. The instrument uses a semiconductor thermopile to measure heat flow.

  9. Economic Options for Upgrading Waste Heat 

    E-print Network

    Erickson, D. C.

    1983-01-01

    There are at least six major types of equipment that upgrade waste heat: (1) thermocompressor; (2) electric drive compressor heat pump; (3) absorption heat pump; (4) high temperature heat powered compressor heat pump; (5) reverse absorption heat...

  10. Progress in heat pipe and porous heat exchanger technology

    Microsoft Academic Search

    A. V. Luikov; L. L. Vasiliev

    1975-01-01

    This is a review of the papers presented at the 1st International Heat Pipe Conference held in Stuttgart, 15-17 October 1973. The review deals with heat pipe application in different branches of technology, heat- and mass-transfer processes in heat pipes, design of variable-conductance heat pipes, optimization of their parameters, operation of heat pipes under weightlessness and in the field of

  11. Analysis and application of the heat pipe heat exchanger

    Microsoft Academic Search

    T. H. Sun; R. C. Prager

    1978-01-01

    Heat pipe heat exchangers offer many advantages over more conventional heat exchangers, particularly for gas-to-gas application. Proper application of these devices depends on the conditions imposed by the process from which waste heat is to be recovered, and some of the more common constraints are analyzed. The overall operation of heat pipe heat exchangers is best studied using effectiveness-NTU calculations,

  12. Prototype solar heating and combined heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Eight prototype solar heating and combined heating and cooling systems are being developed. The effort includes development, manufacture, test, installation, maintenance, problem resolution, and performance evaluation.

  13. Fireplace heating unit

    SciTech Connect

    Henderson, L.L.

    1982-10-19

    An efficient heating unit for ready installation in any standard fireplace includes a refractory lined fire box contained within an outer shell to form a heat exchanger between hot gaseous fuel combustion products and living space air entering the jacket space between the walls of the fire box and the outer shell in a continuous convection cycle. Heated air re-enters the living space through a grill above the fire box and fire box flue maze. The flue maze or manifold forms a radiator of great surface area which projects into the living space immediately below the heated air grill and the maze is vented into the chimney by two nonadjustable and one adjustable vents which are sealed from the air passages of the heat exchanger. Lockable and adjustably vented doors at the front of the fire box are provided. A three piece face plate formed of thin metal having thermal contact with both the fire box and heat exchanger shell maximizes heat radiation into the living space.

  14. Measuring the Heats of Water.

    ERIC Educational Resources Information Center

    Hunt, James L.; Tegart, Tracy L.

    1994-01-01

    Uses common equipment (tea kettle and vacuum bottles) to precisely measure the specific heat, latent heat of fusion, and latent heat of vaporization of water. Provides descriptions for all three experiments. (MVL)

  15. Industrial Heat Pump Design Options 

    E-print Network

    Gilbert, J. S.

    1985-01-01

    %! This paper discusses ways to use heat pumps in new process and retrofit designs, including methods to overcome problems in heat exchange fouling and high lift applications. Examples of actual designs and a simple approximation of installed heat pump cost...

  16. Complex Compound Chemical Heat Pumps

    E-print Network

    Rockenfeller, U.; Langeliers, J.; Horn, G.

    Complex-compound solid-vapor fluid pairs can be used in heat of reaction heat pumps for temperature amplifier (TA) as well as heat amplifier (HA) cycle configurations. This report describes the conceptual hardware design for complex compound...

  17. Molecular heat pump

    E-print Network

    Dvira Segal; Abraham Nitzan

    2005-10-11

    We propose a novel molecular device that pumps heat against a thermal gradient. The system consists of a molecular element connecting two thermal reservoirs that are characterized by different spectral properties. The pumping action is achieved by applying an external force that periodically modulates molecular levels. This modulation affects periodic oscillations of the internal temperature of the molecule and the strength of its coupling to each reservoir resulting in a net heat flow in the desired direction. The heat flow is examined in the slow and fast modulation limits and for different modulation waveforms, thus making it possible to optimize the device performance.

  18. Waste heat recovery system

    SciTech Connect

    Smith, E.M.; Cornelison, R.C.

    1989-10-24

    This patent describes a waste heat recovery system. It comprises a conduit for conveying an exhaust gas stream; a boiler assembly connected to the conduit including a heat recovery steam generator through which the exhaust gas if flowed, and characterized by a high temperature stream tube heat exchanger and, at a downstream location relative thereto, a water-tube boiler; an ammonia gas injector for injecting ammonia gas into the exhaust gas stream and located upstream of the water-tube boiler in juxtaposition to the exhaust gas source; and a low temperature selective catalytic reduction unit located downstream of the water-tube boiler.

  19. Fluctuation relation for heat.

    PubMed

    Noh, Jae Dong; Park, Jong-Min

    2012-06-15

    We present a fluctuation relation for heat dissipation in a nonequilibrium system. A nonequilibrium work is known to obey the fluctuation theorem in any time interval t. Heat, which differs from work by an energy change, is shown to satisfy a modified fluctuation relation. Modification is brought about by the correlation between heat and energy change during nonequilibrium processes whose effect may not be negligible even in the t?? limit. The fluctuation relation is derived for overdamped Langevin equation systems, and tested in a linear diffusion system. PMID:23004252

  20. Heat transfer in pipes

    NASA Astrophysics Data System (ADS)

    Burbach, T.

    1985-04-01

    The heat transfer from hot water to a cold copper pipe in laminar and turbulent flow condition is determined. The mean flow through velocity in the pipe, relative test length and initial temperature in the vessel were varied extensively during tests. Measurements confirm Nusselt's theory for large test lengths in laminar range. A new equation is derived for heat transfer for large starting lengths which agrees satisfactorily with measurements for large starting lengths. Test results are compared with the new Prandtl equation for heat transfer and correlated well. Test material for 200- and to 400-diameter test length is represented at four different vessel temperatures.

  1. Heat transfer in pipes

    NASA Technical Reports Server (NTRS)

    Burbach, T.

    1985-01-01

    The heat transfer from hot water to a cold copper pipe in laminar and turbulent flow condition is determined. The mean flow through velocity in the pipe, relative test length and initial temperature in the vessel were varied extensively during tests. Measurements confirm Nusselt's theory for large test lengths in laminar range. A new equation is derived for heat transfer for large starting lengths which agrees satisfactorily with measurements for large starting lengths. Test results are compared with the new Prandtl equation for heat transfer and correlated well. Test material for 200- and to 400-diameter test length is represented at four different vessel temperatures.

  2. Entry aerodynamics and heating

    NASA Technical Reports Server (NTRS)

    Olstad, W.

    1974-01-01

    An overview of the problems of entry aerodynamics and heating is given with emphasis on survival of the probe, predictability of performance, and reliability of performance. Technological challenges to performance prediction are considered and include: turbulent heat transfer, radiation blockage, chemical state of the shock layer, afterbody heat transfer, asymmetric ablation, and real-gas aerodynamics. It is indicated that various obstacles must be overcome in order to achieve technology readiness. These obstacles are considered to be: extrapolations from ground tests to flight; lack of flight experience; lack of parametric data; and uncertain knowledge of atmospherics.

  3. Heat Exchanger Technologies for Distillation Columns 

    E-print Network

    Polley, G. T.

    2002-01-01

    component rather than the mixture bubble point (assumed with the 'integral' assumption) (Figure 2). ITvapoUT I [./"-------' Where separation occurs, part of the bundle is 'submerged' in condensate. This 'subennergence' can give rise to significant... should be given a downward incline of 3-SO. Intermediate Condensers The extraction of heat from an intermediate point in a distillation column as heat source for a heat pump or for use in an integration scheme can result in significant energy...

  4. Graphite-Fiber Heat Radiators

    NASA Technical Reports Server (NTRS)

    Phillips, Wayne M.

    1995-01-01

    Heat radiators of proposed type feature thermally conductive fibers protruding from metallic surfaces to provide increased heat-dissipation surface areas. Free of leaks and more reliable than radiators incorporating heat pipes. Also lightweight and relatively inexpensive. Radial graphite fibers carry heat away from spherical shell and radiate heat into space. Radiators prove useful on Earth in special industrial and scientific applications involving dissipation of heat in vacuum or in relatively still air.

  5. A fully second order implicit/explicit time integration technique for hydrodynamics plus nonlinear heat conduction problems

    SciTech Connect

    Kadioglu, Samet Y. [Multiphysics Methods Group, Reactor Physics Analysis and Design, Idaho National Laboratory, P.O. Box 1625, MS 3840, Idaho Falls, ID 83415 (United States)], E-mail: Samet.Kadioglu@inl.gov; Knoll, Dana A. [Multiphysics Methods Group, Reactor Physics Analysis and Design, Idaho National Laboratory, P.O. Box 1625, MS 3840, Idaho Falls, ID 83415 (United States)], E-mail: dana.knoll@inl.gov

    2010-05-01

    We present a fully second order implicit/explicit time integration technique for solving hydrodynamics coupled with nonlinear heat conduction problems. The idea is to hybridize an implicit and an explicit discretization in such a way to achieve second order time convergent calculations. In this scope, the hydrodynamics equations are discretized explicitly making use of the capability of well-understood explicit schemes. On the other hand, the nonlinear heat conduction is solved implicitly. Such methods are often referred to as IMEX methods. The Jacobian-Free Newton Krylov (JFNK) method (e.g. ) is applied to the problem in such a way as to render a nonlinearly iterated IMEX method. We solve three test problems in order to validate the numerical order of the scheme. For each test, we established second order time convergence. We support these numerical results with a modified equation analysis (MEA). The set of equations studied here constitute a base model for radiation hydrodynamics.

  6. Heat pipe cooled power magnetics

    NASA Technical Reports Server (NTRS)

    Chester, M. S.

    1979-01-01

    A high frequency, high power, low specific weight (0.57 kg/kW) transformer developed for space use was redesigned with heat pipe cooling allowing both a reduction in weight and a lower internal temperature rise. The specific weight of the heat pipe cooled transformer was reduced to 0.4 kg/kW and the highest winding temperature rise was reduced from 40 C to 20 C in spite of 10 watts additional loss. The design loss/weight tradeoff was 18 W/kg. Additionally, allowing the same 40 C winding temperature rise as in the original design, the KVA rating is increased to 4.2 KVA, demonstrating a specific weight of 0.28 kg/kW with the internal loss increased by 50W. This space environment tested heat pipe cooled design performed as well electrically as the original conventional design, thus demonstrating the advantages of heat pipes integrated into a high power, high voltage magnetic. Another heat pipe cooled magnetic, a 3.7 kW, 20A input filter inductor was designed, developed, built, tested, and described. The heat pipe cooled magnetics are designed to be Earth operated in any orientation.

  7. Improved Thin, Flexible Heat Pipes

    NASA Technical Reports Server (NTRS)

    Rosenfeld, John H.; Gernert, Nelson J.; Sarraf, David B.; Wollen, Peter J.; Surina, Frank C.; Fale, John E.

    2004-01-01

    Flexible heat pipes of an improved type are fabricated as layers of different materials laminated together into vacuum- tight sheets or tapes. In comparison with prior flexible heat pipes, these flexible heat pipes are less susceptible to leakage. Other advantages of these flexible heat pipes, relative to prior flexible heat pipes, include high reliability and greater ease and lower cost of fabrication. Because these heat pipes are very thin, they are highly flexible. When coated on outside surfaces with adhesives, these flexible heat pipes can be applied, like common adhesive tapes, to the surfaces of heat sinks and objects to be cooled, even if those surfaces are curved.

  8. TRMM Validation: Integration of TRMM Satellite and Ground-Validation Data to Determine Tropical Heating

    NASA Technical Reports Server (NTRS)

    Houze, Robert A., Jr.

    2001-01-01

    Steiner and Houze showed from ground validation data that the Tropical Rain Measuring Mission (TRMM) satellite Precipitation Radar's (PR's) twice daily only sampling should lead to an uncertainty of approximately 20% in rain estimates. They further showed that the uncertainties are smallest at the 5-7.5 km level. Schumacher and Houze used Kwajalein ground validation data to show that the TRMM PR misses only 2.3% of the near surface rainfall but does not see 46% of the area where rain occurs, because of the 17 dBZ PR reflectivity threshold. Houze discusses how the TRMM data extend earlier tropical convective studies to global coverage of the vertical profile of latent heating via the TRMM PR''s ability to distinguish and globally map convective and stratiform precipitation. Process studies carried out under this TRMM grant Yuter and Houze and Yuter et al. studied ship-based radar observations in the tropical eastern Pacific ITCZ. The eastern Pacific precipitation process is different from the western Pacific (the COARE area); rain is heavier but the clouds are not as deep. These process differences may affect the ability to remotely sense precipitation accurately in the two regions. Satellite microwave data were able to detect the precipitation as long as the rain areas exceeded 10 km in dimension. However, the microwave algorithms had difficulty distinguishing light and heavy rain. Satellite IR algorithms only partially detected the rain because the tops of the smaller and more short-lived rain clouds were sometimes not cold enough for the IR algorithms to detect them. Houze et al. focused on the west Pacific precipitating mesoscale convective systems and showed how their precipitation and internal dynamics vary in relation to the slowly varying large-scale heating-driven circulation, which has a structure described by a combination of Kelvin and Rossby wave response to the near-equatorial convective heating constituted by the mesoscale convective systems. Ship and aircraft radar data were used in this study.

  9. Ultrasonic test application in geothermal heat exchangers and civil works to monitor the grout integrity (TUC)

    NASA Astrophysics Data System (ADS)

    Mandrone, Giuseppe; Comina, Cesare; Giuliani, Andrea

    2013-04-01

    The working of a vertical geothermal probe, realized with a pipe U-tubes of high-density-polyethylene (HDPE) inserted in a grouted boreholes, is linked to the possibility to exchange heat with the surrounding soil. The concrete material useful for the borehole heat exchangers allows to satisfy a double purpose: sealing the polyethylene pipes from groundwater in the event of loss and increasing the thermal properties of the whole probe to provide a greater interaction with the underground. If this operation is not performed properly, the complete system may not satisfy the required heat demand, even with a well dimensioned installation, wasting the value of the entire carried out work. This paper offers to a wide group of professional actors a possible ultrasonic method of a draft and economically sustainable investigation for the identification of defects that could be present in the cementation realized inside a geothermal probe, but also in the realization of sonic piles. The instrument used for this type of test (TUC - Test Ultrasonic Cementation) has been designed and tested by the technicians of AG3, a Spin Off Company of Torino University, in collaboration with 3DM Electric and PASI companies, then subjected to patenting procedure (Patent Pending TO2011A000036). The main innovative feature of this approach has been the miniaturization of the equipment, able to investigate the geothermal probes with U-tubes with standard dimension (the maximum overall dimensions of the instruments detectors is 26 mm), maintaining a sampling rate appropriate to investigate the cementation and the early centimetres of the surrounding soil. The processing of the recorded data was performed by a dedicated Matlab software. In the first part of the article is presented the calibration process, that it was carried out through ad hoc creation of two situations likely to be investigated, while in the second part the paper reports the results obtained by the application of the TUC method to real case studies.

  10. Evaluation of turbo-Brayton cycle for cooling current leads: Integrated current lead/heat exchanger

    NASA Astrophysics Data System (ADS)

    Bromberg, L.; Michael, Philip; Minervini, J. V.; Dietz, Anthony

    2012-06-01

    In this paper we investigate the optimization of turbo-Brayton cycles for cooling current leads. Simple models of single stage conduction-cooled current leads, two-stage conduction cooled current lead and two stage conduction-cooled current leads coupled with a single stage and a double stage turbo-Brayton cycle have been used to provide understanding about the issues and the tradeoffs. In addition, we discuss the possibility of using the heat exchanger in the turbo-Brayton system as the current lead.

  11. Cascade heat recovery with coproduct gas production

    DOEpatents

    Brown, W.R.; Cassano, A.A.; Dunbobbin, B.R.; Rao, P.; Erickson, D.C.

    1986-10-14

    A process for the integration of a chemical absorption separation of oxygen and nitrogen from air with a combustion process is set forth wherein excess temperature availability from the combustion process is more effectively utilized to desorb oxygen product from the absorbent and then the sensible heat and absorption reaction heat is further utilized to produce a high temperature process stream. The oxygen may be utilized to enrich the combustion process wherein the high temperature heat for desorption is conducted in a heat exchange preferably performed with a pressure differential of less than 10 atmospheres which provides considerable flexibility in the heat exchange. 4 figs.

  12. Methane heat transfer investigation

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Future high chamber pressure LOX/hydrocarbon booster engines require copper base alloy main combustion chamber coolant channels similar to the SSME to provide adequate cooling and reusable engine life. Therefore, it is of vital importance to evaluate the heat transfer characteristics and coking thresholds for LNG (94% methane) cooling, with a copper base alloy material adjacent to he fuel coolant. High pressure methane cooling and coking characteristics recently evaluated at Rocketdyne using stainless steel heated tubes at methane bulk temperatures and coolant wall temperatures typical of advanced engine operation except at lower heat fluxes as limited by the tube material. As expected, there was no coking observed. However, coking evaluations need be conducted with a copper base surface exposed to the methane coolant at higher heat fluxes approaching those of future high chamber pressure engines.

  13. Liquid Phase Heating Systems 

    E-print Network

    Mordt, E. H.

    1979-01-01

    Temperature Water (HTW) central district heating systems are far superior to steam systems in large, spread out installations such as airports, universities and office complexes. Water, pressurized to keep it in the liquid state, is distributed at 400o...

  14. Light vs. Heat Bulbs

    NSDL National Science Digital Library

    Office of Educational Partnerships,

    Students measure the light output and temperature (as a measure of heat output) for three types of light bulbs to identify why some light bulbs are more efficient (more light with less energy) than others.

  15. Advanced heat pump cycle

    SciTech Connect

    Groll, E.A.; Radermacher, R.

    1993-07-01

    The desorption and absorption process of a vapor compression heat pump with a solution circuit (VCHSC) proceeds at gliding temperature intervals, which can be adjusted over a wide range. In case that the gliding temperature intervals in the desorber and the absorber overlap, a modification of the VCHSC employing a desorber/absorber heat exchange (DAHX) can be introduced, which results in an extreme reduction of the pressure ratio. Although the DAHX-cycle has features of a two-stage cycle, it still requires only one solution pump, one separator and one compressor. Such a cycle for the working pair ammonia/water is built in the Energy Laboratory of the Center for Environmental Energy Engineering at the University of Maryland. The experimental results obtained with the research plant are discussed and compared to those calculated with a simulation program. The possible temperature lift between heat source and heat sink depending on the achievable COP are presented.

  16. Mechanical Compression Heat Pumps 

    E-print Network

    Apaloo, T. L.; Kawamura, K.; Matsuda, J.

    1986-01-01

    to develop, design and test compressors built to meet the needs of the mechanically demanding industrial heat pump applications which often require high compression ratios and temperatures in excess of 200 degrees F. This paper will review the theoretical...

  17. Heat leak measurements facility

    SciTech Connect

    Gonczy, J.D.; Kuchnir, M.; Nicol, T.H.; Niemann, R.C.; Powers, R.J.

    1985-09-01

    Heat leak measurements of superconducting magnet suspension systems, and multilayer insulation (MLI) systems are important for the optimum design of magnet cryostats. For this purpose, a cryogenic test facility was developed having a versatile functional end in which test components of differing geometrical configurations can be installed and evaluated. This paper details the test facility design and operating parameters. Experimental results of heat leak measurements to 4.5 K obtained on a post type support system having heat intercepts at 10 K and 80 K are presented. Included are measurements obtained while operating the 10 K intercept at temperatures above 10 K, i.e., in the 10-40 K range. Also reported is a description of the test facility conversion for a heat load study of several MLI systems with variations of MLI installation technique. The results of the first MLI system tested are presented.

  18. Heat Treatment Assistant Professor

    E-print Network

    Cambridge, University of

    growth. Heat treatment of aluminum, copper, magnesium, titanium and nickel alloys. Temper designations working, non-uniform cooling from high temperature during casting and welding (stress relief annealing) 6

  19. Heating steels in vacuum

    SciTech Connect

    Marmer, E.N.

    1983-03-01

    It is recommended that high-strength and corrosion-resistant steels be heated in an electric vacuum furnace. Absence of oxidation and decarburization, decrease in the deformation of the part, increase in service life, plus safety, and nontoxicity in the shop, are cited as advantages. Annealing, carburizing, hardening, brazing, and sintering--all detailed-can be more efficiently accomplished in vacuum heating. As vacuum heating requires certain surface conditions, the compositions of residual mediums is studied. The microrelief and surface finish obtained after vacuum heating is determined. Annealing in a vacuum is compared to annealing in air, a depletion in manganese indicating a greater savings by use of vacuum. Ductility is also tested. The gas of special purity nitrogen is recommended for best results. In general, then, use of electric vacuum furnaces is recommended.

  20. Investment casting heat transfer

    NSDL National Science Digital Library

    Powell, Adam C., IV

    2004-12-15

    Calculate temperature profile and Biot number in mixed conduction and convection/radiation heat transfer from liquid metal through a ceramic mold to the environment, and suggest a design change to reduce the probability of shattering due to thermal stress.

  1. Methane heat transfer investigation

    NASA Technical Reports Server (NTRS)

    Cook, R. T.

    1984-01-01

    Future high chamber pressure LOX/hydrocarbon booster engines require copper-base alloy main combustion chamber coolant channels similar to the SSME to provide adequate cooling and resuable engine life. Therefore, it is of vital importance to evaluate the heat transfer characteristics and coking thresholds for LNG (94% methane) cooling, with a copper-base alloy material adjacent to the fuel coolant. High-pressure methane cooling and coking characteristics were recently evaluated using stainless-steel heated tubes at methane bulk temperatures and coolant wall temperatures typical of advanced engine operation except at lower heat fluxes as limited by the tube material. As expected, there was no coking observed. However, coking evaluations need be conducted with a copper-base surface exposed to the methane coolant at higher heat fluxes approaching those of future high chamber pressure engines.

  2. Opportunity's Heat Shield Scene

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This image from NASA's Mars Exploration Rover Opportunity reveals the scene of the rover's heat shield impact. In this view, Opportunity is approximately 130 meters (427 feet) away from the device that protected it while hurtling through the martian atmosphere.

    The rover spent 36 sols investigating how the severe heating during entry through the atmosphere affected the heat shield. The most obvious is the fact that the heat shield inverted upon impact.

    This is the panoramic camera team's best current attempt at generating a true-color view of what this scene would look like if viewed by a human on Mars. It was generated from a mathematical combination of six calibrated, left-eye panoramic camera images acquired around 1:50 p.m. local solar time on Opportunity's sol 322 (Dec. 19, 2004) using filters ranging in wavelengths from 430 to 750 nanometers.

  3. Hurricanes as Heat Engines

    NSDL National Science Digital Library

    My NASA Data

    In this activity, students examine the effects of hurricanes on sea surface temperature using NASA data. They examine authentic sea surface temperature data to explore how hurricanes extract heat energy from the ocean surface.

  4. Heat conduction in heterogeneous materials

    Microsoft Academic Search

    J. Baker-Jarvis; R. Inguva

    1985-01-01

    A new solution to the heat equation in composite media is derived using a variational principle developed by Ben-Amoz. The model microstructure is fed into the equations via a term for the polar moment of the inclusions in a representative volume. The general solution is presented as an integral in terms of sources and a Green function. The problem of

  5. Homogenization heat treating cast microstructure

    NSDL National Science Digital Library

    Krane, Matthew J. M.

    2008-10-25

    Cast microstructures have variations in composition on the length scale of dendrites and homogenization heat treatments are performed to smooth out these variations. This problem is an integral analysis of the 1D diffusion mass transfer in this problem. The results using two different assumed profiles are compared.

  6. Solar heat transport fluid

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The progress made on the development and delivery of noncorrosive fluid subsystems is reported. These subsystems are to be compatible with closed-loop solar heating or combined heating and hot water systems. They are also to be compatible with both metallic and non-metallic plumbing systems. At least 100 gallons of each type of fluid recommended by the contractor will be delivered under the contract. The performance testing of a number of fluids is described.

  7. Microtube strip heat exchanger

    NASA Astrophysics Data System (ADS)

    Doty, F. D.

    1990-12-01

    Doty Scientific (DSI) believes their microtube-strip heat exchanger will contribute significantly to the following: (1) the closed Brayton cycles being pursued at MIT, NASA, and elsewhere; (2) reverse Brayton cycle cryocoolers, currently being investigated by NASA for space missions, being applied to MRI superconducting magnets; and (3) high-efficiency cryogenic gas separation schemes for CO2 removal from exhaust stacks. The goal of this current study is to show the potential for substantial progress in high-effectiveness, low-cost, gas-to-gas heat exchangers for diverse applications at temperatures from below 100 K to above 1000 K. To date, the highest effectiveness measured is about 98 percent and relative pressure drops below 0.1 percent with a specific conductance of about 45 W/kgK are reported. During the pre-award period DSI built and tested a 3-module heat exchanger bank using 103-tube microtube strip (MTS) modules. To add to their analytical capabilities, DSI has acquired computational fluid dynamics (CFD) software. This report describes the pre-award work and the status of the ten tasks of the current project, which are: analyze flow distribution and thermal stresses within individual modules; design a heat exchanger bank of ten modules with 400 microtube per module; obtain production quality tubestrip die and AISI 304 tubestrips; obtain production quality microtubing; construct revised MTS heat exchanger; construct dies and fixtures for prototype heat exchanger; construct 100 MTS modules; assemble 8 to 10 prototype MTS heat exchangers; test prototype MTS heat exchanger; and verify test through independent means.

  8. Microtube Strip Heat Exchanger

    SciTech Connect

    Doty, F.D.

    1990-12-27

    Doty Scientific (DSI) believes their Microtube-Strip Heat Exchanger will contribute significantly to (a) the closed Brayton cycles being pursued at MIT, NASA, and elsewhere; (b) reverse Brayton cycle cryocoolers, currently being investigated by NASA for space missions, being applied to MRI superconducting magnets; and (c) high-efficiency cryogenic gas separation schemes for CO{sub 2} removal from exhaust stacks. The goal of this current study is to show the potential for substantial progress in high-effectiveness, low-cost, gas-to-gas heat exchangers for diverse applications at temperatures from below 100 K to above 1000 K. To date, the highest effectiveness measured is about 98%, and relative pressure drops below 0.1% with a specific conductance of about 45 W/kgK are reported. During the pre-award period DSI built and tested a 3-module heat exchanger bank using 103-tube microtube strip (MTS) modules. To add to their analytical capabilities, DSI has acquired computational fluid dynamics (CFD) software. This report describes the pre-award work and the status of the ten tasks of the current project, which are: analyze flow distribution and thermal stresses within individual modules; design a heat exchanger bank of ten modules with 400 microtube per module; obtain production quality tubestrip die and AISI 304 tubestrips; obtain production quality microtubing; construct revised MTS heat exchanger; construct dies and fixtures for prototype heat exchanger; construct 100 MTS modules; assemble 8-10 prototype MTS heat exchangers; test prototype MTS heat exchanger; and verify test through independent means. 7 refs., 9 figs. 1 tab. (CK)

  9. Freezable heat pipe

    DOEpatents

    Ernst, Donald M. (Leola, PA); Sanzi, James L. (Lancaster, PA)

    1981-02-03

    A heat pipe whose fluid can be repeatedly frozen and thawed without damage to the casing. An additional part is added to a conventional heat pipe. This addition is a simple porous structure, such as a cylinder, self-supporting and free standing, which is dimensioned with its diameter not spanning the inside transverse dimension of the casing, and with its length surpassing the depth of maximum liquid.

  10. Computational heat transfer

    NASA Astrophysics Data System (ADS)

    Jaluria, Yogesh; Torrance, Kenneth E.

    Numerical approaches to heat-transfer problems are examined in an introductory text for senior and graduate engineering students. The emphasis is on the application of physical criteria in selecting the computational method. Chapters are devoted to the mathematics of the governing equations, finite differences, and finite elements; the simulation of transport processes; numerical methods for convective and radiative heat transfer; and combined modes and process applications. Graphs, diagrams, flow charts, problems, tables of material parameters, and sample computer programs are provided.

  11. Microchannel heat exchanger optimization

    Microsoft Academic Search

    G. M. Harpole; J. E. Eninger

    1991-01-01

    A complete two-dimensional flow\\/thermal model of the micro-channel cooler is developed. Optimization of the design parameters with this model is demonstrated for the case of a 1 kW\\/cm2 heat flux with the top surface at 25°C. For this case, pure water could be used as the coolant, or 92% water\\/8% methanol (-5°C freezing point) if the heat is to be

  12. Heat Switches for ADRs

    NASA Technical Reports Server (NTRS)

    DiPirro, M. J.; Shirron, P. J.

    2014-01-01

    Heat switches are key elements in the cyclic operation of Adiabatic Demagnetization Refrigerators (ADRs). Several of the types of heat switches that have been used for ADRs are described in this paper. Key elements in selection and design of these switches include not only ON/OFF switching ratio, but also method of actuation, size, weight, and structural soundness. Some of the trade-off are detailed in this paper.

  13. Externally heated thermal battery

    Microsoft Academic Search

    Louis Pracchia; Ronald F. Vetter; Darwin Rosenlof

    1991-01-01

    A thermal battery activated by external heat comprising an anode (e.g., composed of a lithium-aluminum alloy), a cathode (e.g., composed of iron disulfide), and an electrolyte (e.g., a lithium chloride-potassium chloride eutectic) with the electrolyte inactive at ambient temperature but activated by melting at a predetermined temperature when exposed to external heating is presented. The battery can be used as

  14. Geo-heat center

    SciTech Connect

    Lienau, P.J.; Fornes, A.O.

    1983-01-01

    A summary is presented of the Geo-Heat Center from its origin in 1974. The GHC has been involved in a number of studies and projects. A few of these are: construction of a greenhouse based on geothermal applications, an aquaculture project raising freshwater Malaysian prawns, an investigation of ground water characteristics and corrosion problems associated with the use of geothermal waters, and the assessment of the potential utilization of direct-heat applications of geothermal energy for an agribusiness.

  15. Hurricanes as Heat Engines

    NSDL National Science Digital Library

    Susan Byrne

    2000-05-03

    As water vapor evaporates from the warm ocean surface, it is forced upward in the convective clouds that surround the eyewall and rainband regions of a storm. As the water vapor cools and condenses from a gas back to a liquid state, it releases latent heat. The release of latent heat warms the surrounding air, making it lighter and thus promoting more vigorous cloud development.

  16. Protuberance heating test program

    NASA Technical Reports Server (NTRS)

    Sieker, W. D.

    1966-01-01

    Results are presented of the protuberance heating test program. Four general protuberance shapes on a flat plate were tested. Presentation and evaluation of the data both on the protuberance and in the wake regions are made. The test program is an extension of the general protuberance heat transfer test. The additional series of tests was conducted to define the extent of wake heating and to assess the effects of Reynolds number variation on heating both on and around the protuberances. The protuberance models were mounted near the forward end of a six-foot instrumented test plate with stringers that simulated interstage and skirt structure of the Saturn S-4B stage. The tests were performed at Mach numbers of 2.49, 3.51, and 4.44. Reynolds numbers per foot of 3 million and 1.5 million were used for the two lower Mach numbers and 3 million for a Mach number of 4.44. The test Mach numbers simulated the Saturn S-4B flight conditions during the most severe aerodynamic heating period. The test Reynolds numbers were somewhat higher than the flight values, but lower values could not be used because of tunnel and instrumentation limitations. Oil flow runs were made on two representative models at various combinations of Mach number and Reynolds number to help define the extent of wake heating.

  17. Intrinsically irreversible heat engine

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-01-01

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

  18. Intrinsically irreversible heat engine

    DOEpatents

    Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

    1984-01-01

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. the second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

  19. Chimney heat exchanger

    SciTech Connect

    Whiteley, I.C.

    1981-09-01

    A heat exchanger for installation on the top of a chimney of a building includes a housing having a lower end receiving the top of the chimney and an upper end with openings permitting the escape of effluent from the chimney and a heat exchanger assembly disposed in the housing including a central chamber and a spirally arranged duct network defining an effluent spiral path between the top of the chimney and the central chamber and a fresh air spiral path between an inlet disposed at the lower end of the housing and the central chamber, the effluent and fresh air spiral paths being in heat exchange relationship such that air passing through the fresh air spiral path is heated by hot effluent gases passing upward through the chimney and the effluent spiral path for use in heating the building. A pollution trap can be disposed in the central chamber of the heat exchanger assembly for removing pollutants from the effluent, the pollution trap including a rotating cage carrying pumice stones for absorbing pollutants from the effluent with the surface of the pumice gradually ground off to reveal fresh stone as the cage rotates.

  20. Performance Analysis of a Thermoelectric Solar Collector Integrated with a Heat Pump

    NASA Astrophysics Data System (ADS)

    Lertsatitthanakorn, C.; Jamradloedluk, J.; Rungsiyopas, M.; Therdyothin, A.; Soponronnarit, S.

    2013-07-01

    A novel heat pump system is proposed. A thermoelectric solar collector was coupled to a solar-assisted heat pump (TESC-HP) to work as an evaporator. The cooling effect of the system's refrigerant allowed the cold side of the system's thermoelectric modules to work at lower temperature, improving the conversion efficiency. The TESC-HP system mainly consisted of transparent glass, an air gap, an absorber plate that acted as a direct expansion-type collector/evaporator, an R-134a piston-type hermetic compressor, a water-cooled plate-type condenser, thermoelectric modules, and a water storage tank. Test results indicated that the TESC-HP has better coefficient of performance (COP) and conversion efficiency than the separate units. For the meteorological conditions in Mahasarakham, the COP of the TESC-HP system can reach 5.48 when the average temperature of 100 L of water is increased from 28°C to 40°C in 60 min with average ambient temperature of 32.5°C and average solar intensity of 815 W/m2, whereas the conversion efficiency of the TE power generator was around 2.03%.

  1. The use of refuse heat assisted by heat transformers

    NASA Astrophysics Data System (ADS)

    Mostofizadeh, C.

    1980-08-01

    The principle of heat transformation from lower temperatures to higher temperatures is investigated. The heat transformer works like an absorption refrigerator and can increase the temperature by 30 K. A testing plant was set up, and measurements show the utility of heat transformers. The construction and mode of operation of the heat transformer are described.

  2. Heat transfer in SiC compact heat exchanger

    Microsoft Academic Search

    Y. Takeuchi; K. Noborio; Y. Yamamoto; S. Konishi

    2010-01-01

    For development of a compact SiC heat exchanger, numerical heat transfer analysis was conducted to investigate its performance for a wide range of thermal media, liquid LiPb and helium gas, flow rates. The numerical model used was based on the heat exchanger test module developed by the authors. Within the authors’ experimental range, the heat quantity transferred from high temperature

  3. Heat source and heating load operation optimization control technology

    Microsoft Academic Search

    Tao Ji; Shuying Zeng; Kun Liu; Changming Li; Ying Sun

    2011-01-01

    A heat source and heating load energy-saving operation optimization control system, which is suitable for boiler straightly providing type heating system is developed. Studied the relationship of flow and heat load in the quality - flow adjusting process and illustrated with piping supply and return water temperature function expression corresponding to the flow optimization coefficient. According to the outdoor temperature

  4. Solar air heating system for combined DHW and space heating

    E-print Network

    Solar air heating system for combined DHW and space heating solar air collector PV-panel fannon-return valve DHW tank mantle cold waterhot water roof Solar Energy Centre Denmark Danish Technological Institute SEC-R-29 #12;Solar air heating system for combined DHW and space heating Søren Østergaard Jensen

  5. Heat Transfer Derivation of differential equations for heat transfer conduction

    E-print Network

    Veress, Alexander

    Heat Transfer Derivation of differential equations for heat transfer conduction without convection/(hftF). T is the temperature, in C or F. dT=dx is the temperature gradient, in C/m or F/ft. This equation states that the heat sign in the above equation states heat flow is positive in the direction opposite the direction

  6. Heat exchanger device and method for heat removal or transfer

    DOEpatents

    Koplow, Jeffrey P

    2013-12-10

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  7. Heat transfer mechanisms in thin film with laser heat source

    Microsoft Academic Search

    Shuichi Torii; Wen-Jei Yang

    2005-01-01

    The present study deals with the effect of laser radiation on the propagation phenomenon of a thermal wave in a very thin film subjected to a symmetrical heating on both sides. Pulsating laser heating is modelled as an internal heat source with various time characteristics. The Cattaneo heat flux law together with the energy conservation equation is solved by a

  8. Heat and liquid recovery using open cycle heat pump system

    Microsoft Academic Search

    Fox

    1985-01-01

    The present invention relates to the recovery of heat and\\/or condensable liquid from a gaseous environment utilizing an open cycle heat pump system. The open cycle heat pump system is employed to alter the temperature of a gas by compression, expansion, heat exchange, and combinations thereof, to condense selected vapors carried in the gaseous environment for removal from the gas.

  9. Heat and liquid recovery using open cycle heat pump system

    Microsoft Academic Search

    Fox

    1981-01-01

    The present invention relates to the recovery of heat and\\/or condensable liquid from a gaseous environment utilizing an open cycle heat pump system. The open cycle heat pump system is employed to alter the temperature of a gas by compression, expansion, heat exchange, and combinations thereof, to condense selected vapors carried in the gaseous environment for removal from the gas.

  10. Sulfur heat pipes for 600 K space heat rejection systems

    Microsoft Academic Search

    John H. Rosenfeld; G. Yale Eastman; James E. Lindemuth

    1992-01-01

    A preliminary investigation was performed to study the use of sulfur heat pipes in a lightweight space radiator for waste heat rejection at 600 K. Several space power concepts have a need for heat rejection at 600 K. Heat pipes have been shown in previous studies to be useful in reducing the mass of radiators; however, few high-performance, lightweight working

  11. Heat pipe design for space power heat rejection applications

    Microsoft Academic Search

    M. A. Merrigan

    1986-01-01

    Heat pipe radiators represent the current state-of-the-art in heat rejection systems for space power applications. Design trends in high temperature systems are to higher power applications with necessarily larger radiators. In these systems the usable length of radiation loaded heat pipe elements and the temperature distribution for long heat pipe elements are both of concern. The work reported herein is

  12. Cross-Beam Energy Transfer (CBET) Effect with Additional Ion Heating Integrated into the 2-D Hydrodynamics Code DRACO

    NASA Astrophysics Data System (ADS)

    Marozas, J. A.; Collins, T. J. B.

    2012-10-01

    The cross-beam energy transfer (CBET) effect causes pump and probe beams to exchange energy via stimulated Brillouin scattering.footnotetext W. L. Kruer, The Physics of Laser--Plasma Interactions, Frontiers in Physics, Vol. 73, edited by D. Pines (Addison-Wesley, Redwood City, CA, 1988), p. 45. The total energy gained does not, in general, equate to the total energy lost; the ion-acoustic wave comprises the residual energy balance, which can decay, resulting in ion heating.footnotetext E. A. Williams et al., Phys. Plasmas 11, 231 (2004). The additional ion heating can retune the conditions for CBET affecting the overall energy transfer as a function of time. CBET and the additional ion heating are incorporated into the 2-D hydrodynamics code DRACOfootnotetext P. B. Radha et al., Phys. Plasmas 12, 056307 (2005). as an integral part of the 3-D ray trace where CBET is treated self-consistently within on the hydrodynamic evolution. DRACO simulation results employing CBET will be discussed. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-08NA28302.

  13. Solar test of an integrated sodium reflux heat-pipe receiver/reactor for thermochemical energy transport

    SciTech Connect

    Diver, R.B.; Fish, J.D.; Levitan, R.; Levy, M.; Rosin, H.; Richardson, J.T.

    1988-01-01

    In October 1987, a chemical reactor integrated into a sodium reflux heat-pipe receiver was tested in the solar furnace at the Weizmann Institute of Science, Rehovot, Israel. The reaction carried out was the carbon dioxide reforming of methane. This reaction is one of the leading candidates for thermochemical energy transport either within a distributed solar receiver system or over long distances. The Schaeffer Solar Furnace consists of a 96 square meter heliostat and a 7.3 meter diameter dish concentrator with a 65-degree rim angle and a 3.5 meter focal length. Measurements have shown a peak concentration ratio of over 10,000 and a total power of 15 kW at an insolation of 800 w/square meter. The receiver/reactor contains seven catalyst-filled tubes inside an evacuated metal box containing sodium. The front surface of this box serves as the solar absorber of the receiver. In operation, concentrated sunlight heats the 1/8-inch Inconel plate and vaporizes sodium from the wire-mesh wick attached to the back of it. The sodium vapor condenses on the reactor tubes, releases its latent heat, and returns by gravity to the wick. Test results and areas for future development are discussed.

  14. Heat transfer with phase change in plate-fin heat exchangers

    NASA Astrophysics Data System (ADS)

    Panchal, C. B.

    1984-08-01

    A theoretical and experimental study was conducted for convective evaporation and condensation in plate-fin compact heat exchangers. The overall performance of a brazed-aluminum heat exchanger in the evaporation mode with ammonia and in the condensation mode with both ammonia and refrigerant R-22 as working fluids. The heat exchanger has straight perforated fins on the working-fluid side and extruded rectangular channels on the single-phase (water) side. The two-phase flow in narrow channels of the heat exchanger is modeled using a triangular relationship between pressure gradient, liquid film flow rate, and film thickness. The overall performance of the heat exchanger is calculated by employing local heat-transfer analysis and integrating mass- and heat-balance equations along the heat-exchanger length. Theoretical predictions are found to agree favorably with experimental results for a prototypical heat exchanger unit.

  15. Heating system with vapour compressor heat pump and vertical U-tube ground heat exchanger

    NASA Astrophysics Data System (ADS)

    Hanuszkiewicz-Drapa?a, Ma?gorzata; Sk?adzie?, Jan

    2010-10-01

    In the paper a heating system with a vapour compressor heat pump and vertical U-tube ground heat exchanger for small residential house is considered. A mathematical model of the system: heated object - vapour compressor heat pump - ground heat exchanger is presented shortly. The system investigated is equipped, apart from the heat pump, with the additional conventional source of heat. The processes taking place in the analyzed system are of unsteady character. The model consists of three elements; the first containing the calculation model of the space to be heated, the second - the vertical U-tube ground heat exchanger with the adjoining area of the ground. The equations for the elements of vapour compressor heat pump form the third element of the general model. The period of one heating season is taken into consideration. The results of calculations for two variants of the ground heat exchanger are presented and compared. These results concern variable in time parameters at particular points of the system and energy consumption during the heating season. This paper presents the mutual influence of the ground heat exchanger subsystem, elements of vapour compressor heat pump and heated space.

  16. High-temperature heating array

    NASA Technical Reports Server (NTRS)

    Christensen, H. E.; Cox, B. G.

    1976-01-01

    Heating array for thermally conditioning reusable surface insulation panels of thermal protection systems is capable of heating samples to 2500 F at pressures ranging from 0.5 to 760 torr. System uses low cost, easily replaceable graphite heating elements, which give more uniform heating than quartz lamps.

  17. Water chemistry of heating networks

    Microsoft Academic Search

    M. K. Bogatyreva; N. I. Serebryannikov; T. K. Margulova; O. I. Martynova

    1979-01-01

    The reliability and efficiency of district heating equipment are inseparably connected with the water chemistry of the heating networks. Losses of water in the heating networks are made up by makeup water the quality of which must meet certain demands. In selecting the system of water treatment of makeup water for the heating networks one must take into account both

  18. Heat simulation via Scilab programming

    NASA Astrophysics Data System (ADS)

    Hasan, Mohammad Khatim; Sulaiman, Jumat; Karim, Samsul Arifin Abdul

    2014-07-01

    This paper discussed the used of an open source sofware called Scilab to develop a heat simulator. In this paper, heat equation was used to simulate heat behavior in an object. The simulator was developed using finite difference method. Numerical experiment output show that Scilab can produce a good heat behavior simulation with marvellous visual output with only developing simple computer code.

  19. Modular solar powered heat pump

    Microsoft Academic Search

    1980-01-01

    Disclosed is a solar powered heat pump useful for both heating and cooling building space and for providing refrigeration. The device operates on a chemical effect (adsorption) intermittent heat pump cycle in which the moderately high temperature heat generated by insolation is used to drive the desorber. The device has inherent thermal storage, can be factory built, sealed, and tested,

  20. Short duration heat transfer measurements

    Microsoft Academic Search

    T. Arts; C. Camci

    1985-01-01

    Shock tunnels, blowdown cascades, and isentropic light piston compression tubes used to study heat transfer and aerodynamic phenomena in turbine components are described. Thin film heat transfer gages, calorimeter gages, and optical measurements methods are presented. Compression tube investigations of convective heat transfer on a flat plate, with and without film cooling; and convective heat transfer on a high pressure

  1. Flat-plate heat pipe

    NASA Technical Reports Server (NTRS)

    Marcus, B. D.; Fleischman, G. L. (inventors)

    1977-01-01

    Flat plate (vapor chamber) heat pipes were made by enclosing metal wicking between two capillary grooved flat panels. These heat pipes provide a unique configuration and have good capacity and conductance capabilities in zero gravity. When these flat plate vapor chamber heat pipes are heated or cooled, the surfaces are essentially isothermal, varying only 3 to 5 C over the panel surface.

  2. Industrial heat pump assessment study

    Microsoft Academic Search

    R. N. Chappell; S. J. Priebe; G. L. Wilfert

    1989-01-01

    This report summarizes preliminary studies that assess the potential of industrial heat pumps for reduction of process heating requirements in industries receiving power from the Bonneville Power Administration (BPA). This project was initiated at the request of BPA to determine the potential of industrial heat pumps in BPA's service area. Working from known heat pump principles and from a list

  3. Heat Recovery from Coal Gasifiers 

    E-print Network

    Wen, H.; Lou, S. C.

    1981-01-01

    is presented. Steam generated from the waste heat boiler is used to drive steam turbines for power generation or air compressors for the oxygen plant. Low level heat recovered by process heat exchangers is used to heat product gas or support the energy...

  4. Shuttle reentry aerodynamic heating test

    NASA Technical Reports Server (NTRS)

    Pond, J. E.; Mccormick, P. O.; Smith, S. D.

    1971-01-01

    The research for determining the space shuttle aerothermal environment is reported. Brief summaries of the low Reynolds number windward side heating test, and the base and leeward heating and high Reynolds number heating test are included. Also discussed are streamline divergence and the resulting effect on aerodynamic heating, and a thermal analyzer program that is used in the Thermal Environment Optimization Program.

  5. Heat pipe cooling for scramjet engines

    NASA Technical Reports Server (NTRS)

    Silverstein, Calvin C.

    1986-01-01

    Liquid metal heat pipe cooling systems have been investigated for the combustor liner and engine inlet leading edges of scramjet engines for a missile application. The combustor liner is cooled by a lithium-TZM molybdenum annular heat pipe, which incorporates a separate lithium reservoir. Heat is initially absorbed by the sensible thermal capacity of the heat pipe and liner, and subsequently by the vaporization and discharge of lithium to the atmosphere. The combustor liner temperature is maintained at 3400 F or less during steady-state cruise. The engine inlet leading edge is fabricated as a sodium-superalloy heat pipe. Cooling is accomplished by radiation of heat from the aft surface of the leading edge to the atmosphere. The leading edge temperature is limited to 1700 F or less. It is concluded that heat pipe cooling is a viable method for limiting scramjet combustor liner and engine inlet temperatures to levels at which structural integrity is greatly enhanced.

  6. A ground-coupled storage heat pump system with waste heat recovery

    Microsoft Academic Search

    D. C. Drown; K. R. D. Braven; T. P. Kast

    1992-01-01

    This paper reports on an experimental single-family residence that was constructed to demonstrate integration of waste heat recovery and seasonal energy storage using both a ventilating and a ground-coupled heat pump. Called the Idaho energy Conservation Technology House, it combines superinsulated home construction with a ventilating hot water heater and a ground coupled water-to-water heat pump system. The ground heat

  7. Heat-shock protein A8 restores sperm membrane integrity by increasing plasma membrane fluidity.

    PubMed

    Moein-Vaziri, Najmeh; Phillips, Ian; Smith, Simon; Almi?ana, Carmen; Maside, Carolina; Gil, Maria A; Roca, Jordi; Martinez, Emilio A; Holt, William V; Pockley, A Graham; Fazeli, Alireza

    2014-05-01

    The constitutive 70? kDa heat-shock protein, HSPA8, has previously been shown to contribute to the long-term survival of spermatozoa inside the mammalian female reproductive tract. Here, we show that a recombinant form of HSPA8 rapidly promotes the viability of uncapacitated spermatozoa, the ability of spermatozoa to bind to oviductal epithelial cells, enhances IVF performance, and decreases sperm mitochondrial activity. Fluorescence recovery after photobleaching revealed that the repair of membrane damage is achieved by an almost instantaneous increase in sperm membrane fluidity. The ability of HSPA8 to influence membrane stability and fluidity, as well as its conserved nature among mammalian species, supports the idea that this protein protects sperm survival through membrane repair mechanisms. Free Persian abstract A Persian translation of the abstract is freely available online at http://www.reproduction-online.org/content/147/5/719/suppl/DC1. PMID:24501193

  8. Rotary Joint for Heat Transfer

    NASA Technical Reports Server (NTRS)

    Shauback, R.

    1986-01-01

    Rotary joint exchanges heat between two heat pipes - one rotating and one stationary. Joint accommodates varying heat loads with little temperature drop across interface. According to concept, heat pipe enters center of disklike stationary section of joint. There, wicks in central artery of heat pipe separate into multiple strands that lead to concentric channels on rotaryinterface side of stationary disk. Thin layer of liquid sodium/potassium alloy carries heat from one member of rotary joint to other. Liquid conducts heat efficiently while permitting relative motion between members. Polypropylene rings contain liquid without interfering with rotation.

  9. Overshooting by differential heating

    NASA Astrophysics Data System (ADS)

    Andrássy, R.; Spruit, H. C.

    2015-06-01

    On the long nuclear time scale of stellar main-sequence evolution, even weak mixing processes can become relevant for redistributing chemical species in a star. We investigate a process of "differential heating", which occurs when a temperature fluctuation propagates by radiative diffusion from the boundary of a convection zone into the adjacent radiative zone. The resulting perturbation of the hydrostatic equilibrium causes a flow that extends some distance from the convection zone. We study a simplified differential-heating problem with a static temperature fluctuation imposed on a solid boundary. The astrophysically relevant limit of a high Reynolds number and a low Péclet number (high thermal diffusivity) turns out to be interestingly non-intuitive. We derive a set of scaling relations for the stationary differential heating flow. A numerical method adapted to a high dynamic range in flow amplitude needed to detect weak flows is presented. Our two-dimensional simulations show that the flow reaches a stationary state and confirm the analytic scaling relations. These imply that the flow speed drops abruptly to a negligible value at a finite height above the source of heating. We approximate the mixing rate due to the differential heating flow in a star by a height-dependent diffusion coefficient and show that this mixing extends about 4% of the pressure scale height above the convective core of a 10 M? zero-age main sequence star. Appendix A is available in electronic form at http://www.aanda.org

  10. Heat sensitive immunoliposomes

    SciTech Connect

    Sullivan, S.M.

    1985-01-01

    Heat sensitive immunoliposomes were prepared with derivatized antibody. The liposomes are able to bind specifically to target cells and to release their encapsulated contents upon brief heating. Monoclonal anti-H2K/sup K/ was covalently derivatized with palmitoyl-N-hydroxysuccinimide. The palmitoyl antibody was injected at a controlled rate into a suspension of fused unilamellar dipalmitoylphosphati-dylcholine liposomes maintained at a constant temperature. Injection of palmitoyl antibody into a liposome suspension containing 50 mM carboxyfluorescein at 41/sup 0/C resulted in simultaneous antibody incorporation and entrapment of dye. The immunoliposomes were able to release entrapped dye upon heating. Furthermore, this ability was retained when the immunoliposomes were found to the target cells. /sup 3/H-Uridine was entrapped in the heat sensitive immunoliposomes to examine the cellular uptake properties of entrapped contents upon release. The release of uridine from bound heat sensitive immunoliposomes exhibited very similar properties to those obtained for carboxyfluorescein release. The rate of uridine uptake for immunoliposome released uridine was 5 fold greater than bare liposome released uridine and 10 fold greater than that obtained for free uridine. Nucleoside uptake inhibitors were able to inhibit uptake of free uridine and uridine released from immunoliposomes showing the release to be extracellular and uridine uptake was mediated by the nucleoside transporter. These results show that a high local concentration of nucleosides released from immunoliposomes bound to their respective target cell can enhance cellular uptake thus promoting efficient drug delivery.

  11. Optimal design of ground source heat pump system integrated with phase change cooling storage tank in an office building

    E-print Network

    Zhu, N.

    2014-01-01

    source heat pump; phase change cooling storage: optimal design; storage ratio 1 Introduction Geothermal energy is increasingly used through the ground source heat pump (GSHP) in many countries. GSHP provides an efficient and environment friendly way... design of the combined system, are listed below: (a) Wuhan is a cooling-dominated area with abundant geothermal energy. Ground source heat pump technology could use renewable energy and the phase change cooling storage technology could shifted peak...

  12. Heat distribution ceramic processing method

    DOEpatents

    Tiegs, Terry N. (Lenoir City, TN); Kiggans, Jr., James O. (Oak Ridge, TN)

    2001-01-01

    A multi-layered heat distributor system is provided for use in a microwave process. The multi-layered heat distributors includes a first inner layer of a high thermal conductivity heat distributor material, a middle insulating layer and an optional third insulating outer layer. The multi-layered heat distributor system is placed around the ceramic composition or article to be processed and located in a microwave heating system. Sufficient microwave energy is applied to provide a high density, unflawed ceramic product.

  13. Pressurized-Flat-Interface Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Voss, F. E.; Howell, H. R.; Winkler, R. V.

    1990-01-01

    High thermal conductance obtained without leakage between loops. Heat-exchanger interface enables efficient transfer of heat between two working fluids without allowing fluids to intermingle. Interface thin, flat, and easy to integrate into thermal system. Possible application in chemical or pharmaceutical manufacturing when even trace contamination of process stream with water or other coolant ruins product. Reduces costs when highly corrosive fluids must be cooled or heated.

  14. Artificial muscles on heat

    NASA Astrophysics Data System (ADS)

    McKay, Thomas G.; Shin, Dong Ki; Percy, Steven; Knight, Chris; McGarry, Scott; Anderson, Iain A.

    2014-03-01

    Many devices and processes produce low grade waste heat. Some of these include combustion engines, electrical circuits, biological processes and industrial processes. To harvest this heat energy thermoelectric devices, using the Seebeck effect, are commonly used. However, these devices have limitations in efficiency, and usable voltage. This paper investigates the viability of a Stirling engine coupled to an artificial muscle energy harvester to efficiently convert heat energy into electrical energy. The results present the testing of the prototype generator which produced 200 ?W when operating at 75°C. Pathways for improved performance are discussed which include optimising the electronic control of the artificial muscle, adjusting the mechanical properties of the artificial muscle to work optimally with the remainder of the system, good sealing, and tuning the resonance of the displacer to minimise the power required to drive it.

  15. Overshooting by differential heating

    E-print Network

    Andrássy, R

    2015-01-01

    On the long nuclear time scale of stellar main-sequence evolution, even weak mixing processes can become relevant for redistributing chemical species in a star. We investigate a process of "differential heating," which occurs when a temperature fluctuation propagates by radiative diffusion from the boundary of a convection zone into the adjacent radiative zone. The resulting perturbation of the hydrostatic equilibrium causes a flow that extends some distance from the convection zone. We study a simplified differential-heating problem with a static temperature fluctuation imposed on a solid boundary. The astrophysically relevant limit of a high Reynolds number and a low P\\'eclet number (high thermal diffusivity) turns out to be interestingly non-intuitive. We derive a set of scaling relations for the stationary differential heating flow. A numerical method adapted to a high dynamic range in flow amplitude needed to detect weak flows is presented. Our two-dimensional simulations show that the flow reaches a sta...

  16. Laser-heated thruster

    NASA Technical Reports Server (NTRS)

    Kemp, N. H.; Krech, R. H.

    1980-01-01

    The development of computer codes for the thrust chamber of a rocket of which the propellant gas is heated by a CW laser beam was investigated. The following results are presented: (1) simplified models of laser heated thrusters for approximate parametric studies and performance mapping; (3) computer programs for thrust chamber design; and (3) shock tube experiment to measure absorption coefficients. Two thrust chamber design programs are outlined: (1) for seeded hydrogen, with both low temperature and high temperature seeds, which absorbs the laser radiation continuously, starting at the inlet gas temperature; and (2) for hydrogen seeded with cesium, in which a laser supported combustion wave stands near the gas inlet, and heats the gas up to a temperature at which the gas can absorb the laser energy.

  17. Externally heated thermal battery

    NASA Astrophysics Data System (ADS)

    Pracchia, Louis; Vetter, Ronald F.; Rosenlof, Darwin

    1991-04-01

    A thermal battery activated by external heat comprising an anode (e.g., composed of a lithium-aluminum alloy), a cathode (e.g., composed of iron disulfide), and an electrolyte (e.g., a lithium chloride-potassium chloride eutectic) with the electrolyte inactive at ambient temperature but activated by melting at a predetermined temperature when exposed to external heating is presented. The battery can be used as a sensor or to ignite pyrotechnic and power electronic devices in a system for reducing the hazard of ordnance exposed to detrimental heating. A particular application is the use of the battery to activate a squib to function in conjunction with one or more other components to vent an ordnance case in order to prevent its explosion in a fire.

  18. Radiative heat transfer in porous uranium dioxide

    SciTech Connect

    Hayes, S.L. [Texas A and M Univ., College Station, TX (United States)] [Texas A and M Univ., College Station, TX (United States)

    1992-12-01

    Due to low thermal conductivity and high emissivity of UO{sub 2}, it has been suggested that radiative heat transfer may play a significant role in heat transfer through pores of UO{sub 2} fuel. This possibility was computationally investigated and contribution of radiative heat transfer within pores to overall heat transport in porous UO{sub 2} quantified. A repeating unit cell was developed to model approximately a porous UO{sub 2} fuel system, and the heat transfer through unit cells representing a wide variety of fuel conditions was calculated using a finite element computer program. Conduction through solid fuel matrix as wekk as pore gas, and radiative exchange at pore surface was incorporated. A variety of pore compositions were investigated: porosity, pore size, shape and orientation, temperature, and temperature gradient. Calculations were made in which pore surface radiation was both modeled and neglected. The difference between yielding the integral contribution of radiative heat transfer mechanism to overall heat transport. Results indicate that radiative component of heat transfer within pores is small for conditions representative of light water reactor fuel, typically less than 1% of total heat transport. It is much larger, however, for conditions present in liquid metal fast breeder reactor fuel; during restructuring of this fuel type early in life, the radiative heat transfer mode was shown to contribute as much as 10-20% of total heat transport in hottest regions of fuel.

  19. Heat flow in Oklahoma

    SciTech Connect

    Cranganu, C.; Deming, D. (Univ. of Oklahoma, Norman, OK (United States))

    1996-01-01

    Oklahoma is one area in which terrestrial heat flow data are sparse. The thermal state of the southern mid-continent, however, is a key to understanding several important geologic problems. These include thermal anomalies associated with Paleozoic fluid migrations and the formation of Mississippi Valley-type lead-zinc deposits, the thermal evolution of the Arkoma and Anadarko sedimentary basins, and the history of hydrocarbon generation and overpressuring in the Anadarko Basin. In the late 1920s, the American Petroleum Institute made a set of equilibrium temperature logs in idle oil wells. These temperature data are generally regarded as being high quality, accurate estimates of rock temperature and they cover the entire central part of Oklahoma. Average thermal gradients in the API survey range from 14 to 43 [sup 0]C/km (average 31.2 [sup 0]C/km) over depth intervals that extend from the surface to a an average depth of 961 m. Geothermal gradients decrease from NNE to SSW. The observed change in thermal gradients could be due to a number of factors. The change in thermal gradients could simply reflect changes in lithology and thermal conductivity. Alternatively, the variation in thermal gradients could be indicative of a change in heat flow related perhaps to variations in the concentration of radioactive heat-producing elements in the crust or heat transport by one or more regional groundwater flow systems. We are proceeding to reduce ambiguity in interpretation by estimating heat flow from thermal conductivity measurements on drill cuttings and heat production from available gamma-ray logs which penetrate basement rocks.

  20. Heat flow in Oklahoma

    SciTech Connect

    Cranganu, C.; Deming, D. [Univ. of Oklahoma, Norman, OK (United States)

    1996-12-31

    Oklahoma is one area in which terrestrial heat flow data are sparse. The thermal state of the southern mid-continent, however, is a key to understanding several important geologic problems. These include thermal anomalies associated with Paleozoic fluid migrations and the formation of Mississippi Valley-type lead-zinc deposits, the thermal evolution of the Arkoma and Anadarko sedimentary basins, and the history of hydrocarbon generation and overpressuring in the Anadarko Basin. In the late 1920s, the American Petroleum Institute made a set of equilibrium temperature logs in idle oil wells. These temperature data are generally regarded as being high quality, accurate estimates of rock temperature and they cover the entire central part of Oklahoma. Average thermal gradients in the API survey range from 14 to 43 {sup 0}C/km (average 31.2 {sup 0}C/km) over depth intervals that extend from the surface to a an average depth of 961 m. Geothermal gradients decrease from NNE to SSW. The observed change in thermal gradients could be due to a number of factors. The change in thermal gradients could simply reflect changes in lithology and thermal conductivity. Alternatively, the variation in thermal gradients could be indicative of a change in heat flow related perhaps to variations in the concentration of radioactive heat-producing elements in the crust or heat transport by one or more regional groundwater flow systems. We are proceeding to reduce ambiguity in interpretation by estimating heat flow from thermal conductivity measurements on drill cuttings and heat production from available gamma-ray logs which penetrate basement rocks.

  1. Understanding Electron Heat Flux Dropouts

    NASA Astrophysics Data System (ADS)

    Pagel, A. C.; Crooker, N.; Larson, D. E.

    2003-12-01

    Electron heat flux dropouts occur relatively frequently in the solar wind. While they are a necessary signature of flux that is disconnected from the Sun, and knowledge of just how much flux is disconnected is vital for discriminating between models of how the Sun reverses its magnetic field, it is now becoming increasingly clear that most dropouts are caused by some other mechanism. We report on progress in understanding that mechanism. Two factors contribute to electron heat flux in the solar wind: total flux integrated over pitch angle, and pitch angle isotropy. The latter correlates well with plasma beta, but the former does not, implying that heat flux and isotropy are to some degree independent and that pitch angle scattering in high-beta plasma may contribute to isotropy. However, drops in total integrated flux do seem to correlate with the pitch angle isotropy but at scale sizes larger than those of beta variations.. We use Wind data to perform correlations between total flux, isotropy and beta to determine at which scales they are best correlated. If total flux and beta are independent, we would expect their respective correlations with isotropy to occur at different scales. The scale at which each correlation maximises provides valuable information on the processes involved in heat flux dropouts and on the interdependence between total flux, isotropy and plasma beta.

  2. Heat Shields for Aerobrakes

    NASA Technical Reports Server (NTRS)

    Pitts, W. C.; Murbach, M. S.

    1987-01-01

    Performances of three types of heat protectors predicted. Estimates of expected performances of heat shields for conical drag brake presented in paper. Drag brakes, or aerobrakes, being considered as devices for slowing space vehicles when they return to Space Shuttle altitudes from higher satellite altitudes after supply missions. Aerobrakes add less weight than do retro-rockets for same purpose and consume no fuel. Paper provides general information on sensitivity of performance to thermal and physical properties of materials used in aerobrakes. Information useful to both designers of brakes and developers of materials for brake fabrication on aerospace structures.

  3. Acoustical heat pumping engine

    DOEpatents

    Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

    1983-08-16

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium.

  4. Specifying Waste Heat Boilers

    E-print Network

    Ganapathy, V.

    .Hence the gas tlow should always be given in mass units so that the HRSG design basis is consistent. b.gas analysis Exhaust gas analysis should be stated for several reasons.The gas enthalpy or specific heat and hence the duty or HRSG 220 ESL-IE-92... variations in surface area can be more glaring when extended surfaces are used.Use of finned tubes reduces the overall heat transfer coefficient.Engineers should be concerned with the product of UxS and not S alone.Hence specifications should NOT call...

  5. Optical heat flux gauge

    DOEpatents

    Noel, Bruce W. (Espanola, NM); Borella, Henry M. (Santa Barbara, CA); Cates, Michael R. (Oak Ridge, TN); Turley, W. Dale (Santa Barbara, CA); MacArthur, Charles D. (Clayton, OH); Cala, Gregory C. (Dayton, OH)

    1991-01-01

    A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator, wherein each thermographic layer comprises a plurality of respective thermographic sensors in a juxtaposed relationship with respect to each other. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.

  6. Precision Heating Process

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A heat sealing process was developed by SEBRA based on technology that originated in work with NASA's Jet Propulsion Laboratory. The project involved connecting and transferring blood and fluids between sterile plastic containers while maintaining a closed system. SEBRA markets the PIRF Process to manufacturers of medical catheters. It is a precisely controlled method of heating thermoplastic materials in a mold to form or weld catheters and other products. The process offers advantages in fast, precise welding or shape forming of catheters as well as applications in a variety of other industries.

  7. Solar industrial process heat

    SciTech Connect

    Lumsdaine, E.

    1981-04-01

    The aim of the assessment reported is to candidly examine the contribution that solar industrial process heat (SIPH) is realistically able to make in the near and long-term energy futures of the United States. The performance history of government and privately funded SIPH demonstration programs, 15 of which are briefly summarized, and the present status of SIPH technology are discussed. The technical and performance characteristics of solar industrial process heat plants and equipment are reviewed, as well as evaluating how the operating experience of over a dozen SIPH demonstration projects is influencing institutional acceptance and economoc projections. Implications for domestic energy policy and international implications are briefly discussed. (LEW)

  8. Integrated parameter estimation of multi-component thermal systems with demonstration on a combined heat and power system.

    PubMed

    Smith, Aaron; Luck, Rogelio; Mago, Pedro J

    2012-07-01

    In experimental models of multi-component thermal systems, small errors in each submodel can propagate detrimentally through the overall model, resulting in large prediction errors as the prediction time increases. These errors can be problematic when using open-loop or feed-forward control schemes. This paper demonstrates the advantages of a whole-system or integrated parameter estimation approach as opposed to the component-by-component parameter estimation approach that is widespread in the literature. The approach is demonstrated on a combined heat and power system at a laboratory facility, and the resulting model is used to predict the system temperatures up to 20 min in advance. Results show that, when compared to conventional component-by-component parameter estimation, the integrated parameter estimation approach improves the model prediction accuracy significantly. PMID:22503465

  9. Integrated micro-Raman\\/infrared thermography probe for monitoring of self-heating in AlGaN\\/GaN transistor structures

    Microsoft Academic Search

    Andrei Sarua; Hangfeng Ji; Martin Kuball; Michael J. Uren; Trevor Martin; Keith P. Hilton; Richard S. Balmer

    2006-01-01

    Self-heating in AlGaN\\/GaN device structures was probed using integrated micro-Raman\\/Infrared (IR) thermography. IR imaging provided large-area-overview temperature maps of powered devices. Micro-Raman spectroscopy was used to obtain high-spatial-resolution temperature profiles over the active area of the devices. Depth scans were performed to obtain temperature in the heat-sinking SiC substrate. Limitations in temperature and spatial resolution, and relative advantages of both

  10. Coupled reactor kinetics and heat transfer model for heat pipe cooled reactors

    NASA Astrophysics Data System (ADS)

    Wright, Steven A.; Houts, Michael

    2001-02-01

    Heat pipes are often proposed as cooling system components for small fission reactors. SAFE-300 and STAR-C are two reactor concepts that use heat pipes as an integral part of the cooling system. Heat pipes have been used in reactors to cool components within radiation tests (Deverall, 1973); however, no reactor has been built or tested that uses heat pipes solely as the primary cooling system. Heat pipe cooled reactors will likely require the development of a test reactor to determine the main differences in operational behavior from forced cooled reactors. The purpose of this paper is to describe the results of a systems code capable of modeling the coupling between the reactor kinetics and heat pipe controlled heat transport. Heat transport in heat pipe reactors is complex and highly system dependent. Nevertheless, in general terms it relies on heat flowing from the fuel pins through the heat pipe, to the heat exchanger, and then ultimately into the power conversion system and heat sink. A system model is described that is capable of modeling coupled reactor kinetics phenomena, heat transfer dynamics within the fuel pins, and the transient behavior of heat pipes (including the melting of the working fluid). This paper focuses primarily on the coupling effects caused by reactor feedback and compares the observations with forced cooled reactors. A number of reactor startup transients have been modeled, and issues such as power peaking, and power-to-flow mismatches, and loading transients were examined, including the possibility of heat flow from the heat exchanger back into the reactor. This system model is envisioned as a tool to be used for screening various heat pipe cooled reactor concepts, for designing and developing test facility requirements, for use in safety evaluations, and for developing test criteria for in-pile and out-of-pile test facilities. .

  11. Coupled Reactor Kinetics and Heat Transfer Model for Heat Pipe Cooled Reactors

    SciTech Connect

    WRIGHT,STEVEN A.; HOUTS,MICHAEL

    2000-11-22

    Heat pipes are often proposed as cooling system components for small fission reactors. SAFE-300 and STAR-C are two reactor concepts that use heat pipes as an integral part of the cooling system. Heat pipes have been used in reactors to cool components within radiation tests (Deverall, 1973); however, no reactor has been built or tested that uses heat pipes solely as the primary cooling system. Heat pipe cooled reactors will likely require the development of a test reactor to determine the main differences in operational behavior from forced cooled reactors. The purpose of this paper is to describe the results of a systems code capable of modeling the coupling between the reactor kinetics and heat pipe controlled heat transport. Heat transport in heat pipe reactors is complex and highly system dependent. Nevertheless, in general terms it relies on heat flowing from the fuel pins through the heat pipe, to the heat exchanger, and then ultimately into the power conversion system and heat sink. A system model is described that is capable of modeling coupled reactor kinetics phenomena, heat transfer dynamics within the fuel pins, and the transient behavior of heat pipes (including the melting of the working fluid). The paper focuses primarily on the coupling effects caused by reactor feedback and compares the observations with forced cooled reactors. A number of reactor startup transients have been modeled, and issues such as power peaking, and power-to-flow mismatches, and loading transients were examined, including the possibility of heat flow from the heat exchanger back into the reactor. This system model is envisioned as a tool to be used for screening various heat pipe cooled reactor concepts, for designing and developing test facility requirements, for use in safety evaluations, and for developing test criteria for in-pile and out-of-pile test facilities.

  12. Residential CO 2 heat pump system for combined space heating and hot water heating

    Microsoft Academic Search

    Jørn Stene

    2005-01-01

    A theoretical and experimental study has been carried out for a residential brine-to-water CO2 heat pump system for combined space heating and hot water heating. A 6.5kW prototype heat pump unit was constructed and extensively tested in order to document the performance and to study component and system behaviour over a wide range of operating conditions. The CO2 heat pump

  13. CONJUGATED HEAT TRANSFER IN COCURRENT FLOW MULTISTREAM HEAT EXCHANGERS

    Microsoft Academic Search

    Ryoichi Chiba

    2010-01-01

    Considering the cross-sectional velocity profile to be piecewise-constant in each stream of a multi-stream heat exchanger for cocurrent thermally developing flow, this study analytically solves the related conjugated Graetz problem by using an integral transform method. Further, it obtains an analytical solution in an explicit form to the fluid temperatures that vary two-dimensionally. A numerical example is provided for the

  14. Thermal\\/mechanical heat exchange design: Karl Gardner Memorial Session

    Microsoft Academic Search

    K. P. Singh; S. M. Shenkman

    1986-01-01

    This book presents the papers given at a conference on heat exchangers. Topics considered at the conference included uncertainty analysis of heat exchanger thermal-hydraulic designs, stress analysis, the mechanical design and fabrication of shell and tube heat exchangers in the US, and expert systems for design integration using an application to the total design of shell and tube heat exchangers

  15. Lecture Ch. 2a Energy and heat capacity

    E-print Network

    Russell, Lynn

    integrals) ­ Energy vs. heat/work? ­ Adiabatic processes ­ Reversible "P-V" work define entropy Curry b/w U and H ­U depends on v ­H depends on p · Specific heats [a.k.a. heat capacity] ­cv is constant work ­Q heat · State functions are unique "states" ­U internal energy ­H enthalpy ­ (also S) entropy ­A

  16. Lecture Ch. 2a Energy and heat capacity

    E-print Network

    Russell, Lynn

    integrals) ­ Energy vs. heat/work? ­ Adiabatic processes ­ Reversible P-V work ! define entropy Curry-interacting contributions.! #12;2 Heat Capacity · Difference b/w U and H ­U depends on v ­H depends on p · Specific heats [a · Entropy · Second law of thermodynamics · Maxwell s equations · Heat capacity · Meteorologist s entropy

  17. A review of chemical heat pump technology and applications

    Microsoft Academic Search

    W Wongsuwan; S Kumar; P Neveu; F Meunier

    2001-01-01

    Chemical heat pumps (CHPs) provide high storage capacity and high heat of reaction as compared to sensible heat generated by absorption. Investigation of material properties and their operation have led to their heat pumps exploitation for commercial and industrial applications. Integration of solar thermal system to the CHPs would assist in expanding the utilization of CHPs and also for many

  18. Excess sludge reduction in activated sludge processes by integrating biomass alkaline heat treatment.

    PubMed

    Rocher, M; Roux, G; Goma, G; Begue, A P; Louvel, L; Rols, J L

    2001-01-01

    With new EC regulations, alternative treatment and disposal techniques of the excess sludge produced by activated sludge wastewater treatment plants have to be developed. To decrease activated sludge production yield, microbial cell lysis can be amplified to enhance cryptic growth (biomass growth on lysates). Cell breakage techniques (thermal, alkaline and a combination) were studied to generate Ralstonia eutropha (strain model) and waste activated sludge lysates and to evaluate their biodegradability. Gentle treatment conditions by alkaline waste treatment (20 min at 60 degrees C and pH 10 by NaOH addition) allowed waste activated sludge to be solubilized by a two step process (instantaneous and post-treatment) giving a dissolved organic carbon released by the total suspended solids treated of 267 mgDOC x g(-1)TSS. The biodegradation of the soluble fraction of the lysates by fresh sludge reached 75 and 90% after 48 and 350 hrs of incubation respectively. A validation on a laboratory scale by insertion of a liquor alkaline heat treatment loop in a biological synthetic wastewater treatment process was carried out. A reduction of 37% of the excess sludge was obtained without altering the purification yield of the process. PMID:11548016

  19. Solitons and ionospheric heating

    NASA Technical Reports Server (NTRS)

    Weatherall, J. C.; Goldman, M. V.; Sheerin, J. P.; Nicholson, D. R.; Payne, G. L.; Hansen, P. J.

    1982-01-01

    It is noted that for parameters characterizing the Platteville ionospheric heating facility, the Langmuir wave evolution at the exact reflection point of the heater wave involves an oscillating two-stream instability followed by a collisionally damped three-dimensional soliton collapse. The result gives an alternative explanation for certain experimental observations.

  20. Electricity from waste heat

    NASA Astrophysics Data System (ADS)

    Larjola, Jaakko; Lindgren, Olli; Vakkilainen, Esa

    In industry and in ships, large amounts of waste heat with quite a high release temperature are produced: examples are combustion gases and the exhaust gases of ceramic kilns. Very often they cannot be used for heating purposes because of long transport distances or because there is no local district heating network. Thus, a practical solution would be to convert this waste heat into electric power. This conversion may be carried out using an ORC-plant (Organic Rankine Cycle). There are probably some twenty ORC-plants in commercial use in the world. They are, however, usually based on conventional power plant technology, and are rather expensive, complicated and may have significant maintenance expenses. In order to obviate these problems, a project was started at Lappeenranta University of Technology at the beginning of 1981 to develop a high-speed, hermetic turbogenerator as the prime mover of the ORC. With this new technology the whole ORC-plant is quite simple, with only one moving part in the power system. It is expected to require very little maintenance, and the calculations made give for it significantly lower specific price than for the conventional technology ORC-plant. Two complete prototypes of the new technology ORC-plant have been built, one to the laboratory, other to industrial use. The nominal output of both is 100 kW electricity. Calculated amortization times for the new ORC-plant range from 2.1 to 6.

  1. Intrinsically irreversible heat engines

    SciTech Connect

    Wheatley, J.C.

    1982-01-01

    The concept of an intrinsically irreversible heat engine is examined as a means of obtaining temperatures near absolute zero. These engines use the irreversible process of thermal conduction to achieve the necessary phasing between temperature changes and motion of a primary medium and therefore have only one moving mechanical element. (GHT)

  2. Urban Heat Island

    NSDL National Science Digital Library

    NASA GSFC

    While this MPEG could have been better designed to show how and why urban areas absorb more heat than surrounding vegetated areas, there is value in seeing enhanced convection over the city, cloud formation favored by increased condensation nuclei, and increased showers downwind of the city.

  3. Sudurnes Regional Heating Corp.

    SciTech Connect

    Lienau, P.J. [ed.

    1996-11-01

    The Svartsengi geothermal area is close to the town of Grindavik on the Rekjanes peninsula and is part of an active fissure swarm, lined with crater-rows and open fissures and faults. The high-temperature area has an area of 2 sq. km and shows only limited signs of geothermal activity at the surface. The reservoir, however, contains lots of energy and at least 8 wells supply the Svartsengi Power Plant with steam. The steam is not useable for domestic heating purposes so that heat exchangers are used to heat cold groundwater with the steam. Some steam is also used for producing 16.4 MW{sub e} of electrical power. The article shows the distribution system piping hot water to nine towns and the Keflavik International Airport. The effluent brine from the Svartsengi Plant is disposed of into a surface pond, called the Blue Lagoon, popular to tourists and people suffering from psoriasis and other forms of eczema seeking therapeutic effects from the silica rich brine. This combined power plant and regional district heating system (cogeneration) is an interesting and unique design for the application of geothermal energy.

  4. Stop Heat from Escaping

    NSDL National Science Digital Library

    2014-09-18

    One way to conserve energy in a building is to use adequate insulation. Insulation helps keep the hot or cool air inside or outside of a building. Inefficient heating and cooling of buildings is a leading residential and industrial source of wasteful energy use. In this activity, students act as engineers and determine which type of insulation would conserve the most energy.

  5. Heating element support clip

    DOEpatents

    Sawyer, W.C.

    1995-08-15

    An apparatus for supporting a heating element in a channel formed in a heater base is disclosed. A preferred embodiment includes a substantially U-shaped tantalum member. The U-shape is characterized by two substantially parallel portions of tantalum that each have an end connected to opposite ends of a base portion of tantalum. The parallel portions are each substantially perpendicular to the base portion and spaced apart a distance not larger than a width of the channel and not smaller than a width of a graphite heating element. The parallel portions each have a hole therein, and the centers of the holes define an axis that is substantially parallel to the base portion. An aluminum oxide ceramic retaining pin extends through the holes in the parallel portions and into a hole in a wall of the channel to retain the U-shaped member in the channel and to support the graphite heating element. The graphite heating element is confined by the parallel portions of tantalum, the base portion of tantalum, and the retaining pin. A tantalum tube surrounds the retaining pin between the parallel portions of tantalum. 6 figs.

  6. Heating element support clip

    DOEpatents

    Sawyer, William C. (Salida, CA)

    1995-01-01

    An apparatus for supporting a heating element in a channel formed in a heater base is disclosed. A preferred embodiment includes a substantially U-shaped tantalum member. The U-shape is characterized by two substantially parallel portions of tantalum that each have an end connected to opposite ends of a base portion of tantalum. The parallel portions are each substantially perpendicular to the base portion and spaced apart a distance not larger than a width of the channel and not smaller than a width of a graphite heating element. The parallel portions each have a hole therein, and the centers of the holes define an axis that is substantially parallel to the base portion. An aluminum oxide ceramic retaining pin extends through the holes in the parallel portions and into a hole in a wall of the channel to retain the U-shaped member in the channel and to support the graphite heating element. The graphite heating element is confined by the parallel portions of tantalum, the base portion of tantalum, and the retaining pin. A tantalum tube surrounds the retaining pin between the parallel portions of tantalum.

  7. Enhanced Condensation Heat Transfer

    NASA Astrophysics Data System (ADS)

    Rose, John Winston

    The paper gives some personal observations on various aspects of enhanced condensation heat transfer. The topics discussed are external condensation (horizontal low-finned tubes and wire-wrapped tubes), internal condensation (microfin tubes and microchannels) and Marangoni condensation of binary mixtures.

  8. Industrial Waste Heat Recovery 

    E-print Network

    Ward, M. E.; Solomon, N. G.; Tabb, E. S.

    1980-01-01

    was that the upper material temperature limit of 1500oF is state-of-the-art for recuperators operating in an oxidizing environment produced by the com-bustion of Diesel No.2. A full size counter axial flow metal heat exchanger test module has successfully completed...

  9. Heat and temperature

    NSDL National Science Digital Library

    Edward A. Zobel

    1997-01-01

    Knowing the difference between heat and temperature is important if one is to have a clear understanding of energy. In this section we will define both terms and reach an understanding of how they are related ideas, but not identical ideas.

  10. Phytosanitary Heat Treatments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book chapter by Neil Heather and Guy Hallman, in “Pest Management and Phytosanitary Trade Barriers,” CABI Press, deals with disinfestations of food commodities. Disinfestation of food commodities with heat to satisfy phytosanitary requirements has the advantage of freedom from chemical residue...

  11. Heat pipe thermal switch

    NASA Technical Reports Server (NTRS)

    Wolf, D. A. (inventor)

    1983-01-01

    A thermal switch for controlling the dissipation of heat between a body is described. The thermal switch is comprised of a flexible bellows defining an expansible vapor chamber for a working fluid located between an evaporation and condensation chamber. Inside the bellows is located a coiled retaining spring and four axial metal mesh wicks, two of which have their central portions located inside of the spring while the other two have their central portions located between the spring and the side wall of the bellows. The wicks are terminated and are attached to the inner surfaces of the outer end walls of evaporation and condensation chambers respectively located adjacent to the heat source and heat sink. The inner surfaces of the end walls furthermore include grooves to provide flow channels of the working fluid to and from the wick ends. The evaporation and condensation chambers are connected by turnbuckles and tension springs to provide a set point adjustment for setting the gap between an interface plate on the condensation chamber and the heat sink.

  12. Photovoltaic Roof Heat Flux

    NASA Astrophysics Data System (ADS)

    Samady, Mezhgan Frishta

    Solar panels were mounted with different designs onto 1:800 scale building models while temperature and radiation were measured. While there have been other studies aimed at finding the optimal angles for solar panels [9], in this study both the angle and the mounting method were tested. The three PV mounting designs that were considered to provide the most insulation to a building's rooftop were flush, offset (control), and angled. The solar panel offset height became a key component for rooftop insulation as well as the performance of the actual solar panel. Experimental results were given to verify the thermal behavior of the heat loads from the different designs of the photovoltaic panel. From the results, the angled PV design needed 16Z more heat extraction than the offset and flush PV design needed 60% more heat extracted than the offset. In addition to the heat transfer analysis, thermal models were performed to incorporate main atmospheric conditions which were based on the effects of PV mounting structure.

  13. Wastewater heat recovery apparatus

    DOEpatents

    Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

    1992-01-01

    A heat recovery system with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature.

  14. Integrating heat treatment, biocontrol and sodium bicarbonate to reduce postharvest decay of apple caused by Colletotrichum acutatum and Penicillium expansum

    Microsoft Academic Search

    William S. Conway; Britta Leverentz; Wojciech J. Janisiewicz; Amy B. Blodgett; Robert A. Saftner; Mary J. Camp

    2004-01-01

    ‘Golden Delicious’ apples were wound inoculated with conidial suspensions of either Colletotrichum acutatum or Penicillium expansum, then treated with heat (38°C) for 4 days, sodium bicarbonate, and\\/or one of two heat tolerant biocontrol agents (yeasts). Following four months storage at 0°C, the apples were left at room temperature for two weeks. Populations of antagonists were stable throughout the experiment and

  15. Thermal performances of heat exchangers applicable to waste-heat recovery systems

    Microsoft Academic Search

    Shou-Shing Hsieh; Chihng-Tsung Liauh; Wen-Sun Han

    1988-01-01

    Results are presented and discussed for the quantitative evaluation of the heat exchangers applied to waste-heat recovery systems for two types of conventional heat exchangers: compact cross-flow heat exchangers, and heat-pipe heat exchangers. The effects of the different alignments on the heat transfer rate of heat pipe heat exchangers are also studied.

  16. Increase of COP for heat transformer in water purification systems. Part II – Without increasing heat source temperature

    Microsoft Academic Search

    R. J. Romero; J. Siqueiros; A. Huicochea

    2007-01-01

    The integration of a water purification system allows a heat transformer to increase the actual coefficient of performance, by the reduction of the amount of heat supplied by unit of heat. A new defined COP called COPWP is proposed for the present system, which considers the fraction of heat recycled. Simulation with proven software compares the performance of the modeling

  17. Evaluation of Thermocompression Heat Pump Performance for American Maize, Decatur, AL [Advanced Industrial Heat Pump Applications and Evaluations

    Microsoft Academic Search

    Eastwood

    1993-01-01

    This work was carried out in two phases: Phase 1, identification of opportunities for heat pumps in industrial applications and Phase 2, evaluation of heat pumps in industrial applications. In Phase 1, pinch analysis was applied to several industrial sites to identify the best opportunities for heat pumping and other forms of heat integration. In Phase 2, more detailed analyses

  18. Building America Case Study: Evaluation of Residential Integrated Space/Water Heat Systems, Illinois and New York (Fact Sheet)

    SciTech Connect

    Not Available

    2014-11-01

    This multi-unit field demonstration of combined space and water heating (combi) systems was conducted to help document combi system installation and performance issues that needed to be addressed through research. The objective of the project was to put commercialized forced-air tankless combi units into the field through local contractors that were trained by manufacturers and GTI staff under the auspices of utility-implemented Emerging Technology Programs. With support from PARR, NYSERDA and other partners, the project documented system performance and installations in Chicago and New York. Combi systems were found to save nearly 200 therms in cold climates at efficiencies between about 80% and 94%. Combi systems using third-party air handler units specially designed for condensing combi system operation performed better than the packaged integrated combi systems available for the project. Moreover, combi systems tended to perform poorly when the tankless water heaters operating at high turn-down ratios. Field tests for this study exposed installation deficiencies due to contractor unfamiliarity with the products and the complexity of field engineering and system tweaking to achieve high efficiencies. Widespread contractor education must be a key component to market expansion of combi systems. Installed costs for combi systems need to come down about 5% to 10% to satisfy total resource calculations for utility-administered energy efficiency programs. Greater sales volumes and contractor familiarity can drive costs down. More research is needed to determine how well heating systems such as traditional furnace/water heater, combis, and heat pumps compare in similar as-installed scenarios, but under controlled conditions.

  19. Heat-pump-centered Integrated Community Energy Systems: systems development, Consolidated Natural Gas Service Company. Final report

    SciTech Connect

    Baker, N.R.; Donakowski, T.D.; Foster, R.B.; Sala, D.L.; Tison, R.R.; Whaley, T.P.; Yudow, B.D.; Swenson, P.F.

    1980-01-01

    The Heat-Actuated Heat Pump Centered Integrated Community Energy System (HAHP-ICES) utilizes a gas-fired, engine-driven, heat pump and commercial buildings, and offers several advantages over the more conventional equipment it is intended to supplant. The general non-site-specific application assumes a hypothetical community of one 59,000 ft/sup 2/ office building and five 24-unit, low-rise apartment buildings located in a region with a climate similar to Chicago. This community serves as a starting point - the base case - upon which various sensitivity analyses are performed and through which the performance characteristics of the HAHP are explored. The results of these analyses provided the selection criteria for the site-specific application of the HAHP-ICES concept to a real-world community. The site-specific community consists of 42 townhouses; five 120-unit, low-rise apartment buildings; five 104-unit high-rise apartment buildings; one 124,000 ft/sup 2/ office building; and a single 135,000 ft/sup 2/ retail building located in Monroeville, Pa. The base-case analyses confirmed that the HAHP-ICES has significant potentials for reducing the primary energy consumption and pollutant emissions associated with space conditioning when compared with a conventional system. Primary energy consumption was reduced by 30%, while emission reductions ranged from 39 to 77%. The results of the site-specific analysis indicate that reductions in energy consumption of between 15 and 22% are possible when a HAHP-ICES is selected as opposed to conventional HVAC equipment.

  20. Aerodynamic heated steam generating apparatus

    SciTech Connect

    Kim, K.

    1986-08-12

    An aerodynamic heated steam generating apparatus is described which consists of: an aerodynamic heat immersion coil steam generator adapted to be located on the leading edge of an airframe of a hypersonic aircraft and being responsive to aerodynamic heating of water by a compression shock airstream to produce steam pressure; an expansion shock air-cooled condensor adapted to be located in the airframe rearward of and operatively coupled to the aerodynamic heat immersion coil steam generator to receive and condense the steam pressure; and an aerodynamic heated steam injector manifold adapted to distribute heated steam into the airstream flowing through an exterior generating channel of an air-breathing, ducted power plant.

  1. Modeling of Heat Transfer in Geothermal Heat Exchangers

    E-print Network

    Cui, P.; Man, Y.; Fang, Z.

    2006-01-01

    Ground-coupled heat pump (GCHP) systems have been gaining increasing popularity for space conditioning in residential and commercial buildings. The geothermal heat exchanger (GHE) is devised for extraction or injection of thermal energy from...

  2. Urban Sewage Delivery Heat Transfer System (2): Heat Transfer 

    E-print Network

    Zhang, C.; Wu, R.; Li, X.; Li, G.; Zhuang, Z.; Sun, D.

    2006-01-01

    The thimble delivery heat-transfer (TDHT) system is one of the primary modes to utilize the energy of urban sewage. Using the efficiency-number of transfer units method ( ), the heat-transfer efficiencies of the parallel-flow ...

  3. Modeling of Heat Transfer in Geothermal Heat Exchangers 

    E-print Network

    Cui, P.; Man, Y.; Fang, Z.

    2006-01-01

    Ground-coupled heat pump (GCHP) systems have been gaining increasing popularity for space conditioning in residential and commercial buildings. The geothermal heat exchanger (GHE) is devised for extraction or injection of thermal energy from...

  4. Waste-heat recovery in batch processes using heat storage

    Microsoft Academic Search

    S. Stoltze; J. Mikkelsen; B. Lorentzen; P. M. Petersen; B. Qvale

    1995-01-01

    The waste-heat recovery in batch processes has been studied using the pinch-point method. The aim of the work has been to investigate theoretical and practical approaches to the design of heat-exchanger networks, including heat storage, for waste-heat recovery in batch processes. The study is limited to the incorporation of energy-storage systems based on fixed-temperature variable-mass stores. The background for preferring

  5. Magnetic heat pump cycles for industrial waste heat recovery

    SciTech Connect

    Mills, J.I.; Kirol, L.D.; Van Haaften, D.H.

    1984-08-01

    Magnetic heat pumps utilize entropy reductions which occur upon magnetization (magnetocaloric effect) in thermodynamic cycles. Magnetic equivalents of Brayton and Ericsson (or Stirling) cycles are possible. Magnetic heat pumps with gadolinium working material perform significantly better than conventional equipment. Working materials appropriate for industrial heat pump applications (400 to 500 K) have been identified, but performance is not as good as with gadolinium. When better performing hightemperature materials are identified, feasible industrial magnetic heat pumps should be possible.

  6. Machinability of Austempered Ductile Iron (ADI) Produced by Integrated Green Technology of Continuous Casting-Heat Treatment Processes

    NASA Astrophysics Data System (ADS)

    Meena, A.; El Mansori, M.; Ghidossi, P.

    2011-01-01

    This study presents the novel processing technique known as continuous casting-heat treatment processes to produce Austempered Ductile Iron (ADI) which is a new class of ductile iron. ADI is characterized by improved mechanical properties but has low machinability as compared to other cast irons and steel of similar strength. The novel technique is developed by the integration of casting (in die casting) and heat treatment processes in foundry to save cost energy and time. Specimens just after casting were austenitized at 930° C for 90 min and then austempered in fluidized bed at 380° C for 90 and 120 min. Hence, the effect of austempering time on the morphology of retained austenite and mechanical properties of the material were examined and compared with conventionally produced ADI. Drilling tests were then carried out to evaluate the machinability of ADI in terms of cutting forces, chip micro-hardness, chip morphology and surface roughness. The mechanical properties of ADI austempered for 120 min have found to be better as compare to the ADI austempered for 90 min.

  7. Quantitative Assessment of the Integrated Response in Global Heat and Moisture Budgets to Changing Solar Irradiance

    NASA Technical Reports Server (NTRS)

    White, Warren B.; Cayan, Daniel R.; Dettinger, Michael; Sharber, James (Technical Monitor)

    2001-01-01

    Earlier, we found time sequences of basin- and global-average upper ocean temperature (that is, diabatic heat storage above the main pycnocline) for 40 years from 1955-1994 and of sea surface temperature for 95 years from 1900-1994 associated with changes in the Sun's radiative forcing on decadal and interdecadal timescales, lagging by 10 deg.- 30 deg. of phase and confined to the upper 60-120 m. Yet, the observed changes in upper ocean temperature (approx. 0.1 K) were approximately twice those expected from the Stefan-Boltzmann black-body radiation law for the Earth's surface, with phase lags (0 deg. to 30 deg. of phase) much shorter than the 90 deg. phase shift expected as well. Moreover, White et al. (1997, 1998) found the Earth's global decadal mode in covarying SST and SLP anomalies phase locked to the decadal signal in the Sun's irradiance. Yet, Allan (2000) found this decadal signal also characterized by patterns similar to those observed on biennial and interannual time scales; that is, the Troposphere Biennial Oscillation (TBO) and the El Nino and the Southern Oscillation (ENSO). This suggested that small changes in the Sun's total irradiance could excite this global decadal mode in the Earth's ocean-atmosphere-terrestrial system similar to those excited internally on biennial and interannual period scales. This is a significant finding, proving that energy budget models (that is, models based on globally-averaged radiation balances) yield unrealistic responses. Thus, the true response must include positive and negative feedbacks in the Earth's ocean-atmosphere-terrestrial system as its internal mode (that is, the natural mode of the system) respond in damped resonance to quasi-periodic decadal changes in the Sun's irradiance. Moreover, these responses are not much different from those occurring internally on biennial and interannual period scales.

  8. Heat transfer performance of axially grooved heat pipes

    Microsoft Academic Search

    Tetsurou Ogushi; Gorou Yamanaka

    1987-01-01

    Experiments and analysis of the heat transport capability of axially grooved heat pipes are described. The heat pipes were made of aluminum axially grooved extruded pipes and the working fluid was R11. The effects of fluid inventory and inclination angle on the capillary pumping limit were investigated. A theoretical model was developed to predict the temperature rise in the evaporator

  9. Commercial building unitary heat pump system with solar heating

    Microsoft Academic Search

    E. E. Drucker; J. E. Lagraff; W. H. Card; M. Ucar; W. S. Fleming

    1975-01-01

    An algorithmic computational program has been written for determining the overall performance of a heating and cooling system for a typical school and an office building. The system employs a series of water-to-air heat pumps connected in a closed loop, with a flat plate, water cooled solar collector for heating and a large water storage tank. The computer program includes

  10. Heat engine Device that transforms heat into work.

    E-print Network

    Winokur, Michael

    , and rocket engines are heat engines. So are steam engines and turbines #12;2 refrigerator Device that uses by steam turbines. Steam turbines, jet engines and rocket engines use a Brayton cycle #12;4 Steam turbines1 Heat engine Device that transforms heat into work. It requires two energy reservoirs at different

  11. Magnetic heat pump cycles for industrial waste heat recovery

    Microsoft Academic Search

    J. I. Mills; L. D. Kirol; D. H. Van Haaften

    1984-01-01

    Magnetic heat pumps utilize entropy reductions which occur upon magnetization (magnetocaloric effect) in thermodynamic cycles. Magnetic equivalents of Brayton and Ericson (or Stirling) cycles are possible. Magnetic heat pumps with gadolinium working material perform significantly better than conventional equipment. Working materials appropriate for industrial heat pump applications (400 to 500 K) have been identified, but performance is not as good

  12. Magnetic heat pump cycles for industrial waste heat recovery

    Microsoft Academic Search

    J. I. Mills; L. D. Kirol; D. H. Van Haaften

    1984-01-01

    Magnetic heat pumps utilize entropy reductions which occur upon magnetization (magnetocaloric effect) in thermodynamic cycles. Magnetic equivalents of Brayton and Ericsson (or Stirling) cycles are possible. Magnetic heat pumps with gadolinium working material perform significantly better than conventional equipment. Working materials appropriate for industrial heat pump applications (400 to 500 K) have been identified, but performance is not as good

  13. Fast reactor power plant design having heat pipe heat exchanger

    DOEpatents

    Huebotter, P.R.; McLennan, G.A.

    1984-08-30

    The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

  14. Fast reactor power plant design having heat pipe heat exchanger

    DOEpatents

    Huebotter, Paul R. (Western Springs, IL); McLennan, George A. (Downers Grove, IL)

    1985-01-01

    The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

  15. Flow boiling critical heat flux on small heated regions

    Microsoft Academic Search

    Terrence W. Simon; Pey-Shey Wu

    1993-01-01

    Often, in optical and electronic equipment, heating is concentrated in very small regions, and, because of materials constraints, cooled walls must be as thin as possible. Also, for efficiency, many high-flux cooling designs involve forced-convection boiling heat transfer. Though efficient, a design with boiling heat transfer can be difficult for it must properly account for the complexities of the boiling

  16. Prototype solar heating and combined heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1977-01-01

    System analysis activities were directed toward refining the heating system parameters. Trade studies were performed to support hardware selections for all systems and for the heating only operational test sites in particular. The heating system qualification tests were supported by predicting qualification test component performance prior to conducting the test.

  17. Waste Heat Recovery Using a Circulating Heat Medium Loop

    E-print Network

    Manning, E., Jr.

    1981-01-01

    , and the coker; the heat is used to reboil a butylenes splitter column and to preheat boiler feed Water. The heat that is recovered is equivalent to some 660 B/D of fuel: at an illustrative fuel value of say $30 per barrel, the value of the recovered heat is $20...

  18. Fast reactor power plant design having heat pipe heat exchanger

    Microsoft Academic Search

    Paul R. Huebotter; George A. McLennan

    1985-01-01

    The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water\\/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the

  19. Fast reactor power plant design having heat pipe heat exchanger

    Microsoft Academic Search

    P. R. Huebotter; G. A. McLennan

    1984-01-01

    The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water\\/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the

  20. Waste heat recovery for electricity generation

    Microsoft Academic Search

    C. Papperitz; W. Pichler; M. Romheld

    2009-01-01

    The economical use of waste heat is dependent on the heat carrier and the condition of the waste heat medium, as well as on the thermal requirements in applications near the waste heat source. The most economical utilization occurs when direct heat recovery is possible; the waste heat source is used to provide needed heat to some other medium through