Science.gov

Sample records for heat of fusion

  1. Improved Heat-of-Fusion Energy Storage

    NASA Technical Reports Server (NTRS)

    Chen, K. H.; Manvi, R.

    1982-01-01

    Alkali metal/alkali-halide mixtures proposed for preventing solid buildup during energy recovery. When mixture melts (by absorption of heat of fusion), it forms two immiscible liquids. Salt-rich phase is heavier and has higher melting/recrysallization temperature; so during energy recovery salt crystallizes in this phase first. Since heat exchanger for energy recovery is in lighter metal-rich phase, solids do not form and there is no reduction of heat-recovery efficiency.

  2. Auxiliary Heating of Inertial Confinement Fusion Targets

    NASA Astrophysics Data System (ADS)

    Norreys, Peter

    2014-10-01

    The role of collisionless ion heating arising from the propagation of petawatt-laser driven relativistic electron beams in dense plasma will be discussed. The energy cascade mechanism begins first with the rapid growth of electrostatic waves near the electron plasma frequency. These waves reach high amplitudes and break, which then results in the generation of a strongly driven turbulent Langmuir spectrum. Parametric decay of these waves, particularly via the modulational instability, then gives rise to a coupled turbulent ion acoustic spectrum. These waves, in turn, experience significant Landau damping, resulting in the rapid heating of the background ion population. In this talk, I will review the evidence for this cascade process in laboratory plasmas and describe the theoretical background that underpins this process. I will then present the most recent analytic modelling, particle-in-cell and Vlasov-Poisson simulation results of my team within Oxford Physics and the Central Laser Facility that explores the optimum parameter space for this process, focusing in particular on the requirements for auxiliary heating of the central hot spot in inertial confinement fusion target experiments now underway on the National Ignition Facility. I will also describe new methods for hole-boring through the coronal plasma surrounding the fuel using strongly relativistic laser beams that demonstrates the strong suppression of the hosing instability under these conditions.

  3. Modular control of fusion power heating applications

    SciTech Connect

    Demers, D. R.

    2012-08-24

    This work is motivated by the growing demand for auxiliary heating on small and large machines worldwide. Numerous present and planned RF experiments (EBW, Lower Hybrid, ICRF, and ECH) are increasingly complex systems. The operational challenges are indicative of a need for components of real-time control that can be implemented with a moderate amount of effort in a time- and cost-effective fashion. Such a system will improve experimental efficiency, enhance experimental quality, and expedite technological advancements. The modular architecture of this control-suite serves multiple purposes. It facilitates construction on various scales from single to multiple controller systems. It enables expandability of control from basic to complex via the addition of modules with varying functionalities. It simplifies the control implementation process by reducing layers of software and electronic development. While conceived with fusion applications in mind, this suite has the potential to serve a broad range of scientific and industrial applications. During the Phase-I research effort we established the overall feasibility of this modular control-suite concept. We developed the fundamental modules needed to implement open-loop active-control and demonstrated their use on a microwave power deposition experiment.

  4. Modeling of Heat and Mass Transfer in Fusion Welding

    SciTech Connect

    Zhang, Wei

    2011-01-01

    In fusion welding, parts are joined together by melting and subsequent solidification. Although this principle is simple, complex transport phenomena take place during fusion welding, and they determine the final weld quality and performance. The heat and mass transfer in the weld pool directly affect the size and shape of the pool, the solidification microstructure, the formation of weld defects such as porosity and humping, and the temperature distribution in the fusion zone and heat-affected zone (HAZ). Furthermore, the temperature evolution affects the kinetics and extent of various solid-state phase transformations, which in turn determine the final weld microstructure and mechanical properties. The formation of residual stresses and distortion originates from the thermal expansion and contraction during welding heating and cooling, respectively.

  5. Immiscible fluid: Heat of fusion heat storage system

    NASA Technical Reports Server (NTRS)

    Edie, D. D.; Melsheimer, S. S.; Mullins, J. C.

    1980-01-01

    Both heat and mass transfer in direct contact aqueous crystallizing systems were studied as part of a program desig- ned to evaluate the feasibility of direct contact heat transfer in phase change storage using aqueous salt system. Major research areas, discussed include (1) crystal growth velocity study on selected salts; (2) selection of salt solutions; (3) selection of immiscible fluids; (4) studies of heat transfer and system geometry; and (5) system demonstration.

  6. Supplemental heating of conventional Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Thomas, B. R.; Hughes, S. J.; Garbett, W. J.; Sircombe, N. J.

    2016-03-01

    We report a new ICF scheme whereby a capsule is imploded to near ignition conditions and subsequently flooded with hot electrons generated from a short-pulse laser- plasma interaction so as to heat the whole assembly by a few hundred eV. The cold dense shell pressure is increased by a larger factor than that of the hot spot at the capsule core, so that further heating and compression of the hot spot occurs. We suggest it may be possible to drive the capsule to ignition by the pressure augmentation supplied by this extra deposition of energy.

  7. Heat of fusion of primary alcohol confined in Nano pores

    NASA Astrophysics Data System (ADS)

    Griffin, Harrisonn; Amanue, Samuel

    Melting behavior of physically confined 1-decanol in nano porous silica was probed using a Differential Scanning Calorimeter (DSC). In agreement with the Gibbs-Thompson prediction, we observe that the melting temperature of the confined 1-decanol scales inversely with the physical size of the pores. Contrary to the assumption used in developing the Gibbs-Thompson equation, however, the apparent heat of fusion decreases as the the pore size decreases. Previously, several models have been proposed where the interfacial layer/s of molecules do not participate in the phase transition and thereby would not contribute to the heat of fusion. While these could reconcile the seeming contradiction, annealing the nano confined materials enables some of the interfacial layers to be incorporated into an existing crystal. This leads to an increase in the apparent heat of fusion and a systematic relationship exists between the annealing temperature and the increase in the apparent heat of fusion. This work was partially supported by NSF-DMR: 1229142.

  8. Application of rf-thruster technique for fusion plasma heating

    NASA Astrophysics Data System (ADS)

    Freisinger, J.; Loeb, H. W.

    On the basis of RF ion thruster devices, a family of RF injector generators (RIGs) for the heating of fusion plasmas up to the temperature of thermonuclear burn has been developed. Hydrogen ion beams of 10-40 amps can be accelerated by means of the RIGs to 30 kV, so that ion beam densities of more than 250 mA/sq cm are achievable at uniform profiles within only 1 deg of divergence angle. The use of electrodeless quartz ionizers yields a very high atomic ion fraction, low admixture of impurities, long lifetime, high reliability, simple mechanical elements, and easy control.

  9. Study on Latent Heat of Fusion of Ice in Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Kumano, Hiroyuki; Asaoka, Tatsunori; Saito, Akio; Okawa, Seiji

    In this study, latent heat of fusion of ice in aqueous solutions was measured to understand latent heat of fusion of ice slurries. Propylene glycol, ethylene glycol, ethanol, NaCl and NaNO3 solutions were examined as the aqueous solutions. In the measurement, pure ice was put into the solution, and the temperature variation of the solution due to the melting of the ice was measured. Then, the effective latent heat of fusion was calculated from energy balance equation. When ice melts in solution, the concentration of the solution varies due to the melting of the ice, and dilution heat must be considered. Therefore, the latent heat of fusion of ice in aqueous solutions was predicted by considering the effects of dilution and freezing-point depression. The latent heat of fusion was also measured by differential scanning calorimetry(DSC) to compare the results obtained from the experiments with that obtained by DSC. As the result, it was found that the effective latent heat of fusion of ice decreased with the increase of the concentration of solution, and the effective latent heat of fusion was calculated from latent heat of fusion of pure ice and the effects of freezing-point depression and the dilution heat.

  10. Review of controlled fusion research using laser heating.

    NASA Technical Reports Server (NTRS)

    Hertzberg, A.

    1973-01-01

    Development of methods for generating high laser pulse energy has stimulated research leading to new ideas for practical controlled thermonuclear fusion machines. A review is presented of some important efforts in progress, and two different approaches have been selected as examples for discussion. One involves the concept of very short pulse lasers with power output tailored, in time, to obtain a nearly isentropic compression of a deuterium-tritium pellet to very high densities and temperatures. A second approach utilizing long wavelength, long pulse, efficient gas lasers to heat a column of plasma contained in a solenoidal field is also discussed. The working requirements of the laser and various magnetic field geometries of this approach are described.

  11. Advanced simulation of electron heat transport in fusion plasmas

    SciTech Connect

    Lin, Zhihong; Xiao, Y.; Klasky, Scott A; Lofstead, J.

    2009-01-01

    Electron transport in burning plasmas is more important since fusion products first heat electrons. First-principles simulations of electron turbulence are much more challenging due to the multi-scale dynamics of the electron turbulence, and have been made possible by close collaborations between plasma physicists and computational scientists. The GTC simulations of collisionless trapped electron mode (CTEM) turbulence show that the electron heat transport exhibits a gradual transition from Bohm to gyroBohm scaling when the device size is increased. The deviation from the gyroBohm scaling can be induced by large turbulence eddies, turbulence spreading, and non-diffusive transport processes. Analysis of radial correlation function shows that CTEM turbulence eddies are predominantly microscopic but with a significant tail in the mesoscale. A comprehensive analysis of kinetic and fluid time scales shows that zonal flow shearing is the dominant decorrelation mechanism. The mesoscale eddies result from a dynamical process of linear streamers breaking by zonal flows and merging of microscopic eddies. The radial profile of the electron heat conductivity only follows the profile of fluctuation intensity on a global scale, whereas the ion transport tracks more sensitively the local fluctuation intensity. This suggests the existence of a nondiffusive component in the electron heat flux, which arises from the ballistic radial E x B drift of trapped electrons due to a combination of the presence of mesoscale eddies and the weak de-tuning of the toroidal precessional resonance that drives the CTEM instability. On the other hand, the ion radial excursion is not affected by the mesoscale eddies due to a parallel decorrelation, which is not operational for the trapped electrons because of a bounce averaging process associated with the electron fast motion along magnetic field lines. The presence of the nondiffusive component raises question on the applicability of the usual

  12. Advanced Simulation of Electron Heat Transport in Fusion Plasmas

    SciTech Connect

    Lin, Z.; Xiao, Y.; Holod, I.; Zhang, W. L.; Deng, Wenjun; Klasky, Scott A; Lofstead, J.; Kamath, Chandrika; Wichmann, Nathan

    2009-01-01

    Electron transport in burning plasmas is more important since fusion products first heat electrons. First-principles simulations of electron turbulence are much more challenging due to the multi-scale dynamics of the electron turbulence, and have been made possible by close collaborations between plasma physicists and computational scientists. The GTC simulations of collisionless trapped electron mode (CTEM) turbulence show that the electron heat transport exhibits a gradual transition from Bohm to gyroBohm scaling when the device size is increased. The deviation from the gyroBohm scaling can be induced by large turbulence eddies, turbulence spreading, and non-diffusive transport processes. Analysis of radial correlation function shows that CTEM turbulence eddies are predominantly microscopic but with a significant tail in the mesoscale. A comprehensive analysis of kinetic and fluid time scales shows that zonal flow shearing is the dominant decorrelation mechanism. The mesoscale eddies result from a dynamical process of linear streamers breaking by zonal flows and merging of microscopic eddies. The radial profile of the electron heat conductivity only follows the profile of fluctuation intensity on a global scale, whereas the ion transport tracks more sensitively the local fluctuation intensity. This suggests the existence of a nondiffusive component in the electron heat flux, which arises from the ballistic radial E x B drift of trapped electrons due to a combination of the presence of mesoscale eddies and the weak de-tuning of the toroidal precessional resonance that drives the CTEM instability. On the other hand, the ion radial excursion is not affected by the mesoscale eddies due to a parallel decorrelation, which is not operational for the trapped electrons because of a bounce averaging process associated with the electron fast motion along magnetic field lines. The presence of the nondiffusive component raises question on the applicability of the usual

  13. Size limitations for microwave cavity to simulate heating of blanket material in fusion reactor

    SciTech Connect

    Wolf, D.

    1987-01-01

    The power profile in the blanket material of a nuclear fusion reactor can be simulated by using microwaves at 200 MHz. Using these microwaves, ceramic breeder materials can be thermally tested to determine their acceptability as blanket materials without entering a nuclear fusion environment. A resonating cavity design is employed which can achieve uniform cross sectional heating in the plane transverse to the neutron flux. As the sample size increases in height and width, higher order modes, above the dominant mode, are propagated and destroy the approximation to the heating produced in a fusion reactor. The limits at which these modes develop are determined in the paper.

  14. The Measurement of the Specific Latent Heat of Fusion of Ice: Two Improved Methods.

    ERIC Educational Resources Information Center

    Mak, S. Y.; Chun, C. K. W.

    2000-01-01

    Suggests two methods for measuring the specific latent heat of ice fusion for high school physics laboratories. The first method is an ice calorimeter which is made from simple materials. The second method improves the thermal contact and allows for a more accurate measurement. Lists instructions for both methods. (Author/YDS)

  15. Enhanced loss of fusion products during mode conversion heating in TFTR

    SciTech Connect

    Darrow, D.S.; Majeski, R.; Fisch, N.J.; Heeter, R.F.; Herrmann, H.W.; Herrmann, M.C.; Zarnstorff, M.C.; Zweben, S.J.

    1996-02-01

    Ion Bernstein waves (IBWs) have been generated by mode conversion of ion cyclotron range of frequency (ICRF) fast waves in TFTR. The loss rate of fusion products in these discharges can be large, up to 10 times the first orbit loss rate. The losses are observed at the passing/trapped boundary, indicating that passing particles are being moved onto loss orbits either by increase of their {ital v}{perpendicular} due to the wave, by outward transport in minor radius, or both. The lost particles appear to be DD fusion produced tritons heated to {approximately}1.5 times their birth energy. {copyright} {ital 1996 American Institute of Physics.}

  16. Enhanced loss of fusion products during mode conversion heating in TFTR

    SciTech Connect

    Darrow, D.S.; Majeski, R.; Fisch, N.J.; Heeter, R.F.; Herrmann, H.W.; Herrmann, M.C.; Zarnstorff, M.C.; Zweben, S.J.

    1995-07-01

    Ion Bernstein waves (IBWS) have been generated by mode conversion of ion cyclotron range of frequency (ICRF) fast waves in TFTR. The loss rate of fusion products in these discharges can be large, up to 10 times the first orbit loss rate. The losses are observed at the passing/trapped boundary, indicating that passing particles are being moved onto loss orbits either by increase of their v{perpendicular} due to the wave, by outward transport in minor radius, or both. The lost particles appear to be DD fusion produced tritons heated to {approximately}1.5 times their birth energy.

  17. Estimated heats of fusion of fluoride salt mixtures suitable for thermal energy storage applications

    NASA Technical Reports Server (NTRS)

    Misra, A. K.; Whittenberger, J. D.

    1986-01-01

    The heats of fusion of several fluoride salt mixtures with melting points greater than 973 K were estimated from a coupled analysis of the available thermodynamic data and phase diagrams. Simple binary eutectic systems with and without terminal solid solutions, binary eutectics with congruent melting intermediate phases, and ternary eutectic systems were considered. Several combinations of salts were identified, most notable the eutectics LiF-22CaF2 and NaF-60MgF2 which melt at 1039 and 1273 K respectively which posses relatively high heats of fusion/gm (greater than 0.7 kJ/g). Such systems would seemingly be ideal candidates for the light weight, high energy storage media required by the thermal energy storage unit in advanced solar dynamic power systems envisioned for the future space missions.

  18. Evidences for and the Models of Fast Nonlocal Transport of Heat in Magnetic Fusion Devices

    NASA Astrophysics Data System (ADS)

    Kukushkin, A. B.; Cherepanov, K. V.

    2009-07-01

    The paper gives a short survey of (i) recent evidences for fast nonlocal transport of the heat in magnetically confined plasmas (above all, the "cold/heat pulse" experiments), (ii) interpretations of such phenomena in terms of nonlocal transport formalisms, based on the dominance of long mean-free-path energy carriers, including the interpretations of "cold pulse" experiments, and gives (iii) quantitative evidence for the domination of nonlocality in the spatial profile of electron cyclotron net radiated power in fusion reactor-grade tokamak (strong toroidal magnetic field, BT>5 T, highly reflecting walls, Rwall>0.5, and hot electron plasma, >10 keV).

  19. High-heat-flux testing of helium-cooled heat exchangers for fusion applications

    SciTech Connect

    Youchison, D.L.; Izenson, M.G.; Baxi, C.B.; Rosenfeld, J.H.

    1996-07-01

    High-heat-flux experiments on three types of helium-cooled divertor mock-ups were performed on the 30-kW electron beam test system and its associated helium flow loop at Sandia National Laboratories. A dispersion-strengthened copper alloy (DSCu) was used in the manufacture of all the mock-ups. The first heat exchanger provides for enhanced heat transfer at relatively low flow rates and much reduced pumping requirements. The Creare sample was tested to a maximum absorbed heat flux of 5.8 MW/m{sup 2}. The second used low pressure drops and high mass flow rates to achieve good heat removal. The GA specimen was tested to a maximum absorbed heat flux of 9 MW/m{sup 2} while maintaining a surface temperature below 400{degree}C. A second experiment resulted in a maximum absorbed heat flux of 34 MW/m{sup 2} and surface temperatures near 533{degree}C. The third specimen was a DSCu, axial flow, helium-cooled divertor mock-up filled with a porous metal wick which effectively increases the available heat transfer area. Low mass flow and high pressure drop operation at 4.0 MPa were characteristic of this divertor module. It survived a maximum absorbed heat flux of 16 MW/m{sup 2} and reached a surface temperature of 740{degree}C. Thermacore also manufactured a follow-on, dual channel porous metal-type heat exchanger, which survived a maximum absorbed heat flux of 14 MW/m{sup 2} and reached a maximum surface temperature of 690{degree}C. 11refs., 20 figs., 3 tabs.

  20. Basic study of heat flow in fusion welding. Progress report, March 1, 1980-February 28, 1981

    SciTech Connect

    Szekely, J.; Eagar, T.W.

    1981-01-01

    During the past year the study of electroslag welding was essentially completed with good agreement between the experimental and the theoretical results. It is concluded that the ESW process has certain inherent limitations which were not appreciated previously. The study has expanded into a more complete analysis of heat and fluid flow in arc welding. It has been shown that the heat affected zone and fusion zone sizes are not simple functions of the net heat input as predicted by all current theories. This will affect the choice of welding parameters. For example, in single pass arc welds, the smallest HAZ is usually desirable, while in multipass welding large HAZ's may be desirable to provide tempering of the previous weld beads. It may be possible to achieve both these goals at equivalent heat input by proper adjustment of the welding parameters (such as voltage, current and travel speed). Goal of the current study is to predict which combinations of parameters maximize or minimize the size of the heat affected zone and fusion zone at equal heat input.

  1. Extended fusion yield integral using pathway idea in case of Shock-compressed heated plasma

    NASA Astrophysics Data System (ADS)

    Kumar, Dilip; Haubold, Hans

    The extended non-resonant thermonuclear reaction rate probability integral obtained in Haubold and Kumar [Haubold, H.J. and Kumar, D.: 2008, Extension of thermonuclear functions through the pathway model including Maxwell-Boltzmann and Tsallis distributions, Astroparticle Physics, 29, 70-76] is used to evaluate the fusion energy by itegrating it over temperature. The closed form representation of the extended reaction rate integral via Meijer's G-function is expressed as a solution of a homogeneous differential equation. A physical model of Guderley[Guderley G. :1942, Starke kugelige und zylindrische Verdichtungsstsse in der Nhe des Kugelmittelpunktes bzw. der Zylinderachse, Luftfahrtforschung, 19, 302] has been considered for the laser driven hydrodynamical process in a compressed fusion plasma and heated strong spherical shock wave. The fusion yield integral obtained in the paper is compared with the standard fusion yield ob-tained by Haubold and John [Haubold, H.J. and John, R.W.:1981, Analytical representation of the thermonuclear reaction rate and fusion energy production in a spherical plasma shock wave, Plasma Physics, 5, 399-411]. The pathway parameter used in this paper is given an interpretation in terms of moments.

  2. RF plasma heating in toroidal fusion devices

    SciTech Connect

    Golant, V.E.; Fedorov, V.I. )

    1989-01-01

    The purpose of the present book is to provide, in seven chapters, a unified overview of the methods for rf heating of plasmas in toroidal fusion experiments. In Chapter 1 the problem of plasma heating in tokamaks and stellarators is formulated and the requirements for auxiliary heating techniques are described. This chapter also contains a brief review of the results of research on tokamaks and stellarators. Chapter 2 is devoted to a theoretical description of the principal physical effects involved in the rf heating of plasmas, especially the characteristics of wave propagation, of the mechanisms by which waves are absorbed and plasma heating takes place, and of the nonlinear effects that accompany heating. The primary emphasis is on a qualitative physical picture of these effects. Chapters 3-6, in turn, deal with the major rf heating techniques currently under investigation, electron cyclotron (ECH), ion cyclotron (ICH), lower hybrid (LHH), and Alfven wave heating. In each of these chapters the main schemes for heating are described, the results of theoretical analyses and numerical simulations are discussed, the technology of the heating systems is briefly described, and experimental work published through the end of 1984 is reviewed. Finally, in Chapter 7 the different rf heating techniques are compared; they are contrasted with neutral beam injection, and the feasibility of adiabatic compression as a means of heating plasmas is examined. Separate abstracts were prepared for each chapter of this book. 246 refs.

  3. Secondary electron emission and the bifurcation of the heat flux to the targets in fusion plasmas

    SciTech Connect

    Lee, Wonjae; Krasheninnikov, Sergei I.

    2013-12-15

    The presence of secondary electron emission (SEE) from plasma facing components in fusion devices can result in a strong localization of the heat flux from plasma to the wall and subsequent wall erosion. Usually, the impact of the SEE is considered assuming the Maxwellian distribution of the electrons coming to the surface. As a result, the SEE coefficient only depends on the temperature of primary electrons. However, the tail of primary electron distribution function in the scrape off layer (SOL) of fusion devices can be far from Maxwellian due to preferential loss of fast electrons. Consequently, it is shown that the SEE coefficient will depend on the wall potential and multiple solutions can be possible corresponding to different regimes of plasma flow to the wall: with and without SEE effects. This effect can cause two-slope electron temperature profiles in the SOL, which are often seen in experiments.

  4. Fusion reactivity, confinement, and stability of neutral-beam heated plasmas in TFTR and other tokamaks

    SciTech Connect

    Park, Hyeon, K.; Sabbagh, S.A.

    1996-05-01

    The hypothesis that the heating beam fueling profile shape connects the edge condition and improved core confinement and fusion reactivity is extensively studied on TFTR and applied to other tokamaks. The derived absolute scalings based on beam fueling profile shape for the stored energy and neutron yield can be applied to the deuterium discharges at different major radii in TFTR. These include Supershot, High poloidal beta, L-mode, and discharges with a reversed shear (RS) magnetic configuration. These scalings are also applied to deuterium-tritium discharges. The role of plasma parameters, such as plasma current, Isdo2(p), edge safety factor, qsdo5(a), and toroidal field, Bsdo2(T), in the performance and stability of the discharges is explicitly studied. Based on practical and externally controllable plasma parameters, the limitation and optimization of fusion power production of the present TFTR is investigated and a path for a discharge condition with fusion power gain, Q > 1 is suggested based on this study. Similar physics interpretation is provided for beam heated discharges on other major tokamaks.

  5. Diffusion welding in air. [solid state welding of butt joint by fusion welding, surface cleaning, and heating

    NASA Technical Reports Server (NTRS)

    Moore, T. J.; Holko, K. H. (Inventor)

    1974-01-01

    Solid state welding a butt joint by fusion welding the peripheral surfaces to form a seal is described along with, autogenetically cleaning the faying or mating surfaces of the joint by heating the abutting surfaces to 1,200 C and heating to the diffusion welding temperature in air.

  6. Fusion neutronics-streaming, shielding, heating, activation

    NASA Astrophysics Data System (ADS)

    Freiesleben, H.; Richter, D.; Seidel, K.; Unholzer, S.

    2001-07-01

    The International Thermonuclear Experimental Reactor (ITER) represents an important step towards a fusion power plant. Controlled fusion will be realized in a d-t-plasma magnetically confined by a Tokamak configuration. The first wall of the plasma chamber, blanket and vacuum vessel of ITER form a compact assembly for converting the kinetic energy of fusion neutrons into heat while simultaneously shielding the superconducting coils efficiently against neutron and accompanying photon radiation. This shielding system can be investigated with neutrons generated by low-energy accelerators. We report on experiments concerning shielding and streaming properties of a mock-up where energy spectra of both neutrons and protons were measured. They are compared with predictions of Monte Carlo calculations (code MCNP-4A) using various data libraries. The agreement justified the use of measured spectra as basis to calculate design parameters such as neutron and photon heating, radiation damage, gas production, and activation. Some of these parameters were also directly measured. The results validate the ITER design.

  7. Characteristics of GTA fusion zones and heat affected zones in superalloy 713C

    NASA Astrophysics Data System (ADS)

    Lachowicz, M. B.; Dudziński, W.

    2012-09-01

    In this paper, metallographic examinations, characterising microstructural changes in the 713C superalloy subjected to remelting by GTA method, are presented. In the fusion zone, precipitation of M23C6 or M6C carbides based on chromium and molybdenum was observed. Eutectic mixtures of ( γ- gg')-M x C y type with highly developed morphology were also perceived. It was found that, in the matrix areas with non-homogeneous chemical composition, the eutectic reaction γ-γ' can occur at the temperature close to that of the precipitation of the M x C y carbides. The presence of silicon in the carbide phases can be conducive to lowering their solidification point by creating low-melting compound NbSi. Both in the fusion zone (FZ) and in the heat-affected zone (HAZ), the secondary precipitates of the Ni3(AlTi)- γ' phase, varying in size from 50 to 100 nm, were found. The lattice mismatch factor of the γ and γ' particles was +0.48 % to +0.71 %, which is characteristic of the coherent precipitates of the Ni3Al phase enriched with titanium. No dislocations or stacking faults were observed in the microstructure of the FZ. In the HAZ, some primary undissolved γ' precipitates, with a part of aluminium probably replaced with niobium were observed, which raised their melting point.

  8. Production of tritium, neutrons, and heat based on the transmission resonance model (TRM) for cold fusion

    NASA Astrophysics Data System (ADS)

    Bush, Robert T.

    1991-05-01

    The TRM has recently been successful in fitting calorimetric data having interesting nonlinear structure. The model appears to provide a natural description for electrolytic cold fusion in terms of ``fractals''. Extended to the time dimension, the model can apparently account for the phenomenon of heat ``bursts''. The TRM combines a transmission condition involving quantized energies and an engergy shift of a Maxwell-Boltzmann energy distribution of deuterons at the cathodic surface that appears related to the concentration overpotential (hydrogen overvoltage). The model suggest three possible regimes vis-a-vis tritium production in terms of this energy shift, and indicates why measurable tritium production in the electrolytic case will tend to be the exception rather than the rule in absence of a recipe: Below a shift of approximately 2.8 meV there is production of both tritium and measureable excess heat, with the possibility of accounting for the Bockris curve indicating about a 1% correlation between excess heat and tritium. However, over the large range from about 2.8 meV to 340 meV energy shift there is a regime of observable excess heat production but little, and probably no measurable, tritium production. The third regime is more hypothetical: It begins at an energy shift of about 1 keV and extends to the boundaries of ``hot'' fusion at about 10 keV. A new type of nucelar reaction, trint (for transmission resonance-induced neutron transfer), is suggested by the model leading to triton and neutron production. A charge distribution ``polarization conjecture'' is the basis for theoretical derivation for the low-energy limit for an energy-dependent branching ratio for D-on-D. When the values of the parameters are inserted, this expression yields an estimate for the ratio of neutron-to-triton production of about 1.64×10-9. The possibility of some three-body reactions is also suggested. A comparison of the TRM's transmission energy levels for palladium deuteride

  9. Conceptual design of a laser-fusion power plant. Part II. Two technical options: 1. JADE reactor; 2. Heat transfer by heat pipes

    SciTech Connect

    Not Available

    1981-07-01

    A laser fusion reactor concept is described that employs liquid metal walls. The concept envisions a porous medium, called the JADE, of specific geometry lining the reactor cavity. Some advantages and disadvantages of the concept are pointed out. The possibility of using heat pipes for passive cooling in ICF reactors is discussed. Some of the problems are outlined. (MOW)

  10. The measurement of gamma heating in a fusion blanket test assembly

    NASA Astrophysics Data System (ADS)

    Chiu, H. K.; Bennett, E. F.; Micklich, B. J.

    Determining the distribution of gamma heating in fusion test assemblies will help guide the construction and operation of future experiments. Currently the dominant technique for spatial characterization of heating is the wide dispersal of thin film TLD's, which are limited to measurement of the total neutron + gamma dose. Heating is measured using calibrated proportional counters, which allows for the rejection of fast pulse rise events characteristic of ionizations produced by neutron induced atomic recoils. A coupled calculational and experimental program designed to demonstrate this capability was initiated at ANL. An irradiation assembly composed of graphite filled 5 x 5 x 61 cm Mg sleeves in cubic geometry was constructed. This assembly was then irradiated in turn with Co-60 gammas and 14.8 MeV neutrons produced by a D-T neutron generator in two sets of measurements with the proportional counter occupying various positions in the central channel of the assembly. Calculation of the expected dose in the assembly due to the sources at the positions of interest were made. These calculations first generated the neutral flux profile in the assembly with either ANISN or MCNP depending on the degree of detail used in the modelling of the counter. The profile is then fed into a charged particle generation model to obtain the charged particle profiles, hence energy deposition in the assembly. A comparison was made between these calculations of the energy deposition and measured energy deposition in the assembly. It is hoped that by understanding this comparison a clear picture of gamma heating in a mixed gamma and neutron environment will be obtained.

  11. External Heat Transfer Coefficient Measurements on a Surrogate Indirect Inertial Confinement Fusion Target

    SciTech Connect

    Miles, Robin; Havstad, Mark; LeBlanc, Mary; Golosker, Ilya; Chang, Allan; Rosso, Paul

    2015-09-15

    External heat transfer coefficients were measured around a surrogate Indirect inertial confinement fusion (ICF) based on the Laser Inertial Fusion Energy (LIFE) design target to validate thermal models of the LIFE target during flight through a fusion chamber. Results indicate that heat transfer coefficients for this target 25-50 W/m2∙K are consistent with theoretically derived heat transfer coefficients and valid for use in calculation of target heating during flight through a fusion chamber.

  12. External Heat Transfer Coefficient Measurements on a Surrogate Indirect Inertial Confinement Fusion Target

    DOE PAGESBeta

    Miles, Robin; Havstad, Mark; LeBlanc, Mary; Golosker, Ilya; Chang, Allan; Rosso, Paul

    2015-09-15

    External heat transfer coefficients were measured around a surrogate Indirect inertial confinement fusion (ICF) based on the Laser Inertial Fusion Energy (LIFE) design target to validate thermal models of the LIFE target during flight through a fusion chamber. Results indicate that heat transfer coefficients for this target 25-50 W/m2∙K are consistent with theoretically derived heat transfer coefficients and valid for use in calculation of target heating during flight through a fusion chamber.

  13. RF heating for fusion product studies

    SciTech Connect

    Hellsten, T. Johnson, T.; Sharapov, S. E.; Kiptily, V.; Rimini, F.; Eriksson, J.; Mantsinen, M.; Schneider, M.; Tsalas, M.

    2015-12-10

    Third harmonic cyclotron heating is an effective tool for accelerating deuterium (D) beams to the MeV energy range, suitable for studying ITER relevant fast particle physics in plasmas without significant tritium content. Such experiments were recently conducted in JET with an ITER like wall in D plasmas with {sup 3}He concentrations up to 30% in order to boost the fusion reactivity by D-{sup 3}He reactions. The harmonic cyclotron heating produces high-energy tails in the MeV range of D ions by on-axis heating and of {sup 3}He ions by tangential off-axis heating. The discharges are characterized by long sawtooth free periods and a rich spectrum of MHD modes excited by the fast D and {sup 3}He ions. The partitions of the power, which depend on the distribution function of D, vary strongly over several slowing down times. Self-consistent modelling of the distribution function with the SELFO-light code are presented and compared with experimental data from fast particle diagnostics.

  14. RF heating for fusion product studies

    NASA Astrophysics Data System (ADS)

    Hellsten, T.; Johnson, T.; Sharapov, S. E.; Kiptily, V.; Eriksson, J.; Mantsinen, M.; Schneider, M.; Rimini, F.; Tsalas, M.

    2015-12-01

    Third harmonic cyclotron heating is an effective tool for accelerating deuterium (D) beams to the MeV energy range, suitable for studying ITER relevant fast particle physics in plasmas without significant tritium content. Such experiments were recently conducted in JET with an ITER like wall in D plasmas with 3He concentrations up to 30% in order to boost the fusion reactivity by D-3He reactions. The harmonic cyclotron heating produces high-energy tails in the MeV range of D ions by on-axis heating and of 3He ions by tangential off-axis heating. The discharges are characterized by long sawtooth free periods and a rich spectrum of MHD modes excited by the fast D and 3He ions. The partitions of the power, which depend on the distribution function of D, vary strongly over several slowing down times. Self-consistent modelling of the distribution function with the SELFO-light code are presented and compared with experimental data from fast particle diagnostics.

  15. Alpha Heating and Burning Plasmas in Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Betti, R.; Christopherson, A. R.; Bose, A.; Woo, K. M.

    2016-05-01

    Assessing the degree to which fusion alpha particles contribute to the fusion yield is essential to understanding the onset of the thermal runaway process of thermonuclear ignition. It is shown that in inertial confinement fusion, the yield enhancement due to alpha particle heating (before ignition occurs) depends on the generalized Lawson parameter that can be inferred from experimental observables. A universal curve valid for arbitrary laser-fusion targets shows the yield amplification due to alpha heating for a given value of the Lawson parameter. The same theory is used to determine the onset of the burning plasma regime when the alpha heating exceeds the compression work. This result can be used to assess the performance of current ignition experiments at the National Ignition Facility.

  16. Facility for high heat flux testing of irradiated fusion materials and components using infrared plasma arc lamps

    SciTech Connect

    Sabau, Adrian S; Ohriner, Evan Keith; Kiggans, Jim; Harper, David C; Snead, Lance Lewis; Schaich, Charles Ross

    2014-01-01

    A new high-heat flux testing facility using water-wall stabilized high-power high-pressure argon Plasma Arc Lamps (PALs) has been developed for fusion applications. It can handle irradiated plasma facing component materials and mock-up divertor components. Two PALs currently available at ORNL can provide maximum incident heat fluxes of 4.2 and 27 MW/m2 over a heated area of 9x12 and 1x10 cm2, respectively, which are fusion-prototypical steady state heat flux conditions. The facility will be described and the main differences between the photon-based high-heat flux testing facilities, such as PALs, and the e-beam and particle beam facilities more commonly used for fusion HHF testing are discussed. The components of the test chamber were designed to accommodate radiation safety and materials compatibility requirements posed by high-temperature exposure of low levels irradiated tungsten articles. Issues related to the operation and temperature measurements during testing are presented and discussed.

  17. Highly bright X-ray generator using heat of fusion with a specially designed rotating anticathode

    PubMed Central

    Sakabe, N.; Ohsawa, S.; Sugimura, T.; Ikeda, M.; Tawada, M.; Watanabe, N.; Sasaki, K.; Ohshima, K.; Wakatsuki, M.; Sakabe, K.

    2008-01-01

    A new type of rotating anticathode X-ray generator has been developed, in which the electron beam irradiates the inner surface of a U-shaped anticathode (Cu). A high-flux electron beam is focused on the inner surface by optimizing the shape of the bending magnet. The power of the electron beam can be increased to the point at which the irradiated part of the inner surface is melted, because a strong centrifugal force fixes the melted part on the inner surface. When the irradiated part is melted, a large amount of energy is stored as the heat of fusion, resulting in emission of X-rays 4.3 times more brilliant than can be attained by a conventional rotating anticathode. Oscillating translation of the irradiated position on the inner surface during use is expected to be very advantageous for extending the target life. A carbon film coating on the inner surface is considered to suppress evaporation of the target metal and will be an important technique in further realization of highly bright X-ray generation. PMID:18421146

  18. Highly bright X-ray generator using heat of fusion with a specially designed rotating anticathode.

    PubMed

    Sakabe, N; Ohsawa, S; Sugimura, T; Ikeda, M; Tawada, M; Watanabe, N; Sasaki, K; Ohshima, K; Wakatsuki, M; Sakabe, K

    2008-05-01

    A new type of rotating anticathode X-ray generator has been developed, in which the electron beam irradiates the inner surface of a U-shaped anticathode (Cu). A high-flux electron beam is focused on the inner surface by optimizing the shape of the bending magnet. The power of the electron beam can be increased to the point at which the irradiated part of the inner surface is melted, because a strong centrifugal force fixes the melted part on the inner surface. When the irradiated part is melted, a large amount of energy is stored as the heat of fusion, resulting in emission of X-rays 4.3 times more brilliant than can be attained by a conventional rotating anticathode. Oscillating translation of the irradiated position on the inner surface during use is expected to be very advantageous for extending the target life. A carbon film coating on the inner surface is considered to suppress evaporation of the target metal and will be an important technique in further realization of highly bright X-ray generation. PMID:18421146

  19. Facility for high-heat flux testing of irradiated fusion materials and components using infrared plasma arc lamps

    NASA Astrophysics Data System (ADS)

    Sabau, Adrian S.; Ohriner, Evan K.; Kiggans, Jim; Harper, David C.; Snead, Lance L.; Schaich, Charles R.

    2014-04-01

    A new high-heat flux testing (HHFT) facility using water-wall stabilized high-power high-pressure argon plasma arc lamps (PALs) has been developed for fusion applications. It can accommodate irradiated plasma facing component materials and sub-size mock-up divertor components. Two PALs currently available at Oak Ridge National Laboratory can provide maximum incident heat fluxes of 4.2 and 27 MW m-2, which are prototypic of fusion steady state heat flux conditions, over a heated area of 9 × 12 and 1 × 10 cm2, respectively. The use of PAL permits the heat source to be environmentally separated from the components of the test chamber, simplifying the design to accommodate safe testing of low-level irradiated articles and materials under high-heat flux. Issues related to the operation and temperature measurements during testing of tungsten samples are presented and discussed. The relative advantages and disadvantages of this photon-based HHFT facility are compared to existing e-beam and particle beam facilities used for similar purposes.

  20. High-heat-flux testing of irradiated tungsten-based materials for fusion applications using infrared plasma arc lamps

    SciTech Connect

    Sabau, Adrian S.; Ohriner, Evan K.; Kiggans, Jim; Schaich, Charles R.; Ueda, Yoshio; Harper, David C.; Katoh, Yutai; Snead, Lance L.; Byun, Thak S.

    2014-11-01

    Testing of advanced materials and component mock-ups under prototypical fusion high-heat-flux conditions, while historically a mainstay of fusion research, has proved to be quite challenging, especially for irradiated materials. A new high-heat-flux–testing (HHFT) facility based on water-wall plasma arc lamps (PALs) is now introduced for materials and small-component testing. Two PAL systems, utilizing a 12 000°C plasma arc contained in a quartz tube cooled by a spiral water flow over the inside tube surface, provide maximum incident heat fluxes of 4.2 and 27 MW/m2 over areas of 9×12 and 1×10 cm2, respectively. This paper will present the overall design and implementation of a PAL-based irradiated material target station (IMTS). The IMTS is primarily designed for testing the effects of heat flux or thermal cycling on material coupons of interest, such as those for plasma-facing components. Temperature results are shown for thermal cycling under HHFT of tungsten coupon specimens that were neutron irradiated in HFIR. Finally, radiological surveys indicated minimal contamination of the 36×36×18 cm test section, demonstrating the capability of the new facility to handle irradiated specimens at high temperature.

  1. High-heat-flux testing of irradiated tungsten-based materials for fusion applications using infrared plasma arc lamps

    DOE PAGESBeta

    Sabau, Adrian S.; Ohriner, Evan K.; Kiggans, Jim; Schaich, Charles R.; Ueda, Yoshio; Harper, David C.; Katoh, Yutai; Snead, Lance L.; Byun, Thak S.

    2014-11-01

    Testing of advanced materials and component mock-ups under prototypical fusion high-heat-flux conditions, while historically a mainstay of fusion research, has proved to be quite challenging, especially for irradiated materials. A new high-heat-flux–testing (HHFT) facility based on water-wall plasma arc lamps (PALs) is now introduced for materials and small-component testing. Two PAL systems, utilizing a 12 000°C plasma arc contained in a quartz tube cooled by a spiral water flow over the inside tube surface, provide maximum incident heat fluxes of 4.2 and 27 MW/m2 over areas of 9×12 and 1×10 cm2, respectively. This paper will present the overall design andmore » implementation of a PAL-based irradiated material target station (IMTS). The IMTS is primarily designed for testing the effects of heat flux or thermal cycling on material coupons of interest, such as those for plasma-facing components. Temperature results are shown for thermal cycling under HHFT of tungsten coupon specimens that were neutron irradiated in HFIR. Finally, radiological surveys indicated minimal contamination of the 36×36×18 cm test section, demonstrating the capability of the new facility to handle irradiated specimens at high temperature.« less

  2. Alpha Heating and Burning Plasmas in Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Betti, R.; Christopherson, A. R.; Spears, B. K.; Nora, R.; Bose, A.; Howard, J.; Woo, K. M.; Edwards, M. J.; Sanz, J.

    2015-06-01

    Estimating the level of alpha heating and determining the onset of the burning plasma regime is essential to finding the path towards thermonuclear ignition. In a burning plasma, the alpha heating exceeds the external input energy to the plasma. Using a simple model of the implosion, it is shown that a general relation can be derived, connecting the burning plasma regime to the yield enhancement due to alpha heating and to experimentally measurable parameters such as the Lawson ignition parameter. A general alpha-heating curve is found, independent of the target and suitable to assess the performance of all laser fusion experiments whether direct or indirect drive. The onset of the burning plasma regime inside the hot spot of current implosions on the National Ignition Facility requires a fusion yield of about 50 kJ.

  3. Alpha Heating and Burning Plasmas in Inertial Confinement Fusion.

    PubMed

    Betti, R; Christopherson, A R; Spears, B K; Nora, R; Bose, A; Howard, J; Woo, K M; Edwards, M J; Sanz, J

    2015-06-26

    Estimating the level of alpha heating and determining the onset of the burning plasma regime is essential to finding the path towards thermonuclear ignition. In a burning plasma, the alpha heating exceeds the external input energy to the plasma. Using a simple model of the implosion, it is shown that a general relation can be derived, connecting the burning plasma regime to the yield enhancement due to alpha heating and to experimentally measurable parameters such as the Lawson ignition parameter. A general alpha-heating curve is found, independent of the target and suitable to assess the performance of all laser fusion experiments whether direct or indirect drive. The onset of the burning plasma regime inside the hot spot of current implosions on the National Ignition Facility requires a fusion yield of about 50 kJ. PMID:26197131

  4. Alpha heating and burning plasmas in inertial confinement fusion

    SciTech Connect

    Betti, R.; Christopherson, A. R.; Spears, B. K.; Nora, R.; Bose, A.; Howard, J.; Woo, K. M.; Edwards, M. J.; Sanz, J.

    2015-06-01

    Estimating the level of alpha heating and determining the onset of the burning plasma regime is essential to finding the path towards thermonuclear ignition. In a burning plasma, the alpha heating exceeds the external input energy to the plasma. Using a simple model of the implosion, it is shown that a general relation can be derived, connecting the burning plasma regime to the yield enhancement due to alpha heating and to experimentally measurable parameters such as the Lawson ignition parameter. A general alpha-heating curve is found, independent of the target and suitable to assess the performance of all laser fusion experiments whether direct or indirect drive. The onset of the burning plasma regime inside the hot spot of current implosions on the National Ignition Facility requires a fusion yield of about 50 kJ.

  5. Adaptive {delta}f Monte Carlo Method for Simulation of RF-heating and Transport in Fusion Plasmas

    SciTech Connect

    Hoeoek, J.; Hellsten, T.

    2009-11-26

    Essential for modeling heating and transport of fusion plasma is determining the distribution function of the plasma species. Characteristic for RF-heating is creation of particle distributions with a high energy tail. In the high energy region the deviation from a Maxwellian distribution is large while in the low energy region the distribution is close to a Maxwellian due to the velocity dependency of the collision frequency. Because of geometry and orbit topology Monte Carlo methods are frequently used. To avoid simulating the thermal part, {delta}f methods are beneficial. Here we present a new {delta}f Monte Carlo method with an adaptive scheme for reducing the total variance and sources, suitable for calculating the distribution function for RF-heating.

  6. ECR heating power modulation as a means to ease the overcoming of the radiation barrier in fusion devices

    SciTech Connect

    Morozov, D. Kh.; Pshenov, A. A.; Mineev, A. B.

    2010-06-15

    A method is proposed to ease the overcoming of the impurity radiation barrier during current drive in tokamaks, as well as in alternative fusion and plasmochemical systems with ECR plasma heating. The method is based on the fact that the dependence of the ionization rate on the electron temperature is strongly nonlinear and the dependence of the recombination rate on the latter is weaker. The result is that, during temperature oscillations, the effective temperature for ionization-recombination processes is higher than that in a steady state, so the ionization equilibrium is shifted and strongly emitting ions are stripped more rapidly. Thereby, ECR plasma heating in the initial discharge stage can be made more efficient by modulating the heating power at a low frequency. The evolution of the electron temperature in a homogeneous hydrogen plasma with a carbon impurity and in small ISX-scale tokamaks is simulated numerically, as well as the evolution of the electron and ion temperatures and of the current during discharge startup in the ITER device. Numerical simulations of the effect of modulation of the ECR heating power on the rate of heating of nitrogen, oxygen, and argon plasmas were also carried out. The assumption of coronal equilibrium is not used. It is shown that the low-frequency modulation of the heating power can substantially ease the overcoming of the radiation barrier.

  7. Heat-labile- and heat-stable-toxoid fusions (LTR₁₉₂G-STaP₁₃F) of human enterotoxigenic Escherichia coli elicit neutralizing antitoxin antibodies.

    PubMed

    Liu, Mei; Ruan, Xiaosai; Zhang, Chengxian; Lawson, Steve R; Knudsen, David E; Nataro, James P; Robertson, Donald C; Zhang, Weiping

    2011-10-01

    Enterotoxigenic Escherichia coli (ETEC) strains are a major cause of diarrheal disease in humans and animals. Adhesins and enterotoxins, including heat-labile (LT) and heat-stable (STa) toxins, are the key virulence factors. Antigenic adhesin and LT antigens have been used in developing vaccines against ETEC diarrhea. However, STa has not been included because of its poor immunogenicity and potent toxicity. Our recent study showed that porcine-type STa toxoids became immunogenic and elicited neutralizing anti-STa antibodies after being genetically fused to a full-length porcine-type LT toxoid, LT(R₁₉₂G) (W. Zhang et al., Infect. Immun. 78:316-325, 2010). In this study, we mutated human-type LT and STa genes, which are highly homologous to porcine-type toxin genes, for a full-length LT toxoid (LT(R₁₉₂)) and a full-length STa toxoid (STa(P₁₃F)) and genetically fused them to produce LT₁₉₂-STa₁₃ toxoid fusions. Mice immunized with LT₁₉₂-STa₁₃ fusion antigens developed anti-LT and anti-STa IgG (in serum and feces) and IgA antibodies (in feces). Moreover, secretory IgA antibodies from immunized mice were shown to neutralize STa and cholera toxins in T-84 cells. In addition, we fused the STa₁₃ toxoid at the N terminus and C terminus, between the A1 and A2 peptides, and between the A and B subunits of LT₁₉₂ to obtain different fusions in order to explore strategies for enhancing STa immunogenicity. This study demonstrated that human-type LT₁₉₂-STa₁₃ fusions induce neutralizing antitoxin antibodies and provided important information for developing toxoid vaccines against human ETEC diarrhea. PMID:21788385

  8. NaOH-based high temperature heat-of-fusion thermal energy storage device

    NASA Technical Reports Server (NTRS)

    Cohen, B. M.; Rice, R. E.

    1978-01-01

    A material called Thermkeep, developed as a low-cost method for the storage of thermal energy for solar electric power generating systems is discussed. The storage device consists of an insulated cylinder containing Thermkeep in which coiled tubular heat exchangers are immersed. A one-tenth scale model of the design contains 25 heat-exchanger tubes and 1500 kg of Thermkeep. Its instrumentation includes thermocouples to measure internal Thermkeep temperatures, vessel surface, heated shroud surface, and pressure gauges to indicate heat-exchanger pressure drops. The test-circuit design is presented and experimental results are discussed.

  9. Proceedings of US/Japan workshop, Q219 on high heat flux components and plasma surface interactions for next fusion devices

    SciTech Connect

    Ulrickson, M.A.; Stevens, P.L.; Hino, T.; Hirohata, Y.

    1996-12-01

    This report contains the viewgraphs from the proceedings of US/Japan Workshop on High Heat Flux Components and Plasma Surface Interactions for Next Fusion Devices. Some of the general topics covered by this report are: PFC/PSI in tokamak and helical devices; development of high heat flux components; PSIS and plasma facing materials;tritium; and material damage.

  10. The design of a multimegawatt heat pipe radiator for an inertial fusion rocket powered manned Mars mission

    NASA Technical Reports Server (NTRS)

    Murray, K. A.

    1988-01-01

    A system of heat pipe radiators has been designed to provide waste heat rejection for an inertial fusion powered spacecraft capable of manned missions to other planets. The radiators are arrays of unfinned, arterial heat pipes operating at 1500 and 900 K. Liquid metal coolant carries up to 8000 MW of waste heat through feed pipes from on-board components (laser drivers and coil shield). The radiators do not rely on armor for protection from micrometeoroid penetration. An armored radiator design for this application with a 99 percent survivability would have a specific mass of 0.06 to 0.11 kg/kW at 1500 K. Instead, a segmentation of heat pipes is used, and bumpers are utilized to protect the feed pipes. This design reduces the specific mass to 0.015 to 0.04 kg/kW for the coil shield radiator (1500 K) and 0.06 to 0.12 kg/kW for the laser driver radiator (900 K).

  11. Decay heat measurement of fusion related materials in an ITER-like neutron field

    NASA Astrophysics Data System (ADS)

    Morimoto, Y.; Ochiai, K.; Maekawa, F.; Wada, M.; Nishitani, T.; Takeuchi, H.

    2002-12-01

    Decay heat is one of the most important factors for the safety aspect of ITER. Especially, the prediction of decay heat with an uncertainty less than 15% for the three most important materials, i.e., copper, type-316 stainless steel (SS316) and tungsten, is strongly requested by designers of ITER. To provide experimental decay heat data needed for validation of decay heat calculations for SS316 and copper, an experiment was conducted as the ITER/EDA task T-426. An ITER-like neutron field was constructed, and decay heat source distributions in thick copper and SS316 plates were measured with the whole energy absorption spectrometer. The measured decay heat distributions in the thick sample plates were compared with the predicted values by MCNP calculations. It was found that the use of an effective activation cross-section calculated by MCNP was needed to consider the self-shielding effects and, for both cases, MCNP calculations could predict the decay heat adequately.

  12. Plasma Heating and Current Drive for Fusion Reactors

    NASA Astrophysics Data System (ADS)

    Holtkamp, Norbert

    2010-02-01

    ITER (in Latin ``the way'') is designed to demonstrate the scientific and technological feasibility of fusion energy. Fusion is the process by which two light atomic nuclei combine to form a heavier one and thus release energy. In the fusion process two isotopes of hydrogen - deuterium and tritium - fuse together to form a helium atom and a neutron. Thus fusion could provide large scale energy production without greenhouse effects; essentially limitless fuel would be available all over the world. The principal goals of ITER are to generate 500 megawatts of fusion power for periods of 300 to 500 seconds with a fusion power multiplication factor, Q, of at least 10. Q >= 10 (input power 50 MW / output power 500 MW). In a Tokamak the definition of the functionalities and requirements for the Plasma Heating and Current Drive are relevant in the determination of the overall plant efficiency, the operation cost of the plant and the plant availability. This paper summarise these functionalities and requirements in perspective of the systems under construction in ITER. It discusses the further steps necessary to meet those requirements. Approximately one half of the total heating will be provided by two Neutral Beam injection systems at with energy of 1 MeV and a beam power of 16 MW into the plasma. For ITER specific test facility is being build in order to develop and test the Neutral Beam injectors. Remote handling maintenance scheme for the NB systems, critical during the nuclear phase of the project, will be developed. In addition the paper will give an overview over the general status of ITER. )

  13. Material ejection and surface morphology changes during transient heat loading of tungsten as plasma-facing component in fusion devices

    NASA Astrophysics Data System (ADS)

    Suslova, A.; El-Atwani, O.; Harilal, S. S.; Hassanein, A.

    2015-03-01

    We investigated the effect of edge-localized mode like transient heat events on pristine samples for two different grades of deformed tungsten with ultrafine and nanocrystalline grains as potential candidates for plasma-facing components. Pulses from a laser beam with durations ∼1 ms and operating in the near infrared wavelength were used for simulating transient heat loading in fusion devices. We specifically focused on investigating and analysis of different mechanisms for material removal from the sample surface under repetitive transient heat loads. Several techniques were applied for analysing different mechanisms leading to material removal from the W surface under repetitive transient heat loads which include witness plates for collected ejected material, and subsequent analysis using x-ray photoelectron spectroscopy and scanning electron microscopy, visible imaging using fast-gated camera, and evaluating thermal emission from the particles using optical emission spectroscopy. Our results show a significantly improved performance of polycrystalline cold-rolled tungsten compared to tungsten produced using an orthogonal machining process under repetitive transient loads for a wide range of the power densities.

  14. Effect of Heat Treatment on Silicon Carbide Based Joining Materials for Fusion Energy

    SciTech Connect

    Lewinsohn, Charles A.; Jones, Russell H.; Nozawa, T.; Kotani, M.; Kishimoto, H.; Katoh, Y.; Kohyama, A.

    2001-10-01

    Two general approaches to obtaining silicon carbide-based joint materials were used. The first method relies on reactions between silicon and carbon to form silicon carbide, or to bond silicon carbide powders together. The second method consists of pyrolysing a polycarbosilane polymer to yield an amorphous, covalently bonded material. In order to assess the long-term durability of the joint materials, various heat treatments were performed and the effects on the mechanical properties of the joints were measured. Although the joints derived from the polycarbosilane polymer were not the strongest, the value of strength measured was not affected by heat treatment. On the other hand, the value of the strength of the reaction-based joints was affected by heat treatment, indicating the presence of residual stresses or unreacted material subsequent to processing. Further investigation of reaction-based joining should consist of detailed microscopic studies; however, continued study of joints derived from polymers is also warranted.

  15. Fast ignition when heating the central part of an inertial confinement fusion target by an ion beam

    SciTech Connect

    Gus’kov, S. Yu.; Zmitrenko, N. V.; Il’in, D. V.; Sherman, V. E.

    2014-11-15

    We investigate the ignition and burning of a precompressed laser fusion target when it is rapidly heated by an ion beam with the formation of a temperature peak in the central part of the target. We present the results of our comprehensive numerical simulations of the problem that include the following components: (1) the target compression under the action of a profiled laser pulse, (2) the heating of the compressed target with spatially nonuniform density and temperature distributions by a beam of high-energy ions, and (3) the burning of the target with the initial spatial density distribution formed at the instant of maximum target compression and the initial spatial temperature distribution formed as a result of the compressed-target heating by an ion beam. The dependences of the threshold energies of the igniting ion beam and the thermonuclear gain on the width of the Gaussian beam ion energy spectrum have been established. The peculiarities of fast ignition by an ion beam related to the spatial distribution of parameters for the target precompressed by a laser pulse are discussed.

  16. Based on Landsat8 multi-resolution remote sensing image fusion of urban heat-island difference analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Zhou, Guoqing; Wang, Yuefeng; Ye, Siqi; Han, Caiyun

    2015-12-01

    Over the years, with the accelerating of city construction, urban heat-island effect has become increasingly significant.According to meteorological data of nearly ten years, some parts of the regional land surface temperature is higher, and then it influence people's introduction and living directly. At the same time it also affect the ecological environment of the earth.This article bases on the Landsat8 remote sensing image of 2014, through the different resolution of image fusion to analyze the differences surface temperature of the study area and forecast the future development tendency. Research finding: in different resolution, due to details of the objects reflecting obviously differences, affected by it, the surface temperature also exists obvious difference. The lower resolution, the surface temperature difference is smaller; on the contrary,the higher resolution makes surface temperature difference more significant. This shows that with the expansion of cities and the change of vegetation, water, the regional differences of heat-island effect is more obvious. In future development, how to coordinate and plan buildings, factories, vegetation, water, etc will affect the distribution of urban heat-island effect.

  17. Simulation of Fusion Plasmas

    ScienceCinema

    Holland, Chris [UC San Diego, San Diego, California, United States

    2010-01-08

    The upcoming ITER experiment (www.iter.org) represents the next major milestone in realizing the promise of using nuclear fusion as a commercial energy source, by moving into the ?burning plasma? regime where the dominant heat source is the internal fusion reactions. As part of its support for the ITER mission, the US fusion community is actively developing validated predictive models of the behavior of magnetically confined plasmas. In this talk, I will describe how the plasma community is using the latest high performance computing facilities to develop and refine our models of the nonlinear, multiscale plasma dynamics, and how recent advances in experimental diagnostics are allowing us to directly test and validate these models at an unprecedented level.

  18. Propagation of a laser beam in a time-varying waveguide. [plasma heating for controlled fusion

    NASA Technical Reports Server (NTRS)

    Chapman, J. M.; Kevorkian, J.

    1978-01-01

    The propagation of an axisymmetric laser beam in a plasma column having a radially parabolic electron density distribution is reported. For the case of an axially uniform waveguide it is found that the basic characteristics of alternating focusing and defocusing beams are maintained. However, the intensity distribution is changed at the foci and outer-beam regions. The features of paraxial beam propagation are discussed with reference to axially varying waveguides. Laser plasma coupling is considered noting the case where laser heating produces a density distribution radially parabolic near the axis and the energy absorbed over the focal length of the plasma is small. It is found that: (1) beam-propagation stability is governed by the relative magnitude of the density fluctuations existing in the axial variation of the waveguides due to laser heating, and (2) for beam propagation in a time-varying waveguide, the global instability of the propagation is a function of the initial fluctuation growth rate as compared to the initial time rate of change in the radial curvature of the waveguide.

  19. Physics of Fusion Welding

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.

    1986-01-01

    Applicabilities and limitations of three techniques analyzed. NASA technical memorandum discusses physics of electron-beam, gas/ tungsten-arc, and laser-beam welding. From comparison of capabilities and limitations of each technique with regard to various welding conditions and materials, possible to develop criteria for selecting best welding technique in specific application. All three techniques classified as fusion welding; small volume of workpiece melted by intense heat source. Heat source moved along seam, leaving in wake solid metal that joins seam edges together.

  20. Transport of radial heat flux and second sound in fusion plasmas

    SciTech Connect

    Guercan, Oe. D.; Berionni, V.; Hennequin, P.; Morel, P.; Vermare, L.; Diamond, P. H.; Garbet, X.; Dif-Pradalier, G.; Kosuga, Y.

    2013-02-15

    Simple flux-gradient relations that involve time delay and radial coupling are discussed. Such a formulation leads to a rather simple description of avalanches and may explain breaking of gyroBohm transport scaling. The generalization of the flux-gradient relation (i.e., constitutive relation), which involve both time delay and spatial coupling, is derived from drift-kinetic equation, leading to kinetic definitions of constitutive elements such as the flux of radial heat flux. This allows numerical simulations to compute these cubic quantities directly. The formulation introduced here can be viewed as an extension of turbulence spreading to include the effect of spreading of cross-phase as well as turbulence intensity, combined in such a way to give the flux. The link between turbulence spreading and entropy production is highlighted. An extension of this formulation to general quasi-linear theory for the distribution function in the phase space of radial position and parallel velocity is also discussed.

  1. Basic study of heat flow in fusion welding. Progress report to the US Department of Energy, October 1, 1980-October 1, 1982

    SciTech Connect

    Szekely, J.; Eagar, T.W.

    1981-10-15

    Progress is reported in an investigation whose purpose is the development of a fundamental understanding of heat and fluid flow in fusion welding operations and of the role played by heat and fluid flow in determining the mechanical and structural properties of the welds produced. To date, a good quantitative description has been developed of the temperature profiles for electroslag welding systems and an understanding has been derived of factors that determine the size of the heat-affected zone (HAZ). Mathematical models of heat and fluid flow in the weld pool and of the temperature distribution in weldments using a moving heat source were developed. Experiments were performed to determine the effects of welding process parameters on the size and shape of the weld pool and of the HAZ. An unexpected finding was that the size of the HAZ was not markedly dependent on any of the welding process parameters. (LCL)

  2. Microstructure evolution in the fusion welding of heat-treatable Al-Cu-Li alloys. Ph.D. Thesis

    SciTech Connect

    Hou, K.

    1994-01-01

    Aluminum alloys 2090 and 2195 and Al-2.5Cu were welded autogenously using the gas tungsten-arc (GTA) and CO2 laser beam (LB) welding processes. Relationships between microstructure and mechanical properties in the fusion zone (FZ) and the heat-affected zone (HAZ) in both the as-welded and the postweld heat-treated conditions were studied. Solute segregation due to non-equilibrium solidification in the FZ and its effect on precipitation after postweld aging was quantitatively investigated. After aging treatment, precipitates were found surrounding eutectic regions where higher solute content was measured. Fast cooling LB weld exhibited narrower solute enriched regions and narrower precipitate segregation zones (PSZ`s) adjacent to the eutectic. A partial recovery of strength and hardness in the FZ`s was achieved by postweld aging at 160 C and 190 C for 16 hours. A higher Li/Cu ratio in 2090 promoted the formation of uniformly distributed delta(prime) precipitates in the as-welded HAZ. An evident reduction in the FZ ductility occurred in the 2195 LB welds due to the existence of porosity and shrinkage cavities, and the constraint effect from narrower FZ`s. GTA welds in both 2090 and 2195 alloys exhibited a hardness recovery in the near HAZ, which was not obvious in the LB welds. Postweld aging enhanced this hardness variation. Overaging, dissolution and reprecipitation of various strengthening precipitates occurred in the different regions of the HAZ, and consequently induced the hardness variation. Higher heat inputs increased the HAZ width and enhanced the hardness increase in the near HAZ. Aged HAZ microstructure was affected by the precipitation in the as-welded condition. The formation of Li-containing precipitates in the GTA HAZ, especially alpha(prime) in Li-lean 2195, consumed Li from the matrix. Consequently, the precipitation of T1 was affected.

  3. Heating power feedback control for CO2 laser fusion splicers

    NASA Astrophysics Data System (ADS)

    Zheng, Wenxin; Sugawara, Hiroshi; Mizushima, Toshirou; Klimowych, William

    2013-02-01

    A novel feedback control method has been developed for an automated splicer using a CO2 laser as the heating element. The feedback method employs a sensor for laser beam power and CMOS cameras as sensors for fiber luminescence which is directly related to glass temperature. The CO2 laser splicer with this type of feedback system provides a consistent platform for the fiber laser and bio-medical industry for fabrication of fused glass components such as tapers, couplers, combiners, mode-field adaptors, and fusion splices. With such a closed loop feedback system, both splice loss and peak-to-peak taper ripple are greatly reduced.

  4. Favorite Demonstrations: The Hair Roller as a Mind Bender: A Demonstration of Specific Heat and Heat of Fusion.

    ERIC Educational Resources Information Center

    Bonicamp, Judith M.; And Others

    1989-01-01

    Provides a demonstration for showing the usefulness of thermal principles to physical science students who have difficulty understanding conventional explanations. Outlines materials, procedures, discussion, and advantages of using this method. (RT)

  5. LiWall Fusion - The New Concept of Magnetic Fusion

    SciTech Connect

    L.E. Zakharov

    2011-01-12

    Utilization of the outstanding abilities of a liquid lithium layer in pumping hydrogen isotopes leads to a new approach to magnetic fusion, called the LiWall Fusion. It relies on innovative plasma regimes with low edge density and high temperature. The approach combines fueling the plasma by neutral injection beams with the best possible elimination of outside neutral gas sources, which cools down the plasma edge. Prevention of cooling the plasma edge suppresses the dominant, temperature gradient related turbulence in the core. Such an approach is much more suitable for controlled fusion than the present practice, relying on high heating power for compensating essentially unlimited turbulent energy losses.

  6. Kinetic advantage of controlled intermediate nuclear fusion

    SciTech Connect

    Guo Xiaoming

    2012-09-26

    The dominated process of controlled fusion is to let nuclei gain enough kinetic energy to overcome Coulomb barrier. As a result, a fusion scheme can consider two factors in its design: to increase kinetic energy of nuclei and to alter the Coulomb barrier. Cold Fusion and Hot fusion are all one-factor schemes while Intermediate Fusion is a twofactors scheme. This made CINF kinetically superior. Cold Fusion reduces deuteron-deuteron distance, addressing Coulomb barrier, and Hot Fusion heat up plasma into extreme high temperature, addressing kinetic energy. Without enough kinetic energy made Cold Fusion skeptical. Extreme high temperature made Hot Fusion very difficult to engineer. Because CIFN addresses both factors, CIFN is a more promising technique to be industrialized.

  7. Kinetic advantage of controlled intermediate nuclear fusion

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoming

    2012-09-01

    The dominated process of controlled fusion is to let nuclei gain enough kinetic energy to overcome Coulomb barrier. As a result, a fusion scheme can consider two factors in its design: to increase kinetic energy of nuclei and to alter the Coulomb barrier. Cold Fusion and Hot fusion are all one-factor schemes while Intermediate Fusion is a twofactors scheme. This made CINF kinetically superior. Cold Fusion reduces deuteron-deuteron distance, addressing Coulomb barrier, and Hot Fusion heat up plasma into extreme high temperature, addressing kinetic energy. Without enough kinetic energy made Cold Fusion skeptical. Extreme high temperature made Hot Fusion very difficult to engineer. Because CIFN addresses both factors, CIFN is a more promising technique to be industrialized.

  8. Magnetic fusion energy plasma interactive and high heat flux components. Volume II. Technical assessment of the critical issues and problem areas in high heat flux materials and component development

    SciTech Connect

    Abdou, M.A.; Boyd, R.D.; Easor, J.R.; Gauster, W.B.; Gordon, J.D.; Mattas, R.F.; Morgan, G.D.; Ulrickson, M.A,; Watson, R.D.; Wolfer, W.G,

    1984-06-01

    A technical assessment of the critical issues and problem areas for high heat flux materials and components (HHFMC) in magnetic fusion devices shows these problems to be of critical importance for the successful operation of near-term fusion experiments and for the feasibility and attractiveness of long-term fusion reactors. A number of subgroups were formed to assess the critical HHFMC issues along the following major lines: (1) source conditions, (2) systems integration, (3) materials and processes, (4) thermal hydraulics, (5) thermomechanical response, (6) electromagnetic response, (7) instrumentation and control, and (8) test facilities. The details of the technical assessment are presented in eight chapters. The primary technical issues and needs for each area are highlighted.

  9. Measuring the Heats of Water.

    ERIC Educational Resources Information Center

    Hunt, James L.; Tegart, Tracy L.

    1994-01-01

    Uses common equipment (tea kettle and vacuum bottles) to precisely measure the specific heat, latent heat of fusion, and latent heat of vaporization of water. Provides descriptions for all three experiments. (MVL)

  10. Determination of Heats of Fusion: Using Differential Scanning Calorimetry for the AP Chemistry Courses.

    ERIC Educational Resources Information Center

    Temme, Susan M.

    1995-01-01

    Describes an exercise designed to be used in an Advanced Placement (AP) chemistry course to accompany the study of thermodynamics. Uses Differential Scanning Calorimetry in teaching the concepts of thermochemistry and thermodynamics. (JRH)

  11. Alpha Heating and Burning Plasmas in Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Christopherson, A. R.

    2015-11-01

    In inertial confinement fusion, a spherical capsule of cryogenic DT is accelerated inward at a high velocity. Near stagnation, a dense hot spot is formed where the deuterium and tritium ions begin to fuse, creating a 3.5-MeV alpha particle per reaction. These alpha particles deposit energy back into the plasma, thereby increasing the pressure, temperature, and reaction rate. This feedback process is called ``alpha heating,'' and ignition is a direct consequence of this thermal instability. The onset of a burning-plasma regime occurs when the total alpha-particle energy produced exceeds the shell compression work. Using an analytic compressible-shell model for the implosion, it is found that the onset of the burning-plasma regime is a unique function of the neutron yield enhancement caused by alpha particles for any target, direct or indirect drive. This yield enhancement can then be inferred from experimentally measureable quantities, such as the Lawson parameter. From this analysis, the onset of a burning plasma occurs at yields exceeding 50 kJ for implosions at the National Ignition Facility. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and DE-FC02-04ER54789 (Fusion Science Center).

  12. Upgrade of repetitive fast-heating fusion driver HAMA to implode a shell target by using diode pumped solid state laser

    NASA Astrophysics Data System (ADS)

    MORI, Yoshitaka; SEKINE, Takashi; KOMEDA, Osamu; NISHIMURA, Yasuhiko; SUNAHARA, Atsushi; MIURA, Eisuke; Nakayama, Suisei; HANAYAMA, Ryohei; ISHII, Katsuhiro; SATO, Nakahiro; KURITA, Takashi; KAWASHIMA, Toshiyuki; KAN, Hirofumi; NAKAMURA, Naoki; KONDO, Takuya; FUJINE, Manabu; AZUMA, Hirozumi; HIOKI, Tatsumi; KAKENO, Mitsutaka; KAJINO, Tsutomu; MOTOHIRO, Tomoyoshi; SENTOKU, Yasuhiko; KITAGAWA, Yoneyoshi

    2016-03-01

    The HAMA is 1-Hz fast heating fusion driver pumped by a 10 J second-harmonic of diode-pumped Nd:glass laser: KURE-1. We have upgraded HAMA to realize an implosion of spherical shell target by using a remaining fundamental beam from KURE-1. This beam of 6 J/1 Hz is transported to the current counter irradiation system. The resulting beam includes three pulses in sequence: 2.2 J/15 ns and 0.7 J/300 ps for implosion, and 0.5 J/ 190 fs for heating. We estimate the implosion dynamics from 1-D radiation hydrodynamic code (START- 1D). It indicates a possibility of tailored-pulse implosion by optimizing the beam spot sizes of imploding beams on the target surface. This upgrade leads to a demonstration of repetitive implosion and additional heating of a spherical shell target in accordance with a repetition of laser operation and that of a target injection system.

  13. Advanced latent heat of fusion thermal energy storage for solar power systems

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.; Stearns, J. W.

    1985-01-01

    The use of solar thermal power systems coupled with thermal energy storage (TES) is being studied for both terrestrial and space applications. In the case of terrestrial applications, it was found that one or two hours of TES could shift the insolation peak (solar noon) to coincide with user peak loads. The use of a phase change material (PCM) is attractive because of the higher energy storage density which can be achieved. However, the use of PCM has also certain disadvantages which must be addressed. Proof of concept testing was undertaken to evaluate corrosive effects and thermal ratcheting effects in a slurry system. It is concluded that the considered alkali metal/alkali salt slurry approach to TES appears to be very viable, taking into account an elimination of thermal ratcheting in storage systems and the reduction of corrosive effects. The approach appears to be useful for an employment involving temperatures applicable to Brayton or Stirling cycles.

  14. Modeling and simulation support for ICRF heating of fusion plasmas. Annual report, 1990

    SciTech Connect

    1990-03-15

    Recent experimental, theoretical and computational results have shown the need and usefulness of a combined approach to the design, analysis and evaluation of ICH antenna configurations. The work at the University of Wisconsin (UW) in particular has shown that much needed information on the vacuum operation of ICH antennas can be obtained by a modest experimental and computational effort. These model experiments at UW and SAIC simulations have shown dramatically the potential for positive impact upon the ICRF program. Results of the UW-SAIC joint ICRF antenna analysis effort have been presented at several international meetings and numerous meetings in the United States. The PPPL bay M antenna has been modeled using the ARGUS code. The results of this effort are shown in Appendix C. SAIC has recently begun a collaboration with the ICRF antenna design and analysis group at ORNL. At present there are two separate projects underway. The first is associated with the simulation of and determination of the effect of adding slots in the antenna septum and side walls. The second project concerns the modeling and simulation of the ORNL folded waveguide (FWG) concept.

  15. PURITY AND HEAT OF FUSION DATA FOR ENVIRONMENTAL STANDARDS AS DETERMINED BY DIFFERENTIAL SCANNING CALORIMETRY

    EPA Science Inventory

    Differential scanning calorimetry (DSC) has been applied to 273 environmental standards, including pesticides, herbicides and related compounds. embers of the following chemical classes were analyzed: rganophosphorus, organochlorine, phenol, triazine, uracil, phenoxy acid, urea, ...

  16. Heat-transfer characteristics of flowing and stationary particle-bed-type fusion-reactor blankets

    SciTech Connect

    Nietert, R.E.

    1983-02-01

    The following five appendices are included: (1) physical properties of materials, (2) thermal entrance length Nusselt number variations, (3) stationary particle bed temperature variations, (4) falling bed experimental data and calculations, and (5) stationary bed experimental data and calculations. (MOW)

  17. Toxicity and immunogenicity of Enterotoxigenic Escherichia coli heat-labile and heat-stable toxoid fusion 3xSTa(A14Q)-LT(S63K/R192G/L211A) in a murine model.

    PubMed

    Zhang, Chengxian; Knudsen, David E; Liu, Mei; Robertson, Donald C; Zhang, Weiping

    2013-01-01

    Diarrhea is the second leading cause of death to young children. Enterotoxigenic Escherichia coli (ETEC) are the most common bacteria causing diarrhea. Adhesins and enterotoxins are the virulence determinants in ETEC diarrhea. Adhesins mediate bacterial attachment and colonization, and enterotoxins including heat-labile (LT) and heat-stable type Ib toxin (STa) disrupt fluid homeostasis in host cells that leads to fluid hyper-secretion and diarrhea. Thus, adhesins and enterotoxins have been primarily targeted in ETEC vaccine development. A recent study reported toxoid fusions with STa toxoid (STa(P13F)) fused at the N- or C-terminus, or inside the A subunit of LT(R192G) elicited neutralizing antitoxin antibodies, and suggested application of toxoid fusions in ETEC vaccine development (Liu et al., Infect. Immun. 79:4002-4009, 2011). In this study, we generated a different STa toxoid (STa(A14Q)) and a triple-mutant LT toxoid (LT(S63K/R192G/L211A), tmLT), constructed a toxoid fusion (3xSTa(A14Q)-tmLT) that carried 3 copies of STa(A14Q) for further facilitation of anti-STa immunogenicity, and assessed antigen safety and immunogenicity in a murine model to explore its potential for ETEC vaccine development. Mice immunized with this fusion antigen showed no adverse effects, and developed antitoxin antibodies particularly through the IP route. Anti-LT antibodies were detected and were shown neutralizing against CT in vitro. Anti-STa antibodies were also detected in the immunized mice, and serum from the IP immunized mice neutralized STa toxin in vitro. Data from this study indicated that toxoid fusion 3xSTa(A14Q)-tmLT is safe and can induce neutralizing antitoxin antibodies, and provided helpful information for vaccine development against ETEC diarrhea. PMID:24146989

  18. Magnetic Fusion Energy Plasma Interactive and High Heat Flux Components: Volume 5, Technical assessment of critical issues in the steady state operation of fusion confinement devices

    SciTech Connect

    Not Available

    1988-01-01

    Critical issues for the steady state operation of plasma confinement devices exist in both the physics and technology fields of fusion research. Due to the wide range and number of these issues, this technical assessment has focused on the crucial issues associated with the plasma physics and the plasma interactive components. The document provides information on the problem areas that affect the design and operation of a steady state ETR or ITER type confinement device. It discusses both tokamaks and alternative concepts, and provides a survey of existing and planned confinement machines and laboratory facilities that can address the identified issues. A universal definition of steady state operation is difficult to obtain. From a physics point of view, steady state is generally achieved when the time derivatives approach zero and the operation time greatly exceeds the characteristic time constants of the device. Steady state operation for materials depends on whether thermal stress, creep, fatigue, radiation damage, or power removal are being discussed. For erosion issues, the fluence and availability of the machine for continuous operation are important, assuming that transient events such as disruptions do not limit the component lifetimes. The panel suggests, in general terms, that steady state requires plasma operation from 100 to 1000 seconds and an availability of more than a few percent, which is similar to the expectations for an ETR type device. The assessment of critical issues for steady state operation is divided into four sections: physics issues; technology issues; issues in alternative concepts; and devices and laboratory facilities that can address these problems.

  19. Genetic Fusions of Heat-Labile Toxoid (LT) and Heat-Stable Toxin b (STb) of Porcine Enterotoxigenic Escherichia coli Elicit Protective Anti-LT and Anti-STb Antibodies ▿

    PubMed Central

    Zhang, Weiping; Francis, David H.

    2010-01-01

    Enterotoxigenic Escherichia coli (ETEC)-associated diarrhea causes a substantial economic loss to swine producers worldwide. The majority of ETEC strains causing porcine diarrhea, especially postweaning diarrhea (PWD), produce heat-labile toxin (LT) and heat-stable toxin b (STb). LT is commonly used in vaccine development, but STb has not been included because of its poor immunogenicity. As a virulence factor in porcine diarrhea, STb needs to be included as an antigen for development of broad-spectrum vaccines. In this study, we used an LT toxoid (LTR192G [hereafter, LT192]) derived from porcine ETEC to carry a mature STb peptide for LT192-STb fusions to enhance STb immunogenicity for potential vaccine application. Anti-LT and anti-STb antibodies were detected in immunized rabbits and pigs. In addition, when challenged with an STb-positive ETEC strain, all 10 suckling piglets borne by immunized gilts remained healthy, whereas 7 out 9 piglets borne by unimmunized gilts developed moderate diarrhea. This study indicates that the LT192-STb fusion enhanced anti-STb immunogenicity and suggests the LT192-STb fusion antigen can be used in future vaccine development against porcine ETEC diarrhea. PMID:20505006

  20. Modeling of hydrogen/deuterium dynamics and heat generation on palladium nanoparticles for hydrogen storage and solid-state nuclear fusion.

    PubMed

    Tanabe, Katsuaki

    2016-01-01

    We modeled the dynamics of hydrogen and deuterium adsorbed on palladium nanoparticles including the heat generation induced by the chemical adsorption and desorption, as well as palladium-catalyzed reactions. Our calculations based on the proposed model reproduce the experimental time-evolution of pressure and temperature with a single set of fitting parameters for hydrogen and deuterium injection. The model we generated with a highly generalized set of formulations can be applied for any combination of a gas species and a catalytic adsorbent/absorbent. Our model can be used as a basis for future research into hydrogen storage and solid-state nuclear fusion technologies. PMID:27441240

  1. Genetic fusions of a CFA/I/II/IV MEFA (multiepitope fusion antigen) and a toxoid fusion of heat-stable toxin (STa) and heat-labile toxin (LT) of enterotoxigenic Escherichia coli (ETEC) retain broad anti-CFA and antitoxin antigenicity.

    PubMed

    Ruan, Xiaosai; Sack, David A; Zhang, Weiping

    2015-01-01

    Immunological heterogeneity has long been the major challenge in developing broadly effective vaccines to protect humans and animals against bacterial and viral infections. Enterotoxigenic Escherichia coli (ETEC) strains, the leading bacterial cause of diarrhea in humans, express at least 23 immunologically different colonization factor antigens (CFAs) and two distinct enterotoxins [heat-labile toxin (LT) and heat-stable toxin type Ib (STa or hSTa)]. ETEC strains expressing any one or two CFAs and either toxin cause diarrhea, therefore vaccines inducing broad immunity against a majority of CFAs, if not all, and both toxins are expected to be effective against ETEC. In this study, we applied the multiepitope fusion antigen (MEFA) strategy to construct ETEC antigens and examined antigens for broad anti-CFA and antitoxin immunogenicity. CFA MEFA CFA/I/II/IV [CVI 2014, 21(2):243-9], which carried epitopes of seven CFAs [CFA/I, CFA/II (CS1, CS2, CS3), CFA/IV (CS4, CS5, CS6)] expressed by the most prevalent and virulent ETEC strains, was genetically fused to LT-STa toxoid fusion monomer 3xSTaA14Q-dmLT or 3xSTaN12S-dmLT [IAI 2014, 82(5):1823-32] for CFA/I/II/IV-STaA14Q-dmLT and CFA/I/II/IV-STaN12S-dmLT MEFAs. Mice intraperitoneally immunized with either CFA/I/II/IV-STa-toxoid-dmLT MEFA developed antibodies specific to seven CFAs and both toxins, at levels equivalent or comparable to those induced from co-administration of the CFA/I/II/IV MEFA and toxoid fusion 3xSTaN12S-dmLT. Moreover, induced antibodies showed in vitro adherence inhibition activities against ETEC or E. coli strains expressing these seven CFAs and neutralization activities against both toxins. These results indicated CFA/I/II/IV-STa-toxoid-dmLT MEFA or CFA/I/II/IV MEFA combined with 3xSTaN12S-dmLT induced broadly protective anti-CFA and antitoxin immunity, and suggested their potential application in broadly effective ETEC vaccine development. This MEFA strategy may be generally used in multivalent

  2. Critical Heat Flux -CHF in Liquid Metal in Presence of a Magnetic Field with Particular Reference to Fusion Reactor Project

    NASA Astrophysics Data System (ADS)

    Arias, F. J.

    2010-04-01

    The effect of a magnetic field on critical heat flux-CHF in liquids metal is discussed within framework of Helmholtz instabilities. Utilizing a classical simplified model and considering the effect of magnetic field, an analytical expression for the critical heat flux-CHF was derived. Combining this equation with the expression for the heat transfer coefficients deduced in previous work yields an analytical equation for the temperature difference at the minimum. The above equations to predict an enhancement for critical heat flux which is reasonable due to stabilizer effect of magnetic field, however, disagree with the available experimental measurements made on mercury where a indication of the premature onset of critical heat flux with a horizontal magnetic field was observed. Therefore, the reason for this is not clear and the behavior of the CHF in the same manner that the bubble frequency is still unresolved.

  3. Liquid metal MHD heat transfer investigations apllied to fusion Tokamak reactor cooling ducts

    NASA Astrophysics Data System (ADS)

    Sviridov, V. G.; Ivochkin, Yu. P.; Razuvanov, N. G.; Zhilin, V. G.; Genin, L. G.; Ivanova, O. N.; Averianov, K. V.

    2003-12-01

    The liquid metal heat transfer experimental investigations were carried out at the joint MPEI-IIHI magnetohydrodynamic (MHD) complex. The united scientific group examines the liquid metal flow in a horizontal heated tube without and under a longitudinal or a transverse magnetic field. Various configurations of the applied heat flux were taken into consideration. All these cases correspond to the flow in the Tokamak fusion reactor blanket or divertor. Temperature fields, temperature fluctuations field, heat transfer intensities were measured. Strong influence of thermogravitational convection was observed in a horizontal heated tube. Depending on the MHD-configuration, magnetic fields (MF) can enhance or weaken this effect. Tables 2, Figs 5, Refs 8.

  4. Inertially confined fusion plasmas dominated by alpha-particle self-heating

    NASA Astrophysics Data System (ADS)

    Hurricane, O. A.; Callahan, D. A.; Casey, D. T.; Dewald, E. L.; Dittrich, T. R.; Döppner, T.; Haan, S.; Hinkel, D. E.; Berzak Hopkins, L. F.; Jones, O.; Kritcher, A. L.; Le Pape, S.; Ma, T.; Macphee, A. G.; Milovich, J. L.; Moody, J.; Pak, A.; Park, H.-S.; Patel, P. K.; Ralph, J. E.; Robey, H. F.; Ross, J. S.; Salmonson, J. D.; Spears, B. K.; Springer, P. T.; Tommasini, R.; Albert, F.; Benedetti, L. R.; Bionta, R.; Bond, E.; Bradley, D. K.; Caggiano, J.; Celliers, P. M.; Cerjan, C.; Church, J. A.; Dylla-Spears, R.; Edgell, D.; Edwards, M. J.; Fittinghoff, D.; Barrios Garcia, M. A.; Hamza, A.; Hatarik, R.; Herrmann, H.; Hohenberger, M.; Hoover, D.; Kline, J. L.; Kyrala, G.; Kozioziemski, B.; Grim, G.; Field, J. E.; Frenje, J.; Izumi, N.; Gatu Johnson, M.; Khan, S. F.; Knauer, J.; Kohut, T.; Landen, O.; Merrill, F.; Michel, P.; Moore, A.; Nagel, S. R.; Nikroo, A.; Parham, T.; Rygg, R. R.; Sayre, D.; Schneider, M.; Shaughnessy, D.; Strozzi, D.; Town, R. P. J.; Turnbull, D.; Volegov, P.; Wan, A.; Widmann, K.; Wilde, C.; Yeamans, C.

    2016-08-01

    Alpha-particle self-heating, the process of deuterium-tritium fusion reaction products depositing their kinetic energy locally within a fusion reaction region and thus increasing the temperature in the reacting region, is essential for achieving ignition in a fusion system. Here, we report new inertial confinement fusion experiments where the alpha-particle heating of the plasma is dominant with the fusion yield produced exceeding the fusion yield from the work done on the fuel (pressure times volume change) by a factor of two or more. These experiments have achieved the highest yield (26 +/- 0.5 kJ) and stagnation pressures (≍220 +/- 40 Gbar) of any facility-based inertial confinement fusion experiments, although they are still short of the pressures required for ignition on the National Ignition Facility (~300-400 Gbar). These experiments put us in a new part of parameter space that has not been extensively studied so far because it lies between the no-alpha-particle-deposition regime and ignition.

  5. Generation of dominant-negative effects on the heat shock response in Arabidopsis thaliana by transgenic expression of a chimaeric HSF1 protein fusion construct.

    PubMed

    Wunderlich, Markus; Werr, Wolfgang; Schöffl, Friedrich

    2003-08-01

    Upon heat stress, heat shock factors (HSFs) control the expression of heat shock protein (HSP) genes by transcriptional activation. The perplexing multiplicity of HSF genes in Arabidopsis- 21 potential genes have been identified - renders it difficult to identify mutant phenotypes. In this study, we have attempted to generate a transdominant-negative mutant of HSF by transgenic expression of a protein fusion construct, EN-HSF1, consisting of the Drosophila engrailed repressor domain (EN) and the complete Arabidopsis AtHSF1. Transgenic lines were screened for impaired ability to induce high levels of low-molecular-weight heat shock proteins (sHSPs). Two lines, EH14-6 and EH16-3, which showed quantitative differences in the expression of EN-HSF1, were further analysed for induction of thermotolerance and heat-stress-dependent mRNAs of a number of different HSF target genes encoding different HSP and HSF. The mRNA levels of all genes tested were moderately downregulated in EH14-6 but strongly reduced in EH16-3 plants compared to wild-type (Wt) and HSF1-overexpressing control plants. The inhibition of the induction of heat shock response correlated with impaired basal and acquired thermotolerance of the EH16-3 line. The kinetics of HSP expression suggest that the negative effect of EN-HSF1 is stronger in the early phase of the heat shock response, and that the reduction in mRNA levels is partially compensated at the translational level. PMID:12904207

  6. FINAL Report on Analysis and direct numerical simulation of RF heating processes and advanced computational methods for fusion application

    SciTech Connect

    Cary, John R

    2015-02-23

    This completes the description of the work done under the above referenced grant. In brief, we have discovered many nonlinear effects, frequency doubling, nonlinear decays, that can prevent effective use of EBWs for plasma heating.

  7. Two Horizons of Fusion

    ERIC Educational Resources Information Center

    Lo, Mun Ling; Chik, Pakey Pui Man

    2016-01-01

    In this paper, we aim to differentiate the internal and external horizons of "fusion." "Fusion" in the internal horizon relates to the structure and meaning of the object of learning as experienced by the learner. It clarifies the interrelationships among an object's critical features and aspects. It also illuminates the…

  8. Decomposition of incomplete fusion

    SciTech Connect

    Sobotka, L.B.; Sarantities, D.G.; Stracener, D.W.; Majka, Z.; Abenante, V.; Semkow, T.M.; Hensley, D.C.; Beene, J.R.; Halbert, M.L.

    1989-01-01

    The velocity distribution of fusion-like products formed in the reaction 701 MeV /sup 28/Si+/sup 100/Mo is decomposed into 26 incomplete fusion channels. The momentum deficit of the residue per nonevaporative mass unit is approximately equal to the beam momentum per nucleon. The yields of the incomplete fusion channels correlate with the Q-value for projectile fragmentation rather than that for incomplete fusion. The backward angle multiplicities of light particles and heavy ions increase with momentum transfer, however, the heavy ion multiplicities also depend on the extent of the fragmentation of the incomplete fusion channel. These data indicate that at fixed linear momentum transfer, increased fragmentation of the unfused component is related to a reduced transferred angular momentum. 22 refs., 6 figs., 1 tab.

  9. EBW Current Drive and Heating for Fusion/Fission Hybrids

    NASA Astrophysics Data System (ADS)

    Urban, Jakub; Preinhaelter, Josef; Vahala, George; Vahala, Linda; Decker, Joan; Ram, Abhay

    2011-10-01

    From the RF requirements for spherical tokamak and the need to reduce antenna exposure to neutron bombardment, EBW are an important source for both heating and current drive (CD). ICRF, LH, HHFW antennas are subject to significant neutron damage (as are NBI) because of their very large size and necessary proximity to the plasma. Recently Mahajan et. al. have studied other important uses of fusion neutrons - in particular their use in the efficient breeding of fission reactor fuel as well as in the ``rapid'' destruction of nuclear waste using their Compact High Power Density Fast Neutron Source (CFNS). For overdense plasmas the standard electromagnetic O- and X- mode experience cutoffs. EBW can propagate and be absorbed in such plasmas but its characteristics are strongly dependent on the plasma parameters with important variations in the parallel wave number. If the required temperatures in CFNS are around 35 KeV, then one will may need to revisit the electrostatic approximation and incorporate relativistic effects for EBW rays.

  10. Fast frequency-step-tunable gyrotrons for plasma heating and fusion diagnostics

    SciTech Connect

    Dumbrajs, O.; Heikkinen, J.

    1994-11-01

    Usefulness of frequency tunable sources for plasma heating and fusion diagnostics is studied. Applicability of fast frequency-step-tunable gyrotrons for these purposes is examined. A gyrotron based on a coaxial cavity with impedance rod is considered as an example.

  11. Core fusion power gain and alpha heating in JET, TFTR, and ITER

    NASA Astrophysics Data System (ADS)

    Budny, R. V.; Cordey, J. G.; TFTR Team; Contributors, JET

    2016-05-01

    Profiles of the ratio of fusion power and the auxiliary heating power q DT are calculated for the TFTR and JET discharges with the highest neutron emission rates, and are predicted for ITER. Core values above 1.3 for JET and 0.8 for TFTR are obtained. Values above 20 are predicted for ITER baseline plasmas.

  12. Analysis of Microstructural Changes in the Heat-Affected Zone and Fusion Zone of a Fiber Laser Welded DP980 Steel

    NASA Astrophysics Data System (ADS)

    Zhang, Jianqi; Khan, Abdul; Ojo, Olanrewaju A.; Zhou, Norman; Chen, Daolun

    2015-08-01

    Dual phase (DP) steels are designed to consist of hard martensite dispersed in a relatively soft ferrite matrix, which offers a favorable combination of high strength with good deformability. Fiber laser welding (FLW) is becoming increasingly important for joining advanced materials due to its flexibility and deep penetration. In this study, the microstructure of a DP steel, DP980, welded by FLW technique was carefully analyzed. Gleeble thermo-mechanical simulation coupled with analytical transmission electron microscopy revealed that the FLW process produced significant microstructural changes in a narrow heat-affected zone (HAZ) and fusion zone (FZ), which can result in dramatic changes in mechanical properties. This is reflected in the micro-hardness profile obtained across the welded material. The salient phase transitions induced by the FLW, including the formation of new martensite grains in the upper-critical HAZ and FZ, are discussed.

  13. The fusion of Toxoplasma gondii SAG1 vaccine candidate to Leishmania infantum heat shock protein 83-kDa improves expression levels in tobacco chloroplasts.

    PubMed

    Albarracín, Romina M; Becher, Melina Laguía; Farran, Inmaculada; Sander, Valeria A; Corigliano, Mariana G; Yácono, María L; Pariani, Sebastián; López, Edwin Sánchez; Veramendi, Jon; Clemente, Marina

    2015-05-01

    Chloroplast transformation technology has emerged as an alternative platform offering many advantages over nuclear transformation. SAG1 is the main surface antigen of the intracellular parasite Toxoplasma gondii and a promising candidate to produce an anti-T. gondii vaccine. The aim of this study was to investigate the expression of SAG1 using chloroplast transformation technology in tobacco plants. In order to improve expression in transplastomic plants, we also expressed the 90-kDa heat shock protein of Leishmania infantum (LiHsp83) as a carrier for the SAG1 antigen. SAG1 protein accumulation in transplastomic plants was approximately 0.1-0.2 μg per gram of fresh weight (FW). Fusion of SAG1 to LiHsp83 significantly increased the level of SAG1 accumulation in tobacco chloroplasts (by up to 500-fold). We also evaluated the functionality of the chLiHsp83-SAG1. Three human seropositive samples reacted with SAG1 expressed in transplastomic chLiHsp83-SAG1 plants. Oral immunization with chLiHsp83-SAG1 elicited a significant reduction of the cyst burden that correlated with an increase of SAG1-specific antibodies. We propose the fusion of foreign proteins to LiHsp83 as a novel strategy to increase the expression level of the recombinant proteins using chloroplast transformation technology, thus addressing one of the current challenges for this approach in antigen protein production. PMID:25823559

  14. Probing Reliability of Transport Phenomena Based Heat Transfer and Fluid Flow Analysis in Autogeneous Fusion Welding Process

    NASA Astrophysics Data System (ADS)

    Bag, S.; de, A.

    2010-09-01

    The transport phenomena based heat transfer and fluid flow calculations in weld pool require a number of input parameters. Arc efficiency, effective thermal conductivity, and viscosity in weld pool are some of these parameters, values of which are rarely known and difficult to assign a priori based on the scientific principles alone. The present work reports a bi-directional three-dimensional (3-D) heat transfer and fluid flow model, which is integrated with a real number based genetic algorithm. The bi-directional feature of the integrated model allows the identification of the values of a required set of uncertain model input parameters and, next, the design of process parameters to achieve a target weld pool dimension. The computed values are validated with measured results in linear gas-tungsten-arc (GTA) weld samples. Furthermore, a novel methodology to estimate the overall reliability of the computed solutions is also presented.

  15. Genetic Fusions of Heat-Labile (LT) and Heat-Stable (ST) Toxoids of Porcine Enterotoxigenic Escherichia coli Elicit Neutralizing Anti-LT and Anti-STa antibodies ▿

    PubMed Central

    Zhang, Weiping; Zhang, Chengxian; Francis, David H.; Fang, Ying; Knudsen, David; Nataro, James P.; Robertson, Donald C.

    2010-01-01

    Enterotoxigenic Escherichia coli (ETEC) strains are a major cause of diarrheal disease in humans and farm animals. E. coli fimbriae, or colonization factor antigens (CFAs), and enterotoxins, including heat-labile enterotoxins (LT) and heat-stable enterotoxins (ST), are the key virulence factors in ETEC diarrhea. Unlike fimbriae or LT, STa has not often been included as an antigen in development of vaccines against ETEC diarrhea because of its poor immunogenicity. STa becomes immunogenic only after being coupled with a strongly immunogenic carrier protein. However, native or shorter STa antigens either had to retain toxic activity in order to become antigenic or elicited anti-STa antibodies that were not sufficiently protective. In this study, we genetically mutated the porcine LT (pLT) gene for a pLT192(R→G) toxoid and the porcine STa (pSTa) gene for three full-length pSTa toxoids [STa11(N→K), STa12(P→F), and STa13(A→Q)] and used the full-length pLT192 as an adjuvant to carry the pSTa toxoid for pLT192:pSTa-toxoid fusion antigens. Rabbits immunized with pLT192:pSTa12 or pLT192:pSTa13 fusion protein developed high titers of anti-LT and anti-STa antibodies. Furthermore, rabbit antiserum and antifecal antibodies were able to neutralize purified cholera toxin (CT) and STa toxin. In addition, preliminary data suggested that suckling piglets born by a sow immunized with the pLT192:pSTa13 fusion antigen were protected when challenged with an STa-positive ETEC strain. This study demonstrated that pSTa toxoids are antigenic when fused with a pLT toxoid and that the elicited anti-LT and anti-STa antibodies were protective. This fusion strategy could provide instructive information to develop effective toxoid vaccines against ETEC-associated diarrhea in animals and humans. PMID:19858307

  16. Glossary of fusion energy

    SciTech Connect

    Whitson, M.O.

    1985-02-01

    The Glossary of Fusion Energy is an attempt to present a concise, yet comprehensive collection of terms that may be beneficial to scientists and laymen who are directly or tangentially concerned with this burgeoning energy enterprise. Included are definitions of terms in theoretical plasma physics, controlled thermonuclear fusion, and some related physics concepts. Also, short descriptions of some of the major thermonuclear experiments currently under way in the world today are included.

  17. Heat generation above break-even from laser-induced fusion in ultra-dense deuterium

    SciTech Connect

    Holmlid, Leif

    2015-08-15

    Previous results from laser-induced processes in ultra-dense deuterium D(0) give conclusive evidence for ejection of neutral massive particles with energy >10 MeV u{sup −1}. Such particles can only be formed from nuclear processes like nuclear fusion at the low laser intensity used. Heat generation is of interest for future fusion energy applications and has now been measured by a small copper (Cu) cylinder surrounding the laser target. The temperature rise of the Cu cylinder is measured with an NTC resistor during around 5000 laser shots per measured point. No heating in the apparatus or the gas feed is normally used. The fusion process is suboptimal relative to previously published studies by a factor of around 10. The small neutral particles H{sub N}(0) of ultra-dense hydrogen (size of a few pm) escape with a substantial fraction of the energy. Heat loss to the D{sub 2} gas (at <1 mbar pressure) is measured and compensated for under various conditions. Heat release of a few W is observed, at up to 50% higher energy than the total laser input thus a gain of 1.5. This is uniquely high for the use of deuterium as fusion fuel. With a slightly different setup, a thermal gain of 2 is reached, thus clearly above break-even for all neutronicity values possible. Also including the large kinetic energy which is directly measured for MeV particles leaving through a small opening gives a gain of 2.3. Taking into account the lower efficiency now due to the suboptimal fusion process, previous studies indicate a gain of at least 20 during long periods.

  18. Primary heat transfer loop design for the Cascade inertial confinement fusion reactor

    SciTech Connect

    Murray, K.A.; McDowell, M.W.

    1984-05-01

    This study investigates a heat exchanger and balance of plant design to accompany the Cascade inertial confinement fusion reaction chamber concept. The concept uses solid Li/sub 2/O or other lithium-ceramic granules, held to the wall of a rotating reaction chamber by centrifugal action, as a tritium breeding blanket and first wall protection. The Li/sub 2/O granules enter the chamber at 800 K and exit at 1200 K after absorbing the thermal energy produced by the fusion process.

  19. Status and problems of fusion reactor development.

    PubMed

    Schumacher, U

    2001-03-01

    Thermonuclear fusion of deuterium and tritium constitutes an enormous potential for a safe, environmentally compatible and sustainable energy supply. The fuel source is practically inexhaustible. Further, the safety prospects of a fusion reactor are quite favourable due to the inherently self-limiting fusion process, the limited radiologic toxicity and the passive cooling property. Among a small number of approaches, the concept of toroidal magnetic confinement of fusion plasmas has achieved most impressive scientific and technical progress towards energy release by thermonuclear burn of deuterium-tritium fuels. The status of thermonuclear fusion research activity world-wide is reviewed and present solutions to the complicated physical and technological problems are presented. These problems comprise plasma heating, confinement and exhaust of energy and particles, plasma stability, alpha particle heating, fusion reactor materials, reactor safety and environmental compatibility. The results and the high scientific level of this international research activity provide a sound basis for the realisation of the International Thermonuclear Experimental Reactor (ITER), whose goal is to demonstrate the scientific and technological feasibility of a fusion energy source for peaceful purposes. PMID:11402837

  20. Design study of a G-band FEL amplifier for application to cyclotron resonant heating in magnetic fusion reactors

    NASA Astrophysics Data System (ADS)

    Freund, H. P.; Read, M. E.; Jackson, R. H.; Pershing, D. E.; Taccetti, J. M.

    1995-04-01

    A G-band (140-150 GHz) free-electron laser is described using a coaxial hybrid iron (CHI) wiggler. The CHI wiggler is produced by insertion into a solenoid of a central rod and an outer ring composed of alternating ferrite and nonferrite spacers. The position of the spacers is such that the ferrite (nonferrite) spacers on the central rod are opposite the nonferrite (ferrite) spacers on the outer ring. The field is cylindrically symmetric and exhibits minima in the center of the gap providing for enhanced beam focusing. We describe a tapered wiggler amplifier for plasma heating applications. Preliminary design studies using a nonlinear simulation indicates that output powers of 3.5 MW are possible using a 690 kV/40 A electron beam for a total efficiency of 13%. It is important to note that no beam loss was observed even for realistic values of beam energy spread.

  1. Peaceful Uses of Fusion

    DOE R&D Accomplishments Database

    Teller, E.

    1958-07-03

    Applications of thermonuclear energy for peaceful and constructive purposes are surveyed. Developments and problems in the release and control of fusion energy are reviewed. It is pointed out that the future of thermonuclear power reactors will depend upon the construction of a machine that produces more electric energy than it consumes. The fuel for thermonuclear reactors is cheap and practically inexhaustible. Thermonuclear reactors produce less dangerous radioactive materials than fission reactors and, when once brought under control, are not as likely to be subject to dangerous excursions. The interaction of the hot plasma with magnetic fields opens the way for the direct production of electricity. It is possible that explosive fusion energy released underground may be harnessed for the production of electricity before the same feat is accomplished in controlled fusion processes. Applications of underground detonations of fission devices in mining and for the enhancement of oil flow in large low-specific-yield formations are also suggested.

  2. Stochastic Ion Heating from Many Overlapping Laser Beams in Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    Michel, P.; Rozmus, W.; Williams, E. A.; Divol, L.; Berger, R. L.; Town, R. P. J.; Glenzer, S. H.; Callahan, D. A.

    2012-11-01

    In this Letter, we show through numerical simulations and analytical results that overlapping multiple (N) laser beams in plasmas can lead to strong stochastic ion heating from many (∝N2) electrostatic perturbations driven by beat waves between pairs of laser beams. For conditions typical of inertial-confinement-fusion experiment conditions, hundreds of such beat waves are driven in mm3-scale plasmas, leading to ion heating rates of several keV/ns. This mechanism saturates cross-beam energy transfer, with a reduction of linear gains by a factor ˜4-5 and can strongly modify the overall hydrodynamics evolution of such laser-plasma systems.

  3. Stochastic ion heating from many overlapping laser beams in fusion plasmas.

    PubMed

    Michel, P; Rozmus, W; Williams, E A; Divol, L; Berger, R L; Town, R P J; Glenzer, S H; Callahan, D A

    2012-11-01

    In this Letter, we show through numerical simulations and analytical results that overlapping multiple (N) laser beams in plasmas can lead to strong stochastic ion heating from many (~N(2)) electrostatic perturbations driven by beat waves between pairs of laser beams. For conditions typical of inertial-confinement-fusion experiment conditions, hundreds of such beat waves are driven in mm(3)-scale plasmas, leading to ion heating rates of several keV/ns. This mechanism saturates cross-beam energy transfer, with a reduction of linear gains by a factor ~4-5 and can strongly modify the overall hydrodynamics evolution of such laser-plasma systems. PMID:23215392

  4. A fusion of minds

    NASA Astrophysics Data System (ADS)

    Corfield, Richard

    2013-02-01

    Mystery still surrounds the visit of the astronomer Sir Bernard Lovell to the Soviet Union in 1963. But his collaboration - and that of other British scientists - eased geopolitical tensions at the height of the Cold War and paved the way for today's global ITER fusion project, as Richard Corfield explains.

  5. Status of inertial fusion

    NASA Astrophysics Data System (ADS)

    Keefe, D.

    1987-04-01

    The technology advancement to high-power beams has also given birth to new technologies. That class of Free Electron Lasers that employs RF linacs, synchrotrons, and storage rings - although the use of the tools of High Energy Physics (HEP) - was developed well behind the kinetic energy frontier. The induction linac, however, is something of an exception; it was born directly from the needs of the magnetic fusion program, and was not motivated by a high-energy physics application. The heavy-ion approach to inertial fusion starts with picking from the rich menu of accelerator technologies those that have, ab initio, the essential ingredients needed for a power plant driver: multigap acceleration - which leads to reliability/lifetime; electrical efficiency; repetition rate; and beams that can be reliably focused over a suitably long distance. The report describes the programs underway in Heavy Ion Fusion Accelerator Research as well as listing expected advances in driver, target, and beam quality areas in the inertial fusion power program.

  6. Inherited argon in a Pleistocene andesite lava: 40Ar/39Ar incremental-heating and laser-fusion analyses of plagioclase

    NASA Astrophysics Data System (ADS)

    Singer, B. S.; Wijbrans, J. R.; Nelson, S. T.; Pringle, M. S.; Feeley, T. C.; Dungan, M. A.

    1998-05-01

    By using 40Ar/39Ar incremental-heating and laser-fusion techniques, xenocrystic plagioclase was discovered in a late Pleistocene andesitic lava that erupted through the Andean Cordillera. Inherited argon in the xenocrysts is as much as ˜450 times older than the host lava, the age of which is independently known, and is an obstacle to dating the lava by using a whole-rock sample. The xenocrysts are impossible to identify from petrography or chemical parameters such as their K/Ca ratios. Holocrystalline groundmass, carefully separated from plagioclase and other phenocrysts, gives an accurate 40Ar/39Ar age for the lava. The xenocrysts could not have been degassed for more than several days in the magma and probably were assimilated from Paleozoic rocks buried under kilometers of Mesozoic and Tertiary arc rocks composing the Cordillera in central Chile. The required magma ascent velocity, on the order of kilometers/day, is extraordinarily high compared to the 10-4 km/day minimum implied by the 226Ra excess in continental arc lavas. These data permit magma migration and storage in the mantle and lower crust for as much as thousands of years, followed abruptly by rapid ascent to the surface.

  7. Proceedings of 1999 U.S./Japan Workshop (99FT-05) On High Heat Flux Components and Plasma Surface Interactions for Next Fusion Devices

    SciTech Connect

    NYGREN,RICHARD E.; STAVROS,DIANA T.

    2000-06-01

    The 1999 US-Japan Workshop on High Heat Flux Components and Plasma Surface Interactions in Next Step Fusion Devices was held at the St. Francis Hotel in Santa Fe, New Mexico, on November 1-4, 1999. There were 42 presentations as well as discussion on technical issues and planning for future collaborations. The participants included 22 researchers from Japan and the United States as well as seven researchers from Europe and Russia. There have been important changes in the programs in both the US and Japan in the areas of plasma surface interactions and plasma facing components. The US has moved away from a strong focus on the ITER Project and has introduced new programs on use of liquid surfaces for plasma facing components, and operation of NSTX has begun. In Japan, the Large Helical Device began operation. This is the first large world-class confinement device operating in a magnetic configuration different than a tokamak. In selecting the presentations for this workshop, the organizers sought a balance between research in laboratory facilities or confinement devices related to plasma surface interactions and experimental research in the development of plasma facing components. In discussions about the workshop itself, the participants affirmed their preference for a setting where ''work-in-progress'' could be informally presented and discussed.

  8. Fusion

    NASA Astrophysics Data System (ADS)

    Herman, Robin

    1990-10-01

    The book abounds with fascinating anecdotes about fusion's rocky path: the spurious claim by Argentine dictator Juan Peron in 1951 that his country had built a working fusion reactor, the rush by the United States to drop secrecy and publicize its fusion work as a propaganda offensive after the Russian success with Sputnik; the fortune Penthouse magazine publisher Bob Guccione sank into an unconventional fusion device, the skepticism that met an assertion by two University of Utah chemists in 1989 that they had created "cold fusion" in a bottle. Aimed at a general audience, the book describes the scientific basis of controlled fusion--the fusing of atomic nuclei, under conditions hotter than the sun, to release energy. Using personal recollections of scientists involved, it traces the history of this little-known international race that began during the Cold War in secret laboratories in the United States, Great Britain and the Soviet Union, and evolved into an astonishingly open collaboration between East and West.

  9. Enhancement of HCV polytope DNA vaccine efficacy by fusion to an N-terminal fragment of heat shock protein gp96.

    PubMed

    Pishraft-Sabet, Leila; Kosinska, Anna D; Rafati, Sima; Bolhassani, Azam; Taheri, Tahereh; Memarnejadian, Arash; Alavian, Seyed-Moayed; Roggendorf, Michael; Samimi-Rad, Katayoun

    2015-01-01

    Induction of a strong hepatitis C virus (HCV)-specific immune response plays a key role in control and clearance of the virus. A polytope (PT) DNA vaccine containing B- and T-cell epitopes could be a promising vaccination strategy against HCV, but its efficacy needs to be improved. The N-terminal domain of heat shock protein gp96 (NT(gp96)) has been shown to be a potent adjuvant for enhancing immunity. We constructed a PT DNA vaccine encoding four HCV immunodominant cytotoxic T lymphocyte epitopes (two HLA-A2- and two H2-D(d)-specific motifs) from the Core, E2, NS3 and NS5B antigens in addition to a T-helper CD4+ epitope from NS3 and a B-cell epitope from E2. The NT(gp96) was fused to the C- or N-terminal end of the PT DNA (PT-NT(gp96) or NT(gp96)-PT), and their potency was compared. Cellular and humoral immune responses against the expressed peptides were evaluated in CB6F1 mice. Our results showed that immunization of mice with PT DNA vaccine fused to NT(gp96) induced significantly stronger T-cell and antibody responses than PT DNA alone. Furthermore, the adjuvant activity of NT(gp96) was more efficient in the induction of immune responses when fused to the C-terminal end of the HCV DNA polytope. In conclusion, the NT(gp96) improved the efficacy of the DNA vaccine, and this immunomodulatory effect was dependent on the position of the fusion. PMID:25348271

  10. 50 years of fusion research

    NASA Astrophysics Data System (ADS)

    Meade, Dale

    2010-01-01

    Fusion energy research began in the early 1950s as scientists worked to harness the awesome power of the atom for peaceful purposes. There was early optimism for a quick solution for fusion energy as there had been for fission. However, this was soon tempered by reality as the difficulty of producing and confining fusion fuel at temperatures of 100 million °C in the laboratory was appreciated. Fusion research has followed two main paths—inertial confinement fusion and magnetic confinement fusion. Over the past 50 years, there has been remarkable progress with both approaches, and now each has a solid technical foundation that has led to the construction of major facilities that are aimed at demonstrating fusion energy producing plasmas.

  11. Microstructural Evolution and Mechanical Properties of Fusion Welds and Simulated Heat-Affected Zones in an Iron-Copper Based Multi-Component Steel

    NASA Astrophysics Data System (ADS)

    Farren, Jeffrey David

    NUCu-140 is a copper-precipitation strengthened steel that exhibits excellent mechanical properties with a relatively simple chemical composition and processing schedule. As a result, NUCu-140 is a candidate material for use in many naval and structural applications. Before NUCu-140 can be implemented as a replacement for currently utilized materials, a comprehensive welding strategy must be developed under a wide range of welding conditions. This research represents an initial step toward understanding the microstructural and mechanical property evolution that occurs during fusion welding of NUCu-140. The following dissertation is presented as a series of four chapters. Chapter one is a review of the relevant literature on the iron-copper system including the precipitation of copper in steel, the development of the NUCu family of alloys, and the formation of acicular ferrite in steel weldments. Chapter two is a detailed study of the precipitate, microstructural, and mechanical property evolution of NUCu-140 fusion welds. Microhardness testing, tensile testing, local-electrode atom probe (LEAP) tomography, MatCalc kinetic simulations, and Russell-Brown strengthening results for gas-tungsten and gas-metal arc welds are presented. Chapter three is a thorough study of the microstructural and mechanical property evolution that occurs in the four critical regions of the HAZ. Simulated HAZ specimens were produced and evaluated using microhardness, tensile testing, and charpy impact testing. MatCalc simulations and R-B strengthening calculations were also performed in an effort to model the experimentally observed mechanical property trends. Chapter 4 is a brief investigation into the capabilities of MatCalc and the R-B model to determine if the two techniques could be used as predictive tools for a series of binary iron-copper alloys without the aid of experimentally measured precipitate data. The mechanical property results show that local softening occurs in the heat

  12. Mechanical properties and microstructure of copper alloys and copper alloy-stainless steel laminates for fusion reactor high heat flux applications

    NASA Astrophysics Data System (ADS)

    Leedy, Kevin Daniel

    A select group of copper alloys and bonded copper alloy-stainless steel panels are under consideration for heat sink applications in first wall and divertor structures of a planned thermonuclear fusion reactor. Because these materials must retain high strengths and withstand high heat fluxes, their material properties and microstructures must be well understood. Candidate copper alloys include precipitate strengthened CuNiBe and CuCrZr and dispersion strengthened Cu-Alsb2Osb3 (CuAl25). In this study, uniaxial mechanical fatigue tests were conducted on bulk copper alloy materials at temperatures up to 500sp°C in air and vacuum environments. Based on standardized mechanical properties measurement techniques, a series of tests were also implemented to characterize copper alloy-316L stainless steel joints produced by hot isostatic pressing or by explosive bonding. The correlation between mechanical properties and the microstructure of fatigued copper alloys and the interface of copper alloy-stainless steel laminates was examined. Commercial grades of these alloys were used to maintain a degree of standardization in the materials testing. The commercial alloys used were OMG Americas Glidcop CuAl25 and CuAl15; Brush Wellman Hycon 3HP and Trefimetaux CuNiBe; and Kabelmetal Elbrodur and Trefimetaux CuCrZr. CuAl25 and CuNiBe alloys possessed the best combination of fatigue resistance and microstructural stability. The CuAl25 alloy showed only minimal microstructural changes following fatigue while the CuNiBe alloy consistently exhibited the highest fatigue strength. Transmission electron microscopy observations revealed that small matrix grain sizes and high densities of submicron strengthening phases promoted homogeneous slip deformation in the copper alloys. Thus, highly organized fatigue dislocation structure formation, as commonly found in oxygen-free high conductivity Cu, was inhibited. A solid plate of CuAl25 alloy hot isostatically pressed to a 316L stainless steel

  13. Retrieval of water and heat flux based on fusion of LANDSAT TM/ETM+ and MODIS data

    NASA Astrophysics Data System (ADS)

    Ning, Jicai; Gao, Zhiqiang; Liu, Chaoshun; Gao, Wei

    2015-09-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) data has a high temporal resolution, which, at present, is an ideal data source in simulative monitoring of regional-scale changes in surface energy and water. However, the spatial resolution of its thermal infrared band is relatively low (1 km). The Landsat TM/ETM+ data have a high spatial resolution, but their single thermal infrared bands can lead to the fact that the inversion accuracy for the surface temperature is not high, and that the time resolution is low. This limits its application in the surface evapotranspiration (ET) monitoring. Combining TM/ETM + visible wave band with MODIS thermal infrared wave band, this paper discusses a multi-scale remote sensing method to estimate regional surface ET. On the basis of space enhancement method, the vegetation index estimated by TM/ETM + enhances the surface temperature scale with the inversion of MODIS to a 30 m resolution, which aims to improve the estimation accuracy of ET in the non-uniform surface mixed-pixel. The results show that this method has a higher accuracy of ET estimation compared with the method of only using MODIS or ETM+ data. Moreover, it can obtain a more obvious effect on scale correction in the uneven land surface or various surface covering types, and the corrected ET is close to the observation result.

  14. Dendritic-Tumor Fusion Cells Derived Heat Shock Protein70-Peptide Complex Has Enhanced Immunogenicity

    PubMed Central

    Chen, Jun; Liu, Yunyan; Luo, Wen

    2015-01-01

    Tumor-derived heat shock protein70-peptide complexes (HSP70.PC-Tu) have shown great promise in tumor immunotherapy due to numerous advantages. However, large-scale phase III clinical trials showed that the limited immunogenicity remained to be enhanced. In previous research, we demonstrated that heat shock protein 70-peptide complexes (HSP70.PC-Fc) derived from dendritic cell (DC)-tumor fusions exhibit enhanced immunogenicity compared with HSP70.PCs from tumor cells. However, the DCs used in our previous research were obtained from healthy donors and not from the patient population. In order to promote the clinical application of these complexes, HSP70.PC-Fc was prepared from patient-derived DC fused directly with patient-derived tumor cells in the current study. Our results showed that compared with HSP70.PC-Tu, HSP70.PC-Fc elicited much more powerful immune responses against the tumor from which the HSP70 was derived, including enhanced T cell activation, and CTL responses that were shown to be antigen specific and HLA restricted. Our results further indicated that the enhanced immunogenicity is related to the activation of CD4+ T cells and increased association with other heat shock proteins, such as HSP90. Therefore, the current study confirms the enhanced immunogenicity of HSP70.PC derived from DC-tumor fusions and may provide direct evidence promoting their future clinical use. PMID:25961716

  15. Physics of laser fusion. Vol. I. Theory of the coronal plasma in laser-fusion targets

    SciTech Connect

    Max, C.E.

    1981-12-01

    This monograph deals with the physics of the coronal region in laser fusion targets. The corona consists of hot plasma which has been evaporated from the initially solid target during laser heating. It is in the corona that the laser light is absorbed by the target, and the resulting thermal energy is conducted toward cold high-density regions, where ablation occurs. The topics to be discussed are theoretical mechanisms for laser light absorption and reflection, hot-electron production, and the physics of heat conduction in laser-produced plasmas. An accompanying monograph by H. Ahlstrom (Vol.II) reviews the facilities, diagnostics, and data from recent laser fusion experiments.

  16. Massachusetts Institute of Technology Plasma Fusion Center 1992-1993 report to the President

    NASA Astrophysics Data System (ADS)

    1993-07-01

    This report discusses research being conducted at MIT's plasma fusion center. Some of the areas covered are: plasma diagnostics, RF plasma heating, gyrotron research, treatment of solid waste by arc plasma, divertor experiments, tokamak studies, and plasma and fusion theory.

  17. Economic potential of inertial fusion

    SciTech Connect

    Nuckolls, J.H.

    1984-04-01

    Beyond the achievement of scientific feasibility, the key question for fusion energy is: does it have the economic potential to be significantly cheaper than fission and coal energy. If fusion has this high economic potential then there are compelling commercial and geopolitical incentives to accelerate the pace of the fusion program in the near term, and to install a global fusion energy system in the long term. Without this high economic potential, fusion's success depends on the failure of all alternatives, and there is no real incentive to accelerate the program. If my conjectures on the economic potential of inertial fusion are approximately correct, then inertial fusion energy's ultimate costs may be only half to two-thirds those of advanced fission and coal energy systems. Relative cost escalation is not assumed and could increase this advantage. Both magnetic and inertial approaches to fusion potentially have a two-fold economic advantage which derives from two fundamental properties: negligible fuel costs and high quality energy which makes possible more efficient generation of electricity. The wining approach to fusion may excel in three areas: electrical generating efficiency, minimum material costs, and adaptability to manufacture in automated factories. The winning approach must also rate highly in environmental potential, safety, availability factor, lifetime, small 0 and M costs, and no possibility of utility-disabling accidents.

  18. Core conditions for alpha heating attained in direct-drive inertial confinement fusion

    DOE PAGESBeta

    Bose, A.; Woo, K. M.; Betti, R.; Campbell, E. M.; Mangino, D.; Christopherson, A. R.; McCrory, R. L.; Nora, R.; Regan, S. P.; Goncharov, V. N.; et al

    2016-07-07

    Here, it is shown that direct-drive implosions on the OMEGA laser have achieved core conditions that would lead to significant alpha heating at incident energies available on the National Ignition Facility (NIF) scale. The extrapolation of the experimental results from OMEGA to NIF energy assumes only that the implosion hydrodynamic efficiency is unchanged at higher energies. This approach is independent of the uncertainties in the physical mechanism that degrade implosions on OMEGA, and relies solely on a volumetric scaling of the experimentally observed core conditions. It is estimated that the current best-performing OMEGA implosion [Regan et al., Phys. Rev. Lett.more » 117, 025001 (2016)] extrapolated to a 1.9 MJ laser driver with the same illumination configuration and laser-target coupling would produce 125 kJ of fusion energy with similar levels of alpha heating observed in current highest performing indirect-drive NIF implosions.« less

  19. Core conditions for alpha heating attained in direct-drive inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Bose, A.; Woo, K. M.; Betti, R.; Campbell, E. M.; Mangino, D.; Christopherson, A. R.; McCrory, R. L.; Nora, R.; Regan, S. P.; Goncharov, V. N.; Sangster, T. C.; Forrest, C. J.; Frenje, J.; Gatu Johnson, M.; Glebov, V. Yu; Knauer, J. P.; Marshall, F. J.; Stoeckl, C.; Theobald, W.

    2016-07-01

    It is shown that direct-drive implosions on the OMEGA laser have achieved core conditions that would lead to significant alpha heating at incident energies available on the National Ignition Facility (NIF) scale. The extrapolation of the experimental results from OMEGA to NIF energy assumes only that the implosion hydrodynamic efficiency is unchanged at higher energies. This approach is independent of the uncertainties in the physical mechanism that degrade implosions on OMEGA, and relies solely on a volumetric scaling of the experimentally observed core conditions. It is estimated that the current best-performing OMEGA implosion [Regan et al., Phys. Rev. Lett. 117, 025001 (2016), 10.1103/PhysRevLett.117.025001] extrapolated to a 1.9 MJ laser driver with the same illumination configuration and laser-target coupling would produce 125 kJ of fusion energy with similar levels of alpha heating observed in current highest performing indirect-drive NIF implosions.

  20. Finding the Missing γ in D+Darrow ^4He Cold Fusion Excess Heat:

    NASA Astrophysics Data System (ADS)

    Chubb, Scott

    2002-03-01

    The source of Cold Fusion (CF)Excess Heat is a novel form of D+Darrow ^4He reaction in which no high energy γ rays are emitted (http:// www.aps.org/meet/MAR01/baps/abs/S7640003.html) . An important source of confusion concerning this point is the apparent lack of consensus about known effects associated even with the conventional D+Darrow^4He+γ reaction. In fact, although little information about D+Darrow ^4He+γ appears in the conventional fusion literature, the photo-dissociation reaction ^4He+γarrowD+D not only has been widely studied but is known to occur through a quadrupolar (E2) transition in which the two particle wave function associated with the D-nuclei is required to preserve Bose symmetry, in the far field regions, where the Electromagnetic Interaction EMI is dominant. Also in this reaction coupling occurs between strong and EMI's that invalidates the separability requirements that are present in the remaining D+D fusion reactions. These facts lend credibility to the notion that coherent many-body effects, involving D-exchange can alter the reaction in such a way that γ ray emission is not required.

  1. The status of cold fusion

    NASA Astrophysics Data System (ADS)

    Storms, E.

    This report attempts to update the status of the phenomenon of cold fusion. The new field is continuing to grow as a variety of nuclear reactions are discovered to occur in a variety of chemical environments at modest temperatures. However, it must be cautioned that most scientists consider cold fusion as something akin to UFO's, ESP, and numerology.

  2. Role of impurities in fusion plasmas

    SciTech Connect

    Tokar, M. Z.

    2008-10-15

    The role of impurity at the plasma edge of fusion devices is considered by analysing the influence on radiation losses and anomalous transport of particle and energy. The conditions critical for the development of radiative instabilities leading to the formation of detachment and MARFE and those necessary for the creation of a stable radiating edge, protecting the wall elements from intensive heat loads, are analyzed. Mechanisms responsible for anomalous transport suppression with impurity seeding are elucidated.

  3. EDITORIAL: Safety aspects of fusion power plants

    NASA Astrophysics Data System (ADS)

    Kolbasov, B. N.

    2007-07-01

    neutral beam injectors and the power supply systems were considered. This year the ion cyclotron resonant heating system is under evaluation. I. Cristescu et al (Germany) present the paper `Tritium inventories and tritium safety design principles for the fuel cycle of ITER'. She and her colleagues developed the dynamic mathematical model (TRIMO) for tritium inventory evaluation within each system of the ITER fuel cycle in various operational scenarios. TRIMO is used as a tool for trade-off studies within the fuel cycle systems with the final goal of global tritium inventory minimization. M. Matsuyama et al (Japan) describes a new technique for in situ quantitative measurements of high-level tritium inventory and its distribution in the VV and tritium systems of ITER and future fusion reactors. This technique is based on utilization of x-rays induced by beta-rays emitting from tritium species. It was applied to three physical states of high-level tritium: to gaseous, aqueous and solid tritium retained on/in various materials. Finally, there are four papers devoted to safety issues in fusion reactor decommissioning and waste management. A paper by R. Pampin et al (UK) provides the revised radioactive waste analysis of two models in the PPCS. Another paper by M. Zucchetti (Italy), S.A. Bartenev (Russia) et al describes a radiochemical extraction technology for purification of V-Cr-Ti alloy components from activation products to the dose rate of 10 µSv/h allowing their clearance or hands-on recycling which has been developed and tested in laboratory stationary conditions. L. El-Guebaly (USA) and her colleagues submitted two papers. In the first paper she optimistically considers the possibility of replacing the disposal of fusion power reactor waste with recycling and clearance. Her second paper considers the implications of new clearance guidelines for nuclear applications, particularly for slightly irradiated fusion materials.

  4. Future of Inertial Fusion Energy

    SciTech Connect

    Nuckolls, J H; Wood, L L

    2002-09-04

    In the past 50 years, fusion R&D programs have made enormous technical progress. Projected billion-dollar scale research facilities are designed to approach net energy production. In this century, scientific and engineering progress must continue until the economics of fusion power plants improves sufficiently to win large scale private funding in competition with fission and non-nuclear energy systems. This economic advantage must be sustained: trillion dollar investments will be required to build enough fusion power plants to generate ten percent of the world's energy. For Inertial Fusion Energy, multi-billion dollar driver costs must be reduced by up to an order of magnitude, to a small fraction of the total cost of the power plant. Major cost reductions could be achieved via substantial improvements in target performance-both higher gain and reduced ignition energy. Large target performance improvements may be feasible through a combination of design innovations, e.g., ''fast ignition,'' propagation down density gradients, and compression of fusion fuel with a combination of driver and chemical energy. The assumptions that limit projected performance of fusion targets should be carefully examined. The National Ignition Facility will enable development and testing of revolutionary targets designed to make possible economically competitive fusion power plants.

  5. A novel hNIS/tdTomato fusion reporter for visualizing the relationship between the cellular localization of sodium iodide symporter and its iodine uptake function under heat shock treatment.

    PubMed

    Yeom, Chan Joo; Chung, Taemoon; Youn, Hyewon; Kang, Keon Wook; Lee, Dong Soo; Chung, June-Key

    2015-01-01

    The function of membrane-localized sodium iodide symporter (NIS) determines the efficacy of radioiodine therapy in thyroid cancer. Here, we describe a dual mode reporter fused with human NIS (hNIS) and a red fluorescent protein named tandem dimeric Tomato (tdTomato) for the in vitro and in vivo imaging of hNIS protein expression, localization, and iodide uptake function. Human cervical epithelial adenocarcinoma cell line (HeLa)-hNIS/tdTomato cells were established by transducing a fusion gene expressing hNIS/tdTomato under the control of a cytomegalovirus promoter. Fluorescence imaging, confocal microscopy, and an 125I uptake assay were performed to validate the integrity of the fusion protein. Actinomycin D and cycloheximide were used to block newly synthesized hNIS proteins. In vivo images were acquired using a gamma camera and a Maestro fluorescence imaging device. The fluorescence intensity of membrane-localized hNIS and 125I uptake both were increased after heat shock. Scintigraphy and fluorescence imaging indicated specific accumulation of the hNIS/tdTomato fusion protein in xenografted tumors, supporting the utility of this system for in vivo monitoring of hNIS expression and activity. We developed a novel hNIS/tdTomato dual mode reporter that enables visualization of the expression, localization, and iodine uptake function of hNIS in vitro and in vivo. PMID:25773964

  6. Role of sequence and structure of the Hendra fusion protein fusion peptide in membrane fusion.

    PubMed

    Smith, Everett Clinton; Gregory, Sonia M; Tamm, Lukas K; Creamer, Trevor P; Dutch, Rebecca Ellis

    2012-08-24

    Viral fusion proteins are intriguing molecular machines that undergo drastic conformational changes to facilitate virus-cell membrane fusion. During fusion a hydrophobic region of the protein, termed the fusion peptide (FP), is inserted into the target host cell membrane, with subsequent conformational changes culminating in membrane merger. Class I fusion proteins contain FPs between 20 and 30 amino acids in length that are highly conserved within viral families but not between. To examine the sequence dependence of the Hendra virus (HeV) fusion (F) protein FP, the first eight amino acids were mutated first as double, then single, alanine mutants. Mutation of highly conserved glycine residues resulted in inefficient F protein expression and processing, whereas substitution of valine residues resulted in hypofusogenic F proteins despite wild-type surface expression levels. Synthetic peptides corresponding to a portion of the HeV F FP were shown to adopt an α-helical secondary structure in dodecylphosphocholine micelles and small unilamellar vesicles using circular dichroism spectroscopy. Interestingly, peptides containing point mutations that promote lower levels of cell-cell fusion within the context of the whole F protein were less α-helical and induced less membrane disorder in model membranes. These data represent the first extensive structure-function relationship of any paramyxovirus FP and demonstrate that the HeV F FP and potentially other paramyxovirus FPs likely require an α-helical structure for efficient membrane disordering and fusion. PMID:22761418

  7. Frontier of Fusion Research: Path to the Steady State Fusion Reactor by Large Helical Device

    NASA Astrophysics Data System (ADS)

    Motojima, Osamu

    2006-12-01

    The ITER, the International Thermonuclear Experimental Reactor, which will be built in Cadarache in France, has finally started this year, 2006. Since the thermal energy produced by fusion reactions divided by the external heating power, i.e., the Q value, will be larger than 10, this is a big step of the fusion research for half a century trying to tame the nuclear fusion for the 6.5 Billion people on the Earth. The source of the Sun's power is lasting steadily and safely for 8 Billion years. As a potentially safe environmentally friendly and economically competitive energy source, fusion should provide a sustainable future energy supply for all mankind for ten thousands of years. At the frontier of fusion research important milestones are recently marked on a long road toward a true prototype fusion reactor. In its own merits, research into harnessing turbulent burning plasmas and thereby controlling fusion reaction, is one of the grand challenges of complex systems science. After a brief overview of a status of world fusion projects, a focus is given on fusion research at the National Institute for Fusion Science (NIFS) in Japan, which is playing a role of the Inter University Institute, the coordinating Center of Excellence for academic fusion research and by the Large Helical Device (LHD), the world's largest superconducting heliotron device, as a National Users' facility. The current status of LHD project is presented focusing on the experimental program and the recent achievements in basic parameters and in steady state operations. Since, its start in a year 1998, a remarkable progress has presently resulted in the temperature of 140 Million degree, the highest density of 500 Thousand Billion/cc with the internal density barrier (IDB) and the highest steady average beta of 4.5% in helical plasma devices and the largest total input energy of 1.6 GJ, in all magnetic confinement fusion devices. Finally, a perspective is given of the ITER Broad Approach program

  8. Fusion of the ear bones

    MedlinePlus

    Fusion of the ear bones is the joining of the bones of the inner ear. These are the incus, malleus, and stapes bones. Related topics include: Chronic ear infection Otosclerosis Middle ear malformations

  9. Control of mechanically activated polymersome fusion: Factors affecting fusion

    DOE PAGESBeta

    Henderson, Ian M.; Paxton, Walter F.

    2014-12-15

    Previously we have studied the mechanically-activated fusion of extruded (200 nm) polymer vesicles into giant polymersomes using agitation in the presence of salt. In this study we have investigated several factors contributing to this phenomenon, including the effects of (i) polymer vesicle concentration, (ii) agitation speed and duration, and iii) variation of the salt and its concentration. It was found that increasing the concentration of the polymer dramatically increases the production of giant vesicles through the increased collisions of polymersomes. Our investigations also found that increasing the frequency of agitation increased the efficiency of fusion, though ultimately limited the sizemore » of vesicle which could be produced due to the high shear involved. Finally it was determined that salt-mediation of the fusion process was not limited to NaCl, but is instead a general effect facilitated by the presence of solvated ionic compounds, albeit with different salts initiating fusion at different concentration.« less

  10. Control of mechanically activated polymersome fusion: Factors affecting fusion

    SciTech Connect

    Henderson, Ian M.; Paxton, Walter F.

    2014-12-15

    Previously we have studied the mechanically-activated fusion of extruded (200 nm) polymer vesicles into giant polymersomes using agitation in the presence of salt. In this study we have investigated several factors contributing to this phenomenon, including the effects of (i) polymer vesicle concentration, (ii) agitation speed and duration, and iii) variation of the salt and its concentration. It was found that increasing the concentration of the polymer dramatically increases the production of giant vesicles through the increased collisions of polymersomes. Our investigations also found that increasing the frequency of agitation increased the efficiency of fusion, though ultimately limited the size of vesicle which could be produced due to the high shear involved. Finally it was determined that salt-mediation of the fusion process was not limited to NaCl, but is instead a general effect facilitated by the presence of solvated ionic compounds, albeit with different salts initiating fusion at different concentration.

  11. Enabling Technology in Support of Fusion Science

    NASA Astrophysics Data System (ADS)

    Baker, Charles C.

    1999-03-01

    This paper summarizes remarks made at Fusion Power Associates annual meeting, July 17, 2000 in San Diego. It describes the U.S. Department of Energy Office of Fusion Enegy Sciences programs in plasma and fusion technology in support of the U. S. fusion energy sciences program.

  12. Rapid heating of matter using high power lasers

    SciTech Connect

    Bang, Woosuk

    2015-11-05

    This report describes rapid heating technology with ion sources. LANL calculated the expected heating per atom and temperatures of the target materials, used alumium ion beams to heat gold and diamond, produced deuterium fusion plasmas and then measured the ion temperature at the time of the fusion reactions.

  13. Nuclear Propulsion through Direct Conversion of Fusion Energy: The Fusion Driven Rocket

    NASA Technical Reports Server (NTRS)

    Slough, John; Pancotti, Anthony; Kirtley, David; Pihl, Christopher; Pfaff, Michael

    2012-01-01

    The future of manned space exploration and development of space depends critically on the creation of a dramatically more proficient propulsion architecture for in-space transportation. A very persuasive reason for investigating the applicability of nuclear power in rockets is the vast energy density gain of nuclear fuel when compared to chemical combustion energy. Current nuclear fusion efforts have focused on the generation of electric grid power and are wholly inappropriate for space transportation as the application of a reactor based fusion-electric system creates a colossal mass and heat rejection problem for space application.

  14. A review of pulse fusion propulsion

    NASA Astrophysics Data System (ADS)

    Cassenti, Brice N.

    2002-01-01

    During the last forty years there has been considerable interest in both internal and external pulse propulsion systems. Over this time the nuclear devices being considered have grown considerably smaller than those initially examined. Now pellets are normally in the range from 15 cm down to 2 cm in diameter, and fusion devices are generally preferred. High energy density triggers (such as lasers, particle beams or antiprotons) have been considered for detonating the fusion fuel. When antiprotons are considered it is more efficient to annihilate the antiprotons in a fissionable material, and then use the energy from the fission reaction to drive the fusion reaction in the pellet, than to use the annihilation energy directly. Finally, fissionable material can be used to boost the performance of a fusion system. The early concepts, which used critical mass devices, do not satisfy the ban on nuclear weapons in space, and are only rarely considered today. Concepts based on inertial confinement fusion are heavier than those that use antiprotons for the trigger since the mass associated with the lasers, or particle beams and their power supplies are considerably heavier than the traps used for antiprotons. Hence, from a performance, and even a political, point of view the antiproton-triggered approach is the most desirable, but it also requires more development. Not only is the trigger lighter but an external pulse propulsion rocket does not necessarily need radiators to reject excess heat and, hence, can be even lighter. Propulsion systems based on critical mass devices are clearly feasible, so the primary problem is to reduce the size of the explosive devices so that a critical mass is not required. If pulse nuclear fusion propulsion can become a reality then the performance is enough to complete manned missions to the inner planets in weeks and the outer planets in months. .

  15. High-power corrugates waveguide components for mm-wave fusion heating systems

    SciTech Connect

    Olstad, R.A.; Doane, J.L.; Moeller, C.P.; O`Neill, R.C.; Di Martino, M.

    1996-10-01

    Considerable progress has been made over the last year in the U.S., Japan, Russia, and Europe in developing high power long pulse gyrotrons for fusion plasma heating and current drive. These advanced gyrotrons typically operate at a frequency in the range 82 GHz to 170 GHz at nearly megawatt power levels for pulse lengths up to 5 s. To take advantage of these new microwave sources for fusion research, new and improved transmission line components are needed to reliably transmit microwave power to plasmas with minimal losses. Over the last year, General Atomics and collaborating companies (Spinner GmbH in Europe and Toshiba Corporation in Japan) have developed a wide variety of new components which meet the demanding power, pulse length, frequency, and vacuum requirements for effective utilization of the new generation of gyrotrons. These components include low-loss straight corrugated waveguides, miter bends, miter bend polarizers, power monitors, waveguide bellows, de breaks, waveguide switches, dummy loads, and distributed windows. These components have been developed with several different waveguide diameters (32, 64, and 89 mm) and frequency ranges (82 GHz to 170 GHz). This paper describes the design requirements of selected components and their calculated and measured performance characteristics.

  16. Charge-exchange and fusion reaction measurements during compression experiments with neutral beam heating in the Tokamak Fusion Test Reactor

    SciTech Connect

    Kaita, R.; Heidbrink, W.W.; Hammett, G.W.; Chan, A.A.; England, A.C.; Hendel, H.W.; Medley, S.S.; Nieschmidt, E.; Roquemore, A.L.; Scott, S.D.

    1986-04-01

    Adiabatic toroidal compression experiments were performed in conjunction with high power neutral beam injection in the Tokamak Fusion Test Reactor (TFTR). Acceleration of beam ions to energies nearly twice the injection energy was measured with a charge-exchange neutral particle analyzer. Measurements were also made of 2.5 MeV neutrons and 15 MeV protons produced in fusion reactions between the deuterium beam ions and the thermal deuterium and /sup 3/He ions, respectively. When the plasma was compressed, the d(d,n)/sup 3/He fusion reaction rate increased a factor of five, and the /sup 3/He(d,p)/sup 4/He rate by a factor of twenty. These data were simulated with a bounce-averaged Fokker-Planck program, which assumed conservation of angular momentum and magnetic moment during compression. The results indicate that the beam ion acceleration was consistent with adiabatic scaling.

  17. Systematic analysis of advanced fusion fuel in inertial fusion energy

    NASA Astrophysics Data System (ADS)

    Velarde, G.; Eliezer, S.; Henis, Z.; Piera, M.; Martinez-Val, J. M.

    1997-04-01

    Aneutronic fusion reactions can be considered as the cleanest way to exploit nuclear energy. However, these reactions present in general two main drawbacks.—very high temperatures are needed to reach relevant values of their cross sections—Moderate (and even low) energy yield per reaction. This value is still lower if measured in relation to the Z number of the reacting particles. It is already known that bremsstrahlung overruns the plasma reheating by fusion born charged-particles in most of the advanced fuels. This is for instance the case for proton-boron-11 fusion in a stoichiometric plasma and is also so in lithium isotopes fusion reactions. In this paper, the use of deuterium-tritium seeding is suggested to allow to reach higher burnup fractions of advanced fuels, starting at a lower ignition temperature. Of course, neutron production increases as DT contents does. Nevertheless, the ratio of neutron production to energy generation is much lower in DT-advanced fuel mixtures than in pure DT plasmas. One of the main findings of this work is that some natural resources (as D and Li-7) can be burned-up in a catalytic regime for tritium. In this case, neither external tritium breeding nor tritium storage are needed, because the tritium inventory after the fusion burst is the same as before it. The fusion reactor can thus operate on a pure recycling of a small tritium inventory.

  18. Effects of selective fusion on the thermal history of the Moon, Mars, and Venus

    USGS Publications Warehouse

    Lee, W.H.K.

    1968-01-01

    A comparative study on the thermal history of the Moon, Mars, and Venus was made by numerical solutions of the heat equation including and excluding selective fusion of silicates. Selective fusion was approximated by melting in a multicomponent system and redistribution of radioactive elements. Effects on selective fusion on the thermal models are (1) lowering (by several hundred degrees centigrade) and stabilizing the internal temperature distribution, and (2) increasing the surface heat-flow. ?? 1968.

  19. Vacuum fusion bonding of glass plates

    DOEpatents

    Swierkowski, Steve P.; Davidson, James C.; Balch, Joseph W.

    2000-01-01

    An improved apparatus and method for vacuum fusion bonding of large, patterned glass plates. One or both glass plates are patterned with etched features such as microstructure capillaries and a vacuum pumpout moat, with one plate having at least one hole therethrough for communication with a vacuum pumpout fixture. High accuracy alignment of the plates is accomplished by a temporary clamping fixture until the start of the fusion bonding heat cycle. A complete, void-free fusion bond of seamless, full-strength quality is obtained through the plates; because the glass is heated well into its softening point and because of a large, distributed force that is developed that presses the two plates together from the difference in pressure between the furnace ambient (high pressure) and the channeling and microstructures in the plates (low pressure) due to the vacuum drawn. The apparatus and method may be used to fabricate microcapillary arrays for chemical electrophoresis; for example, any apparatus using a network of microfluidic channels embedded between plates of glass or similar moderate melting point substrates with a gradual softening point curve, or for assembly of glass-based substrates onto larger substrates, such as in flat panel display systems.

  20. Vacuum fusion bonding of glass plates

    DOEpatents

    Swierkowski, Steve P.; Davidson, James C.; Balch, Joseph W.

    2001-01-01

    An improved apparatus and method for vacuum fusion bonding of large, patterned glass plates. One or both glass plates are patterned with etched features such as microstructure capillaries and a vacuum pumpout moat, with one plate having at least one hole therethrough for communication with a vacuum pumpout fixture. High accuracy alignment of the plates is accomplished by a temporary clamping fixture until the start of the fusion bonding heat cycle. A complete, void-free fusion bond of seamless, full-strength quality is obtained through the plates; because the glass is heated well into its softening point and because of a large, distributed force that is developed that presses the two plates together from the difference in pressure between the furnace ambient (high pressure) and the channeling and microstructures in the plates (low pressure) due to the vacuum drawn. The apparatus and method may be used to fabricate microcapillary arrays for chemical electrophoresis; for example, any apparatus using a network of microfluidic channels embedded between plates of glass or similar moderate melting point substrates with a gradual softening point curve, or for assembly of glass-based substrates onto larger substrates, such as in flat panel display systems.

  1. Effect of Heat Input on Microstructure Evolution and Mechanical Properties in the Weld Heat-Affected Zone of 9Cr-2W-VTa Reduced Activation Ferritic-Martensitic Steel for Fusion Reactor

    NASA Astrophysics Data System (ADS)

    Moon, Joonoh; Lee, Chang-Hoon; Lee, Tae-Ho; Kim, Hyoung Chan

    2015-01-01

    The phase transformation and mechanical properties in the weld heat-affected zone (HAZ) of a reduced activation ferritic/martensitic steel were explored. The samples for HAZs were prepared using a Gleeble simulator at different heat inputs. The base steel consisted of tempered martensite and carbides through quenching and tempering treatment, whereas the HAZs consisted of martensite, δ-ferrite, and a small volume of autotempered martensite. The prior austenite grain size, lath width of martensite, and δ-ferrite fraction in the HAZs increased with increase in the heat input. The mechanical properties were evaluated using Vickers hardness and Charpy V-notch impact test. The Vickers hardness in the HAZs was higher than that in the base steel but did not change noticeably with increase in the heat input. The HAZs showed poor impact property due to the formation of martensite and δ-ferrite as compared to the base steel. In addition, the impact property of the HAZs deteriorated more with the increase in the heat input. Post weld heat treatment contributed to improve the impact property of the HAZs through the formation of tempered martensite, but the impact property of the HAZs remained lower than that of base steel.

  2. The emissivities of liquid metals at their fusion temperatures

    NASA Technical Reports Server (NTRS)

    Bonnell, D. W.; Treverton, J. A.; Valerga, A. J.; Margrave, J. L.

    1972-01-01

    A survey of the literature through 1969 shows an almost total lack of experimental emissivity data for metals in the liquid state. The emissivities for several transition metals and various other metals and compounds in the liquid state at their fusion temperatures have been determined. The technique used involves electromagnetic levitation-induction heating of the materials in an inert atmosphere. The brightness temperature of the liquid phase of the material is measured as the material is heated through fusion. Given a reliable value of the fusion temperature, which is available for most pure substances, one may readily calculate an emissivity for the liquid phase at the fusion temperatures. Even in cases where melting points are poorly known, the brightness temperatures are unique parameters, independent of the temperature scale and measured for a chemically defined system at a fixed point. Better emissivities may be recalculated as better melting point data become available.

  3. The emissivities of liquid metals at their fusion temperatures.

    NASA Technical Reports Server (NTRS)

    Bonnell, D. W.; Treverton, J. A.; Valerga, A. J.; Margrave , J. L.

    1972-01-01

    The emissivities for several transition metals and various other metals and compounds in the liquid state at their fusion temperatures have been determined in this laboratory. The technique used involves electromagnetic levitation-induction heating of the materials in an inert atmosphere. The brightness temperature of the liquid phase of the material is measured as the material is heated through fusion. Given a reliable value of the fusion temperature, which is available for most pure substances, one may readily calculate an emissivity for the liquid phase at the fusion temperature. Even in cases where melting points are poorly known, the brightness temperatures are unique parameters, independent of the temperature scale and measured for a chemically defined system at a fixed point.

  4. Fusion applications of high power millimeter wave sources

    SciTech Connect

    Freeman, R.L.; George, T.V.

    1994-01-01

    Heating by means of high power electron cyclotron (EC) waves in the mm wavelength range is considered to be one of the most attractive approaches for heating fusion plasmas to the temperatures required to achieve ignition. EC waves have also been used to drive plasma current by using directional launch and to stabilize MHD instabilities in tokamak plasmas through localized heating or current drive. Experiments are planned on both JET and TFTR to measure the alpha particle distribution by scattering EC waves.

  5. Magnetic flux and heat losses by diffusive, advective, and Nernst effects in magnetized liner inertial fusion-like plasma

    NASA Astrophysics Data System (ADS)

    Velikovich, A. L.; Giuliani, J. L.; Zalesak, S. T.

    2015-04-01

    The magnetized liner inertial fusion (MagLIF) approach to inertial confinement fusion [Slutz et al., Phys. Plasmas 17, 056303 (2010); Cuneo et al., IEEE Trans. Plasma Sci. 40, 3222 (2012)] involves subsonic/isobaric compression and heating of a deuterium-tritium plasma with frozen-in magnetic flux by a heavy cylindrical liner. The losses of heat and magnetic flux from the plasma to the liner are thereby determined by plasma advection and gradient-driven transport processes, such as thermal conductivity, magnetic field diffusion, and thermomagnetic effects. Theoretical analysis based on obtaining exact self-similar solutions of the classical collisional Braginskii's plasma transport equations in one dimension demonstrates that the heat loss from the hot compressed magnetized plasma to the cold liner is dominated by transverse heat conduction and advection, and the corresponding loss of magnetic flux is dominated by advection and the Nernst effect. For a large electron Hall parameter ( ωeτe≫1 ), the effective diffusion coefficients determining the losses of heat and magnetic flux to the liner wall are both shown to decrease with ωeτe as does the Bohm diffusion coefficient c T /(16 e B ) , which is commonly associated with low collisionality and two-dimensional transport. We demonstrate how this family of exact solutions can be used for verification of codes that model the MagLIF plasma dynamics.

  6. Magnetic flux and heat losses by diffusive, advective, and Nernst effects in magnetized liner inertial fusion-like plasma

    SciTech Connect

    Velikovich, A. L.; Giuliani, J. L.; Zalesak, S. T.

    2015-04-15

    The magnetized liner inertial fusion (MagLIF) approach to inertial confinement fusion [Slutz et al., Phys. Plasmas 17, 056303 (2010); Cuneo et al., IEEE Trans. Plasma Sci. 40, 3222 (2012)] involves subsonic/isobaric compression and heating of a deuterium-tritium plasma with frozen-in magnetic flux by a heavy cylindrical liner. The losses of heat and magnetic flux from the plasma to the liner are thereby determined by plasma advection and gradient-driven transport processes, such as thermal conductivity, magnetic field diffusion, and thermomagnetic effects. Theoretical analysis based on obtaining exact self-similar solutions of the classical collisional Braginskii's plasma transport equations in one dimension demonstrates that the heat loss from the hot compressed magnetized plasma to the cold liner is dominated by transverse heat conduction and advection, and the corresponding loss of magnetic flux is dominated by advection and the Nernst effect. For a large electron Hall parameter (ω{sub e}τ{sub e}≫1), the effective diffusion coefficients determining the losses of heat and magnetic flux to the liner wall are both shown to decrease with ω{sub e}τ{sub e} as does the Bohm diffusion coefficient cT/(16eB), which is commonly associated with low collisionality and two-dimensional transport. We demonstrate how this family of exact solutions can be used for verification of codes that model the MagLIF plasma dynamics.

  7. Magnetic fusion energy plasma interactive and high heat flux components. Volume I. Technical assessment of the critical issues and problem areas in the plasma materials interaction field

    SciTech Connect

    Conn, R.W.; Gauster, W.B.; Heifetz, D.; Marmar, E.; Wilson, K.L.

    1984-01-01

    A technical assessment of the critical issues and problem areas in the field of plasma materials interactions (PMI) in magnetic fusion devices shows these problems to be central for near-term experiments, for intermediate-range reactor devices including D-T burning physics experiments, and for long-term reactor machines. Critical technical issues are ones central to understanding and successful operation of existing and near-term experiments/reactors or devices of great importance for the long run, i.e., ones which will require an extensive, long-term development effort and thus should receive attention now. Four subgroups were formed to assess the critical PMI issues along four major lines: (1) PMI and plasma confinement physics experiments; (2) plasma-edge modelling and theory; (3) surface physics; and (4) materials technology for in-vessel components and the first wall. The report which follows is divided into four major sections, one for each of these topics.

  8. Characterization of fusion genes and the significantly expressed fusion isoforms in breast cancer by hybrid sequencing

    PubMed Central

    Weirather, Jason L.; Afshar, Pegah Tootoonchi; Clark, Tyson A.; Tseng, Elizabeth; Powers, Linda S.; Underwood, Jason G.; Zabner, Joseph; Korlach, Jonas; Wong, Wing Hung; Au, Kin Fai

    2015-01-01

    We developed an innovative hybrid sequencing approach, IDP-fusion, to detect fusion genes, determine fusion sites and identify and quantify fusion isoforms. IDP-fusion is the first method to study gene fusion events by integrating Third Generation Sequencing long reads and Second Generation Sequencing short reads. We applied IDP-fusion to PacBio data and Illumina data from the MCF-7 breast cancer cells. Compared with the existing tools, IDP-fusion detects fusion genes at higher precision and a very low false positive rate. The results show that IDP-fusion will be useful for unraveling the complexity of multiple fusion splices and fusion isoforms within tumorigenesis-relevant fusion genes. PMID:26040699

  9. Accelerator and Fusion Research Division: summary of activities, 1983

    SciTech Connect

    Not Available

    1984-08-01

    The activities described in this summary of the Accelerator and Fusion Research Division are diverse, yet united by a common theme: it is our purpose to explore technologically advanced techniques for the production, acceleration, or transport of high-energy beams. These beams may be the heavy ions of interest in nuclear science, medical research, and heavy-ion inertial-confinement fusion; they may be beams of deuterium and hydrogen atoms, used to heat and confine plasmas in magnetic fusion experiments; they may be ultrahigh-energy protons for the next high-energy hadron collider; or they may be high-brilliance, highly coherent, picosecond pulses of synchrotron radiation.

  10. Core conditions for alpha heating attained in direct-drive inertial confinement fusion.

    PubMed

    Bose, A; Woo, K M; Betti, R; Campbell, E M; Mangino, D; Christopherson, A R; McCrory, R L; Nora, R; Regan, S P; Goncharov, V N; Sangster, T C; Forrest, C J; Frenje, J; Gatu Johnson, M; Glebov, V Yu; Knauer, J P; Marshall, F J; Stoeckl, C; Theobald, W

    2016-07-01

    It is shown that direct-drive implosions on the OMEGA laser have achieved core conditions that would lead to significant alpha heating at incident energies available on the National Ignition Facility (NIF) scale. The extrapolation of the experimental results from OMEGA to NIF energy assumes only that the implosion hydrodynamic efficiency is unchanged at higher energies. This approach is independent of the uncertainties in the physical mechanism that degrade implosions on OMEGA, and relies solely on a volumetric scaling of the experimentally observed core conditions. It is estimated that the current best-performing OMEGA implosion [Regan et al., Phys. Rev. Lett. 117, 025001 (2016)10.1103/PhysRevLett.117.025001] extrapolated to a 1.9 MJ laser driver with the same illumination configuration and laser-target coupling would produce 125 kJ of fusion energy with similar levels of alpha heating observed in current highest performing indirect-drive NIF implosions. PMID:27575069

  11. Cold fusion research

    SciTech Connect

    1989-11-01

    I am pleased to forward to you the Final Report of the Cold Fusion Panel. This report reviews the current status of cold fusion and includes major chapters on Calorimetry and Excess Heat, Fusion Products and Materials Characterization. In addition, the report makes a number of conclusions and recommendations, as requested by the Secretary of Energy.

  12. Bioenergetic roles of mitochondrial fusion.

    PubMed

    Silva Ramos, Eduardo; Larsson, Nils-Göran; Mourier, Arnaud

    2016-08-01

    Mitochondria are bioenergetic hotspots, producing the bulk of ATP by the oxidative phosphorylation process. Mitochondria are also structurally dynamic and undergo coordinated fusion and fission to maintain their function. Recent studies of the mitochondrial fusion machinery have provided new evidence in detailing their role in mitochondrial metabolism. Remarkably, mitofusin 2, in addition to its role in fusion, is important for maintaining coenzyme Q levels and may be an integral player in the mevalonate synthesis pathway. Here, we review the bioenergetic roles of mitochondrial dynamics and emphasize the importance of the in vitro growth conditions when evaluating mitochondrial respiration. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016,' edited by Prof. Paolo Bernardi. PMID:27060252

  13. Acidification triggers Andes hantavirus membrane fusion and rearrangement of Gc into a stable post-fusion homotrimer.

    PubMed

    Acuña, Rodrigo; Bignon, Eduardo A; Mancini, Roberta; Lozach, Pierre-Yves; Tischler, Nicole D

    2015-11-01

    The hantavirus membrane fusion process is mediated by the Gc envelope glycoprotein from within endosomes. However, little is known about the specific mechanism that triggers Gc fusion activation, and its pre- and post-fusion conformations. We established cell-free in vitro systems to characterize hantavirus fusion activation. Low pH was sufficient to trigger the interaction of virus-like particles with liposomes. This interaction was dependent on a pre-fusion glycoprotein arrangement. Further, low pH induced Gc multimerization changes leading to non-reversible Gc homotrimers. These trimers were resistant to detergent, heat and protease digestion, suggesting characteristics of a stable post-fusion structure. No acid-dependent oligomerization rearrangement was detected for the trypsin-sensitive Gn envelope glycoprotein. Finally, acidification induced fusion of glycoprotein-expressing effector cells with non-susceptible CHO cells. Together, the data provide novel information on the Gc fusion trigger and its non-reversible activation involving lipid interaction, multimerization changes and membrane fusion which ultimately allow hantavirus entry into cells. PMID:26310672

  14. A Summary of the NASA Fusion Propulsion Workshop 2000

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Turchi, Peter J.; Santarius, John F.; Schafer, Charles (Technical Monitor)

    2001-01-01

    A NASA Fusion Propulsion Workshop was held on Nov. 8 and 9, 2000 at Marshall Space Flight Center (MSFC) in Huntsville, Alabama. A total of 43 papers were presented at the Workshop orally or by posters, covering a broad spectrum of issues related to applying fusion to propulsion. The status of fusion research was reported at the Workshop showing the outstanding scientific research that has been accomplished worldwide in the fusion energy research program. The international fusion research community has demonstrated the scientific principles of fusion creating plasmas with conditions for fusion burn with a gain of order unity: 0.25 in Princeton TFTR, 0.65 in the Joint European Torus, and a Q-equivalent of 1.25 in Japan's JT-60. This research has developed an impressive range of physics and technological capabilities that may be applied effectively to the research of possibly new propulsion-oriented fusion schemes. The pertinent physics capabilities include the plasma computational tools, the experimental plasma facilities, the diagnostics techniques, and the theoretical understanding. The enabling technologies include the various plasma heating, acceleration, and the pulsed power technologies.

  15. High-power microwave transmission and launching systems for fusion plasma heating systems

    SciTech Connect

    Bigelow, T.S.

    1989-01-01

    Microwave power in the 30- to 300-GHz frequency range is becoming widely used for heating of plasma in present-day fusion energy magnetic confinement experiments. Microwave power is effective in ionizing plasma and heating electrons through the electron cyclotron heating (ECH) process. Since the power is absorbed in regions of the magnetic field where resonance occurs and launching antennas with narrow beam widths are possible, power deposition location can be highly controlled. This is important for maximizing the power utilization efficiency and improving plasma parameters. Development of the gyrotron oscillator tube has advanced in recent years so that a 1-MW continuous-wave, 140-GHz power source will soon be available. Gyrotron output power is typically in a circular waveguide propagating a circular electric mode (such as TE/sub 0,2/) or a whispering-gallery mode (such as TE/sub 15,2/), depending on frequency and power level. An alternative high-power microwave source currently under development is the free-electron laser (FEL), which may be capable of generating 2-10 MW of average power at frequencies of up to 500 GHz. The FEL has a rectangular output waveguide carrying the TE/sub 0,1/ mode. Because of its higher complexity and cost, the high-average-power FEL is not yet as extensively developed as the gyrotron. In this paper, several types of operating ECH transmission systems are discussed, as well systems currently being developed. The trend in this area is toward higher power and frequency due to the improvements in plasma density and temperature possible. Every system requires a variety of components, such as mode converters, waveguide bends, launchers, and directional couplers. Some of these components are discussed here, along with ongoing work to improve their performance. 8 refs.

  16. Successful anterior fusion following posterior cervical fusion for revision of anterior cervical discectomy and fusion pseudarthrosis.

    PubMed

    Elder, Benjamin D; Sankey, Eric W; Theodros, Debebe; Bydon, Mohamad; Rory Goodwin, C; Lo, Sheng-Fu; Kosztowski, Thomas A; Belzberg, Allen J; Wolinsky, Jean-Paul; Sciubba, Daniel M; Gokaslan, Ziya L; Bydon, Ali; Witham, Timothy F

    2016-02-01

    Pseudarthrosis occurs after approximately 2-20% of anterior cervical discectomy and fusion (ACDF) procedures; it is unclear if posterior or anterior revision should be pursued. In this study, we retrospectively evaluate the outcomes in 22 patients with pseudarthrosis following ACDF and revision via posterior cervical fusion (PCF). Baseline demographics, preoperative symptoms, operative data, time to fusion failure, symptoms of pseudarthrosis, and revision method were assessed. Fusion outcome and clinical outcome were determined at last follow-up (LFU). Thirteen females (59%) and 9 (41%) males experienced pseudarthrosis at a median of 11 (range: 3-151)months after ACDF. Median age at index surgery was 51 (range: 33-67)years. All patients with pseudarthrosis presented with progressive neck pain, with median visual analog scale (VAS) score of 8 (range: 0-10), and/or myeloradiculopathy. Patients with pseudarthrosis <12 months compared to >12 months after index surgery were older (p=0.013), had more frequent preoperative neurological deficits (p=0.064), and lower baseline VAS scores (p=0.006). Fusion was successful after PCF in all patients, with median time to fusion of 10 (range: 2-14)months. Eighteen patients fused both anteriorly and posteriorly, two patients fused anteriorly only, and two patients fused posteriorly only. Median VAS neck score at LFU significantly improved from the time of pseudarthrosis (p=0.012). While uncommon, pseudarthrosis may occur after ACDF. All patients achieved successful fusion after subsequent posterior cervical fusion, with 91% fusing a previous anterior pseudarthrosis after posterior stabilization. Neck pain significantly improved by LFU in the majority of patients in this study. PMID:26482460

  17. Chamber transport of ''foot'' pulses for heavy-ion fusion

    SciTech Connect

    Sharp, W.M.; Callahan-Miller, D.A.; Tabak, M.; Yu, S.S.; Peterson, P.F.

    2002-02-20

    Indirect-drive targets for heavy-ion fusion must initially be heated by ''foot'' pulses that precede the main heating pulses by tens of nanoseconds. These pulses typically have a lower energy and perveance than the main pulses, and the fusion-chamber environment is different from that seen by later pulses. The preliminary particle-in-cell simulations of foot pulses here examine the sensitivity of the beam focusing to ion-beam perveance, background-gas density, and pre-neutralization by a plasma near the chamber entry port.

  18. Evaluation of performance of select fusion experiments and projected reactors

    NASA Technical Reports Server (NTRS)

    Miley, G. H.

    1978-01-01

    The performance of NASA Lewis fusion experiments (SUMMA and Bumpy Torus) is compared with other experiments and that necessary for a power reactor. Key parameters cited are gain (fusion power/input power) and the time average fusion power, both of which may be more significant for real fusion reactors than the commonly used Lawson parameter. The NASA devices are over 10 orders of magnitude below the required powerplant values in both gain and time average power. The best experiments elsewhere are also as much as 4 to 5 orders of magnitude low. However, the NASA experiments compare favorably with other alternate approaches that have received less funding than the mainline experiments. The steady-state character and efficiency of plasma heating are strong advantages of the NASA approach. The problem, though, is to move ahead to experiments of sufficient size to advance in gain and average power parameters.

  19. Role of atomic collisions in fusion

    SciTech Connect

    Post, D.E.

    1982-04-01

    Atomic physics issues have played a large role in controlled fusion research. A general discussion of the present role of atomic processes in both magnetic and inertial controlled fusion work is presented.

  20. Overview of US heavy ion fusion research

    SciTech Connect

    Logan, B.G.; Bieniosek, F.M.; Celata, C.M.; Henestroza, E.; Kwan,J.W.; Lee, E.P.; Leitner, M.; Roy, P.K.; Seidl, P.A.; Eylon, S.; Vay,J-L.; Waldron, W.L.; Yu, S.S.; Barnard, J.J.; Callahan, D.A.; Cohen,R.H.; Friedman, A.; Grote, D.P.; Kireeff Covo, M.; Meier, W.R.; Molvik,A.W.; Lund, S.M.; Davidson, R.C.; Efthimion, P.C.; Gilson, E.P.; Grisham,L.R.; Kaganovich, I.D.; Qin, H.; Startsev, E.A.; Rose, D.V.; Welch, D.R.; Olson, C.L.; Kishek, R.A.; O'Shea, P.; Haber, I.; Prost, L.R.

    2005-06-23

    Significant experimental and theoretical progress has been made in the U.S. heavy ion fusion program on high-current sources, injectors, transport, final focusing, chambers and targets for high energy density physics (HEDP) and inertial fusion energy (IFE) driven by induction linac accelerators. One focus of present research is the beam physics associated with quadrupole focusing of intense, space-charge dominated heavy-ion beams, including gas and electron cloud effects at high currents, and the study of long-distance-propagation effects such as emittance growth due to field errors in scaled experiments. A second area of emphasis in present research is the introduction of background plasma to neutralize the space charge of intense heavy ion beams and assist in focusing the beams to a small spot size. In the near future, research will continue in the above areas, and a new area of emphasis will be to explore the physics of neutralized beam compression and focusing to high intensities required to heat targets to high energy density conditions as well as for inertial fusion energy.

  1. Overview of US heavy ion fusion research

    SciTech Connect

    Logan, B.G.; Bieniosek, F.M.; Celata, C.M.; Henestroza, E.; Kwan,J.W.; Lee, E.P.; Leitner, M.; Roy, P.K.; Seidl, P.A.; Eylon, S.; Vay,J-L.; Waldron, W.L.; Yu, S.S.; Barnard, J.J.; Callahan, D.A.; Cohen,R.H.; Friedman, A.; Grote, D.P; Covo, Kireeff M.; Meier, W.R.; Molvik,A.W.; Lund, S.M.; Davidson, R.C.; Efthimion, P.C.; Gilson, E.P.; Grisham,L.R.; Kaganovich, I.D.; Qin, H.; Startsev, E.A.; Rose, D.V.; Welch, D.R.; Olson, C.L.; Kishek, R.A.; O'Shea, P.; Haber, I.; Prost, L.R.; Prost, L.

    2004-11-01

    Significant experimental and theoretical progress has been made in the U.S. heavy ion fusion program on high-current sources, injectors, transport, final focusing, chambers and targets for high energy density physics (HEDP) and inertial fusion energy (IFE) driven by induction linac accelerators. One focus of present research is the beam physics associated with quadrupole focusing of intense, space-charge dominated heavy-ion beams, including gas and electron cloud effects at high currents, and the study of long-distance-propagation effects such as emittance growth due to field errors in scaled experiments. A second area of emphasis in present research is the introduction of background plasma to neutralize the space charge of intense heavy ion beams and assist in focusing the beams to a small spot size. In the near future, research will continue in the above areas, and a new area of emphasis will be to explore the physics of neutralized beam compression and focusing to high intensities required to heat targets to high energy density conditions as well as for inertial fusion energy.

  2. Feasibility of cluster-type controlled fusion

    NASA Astrophysics Data System (ADS)

    Kingsep, A. S.; Okorokov, V. V.; Chuvilo, I. V.

    1991-10-01

    A method is proposed for generating high-temperature fusion plasma through the collision of accelerated clusters of heavy hydrogen inside a magnetic trap. It is noted that the physical feasibility of this method of fusion plasma generation can now be verified using the existing and functioning equipment. Some features of the controlled fusion method proposed here are examined.

  3. A Review of Data Fusion Techniques

    PubMed Central

    2013-01-01

    The integration of data and knowledge from several sources is known as data fusion. This paper summarizes the state of the data fusion field and describes the most relevant studies. We first enumerate and explain different classification schemes for data fusion. Then, the most common algorithms are reviewed. These methods and algorithms are presented using three different categories: (i) data association, (ii) state estimation, and (iii) decision fusion. PMID:24288502

  4. Fusion and Breakup of Weakly Bound Nuclei

    SciTech Connect

    Gomes, P. R. S.; Lubian, J.; Padron, I.; Crema, E.; Chamon, L. C.; Hussein, M. S.; Canto, L. F.

    2006-08-14

    We discuss the influence of the breakup process of weakly bound nuclei on the fusion cross section. The complete fusion for heavy targets is found to be suppressed due to the incomplete fusion following the breakup, whereas this effect is negligible for light targets. The total fusion cross sections for stable projectiles are not affected by the breakup process, whereas it is suppressed for halo projectiles. The non capture breakup is the dominant process at sub-barrier energies.

  5. Design of a fusion engineering test facility

    SciTech Connect

    Sager, P.H.

    1980-01-01

    The fusion Engineering Test Facility (ETF) is being designed to provide for engineering testing capability in a program leading to the demonstration of fusion as a viable energy option. It will combine power-reactor-type components and subsystems into an integrated tokamak system and provide a test bed to test blanket modules in a fusion environment. Because of the uncertainties in impurity control two basic designs are being developed: a design with a bundle divertor (Design 1) and one with a poloidal divertor (Design 2). The two designs are similar where possible, the latter having somewhat larger toroidal field (TF) coils to accommodate removal of the larger torus sectors required for the single-null poloidal divertor. Both designs have a major radius of 5.4 m, a minor radius of 1.3 m, and a D-shaped plasma with an elongation of 1.6. Ten TF coils are incorporated in both designs, producing a toroidal field of 5.5 T on-axis. The ohmic heating and equilibrium field (EF) coils supply sufficient volt-seconds to produce a flat-top burn of 100 s and a duty cycle of 135 s, including a start of 12 s, a burn termination of 10 s, and a pumpdown of 13 s. The total fusion power during burn is 750 MW, giving a neutron wall loading of 1.5 MW/m/sup 2/. In Design 1 of the poloidal field (PF) coils except the fast-response EF coils are located outside the FT coils and are superconducting. The fast-response coils are located inside the TF coil bore near the torus and are normal conducting so that they can be easily replaced.In Design 2 all of the PF coils are located outside the TF coils and are superconducting. Ignition is achieved with 60 MW of neutral beam injection at 150 keV. Five megawatts of radio frequency heating (electron cyclotron resonance heating) is used to assist in the startup and limit the breakdown requirement to 25 V.

  6. Calculation of fusion product angular correlation coefficients for fusion plasmas

    SciTech Connect

    Murphy, T.J.

    1987-08-01

    The angular correlation coefficients for fusion products are calculated in the cases of Maxwellian and beam-target plasmas. Measurement of these coefficients as a localized ion temperature or fast-ion diagnostic is discussed. 8 refs., 7 figs., 1 tab.

  7. INSPECTION OF FUSION JOINTS IN PLASTIC PIPE

    SciTech Connect

    Alex Savitski; Connie Reichert; John Coffey

    2005-07-13

    The standard method of joining plastic pipe in the field is the butt fusion process. As in any pipeline application, joint quality greatly affects overall operational safety of the system. Currently no simple, reliable, cost effective method of assessing the quality of fusion joints in the field exists. Visual examination and pressure testing are current non-destructive approaches, which do not provide any assurance about the long-term pipeline performance. This project will develop, demonstrate, and validate an in-situ non-destructive inspection method for butt fusion joints in gas distribution plastic pipelines. The inspection system will include a laser based image-recognition system that will automatically generate and interpret digital images of pipe joints and assign them a pass/fail rating, which eliminates operator bias in evaluating joint quality. A Weld Zone Inspection Method (WZIM) is being developed in which local heat is applied to the joint region to relax the residual stresses formed by the original joining operation and reveal the surface condition of the joint. In cases where the joint is not formed under optimal conditions, and the intermolecular forces between contacting surfaces are not strong enough, the relaxation of macromolecules in the surface layer causes the material to pull back, revealing a fusion line. If the joint is sound, the bond line image does not develop. To establish initial feasibility of the approach, welds were performed under standard and nonstandard conditions. These welds were subjected to the WZIM and tensile testing. There appears to be a direct correlation between the WZIM and tensile testing results. Although WZIM appears to be more sensitive than tensile testing can verify, the approach appears valid.

  8. INSPECTION OF FUSION JOINTS IN PLASTIC PIPE

    SciTech Connect

    Alex Savitski; Connie Reichert; John Coffey

    2004-07-13

    The standard method of joining plastic pipe in the field is the butt fusion process. As in any pipeline application, joint quality greatly affects overall operational safety of the system. Currently no simple, reliable, cost effective method of assessing the quality of fusion joints in the field exists. Visual examination and pressure testing are current non-destructive approaches, which do not provide any assurance about the long-term pipeline performance. This project will develop, demonstrate, and validate an in-situ non-destructive inspection method for butt fusion joints in gas distribution plastic pipelines. The inspection system will include a laser based image-recognition system that will automatically generate and interpret digital images of pipe joints and assign them a pass/fail rating, which eliminates operator bias in evaluating joint quality. A Weld Zone Inspection Method (WZIM) is being developed in which local heat is applied to the joint region to relax the residual stresses formed by the original joining operation and reveal the surface condition of the joint. In cases where the joint is not formed under optimal conditions, and the intermolecular forces between contacting surfaces are not strong enough, the relaxation of macromolecules in the surface layer causes the material to pull back, revealing a fusion line. If the joint is sound, the bond line image does not develop. To establish initial feasibility of the approach, welds were performed under standard and non-standard conditions. These welds were subjected to the WZIM and tensile testing. There appears to be a direct correlation between the WZIM and tensile testing results. Although WZIM appears to be more sensitive than tensile testing can verify, the approach appears valid.

  9. INSPECTION OF FUSION JOINTS IN PLASTIC PIPE

    SciTech Connect

    Alex Savitski; Connie Reichert; John Coffey

    2004-10-29

    The standard method of joining plastic pipe in the field is the butt fusion process. As in any pipeline application, joint quality greatly affects overall operational safety of the system. Currently no simple, reliable, cost effective method of assessing the quality of fusion joints in the field exists. Visual examination and pressure testing are current non-destructive approaches, which do not provide any assurance about the long-term pipeline performance. This project will develop, demonstrate, and validate an in-situ non-destructive inspection method for butt fusion joints in gas distribution plastic pipelines. The inspection system will include a laser based image-recognition system that will automatically generate and interpret digital images of pipe joints and assign them a pass/fail rating, which eliminates operator bias in evaluating joint quality. A Weld Zone Inspection Method (WZIM) is being developed in which local heat is applied to the joint region to relax the residual stresses formed by the original joining operation and reveal the surface condition of the joint. In cases where the joint is not formed under optimal conditions, and the intermolecular forces between contacting surfaces are not strong enough, the relaxation of macromolecules in the surface layer causes the material to pull back, revealing a fusion line. If the joint is sound, the bond line image does not develop. To establish initial feasibility of the approach, welds were performed under standard and non-standard conditions. These welds were subjected to the WZIM and tensile testing. There appears to be a direct correlation between the WZIM and tensile testing results. Although WZIM appears to be more sensitive than tensile testing can verify, the approach appears valid.

  10. Inspection of Fusion Joints in Plastic Pipe

    SciTech Connect

    Connie Reichert

    2005-09-01

    The standard method of joining plastic pipe in the field is the butt fusion process. As in any pipeline application, joint quality greatly affects overall operational safety of the system. Currently no simple, reliable, cost-effective method exists for assessing the quality of fusion joints in the field. Visual examination and pressure testing are current nondestructive approaches, which do not provide any assurance about the long-term pipeline performance. This project developed, demonstrated, and validated an in-situ nondestructive inspection method for butt fusion joints in gas distribution plastic pipelines. The inspection system includes a laser-based image-recognition system that automatically generates and interprets digital images of pipe joints and assigns them a pass/fail rating, which eliminates operator bias in evaluating joint quality. An EWI-patented process, the Weld Zone Inspection Method (WZIM) was developed in which local heat is applied to the joint region to relax the residual stresses formed by the original joining operation, which reveals the surface condition of the joint. In cases where the joint is not formed under optimal conditions, and the intermolecular forces between contacting surfaces are not strong enough, the relaxation of macromolecules in the surface layer causes the material to pull back, revealing a fusion line. If the joint is sound, the bond line image does not develop. To establish initial feasibility of the approach, welds were performed under standard and nonstandard conditions. These welds were subjected to the WZIM and two destructive forms of testing: short-term tensile testing and long-term creep rupture testing. There appears to be a direct correlation between the WZIM and the destructive testing results. Although WZIM appears to be more sensitive than destructive testing can verify, the approach appears valid.

  11. Fusion characteristics of volcanic ash relevant to aviation hazards

    NASA Astrophysics Data System (ADS)

    Song, Wenjia; Hess, Kai-Uwe; Damby, David E.; Wadsworth, Fabian B.; Lavallée, Yan; Cimarelli, Corrado; Dingwell, Donald B.

    2014-04-01

    The fusion dynamics of volcanic ash strongly impacts deposition in hot parts of jet engines. In this study, we investigate the sintering behavior of volcanic ash using natural ash of intermediate composition, erupted in 2012 at Santiaguito Volcano, Guatemala. A material science procedure was followed in which we monitored the geometrical evolution of cylindrical-shaped volcanic ash compact upon heating from 50 to 1400°C in a heating microscope. Combined morphological, mineralogical, and rheological analyses helped define the evolution of volcanic ash during fusion and sintering and constrain their sticking potential as well as their ability to flow at characteristic temperatures. For the ash investigated, 1240°C marks the onset of adhesion and flowability. The much higher fusibility of ash compared to that of typical test sands demonstrates for the need of a more extensive fusion characterization of volcanic ash in order to mitigate the risk posed on jet engine operation.

  12. Induction of cross-priming of naive CD8+ T lymphocytes by recombinant bacillus Calmette-Guerin that secretes heat shock protein 70-major membrane protein-II fusion protein.

    PubMed

    Mukai, Tetsu; Maeda, Yumi; Tamura, Toshiki; Matsuoka, Masanori; Tsukamoto, Yumiko; Makino, Masahiko

    2009-11-15

    Because Mycobacterium bovis bacillus Calmette-Guérin (BCG) unconvincingly activates human naive CD8(+) T cells, a rBCG (BCG-70M) that secretes a fusion protein comprising BCG-derived heat shock protein (HSP)70 and Mycobacterium leprae-derived major membrane protein (MMP)-II, one of the immunodominant Ags of M. leprae, was newly constructed to potentiate the ability of activating naive CD8(+) T cells through dendritic cells (DC). BCG-70M secreted HSP70-MMP-II fusion protein in vitro, which stimulated DC to produce IL-12p70 through TLR2. BCG-70M-infected DC activated not only memory and naive CD8(+) T cells, but also CD4(+) T cells of both types to produce IFN-gamma. The activation of these naive T cells by BCG-70M was dependent on the MHC and CD86 molecules on BCG-70M-infected DC, and was significantly inhibited by pretreatment of DC with chloroquine. Both brefeldin A and lactacystin significantly inhibited the activation of naive CD8(+) T cells by BCG-70M through DC. Thus, the CD8(+) T cell activation may be induced by cross-presentation of Ags through a TAP- and proteosome-dependent cytosolic pathway. When naive CD8(+) T cells were stimulated by BCG-70M-infected DC in the presence of naive CD4(+) T cells, CD62L(low)CD8(+) T cells and perforin-producing CD8(+) T cells were efficiently produced. MMP-II-reactive CD4(+) and CD8(+) memory T cells were efficiently produced in C57BL/6 mice by infection with BCG-70M. These results indicate that BCG-70M activated DC, CD4(+) T cells, and CD8(+) T cells, and the combination of HSP70 and MMP-II may be useful for inducing better T cell activation. PMID:19846882

  13. Control of a laser inertial confinement fusion-fission power plant

    DOEpatents

    Moses, Edward I.; Latkowski, Jeffery F.; Kramer, Kevin J.

    2015-10-27

    A laser inertial-confinement fusion-fission energy power plant is described. The fusion-fission hybrid system uses inertial confinement fusion to produce neutrons from a fusion reaction of deuterium and tritium. The fusion neutrons drive a sub-critical blanket of fissile or fertile fuel. A coolant circulated through the fuel extracts heat from the fuel that is used to generate electricity. The inertial confinement fusion reaction can be implemented using central hot spot or fast ignition fusion, and direct or indirect drive. The fusion neutrons result in ultra-deep burn-up of the fuel in the fission blanket, thus enabling the burning of nuclear waste. Fuels include depleted uranium, natural uranium, enriched uranium, spent nuclear fuel, thorium, and weapons grade plutonium. LIFE engines can meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the highly undesirable stockpiles of depleted uranium, spent nuclear fuel and excess weapons materials.

  14. A Plan for the Development of Fusion Energy. Final Report to Fusion Energy Sciences Advisory Committee, Fusion Development Path Panel

    SciTech Connect

    None, None

    2003-03-05

    This report presents a plan for the deployment of a fusion demonstration power plant within 35 years, leading to commercial application of fusion energy by mid-century. The plan is derived from the necessary features of a demonstration fusion power plant and from the time scale defined by President Bush. It identifies critical milestones, key decision points, needed major facilities and required budgets.

  15. Magnetic fusion energy plasma interactive and high heat flux components. Volume III. Strategy for international collaborations in the areas of plasma materials interactions and high heat flux materials and components development

    SciTech Connect

    Gauster, W.B.; Bauer, W.; Roberto, J.B.; Post, D.E.

    1984-01-01

    The purpose of this summary is to assess opportunities for such collaborations in the specific areas of Plasma Materials Interaction and High Heat Flux Materials and Components Development, and to aid in developing a strategy to take advantage of them. After some general discussion of international collaborations, we summarize key technical issues and the US programs to address them. Then follows a summary of present collaborations and potential opportunities in foreign laboratories.

  16. Observation of nuclear fusion driven by a pyroelectric crystal.

    PubMed

    Naranjo, B; Gimzewski, J K; Putterman, S

    2005-04-28

    While progress in fusion research continues with magnetic and inertial confinement, alternative approaches--such as Coulomb explosions of deuterium clusters and ultrafast laser-plasma interactions--also provide insight into basic processes and technological applications. However, attempts to produce fusion in a room temperature solid-state setting, including 'cold' fusion and 'bubble' fusion, have met with deep scepticism. Here we report that gently heating a pyroelectric crystal in a deuterated atmosphere can generate fusion under desktop conditions. The electrostatic field of the crystal is used to generate and accelerate a deuteron beam (> 100 keV and >4 nA), which, upon striking a deuterated target, produces a neutron flux over 400 times the background level. The presence of neutrons from the reaction D + D --> 3He (820 keV) + n (2.45 MeV) within the target is confirmed by pulse shape analysis and proton recoil spectroscopy. As further evidence for this fusion reaction, we use a novel time-of-flight technique to demonstrate the delayed coincidence between the outgoing alpha-particle and the neutron. Although the reported fusion is not useful in the power-producing sense, we anticipate that the system will find application as a simple palm-sized neutron generator. PMID:15858570

  17. Fusion of Enveloped Viruses in Endosomes.

    PubMed

    White, Judith M; Whittaker, Gary R

    2016-06-01

    Ari Helenius launched the field of enveloped virus fusion in endosomes with a seminal paper in the Journal of Cell Biology in 1980. In the intervening years, a great deal has been learned about the structures and mechanisms of viral membrane fusion proteins as well as about the endosomes in which different enveloped viruses fuse and the endosomal cues that trigger fusion. We now recognize three classes of viral membrane fusion proteins based on structural criteria and four mechanisms of fusion triggering. After reviewing general features of viral membrane fusion proteins and viral fusion in endosomes, we delve into three characterized mechanisms for viral fusion triggering in endosomes: by low pH, by receptor binding plus low pH and by receptor binding plus the action of a protease. We end with a discussion of viruses that may employ novel endosomal fusion-triggering mechanisms. A key take-home message is that enveloped viruses that enter cells by fusing in endosomes traverse the endocytic pathway until they reach an endosome that has all of the environmental conditions (pH, proteases, ions, intracellular receptors and lipid composition) to (if needed) prime and (in all cases) trigger the fusion protein and to support membrane fusion. PMID:26935856

  18. Fusion bonding of non-pressurized process piping: A new technology and a new approach

    SciTech Connect

    Cooper, R.J.; Pinder, R.

    1996-07-01

    Perhaps the best-known method of thermoplastic fusion bonding for process piping is hot-plate or heated-tool butt welding. Despite the age of this method and the considerable research available on the subject, in practice, this method of heat fusion relies largely on the skill and knowledge of the machine operator. Hence, the quality of the completed fusion bond is largely dependent on human factors. Another method for joining thermoplastic process piping with heat fusion has been through the use of electrofusion fittings or couplings. A sleeve with an embedded resistance wire is slipped onto mating pipe ends, and welding takes place by electrically heating the resistance wire and forming a molecular bond on the outside surface of the mated pipes. While butt welding tends to rely heavily on the knowledge and experience of the machine operator, electrofusion fittings tend to rely more on automated mechanisms such as the software in the computerized fusion box. An alternative form of thermoplastic welding that employs the features of both butt welding and electrofusion couplings has recently been developed. This unique method employs the principles of electrofusion for performing butt welding. The authors have successfully demonstrated this technology at a major US chemical manufacturer`s facility to produce reliable, leak-tight fusion joints in non-pressurized, process piping applications. Research and practical experience were blended to provide consistent fusion quality based on monitoring key fusion parameters, while still relying on the experience and training of a fusion operator.

  19. Effects of selective fusion on the thermal history of the earth's mantle

    USGS Publications Warehouse

    Lee, W.H.K.

    1968-01-01

    A comparative study on the thermal history of the earth's mantle was made by numerical solutions of the heat equation including and excluding selective fusion of silicates. Selective fusion was approximated by melting in a multicomponent system and redistribution of radioactive elements. Effects of selective fusion on the thermal models are (1) lowering (by several hundred degrees centigrade) and stabilizing the internal temperature distribution, and (2) increasing the surface heat-flow. It was found that models with selective fusion gave results more compatible with observations of both present temperature and surface heat-flow. The results therefore suggest continuous differentiation of the earth's mantle throughout geologic time, and support the hypothesis that the earth's atmosphere, oceans, and crust have been accumulated throughout the earth's history by degassing and selective fusion of the mantle. ?? 1968.

  20. A viable process for producing hydrogen synfuel using nuclear fusion heat

    NASA Astrophysics Data System (ADS)

    Galloway, T. R.; Brown, L. C.

    Analytical and costing analyses of a thermochemical water splitting plant powered by a tandem mirror fusion reactor are presented. Design criteria indicated directing high quality steam to the chemical plant, where no liquid metal coolants would be used. Minimal pumping distances for high pressure He, multiple barriers between the neutron-activated blanket and the hydrogen product, and modular construction where possible are necessary. A He-Brayton topping cycle, coupled to a steam-Rankine bottoming cycle are selected. Slightly over 1111 MWt and about 720 MWe could be produced by the plant if all low grade waste heat is directed to the Rankine cycle. SO3 is used with water for the splitting process, then recombined. H2 is siphoned off as a fuel and O2 is delivered to a coal reforming plant. A 30 yr plant life is projected, operating at a 70% thermal efficiency for the splitting process and producing H2 at $10-12/GJ. The plant is expected to become economically viable in the year 2030 if debt financing is available at 12.25% per year.

  1. Measuring time of flight of fusion products in an inertial electrostatic confinement fusion device for spatial profiling of fusion reactions

    NASA Astrophysics Data System (ADS)

    Donovan, D. C.; Boris, D. R.; Kulcinski, G. L.; Santarius, J. F.; Piefer, G. R.

    2013-03-01

    A new diagnostic has been developed that uses the time of flight (TOF) of the products from a nuclear fusion reaction to determine the location where the fusion reaction occurred. The TOF diagnostic uses charged particle detectors on opposing sides of the inertial electrostatic confinement (IEC) device that are coupled to high resolution timing electronics to measure the spatial profile of fusion reactions occurring between the two charged particle detectors. This diagnostic was constructed and tested by the University of Wisconsin-Madison Inertial Electrostatic Confinement Fusion Group in the IEC device, HOMER, which accelerates deuterium ions to fusion relevant energies in a high voltage (˜100 kV), spherically symmetric, electrostatic potential well [J. F. Santarius, G. L. Kulcinski, R. P. Ashley, D. R. Boris, B. B. Cipiti, S. K. Murali, G. R. Piefer, R. F. Radel, T. E. Radel, and A. L. Wehmeyer, Fusion Sci. Technol. 47, 1238 (2005)]. The TOF diagnostic detects the products of D(d,p)T reactions and determines where along a chord through the device the fusion event occurred. The diagnostic is also capable of using charged particle spectroscopy to determine the Doppler shift imparted to the fusion products by the center of mass energy of the fusion reactants. The TOF diagnostic is thus able to collect spatial profiles of the fusion reaction density along a chord through the device, coupled with the center of mass energy of the reactions occurring at each location. This provides levels of diagnostic detail never before achieved on an IEC device.

  2. Measuring time of flight of fusion products in an inertial electrostatic confinement fusion device for spatial profiling of fusion reactions

    SciTech Connect

    Donovan, D. C.; Boris, D. R.; Kulcinski, G. L.; Santarius, J. F.; Piefer, G. R.

    2013-03-15

    A new diagnostic has been developed that uses the time of flight (TOF) of the products from a nuclear fusion reaction to determine the location where the fusion reaction occurred. The TOF diagnostic uses charged particle detectors on opposing sides of the inertial electrostatic confinement (IEC) device that are coupled to high resolution timing electronics to measure the spatial profile of fusion reactions occurring between the two charged particle detectors. This diagnostic was constructed and tested by the University of Wisconsin-Madison Inertial Electrostatic Confinement Fusion Group in the IEC device, HOMER, which accelerates deuterium ions to fusion relevant energies in a high voltage ({approx}100 kV), spherically symmetric, electrostatic potential well [J. F. Santarius, G. L. Kulcinski, R. P. Ashley, D. R. Boris, B. B. Cipiti, S. K. Murali, G. R. Piefer, R. F. Radel, T. E. Radel, and A. L. Wehmeyer, Fusion Sci. Technol. 47, 1238 (2005)]. The TOF diagnostic detects the products of D(d,p)T reactions and determines where along a chord through the device the fusion event occurred. The diagnostic is also capable of using charged particle spectroscopy to determine the Doppler shift imparted to the fusion products by the center of mass energy of the fusion reactants. The TOF diagnostic is thus able to collect spatial profiles of the fusion reaction density along a chord through the device, coupled with the center of mass energy of the reactions occurring at each location. This provides levels of diagnostic detail never before achieved on an IEC device.

  3. Investigation of condensed matter fusion

    SciTech Connect

    Jones, S.E.; Berrondo, M.; Czirr, J.B.; Decker, D.L.; Harrison, K.; Jensen, G.L.; Palmer, E.P.; Rees, L.B.; Taylor, S.; Vanfleet, H.B.; Wang, J.C.; Bennion, D.N.; Harb, J.N.; Pitt, W.G.; Thorne, J.M.; Anderson, A.N.; McMurtry, G.; Murphy, N.; Goff, F.E.

    1990-12-01

    Work on muon-catalyzed fusion led to research on a possible new type of fusion occurring in hydrogen isotopes embedded in metal lattices. While the nuclear-product yields observed to date are so small as to require careful further checking, rates observed over short times appear sufficiently large to suggest that significant neutrons and triton yields could be realized -- if the process could be understood and controlled. During 1990, we have developed two charged-particle detection systems and three new neutron detectors. A segmented, high-efficiency neutron counter was taken into 600 m underground in a mine in Colorado for studies out of the cosmic-ray background. Significant neutron emissions were observed in this environment in both deuterium-gas-loaded metals and in electrolytic cells, confirming our earlier observations.

  4. Inertial Fusion Power Plant Concept of Operations and Maintenance

    SciTech Connect

    Anklam, T.; Knutson, B.; Dunne, A. M.; Kasper, J.; Sheehan, T.; Lang, D.; Roberts, V.; Mau, D.

    2015-01-15

    Parsons and LLNL scientists and engineers performed design and engineering work for power plant pre-conceptual designs based on the anticipated laser fusion demonstrations at the National Ignition Facility (NIF). Work included identifying concepts of operations and maintenance (O&M) and associated requirements relevant to fusion power plant systems analysis. A laser fusion power plant would incorporate a large process and power conversion facility with a laser system and fusion engine serving as the heat source, based in part on some of the systems and technologies advanced at NIF. Process operations would be similar in scope to those used in chemical, oil refinery, and nuclear waste processing facilities, while power conversion operations would be similar to those used in commercial thermal power plants. While some aspects of the tritium fuel cycle can be based on existing technologies, many aspects of a laser fusion power plant presents several important and unique O&M requirements that demand new solutions. For example, onsite recovery of tritium; unique remote material handling systems for use in areas with high radiation, radioactive materials, or high temperatures; a five-year fusion engine target chamber replacement cycle with other annual and multi-year cycles anticipated for major maintenance of other systems, structures, and components (SSC); and unique SSC for fusion target waste recycling streams. This paper describes fusion power plant O&M concepts and requirements, how O&M requirements could be met in design, and how basic organizational and planning issues can be addressed for a safe, reliable, economic, and feasible fusion power plant.

  5. Inertial fusion power plant concept of operations and maintenance

    NASA Astrophysics Data System (ADS)

    Knutson, Brad; Dunne, Mike; Kasper, Jack; Sheehan, Timothy; Lang, Dwight; Anklam, Tom; Roberts, Valerie; Mau, Derek

    2015-02-01

    Parsons and LLNL scientists and engineers performed design and engineering work for power plant pre-conceptual designs based on the anticipated laser fusion demonstrations at the National Ignition Facility (NIF). Work included identifying concepts of operations and maintenance (O&M) and associated requirements relevant to fusion power plant systems analysis. A laser fusion power plant would incorporate a large process and power conversion facility with a laser system and fusion engine serving as the heat source, based in part on some of the systems and technologies advanced at NIF. Process operations would be similar in scope to those used in chemical, oil refinery, and nuclear waste processing facilities, while power conversion operations would be similar to those used in commercial thermal power plants. While some aspects of the tritium fuel cycle can be based on existing technologies, many aspects of a laser fusion power plant presents several important and unique O&M requirements that demand new solutions. For example, onsite recovery of tritium; unique remote material handling systems for use in areas with high radiation, radioactive materials, or high temperatures; a five-year fusion engine target chamber replacement cycle with other annual and multi-year cycles anticipated for major maintenance of other systems, structures, and components (SSC); and unique SSC for fusion target waste recycling streams. This paper describes fusion power plant O&M concepts and requirements, how O&M requirements could be met in design, and how basic organizational and planning issues can be addressed for a safe, reliable, economic, and feasible fusion power plant.

  6. Mission and Design of the Fusion Ignition Research Experiment (FIRE)

    SciTech Connect

    Meade, D. M.; Jardin, S. C.; Schmidt, J. A.; Thome, R. J.; Sauthoff, N. R.; Heitzenroeder, P.; Nelson, Brad E; Ulrickson, M. A.; Kessel, C. E.; Mandrekas, J.; Neumeyer, C. L.; Schultz, J. H.; Rutherford, P. H.; Wesley, J. C.; Young, K. M.; Nevins, W. M.; Houlberg, Wayne A; Uckan, Nermin A; Woolley, R. W.; Baker, C. C.

    2001-01-01

    Experiments are needed to test and extend present understanding of confinement, macroscopic stability, alpha-driven instabilities, and particle/power exhaust in plasmas dominated by alpha heating. A key issue is to what extent pressure profile evolution driven by strong alpha heating will act to self-organize advanced configurations with large bootstrap current fractions and internal transport barriers. A design study of a Fusion Ignition Research Experiment (FIRE) is underway to assess near term opportunities for advancing the scientific understanding of self-heated fusion plasmas. The emphasis is on understanding the behavior of fusion plasmas dominated by alpha heating (Q ≥ 5) that are sustained for durations comparable to the characteristic plasma time scales (≥ 20 τE and ~ τskin, where τskin is the time for the plasma current profile to redistribute at fixed current). The programmatic mission of FIRE is to attain, explore, understand and optimize alphadominated plasmas to provide knowledge for the design of attractive magnetic fusion energy systems. The programmatic strategy is to access the alpha-heating-dominated regime with confidence using the present advanced tokamak data base (e.g., Elmy-H-mode, ≤ 0.75 Greenwald density) while maintaining the flexibility for accessing and exploring other advanced tokamak modes (e. g., reversed shear, pellet enhanced performance) at lower magnetic fields and fusion power for longer durations in later stages of the experimental program. A major goal is to develop a design concept that could meet these physics objectives with a construction cost in the range of $1B.

  7. Immunogenicity and protective efficacy of a DNA vaccine encoding the fusion protein of mycobacterium heat shock protein 65 (Hsp65) with human interleukin-2 against Mycobacterium tuberculosis in BALB/c mice.

    PubMed

    Wang, Li-Mei; Bai, Yin-Lan; Shi, Chang-Hong; Gao, Hui; Xue, Ying; Jiang, Hong; Xu, Zhi-Kai

    2008-12-01

    Developing a new generation of vaccines is important for preventing tuberculosis (TB). DNA vaccine is one promising candidate. In this study we evaluated the immunogenicity and protective efficacy of the DNA vaccine encoding the fusion protein of Mycobacterium tuberculosis heat shock protein 65 (Hsp65) with human interleukin-2 (hIL-2) in BALB/c mice. We showed that the DNA vaccine pcDNA-Hsp65-hIL-2 could induce high levels of antigen-specific antibody, IFN-gamma, CD4(+) and CD8(+) T cell production. When the immunized mice were infected with M. tuberculosis H37Rv, the organ bacterial loads in the DNA immunized group were significantly reduced compared to those of the saline control group, but the ability to reduce bacteria was not better than for BCG. The histopathology in lungs of the DNA vaccine immunized mice was similar to that of BCG immunized mice, which was obviously ameliorated compared to that of the saline control group. Overall, the DNA vaccine could afford protection against M. tuberculosis infection, though the protection efficacy was not as great as that of conventional BCG. PMID:19133010

  8. Studies on the fusion peptide of a paramyxovirus fusion glycoprotein: roles of conserved residues in cell fusion.

    PubMed Central

    Horvath, C M; Lamb, R A

    1992-01-01

    The role of residues in the conserved hydrophobic N-terminal fusion peptide of the paramyxovirus fusion (F) protein in causing cell-cell fusion was examined. Mutations were introduced into the cDNA encoding the simian virus 5 (SV5) F protein, the altered F proteins were expressed by using an eukaryotic vector, and their ability to mediate syncytium formation was determined. The mutant F proteins contained both single- and multiple-amino-acid substitutions, and they exhibited a variety of intracellular transport properties and fusion phenotypes. The data indicate that many substitutions in the conserved amino acids of the simian virus 5 F fusion peptide can be tolerated without loss of biological activity. Mutant F proteins which were not transported to the cell surface did not cause cell-cell fusion, but all of the mutants which were transported to the cell surface were fusion competent, exhibiting fusion properties similar to or better than those of the wild-type F protein. Mutant F proteins containing glycine-to-alanine substitutions had altered intracellular transport characteristics, yet they exhibited a great increase in fusion activity. The potential structural implications of this substitution and the possible importance of these glycine residues in maintaining appropriate levels of fusion activity are discussed. Images PMID:1548771

  9. Fusion of bacterial spheroplasts by electric fields.

    PubMed

    Ruthe, H J; Adler, J

    1985-09-25

    Spheroplasts of Escherichia coli or Salmonella typhimurium were found to fuse in an electric field. We employed the fusion method developed by Zimmermann and Scheurich (1981): Close membrane contact between cells is established by dielectrophoresis (formation of chains of cells by an a.c. field), then membrane fusion is induced by the application of short pulses of direct current. Under optimum conditions the fusion yield was routinely 90%. Fusable spheroplasts were obtained by first growing filamentous bacteria in the presence of cephalexin, then converting these to spheroplasts by the use of lysozyme. The fusion products were viable and regenerated to the regular bacterial form. Fusion of genetically different spheroplasts resulted in strains of bacteria possessing a combination of genetic markers. Fusion could not be achieved with spheroplasts obtained by growing the cells in the presence of penicillin or by using lysozyme on bacteria of usual size. PMID:3899175

  10. Spherically symmetric simulation of plasma liner driven magnetoinertial fusion

    SciTech Connect

    Samulyak, Roman; Parks, Paul; Wu Lingling

    2010-09-15

    Spherically symmetric simulations of the implosion of plasma liners and compression of plasma targets in the concept of the plasma jet driven magnetoinertial fusion have been performed using the method of front tracking. The cases of single deuterium and xenon liners and double layer deuterium-xenon liners compressing various deuterium-tritium targets have been investigated, optimized for maximum fusion energy gains, and compared with theoretical predictions and scaling laws of [P. Parks, Phys. Plasmas 15, 062506 (2008)]. In agreement with the theory, the fusion gain was significantly below unity for deuterium-tritium targets compressed by Mach 60 deuterium liners. The most optimal setup for a given chamber size contained a target with the initial radius of 20 cm compressed by a 10 cm thick, Mach 60 xenon liner, achieving a fusion energy gain of 10 with 10 GJ fusion yield. Simulations also showed that composite deuterium-xenon liners reduce the energy gain due to lower target compression rates. The effect of heating of targets by alpha particles on the fusion energy gain has also been investigated.

  11. Particle simulation of transport in fusion devices

    SciTech Connect

    Procassini, R.J.; Birdsall, C.K.; Morse, E.C. . Electronics Research Lab.); Cohen, B.I. )

    1989-10-17

    Our research in the area of transport processes in fusion devices has recently been centered on the development of particle simulation models of transport in the scrape-off layer (SOL) of a diverted tokamak. As part of this research, we have been involved in the development of a suitable boundary condition for the plasma current at a floating plate that allows use of long time- and space-scale implicit simulation techniques. We have also been involved in a comparison of results from our particle-in-cell (PIC) code and a bounce-averaged Fokker-Planck (FP) code for the study of particle confinement in an auxiliary heated mirror plasma. 3 refs., 1 fig.

  12. Aneutronic fusion on the base of asymmetrical centrifugal trap

    NASA Astrophysics Data System (ADS)

    Volosov, V. I.

    2006-08-01

    A physical design of a device that can be a base for a direct-conversion nuclear electric power station is considered. The project considers the aneutronic reaction P-11B in the asymmetric centrifugal trap. Kinetic energy of nuclear particles (alpha particles) is converted into electrical energy inside this device; no thermal cycle is used. Heating and recuperation of energy of protons and boron ions take place in the plasma space. The presented scheme differs significantly from the conventional thermonuclear fusion. 'Fast' protons, which are the main energy component of plasma, have an almost monoenergetic spectrum. This makes it possible to realize the 'resonance' fusion.

  13. History of Nuclear Fusion Research in Japan

    NASA Astrophysics Data System (ADS)

    Iguchi, Harukazu; Matsuoka, Keisuke; Kimura, Kazue; Namba, Chusei; Matsuda, Shinzaburo

    In the late 1950s just after the atomic energy research was opened worldwide, there was a lively discussion among scientists on the strategy of nuclear fusion research in Japan. Finally, decision was made that fusion research should be started from the basic, namely, research on plasma physics and from cultivation of human resources at universities under the Ministry of Education, Science and Culture (MOE). However, an endorsement was given that construction of an experimental device for fusion research would be approved sooner or later. Studies on toroidal plasma confinement started at Japan Atomic Energy Research Institute (JAERI) under the Science and Technology Agency (STA) in the mid-1960s. Dualistic fusion research framework in Japan was established. This structure has lasted until now. Fusion research activities over the last 50 years are described by the use of a flowchart, which is convenient to glance the historical development of fusion research in Japan.

  14. Review of alternative concepts for magnetic fusion

    SciTech Connect

    Krakowski, R.A.; Miller, R.L.; Hagenson, R.L.

    1980-01-01

    Although the Tokamak represents the mainstay of the world's quest for magnetic fusion power, with the tandem mirror serving as a primary backup concept in the US fusion program, a wide range of alternative fusion concepts (AFC's) have been and are being pursued. This review presents a summary of past and present reactor projections of a majority of AFC's. Whenever possible, quantitative results are given.

  15. Experimental Test of the Polarization Persistence in Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Didelez, J. P.; Deutsch, C.; Fujiwara, M.; Nakai, M.; Utsuro, M.

    2016-03-01

    The complete deuteron and triton polarization in the DT fusion increases the reactivity by 50%. For Inertial Confinement Fusion (ICF), due to the dynamics of the fusion reaction process, the fusion rate could even be further increased. It has been argued that the polarization would survive as well in magnetic as in inertial confinements. Recently, we have proposed an experiment to test the persistence of the polarization in a fusion process, using a powerful laser hitting a polarized HD target.The polarized deuterons heated in the plasma induced by the laser can fuse. The corresponding reaction is: D + D → 3He + n. The angular distribution of the emitted neutrons and the change in the corresponding total cross section are signatures to estimate the polarization persistency. A proposal to test the persistence of the polarization in ICF has been accepted at ILE: the POLAF project (POlarization in LAser Fusion Process). It uses the polarized HD targets produced at RCNP and the powerful ILE lasers, as well as the neutron detectors existing there. Both institutions are on the same campus at Osaka University. The description of the POLAF experiment and of the corresponding set-up is given.

  16. EDITORIAL: Safety aspects of fusion power plants

    NASA Astrophysics Data System (ADS)

    Kolbasov, B. N.

    2007-07-01

    This special issue of Nuclear Fusion contains 13 informative papers that were initially presented at the 8th IAEA Technical Meeting on Fusion Power Plant Safety held in Vienna, Austria, 10-13 July 2006. Following recommendation from the International Fusion Research Council, the IAEA organizes Technical Meetings on Fusion Safety with the aim to bring together experts to discuss the ongoing work, share new ideas and outline general guidance and recommendations on different issues related to safety and environmental (S&E) aspects of fusion research and power facilities. Previous meetings in this series were held in Vienna, Austria (1980), Ispra, Italy (1983), Culham, UK (1986), Jackson Hole, USA (1989), Toronto, Canada (1993), Naka, Japan (1996) and Cannes, France (2000). The recognized progress in fusion research and technology over the last quarter of a century has boosted the awareness of the potential of fusion to be a practically inexhaustible and clean source of energy. The decision to construct the International Thermonuclear Experimental Reactor (ITER) represents a landmark in the path to fusion power engineering. Ongoing activities to license ITER in France look for an adequate balance between technological and scientific deliverables and complying with safety requirements. Actually, this is the first instance of licensing a representative fusion machine, and it will very likely shape the way in which a more common basis for establishing safety standards and policies for licensing future fusion power plants will be developed. Now that ITER licensing activities are underway, it is becoming clear that the international fusion community should strengthen its efforts in the area of designing the next generations of fusion power plants—demonstrational and commercial. Therefore, the 8th IAEA Technical Meeting on Fusion Safety focused on the safety aspects of power facilities. Some ITER-related safety issues were reported and discussed owing to their potential

  17. Influence of breakup on fusion barrier distributions

    NASA Astrophysics Data System (ADS)

    Patel, D.; Nayak, B. K.; Mukherjee, S.; Biswas, D. C.; Mirgule, E. T.; John, B. V.; Gupta, Y. K.; Mukhopadhyay, S.; Prajapati, G.; Danu, L. S.; Rath, P. K.; Desai, V.; Deshmukh, N.; Saxena, A.

    2013-04-01

    Fusion barrier distributions have been extracted from the quasi-elastic scattering excitation functions, measured at backward angle θlab = 160° in reactions of 6,7Li+209Bi. The present results have been compared with the barrier distributions obtained from the fusion excitation function measurements for the above mentioned systems. The fusion barrier distributions from the quasi-elastic scattering excitation functions have been analyzed with simplified Coupled Channels calculations using Fresco. Inclusions of resonant states for both 6,7Li projectiles improve the predictions to describe the measured quasi-elastic scattering excitation functions and barrier distributions. For both the reactions peak positions of fusion barrier distributions are shifted towards a lower energy side in comparison to that obtained from the fusion excitation function measurements. The observed discrepancy in peak positions of barrier distributions obtained from quasi-elastic scattering and fusion excitation function measurements has been discussed in terms of total reaction threshold distribution.

  18. Observations of membrane fusion in a liposome dispersion: the missing fusion intermediate?

    PubMed Central

    Foldvari, Marianna

    2015-01-01

    Early intermediate structures of liposome-liposome fusion events were captured by freeze-fracture electron microscopic (EM) technique. The images show the morphology of the fusion interface at several different stages of the fusion event. One of the intermediates was captured at a serendipitous stage of two vesicles’ membranes (both leaflets) merging and their contents starting to intermix clearly showing the fusion interface with a previously unseen fusion rim. From the morphological information a hypothetical sequence of the fusion event and corresponding lipid structural arrangements are described. PMID:26069726

  19. Overview of the US Magnetic Fusion Energy Program

    SciTech Connect

    Wiffen, F.W. ); Dowling, R.J.; Marton, W.A.; Eckstrand, S.A. . Office of Fusion Energy)

    1990-01-01

    Since the 1988 Symposium on Fusion Technology, steady progress has been made in the US Magnetic Fusion Energy Program. The large US tokamaks have reached new levels of plasma performance with associated improvements in the understanding of transport. The technology support for ongoing and future devices is similarly advancing with notable advances in magnetic, rf heating tubes, pellet injector, plasma interactive materials, tritium handling, structural materials, and system studies. Currently, a high level DOE review of the program is underway to provide recommendations for a strategic plan.

  20. Radiation hardening of diagnostics for fusion reactors

    SciTech Connect

    Baur, J.F.; Engholm, B.A.; Hacker, M.P.; Maya, I.; Miller, P.H.; Toffolo, W.E.; Wojtowicz, S.S.

    1981-12-01

    A list of the diagnostic systems presently used in magnetic confinement fusion experiments is compiled herein. The radiation-sensitive components are identified, and their locations in zones around the machine are indicated. A table of radiation sensitivities of components is included to indicate the data available from previous work in fission reactor, space probe, and defense-related programs. Extrapolation and application to hardening of fusion diagnostic systems requires additional data that are more specific to the fusion radiation environment and fusion components. A list is also given of present radiation-producing facilities where near-term screening tests of materials and components can be performed.

  1. Linear optimal control of tokamak fusion devices

    SciTech Connect

    Kessel, C.E.; Firestone, M.A.; Conn, R.W.

    1989-05-01

    The control of plasma position, shape and current in a tokamak fusion reactor is examined using linear optimal control. These advanced tokamaks are characterized by non up-down symmetric coils and structure, thick structure surrounding the plasma, eddy currents, shaped plasmas, superconducting coils, vertically unstable plasmas, and hybrid function coils providing ohmic heating, vertical field, radial field, and shaping field. Models of the electromagnetic environment in a tokamak are derived and used to construct control gains that are tested in nonlinear simulations with initial perturbations. The issues of applying linear optimal control to advanced tokamaks are addressed, including complex equilibrium control, choice of cost functional weights, the coil voltage limit, discrete control, and order reduction. Results indicate that the linear optimal control is a feasible technique for controlling advanced tokamaks where the more common classical control will be severely strained or will not work. 28 refs., 13 figs.

  2. The Dark Side of Cell Fusion

    PubMed Central

    Bastida-Ruiz, Daniel; Van Hoesen, Kylie; Cohen, Marie

    2016-01-01

    Cell fusion is a physiological cellular process essential for fertilization, viral entry, muscle differentiation and placental development, among others. In this review, we will highlight the different cancer cell-cell fusions and the advantages obtained by these fusions. We will specially focus on the acquisition of metastatic features by cancer cells after fusion with bone marrow-derived cells. The mechanism by which cancer cells fuse with other cells has been poorly studied thus far, but the presence in several cancer cells of syncytin, a trophoblastic fusogen, leads us to a cancer cell fusion mechanism similar to the one used by the trophoblasts. The mechanism by which cancer cells perform the cell fusion could be an interesting target for cancer therapy. PMID:27136533

  3. Massachusetts Institute of Technology Plasma Fusion Center 1992--1993 report to the President

    SciTech Connect

    Not Available

    1993-07-01

    This report discusses research being conducted at MIT`s plasma fusion center. Some of the areas covered are: plasma diagnostics; rf plasma heating; gyrotron research; treatment of solid waste by arc plasma; divertor experiments; tokamak studies; and plasma and fusion theory.

  4. Ceramic transactions: Advances in fusion and processing of glass. Volume 29

    SciTech Connect

    Varshneya, A.K.; Bickford, D.F.; Bihuniak, P.P.

    1993-01-01

    This is the third in a series of international conferences on Advances in Fusion and Processing of Glass, held in 1992. The book includes articles on fast forming, oxy-fuel combustion, recycling, hazardous and radioactive waste vitrification, redox equilibria, gas solubility, heat transfer and stress relaxation, furnace modeling, and non-fusion-based glass making. Individual articles are abstracted separately.

  5. Charge exchange recombination spectroscopy measurements in the extreme ultraviolet region of central carbon concentrations during high power neutral beam heating in TFTR (Tokamak Fusion Test Reactor)

    SciTech Connect

    Stratton, B.C.; Fonck, R.J.; Ramsey, A.T.; Synakowski, E.J.; Grek, B.; Hill, K.W.; Johnson, D.W.; Mansfield, D.K.; Park, H.; Taylor, G.; Valanju, P.M. . Plasma Physics Lab.; Texas Univ., Austin, TX . Fusion Research Center)

    1989-09-01

    The carbon concentration in the central region of TFTR discharges with high power neutral beam heating has been measured by charge-extracted recombination spectroscopy (CXRS) of the C{sup +5} n = 3--4 transition in the extreme ultraviolet region. The carbon concentrations were deduced from absolute measurements of the line brightness using a calculation of the beam attenuation and the appropriate cascade-corrected line excitation rates. As a result of the high ion temperatures in most of the discharges, the contribution of beam halo neutrals to the line brightness was significant and therefore had to be included in the modeling of the data. Carbon concentrations have been measured in discharges with I{sub p} = 1.0-1.6 MA and beam power in the range of 2.6-30 MW, including a number of supershots. The results are in good agreement with carbon concentrations deduced from the visible bremsstrahlung Z{sub eff} and metallic impurity concentrations measured by x-ray pulse-height analysis, demonstrating the reliability of the atomic rates used in the beam attenuation and line excitation calculations. Carbon is the dominant impurity species in these discharges; the oxygen concentration measured via CXRS in a high beam power case was 0.0006 of n{sub e}, compard to 0.04 for carbon. Trends with I{sub p} and beam power in the carbon concentration and the inferred deuteron concentration are presented. The carbon concentration is independent of I{sub p} and decreases from 0.13 at 2.6 MW beam power to 0.04 at 30 MW, while the deuteron concentration increases from 0.25 to 0.75 over the same range of beam power. These changes are primarily the result of beam particle fueling, as the carbon density did not vary significantly with beam power. The time evolutions of the carbon and deuteron concentrations during two high power beam pulses, one which exhibited a carbon bloom and one which did not, are compared. 30 refs., 12 figs., 2 tabs.

  6. Optimization of the SHX Fusion Powered Transatmospheric Propulsion Concept

    NASA Technical Reports Server (NTRS)

    Adams, Robert B.; Landrum, D. Brian

    2001-01-01

    Existing propulsion technology has not achieved cost effective payload delivery rates to low earth orbit. A fusion based propulsion system, denoted as the Simultaneous Heating and eXpansion (SHX) engine, has been proposed in earlier papers. The SHX couples energy generated by a fusion reactor to the engine flowpath by use of coherent beam emitters. A quasi-one-dimensional flow model was used to quantify the effects of area expansion and energy input on propulsive efficiency for several beam models. Entropy calculations were included to evaluate the lost work in the system.

  7. Ash fusion study of West Virginia coals

    SciTech Connect

    Ashton, K.C., Smith, C.J.; Hohn, M.E.

    1984-12-01

    As more industries and utilities convert to coal, ash fusion information becomes more important for boiler design (waste disposal systems). For example, burning a low fusion temperature coal can cause slagging - the buildup of molten ash on boiler waterwall tubes. Not only is boiler efficiency lowered, but downtime is also increased. Recently, potential buyers of West Virginia coal have inquired frequently about ash fusion. However, the amount of information in the West Virginia Geological and Economic Survey's data base is limited to data from about 800 samples, 50% of which were collected in five counties. Thus, the survey is conducting a study of ash fusion temperatures for the state's coals, to increase available data and its geographic coverage. A Leco AF-500 automated ash fusion analyzer was used in this study, which addresses: 1) reliability of results from an automated analyzer, 2) comparison of automated data with conventional data, 3) techniques of sample preparation, high-temperature ashing, and cone preparation, 4) ash-fusion trends in the state, and 5) research developments. The research sought to develop for West Virginia coal a statistical correlation model relating ash-elemental data with fusion data, and to investigate the relationship between ash color and fusion temperature. (Light-colored ashes generally have higher fusion temperatures than darker ashes.)

  8. Present status and trends of image fusion

    NASA Astrophysics Data System (ADS)

    Xiang, Dachao; Fu, Sheng; Cai, Yiheng

    2009-10-01

    Image fusion information extracted from multiple images which is more accurate and reliable than that from just a single image. Since various images contain different information aspects of the measured parts, and comprehensive information can be obtained by integrating them together. Image fusion is a main branch of the application of data fusion technology. At present, it was widely used in computer vision technology, remote sensing, robot vision, medical image processing and military field. This paper mainly presents image fusion's contents, research methods, and the status quo at home and abroad, and analyzes the development trend.

  9. Establishment of an Institute for Fusion Studies

    NASA Astrophysics Data System (ADS)

    Hazeltine, R. D.

    1994-07-01

    The Institute for Fusion Studies is a national center for theoretical fusion plasma physics research. Its purposes are: (1) to conduct research on theoretical questions concerning the achievement of controlled fusion energy by means of magnetic confinement, including both fundamental problems of long-range significance, as well as shorter-term issues; (2) to serve as a national and international center for information exchange by hosting exchange visits, conferences, and workshops; and (3) to train students and postdoctoral research personnel for the fusion energy program and plasma physics research areas. The theoretical research results obtained by the Institute contribute to the progress of nuclear fusion research, whose goal is the development of fusion power as a basic energy source. Close collaborative relationships have been developed with other university and national laboratory fusion groups, both in the US and abroad. In addition to its primary focus on mainstream fusion physics, the Institute is also involved with research in fusion-sidestream fields, such as advanced computing techniques, nonlinear dynamics, space plasmas and astrophysics, statistical mechanics, fluid dynamics, and accelerator physics. Important research discoveries are briefly described.

  10. Estimating the melting point, entropy of fusion, and enthalpy of fusion of organic compounds via SPARC.

    PubMed

    Whiteside, T S; Hilal, S H; Brenner, A; Carreira, L A

    2016-08-01

    The entropy of fusion, enthalpy of fusion, and melting point of organic compounds can be estimated through three models developed using the SPARC (SPARC Performs Automated Reasoning in Chemistry) platform. The entropy of fusion is modelled through a combination of interaction terms and physical descriptors. The enthalpy of fusion is modelled as a function of the entropy of fusion, boiling point, and flexibility of the molecule. The melting point model is the enthalpy of fusion divided by the entropy of fusion. These models were developed in part to improve SPARC's vapour pressure and solubility models. These models have been tested on 904 unique compounds. The entropy model has a RMS of 12.5 J mol(-1) K(-1). The enthalpy model has a RMS of 4.87 kJ mol(-1). The melting point model has a RMS of 54.4°C. PMID:27586365

  11. Method of controlling fusion reaction rates

    DOEpatents

    Kulsrud, Russell M.; Furth, Harold P.; Valeo, Ernest J.; Goldhaber, Maurice

    1988-03-01

    A method of controlling the reaction rates of the fuel atoms in a fusion reactor comprises the step of polarizing the nuclei of the fuel atoms in a particular direction relative to the plasma confining magnetic field. Fusion reaction rates can be increased or decreased, and the direction of emission of the reaction products can be controlled, depending on the choice of polarization direction.

  12. Method of controlling fusion reaction rates

    DOEpatents

    Kulsrud, Russell M.; Furth, Harold P.; Valeo, Ernest J.; Goldhaber, Maurice

    1988-01-01

    A method of controlling the reaction rates of the fuel atoms in a fusion reactor comprises the step of polarizing the nuclei of the fuel atoms in a particular direction relative to the plasma confining magnetic field. Fusion reaction rates can be increased or decreased, and the direction of emission of the reaction products can be controlled, depending on the choice of polarization direction.

  13. Experimental Investigation of Ternary Alloys for Fusion Breeding Blankets

    SciTech Connect

    Choi, B. William; Chiu, Ing L.

    2015-10-26

    Future fusion power plants based on the deuterium-tritium (DT) fuel cycle will be required to breed the T fuel via neutron reactions with lithium, which will be incorporated in a breeding blanket that surrounds the fusion source. Recent work by LLNL proposed the used of liquid Li as the breeder in an inertial fusion energy (IFE) power plant. Subsequently, an LDRD was initiated to develop alternatives ternary alloy liquid metal breeders that have reduced chemical reactivity with water and air compared to pure Li. Part of the work plan was to experimentally investigate the phase diagrams of ternary alloys. Of particular interest was measurement of the melt temperature, which must be low enough to be compatible with the temperature limits of the steel used in the construction of the chamber and heat transfer system.

  14. Lenr and "cold Fusion" Excess Heat:. Their Relation to Other Anomalous Microphysical Energy Experiments and Emerging New Energy Technologies

    NASA Astrophysics Data System (ADS)

    Mallove, Eugene F.

    2005-12-01

    During the past 15 years, indisputable experimental evidence has built up for substantial excess heat (far beyond ordinary chemical energy) and low-energy nuclear reaction phenomena in specialized heavy hydrogen and ordinary hydrogen-containing systems.1 The primary theorists in the field that is properly designated Cold Fusion/LENR have generally assumed that the excess heat phenomena is commensurate with nuclear ash (such as helium), whether already identified or presumed to be present but not yet found. That was an excellent initial hypothesis. However, the commensurate nuclear ash hypothesis has not been proved, and appears to be approximately correct in only a few experiments. During this same period, compelling evidence although not as broadly verified as data from cold fusion/LENR has also emerged for other microphysical sources of energy that were previously unexpected by accepted physics. The exemplar of this has been the "hydrino" physics work of Dr. Randall Mills and his colleagues at Black-Light Power Corporation, which was a radical outgrowth from the cold fusion field that emerged publicly in May 1991.2 Even more far-reaching is the work in vacuum energy extraction pioneered by Dr. Paulo and Alexandra Correa, which first became public in 1996.3 This vacuum energy experimentation began in the early 1980s and has been reduced to prototype technological devices, such as the patented PAGDTM (pulsed abnormal glow discharge) electric power generator, as well as many published experiments that can be performed in table-top fashion to verify the Correa Aetherometry (non-luminiferous or non-electromagnetic aether measurement science).4 In an era when mainstream science and its media is all agog about dark matter and dark energy composing the vast bulk of the universe, there is a great need to reconcile, if possible, the significant bodies of evidence from these three major experimental and theoretical streams: cold fusion/LENR, hydrino physics, and

  15. Nuclear design of a very-low-activation fusion reactor

    SciTech Connect

    Cheng, E.T.; Hopkins, G.R.

    1983-06-01

    An investigation was conducted to study the nuclear design aspects of using very-low-activation materials, such as SiC, MgO, and aluminum for fusion-reactor first wall, blanket, and shield applications. In addition to the advantage of very-low radioactive inventory, it was found that the very-low-activation fusion reactor can also offer an adequate tritium-breeding ratio and substantial amount of blanket nuclear heating as a conventional-material-structured reactor does. The most-stringent design constraint found in a very-low-activation fusion reactor is the limited space available in the inboard region of a tokamak concept for shielding to protect the superconducting toroidal field coil. A reference design was developed which mitigates the constraint by adopting a removable tungsten shield design that retains the inboard dimensions and gives the same shield performance as the reference STARFIRE tokamak reactor design.

  16. Application of polarized nuclei to fusion

    SciTech Connect

    Kulsrud, R.M.

    1987-07-01

    It is shown that the d-t fusion reaction can be modified by polarizing nuclear spins. The ways in which this improves reactor performance are mentioned and the feasibility of the process of spin polarization for magnetic fusion is discussed. 18 refs.

  17. Applied and fundamental aspects of fusion science

    NASA Astrophysics Data System (ADS)

    Melnikov, Alexander V.

    2016-05-01

    Fusion research is driven by the applied goal of energy production from fusion reactions. There is, however, a wealth of fundamental physics to be discovered and studied along the way. This Commentary discusses selected developments in diagnostics and present-day research topics in high-temperature plasma physics.

  18. Mechanisms of Mitochondrial Fission and Fusion

    PubMed Central

    van der Bliek, Alexander M.; Shen, Qinfang; Kawajiri, Sumihiro

    2013-01-01

    Mitochondria continually change shape through the combined actions of fission, fusion, and movement along cytoskeletal tracks. The lengths of mitochondria and the degree to which they form closed networks are determined by the balance between fission and fusion rates. These rates are influenced by metabolic and pathogenic conditions inside mitochondria and by their cellular environment. Fission and fusion are important for growth, for mitochondrial redistribution, and for maintenance of a healthy mitochondrial network. In addition, mitochondrial fission and fusion play prominent roles in disease-related processes such as apoptosis and mitophagy. Three members of the Dynamin family are key components of the fission and fusion machineries. Their functions are controlled by different sets of adaptor proteins on the surface of mitochondria and by a range of regulatory processes. Here, we review what is known about these proteins and the processes that regulate their actions. PMID:23732471

  19. Status of beryllium development for fusion applications

    SciTech Connect

    Billone, M.C.; Donne, M.D.; Macaulay-Newcombe, R.G.

    1994-05-01

    Beryllium is a leading candidate material for the neutron multiplier of tritium breeding blankets and the plasma facing component of first wall and divertor systems. Depending on the application, the fabrication methods proposed include hot-pressing, hot-isostatic-pressing, cold isostatic pressing/sintering, rotary electrode processing and plasma spraying. Product forms include blocks, tubes, pebbles, tiles and coatings. While, in general, beryllium is not a leading structural material candidate, its mechanical performance, as well its performance with regard to sputtering, heat transport, tritium retention/release, helium-induced swelling and chemical compatibility, is an important consideration in first-wall/blanket design. Differential expansion within the beryllium causes internal stresses which may result in cracking, thereby affecting the heat transport and barrier performance of the material. Overall deformation can result in loading of neighboring structural material. Thus, in assessing the performance of beryllium for fusion applications, it is important to have a good database in all of these performance areas, as well as a set of properties correlations and models for the purpose of interpolation/extrapolation.

  20. Introduction to Nuclear Fusion Power and the Design of Fusion Reactors. An Issue-Oriented Module.

    ERIC Educational Resources Information Center

    Fillo, J. A.

    This three-part module focuses on the principles of nuclear fusion and on the likely nature and components of a controlled-fusion power reactor. The physical conditions for a net energy release from fusion and two approaches (magnetic and inertial confinement) which are being developed to achieve this goal are described. Safety issues associated…

  1. Economic potential of magnetic fusion energy

    SciTech Connect

    Henning, C.D.

    1981-03-10

    Scientific feasibility of magnetic fusion is no longer seriously in doubt. Rapid advances have been made in both tokamak and mirror research, leading to a demonstration in the TFTR tokamak at Princeton in 1982 and the tandem mirror MFTF-B at Livermore in 1985. Accordingly, the basis is established for an aggressive engineering thrust to develop a reactor within this century. However, care must be taken to guide the fusion program towards an economically and environmentally viable goal. While the fusion fuels are essentially free, capital costs of reactors appear to be at least as large as current power plants. Accordingly, the price of electricity will not decline, and capital availability for reactor constructions will be important. Details of reactor cost projections are discussed and mechanisms suggested for fusion power implementation. Also discussed are some environmental and safety aspects of magnetic fusion.

  2. Nuclear fusion in the deuterated cores of inflated hot Jupiters

    NASA Astrophysics Data System (ADS)

    Ouyed, Rachid; Jaikumar, Prashanth

    2016-03-01

    Ouyed et al. (Astrophys. J. 501:367, 1998) proposed Deuterium (DD) fusion at the core-mantle interface of giant planets as a mechanism to explain their observed heat excess. But rather high interior temperatures (˜105 K) and a stratified D layer are needed, making such a scenario unlikely. In this paper, we re-examine DD fusion, with the addition of screening effects pertinent to a deuterated core containing ice and some heavy elements. This alleviates the extreme temperature constraint and removes the requirement of a stratified D layer. As an application, we propose that, if their core temperatures are a few times 104 K and core composition is chemically inhomogeneous, the observed inflated size of some giant exoplanets ("hot Jupiters") may be linked to screened DD fusion occurring deep in the interior. Application of an analytic evolution model suggests that the amount of inflation from this effect can be important if there is sufficient rock-ice in the core, making DD fusion an effective extra internal energy source for radius inflation. The mechanism of screened DD fusion, operating in the above temperature range, is generally consistent with the trend in radius anomaly with planetary equilibrium temperature T_{eq}, and also depends on planetary mass. Although we do not consider the effect of incident stellar flux, we expect that a minimum level of irradiation is necessary to trigger core erosion and subsequent DD fusion inside the planet. Since DD fusion is quite sensitive to the screening potential inferred from laboratory experiments, observations of inflated hot Jupiters may help constrain screening effects in the cores of giant planets.

  3. Status of cold fusion (2010).

    PubMed

    Storms, Edmund

    2010-10-01

    The phenomenon called cold fusion has been studied for the last 21 years since its discovery by Profs. Fleischmann and Pons in 1989. The discovery was met with considerable skepticism, but supporting evidence has accumulated, plausible theories have been suggested, and research is continuing in at least eight countries. This paper provides a brief overview of the major discoveries and some of the attempts at an explanation. The evidence supports the claim that a nuclear reaction between deuterons to produce helium can occur in special materials without application of high energy. This reaction is found to produce clean energy at potentially useful levels without the harmful byproducts normally associated with a nuclear process. Various requirements of a model are examined. PMID:20838756

  4. Status of cold fusion (2010)

    NASA Astrophysics Data System (ADS)

    Storms, Edmund

    2010-10-01

    The phenomenon called cold fusion has been studied for the last 21 years since its discovery by Profs. Fleischmann and Pons in 1989. The discovery was met with considerable skepticism, but supporting evidence has accumulated, plausible theories have been suggested, and research is continuing in at least eight countries. This paper provides a brief overview of the major discoveries and some of the attempts at an explanation. The evidence supports the claim that a nuclear reaction between deuterons to produce helium can occur in special materials without application of high energy. This reaction is found to produce clean energy at potentially useful levels without the harmful byproducts normally associated with a nuclear process. Various requirements of a model are examined.

  5. Grand challenges of inertial fusion energy

    NASA Astrophysics Data System (ADS)

    Nuckolls, J. H.

    2010-08-01

    As soon as practical, Earth's low-cost, abundant, environmentally attractive fusion energy resources should be applied to the urgent global challenges of climate change, energy supply, economic growth, and the developing world. A National Ignition Campaign is under way at the recently completed National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) to ignite high-gain inertial fusion targets in the 2010-2012 time frame. Achieving ignition on NIF could be the catalyst for national and global leaders to support the development of inertial fusion energy (IFE) to meet the future's worldwide electric power demand. With sustained, high-priority funding could practical IFE be possible by the 2020 timeframe? The answer lies in how well can the community address and solve technical challenges in four key areas: achieving ignition, producing advanced targets and drivers, creating a practical fusion engine, and developing economical fusion power plants.

  6. Purdue Contribution of Fusion Simulation Program

    SciTech Connect

    Jeffrey Brooks

    2011-09-30

    . It will address the origins and structure of the plasma electric field, rotation, the L-H transition, and the wide variety of pedestal relaxation mechanisms. The Whole Device Model will predict the entire discharge evolution given external actuators (i.e., magnets, power supplies, heating, current drive and fueling systems) and control strategies. Based on components operating over a range of physics fidelity, the WDM will model the plasma equilibrium, plasma sources, profile evolution, linear stability and nonlinear evolution toward a disruption (but not the full disruption dynamics). The plan assumes that, as the FSP matures and demonstrates success, the program will evolve and grow, enabling additional science problems to be addressed. The next set of integration opportunities could include: 1) Simulation of disruption dynamics and their effects; 2) Prediction of core profile including 3D effects, mesoscale dynamics and integration with the edge plasma; 3) Computation of non-thermal particle distributions, self-consistent with fusion, radio frequency (RF) and neutral beam injection (NBI) sources, magnetohydrodynamics (MHD) and short-wavelength turbulence.

  7. Review of the magnetic fusion program by the 1986 ERAB Fusion Panel

    NASA Astrophysics Data System (ADS)

    Davidson, Ronald C.

    1987-09-01

    The 1986 ERAB Fusion Panel finds that fusion energy continues to be an attractive energy source with great potential for the future, and that the magnetic fusion program continues to make substantial technical progress. In addition, fusion research advances plasma physics, a sophisticated and useful branch of applied science, as well as technologies important to industry and defense. These factors fully justify the substantial expenditures by the Department of Energy in fusion research and development (R&D). The Panel endorses the overall program direction, strategy, and plans, and recognizes the importance and timeliness of proceeding with a burning plasma experiment, such as the proposed Compact Ignition Tokamak (CIT) experiment.

  8. INITIAL SIZE AND DYNAMICS OF VIRAL FUSION PORES ARE A FUNCTION OF THE FUSION PROTEIN MEDIATING MEMBRANE FUSION

    PubMed Central

    Plonsky, I.; Kingsley, D. H.; Rashtian, A.; Blank, P.S.; Zimmerberg, J.

    2013-01-01

    To investigate the role of the fusogenic protein in the initial size and dynamics of the pore that widens to finalize membrane fusion, two different fusion proteins expressed in the same cell line were investigated: the major glycoprotein of baculovirus Autographa californica (GP64) and the hemaggluttinin of influenza X31 (HA). The host Sf9 cells expressing these viral proteins, irrespective of protein species, fused to human red blood cells (RBC) upon acidification of the medium. High time resolution electrophysiological study of fusion pore conductance revealed fundamental differences in a) the initial pore conductance (pores created by HA were smaller than those created by GP64), b) the ability of pores to flicker (only HA-mediated pores flickered), and c) the time required for pore formation (HA-mediated pores took much longer to form following acidification). Thus 1) HA and GP64 have divergent electrophysiological phenotypes even when they fuse identical membranes, and 2) fusion proteins play a crucial role in determining initial fusion pore characteristics. The structure of the initial fusion pore detected by electrical conductance measurements is sensitive to the nature of the fusion protein. PMID:18208404

  9. Laser Intertial Fusion Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    SciTech Connect

    Kramer, Kevin James

    2010-04-08

    This study investigates the neutronics design aspects of a hybrid fusion-fission energy system called the Laser Fusion-Fission Hybrid (LFFH). A LFFH combines current Laser Inertial Confinement fusion technology with that of advanced fission reactor technology to produce a system that eliminates many of the negative aspects of pure fusion or pure fission systems. When examining the LFFH energy mission, a significant portion of the United States and world energy production could be supplied by LFFH plants. The LFFH engine described utilizes a central fusion chamber surrounded by multiple layers of multiplying and moderating media. These layers, or blankets, include coolant plenums, a beryllium (Be) multiplier layer, a fertile fission blanket and a graphite-pebble reflector. Each layer is separated by perforated oxide dispersion strengthened (ODS) ferritic steel walls. The central fusion chamber is surrounded by an ODS ferritic steel first wall. The first wall is coated with 250-500 μm of tungsten to mitigate x-ray damage. The first wall is cooled by Li17Pb83 eutectic, chosen for its neutron multiplication and good heat transfer properties. The Li17Pb83 flows in a jacket around the first wall to an extraction plenum. The main coolant injection plenum is immediately behind the Li17Pb83, separated from the Li17Pb83 by a solid ODS wall. This main system coolant is the molten salt flibe (2LiF-BeF2), chosen for beneficial neutronics and heat transfer properties. The use of flibe enables both fusion fuel production (tritium) and neutron moderation and multiplication for the fission blanket. A Be pebble (1 cm diameter) multiplier layer surrounds the coolant injection plenum and the coolant flows radially through perforated walls across the bed. Outside the Be layer, a fission fuel layer comprised of depleted uranium contained in Tristructural-isotropic (TRISO) fuel particles

  10. Fusion of multisensor, multispectral, and defocused images

    NASA Astrophysics Data System (ADS)

    Shahida, Mohd.; Guptab, Sumana

    2005-10-01

    Fusion is basically extraction of best of inputs and conveying it to the output. In this paper, we present an image fusion technique using the concept of perceptual information across the bands. This algorithm is relevant to visual sensitivity and tested by merging multisensor, multispectral and Defoucused images. Fusion is achieved through the formation of one fused pyramid using the DWT coefficients from the decomposed pyramids of the source images. The fused image is obtained through conventional discrete wavelet transform (DWT) reconstruction process. Results obtained using the proposed method show a significant reduction of distortion artifacts and a large preservation of spectral information.

  11. Establishment of an Institute for Fusion Studies

    NASA Astrophysics Data System (ADS)

    Hazeltine, R. D.

    1992-07-01

    The Institute for Fusion Studies is a national center for theoretical fusion plasma physics research. Its purposes are: (1) to conduct research on theoretical questions concerning the achievement of controlled fusion energy by means of magnetic confinement--including both fundamental problems of long-range significance, as well as shorter-term issues; (2) to serve as a center for information exchange, nationally and internationally, by hosting exchange visits, conferences, and workshops; (3) and to train students and postdoctoral research personnel for the fusion energy program and plasma physics research areas. The theoretical research results that are obtained by the Institute contribute mainly to the progress of national and international efforts in nuclear fusion research, whose goal is the development of fusion power as a basic energy source. In addition to its primary focus on fusion physics, the Institute is also involved with research in related fields, such as advanced computing techniques, nonlinear dynamics, plasma astrophysics, and accelerator physics. The work of EFS scientists continued to receive national and international recognition. Numerous invited papers were given during the past year at workshops, conferences, and scientific meetings. Last year IFS scientists published 95 scientific articles in technical journals and monographs.

  12. Establishment of an Institute for Fusion Studies

    SciTech Connect

    Hazeltine, R.D.

    1992-07-01

    The Institute for Fusion Studies is a national center for theoretical fusion plasma physics research. Its purposes are: (1) to conduct research on theoretical questions concerning the achievement of controlled fusion energy by means of magnetic confinement--including both fundamental problems of long-range significance, as well as shorter-term issues; (2) to serve as a center for information exchange, nationally and internationally, by hosting exchange visits, conferences, and workshops; (3) and to train students and postdoctoral research personnel for the fusion energy program and plasma physics research areas. The theoretical research results that are obtained by the Institute contribute mainly to the progress of national and international efforts in nuclear fusion research, whose goal is the development of fusion power.as a basic energy source. In addition to its primary focus on fusion physics, the Institute is also involved with research in related fields, such as advanced computing techniques, nonlinear dynamics, plasma astrophysics, and accelerator physics. The work of EFS scientists continued to receive national and international recognition. Numerous invited papers were given during the past year at workshops, conferences, and scientific meetings. Last year IFS scientists published 95 scientific articles in technical journals and monographs.

  13. Stochastic Fusion Simulations and Experiments Suggest Passive and Active Roles of Hemagglutinin during Membrane Fusion

    PubMed Central

    Lee, Donald W.; Thapar, Vikram; Clancy, Paulette; Daniel, Susan

    2014-01-01

    Influenza enters the host cell cytoplasm by fusing the viral and host membrane together. Fusion is mediated by hemagglutinin (HA) trimers that undergo conformational change when acidified in the endosome. It is currently debated how many HA trimers, w, and how many conformationally changed HA trimers, q, are minimally required for fusion. Conclusions vary because there are three common approaches for determining w and q from fusion data. One approach correlates the fusion rate with the fraction of fusogenic HA trimers and leads to the conclusion that one HA trimer is required for fusion. A second approach correlates the fusion rate with the total concentration of fusogenic HA trimers and indicates that more than one HA trimer is required. A third approach applies statistical models to fusion rate data obtained at a single HA density to establish w or q and suggests that more than one HA trimer is required. In this work, all three approaches are investigated through stochastic fusion simulations and experiments to elucidate the roles of HA and its ability to bend the target membrane during fusion. We find that the apparent discrepancies among the results from the various approaches may be resolved if nonfusogenic HA participates in fusion through interactions with a fusogenic HA. Our results, based on H3 and H1 serotypes, suggest that three adjacent HA trimers and one conformationally changed HA trimer are minimally required to induce membrane fusion (w = 3 and q = 1). PMID:24559987

  14. Neurologic foundations of spinal cord fusion (GEMINI).

    PubMed

    Canavero, Sergio; Ren, XiaoPing; Kim, C-Yoon; Rosati, Edoardo

    2016-07-01

    Cephalosomatic anastomosis has been carried out in both monkeys and mice with preservation of brain function. Nonetheless the spinal cord was not reconstructed, leaving the animals unable to move voluntarily. Here we review the details of the GEMINI spinal cord fusion protocol, which aims at restoring electrophysiologic conduction across an acutely transected spinal cord. The existence of the cortico-truncoreticulo-propriospinal pathway, a little-known anatomic entity, is described, and its importance concerning spinal cord fusion emphasized. The use of fusogens and electrical stimulation as adjuvants for nerve fusion is addressed. The possibility of achieving cephalosomatic anastomosis in humans has become reality in principle. PMID:27180142

  15. Regulation of Paramyxovirus Fusion Activation: the Hemagglutinin-Neuraminidase Protein Stabilizes the Fusion Protein in a Pretriggered State

    PubMed Central

    Salah, Zuhair W.; Gui, Long; DeVito, Ilaria; Jurgens, Eric M.; Lu, Hong; Yokoyama, Christine C.; Palermo, Laura M.; Lee, Kelly K.

    2012-01-01

    The hemagglutinin (HA)-neuraminidase protein (HN) of paramyxoviruses carries out three discrete activities, each of which affects the ability of HN to promote viral fusion and entry: receptor binding, receptor cleaving (neuraminidase), and triggering of the fusion protein. Binding of HN to its sialic acid receptor on a target cell triggers its activation of the fusion protein (F), which then inserts into the target cell and mediates the membrane fusion that initiates infection. We provide new evidence for a fourth function of HN: stabilization of the F protein in its pretriggered state before activation. Influenza virus hemagglutinin protein (uncleaved HA) was used as a nonspecific binding protein to tether F-expressing cells to target cells, and heat was used to activate F, indicating that the prefusion state of F can be triggered to initiate structural rearrangement and fusion by temperature. HN expression along with uncleaved HA and F enhances the F activation if HN is permitted to engage the receptor. However, if HN is prevented from engaging the receptor by the use of a small compound, temperature-induced F activation is curtailed. The results indicate that HN helps stabilize the prefusion state of F, and analysis of a stalk domain mutant HN reveals that the stalk domain of HN mediates the F-stabilization effect. PMID:22993149

  16. Fusion and reactions of exotic nuclei

    NASA Astrophysics Data System (ADS)

    Martel, I.; Aguilera, E. F.; Acosta, L.; Sánchez-Benítez, A. M.; Wolski, R.

    2011-10-01

    Close to the drip lines, the scattering cross sections of halo nuclei show a different behaviour as compared to the tightly bound projectiles of the stability line. Several experiments carried out in the last decade have been dedicated to investigate the competition between transfer, breakup and fusion channels at energies around and below the Coulomb barrier. The rather complex scenario gives rise to conflicting conclusions concerning the effect of breakup and transfer on reaction dynamics and the sub-barrier fusion process. In this work we discuss recent experimental findings in fusion and reactions of 6He halo nucleus at energies around the Coulomb barrier.

  17. Reply to "Comment on papers by K. Shanahan that propose to explain anomalous heat generated by cold fusion", E. Storms, Thermochim. Acta (2005)

    SciTech Connect

    Shanahan, Kirk

    2005-09-21

    Dr. E. Storms has published a Letter [1] in which he argues that in a sequence of recent papers [2-5], the apparent excess heat signal claimed by Dr. Shanahan to arise from a calibration constant shift is actually true excess heat. In particular he proposes that the mechanisms proposed that foster the proposed calibration constant shifts [3,5] cannot occur as postulated for several reasons. As well, he proposes Shanahan has ignored the extant data proving this. Because this Letter may lend unwarranted support to acceptance of cold fusion claims, these erroneous arguments used by Storms need to be answered.

  18. A burning plasma program strategy to advance fusion energy. Report of the Fusion Energy Sciences Advisory Committee, Burning Plasma Strategy Panel

    SciTech Connect

    None, None

    2002-09-01

    Fusion energy shows great promise to contribute to securing the energy future of humanity. The risk of conflicts arising from energy shortages and supply cutoffs, as well as the risk of severe environmental impacts from existing methods of energy production, are strong reasons to pursue fusion energy now. The world effort to develop fusion energy is at the threshold of a new stage in its research: the investigation of burning plasmas. This investigation, at the frontier of the physics of complex systems, would be a huge step in establishing the potential of magnetic fusion energy to contribute to the world’s energy security. The defining feature of a burning plasma is that it is self-heated: the 100 million degree temperature of the plasma is maintained mainly by the heat generated by the fusion reactions themselves, as occurs in burning stars. The fusion-generated alpha particles produce new physical phenomena that are strongly coupled together as a nonlinear complex system. Understanding all elements of this system poses a major challenge to fundamental plasma physics. The technology needed to produce and control a burning plasma presents challenges in engineering science similarly essential to the development of fusion energy.

  19. Fundamental studies of fusion plasmas. Final report

    SciTech Connect

    Aamodt, R.E.

    1998-01-30

    Lodestar has carried out a vigorous research program in the areas of rf, edge plasma and divertor physics, with emphasis largely geared towards improving the understanding and performance of ion-cyclotron heating and current drive (ICRF) systems. Additionally, a research program in the field of edge plasma and divertor modeling was initiated. Theoretical work on high power rf sheath formation for multi-strap rf arrays was developed and benchmarked against recent experimental data from the new JET A2 antennas. Sophisticated modeling tools were employed to understand the sheath formation taking into account realistic three-dimensional antenna geometry. A novel physics explanation of an observed anomaly in the low power loading of antennas was applied to qualitatively interpret data on DIII-D in terms of rf sheaths, and potential applications of the idea to develop a near-field sheath diagnostic were explored. Other rf-wave related topics were also investigated. Full wave ICRF modeling studies were carried out in support of ongoing and planned tokamaks experiments, including the investigation of low frequency plasma heating and current drive regimes for IGNITOR. In a cross-disciplinary study involving both MHD and ICRF physics, ponderomotive feedback stabilization by rf was investigated as a potential means of controlling external kink mode disruptions. In another study, the instability of the ion hybrid wave (IHW) in the presence of fusion alpha particles was studied. In the field of edge plasma and divertor modeling studies, Lodestar began the development of a theory of generalized ballooning and sheath instabilities in the scrape off layer (SOL) of divertor tokamaks. A detailed summary of the technical progress in these areas during the contract period is included, as well as where references to published work can be found. A separate listing of publications, meeting abstracts, and other presentations is also given at the end of this final report.

  20. Mechanisms of tissue fusion during development

    PubMed Central

    Ray, Heather J.; Niswander, Lee

    2012-01-01

    Tissue fusion events during embryonic development are crucial for the correct formation and function of many organs and tissues, including the heart, neural tube, eyes, face and body wall. During tissue fusion, two opposing tissue components approach one another and integrate to form a continuous tissue; disruption of this process leads to a variety of human birth defects. Genetic studies, together with recent advances in the ability to culture developing tissues, have greatly enriched our knowledge of the mechanisms involved in tissue fusion. This review aims to bring together what is currently known about tissue fusion in several developing mammalian organs and highlights some of the questions that remain to be addressed. PMID:22510983

  1. Computational mathematics and physics of fusion reactors.

    PubMed

    Garabedian, Paul R

    2003-11-25

    Theory has contributed significantly to recent advances in magnetic fusion research. New configurations have been found for a stellarator experiment by computational methods. Solutions of a free-boundary problem are applied to study the performance of the plasma and look for islands in the magnetic surfaces. Mathematical analysis and numerical calculations have been used to study equilibrium, stability, and transport of optimized fusion reactors. PMID:14614129

  2. Computational mathematics and physics of fusion reactors

    PubMed Central

    Garabedian, Paul R.

    2003-01-01

    Theory has contributed significantly to recent advances in magnetic fusion research. New configurations have been found for a stellarator experiment by computational methods. Solutions of a free-boundary problem are applied to study the performance of the plasma and look for islands in the magnetic surfaces. Mathematical analysis and numerical calculations have been used to study equilibrium, stability, and transport of optimized fusion reactors. PMID:14614129

  3. Use of .sup.3 He.sup.30 + ICRF minority heating to simulate alpha particle heating

    DOEpatents

    Post, Jr., Douglass E.; Hwang, David Q.; Hovey, Jane

    1986-04-22

    Neutron activation due to high levels of neutron production in a first heated deuterium-tritium plasma is substantially reduced by using Ion Cyclotron Resonance Frequency (ICRF) heating of energetic .sup.3 He.sup.++ ions in a second deuterium-.sup.3 He.sup.++ plasma which exhibit an energy distribution and density similar to that of alpha particles in fusion reactor experiments to simulate fusion alpha particle heating in the first plasma. The majority of the fast .sup.3 He.sup.++ ions and their slowing down spectrum can be studied using either a modulated hydrogen beam source for producing excited states of He.sup.+ in combination with spectrometers or double charge exchange with a high energy neutral lithium beam and charged particle detectors at the plasma edge. The maintenance problems thus associated with neutron activation are substantially reduced permitting energetic alpha particle behavior to be studied in near term large fusion experiments.

  4. Reactor applications of the Compact Fusion Advanced Rankine (CFAR) cycle for a D-T tokamak fusion reactor

    NASA Astrophysics Data System (ADS)

    Hoffman, H. A.; Logan, B. G.; Campbell, R. B.

    1988-03-01

    A preliminary design of a D-T fusion reactor blanket and MHD power conversion system is made based on the CFAR concept, and it was found that performance and costs for the reference cycle are very attractive. While much remains to be done, the potential advantage of liquid metal Rankine cycles for fusion applications are much clearer now. These include low pressures and mass flow rates, a nearly isothermal module shell which minimizes problems of thermal distortion and stresses, and an insensitivity to pressure losses in the blanket so that the two-phase MHD pressure drops in the boiling part of the blanket and the ordinary vapor pressure drops in the pebble-bed superheating zones are acceptable (the direct result of pumping a liquid rather than having to compress a gas). There are no moving parts in the high-temperature MHD power generators, no steam bottoming plant is required, only small vapor precoolers and condensers are needed because of the high heat rejection temperatures, and only a relatively small natural-draft heat exchanger is required to reject the heat to the atmosphere. The net result is a very compact fusion reactor and power conversion system which fit entirely inside an 18 meter radius reactor vault. Although a cost analysis has not yet been performed, preliminary cost estimates indicate low capital costs and a very attractive cost of electricity.

  5. Review of the `cold fusion` effect

    SciTech Connect

    Storms, E.

    1996-09-01

    More than 190 studies reporting evidence for the `cold fusion` effect are evaluated. New work has answered criticisms by eliminating many of the suggested errors. Evidence for large and reproducible energy generation as well as various nuclear reactions, in addition to fusion, from a variety of environments and methods in accumulating. The field can no longer be dismissed by invoking obvious error or prosaic explanations. 192 refs., 12 figs., 10 tabs.

  6. Neutron diffraction studies of viral fusion peptides

    NASA Astrophysics Data System (ADS)

    Bradshaw, Jeremy P.; J. M. Darkes, Malcolm; Katsaras, John; Epand, Richard M.

    2000-03-01

    Membrane fusion plays a vital role in a large and diverse number of essential biological processes. Despite this fact, the precise molecular events that occur during fusion are still not known. We are currently engaged on a study of membrane fusion as mediated by viral fusion peptides. These peptides are the N-terminal regions of certain viral envelope proteins that mediate the process of fusion between the viral envelope and the membranes of the host cell during the infection process. As part of this study, we have carried out neutron diffraction measurements at the ILL, BeNSC and Chalk River, on a range of viral fusion peptides. The peptides, from simian immunodeficiency virus (SIV), influenza A and feline leukaemia virus (FeLV), were incorporated into stacked phospholipid bilayers. Some of the peptides had been specifically deuterated at key amino acids. Lamellar diffraction data were collected and analysed to yield information on the peptide conformation, location and orientation relative to the bilayer.

  7. Multivariable optimization of fusion reactor blankets

    SciTech Connect

    Meier, W.R.

    1984-04-01

    The optimization problem consists of four key elements: a figure of merit for the reactor, a technique for estimating the neutronic performance of the blanket as a function of the design variables, constraints on the design variables and neutronic performance, and a method for optimizing the figure of merit subject to the constraints. The first reactor concept investigated uses a liquid lithium blanket for breeding tritium and a steel blanket to increase the fusion energy multiplication factor. The capital cost per unit of net electric power produced is minimized subject to constraints on the tritium breeding ratio and radiation damage rate. The optimal design has a 91-cm-thick lithium blanket denatured to 0.1% /sup 6/Li. The second reactor concept investigated uses a BeO neutron multiplier and a LiAlO/sub 2/ breeding blanket. The total blanket thickness is minimized subject to constraints on the tritium breeding ratio, the total neutron leakage, and the heat generation rate in aluminum support tendons. The optimal design consists of a 4.2-cm-thick BeO multiplier and 42-cm-thick LiAlO/sub 2/ breeding blanket enriched to 34% /sup 6/Li.

  8. Safety of magnetic fusion facilities: Guidance

    SciTech Connect

    1996-05-01

    This document provides guidance for the implementation of the requirements identified in DOE-STD-6002-96, Safety of Magnetic Fusion Facilities: Requirements. This guidance is intended for the managers, designers, operators, and other personnel with safety responsibilities for facilities designated as magnetic fusion facilities. While the requirements in DOE-STD-6002-96 are generally applicable to a wide range of fusion facilities, this Standard, DOE-STD-6003-96, is concerned mainly with the implementation of those requirements in large facilities such as the International Thermonuclear Experimental Reactor (ITER). Using a risk-based prioritization, the concepts presented here may also be applied to other magnetic fusion facilities. This Standard is oriented toward regulation in the Department of Energy (DOE) environment as opposed to regulation by other regulatory agencies. As the need for guidance involving other types of fusion facilities or other regulatory environments emerges, additional guidance volumes should be prepared. The concepts, processes, and recommendations set forth here are for guidance only. They will contribute to safety at magnetic fusion facilities.

  9. Fragmentation of suddenly heated liquids

    SciTech Connect

    Blink, J.A.

    1985-03-01

    Fragmentation of free liquids in Inertial Confinement Fusion reactors could determine the upper bound on reactor pulse rate. The x-ray ablated materials must cool and recondense to allow driver beam propagation. The increased surface area caused by fragmentation will enhance the cooling and condensation rates. Relaxation from the suddenly heated state will move a liquid into the negative pressure region under the liquid-vapor P-V dome. The lithium equation of state was used to demonstrate that neutron-induced vaporization uses only a minor fraction of the added heat, much less than would be required to drive the expansion. A 77% expansion of the lithium is required before the rapid vaporization process of spinodal decomposition could begin, and nucleation and growth are too slow to contribute to the expansion.

  10. High temperatures in inertial confinement fusion radiation cavities heated with 0. 35 [mu]m light

    SciTech Connect

    Kauffman, R.L.; Suter, L.J.; Darrow, C.B.; Kilkenny, J.D.; Kornblum, H.N.; Montgomery, D.S.; Phillion, D.W.; Rosen, M.D.; Theissen, A.R.; Wallace, R.J.; Ze, F. )

    1994-10-24

    We have demonstrated efficient coupling of 0.35 [mu]m laser light for radiation production in inertial confinement fusion (ICF) cavity targets. Temperatures of 270 eV are measured in cavities used for implosions and 300 eV in smaller cavities, significantly extending the temperature range attained in the laboratory to those required for high-gain indirect drive ICF. High-contrast, shaped drive pulses required for implosion experiments have also been demonstrated for the first time. Low levels of scattered light and fast electrons are observed, indicating that plasma instability production is not significant.

  11. Microtextures and grain boundary misorientation distributions in controlled heat input titanium alloy fusion welds

    NASA Astrophysics Data System (ADS)

    Leary, R.; Merson, E.; Brydson, R.

    2010-07-01

    Microstructures, macrotextures and microtextures in commercial purity titanium and Ti-6Al-4V fusion welds produced by the InterPulse gas tungsten constricted arc welding (GTCAW) technique have been characterised. At the cooling rates associated with the InterPulse technique, α variants sharing a common 1120 pole are found to cluster together into groups within prior β grains, leading to large areas where all variants are separated by a misorientation of 60°. These present potential easy slip paths, hence increasing the "effective structural unit size." Characterisation of these microtextures may provide new insight into microtexture-properties relations and the mechanisms of microtextural evolution.

  12. Complete fusion of 15N+27Al

    NASA Astrophysics Data System (ADS)

    Prosser, F. W., Jr.; Racca, R. A.; Daneshvar, K.; Geesaman, D. F.; Henning, W.; Kovar, D. G.; Rehm, K. E.; Tabor, S. L.

    1980-05-01

    The total fusion cross section for the system 15N + 27Al has been measured over an energy range 27 MeV<=Elab<=70 MeV by detection of the fusion-evaporation residues. In addition elastic scattering was measured at six energies and fitted by optical model calculations. The fusion cross section for the system saturates at 1150+/-50 mb. The data can be well described by the model of Glas and Mosel, using a reasonable set of parameters. The model of Horn and Ferguson also describes the data well if an appropriate charge radius is used. Comparison is made between these results and the fusion cross sections for 16O + 26Mg and 18O + 24Mg, which lead to the same compound nucleus. The results for 15N + 27Al are quite similar to those for 18O + 24Mg, and the differences between the fusion cross sections for these two systems and those for 16O + 26Mg may be evidence for an entrance channel effect. NUCLEAR REACTIONS 15N+27Al, Elab=27-70 MeV; measured σfusion(E) measured dσdΩ elastic scattering; data fitted with Glas and Mosel model, Horn and Ferguson model.

  13. A tripartite fusion, FaeG-FedF-LT(192)A2:B, of enterotoxigenic Escherichia coli (ETEC) elicits antibodies that neutralize cholera toxin, inhibit adherence of K88 (F4) and F18 fimbriae, and protect pigs against K88ac/heat-labile toxin infection.

    PubMed

    Ruan, Xiaosai; Liu, Mei; Casey, Thomas A; Zhang, Weiping

    2011-10-01

    Enterotoxigenic Escherichia coli (ETEC) strains expressing K88 (F4) or F18 fimbriae and heat-labile (LT) and/or heat-stable (ST) toxins are the major cause of diarrhea in young pigs. Effective vaccines inducing antiadhesin (anti-K88 and anti-F18) and antitoxin (anti-LT and anti-ST) immunity would provide broad protection to young pigs against ETEC. In this study, we genetically fused nucleotides coding for peptides from K88ac major subunit FaeG, F18 minor subunit FedF, and LT toxoid (LT(192)) A2 and B subunits for a tripartite adhesin-adhesin-toxoid fusion (FaeG-FedF-LT(192)A2:B). This fusion was used for immunizations in mice and pigs to assess the induction of antiadhesin and antitoxin antibodies. In addition, protection by the elicited antiadhesin and antitoxin antibodies against a porcine ETEC strain was evaluated in a gnotobiotic piglet challenge model. The data showed that this FaeG-FedF-LT(192)A2:B fusion elicited anti-K88, anti-F18, and anti-LT antibodies in immunized mice and pigs. In addition, the anti-porcine antibodies elicited neutralized cholera toxin and inhibited adherence against both K88 and F18 fimbriae. Moreover, immunized piglets were protected when challenged with ETEC strain 30302 (K88ac/LT/STb) and did not develop clinical disease. In contrast, all control nonvaccinated piglets developed severe diarrhea and dehydration after being challenged with the same ETEC strain. This study clearly demonstrated that this FaeG-FedF-LT(192)A2:B fusion antigen elicited antibodies that neutralized LT toxin and inhibited the adherence of K88 and F18 fimbrial E. coli strains and that this fusion could serve as an antigen for vaccines against porcine ETEC diarrhea. In addition, the adhesin-toxoid fusion approach used in this study may provide important information for developing effective vaccines against human ETEC diarrhea. PMID:21813665

  14. Concept of DT fuel cycle for a fusion neutron source

    SciTech Connect

    Anan'ev, S.; Spitsyn, A.V.; Kuteev, B.V.; Cherkez, D.I.; Shirnin, P.N.; Kazakovsky, N.T.

    2015-03-15

    A concept of DT-fusion neutron source (FNS) with the neutron yield higher than 10{sup 18} neutrons per second is under design in Russia. Such a FNS is of interest for many applications: 1) basic and applied research (neutron scattering, etc); 2) testing the structural materials for fusion reactors; 3) control of sub-critical nuclear systems and 4) nuclear waste processing (including transmutation of minor actinides). This paper describes the fuel cycle concept of a compact fusion neutron source based on a small spherical tokamak (FNS-ST) with a MW range of DT fusion power and considers the key physics issues of this device. The major and minor radii are ∼0.5 and ∼0.3 m, magnetic field ∼1.5 T, heating power less than 15 MW and plasma current 1-2 MA. The system provides the fuel mixture with equal fractions of D and T (D:T = 1:1) for all FNS technology systems. (authors)

  15. Review of Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Haines, M. G.

    The physics of inertial confinement fusion is reviewed. The trend to short-wavelength lasers is argued, and the distinction between direct and indirect (soft X-ray) drive is made. Key present issues include the non-linear growth of Rayleigh-Taylor (R-T) instabilities, the seeding of this instability by the initial laser imprint, the relevance of self-generated magnetic fields, and the importance of parametric instabilities (stimulated Brillouin and Raman scattering) in gas-filled hohlraums. Experiments are reviewed which explore the R-T instability in both planar and converging geometry. The employment of various optical smoothing techniques is contrasted with the overcoating of the capsule by gold coated plastic foams to reduce considerably the imprint problem. The role of spontaneously generated magnetic fields in non-symmetric plasmas is discussed. Recent hohlraum compression results are presented together with gas bag targets which replicate the long-scale-length low density plasmas expected in NIF gas filled hohlraums. The onset of first Brillouin and then Raman scattering is observed. The fast ignitor scheme is a proposal to use an intense short pulse laser to drill a hole through the coronal plasma and then, with laser excited fast electrons, create a propagating thermonuclear spark in a dense, relatively cold laser-compressed target. Some preliminary results of laser hole drilling and 2-D and 3-D PIC simulations of this and the > 10^8 Gauss self-generated magnetic fields are presented. The proposed National Ignition Facility (NIF) is described.

  16. Basics of Fusion-Fissison Research Facility (FFRF) as a Fusion Neutron Source

    SciTech Connect

    Leonid E. Zakharov

    2011-06-03

    FFRF, standing for the Fusion-Fission Research Facility represents an option for the next step project of ASIPP (Hefei, China) aiming to a first fusion-fission multifunctional device [1]. FFRF strongly relies on new, Lithium Wall Fusion plasma regimes, the development of which has already started in the US and China. With R/a=4/1m/m, Ipl=5 MA, Btor=4-6 T, PDT=50- 100 MW, Pfission=80-4000MW, 1 m thick blanket, FFRF has a unique fusion mission of a stationary fusion neutron source. Its pioneering mission of merging fusion and fission consists in accumulation of design, experimental, and operational data for future hybrid applications.

  17. Enhancement of heat transfer in waste-heat heat exchangers

    NASA Astrophysics Data System (ADS)

    Stoeffler, R. C.

    1980-07-01

    The Fluidfire shallow fluidized bed heat transfer facility was modified to give increased air flow capacity and to allow testing with different distributor plates and with two stage heat exchangers. The effect of reduced distributor plate pressure loss and amount and type of bed material on the heat transfer performance of a single stage fluidized bed heat exchanger is explored. Elutriation from the bed was measured for different bed materials and distributor plates; alternate heat exchanger surfaces having different fin spacings were also tested. Two types of two stage fluidized bed heat exchangers were tested: one having a baffle (having almost no pressure loss) located between the stages and which allowed bed material to recirculate between upper and lower beds; the second having two distributor plates in series with no recirculation of the bed material.

  18. Ultrahigh heat flux plasma-facing components for magnetic fusion energy

    SciTech Connect

    Youchison, D. L.

    2012-03-01

    Sandia and Ultramet partnered to design and test refractory metal plasma-facing components and heat exchangers for advanced, high-temperature power conversion systems. These devices consisted of high-temperature helium-to-helium and lithium-to-helium heat exchangers that operate with high efficiency due to the porous foam inserts used in the gas stream, which promote turbulence and provide extended surface area for enhanced convection. Single- and multi-channel helium panels and the Li-He heat exchanger were fabricated from either pure molybdenum, TZM, or tungsten. The design was carried out through an Ultramet subcontractor. The flow path was carefully tailored to minimize the pressure drop while maximizing the heat transfer. The single- and multi-channel helium panels were tested at Sandia's PMTF using an electron beam system and the closed helium flow loop. In 2006, a single-channel tungsten tube was successfully tested to an average heat flux of 14 MW/m{sup 2} with a localized peak of 22 MW/m{sup 2} along the axial centerline at the outer radius. Under this CRADA, multiple square-channel molybdenum components were successfully tested to heat flux levels approaching 8.5 MW/m{sup 2}. The three multi-channel prototypes experienced mechanical failure due to issues related to the design of the large unsupported span of the heated faceplates in combination with prototype material and braze selection. The Li-He heat exchanger was both designed and partially tested at the PMTF for helium and lithium flow.

  19. [Recent Advances of Biomechanical Studies on Cervical Fusion and Non-fusion Surgery].

    PubMed

    Liao, Zhenhua; Liu, Weiqiang

    2016-02-01

    This article reviews the progress of biomechanical studies on anterior cervical fusion and non-fusion surgery in recent years. The similarities and differences between animal and human cervical spines as well as the major three biomechanical test methods are introduced. Major progresses of biomechanical evaluation in anterior cervical fusion and non-fusion devices, hybrid surgery, coupled motion and biomechanical parameters, such as the instant center of rotation, are classified and summarized. Future development of loading method, multilevel hybrid surgery and coupling character are also discussed. PMID:27382760

  20. Dynamical Safety Analysis of the SABR Fusion-Fission Hybrid Reactor

    NASA Astrophysics Data System (ADS)

    Sumner, Tyler; Stacey, Weston; Ghiaassian, Seyed

    2009-11-01

    A hybrid fusion-fission reactor for the transmutation of spent nuclear fuel is being developed at Georgia Tech. The Subcritical Advanced Burner Reactor (SABR) is a 3000 MWth sodium-cooled, metal TRU-Zr fueled fast reactor driven by a tokamak fusion neutron source based on ITER physics and technology. We are investigating the accident dynamics of SABR's coupled fission, fusion and heat removal systems to explore the safety characteristics of a hybrid reactor. Possible accident scenarios such as loss of coolant mass flow (LOFA), of power (LOPA) and of heat sink (LOHSA), as well as inadvertent reactivity insertions and fusion source excursion are being analyzed using the RELAP5-3D code, the ATHENA version of which includes liquid metal coolants.

  1. Direct measurement of the enthalpy of fusion of diopside

    SciTech Connect

    Ziegler, D.; Navrotsky, A.

    1986-11-01

    Crystalline diopside, CaMgSi/sub 2/O/sub 6/, was dropped directly into a Setaram HT1500 calorimeter operating at high temperature. At 1575 < T < 1624 K, the heat content of the crystals was in excellent agreement with previously published results. Above 1634 K, a rise in the enthalpy was seen, supporting the incongruent melting reported by Kushiro. The total enthalpy of fusion at 1665 K, the nominal melting point, is 138.5 kJ/mol, in excellent agreement with measurements which used a cycle that involves dropping the liquid to form a glass and measuring heats of solution of glass and crystals. The heat content of a glassy diopside starting material was also measured. Because the calorimetric experiment lasts only about 8 minutes, these measurements could be extended into the supercooled liquid range (to 1170 K) before the onset of rapid crystallization. A change in slope in the measured heat contents gives a glass transition temperature of 9333 K, about 70 K lower than that reported by other methods. A linear fit of all the data above T/sub g/ (supercooled liquid at 970 to 1170 K, stable liquid at 1668 to 1766 K) gives an average heat capacity for the liquid of 332.8 J/mol/ x K, comparable to the value of 334.6 J/mol x K reported by Richet and Bottinga.

  2. The properties and weldability of materials for fusion reactor applications

    SciTech Connect

    Chin, B.A.; Kee, C.K.; Wilcox, R.C.; Zinkle, S.J.

    1991-11-15

    Low-activation austenitic stainless steels have been suggested for applications within fusion reactors. The use of these nickel-free steels will help to reduce the radioactive waste management problem after service. one requirement for such steels is the ability to obtain sound welds for fabrication purposes. Thus, two austenitic Fe-Cr-Mn alloys were studied to characterize the welded microstructure and mechanical properties. The two steels investigated were a Russian steel (Fe-11.6Cr19.3Mn-0.181C) and an US steel (Fe-12.lCr-19.4Mn-0.24C). Welding was performed using a gas tungsten arc welding (GTAW) process. Microscopic examinations of the structure of both steels were conducted. The as-received Russian steel was found to be in the annealed state. Only the fusion zone and the base metal were observed in the welded Russian steel. No visible heat affected zone was observed. Examination revealed that the as-received US steel was in the cold rolled condition. After welding, a fusion zone and a heat affected zone along with the base metal region were found.

  3. Membrane fusion of Semliki Forest virus involves homotrimers of the fusion protein.

    PubMed Central

    Wahlberg, J M; Bron, R; Wilschut, J; Garoff, H

    1992-01-01

    Infection of cells with enveloped viruses is accomplished through membrane fusion. The binding and fusion processes are mediated by the spike proteins in the envelope of the virus particle and usually involve a series of conformational changes in these proteins. We have studied the low-pH-mediated fusion process of the alphavirus Semliki Forest virus (SFV). The spike protein of SFV is composed of three copies of the protein heterodimer E2E1. This structure is resistant to solubilization in mild detergents such as Nonidet P-40 (NP40). We have recently shown that the spike structure is reorganized during virus entry into acidic endosomes (J. M. Wahlberg and H. Garoff, J. Cell Biol. 116:339-348, 1992). The original NP40-resistant heterodimer is dissociated, and the E1 subunits form new NP40-resistant protein oligomers. Here, we show that the new oligomer is represented by an E1 trimer. From studies that use an in vitro assay for fusion of SFV with liposomes, we show that the E1 trimer is efficiently expressed during virus-mediated membrane fusion. Time course studies show that both E1 trimer formation and fusion are fast processes, occurring in seconds. It was also possible to inhibit virus binding and fusion with a monoclonal antibody directed toward the trimeric E1. These results give support for a model in which the E1 trimeric structure is involved in the SFV-mediated fusion reaction. Images PMID:1433520

  4. Fundamentals of heat measurement. [heat flux transducers

    NASA Technical Reports Server (NTRS)

    Gerashchenko, O. A.

    1979-01-01

    Various methods and devices for obtaining experimental data on heat flux density over wide ranges of temperature and pressure are examined. Laboratory tests and device fabrication details are supplemented by theoretical analyses of heat-conduction and thermoelectric effects, providing design guidelines and information relevant to further research and development. A theory defining the measure of correspondence between transducer signal and the measured heat flux is established for individual (isolated) heat flux transducers subject to space and time-dependent loading. An analysis of the properties of stacked (series-connected) transducers of various types (sandwich-type, plane, and spiral) is used to derive a similarity theory providing general governing relationships. The transducers examined are used in 36 types of derivative devices involving direct heat loss measurements, heat conduction studies, radiation pyrometry, calorimetry in medicine and industry and nuclear reactor dosimetry.

  5. Neutral particle measurements of fusion tritons in JET

    SciTech Connect

    Afanasyev, V. I.; Khudoleev, A. V.

    2010-08-15

    A neutral particle analyzer [A.D. Izvozchikov et al., JET Report No. JET-R(91)-12, 1991] operating in the MeV energy range was used to measure the flux of neutralized d-d fusion tritons emitted from the hot-ion H-mode deuterium plasma heated by deuterium neutral beams. It was found that tritons in the energy range of 0.3-1.1 MeV were largely neutralized by the beam atoms and the beam halo atoms. This enabled us to find the localized energy distribution function of the fusion tritons in the central plasma region. Simulation of the triton energy distribution function shows that MeV ions in the JET hot-ion H-mode plasma behave classically.

  6. Review of the Inertial Fusion Energy Program

    SciTech Connect

    none,

    2004-03-29

    Igniting fusion fuel in the laboratory remains an alluring goal for two reasons: the desire to study matter under the extreme conditions needed for fusion burn, and the potential of harnessing the energy released as an attractive energy source for mankind. The inertial confinement approach to fusion involves rapidly compressing a tiny spherical capsule of fuel, initially a few millimeters in radius, to densities and temperatures higher than those in the core of the sun. The ignited plasma is confined solely by its own inertia long enough for a significant fraction of the fuel to burn before the plasma expands, cools down and the fusion reactions are quenched. The potential of this confinement approach as an attractive energy source is being studied in the Inertial Fusion Energy (IFE) program, which is the subject of this report. A complex set of interrelated requirements for IFE has motivated the study of novel potential solutions. Three types of “drivers” for fuel compression are presently studied: high-averagepower lasers (HAPL), heavy-ion (HI) accelerators, and Z-Pinches. The three main approaches to IFE are based on these drivers, along with the specific type of target (which contains the fuel capsule) and chamber that appear most promising for a particular driver.

  7. Midterm Summary of Japan-US Fusion Cooperation Program TITAN

    SciTech Connect

    Muroga, Takeo; Sze, Dai-Kai; Sokolov, Mikhail; Katoh, Yutai; Stoller, Roger E

    2011-01-01

    Japan-US cooperation program TITAN (Tritium, Irradiation and Thermofluid for America and Nippon) started in April 2007 as 6-year project. This is the summary report at the midterm of the project. Historical overview of the Japan-US cooperation programs and direction of the TITAN project in its second half are presented in addition to the technical highlights. Blankets are component systems whose principal functions are extraction of heat and tritium. Thus it is crucial to clarify the potentiality for controlling heat and tritium flow throughout the first wall, blanket and out-of-vessel recovery systems. The TITAN project continues the JUPITER-II activity but extends its scope including the first wall and the recovery systems with the title of 'Tritium and thermofluid control for magnetic and inertial confinement systems'. The objective of the program is to clarify the mechanisms of tritium and heat transfer throughout the first-wall, the blanket and the heat/tritium recovery systems under specific conditions to fusion such as irradiation, high heat flux, circulation and high magnetic fields. Based on integrated models, the breeding, transfer, inventory of tritium and heat extraction properties will be evaluated for some representative liquid breeder blankets and the necessary database will be obtained for focused research in the future.

  8. Applications of high power millimeter waves in the DIII-D fusion program

    SciTech Connect

    Freeman, R.L.

    1996-08-01

    First operation of a new generation of MW level, 110 GHz generator (gyrotron) on the DIII-D fusion experimental device has been achieved. The desire for high power, cw millimeter (mm) wave sources to support fusion research and development is just now beginning to be realized. Plasma heating and current drive with directed mm waves rely on the strong absorption achieved when the wave frequency matches the natural ``cyclotron`` frequency of electrons in a magnetic field, or its harmonics. Recent progress in fusion experiments highlights the need for control of the interior details of the hot plasma, and nun wave systems are ideally suited for this role. A brief status of fusion research is given, and the importance of mm waves in the future directions for fusion research is described. The vacuum transmission components necessary for transmitting, monitoring, and launching high power 1 10 GHz waves into a plasma have been developed at General Atomics (GA) and will be described. High power mm waves have a number of attractive technological features for fusion applications compared with other candidate plasma heating and current drive technologies. Millimeter waves can be transmitted with high power density over large distances with low losses by utilizing corrugated waveguides, so the generators can be sited remotely, facilitating maintenance and saving valuable space near the fusion device.

  9. A semi-analytic model of magnetized liner inertial fusion

    SciTech Connect

    McBride, Ryan D.; Slutz, Stephen A.

    2015-05-15

    Presented is a semi-analytic model of magnetized liner inertial fusion (MagLIF). This model accounts for several key aspects of MagLIF, including: (1) preheat of the fuel (optionally via laser absorption); (2) pulsed-power-driven liner implosion; (3) liner compressibility with an analytic equation of state, artificial viscosity, internal magnetic pressure, and ohmic heating; (4) adiabatic compression and heating of the fuel; (5) radiative losses and fuel opacity; (6) magnetic flux compression with Nernst thermoelectric losses; (7) magnetized electron and ion thermal conduction losses; (8) end losses; (9) enhanced losses due to prescribed dopant concentrations and contaminant mix; (10) deuterium-deuterium and deuterium-tritium primary fusion reactions for arbitrary deuterium to tritium fuel ratios; and (11) magnetized α-particle fuel heating. We show that this simplified model, with its transparent and accessible physics, can be used to reproduce the general 1D behavior presented throughout the original MagLIF paper [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)]. We also discuss some important physics insights gained as a result of developing this model, such as the dependence of radiative loss rates on the radial fraction of the fuel that is preheated.

  10. Crystal structures of MBP fusion proteins.

    PubMed

    Waugh, David S

    2016-03-01

    Although chaperone-assisted protein crystallization remains a comparatively rare undertaking, the number of crystal structures of polypeptides fused to maltose-binding protein (MBP) that have been deposited in the Protein Data Bank (PDB) has grown dramatically during the past decade. Altogether, 102 fusion protein structures were detected by Basic Local Alignment Search Tool (BLAST) analysis. Collectively, these structures comprise a range of sizes, space groups, and resolutions that are typical of the PDB as a whole. While most of these MBP fusion proteins were equipped with short inter-domain linkers to increase their rigidity, fusion proteins with long linkers have also been crystallized. In some cases, surface entropy reduction mutations in MBP appear to have facilitated the formation of crystals. A comparison of the structures of fused and unfused proteins, where both are available, reveals that MBP-mediated structural distortions are very rare. PMID:26682969

  11. Expression and purification of GST fusion proteins.

    PubMed

    Harper, S; Speicher, D W

    2001-05-01

    An increasingly common strategy for expressing proteins and large peptides in prokaryotic systems is to express the protein of interest connected to a "tag" that provides the basis for rapid high-affinity purification. This unit describes the expression and purification of fusion proteins containing the 26-kDa glutathione-S-transferase protein as well as methods for cleaving the affinity tag and repurifying the target protein. Advantages of this popular fusion protein system include high protein yields, high-affinity one-step protein purification of the fusion protein, existence of several alternative protease cleavage sites for removing the affinity tag when required, and ease of removal of the cleaved affinity tag. PMID:18429193

  12. Expansion of the fusion stalk and its implication for biological membrane fusion

    PubMed Central

    Risselada, Herre Jelger; Bubnis, Gregory; Grubmüller, Helmut

    2014-01-01

    Over the past 20 years, it has been widely accepted that membrane fusion proceeds via a hemifusion step before opening of the productive fusion pore. An initial hourglass-shaped lipid structure, the fusion stalk, is formed between the adjacent membrane leaflets (cis leaflets). It remains controversial if and how fusion proteins drive the subsequent transition (expansion) of the stalk into a fusion pore. Here, we propose a comprehensive and consistent thermodynamic understanding in terms of the underlying free-energy landscape of stalk expansion. We illustrate how the underlying free energy landscape of stalk expansion and the concomitant pathway is altered by subtle differences in membrane environment, such as leaflet composition, asymmetry, and flexibility. Nonleaky stalk expansion (stalk widening) requires the formation of a critical trans-leaflet contact. The fusion machinery can mechanically enforce trans-leaflet contact formation either by directly enforcing the trans-leaflets in close proximity, or by (electrostatically) condensing the area of the cis leaflets. The rate of these fast fusion reactions may not be primarily limited by the energetics but by the forces that the fusion proteins are able to exert. PMID:25024174

  13. ION BEAM HEATED TARGET SIMULATIONS FOR WARM DENSE MATTER PHYSICS AND INERTIAL FUSION ENERGY

    SciTech Connect

    Barnard, J.J.; Armijo, J.; Bailey, D.S.; Friedman, A.; Bieniosek, F.M.; Henestroza, E.; Kaganovich, I.; Leung, P.T.; Logan, B.G.; Marinak, M.M.; More, R.M.; Ng, S.F.; Penn, G.E.; Perkins, L.J.; Veitzer, S.; Wurtele, J.S.; Yu, S.S.; Zylstra, A.B.

    2008-08-01

    Hydrodynamic simulations have been carried out using the multi-physics radiation hydrodynamics code HYDRA and the simplified one-dimensional hydrodynamics code DISH. We simulate possible targets for a near-term experiment at LBNL (the Neutralized Drift Compression Experiment, NDCX) and possible later experiments on a proposed facility (NDCX-II) for studies of warm dense matter and inertial fusion energy related beam-target coupling. Simulations of various target materials (including solids and foams) are presented. Experimental configurations include single pulse planar metallic solid and foam foils. Concepts for double-pulsed and ramped-energy pulses on cryogenic targets and foams have been simulated for exploring direct drive beam target coupling, and concepts and simulations for collapsing cylindrical and spherical bubbles to enhance temperature and pressure for warm dense matter studies are described.

  14. Ion Beam Heated Target Simulations for Warm Dense Matter Physics and Inertial Fusion Energy

    SciTech Connect

    Barnard, J J; Armijo, J; Bailey, D S; Friedman, A; Bieniosek, F M; Henestroza, E; Kaganovich, I; Leung, P T; Logan, B G; Marinak, M M; More, R M; Ng, S F; Penn, G E; Perkins, L J; Veitzer, S; Wurtele, J S; Yu, S S; Zylstra, A B

    2008-08-12

    Hydrodynamic simulations have been carried out using the multi-physics radiation hydrodynamics code HYDRA and the simplified one-dimensional hydrodynamics code DISH. We simulate possible targets for a near-term experiment at LBNL (the Neutralized Drift Compression Experiment, NDCX) and possible later experiments on a proposed facility (NDCX-II) for studies of warm dense matter and inertial fusion energy related beam-target coupling. Simulations of various target materials (including solids and foams) are presented. Experimental configurations include single pulse planar metallic solid and foam foils. Concepts for double-pulsed and ramped-energy pulses on cryogenic targets and foams have been simulated for exploring direct drive beam target coupling, and concepts and simulations for collapsing cylindrical and spherical bubbles to enhance temperature and pressure for warm dense matter studies are described.

  15. Ion beam heated target simulations for warm dense matter physics and inertial fusion energy

    NASA Astrophysics Data System (ADS)

    Barnard, J. J.; Armijo, J.; Bailey, D. S.; Friedman, A.; Bieniosek, F. M.; Henestroza, E.; Kaganovich, I.; Leung, P. T.; Logan, B. G.; Marinak, M. M.; More, R. M.; Ng, S. F.; Penn, G. E.; Perkins, L. J.; Veitzer, S.; Wurtele, J. S.; Yu, S. S.; Zylstra, A. B.

    2009-07-01

    Hydrodynamic simulations have been carried out using the multi-physics radiation hydrodynamics code HYDRA and the simplified one-dimensional hydrodynamics code DISH. We simulate possible targets for a near-term experiment at LBNL (the Neutralized Drift Compression Experiment, NDCX) and possible later experiments on a proposed facility (NDCX-II) for studies of warm dense matter and inertial fusion energy-related beam-target coupling. Simulations of various target materials (including solids and foams) are presented. Experimental configurations include single-pulse planar metallic solid and foam foils. Concepts for double-pulsed and ramped-energy pulses on cryogenic targets and foams have been simulated for exploring direct drive beam-target coupling, and concepts and simulations for collapsing cylindrical and spherical bubbles to enhance temperature and pressure for warm dense matter studies.

  16. The role of cholesterol in membrane fusion.

    PubMed

    Yang, Sung-Tae; Kreutzberger, Alex J B; Lee, Jinwoo; Kiessling, Volker; Tamm, Lukas K

    2016-09-01

    Cholesterol modulates the bilayer structure of biological membranes in multiple ways. It changes the fluidity, thickness, compressibility, water penetration and intrinsic curvature of lipid bilayers. In multi-component lipid mixtures, cholesterol induces phase separations, partitions selectively between different coexisting lipid phases, and causes integral membrane proteins to respond by changing conformation or redistribution in the membrane. But, which of these often overlapping properties are important for membrane fusion?-Here we review a range of recent experiments that elucidate the multiple roles that cholesterol plays in SNARE-mediated and viral envelope glycoprotein-mediated membrane fusion. PMID:27179407

  17. Development of a fusion approach selection tool

    NASA Astrophysics Data System (ADS)

    Pohl, C.; Zeng, Y.

    2015-06-01

    During the last decades number and quality of available remote sensing satellite sensors for Earth observation has grown significantly. The amount of available multi-sensor images along with their increased spatial and spectral resolution provides new challenges to Earth scientists. With a Fusion Approach Selection Tool (FAST) the remote sensing community would obtain access to an optimized and improved image processing technology. Remote sensing image fusion is a mean to produce images containing information that is not inherent in the single image alone. In the meantime the user has access to sophisticated commercialized image fusion techniques plus the option to tune the parameters of each individual technique to match the anticipated application. This leaves the operator with an uncountable number of options to combine remote sensing images, not talking about the selection of the appropriate images, resolution and bands. Image fusion can be a machine and time-consuming endeavour. In addition it requires knowledge about remote sensing, image fusion, digital image processing and the application. FAST shall provide the user with a quick overview of processing flows to choose from to reach the target. FAST will ask for available images, application parameters and desired information to process this input to come out with a workflow to quickly obtain the best results. It will optimize data and image fusion techniques. It provides an overview on the possible results from which the user can choose the best. FAST will enable even inexperienced users to use advanced processing methods to maximize the benefit of multi-sensor image exploitation.

  18. Clinical Experiences of Non-fusion Dynamic Stabilization Surgery for Adjacent Segmental Pathology after Lumbar Fusion

    PubMed Central

    Lee, Soo Eon; Kim, Hyun-Jib

    2016-01-01

    Background As an alternative to spinal fusion, non-fusion dynamic stabilization surgery has been developed, showing good clinical outcomes. In the present study, we introduce our surgical series, which involves non-fusion dynamic stabilization surgery for adjacent segment pathology (ASP) after lumbar fusion surgery. Methods Fifteen patients (13 female and 2 male, mean age of 62.1 years) who underwent dynamic stabilization surgery for symptomatic ASP were included and medical records, magnetic resonance images (MRI), and plain radiographs were retrospectively evaluated. Results Twelve of the 15 patients had the fusion segment at L4-5, and the most common segment affected by ASP was L3-4. The time interval between prior fusion and later non-fusion surgery was mean 67.0 months. The Visual Analog Scale and Oswestry Disability Index showed values of 7.4 and 58.5% before the non-fusion surgery and these values respectively declined to 4.2 and 41.3% postoperatively at 36 months (p=0.027 and p=0.018, respectively). During the mean 44.8 months of follow-up, medication of analgesics was also significantly reduced. The MRI grade for disc and central stenosis identified significant degeneration at L3-4, and similar disc degeneration from lateral radiographs was determined at L3-4 between before the prior fusion surgery and the later non-fusion surgery. After the non-fusion surgery, the L3-4 segment and the proximal segment of L2-3 were preserved in the disc, stenosis and facet joint whereas L1-2 showed disc degeneration on the last MRI (p=0.032). Five instances of radiologic ASP were identified, showing characteristic disc-space narrowing at the proximal segments of L1-2 and L2-3. However, no patient underwent additional surgery for ASP after non-fusion dynamic stabilization surgery. Conclusion The proposed non-fusion dynamic stabilization system could be an effective surgical treatment for elderly patients with symptomatic ASP after lumbar fusion. PMID:27162710

  19. Fast Radiometry Guided Fusion of Disparity Images

    NASA Astrophysics Data System (ADS)

    Schmid, Stephan; Fritsch, Dieter

    2016-06-01

    Previous work on disparity map fusion has mostly focused on geometric or statistical properties of disparity maps. Since failure of stereo algorithms is often consistent in many frames of a scene, it cannot be detected by such methods. Instead, we propose to use radiometric information from the original camera images together with externally supplied camera pose information to detect mismatches. As radiometric information is local information, the computations in the proposed algorithm for disparity fusion can be decoupled and parallelized to a very large degree, which allows us to easily achieve real-time performance.

  20. Fuel ion ratio determination in NBI heated deuterium tritium fusion plasmas at JET using neutron emission spectrometry

    NASA Astrophysics Data System (ADS)

    Hellesen, C.; Eriksson, J.; Binda, F.; Conroy, S.; Ericsson, G.; Hjalmarsson, A.; Skiba, M.; Weiszflog, M.; Contributors, JET-EFDA

    2015-02-01

    The fuel ion ratio (nt/nd) is of central importance for the performance and control of a future burning fusion plasma, and reliable measurements of this quantity are essential for ITER. This paper demonstrates a method to derive the core fuel ion ratio by comparing the thermonuclear and beam-thermal neutron emission intensities, using a neutron spectrometer. The method is applied to NBI heated deuterium tritium (DT) plasmas at JET, using data from the magnetic proton recoil spectrometer. The trend in the results is consistent with Penning trap measurements of the fuel ion ratio at the edge of the plasma, but there is a discrepancy in the absolute values, possibly owing to the fact that the two measurements are weighted towards different parts of the plasma. It is suggested to further validate this method by comparing it to the traditionally proposed method to estimate nt/nd from the ratio of the thermal DD and DT neutron emission components. The spectrometer requirements for measuring nt/nd at ITER are also briefly discussed.

  1. Lithium-metal infused trenches (LiMIT) for heat removal in fusion devices

    NASA Astrophysics Data System (ADS)

    Ruzic, D. N.; Xu, W.; Andruczyk, D.; Jaworski, M. A.

    2011-10-01

    Observation of liquid lithium flow in metal trenches has been made using a lithium-metal infused trench (LiMIT) tile and is reported here. The flow is self-pumping and uses thermoelectric magnetohydrodynamics to remove heated lithium and replenish it at a lower temperature. Flow velocities have been measured and compared with theoretical predictions.

  2. Transport and deceleration of fusion products in microturbulence

    NASA Astrophysics Data System (ADS)

    Wilkie, George J.; Abel, Ian G.; Landreman, Matt; Dorland, William

    2016-06-01

    The velocity-space distribution of alpha particles born in fusion devices is subject to modification at moderate energies due to turbulent transport. Therefore, one must calculate the evolution of an equilibrium distribution whose functional form is not known a priori. Using a novel technique, applicable to any trace impurity, we have made this calculation for fully nonlinear gyrokinetic simulations not only possible but also particularly efficient. We demonstrate a microturbulence-induced departure from the local slowing-down distribution, an inversion of the energy distribution, and associated modifications to the alpha heating and pressure profiles in an ITER-like scenario.

  3. Comparison of SUMO fusion technology with traditional gene fusion systems: enhanced expression and solubility with SUMO.

    PubMed

    Marblestone, Jeffrey G; Edavettal, Suzanne C; Lim, Yiting; Lim, Peter; Zuo, Xun; Butt, Tauseef R

    2006-01-01

    Despite the availability of numerous gene fusion systems, recombinant protein expression in Escherichia coli remains difficult. Establishing the best fusion partner for difficult-to-express proteins remains empirical. To determine which fusion tags are best suited for difficult-to-express proteins, a comparative analysis of the newly described SUMO fusion system with a variety of commonly used fusion systems was completed. For this study, three model proteins, enhanced green fluorescent protein (eGFP), matrix metalloprotease-13 (MMP13), and myostatin (growth differentiating factor-8, GDF8), were fused to the C termini of maltose-binding protein (MBP), glutathione S-transferase (GST), thioredoxin (TRX), NUS A, ubiquitin (Ub), and SUMO tags. These constructs were expressed in E. coli and evaluated for expression and solubility. As expected, the fusion tags varied in their ability to produce tractable quantities of soluble eGFP, MMP13, and GDF8. SUMO and NUS A fusions enhanced expression and solubility of recombinant proteins most dramatically. The ease at which SUMO and NUS A fusion tags were removed from their partner proteins was then determined. SUMO fusions are cleaved by the natural SUMO protease, while an AcTEV protease site had to be engineered between NUS A and its partner protein. A kinetic analysis showed that the SUMO and AcTEV proteases had similar KM values, but SUMO protease had a 25-fold higher kcat than AcTEV protease, indicating a more catalytically efficient enzyme. Taken together, these results demonstrate that SUMO is superior to commonly used fusion tags in enhancing expression and solubility with the distinction of generating recombinant protein with native sequences. PMID:16322573

  4. Inertial Confinement Fusion alpha-heating signatures in prompt gamma-ray measurements at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Church, Jennifer; Herrmann, Hans; Cerjan, Charlie; Sayre, Daniel; Carpenter, Arthur; Liebman, Judy; Stoeffl, Wolfgang; Kim, Yongho

    2015-11-01

    Prompt gamma-rays measured at the National Ignition Facility (NIF) with the Gamma-ray Reaction History detector (GRH) supply vital diagnostic information, such as the peak burn time, burn width, and total neutron yield, from prompt DT-fusion gamma-ray emission during high convergence implosion experiments. Additionally, the stagnated cold shell density distribution may be inferred from the time-integrated, calibrated 12C (n,n' γ) signal, thus providing estimates of remaining ablator carbon areal density. Furthermore, simulations suggest that alpha heating signatures might be accessible using more highly resolved temporal gamma-ray emission. Correlation of these signatures with time-dependent neutron emission will constrain the implosion dynamics immediately prior to thermonuclear burn. Measurement of these gamma-ray signatures will be discussed along with updates on our work toward inferred total DT yield and 12C areal density. This work performed under the auspices of the U.S. Dept. of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07-NA27344, LLNL-ABS-670282.

  5. Outcome of instrumented lumbar fusion for low grade spondylolisthesis; Evaluation of interbody fusion with & without cages

    PubMed Central

    Fathy, Mostafa; Fahmy, Mohamed; Fakhri, Mazen; Aref, Khaled; Abdin, Khaled; Zidan, Ihab

    2010-01-01

    Object: The aim is to evalute the outcome of posterior lumbar interbody fusion with autologous bone graft versus titanium Cages, BAK system (Bagby – Kuslich, Spine Tech, Inc. Minneapolis, MN) for low grade spondyloisthesis (Grade1,11). Interbody cages have been developed to replace tricortical Interbody grafts in posterior lumbar interbody fusion (PLIF) procedures. The cages provide immediate post operative stability and facilitate bony union with cancellous bone packed in the cage itself. METHOD: We Evaluated 50 consecutive patients in whom surgery was performed between June 2000 to June 2003 in the Main Alexandria University Hospital at EGYPT. Twenty five patients were operated using autologous bone graft and 25 patients using the BAK cages. The neuro–radiologic al work up consisted of; plain X – ray lumbosacral spine including dynamic films preoperative and postoperative follow up; C.T lumbosacral spine and MRI lumbosacral spine. The surgery was performed at L4-5 level in 34 cases and at L5-S1 level in 16 cases. The median follow up was 15 months. RESULTS: Satisfactory fusion was obtained at all levels at a minimum one year follow – up. The fusion rate was 96% (24 patients) for the cage group and 80% (20 patients) for bone graft group however clinical improvement was 64% (16 patients) for those with bone graft group. CONCLUSION: A higher fusion rates and a better clinical outcome have been obtained by Instrumented PLIF with titanium cages that with bone graft. Inderbody fusion cages help to stabilize spainal segment primarily by distracting them as well as by allowing bone ingrowth and fusion. The procedure is safe and effective with 96% fusion rate and 76% overall Satisfactory rate. The use of cages help to distract the space between the vertebral bodies making the correction of the degree of spondylolisthesis easier. Long term follow up revealed better fusion rate and better realignment and less resorption with cages than with bone grafts. PMID

  6. Colorado School of Mines fusion gamma ray diagnostic project

    SciTech Connect

    Cecil, F.E.

    1992-02-14

    This report summarizes the 1991 calendar year activities of the fusion gamma ray diagnostics project in the Physics Department at the Colorado School of Mines. Considerable progress has been realized in the fusion gamma ray diagnostic project in the last year. Specifically we have achieved the two major goals of the project as outlined in last year's proposed work statement to the Office of Applied Plasma Physics in the DOE Division of Magnetic Fusion Energy. The two major goals were: (1) Solution of the severe interference problem encountered during the operation of the gamma ray spectrometer concurrent with high power levels of the neutral beam injectors (NBI) and the ICRH antenae. (2) Experimental determination of the absolute detection efficiency of the gamma ray spectrometer. This detection efficiency will allow the measured yields of the gamma rays to be converted to a total reaction rate. In addition to these two major accomplishments, we have continued, as permitted by the TFTR operating schedule, the observation of high energy gamma rays from the 3He(D,{gamma})5Li reaction during deuterium NBI heating of 3He plasmas.

  7. Modulation of membrane fusion by calcium-binding proteins.

    PubMed Central

    Hong, K; Düzgüneş, N; Papahadjopoulos, D

    1982-01-01

    The effects of several Ca2+-binding proteins (calmodulin, prothrombin, and synexin) on the kinetics of Ca2+-induced membrane fusion were examined. Membrane fusion was assayed by following the mixing of aqueous contents of phospholipid vesicles. Calmodulin inhibited slightly the fusion of phospholipid vesicles. Bovine prothrombin and its proteolytic fragment 1 had a strong inhibitory effect on fusion. Depending on the phospholipid composition, synexin could either facilitate or inhibit Ca2+-induced fusion of vesicles. The effects of synexin were Ca2+ specific. 10 microM Ca2+ was sufficient to induce fusion of vesicles composed of phosphatidic acid/phosphatidylethanolamine (1:3) in the presence of synexin and 1 mM Mg2+. We propose that synexin may be involved in intracellular membrane fusion events mediated by Ca2+, such as exocytosis, and discuss possible mechanisms facilitating fusion. PMID:6459804

  8. A laser device for fusion of nasal mucosa

    NASA Astrophysics Data System (ADS)

    Sooklal, Valmiki; McClure, Jesse; Hooper, Luke; Larson, Michael

    2010-02-01

    A prototype device has been created to fuse septal tissue membranes as an alternative to sutures or staples through the controlled application of laser heating and pressure to induce protein denaturation and subsequent tissue fusion, through renaturation and intertwining, across the interface. Lasers have been used to close wounds in controlled laboratory tests over the last 15 years. Many encouraging results have been obtained; however, no commercial delivery systems are currently available. This is due primarily to two factors: requiring an inordinate amount of experience on the part of the operator, and attempting to achieve general applicability for multiple tissue systems. The present device overcomes these barriers as it is tailored for the particular application of septal laser fusion, namely for the coaptation of mucoperichondrial membranes. The important parameters involved in fusing biological tissues are identified. The development of the device followed from computational modeling based on Monte Carlo simulation of photon transport and on engineering firstprinciples. Experiments were designed and analyzed using orthogonal arrays, employing a subset of the relevant parameters, i.e., laser irradiance, dwell time and spot size, for a range of wavelengths. The in vitro fusion experiments employed 1cm by 1cm sections of equine nasal mucosa having a nominal thickness of 1mm.

  9. Impact of target modifications on Magnetized Liner Inertial Fusion performance

    NASA Astrophysics Data System (ADS)

    Gomez, Matthew; Knapp, Patrick; Sefkow, Adam; Slutz, Stephen; Awe, Thomas; Hansen, Stephanie; Hahn, Kelly; Harding, Eric; Jennings, Christopher; McBride, Ryan; Sinars, Daniel; Rochau, Gregory; Peterson, Kyle

    2015-11-01

    Magnetized Liner Inertial Fusion (MagLIF) is a magnetically-driven fusion concept in which an axial magnetic field and laser heating are used to relax the implosion requirements of inertial confinement fusion. Initial experiments demonstrated the promise of the concept with relatively high yields (primary DD = 2e12), ion temperatures (2.5 keV), and magnetic field-radius products (>0.3 MG-cm). In order to better understand the portions of parameter space in which MagLIF can operate effectively, a series of experiments are being conducted to test the impact of various changes (e.g., laser-entrance-hole window thickness, imploding height of the target, endcap material, laser energy, laser spot size, initial fuel density). The impact of these changes on target performance (primary neutron yield, ion temperature, stagnation volume, etc.) will be discussed. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.

  10. Assessment of the Fusion Energy Sciences Program. Final Report

    SciTech Connect

    2001-05-01

    An assessment of the Office of Fusion Energy Sciences (OFES) program with guidance for future program strategy. The overall objective of this study is to prepare an independent assessment of the scientific quality of the Office of Fusion Energy Sciences program at the Department of Energy. The Fusion Science Assessment Committee (FuSAC) has been appointed to conduct this study.

  11. Development of advanced low-temperature heat transfer fluids for district heating and cooling

    SciTech Connect

    Not Available

    1991-09-30

    The feasibility of adding phase change materials (PCMs) and surfactants to the heat transfer fluids in district cooling systems was investigated. It increases the thermal capacity of the heat transfer fluid and therefore decreases the volume that needs to be pumped. It also increases the heat transfer rate, resulting in smaller heat exchangers. The thermal behavior of two potential PCMs, hexadecane and tetradecane paraffin wax, was experimentally evaluated. The heat of fusion of these materials is approximately 60% of that of ice. They exhibit no supercooling and are stable under repeated thermal cycling. While test results for laboratory grade materials showed good agreement with data in the literature, both melting point and heat of fusion for commercial grade hexadecane were found to be considerably lower than literaturevalues. PCM/water mixtures were tested in a laboratory-scale test loop to determine heat transfer and flow resistance properties. When using PCMs in district cooling systems, clogging of frozen PCM particles isone of the major problems to be overcome. In the present project it is proposed to minimize or prevent clogging by the addition of an emulsifier. Effects of the emulsifier on the mixture of water and hexadecane(a PCM) were studied. As the amount of the emulsifier was increased, the size of the solid PCM particles became smaller. When the size of the particles was small enough, they did not stick together or stick to the cold surface of a heat exchanger. The amount of emulsifier to produce this condition was determined.

  12. Production of recombinant peptides as fusions with SUMO.

    PubMed

    Satakarni, Makkapati; Curtis, Robin

    2011-08-01

    Recombinant production of non-native peptides requires using protein fusion technology to prevent peptide degradation by host-cell proteases. In this work, we have used SUMO protein as a fusion partner for the production of difficult-to-express, antimicrobial, self-assembling and amyloidogenic peptides using Escherichia coli. SUMO-peptide fusions were expressed as intracellular products by utilizing pET based expression vectors constructed by Life Sensors Inc., USA. Histidine tagged SUMO-peptide fusions were purified using Ni-NTA affinity chromatography. Complete (100%) cleavage of the SUMO-peptide fusion was achieved using SUMO protease-1. Our findings demonstrate that SUMO fusion technology is a promising alternative for production of peptides in E. coli. The key advantage of this technology is that the enzymatic activity of SUMO protease-1 is specific and efficient leading to inexpensive costs for cleaving the peptide fusion when compared with other fusion systems. PMID:21586326

  13. The three lives of viral fusion peptides

    PubMed Central

    Apellániz, Beatriz; Huarte, Nerea; Largo, Eneko; Nieva, José L.

    2014-01-01

    Fusion peptides comprise conserved hydrophobic domains absolutely required for the fusogenic activity of glycoproteins from divergent virus families. After 30 years of intensive research efforts, the structures and functions underlying their high degree of sequence conservation are not fully elucidated. The long-hydrophobic viral fusion peptide (VFP) sequences are structurally constrained to access three successive states after biogenesis. Firstly, the VFP sequence must fulfill the set of native interactions required for (meta) stable folding within the globular ectodomains of glycoprotein complexes. Secondly, at the onset of the fusion process, they get transferred into the target cell membrane and adopt specific conformations therein. According to commonly accepted mechanistic models, membrane-bound states of the VFP might promote the lipid bilayer remodeling required for virus-cell membrane merger. Finally, at least in some instances, several VFPs co-assemble with transmembrane anchors into membrane integral helical bundles, following a locking movement hypothetically coupled to fusion-pore expansion. Here we review different aspects of the three major states of the VFPs, including the functional assistance by other membrane-transferring glycoprotein regions, and discuss briefly their potential as targets for clinical intervention. PMID:24704587

  14. Revisiting Black's experiments on the latent heats of water

    NASA Astrophysics Data System (ADS)

    Güémez, J.; Fiolhais, C.; Fiolhais, M.

    2002-01-01

    Historical experiments may help students to better understand some physical phenomena. We reproduced Black's original experiments on the latent heats of water (fusion and vaporization). To obtain both latent heats with reasonable accuracy we needed concepts, which were not used by Black, such as the water equivalent of a calorimeter and Newton's law of cooling. The melting experiment is adequate to obtain an accurate value for the latent heat with a small uncertainty, but the same is not true for the vaporization experiment.

  15. Fusion of Pedigreed Preferential Relations as Beliefs

    NASA Astrophysics Data System (ADS)

    Suzuki, Yoshitaka; Tojo, Satoshi

    Belief fusion, instead of AGM belief revision, was first proposed to solve the problem of inconsistency, that arised from repetitive application of the operation when agents' knowledge were amalgamated. In the preceding work of Maynard-Reid II and Shoham, the fusion operator is applied to belief states, which is total preorders over possible worlds which is based on the semantics of belief revision. Moreover, they introduced the pedigreed belief state, which represented multiple sources of belief states, ordered by a credibility ranking. However in the theory, all the sources must be totally ordered and thus applicable area is quite restrictive. In this paper, we realize the fusion operator of multiple agents for partially ordered sources. When we consider such a partial ranking over sources, there is no need to restrict that each agent has total preorders over possible worlds. The preferential model, based on the semantics on nonmonotonic reasoning, allows each agent to have strict partial orders over possible worlds. Especially, such an order is called a preferential relation, that prescribes a world is more plausible than the other. Therefore, we introduce an operation which combines multiple preferential relations of agents. In addition, we show that our operation can properly include the ordinary belief fusion.

  16. Neutronic analysis of a fusion hybrid reactor

    SciTech Connect

    Kammash, T.

    2012-07-01

    In a PHYSOR 2010 paper(1) we introduced a fusion hybrid reactor whose fusion component is the gasdynamic mirror (GDM), and whose blanket was made of thorium - 232. The thrust of that study was to demonstrate the performance of such a reactor by establishing the breeding of uranium - 233 in the blanket, and the burning thereof to produce power. In that analysis, we utilized the diffusion equation for one-energy neutron group, namely, those produced by the fusion reactions, to establish the power distribution and density in the system. Those results should be viewed as a first approximation since the high energy neutrons are not effective in inducing fission, but contribute primarily to the production of actinides. In the presence of a coolant, however, such as water, these neutrons tend to thermalize rather quickly, hence a better assessment of the reactor performance would require at least a two group analysis, namely the fast and thermal groups. We follow that approach and write an approximate set of equations for the fluxes of these groups. From these relations we deduce the all-important quantity, k{sub eff}, which we utilize to compute the multiplication factor, and subsequently, the power density in the reactor. We show that k{sub eff} can be made to have a value of 0.99, thus indicating that 100 thermal neutrons are generated per fusion neutron, while allowing the system to function as 'subcritical.' Moreover, we show that such a hybrid reactor can generate hundreds of megawatts of thermal power per cm of length depending on the flux of the fusion neutrons impinging on the blanket. (authors)

  17. Optimization of Heat Exchangers

    SciTech Connect

    Ivan Catton

    2010-10-01

    The objective of this research is to develop tools to design and optimize heat exchangers (HE) and compact heat exchangers (CHE) for intermediate loop heat transport systems found in the very high temperature reator (VHTR) and other Generation IV designs by addressing heat transfer surface augmentation and conjugate modeling. To optimize heat exchanger, a fast running model must be created that will allow for multiple designs to be compared quickly. To model a heat exchanger, volume averaging theory, VAT, is used. VAT allows for the conservation of mass, momentum and energy to be solved for point by point in a 3 dimensional computer model of a heat exchanger. The end product of this project is a computer code that can predict an optimal configuration for a heat exchanger given only a few constraints (input fluids, size, cost, etc.). As VAT computer code can be used to model characteristics )pumping power, temperatures, and cost) of heat exchangers more quickly than traditional CFD or experiment, optimization of every geometric parameter simultaneously can be made. Using design of experiment, DOE and genetric algorithms, GE, to optimize the results of the computer code will improve heat exchanger disign.

  18. Fusion Techniques for the Oxidation of Refractory Actinide Oxides

    SciTech Connect

    Rudisill, T.S.

    1999-04-15

    Small-scale experiments were performed to demonstrate the feasibility of fusing refractory actinide oxides with a series of materials commonly used to decompose minerals, glasses, and other refractories as a pretreatment to dissolution and subsequent recovery operations. In these experiments, 1-2 g of plutonium or neptunium oxide (PuO2 or NpO2) were calcined at 900 degrees Celsius, mixed and heated with the fusing reagent(s), and dissolved. For refractory PuO2, the most effective material tested was a lithium carbonate (Li2CO3)/sodium tetraborate (Na2B4O7) mixture which aided in the recovery of 90 percent of the plutonium. The fused product was identified as a lithium plutonate (Li3PuO4) by x-ray diffraction. The use of a Li2CO3/Na2B4O7 mixture to solubilize high-fired NpO2 was not as effective as demonstrated for refractory PuO2. In a small-scale experiment, 25 percent of the NpO2 was oxidized to a neptunium (VI) species that dissolved in nitric acid. The remaining neptunium was then easily recovered from the residue by fusing with sodium peroxide (Na2O2). Approximately 70 percent of the neptunium dissolved in water to yield a basic solution of neptunium (VII). The remainder was recovered as a neptunium (VI) solution by dissolving the residue in 8M nitric acid. In subsequent experiments with Na2O2, the ratio of neptunium (VII) to (VI) was shown to be a function of the fusion temperature, with higher temperatures (greater than approximately 400 degrees C) favoring the formation of neptunium (VII). The fusion of an actual plutonium-containing residue with Na2O2 and subsequent dissolution was performed to demonstrate the feasibility of a pretreatment process on a larger scale. Sodium peroxide was chosen due

  19. Massachusetts Institute of Technology, Plasma Fusion Center, Technical Research Programs

    SciTech Connect

    Davidson, Ronald C.

    1980-08-01

    A review is given of the technical programs carried out by the Plasma Fusion Center. The major divisions of work areas are applied plasma research, confinement experiments, fusion technology and engineering, and fusion systems. Some objectives and results of each program are described. (MOW)

  20. Application of Fusion Gyrotrons to Enhanced Geothermal Systems (EGS)

    NASA Astrophysics Data System (ADS)

    Woskov, P.; Einstein, H.; Oglesby, K.

    2013-10-01

    The potential size of geothermal energy resources is second only to fusion energy. Advances are needed in drilling technology and heat reservoir formation to realize this potential. Millimeter-wave (MMW) gyrotrons and related technologies developed for fusion energy research could contribute to enabling EGS. Directed MMW energy can be used to advance rock penetration capabilities, borehole casing, and fracking. MMWs are ideally suited because they can penetrate through small particulate extraction plumes, can be efficiently guided long distances in borehole dimensions, and continuous megawatt sources are commercially available. Laboratory experiments with a 10 kW, 28 GHz CPI gyrotron have shown that granite rock can be fractured and melted with power intensities of about 1 kW/cm2 and minute exposure times. Observed melted rock MMW emissivity and estimated thermodynamics suggest that penetrating hot, hard crystalline rock formations may be economic with fusion research developed MMW sources. Supported by USDOE, Office of Energy Efficiency and Renewable Energy and Impact Technologies, LLC.

  1. Fusion welding of a modern borated stainless steel

    SciTech Connect

    Robino, C.V.; Cieslak, M.J.

    1997-01-01

    Experiments designed to assess the fabrication and service weldability of 304B4A borated stainless steel were conducted. Welding procedures and parameters for manual gas tungsten arc (GTA) welding, autogenous electron beam (EB) welding and filler-added EB welding were developed and found to be similar to those for austenitic stainless steels. Following the procedure development, four test welds were produced and evaluated by microstructural analysis and Charpy impact testing. Further samples were used for determination of the postweld heat treatment (PWHT) response of the welds. The fusion zone structure of welds in this alloy consists of primary austenite dendrites with an interdendritic eutectic-like austenite/boride constituent. Welds also show an appreciable partially molten zone that consists of the austenite/boride eutectic surrounding unmelted austenite islands. The microstructure of the EB welds was substantially finer than that of the GTA welds, and boride coarsening was not observed in the solid state heat-affected zone (HAZ) of either weld type. The impact toughness of as-welded samples was found to be relatively poor, averaging less than 10 J for both GTA and EB welds. For fusion zone notched GTA and EB samples and centerline notched EB samples, fracture generally occurred along the boundary between the partially molten and solid-state regions of the HAZ. The results of the PWHT study were very encouraging, with typical values of the impact energy for HAZ notched samples approaching 40 J, or twice the minimum code-acceptable value.

  2. Development of advanced low-temperature heat transfer fluids for district heating and cooling, final report

    SciTech Connect

    Cho, Y.I.; Lorsch, H.G.

    1991-03-31

    The feasibility of adding phase change materials (PCMS) and surfactants to the heat transfer fluids in district cooling systems was investigated. It increases the thermal capacity of the heat transfer fluid and therefore decreases the volume that needs to be pumped. It also increases the heat transfer rate, resulting in smaller heat exchangers. The thermal behavior of two potential PCMS, hexadecane and tetradecane paraffin wax, was experimentally evaluated. The heat of fusion of these materials is approximately 60% of that of ice. They exhibit no supercooling and are stable under repeated thermal cycling. While test results for laboratory grade materials showed good agreement with data in the literature, both melting point and heat of fusion for commercial grade hexadecane were found to be considerably lower than literature values. PCM/water mixtures were tested in a laboratory-scale test loop to determine heat transfer and flow resistance properties. For 10% and 25% PCM/water slurries, the heat transfer enhancement was found to be approximately 18 and 30 percent above the value for water, respectively. Within the turbulent region, there is only a minor pumping penalty from the addition of up to 25% PCM to the water. Research is continuing on these fluids in order to determine their behavior in large-size loops and to arrive at optimum formulations.

  3. Seeking the Limits of Low-Temperature Nuclear Fusion: Sticking in Muon-Catalyzed Fusion, and Piezonuclear Fusion in Deuterium/condensed Matter Systems

    NASA Astrophysics Data System (ADS)

    Taylor, Stuart F.

    Studies seeking an upper limit of two types of low temperature nuclear fusion is presented. The upper limit for muon catalyzed fusion is generally considered to be the number of fusions per muon obtainable. The limiting factor has been found to be how often the muon remains bound to the alpha produced by the fusion, known as the "sticking fraction." Experiments directly measuring the sticking and determining the sticking using high tritium fractions are presented. In deuterium/condensed matter systems the question is nearly whether nuclear fusion proceeds at all. Experiments where neutrons around deuterided titanium and palladium are measured are presented.

  4. Structures and Mechanisms of Viral Membrane Fusion Proteins

    PubMed Central

    White, Judith M.; Delos, Sue E.; Brecher, Matthew; Schornberg, Kathryn

    2009-01-01

    Recent work has identified three distinct classes of viral membrane fusion proteins based on structural criteria. In addition, there are at least four distinct mechanisms by which viral fusion proteins can be triggered to undergo fusion-inducing conformational changes. Viral fusion proteins also contain different types of fusion peptides and vary in their reliance on accessory proteins. These differing features combine to yield a rich diversity of fusion proteins. Yet despite this staggering diversity, all characterized viral fusion proteins convert from a fusion-competent state (dimers or trimers, depending on the class) to a membrane-embedded homotrimeric prehairpin, and then to a trimer-of-hairpins that brings the fusion peptide, attached to the target membrane, and the transmembrane domain, attached to the viral membrane, into close proximity thereby facilitating the union of viral and target membranes. During these conformational conversions, the fusion proteins induce membranes to progress through stages of close apposition, hemifusion, and then the formation of small, and finally large, fusion pores. Clearly, highly divergent proteins have converged on the same overall strategy to mediate fusion, an essential step in the life cycle of every enveloped virus. PMID:18568847

  5. Dynamic microscopic theory of fusion using DC-TDHF

    SciTech Connect

    Umar, A. S.; Oberacker, V. E.; Keser, R.; Maruhn, J. A.; Reinhard, P.-G.

    2012-10-20

    The density-constrained time-dependent Hartree-Fock (DC-TDHF) theory is a fully microscopic approach for calculating heavy-ion interaction potentials and fusion cross sections below and above the fusion barrier. We discuss recent applications of DC-TDHF method to fusion of light and heavy systems.

  6. The Structural Characterization of Tumor Fusion Genes and Proteins.

    PubMed

    Wang, Dandan; Li, Daixi; Qin, Guangrong; Zhang, Wen; Ouyang, Jian; Zhang, Menghuan; Xie, Lu

    2015-01-01

    Chromosomal translocation, which generates fusion proteins in blood tumor or solid tumor, is considered as one of the major causes leading to cancer. Recent studies suggested that the disordered fragments in a fusion protein might contribute to its carcinogenicity. Here, we investigated the sequence feature near the breakpoints in the fusion partner genes, the structure features of breakpoints in fusion proteins, and the posttranslational modification preference in the fusion proteins. Results show that the breakpoints in the fusion partner genes have both sequence preference and structural preference. At the sequence level, nucleotide combination AG is preferred before the breakpoint and GG is preferred at the breakpoint. At the structural level, the breakpoints in the fusion proteins prefer to be located in the disordered regions. Further analysis suggests the phosphorylation sites at serine, threonine, and the methylation sites at arginine are enriched in disordered regions of the fusion proteins. Using EML4-ALK as an example, we further explained how the fusion protein leads to the protein disorder and contributes to its carcinogenicity. The sequence and structural features of the fusion proteins may help the scientific community to predict novel breakpoints in fusion genes and better understand the structure and function of fusion proteins. PMID:26347798

  7. The Structural Characterization of Tumor Fusion Genes and Proteins

    PubMed Central

    Wang, Dandan; Li, Daixi; Qin, Guangrong; Zhang, Wen; Ouyang, Jian; Zhang, Menghuan; Xie, Lu

    2015-01-01

    Chromosomal translocation, which generates fusion proteins in blood tumor or solid tumor, is considered as one of the major causes leading to cancer. Recent studies suggested that the disordered fragments in a fusion protein might contribute to its carcinogenicity. Here, we investigated the sequence feature near the breakpoints in the fusion partner genes, the structure features of breakpoints in fusion proteins, and the posttranslational modification preference in the fusion proteins. Results show that the breakpoints in the fusion partner genes have both sequence preference and structural preference. At the sequence level, nucleotide combination AG is preferred before the breakpoint and GG is preferred at the breakpoint. At the structural level, the breakpoints in the fusion proteins prefer to be located in the disordered regions. Further analysis suggests the phosphorylation sites at serine, threonine, and the methylation sites at arginine are enriched in disordered regions of the fusion proteins. Using EML4-ALK as an example, we further explained how the fusion protein leads to the protein disorder and contributes to its carcinogenicity. The sequence and structural features of the fusion proteins may help the scientific community to predict novel breakpoints in fusion genes and better understand the structure and function of fusion proteins. PMID:26347798

  8. Effect of particle pinch on the fusion performance and profile features of an international thermonuclear experimental reactor-like fusion reactor

    NASA Astrophysics Data System (ADS)

    Wang, Shijia; Wang, Shaojie

    2015-04-01

    The evolution of the plasma temperature and density in an international thermonuclear experimental reactor (ITER)-like fusion device has been studied by numerically solving the energy transport equation coupled with the particle transport equation. The effect of particle pinch, which depends on the magnetic curvature and the safety factor, has been taken into account. The plasma is primarily heated by the alpha particles which are produced by the deuterium-tritium fusion reactions. A semi-empirical method, which adopts the ITERH-98P(y,2) scaling law, has been used to evaluate the transport coefficients. The fusion performances (the fusion energy gain factor, Q) similar to the ITER inductive scenario and non-inductive scenario (with reversed magnetic shear) are obtained. It is shown that the particle pinch has significant effects on the fusion performance and profiles of a fusion reactor. When the volume-averaged density is fixed, particle pinch can lower the pedestal density by ˜30 % , with the Q value and the central pressure almost unchanged. When the particle source or the pedestal density is fixed, the particle pinch can significantly enhance the Q value by 60 % , with the central pressure also significantly raised.

  9. Effect of particle pinch on the fusion performance and profile features of an international thermonuclear experimental reactor-like fusion reactor

    SciTech Connect

    Wang, Shijia Wang, Shaojie

    2015-04-15

    The evolution of the plasma temperature and density in an international thermonuclear experimental reactor (ITER)-like fusion device has been studied by numerically solving the energy transport equation coupled with the particle transport equation. The effect of particle pinch, which depends on the magnetic curvature and the safety factor, has been taken into account. The plasma is primarily heated by the alpha particles which are produced by the deuterium-tritium fusion reactions. A semi-empirical method, which adopts the ITERH-98P(y,2) scaling law, has been used to evaluate the transport coefficients. The fusion performances (the fusion energy gain factor, Q) similar to the ITER inductive scenario and non-inductive scenario (with reversed magnetic shear) are obtained. It is shown that the particle pinch has significant effects on the fusion performance and profiles of a fusion reactor. When the volume-averaged density is fixed, particle pinch can lower the pedestal density by ∼30%, with the Q value and the central pressure almost unchanged. When the particle source or the pedestal density is fixed, the particle pinch can significantly enhance the Q value by  60%, with the central pressure also significantly raised.

  10. Implications of polarized DT plasmas for toroidal fusion reactors

    SciTech Connect

    Micklich, B.J.; Jassby, D.L.

    1983-05-01

    Spin polarization of the deuterons and tritons in a reacting plasma can result in an increase in the fusion reactivity and variation of the angular distribution of emission of the fusion neutrons. The increased fusion reactivity relaxes the confinement-temperature conditions for breakeven and ignition. We have determined the effect of varying the angular distribution of the fusion neutrons on the spatial distribution of fusion neturon current and flux at the first wall, on the global tritium breeding ratio, and on the first-wall radiation damage in low-aspect-ratio toroidal geometry.

  11. The VISTA spacecraft: Advantages of ICF (Inertial Confinement Fusion) for interplanetary fusion propulsion applications

    SciTech Connect

    Orth, C.D.; Klein, G.; Sercel, J.; Hoffman, N.; Murray, K.; Chang-Diaz, F.

    1987-10-02

    Inertial Confinement Fusion (ICF) is an attractive engine power source for interplanetary manned spacecraft, especially for near-term missions requiring minimum flight duration, because ICF has inherent high power-to-mass ratios and high specific impulses. We have developed a new vehicle concept called VISTA that uses ICF and is capable of round-trip manned missions to Mars in 100 days using A.D. 2020 technology. We describe VISTA's engine operation, discuss associated plasma issues, and describe the advantages of DT fuel for near-term applications. Although ICF is potentially superior to non-fusion technologies for near-term interplanetary transport, the performance capabilities of VISTA cannot be meaningfully compared with those of magnetic-fusion systems because of the lack of a comparable study of the magnetic-fusion systems. We urge that such a study be conducted.

  12. The VISTA spacecraft: Advantages of ICF (Inertial Confinement Fusion) for interplanetary fusions propulsion applications

    NASA Technical Reports Server (NTRS)

    Orth, Charles D.; Klein, Gail; Sercel, Joel; Hoffman, Nate; Murray, Kathy; Chang-Diaz, Franklin

    1987-01-01

    Inertial Confinement Fusion (ICF) is an attractive engine power source for interplanetary manned spacecraft, especially for near-term missions requiring minimum flight duration, because ICF has inherent high power-to-mass ratios and high specific impulses. We have developed a new vehicle concept called VISTA that uses ICF and is capable of round-trip manned missions to Mars in 100 days using A.D. 2020 technology. We describe VISTA's engine operation, discuss associated plasma issues, and describe the advantages of DT fuel for near-term applications. Although ICF is potentially superior to non-fusion technologies for near-term interplanetary transport, the performance capabilities of VISTA cannot be meaningfully compared with those of magnetic-fusion systems because of the lack of a comparable study of the magnetic-fusion systems. We urge that such a study be conducted.

  13. The use of heat pumps in district heat supply

    NASA Astrophysics Data System (ADS)

    Winkens, H. P.

    1985-04-01

    The cost elements of heat pump heat supply stations are examined and the optimum relationship between peak load boiler and heat pump output is shown. The dependence of plant size and temperature on heat generating costs is indicated and the costs of heat distribution and heat transfer are analysed. The possibility of a combined system of chop and heat pumps for the transport of heat over larger distances is shown.

  14. Ion heat pulse after a sawtooth crash in the JAERI Fusion Torus-2M tokamak

    NASA Astrophysics Data System (ADS)

    Miura, Y.; Okano, F.; Suzuki, N.; Mori, M.; Hoshino, K.; Takizuka, T.; JFT-2M Group; Itoh, K.; Itoh, S.-I.

    1996-10-01

    The ion heat pulse after a sawtooth crash is studied by a time-of-flight (TOF) neutral measurement. A rapid change of the bulk ion energy distribution near the edge is observed after a sawtooth crash. The delay time is measured, and the effective measuring position is estimated by a neutral transport code. Then a transient ion thermal conductivity, χiHP, of about (7-18) m2/s is evaluated for the low confinement mode (L-mode) plasma. The simple diffusive model with constant χiHP, however, does not explain the amplitude of the pulse in the ion energy distribution.

  15. Impact properties of 500-kg heat of V-4Cr-4Ti

    SciTech Connect

    Chung, H.M.; Nowicki, L.; Gazda, J.

    1995-04-01

    Following previous reports of excellent properties of a laboratory heat of V-4Cr-4Ti, the alloy identified as the primary vanadium-based candidate for application as fusion reactor structural components, a large industrial-scale (500-kg) heat of the alloy was fabricated successfully. The objective of this work is to determine the impact properties of the industrial-scale heat.

  16. A free-electron laser for cyclotron resonant heating in magnetic fusion reactors

    NASA Astrophysics Data System (ADS)

    Freund, H. P.; Read, M. E.; Jackson, R. H.; Pershing, D. E.; Taccetti, J. M.

    1995-05-01

    A G-band free-electron laser designed for plasma heating is described using a coaxial hybrid iron (CHI) wiggler formed by insertion into a solenoid of a central rod and an outer ring of alternating ferrite and nonferrite spacers positioned so that the central ferrite (nonferrite) spacers are opposite the outer nonferrite (ferrite) spacers. The CHI wiggler provides for enhanced beam focusing and the ability to handle intense beams and high-power continuous wave radiation. Simulations indicate that a power/efficiency of 3.5 MW/13% are possible using a 690 kV/40 A beam. No beam loss was found in simulation.

  17. Assessment of NDE Methods to Detect Lack of Fusion in HDPE Butt Fusion Joints

    SciTech Connect

    Crawford, Susan L.; Doctor, Steven R.; Cinson, Anthony D.; Watts, Michael W.; Moran, Traci L.; Anderson, Michael T.

    2011-07-31

    Studies at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington, were conducted to evaluate nondestructive examinations (NDE) coupled with mechanical testing of butt fusion joints in high-density polyethylene (HDPE) pipe for assessing lack of fusion. The work provided information to the United States Nuclear Regulatory Commission (NRC) on the effectiveness of volumetric inspection techniques of HDPE butt fusion joints in Section III, Division 1, Class 3, buried piping systems in nuclear power plants. This paper describes results from assessments using ultrasonic and microwave nondestructive techniques and mechanical testing with the high-speed tensile impact test and the side-bend test for determining joint integrity. A series of butt joints were fabricated in 3408, 12-inch (30.5-cm) IPS DR-11 HDPE material by varying the fusion parameters to create good joints and joints containing a range of lack-of-fusion conditions. Six of these butt joints were volumetrically examined with time-of-flight diffraction (TOFD), phased-array (PA) ultrasound, and the Evisive microwave system. The outer diameter (OD) weld beads were removed for microwave evaluation and the pipes ultrasonically re-evaluated. In two of the six pipes, both the outer and inner diameter (ID) weld beads were removed and the pipe joints re-evaluated. Some of the pipes were sectioned and the joints destructively evaluated with the high-speed tensile test and the side-bend test. The fusion parameters, nondestructive and destructive evaluation results have been correlated to validate the effectiveness of what each NDE technology detects and what each does not detect. There was no single NDE method that detected all of the lack-of-fusion flaws but a combination of NDE methods did detect most of the flaws.

  18. A quasi-optical electron cyclotron maser for fusion reactor heating

    SciTech Connect

    Morse, E.C.

    1990-01-01

    High power microwave and millimeter sources, such as the quasi-optical electron cyclotron maser (QOECM) are important in fusion research as well as in high-energy physics and in other applications. The interaction between the electromagnetic modes of a Fabry-Perot resonator and an electron beam gyrating through a magnetic field has been studied for both the cases of beams parallel and perpendicular to the resonator. The parallel case was theoretically first studied by Kurin for forward and backward wave interaction, and experimentally by Komlev and Kurin. Kreischer and Temkin reviewed the general case of the linear small signal interaction parallel and perpendicular to the resonator. Sprangle, et al discussed the perpendicular case in a self-consistent linear and nonlinear theoretical study using the Gaussian transverse profile of an open resonator with a single longitudinal mode. Experimental verification of the devices operation was first mentioned in work at the Naval Research Laboratory. Theoretical studies using a time-dependent analysis of a large number of longitudinal modes with similar transverse mode profiles have demonstrated that single longitudinal-mode operation can be achieved at equilibrium and that performance can be enhanced by prebunching the electron beam and tapering the magnetic field. The use of output coupling apertures in the mirrors has been studied theoretically in relation to the structure of the modes for both confocal and nonconfocal resonators by Permnoud; use of an open resonator with stepped mirrors has been studied in order to choose a particular longitudinal mode. Studies at the Naval Research Laboratory mirror used configurations that diffraction couple the energy from around the mirror edges, so that the transverse profile inside the resonator can be selective to the fundamental mode.

  19. A quasi-optical electron cyclotron maser for fusion reactor heating. Final report

    SciTech Connect

    Morse, E.C.

    1990-12-31

    High power microwave and millimeter sources, such as the quasi-optical electron cyclotron maser (QOECM) are important in fusion research as well as in high-energy physics and in other applications. The interaction between the electromagnetic modes of a Fabry-Perot resonator and an electron beam gyrating through a magnetic field has been studied for both the cases of beams parallel and perpendicular to the resonator. The parallel case was theoretically first studied by Kurin for forward and backward wave interaction, and experimentally by Komlev and Kurin. Kreischer and Temkin reviewed the general case of the linear small signal interaction parallel and perpendicular to the resonator. Sprangle, et al discussed the perpendicular case in a self-consistent linear and nonlinear theoretical study using the Gaussian transverse profile of an open resonator with a single longitudinal mode. Experimental verification of the devices operation was first mentioned in work at the Naval Research Laboratory. Theoretical studies using a time-dependent analysis of a large number of longitudinal modes with similar transverse mode profiles have demonstrated that single longitudinal-mode operation can be achieved at equilibrium and that performance can be enhanced by prebunching the electron beam and tapering the magnetic field. The use of output coupling apertures in the mirrors has been studied theoretically in relation to the structure of the modes for both confocal and nonconfocal resonators by Permnoud; use of an open resonator with stepped mirrors has been studied in order to choose a particular longitudinal mode. Studies at the Naval Research Laboratory mirror used configurations that diffraction couple the energy from around the mirror edges, so that the transverse profile inside the resonator can be selective to the fundamental mode.

  20. Integrated Simulation and Optimization of Fusion Systems: the Fusion Simulation Project

    NASA Astrophysics Data System (ADS)

    Batchelor, Donald B.

    2004-05-01

    Advanced experimental devices for fusion energy research are very large in the $1B class, the next major step being construction of ITER, a tokamak device capable of producing several hundred megawatts of fusion power. The plasmas in such devices are extremely far from thermal equilibrium and support a vast number of physical processes that must be controlled and coordinated to successfully achieve the conditions required for fusion. Simulation is a key element in the research program needed to understand experimental results from devices and compare these results to theory, to plan and design experiments on the devices, and to invent and evaluate new, higher performing confinement concepts. There are a number of fundamental computational challenges in such simulation: extreme range of time scales - wall equilibration time/electron cyclotron time O(10^14), extreme range of space scales - machine radius/electron gyroradius O(10^4), extreme plasma anisotropy - mean free path in magnetic field parallel/perpendicular O(10^10), strong non-linear coupling, sensitivity to geometric details, and high dimensionality. To deal with this challenge, several classes of fusion physics sub-disciplines and related simulation codes have been developed. There is not at present a single code, or code set, that integrates these sub-disciplines in their generality. The talk will describe the various approaches to fusion plasma simulation and progress toward bringing together the various models so as to treat the plasma more self-consistently. In particular, the fusion community is planning a comprehensive Fusion Simulation Project (FSP) whose ultimate goal ( 15 years) is to predict reliably the behavior of plasma discharges in toroidal magnetic fusion devices on all relevant time and space scales.

  1. Matched Comparison of Fusion Rates between Hydroxyapatite Demineralized Bone Matrix and Autograft in Lumbar Interbody Fusion

    PubMed Central

    Kim, Dae Hwan; Lee, Nam; Shin, Dong Ah; Yi, Seong; Kim, Keung Nyun

    2016-01-01

    Objective To compare the fusion rate of a hydroxyapatite demineralized bone matrix (DBM) with post-laminectomy acquired autograft in lumbar interbody fusion surgery and to evaluate the correlation between fusion rate and clinical outcome. Methods From January 2013 to April 2014, 98 patients underwent lumbar interbody fusion surgery with hydroxyapatite DBM (HA-DBM group) in our institute. Of those patients, 65 received complete CT scans for 12 months postoperatively in order to evaluate fusion status. For comparison with autograft, we selected another 65 patients who underwent lumbar interbody fusion surgery with post-laminectomy acquired autograft (Autograft group) during the same period. Both fusion material groups were matched in terms of age, sex, body mass index (BMI), and bone mineral density (BMD). To evaluate the clinical outcomes, we analyzed the results of visual analogue scale (VAS), Oswestry Disability Index (ODI), and Short Form Health Survey (SF-36). Results We reviewed the CT scans of 149 fusion levels in 130 patients (HA-DBM group, 75 levels/65 patients; Autograft group, 74 levels/65 patients). Age, sex, BMI, and BMD were not significantly different between the groups (p=0.528, p=0.848, p=0.527, and p=0.610, respectively). The HA-DBM group showed 39 of 75 fused levels (52%), and the Autograft group showed 46 of 74 fused levels (62.2%). This difference was not statistically significant (p=0.21). In the HA-DBM group, older age and low BMD were significantly associated with non-fusion (61.24 vs. 66.68, p=0.027; -1.63 vs. -2.29, p=0.015, respectively). VAS and ODI showed significant improvement after surgery when fusion was successfully achieved in both groups (p=0.004, p=0.002, HA-DBM group; p=0.012, p=0.03, Autograft group). Conclusion The fusion rates of the hydroxyapatite DBM and Autograft groups were not significantly different. In addition, clinical outcomes were similar between the groups. However, older age and low BMD are risk factors that might

  2. Fusion of hand and arm gestures

    NASA Astrophysics Data System (ADS)

    Coquin, D.; Benoit, E.; Sawada, H.; Ionescu, B.

    2005-12-01

    In order to improve the link between an operator and its machine, some human oriented communication systems are now using natural languages like speech or gesture. The goal of this paper is to present a gesture recognition system based on the fusion of measurements issued from different kind of sources. It is necessary to have some sensors that are able to capture at least the position and the orientation of the hand such as Dataglove and a video camera. Datagloge gives a measure of the hand posture and a video camera gives a measure of the general arm gesture which represents the physical and spatial properties of the gesture, and based on the 2D skeleton representation of the arm. The measurements used are partially complementary and partially redundant. The application is distributed on intelligent cooperating sensors. The paper presents the measurement of the hand and the arm gestures, the fusion processes, and the implementation solution.

  3. Exocytotic fusion pores are composed of both lipids and proteins

    PubMed Central

    Bao, Huan; Goldschen-Ohm, Marcel; Jeggle, Pia; Chanda, Baron; Edwardson, J Michael; Chapman, Edwin R

    2016-01-01

    During exocytosis, fusion pores form the first aqueous connection that allows escape of neurotransmitters and hormones from secretory vesicles. Although it is well established that SNARE proteins catalyze fusion, the structure and composition of fusion pores remain unknown. Here, we exploited the rigid framework and defined size of nanodiscs to interrogate the properties of reconstituted fusion pores, using the neurotransmitter glutamate as a content-mixing marker. Efficient Ca2+-stimulated bilayer fusion, and glutamate release, occurred with approximately two molecules of mouse synaptobrevin 2 reconstituted into ~6-nm nanodiscs. The transmembrane domains of SNARE proteins assumed distinct roles in lipid mixing versus content release and were exposed to polar solvent during fusion. Additionally, tryptophan substitutions at specific positions in these transmembrane domains decreased glutamate flux. Together, these findings indicate that the fusion pore is a hybrid structure composed of both lipids and proteins. PMID:26656855

  4. Effects of magnetization on fusion product trapping and secondary neutron spectra

    SciTech Connect

    Knapp, Patrick F.; Schmit, Paul F.; Hansen, Stephanie B.; Gomez, Matthew R.; Hahn, Kelly D.; Sinars, Daniel Brian; Peterson, Kyle J.; Slutz, Stephen A.; Sefkow, Adam B.; Awe, Thomas James; Harding, Eric; Jennings, Christopher A.; Desjarlais, M. P.; Chandler, Gordon A.; Cooper, Gary Wayne; Cuneo, Michael Edward; Geissel, Matthias; Harvey-Thompson, Adam James; Porter, John L.; Rochau, Gregory A.; Rovang, Dean C.; Ruiz, Carlos L.; Savage, Mark E.; Smith, Ian C.; Stygar, William A.; Herrmann, Mark

    2015-05-14

    In magnetizing the fusion fuel in inertial confinement fusion (ICF) systems, we found that the required stagnation pressure and density can be relaxed dramatically. This happens because the magnetic field insulates the hot fuel from the cold pusher and traps the charged fusion burn products. This trapping allows the burn products to deposit their energy in the fuel, facilitating plasma self-heating. Here, we report on a comprehensive theory of this trapping in a cylindrical DD plasma magnetized with a purely axial magnetic field. Using this theory, we are able to show that the secondary fusion reactions can be used to infer the magnetic field-radius product, BR, during fusion burn. This parameter, not ρR, is the primary confinement parameter in magnetized ICF. Using this method, we analyze data from recent Magnetized Liner InertialFusion experiments conducted on the Z machine at Sandia National Laboratories. Furthermore, we show that in these experiments BR ≈ 0.34(+0.14/-0.06) MG · cm, a ~ 14× increase in BR from the initial value, and confirming that the DD-fusion tritons are magnetized at stagnation. Lastly, this is the first experimental verification of charged burn product magnetization facilitated by compression of an initial seed magnetic flux.

  5. Effects of magnetization on fusion product trapping and secondary neutron spectra

    DOE PAGESBeta

    Knapp, Patrick F.; Schmit, Paul F.; Hansen, Stephanie B.; Gomez, Matthew R.; Hahn, Kelly D.; Sinars, Daniel Brian; Peterson, Kyle J.; Slutz, Stephen A.; Sefkow, Adam B.; Awe, Thomas James; et al

    2015-05-14

    In magnetizing the fusion fuel in inertial confinement fusion (ICF) systems, we found that the required stagnation pressure and density can be relaxed dramatically. This happens because the magnetic field insulates the hot fuel from the cold pusher and traps the charged fusion burn products. This trapping allows the burn products to deposit their energy in the fuel, facilitating plasma self-heating. Here, we report on a comprehensive theory of this trapping in a cylindrical DD plasma magnetized with a purely axial magnetic field. Using this theory, we are able to show that the secondary fusion reactions can be used tomore » infer the magnetic field-radius product, BR, during fusion burn. This parameter, not ρR, is the primary confinement parameter in magnetized ICF. Using this method, we analyze data from recent Magnetized Liner InertialFusion experiments conducted on the Z machine at Sandia National Laboratories. Furthermore, we show that in these experiments BR ≈ 0.34(+0.14/-0.06) MG · cm, a ~ 14× increase in BR from the initial value, and confirming that the DD-fusion tritons are magnetized at stagnation. Lastly, this is the first experimental verification of charged burn product magnetization facilitated by compression of an initial seed magnetic flux.« less

  6. Effects of magnetization on fusion product trapping and secondary neutron spectraa)

    NASA Astrophysics Data System (ADS)

    Knapp, P. F.; Schmit, P. F.; Hansen, S. B.; Gomez, M. R.; Hahn, K. D.; Sinars, D. B.; Peterson, K. J.; Slutz, S. A.; Sefkow, A. B.; Awe, T. J.; Harding, E.; Jennings, C. A.; Desjarlais, M. P.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Geissel, M.; Harvey-Thompson, A. J.; Porter, J. L.; Rochau, G. A.; Rovang, D. C.; Ruiz, C. L.; Savage, M. E.; Smith, I. C.; Stygar, W. A.; Herrmann, M. C.

    2015-05-01

    By magnetizing the fusion fuel in inertial confinement fusion (ICF) systems, the required stagnation pressure and density can be relaxed dramatically. This happens because the magnetic field insulates the hot fuel from the cold pusher and traps the charged fusion burn products. This trapping allows the burn products to deposit their energy in the fuel, facilitating plasma self-heating. Here, we report on a comprehensive theory of this trapping in a cylindrical DD plasma magnetized with a purely axial magnetic field. Using this theory, we are able to show that the secondary fusion reactions can be used to infer the magnetic field-radius product, BR, during fusion burn. This parameter, not ρR, is the primary confinement parameter in magnetized ICF. Using this method, we analyze data from recent Magnetized Liner Inertial Fusion experiments conducted on the Z machine at Sandia National Laboratories. We show that in these experiments BR ≈ 0.34(+0.14/-0.06) MG . cm, a ˜ 14× increase in BR from the initial value, and confirming that the DD-fusion tritons are magnetized at stagnation. This is the first experimental verification of charged burn product magnetization facilitated by compression of an initial seed magnetic flux.

  7. Effects of magnetization on fusion product trapping and secondary neutron spectra

    SciTech Connect

    Knapp, P. F.; Schmit, P. F.; Hansen, S. B.; Gomez, M. R.; Hahn, K. D.; Sinars, D. B.; Peterson, K. J.; Slutz, S. A.; Sefkow, A. B.; Awe, T. J.; Harding, E.; Jennings, C. A.; Desjarlais, M. P.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Geissel, M.; Harvey-Thompson, A. J.; Porter, J. L.; Rochau, G. A.; and others

    2015-05-15

    By magnetizing the fusion fuel in inertial confinement fusion (ICF) systems, the required stagnation pressure and density can be relaxed dramatically. This happens because the magnetic field insulates the hot fuel from the cold pusher and traps the charged fusion burn products. This trapping allows the burn products to deposit their energy in the fuel, facilitating plasma self-heating. Here, we report on a comprehensive theory of this trapping in a cylindrical DD plasma magnetized with a purely axial magnetic field. Using this theory, we are able to show that the secondary fusion reactions can be used to infer the magnetic field-radius product, BR, during fusion burn. This parameter, not ρR, is the primary confinement parameter in magnetized ICF. Using this method, we analyze data from recent Magnetized Liner Inertial Fusion experiments conducted on the Z machine at Sandia National Laboratories. We show that in these experiments BR ≈ 0.34(+0.14/−0.06) MG · cm, a ∼ 14× increase in BR from the initial value, and confirming that the DD-fusion tritons are magnetized at stagnation. This is the first experimental verification of charged burn product magnetization facilitated by compression of an initial seed magnetic flux.

  8. Evaluation of taste solutions by sensor fusion

    SciTech Connect

    Kojima, Yohichiro; Sato, Eriko; Atobe, Masahiko; Nakashima, Miki; Kato, Yukihisa; Nonoue, Koichi; Yamano, Yoshimasa

    2009-05-23

    In our previous studies, properties of taste solutions were discriminated based on sound velocity and amplitude of ultrasonic waves propagating through the solutions. However, to make this method applicable to beverages which contain many taste substances, further studies are required. In this study, the waveform of an ultrasonic wave with frequency of approximately 5 MHz propagating through a solution was measured and subjected to frequency analysis. Further, taste sensors require various techniques of sensor fusion to effectively obtain chemical and physical parameter of taste solutions. A sensor fusion method of ultrasonic wave sensor and various sensors, such as the surface plasmon resonance (SPR) sensor, to estimate tastes were proposed and examined in this report. As a result, differences among pure water and two basic taste solutions were clearly observed as differences in their properties. Furthermore, a self-organizing neural network was applied to obtained data which were used to clarify the differences among solutions.

  9. Regulation of cell-cell fusion by nanotopography.

    PubMed

    Padmanabhan, Jagannath; Augelli, Michael J; Cheung, Bettina; Kinser, Emily R; Cleary, Barnett; Kumar, Priyanka; Wang, Renhao; Sawyer, Andrew J; Li, Rui; Schwarz, Udo D; Schroers, Jan; Kyriakides, Themis R

    2016-01-01

    Cell-cell fusion is fundamental to a multitude of biological processes ranging from cell differentiation and embryogenesis to cancer metastasis and biomaterial-tissue interactions. Fusogenic cells are exposed to biochemical and biophysical factors, which could potentially alter cell behavior. While biochemical inducers of fusion such as cytokines and kinases have been identified, little is known about the biophysical regulation of cell-cell fusion. Here, we designed experiments to examine cell-cell fusion using bulk metallic glass (BMG) nanorod arrays with varying biophysical cues, i.e. nanotopography and stiffness. Through independent variation of stiffness and topography, we found that nanotopography constitutes the primary biophysical cue that can override biochemical signals to attenuate fusion. Specifically, nanotopography restricts cytoskeletal remodeling-associated signaling, which leads to reduced fusion. This finding expands our fundamental understanding of the nanoscale biophysical regulation of cell fusion and can be exploited in biomaterials design to induce desirable biomaterial-tissue interactions. PMID:27615159

  10. A sensitive HIV-1 envelope induced fusion assay identifies fusion enhancement of thrombin

    SciTech Connect

    Cheng, De-Chun; Zhong, Guo-Cai; Su, Ju-Xiang; Liu, Yan-Hong; Li, Yan; Wang, Jia-Ye; Hattori, Toshio; Ling, Hong; Zhang, Feng-Min

    2010-01-22

    To evaluate the interaction between HIV-1 envelope glycoprotein (Env) and target cell receptors, various cell-cell-fusion assays have been developed. In the present study, we established a novel fusion system. In this system, the expression of the sensitive reporter gene, firefly luciferase (FL) gene, in the target cells was used to evaluate cell fusion event. Simultaneously, constitutively expressed Renilla luciferase (RL) gene was used to monitor effector cell number and viability. FL gave a wider dynamic range than other known reporters and the introduction of RL made the assay accurate and reproducible. This system is especially beneficial for investigation of potential entry-influencing agents, for its power of ruling out the false inhibition or enhancement caused by the artificial cell-number variation. As a case study, we applied this fusion system to observe the effect of a serine protease, thrombin, on HIV Env-mediated cell-cell fusion and have found the fusion enhancement activity of thrombin over two R5-tropic HIV strains.

  11. Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion

    DOE PAGESBeta

    Gomez, Matthew R.; Slutz, Stephen A..; Sefkow, Adam B.; Sinars, Daniel B.; Hahn, Kelly D.; Hansen, Stephanie B.; Harding, Eric C.; Knapp, Patrick F.; Schmit, Paul F.; Jennings, Christopher A.; et al

    2014-10-06

    This Letter presents results from the first fully integrated experiments testing the magnetized liner inertial fusion concept [S.A. Slutz et al., Phys. Plasmas 17, 056303 (2010)], in which a cylinder of deuterium gas with a preimposed axial magnetic field of 10 T is heated by Z beamlet, a 2.5 kJ, 1 TW laser, and magnetically imploded by a 19 MA current with 100 ns rise time on the Z facility. Despite a predicted peak implosion velocity of only 70 km/s, the fuel reaches a stagnation temperature of approximately 3 keV, with Te ≈ Ti, and produces up to 2e12 thermonuclearmore » DD neutrons. In this study, X-ray emission indicates a hot fuel region with full width at half maximum ranging from 60 to 120 μm over a 6 mm height and lasting approximately 2 ns. The number of secondary deuterium-tritium neutrons observed was greater than 1010, indicating significant fuel magnetization given that the estimated radial areal density of the plasma is only 2 mg/cm2.« less

  12. Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion

    SciTech Connect

    Gomez, Matthew R.; Slutz, Stephen A..; Sefkow, Adam B.; Sinars, Daniel B.; Hahn, Kelly D.; Hansen, Stephanie B.; Harding, Eric C.; Knapp, Patrick F.; Schmit, Paul F.; Jennings, Christopher A.; Awe, Thomas James; Geissel, Matthias; Rovang, Dean C.; Chandler, Gordon A.; Cooper, Gary Wayne; Cuneo, Michael Edward; Harvey-Thompson, Adam James; Herrmann, Mark; Hess, M. H.; Johns, Owen; Lamppa, Derek C.; Martin, Matthew R.; McBride, Ryan D.; Peterson, Kyle J.; Porter, John L.; Robertson, Grafton Kincannon; Rochau, Gregory A.; Ruiz, Carlos L.; Savage, Mark E.; Smith, Ian C.; Stygar, William A.; Vesey, Roger A.

    2014-10-06

    This Letter presents results from the first fully integrated experiments testing the magnetized liner inertial fusion concept [S.A. Slutz et al., Phys. Plasmas 17, 056303 (2010)], in which a cylinder of deuterium gas with a preimposed axial magnetic field of 10 T is heated by Z beamlet, a 2.5 kJ, 1 TW laser, and magnetically imploded by a 19 MA current with 100 ns rise time on the Z facility. Despite a predicted peak implosion velocity of only 70 km/s, the fuel reaches a stagnation temperature of approximately 3 keV, with Te ≈ Ti, and produces up to 2e12 thermonuclear DD neutrons. In this study, X-ray emission indicates a hot fuel region with full width at half maximum ranging from 60 to 120 μm over a 6 mm height and lasting approximately 2 ns. The number of secondary deuterium-tritium neutrons observed was greater than 1010, indicating significant fuel magnetization given that the estimated radial areal density of the plasma is only 2 mg/cm2.

  13. Intraoperative identification of adrenal-renal fusion.

    PubMed

    Boll, Griffin; Rattan, Rishi; Yilmaz, Osman; Tarnoff, Michael E

    2015-01-01

    Adrenal - renal fusion is a rare entity defined as incomplete encapsulation of the adrenal gland and kidney with histologically adjacent functional tissue. This report describes the first published intraoperative identification of this anomaly during laparoscopic adrenalectomy. The patient was a 59-year-old man with chronic hypertension refractory to multiple antihypertensives found to be caused by a right-sided aldosterone-producing adrenal adenoma in the setting of bilateral adrenal hyperplasia. During laparoscopic adrenalectomy, the normal avascular plane between the kidney and adrenal gland was absent. Pathologic evaluation confirmed adrenal - renal fusion without adrenal heterotopia. Identified intraoperatively, this may be misdiagnosed as invasive malignancy, and thus awareness of this anomaly may help prevent unnecessarily morbid resection. PMID:26195881

  14. Kinetic analysis of thermal stability of human low density lipoproteins: a model for LDL fusion in atherogenesis[S

    PubMed Central

    Lu, Mengxiao; Gantz, Donald L.; Herscovitz, Haya; Gursky, Olga

    2012-01-01

    Fusion of modified LDL in the arterial wall promotes atherogenesis. Earlier we showed that thermal denaturation mimics LDL remodeling and fusion, and revealed kinetic origin of LDL stability. Here we report the first quantitative analysis of LDL thermal stability. Turbidity data show sigmoidal kinetics of LDL heat denaturation, which is unique among lipoproteins, suggesting that fusion is preceded by other structural changes. High activation energy of denaturation, Ea = 100 ± 8 kcal/mol, indicates disruption of extensive packing interactions in LDL. Size-exclusion chromatography, nondenaturing gel electrophoresis, and negative-stain electron microscopy suggest that LDL dimerization is an early step in thermally induced fusion. Monoclonal antibody binding suggests possible involvement of apoB N-terminal domain in early stages of LDL fusion. LDL fusion accelerates at pH < 7, which may contribute to LDL retention in acidic atherosclerotic lesions. Fusion also accelerates upon increasing LDL concentration in near-physiologic range, which likely contributes to atherogenesis. Thermal stability of LDL decreases with increasing particle size, indicating that the pro-atherogenic properties of small dense LDL do not result from their enhanced fusion. Our work provides the first kinetic approach to measuring LDL stability and suggests that lipid-lowering therapies that reduce LDL concentration but increase the particle size may have opposite effects on LDL fusion. PMID:22855737

  15. Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion.

    PubMed

    Gomez, M R; Slutz, S A; Sefkow, A B; Sinars, D B; Hahn, K D; Hansen, S B; Harding, E C; Knapp, P F; Schmit, P F; Jennings, C A; Awe, T J; Geissel, M; Rovang, D C; Chandler, G A; Cooper, G W; Cuneo, M E; Harvey-Thompson, A J; Herrmann, M C; Hess, M H; Johns, O; Lamppa, D C; Martin, M R; McBride, R D; Peterson, K J; Porter, J L; Robertson, G K; Rochau, G A; Ruiz, C L; Savage, M E; Smith, I C; Stygar, W A; Vesey, R A

    2014-10-10

    This Letter presents results from the first fully integrated experiments testing the magnetized liner inertial fusion concept [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)], in which a cylinder of deuterium gas with a preimposed 10 Taxial magnetic field is heated by Z beamlet, a 2.5 kJ, 1 TW laser, and magnetically imploded by a 19 MA, 100 ns rise time current on the Z facility. Despite a predicted peak implosion velocity of only 70 km = s, the fuel reaches a stagnation temperature of approximately 3 keV, with T(e) ≈ T(i), and produces up to 2 x 10(12) thermonuclear deuterium-deuterium neutrons. X-ray emission indicates a hot fuel region with full width at half maximum ranging from 60 to 120 μm over a 6 mm height and lasting approximately 2 ns. Greater than 10(10) secondary deuterium-tritium neutrons were observed, indicating significant fuel magnetization given that the estimated radial areal density of the plasma is only 2 mg = cm(2). PMID:25375714

  16. Experimental Demonstration of Fusion-Relevant Conditions in Magnetized Liner Inertial Fusion

    NASA Astrophysics Data System (ADS)

    Gomez, M. R.; Slutz, S. A.; Sefkow, A. B.; Sinars, D. B.; Hahn, K. D.; Hansen, S. B.; Harding, E. C.; Knapp, P. F.; Schmit, P. F.; Jennings, C. A.; Awe, T. J.; Geissel, M.; Rovang, D. C.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Harvey-Thompson, A. J.; Herrmann, M. C.; Hess, M. H.; Johns, O.; Lamppa, D. C.; Martin, M. R.; McBride, R. D.; Peterson, K. J.; Porter, J. L.; Robertson, G. K.; Rochau, G. A.; Ruiz, C. L.; Savage, M. E.; Smith, I. C.; Stygar, W. A.; Vesey, R. A.

    2014-10-01

    This Letter presents results from the first fully integrated experiments testing the magnetized liner inertial fusion concept [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)], in which a cylinder of deuterium gas with a preimposed 10 T axial magnetic field is heated by Z beamlet, a 2.5 kJ, 1 TW laser, and magnetically imploded by a 19 MA, 100 ns rise time current on the Z facility. Despite a predicted peak implosion velocity of only 70 km/s, the fuel reaches a stagnation temperature of approximately 3 keV, with Te≈Ti, and produces up to 2×1012 thermonuclear deuterium-deuterium neutrons. X-ray emission indicates a hot fuel region with full width at half maximum ranging from 60 to 120 μm over a 6 mm height and lasting approximately 2 ns. Greater than 1010 secondary deuterium-tritium neutrons were observed, indicating significant fuel magnetization given that the estimated radial areal density of the plasma is only 2 mg/cm2.

  17. Choice of coils for a fusion reactor

    PubMed Central

    Alexander, Romeo; Garabedian, Paul R.

    2007-01-01

    In a fusion reactor a hot plasma of deuterium and tritium is confined by a strong magnetic field to produce helium ions and release energetic neutrons. The 3D geometry of a stellarator provides configurations for such a device that reduce net toroidal current that might lead to disruptions. We construct smooth coils generating an external magnetic field designed to prevent the plasma from deteriorating. PMID:17640879

  18. Choice of coils for a fusion reactor.

    PubMed

    Alexander, Romeo; Garabedian, Paul R

    2007-07-24

    In a fusion reactor a hot plasma of deuterium and tritium is confined by a strong magnetic field to produce helium ions and release energetic neutrons. The 3D geometry of a stellarator provides configurations for such a device that reduce net toroidal current that might lead to disruptions. We construct smooth coils generating an external magnetic field designed to prevent the plasma from deteriorating. PMID:17640879

  19. On the reversibility of mandibular symphyseal fusion.

    PubMed

    Scott, Jeremiah E; Lack, Justin B; Ravosa, Matthew J

    2012-09-01

    Experimental and comparative studies suggest that a major determinant of increased ossification of the mandibular symphysis is elevated masticatory stress related to a mechanically challenging diet. However, the morphology of this joint tracks variation in dietary properties in only some mammalian clades. Extant anthropoid primates are a notable exception: synostosis is ubiquitous in this speciose group, despite its great age and diverse array of feeding adaptations. One possible explanation for this pattern is that, once synostosis evolves, reversion to a lesser degree of fusion is unlikely or even constrained. If correct, this has important implications for functional and phylogenetic analyses of the mammalian feeding apparatus. To test this hypothesis, we generated a molecular tree for 76 vespertilionoid and noctilionoid chiropterans using Bayesian phylogenetic analysis and examined character evolution using parsimony and likelihood ancestral-state reconstructions along with the binary state speciation and extinction (BiSSE) model. Results indicate that reversals have occurred within Vespertilionoidea. In contrast, noctilionoids exhibit an anthropoid-like pattern, which suggests that more detailed comparisons of the functional and developmental bases for fusion in these bat clades may provide insight into why fusion is maintained in some lineages but not in others. Potential functional and developmental explanations for the lack of reversal are discussed. PMID:22946814

  20. Present and future status of thermochemical cycles applied to fusion energy sources

    SciTech Connect

    Booth, L.A.; Cox, K.E.; Krakowski, R.A.; Pendergrass, J.H.

    1980-01-01

    This paper reviews the status of current research on thermochemical hydrogen production cycles and identifies the needs for advanced cycles and materials research. The Los Alamos Scientific Laboratory (LASL) bismuth sulfate thermochemical cycle is characterized, and fusion reactor blanket concepts for both inertial and magnetic confinement schemes are presented as thermal energy sources for process heat applications.

  1. Crystal Structure of the Pre-fusion Nipah Virus Fusion Glycoprotein Reveals a Novel Hexamer-of-Trimers Assembly

    PubMed Central

    Dutta, Somnath; Yan, Lianying; Feng, YanRu; Wang, Lin-Fa; Skiniotis, Georgios; Lee, Benhur; Zhou, Z. Hong; Broder, Christopher C.; Aguilar, Hector C.; Nikolov, Dimitar B.

    2015-01-01

    Nipah virus (NiV) is a paramyxovirus that infects host cells through the coordinated efforts of two envelope glycoproteins. The G glycoprotein attaches to cell receptors, triggering the fusion (F) glycoprotein to execute membrane fusion. Here we report the first crystal structure of the pre-fusion form of the NiV-F glycoprotein ectodomain. Interestingly this structure also revealed a hexamer-of-trimers encircling a central axis. Electron tomography of Nipah virus-like particles supported the hexameric pre-fusion model, and biochemical analyses supported the hexamer-of-trimers F assembly in solution. Importantly, structure-assisted site-directed mutagenesis of the interfaces between F trimers highlighted the functional relevance of the hexameric assembly. Shown here, in both cell-cell fusion and virus-cell fusion systems, our results suggested that this hexamer-of-trimers assembly was important during fusion pore formation. We propose that this assembly would stabilize the pre-fusion F conformation prior to cell attachment and facilitate the coordinated transition to a post-fusion conformation of all six F trimers upon triggering of a single trimer. Together, our data reveal a novel and functional pre-fusion architecture of a paramyxoviral fusion glycoprotein. PMID:26646856

  2. The Pathway of Membrane Fusion Catalyzed by Influenza Hemagglutinin: Restriction of Lipids, Hemifusion, and Lipidic Fusion Pore Formation

    PubMed Central

    Chernomordik, Leonid V.; Frolov, Vadim A.; Leikina, Eugenia; Bronk, Peter; Zimmerberg, Joshua

    1998-01-01

    The mechanism of bilayer unification in biological fusion is unclear. We reversibly arrested hemagglutinin (HA)-mediated cell–cell fusion right before fusion pore opening. A low-pH conformation of HA was required to form this intermediate and to ensure fusion beyond it. We present evidence indicating that outer monolayers of the fusing membranes were merged and continuous in this intermediate, but HA restricted lipid mixing. Depending on the surface density of HA and the membrane lipid composition, this restricted hemifusion intermediate either transformed into a fusion pore or expanded into an unrestricted hemifusion, without pores but with unrestricted lipid mixing. Our results suggest that restriction of lipid flux by a ring of activated HA is necessary for successful fusion, during which a lipidic fusion pore develops in a local and transient hemifusion diaphragm. PMID:9508770

  3. Review of deuterium-tritium results from the Tokamak Fusion Test Reactor

    NASA Astrophysics Data System (ADS)

    McGuire, K. M.; Adler, H.; Alling, P.; Ancher, C.; Anderson, H.; Anderson, J. L.; Anderson, J. W.; Arunasalam, V.; Ascione, G.; Ashcroft, D.; Barnes, Cris W.; Barnes, G.; Batha, S.; Bateman, G.; Beer, M.; Bell, M. G.; Bell, R.; Bitter, M.; Blanchard, W.; Bretz, N. L.; Brunkhorst, C.; Budny, R.; Bush, C. E.; Camp, R.; Caorlin, M.; Carnevale, H.; Cauffman, S.; Chang, Z.; Chang, C. S.; Cheng, C. Z.; Chrzanowski, J.; Collins, J.; Coward, G.; Cropper, M.; Darrow, D. S.; Daugert, R.; DeLooper, J.; Dendy, R.; Dorland, W.; Dudek, L.; Duong, H.; Durst, R.; Efthimion, P. C.; Ernst, D.; Evenson, H.; Fisch, N.; Fisher, R.; Fonck, R. J.; Fredd, E.; Fredrickson, E.; Fromm, N.; Fu, G. Y.; Fujita, T.; Furth, H. P.; Garzotto, V.; Gentile, C.; Gilbert, J.; Gioia, J.; Gorelenkov, N.; Grek, B.; Grisham, L. R.; Hammett, G.; Hanson, G. R.; Hawryluk, R. J.; Heidbrink, W.; Herrmann, H. W.; Hill, K. W.; Hosea, J.; Hsuan, H.; Hughes, M.; Hulse, R.; Janos, A.; Jassby, D. L.; Jobes, F. C.; Johnson, D. W.; Johnson, L. C.; Kalish, M.; Kamperschroer, J.; Kesner, J.; Kugel, H.; Labik, G.; Lam, N. T.; LaMarche, P. H.; Lawson, E.; LeBlanc, B.; Levine, J.; Levinton, F. M.; Loesser, D.; Long, D.; Loughlin, M. J.; Machuzak, J.; Majeski, R.; Mansfield, D. K.; Marmar, E. S.; Marsala, R.; Martin, A.; Martin, G.; Mazzucato, E.; Mauel, M.; McCarthy, M. P.; McChesney, J.; McCormack, B.; McCune, D. C.; McKee, G.; Meade, D. M.; Medley, S. S.; Mikkelsen, D. R.; Mirnov, S. V.; Mueller, D.; Murakami, M.; Murphy, J. A.; Nagy, A.; Navratil, G. A.; Nazikian, R.; Newman, R.; Norris, M.; O'Connor, T.; Oldaker, M.; Ongena, J.; Osakabe, M.; Owens, D. K.; Park, H.; Park, W.; Parks, P.; Paul, S. F.; Pearson, G.; Perry, E.; Persing, R.; Petrov, M.; Phillips, C. K.; Phillips, M.; Pitcher, S.; Pysher, R.; Qualls, A. L.; Raftopoulos, S.; Ramakrishnan, S.; Ramsey, A.; Rasmussen, D. A.; Redi, M. H.; Renda, G.; Rewoldt, G.; Roberts, D.; Rogers, J.; Rossmassler, R.; Roquemore, A. L.; Ruskov, E.; Sabbagh, S. A.; Sasao, M.; Schilling, G.; Schivell, J.; Schmidt, G. L.; Scillia, R.; Scott, S. D.; Semenov, I.; Senko, T.; Sesnic, S.; Sissingh, R.; Skinner, C. H.; Snipes, J.; Stencel, J.; Stevens, J.; Stevenson, T.; Stratton, B. C.; Strachan, J. D.; Stodiek, W.; Swanson, J.; Synakowski, E.; Takahashi, H.; Tang, W.; Taylor, G.; Terry, J.; Thompson, M. E.; Tighe, W.; Timberlake, J. R.; Tobita, K.; Towner, H. H.; Tuszewski, M.; von Halle, A.; Vannoy, C.; Viola, M.; von Goeler, S.; Voorhees, D.; Walters, R. T.; Wester, R.; White, R.; Wieland, R.; Wilgen, J. B.; Williams, M.; Wilson, J. R.; Winston, J.; Wright, K.; Wong, K. L.; Woskov, P.; Wurden, G. A.; Yamada, M.; Yoshikawa, S.; Young, K. M.; Zarnstorff, M. C.; Zavereev, V.; Zweben, S. J.

    1995-06-01

    After many years of fusion research, the conditions needed for a D-T fusion reactor have been approached on the Tokamak Fusion Test Reactor (TFTR) [Fusion Technol. 21, 1324 (1992)]. For the first time the unique phenomena present in a D-T plasma are now being studied in a laboratory plasma. The first magnetic fusion experiments to study plasmas using nearly equal concentrations of deuterium and tritium have been carried out on TFTR. At present the maximum fusion power of 10.7 MW, using 39.5 MW of neutral-beam heating, in a supershot discharge and 6.7 MW in a high-βp discharge following a current rampdown. The fusion power density in a core of the plasma is ≊2.8 MW m-3, exceeding that expected in the International Thermonuclear Experimental Reactor (ITER) [Plasma Physics and Controlled Nuclear Fusion Research (International Atomic Energy Agency, Vienna, 1991), Vol. 3, p. 239] at 1500 MW total fusion power. The energy confinement time, τE, is observed to increase in D-T, relative to D plasmas, by 20% and the ni(0) Ti(0) τE product by 55%. The improvement in thermal confinement is caused primarily by a decrease in ion heat conductivity in both supershot and limiter-H-mode discharges. Extensive lithium pellet injection increased the confinement time to 0.27 s and enabled higher current operation in both supershot and high-βp discharges. Ion cyclotron range of frequencies (ICRF) heating of a D-T plasma, using the second harmonic of tritium, has been demonstrated. First measurements of the confined alpha particles have been performed and found to be in good agreement with TRANSP [Nucl. Fusion 34, 1247 (1994)] simulations. Initial measurements of the alpha ash profile have been compared with simulations using particle transport coefficients from He gas puffing experiments. The loss of alpha particles to a detector at the bottom of the vessel is well described by the first-orbit loss mechanism. No loss due to alpha-particle-driven instabilities has yet been observed

  4. Performance characteristic of thermosyphon heat pipe at radiant heat source

    NASA Astrophysics Data System (ADS)

    Hrabovský, Peter; Papučík, Štefan; Kaduchová, Katarína

    2016-06-01

    This article discusses about device, which is called heat pipe. This device is with heat source with radiant heat source. Heat pipe is device with high efficiency of heat transfer. The heat pipe, which is describe in this article is termosyphon heat pipe. The experiment with termosyphon heat pipe get a result. On the base of result, it will be in future to create mathematical model in Ansys. Thermosyphon heat pipe is made of copper and distilled water is working fluid. The significance of this experiment consists in getting of the heat transfer and performance characteristic. On the basis of measured and calculated data can be constructed the plots.

  5. N-learners problem: Fusion of concepts

    SciTech Connect

    Rao, N.S.V.; Oblow, E.M.; Glover, C.W.; liepins, G.E. . Dept. of Computer Science)

    1991-09-01

    We are given N learners each capable of learning concepts (subsets) of a domain set X in the sense of Valiant, i.e. for any c {element of} C {improper subset} 2{sup X}, given a finite set of examples of the form < x{sub 1}, M{sub c}(x{sub 1}) >; < x{sub 2}, M{sub c}(x{sub 2}) >;...;< x{sub 1}, M{sub c}(x{sub 1}) > generated according to an unknown probability distribution P{sub X} on X, each learner produces a close approximation to c with a high probability. We are interested in combining the N learners using a single fuser or consolidator. We consider the paradigm of passive fusion, where each learner is first trained with the sample without the influence of the consolidator. The composite system is constituted by the fuser and the individual learners. We consider two cases: open and closed fusion. In open fusion the fuser is given the sample and the hypotheses of the individual learners; we show that the fusion rule can be obtained by formulating this problem as another learning problem. For the case all individual learners are trained with the same sample, we show sufficiency conditions that ensure the composite system to be better than the best of the individual: the hypothesis space of the consolidator (a) satisfies the isolation property of degree at least N, and (b) has Vapnik-Chervonenkis dimension less than or equal to that of every individual learner. If individual learners are trained by independently generated samples, we obtain a much weaker bound on the VC-dimension of the hypothesis space of the fuser. Second, in closed fusion the fuser does not have an access to either the training sample or the hypotheses of the individual learners. By suitable designing a linear threshold function of the outputs of individual learners, we show that the composite system can be made better than the best of the learners.

  6. Ion heat pulse after a sawtooth crash in the JAERI Fusion Torus-2M tokamak

    SciTech Connect

    Miura, Y.; Okano, F.; Suzuki, N.; Mori, M.; Hoshino, K.; Takizuka, T.; Itoh, K.; Itoh, S.; JFT-2M Group

    1996-10-01

    The ion heat pulse after a sawtooth crash is studied by a time-of-flight (TOF) neutral measurement. A rapid change of the bulk ion energy distribution near the edge is observed after a sawtooth crash. The delay time is measured, and the effective measuring position is estimated by a neutral transport code. Then a transient ion thermal conductivity, {chi}{sub {ital i}}{sup HP}, of about (7{endash}18) m{sup 2}/s is evaluated for the low confinement mode (L-mode) plasma. The simple diffusive model with constant {chi}{sub {ital i}}{sup HP}, however, does not explain the amplitude of the pulse in the ion energy distribution. {copyright} {ital 1996 American Institute of Physics.}

  7. The ignition design space of magnetized target fusion

    NASA Astrophysics Data System (ADS)

    Lindemuth, Irvin R.

    2015-12-01

    The simple magnetized target implosion model of Lindemuth and Kirkpatrick [Nucl. Fusion 23, 263 (1983)] has been extended to survey the potential parameter space in which three types of magnetized targets—cylindrical with axial magnetic field, cylindrical with azimuthal magnetic field, and spherical with azimuthal magnetic field—might achieve ignition and produce large gain at achievable radial convergence ratios. The model has been used to compute the dynamic, time-dependent behavior of many initial parameter sets that have been based upon projected ignition conditions using the quasi-adiabatic and quasi-flux-conserving properties of magnetized target implosions. The time-dependent calculations have shown that energy gains greater than 30 can potentially be achieved for each type of target. By example, it is shown that high gain may be obtained at extremely low convergence ratios, e.g., less than 15, for appropriate initial conditions. It is also shown that reaching the ignition condition, i.e., when fusion deposition rates equal total loss rates, does not necessarily lead to high gain and high fuel burn-up. At the lower densities whereby fusion temperatures can be reached in magnetized targets, the fusion burn rate may be only comparable with the hydrodynamic heating/cooling rates. On the other hand, when the fusion burn rates significantly exceed the hydrodynamic rates, the calculations show a characteristic rapid increase in temperature due to alpha particle deposition with a subsequent increased burn rate and high gain. A major result of this paper is that each type of target operates in a different initial density-energy-velocity range. The results of this paper provide initial target plasma parameters and driver parameters that can be used to guide plasma formation and driver development for magnetized targets. The results indicate that plasmas for spherical, cylindrical with azimuthal field, and cylindrical with axial field targets must have an initial

  8. The ignition design space of magnetized target fusion

    SciTech Connect

    Lindemuth, Irvin R.

    2015-12-15

    The simple magnetized target implosion model of Lindemuth and Kirkpatrick [Nucl. Fusion 23, 263 (1983)] has been extended to survey the potential parameter space in which three types of magnetized targets—cylindrical with axial magnetic field, cylindrical with azimuthal magnetic field, and spherical with azimuthal magnetic field—might achieve ignition and produce large gain at achievable radial convergence ratios. The model has been used to compute the dynamic, time-dependent behavior of many initial parameter sets that have been based upon projected ignition conditions using the quasi-adiabatic and quasi-flux-conserving properties of magnetized target implosions. The time-dependent calculations have shown that energy gains greater than 30 can potentially be achieved for each type of target. By example, it is shown that high gain may be obtained at extremely low convergence ratios, e.g., less than 15, for appropriate initial conditions. It is also shown that reaching the ignition condition, i.e., when fusion deposition rates equal total loss rates, does not necessarily lead to high gain and high fuel burn-up. At the lower densities whereby fusion temperatures can be reached in magnetized targets, the fusion burn rate may be only comparable with the hydrodynamic heating/cooling rates. On the other hand, when the fusion burn rates significantly exceed the hydrodynamic rates, the calculations show a characteristic rapid increase in temperature due to alpha particle deposition with a subsequent increased burn rate and high gain. A major result of this paper is that each type of target operates in a different initial density-energy-velocity range. The results of this paper provide initial target plasma parameters and driver parameters that can be used to guide plasma formation and driver development for magnetized targets. The results indicate that plasmas for spherical, cylindrical with azimuthal field, and cylindrical with axial field targets must have an initial

  9. Estimating heat capacity and heat content of rocks

    USGS Publications Warehouse

    Robertson, Eugene C.; Hemingway, Bruch S.

    1995-01-01

    Our measured heat-capacity values for rocks and other measurements of heat capacity or heat content of rocks found in the literature have been compared with estimated rock heat capacities calculated from the summation of heat capacities of both minerals and oxide components. The validity of calculating the heat content or heat capacity of rocks to better than about ± 3% from its mineral or chemical composition is well demonstrated by the data presented here.

  10. Direct observation of intermediate states in model membrane fusion.

    PubMed

    Keidel, Andrea; Bartsch, Tobias F; Florin, Ernst-Ludwig

    2016-01-01

    We introduce a novel assay for membrane fusion of solid supported membranes on silica beads and on coverslips. Fusion of the lipid bilayers is induced by bringing an optically trapped bead in contact with the coverslip surface while observing the bead's thermal motion with microsecond temporal and nanometer spatial resolution using a three-dimensional position detector. The probability of fusion is controlled by the membrane tension on the particle. We show that the progression of fusion can be monitored by changes in the three-dimensional position histograms of the bead and in its rate of diffusion. We were able to observe all fusion intermediates including transient fusion, formation of a stalk, hemifusion and the completion of a fusion pore. Fusion intermediates are characterized by axial but not lateral confinement of the motion of the bead and independently by the change of its rate of diffusion due to the additional drag from the stalk-like connection between the two membranes. The detailed information provided by this assay makes it ideally suited for studies of early events in pure lipid bilayer fusion or fusion assisted by fusogenic molecules. PMID:27029285

  11. The timing of spheno-occipital fusion in hominoids.

    PubMed

    Balolia, Katharine L

    2015-01-01

    The degree of spheno-occipital fusion has been used to assign a relative age to dentally mature hominoid cranial specimens. However, a recent study of captive individuals (Poe: Am J Phys Anthropol 144 (2011) 162–165) concluded that fusion of the spheno-occipital suture in great ape taxa is of little utility for aging dentally mature individuals. In this contribution, I use dentally mature samples of extant hominoid taxa (Homo sapiens, Pan troglodytes schweinfurthii, Gorilla gorilla gorilla, Pongo pygmaeus pygmaeus and Hylobates lar) to investigate a) the temporal relationship between spheno-occipital fusion and dental maturity, b) whether there is an association between the degree of spheno-occipital fusion and relative age, c) whether there are differences in relative timing of spheno-occipital fusion between taxa, and d) whether there are sex differences in the relative timing of spheno-occipital fusion. Results suggest that a) a substantial proportion of dentally mature wild-shot chimpanzee, gorilla and orang-utans have unfused or partially fused spheno-occipital synchondoses, b) there is an association between the degree of spheno-occipital fusion and age, c) there are interspecific differences in the timing of spheno-occipital fusion, and d) there are significant sex differences in spheno-occipital fusion in chimpanzees, orang-utans and gibbons. Thus, contrary to previous work, degree of spheno-occipital fusion is a potentially useful indicator of relative maturity, especially in great ape taxa. PMID:25293964

  12. Direct observation of intermediate states in model membrane fusion

    PubMed Central

    Keidel, Andrea; Bartsch, Tobias F.; Florin, Ernst-Ludwig

    2016-01-01

    We introduce a novel assay for membrane fusion of solid supported membranes on silica beads and on coverslips. Fusion of the lipid bilayers is induced by bringing an optically trapped bead in contact with the coverslip surface while observing the bead’s thermal motion with microsecond temporal and nanometer spatial resolution using a three-dimensional position detector. The probability of fusion is controlled by the membrane tension on the particle. We show that the progression of fusion can be monitored by changes in the three-dimensional position histograms of the bead and in its rate of diffusion. We were able to observe all fusion intermediates including transient fusion, formation of a stalk, hemifusion and the completion of a fusion pore. Fusion intermediates are characterized by axial but not lateral confinement of the motion of the bead and independently by the change of its rate of diffusion due to the additional drag from the stalk-like connection between the two membranes. The detailed information provided by this assay makes it ideally suited for studies of early events in pure lipid bilayer fusion or fusion assisted by fusogenic molecules. PMID:27029285

  13. Direct observation of intermediate states in model membrane fusion

    NASA Astrophysics Data System (ADS)

    Keidel, Andrea; Bartsch, Tobias F.; Florin, Ernst-Ludwig

    2016-03-01

    We introduce a novel assay for membrane fusion of solid supported membranes on silica beads and on coverslips. Fusion of the lipid bilayers is induced by bringing an optically trapped bead in contact with the coverslip surface while observing the bead’s thermal motion with microsecond temporal and nanometer spatial resolution using a three-dimensional position detector. The probability of fusion is controlled by the membrane tension on the particle. We show that the progression of fusion can be monitored by changes in the three-dimensional position histograms of the bead and in its rate of diffusion. We were able to observe all fusion intermediates including transient fusion, formation of a stalk, hemifusion and the completion of a fusion pore. Fusion intermediates are characterized by axial but not lateral confinement of the motion of the bead and independently by the change of its rate of diffusion due to the additional drag from the stalk-like connection between the two membranes. The detailed information provided by this assay makes it ideally suited for studies of early events in pure lipid bilayer fusion or fusion assisted by fusogenic molecules.

  14. Stochastic RF Heating of Thermal Ions

    SciTech Connect

    Fredrickson, E. D.; Phillips, C. K.; Hosea, J.; Wilson, J. R.; Gorelenkov, N. N.; Valeo, E.; Bonoli, P.; Wright, J.

    2007-09-28

    An idea for directly heating the thermal ion population with radio frequency waves at frequencies below the ion cyclotron frequency is proposed. This method would increase fusion efficiency by avoiding the lossy electron channel.

  15. Oral cancer/endothelial cell fusion experiences nuclear fusion and acquisition of enhanced survival potential

    SciTech Connect

    Song, Kai; Song, Yong; Zhao, Xiao-Ping; Shen, Hui; Wang, Meng; Yan, Ting-lin; Liu, Ke; Shang, Zheng-jun

    2014-10-15

    Most previous studies have linked cancer–macrophage fusion with tumor progression and metastasis. However, the characteristics of hybrid cells derived from oral cancer and endothelial cells and their involvement in cancer remained unknown. Double-immunofluorescent staining and fluorescent in situ hybridization (FISH) were performed to confirm spontaneous cell fusion between eGFP-labeled human umbilical vein endothelial cells (HUVECs) and RFP-labeled SCC9, and to detect the expression of vementin and cytokeratin 18 in the hybrids. The property of chemo-resistance of such hybrids was examined by TUNEL assay. The hybrid cells in xenografted tumor were identified by FISH and GFP/RFP dual-immunofluoresence staining. We showed that SCC9 cells spontaneously fused with cocultured endothelial cells, and the resultant hybrid cells maintained the division and proliferation activity after re-plating and thawing. Such hybrids expressed markers of both parental cells and became more resistant to chemotherapeutic drug cisplatin as compared to the parental SCC9 cells. Our in vivo data indicated that the hybrid cells contributed to tumor composition by using of immunostaining and FISH analysis, even though the hybrid cells and SCC9 cells were mixed with 1:10,000, according to the FACS data. Our study suggested that the fusion events between oral cancer and endothelial cells undergo nuclear fusion and acquire a new property of drug resistance and consequently enhanced survival potential. These experimental findings provide further supportive evidence for the theory that cell fusion is involved in cancer progression. - Highlights: • The fusion events between oral cancer and endothelial cells undergo nuclear fusion. • The resulting hybrid cells acquire a new property of drug resistance. • The resulting hybrid cells express the markers of both parental cells (i.e. vimentin and cytokeratin 18). • The hybrid cells contribute to tumor repopulation in vivo.

  16. Repair welding of fusion reactor components. Final technical report

    SciTech Connect

    Chin, B.A.; Wang, C.A.

    1997-09-30

    The exposure of metallic materials, such as structural components of the first wall and blanket of a fusion reactor, to neutron irradiation will induce changes in both the material composition and microstructure. Along with these changes can come a corresponding deterioration in mechanical properties resulting in premature failure. It is, therefore, essential to expect that the repair and replacement of the degraded components will be necessary. Such repairs may require the joining of irradiated materials through the use of fusion welding processes. The present ITER (International Thermonuclear Experimental Reactor) conceptual design is anticipated to have about 5 km of longitudinal welds and ten thousand pipe butt welds in the blanket structure. A recent study by Buende et al. predict that a failure is most likely to occur in a weld. The study is based on data from other large structures, particularly nuclear reactors. The data used also appear to be consistent with the operating experience of the Fast Flux Test Facility (FFTF). This reactor has a fuel pin area comparable with the area of the ITER first wall and has experienced one unanticipated fuel pin failure after two years of operation. The repair of irradiated structures using fusion welding will be difficult due to the entrapped helium. Due to its extremely low solubility in metals, helium will diffuse and agglomerate to form helium bubbles after being trapped at point defects, dislocations, and grain boundaries. Welding of neutron-irradiated type 304 stainless steels has been reported with varying degree of heat-affected zone cracking (HAZ). The objectives of this study were to determine the threshold helium concentrations required to cause HAZ cracking and to investigate techniques that might be used to eliminate the HAZ cracking in welding of helium-containing materials.

  17. Experimental investigation of a manifold heat-pipe heat exchanger

    SciTech Connect

    Konev, S.V.; Wang Tszin` Lyan`; D`yakov, I.I.

    1995-12-01

    Results of experimental investigations of a heat exchanger on a manifold water heat pipe are given. An analysis is made of the temperature distribution along the heat-transfer agent path as a function of the transferred heat power. The influence of the degree of filling with the heat transfer agent on the operating characteristics of the construction is considered.

  18. Fusion Welding of AerMet 100 Alloy

    SciTech Connect

    ENGLEHART, DAVID A.; MICHAEL, JOSEPH R.; NOVOTNY, PAUL M.; ROBINO, CHARLES V.

    1999-08-01

    A database of mechanical properties for weldment fusion and heat-affected zones was established for AerMet{reg_sign}100 alloy, and a study of the welding metallurgy of the alloy was conducted. The properties database was developed for a matrix of weld processes (electron beam and gas-tungsten arc) welding parameters (heat inputs) and post-weld heat treatment (PWHT) conditions. In order to insure commercial utility and acceptance, the matrix was commensurate with commercial welding technology and practice. Second, the mechanical properties were correlated with fundamental understanding of microstructure and microstructural evolution in this alloy. Finally, assessments of optimal weld process/PWHT combinations for cotildent application of the alloy in probable service conditions were made. The database of weldment mechanical properties demonstrated that a wide range of properties can be obtained in welds in this alloy. In addition, it was demonstrated that acceptable welds, some with near base metal properties, could be produced from several different initial heat treatments. This capability provides a means for defining process parameters and PWHT's to achieve appropriate properties for different applications, and provides useful flexibility in design and manufacturing. The database also indicated that an important region in welds is the softened region which develops in the heat-affected zone (HAZ) and analysis within the welding metallurgy studies indicated that the development of this region is governed by a complex interaction of precipitate overaging and austenite formation. Models and experimental data were therefore developed to describe overaging and austenite formation during thermal cycling. These models and experimental data can be applied to essentially any thermal cycle, and provide a basis for predicting the evolution of microstructure and properties during thermal processing.

  19. Estimated radiactive and shock loading of fusion reactor armor

    SciTech Connect

    Swift, D C

    2008-11-25

    Inertial confinement fusion (ICF) is of interest as a source of neutrons for proliferation-resistant and high burn-up fission reactor designs. ICF is a transient process, each implosion leading to energy release over a short period, with a continuous series of ICF operations needed to drive the fission reactor. ICF yields energy in the form of MeV-range neutrons and ions, and thermal x-rays. These radiations, particularly the thermal x-rays, can deposit a pulse of energy in the wall of the ICF chamber, inducing loading by isochoric heating (i.e. at constant volume before the material can expand) or by ablation of material from the surface. The explosion of the hot ICF system, and the compression of any fill material in the chamber, may also result in direct mechanical loading by a blast wave (decaying shock) reaching the chamber wall. The chamber wall must be able to survive the repetitive loading events for long enough for the reactor to operate economically. It is thus necessary to understand the loading induced by ICF systems in possible chamber wall designs, and to predict the response and life time of the wall. Estimates are given for the loading induced in the wall armor of the fusion chamber caused by ablative thermal radiation from the fusion plasma and by the hydrodynamic shock. Taking a version of the LIFE design as an example, the ablation pressure was estimated to be {approx}0.6 GPa with an approximately exponential decay with time constant {approx}0.6 ns. Radiation hydrodynamics simulations suggested that ablation of the W armor should be negligible.

  20. Fusion FISH Imaging: Single-Molecule Detection of Gene Fusion Transcripts In Situ

    PubMed Central

    Markey, Fatu Badiane; Ruezinsky, William; Tyagi, Sanjay; Batish, Mona

    2014-01-01

    Double-stranded DNA breaks occur on a regular basis in the human genome as a consequence of genotoxic stress and errors during replication. Usually these breaks are rapidly and faithfully repaired, but occasionally different chromosomes, or different regions of the same chromosome, are fused to each other. Some of these aberrant chromosomal translocations yield functional recombinant genes, which have been implicated as the cause of a number of lymphomas, leukemias, sarcomas, and solid tumors. Reliable methods are needed for the in situ detection of the transcripts encoded by these recombinant genes. We have developed just such a method, utilizing single-molecule fluorescence in situ hybridization (sm-FISH), in which approximately 50 short fluorescent probes bind to adjacent sites on the same mRNA molecule, rendering each target mRNA molecule visible as a diffraction-limited spot in a fluorescence microscope. Utilizing this method, gene fusion transcripts are detected with two differently colored probe sets, each specific for one of the two recombinant segments of a target mRNA; enabling the fusion transcripts to be seen in the microscope as distinct spots that fluoresce in both colors. We demonstrate this method by detecting the BCR-ABL fusion transcripts that occur in chronic myeloid leukemia cells, and by detecting the EWSR1-FLI1 fusion transcripts that occur in Ewing's sarcoma cells. This technology should pave the way for accurate in situ typing of many cancers that are associated with, or caused by, fusion transcripts. PMID:24675777

  1. Use of data fusion to optimize contaminant transport predictions

    SciTech Connect

    Eeckhout, E. van

    1997-10-01

    The original data fusion workstation, as envisioned by Coleman Research Corp., was constructed under funding from DOE (EM-50) in the early 1990s. The intent was to demonstrate the viability of fusion and analysis of data from various types of sensors for waste site characterization, but primarily geophysical. This overall concept changed over time and evolved more towards hydrogeological (groundwater) data fusion after some initial geophysical fusion work focused at Coleman. This initial geophysical fusion platform was tested at Hanford and Fernald, and the later hydrogeological fusion work has been demonstrated at Pantex, Savannah River, the US Army Letterkenny Depot, a DoD Massachusetts site and a DoD California site. The hydrogeologic data fusion package has been spun off to a company named Fusion and Control Technology, Inc. This package is called the Hydrological Fusion And Control Tool (Hydro-FACT) and is being sold as a product that links with the software package, MS-VMS (MODFLOW-SURFACT Visual Modeling System), sold by HydroGeoLogic, Inc. MODFLOW is a USGS development, and is in the public domain. Since the government paid for the data fusion development at Coleman, the government and their contractors have access to the data fusion technology in this hydrogeologic package for certain computer platforms, but would probably have to hire FACT (Fusion and Control Technology, Inc.,) and/or HydroGeoLogic for some level of software and services. Further discussion in this report will concentrate on the hydrogeologic fusion module that is being sold as Hydro-FACT, which can be linked with MS-VMS.

  2. Structural characterization of Mumps virus fusion protein core

    SciTech Connect

    Liu Yueyong; Xu Yanhui; Lou Zhiyong; Zhu Jieqing; Hu Xuebo; Gao, George F.; Qiu Bingsheng . E-mail: Qiubs@sun.im.ac.cn; Rao Zihe . E-mail: raozh@xtal.tsinghua.edu.cn; Tien, Po . E-mail: tienpo@sun.im.ac.cn

    2006-09-29

    The fusion proteins of enveloped viruses mediating the fusion between the viral and cellular membranes comprise two discontinuous heptad repeat (HR) domains located at the ectodomain of the enveloped glycoproteins. The crystal structure of the fusion protein core of Mumps virus (MuV) was determined at 2.2 A resolution. The complex is a six-helix bundle in which three HR1 peptides form a central highly hydrophobic coiled-coil and three HR2 peptides pack against the hydrophobic grooves on the surface of central coiled-coil in an oblique antiparallel manner. Fusion core of MuV, like those of simian virus 5 and human respiratory syncytium virus, forms typical 3-4-4-4-3 spacing. The similar charecterization in HR1 regions, as well as the existence of O-X-O motif in extended regions of HR2 helix, suggests a basic rule for the formation of the fusion core of viral fusion proteins.

  3. Some considerations of cold fusion including the calculation of fusion rates in molecules of hydrogen isotopes

    SciTech Connect

    Cowley, S.C.; Kulsrud, R.M.

    1989-11-01

    We calculate the fusion reaction rates in molecules of hydrogen isotopes. The rates are calculated analytically (for the first time) as an asymptotic expansion in the ratio of the electron mass to the reduced mass of the nucleii. The fusion rates of the P-D, D-D, and D-T reactions are given for a variable electron mass by a simple analytic formula. However, we do not know any mechanism by which a sufficiently localized electron in solid can have an effective mass' large enough to explain the result of Fleischman and Pons (FP). This calculation indicates that P-D rates should exceed D-D rates for D-D fusion rates less than approximately 10{sup {minus}23} per molecule per second. The D-D fusion rate is enhanced by a factor of 10{sup 5} at 10,000{degree}K if the excited vibrational states are populated with a Boltzmann distribution and the rotational excitations suppressed. The suggestion that experimental results could be explained by bombardment of cold deuterons by kilovolt deuterons is shown to be an unlikely from an energetic point of view. 12 refs., 3 figs., 1 tab.

  4. A neutron study of the feline leukaemia virus fusion peptide: Implications for biological fusion?

    NASA Astrophysics Data System (ADS)

    Davies, Sarah M. A.; Darkes, Malcolm J. M.; Bradshaw, Jeremy P.

    Neutron diffraction studies were performed on stacked phospholipid bilayers to determine the effects of the feline leukaemia virus (FeLV) fusion peptide on membrane structure. Bilayers were composed of dioleoylphosphatidylcholine with 50% (mol) dioleoylphosphatidylglycerol. Neutron scattering profiles with peptide present showed an increase in scattering density in the lipid-tails region, whilst scattering by the lipid headgroup region was decreased. This is interpreted as a lowering of the packing density of the lipid headgroups and an increase in the packing density of the lipid tails. Modelling studies and experimental evidence have suggested that fusion peptides catalyse fusion by increasing the negative curvature of the target membrane's outer monolayer. Our results presented here add support to this hypothesis for the fusion mechanism. The 2H 2O scattering profile was also slightly perturbed in the lipid headgroup region with 1% (mol)FeLV fusion peptide present. The FeLV peptide had no significant effect on the organisation of bilayers containing only dioleoylphosphatidylcholine.

  5. Heat pipes and use of heat pipes in furnace exhaust

    SciTech Connect

    Polcyn, Adam D.

    2010-12-28

    An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

  6. New eutectic alloys and their heats of transformation

    NASA Technical Reports Server (NTRS)

    Farkas, D.; Birchenall, C. E.

    1985-01-01

    Eutectic compositions and congruently melting intermetallic compounds in binary and multicomponent systems among common elements such as Al, Ca, Cu, Mg, P, Si, and Zn may be useful for high temperature heat storage. In this work, heats of fusion of new multicomponent eutectics and intermetallic phases are reported, some of which are competitive with molten salts in heat storage density at high temperatures. The method used to determine unknown eutectic compositions combined results of differential thermal analysis, metallography, and microprobe analysis. The method allows determination of eutectic compositions in no more than three steps. The heats of fusion of the alloys were measured using commercial calorimeters, a differential thermal analyzer, and a differential scanning calorimeter.

  7. Theory of supercompression of vapor bubbles and nanoscale thermonuclear fusion

    SciTech Connect

    Nigmatulin, Robert I.; Akhatov, Iskander Sh.; Topolnikov, Andrey S.; Bolotnova, Raisa Kh.; Vakhitova, Nailya K.; Lahey, Richard T. Jr.; Taleyarkhan, Rusi P.

    2005-10-01

    This paper provides the theoretical basis for energetic vapor bubble implosions induced by a standing acoustic wave. Its primary goal is to describe, explain, and demonstrate the plausibility of the experimental observations by Taleyarkhan et al. [Science 295, 1868 (2002); Phys. Rev. E 69, 036109 (2004)] of thermonuclear fusion for imploding cavitation bubbles in chilled deuterated acetone. A detailed description and analysis of these data, including a resolution of the criticisms that have been raised, together with some preliminary HYDRO code simulations, has been given by Nigmatulin et al. [Vestnik ANRB (Ufa, Russia) 4, 3 (2002); J. Power Energy 218-A, 345 (2004)] and Lahey et al. [Adv. Heat Transfer (to be published)]. In this paper a hydrodynamic shock (i.e., HYDRO) code model of the spherically symmetric motion for a vapor bubble in an acoustically forced liquid is presented. This model describes cavitation bubble cluster growth during the expansion period, followed by a violent implosion during the compression period of the acoustic cycle. There are two stages of the bubble dynamics process. The first, low Mach number stage, comprises almost all the time of the acoustic cycle. During this stage, the radial velocities are much less than the sound speeds in the vapor and liquid, the vapor pressure is very close to uniform, and the liquid is practically incompressible. This process is characterized by the inertia of the liquid, heat conduction, and the evaporation or condensation of the vapor. The second, very short, high Mach number stage is when the radial velocities are the same order, or higher, than the sound speeds in the vapor and liquid. In this stage high temperatures, pressures, and densities of the vapor and liquid take place. The model presented herein has realistic equations of state for the compressible liquid and vapor phases, and accounts for nonequilibrium evaporation/condensation kinetics at the liquid/vapor interface. There are interacting

  8. Experimental study on ash fusion characteristics of biomass.

    PubMed

    Fang, Xiang; Jia, Li

    2012-01-01

    In this study, ash fusion characteristics (AFC) of biomass red pine, corn straw, Bermuda grass and bamboo are investigated. Results of this study show that ash melting temperatures are higher when samples are ashed at 815 °C than at 600 °C, but the differences are small. The ash deformation temperatures of pine and straw are over 1100 °C, but the ash deformation temperatures of Bermuda grass and bamboo are lower than the former biomass. Also, Bermuda grass and bamboo are prone to sintering phenomenon when burning. In the thermogravimetric experiment on ash, the heating process can be divided into three stages, namely water evaporation, oxidation of organic compounds and evaporation, and reaction of inorganic components. The ash of Bermuda grass and bamboo contains more unburned organic matters because of sintering, and higher calcium content in pine ash results in a more mass loss in the third stage. The ash fusion characteristics for co-combustion of biomass with coal are investigated. It is found that the ash melting temperature firstly decreases and then increases with the content of the corn straw increase, changing as "V" shape. PMID:22154746

  9. Cryomicroscopy provides structural snapshots of influenza virus membrane fusion.

    PubMed

    Calder, Lesley J; Rosenthal, Peter B

    2016-09-01

    The lipid-enveloped influenza virus enters host cells during infection by binding cell-surface receptors and, after receptor-mediated endocytosis, fusing with the membrane of the endosome and delivering the viral genome and transcription machinery into the host cell. These events are mediated by the hemagglutinin (HA) surface glycoprotein. At the low pH of the endosome, an irreversible conformational change in the HA, including the exposure of the hydrophobic fusion peptide, activates membrane fusion. Here we used electron cryomicroscopy and cryotomography to image the fusion of influenza virus with target membranes at low pH. We visualized structural intermediates of HA and their interactions with membranes during the course of membrane fusion as well as ultrastructural changes in the virus that accompany membrane fusion. Our observations are relevant to a wide range of protein-mediated membrane-fusion processes and demonstrate how dynamic membrane events may be studied by cryomicroscopy. PMID:27501535

  10. Summary of progress in inertial confinement fusion

    SciTech Connect

    Younger, S.M.

    1992-12-31

    Progress in inertial confinement fusion (ICF) has been very rapid over the past two years. Significant advances have been made in the production of smooth laser beams, the focusing of light ions beams, and the development of heavy ion accelerators. The availability of advanced target diagnostics on several major drivers has resulted in an extensive database of target performance over a wide range of conditions. Theoretical models of ICF targets are approaching the predictive level with two and even three dimensional calculations becoming routine. Within the next several years information should be available to allow confident extrapolation to ignition on the next generation driver.

  11. Summary of progress in inertial confinement fusion

    SciTech Connect

    Younger, S.M.

    1992-01-01

    Progress in inertial confinement fusion (ICF) has been very rapid over the past two years. Significant advances have been made in the production of smooth laser beams, the focusing of light ions beams, and the development of heavy ion accelerators. The availability of advanced target diagnostics on several major drivers has resulted in an extensive database of target performance over a wide range of conditions. Theoretical models of ICF targets are approaching the predictive level with two and even three dimensional calculations becoming routine. Within the next several years information should be available to allow confident extrapolation to ignition on the next generation driver.

  12. Local adaptation and the evolution of chromosome fusions.

    PubMed

    Guerrero, Rafael F; Kirkpatrick, Mark

    2014-10-01

    We use forward and coalescent models of population genetics to study chromosome fusions that reduce the recombination between two locally adapted loci. Under a continent-island model, a fusion spreads and reaches a polymorphic equilibrium when it causes recombination between locally adapted alleles to be less than their selective advantage. In contrast, fusions in a two-deme model always spread; whether it reaches a polymorphic equilibrium or becomes fixed depends on the relative recombination rates of fused homozygotes and heterozygotes. Neutral divergence around fusion polymorphisms is markedly increased, showing peaks at the point of fusion and at the locally adapted loci. Local adaptation could explain the evolution of many of chromosome fusions, which are some of the most common chromosome rearrangements in nature. PMID:24964074

  13. Data fusion for the detection of buried land mines

    SciTech Connect

    Clark, G.A.; Sengupta, S.K.; Schaich, P.C.; Sherwood, R.J.; Buhl, M.R.; Hernandez, J.E.; Kane, R.J.; Barth, M.J.; Fields, D.J.; Carter, M.R.

    1993-10-01

    The authors conducted experiments to demonstrate the enhanced delectability of buried land mines using sensor fusion techniques. Multiple sensors, including imagery, infrared imagery, and ground penetrating radar, have been used to acquire data on a number of buried mines and mine surrogates. The authors present this data along with a discussion of the application of sensor fusion techniques for this particular detection problem. The authors describe the data fusion architecture and discuss some relevant results of these classification methods.

  14. Environmental and safety aspects of fusion

    SciTech Connect

    Crocker, J.G.

    1980-01-01

    In any deuterium-tritium burning fusion reactor there are several safety and environmental issues that must be addressed. The major issues involve: (1) use of tritium in the fuel cycle, (2) activation of structural materials, corrosion products in fluid streams, and reactor hall environment by high-energy neutrons, (3) the requirement for use of lithium to breed tritium and the attendant fire potential, and (4) the handling and disposal of radioactive waste. Also, a major concern with the magnetic systems is the presence of large superconducting magnets and magnetic fields and their potential effects on personnel, structures, and equipment. Each of these issues is discussed.

  15. Performance of advanced missions using fusion propulsion

    NASA Technical Reports Server (NTRS)

    Friedlander, Alan; Mcadams, Jim; Schulze, Norm

    1989-01-01

    A quantitive evaluation of the premise that nuclear fusion propulsion offers benefits as compared to other propulsion technologies for carrying out a program of advanced exploration of the solar system and beyond is presented. Using a simplified analytical model of trajectory performance, numerical results of mass requirements versus trip time are given for robotic missions beyond the solar system that include flyby and rendezvous with the Oort cloud of comets and with the star system Alpha Centauri. Round trip missions within the solar system, including robotic sample returns from the outer planet moons and multiple asteroid targets, and manned Mars exploration are also described.

  16. Elements of Successful and Safe Fusion Experiment Operations

    SciTech Connect

    K. Rule, L. Cadwallader, Y. Takase, T. Norimatsu, O. Kaneko, M. Sato, and R. Savercool

    2009-02-03

    A group of fusion safety professionals contribute to a Joint Working Group (JWG) that performs occupational safety walkthroughs of US and Japanese fusion experiments on a routine basis to enhance the safety of visiting researchers. The most recent walkthrough was completed in Japan in March 2008 by the US Safety Monitor team. This paper gives the general conclusions on fusion facility personnel safety that can be drawn from the series of walkthroughs.

  17. Laboratory simulation of heat exchange for liquids with Pr > 1: Heat transfer

    NASA Astrophysics Data System (ADS)

    Belyaev, I. A.; Zakharova, O. D.; Krasnoshchekova, T. E.; Sviridov, V. G.; Sukomel, L. A.

    2016-02-01

    Liquid metals are promising heat transfer agents in new-generation nuclear power plants, such as fast-neutron reactors and hybrid tokamaks—fusion neutron sources (FNSs). We have been investigating hydrodynamics and heat exchange of liquid metals for many years, trying to reproduce the conditions close to those in fast reactors and fusion neutron sources. In the latter case, the liquid metal flow takes place in a strong magnetic field and strong thermal loads resulting in development of thermogravitational convection in the flow. In this case, quite dangerous regimes of magnetohydrodynamic (MHD) heat exchange not known earlier may occur that, in combination with other long-known regimes, for example, the growth of hydraulic drag in a strong magnetic field, make the possibility of creating a reliable FNS cooling system with a liquid metal heat carrier problematic. There exists a reasonable alternative to liquid metals in FNS, molten salts, namely, the melt of lithium and beryllium fluorides (Flibe) and the melt of fluorides of alkali metals (Flinak). Molten salts, however, are poorly studied media, and their application requires detailed scientific substantiation. We analyze the modern state of the art of studies in this field. Our contribution is to answer the following question: whether above-mentioned extremely dangerous regimes of MHD heat exchange detected in liquid metals can exist in molten salts. Experiments and numerical simulation were performed in order to answer this question. The experimental test facility represents a water circuit, since water (or water with additions for increasing its electrical conduction) is a convenient medium for laboratory simulation of salt heat exchange in FNS conditions. Local heat transfer coefficients along the heated tube, three-dimensional (along the length and in the cross section, including the viscous sublayer) fields of averaged temperature and temperature pulsations are studied. The probe method for measurements in

  18. Fusion for Space Propulsion

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Schafer, Charles (Technical Monitor)

    2001-01-01

    There is little doubt that humans will attempt to explore and develop the solar system in this century. A large amount of energy will be required for accomplishing this. The need for fusion propulsion is discussed. For a propulsion system, there are three important thermodynamical attributes: (1) The absolute amount of energy available, (2) the propellant exhaust velocity, and (3) the jet power per unit mass of the propulsion system (specific power). For human exploration and development of the solar system, propellant exhaust velocity in excess of 100 km/s and specific power in excess of 10 kW/kg are required. Chemical combustion can produce exhaust velocity up to about 5 km/s. Nuclear fission processes typically result in producing energy in the form of heat that needs to be manipulated at temperatures limited by materials to about 2,800 K. Using the energy to heat a hydrogen propellant increases the exhaust velocity by only a factor of about two. Alternatively the energy can be converted into electricity which is then used to accelerate particles to high exhaust velocity. The necessary power conversion and conditioning equipment, however, increases the mass of the propulsion system for the same jet power by more than two orders of magnitude over chemical system, thus greatly limits the thrust-to-weight ratio attainable. The principal advantage of the fission process is that its development is relatively mature and is available right now. If fusion can be developed, fusion appears to have the best of all worlds in terms of propulsion - it can provide the absolute amount, the propellant exhaust velocity, and the high specific jet power. An intermediate step towards pure fusion propulsion is a bimodal system in which a fission reactor is used to provide some of the energy to drive a fusion propulsion unit. The technical issues related to fusion for space propulsion are discussed. The technical priorities for developing and applying fusion for propulsion are

  19. Multivariate Chemical Image Fusion of Vibrational Spectroscopic Imaging Modalities.

    PubMed

    Gowen, Aoife A; Dorrepaal, Ronan M

    2016-01-01

    Chemical image fusion refers to the combination of chemical images from different modalities for improved characterisation of a sample. Challenges associated with existing approaches include: difficulties with imaging the same sample area or having identical pixels across microscopic modalities, lack of prior knowledge of sample composition and lack of knowledge regarding correlation between modalities for a given sample. In addition, the multivariate structure of chemical images is often overlooked when fusion is carried out. We address these challenges by proposing a framework for multivariate chemical image fusion of vibrational spectroscopic imaging modalities, demonstrating the approach for image registration, fusion and resolution enhancement of chemical images obtained with IR and Raman microscopy. PMID:27384549

  20. Fusion reactions of Ni,6458+124Sn

    NASA Astrophysics Data System (ADS)

    Jiang, C. L.; Stefanini, A. M.; Esbensen, H.; Rehm, K. E.; Almaraz-Calderon, S.; Avila, M. L.; Back, B. B.; Bourgin, D.; Corradi, L.; Courtin, S.; Fioretto, E.; Galtarossa, F.; Goasduff, A.; Haas, F.; Mazzocco, M. M.; Montanari, D.; Montagnoli, G.; Mijatovic, T.; Sagaidak, R.; Santiago-Gonzalez, D.; Scarlassara, F.; Strano, E. E.; Szilner, S.

    2015-04-01

    Measurements of fusion excitation functions of 58Ni+124Sn and 64Ni+124Sn are extended towards lower energy to cross sections of 1 μ b and are compared to detailed coupled-channels calculations. The calculations clearly show the importance of including transfer reactions in a coupled-channels treatment for such heavy systems. This result is different from the conclusion made in a previous article which claimed that the influence of transfer on fusion is not important for fusion reactions of Ni +Sn . In the energy region studied in this experiment no indication of fusion hindrance has been observed, which is consistent with a systematic study of this behavior.

  1. Gasification of high ash, high ash fusion temperature bituminous coals

    DOEpatents

    Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang

    2015-11-13

    This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in 1150.degree. C. to 1500.degree. C. range as well as in excess of 1500.degree. C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.

  2. Micromachining of inertial confinement fusion targets

    SciTech Connect

    Gobby, P.L.; Salzer, L.J.; Day, R.D.

    1996-12-31

    Many experiments conducted on today`s largest inertial confinement fusion drive lasers require target components with sub-millimeter dimensions, precisions of a micron or less and surface finishes measured in nanometers. For metal and plastic, techniques using direct machining with diamond tools have been developed that yield the desired parts. New techniques that will be discussed include the quick-flip locator, a magnetically held kinematic mount that has allowed the direct machining of millimeter-sized beryllium hemishells whose inside and outside surface are concentric to within 0.25 micron, and an electronic version of a tracer lathe which has produced precise azimuthal variations of less than a micron.

  3. Safety and environmental constraints on space applications of fusion energy

    NASA Technical Reports Server (NTRS)

    Roth, J. Reece

    1990-01-01

    Some of the constraints are examined on fusion reactions, plasma confinement systems, and fusion reactors that are intended for such space related missions as manned or unmanned operations in near earth orbit, interplanetary missions, or requirements of the SDI program. Of the many constraints on space power and propulsion systems, those arising from safety and environmental considerations are emphasized since these considerations place severe constraints on some fusion systems and have not been adequately treated in previous studies.

  4. Deceleration Phase of Inertial Confinement Fusion Implosions

    NASA Astrophysics Data System (ADS)

    Betti, R.

    2001-10-01

    In inertial confinement fusion (ICF) implosions, a spherical shell of cryogenic deuterium and tritium (DT) filled with DT gas is accelerated by direct laser irradiation (direct drive) or x-rays produced by a high-Z enclosure (indirect drive). Hydrodynamic instabilities, growing on the outer shell surface during the acceleration phase, cause the outer nonuniformities to feed through the shell onto the inner surface. As the shell starts to decelerate, the inner surface is unstable to the Rayleigh-Taylor instability and the inner surface nonuniformities grow exponentially in time, causing the cold shell material to penetrate and cool the hot spot. Such a cooling could prevent the hot spot from achieving the ignition conditions. We have developed a model to study the deceleration phase of imploding capsules, including the onset of ignition. The model yields all the hot-spot profiles and the hydrodynamic parameters of interest to the deceleration phase instability: ablation velocity [Ref.1] off the shell's inner surface, density-gradient scale length, and deceleration. It is shown [Ref. 1] that the growth rates of the deceleration-phase instability are significantly reduced by the finite ablative flow and the unstable spectrum exhibits a cutoff at short wavelengths. For a direct-drive NIF-like capsule, the cutoff mode number occurs for l ~= 90. The marginal ignition scaling law of Ref. 2 is also recovered analytically. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460. [1] V. Lobatchev and R. Betti, Phys. Rev. Lett. 85, 4522 (2000); [2] M. C. Herrmann, M. Tabak, and J. D. Lindl, Nucl. Fusion 41, 99 (2001).

  5. Transformation, metallurgical response and behavior of the weld fusion zone and heat affected zone in Cr-Mo steels for fossil energy application: Final technical report for January 1985-September 1987

    SciTech Connect

    Lundin, C.D.; Henning, J.A.; Menon, R.; Khan, K.K.

    1987-09-30

    This research program was undertaken to provide fundamental and basic metallurgical information on the behavior of the heat affected zone (HAZ) in Cr-Mo steel welds as well as practical information on their relative weldability. The principal work was the evaluation of the post weld heat treatment (PWHT) cracking of Cr-Mo steels ranging in Cr content from 2-1/4% to 9%. Differences in observed cracking behavior were contrasted with composition, on cooling transformation behavior and HAZ microstructure. Hydrogen assisted cracking (HAC) studies using a large scale cracking test were conducted on 2-1/4 Cr and 3 Cr steels. Soft zone studies were conducted on 9 Cr NKK steel to determine the reason for the development of a low hardness region (''Soft Zone'') at the outer boundary of the HAZ. The literature review provides a concise historical review and the basis of theories for PWHT cracking and HAC in Cr-Mo steels which were employed to explain the weld cracking susceptibility of various Cr-Mo alloys. PWHT cracking susceptibility was investigated using Gleeble simulated heat affected zone (HAZ) specimens. A new test was developed at the University of Tennessee, The C-ring test, to evaluate the PWHT cracking behavior. The C-ring test was found to be an extremely useful test for PWHT cracking susceptibility and for verifying the results obtained from Gleeble tsting. An excellent correlation was obtained for the two tests. The standard Y-groove test was selected for HAC susceptibility testing. This test is very suitable for evaluating the HAC of the base metal and is defined in Japanese Industrial Standard JIS Z 3158.

  6. Mechanism of heavy ion fusion to superheavy nuclei

    NASA Astrophysics Data System (ADS)

    Adamian, Gurgen G.; Antonenko, Nikolai V.; Scheid, Werner

    2011-10-01

    This article reviews different models for the description of fusion of heavy ions to superheavy nuclei by using adiabatic and diabatic potentials. The dynamics of fusion is basically different in the two types of models for fusion: In the adiabatic models the nuclei melt together, whereas in the diabatic models the nuclei transfer nucleons between each other up to the instant when the compound nucleus is formed. As final result we state that diabatic potentials seem more appropriate for the description of fusion of heavy nuclei than adiabatic potentials.

  7. Coupled edge-core model of fusion reactor

    NASA Astrophysics Data System (ADS)

    Zagórski, R.; Kulinski, S.; Scholz, M.

    1997-10-01

    A model has been developed which is capable to describe in a self consistent way the plasma dynamics in the centre and edge region of a fusion reactor. The core plasma is treated in the frame of the 0D model in which an empirical scaling law for the energy confinement time is included. The model accounts for energy losses due to Bremsstrahlung and line radiation as well as alpha particle heating. A 1D analytical model for plasma and impurity transport outside the last close magnetic surface (LCMS) is applied. The model accounts for the strong gradients of the plasma parameters along the magnetic field lines in the divertor. The sputtering phenomena at the plate and radiating cooling by injected impurities are treated self consistently in the model. The model has been used to investigate operating regimes of the ignition experiment. Analysis have been performed for different first wall materials (C, Ni, Mo, W) for ITER like tokamak.

  8. Fundamental studies of fusion plasmas

    SciTech Connect

    Aamodt, R.E.; Catto, P.J.; D'Ippolito, D.A.; Myra, J.R.; Russell, D.A.

    1992-05-26

    The major portion of this program is devoted to critical ICH phenomena. The topics include edge physics, fast wave propagation, ICH induced high frequency instabilities, and a preliminary antenna design for Ignitor. This research was strongly coordinated with the world's experimental and design teams at JET, Culham, ORNL, and Ignitor. The results have been widely publicized at both general scientific meetings and topical workshops including the speciality workshop on ICRF design and physics sponsored by Lodestar in April 1992. The combination of theory, empirical modeling, and engineering design in this program makes this research particularly important for the design of future devices and for the understanding and performance projections of present tokamak devices. Additionally, the development of a diagnostic of runaway electrons on TEXT has proven particularly useful for the fundamental understanding of energetic electron confinement. This work has led to a better quantitative basis for quasilinear theory and the role of magnetic vs. electrostatic field fluctuations on electron transport. An APS invited talk was given on this subject and collaboration with PPPL personnel was also initiated. Ongoing research on these topics will continue for the remainder fo the contract period and the strong collaborations are expected to continue, enhancing both the relevance of the work and its immediate impact on areas needing critical understanding.

  9. Fusion Studies in Japan

    NASA Astrophysics Data System (ADS)

    Ogawa, Yuichi

    2016-05-01

    A new strategic energy plan decided by the Japanese Cabinet in 2014 strongly supports the steady promotion of nuclear fusion development activities, including the ITER project and the Broader Approach activities from the long-term viewpoint. Atomic Energy Commission (AEC) in Japan formulated the Third Phase Basic Program so as to promote an experimental fusion reactor project. In 2005 AEC has reviewed this Program, and discussed on selection and concentration among many projects of fusion reactor development. In addition to the promotion of ITER project, advanced tokamak research by JT-60SA, helical plasma experiment by LHD, FIREX project in laser fusion research and fusion engineering by IFMIF were highly prioritized. Although the basic concept is quite different between tokamak, helical and laser fusion researches, there exist a lot of common features such as plasma physics on 3-D magnetic geometry, high power heat load on plasma facing component and so on. Therefore, a synergetic scenario on fusion reactor development among various plasma confinement concepts would be important.

  10. Applications of Fusion Energy Sciences Research - Scientific Discoveries and New Technologies Beyond Fusion

    SciTech Connect

    Wendt, Amy; Callis, Richard; Efthimion, Philip; Foster, John; Keane, Christopher; Onsager, Terry; O'Shea, Patrick

    2015-09-01

    Since the 1950s, scientists and engineers in the U.S. and around the world have worked hard to make an elusive goal to be achieved on Earth: harnessing the reaction that fuels the stars, namely fusion. Practical fusion would be a source of energy that is unlimited, safe, environmentally benign, available to all nations and not dependent on climate or the whims of the weather. Significant resources, most notably from the U.S. Department of Energy (DOE) Office of Fusion Energy Sciences (FES), have been devoted to pursuing that dream, and significant progress is being made in turning it into a reality. However, that is only part of the story. The process of creating a fusion-based energy supply on Earth has led to technological and scientific achievements of far-reaching impact that touch every aspect of our lives. Those largely unanticipated advances, spanning a wide variety of fields in science and technology, are the focus of this report. There are many synergies between research in plasma physics, (the study of charged particles and fluids interacting with self-consistent electric and magnetic fields), high-energy physics, and condensed matter physics dating back many decades. For instance, the formulation of a mathematical theory of solitons, solitary waves which are seen in everything from plasmas to water waves to Bose-Einstein Condensates, has led to an equal span of applications, including the fields of optics, fluid mechanics and biophysics. Another example, the development of a precise criterion for transition to chaos in Hamiltonian systems, has offered insights into a range of phenomena including planetary orbits, two-person games and changes in the weather. Seven distinct areas of fusion energy sciences were identified and reviewed which have had a recent impact on fields of science, technology and engineering not directly associated with fusion energy: Basic plasma science; Low temperature plasmas; Space and astrophysical plasmas; High energy density

  11. Observation of incomplete fusion reactions at l < l {sub crit}

    SciTech Connect

    Yadav, Abhishek Sharma, Vijay R. Singh, Devendra P. Unnati,; Singh, B. P.; Prasad, R.; Singh, Pushpendra P.; Bala, Indu; Kumar, R.; Muralithar, S.; Singh, R. P.; Sharma, M. K.

    2014-08-14

    In order to understand the presence of incomplete fusion at low energies i.e. 4-7MeV/nucleon and also to study its dependence on various entrance-channel parameters, the two type of measurements (i) excitation function for {sup 12}C+{sup 159}Tb, and (ii) forward recoil ranges for {sup 12}C+{sup 159}Tb systems have been performed. The experimentally measured excitation functions have been analyzed within the framework of compound nucleus decay using statistical model code PACE4. Analysis of data suggests the production of xn/px)n-channels via complete fusion, as these are found to be well reproduced by PACE4 predictions, while, a significant enhancement in the excitation functions of α-emitting channels has been observed over the theoretical ones, which has been attributed due to the incomplete fusion processes. Further, the incomplete fusion events observed in case of forward recoil range measurements have been explained on the basis of the breakup fusion model, where these events may be attributed to the fusion of {sup 8}Be and/or {sup 4}He from {sup 12}C projectile to the target nucleus. In the present work, the SUMRULE model calculations are found to highly underestimate the observed incomplete fusion cross-sections which indicate that the l-values lower than l {sub crit} (limit of complete fusion) significantly contribute to the incomplete fusion reactions.

  12. Fusion of the ear bones

    MedlinePlus

    ... treatment of conductive hearing loss. In: Cummings CW, Flint PW, Haughey BH, et al. eds. Otolaryngology: Head ... JW, Cunningham CD III. Otosclerosis. In: Cummings CW, Flint PW, Haughey BH, et al. eds. Otolaryngology: Head ...

  13. Economic aspects of heavy ion fusion

    SciTech Connect

    Herrmannsfeldt, W.B.

    1984-01-01

    The usual parameter space for examining scenarios for heavy ion fusion power plants has generally been based on large, slow cycling, reactor chambers which are only marginally different from chambers proposed for laser drivers. This paper will examine the economic implications of assuming that an inexpensive, low gain pellet is available and that a suitable high-repetition rate reactor has been devised. Interesting scenarios are found that generate economically feasible power from a system with a minimum net capacity of approx. 1 GWe compared to the larger approx. 4 GWe required in previous studies.

  14. Opportunistic replacement of fusion power system parts

    SciTech Connect

    Day, J.A.; George, L.L.

    1981-10-26

    This paper describes a maintenance problem in a fusion power plant. The problem is to specify which life limited parts should be replaced when there is an opportunity. The objective is to minimize the cost rate of replacement parts and of maintenance actions while satisfying a power plant availability constraint. The maintenance policy is to look ahead and replace all parts that will reach their life limits within a time called a screen. Longer screens yield greater system availabilities because more parts are replaced prior to their life limits.

  15. Sensor fusion methodology for remote detection of buried land mines

    SciTech Connect

    Del Grande, N.

    1990-04-01

    We are investigation a sensor fusion methodology for remote detection of buried land mines. Our primary approach is sensor intrafusion. Our dual-channel passive IR methodology decouples true (corrected) surface temperature variations of 0.2{degree}C from spatially dependent surface emissivity noise. It produces surface temperature maps showing patterns of conducted heat from buried objects which heat and cool differently from their surroundings. Our methodology exploits Planck's radiation law. It produces separate maps of surface emissivity variations which allow us to reduce false alarms. Our secondary approach is sensor interfusion using other methodologies. For example, an active IR CO{sub 2} laser reflectance channel helps distinguish surface targets unrelated to buried land mines at night when photographic methods are ineffective. Also, the interfusion of ground penetrating radar provides depth information for confirming the site of buried objects. Together with EG G in Las Vegas, we flew a mission at Nellis AFB using the Daedalus dual-channel (5 and 10 micron) IR scanner mounted on a helicopter platform at an elevation of 60 m above the desert sand. We detected surface temperature patterns associated with buried (inert) land mines covered by as much as 10 cm of dry sand. The respective spatial, spectral, thermal, emissivity and temporal signatures associated with buried targets differed from those associated with surface vegetation, rocks and manmade objects. Our results were consistent with predictions based on the annual Temperature Wave Model.They were confirmed by field measurements. The dual-channel sensor fusion methodology is expected to enhance the capabilities of the military and industrial community for standoff mine detection. Other important potential applications are open skies, drug traffic control and environmental restoration at waste burial sites. 11 figs.

  16. Negative specific heat of a magnetically self-confined plasma torus

    PubMed Central

    Kiessling, Michael K.-H.; Neukirch, Thomas

    2003-01-01

    It is shown that the thermodynamic maximum-entropy principle predicts negative specific heat for a stationary, magnetically self-confined current-carrying plasma torus. Implications for the magnetic self-confinement of fusion plasma are considered. PMID:12576553

  17. Office of Fusion Energy Sciences. A ten-year perspective (2015-2025)

    SciTech Connect

    2015-12-01

    The vision described here builds on the present U.S. activities in fusion plasma and materials science relevant to the energy goal and extends plasma science at the frontier of discovery. The plan is founded on recommendations made by the National Academies, a number of recent studies by the Fusion Energy Sciences Advisory Committee (FESAC), and the Administration’s views on the greatest opportunities for U.S. scientific leadership.This report highlights five areas of critical importance for the U.S. fusion energy sciences enterprise over the next decade: 1) Massively parallel computing with the goal of validated whole-fusion-device modeling will enable a transformation in predictive power, which is required to minimize risk in future fusion energy development steps; 2) Materials science as it relates to plasma and fusion sciences will provide the scientific foundations for greatly improved plasma confinement and heat exhaust; 3) Research in the prediction and control of transient events that can be deleterious to toroidal fusion plasma confinement will provide greater confidence in machine designs and operation with stable plasmas; 4) Continued stewardship of discovery in plasma science that is not expressly driven by the energy goal will address frontier science issues underpinning great mysteries of the visible universe and help attract and retain a new generation of plasma/fusion science leaders; 5) FES user facilities will be kept world-leading through robust operations support and regular upgrades. Finally, we will continue leveraging resources among agencies and institutions and strengthening our partnerships with international research facilities.

  18. Development of lung adenocarcinomas with exclusive dependence on oncogene fusions.

    PubMed

    Saito, Motonobu; Shimada, Yoko; Shiraishi, Kouya; Sakamoto, Hiromi; Tsuta, Koji; Totsuka, Hirohiko; Chiku, Suenori; Ichikawa, Hitoshi; Kato, Mamoru; Watanabe, Shun-Ichi; Yoshida, Teruhiko; Yokota, Jun; Kohno, Takashi

    2015-06-01

    This report delivers a comprehensive genetic alteration profile of lung adenocarcinomas (LADC) driven by ALK, RET, and ROS1 oncogene fusions. These tumors are difficult to study because of their rarity. Each drives only a low percentage of LADCs. Whole-exome sequencing and copy-number variation analyses were performed on a Japanese LADC cohort (n = 200) enriched in patients with fusions (n = 31, 15.5%), followed by deep resequencing for validation. The driver fusion cases showed a distinct profile with smaller numbers of nonsynonymous mutations in cancer-related genes or truncating mutations in SWI/SNF chromatin remodeling complex genes than in other LADCs (P < 0.0001). This lower mutation rate was independent of age, gender, smoking status, pathologic stage, and tumor differentiation (P < 0.0001) and was validated in nine fusion-positive cases from a U.S. LADCs cohort (n = 230). In conclusion, our findings indicate that LADCs with ALK, RET, and ROS1 fusions develop exclusively via their dependence on these oncogene fusions. The presence of such few alterations beyond the fusions supports the use of monotherapy with tyrosine kinase inhibitors targeting the fusion products in fusion-positive LADCs. PMID:25855381

  19. Accelerator and Fusion Research Division: Summary of activities, 1986

    SciTech Connect

    Not Available

    1987-04-15

    This report contains a summary of activities at the Lawrence Berkeley Laboratory's Accelerator and Fusion Research Division for the year 1986. Topics and facilities investigated in individual papers are: 1-2 GeV Synchrotron Radiation Source, the Center for X-Ray Optics, Accelerator Operations, High-Energy Physics Technology, Heavy-Ion Fusion Accelerator Research and Magnetic Fusion Energy. Six individual papers have been indexed separately. (LSP)

  20. Evaluation of DD and DT fusion fuel cycles for different fusion-fission energy systems

    SciTech Connect

    Gohar, Y.

    1980-01-01

    A study has been carried out in order to investigate the characteristics of an energy system to produce a new source of fissile fuel for existing fission reactors. The denatured fuel cycles were used because it gives additional proliferation resistance compared to other fuel cycles. DT and DD fusion drivers were examined in this study with a thorium or uranium blanket for each fusion driver. Various fuel cycles were studied for light-water and heavy-water reactors. The cost of electricity for each energy system was calculated.

  1. Construction of Lasso Peptide Fusion Proteins.

    PubMed

    Zong, Chuhan; Maksimov, Mikhail O; Link, A James

    2016-01-15

    Lasso peptides are a family of ribosomally synthesized and post-translationally modified peptides (RiPPs) typified by an isopeptide-bonded macrocycle between the peptide N-terminus and an aspartate or glutamate side chain. The C-terminal portion of the peptide threads through the N-terminal macrocycle to give the characteristic lasso fold. Because of the inherent stability, both proteolytic and often thermal, of lasso peptides, we became interested in whether proteins could be fused to the free C-terminus of lasso peptides. Here, we demonstrate fusion of two model proteins, the artificial leucine zipper A1 and the superfolder variant of GFP, to the C-terminus of the lasso peptide astexin-1. Successful lasso cyclization of the N-terminus of these fusion proteins requires a flexible linker in between the C-terminus of the lasso peptide and the N-terminus of the protein of interest. The ability to fuse lasso peptides to a protein of interest is an important step toward phage and bacterial display systems for the high-throughput screening of lasso peptide libraries for new functions. PMID:26492187

  2. Adaptive fusion of infrared and visible images in dynamic scene

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Yin, Yafeng; Man, Hong; Desai, Sachi

    2011-11-01

    Multiple modalities sensor fusion has been widely employed in various surveillance and military applications. A variety of image fusion techniques including PCA, wavelet, curvelet and HSV has been proposed in recent years to improve human visual perception for object detection. One of the main challenges for visible and infrared image fusion is to automatically determine an optimal fusion strategy for different input scenes along with an acceptable computational cost. This paper, we propose a fast and adaptive feature selection based image fusion method to obtain high a contrast image from visible and infrared sensors for targets detection. At first, fuzzy c-means clustering is applied on the infrared image to highlight possible hotspot regions, which will be considered as potential targets' locations. After that, the region surrounding the target area is segmented as the background regions. Then image fusion is locally applied on the selected target and background regions by computing different linear combination of color components from registered visible and infrared images. After obtaining different fused images, histogram distributions are computed on these local fusion images as the fusion feature set. The variance ratio which is based on Linear Discriminative Analysis (LDA) measure is employed to sort the feature set and the most discriminative one is selected for the whole image fusion. As the feature selection is performed over time, the process will dynamically determine the most suitable feature for the image fusion in different scenes. Experiment is conducted on the OSU Color-Thermal database, and TNO Human Factor dataset. The fusion results indicate that our proposed method achieved a competitive performance compared with other fusion algorithms at a relatively low computational cost.

  3. Calculations of ( n, α) Cross Sections on Some Structural Fusion Materials for Fusion Reactor Technology

    NASA Astrophysics Data System (ADS)

    Yiğit, M.; Tel, E.; Tanır, G.

    2013-06-01

    The knowledge of cross section for emission of light charged particles ( p, d, t, and α) induced by fast neutrons on structural fusion materials has a critical importance on fusion reactors. The gas production arising from ( n, p) and ( n, α) reactions causes seriously radiation damage in fusion reactor structure. The radiation damage in fusion related materials is a large problem need to be overcome for development of fusion reactor technology. Particularly, the ( n, α) reaction cross section data are required to estimation of the radiation damage effects on structural fusion materials. Therefore, the cross section data for ( n, α) reaction induced by fast neutrons are of increasing importance for the success of future fusion reactors. In this study, reaction model calculations of the cross sections of neutron induced reactions on structural fusion materials such as 29 Si, 30 Si, 48 Ti, 50 Ti, 50 Cr, 54 Cr, 54 Fe and 58 Fe have been investigated. The new calculations on the excitation functions of 29 Si ( n, α) 26 Mg, 30 Si ( n, α) 27 Mg, 48 Ti ( n, α) 45 Ca, 50 Ti ( n, α) 47 Ca, 50 Cr ( n, α) 47 Ti, 54 Cr ( n, α) 51 Ti, 54 Fe ( n, α) 51 Cr and 58 Fe ( n, α) 55 Cr have been carried out for incident neutron energies up to 30 MeV. In these calculations, the pre-equilibrium and equilibrium effects for ( n, α) reactions have been investigated. The pre-equilibrium calculations involve the new evaluated the geometry dependent hybrid model, hybrid model and the cascade exciton model. The equilibrium effects of the excitation functions for the investigated reactions are calculated according to the Weisskopf-Ewing model. Also in the present work, the ( n, α) reaction cross sections have calculated by using evaluated empirical formulas developed by Tel et al. at 14-15 MeV energy. The calculated results have been discussed and compared with the available experimental data and found agreement with each other.

  4. Confinement and heating of a deuterium-tritium plasma

    SciTech Connect

    Hawryluk, R. J.; Adler, H.; Alling, P.; Synakowski, E.

    1994-03-01

    The Tokamak Fusion Test Reactor (TFTR) has performed initial high-power experiments with the plasma fueled by deuterium and tritium to nominally equal densities. Compared to pure deuterium plasmas, the energy stored in the electron and ions increased by ~20%. These increases indicate improvements in confinement associated with the use of tritium and possibly heating of electrons by α-particles.

  5. Tissue fusion bursting pressure and the role of tissue water content

    NASA Astrophysics Data System (ADS)

    Cezo, James; Kramer, Eric; Taylor, Kenneth; Ferguson, Virginia; Rentschler, Mark

    2013-02-01

    Tissue fusion is a complex, poorly understood process which bonds collagenous tissues together using heat and pressure. The goal of this study is to elucidate the role of hydration in bond efficacy. Hydration of porcine splenic arteries (n=30) was varied by pre-fusion treatments: 24-48 hour immersion in isotonic, hypotonic, or hypertonic baths. Treated arteries were fused in several locations using Conmed's Altrus thermal fusion device and the bursting pressure was then measured for each fused segment. Artery sections were then weighed before and after lyophilization, to quantify water content. Histology (HE, EVG staining) enabled visualization of the bonding interface. Bursting pressure was significantly greater (p=4.17 E-ll) for the hypotonic group (607.6 +/- 83.2mmHg), while no significant difference existed between the isotonic (332.6 +/- 44.7mmHg) and hypertonic (348.7 +/- 44.0mmHg) treatment groups. Total water content varied (p=8.80 E-24) from low water content in the hypertonic samples (72.5% weight +/- 0.9), to high water content in the hypotonic samples (83.1% weight +/- 1.9), while the isotonic samples contained 78.8% weight +/- 1.1. Strength differences between the treated vessels imply that bound water driven from the tissue during fusion may reveal available collagen crosslinking sites to facilitate bond formation during the fusion process. Thus when the tissue contains greater bound water volumes, more crosslinking sites may become available during fusion, leading to a stronger bond. This study provides an important step towards understanding the chemistry underlying tissue fusion and the mechanics of tissue fusion as a function of bound water within the tissue.

  6. Biochemical mechanisms of laser vascular tissue fusion.

    PubMed

    Guthrie, C R; Murray, L W; Kopchok, G E; Rosenbaum, D; White, R A

    1991-01-01

    This study examines the biochemical changes that occur in argon laser-fused canine veins compared with control segments of vein. Laser fusions were formed using 0.5 W argon laser energy (1100-1500 J/cm2). Immediately following tissue fusion, blood flow was reestablished to test the integrity of the welds. 1-mm3 sections of the anastomoses and control sections were minced and protein extraction was performed by solubilizing the tissue in hot SDS Laemmli gel sample buffer. The proteins were separated electrophoretically on 5 and 10% polyacylamide SDS gels and silver stained. The analysis demonstrated significant biochemical differences between control and lased veins. We noted increases in several proteins after laser welding: the putative beta chain of type V collagen (5/5 gels), the putative gamma chain of type I collagen (4/5 gels), a 156-kDa protein (based on collagen molecular weight standards) 7/7 gels), an 82-kDa protein (8/9 gels), and several proteins of lower molecular weight (3/8 gels). The increases may be due to crosslinking of lower molecular weight proteins, degradation of higher molecular weight proteins, or increased solubility of certain proteins. These findings suggest that laser welding may occur by formation of crosslinks or by denaturation and reannealment of structural proteins. PMID:1863584

  7. Improvement on the thermal stability and activity of plant cytosolic ascorbate peroxidase 1 by tailing hyper-acidic fusion partners.

    PubMed

    Zhang, Mengru; Gong, Ming; Yang, Yumei; Li, Xujuan; Wang, Haibo; Zou, Zhurong

    2015-04-01

    Cytosolic ascorbate peroxidase 1 (APX1) plays a crucial role in regulating the level of plant cellular reactive oxygen species and its thermolability is proposed to cause plant heat-susceptibility. Herein, several hyper-acidic fusion partners, such as the C-terminal peptide tails, were evaluated for their effects on the thermal stability and activity of APX1 from Jatropha curcas and Arabidopsis. The hyper-acidic fusion partners efficiently improved the thermostability and prevented thermal inactivation of APX1 in both plant species with an elevated heat tolerance of at least 2 °C. These hyper-acidified thermostable APX1 fusion variants are of considerable biotechnological potential and can provide a new route to enhance the heat tolerance of plant species especially of inherent thermo-sensitivity. PMID:25515798

  8. Experimental research on heat transfer of pulsating heat pipe

    NASA Astrophysics Data System (ADS)

    Li, Jia; Yan, Li

    2008-06-01

    Experimental research was conducted to understand heat transfer characteristic of pulsating heat pipe in this paper, and the PHP is made of high quality glass capillary tube. Under different fill ratio, heat transfer rate and many other influence factors, the flow patterns were observed in the start-up, transition and stable stage. The effects of heating position on heat transfer were discussed. The experimental results indicate that no annular flow appears in top heating condition. Under different fill ratios and heat transfer rate, the flow pattern in PHP is transferred from bulk flow to semi-annular flow and annular flow, and the performance of heat transfer is improved for down heating case. The experimental results indicate that the total heat resistant of PHP is increased with fill ratio, and heat transfer rate achieves optimum at filling rate 50%. But for pulsating heat pipe with changing diameters the thermal resistance is higher than that with uniform diameters.

  9. Induction heating plant for heat treatment of spherical metal products

    NASA Astrophysics Data System (ADS)

    Meshcheryakov, V. N.; Titov, S. S.

    2015-12-01

    A control system for an induction heating plant is developed and studied to perform symmetric high-rate surface induction heating of spherical metal products with given technological parameters for heat treatment.

  10. Methodologies in the study of cell-cell fusion.

    PubMed

    Cohen, F S; Melikyan, G B

    1998-10-01

    The process of membrane fusion has been profitably studied by fusing cells that express fusion proteins on their surfaces to the membranes of target cells. Primary methods for monitoring the occurrence of fusion between cells are measurement of formation of heterokaryons, measurement of activation of reporter genes, measurement of transfer of lipidic and aqueous fluorescent dyes, and electrophysiological recording of fusion pores. Fluorescence and electrical methods have been well developed for fusion of a nucleated cell expressing viral fusion proteins to red blood cell targets. These techniques are now being extended to the study of fusion between two nucleated cells. Microscopic observation of spread of fluorescent dyes from one cell to another is a sensitive and convenient means of detecting fusion on the level of single events. In such studies, both the membrane and the aqueous continuities that occur as a result of fusion can be measured in the same experiment. By following spread of aqueous dyes of different sizes from one cell to another, the growth of a fusion pore can also be followed. By labeling cells with fluorescent probes, a state of hemifusion can be identified if probes in outer membrane leaflets transfer but probes in inner leaflets or aqueous spaces do not. Electrical measurements-both capacitance and double-whole-cell voltage-clamp techniques-are the most sensitive methods yet developed for detecting the formation of pores and for quantifying their growth. These powerful single-event methodologies should be directly applicable to further advances in expressing nonviral fusion proteins on cell surfaces. PMID:9790869

  11. Swelling of nuclei embedded in neutron-gas and consequences for fusion

    NASA Astrophysics Data System (ADS)

    Umar, A. S.; Oberacker, V. E.; Horowitz, C. J.; Reinhard, P.-G.; Maruhn, J. A.

    2015-08-01

    Fusion of very neutron rich nuclei may be important to determine the composition and heating of the crust of accreting neutron stars. We present an exploratory study of the effect of the neutron-gas environment on the structure of nuclei and the consequences for pycnonuclear fusion cross sections in the neutron drip region. We studied the formation and properties of oxygen and calcium isotopes embedded in varying neutron-gas densities. We observe that the formed isotope is the drip-line nucleus for the given effective interaction. Increasing the neutron-gas density leads to the swelling of the nuclear density. We have used these densities to study the effect of this swelling on the fusion cross sections using the São Paulo potential. At high neutron-gas densities the cross section is substantially increased but at lower densities the modification is minimal.

  12. Single residue deletions along the length of the influenza HA fusion peptide lead to inhibition of membrane fusion function

    SciTech Connect

    Langley, William A.; Thoennes, Sudha; Bradley, Konrad C.; Galloway, Summer E.; Talekar, Ganesh R.; Cummings, Sandra F.; Vareckova, Eva; Russell, Rupert J.; Steinhauer, David A.

    2009-11-25

    A panel of eight single amino acid deletion mutants was generated within the first 24 residues of the fusion peptide domain of the of the hemagglutinin (HA) of A/Aichi/2/68 influenza A virus (H3N2 subtype). The mutant HAs were analyzed for folding, cell surface transport, cleavage activation, capacity to undergo acid-induced conformational changes, and membrane fusion activity. We found that the mutant DELTAF24, at the C-terminal end of the fusion peptide, was expressed in a non-native conformation, whereas all other deletion mutants were transported to the cell surface and could be cleaved into HA1 and HA2 to activate membrane fusion potential. Furthermore, upon acidification these cleaved HAs were able to undergo the characteristic structural rearrangements that are required for fusion. Despite this, all mutants were inhibited for fusion activity based on two separate assays. The results indicate that the mutant fusion peptide domains associate with target membranes in a non-functional fashion, and suggest that structural features along the length of the fusion peptide are likely to be relevant for optimal membrane fusion activity.

  13. The cytoplasmic domain of the gamete membrane fusion protein HAP2 targets the protein to the fusion site in Chlamydomonas and regulates the fusion reaction

    PubMed Central

    Liu, Yanjie; Pei, Jimin; Grishin, Nick; Snell, William J.

    2015-01-01

    Cell-cell fusion between gametes is a defining step during development of eukaryotes, yet we know little about the cellular and molecular mechanisms of the gamete membrane fusion reaction. HAP2 is the sole gamete-specific protein in any system that is broadly conserved and shown by gene disruption to be essential for gamete fusion. The wide evolutionary distribution of HAP2 (also known as GCS1) indicates it was present in the last eukaryotic common ancestor and, therefore, dissecting its molecular properties should provide new insights into fundamental features of fertilization. HAP2 acts at a step after membrane adhesion, presumably directly in the merger of the lipid bilayers. Here, we use the unicellular alga Chlamydomonas to characterize contributions of key regions of HAP2 to protein location and function. We report that mutation of three strongly conserved residues in the ectodomain has no effect on targeting or fusion, although short deletions that include those residues block surface expression and fusion. Furthermore, HAP2 lacking a 237-residue segment of the cytoplasmic region is expressed at the cell surface, but fails to localize at the apical membrane patch specialized for fusion and fails to rescue fusion. Finally, we provide evidence that the ancient HAP2 contained a juxta-membrane, multi-cysteine motif in its cytoplasmic region, and that mutation of a cysteine dyad in this motif preserves protein localization, but substantially impairs HAP2 fusion activity. Thus, the ectodomain of HAP2 is essential for its surface expression, and the cytoplasmic region targets HAP2 to the site of fusion and regulates the fusion reaction. PMID:25655701

  14. Cold fusion, Alchemist's dream

    SciTech Connect

    Clayton, E.D.

    1989-09-01

    In this report the following topics relating to cold fusion are discussed: muon catalysed cold fusion; piezonuclear fusion; sundry explanations pertaining to cold fusion; cosmic ray muon catalysed cold fusion; vibrational mechanisms in excited states of D{sub 2} molecules; barrier penetration probabilities within the hydrogenated metal lattice/piezonuclear fusion; branching ratios of D{sub 2} fusion at low energies; fusion of deuterons into {sup 4}He; secondary D+T fusion within the hydrogenated metal lattice; {sup 3}He to {sup 4}He ratio within the metal lattice; shock induced fusion; and anomalously high isotopic ratios of {sup 3}He/{sup 4}He.

  15. Plasma treatment of heat-resistant materials

    NASA Astrophysics Data System (ADS)

    Vlasov, V. A.; Kosmachev, P. V.; Skripnikova, N. K.; Bezukhov, K. A.

    2015-11-01

    Refractory lining of thermal generating units is exposed to chemical, thermal, and mechanical attacks. The degree of fracture of heat-resistant materials depends on the chemical medium composition, the process temperature and the material porosity. As is known, a shortterm exposure of the surface to low-temperature plasma (LTP) makes possible to create specific coatings that can improve the properties of workpieces. The aim of this work is to produce the protective coating on heat-resistant chamotte products using the LTP technique. Experiments have shown that plasma treatment of chamotte products modifies the surface, and a glass-ceramic coating enriched in mullite is formed providing the improvement of heat resistance. For increasing heat resistance of chamotte refractories, pastes comprising mixtures of Bacor, alumina oxide, and chamot were applied to their surfaces in different ratios. It is proved that the appropriate coating cannot be created if only one of heat-resistant components is used. The required coatings that can be used and recommended for practical applications are obtained only with the introduction of powder chamot. The paste composition of 50% chamot, 25% Bacor, and 25% alumina oxide exposed to plasma treatment, has demonstrated the most uniform surface fusion.

  16. Tidal heating of Ariel

    NASA Technical Reports Server (NTRS)

    Tittemore, William C.

    1990-01-01

    During evolution through the 4:1 commensurability early in the history of the Uranian system, over 3.8 billion years ago, tidal heating may have raised the internal temperature of Ariel by up to about 20 K; the internal temperature of Ariel may already have been high in virtue of both accretional and radiogenic heating. The additional increase in Ariel's temperature could then have triggered the geological activity that led to a late resurfacing, by decreasing lithospheric thickness and exacerbating thermal stresses on it to the point where observed cracks and faults formed.

  17. [Pathophysiology of heat illness].

    PubMed

    Aruga, Tohru; Miyake, Yasufumi

    2012-06-01

    Human core temperature is strictly controlled by mechanism of radiation, conduction, convection, and evaporation from skin surface. Serial hot and humid climate induces dehydration which interferes heat pump-out from the body. Heart dysfunction is the third factor to rise body temperature. Hyperthermia and hypo-perfusion caused by dehydration and heart failure deteriorate specific organ functions, i.e. central nervous system, liver and renal functions and coagulation system. Disseminated intravascular coagulopathy is one of the standard indicators of severity and mortality of heat stroke. PMID:22690597

  18. Complexity versus availability for fusion: The potential advantages of inertial fusion energy

    SciTech Connect

    Perkins, L.J.,

    1996-09-05

    Probably the single largest advantage of the inertial route to fusion energy (IFE) is the perception that its power plant embodiments could achieve acceptable capacity factors. This is a result of its relative simplicity, the decoupling of the driver and reactor chamber, and the potential to employ thick liquid walls. We examine these issues in terms of the complexity, reliability, maintainability and, therefore, availability of both magnetic and inertial fusion power plants and compare these factors with corresponding scheduled and unscheduled outage data from present day fission experience. We stress that, given the simple nature of a fission core, the vast majority of unplanned outages in fission plants are due to failures outside the reactor vessel itself Given we must be prepared for similar outages in the analogous plant external to a fusion power core, this puts severe demands on the reliability required of the fusion core itself. We indicate that such requirements can probably be met for IFE plants. We recommend that this advantage be promoted by performing a quantitative reliability and availability study for a representative IFE power plant and suggest that databases are probably adequate for this task.

  19. Variable control of neutron albedo in toroidal fusion devices

    DOEpatents

    Jassby, D.L.; Micklich, B.J.

    1983-06-01

    This invention pertains to methods of controlling in the steady state, neutron albedo in toroidal fusion devices, and in particular, to methods of controlling the flux and energy distribution of collided neutrons which are incident on an outboard wall of a toroidal fusion device.

  20. On the fusion triple product and fusion power gain of tokamak pilot plants and reactors

    NASA Astrophysics Data System (ADS)

    Costley, A. E.

    2016-06-01

    The energy confinement time of tokamak plasmas scales positively with plasma size and so it is generally expected that the fusion triple product, nTτ E, will also increase with size, and this has been part of the motivation for building devices of increasing size including ITER. Here n, T, and τ E are the ion density, ion temperature and energy confinement time respectively. However, tokamak plasmas are subject to operational limits and two important limits are a density limit and a beta limit. We show that when these limits are taken into account, nTτ E becomes almost independent of size; rather it depends mainly on the fusion power, P fus. In consequence, the fusion power gain, Q fus, a parameter closely linked to nTτ E is also independent of size. Hence, P fus and Q fus, two parameters of critical importance in reactor design, are actually tightly coupled. Further, we find that nTτ E is inversely dependent on the normalised beta, β N; an unexpected result that tends to favour lower power reactors. Our findings imply that the minimum power to achieve fusion reactor conditions is driven mainly by physics considerations, especially energy confinement, while the minimum device size is driven by technology and engineering considerations. Through dedicated R&D and parallel developments in other fields, the technology and engineering aspects are evolving in a direction to make smaller devices feasible.

  1. Preliminary analysis of patent trends for magnetic fusion technology

    SciTech Connect

    Levine, L.O.; Ashton, W.B.; Campbell, R.S.

    1984-02-01

    This study presents a preliminary analysis of development trends in magnetic fusion technology based on data from US patents. The research is limited to identification and description of general patent activity and ownership characteristics for 373 patents. The results suggest that more detailed studies of fusion patents could provide useful R and D planning information.

  2. Enhancement of data analysis through multisensor data fusion technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper focuses on application of multisensor data fusion for high quality data analysis and processing in measurement and instrumentation. A practical, general data fusion scheme is established on the basis of feature extraction and merging of data from multiple sensors. This scheme integrates...

  3. Fusion Activity of HIV gp41 Fusion Domain is Related to its Secondary Structure and Depth of Membrane Insertion in a Cholesterol-Dependent Fashion

    PubMed Central

    Lai, Alex L.; Moorthy, Anna Eswara; Li, Yinling; Tamm, Lukas K.

    2013-01-01

    The HIV gp41 fusion domain plays a critical role in membrane fusion during viral entry. A thorough understanding of the relationship between the structure and activity of the fusion domain in different lipid environments helps to formulate mechanistic models on how it might function in mediating membrane fusion. The secondary structure of the fusion domain in small liposomes composed of different lipid mixtures was investigated by circular dichroism spectroscopy. In membranes containing less than 30 mol% cholesterol the fusion domain formed an α-helix and in membranes containing equal to or more than 30 mol% cholesterol the fusion domain formed β-sheet secondary structure. EPR spectra of spin-labeled fusion domains also indicated different conformations in membranes with and without cholesterol. Power saturation EPR data were further used to determine the orientation and depth of α-helical fusion domains in lipid bilayers. Fusion and membrane perturbation activities of the gp41 fusion domain were measured by lipid mixing and contents leakage. The fusion domain fused membranes in both its helical and β-sheet forms. High cholesterol, which induced β-sheet, promoted fusion, but acidic lipids, which promoted relatively deep membrane insertion as an α-helix, also induced fusion. The results indicate that the structure of the HIV gp41 fusion domain is plastic and depends critically on the lipid environment. Provided their membrane insertion is deep, α-helical and β-sheet conformations contribute to membrane fusion. PMID:22343048

  4. Genetic control of epithelial tube fusion during Drosophila tracheal development.

    PubMed

    Samakovlis, C; Manning, G; Steneberg, P; Hacohen, N; Cantera, R; Krasnow, M A

    1996-11-01

    During development of tubular networks such as the mammalian vascular system, the kidney and the Drosophila tracheal system, epithelial tubes must fuse to each other to form a continuous network. Little is known of the cellular mechanisms or molecular control of epithelial tube fusion. We describe the cellular dynamics of a tracheal fusion event in Drosophila and identify a gene regulatory hierarchy that controls this extraordinary process. A tracheal cell located at the developing fusion point expresses a sequence of specific markers as it grows out and contacts a similar cell from another tube; the two cells adhere and form an intercellular junction, and they become doughnut-shaped cells with the lumen passing through them. The early fusion marker Fusion-1 is identified as the escargot gene. It lies near the top of the regulatory hierarchy, activating the expression of later fusion markers and repressing genes that promote branching. Ectopic expression of escargot activates the fusion process and suppresses branching throughout the tracheal system, leading to ectopic tracheal connections that resemble certain arteriovenous malformations in humans. This establishes a simple genetic system to study fusion of epithelial tubes. PMID:8951068

  5. Genetics of Somatic Fusion in PHYSARUM POLYCEPHALUM: the Ppii Strain

    PubMed Central

    Collins, O'Neil Ray; Haskins, Edward F.

    1972-01-01

    Plasmodial (somatic) fusion in a strain of Physarum polycephalum, a true slime mold, is controlled by four loci, each of which displays simple dominance. Two diploid plasmodia fuse with each other only if they are phenotypically or genotypically identical for all four fusion loci. PMID:17248576

  6. Enhancement of Data Analysis Through Multisensor Data Fusion Technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multi-sensor data fusion is an emerging technology that fuses data from multiple sensors in order to make a more accurate estimation of the environment through measurement and detection. Applications of multi-sensor data fusion cross a wide spectrum in military and civilian areas. With the rapid e...

  7. Outcome of Salvage Lumbar Fusion after Lumbar Arthroplasty

    PubMed Central

    Deutsch, Harel

    2014-01-01

    Study Design Retrospective review. Purpose This study aims to define the role of lumbar fusion for persistent back pains after the lumbar disc replacement. Overview of Literature Little is written about lumbar fusion after optimally placed lumbar arthroplasty in patients with persistent lower back pains. Methods Retrospective review of cases of lumbar artificial disc requiring subsequent fusion because of persistent back pains despite optimally placed artificial discs. Outcomes were evaluated using Oswestry Disability Index (ODI) and visual analogue scale (VAS). Clinical improvements indicated 25% improvement in ODI and VAS values. Results Five patients met the study criteria. The mean baseline ODI for the five patients was 52. The mean baseline VAS scores for back and leg pains were 76 and 26, respectively. All the five patients had optimally placed prosthesis. The indication for surgery was the constant low back pains found in all the patients. Revision surgery involved disc explantation and fusion in two of the patients and posterolateral fusion without removing the prosthesis in three. None of the patients achieved adequate pain control after the revision surgery despite the solid bony fusion documented by postoperative computed tomography. The mean ODI value after the fusion was 55. The mean values for back and leg pains VAS were 72 and 30, respectively. Conclusions Lack of good pain relief after successful lumbar artifical disc replacements may indicate different etiology for the back pains. The spine-treating surgeons should have a high threshold level to perform salvage fusion at that level. PMID:24596600

  8. Role of supercomputers in magnetic fusion and energy research programs

    SciTech Connect

    Killeen, J.

    1985-06-01

    The importance of computer modeling in magnetic fusion (MFE) and energy research (ER) programs is discussed. The need for the most advanced supercomputers is described, and the role of the National Magnetic Fusion Energy Computer Center in meeting these needs is explained.

  9. Sub-barrier Fusion and Breakup of Light Halo Nuclei

    SciTech Connect

    Martel, I.; Acosta, L.; Aguado, J. L.; Berjillos, R.; Bolivar, J. P.; Duenas, J. A.; Sanchez-Benitez, A. M.; Wolski, R.; Standylo, L.; Angulo, C.; Keutgen, T.; Golovkov, M. S.; Mazzocco, M.; Signorini, C.; Romoli, M.; Rusek, K.

    2011-10-28

    In this work we present new data for the sub-barrier fusion of the system {sup 6}He+{sup 206}Pb obtained in the Centre de Recherches du Cyclotron (UCL), in Louvain-la-Neuve, Belgium. The preliminary results suggest the absence of fusion enhancement at sub-barrier energies.

  10. Distinct structural rearrangements of the VSV glycoprotein drive membrane fusion

    PubMed Central

    Libersou, Sonia; Albertini, Aurélie A.V.; Ouldali, Malika; Maury, Virginie; Maheu, Christine; Raux, Hélène; de Haas, Felix; Roche, Stéphane

    2010-01-01

    The entry of enveloped viruses into cells requires the fusion of viral and cellular membranes, driven by conformational changes in viral glycoproteins. Many studies have shown that fusion involves the cooperative action of a large number of these glycoproteins, but the underlying mechanisms are unknown. We used electron microscopy and tomography to study the low pH–induced fusion reaction catalyzed by vesicular stomatitis virus glycoprotein (G). Pre- and post-fusion crystal structures were observed on virions at high and low pH, respectively. Individual fusion events with liposomes were also visualized. Fusion appears to be driven by two successive structural rearrangements of G at different sites on the virion. Fusion is initiated at the flat base of the particle. Glycoproteins located outside the contact zone between virions and liposomes then reorganize into regular arrays. We suggest that the formation of these arrays, which have been shown to be an intrinsic property of the G ectodomain, induces membrane constraints, achieving the fusion reaction. PMID:20921141

  11. LIFE: The Case for Early Commercialization of Fusion Energy

    SciTech Connect

    Anklam, T; Simon, A J; Powers, S; Meier, W R

    2010-11-30

    This paper presents the case for early commercialization of laser inertial fusion energy (LIFE). Results taken from systems modeling of the US electrical generating enterprise quantify the benefits of fusion energy in terms of carbon emission, nuclear waste and plutonium production avoidance. Sensitivity of benefits-gained to timing of market-entry is presented. These results show the importance of achieving market entry in the 2030 time frame. Economic modeling results show that fusion energy can be competitive with other low-carbon energy sources. The paper concludes with a description of the LIFE commercialization path. It proposes constructing a demonstration facility capable of continuous fusion operations within 10 to 15 years. This facility will qualify the processes and materials needed for a commercial fusion power plant.

  12. Physical and mechanical characteristics and chemical compatibility of aluminum nitride insulator coatings for fusion reactor applications

    SciTech Connect

    Natesan, K.; Rink, D.L.

    1996-04-01

    The blanket system is one of the most important components in a fusion reactor because it has a major impact on both the economics and safety of fusion energy. The primary functions of the blanket in a deuterium/tritium-fueled fusion reactor are to convert the fusion energy into sensible heat and to breed tritium for the fuel cycle. The Blanket Comparison and Selection Study, conducted earlier, described the overall comparative performance of various concepts, including liquid metal, molten salt, water, and helium. Based on the requirements for an electrically insulating coating on the first-wall structural material to minimize the MHD pressure drop during the flow of liquid metal in a magnetic field, AlN was selected as a candidate coating material for the Li self-cooled blanket concept. This report discusses the results from an ongoing study of physical and mechanical characteristics and chemical compatibility of AlN electrical insulator coatings in a liquid Li environment. Details are presented on the AlN coating fabrication methods, and experimental data are reported for microstructures, chemistry of coatings, pretreatment of substrate, heat treatment of coatings, hardness data for coatings, coating/lithium interactions, and electrical resistance before and after exposure to lithium. Thermodynamic calculations are presented to establish regions of stability for AlN coatings in an Li environment as a function of O concentration and temperature, which can aid in-situ development of AlN coatings in Li.

  13. General principles of magnetic fusion confinement

    SciTech Connect

    Hogan, J.T.

    1980-01-01

    A few of the areas are described in which there is close interaction between atomic/molecular (A and M) and magnetic fusion physics. The comparisons between predictions of neoclassical transport theory and experiment depend on knowledge of ionization and recombination rate coefficients. Modeling of divertor/scrapeoff plasmas requires better low energy charge exchange cross sections for H + A/sup n+/ collisions. The range of validity of neutral beam trapping cross sections must be broadened, both to encompass the energies typical of present injection experiments and to deal with the problem of prompt trapping of highly excited beam atoms at high energy. Plasma fueling models present certain anomalies that could be resolved by calculation and measurement of low energy (<1 keV) charge exchange cross sections.

  14. Overview of Indian activities on fusion reactor materials

    NASA Astrophysics Data System (ADS)

    Banerjee, Srikumar

    2014-12-01

    This paper on overview of Indian activities on fusion reactor materials describes in brief the efforts India has made to develop materials for the first wall of a tokamak, its blanket and superconducting magnet coils. Through a systematic and scientific approach, India has developed and commercially produced reduced activation ferritic/martensitic (RAFM) steel that is comparable to Eurofer 97. Powder of low activation ferritic/martensitic oxide dispersion strengthened steel with characteristics desired for its application in the first wall of a tokamak has been produced on the laboratory scale. V-4Cr-4Ti alloy was also prepared in the laboratory, and kinetics of hydrogen absorption in this was investigated. Cu-1 wt%Cr-0.1 wt%Zr - an alloy meant for use as heat transfer elements for hypervapotrons and heat sink for the first wall - was developed and characterized in detail for its aging behavior. The role of addition of a small quantity of Zr in its improved fatigue performance was delineated, and its diffusion bonding with both W and stainless steel was achieved using Ni as an interlayer. The alloy was produced in large quantities and used for manufacturing both the heat transfer elements and components for the International Thermonuclear Experimental Reactor (ITER). India has proposed to install and test a lead-lithium cooled ceramic breeder test blanket module (LLCB-TBM) at ITER. To meet this objective, efforts have been made to produce and characterize Li2TiO3 pebbles, and also improve the thermal conductivity of packed beds of these pebbles. Liquid metal loops have been set up and corrosion behavior of RAFM steel in flowing Pb-Li eutectic has been studied in the presence as well as absence of magnetic fields. To prevent permeation of tritium and reduce the magneto-hydro-dynamic drag, processes have been developed for coating alumina on RAFM steel. Apart from these activities, different approaches being attempted to make the U-shaped first wall of the TBM box

  15. Identification and characterization of RET fusions in advanced colorectal cancer

    PubMed Central

    Garrett, Christopher R.; Seery, Tara; Sanford, Eric M.; Balasubramanian, Sohail; Ross, Jeffrey S.; Stephens, Philip J.; Miller, Vincent A.; Ali, Siraj M.; Chiu, Vi K.

    2015-01-01

    There is an unmet clinical need for molecularly directed therapies available for metastatic colorectal cancer. Comprehensive genomic profiling has the potential to identify actionable genomic alterations in colorectal cancer. Through comprehensive genomic profiling we prospectively identified 6 RET fusion kinases, including two novel fusions of CCDC6-RET and NCOA4-RET, in metastatic colorectal cancer (CRC) patients. RET fusion kinases represent a novel class of oncogenic driver in CRC and occurred at a 0.2% frequency without concurrent driver mutations, including KRAS, NRAS, BRAF, PIK3CA or other fusion tyrosine kinases. Multiple RET kinase inhibitors were cytotoxic to RET fusion kinase positive cancer cells and not RET fusion kinase negative CRC cells. The presence of a RET fusion kinase may identify a subset of metastatic CRC patients with a high response rate to RET kinase inhibition. This is the first characterization of RET fusions in CRC patients and highlights the therapeutic significance of prospective comprehensive genomic profiling in advanced CRC. PMID:26078337

  16. Identification and characterization of RET fusions in advanced colorectal cancer.

    PubMed

    Le Rolle, Anne-France; Klempner, Samuel J; Garrett, Christopher R; Seery, Tara; Sanford, Eric M; Balasubramanian, Sohail; Ross, Jeffrey S; Stephens, Philip J; Miller, Vincent A; Ali, Siraj M; Chiu, Vi K

    2015-10-01

    There is an unmet clinical need for molecularly directed therapies available for metastatic colorectal cancer. Comprehensive genomic profiling has the potential to identify actionable genomic alterations in colorectal cancer. Through comprehensive genomic profiling we prospectively identified 6 RET fusion kinases, including two novel fusions of CCDC6-RET and NCOA4-RET, in metastatic colorectal cancer (CRC) patients. RET fusion kinases represent a novel class of oncogenic driver in CRC and occurred at a 0.2% frequency without concurrent driver mutations, including KRAS, NRAS, BRAF, PIK3CA or other fusion tyrosine kinases. Multiple RET kinase inhibitors were cytotoxic to RET fusion kinase positive cancer cells and not RET fusion kinase negative CRC cells. The presence of a RET fusion kinase may identify a subset of metastatic CRC patients with a high response rate to RET kinase inhibition. This is the first characterization of RET fusions in CRC patients and highlights the therapeutic significance of prospective comprehensive genomic profiling in advanced CRC. PMID:26078337

  17. Performance analysis of image fusion methods in transform domain

    NASA Astrophysics Data System (ADS)

    Choi, Yoonsuk; Sharifahmadian, Ershad; Latifi, Shahram

    2013-05-01

    Image fusion involves merging two or more images in such a way as to retain the most desirable characteristics of each. There are various image fusion methods and they can be classified into three main categories: i) Spatial domain, ii) Transform domain, and iii) Statistical domain. We focus on the transform domain in this paper as spatial domain methods are primitive and statistical domain methods suffer from a significant increase of computational complexity. In the field of image fusion, performance analysis is important since the evaluation result gives valuable information which can be utilized in various applications, such as military, medical imaging, remote sensing, and so on. In this paper, we analyze and compare the performance of fusion methods based on four different transforms: i) wavelet transform, ii) curvelet transform, iii) contourlet transform and iv) nonsubsampled contourlet transform. Fusion framework and scheme are explained in detail, and two different sets of images are used in our experiments. Furthermore, various performance evaluation metrics are adopted to quantitatively analyze the fusion results. The comparison results show that the nonsubsampled contourlet transform method performs better than the other three methods. During the experiments, we also found out that the decomposition level of 3 showed the best fusion performance, and decomposition levels beyond level-3 did not significantly affect the fusion results.

  18. Mechanical-engineering aspects of mirror-fusion technology

    SciTech Connect

    Fisher, D.K.; Doggett, J.N.

    1982-07-15

    The mirror approach to magnetic fusion has evolved from the original simple mirror cell to today's mainline effort: the tandem-mirror machine with thermal barriers. Physics and engineering research is being conducted throughout the world, with major efforts in Japan, the USSR, and the US. At least one facility under construction (MFTF-B) will approach equivalent energy breakeven in physics performance. Significant mechanical engineering development is needed, however, before a demonstration reactor can be constructed. The principal areas crucial to mirror reactor development include large high-field superconducting magnets, high-speed continuous vacuum-pumping systems, long-pulse high-power neutral-beam and rf-plasma heating systems, and efficient high-voltage high-power direct converters. Other areas common to all fusion systems include tritium handling technology, first-wall materials development, and fusion blanket design.

  19. Nanodisc-cell fusion: control of fusion pore nucleation and lifetimes by SNARE protein transmembrane domains.

    PubMed

    Wu, Zhenyong; Auclair, Sarah M; Bello, Oscar; Vennekate, Wensi; Dudzinski, Natasha R; Krishnakumar, Shyam S; Karatekin, Erdem

    2016-01-01

    The initial, nanometer-sized connection between the plasma membrane and a hormone- or neurotransmitter-filled vesicle -the fusion pore- can flicker open and closed repeatedly before dilating or resealing irreversibly. Pore dynamics determine release and vesicle recycling kinetics, but pore properties are poorly known because biochemically defined single-pore assays are lacking. We isolated single flickering pores connecting v-SNARE-reconstituted nanodiscs to cells ectopically expressing cognate, "flipped" t-SNAREs. Conductance through single, voltage-clamped fusion pores directly reported sub-millisecond pore dynamics. Pore currents fluctuated, transiently returned to baseline multiple times, and disappeared ~6 s after initial opening, as if the fusion pore fluctuated in size, flickered, and resealed. We found that interactions between v- and t-SNARE transmembrane domains (TMDs) promote, but are not essential for pore nucleation. Surprisingly, TMD modifications designed to disrupt v- and t-SNARE TMD zippering prolonged pore lifetimes dramatically. We propose that the post-fusion geometry of the proteins contribute to pore stability. PMID:27264104

  20. Nanodisc-cell fusion: control of fusion pore nucleation and lifetimes by SNARE protein transmembrane domains

    PubMed Central

    Wu, Zhenyong; Auclair, Sarah M.; Bello, Oscar; Vennekate, Wensi; Dudzinski, Natasha R.; Krishnakumar, Shyam S.; Karatekin, Erdem

    2016-01-01

    The initial, nanometer-sized connection between the plasma membrane and a hormone- or neurotransmitter-filled vesicle –the fusion pore– can flicker open and closed repeatedly before dilating or resealing irreversibly. Pore dynamics determine release and vesicle recycling kinetics, but pore properties are poorly known because biochemically defined single-pore assays are lacking. We isolated single flickering pores connecting v-SNARE-reconstituted nanodiscs to cells ectopically expressing cognate, “flipped” t-SNAREs. Conductance through single, voltage-clamped fusion pores directly reported sub-millisecond pore dynamics. Pore currents fluctuated, transiently returned to baseline multiple times, and disappeared ~6 s after initial opening, as if the fusion pore fluctuated in size, flickered, and resealed. We found that interactions between v- and t-SNARE transmembrane domains (TMDs) promote, but are not essential for pore nucleation. Surprisingly, TMD modifications designed to disrupt v- and t-SNARE TMD zippering prolonged pore lifetimes dramatically. We propose that the post-fusion geometry of the proteins contribute to pore stability. PMID:27264104

  1. Major achievements and challenges of fusion research

    NASA Astrophysics Data System (ADS)

    Tendler, Michael

    2015-09-01

    The ITER project is truly at the frontier of knowledge, a collective effort to explore the tantalizing future of free, clean and inexhaustible energy offered by nuclear fusion. Where the Large Hadron Collider at CERN pushes the boundaries of physics to find the origins of matter, the ITER Project seeks to give humans an endless stream of power which could have potentially game-changing consequences for the entire planet. Seminal contributions to the general physics knowledge accomplished by the plasma physics research for the benefit of the ITER project will be brought to light. The legacy of Professor H Alfvén within the framework of the ITER project will be described.

  2. Training The Next Generation Of Fusion Scientists And Engineers: Summer High School Fusion Science Workshop

    NASA Astrophysics Data System (ADS)

    Punjabi, Alkesh

    2005-10-01

    The goal of the education and outreach activities of the Hampton University Center for Fusion Research and Training (HU CFRT) is to create a high school-to-Ph.D. pipeline in plasma physics, fusion science, and related sciences for underrepresented minorities and female students. The HU CFRT Summer High School Fusion Research Workshop is an integral component of this pipeline. This workshop has been extraordinarily successful. The workshop participants are chosen from a national pool of young and talented minority and female high school students through the NASA SHARP program. These students come to HU from all over US and its possessions for eight weeks during the summer. Over the last ten years, these workshops have provided one-on-one high quality research experiences in fusion science to the best and the brightest minority and female high school students in the nation. Our high school students have presented over 25 contributed papers at APS/DPP annual meetings, twice reached semi-finalist positions in Siemens-Westinghouse competitions, won awards and prizes, admissions and scholarships to prestigious universities, and won high praises from the fusion research community and other educators and researchers. We wish to emphasize that we have been able to achieve these results with limited human and fiscal resources and a meager infrastructure. Here we will present the details of how this workshop has evolved over the years, the approaches, the activities, and the structure that we have used to train, motivate, and provide valuable research experiences to the next generation of our national leaders in science. We thank the U.S. DOE OFES for supporting these efforts. We also thank Dr. Allen Boozer and Dr. Thomas Simonen for their invaluable help in the workshop and in all our efforts.

  3. Current Status of Lumbar Interbody Fusion for Degenerative Spondylolisthesis

    PubMed Central

    TAKAHASHI, Toshiyuki; HANAKITA, Junya; OHTAKE, Yasufumi; FUNAKOSHI, Yusuke; OICHI, Yuki; KAWAOKA, Taigo; WATANABE, Mizuki

    2016-01-01

    Instrumented lumbar fusion can provide immediate stability and assist in satisfactory arthrodesis in patients who have pain or instability of the lumbar spine. Lumbar adjunctive fusion with decompression is often a good procedure for surgical management of degenerative spondylolisthesis (DS). Among various lumbar fusion techniques, lumbar interbody fusion (LIF) has an advantage in that it maintains favorable lumbar alignment and provides successful fusion with the added effect of indirect decompression. This technique has been widely used and represents an advancement in spinal instrumentation, although the rationale and optimal type of LIF for DS remains controversial. We evaluated the current status and role of LIF in DS treatment, mainly as a means to augment instrumentation. We addressed the basic concept of LIF, its indications, and various types including minimally invasive techniques. It also has acceptable biomechanical features, and offers reconstruction with ideal lumbar alignment. Postsurgical adverse events related to each LIF technique are also addressed. PMID:27169496

  4. Numerical Studies of Impurities in Fusion Plasmas

    DOE R&D Accomplishments Database

    Hulse, R. A.

    1982-09-01

    The coupled partial differential equations used to describe the behavior of impurity ions in magnetically confined controlled fusion plasmas require numerical solution for cases of practical interest. Computer codes developed for impurity modeling at the Princeton Plasma Physics Laboratory are used as examples of the types of codes employed for this purpose. These codes solve for the impurity ionization state densities and associated radiation rates using atomic physics appropriate for these low-density, high-temperature plasmas. The simpler codes solve local equations in zero spatial dimensions while more complex cases require codes which explicitly include transport of the impurity ions simultaneously with the atomic processes of ionization and recombination. Typical applications are discussed and computational results are presented for selected cases of interest.

  5. Fusion of a polarized projectile with a polarized target

    SciTech Connect

    Christley, J.A.; Johnson, R.C.; Thompson, I.J.

    1995-07-15

    The fusion cross sections for a polarized target with both unpolarized and polarized projectiles are studied. Expressions for the observables are given for the case when both nuclei are polarized. Calculations for fusion of an aligned {sup 165}Ho target with {sup 16}O and polarized {sup 7}Li beams are presented.

  6. Methods of detection using a cellulose binding domain fusion product

    DOEpatents

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1999-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  7. Methods of detection using a cellulose binding domain fusion product

    DOEpatents

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1999-01-05

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 34 figs.

  8. Mitochondrial fusion and inheritance of the mitochondrial genome.

    PubMed

    Takano, Hiroyoshi; Onoue, Kenta; Kawano, Shigeyuki

    2010-03-01

    Although maternal or uniparental inheritance of mitochondrial genomes is a general rule, biparental inheritance is sometimes observed in protists and fungi,including yeasts. In yeast, recombination occurs between the mitochondrial genomes inherited from both parents.Mitochondrial fusion observed in yeast zygotes is thought to set up a space for DNA recombination. In the last decade,a universal mitochondrial fusion mechanism has been uncovered, using yeast as a model. On the other hand, an alternative mitochondrial fusion mechanism has been identified in the true slime mold Physarum polycephalum.A specific mitochondrial plasmid, mF, has been detected as the genetic material that causes mitochondrial fusion in P. polycephalum. Without mF, fusion of the mitochondria is not observed throughout the life cycle, suggesting that Physarum has no constitutive mitochondrial fusion mechanism.Conversely, mitochondria fuse in zygotes and during sporulation with mF. The complete mF sequence suggests that one gene, ORF640, encodes a fusogen for Physarum mitochondria. Although in general, mitochondria are inherited uniparentally, biparental inheritance occurs with specific sexual crossing in P. polycephalum.An analysis of the transmission of mitochondrial genomes has shown that recombinations between two parental mitochondrial genomes require mitochondrial fusion,mediated by mF. Physarum is a unique organism for studying mitochondrial fusion. PMID:20196232

  9. Surface erosion effects of candidate fusion materials

    SciTech Connect

    Navinsek, B.

    1984-09-01

    Some candidate fusion materials such as nickelbase alloys and graphites were studied, because of their importance as first wall components in CTR devices. Polycrystalline samples of Inconel 600, Inconel 625, Nimonic alloy PE 16, nuclear grade graphite ATJ and pyrolytic graphite were investigated. Results for surface damage and topography, blistering, flaking, ion erosion and sputtering yields are reported for irradiations with low energy He/sup +/ ions (5-12 keV) at room temperature, using total ion doses up to 2 x 10/sup 19/ ions cm/sup -2/. SEM, TEM and AES analyses were used to identify surface damage, structure and compositional changes after irradiation. Comparative studies of the ion erosion yield of nickel-base alloys, as measured by the step-height technique, were made. Total sputtering yields were determined dynamically for sputtered films of these alloys using a quartz crystal microbalance. The yields were studied as a function of ion dose, energy and surface roughness.

  10. Application of image fusion techniques in DSA

    NASA Astrophysics Data System (ADS)

    Ye, Feng; Wu, Jian; Cui, Zhiming; Xu, Jing

    2007-12-01

    Digital subtraction angiography (DSA) is an important technology in both medical diagnoses and interposal therapy, which can eliminate the interferential background and give prominence to blood vessels by computer processing. After contrast material is injected into an artery or vein, a physician produces fluoroscopic images. Using these digitized images, a computer subtracts the image made with contrast material from a series of post injection images made without background information. By analyzing the characteristics of DSA medical images, this paper provides a solution of image fusion which is in allusion to the application of DSA subtraction. We fuse the images of angiogram and subtraction, in order to obtain the new image which has more data information. The image that fused by wavelet transform can display the blood vessels and background information clearly, and medical experts gave high score on the effect of it.

  11. Organotypic three-dimensional culture model of mesenchymal and epithelial cells to examine tissue fusion events.

    EPA Science Inventory

    Tissue fusion during early mammalian development requires coordination of multiple cell types, the extracellular matrix, and complex signaling pathways. Fusion events during processes including heart development, neural tube closure, and palatal fusion are dependent on signaling ...

  12. Elastic scattering, fusion, and breakup of light exotic nuclei

    NASA Astrophysics Data System (ADS)

    Kolata, J. J.; Guimarães, V.; Aguilera, E. F.

    2016-05-01

    The present status of fusion reactions involving light ( A < 20) radioactive projectiles at energies around the Coulomb barrier ( E < 10 MeV per nucleon) is reviewed, emphasizing measurements made within the last decade. Data on elastic scattering (providing total reaction cross section information) and breakup channels for the involved systems, demonstrating the relationship between these and the fusion channel, are also reviewed. Similarities and differences in the behavior of fusion and total reaction cross section data concerning halo nuclei, weakly-bound but less exotic projectiles, and strongly-bound systems are discussed. One difference in the behavior of fusion excitation functions near the Coulomb barrier seems to emerge between neutron-halo and proton-halo systems. The role of charge has been investigated by comparing the fusion excitation functions, properly scaled, for different neutron- and proton-rich systems. Possible physical explanations for the observed differences are also reviewed.

  13. Decommissioning of the Tokamak Fusion Test Reactor

    SciTech Connect

    E. Perry; J. Chrzanowski; C. Gentile; R. Parsells; K. Rule; R. Strykowsky; M. Viola

    2003-10-28

    The Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory was operated from 1982 until 1997. The last several years included operations with mixtures of deuterium and tritium. In September 2002, the three year Decontamination and Decommissioning (D&D) Project for TFTR was successfully completed. The need to deal with tritium contamination as well as activated materials led to the adaptation of many techniques from the maintenance work during TFTR operations to the D&D effort. In addition, techniques from the decommissioning of fission reactors were adapted to the D&D of TFTR and several new technologies, most notably the development of a diamond wire cutting process for complex metal structures, were developed. These techniques, along with a project management system that closely linked the field crews to the engineering staff who developed the techniques and procedures via a Work Control Center, resulted in a project that was completed safely, on time, and well below budget.

  14. Existing and new applications of micropellet injection (MPI) in magnetic fusion

    NASA Astrophysics Data System (ADS)

    Wang, Zhehui; Lunsford, Robert; Mansfield, Dennis K.; Nichols, Jacob H.

    2016-02-01

    > The intense heat and energetic particle fluxes expected in ITER and future magnetic fusion reactors pose prohibitive problems to the design, selection and maintenance of the first wall and divertor. Micropellet injection (MPI) technologies can offer some innovative solutions to the material and extreme heat challenges. Basic physics of micropellet motion, ablation and interactions with high-temperature plasmas and energetic particles are presented first. We then discuss MPI technology options and applications. In addition to plasma diagnostic applications, controlled injection of micropellets of different sizes, velocities and injection frequencies will offer several possibilities: (1) better assessment of the core plasma cooling due to dust produced in situ; (2) better understanding of the plasma-material interaction physics near the wall; (3) new methods for plasma fuelling and impurity control; and (4) techniques for edge cooling with minimal impact on the plasma core. Dedicated small-scale laboratory experiments will complement major fusion experiments in development and applications of MPI.

  15. Existing and new applications of micropellet injection (MPI) in magnetic fusion

    NASA Astrophysics Data System (ADS)

    Wang, Zhehui; Lunsford, Robert; Mansfield, Dennis K.; Nichols, Jacob H.

    2016-04-01

    > The intense heat and energetic particle fluxes expected in ITER and future magnetic fusion reactors pose prohibitive problems to the design, selection and maintenance of the first wall and divertor. Micropellet injection (MPI) technologies can offer some innovative solutions to the material and extreme heat challenges. Basic physics of micropellet motion, ablation and interactions with high-temperature plasmas and energetic particles are presented first. We then discuss MPI technology options and applications. In addition to plasma diagnostic applications, controlled injection of micropellets of different sizes, velocities and injection frequencies will offer several possibilities: (1) better assessment of the core plasma cooling due to dust produced in situ; (2) better understanding of the plasma-material interaction physics near the wall; (3) new methods for plasma fuelling and impurity control; and (4) techniques for edge cooling with minimal impact on the plasma core. Dedicated small-scale laboratory experiments will complement major fusion experiments in development and applications of MPI.

  16. Studies of electron and proton isochoric heating for fast ignition

    SciTech Connect

    Mackinnon, A; Key, M; Akli, K; Beg, F; Clarke, R; Clarke, D; Chen, M; Chung, H; Chen, S; Freeman, R; Green, J; Gu, P; Gregori, G; Highbarger, K; Habara, H; Hatchett, S; Hey, D; Heathcote, R; Hill, J; King, J; Kodama, R; Koch, J; Lancaster, K; Langdon, B; Murphy, C; Norreys, P; Neely, D; Nakatsutsumi, M; Nakamura, H; Patel, N; Patel, P; Pasley, J; Snavley, R; Stephens, R; Stoeckl, C; Foord, M; Tabak, M; Theobald, W; Storm, M; Tanaka, K; Tempo, M; Toley, M; Town, R; Wilks, S; VanWoerkom, L; Weber, R; Yabuuchi, T; Zhang, B

    2006-10-02

    Isochoric heating of inertially confined fusion plasmas by laser driven MeV electrons or protons is an area of great topical interest in the inertial confinement fusion community, particularly with respect to the fast ignition (FI) proposal to use this technique to initiate burn in a fusion capsule. Experiments designed to investigate electron isochoric heating have measured heating in two limiting cases of interest to fast ignition, small planar foils and hollow cones. Data from Cu K{alpha} fluorescence, crystal x-ray spectroscopy of Cu K shell emission, and XUV imaging at 68eV and 256 eV are used to test PIC and Hybrid PIC modeling of the interaction. Isochoric heating by focused proton beams generated at the concave inside surface of a hemi-shell and from a sub hemi-shell inside a cone have been studied with the same diagnostic methods plus imaging of proton induced K{alpha}. Conversion efficiency to protons has also been measured and modeled. Conclusions from the proton and electron heating experiments will be presented. Recent advances in modeling electron transport and innovative target designs for reducing igniter energy and increasing gain curves will also be discussed.

  17. Role of radiogenic heat generation in surface heat flow formation

    NASA Astrophysics Data System (ADS)

    Khutorskoi, M. D.; Polyak, B. G.

    2016-03-01

    Heat generation due to decay of long-lived radioactive isotopes is considered in the Earth's crust of the Archean-Proterozoic and Paleozoic provinces of Eurasia and North America. The heat flow that forms in the mantle is calculated as the difference between the heat flow observed at the boundary of the solid Earth and radiogenic heat flow produced in the crust. The heat regime in regions with anomalously high radiogenic heat generation is discussed. The relationship between various heat flow components in the Precambrian and Phanerozoic provinces has been comparatively analyzed, and the role of erosion of the surfaceheat- generating layer has been estimated.

  18. Reinvestigation of the charge density distribution in arc discharge fusion system

    SciTech Connect

    Sheng, Lin Horng; Yee, Lee Kim; Nan, Phua Yeong; Thung, Yong Yun; Khok, Yong Thian; Rahman, Faidz Abd

    2015-04-24

    A continual arc discharge system has been setup and the light intensity of arc discharge has been profiled. The mathematical model of local energy density distribution in arc discharge fusion has been simulated which is in good qualitative agreement with light intensity profile of arc discharge in the experiments. Eventually, the local energy density distribution of arc discharge system is able to be precisely manipulated to act as heat source in the fabrication of fused fiber devices.

  19. Examination of Liquid Fluoride Salt Heat Transfer

    SciTech Connect

    Yoder Jr, Graydon L

    2014-01-01

    The need for high efficiency power conversion and energy transport systems is increasing as world energy use continues to increase, petroleum supplies decrease, and global warming concerns become more prevalent. There are few heat transport fluids capable of operating above about 600oC that do not require operation at extremely high pressures. Liquid fluoride salts are an exception to that limitation. Fluoride salts have very high boiling points, can operate at high temperatures and low pressures and have very good heat transfer properties. They have been proposed as coolants for next generation fission reactor systems, as coolants for fusion reactor blankets, and as thermal storage media for solar power systems. In each case, these salts are used to either extract or deliver heat through heat exchange equipment, and in order to design this equipment, liquid salt heat transfer must be predicted. This paper discusses the heat transfer characteristics of liquid fluoride salts. Historically, heat transfer in fluoride salts has been assumed to be consistent with that of conventional fluids (air, water, etc.), and correlations used for predicting heat transfer performance of all fluoride salts have been the same or similar to those used for water conventional fluids an, water, etc). A review of existing liquid salt heat transfer data is presented, summarized, and evaluated on a consistent basis. Less than 10 experimental data sets have been found in the literature, with varying degrees of experimental detail and measured parameters provided. The data has been digitized and a limited database has been assembled and compared to existing heat transfer correlations. Results vary as well, with some data sets following traditional correlations; in others the comparisons are less conclusive. This is especially the case for less common salt/materials combinations, and suggests that additional heat transfer data may be needed when using specific salt eutectics in heat transfer

  20. Laser heating challenges of high yield MagLIF targets

    NASA Astrophysics Data System (ADS)

    Slutz, Stephen; Sefkow, Adam; Vesey, Roger

    2014-10-01

    The MagLIF (Magnetized Liner Inertial Fusion) concept is predicted by numerical simulation to produce fusion yields of about 100 kJ, when driven by 25 MA from the existing Z accelerator [S. A. Slutz et al. Phys. Plasmas 17, 056303 (2010)] and much higher yields with future accelerators delivering higher currents [Slutz and Vesey PRL 108, 025003 (2012)]. The fuel must be heated before compression to obtain significant fusion yields due to the relatively slow implosion velocities (~ 100 km/s) of magnetically driven liners. Lasers provide a convenient means to accomplish this pre-compressional heating of the fusion fuel, but there are challenges. The laser must penetrate a foil covering the laser entrance hole and deposit 20-30 kJ within the ~1 cm length of the liner in fuel at 6-12 mg/cc. Such high densities could result in beam scattering due to refraction and laser plasma interactions. Numerical simulations of the laser heating process are presented, which indicate that energies as high as 30 kJ could be deposited in the fuel by using two laser pulses of different wavelengths. Simulations of this process will be presented as well of results for a MagLIF design for a potential new machine delivering 50 MA of current. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  1. Summary of the IEA workshop/working group meeting on ferritic/martensitic steels for fusion

    SciTech Connect

    Klueh, R.L.

    1997-04-01

    An International Energy Agency (IEA) Working Group on Ferritic/Martensitic Steels for Fusion Applications, consisting of researchers from Japan, the European Union, the United States, and Switzerland, met at the headquarters of the Joint European Torus (JET), Culham, United Kingdom, 24-25 October 1996. At the meeting preliminary data generated on the large heats of steel purchased for the IEA program and on other heats of steels were presented and discussed. The second purpose of the meeting was to continue planning and coordinating the collaborative test program in progress on reduced-activation ferritic/martensitic steels. The next meeting will be held in conjunction with the International Conference on Fusion Reactor Materials (ICFRM-8) in Sendai, Japan, 23-31 October 1997.

  2. Application of Magnetized Target Fusion to High-Energy Space Propulsion

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. F.; Schmidt, G. R.; Kirkpatrick, R. C.; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Most fusion propulsion concepts that have been investigated in the past employ some form of inertial or magnetic confinement. Although the prospective performance of these concepts is excellent, the fusion processes on which these concepts are based still require considerable development before they can be seriously considered for actual applications. Furthermore, these processes are encumbered by the need for sophisticated plasma and power handling systems that are generally quite inefficient and have historically resulted in large, massive spacecraft designs. Here we present a comparatively new approach, Magnetized Target Fusion (MTF), which offers a nearer-term avenue for realizing the tremendous performance benefits of fusion propulsion'. The key advantage of MTF is its less demanding requirements for driver energy and power processing. Additional features include: 1) very low system masses and volumes, 2) high gain and relatively low waste heat, 3) substantial utilization of energy from product neutrons, 4) efficient, low peak-power drivers based on existing pulsed power technology, and 5) very high Isp, specific power and thrust. MTF overcomes many of the problems associated with traditional fusion techniques, thus making it particularly attractive for space applications. Isp greater than 50,000 seconds and specific powers greater than 50 kilowatts/kilogram appear feasible using relatively near-term pulse power and plasma gun technology.

  3. Fusion and fission of fluid amphiphilic bilayers.

    PubMed

    Gotter, Martin; Strey, Reinhard; Olsson, Ulf; Wennerström, Håkan

    2005-01-01

    The system water-oil (n-decane)-nonionic surfactant (C12E5) forms bilayer phases in a large concentration region, but, for a given oil-to-surfactant ratio, only in a narrow temperature range. In addition to the anisotropic lamellar phase (Lalpha) there is also, at slightly higher temperature, a sponge or L3-phase where the bilayers build up an isotropic structure extending macroscopically in three dimensions. In this phase the bilayer mid-surface has a mean curvature close to zero and a negative Euler characteristic. In this paper we study how the bilayers in the lamellar and the sponge phase respond dynamically to sudden temperature changes. The monolayer spontaneous curvature depends sensitively on temperature and a change of temperature thus provides a driving force for a change in bilayer topology. The equilibration therefore involves kinetic steps of fusion/fission of bilayers. Such dynamic processes have previously been monitored by temperature jump experiments using light scattering in the sponge phase. These experiments revealed an extraordinarily strong dependence of the relaxation time on the bilayer volume fraction phi. At phi < 0.1 the relaxation times are so slow that experiments using deuterium nuclear magnetic resonance (2H-NMR) appear feasible. We here report on the first experiments concerned with the dynamics of the macroscopic phase transition sponge-lamellae by 2H-NMR. We find that the sponge-to-lamellae transition occurs through a nucleation process followed by domain growth involving bilayer fission at domain boundaries. In contrast, the lamellae-to-sponge transformation apparently occurs through a succession of uncorrelated bilayer fusion events. PMID:15715316

  4. Acceleration of compact toruses and fusion applications

    SciTech Connect

    Hartman, C.W.; Eddleman, J.L.; Hammer, J.H.; Logan, B.G.; McLean, H.S.; Molvik, A.W.

    1990-10-11

    The Compact Torus (Spheromak-type) is a near ideal plasma confinement configuration for acceleration. The fields are mostly generated by internal plasma currents, plasma confinement is toroidal, and the compact torus exhibits resiliency and stability in virtue of the ``rugged`` helicity invariant. Based on these considerations we are developing a coaxial rail-gun type Compact Torus Accelerator (CTA). In the CTA, the CT ring is formed between coaxial electrodes using a magnetized Marshall gun, it is quasistatically ``precompressed`` in a conical electrode section for inductive energy storage, it is accelerated in a straight-coaxial electrode section as in a conventional rail-gun, and it is focused to small size and high energy and power density in a final ``focus`` cone section. The dynamics of slow precompression and acceleration have been demonstrated experimentally in the RACE device with results in good agreement with 2-D MHD code calculations. CT plasma rings with 100 {micro}gms mass have been accelerated to 40 Kj kinetic energy at 20% efficiency with final velocity = 1 X 10{sup 8} cm/s (= 5 KeV/H{sup +}). Preliminary focus tests exhibi dynamics of radius compression, deceleration, and bouncing. Compression ratios of 2-3 have been achieved. A scaled-up 10-100 MJ CTA is predicted to achieve a focus radius of several cm to deliver = 30 MJ ring kinetic energy in 5-10 nsec. This is sufficient energy, power, and power density to enable the CTA to act as a high efficiency, low cost ICF driver. Alternatively, the focused CT can form the basis for an magnetically insulated, inertial confinement fusion (MICF) system. Preliminary calculations of these fusion systems will be discussed.

  5. Lumbopelvic parameters and the extent of lumbar fusion

    PubMed Central

    Nguyen, Ha Son; Yoganandan, Narayan; Maiman, Dennis

    2015-01-01

    Background: Following lumbar fusion, sacroiliac (SI) joint pain has been regarded as a form of adjacent segment disease. Prior studies suggest increased stress to the SI joint and pelvis with lumbar fusion. Limited studies have evaluated the relationship between the extent of lumbar fusion and its potential influence on lumbopelvic parameters, which may provide the insights to persistent back pain. Methods: Three hundred fifty-five patients underwent lumbar fusions at our institution between fall 2010 and winter 2012; 80 patients met criteria for the study. Inclusion criteria included appropriate imaging available (preoperative and postoperative lateral films), follow-up >1-year, fusion where the rostral extent was up to L1 and the caudal extent was at most S1. Exclusion criteria included prior lumbar fusion, history of SI joint syndrome, follow-up <1-year, fusion involving thoracic levels, and inadequate films (inability to visualize appropriate anatomy). The patients were divided into groups based on the extent of fusion. The patients were evaluated based on age, sex, diagnosis, lumbar lordosis, pelvic incidence, pelvic tilt, and sacral slope. The preoperative values were compared among the groups, the postoperative values were compared among the groups, and the pre- and post-operative values were compared within each group. Results: There were no statistically significant differences between pre- and post-operative lumbopelvic parameters within each fusion group. Conclusion: The results imply that the extent of instrumentation, including the involvement of the sacrum, may not alter lumbopelvic parameters. This appears to argue against the idea that longer fusion constructs induce more stress on the pelvis and SI joint. PMID:26543673

  6. Physics of laser fusion. Volume II. Diagnostics of experiments on laser fusion targets at LLNL

    SciTech Connect

    Ahlstrom, H.G.

    1982-01-01

    These notes present the experimental basis and status for laser fusion as developed at LLNL. There are two other volumes in this series: Vol. I, by C.E. Max, presents the theoretical laser-plasma interaction physics; Vol. III, by J.F. Holzrichter et al., presents the theory and design of high-power pulsed lasers. A fourth volume will present the theoretical implosion physics. The notes consist of six sections. The first, an introductory section, provides some of the history of inertial fusion and a simple explanation of the concepts involved. The second section presents an extensive discussion of diagnostic instrumentation used in the LLNL Laser Fusion Program. The third section is a presentation of laser facilities and capabilities at LLNL. The purpose here is to define capability, not to derive how it was obtained. The fourth and fifth sections present the experimental data on laser-plasma interaction and implosion physics. The last chapter is a short projection of the future.

  7. Evaluation of autologous platelet concentrate for intertransverse process lumbar fusion.

    PubMed

    Sethi, Paul M; Miranda, Jose J; Kadiyala, Sudha; Patel, Tushar Ch; Panjabi, Manohar; Troiano, Nancy; Friedlaender, Gary E

    2008-04-01

    Data on the role of platelet concentrate (PC) in spinal fusion are limited. Using the New Zealand white rabbit model, we compared fusion rates at L5-L6 using 2 different volumes (1.5 cm(3), 3.0 cm(3)) of iliac crest autograft with and without PC (4 groups total, 10 animals in each). PC was collected from donor rabbits and adjusted to a concentration of 1 x 10(6) platelets/mL. Bone growth and fusion were evaluated using biomechanical, radiographic, and histologic testing. At 1.5 cm(3), autograft alone had a 29% fusion rate, compared with autograft plus PC, which had a 57% fusion rate (P = .06). At 3.0 cm(3), the fusion rate approached 90% in both groups. Radiologic fusion had a 70% correlation with biomechanical test results. Huo/Friedlaender scores were 4.3 (SD, 2.9) for 1.5-cm(3) autograft alone; 5.0 (SD, 3.5) for 1.5-cm(3) autograft plus PC; 4.7 (SD, 2.5) for 3.0-cm(3) autograft alone; and 7.7 (SD, 0.6) for 3.0-cm(3) autograft plus PC. For 1.5-cm(3) autograft, a trend toward improvement in biomechanically defined fusion was found when PC was added, which suggests that, when the amount of bone graft is limited, PC may function as a graft extender in posterolateral fusion. At higher volumes of bone graft, no appreciable difference was noted between groups. Although radiography revealed fusion masses, the technique was not useful in identifying pseudarthrosis. On histologic analysis, adding PC seemed to result in more mature bone at both volumes, with the most mature bone in the group with 3.0-cm(3) autograft plus PC. PMID:18535686

  8. Magnetic-compression/magnetized-target fusion (MAGO/MTF): A marriage of inertial and magnetic confinement

    SciTech Connect

    Lindemuth, I.R.; Ekdahl, C.A.; Kirkpatrick, R.C.

    1996-12-31

    Intermediate between magnetic confinement (MFE) and inertial confinement (ICF) in time and density scales is an area of research now known in the US as magnetized target fusion (MTF) and in Russian as MAGO (MAGnitnoye Obzhatiye--magnetic compression). MAGO/MTF uses a magnetic field and preheated, wall-confined plasma fusion fuel within an implodable fusion target. The magnetic field suppresses thermal conduction losses in the fuel during the target implosion and hydrodynamic compression heating process. In contrast to direct, hydrodynamic compression of initially ambient-temperature fuel (i.e., ICF), MAGO/MTF involves two steps: (a) formation of a warm (e.g., 100 eV or higher), magnetized (e.g., 100 kG) plasma within a fusion target prior to implosion; (b) subsequent quasi-adiabatic compression by an imploding pusher, of which a magnetically driven imploding liner is one example. In this paper, the authors present ongoing activities and potential future activities in this relatively unexplored area of controlled thermonuclear fusion.

  9. Design of the 1.5 MW, 30-96 MHz ultra-wideband 3 dB high power hybrid coupler for Ion Cyclotron Resonance Frequency (ICRF) heating in fusion grade reactor

    NASA Astrophysics Data System (ADS)

    Yadav, Rana Pratap; Kumar, Sunil; Kulkarni, S. V.

    2016-01-01

    Design and developmental procedure of strip-line based 1.5 MW, 30-96 MHz, ultra-wideband high power 3 dB hybrid coupler has been presented and its applicability in ion cyclotron resonance heating (ICRH) in tokamak is discussed. For the high power handling capability, spacing between conductors and ground need to very high. Hence other structural parameters like strip-width, strip thickness coupling gap, and junction also become large which can be gone upto optimum limit where various constrains like fabrication tolerance, discontinuities, and excitation of higher TE and TM modes become prominent and significantly deteriorates the desired parameters of the coupled lines system. In designed hybrid coupler, two 8.34 dB coupled lines are connected in tandem to get desired coupling of 3 dB and air is used as dielectric. The spacing between ground and conductors are taken as 0.164 m for 1.5 MW power handling capability. To have the desired spacing, each of 8.34 dB segments are designed with inner dimension of 3.6 × 1.0 × 40 cm where constraints have been significantly realized, compensated, and applied in designing of 1.5 MW hybrid coupler and presented in paper.

  10. Design of the 1.5 MW, 30-96 MHz ultra-wideband 3 dB high power hybrid coupler for Ion Cyclotron Resonance Frequency (ICRF) heating in fusion grade reactor.

    PubMed

    Yadav, Rana Pratap; Kumar, Sunil; Kulkarni, S V

    2016-01-01

    Design and developmental procedure of strip-line based 1.5 MW, 30-96 MHz, ultra-wideband high power 3 dB hybrid coupler has been presented and its applicability in ion cyclotron resonance heating (ICRH) in tokamak is discussed. For the high power handling capability, spacing between conductors and ground need to very high. Hence other structural parameters like strip-width, strip thickness coupling gap, and junction also become large which can be gone upto optimum limit where various constrains like fabrication tolerance, discontinuities, and excitation of higher TE and TM modes become prominent and significantly deteriorates the desired parameters of the coupled lines system. In designed hybrid coupler, two 8.34 dB coupled lines are connected in tandem to get desired coupling of 3 dB and air is used as dielectric. The spacing between ground and conductors are taken as 0.164 m for 1.5 MW power handling capability. To have the desired spacing, each of 8.34 dB segments are designed with inner dimension of 3.6 × 1.0 × 40 cm where constraints have been significantly realized, compensated, and applied in designing of 1.5 MW hybrid coupler and presented in paper. PMID:26827337

  11. Suppression of energetic particle driven instabilities with HHFW heating

    SciTech Connect

    Fredrickson, E. D.; Taylor, G.; Bertelli, N.; Darrow, D. S.; Gorelenkov, N.; Kramer, G.; Liu, D.; Crocker, N. A.; Kubota, S.; White, R.

    2015-01-01

    In plasmas in the National Spherical Torus Experiment (NSTX) [Ono et al., Nucl. Fusion 40 (2000) 557] heated with neutral beams, the beam ions typically excite Energetic Particle Modes (EPMs or fishbones), and Toroidal, Global or Compressional Alfvén Eigenmodes (TAE, GAE, CAE). These modes can redistribute the energetic beam ions, altering the beam driven current profile and the plasma heating profile, or they may affect electron thermal transport or cause losses of the beam ions. In this paper we present experimental results where these instabilities, driven by the super-thermal beam ions, are suppressed with the application of High Harmonic Fast Wave heating.

  12. Effect of the Target Deformation on Incomplete Fusion Dynamics

    NASA Astrophysics Data System (ADS)

    Singh, D.; Ali, Rahbar; Afzal Ansari, M.; Kumar, R.; Singh, R. P.; Muralither, S.; Bhowmik, R. K.

    2015-01-01

    To investigate the role of target deformation on incomplete fusion dynamics, a particle-gamma coincidence experiment has been performed at Inter University Accelerator Centre, New Delhi. Spin distributions for various evaporation residues populated via complete and incomplete fusion of 16O with 124Sn at 6.3MeV/nucleon have been measured. Experimentally measured spin distributions of the residues produced as incomplete fusion products associated with fast α and 2α-emission channels observed in forward cone are found to be distinctly different from those of the residues produced as complete fusion products. The mean value of input angular momentum J0 for evaporation residues produced through xn channels (complete fusion products) is found to be J0≈ 7ħ, while the mean value of input angular momentum J0 for the residues produced through direct αxn and 2αxn channels (incomplete fusion products) in forward cone, are found to be J0 ≈ 9ħ and ≈ 12ħ respectively for 16O + 124Sn (spherical) system [7]. The mean value of input angular momentum J0 for the system 16O + 169Tm (deformed) reported in ref. [8], are found to be ≈10ħ for xn-channels (complete fusion products) and for direct αxn and 2αxn channels (incomplete fusion products) the value of J0 approaches to ≈ 13ħ and ≈16ħ, respectively. The mean values of the input angular momentum observed for xn (complete fusion products), αxn and 2αxn (incomplete fusion products) in 16O + 124Sn (spherical) system are smaller than that of the mean values of the input angular momentum observed for xn (complete fusion products), αxn and 2αxn (incomplete fusion products) in 16O + 169Tm (deformed) system. The comparison of data inferred that the mean values of the input angular momentum are smaller in case of spherical target than that of deformed target at same projectile energy of 16O-ion beam. It means that the target deformation affect the incomplete fusion dynamics.

  13. Disassembly of the fusion-1 capsule after irradiation in the BOR-60 reactor

    SciTech Connect

    Tsai, H.; Kazakov, V.A.; Chakin, V.P.

    1997-04-01

    A U.S./Russia (RF) collaborative irradiation experiment, Fusion-1, was completed in June 1996 after reaching a peak exposure of {approx}17 dpa in the BOR-60 fast reactor at the Research Institute of Atomic Reactors (RIAR) in Russia. The specimens were vanadium alloys, mainly of recent heats from both countries. In this reporting period, the capsule was disassembled at the RIAR hot cells and all test specimens were successfully retrieved. For the disassembly, an innovative method of using a heated diffusion oil to melt and separate the lithium bond from the test specimens was adopted. This method proved highly successful.

  14. Magnetic reconnection in plasma under inertial confinement fusion conditions driven by heat flux effects in Ohm's law.

    PubMed

    Joglekar, A S; Thomas, A G R; Fox, W; Bhattacharjee, A

    2014-03-14

    In the interaction of high-power laser beams with solid density plasma there are a number of mechanisms that generate strong magnetic fields. Such fields subsequently inhibit or redirect electron flows, but can themselves be advected by heat fluxes, resulting in complex interplay between thermal transport and magnetic fields. We show that for heating by multiple laser spots reconnection of magnetic field lines can occur, mediated by these heat fluxes, using a fully implicit 2D Vlasov-Fokker-Planck code. Under such conditions, the reconnection rate is dictated by heat flows rather than Alfvènic flows. We find that this mechanism is only relevant in a high β plasma. However, the Hall parameter ωcτei can be large so that thermal transport is strongly modified by these magnetic fields, which can impact longer time scale temperature homogeneity and ion dynamics in the system. PMID:24679302

  15. Phase-Change Heat-Storage Module

    NASA Technical Reports Server (NTRS)

    Mulligan, James C.

    1989-01-01

    Heat-storage module accommodates momentary heating or cooling overload in pumped-liquid heat-transfer system. Large heat-storage capacity of module provided by heat of fusion of material that freezes at or near temperature desired to maintain object to be heated or cooled. Module involves relatively small penalties in weight, cost, and size and more than compensates by enabling design of rest of system to handle only average load. Latent heat of fusion of phase-change material provides large heat-storage capacity in small volume.

  16. Direct heating of a laser-imploded core by ultraintense laser-driven ions.

    PubMed

    Kitagawa, Y; Mori, Y; Komeda, O; Ishii, K; Hanayama, R; Fujita, K; Okihara, S; Sekine, T; Satoh, N; Kurita, T; Takagi, M; Watari, T; Kawashima, T; Kan, H; Nishimura, Y; Sunahara, A; Sentoku, Y; Nakamura, N; Kondo, T; Fujine, M; Azuma, H; Motohiro, T; Hioki, T; Kakeno, M; Miura, E; Arikawa, Y; Nagai, T; Abe, Y; Ozaki, S; Noda, A

    2015-05-15

    A novel direct core heating fusion process is introduced, in which a preimploded core is predominantly heated by energetic ions driven by LFEX, an extremely energetic ultrashort pulse laser. Consequently, we have observed the D(d,n)^{3}He-reacted neutrons (DD beam-fusion neutrons) with the yield of 5×10^{8} n/4π sr. Examination of the beam-fusion neutrons verified that the ions directly collide with the core plasma. While the hot electrons heat the whole core volume, the energetic ions deposit their energies locally in the core, forming hot spots for fuel ignition. As evidenced in the spectrum, the process simultaneously excited thermal neutrons with the yield of 6×10^{7} n/4π sr, raising the local core temperature from 0.8 to 1.8 keV. A one-dimensional hydrocode STAR 1D explains the shell implosion dynamics including the beam fusion and thermal fusion initiated by fast deuterons and carbon ions. A two-dimensional collisional particle-in-cell code predicts the core heating due to resistive processes driven by hot electrons, and also the generation of fast ions, which could be an additional heating source when they reach the core. Since the core density is limited to 2 g/cm^{3} in the current experiment, neither hot electrons nor fast ions can efficiently deposit their energy and the neutron yield remains low. In future work, we will achieve the higher core density (>10 g/cm^{3}); then hot electrons could contribute more to the core heating via drag heating. Together with hot electrons, the ion contribution to fast ignition is indispensable for realizing high-gain fusion. By virtue of its core heating and ignition, the proposed scheme can potentially achieve high gain fusion. PMID:26024175

  17. Review of progress on fusion materials technology, Harwell, December 1980. Irradiation effects in fusion reactor materials

    NASA Astrophysics Data System (ADS)

    Harries, D. R.

    1981-03-01

    The evolution of the radiation damage structure, void and gas bubble swelling, and surface blistering effects in both model and potential first wall materials for a D-T fusion reactor system of the TOKAMAK type was investigated along with radiation effects in inorganic insulator materials. In addition, investigations were carried out into the effects of irradiation on organic insulators and on the performance of rubber seals. The principal achievements are summarized and a list of 50 references is given.

  18. Demonstration of thermonuclear conditions in magnetized liner inertial fusion experimentsa)

    NASA Astrophysics Data System (ADS)

    Gomez, M. R.; Slutz, S. A.; Sefkow, A. B.; Hahn, K. D.; Hansen, S. B.; Knapp, P. F.; Schmit, P. F.; Ruiz, C. L.; Sinars, D. B.; Harding, E. C.; Jennings, C. A.; Awe, T. J.; Geissel, M.; Rovang, D. C.; Smith, I. C.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Harvey-Thompson, A. J.; Herrmann, M. C.; Hess, M. H.; Lamppa, D. C.; Martin, M. R.; McBride, R. D.; Peterson, K. J.; Porter, J. L.; Rochau, G. A.; Savage, M. E.; Schroen, D. G.; Stygar, W. A.; Vesey, R. A.

    2015-05-01

    The magnetized liner inertial fusion concept [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] utilizes a magnetic field and laser heating to relax the pressure requirements of inertial confinement fusion. The first experiments to test the concept [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] were conducted utilizing the 19 MA, 100 ns Z machine, the 2.5 kJ, 1 TW Z Beamlet laser, and the 10 T Applied B-field on Z system. Despite an estimated implosion velocity of only 70 km/s in these experiments, electron and ion temperatures at stagnation were as high as 3 keV, and thermonuclear deuterium-deuterium neutron yields up to 2 × 1012 have been produced. X-ray emission from the fuel at stagnation had widths ranging from 50 to 110 μm over a roughly 80% of the axial extent of the target (6-8 mm) and lasted approximately 2 ns. X-ray yields from these experiments are consistent with a stagnation density of the hot fuel equal to 0.2-0.4 g/cm3. In these experiments, up to 5 × 1010 secondary deuterium-tritium neutrons were produced. Given that the areal density of the plasma was approximately 1-2 mg/cm2, this indicates the stagnation plasma was significantly magnetized, which is consistent with the anisotropy observed in the deuterium-tritium neutron spectra. Control experiments where the laser and/or magnetic field were not utilized failed to produce stagnation temperatures greater than 1 keV and primary deuterium-deuterium yields greater than 1010. An additional control experiment where the fuel contained a sufficient dopant fraction to substantially increase radiative losses also failed to produce a relevant stagnation temperature. The results of these experiments are consistent with a thermonuclear neutron source.

  19. Demonstration of thermonuclear conditions in magnetized liner inertial fusion experiments

    DOE PAGESBeta

    Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Hahn, Kelly D.; Hansen, Stephanie B.; Knapp, Patrick F.; Schmit, Paul F.; Ruiz, Carlos L.; Sinars, Daniel Brian; Harding, Eric C.; et al

    2015-04-29

    In this study, the magnetized liner inertial fusion concept [S. A. Slutz et al., Phys. Plasmas17, 056303 (2010)] utilizes a magnetic field and laser heating to relax the pressure requirements of inertial confinement fusion. The first experiments to test the concept [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] were conducted utilizing the 19 MA, 100 ns Z machine, the 2.5 kJ, 1 TW Z Beamlet laser, and the 10 T Applied B-field on Z system. Despite an estimated implosion velocity of only 70 km/s in these experiments, electron and ion temperatures at stagnation were as highmore » as 3 keV, and thermonuclear deuterium-deuterium neutron yields up to 2 × 1012 have been produced. X-ray emission from the fuel at stagnation had widths ranging from 50 to 110 μm over a roughly 80% of the axial extent of the target (6–8 mm) and lasted approximately 2 ns. X-ray yields from these experiments are consistent with a stagnation density of the hot fuel equal to 0.2–0.4 g/cm3. In these experiments, up to 5 ×1010 secondary deuterium-tritium neutrons were produced. Given that the areal density of the plasma was approximately 1–2 mg/cm2, this indicates the stagnation plasma was significantly magnetized, which is consistent with the anisotropy observed in the deuterium-tritium neutron spectra. Control experiments where the laser and/or magnetic field were not utilized failed to produce stagnation temperatures greater than 1 keV and primary deuterium-deuterium yields greater than 1010. An additional control experiment where the fuel contained a sufficient dopant fraction to substantially increase radiative losses also failed to produce a relevant stagnation temperature. The results of these experiments are consistent with a thermonuclear neutron source.« less

  20. When group membership gets personal: a theory of identity fusion.

    PubMed

    Swann, William B; Jetten, Jolanda; Gómez, Angel; Whitehouse, Harvey; Bastian, Brock

    2012-07-01

    Identity fusion is a relatively unexplored form of alignment with groups that entails a visceral feeling of oneness with the group. This feeling is associated with unusually porous, highly permeable borders between the personal and social self. These porous borders encourage people to channel their personal agency into group behavior, raising the possibility that the personal and social self will combine synergistically to motivate pro-group behavior. Furthermore, the strong personal as well as social identities possessed by highly fused persons cause them to recognize other group members not merely as members of the group but also as unique individuals, prompting the development of strong relational as well as collective ties within the group. In local fusion, people develop relational ties to members of relatively small groups (e.g., families or work teams) with whom they have personal relationships. In extended fusion, people project relational ties onto relatively large collectives composed of many individuals with whom they may have no personal relationships. The research literature indicates that measures of fusion are exceptionally strong predictors of extreme pro-group behavior. Moreover, fusion effects are amplified by augmenting individual agency, either directly (by increasing physiological arousal) or indirectly (by activating personal or social identities). The effects of fusion on pro-group actions are mediated by perceptions of arousal and invulnerability. Possible causes of identity fusion--ranging from relatively distal, evolutionary, and cultural influences to more proximal, contextual influences--are discussed. Finally, implications and future directions are considered. PMID:22642548

  1. Influence of incomplete fusion on complete fusion: Observation of a large incomplete fusion fraction at E {approx_equal}5-7 MeV/nucleon

    SciTech Connect

    Singh, Pushpendra P.; Singh, B. P.; Sharma, Manoj Kumar; Unnati,; Singh, Devendra P.; Prasad, R.; Kumar, Rakesh; Golda, K. S.

    2008-01-15

    Experiments have been carried out to explore the reaction dynamics leading to incomplete fusion of heavy ions at moderate excitation energies. Excitation functions for {sup 168}Lu{sup m}, {sup 167}Lu, {sup 167}Yb, {sup 166}Tm, {sup 179}Re, {sup 177}Re, {sup 177}W, {sup 178}Ta, and {sup 177}Hf radio-nuclides populated via complete and/or incomplete fusion of {sup 16}O with {sup 159}Tb and {sup 169}Tm have been studied over the wide projectile energy range E{sub proj}{approx_equal}75-95 MeV. Recoil-catcher technique followed by off-line {gamma}-spectrometry has been employed in the present measurements. Experimental data have been compared with the predictions of theoretical model code PACE2. The experimentally measured production cross sections of {alpha}-emitting channels were found to be larger as compared to the theoretical model predictions and may be attributed to incomplete fusion at these energies. During the analysis of experimental data, incomplete fusion has been found to be competing with complete fusion. As such, an attempt has been made to estimate the incomplete fusion fraction for both the systems, and has been found to be sensitive for projectile energy and mass asymmetry of interacting partners.

  2. The status of Fast Ignition Realization Experiment (FIREX) and prospects for inertial fusion energy

    NASA Astrophysics Data System (ADS)

    Azechi, H.; FIREX Project Team

    2016-05-01

    Here we report recent progress for the fast ignition inertial confinement fusion demonstration. The fraction of low energy (< 1 MeV) component of the relativistic electron beam (REB), which efficiently heats the fuel core, increases by a factor of 4 by enhancing pulse contrast of heating laser and removing preformed plasma sources. Kilo-tesla magnetic field is studied to guide the diverging REB to the fuel core. The transport simulation of the REB accelerated by the heating laser in the externally applied and compressed magnetic field indicates that the REB can be guided efficiently to the fuel core. The integrated simulation shows > 4% of the heating efficiency and > 4 keV of ion temperature are achievable by using GEKKO-XII and LFEX, properly designed cone-fuel and an external magnetic field.

  3. Inner membrane fusion mediates spatial distribution of axonal mitochondria

    PubMed Central

    Yu, Yiyi; Lee, Hao-Chih; Chen, Kuan-Chieh; Suhan, Joseph; Qiu, Minhua; Ba, Qinle; Yang, Ge

    2016-01-01

    In eukaryotic cells, mitochondria form a dynamic interconnected network to respond to changing needs at different subcellular locations. A fundamental yet unanswered question regarding this network is whether, and if so how, local fusion and fission of individual mitochondria affect their global distribution. To address this question, we developed high-resolution computational image analysis techniques to examine the relations between mitochondrial fusion/fission and spatial distribution within the axon of Drosophila larval neurons. We found that stationary and moving mitochondria underwent fusion and fission regularly but followed different spatial distribution patterns and exhibited different morphology. Disruption of inner membrane fusion by knockdown of dOpa1, Drosophila Optic Atrophy 1, not only increased the spatial density of stationary and moving mitochondria but also changed their spatial distributions and morphology differentially. Knockdown of dOpa1 also impaired axonal transport of mitochondria. But the changed spatial distributions of mitochondria resulted primarily from disruption of inner membrane fusion because knockdown of Milton, a mitochondrial kinesin-1 adapter, caused similar transport velocity impairment but different spatial distributions. Together, our data reveals that stationary mitochondria within the axon interconnect with moving mitochondria through fusion and fission and that local inner membrane fusion between individual mitochondria mediates their global distribution. PMID:26742817

  4. Fusion breeder

    SciTech Connect

    Moir, R.W.

    1982-04-20

    The fusion breeder is a fusion reactor designed with special blankets to maximize the transmutation by 14 MeV neutrons of uranium-238 to plutonium or thorium to uranium-233 for use as a fuel for fission reactors. Breeding fissile fuels has not been a goal of the US fusion energy program. This paper suggests it is time for a policy change to make the fusion breeder a goal of the US fusion program and the US nuclear energy program. The purpose of this paper is to suggest this policy change be made and tell why it should be made, and to outline specific research and development goals so that the fusion breeder will be developed in time to meet fissile fuel needs.

  5. Development progresses of radio frequency ion source for neutral beam injector in fusion devices

    NASA Astrophysics Data System (ADS)

    Chang, D. H.; Jeong, S. H.; Kim, T. S.; Park, M.; Lee, K. W.; In, S. R.

    2014-02-01

    A large-area RF (radio frequency)-driven ion source is being developed in Germany for the heating and current drive of an ITER device. Negative hydrogen ion sources are the major components of neutral beam injection systems in future large-scale fusion experiments such as ITER and DEMO. RF ion sources for the production of positive hydrogen (deuterium) ions have been successfully developed for the neutral beam heating systems at IPP (Max-Planck-Institute for Plasma Physics) in Germany. The first long-pulse ion source has been developed successfully with a magnetic bucket plasma generator including a filament heating structure for the first NBI system of the KSTAR tokamak. There is a development plan for an RF ion source at KAERI to extract the positive ions, which can be applied for the KSTAR NBI system and to extract the negative ions for future fusion devices such as the Fusion Neutron Source and Korea-DEMO. The characteristics of RF-driven plasmas and the uniformity of the plasma parameters in the test-RF ion source were investigated initially using an electrostatic probe.

  6. Development progresses of radio frequency ion source for neutral beam injector in fusion devices.

    PubMed

    Chang, D H; Jeong, S H; Kim, T S; Park, M; Lee, K W; In, S R

    2014-02-01

    A large-area RF (radio frequency)-driven ion source is being developed in Germany for the heating and current drive of an ITER device. Negative hydrogen ion sources are the major components of neutral beam injection systems in future large-scale fusion experiments such as ITER and DEMO. RF ion sources for the production of positive hydrogen (deuterium) ions have been successfully developed for the neutral beam heating systems at IPP (Max-Planck-Institute for Plasma Physics) in Germany. The first long-pulse ion source has been developed successfully with a magnetic bucket plasma generator including a filament heating structure for the first NBI system of the KSTAR tokamak. There is a development plan for an RF ion source at KAERI to extract the positive ions, which can be applied for the KSTAR NBI system and to extract the negative ions for future fusion devices such as the Fusion Neutron Source and Korea-DEMO. The characteristics of RF-driven plasmas and the uniformity of the plasma parameters in the test-RF ion source were investigated initially using an electrostatic probe. PMID:24593580

  7. BOOK REVIEW: Fundamentals of Plasma Physics and Controlled Fusion

    NASA Astrophysics Data System (ADS)

    Brambilla, Marco

    1998-04-01

    general part concludes with a few chapters on waves, again covering a broad spectrum of topics in a very condensed form: cold plasma waves, Landau and cyclotron absorption, quasi-linear theory, power flow and ray tracing in non-uniform plasmas, the main radiofrequency heating scenarios (ion cyclotron, lower hybrid and electron cyclotron) and the most common velocity space instabilities. The second part describes tokamaks, reversed field pinches, stellarators and open ended systems, and ends with a short chapter on inertial fusion. Although more descriptive in nature, this part offers a succinct introduction to relatively advanced topics, particularly for the tokamak: MHD stability and density limits, non-inductive current drive, bootstrap current, improved confinement regimes and scaling laws of the confinement. Reference to the first, general part, allows an introduction to and explanation of many of the formulas in current use for the interpretation of experimental results. A nice feature of this part is also the concise but very readable introduction to the history of fusion research. The level of the presentation corresponds well to what one would expect in a course for postgraduate students: most topics are discussed rather briefly, but always quantitatively, the mathematics being mostly worked out in full. As should be clear from the description of the content, there is a strong bias towards concrete applications, at the expense of general principles: this goes so far that the derivation of the energy principle for ideal MHD instabilities and of the dielectric tensor of the hot plasma are relegated to appendices, in spite of the fact that the mathematics involved is by no means more complex than that of the applications discussed in the main text. The equations of magnetohydrodynamics are derived in Chapter 5 not as a particular closure of the hierarchy of moments of the Vlasov equation, but using a phenomenological approach. The space devoted to comments and

  8. dysfusion Transcriptional Control of Drosophila Tracheal Migration, Adhesion, and Fusion

    PubMed Central

    Jiang, Lan; Crews, Stephen T.

    2006-01-01

    The Drosophila dysfusion basic-helix-loop-helix-PAS transcription factor gene is expressed in specialized fusion cells that reside at the tips of migrating tracheal branches. dysfusion mutants were isolated, and genetic analysis of live embryos revealed that mutant tracheal branches migrate to close proximity but fail to recognize and adhere to each other. Misexpression of dysfusion throughout the trachea further indicated that dysfusion has the ability to both inhibit cell migration and promote ectopic tracheal fusion. Nineteen genes whose expression either increases or decreases in fusion cells during development were analyzed in dysfusion mutant embryos. dysfusion upregulates the levels of four genes, including the shotgun cell adhesion protein gene and the zona pellucida family transmembrane protein gene, CG13196. Misexpression experiments with CG13196 result in ectopic tracheal fusion events, suggesting that it also encodes a cell adhesion protein. Another target gene of dysfusion is members only, which inhibits protein nuclear export and influences tracheal fusion. dysfusion also indirectly downregulates protein levels of Trachealess, an important regulator of tracheal development. These results indicate that fusion cells undergo dynamic changes in gene expression as they switch from migratory to fusion modes and that dysfusion regulates a discrete, but important, set of these genes. PMID:16914738

  9. Measurements of temperature and density in magnetic confinement fusion devices

    NASA Astrophysics Data System (ADS)

    Udintsev, Victor S.

    2010-11-01

    Controlled thermonuclear fusion can fulfil the demand of mankind to have an inexhaustible source of energy that does not cause any serious environmental pollution. The aim of fusion research is to build a continuously operating reactor in which the energy released by the fusion reactions is sufficiently high to keep the plasma hot and to produce more fusion reactions. The knowledge of the plasma temperature and density, together with the energy confinement time, is therefore very important for the effective control of the self-sustained fusion reactor. Various methods and diagnostics for measurements of the plasma temperature and density in present experimental fusion devices, as well as requirements for the future fusion reactors, will be discussed. A special attention will be given to the temperature and density diagnostics in ITER tokamak, which is presently under construction by several international partners at Cadarache in France. Development of these diagnostics is a major challenge because of severe environment, strict engineering requirements, safety issues and the need for high reliability in the measurements.

  10. Fusion Implementation

    SciTech Connect

    J.A. Schmidt

    2002-02-20

    If a fusion DEMO reactor can be brought into operation during the first half of this century, fusion power production can have a significant impact on carbon dioxide production during the latter half of the century. An assessment of fusion implementation scenarios shows that the resource demands and waste production associated with these scenarios are manageable factors. If fusion is implemented during the latter half of this century it will be one element of a portfolio of (hopefully) carbon dioxide limiting sources of electrical power. It is time to assess the regional implications of fusion power implementation. An important attribute of fusion power is the wide range of possible regions of the country, or countries in the world, where power plants can be located. Unlike most renewable energy options, fusion energy will function within a local distribution system and not require costly, and difficult, long distance transmission systems. For example, the East Coast of the United States is a prime candidate for fusion power deployment by virtue of its distance from renewable energy sources. As fossil fuels become less and less available as an energy option, the transmission of energy across bodies of water will become very expensive. On a global scale, fusion power will be particularly attractive for regions separated from sources of renewable energy by oceans.

  11. Environmental and safety issues of the fusion fuel cycle

    SciTech Connect

    Crocker, J.G.

    1980-01-01

    This paper discusses the environmental and safety concerns inherent in the development of fusion energy, and the current Department of Energy programs seeking to: (1) develop safe and reliable techniques for tritium control; (2) reduce the quantity of activation products produced; and (3) provide designs to limit the potential for accidents that could result in release of radioactive materials. Because of the inherent safety features of fusion and the early start that has been made in safety problem recognition and solution, fusion should be among the lower risk technologies for generation of commercial power.

  12. Overexpression of calpastatin inhibits L8 myoblast fusion

    SciTech Connect

    Barnoy, Sivia; E-mail: sivia@post.tau.ac.il; Maki, Masatoshi; Kosower, Nechama S.

    2005-07-08

    The formation of skeletal muscle fibers involves cessation of myoblast division, myoblast alignment, and fusion to multinucleated myofibers. Calpain is one of the factors shown to be involved in myoblast fusion. Using L8 rat myoblasts, we found that calpain levels did not change significantly during myoblast differentiation, whereas calpastatin diminished prior to myoblast fusion and reappeared after fusion. The transient diminution in calpastatin allows the Ca{sup 2+}-promoted activation of calpain and calpain-induced membrane proteolysis, which is required for myoblast fusion. Here we show that calpastatin overexpression in L8 myoblasts does not inhibit cell proliferation and alignment, but prevents myoblast fusion and fusion-associated protein degradation. In addition, calpastatin appears to modulate myogenic gene expression, as indicated by the lack of myogenin (a transcription factor expressed in differentiating myoblasts) in myoblasts overexpressing calpastatin. These results suggest that, in addition to the role in membrane disorganization in the fusing myoblasts, the calpain-calpastatin system may also modulate the levels of factors required for myoblast differentiation.

  13. Welcome Back: Responses of Female Bonobos (Pan paniscus) to Fusions.

    PubMed

    Moscovice, Liza R; Deschner, Tobias; Hohmann, Gottfried

    2015-01-01

    In species with a high degree of fission-fusion social dynamics, fusions may trigger social conflict and thus provide an opportunity to identify sources of social tension and mechanisms related to its alleviation. We characterized behavioral and endocrine responses of captive female bonobos (Pan paniscus) to fusions within a zoo facility designed to simulate naturalistic fission-fusion social dynamics. We compared urinary cortisol levels and frequencies of aggression, grooming and socio-sexual interactions between female bonobos while in stable sub-groups and when one "joiner" was reunited with the "residents" of another sub-group. We hypothesized that fusions would trigger increases in aggression and cortisol levels among reunited joiners and resident females. We further predicted that females who face more uncertainty in their social interactions following fusions may use grooming and/or socio-sexual behavior to reduce social tension and aggression. The only aggression on reunion days occurred between reunited females, but frequencies of aggression remained low across non-reunion and reunion days, and there was no effect of fusions on cortisol levels. Fusions did not influence patterns of grooming, but there were increases in socio-sexual solicitations and socio-sexual interactions between joiners and resident females. Joiners who had been separated from residents for longer received the most solicitations, but were also more selective in their acceptance of solicitations and preferred to have socio-sexual interactions with higher-ranking residents. Our results suggest that socio-sexual interactions play a role in reintegrating female bonobos into social groups following fusions. In addition, females who receive a high number of solicitations are able to gain more control over their socio-sexual interactions and may use socio-sexual interactions for other purposes, such as to enhance their social standing. PMID:25996476

  14. Integro-differential method of solving the inverse coefficient heat conduction problem

    NASA Astrophysics Data System (ADS)

    Baranov, V. L.; Zasyad'Ko, A. A.; Frolov, G. A.

    2010-03-01

    On the basis of differential transformations, a stable integro-differential method of solving the inverse heat conduction problem is suggested. The method has been tested on the example of determining the thermal diffusivity on quasi-stationary fusion and heating of a quartz glazed ceramics specimen.

  15. Fusion materials science: Overview of challenges and recent progress

    SciTech Connect

    Zinkle, Steven J.

    2005-05-15

    A brief review is given of fundamental materials science concepts important for development of structural materials for fusion energy systems. Particular attention is placed on displacement damage effects associated with the unique deuterium-tritium fusion environment. Recent examples of multiscale materials modeling results (closely coupled with experimental studies) are summarized. Fundamental differences in the behavior of body centered cubic versus face centered cubic crystal structures are highlighted. Finally, a brief overview is given of the high-performance reduced-activation materials being developed by fusion.

  16. The making of a fusion branch in the Drosophila trachea.

    PubMed

    Gervais, Louis; Lebreton, Gaelle; Casanova, Jordi

    2012-02-15

    Connection of epithelial tubes to generate a common network is a key step in the formation of tubular organs such as the tracheal respiratory and the vascular systems. However, it is not clear how these connecting tubes arise. Here we address this issue by studying the dorsal fusion branches in the Drosophila trachea, taking into account the morphology and contribution of each cell type on the basis of their individual labeling. Our results explain how a fusion branch forms and also illustrate the different nature of the two seamless tubes in the Drosophila trachea, generated by fusion and terminal cells respectively. PMID:22178247

  17. Effects of Collisional Dissipation on the "Colliding Beam Fusion Reactor "

    NASA Astrophysics Data System (ADS)

    Lampe, Martin; Manheimer, Wallace M.

    1998-11-01

    Rostoker, Binderbauer and Monkhorst have recently proposed a "colliding beam fusion reactor" (CBFR) for use with the p-B11 reaction. We have examined the various dissipative processes resulting from Coulomb collisions, and have concluded that the CBFR equilibrium cannot be sustained for long enough to permit net fusion gain. There are many collisional processes which occur considerably faster than fusion, and result in particle loss, energy loss, or detuning of the resonant energy for the p-B reaction. Pitch-angle scattering of protons off the boron beam, which occurs 100 times faster than fusion, isotropizes the proton beam and results in proton loss. Energy exchange between protons and boron, which is 20 times faster than fusion, detunes the resonance. Proton-proton scattering, which is faster than fusion for all CBFR scenarios, Maxwellianizes the protons and thus detunes the resonance. Ion-electron collisions lead indirectly to a friction between the two ion beams, which is typically fast compared to the fusion process. Results of Fokker-Planck analyses of each process will be shown.

  18. Multivariate Sensitivity Analysis of Time-of-Flight Sensor Fusion

    NASA Astrophysics Data System (ADS)

    Schwarz, Sebastian; Sjöström, Mårten; Olsson, Roger

    2014-09-01

    Obtaining three-dimensional scenery data is an essential task in computer vision, with diverse applications in various areas such as manufacturing and quality control, security and surveillance, or user interaction and entertainment. Dedicated Time-of-Flight sensors can provide detailed scenery depth in real-time and overcome short-comings of traditional stereo analysis. Nonetheless, they do not provide texture information and have limited spatial resolution. Therefore such sensors are typically combined with high resolution video sensors. Time-of-Flight Sensor Fusion is a highly active field of research. Over the recent years, there have been multiple proposals addressing important topics such as texture-guided depth upsampling and depth data denoising. In this article we take a step back and look at the underlying principles of ToF sensor fusion. We derive the ToF sensor fusion error model and evaluate its sensitivity to inaccuracies in camera calibration and depth measurements. In accordance with our findings, we propose certain courses of action to ensure high quality fusion results. With this multivariate sensitivity analysis of the ToF sensor fusion model, we provide an important guideline for designing, calibrating and running a sophisticated Time-of-Flight sensor fusion capture systems.

  19. Comparison of Fusion Rates between Glycerol-Preserved and Frozen Composite Allografts in Cervical Fusion

    PubMed Central

    Rodway, Ian; Gander, Julie

    2014-01-01

    Background. This retrospective, two cohort series study was designed to compare a room temperature, glycerol-preserved composite pinned bone allograft (G-CPBA) with the same graft type provided in a frozen state (F-CPBA) for use as a cervical interbody spacer in anterior cervical discectomy and fusion (ACDF). Methods. A comprehensive chart review was performed for 67 sequential patients that received either a F-CPBA or a G-CPBA and had at least one-year follow-up. Twenty-eight patients had received G-CPBA grafts and 37 patients had received F-CPBA grafts. Two additional 2-level patients had received one of each type of grafts. Results. At 3 months, 45.3% (29 of 64) of glycerol-preserved and 41.4% (29 of 70) of frozen allografts, respectively, were considered to be fused radiographically. At 12 months, 100% of both treatment groups (41 glycerol-preserved and 45 frozen) were considered fused. Fusion rates for G-CPBA were statistically similar to F-CPBA at both 3 and 12 months (P = 0.6535 and >0.999, resp.). There were no allograft related complications in either treatment group. Conclusions. 100% fusion rates were attained by both treatment groups at 12 months and were similar at short-term follow-up for all comparable levels. Level of Evidence. Level of evidence is III.

  20. Use of /sup 3/He/sup + +/ ICRF minority heating to simulate alpha particle heating

    DOEpatents

    Post, D.E. Jr.; Hwang, D.Q.; Hovey, J.

    1983-11-16

    It is an object of the present invention to provide a better understanding of alpha particle behavior in a magnetically confined, energetic plasma. Another object of the present invention is to provide an improved means and method for studying and measuring the energy distribution of heated alpha particles in a confined plasma. Yet another object of the present invention is to permit detailed analysis of energetic alpha particle behavior in a magnetically confined plasma for use in near term fusion reactor experiments. A still further object of the present invention is to simulate energetic alpha particle behavior in a deuterium-tritium plasma confined in a fusion reactor without producing the neutron activation associated with the thus produced alpha particles.