Science.gov

Sample records for heat shock promoter

  1. Heat shock stimulation of a tilapia heat shock protein 70 promoter is mediated by a distal element.

    PubMed Central

    Molina, A; Di Martino, E; Martial, J A; Muller, M

    2001-01-01

    We reported previously that a tilapia (Oreochromis mossambicus) heat shock protein 70 (HSP70) promoter is able to confer heat shock response on a reporter gene after transient expression both in cell culture and in microinjected zebrafish embryos. Here we present the first functional analysis of a fish HSP70 promoter, the tiHSP70 promoter. Using transient expression experiments in carp EPC (epithelioma papulosum cyprini) cells and in microinjected zebrafish embryos, we show that a distal heat shock response element (HSE1) at approx. -800 is predominantly responsible for the heat shock response of the tiHSP70 promoter. This element specifically binds an inducible transcription factor, most probably heat shock factor, and a constitutive factor. The constitutive complex is not observed with the non-functional, proximal HSE3 sequence, suggesting that both factors are required for the heat shock response mediated by HSE1. PMID:11368761

  2. Heat Shock Proteins Promote Cancer: It's a Protection Racket.

    PubMed

    Calderwood, Stuart K; Gong, Jianlin

    2016-04-01

    Heat shock proteins (HSP) are expressed at high levels in cancer and form a fostering environment that is essential for tumor development. Here, we review the recent data in this area, concentrating mainly on Hsp27, Hsp70, and Hsp90. The overriding role of HSPs in cancer is to stabilize the active functions of overexpressed and mutated cancer genes. Thus, elevated HSPs are required for many of the traits that underlie the morbidity of cancer, including increased growth, survival, and formation of secondary cancers. In addition, HSPs participate in the evolution of cancer treatment resistance. HSPs are also released from cancer cells and influence malignant properties by receptor-mediated signaling. Current data strongly support efforts to target HSPs in cancer treatment. PMID:26874923

  3. Nucleolin Promotes Heat Shock-Associated Translation of VEGF-D to Promote Tumor Lymphangiogenesis.

    PubMed

    Morfoisse, Florent; Tatin, Florence; Hantelys, Fransky; Adoue, Aurelien; Helfer, Anne-Catherine; Cassant-Sourdy, Stephanie; Pujol, Françoise; Gomez-Brouchet, Anne; Ligat, Laetitia; Lopez, Frederic; Pyronnet, Stephane; Courty, Jose; Guillermet-Guibert, Julie; Marzi, Stefano; Schneider, Robert J; Prats, Anne-Catherine; Garmy-Susini, Barbara H

    2016-08-01

    The vascular endothelial growth factor VEGF-D promotes metastasis by inducing lymphangiogenesis and dilatation of the lymphatic vasculature, facilitating tumor cell extravasion. Here we report a novel level of control for VEGF-D expression at the level of protein translation. In human tumor cells, VEGF-D colocalized with eIF4GI and 4E-BP1, which can program increased initiation at IRES motifs on mRNA by the translational initiation complex. In murine tumors, the steady-state level of VEGF-D protein was increased despite the overexpression and dephosphorylation of 4E-BP1, which downregulates protein synthesis, suggesting the presence of an internal ribosome entry site (IRES) in the 5' UTR of VEGF-D mRNA. We found that nucleolin, a nucleolar protein involved in ribosomal maturation, bound directly to the 5'UTR of VEGF-D mRNA, thereby improving its translation following heat shock stress via IRES activation. Nucleolin blockade by RNAi-mediated silencing or pharmacologic inhibition reduced VEGF-D translation along with a subsequent constriction of lymphatic vessels in tumors. Our results identify nucleolin as a key regulator of VEGF-D expression, deepening understanding of lymphangiogenesis control during tumor formation. Cancer Res; 76(15); 4394-405. ©2016 AACR. PMID:27280395

  4. Developmentally dictated expression of heat shock factors: exclusive expression of HSF4 in the postnatal lens and its specific interaction with alphaB-crystallin heat shock promoter.

    PubMed

    Somasundaram, T; Bhat, Suraj P

    2004-10-22

    The molecular cascade of stress response in higher eukaryotes commences in the cytoplasm with the trimerization of the heat shock factor 1 (HSF1), followed by its transport to the nucleus, where it binds to the heat shock element leading to the activation of transcription from the down-stream gene(s). This well-established paradigm has been mostly studied in cultured cells. The developmental and tissue-specific control of the heat shock transcription factors (HSFs) and their interactions with heat shock promoters remain unexplored. We report here that in the rat lens, among the three mammalian HSFs, expression of HSF1 and HSF2 is largely fetal, whereas the expression of HSF4 is predominantly postnatal. Similar pattern of expression of HSF1 and HSF4 is seen in fetal and adult human lenses. This stage-specific inverse relationship between the expression of HSF1/2 and HSF4 suggests tissue-specific management of stress depending on the presence or absence of specific HSF(s). In addition to real-time PCR and immunoblotting, gel mobility shift assays, coupled with specific antibodies and HSE probes, derived from three different heat shock promoters, establish that there is no HSF1 or HSF2 binding activity in the postnatal lens nuclear extracts. Using this unique, developmentally modulated in vivo system, we demonstrate 1) specific patterns of HSF4 binding to heat shock elements derived from alphaB-crystallin, Hsp70, and Hsp82 promoters and 2) that it is HSF4 and not HSF1 or HSF2 that interacts with the canonical heat shock element of the alphaB-crystallin gene. PMID:15308659

  5. Activity of Heat Shock Genes’ Promoters in Thermally Contrasting Animal Species

    PubMed Central

    Astakhova, Lyubov N.; Zatsepina, Olga G.; Funikov, Sergei Yu.; Zelentsova, Elena S.; Schostak, Natalia G.; Orishchenko, Konstantin E.; Evgen’ev, Michael B.; Garbuz, David G.

    2015-01-01

    Heat shock gene promoters represent a highly conserved and universal system for the rapid induction of transcription after various stressful stimuli. We chose pairs of mammalian and insect species that significantly differ in their thermoresistance and constitutive levels of Hsp70 to compare hsp promoter strength under normal conditions and after heat shock (HS). The first pair includes the HSPA1 gene promoter of camel (Camelus dromedarius) and humans. It was demonstrated that the camel HSPA1A and HSPA1L promoters function normally in vitro in human cell cultures and exceed the strength of orthologous human promoters under basal conditions. We used the same in vitro assay for Drosophila melanogaster Schneider-2 (S2) cells to compare the activity of the hsp70 and hsp83 promoters of the second species pair represented by Diptera, i.e., Stratiomys singularior and D. melanogaster, which dramatically differ in thermoresistance and the pattern of Hsp70 accumulation. Promoter strength was also monitored in vivo in D. melanogaster strains transformed with constructs containing the S. singularior hsp70 ORF driven either by its own promoter or an orthologous promoter from the D. melanogaster hsp70Aa gene. Analysis revealed low S. singularior hsp70 promoter activity in vitro and in vivo under basal conditions and after HS in comparison with the endogenous promoter in D. melanogaster cells, which correlates with the absence of canonical GAGA elements in the promoters of the former species. Indeed, the insertion of GAGA elements into the S. singularior hsp70 regulatory region resulted in a dramatic increase in promoter activity in vitro but only modestly enhanced the promoter strength in the larvae of the transformed strains. In contrast with hsp70 promoters, hsp83 promoters from both of the studied Diptera species demonstrated high conservation and universality. PMID:25700087

  6. An artificial HSE promoter for efficient and selective detection of heat shock pathway activity.

    PubMed

    Ortner, Viktoria; Ludwig, Alfred; Riegel, Elisabeth; Dunzinger, Sarah; Czerny, Thomas

    2015-03-01

    Detection of cellular stress is of major importance for the survival of cells. During evolution, a network of stress pathways developed, with the heat shock (HS) response playing a major role. The key transcription factor mediating HS signalling activity in mammalian cells is the HS factor HSF1. When activated it binds to the heat shock elements (HSE) in the promoters of target genes like heat shock protein (HSP) genes. They are induced by HSF1 but in addition they integrate multiple signals from different stress pathways. Here, we developed an artificial promoter consisting only of HSEs and therefore selectively reacting to HSF-mediated pathway activation. The promoter is highly inducible but has an extreme low basal level. Direct comparison with the HSPA1A promoter activity indicates that heat-dependent expression can be fully recapitulated by isolated HSEs in human cells. Using this sensitive reporter, we measured the HS response for different temperatures and exposure times. In particular, long heat induction times of 1 or 2 h were compared with short heat durations down to 1 min, conditions typical for burn injuries. We found similar responses to both long and short heat durations but at completely different temperatures. Exposure times of 2 h result in pathway activation at 41 to 44 °C, whereas heat pulses of 1 min lead to a maximum HS response between 47 and 50 °C. The results suggest that the HS response is initiated by a combination of temperature and exposure time but not by a certain threshold temperature. PMID:25168173

  7. Dual-reporter in vivo imaging of transient and inducible heat-shock promoter activation

    PubMed Central

    Fortin, Pierre-Yves; Genevois, Coralie; Chapolard, Mathilde; Santalucía, Tomàs; Planas, Anna M.; Couillaud, Franck

    2014-01-01

    Gene promoter activity can be studied in vivo by molecular imaging methods using reporter gene technology. Transcription of the reporter and the reported genes occurs simultaneously. However, imaging depends on reporter protein translation, stability, and cellular fate that may differ among the various proteins. A double transgenic mouse strain expressing the firefly luciferase (lucF) and fluorescent mPlum protein under the transcriptional control of the thermo-inducible heat-shock protein (Hspa1b) promoter was generated allowing to follow up the reporter proteins by different and complementary in vivo imaging technologies. These mice were used for in vivo imaging by bioluminescence and epi fluorescence reflectance imaging (BLI & FRI) and as a source of embryonic fibroblast (MEF) for in vitro approaches. LucF, mPlum and endogenous Hsp70 mRNAs were transcribed simultaneously. The increase in mRNA was transient, peaking at 3 h and then returning to the basal level about 6 h after the thermal stimulations. The bioluminescent signal was transient and initiated with a 3 h delay versus mRNA expression. The onset of mPlum fluorescence was more delayed, increasing slowly up to 30 h after heat-shock and remaining for several days. This mouse allows for both bioluminescence imaging (BLI) and fluorescence reflectance imaging (FRI) of Hsp70 promoter activation showing an early and transient lucF activity and a retrospective and persistent mPlum fluorescence. This transgenic mouse will allow following the transient local induction of Hsp-70 promoter beyond its induction time-frame and relate into subsequent dynamic biological effects of the heat-shock response. PMID:24575340

  8. Dual-reporter in vivo imaging of transient and inducible heat-shock promoter activation.

    PubMed

    Fortin, Pierre-Yves; Genevois, Coralie; Chapolard, Mathilde; Santalucía, Tomàs; Planas, Anna M; Couillaud, Franck

    2014-02-01

    Gene promoter activity can be studied in vivo by molecular imaging methods using reporter gene technology. Transcription of the reporter and the reported genes occurs simultaneously. However, imaging depends on reporter protein translation, stability, and cellular fate that may differ among the various proteins. A double transgenic mouse strain expressing the firefly luciferase (lucF) and fluorescent mPlum protein under the transcriptional control of the thermo-inducible heat-shock protein (Hspa1b) promoter was generated allowing to follow up the reporter proteins by different and complementary in vivo imaging technologies. These mice were used for in vivo imaging by bioluminescence and epi fluorescence reflectance imaging (BLI & FRI) and as a source of embryonic fibroblast (MEF) for in vitro approaches. LucF, mPlum and endogenous Hsp70 mRNAs were transcribed simultaneously. The increase in mRNA was transient, peaking at 3 h and then returning to the basal level about 6 h after the thermal stimulations. The bioluminescent signal was transient and initiated with a 3 h delay versus mRNA expression. The onset of mPlum fluorescence was more delayed, increasing slowly up to 30 h after heat-shock and remaining for several days. This mouse allows for both bioluminescence imaging (BLI) and fluorescence reflectance imaging (FRI) of Hsp70 promoter activation showing an early and transient lucF activity and a retrospective and persistent mPlum fluorescence. This transgenic mouse will allow following the transient local induction of Hsp-70 promoter beyond its induction time-frame and relate into subsequent dynamic biological effects of the heat-shock response. PMID:24575340

  9. Heat shock factor 1 upregulates transcription of Epstein-Barr Virus nuclear antigen 1 by binding to a heat shock element within the BamHI-Q promoter

    SciTech Connect

    Wang, Feng-Wei; Wu, Xian-Rui; Liu, Wen-Ju; Liao, Yi-Ji; Lin, Sheng; Zong, Yong-Sheng; Zeng, Mu-Sheng; Zeng, Yi-Xin; Mai, Shi-Juan; Xie, Dan

    2011-12-20

    Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA1) is essential for maintenance of the episome and establishment of latency. In this study, we observed that heat treatment effectively induced EBNA1 transcription in EBV-transformed B95-8 and human LCL cell lines. Although Cp is considered as the sole promoter used for the expression of EBNA1 transcripts in the lymphoblastoid cell lines, the RT-PCR results showed that the EBNA1 transcripts induced by heat treatment arise from Qp-initiated transcripts. Using bioinformatics, a high affinity and functional heat shock factor 1 (HSF1)-binding element within the - 17/+4 oligonucleotide of the Qp was found, and was determined by electrophoretic mobility shift assay and chromatin immunoprecipitation assay. Moreover, heat shock and exogenous HSF1 expression induced Qp activity in reporter assays. Further, RNA interference-mediated HSF1 gene silencing attenuated heat-induced EBNA1 expression in B95-8 cells. These results provide evidence that EBNA1 is a new target for the transcription factor HSF1.

  10. Heat shock protein 27 promotes cell proliferation through activator protein-1 in lung cancer

    PubMed Central

    ZHANG, SAI; HU, YANGMIN; HUANG, YUWEN; XU, HUIMIN; WU, GONGXIONG; DAI, HAIBIN

    2015-01-01

    Heat shock protein 27 (HSP27) is an important regulator involved in the development of lung cancer. However, limited evidence exists concerning the underlying molecular mechanisms of its action. The results of the present study revealed that HSP27 was highly expressed in the lung cancer tissues of mice. In an in vitro model, the overexpression of HSP27 promoted cell proliferation, while HSP27 knockdown inhibited cell proliferation. HSP27 promoted cell proliferation in vitro by directly upregulating the expression of HSP27 target genes, which required the activation of the activator protein-1 (AP-1) signaling pathway. This was evaluated by the phosphorylation status of an important pathway component, c-Jun in lung cancer tissue and cells. These results suggested that HSP27 has a promotional role in lung cancer, and therefore indicated a novel mechanism involving lung cancer cell proliferation, which may underlie poor responses to therapy. Therefore, HSP27 may be a suitable therapeutic target for the treatment of lung cancer. PMID:26137108

  11. A novel DNA replication origin identified in the human heat shock protein 70 gene promoter.

    PubMed Central

    Taira, T; Iguchi-Ariga, S M; Ariga, H

    1994-01-01

    A general and sensitive method for the mapping of initiation sites of DNA replication in vivo, developed by Vassilev and Johnson, has revealed replication origins in the region of simian virus 40 ori, in the regions upstream from the human c-myc gene and downstream from the Chinese hamster dihydrofolate reductase gene, and in the enhancer region of the mouse immunoglobulin heavy-chain gene. Here we report that the region containing the promoter of the human heat shock protein 70 (hsp70) gene was identified as a DNA replication origin in HeLa cells by this method. Several segments of the region were cloned into pUC19 and examined for autonomously replicating sequence (ARS) activity. The plasmids carrying the segments replicated episomally and semiconservatively when transfected into HeLa cells. The segments of ARS activity contained the sequences previously identified as binding sequences for a c-myc protein complex (T. Taira, Y. Negishi, F. Kihara, S. M. M. Iguchi-Ariga, and H. Ariga, Biochem. Biophys. Acta 1130:166-174, 1992). Mutations introduced within the c-myc protein complex binding sequences abolished the ARS activity. Moreover, the ARS plasmids stably replicated at episomal state for a long time in established cell lines. The results suggest that the promoter region of the human hsp70 gene plays a role in DNA replication as well as in transcription. Images PMID:8065368

  12. Characterizing HSF1 Binding and Post-Translational Modifications of hsp70 Promoter in Cultured Cortical Neurons: Implications in the Heat-Shock Response

    PubMed Central

    Gómez, Andrea V.; Córdova, Gonzalo; Munita, Roberto; Parada, Guillermo E.; Barrios, Álvaro P.; Cancino, Gonzalo I.; Álvarez, Alejandra R.; Andrés, María E.

    2015-01-01

    Causes of lower induction of Hsp70 in neurons during heat shock are still a matter of debate. To further inquire into the mechanisms regulating Hsp70 expression in neurons, we studied the activity of Heat Shock Factor 1 (HSF1) and histone posttranslational modifications (PTMs) at the hsp70 promoter in rat cortical neurons. Heat shock induced a transient and efficient translocation of HSF1 to neuronal nuclei. However, no binding of HSF1 at the hsp70 promoter was detected while it bound to the hsp25 promoter in cortical neurons during heat shock. Histone PTMs analysis showed that the hsp70 promoter harbors lower levels of histone H3 and H4 acetylation in cortical neurons compared to PC12 cells under basal conditions. Transcriptomic profiling data analysis showed a predominant usage of cryptic transcriptional start sites at hsp70 gene in the rat cerebral cortex, compared with the whole brain. These data support a weaker activation of hsp70 canonical promoter. Heat shock increased H3Ac at the hsp70 promoter in PC12 cells, which correlated with increased Hsp70 expression while no modifications occurred at the hsp70 promoter in cortical neurons. Increased histone H3 acetylation by Trichostatin A led to hsp70 mRNA and protein induction in cortical neurons. In conclusion, we found that two independent mechanisms maintain a lower induction of Hsp70 in cortical neurons. First, HSF1 fails to bind specifically to the hsp70 promoter in cortical neurons during heat shock and, second, the hsp70 promoter is less accessible in neurons compared to non-neuronal cells due to histone deacetylases repression. PMID:26053851

  13. A 9 bp cis-element in the promoters of class I small heat shock protein genes on chromosome 3 in rice mediates L-azetidine-2-carboxylic acid and heat shock responses

    PubMed Central

    Guan, Jiahn-Chou; Yeh, Ching-Hui; Lin, Ya-Ping; Ke, Yi-Ting; Chen, Ming-Tse; You, Jia-Wen; Liu, Yi-Hsin; Lu, Chung-An; Wu, Shaw-Jye; Lin, Chu-Yung

    2010-01-01

    In rice, the class I small heat shock protein (sHSP-CI) genes were found to be selectively induced by L-azetidine-2-carboxylic acid (AZC) on chromosome 3 but not chromosome 1. Here it is shown that a novel cis-responsive element contributed to the differential regulation. By serial deletion and computational analysis, a 9 bp putative AZC-responsive element (AZRE), GTCCTGGAC, located between nucleotides –186 and –178 relative to the transcription initiation site of Oshsp17.3 was revealed. Deletion of this putative AZRE from the promoter abolished its ability to be induced by AZC. Moreover, electrophoretic mobility shift assay (EMSA) revealed that the AZRE interacted specifically with nuclear proteins from AZC-treated rice seedlings. Two AZRE–protein complexes were detected by EMSA, one of which could be competed out by a canonical heat shock element (HSE). Deletion of the AZRE also affected the HS response. Furthermore, transient co-expression of the heat shock factor OsHsfA4b with the AZRE in the promoter of Oshsp17.3 was effective. The requirement for the putative AZRE for AZC and HS responses in transgenic Arabidopsis was also shown. Thus, AZRE represents an alternative form of heat HSE, and its interaction with canonical HSEs through heat shock factors may be required to respond to HS and AZC. PMID:20643810

  14. Reactive oxygen species promote heat shock protein 90-mediated HBV capsid assembly.

    PubMed

    Kim, Yoon Sik; Seo, Hyun Wook; Jung, Guhung

    2015-02-13

    Hepatitis B virus (HBV) infection induces reactive oxygen species (ROS) production and has been associated with the development of hepatocellular carcinoma (HCC). ROS are also an important factor in HCC because the accumulated ROS leads to abnormal cell proliferation and chromosome mutation. In oxidative stress, heat shock protein 90 (Hsp90) and glutathione (GSH) function as part of the defense mechanism. Hsp90 prevents cellular component from oxidative stress, and GSH acts as antioxidants scavenging ROS in the cell. However, it is not known whether molecules regulated by oxidative stress are involved in HBV capsid assembly. Based on the previous study that Hsp90 facilitates HBV capsid assembly, which is an important step for the packing of viral particles, here, we show that ROS enrich Hsp90-driven HBV capsid formation. In cell-free system, HBV capsid assembly was facilitated by ROS with Hsp90, whereas it was decreased without Hsp90. In addition, GSH inhibited the function of Hsp90 to decrease HBV capsid assembly. Consistent with the result of cell-free system, ROS and buthionine sulfoximine (BS), an inhibitor of GSH synthesis, increased HBV capsid formation in HepG2.2.15 cells. Thus, our study uncovers the interplay between ROS and Hsp90 during HBV capsid assembly. PMID:25576869

  15. Molecular Dissection of the Human Ubiquitin C Promoter Reveals Heat Shock Element Architectures with Activating and Repressive Functions.

    PubMed

    Crinelli, Rita; Bianchi, Marzia; Radici, Lucia; Carloni, Elisa; Giacomini, Elisa; Magnani, Mauro

    2015-01-01

    The promoter of the polyubiquitin C gene (UBC) contains putative heat shock elements (HSEs) which are thought to mediate UBC induction upon stress. However, the mapping and the functional characterization of the cis-acting determinants for its up-regulation have not yet been addressed. In this study, the sequence encompassing 916 nucleotides upstream of the transcription start site of the human UBC gene has been dissected by in silico, in vitro and in vivo approaches. The information derived from this analysis was used to study the functional role and the interplay of the identified HSEs in mediating the transcriptional activation of the UBC gene under conditions of proteotoxic stress, induced by the proteasome inhibitor MG132. Here we demonstrate that at least three HSEs, with different configurations, exist in the UBC promoter: two distal, residing within nucleotides -841/-817 and -715/-691, and one proximal to the transcription start site (nt -100/-65). All of them are bound by transcription factors belonging to the heat shock factor (HSF) family, as determined by bandshift, supershift and ChIP analyses. Site-directed mutagenesis of reporter constructs demonstrated that while the distal elements are involved in the up-regulation of UBC in response to proteasome inhibition, the proximal one appears rather to function as negative regulator of the stress-induced transcriptional activity. This is the first evidence that an HSE may exert a negative role on the transcription driven by other HSE motifs on the same gene promoter, highlighting a new level of complexity in the regulation of HSFs and in the control of ubiquitin levels. PMID:26317694

  16. Reactive oxygen species promote heat shock protein 90-mediated HBV capsid assembly

    SciTech Connect

    Kim, Yoon Sik Seo, Hyun Wook Jung, Guhung

    2015-02-13

    Hepatitis B virus (HBV) infection induces reactive oxygen species (ROS) production and has been associated with the development of hepatocellular carcinoma (HCC). ROS are also an important factor in HCC because the accumulated ROS leads to abnormal cell proliferation and chromosome mutation. In oxidative stress, heat shock protein 90 (Hsp90) and glutathione (GSH) function as part of the defense mechanism. Hsp90 prevents cellular component from oxidative stress, and GSH acts as antioxidants scavenging ROS in the cell. However, it is not known whether molecules regulated by oxidative stress are involved in HBV capsid assembly. Based on the previous study that Hsp90 facilitates HBV capsid assembly, which is an important step for the packing of viral particles, here, we show that ROS enrich Hsp90-driven HBV capsid formation. In cell-free system, HBV capsid assembly was facilitated by ROS with Hsp90, whereas it was decreased without Hsp90. In addition, GSH inhibited the function of Hsp90 to decrease HBV capsid assembly. Consistent with the result of cell-free system, ROS and buthionine sulfoximine (BS), an inhibitor of GSH synthesis, increased HBV capsid formation in HepG2.2.15 cells. Thus, our study uncovers the interplay between ROS and Hsp90 during HBV capsid assembly. - Highlights: • We examined H{sub 2}O{sub 2} and GSH modulate HBV capsid assembly. • H{sub 2}O{sub 2} facilitates HBV capsid assembly in the presence of Hsp90. • GSH inhibits function of Hsp90 in facilitating HBV capsid assembly. • H{sub 2}O{sub 2} and GSH induce conformation change of Hsp90.

  17. Enzyme-treated asparagus extract promotes expression of heat shock protein and exerts antistress effects.

    PubMed

    Ito, Tomohiro; Maeda, Takahiro; Goto, Kazunori; Miura, Takehito; Wakame, Koji; Nishioka, Hiroshi; Sato, Atsuya

    2014-03-01

    A novel enzyme-treated asparagus extract (ETAS) has been developed as a functional material produced from asparagus stem. Studies were conducted to determine the effect of ETAS on heat shock protein 70 (HSP70) expression and alleviation of stress. HeLa cells were treated with ETAS, and HSP70 mRNA and protein levels were measured using a reverse transcription-polymerase chain reaction (RT-PCR) assay and an enzyme-linked immunosorbent assay (ELISA), respectively. ETAS showed significant increases in HSP70 mRNA at more than 0.125 mg/mL and the protein at more than 1.0 mg/mL. The antistress effect was evaluated in a murine sleep-deprivation model. A sleep-deprivation stress load resulted in elevation of blood corticosterone and lipid peroxide concentrations, while supplementation with ETAS at 200 and 1000 mg/kg body weight was associated with significantly reduced levels of both stress markers, which were in the normal range. The HSP70 protein expression level in mice subjected to sleep-deprivation stress and supplemented with ETAS was significantly enhanced in stomach, liver, and kidney, compared to ETAS-untreated mice. A preliminary and small-sized human study was conducted among healthy volunteers consuming up to 150 mg/d of ETAS daily for 7 d. The mRNA expression of HSP70 in peripheral leukocytes was significantly elevated at intakes of 100 or 150 mg/d, compared to their baseline levels. Since HSP70 is known to be a stress-related protein and its induction leads to cytoprotection, the present results suggest that ETAS might exert antistress effects under stressful conditions, resulting from enhancement of HSP70 expression. PMID:24498968

  18. Phosphorylated heat shock protein 27 promotes lipid clearance in hepatic cells through interacting with STAT3 and activating autophagy.

    PubMed

    Shen, Lei; Qi, Zhilin; Zhu, Yanyan; Song, Xiaomeng; Xuan, Chunxia; Ben, Peiling; Lan, Lei; Luo, Lan; Yin, Zhimin

    2016-08-01

    Nonalcoholic fatty liver disease (NAFLD) has become the major liver disease worldwide. Recently, several studies have identified that the activation of autophagy attenuates hepatic steatosis. Heat shock protein 27 (Hsp27) is involved in autophagy in response to various stimuli. In this study, we demonstrate that phosphorylated Hsp27 stimulates autophagy and lipid droplet clearance and interacts with STAT3. In vivo study showed that high fat diet (HFD) feeding increased Hsp25 (mouse orthology of Hsp27) phosphorylation and autophagy in mouse livers. Inhibition of Hsp25 phosphorylation exacerbated HFD-induced hepatic steatosis in mice. In vitro study showed that palmitate-induced lipid overload in hepatic cells was enhanced by Hsp27 knockdown, KRIBB3 treatment and Hsp27-3A (non-phosphorylatable) overexpression but was prevented by Hsp27-WT (wild type) and Hsp27-3D (phosphomimetic) overexpression. Mechanism analysis demonstrated that palmitate could induce Hsp27 phosphorylation which promoted palmitate-induced autophagy. Phosphorylated Hsp27 interacted with STAT3 in response to palmitate treatment, and disrupted the STAT3/PKR complexes, facilitated PKR-dependent eIF2α phosphorylation, and thus stimulated autophagy. To conclude, our study provides a novel mechanism by which the phosphorylated Hsp27 promotes hepatic lipid clearance and suggests a new insight for therapy of steatotic diseases such as nonalcoholic fatty liver disease (NAFLD). PMID:27185187

  19. Targeted gene expression without a tissue-specific promoter: creating mosaic embryos using laser-induced single-cell heat shock

    NASA Technical Reports Server (NTRS)

    Halfon, M. S.; Kose, H.; Chiba, A.; Keshishian, H.

    1997-01-01

    We have developed a method to target gene expression in the Drosophila embryo to a specific cell without having a promoter that directs expression in that particular cell. Using a digitally enhanced imaging system to identify single cells within the living embryo, we apply a heat shock to each cell individually by using a laser microbeam. A 1- to 2-min laser treatment is sufficient to induce a heat-shock response but is not lethal to the heat-shocked cells. Induction of heat shock was measured in a variety of cell types, including neurons and somatic muscles, by the expression of beta-galactosidase from an hsp26-lacZ reporter construct or by expression of a UAS target gene after induction of hsGAL4. We discuss the applicability of this technique to ectopic gene expression studies, lineage tracing, gene inactivation studies, and studies of cells in vitro. Laser heat shock is a versatile technique that can be adapted for use in a variety of research organisms and is useful for any studies in which it is desirable to express a given gene in only a distinct cell or clone of cells, either transiently or constitutively, at a time point of choice.

  20. Non-Lethal Heat Shock of the Asian Green Mussel, Perna viridis, Promotes Hsp70 Synthesis, Induces Thermotolerance and Protects Against Vibrio Infection

    PubMed Central

    Aleng, Nor Afiqah; Sung, Yeong Yik; MacRae, Thomas H.; Abd Wahid, Mohd Effendy

    2015-01-01

    Mild heat stress promotes thermotolerance and protection against several different stresses in aquatic animals, consequences correlated with the accumulation of heat shock protein 70 (Hsp70). The purpose of this study was to determine if non-lethal heat shock (NLHS) of the Asian green mussel, Perna viridis, an aquatic species of commercial value, promoted the production of Hsp70 and enhanced its resistance to stresses. Initially, the LT50 and LHT for P. viridis were determined to be 42°C and 44°C, respectively, with no heat shock induced death of mussels at 40°C or less. Immunoprobing of western blots revealed augmentation of constitutive (PvHsp70-1) and inducible (PvHsp70-2) Hsp70 in tissue from adductor muscle, foot, gill and mantel of P. viridis exposed to 38°C for 30 min followed by 6 h recovery, NLHS conditions for this organism. Characterization by liquid chromatography-tandem mass spectrometry (LC-MS/MS) revealed that PvHsp70-1 and PvHsp70-2 respectively corresponded most closely to Hsp70 from P. viridis and Mytilus galloprovincialis. Priming of adult mussels with NLHS promoted thermotolerance and increased resistance to V. alginolyticus. The induction of Hsp70 in parallel with enhanced thermotolerance and improved protection against V. alginolyticus, suggests Hsp70 functions in P. viridis as a molecular chaperone and as a stimulator of the immune system. PMID:26288319

  1. Non-Lethal Heat Shock of the Asian Green Mussel, Perna viridis, Promotes Hsp70 Synthesis, Induces Thermotolerance and Protects Against Vibrio Infection.

    PubMed

    Aleng, Nor Afiqah; Sung, Yeong Yik; MacRae, Thomas H; Abd Wahid, Mohd Effendy

    2015-01-01

    Mild heat stress promotes thermotolerance and protection against several different stresses in aquatic animals, consequences correlated with the accumulation of heat shock protein 70 (Hsp70). The purpose of this study was to determine if non-lethal heat shock (NLHS) of the Asian green mussel, Perna viridis, an aquatic species of commercial value, promoted the production of Hsp70 and enhanced its resistance to stresses. Initially, the LT50 and LHT for P. viridis were determined to be 42°C and 44°C, respectively, with no heat shock induced death of mussels at 40°C or less. Immunoprobing of western blots revealed augmentation of constitutive (PvHsp70-1) and inducible (PvHsp70-2) Hsp70 in tissue from adductor muscle, foot, gill and mantel of P. viridis exposed to 38°C for 30 min followed by 6 h recovery, NLHS conditions for this organism. Characterization by liquid chromatography-tandem mass spectrometry (LC-MS/MS) revealed that PvHsp70-1 and PvHsp70-2 respectively corresponded most closely to Hsp70 from P. viridis and Mytilus galloprovincialis. Priming of adult mussels with NLHS promoted thermotolerance and increased resistance to V. alginolyticus. The induction of Hsp70 in parallel with enhanced thermotolerance and improved protection against V. alginolyticus, suggests Hsp70 functions in P. viridis as a molecular chaperone and as a stimulator of the immune system. PMID:26288319

  2. Conditional Gene Expression/Deletion Systems for Marchantia polymorpha Using its Own Heat-Shock Promoter and Cre/loxP-Mediated Site-Specific Recombination.

    PubMed

    Nishihama, Ryuichi; Ishida, Sakiko; Urawa, Hiroko; Kamei, Yasuhiro; Kohchi, Takayuki

    2016-02-01

    The liverwort Marchantia polymorpha is an emerging model plant suitable for addressing, using genetic approaches, various evolutionary questions in the land plant lineage. Haploid dominancy in its life cycle facilitates genetic analyses, but conversely limits the ability to isolate mutants of essential genes. To overcome this issue and to be employed in cell lineage, mosaic and cell autonomy analyses, we developed a system that allows conditional gene expression and deletion using a promoter of a heat-shock protein (HSP) gene and the Cre/loxP site-specific recombination system. Because the widely used promoter of the Arabidopsis HSP18.2 gene did not operate in M. polymorpha, we identified a promoter of an endogenous HSP gene, MpHSP17.8A1, which exhibited a highly inducible transient expression level upon heat shock with a low basal activity level. Reporter genes fused to this promoter were induced globally in thalli under whole-plant heat treatment and also locally using a laser-assisted targeted heating technique. By expressing Cre fused to the glucocorticoid receptor under the control of the MpHSP17.8A1 promoter, a low background, sufficiently inducible control for loxP-mediated recombination could be achieved in M. polymorpha. Based on these findings, we developed a Gateway technology-based binary vector for the conditional induction of gene deletions. PMID:26148498

  3. A gene-specific non-enhancer sequence is critical for expression from the promoter of the small heat shock protein gene αB-crystallin

    PubMed Central

    2014-01-01

    Background Deciphering of the information content of eukaryotic promoters has remained confined to universal landmarks and conserved sequence elements such as enhancers and transcription factor binding motifs, which are considered sufficient for gene activation and regulation. Gene-specific sequences, interspersed between the canonical transacting factor binding sites or adjoining them within a promoter, are generally taken to be devoid of any regulatory information and have therefore been largely ignored. An unanswered question therefore is, do gene-specific sequences within a eukaryotic promoter have a role in gene activation? Here, we present an exhaustive experimental analysis of a gene-specific sequence adjoining the heat shock element (HSE) in the proximal promoter of the small heat shock protein gene, αB-crystallin (cryab). These sequences are highly conserved between the rodents and the humans. Results Using human retinal pigment epithelial cells in culture as the host, we have identified a 10-bp gene-specific promoter sequence (GPS), which, unlike an enhancer, controls expression from the promoter of this gene, only when in appropriate position and orientation. Notably, the data suggests that GPS in comparison with the HSE works in a context-independent fashion. Additionally, when moved upstream, about a nucleosome length of DNA (−154 bp) from the transcription start site (TSS), the activity of the promoter is markedly inhibited, suggesting its involvement in local promoter access. Importantly, we demonstrate that deletion of the GPS results in complete loss of cryab promoter activity in transgenic mice. Conclusions These data suggest that gene-specific sequences such as the GPS, identified here, may have critical roles in regulating gene-specific activity from eukaryotic promoters. PMID:24589182

  4. Heat shock response of murine Chlamydia trachomatis.

    PubMed Central

    Engel, J N; Pollack, J; Perara, E; Ganem, D

    1990-01-01

    We have investigated the heat shock response in the mouse pneumonitis strain of Chlamydia trachomatis. The kinetics of the chlamydial heat shock response resembled that of other procaryotes: the induction was rapid, occurring over a 5- to 10-min time period, and was regulated at the level of transcription. Immunoblot analysis and immunoprecipitations with heterologous antisera to the heat shock proteins DnaK and GroEL demonstrated that the rate of synthesis, but not the absolute amount of these two proteins, increased after heat shock. Using a general screen for genes whose mRNAs are induced by heat shock, we identified and cloned two of these. DNA sequence analysis demonstrated that one of the genes is a homolog of dnaK. Further sequence analysis of the region upstream of the dnaK gene revealed that the chlamydial homolog of the grpE gene is located just adjacent to the dnaK gene. The second locus encoded three potential nonoverlapping open reading frames. One of the open reading frames was 52% homologous to the ribosomal protein S18 of Escherichia coli and thus presumably encodes the chlamydial homolog. Interestingly, this ribosomal protein is not known to be induced by heat shock in E. coli. S1 nuclease and primer extension analyses located the start site of the dnaK transcript to the last nucleotide of the grpE coding sequence, suggesting that these two genes, although tandemly arranged, are transcribed separately. No promoter sequences resembling the E. coli consensus heat shock promoter could be identified upstream of either the C. trachomatis dnaK, grpE, or S18 gene. The induction of the dnaK and S18 mRNAs by heat shock occurred at a transcriptional level; their induction could be blocked by rifampin. The mechanisms of induction for these two loci were not the same, however; they were differentially sensitive to chloramphenicol. Whereas the induction of dnaK mRNA required de novo protein synthesis, the induction of the S18 mRNA did not. Thus, C. trachomatis

  5. Heat-shock protein 90 promotes nuclear transport of herpes simplex virus 1 capsid protein by interacting with acetylated tubulin.

    PubMed

    Zhong, Meigong; Zheng, Kai; Chen, Maoyun; Xiang, Yangfei; Jin, Fujun; Ma, Kaiqi; Qiu, Xianxiu; Wang, Qiaoli; Peng, Tao; Kitazato, Kaio; Wang, Yifei

    2014-01-01

    Although it is known that inhibitors of heat shock protein 90 (Hsp90) can inhibit herpes simplex virus type 1 (HSV-1) infection, the role of Hsp90 in HSV-1 entry and the antiviral mechanisms of Hsp90 inhibitors remain unclear. In this study, we found that Hsp90 inhibitors have potent antiviral activity against standard or drug-resistant HSV-1 strains and viral gene and protein synthesis are inhibited in an early phase. More detailed studies demonstrated that Hsp90 is upregulated by virus entry and it interacts with virus. Hsp90 knockdown by siRNA or treatment with Hsp90 inhibitors significantly inhibited the nuclear transport of viral capsid protein (ICP5) at the early stage of HSV-1 infection. In contrast, overexpression of Hsp90 restored the nuclear transport that was prevented by the Hsp90 inhibitors, suggesting that Hsp90 is required for nuclear transport of viral capsid protein. Furthermore, HSV-1 infection enhanced acetylation of α-tubulin and Hsp90 interacted with the acetylated α-tubulin, which is suppressed by Hsp90 inhibition. These results demonstrate that Hsp90, by interacting with acetylated α-tubulin, plays a crucial role in viral capsid protein nuclear transport and may provide novel insight into the role of Hsp90 in HSV-1 infection and offer a promising strategy to overcome drug-resistance. PMID:24901434

  6. Phorbol ester tumor promoter induced the synthesis of two major cytoplasmic proteins: identity with two proteins induced under heat-shocked and glucose-starved conditions

    SciTech Connect

    Zhang, H.; Chen, K.Y.; Liu, A.Y.C.

    1987-05-01

    The regulation of specific protein synthesis by the phorbol ester tumor promoter, 12-O-tetradecanoyl-phorbol-13-acetate (TPA), was evaluated using the L-8 and C-2 myoblast and the 3T3-L1 fibroblast cell cultures. TPA increased, by 2-4 fold, the synthesis rates of two cytoplasmic proteins with apparent molecular weights of 89,000 and 74,000 as determined by SDS-polyacrylamide gel electrophoresis and autoradiography. The concentration of TPA and the time of incubation needed to elicit this induction was determined to be 10 ..mu..g/ml and 20 hrs, respectively. Increasing the concentration of TPA to 100, 200, and 500 ng/ml did not result in a greater magnitude of induction. The possibility that these two TPA-induced proteins may be identical to proteins with similar molecular weights induced under heat-shocked or glucose-starved conditions was evaluated by 1-D and 2-D gel electrophoresis and autoradiography. Results provided evidence that the TPA-induced 89,000- and 74,000-dalton proteins were identical to hsp 89 and hsp 74, 2 out of a set of 8-9 proteins induced under heat shocked conditions. Furthermore, they are identical to two of the set of glucose-regulated proteins induced under a glucose-starved condition.

  7. Association between small heat shock protein B11 and the prognostic value of MGMT promoter methylation in patients with high-grade glioma.

    PubMed

    Cheng, Wen; Li, Mingyang; Jiang, Yang; Zhang, Chuanbao; Cai, Jinquan; Wang, Kuanyu; Wu, Anhua

    2016-07-01

    OBJECT This study investigated the role and prognostic value of heat shock proteins (HSPs) in glioma. METHODS Data from 3 large databases of glioma samples (Chinese Glioma Genome Atlas, Repository for Molecular Brain Neoplasia Data, and GSE16011), which contained whole-genome messenger RNA microarray expression data and patients' clinical data, were analyzed. Immunohistochemical analysis was performed to validate protein expression in another set of 50 glioma specimens. RESULTS Of 28 HSPs, 11 were overexpressed in high-grade glioma (HGG) compared with low-grade glioma. A univariate Cox analysis revealed that HSPB11 has significant prognostic value for each glioma grade, which was validated by a Kaplan-Meier survival analysis. HSPB11 expression was associated with poor prognosis and was independently correlated with overall survival (OS) in HGG. This study further explored the combined role of HSPB11 and other molecular markers in HGG, such as isocitrate dehydrogenase 1 (IDH1) mutation and O(6)-methylguanine-DNA methyltransferase (MGMT) promoter methylation status. HSPB11 expression was able to refine the prognostic value of IDH1 mutation in patients with HGG. However, when combined with MGMT promoter methylation status, among patients with a methylated MGMT promoter, those with lower levels of HSPB11 expression had longer OS and progression-free survival than patients with higher levels of HSPB11 expression or with an unmethylated MGMT promoter. Moreover, within the MGMT promoter methylation group, patients with low levels of HSPB11 expression were more sensitive to combined radiochemotherapy than those with high levels of HSPB11 expression, which may explain why some patients with HGG with a methylated MGMT promoter show tolerance to radiochemotherapy. CONCLUSIONS HSPB11 was identified as a novel prognostic marker in patients with HGG. Together with MGMT promoter methylation status, HSPB11 expression can predict outcome for patients with HGG and identify those who

  8. Use of a transfected and amplified Drosophila heat shock promoter construction for inducible production of toxic mouse c-myc proteins in CHO cells

    SciTech Connect

    Wurm, F.M.; Gwinn, K.A.; Papoulas, O.; Pallavicini, M.; Kingston, R.E.

    1987-07-24

    After transfection and selection with methotrexate, CHO cell lines were established which contained up to 2000 copies of an expression vector for c-myc protein. The vector contained the Drosophila heat shock protein 70 (hsp70) promoter fused with the coding region of the mouse c-myc gene. Incubation of cells for up to 3 hours at 43/sup 0/C resulted in at least a 100-fold induction of recombinant c-myc mRNA. When cells were shifted back to 37/sup 0/C, within 1 to 4 hours, this RNA was translated into protein to yield about 250 ..mu..g per 10/sup 9/ cells. Cells died a few hours later, suggesting that high concentrations of intracellular c-myc are cytotoxic. 47 refs., 5 figs.

  9. Exposure of gnotobiotic Artemia franciscana larvae to abiotic stress promotes heat shock protein 70 synthesis and enhances resistance to pathogenic Vibrio campbellii

    PubMed Central

    Pineda, Carlos; MacRae, Thomas H.; Sorgeloos, Patrick; Bossier, Peter

    2008-01-01

    Larvae of the brine shrimp Artemia franciscana serve as important feed in fish and shellfish larviculture; however, they are subject to bacterial diseases that devastate entire populations and consequently hinder their use in aquaculture. Exposure to abiotic stress was shown previously to shield Artemia larvae against infection by pathogenic Vibrio, with the results suggesting a mechanistic role for heat shock protein 70. In the current report, combined hypothermic/hyperthermic shock followed by recovery at ambient temperature induced Hsp70 synthesis in Artemia larvae. Thermotolerance was also increased as was protection against infection by Vibrio campbellii, the latter indicated by reduced mortality and lower bacterial load in challenge tests. Resistance to Vibrio improved in the face of declining body mass as demonstrated by measurement of ash-free dry weight. Hypothermic stress only and acute osmotic insult did not promote Hsp70 expression and thermotolerance in Artemia larvae nor was resistance to Vibrio challenge augmented. The data support a causal link between Hsp70 accumulation induced by abiotic stress and enhanced resistance to infection by V. campbellii, perhaps via stimulation of the Artemia immune system. This possibility is now under investigation, and the work may reveal fundamental properties of crustacean immunity. Additionally, the findings are important in aquaculture where development of procedures to prevent bacterial infection of feed stock such as Artemia larvae is a priority. PMID:18347942

  10. Bacterial Heat Shock Protein Activity

    PubMed Central

    Maleki, Farajollah; Khosravi, Afra; Nasser, Ahmad; Taghinejad, Hamid

    2016-01-01

    Bacteria are exposed to different types of stress in their growth conditions. They have developed appropriate responses, modulated by the re-modeling of protein complexes and by phosphorylation dependent signal transduction systems, to adapt and to survive in a variety range of nature. Proteins are essential components for biologic activity in the eukaryotic and prokaryotic cell. Heat Shock Proteins (HSP) have been identified from various organisms and have critical role in cell hemostasis. Chaperone can sense environment and have different potential role in the organism evolution. PMID:27134861

  11. Shock interference heating in scramjet engines

    NASA Technical Reports Server (NTRS)

    Wieting, Allan R.

    1990-01-01

    Experimental and analytical research sponsored by the NASA Langley Research center and the NASP Structures Technology Maturation Program to define critical aerothermal loads for the NASP engine is summarized. Presented is a review of (1) shock-shock interaction on the engine cowl leading edge that results in a supersonic jet impinging on the leading edge surface and causes the heat transfer rate to be amplified by a factor of 30 or more over the undisturbed (no shock interaction) flow stagnation point heat transfer rate, (2) the effectiveness of supersonic film cooling with and without the effects of an impinging oblique shock wave, and (3) oblique shock impingement in an axial compression corner.

  12. Heat-shock Proteins and Photodynamic Therapy

    NASA Astrophysics Data System (ADS)

    Baylis, Joanne; Downs, Craig A.; Jones, Linda R.; Heckathorn, Scott A.

    1998-11-01

    Many cancer treatments, such as photodynamic therapy, generate active oxygen species, often in the mitochondria. These oxygen species adversely react with cellular processes, thereby destroying cancer cells and tissue. Heat-shock proteins are up-regulated in response to heat stress or other environmental stresses and are known to protect cells from active oxygen species. In tumor cells, heat-shock proteins accumulate in the mitochondria under non-stress conditions at higher levels than in normal cells. The objective of our work is to determine whether specific mitochondrial heat-shock proteins are responsible for the increased resistance of cancer cells to oxidative-based anti-cancer therapies. We will first determine which heat-shock proteins accumulate in the mitochondria of cancer cells (lung carcinomas). We will determine if the over-expression of specific heat-shock proteins in the mitochondria can protect cells from Photofrin®-mediated photodynamic therapy through protection of mitochondrial electron transport.

  13. Ultrafast collisional ion heating by electrostatic shocks.

    PubMed

    Turrell, A E; Sherlock, M; Rose, S J

    2015-01-01

    High-intensity lasers can be used to generate shockwaves, which have found applications in nuclear fusion, proton imaging, cancer therapies and materials science. Collisionless electrostatic shocks are one type of shockwave widely studied for applications involving ion acceleration. Here we show a novel mechanism for collisionless electrostatic shocks to heat small amounts of solid density matter to temperatures of ∼keV in tens of femtoseconds. Unusually, electrons play no direct role in the heating and it is the ions that determine the heating rate. Ions are heated due to an interplay between the electric field of the shock, the local density increase during the passage of the shock and collisions between different species of ion. In simulations, these factors combine to produce rapid, localized heating of the lighter ion species. Although the heated volume is modest, this would be one of the fastest heating mechanisms discovered if demonstrated in the laboratory. PMID:26563440

  14. Ultrafast collisional ion heating by electrostatic shocks

    PubMed Central

    Turrell, A. E.; Sherlock, M.; Rose, S. J.

    2015-01-01

    High-intensity lasers can be used to generate shockwaves, which have found applications in nuclear fusion, proton imaging, cancer therapies and materials science. Collisionless electrostatic shocks are one type of shockwave widely studied for applications involving ion acceleration. Here we show a novel mechanism for collisionless electrostatic shocks to heat small amounts of solid density matter to temperatures of ∼keV in tens of femtoseconds. Unusually, electrons play no direct role in the heating and it is the ions that determine the heating rate. Ions are heated due to an interplay between the electric field of the shock, the local density increase during the passage of the shock and collisions between different species of ion. In simulations, these factors combine to produce rapid, localized heating of the lighter ion species. Although the heated volume is modest, this would be one of the fastest heating mechanisms discovered if demonstrated in the laboratory. PMID:26563440

  15. Ultrafast collisional ion heating by electrostatic shocks

    NASA Astrophysics Data System (ADS)

    Turrell, A. E.; Sherlock, M.; Rose, S. J.

    2015-11-01

    High-intensity lasers can be used to generate shockwaves, which have found applications in nuclear fusion, proton imaging, cancer therapies and materials science. Collisionless electrostatic shocks are one type of shockwave widely studied for applications involving ion acceleration. Here we show a novel mechanism for collisionless electrostatic shocks to heat small amounts of solid density matter to temperatures of ~keV in tens of femtoseconds. Unusually, electrons play no direct role in the heating and it is the ions that determine the heating rate. Ions are heated due to an interplay between the electric field of the shock, the local density increase during the passage of the shock and collisions between different species of ion. In simulations, these factors combine to produce rapid, localized heating of the lighter ion species. Although the heated volume is modest, this would be one of the fastest heating mechanisms discovered if demonstrated in the laboratory.

  16. Heat Shock Memory in Preimplantation Mouse Embryos

    PubMed Central

    Jia, Yanwei; Hartshorn, Cristina; Hartung, Odelya; Wangh, Lawrence J.

    2010-01-01

    To investigate the consequences of possible physiological stress to embryos caused by the in vitro fertilization procedures, we used as a model heat shock response in preimplantation mouse embryos. A heat shock “memory” was discovered that renders cleavage-stage embryos more responsive at the transcriptional level to secondary perturbation with very low doses of heat, even several cell cycles after the initial stress has occurred. PMID:20378108

  17. Heat shock proteins of higher plants

    PubMed Central

    Key, Joe L.; Lin, C. Y.; Chen, Y. M.

    1981-01-01

    The pattern of protein synthesis changes rapidly and dramatically when the growth temperature of soybean seedling tissue is increased from 28°C (normal) to about 40°C (heat shock). The synthesis of normal proteins is greatly decreased and a new set of proteins, “heat shock proteins,” is induced. The heat shock proteins of soybean consist of 10 new bands on one-dimensional NaDodSO4 gels; a more complex pattern is observed on two-dimensional gels. When the tissue is returned to 28°C after 4 hr at 40°C, there is progressive decline in the synthesis of heat shock proteins and reappearance of a normal pattern of synthesis by 3 or 4 hr. In vitro translation of poly(A)+RNAs isolated from tissues grown at 28 and 40°C shows that the heat shock proteins are translated from a new set of mRNAs induced at 40°C; furthermore, the abundant class mRNAs for many of the normal proteins persist even though they are translated weakly (or not at all) in vivo at 40 or 42.5°C. The heat shock response in soybean appears similar to the much-studied heat shock phenomenon in Drosophila. Images PMID:16593032

  18. Fever, hyperthermia and the heat shock response.

    PubMed

    Singh, Ishwar S; Hasday, Jeffrey D

    2013-08-01

    The heat shock response is a highly conserved primitive response that is essential for survival against a wide range of stresses, including extremes of temperature. Fever is a more recently evolved response, during which organisms raise their core body temperature and temporarily subject themselves to thermal stress in the face of infections. The present review documents studies showing the potential overlap between the febrile response and the heat shock response and how both activate the same common transcriptional programme (although with different magnitudes) including the stress-activated transcription factor, heat shock factor-1, to modify host defences in the context of infection, inflammation and injury. The review focuses primarily on how hyperthermia within the febrile range that often accompanies infections and inflammation acts as a biological response modifier and modifies innate immune responses. The characteristic 2-3 °C increase in core body temperature during fever activates and utilises elements of the heat shock response pathway to modify cytokine and chemokine gene expression, cellular signalling and immune cell mobilisation to sites of inflammation, infection and injury. Interestingly, typical proinflammatory agonists such as Toll-like receptor agonists modify the heat shock-induced transcriptional programme and expression of HSP genes following co-exposure to febrile range hyperthermia or heat shock, suggesting a complex reciprocal regulation between the inflammatory pathway and the heat shock response pathway. PMID:23863046

  19. Simple, economical heat-shock devices for zebrafish housing racks.

    PubMed

    Duszynski, Robert J; Topczewski, Jacek; LeClair, Elizabeth E

    2011-12-01

    One reason for the popularity of the zebrafish (Danio rerio) as a model vertebrate is the ability to manipulate gene expression in this organism. A common method is to induce gene expression transiently under control of a heat-shock promoter (e.g., hsp70l). By making simple mechanical adjustments to small aquarium heaters (25-50W), we were able to produce consistent and reliable heat-shock conditions within a conventional zebrafish housing system. Up to two heat-shock intervals per day (>37°C) could be maintained under conditions of continuous flow (5-25 mL/min). Temperature logging every 30 s indicated rapid warm up times, consistent heat-shock lengths, and accurate and precise peak water temperatures (mean±SD=38°C±0.2°C). The biological effects of these heat-shock treatments were confirmed by observing inducible expression of enhanced green fluorescent protein (EGFP) and inhibition of caudal fin regeneration in a transgenic fish line expressing a dominant negative fibroblast growth factor receptor (Tg(hsp70l:dnfgfr1-EGFP)(pd1)). These devices are inexpensive, easily modified, and can be calibrated to accommodate a variety of experimental designs. After setup on a programmable timer, the heaters require no intervention to produce consistent daily heat shocks, and all other standard care protocols can be followed in the fish facility. The simplicity and stability of these devices make them suitable for long-term heat shocks at any stage of the zebrafish lifecycle (>7 days postfertilization), and useful for both laboratory and classroom experiments on transgenic zebrafish. PMID:21913856

  20. Chromospheric heating by acoustic shock waves

    NASA Technical Reports Server (NTRS)

    Jordan, Stuart D.

    1993-01-01

    Work by Anderson & Athay (1989) suggests that the mechanical energy required to heat the quiet solar chromosphere might be due to the dissipation of weak acoustic shocks. The calculations reported here demonstrate that a simple picture of chromospheric shock heating by acoustic waves propagating upward through a model solar atmosphere, free of both magnetic fields and local inhomogeneities, cannot reproduce their chromospheric model. The primary reason is the tendency for vertically propagating acoustic waves in the range of allowed periods to dissipate too low in the atmosphere, providing insufficient residual energy for the middle chromosphere. The effect of diverging magnetic fields and the corresponding expanding acoustic wavefronts on the mechanical dissipation length is then discussed as a means of preserving a quasi-acoustic heating hypothesis. It is argued that this effect, in a canopy that overlies the low chromosphere, might preserve the acoustic shock hypothesis consistent with the chromospheric radiation losses computed by Anderson & Athay.

  1. Heat shock proteins in multiple myeloma

    PubMed Central

    Zhang, Lei; Fok, Jacqueline H.L.; Davies, Faith E.

    2014-01-01

    Heat shock proteins are molecular chaperones with a central role in protein folding and cellular protein homeostasis. They also play major roles in the development of cancer and in recent years have emerged as promising therapeutic targets. In this review, we discuss the known molecular mechanisms of various heat shock protein families and their involvement in cancer and in particular, multiple myeloma. In addition, we address the current progress and challenges in pharmacologically targeting these proteins as anti-cancer therapeutic strategies PMID:24675290

  2. Heat shock triggers rapid protein phosphorylation in soybean seedings

    SciTech Connect

    Krishnan, H.B.; Pueppke, S.G.

    1987-10-29

    Heat shock arrests the synthesis of many cellular proteins and simultaneously initiates expression of a unique set of proteins, termed heat shock proteins. We have found that heat shock rapidly triggers phosphorylation of a set of proteins in soybean seedlings. Although the kinetics of phosphorylation and the heat shock response are similar, the major identified phosphorylation products do not comigrate with heat shock proteins on polyacrylamide gels. Cadmium, which is known to induce the heat shock response, stimulates phosphorylation of the same set of proteins. The rapidity of phosphorylation suggests that it may play a pivotal role in sensing and transducing elevated temperature stress in plants.

  3. Ancient heat shock gene is dispensable.

    PubMed Central

    Bardwell, J C; Craig, E A

    1988-01-01

    Hsp83 is a major eucaryotic heat shock protein and one of the most conserved proteins known. We have isolated an Escherichia coli gene homologous to eucaryotic Hsp83 and used it to construct a deletion mutation. The E. coli mutant was viable but had a slight growth disadvantage that increased with temperature. Images PMID:3290192

  4. Heat Shock Proteins in Association with Heat Tolerance in Grasses

    PubMed Central

    Xu, Yan; Zhan, Chenyang; Huang, Bingru

    2011-01-01

    The grass family Poaceae includes annual species cultivated as major grain crops and perennial species cultivated as forage or turf grasses. Heat stress is a primary factor limiting growth and productivity of cool-season grass species and is becoming a more significant problem in the context of global warming. Plants have developed various mechanisms in heat-stress adaptation, including changes in protein metabolism such as the induction of heat shock proteins (HSPs). This paper summarizes the structure and function of major HSPs, recent research progress on the association of HSPs with grass tolerance to heat stress, and incorporation of HSPs in heat-tolerant grass breeding. PMID:22084689

  5. Infrared Images of Shock-Heated Tin

    SciTech Connect

    Craig W. McCluskey; Mark D. Wilke; William D. Turley; Gerald D. Stevens; Lynn R. Veeser; Michael Grover

    2004-09-01

    High-resolution, gated infrared images were taken of tin samples shock heated to just below the 505 K melting point. Sample surfaces were either polished or diamond-turned, with grain sizes ranging from about 0.05 to 10 mm. A high explosive in contact with a 2-mm-thick tin sample induced a peak sample stress of 18 GPa. Interferometer data from similarly-driven tin shots indicate that immediately after shock breakout the samples spall near the free (imaged) surface with a scab thickness of about 0.1 mm.

  6. Human Heat shock protein 40 (Hsp40/DnaJB1) promotes influenza A virus replication by assisting nuclear import of viral ribonucleoproteins

    PubMed Central

    Batra, Jyoti; Tripathi, Shashank; Kumar, Amrita; Katz, Jacqueline M.; Cox, Nancy J.; Lal, Renu B.; Sambhara, Suryaprakash; Lal, Sunil K.

    2016-01-01

    A unique feature of influenza A virus (IAV) life cycle is replication of the viral genome in the host cell nucleus. The nuclear import of IAV genome is an indispensable step in establishing virus infection. IAV nucleoprotein (NP) is known to mediate the nuclear import of viral genome via its nuclear localization signals. Here, we demonstrate that cellular heat shock protein 40 (Hsp40/DnaJB1) facilitates the nuclear import of incoming IAV viral ribonucleoproteins (vRNPs) and is important for efficient IAV replication. Hsp40 was found to interact with NP component of IAV RNPs during early stages of infection. This interaction is mediated by the J domain of Hsp40 and N-terminal region of NP. Drug or RNAi mediated inhibition of Hsp40 resulted in reduced nuclear import of IAV RNPs, diminished viral polymerase function and attenuates overall viral replication. Hsp40 was also found to be required for efficient association between NP and importin alpha, which is crucial for IAV RNP nuclear translocation. These studies demonstrate an important role for cellular chaperone Hsp40/DnaJB1 in influenza A virus life cycle by assisting nuclear trafficking of viral ribonucleoproteins. PMID:26750153

  7. Human Heat shock protein 40 (Hsp40/DnaJB1) promotes influenza A virus replication by assisting nuclear import of viral ribonucleoproteins.

    PubMed

    Batra, Jyoti; Tripathi, Shashank; Kumar, Amrita; Katz, Jacqueline M; Cox, Nancy J; Lal, Renu B; Sambhara, Suryaprakash; Lal, Sunil K

    2016-01-01

    A unique feature of influenza A virus (IAV) life cycle is replication of the viral genome in the host cell nucleus. The nuclear import of IAV genome is an indispensable step in establishing virus infection. IAV nucleoprotein (NP) is known to mediate the nuclear import of viral genome via its nuclear localization signals. Here, we demonstrate that cellular heat shock protein 40 (Hsp40/DnaJB1) facilitates the nuclear import of incoming IAV viral ribonucleoproteins (vRNPs) and is important for efficient IAV replication. Hsp40 was found to interact with NP component of IAV RNPs during early stages of infection. This interaction is mediated by the J domain of Hsp40 and N-terminal region of NP. Drug or RNAi mediated inhibition of Hsp40 resulted in reduced nuclear import of IAV RNPs, diminished viral polymerase function and attenuates overall viral replication. Hsp40 was also found to be required for efficient association between NP and importin alpha, which is crucial for IAV RNP nuclear translocation. These studies demonstrate an important role for cellular chaperone Hsp40/DnaJB1 in influenza A virus life cycle by assisting nuclear trafficking of viral ribonucleoproteins. PMID:26750153

  8. Heat Shock Factor Hsf1 Cooperates with ErbB2 (Her2/Neu) Protein to Promote Mammary Tumorigenesis and Metastasis*

    PubMed Central

    Xi, Caixia; Hu, Yanzhong; Buckhaults, Phillip; Moskophidis, Demetrius; Mivechi, Nahid F.

    2012-01-01

    ErbB2/Neu oncogene is overexpressed in 25% of invasive/metastatic breast cancers. We have found that deletion of heat shock factor Hsf1 in mice overexpressing ErbB2/Neu significantly reduces mammary tumorigenesis and metastasis. Hsf1+/−ErbB2/Neu+ tumors exhibit reduced cellular proliferative and invasive properties associated with reduced activated ERK1/2 and reduced epithelial-mesenchymal transition (EMT). Hsf1+/+Neu+ mammary epithelial cells exposed to TGFβ show high levels of ERK1/2 activity and EMT; this is associated with reduced expression of E-cadherin and increased expression of Slug and vimentin, a mesenchymal marker. In contrast, Hsf1−/−Neu+ or Hsf1+/+Neu+ cells do not exhibit activated ERK1/2 and show reduced EMT in the presence of TGFβ. The ineffective activation of the RAS/RAF/MEK/ERK1/2 signaling pathway in cells with reduced levels of HSF1 is due to the low levels of HSP90 in complex with RAF1 that are required for RAF1 stability and maturation. These results indicate a powerful inhibitory effect conferred by HSF1 downstream target genes in the inhibition of ErbB2-induced breast cancers in the absence of the Hsf1 gene. PMID:22847003

  9. Localization of small heat shock proteins to the higher plant endomembrane system. [Low-molecular-weight heat shock proteins

    SciTech Connect

    Helm, K.W.; Vierling, E. ); LaFayette, P.R.; Nagao, R.T.; Key, J.L. )

    1993-01-01

    Most eukaryotic cells respond to high temperature and other stresses with the production of heat shock proteins, which aid in cell survival. There are four major classes of heat shock proteins HSP90, HSP70, HSP60 and low-molecular weight HSP. The data from this research indicate that members of the low-molecular weight heat shock proteins are most likely resident endoplasmic reticulum (ER) proteins and may be similar in function to related low-molecular weight heat shock proteins in the cytoplasm. The low-molecular weight heat shock proteins, the HSP90 and the HSP70 all appear to localize to the endoplasmic reticulum. Since the ER-localized low-molecular weight heat shock proteins are physically separated from their counterparts in other cell compartments, investigations of the ER-localized heat shock proteins provides a simplified model system for determining the functions of low-molecular weight heat shock proteins in eukaryotes.

  10. A heat shock transcription factor in pea is differentially controlled by heat and virus replication.

    PubMed

    Aranda, M A; Escaler, M; Thomas, C L; Maule, A J

    1999-10-01

    Since some heat-inducible genes [heat shock (hs) genes] can be induced by virus infection in pea [e.g. Hsp70; Aranda et al. 1996, Proc. Natl Acad. Sci. USA 93, 15289-15293], we have investigated the effect that heat and virus replication may have on the expression of a heat-shock transcription factor gene (Hsf). We have characterized what appears to be the only member of the Hsf family in pea, PsHsfA. Similar to Hsp70, PsHsfA is heat-inducible in vegetative and embryonic tissues, which is concordant with the presence of heat shock elements (HSEs) and stress responsive elements (STREs) on its promoter sequence. The expression of PsHsfA during virus replication was studied in pea cotyledons and leaves, and compared to that of Hsp70. In situ hybridization experiments showed that whereas Hsp70 is induced, there is no detectable increased accumulation of PsHsfA RNA associated with the replication of pea seed-borne mosaic potyvirus (PSbMV). These experiments indicate that there is a selective control of virus-induced hs gene expression, and suggest that different regulatory pathways control hs gene expression during heat shock and virus replication. PMID:10571875

  11. Dual targeting of heat shock proteins 90 and 70 promotes cell death and enhances the anticancer effect of chemotherapeutic agents in bladder cancer.

    PubMed

    Ma, Liang; Sato, Fuminori; Sato, Ryuta; Matsubara, Takanori; Hirai, Kenichi; Yamasaki, Mutsushi; Shin, Toshitaka; Shimada, Tatsuo; Nomura, Takeo; Mori, Kenichi; Sumino, Yasuhiro; Mimata, Hiromitsu

    2014-06-01

    Heat shock proteins (HSPs), which are molecular chaperones that stabilize numerous vital proteins, may be attractive targets for cancer therapy. The aim of the present study was to investigate the possible anticancer effect of single or dual targeting of HSP90 and HSP70 and the combination treatment with HSP inhibitors and chemotherapeutic agents in bladder cancer cells. The expression of HSP90 and the anticancer effect of the HSP90 inhibitor 17-N-allylamino-17-demethoxygeldanamycin (17-AAG) coupled with cisplatin, docetaxel, or gemcitabine were examined using immunohistochemistry, quantitative real-time PCR, cell growth, flow cytometry, immunoblots and caspase-3/7 assays. The expression of HSP70 under HSP90 inhibition and the additive effect of HSP70 inhibitor pifithrin-μ (PFT-μ) were examined by the same assays and transmission electron microscopy. HSP90 was highly expressed in bladder cancer tissues and cell lines. 17-AAG enhanced the antiproliferative and apoptotic effects of each chemotherapeutic agent. 17-AAG also suppressed Akt activity but induced the upregulation of HSP70. PFT-μ enhanced the effect of 17-AAG or chemotherapeutic agents; the triple combination of 17-AAG, PFT-μ and a chemotherapeutic agent showed the most significant anticancer effect on the T24 cell line. The combination of 17-AAG and PFT-μ markedly suppressed Akt and Bad activities. With HSP90 suppression, HSP70 overexpression possibly contributes to the avoidance of cell death and HSP70 may be a key molecule for overcoming resistance to the HSP90 inhibitor. The dual targeting of these two chaperones and the combination with conventional anticancer drugs could be a promising therapeutic option for patients with advanced bladder cancer. PMID:24718854

  12. Dual targeting of heat shock proteins 90 and 70 promotes cell death and enhances the anticancer effect of chemotherapeutic agents in bladder cancer

    PubMed Central

    MA, LIANG; SATO, FUMINORI; SATO, RYUTA; MATSUBARA, TAKANORI; HIRAI, KENICHI; YAMASAKI, MUTSUSHI; SHIN, TOSHITAKA; SHIMADA, TATSUO; NOMURA, TAKEO; MORI, KENICHI; SUMINO, YASUHIRO; MIMATA, HIROMITSU

    2014-01-01

    Heat shock proteins (HSPs), which are molecular chaperones that stabilize numerous vital proteins, may be attractive targets for cancer therapy. The aim of the present study was to investigate the possible anticancer effect of single or dual targeting of HSP90 and HSP70 and the combination treatment with HSP inhibitors and chemotherapeutic agents in bladder cancer cells. The expression of HSP90 and the anticancer effect of the HSP90 inhibitor 17-N-allylamino-17-demethoxygeldanamycin (17-AAG) coupled with cisplatin, docetaxel, or gemcitabine were examined using immunohistochemistry, quantitative real-time PCR, cell growth, flow cytometry, immunoblots and caspase-3/7 assays. The expression of HSP70 under HSP90 inhibition and the additive effect of HSP70 inhibitor pifithrin-μ (PFT-μ) were examined by the same assays and transmission electron microscopy. HSP90 was highly expressed in bladder cancer tissues and cell lines. 17-AAG enhanced the antiproliferative and apoptotic effects of each chemotherapeutic agent. 17-AAG also suppressed Akt activity but induced the upregulation of HSP70. PFT-μ enhanced the effect of 17-AAG or chemotherapeutic agents; the triple combination of 17-AAG, PFT-μ and a chemotherapeutic agent showed the most significant anticancer effect on the T24 cell line. The combination of 17-AAG and PFT-μ markedly suppressed Akt and Bad activities. With HSP90 suppression, HSP70 overexpression possibly contributes to the avoidance of cell death and HSP70 may be a key molecule for overcoming resistance to the HSP90 inhibitor. The dual targeting of these two chaperones and the combination with conventional anticancer drugs could be a promising therapeutic option for patients with advanced bladder cancer. PMID:24718854

  13. Specific cerebral heat shock proteins and histamine receptor cross-talking mechanisms promote distinct lead-dependent neurotoxic responses in teleosts

    SciTech Connect

    Giusi, Giuseppina; Alo, Raffaella; Crudo, Michele; Facciolo, Rosa Maria; Canonaco, Marcello

    2008-03-01

    Recent interests are beginning to be directed towards toxic neurobiological dysfunctions caused by lead (Pb) in aquatic vertebrates. In the present work, treatment with a maximum acceptable toxic concentration of this heavy metal was responsible for highly significant (p < 0.01) abnormal motor behaviors such as hyperactive movements in the teleost Thalassoma pavo and the same treatment accounted for significantly (p < 0.05) enhanced hyperventilating states. On the other hand, greater abnormal motor behaviors were detected in the presence of the histamine (HA) receptor subtype 2 (H{sub 2}R) antagonist cimetidine (Cim), as shown by the very robust (p < 0.001) increases of the two behavioral states. Interestingly, elevated expression levels of stress-related factors, i.e. heat shock protein70/90 (HSP90/70) orthologs were reported for the first time in hypothalamic and mesencephalic areas of Pb-treated teleosts. In particular, an up-regulation of HSP70 was readily detected when this heavy metal was given concomitantly with Cim, while the histamine subtype 3 antagonist (H{sub 3}R) thioperamide (Thio), instead, blocked Pb-dependent up-regulatory trends of both chaperones in mostly hypothalamic areas. Moreover, intense neuronal damages of the above brain regions coincided with altered expressions of HSP70 and HSP90 when treated only with Cim. Overall these first results show that distinct H{sub n}R are able to exert a net neuroprotective role arising from their interaction with chaperones in fish exposed to Pb-dependent stressful conditions making this a potentially key interaction especially for T. pavo, aquatic species which plays an important ecological role towards the survival of other commercially vital fishes.

  14. Heat-Shock Factor 1 Controls Genome-wide Acetylation in Heat-shocked Cells

    PubMed Central

    Fritah, Sabrina; Col, Edwige; Boyault, Cyril; Govin, Jérôme; Sadoul, Karin; Chiocca, Susanna; Christians, Elisabeth; Khochbin, Saadi; Jolly, Caroline

    2009-01-01

    A major regulatory function has been evidenced here for HSF1, the key transcription factor of the heat-shock response, in a large-scale remodeling of the cell epigenome. Indeed, upon heat shock, HSF1, in addition to its well-known transactivating activities, mediates a genome-wide and massive histone deacetylation. Investigating the underlying mechanisms, we show that HSF1 specifically associates with and uses HDAC1 and HDAC2 to trigger this heat-shock–dependent histone deacetylation. This work therefore identifies HSF1 as a master regulator of global chromatin acetylation and reveals a cross-talk between HSF1 and histone deacetylases in the general control of genome organization in response to heat shock. PMID:19793920

  15. Heat Shock-Independent Induction of Multidrug Resistance by Heat Shock Factor 1†

    PubMed Central

    Tchénio, Thierry; Havard, Marilyne; Martinez, Luis A.; Dautry, François

    2006-01-01

    The screening of two different retroviral cDNA expression libraries to select genes that confer constitutive doxorubicin resistance has in both cases resulted in the isolation of the heat shock factor 1 (HSF1) transcription factor. We show that HSF1 induces a multidrug resistance phenotype that occurs in the absence of heat shock or cellular stress and is mediated at least in part through the constitutive activation of the multidrug resistance gene 1 (MDR-1). This drug resistance phenotype does not correlate with an increased expression of heat shock-responsive genes (heat shock protein genes, or HSPs). In addition, HSF1 mutants lacking HSP gene activation are also capable of conferring multidrug resistance, and only hypophosphorylated HSF1 complexes accumulate in transduced cells. Our results indicate that HSF1 can activate MDR-1 expression in a stress-independent manner that differs from the canonical heat shock-activated mechanism involved in HSP induction. We further provide evidence that the induction of MDR-1 expression occurs at a posttranscriptional level, revealing a novel undocumented role for hypophosphorylated HSF1 in posttranscriptional gene regulation. PMID:16382149

  16. DNA transformation via local heat shock

    NASA Astrophysics Data System (ADS)

    Li, Sha; Meadow Anderson, L.; Yang, Jui-Ming; Lin, Liwei; Yang, Haw

    2007-07-01

    This work describes transformation of foreign DNA into bacterial host cells by local heat shock using a microfluidic system with on-chip, built-in platinum heaters. Plasmid DNA encoding ampicillin resistance and a fluorescent protein can be effectively transformed into the DH5α chemically competent E. coli using this device. Results further demonstrate that only one-thousandth of volume is required to obtain transformation efficiencies as good as or better than conventional practices. As such, this work complements other lab-on-a-chip technologies for potential gene cloning/therapy and protein expression applications.

  17. Heat shock protein hsp70 accelerates the recovery of heat-shocked mammalian cells through its modulation of heat shock transcription factor HSF1.

    PubMed Central

    Kim, D; Ouyang, H; Li, G C

    1995-01-01

    The role of mammalian 70-kDa heat shock protein (hsp70) in regulating cellular response to heat shock was examined by using three closely related rat cells: control Rat-1 cells, thermotolerant Rat-1 (TT Rat-1) cells, and heat-resistant M21 cells, a derivative of Rat-1 cells that constitutively overexpress human hsp70. In all these cells, after a prescribed heat shock, the level of the phosphorylated form of heat shock transcription factor HSF1 and that of HSF1 capable of binding to its cognitive DNA sequence heat shock element (HSE) exhibit similar time dependence. The amount of a constitutive HSE-binding activity (CHBA), on the other hand, inversely correlates with those of the two aforementioned forms of HSF1. The recovery kinetics from heat shock are different for the three cell lines, with the thermal-resistant TT Rat-1 and M21 cells showing faster recovery in terms of the state of phosphorylation of HSF1 and its ability to bind HSE or in terms of the reappearance of CHBA. Treatment with okadaic acid, a serine/threonine phosphatase inhibitor, delays the recovery kinetics of Rat-1 cells but not that of thermal-resistant M21 cells. These results are interpreted in terms of a role for hsp70 in the recovery of heat-shocked mammalian cells. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7892235

  18. Heat shock proteins in the kidney.

    PubMed

    Sreedharan, Rajasree; Van Why, Scott K

    2016-10-01

    Heat shock proteins (Hsps) are essential to cell survival through their function as protein chaperones. The role they play in kidney health and disease is varied. Hsp induction may be either beneficial or detrimental to the kidney, depending on the specific Hsp, type of cell, and context. This review addresses the role of Hsps in the kidney, including during development, as osmoprotectants, and in various kidney disease models. Heat shock transcription factor, activated by a stress on renal cells, induces Hsp elaboration and separately regulates immune responses that can contribute to renal injury. Induced Hsps in the intracellular compartment are mostly beneficial in the kidney by stabilizing and restoring cell architecture and function through acting as protein chaperones. Intracellular Hsps also inhibit apoptosis and facilitate cell proliferation, preserving renal tubule viability after acute injury, but enhancing progression of cystic kidney disease and malignancy. Induced Hsps in the extracellular compartment, either circulating or located on outer cell membranes, are mainly detrimental through enhancing inflammation pathways to injury. Correctly harnessing these stress proteins promises the opportunity to alter the course of acute and chronic kidney disease. PMID:26913726

  19. Intracellular trafficking of heat shock factor 2.

    PubMed

    Le Goff, Pascale; Le Dréan, Yves; Le Péron, Christine; Le Jossic-Corcos, Catherine; Ainouche, Abdelkadder; Michel, Denis

    2004-04-01

    HSF2 is an enigmatic member of the heat shock factor family, identified in the homeotherm classes of birds and mammals. We report the characterization of HSF2 from an evolutionary ancient vertebrate, the fish rainbow trout (rtHSF2). rtHSF2 appears closely related to its mammalian counterparts at structural and functional levels. The conservation of the distinctive features of HSF2 from fish to human suggests that it should ensure important biological functions, not redundant with those of HSF1. Proteasome inhibition, reported as a potent stimulator of HSF2, leads to the stabilization and to a striking nuclear trafficking of rtHSF2-GFP fusion protein. Upon treatment with the proteasome inhibitor MG132, rtHSF2-GFP accumulates into PML nuclear bodies (NBs) independently of its sumoylation and, if expressed at moderate level, moves to nucleoli. The translocation of rtHSF2-GFP from NBs to nucleoli is greatly favored by overexpression of the heat shock protein Hsp70. The mammalian counterpart mouse HSF2 (mHSF2) also exhibited changes in intracellular distribution upon MG132 treatment. mHSF2 partitioned between a juxtanuclear area that we characterized as an aggresome and the nucleoli. These relocalizations are likely to reflect common structural changes of mouse and trout HSF2 upon activation. PMID:15023536

  20. Integrative analysis of the heat shock response in Aspergillus fumigatus

    PubMed Central

    2010-01-01

    Background Aspergillus fumigatus is a thermotolerant human-pathogenic mold and the most common cause of invasive aspergillosis (IA) in immunocompromised patients. Its predominance is based on several factors most of which are still unknown. The thermotolerance of A. fumigatus is one of the traits which have been assigned to pathogenicity. It allows the fungus to grow at temperatures up to and above that of a fevered human host. To elucidate the mechanisms of heat resistance, we analyzed the change of the A. fumigatus proteome during a temperature shift from 30°C to 48°C by 2D-fluorescence difference gel electrophoresis (DIGE). To improve 2D gel image analysis results, protein spot quantitation was optimized by missing value imputation and normalization. Differentially regulated proteins were compared to previously published transcriptome data of A. fumigatus. The study was augmented by bioinformatical analysis of transcription factor binding sites (TFBSs) in the promoter region of genes whose corresponding proteins were differentially regulated upon heat shock. Results 91 differentially regulated protein spots, representing 64 different proteins, were identified by mass spectrometry (MS). They showed a continuous up-, down- or an oscillating regulation. Many of the identified proteins were involved in protein folding (chaperones), oxidative stress response, signal transduction, transcription, translation, carbohydrate and nitrogen metabolism. A correlation between alteration of transcript levels and corresponding proteins was detected for half of the differentially regulated proteins. Interestingly, some previously undescribed putative targets for the heat shock regulator Hsf1 were identified. This provides evidence for Hsf1-dependent regulation of mannitol biosynthesis, translation, cytoskeletal dynamics and cell division in A. fumigatus. Furthermore, computational analysis of promoters revealed putative binding sites for an AP-2alpha-like transcription factor

  1. Expression profile of heat shock response factors during hookworm larval activation and parasitic development.

    PubMed

    Gelmedin, Verena; Delaney, Angela; Jennelle, Lucas; Hawdon, John M

    2015-07-01

    When organisms are exposed to an increase in temperature, they undergo a heat shock response (HSR) regulated by the transcription factor heat shock factor 1 (HSF-1). The heat shock response includes the rapid changes in gene expression initiated by binding of HSF-1 to response elements in the promoters of heat shock genes. Heat shock proteins function as molecular chaperones to protect proteins during periods of elevated temperature and other stress. During infection, hookworm infective third stage larvae (L3) undergo a temperature shift from ambient to host temperature. This increased temperature is required for the resumption of feeding and activation of L3, but whether this increase initiates a heat shock response is unknown. To investigate the role of the heat shock in hookworm L3 activation and parasitic development, we identified and characterized the expression profile of several components of the heat shock response in the hookworm Ancylostoma caninum. We cloned DNAs encoding an hsp70 family member (Aca-hsp-1) and an hsp90 family member (Aca-daf-21). Exposure to a heat shock of 42°C for one hour caused significant up-regulation of both genes, which slowly returned to near baseline levels following one hour attenuation at 22°C. Neither gene was up-regulated in response to host temperature (37°C). Conversely, levels of hsf-1 remained unchanged during heat shock, but increased in response to incubation at 37°C. During activation, both hsp-1 and daf-21 are down regulated early, although daf-21 levels increase significantly in non-activated control larvae after 12h, and slightly in activated larvae by 24h incubation. The heat shock response modulators celastrol and KNK437 were tested for their effects on gene expression during heat shock and activation. Pre-incubation with celastrol, an HSP90 inhibitor that promotes heat shock gene expression, slightly up-regulated expression of both hsp-1 and daf-21 during heat shock. KNK437, an inhibitor of heat shock

  2. Heat shock response improves heterologous protein secretion in Saccharomyces cerevisiae.

    PubMed

    Hou, Jin; Osterlund, Tobias; Liu, Zihe; Petranovic, Dina; Nielsen, Jens

    2013-04-01

    The yeast Saccharomyces cerevisiae is a widely used platform for the production of heterologous proteins of medical or industrial interest. However, heterologous protein productivity is often low due to limitations of the host strain. Heat shock response (HSR) is an inducible, global, cellular stress response, which facilitates the cell recovery from many forms of stress, e.g., heat stress. In S. cerevisiae, HSR is regulated mainly by the transcription factor heat shock factor (Hsf1p) and many of its targets are genes coding for molecular chaperones that promote protein folding and prevent the accumulation of mis-folded or aggregated proteins. In this work, we over-expressed a mutant HSF1 gene HSF1-R206S which can constitutively activate HSR, so the heat shock response was induced at different levels, and we studied the impact of HSR on heterologous protein secretion. We found that moderate and high level over-expression of HSF1-R206S increased heterologous α-amylase yield 25 and 70 % when glucose was fully consumed, and 37 and 62 % at the end of the ethanol phase, respectively. Moderate and high level over-expression also improved endogenous invertase yield 118 and 94 %, respectively. However, human insulin precursor was only improved slightly and this only by high level over-expression of HSF1-R206S, supporting our previous findings that the production of this protein in S. cerevisiae is not limited by secretion. Our results provide an effective strategy to improve protein secretion and demonstrated an approach that can induce ER and cytosolic chaperones simultaneously. PMID:23208612

  3. Identification of polymorphisms in the promoter region of the bovine heat shock protein gene and associations with bull calf weaning weight

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our objective was to evaluate the relationship between genotypic variation of the bovine HSP-70 promoter and bull calf weaning weights and serum concentrations of HSP-70 at weaning. Blood samples were collected from 33 crossbred bull calves. Calves were sired by Angus bulls and had Brahman-cross dam...

  4. Identification of single nucleotide polymorphisms within the promoter region of the bovine heat shock protein 70 gene and associations with pregnancy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objectives were: 1) determine genetic diversity in a promoter segment of the bovine HSP-70 gene, and 2) determine if the identified single nucleotide polymorphisms (SNPs) were related to pregnancy rates. Genomic DNA was collected from 107 Bos taurus/Bos indicus crossbred cows. Specific primers (HSP-...

  5. Modulation of Alloimmunity by Heat Shock Proteins

    PubMed Central

    Borges, Thiago J.; Lang, Benjamin J.; Lopes, Rafael L.; Bonorino, Cristina

    2016-01-01

    The immunological mechanisms that evolved for host defense against pathogens and injury are also responsible for transplant rejection. Host rejection of foreign tissue was originally thought to be mediated mainly by T cell recognition of foreign MHC alleles. Management of solid organ transplant rejection has thus focused mainly on inhibition of T cell function and matching MHC alleles between donor and host. Recently, however, it has been demonstrated that the magnitude of the initial innate immune responses upon transplantation has a decisive impact on rejection. The exact mechanisms underlying this phenomenon have yet to be characterized. Ischemic cell death and inflammation that occur upon transplantation are synonymous with extracellular release of various heat shock proteins (Hsps), many of which have been shown to have immune-modulatory properties. Here, we review the impact of Hsps upon alloimmunity and discuss the potential use of Hsps as accessory agents to improve solid organ transplant outcomes. PMID:27555846

  6. Multiple independent regulatory pathways control UBI4 expression after heat shock in Saccharomyces cerevisiae.

    PubMed

    Simon, J R; Treger, J M; McEntee, K

    1999-02-01

    Transcription of the polyubiquitin gene UBI4 of Saccharomyces cerevisiae is strongly induced by a variety of environmental stresses, such as heat shock, nutrient depletion and exposure to DNA-damaging agents. This transcriptional response of UBI4 is likely to be the primary mechanism for increasing the pool of ubiquitin for degradation of stress-damaged proteins. Deletion and promoter fusion studies of the 5' regulatory sequences indicated that two different elements, heat shock elements (HSEs) and stress response element (STREs), contributed independently to heat shock regulation of the UBI4 gene. In the absence of HSEs, STRE sequences localized to the intervals -264 to -238 and -215 to -183 were needed for stress control of transcription after heat shock. Site-directed mutagenesis of the STRE (AG4) at -252 to -248 abolished heat shock induction of UBI4 transcription. Northern analysis demonstrated that cells containing either a temperature-sensitive HSF or non-functional Msn2p/Msn4p transcription factors induced high levels of UBI4 transcripts after heat shock. In cells deficient in both heat stress pathways, heat-induced UBI4 transcript levels were considerably lower but not abolished, suggesting a role for another factor(s) in stress control of its expression. PMID:10048026

  7. Global transcriptome analysis of the heat shock response ofshewanella oneidensis

    SciTech Connect

    Gao, Haichun; Wang, Sarah; Liu, Xueduan; Yan, Tinfeng; Wu, Liyou; Alm, Eric; Arkin, Adam P.; Thompson, Dorothea K.; Zhou, Jizhong

    2004-04-30

    Shewanella oneidensis is an important model organism for bioremediation studies because of its diverse respiratory capabilities. However, the genetic basis and regulatory mechanisms underlying the ability of S. oneidensis to survive and adapt to various environmentally relevant stresses is poorly understood. To define this organism's molecular response to elevated growth temperatures, temporal gene expression profiles were examined in cells subjected to heat stress using whole-genome DNA microarrays for S. oneidensis MR-1. Approximately 15 percent (711) of the predicted S. oneidensis genes represented on the microarray were significantly up- or down-regulated (P < 0.05) over a 25-min period following shift to the heat shock temperature (42 C). As expected, the majority of S. oneidensis genes exhibiting homology to known chaperones and heat shock proteins (Hsps) were highly and transiently induced. In addition, a number of predicted genes encoding enzymes in glycolys is and the pentose cycle, [NiFe] dehydrogenase, serine proteases, transcriptional regulators (MerR, LysR, and TetR families), histidine kinases, and hypothetical proteins were induced in response to heat stress. Genes encoding membrane proteins were differentially expressed, suggesting that cells possibly alter their membrane composition or structure in response to variations in growth temperature. A substantial number of the genes encoding ribosomal proteins displayed down-regulated co-expression patterns in response to heat stress, as did genes encoding prophage and flagellar proteins. Finally, based on computational comparative analysis of the upstream promoter regions of S.oneidensis heat-inducible genes, a putative regulatory motif, showing high conservation to the Escherichia coli sigma 32-binding consensus sequence, was identified.

  8. Riboflavin protects mice against liposaccharide-induced shock through expression of heat shock protein 25

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Riboflavin (vitamin B2) is a water-soluble vitamin essential for normal cellular functions, growth and development. The study was aimed at investigating the effects of vitamin B2 on the survival rate, and expressions of tissue heat shock protein 25 (HSP25) and heat shock factor 1 (HSF1) in mice und...

  9. Heat shock proteins and heat shock factor 1 in carcinogenesis and tumor development: an update

    PubMed Central

    2013-01-01

    Heat shock proteins (HSP) are a subset of the molecular chaperones, best known for their rapid and abundant induction by stress. HSP genes are activated at the transcriptional level by heat shock transcription factor 1 (HSF1). During the progression of many types of cancer, this heat shock transcriptional regulon becomes co-opted by mechanisms that are currently unclear, although evidently triggered in the emerging tumor cell. Concerted activation of HSF1 and the accumulation of HSPs then participates in many of the traits that permit the malignant phenotype. Thus cancers of many histologies exhibit activated HSF1 and increased HSP levels that may help to deter tumor suppression and evade therapy in the clinic. We review here the extensive work that has been carried out and is still in progress aimed at: (1) understanding the oncogenic mechanisms by which HSP genes are switched on, (2) determining the roles of HSF1 / HSP in malignant transformation and, (3) discovering approaches to therapy based on disrupting the influence of the HSF1 controlled transcriptome in cancer. PMID:22885793

  10. Infrared Emissions from Shock Heated Hydrocarbons

    NASA Technical Reports Server (NTRS)

    Stephens, K. M.; Bauer, S. H.

    1994-01-01

    The primary objective of this study was to ascertain whether low molecular weight hydrocarbons (LMWH) in the range C4 to C7, upon heating to temperatures above 900 K, emit IR radiations at frequencies that correspond to the 'unidentified infrared' (UIR) features - the recorded emissions from a variety of astronomical sources - reflection nebulae, HII regions, planetary nebulae, spiral galaxies and other extra galactic objects. We describe IR emission spectra recorded from shock-heated gases (C2H2; (H3C)2C = CH2; H2C = C(CH3) - C(CH3) = CH2; (H3C)2C = CH - C(CH3) = CH2), that arise from excitation of the fundamental C-H stretching vibrations. While the IR emissions from LMWH, anticipated over the entire spectra range, do not present a perfect match to UIR, the correspondence over several wavelength regions is better than the emissions anticipated from polycyclic aromatic hydrocarbon (PAH) species. Finally, we briefly review the range of proposals that have been presented for the origin of the UIR bands.

  11. Cryptococcal heat shock protein 70 homolog Ssa1 contributes to pulmonary expansion of Cryptococcus neoformans during the afferent phase of the immune response by promoting macrophage M2 polarization.

    PubMed

    Eastman, Alison J; He, Xiumiao; Qiu, Yafeng; Davis, Michael J; Vedula, Priya; Lyons, Daniel M; Park, Yoon-Dong; Hardison, Sarah E; Malachowski, Antoni N; Osterholzer, John J; Wormley, Floyd L; Williamson, Peter R; Olszewski, Michal A

    2015-06-15

    Numerous virulence factors expressed by Cryptococcus neoformans modulate host defenses by promoting nonprotective Th2-biased adaptive immune responses. Prior studies demonstrate that the heat shock protein 70 homolog, Ssa1, significantly contributes to serotype D C. neoformans virulence through the induction of laccase, a Th2-skewing and CNS tropic factor. In the present study, we sought to determine whether Ssa1 modulates host defenses in mice infected with a highly virulent serotype A strain of C. neoformans (H99). To investigate this, we assessed pulmonary fungal growth, CNS dissemination, and survival in mice infected with either H99, an SSA1-deleted H99 strain (Δssa1), and a complement strain with restored SSA1 expression (Δssa1::SSA1). Mice infected with the Δssa1 strain displayed substantial reductions in lung fungal burden during the innate phase (days 3 and 7) of the host response, whereas less pronounced reductions were observed during the adaptive phase (day 14) and mouse survival increased only by 5 d. Surprisingly, laccase activity assays revealed that Δssa1 was not laccase deficient, demonstrating that H99 does not require Ssa1 for laccase expression, which explains the CNS tropism we still observed in the Ssa1-deficient strain. Lastly, our immunophenotyping studies showed that Ssa1 directly promotes early M2 skewing of lung mononuclear phagocytes during the innate phase, but not the adaptive phase, of the immune response. We conclude that Ssa1's virulence mechanism in H99 is distinct and laccase-independent. Ssa1 directly interferes with early macrophage polarization, limiting innate control of C. neoformans, but ultimately has no effect on cryptococcal control by adaptive immunity. PMID:25972480

  12. Structure of fast shocks in the presence of heat conduction

    SciTech Connect

    Tsai, C. L.; Chen, H. H.; Wu, B. H.; Lee, L. C.

    2007-12-15

    There are three types of magnetohydrodynamic (MHD) shocks: the fast shock, intermediate shock, and slow shock. The structure of slow shocks and intermediate shocks in the presence of heat conduction has been studied earlier [C. L. Tsai, R. H. Tsai, B. H. Wu, and L. C. Lee, Phys. Plasmas 9, 1185 (2002); C. L. Tsai, B. H. Wu, and L. C. Lee, Phys. Plasmas 12, 82501 (2005)]. Based on one-dimensional MHD numerical simulations with a heat conduction term, the evolution and structure of fast shocks are studied. The fast shock will form a foreshock in the presence of heat conduction. The foreshock is formed due to the heat flow from downstream to upstream and located in the immediate upstream of the main shock. In the steady state, the value of diffusion velocity V{sub d} in the foreshock is found to nearly equal the upstream convection velocity in the fast shock frame. It is found that the density jump across the main shock in high Mach number case can be much larger than 4 in the early simulation time. However the density jump will gradually evolve to a value smaller than 4 at steady state. By using the modified Rankine-Hugoniot relations with heat flux, the density jump across the fast shock is examined for various upstream parameters. The results show that the calculated density jump with heat flux is very close to the simulation value and the density jump can far exceed the maximum value of 4 without heat conduction. The structure of foreshock and main shock is also studied under different plasma parameters, such as the heat conductivity K{sub 0}, the ratio of upstream plasma pressure to magnetic pressure {beta}{sub 1}, Alfven Mach number M{sub A1}, and the angle {theta}{sub 1} between shock normal and magnetic field. It is found that as the upstream shock parameters K{sub 0}, {beta}{sub 1}, and M{sub A1} increase or {theta}{sub 1} decreases, the width of foreshock L{sub d} increases. The present results can be applied to fast shocks in the solar corona, solar wind

  13. Isolation of a novel inducible rat heat-shock protein (HSP70) gene and its expression during ischaemia/hypoxia and heat shock.

    PubMed Central

    Mestril, R; Chi, S H; Sayen, M R; Dillmann, W H

    1994-01-01

    Most of the members of the mammalian heat-shock protein (HSP) gene family have been studied and isolated from human and mouse cells. Few studies have concentrated on the HSPs of rat, a commonly used experimental animal. We have isolated and characterized a novel inducible rat HSP70 gene using an HSP70 cDNA sequence obtained from an ischaemic rat heart cDNA library. The isolated rat HSP70 gene was found to be a functional gene, as indicated by RNAase-protection and Northern-blot analysis. The deduced amino acid sequence of the inducible rat HSP70 exhibits a high degree of similarity to previously isolated mammalian inducible HSP70 gene products. Expression of the inducible HSP70 gene in rat myogenic cells (H9c2) is markedly increased after relatively short periods of hypoxia as well as by heat shock. Two heat-shock elements (HSE) are present in the rat HSP70 promoter. Transient transfection of rat HSP70 promoter/chloramphenicol acetyltransferase constructs into H9c2 cells shows that the presence of either of the two HSEs is sufficient for heat-shock inducibility. In contrast, induction of the rat HSP70/chloramphenicol acetyltransferase constructs by hypoxia is only detectable when both HSEs are present. This leads us to conclude that the induction of HSP70 by hypoxia and heat shock occurs through the same regulatory HSEs but the activation of the inducible HSP70 gene by heat shock is several-fold higher than by hypoxia. Images Figure 1 Figure 5 Figure 6 Figure 8 PMID:8141767

  14. Purification and characterization of a heat-shock element binding protein from yeast.

    PubMed Central

    Sorger, P K; Pelham, H R

    1987-01-01

    The promoters of heat shock genes are activated when cells are stressed. Activation is dependent on a specific DNA sequence, the heat-shock element (HSE). We describe the purification to homogeneity of an HSE-binding protein from yeast (Saccharomyces cerevisiae), using sequential chromatography of whole cell extracts on heparin-agarose, calf thymus DNA-Sepharose and an affinity column consisting of a repetitive synthetic HSE sequence coupled to Sepharose. The protein runs as a closely spaced doublet of approximately 150 kd on SDS-polyacrylamide gels; mild proteolysis generates a stable 70-kd fragment which retains DNA binding activity. The relative affinities of the protein for a range of variant HSE sequences correlates with the ability of these sequences to support heat-inducible transcription in vivo, suggesting that this polypeptide is involved in the activation of heat-shock promoters. However, the protein was purified from unshocked yeast, and may therefore represent an unactivated form of heat-shock transcription factor. Study of the purified protein should help to define the mechanistic basis of the heat-shock response. Images Fig. 2. Fig. 4. Fig. 5. Fig. 6. Fig. 7. PMID:3319580

  15. Isolation and characterization of Escherichia coli mutants that lack the heat shock sigma factor sigma 32.

    PubMed Central

    Zhou, Y N; Kusukawa, N; Erickson, J W; Gross, C A; Yura, T

    1988-01-01

    The product of the Escherichia coli rpoH (htpR) gene, sigma 32, is required for heat-inducible transcription of the heat shock genes. Previous studies on the role of sigma 32 in growth at low temperature and in gene expression involved the use of nonsense and missense rpoH mutations and have led to ambiguous or conflicting results. To clarify the role of sigma 32 in cell physiology, we have constructed loss-of-function insertion and deletion mutations in rpoH. Strains lacking sigma 32 are extremely temperature sensitive and grow only at temperatures less than or equal to 20 degrees C. There is no transcription from the heat shock promoters preceding the htpG gene or the groESL and dnaKJ operons; however, several heat shock proteins are produced in the mutants. GroEL protein is present in the rpoH null mutants, but its synthesis is not inducible by a shift to high temperature. The low-level synthesis of GroEL results from transcription initiation at a minor sigma 70-controlled promoter for the groE operon. DnaK protein synthesis cannot be detected at low temperature, but can be detected after a shift to 42 degrees C. The mechanism of this heat-inducible synthesis is not known. We conclude that sigma 32 is required for cell growth at temperatures above 20 degrees C and is required for transcription from the heat shock promoters. Several heat shock proteins are synthesized in the absence of sigma 32, indicating that there are additional mechanisms controlling the synthesis of some heat shock proteins. Images PMID:2900239

  16. The role of an inverted CCAAT element in transcriptional activation of the human DNA topoisomerase IIalpha gene by heat shock.

    PubMed

    Furukawa, M; Uchiumi, T; Nomoto, M; Takano, H; Morimoto, R I; Naito, S; Kuwano, M; Kohno, K

    1998-04-24

    Expression of the DNA topoisomerase IIalpha (topoIIalpha) gene is highly sensitive to various environmental stimuli including heat shock. The amount of topoIIalpha mRNA was increased 1.5-3-fold 6-24 h after exposure of T24 human urinary bladder cancer cells to heat shock stress at 43 degreesC for 1 h. The effect of heat shock on the transcriptional activity of the human topoIIalpha gene promoter was investigated by transient transfection of T24 cells with luciferase reporter plasmids containing various lengths of the promoter sequence. The transcriptional activity of the full-length promoter (nucleotides (nt) -295 to +85) and of three deletion constructs (nt -197 to +85, -154 to +85, and -74 to +85) was increased approximately 3-fold 24 h after heat shock stress. In contrast, the transcriptional activity of the minimal promoter (nt -20 to +85), which lacks the first inverted CCAAT element (ICE1), the GC box, and the heat shock element located between nt -74 and -21, was not increased by heat shock. Furthermore, the transcriptional activity of promoter constructs containing mutations in the GC box or heat shock element, but not that of a construct containing mutations in ICE1, was significantly increased by heat shock. Electrophoretic mobility shift assays revealed reduced binding of a nuclear factor to an oligonucleotide containing ICE1 when nuclear extracts were derived from cells cultured for 3-24 h after heat shock. No such change in factor binding was apparent with an oligonucleotide containing the heat shock element of the topoIIalpha gene promoter. Finally, in vivo footprint analysis of the topoIIalpha gene promoter revealed that two G residues of ICE1 that were protected in control cells became sensitive to dimethyl sulfate modification after heat shock. These results suggest that transcriptional activation of the topoIIalpha gene by heat shock requires the release of a negative regulatory factor from ICE1. PMID:9553115

  17. Multi-Level Interactions Between Heat Shock Factors, Heat Shock Proteins, and the Redox System Regulate Acclimation to Heat.

    PubMed

    Driedonks, Nicky; Xu, Jiemeng; Peters, Janny L; Park, Sunghun; Rieu, Ivo

    2015-01-01

    High temperature has become a global concern because it seriously affects the growth and reproduction of plants. Exposure of plant cells to high temperatures result in cellular damage and can even lead to cell death. Part of the damage can be ascribed to the action of reactive oxygen species (ROS), which accumulate during abiotic stresses such as heat stress. ROS are toxic and can modify other biomacromolecules including membrane lipids, DNA, and proteins. In order to protect the cells, ROS scavenging is essential. In contrast with their inherent harms, ROS also function as signaling molecules, inducing stress tolerance mechanisms. This review examines the evidence for crosstalk between the classical heat stress response, which consists of heat shock factors (HSFs) and heat shock proteins (HSPs), with the ROS network at multiple levels in the heat response process. Heat stimulates HSF activity directly, but also indirectly via ROS. HSFs in turn stimulate the expression of HSP chaperones and also affect ROS scavenger gene expression. In the short term, HSFs repress expression of superoxide dismutase scavenger genes via induction of miRNA398, while they also activate scavenger gene expression and stabilize scavenger protein activity via HSP induction. We propose that these contrasting effects allow for the boosting of the heat stress response at the very onset of the stress, while preventing subsequent oxidative damage. The described model on HSFs, HSPs, ROS, and ROS scavenger interactions seems applicable to responses to stresses other than heat and may explain the phenomenon of crossacclimation. PMID:26635827

  18. Automated Scalable Heat Shock Modification for Standard Aquatic Housing Systems.

    PubMed

    Saera-Vila, Alfonso; Kish, Phillip E; Kahana, Alon

    2015-08-01

    Heat shock is a common technique for inducible gene expression system in a variety of organisms. Heat shock treatment of adult zebrafish is more involved and generally consists of manually transferring fish between housing rack tanks and preheated water tanks or the use of timed heaters in stand-alone aquaria. To avoid excessive fish handling and to take advantage of the continuous flow of a standard housing rack, proposed modifications consisted of installing an aquarium heater inside each tank, manually setting the heater to reach heat shocking temperatures (> 37°C) and, after that, testing that every tank responded equally. To address the limitations in the existing systems, we developed a novel modification of standard zebrafish housing racks to perform heat shock treatment in conditions of continuous water flow. By adding an extra manifold to the housing rack and connecting it to a recirculating bath to create a parallel water flow system, we can increase the temperature from standard conditions (28.5°C) to heat shock conditions with high precision (38.0-38.3°C, mean ± SD = 38.1°C ± 0.14°C) and minimal variation among experimental tanks (coefficient of variation [CV] = 0.04%). This means that there is virtually no need for laborious pretreatment calibrations or continuous adjustments to minimize intertank variation. To test the effectiveness of our design, we utilized this system to induce enhanced green fluorescent protein (EGFP) expression in hsp70-EGFP fish and performed a fin regeneration experiment with hsp70l:dnfgfr1-EGFP fish to confirm that heat-induced gene expression reached physiological levels. In summary, our newly described aquatic heat shock system minimizes effort during heat shock experiments, while ensuring the best water quality and fish welfare and facilitating large heat shock settings or the use of multiple transgenic lines for both research and teaching experiments. PMID:25942613

  19. Automated Scalable Heat Shock Modification for Standard Aquatic Housing Systems

    PubMed Central

    Saera-Vila, Alfonso; Kish, Phillip E.

    2015-01-01

    Abstract Heat shock is a common technique for inducible gene expression system in a variety of organisms. Heat shock treatment of adult zebrafish is more involved and generally consists of manually transferring fish between housing rack tanks and preheated water tanks or the use of timed heaters in stand-alone aquaria. To avoid excessive fish handling and to take advantage of the continuous flow of a standard housing rack, proposed modifications consisted of installing an aquarium heater inside each tank, manually setting the heater to reach heat shocking temperatures (>37°C) and, after that, testing that every tank responded equally. To address the limitations in the existing systems, we developed a novel modification of standard zebrafish housing racks to perform heat shock treatment in conditions of continuous water flow. By adding an extra manifold to the housing rack and connecting it to a recirculating bath to create a parallel water flow system, we can increase the temperature from standard conditions (28.5°C) to heat shock conditions with high precision (38.0–38.3°C, mean±SD=38.1°C±0.14°C) and minimal variation among experimental tanks (coefficient of variation [CV]=0.04%). This means that there is virtually no need for laborious pretreatment calibrations or continuous adjustments to minimize intertank variation. To test the effectiveness of our design, we utilized this system to induce enhanced green fluorescent protein (EGFP) expression in hsp70-EGFP fish and performed a fin regeneration experiment with hsp70l:dnfgfr1-EGFP fish to confirm that heat-induced gene expression reached physiological levels. In summary, our newly described aquatic heat shock system minimizes effort during heat shock experiments, while ensuring the best water quality and fish welfare and facilitating large heat shock settings or the use of multiple transgenic lines for both research and teaching experiments. PMID:25942613

  20. A constitutive heat shock element-binding factor is immunologically identical to the Ku autoantigen.

    PubMed

    Kim, D; Ouyang, H; Yang, S H; Nussenzweig, A; Burgman, P; Li, G C

    1995-06-23

    Analysis of the heat shock element (HSE)-binding proteins in extracts of rodent cells, during heat shock and their post-heat shock recovery, indicates that the regulation of heat shock response involves a constitutive HSE-binding factor (CHBF), in addition to the heat-inducible heat shock factor HSF1. We purified the CHBF to apparent homogeneity from HeLa cells using column chromatographic techniques including an HSE oligonucleotide affinity column. The purified CHBF consists of two polypeptides with apparent molecular masses of 70 and 86 kDa. Immunoblot and gel mobility shift analysis verify that CHBF is identical or closely related to the Ku autoantigen. The DNA binding characteristics of CHBF to double-stranded or single-stranded DNA are similar to that of Ku autoantigen. In gel mobility shift analysis using purified CHBF and recombinant human HSF1, CHBF competes with HSF1 for the binding of DNA sequences containing HSEs in vitro. Furthermore, when Rat-1 cells were co-transfected with human Ku expression vectors and the hsp70-promoter-driven luciferase reporter gene, thermal induction of luciferase is significantly suppressed relative to cells transfected with only the hsp70-luciferase construct. These data suggest a role of CHBF (or Ku protein) in the regulation of heat response in vivo. PMID:7797514

  1. Fever and the heat shock response: distinct, partially overlapping processes

    PubMed Central

    Hasday, Jeffrey D.; Singh, Ishwar S.

    2000-01-01

    The heat shock response is an ancient and highly conserved process that is essential for surviving environmental stresses, including extremes of temperature. Fever is a more recently evolved response, during which organisms temporarily subject themselves to thermal stress in the face of infections. We review studies showing that fever is beneficial in the infected host. We show that core temperatures achieved during fever can activate the heat shock response and discuss some of the biochemical consequences of such an effect. We present data suggesting 4 possible mechanisms by which fever might confer protection: (1) directly killing or inhibiting growth of pathogens; (2) inducing cytoprotective heat shock proteins (Hsps) in host cells; (3) inducing expression of pathogen Hsps, an activator of host defenses; and (4) modifying and orchestrating host defenses. Two of these mechanisms directly involve the heat shock response. We describe how heat shock factor-1, the predominant heat-induced transcriptional enhancer not only activates transcription of Hsps but also regulates expression of pivotal cytokines and early response genes. The relationship between fever and the heat shock response is an illuminating example of how a more recently evolved response might exploit preexisting biochemical pathways for a new function. PMID:11189454

  2. Calving traits of crossbred Brahman Cows are Associated with Heat Shock Protein 70 Genetic Polymorphisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objectives were to: 1) identify single nucleotide polymorphisms (SNP) located in the promoter region of the bovine heat shock protein 70 gene, and 2) evaluate associations between Hsp70 SNP and calving rates of Brahman-influenced cows. Specific primers were designed for PCR amplification of a 539 b...

  3. Differential regulation of the 70K heat shock gene and related genes in Saccharomyces cerevisiae.

    PubMed Central

    Ellwood, M S; Craig, E A

    1984-01-01

    Saccharomyces cerevisiae contains a family of genes related to Hsp70, the major heat shock gene of Drosophila melanogaster. The transcription of three of these genes, which show no conservation of sequences 5' to the protein-coding region, was analyzed. The 5' flanking regions from the three genes were fused to the Escherichia coli beta-galactosidase structural gene and introduced into yeasts on multicopy plasmids, putting the beta-galactosidase production under yeast promoter control. Analysis of beta-galactosidase mRNA and protein production in these transformed strains revealed that transcription from the three promoters is differentially regulated. The number of transcripts from one promoter is vastly increased for a brief period after heat shock, whereas mRNA from another declines. Transcripts from a third gene are slightly enhanced upon heat shock; however, multiple 5' ends of the mRNA are found, and a minor species increases in amount after heat shock. Transcription of these promoters in their native state on the chromosome appears to be modulated in the same manner. Images PMID:6436685

  4. Three light-inducible heat shock genes of Chlamydomonas reinhardtii.

    PubMed Central

    von Gromoff, E D; Treier, U; Beck, C F

    1989-01-01

    Genomic clones representing three Chlamydomonas reinhardtii genes homologous to the Drosophila hsp70 heat shock gene were isolated. The mRNAs of genes hsp68, hsp70, and hsp80 could be translated in vitro into proteins of Mr 68,000, 70,000, and 80,000, respectively. Transcription of these genes increased dramatically upon heat shock, and the corresponding mRNAs rapidly accumulated, reaching a peak at around 30 min after a shift to the elevated temperature. Light also induced the accumulation of the mRNAs encoded by these heat shock genes. A shift of dark-grown cells to light resulted in a drastic increase in mRNA levels, which reached a maximum at around 1 h after the shift. Thus, in Chlamydomonas, expression of hsp70-homologous heat shock genes appears to be regulated by thermal stress and light. Images PMID:2779571

  5. Heat shock response and autophagy—cooperation and control

    PubMed Central

    Dokladny, Karol; Myers, Orrin B; Moseley, Pope L

    2015-01-01

    Protein quality control (proteostasis) depends on constant protein degradation and resynthesis, and is essential for proper homeostasis in systems from single cells to whole organisms. Cells possess several mechanisms and processes to maintain proteostasis. At one end of the spectrum, the heat shock proteins modulate protein folding and repair. At the other end, the proteasome and autophagy as well as other lysosome-dependent systems, function in the degradation of dysfunctional proteins. In this review, we examine how these systems interact to maintain proteostasis. Both the direct cellular data on heat shock control over autophagy and the time course of exercise-associated changes in humans support the model that heat shock response and autophagy are tightly linked. Studying the links between exercise stress and molecular control of proteostasis provides evidence that the heat shock response and autophagy coordinate and undergo sequential activation and downregulation, and that this is essential for proper proteostasis in eukaryotic systems. PMID:25714619

  6. Heat induction of heat shock protein 25 requires cellular glutamine in intestinal epithelial cells.

    PubMed

    Phanvijhitsiri, Kittiporn; Musch, Mark W; Ropeleski, Mark J; Chang, Eugene B

    2006-08-01

    Glutamine is considered a nonessential amino acid; however, it becomes conditionally essential during critical illness when consumption exceeds production. Glutamine may modulate the heat shock/stress response, an important adaptive cellular response for survival. Glutamine increases heat induction of heat shock protein (Hsp) 25 in both intestinal epithelial cells (IEC-18) and mesenchymal NIH/3T3 cells, an effect that is neither glucose nor serum dependent. Neither arginine, histidine, proline, leucine, asparagine, nor tyrosine acts as physiological substitutes for glutamine for heat induction of Hsp25. The lack of effect of these amino acids was not caused by deficient transport, although some amino acids, including glutamate (a major direct metabolite of glutamine), were transported poorly by IEC-18 cells. Glutamate uptake could be augmented in a concentration- and time-dependent manner by increasing either media concentration and/or duration of exposure. Under these conditions, glutamate promoted heat induction of Hsp25, albeit not as efficiently as glutamine. Further evidence for the role of glutamine conversion to glutamate was obtained with the glutaminase inhibitor 6-diazo-5-oxo-l-norleucine (DON), which inhibited the effect of glutamine on heat-induced Hsp25. DON inhibited phosphate-dependent glutaminase by 75% after 3 h, decreasing cell glutamate. Increased glutamine/glutamate conversion to glutathione was not involved, since the glutathione synthesis inhibitor, buthionine sulfoximine, did not block glutamine's effect on heat induction of Hsp25. A large drop in ATP levels did not appear to account for the diminished Hsp25 induction during glutamine deficiency. In summary, glutamine is an important amino acid, and its requirement for heat-induced Hsp25 supports a role for glutamine supplementation to optimize cellular responses to pathophysiological stress. PMID:16554407

  7. Saccharomyces cerevisiae Genes Involved in Survival of Heat Shock

    PubMed Central

    Jarolim, Stefanie; Ayer, Anita; Pillay, Bethany; Gee, Allison C.; Phrakaysone, Alex; Perrone, Gabriel G.; Breitenbach, Michael; Dawes, Ian W.

    2013-01-01

    The heat-shock response in cells, involving increased transcription of a specific set of genes in response to a sudden increase in temperature, is a highly conserved biological response occurring in all organisms. Despite considerable attention to the processes activated during heat shock, less is known about the role of genes in survival of a sudden temperature increase. Saccharomyces cerevisiae genes involved in the maintenance of heat-shock resistance in exponential and stationary phase were identified by screening the homozygous diploid deletants in nonessential genes and the heterozygous diploid mutants in essential genes for survival after a sudden shift in temperature from 30 to 50°. More than a thousand genes were identified that led to altered sensitivity to heat shock, with little overlap between them and those previously identified to affect thermotolerance. There was also little overlap with genes that are activated or repressed during heat-shock, with only 5% of them regulated by the heat-shock transcription factor. The target of rapamycin and protein kinase A pathways, lipid metabolism, vacuolar H+-ATPase, vacuolar protein sorting, and mitochondrial genome maintenance/translation were critical to maintenance of resistance. Mutants affected in l-tryptophan metabolism were heat-shock resistant in both growth phases; those affected in cytoplasmic ribosome biogenesis and DNA double-strand break repair were resistant in stationary phase, and in mRNA catabolic processes in exponential phase. Mutations affecting mitochondrial genome maintenance were highly represented in sensitive mutants. The cell division transcription factor Swi6p and Hac1p involved in the unfolded protein response also play roles in maintenance of heat-shock resistance. PMID:24142923

  8. Barcoding heat shock proteins to human diseases: looking beyond the heat shock response

    PubMed Central

    Kakkar, Vaishali; Meister-Broekema, Melanie; Minoia, Melania; Carra, Serena; Kampinga, Harm H.

    2014-01-01

    There are numerous human diseases that are associated with protein misfolding and the formation of toxic protein aggregates. Activating the heat shock response (HSR) – and thus generally restoring the disturbed protein homeostasis associated with such diseases – has often been suggested as a therapeutic strategy. However, most data on activating the HSR or its downstream targets in mouse models of diseases associated with aggregate formation have been rather disappointing. The human chaperonome consists of many more heat shock proteins (HSPs) that are not regulated by the HSR, however, and researchers are now focusing on these as potential therapeutic targets. In this Review, we summarize the existing literature on a set of aggregation diseases and propose that each of them can be characterized or ‘barcoded’ by a different set of HSPs that can rescue specific types of aggregation. Some of these ‘non-canonical’ HSPs have demonstrated effectiveness in vivo, in mouse models of protein-aggregation disease. Interestingly, several of these HSPs also cause diseases when mutated – so-called chaperonopathies – which are also discussed in this Review. PMID:24719117

  9. Heavy Ion Heating at Shocks in the Heliosphere

    NASA Astrophysics Data System (ADS)

    Korreck, K. E.; Stevens, M. L.; Lepri, S. T.; Kasper, J. C.

    2014-12-01

    Ions heavier than protons can be used as tracers for heating mechamisms in solar wind plasma. Measurments by the ACE and WIND satellites provide information on the relative heating of the heavy ions versus the protons. Greater than mass proportional heating has been seen at coronal mass ejections (CME) shock fronts. Using ACE SWICS heavy ions data from CME associated shocks, heavy ion heating and the non-thermal nature of helium and oxygen distributions at 1AU is examined. The WIND SWE data set is used to examine the helium distributions at the shock fronts observed at the spacecraft. Understanding the heating and source of energetic particles and their evolution through the heliosphere is relevant to predicting space weather events and the evolution of the solar wind.

  10. Ion heating and energy redistribution across supercritical perpendicular shocks: Application to planetary and interplanetary shocks

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Liu, Y. D.; Richardson, J. D.; Parks, G. K.

    2013-12-01

    We investigate how the ion dissipative process across supercritical perpendicular shocks depends on the shock front micro-structures. At a collisionless plasma shock, the dissipation and micro-structure of the shock font are dominated by wave-particle interactions. Comparison of the ion thermalization at different kinds of shocks, e.g., planetary and interplanetary shocks, can quantify how much interaction is occurring at the shock boundary. Investigation of this problem for diverse solar wind (SW) conditions will yield important information on the dependences of the ion thermalization and energy redistribution on plasma parameters. With the aid of a successful automatic separation method [Yang et al., 2009], the incident ions at the shock can be divided into two parts: reflected (R) ions and directly transmitted (DT) ions. Corresponding heating efficiency of each population of ions at the shock can be calculated respectively. Wilkinson & Schwartz [1990] have theorized that the amount of reflected ions at perpendicular shocks depends on plasma parameters. Based on the Rankine-Hugoniot (R-H) conservation laws, they found that the fraction reflected is strongly dependent on the magnitude of the ratio of specific heat capacities γ chosen in the R-H relations. The main goal of this work is to investigate how the plasma parameters, e.g. the particle velocity distribution, the plasma beta value, seed populations, etc. (from a particle dynamic point of view), control the amount of reflected ions by using one-dimensional (1-D) full-particle-cell simulations. The simulation results may help to explain the ion heating efficiency and energy redistribution at shocks observed by Cluster, Wind, Voyager, etc.

  11. Heat shock increases survival in rats exposed to hyperbaric pressure.

    PubMed

    Medby, Christian; Bye, Anja; Wisløff, Ulrik; Brubakk, Alf O

    2008-12-01

    It has been shown that a single bout of exercise performed 20 hours prior to hyperbaric exposure reduces bubble formation and increases survival in rats. Heat shock proteins (HSPs) are stress proteins expressed in cells that are exposed to different stressors. HSPs are known to protect cells, by binding to proteins and stabilizing them. As it is known that a single bout of exercise induces HSPs, and that HSPs exert their protective effects 20-24 hours after the stimulus for induction, we hypothesized that HSPs might be one mechanism behind the observed exercise-induced protection. We hypothesized that rats that expressed HSPs would develop fewer bubbles and have a lower mortality than their non-stressed control group. Twenty-four female Sprague-Dawley rats (300-330 g) were divided into a heat-shock group and a control group and anaesthetized. The rats in the heat-shock group were heated to 42 ± 0.5 degrees Celsius for 15 min. The following day, all rats were compressed to 700 kPa for 45 min in a hyperbaric chamber. The right ventricles were insonated and bubbles were identified and graded. Six of 12 rats in the heat-shock group survive d, while 1 of 12 control rats survived (Chi square = 5.042, P = 0.034). There was no difference in bubble grade between the groups. The study suggests that the effect of heat shock on survival is not the same as observed after exercise, as the heat-shocked rats developed bubbles. However, heat shock appears to protect rats against the effects of bubbles by an independent mechanism. PMID:22692750

  12. Lipoic Acid Exerts Antioxidant and Anti-inflammatory Effects in Response to Heat Shock in C2C12 Myotubes.

    PubMed

    Lee, Cheng-Tse; Chang, Li-Ching; Wu, Pei-Fung

    2016-06-01

    This study explored that lipoic acid treatment for 24 h significantly upregulated and promoted heat shock-induced catalase expression and downregulated GPx1 messenger RNA (mRNA) expression, indicating that lipoic acid exhibits antioxidant activity in the decomposition of hydrogen peroxide by upregulating catalase expression. Moreover, lipoic acid treatment for 3 h increased and promoted heat shock-induced interleukin (IL)-6 mRNA and protein levels and that for 24 h downregulated IL-6 mRNA expression, suggesting a dual effect of lipoic acid on IL-6 regulation. Lipoic acid alone failed to increase or reduce tumor necrosis factor (TNF)-α mRNA and protein levels, whereas heat shock alone downregulated TNF-α mRNA and protein expression. These data suggest that lipoic acid does not have a proinflammatory role and that heat shock acts as an anti-inflammatory agent by downregulating TNF-α expression in C2C12 myotubes. Moreover, lipoic acid or heat shock alone upregulated the IL-6 receptor (IL-6R-α) and glycoprotein 130 (gp130) mRNA expression followed by IL-6 expression; these data indicate that the regulation of lipoic acid or heat shock is mediated by IL-6R signaling, thus suggesting that C2C12 myotubes possesses a mechanism for regulating IL-6R and gp130 expression following lipoic acid treatment or heat shock. PMID:27086282

  13. Molecular mechanism of thermosensory function of human heat shock transcription factor Hsf1.

    PubMed

    Hentze, Nikolai; Le Breton, Laura; Wiesner, Jan; Kempf, Georg; Mayer, Matthias P

    2016-01-01

    The heat shock response is a universal homeostatic cell autonomous reaction of organisms to cope with adverse environmental conditions. In mammalian cells, this response is mediated by the heat shock transcription factor Hsf1, which is monomeric in unstressed cells and upon activation trimerizes, and binds to promoters of heat shock genes. To understand the basic principle of Hsf1 activation we analyzed temperature-induced alterations in the conformational dynamics of Hsf1 by hydrogen exchange mass spectrometry. We found a temperature-dependent unfolding of Hsf1 in the regulatory region happening concomitant to tighter packing in the trimerization region. The transition to the active DNA binding-competent state occurred highly cooperative and was concentration dependent. Surprisingly, Hsp90, known to inhibit Hsf1 activation, lowered the midpoint temperature of trimerization and reduced cooperativity of the process thus widening the response window. Based on our data we propose a kinetic model of Hsf1 trimerization. PMID:26785146

  14. Mammalian Heat Shock Response and Mechanisms Underlying Its Genome-wide Transcriptional Regulation.

    PubMed

    Mahat, Dig B; Salamanca, H Hans; Duarte, Fabiana M; Danko, Charles G; Lis, John T

    2016-04-01

    The heat shock response (HSR) is critical for survival of all organisms. However, its scope, extent, and the molecular mechanism of regulation are poorly understood. Here we show that the genome-wide transcriptional response to heat shock in mammals is rapid and dynamic and results in induction of several hundred and repression of several thousand genes. Heat shock factor 1 (HSF1), the "master regulator" of the HSR, controls only a fraction of heat shock-induced genes and does so by increasing RNA polymerase II release from promoter-proximal pause. Notably, HSF2 does not compensate for the lack of HSF1. However, serum response factor appears to transiently induce cytoskeletal genes independently of HSF1. The pervasive repression of transcription is predominantly HSF1-independent and is mediated through reduction of RNA polymerase II pause release. Overall, mammalian cells orchestrate rapid, dynamic, and extensive changes in transcription upon heat shock that are largely modulated at pause release, and HSF1 plays a limited and specialized role. PMID:27052732

  15. Arctigenin from Fructus Arctii is a novel suppressor of heat shock response in mammalian cells

    PubMed Central

    Ishihara, Keiichi; Yamagishi, Nobuyuki; Saito, Youhei; Takasaki, Midori; Konoshima, Takao; Hatayama, Takumi

    2006-01-01

    Because heat shock proteins (Hsps) are involved in protecting cells and in the pathophysiology of diseases such as inflammation, cancer, and neurodegenerative disorders, the use of regulators of the expression of Hsps in mammalian cells seems to be useful as a potential therapeutic modality. To identify compounds that modulate the response to heat shock, we analyzed several natural products using a mammalian cell line containing an hsp promoter-regulated reporter gene. In this study, we found that an extract from Fructus Arctii markedly suppressed the expression of Hsp induced by heat shock. A component of the extract arctigenin, but not the component arctiin, suppressed the response at the level of the activation of heat shock transcription factor, the induction of mRNA, and the synthesis and accumulation of Hsp. Furthermore, arctigenin inhibited the acquisition of thermotolerance in mammalian cells, including cancer cells. Thus, arctigenin seemed to be a new suppressive regulator of heat shock response in mammalian cells, and may be useful for hyperthermia cancer therapy. PMID:16817321

  16. PARP-1 transcriptional activity is regulated by sumoylation upon heat shock.

    PubMed

    Martin, Nadine; Schwamborn, Klaus; Schreiber, Valérie; Werner, Andreas; Guillier, Christelle; Zhang, Xiang-Dong; Bischof, Oliver; Seeler, Jacob-S; Dejean, Anne

    2009-11-18

    Heat shock and other environmental stresses rapidly induce transcriptional responses subject to regulation by a variety of post-translational modifications. Among these, poly(ADP-ribosyl)ation and sumoylation have received growing attention. Here we show that the SUMO E3 ligase PIASy interacts with the poly(ADP-ribose) polymerase PARP-1, and that PIASy mediates heat shock-induced poly-sumoylation of PARP-1. Furthermore, PIASy, and hence sumoylation, appears indispensable for full activation of the inducible HSP70.1 gene. Chromatin immunoprecipitation experiments show that PIASy, SUMO and the SUMO-conjugating enzyme Ubc9 are rapidly recruited to the HSP70.1 promoter upon heat shock, and that they are subsequently released with kinetics similar to PARP-1. Finally, we provide evidence that the SUMO-targeted ubiquitin ligase RNF4 mediates heat-shock-inducible ubiquitination of PARP-1, regulates the stability of PARP-1, and, like PIASy, is a positive regulator of HSP70.1 gene activity. These results, thus, point to a novel mechanism for regulating PARP-1 transcription function, and suggest crosstalk between sumoylation and RNF4-mediated ubiquitination in regulating gene expression in response to heat shock. PMID:19779455

  17. A bipartite operator interacts with a heat shock element to mediate early meiotic induction of Saccharomyces cerevisiae HSP82

    SciTech Connect

    Szent-Gyorgyi, C.

    1995-12-01

    This report seeks to characterize the activation of meiotic gene in terms of cis-acting DNA elements and their associated factors in Saccharomyces cerevisiae. It was found that vegetative repression and meiotic induction depend on interactions of the promoter-proximal heat shock element with a nearby bipartite repression element. The experiments described explore how two different regulatory pathways induce transcription by stimulating a single classical activation element, a nonspecific heat shock element. 81 refs., 10 figs., 1 tab.

  18. Structure of intermediate shocks and slow shocks in a magnetized plasma with heat conduction

    SciTech Connect

    Tsai, C.L.; Wu, B.H.; Lee, L.C.

    2005-08-15

    The structure of slow shocks and intermediate shocks in the presence of a heat conduction parallel to the local magnetic field is simulated from the set of magnetohydrodynamic equations. This study is an extension of an earlier work [C. L. Tsai, R. H. Tsai, B. H. Wu, and L. C. Lee, Phys. Plasmas 9, 1185 (2002)], in which the effects of heat conduction are examined for the case that the tangential magnetic fields on the two side of initial current sheet are exactly antiparallel (B{sub y}=0). For the B{sub y}=0 case, a pair of slow shocks is formed as the result of evolution of the initial current sheet, and each slow shock consists of two parts: the isothermal main shock and the foreshock. In the present paper, cases with B{sub y}{ne}0 are also considered, in which the evolution process leads to the presence of an additional pair of time-dependent intermediate shocks (TDISs). Across the main shock of the slow shock, jumps in plasma density, velocity, and magnetic field are significant, but the temperature is continuous. The plasma density downstream of the main shock decreases with time, while the downstream temperature increases with time, keeping the downstream pressure constant. The foreshock is featured by a smooth temperature variation and is formed due to the heat flow from downstream to upstream region. In contrast to the earlier study, the foreshock is found to reach a steady state with a constant width in the slow shock frame. In cases with B{sub y}{ne}0, the plasma density and pressure increase and the magnetic field decreases across TDIS. The TDIS initially can be embedded in the slow shock's foreshock structure, and then moves out of the foreshock region. With an increasing B{sub y}, the propagation speed of foreshock leading edge tends to decrease and the foreshock reaches its steady state at an earlier time. Both the pressure and temperature downstreams of the main shock decrease with increasing B{sub y}. The results can be applied to the shock heating

  19. Functional conservation of cis-regulatory elements of heat-shock genes over long evolutionary distances.

    PubMed

    He, Zhengying; Eichel, Kelsie; Ruvinsky, Ilya

    2011-01-01

    Transcriptional control of gene regulation is an intricate process that requires precise orchestration of a number of molecular components. Studying its evolution can serve as a useful model for understanding how complex molecular machines evolve. One way to investigate evolution of transcriptional regulation is to test the functions of cis-elements from one species in a distant relative. Previous results suggested that few, if any, tissue-specific promoters from Drosophila are faithfully expressed in C. elegans. Here we show that, in contrast, promoters of fly and human heat-shock genes are upregulated in C. elegans upon exposure to heat. Inducibility under conditions of heat shock may represent a relatively simple "on-off" response, whereas complex expression patterns require integration of multiple signals. Our results suggest that simpler aspects of regulatory logic may be retained over longer periods of evolutionary time, while more complex ones may be diverging more rapidly. PMID:21799932

  20. Atypical Particle Heating at a Supercritical Interplanetary Shock

    NASA Technical Reports Server (NTRS)

    Wilson, Lynn B., III

    2010-01-01

    We present the first observations at an interplanetary shock of large amplitude (> 100 mV/m pk-pk) solitary waves and large amplitude (approx.30 mV/m pk-pk) waves exhibiting characteristics consistent with electron Bernstein waves. The Bernstein-like waves show enhanced power at integer and half-integer harmonics of the cyclotron frequency with a broadened power spectrum at higher frequencies, consistent with the electron cyclotron drift instability. The Bernstein-like waves are obliquely polarized with respect to the magnetic field but parallel to the shock normal direction. Strong particle heating is observed in both the electrons and ions. The observed heating and waveforms are likely due to instabilities driven by the free energy provided by reflected ions at this supercritical interplanetary shock. These results offer new insights into collisionless shock dissipation and wave-particle interactions in the solar wind.

  1. Heat shock proteins, end effectors of myocardium ischemic preconditioning?

    PubMed Central

    Guisasola, María Concepcion; Desco, Maria del Mar; Gonzalez, Fernanda Silvana; Asensio, Fernando; Dulin, Elena; Suarez, Antonio; Garcia Barreno, Pedro

    2006-01-01

    The purpose of this study was to investigate (1) whether ischemia-reperfusion increased the content of heat shock protein 72 (Hsp72) transcripts and (2) whether myocardial content of Hsp72 is increased by ischemic preconditioning so that they can be considered as end effectors of preconditioning. Twelve male minipigs (8 protocol, 4 sham) were used, with the following ischemic preconditioning protocol: 3 ischemia and reperfusion 5-minute alternative cycles and last reperfusion cycle of 3 hours. Initial and final transmural biopsies (both in healthy and ischemic areas) were taken in all animals. Heat shock protein 72 messenger ribonucleic acid (mRNA) expression was measured by a semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR) method using complementary DNA normalized against the housekeeping gene cyclophilin. The identification of heat shock protein 72 was performed by immunoblot. In our “classic” preconditioning model, we found no changes in mRNA hsp72 levels or heat shock protein 72 content in the myocardium after 3 hours of reperfusion. Our experimental model is valid and the experimental techniques are appropriate, but the induction of heat shock proteins 72 as end effectors of cardioprotection in ischemic preconditioning does not occur in the first hours after ischemia, but probably at least 24 hours after it, in the so-called “second protection window.” PMID:17009598

  2. Mechanical analysis of a heat-shock induced developmental defect

    NASA Astrophysics Data System (ADS)

    Crews, Sarah M.; McCleery, W. Tyler; Hutson, M. Shane

    2014-03-01

    Embryonic development in Drosophila is a complex process involving coordinated movements of mechanically interacting tissues. Perturbing this system with a transient heat shock can result in a number of developmental defects. In particular, a heat shock applied during the earliest morphogenetic movements of gastrulation can lead to apparent recovery, but then subsequent morphogenetic failure 5-6 hours later during germ band retraction. The process of germ band retraction requires an intact amnioserosa - a single layered extra-embryonic epithelial tissue - and heat shock at gastrulation can induce the later opening of holes in the amnioserosa. These holes are highly correlated with failures of germ band retraction. These holes could be caused by a combination of mechanical weakness in the amnioserosa or local increases in mechanical stress. Here, we assess the role of mechanical stress using confocal imaging to compare cell and tissue morphology in the amnioserosa of normal and heat-shocked embryos and laser hole drilling to map the stress field around the times and locations at which heat-shock induced holes open.

  3. Wavelet transform analysis of chromatin texture changes during heat shock.

    PubMed

    Herbomel, G; Grichine, A; Fertin, A; Delon, A; Vourc'h, C; Souchier, C; Usson, Y

    2016-06-01

    Texture analysis can be a useful tool to investigate the organization of chromatin. Approaches based on multiscale analysis and in particular the 'à trou' wavelet analysis has already been used for microscopy (Olivo Marin). In order to analyse texture changes, the statistical properties of the wavelet coefficient images were summarized by the first four statistical orders: mean, standard deviation, skewness and kurtosis of the coefficient image histogram. The 'à trou' transform provided a representation of the wavelet coefficients and texture parameters with the same statistical robustness throughout the scale spaces. It was applied for quantifying chromatin texture and heat-induced chromatin changes in living cells. We investigated the changes by both laser scanning and spinning disk confocal microscopies and compared the texture parameters before and after increasing duration of heat shock exposure (15 min, 30 min and 1 h). Furthermore, as activation of the heat shock response also correlates with a rapid localization of HSF1 within a few nuclear structures termed nuclear stress bodies (nSBs), we compared the dynamics of nSBs formation with that of textural changes during 1 h of continuous heat shock. Next, we studied the recovery phase following a 1-h heat shock. Significant differences were observed, particularly affecting the perinucleolar region, even for the shortest heat shock time affecting mostly the skewness and standard deviation. Furthermore, progressive changes could be observed according to the duration of heat shock, mostly affecting fine details (pixel-wise changes) as revealed by the parameters, obtained from the first- and second-order wavelet coefficients. 'A trou' wavelet texture analysis provided a sensitive and efficient tool to investigate minute changes of chromatin. PMID:26694695

  4. Evidence for the involvement of mouse heat shock factor 1 in the atypical expression of the HSP70.1 heat shock gene during mouse zygotic genome activation.

    PubMed Central

    Christians, E; Michel, E; Adenot, P; Mezger, V; Rallu, M; Morange, M; Renard, J P

    1997-01-01

    The mouse HSP70.1 gene, which codes for a heat shock protein (hsp70), is highly transcribed at the onset of zygotic genome activation (ZGA). This expression, which occurs in the absence of stress, is then repressed. It has been claimed that this gene does not exhibit a stress response until the blastocyst stage. The promoter of HSP70.1 contains four heat shock element (HSE) boxes which are the binding sites of heat shock transcription factors (HSF). We have been studying the presence and localization of the mouse HSFs, mHSF1 and mHSF2, at different stages of embryo development. We show that mHSF1 is already present at the one-cell stage and concentrated in the nucleus. Moreover, by mutagenizing HSE sequences and performing competition experiments (in transgenic embryos with the HSP70.1 promoter inserted before a reporter gene), we show that, in contrast with previous findings, HSE boxes are involved in this spontaneous activation. Therefore, we suggest that HSF1 and HSE are important in this transient expression at the two-cell stage and that the absence of typical inducibility at this early stage of development results mainly from the high level of spontaneous transcription of this gene during the ZGA. PMID:9001232

  5. Chromosome behavior of heat shock induced triploid in Fenneropenaeus chinensis

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaojun; Li, Fuhua; Xiang, Jianhai

    2003-09-01

    Triploidy was induced in Chinese shrimp Fenneropenaeus chinensis by 30±0.5°C heat shock treatment (initiated at 20 min after fertilization) for 10 min to inhibit the release of PB2 at 18.0°C. The highest triploid rate obtained was 84.5% in nauplius stage. The effect of heat shock treatment on meiosis and cleavage of eggs was investigated in this work aimed to establish efficient procedures for triploid induction and to gain understanding of the mechanism of triploid production. Three pronuclei that could be observed in the treated eggs under fluorescence microscope developed into triploid embryos. Some abnormal chromosome behavior was observed in heat shocked eggs.

  6. Multiple oligomeric structures of a bacterial small heat shock protein

    PubMed Central

    Mani, Nandini; Bhandari, Spraha; Moreno, Rodolfo; Hu, Liya; Prasad, B. V. Venkataram; Suguna, Kaza

    2016-01-01

    Small heat shock proteins are ubiquitous molecular chaperones that form the first line of defence against the detrimental effects of cellular stress. Under conditions of stress they undergo drastic conformational rearrangements in order to bind to misfolded substrate proteins and prevent cellular protein aggregation. Owing to the dynamic nature of small heat shock protein oligomers, elucidating the structural basis of chaperone action and oligomerization still remains a challenge. In order to understand the organization of sHSP oligomers, we have determined crystal structures of a small heat shock protein from Salmonella typhimurium in a dimeric form and two higher oligomeric forms: an 18-mer and a 24-mer. Though the core dimer structure is conserved in all the forms, structural heterogeneity arises due to variation in the terminal regions. PMID:27053150

  7. Synergistic Effects of Toxic Elements on Heat Shock Proteins

    PubMed Central

    Mahmood, Khalid; Mahmood, Qaisar; Irshad, Muhammad; Hussain, Jamshaid

    2014-01-01

    Heat shock proteins show remarkable variations in their expression levels under a variety of toxic conditions. A research span expanded over five decades has revealed their molecular characterization, gene regulation, expression patterns, vast similarity in diverse groups, and broad range of functional capabilities. Their functions include protection and tolerance against cytotoxic conditions through their molecular chaperoning activity, maintaining cytoskeleton stability, and assisting in cell signaling. However, their role as biomarkers for monitoring the environmental risk assessment is controversial due to a number of conflicting, validating, and nonvalidating reports. The current knowledge regarding the interpretation of HSPs expression levels has been discussed in the present review. The candidature of heat shock proteins as biomarkers of toxicity is thus far unreliable due to synergistic effects of toxicants and other environmental factors. The adoption of heat shock proteins as “suit of biomarkers in a set of organisms” requires further investigation. PMID:25136596

  8. Influence of heat shock on glycerol production in alcohol fermentation.

    PubMed

    Berovic, Marin; Pivec, Aleksandra; Kosmerl, Tatjana; Wondra, Mojmir; Celan, Stefan

    2007-02-01

    The influence of single and double heat shocks induced during the exponential growth phase of the Saccharomyces cerevisiae fermentation of cultivar Sauvignon Blanc grape must was examined. Rapid temperature changes from 18 degrees C to 34 degrees C have been applied. The effect of the duration of exposure to a high temperature has been analyzed. By the applications of a single heat shock and a double heat shock, up to 8.2 g l(-1) and 11.0 g l(-1) glycerol have been produced, respectively. To prevent the evaporation of fine wine bouquet compounds during the temperature changes, reflux coolers on the top of bioreactors have been employed. By using this method, glycerol production was increased by up to 65%. PMID:17368395

  9. Heat shock mediated labelling of Pseudomonas aeruginosa with quantum dots.

    PubMed

    Kumar, Natasha; Wiraja, Christian; Palanisamy, Kannan; Marsili, Enrico; Xu, Chenjie

    2016-06-01

    Biocompatible nanoparticles are good candidates to label bacteria for imaging and diagnosis purposes. A high labeling efficiency reduces the concentration of nanoparticles required for labeling and allows the labeled bacteria to be tracked for longer periods. This report explores the optimal labeling strategy for Pseudomonas aeruginosa, a common gram-negative opportunistic pathogen, with quantum dots. Three strategies including direct incubation, calcium chloride treatment, and heat shock are compared and the labeling efficiency is assessed through fluorescence microscopy and flow cytometry analysis. Of the three, heat shock is finally selected due to its comparable labeling efficiency and simplicity. Through the assay of the respiration rate of bacteria together with morphology analysis, the heat shock process does not show any negative effect over the cells activity even at sub-toxic concentrations. PMID:26962762

  10. The small heat shock proteins family: the long forgotten chaperones.

    PubMed

    Garrido, C; Paul, C; Seigneuric, R; Kampinga, H H

    2012-10-01

    Small heat shock proteins are a rather heterogeneous family of ATP-independent chaperones, some of which have been proven to block protein aggregation and help the cells to survive stressful conditions. Although much less studied than high molecular weight HSPs like HSP70/HSPA or HSP90/HSPC, their implication in physio-pathological processes and human diseases is now well evidenced, as it will be discussed in the different reviews of this special issue. In this mini-review we will just present a general introduction about the small heat shock proteins family. This article is part of a Directed Issue entitled: Small HSPs in physiology and pathology. PMID:22449631

  11. Heat shock and herpes virus: enhanced reactivation without untargeted mutagenesis

    SciTech Connect

    Lytle, C.D.; Carney, P.G.

    1988-01-01

    Enhanced reactivation of Ultraviolet-irradiated virus has been reported to occur in heat-shocked host cells. Since enhanced virus reactivation is often accompanied by untargeted mutagenesis, we investigated whether such mutagenesis would occur for herpes simplex virus (HSV) in CV-1 monkey kidney cells subjected to heat shock. In addition to expressing enhanced reactivation, the treated cells were transiently more susceptible to infection by unirradiated HSV. No mutagenesis of unirradiated HSV was found whether infection occurred at the time of increased susceptibility to infection or during expression of enhanced viral reactivation.

  12. Development of a heat-shock inducible gene expression system in the red alga Cyanidioschyzon merolae.

    PubMed

    Sumiya, Nobuko; Fujiwara, Takayuki; Kobayashi, Yusuke; Misumi, Osami; Miyagishima, Shin-ya

    2014-01-01

    The cell of the unicellular red alga Cyanidioschyzon merolae contains a single chloroplast and mitochondrion, the division of which is tightly synchronized by a light/dark cycle. The genome content is extremely simple, with a low level of genetic redundancy, in photosynthetic eukaryotes. In addition, transient transformation and stable transformation by homologous recombination have been reported. However, for molecular genetic analyses of phenomena that are essential for cellular growth and survival, inducible gene expression/suppression systems are needed. Here, we report the development of a heat-shock inducible gene expression system in C. merolae. CMJ101C, encoding a small heat shock protein, is transcribed only when cells are exposed to an elevated temperature. Using a superfolder GFP as a reporter protein, the 200-bp upstream region of CMJ101C orf was determined to be the optimal promoter for heat-shock induction. The optimal temperature to induce expression is 50°C, at which C. merolae cells are able to proliferate. At least a 30-min heat shock is required for the expression of a protein of interest and a 60-min heat shock yields the maximum level of protein expression. After the heat shock, the mRNA level decreases rapidly. As an example of the system, the expression of a dominant negative form of chloroplast division DRP5B protein, which has a mutation in the GTPase domain, was induced. Expression of the dominant negative DRP5B resulted in the appearance of aberrant-shaped cells in which two daughter chloroplasts and the cells are still connected by a small DRP5B positive tube-like structure. This result suggests that the dominant negative DRP5B inhibited the final scission of the chloroplast division site, but not the earlier stages of division site constriction. It is also suggested that cell cycle progression is not arrested by the impairment of chloroplast division at the final stage. PMID:25337786

  13. Inbreeding interferes with the heat-shock response

    PubMed Central

    Franke, Kristin; Fischer, Klaus

    2015-01-01

    Inbreeding is typically detrimental to individual fitness, with negative effects being often exaggerated in stressful environments. However, the causal mechanisms underlying inbreeding depression in general and the often increased susceptibility to stress in particular are not well understood. We here test whether inbreeding interferes with the heat-shock response, comprising an important component of the stress response which may therefore underscore sensitivity to stress. To this end we subjected the tropical butterfly Bicyclus anynana to a full-factorial design with three temperatures and three levels of inbreeding, and measured the expression of heat-shock protein (HSP) 70 via qPCR. HSP70 expression increased after exposure to heat as compared with cold or control conditions. Most strikingly, inbreeding strongly interfered with the heat-shock response, with inbred individuals showing a very weak upregulation of HSP70 only. Our results thus indicate that, in our study organism, interference with the heat-shock response may be one mechanism underlying reduced fitness of inbred individuals, especially when exposed to stressful conditions. However, these indications need to be corroborated using a broader range of different temperatures, genes and taxa. PMID:25074571

  14. Heat shock proteins and the heat shock response during hyperthermia and its modulation by altered physiological conditions.

    PubMed

    Horowitz, Michal; Robinson, Sharon D M

    2007-01-01

    The fundamental functions of heat shock proteins (HSPs) are molecular chaperoning and cellular repair. There is little literature on the association between the numerous functions of HSPs and systemic integrative responses, particularly those controlled by the central nervous system. This chapter focuses on the role played by members of the HSP70 superfamily, universally recognized as cytoprotectants during heat stress, within the physiological context of hyperthermia and with its superimposition on situations of chronic stress. In the nucleus tractus solitarius, HSP70 levels enhance the sensitivity of sympathetic and parasympathetic arms of the autonomic nervous system to attenuate heat stroke-induced cerebral ischemia and hypotension. Chronic stressors that alter the heat shock response may affect the physiological profile during hyperthermic conditions. Upon aging, significantly lower HSP70 production is noted in the ventral paraventricular and lateral magnocellular nuclei. Likewise, results from cultured cells suggest that the age-related decline in HSP70 expression is constitutive and is due to decreased binding of the heat shock factor 1 (HSF-1) to the heat shock element (HSE) and diminished HSP70 transcription. These changes may be associated with decreased thermotolerance upon aging, although HSP70 production in response to other stressors is not affected. Heat acclimation (AC), in contrast, increases tissue reserves of HSP70 and accelerates the heat shock response. AC protects epithelial integrity, vascular reactivity and interactions with cellular signaling networks, enhancing protection and delaying thermal injury. The link between HSP70 and the immune system is discussed with respect to exercise. Exercise enhances the immune response via production of HSP72 in central and peripheral structures. At least in part, the effects of HSP72 in the brain are mediated via eHSP72-circulating HSPs providing a "danger signal" to activate the immune response. In

  15. Facets of heat shock protein 70 show immunotherapeutic potential

    PubMed Central

    Todryk, Stephen M; Gough, Michael J; Pockley, A Graham

    2003-01-01

    Amongst the families of intracellular molecules that chaperone and assist with the trafficking of other proteins, notably during conditions of cellular stress, heat shock protein (hsp) 70 is one of the most studied. Although its name suggests that expression is exclusively induced during cellular hyperthermia, members of the hsp70 family of proteins can be constitutively expressed and/or induced by a range of other cellular insults. The ubiquitous presence of hsp70 in eukaryotic and prokaryotic cells, combined with its high degree of sequence homology and intrinsic immunogenicity, have prompted the suggestion that inappropriate immune reactivity to hsp70 might lead to pro-inflammatory responses and the development of autoimmune disease. Indeed, hsp70 has been shown to be a potent activator of innate immunity and aberrant expression of hsp70 in certain organs promotes immunopathology. However, studies also suggest that hsp70 might have immunotherapeutic potential, as hsp70 purified from malignant and virally infected cells can transfer and deliver antigenic peptides to antigen-presenting cells to elicit peptide-specific immunity and, in contrast to its reported pro-inflammatory effects, the administration of recombinant hsp70 can attenuate experimental autoimmune disease. This review focuses on the immunoregulatory capacity of hsp70 and its potential therapeutic value. PMID:12941135

  16. The C-terminal region of Drosophila heat shock factor (HSF) contains a constitutively functional transactivation domain.

    PubMed Central

    Wisniewski, J; Orosz, A; Allada, R; Wu, C

    1996-01-01

    The heat shock transcription factor (HSF) is constitutively expressed in Drosophila cells as an inactive monomer. Upon heat shock HSF undergoes trimerization and acquires high affinity DNA binding ability leading to specific interaction with its cognate elements in heat shock promoters. Here we show that the transactivation function of HSF is conferred by the extreme C-terminal region of the protein. Deletion analysis of HSF fragments fused to the GAL4 DNA-binding domain demonstrates that transactivation is dependent on HSF residues 610-691. This domain is located beyond the C-terminal heptad repeat (leucine zipper 4) whose presence or integrity is dispensable for transactivation. The transactivation domain is functional in the absence of heat shock and can be replaced by the extreme C-terminal region of human HSF1. The Drosophila and human HSF transactivation domains are both rich in hydrophobic and acidic residues and may be structurally conserved, despite limited sequence identity. PMID:8628664

  17. Inhibition of Heat Shock Induction of Heat Shock Protein 70 and Enhancement of Heat Shock Protein 27 Phosphorylation by Quercetin Derivatives

    PubMed Central

    Wang, Rongsheng E.; Kao, Jeffrey L.-F.; Hilliard, Carolyn A.; Pandita, Raj K.; Roti, Joseph L. Roti; Hunt, Clayton R.; Taylor, John-Stephen

    2009-01-01

    Inhibitors of heat-induced heat shock protein 70 (HSP70)a expression have the potential to enhance the therapeutic effectiveness of heat induced radiosensitization of tumors. Among known small molecule inhibitors, quercetin has the advantage of being easily modified for structure-activity studies. Herein, we report the ability of five mono-methyl and five carbomethoxymethyl derivatives of quercetin to inhibit heat-induced HSP70 expression and enhance HSP27 phosphorylation in human cells. While quercetin and several derivatives inhibit HSP70 induction and enhance HSP27 phosphorylation at Ser78, other analogs selectively inhibit HSP70 induction without enhancing HSP27 phosphorylation that would otherwise aid in cell survival. We also show that good inhibitors of HSP70 induction are also good inhibitors of both CK2 and CamKII, kinases that are known to activate HSP70 expression by phosphorylation of heat shock transcription factor 1. Derivatives that show poor inhibition of either or both kinases are not good inhibitors of HSP70 induction, suggesting that quercetin’s effectiveness is due to its ability to inhibit both kinases. PMID:19296652

  18. The effect of a type 3 and type 4 shock/shock interaction on heat transfer in the stagnation region

    NASA Technical Reports Server (NTRS)

    Wilson, Dennis

    1991-01-01

    One of the major engineering challenges in designing the National Aerospace Plane, NASP, is to overcome augmented heating on the intake cowl lip from shock/shock interactions. The shock/shock interaction arises when the bow shock from the craft's nose interferes with the bow shock from the cowl lip. Considering only the region immediately around the cowl lip, the problem geometry may be simplified as that of an oblique shock impinging on a bow shock from a circular cylinder. Edney classified six different interference patterns resulting from an oblique-shock/curved bow-shock interaction. Of these six types, type 3 and 4 are most significant in that augmented surface heat transfer may be ten to thirty times greater than the case without the shock/shock interaction. The objective was to begin to develop a mathematical model which is capable of predicting the effect of a type 3 and 4 shock/shock interaction in the stagnation region of an arbitrary 2-D body. This model must be capable of predicting the maximum surface heat flux and the surface stagnation point pressure once the outer (effectively inviscid) flowfield is given. Therefore, it must capture the unsteady physics of the impinging shear layer.

  19. Heat shock protein 90 is required for sexual and asexual development, virulence, and heat shock response in Fusarium graminearum.

    PubMed

    Bui, Duc-Cuong; Lee, Yoonji; Lim, Jae Yun; Fu, Minmin; Kim, Jin-Cheol; Choi, Gyung Ja; Son, Hokyoung; Lee, Yin-Won

    2016-01-01

    Eukaryotic cells repress global translation and selectively upregulate stress response proteins by altering multiple steps in gene expression. In this study, genome-wide transcriptome analysis of cellular adaptation to thermal stress was performed on the plant pathogenic fungus Fusarium graminearum. The results revealed that profound alterations in gene expression were required for heat shock responses in F. graminearum. Among these proteins, heat shock protein 90 (FgHsp90) was revealed to play a central role in heat shock stress responses in this fungus. FgHsp90 was highly expressed and exclusively localised to nuclei in response to heat stress. Moreover, our comprehensive functional characterisation of FgHsp90 provides clear genetic evidence supporting its crucial roles in the vegetative growth, reproduction, and virulence of F. graminearum. In particular, FgHsp90 performs multiple functions as a transcriptional regulator of conidiation. Our findings provide new insight into the mechanisms underlying adaptation to heat shock and the roles of Hsp90 in fungal development. PMID:27306495

  20. Heat shock protein 90 is required for sexual and asexual development, virulence, and heat shock response in Fusarium graminearum

    PubMed Central

    Bui, Duc-Cuong; Lee, Yoonji; Lim, Jae Yun; Fu, Minmin; Kim, Jin-Cheol; Choi, Gyung Ja; Son, Hokyoung; Lee, Yin-Won

    2016-01-01

    Eukaryotic cells repress global translation and selectively upregulate stress response proteins by altering multiple steps in gene expression. In this study, genome-wide transcriptome analysis of cellular adaptation to thermal stress was performed on the plant pathogenic fungus Fusarium graminearum. The results revealed that profound alterations in gene expression were required for heat shock responses in F. graminearum. Among these proteins, heat shock protein 90 (FgHsp90) was revealed to play a central role in heat shock stress responses in this fungus. FgHsp90 was highly expressed and exclusively localised to nuclei in response to heat stress. Moreover, our comprehensive functional characterisation of FgHsp90 provides clear genetic evidence supporting its crucial roles in the vegetative growth, reproduction, and virulence of F. graminearum. In particular, FgHsp90 performs multiple functions as a transcriptional regulator of conidiation. Our findings provide new insight into the mechanisms underlying adaptation to heat shock and the roles of Hsp90 in fungal development. PMID:27306495

  1. Expression of heat shock protein genes in insect stress responses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The heat shock proteins (HSPs) that are abundantly expressed in insects are important modulators of insect survival. Expression of HSP genes in insects is not only developmentally regulated, but also induced by various stressors in order to confer protection against such stressors. The expression o...

  2. Circuit architecture explains functional similarity of bacterial heat shock responses

    NASA Astrophysics Data System (ADS)

    Inoue, Masayo; Mitarai, Namiko; Trusina, Ala

    2012-12-01

    Heat shock response is a stress response to temperature changes and a consecutive increase in amounts of unfolded proteins. To restore homeostasis, cells upregulate chaperones facilitating protein folding by means of transcription factors (TFs). We here investigate two heat shock systems: one characteristic to gram negative bacteria, mediated by transcriptional activator σ32 in E. coli, and another characteristic to gram positive bacteria, mediated by transcriptional repressor HrcA in L. lactis. We construct simple mathematical models of the two systems focusing on the negative feedbacks, where free chaperones suppress σ32 activation in the former, while they activate HrcA repression in the latter. We demonstrate that both systems, in spite of the difference at the TF regulation level, are capable of showing very similar heat shock dynamics. We find that differences in regulation impose distinct constraints on chaperone-TF binding affinities: the binding constant of free σ32 to chaperone DnaK, known to be in 100 nM range, set the lower limit of amount of free chaperone that the system can sense the change at the heat shock, while the binding affinity of HrcA to chaperone GroE set the upper limit and have to be rather large extending into the micromolar range.

  3. Heat Shock Proteins in Dermatophytes: Current Advances and Perspectives.

    PubMed

    Martinez-Rossi, Nilce M; Jacob, Tiago R; Sanches, Pablo R; Peres, Nalu T A; Lang, Elza A S; Martins, Maíra P; Rossi, Antonio

    2016-04-01

    Heat shock proteins (HSPs) are proteins whose transcription responds rapidly to temperature shifts. They constitute a family of molecular chaperones, involved in the proper folding and stabilisation of proteins under physiological and adverse conditions. HSPs also assist in the protection and recovery of cells exposed to a variety of stressful conditions, including heat. The role of HSPs extends beyond chaperoning proteins, as they also participate in diverse cellular functions, such as the assembly of macromolecular complexes, protein transport and sorting, dissociation of denatured protein aggregates, cell cycle control, and programmed cell death. They are also important antigens from a variety of pathogens, are able to stimulate innate immune cells, and are implicated in acquired immunity. In fungi, HSPs have been implicated in virulence, dimorphic transition, and drug resistance. Some HSPs are potential targets for therapeutic strategies. In this review, we discuss the current understanding of HSPs in dermatophytes, which are a group of keratinophilic fungi responsible for superficial mycoses in humans and animals. Computational analyses were performed to characterise the group of proteins in these dermatophytes, as well as to assess their conservation and to identify DNA-binding domains (5'-nGAAn-3') in the promoter regions of the hsp genes. In addition, the quantification of the transcript levels of few genes in a pacC background helped in the development of an extended model for the regulation of the expression of the hsp genes, which supports the participation of the pH-responsive transcriptional regulator PacC in this process. PMID:27226766

  4. Inhibition of Heat Shock Protein 90 Prevents HIV Rebound.

    PubMed

    Joshi, Pheroze; Maidji, Ekaterina; Stoddart, Cheryl A

    2016-05-01

    HIV evades eradication because transcriptionally dormant proviral genomes persist in long-lived reservoirs of resting CD4(+) T cells and myeloid cells, which are the source of viral rebound after cessation of antiretroviral therapy. Dormant HIV genomes readily produce infectious virus upon cellular activation because host transcription factors activated specifically by cell stress and heat shock mediate full-length HIV transcription. The molecular chaperone heat shock protein 90 (Hsp90) is overexpressed during heat shock and activates inducible cellular transcription factors. Here we show that heat shock accelerates HIV transcription through induction of Hsp90 activity, which activates essential HIV-specific cellular transcription factors (NF-κB, NFAT, and STAT5), and that inhibition of Hsp90 greatly reduces gene expression mediated by these factors. More importantly, we show that Hsp90 controls virus transcription in vivo by specific Hsp90 inhibitors in clinical development, tanespimycin (17-(allylamino)-17-demethoxygeldanamycin) and AUY922, which durably prevented viral rebound in HIV-infected humanized NOD scid IL-2Rγ(-/-) bone marrow-liver-thymus mice up to 11 weeks after treatment cessation. Despite the absence of rebound viremia, we were able to recover infectious HIV from PBMC with heat shock. Replication-competent virus was detected in spleen cells from these nonviremic Hsp90 inhibitor-treated mice, indicating the presence of a tissue reservoir of persistent infection. Our novel findings provide in vivo evidence that inhibition of Hsp90 activity prevents HIV gene expression in replication-competent cellular reservoirs that would typically cause rebound in plasma viremia after antiretroviral therapy cessation. Alternating or supplementing Hsp90 inhibitors with current antiretroviral therapy regimens could conceivably suppress rebound viremia from persistent HIV reservoirs. PMID:26957545

  5. Inhibition of Heat Shock Protein 90 Prevents HIV Rebound*

    PubMed Central

    Joshi, Pheroze; Maidji, Ekaterina; Stoddart, Cheryl A.

    2016-01-01

    HIV evades eradication because transcriptionally dormant proviral genomes persist in long-lived reservoirs of resting CD4+ T cells and myeloid cells, which are the source of viral rebound after cessation of antiretroviral therapy. Dormant HIV genomes readily produce infectious virus upon cellular activation because host transcription factors activated specifically by cell stress and heat shock mediate full-length HIV transcription. The molecular chaperone heat shock protein 90 (Hsp90) is overexpressed during heat shock and activates inducible cellular transcription factors. Here we show that heat shock accelerates HIV transcription through induction of Hsp90 activity, which activates essential HIV-specific cellular transcription factors (NF-κB, NFAT, and STAT5), and that inhibition of Hsp90 greatly reduces gene expression mediated by these factors. More importantly, we show that Hsp90 controls virus transcription in vivo by specific Hsp90 inhibitors in clinical development, tanespimycin (17-(allylamino)-17-demethoxygeldanamycin) and AUY922, which durably prevented viral rebound in HIV-infected humanized NOD scid IL-2Rγ−/− bone marrow-liver-thymus mice up to 11 weeks after treatment cessation. Despite the absence of rebound viremia, we were able to recover infectious HIV from PBMC with heat shock. Replication-competent virus was detected in spleen cells from these nonviremic Hsp90 inhibitor-treated mice, indicating the presence of a tissue reservoir of persistent infection. Our novel findings provide in vivo evidence that inhibition of Hsp90 activity prevents HIV gene expression in replication-competent cellular reservoirs that would typically cause rebound in plasma viremia after antiretroviral therapy cessation. Alternating or supplementing Hsp90 inhibitors with current antiretroviral therapy regimens could conceivably suppress rebound viremia from persistent HIV reservoirs. PMID:26957545

  6. SHOCK HEATING OF THE MERGING GALAXY CLUSTER A521

    SciTech Connect

    Bourdin, H.; Mazzotta, P.; Markevitch, M.; Giacintucci, S.; Brunetti, G.

    2013-02-10

    A521 is an interacting galaxy cluster located at z = 0.247, hosting a low-frequency radio halo connected to an eastern radio relic. Previous Chandra observations hinted at the presence of an X-ray brightness edge at the position of the relic, which may be a shock front. We analyze a deep observation of A521 recently performed with XMM-Newton in order to probe the cluster structure up to the outermost regions covered by the radio emission. The cluster atmosphere exhibits various brightness and temperature anisotropies. In particular, two cluster cores appear to be separated by two cold fronts. We find two shock fronts, one that was suggested by Chandra and that is propagating to the east, and another to the southwestern cluster outskirt. The two main interacting clusters appear to be separated by a shock-heated region, which exhibits a spatial correlation with the radio halo. The outer edge of the radio relic coincides spatially with a shock front, suggesting that this shock is responsible for the generation of cosmic-ray electrons in the relic. The propagation direction and Mach number of the shock front derived from the gas density jump, M = 2.4 {+-} 0.2, are consistent with expectations from the radio spectral index, under the assumption of Fermi I acceleration mechanism.

  7. Shock Heating of the Merging Galaxy Cluster A521

    NASA Technical Reports Server (NTRS)

    Bourdin, H.; Mazzotta, P.; Markevitch, M.; Giacintucci, S.; Brunetti, G.

    2013-01-01

    A521 is an interacting galaxy cluster located at z = 0.247, hosting a low-frequency radio halo connected to an eastern radio relic. Previous Chandra observations hinted at the presence of an X-ray brightness edge at the position of the relic, which may be a shock front. We analyze a deep observation of A521 recently performed with XMM-Newton in order to probe the cluster structure up to the outermost regions covered by the radio emission. The cluster atmosphere exhibits various brightness and temperature anisotropies. In particular, two cluster cores appear to be separated by two cold fronts. We find two shock fronts, one that was suggested by Chandra and that is propagating to the east, and another to the southwestern cluster outskirt. The two main interacting clusters appear to be separated by a shock-heated region, which exhibits a spatial correlation with the radio halo. The outer edge of the radio relic coincides spatially with a shock front, suggesting that this shock is responsible for the generation of cosmic-ray electrons in the relic. The propagation direction and Mach number of the shock front derived from the gas density jump, M = 2.4 +/- 0.2, are consistent with expectations from the radio spectral index, under the assumption of Fermi I acceleration mechanism.

  8. Shock-Bubble Heating of the Intracluster Medium

    NASA Astrophysics Data System (ADS)

    Friedman, Samuel H.; Heinz, S.; Churazov, E.

    2011-01-01

    Active galactic nuclei (AGN) Feedback via extragalactic jets requires a thermalization of the energy injected into the intracluster medium (ICM) in order for energy feedback to occur. Heinz and Churazov (2005) proposed a method using shock waves and previously inflated bubbles in the ICM to extract energy from the shock waves and turn the energy into rotational kinetic energy. This energy would decay and allow heating to occur elsewhere throughout the galaxy cluster. In this paper, we extend to three dimensions (3D) the previous work using hydrodynamic simulations. We also compare our results to previous related work done performed experimentally.

  9. Involvement of heat shock factor 1 in statin-induced transcriptional upregulation of endothelial thrombomodulin

    PubMed Central

    Fu, Qiang; Wang, Junru; Boerma, Marjan; Berbée, Maaike; Qiu, Xiaohua; Fink, Louis M.; Hauer-Jensen, Martin

    2008-01-01

    Statins upregulate endothelial thrombomodulin (TM) by mechanisms that involve members of the Kruppel-like factor (KLF) family. While KLFs are unequivocally implicated in this process experimental evidence points to additional mechanisms. Deletion/mutation analysis of reporter constructs was used to demonstrate that mutation of the SP1/KLF element in the TM promoter only partially abolishes statin-induced TM upregulation whereas simultaneous mutation of relevant heat shock elements (HSEs) and SP1/KLF element completely prevents statin-induced TM upregulation, thus demonstrating a role for heat shock factors (HSFs). We further identified the pathway by which statins increase binding of HSF1 to HSEs in the TM promoter. Specifically, statins caused NO-dependent dissociation of HSF1 from heat shock protein 90 (HSP90), nuclear translocation of HSF1, and binding to HSEs in the TM promoter. Statins also decreased nuclear content of the HSF1 chaperone 14-3-3β. In addition to reducing TM upregulation, inhibition of HSF1 reduced statin-induced upregulation of tissue plasminogen activator (tPA), whereas, downregulation of thrombomospondin (TSP-1), plasminogen activator inhibitor 1 (PAI-1), or connective tissue growth factor (CTGF) was unaffected. Knockdown of 14-3-3β or inhibition of HSF1 phosphorylation enhanced the effect of statins on TM and tPA, but did not influence TSP-1, PAI-1, or CTGF. These data demonstrate that HSF1 is involved in statin-induced regulation of TM. They also suggest that analogous mechanisms may apply to genes that are upregulated by statins, but not to downregulated genes. These results may have broad implications and suggest the use of heat shock protein modulators to selectively regulate pleiotropic statin effects. PMID:18599869

  10. Heat shock modulates the subcellular localization, stability, and activity of HIPK2.

    PubMed

    Upadhyay, Mamta; Bhadauriya, Pratibha; Ganesh, Subramaniam

    2016-04-15

    The homeodomain-interacting protein kinase-2 (HIPK2) is a highly conserved serine/threonine kinase and is involved in transcriptional regulation. HIPK2 is a highly unstable protein, and is kept at a low level under normal physiological conditions. However, exposure of cells to physiological stress - such as hypoxia, oxidative stress, or UV damage - is known to stabilize HIPK2, leading to the HIPK2-dependent activation of p53 and the cell death pathway. Therefore HIPK2 is also known as a stress kinase and as a stress-activated pro-apoptotic factor. We demonstrate here that exposure of cells to heat shock results in the stabilization of HIPK2 and the stabilization is mediated via K63-linked ubiquitination. Intriguingly, a sub-lethal heat shock (42 °C, 1 h) results in the cytoplasmic localization of HIPK2, while a lethal heat shock (45 °C, 1 h) results in its nuclear localization. Cells exposed to the lethal heat shock showed significantly higher levels of the p53 activity than those exposed to the sub-lethal thermal stress, suggesting that both the level and the nuclear localization are essential for the pro-apoptotic activity of HIPK2 and that the lethal heat shock could retain the HIPK2 in the nucleus to promote the cell death. Taken together our study underscores the importance of HIPK2 in stress mediated cell death, and that the HIPK2 is a generic stress kinase that gets activated by diverse set of physiological stressors. PMID:26972256

  11. Dendritic-Tumor Fusion Cells Derived Heat Shock Protein70-Peptide Complex Has Enhanced Immunogenicity

    PubMed Central

    Chen, Jun; Liu, Yunyan; Luo, Wen

    2015-01-01

    Tumor-derived heat shock protein70-peptide complexes (HSP70.PC-Tu) have shown great promise in tumor immunotherapy due to numerous advantages. However, large-scale phase III clinical trials showed that the limited immunogenicity remained to be enhanced. In previous research, we demonstrated that heat shock protein 70-peptide complexes (HSP70.PC-Fc) derived from dendritic cell (DC)-tumor fusions exhibit enhanced immunogenicity compared with HSP70.PCs from tumor cells. However, the DCs used in our previous research were obtained from healthy donors and not from the patient population. In order to promote the clinical application of these complexes, HSP70.PC-Fc was prepared from patient-derived DC fused directly with patient-derived tumor cells in the current study. Our results showed that compared with HSP70.PC-Tu, HSP70.PC-Fc elicited much more powerful immune responses against the tumor from which the HSP70 was derived, including enhanced T cell activation, and CTL responses that were shown to be antigen specific and HLA restricted. Our results further indicated that the enhanced immunogenicity is related to the activation of CD4+ T cells and increased association with other heat shock proteins, such as HSP90. Therefore, the current study confirms the enhanced immunogenicity of HSP70.PC derived from DC-tumor fusions and may provide direct evidence promoting their future clinical use. PMID:25961716

  12. Guidelines for the nomenclature of the human heat shock proteins

    PubMed Central

    Hageman, Jurre; Vos, Michel J.; Kubota, Hiroshi; Tanguay, Robert M.; Bruford, Elspeth A.; Cheetham, Michael E.; Chen, Bin; Hightower, Lawrence E.

    2008-01-01

    The expanding number of members in the various human heat shock protein (HSP) families and the inconsistencies in their nomenclature have often led to confusion. Here, we propose new guidelines for the nomenclature of the human HSP families, HSPH (HSP110), HSPC (HSP90), HSPA (HSP70), DNAJ (HSP40), and HSPB (small HSP) as well as for the human chaperonin families HSPD/E (HSP60/HSP10) and CCT (TRiC). The nomenclature is based largely on the more consistent nomenclature assigned by the HUGO Gene Nomenclature Committee and used in the National Center of Biotechnology Information Entrez Gene database for the heat shock genes. In addition to this nomenclature, we provide a list of the human Entrez Gene IDs and the corresponding Entrez Gene IDs for the mouse orthologs. PMID:18663603

  13. Protein disorder reduced in Saccharomyces cerevisiae to survive heat shock.

    PubMed

    Vicedo, Esmeralda; Gasik, Zofia; Dong, Yu-An; Goldberg, Tatyana; Rost, Burkhard

    2015-01-01

    Recent experiments established that a culture of Saccharomyces cerevisiae (baker's yeast) survives sudden high temperatures by specifically duplicating the entire chromosome III and two chromosomal fragments (from IV and XII). Heat shock proteins (HSPs) are not significantly over-abundant in the duplication. In contrast, we suggest a simple algorithm to " postdict " the experimental results: Find a small enough chromosome with minimal protein disorder and duplicate this region. This algorithm largely explains all observed duplications. In particular, all regions duplicated in the experiment reduced the overall content of protein disorder. The differential analysis of the functional makeup of the duplication remained inconclusive. Gene Ontology (GO) enrichment suggested over-representation in processes related to reproduction and nutrient uptake. Analyzing the protein-protein interaction network (PPI) revealed that few network-central proteins were duplicated. The predictive hypothesis hinges upon the concept of reducing proteins with long regions of disorder in order to become less sensitive to heat shock attack. PMID:26673203

  14. Effect of heat shock on S6 phosphorylation during the development of Blastocladiella emersonii.

    PubMed

    da Silva, A M; Juliani, M H; Bonato, M C

    1987-11-01

    Changes in phosphorylation of ribosomal protein S6 during heat shock, induction of thermotolerance and recovery from heat shock at different stages of Blastocladiella emersonii development were investigated. Independently of the initial state of S6 phosphorylation (maximal or intermediate), a rapid and complete dephosphorylation of S6 is induced by heat shock and S6 remains unphosphorylated during the acquired thermotolerance. During recovery from heat shock rephosphorylation of S6 occurs always to the levels characteristic of that particular stage, coincidently with the turn off of heat shock protein synthesis. PMID:3454866

  15. Transcriptome Profiles of Populus euphratica upon Heat Shock stress

    PubMed Central

    Chen, Jinhuan; Yin, Weilun; Xia, Xinli

    2014-01-01

    Heat stress, which strongly affects plant performance and often results in reduced vegetative growth and yields depression, has become an increasingly serious global problem. Populus euphratica Oliv. which has been considered as a tree model for the study of plant response to abiotic stresses, could be resistant to an extremely wide environmental temperature range (–40 °C to 45 °C). Previous study is mainly focused on its gene regulation upon drought and salt stress. However, little is known about gene regulation at the global transcriptome level upon heat stress. To understand the gene network controlling heat stress in P. euphratica, a transcriptome sequencing using Illumina Hiseq 2000 was performed to generate a 10 gigabases depth for each sample in the tissue of leaf. 119,573 unigeneswere generated with an average length of 474 bp. Approximately 49,605 (41.49%) unigenes exhibited significantly different expressions between two libraries. Among these unigenes, 11,165 (9.34%) were upregulated and 38,440 (32.15%) were down regulated. Heat shock proteins classified as molecular chaperones showed a significant percentage (1.13%) in the up regulated group. Heat responsive genes, such as polyubiquitins, were over expressed in heat treated sample. GO enrichment analysis revealed that the Go terms for differentially expressed unigenes were significantly enriched in hormone-mediated signal, biological process regulation and metabolic process regulation. Our data revealed a global transcriptome picture of P. euphratica in response to heat shock. The identified potential heat stress-related transcripts can be used to infer the gene regulation networks underlying the molecular mechanisms of heat response in P. euphratica. PMID:25435796

  16. The Role of Heat Shock Proteins in Leukemia.

    PubMed

    Kliková, K; Pilchova, I; Stefanikova, A; Hatok, J; Dobrota, D; Racay, P

    2016-01-01

    Heat shock proteins (HSPs) HSP27, HSP70 and HSP90 are molecular chaperones; their expression is increased after exposure of cells to conditions of environmental stress, including heat shock, heavy metals, oxidative stress, or pathologic conditions, such as ischemia, infection, and inflammation. Their protective function is to help the cell cope with lethal conditions. The HSPs are a class of proteins which, in normal cells, are responsible for maintaining homeostasis, interacting with diverse protein substrates to assist in their folding, and preventing the appearance of folding intermediates that lead to misfolded or damaged molecules. They have been shown to interact with different key apoptotic proteins and play a crucial role in regulating apoptosis. Several HSPs have been demonstrated to directly interact with various components of tightly regulated caspase-dependent programmed cell death. These proteins also affect caspase-independent apoptosis by interacting with apoptogenic factors. Heat shock proteins are aberrantly expressed in hematological malignancies. Because of their prognostic implications and functional role in leukemias, HSPs represent an interesting target for antileukemic therapy. This review will describe different molecules interacting with anti-apoptotic proteins HSP70 and HSP90, which can be used in cancer therapy based on their inhibition. PMID:26879061

  17. Metabolite changes associated with heat shocked avian fibroblast mitochondria.

    PubMed

    Schlesinger, M J; Ryan, C; Chi, M M; Carter, J G; Pusateri, M E; Lowry, O H

    1997-03-01

    A previous report from our laboratory (Collier et al 1993) showed that the elongated tubules of mitochondria in the cytoplasm of cultured chicken embryo fibroblasts collapsed to irregularly shaped structures surrounding the nuclear membrane after a 1 h heat shock treatment. The normal mitochondrial morphology reappeared upon removal of the thermal stress. We have now determined that several changes occurred in mitochondrial-related metabolites under these same heat shock and recovery conditions. Among these were significant decreases in the levels of fumarate and malate and increases in the amounts of aspartate and glutamate. In contrast, other intermediates of the tri-carboxylic acid cycle were unaltered as were levels of ATP and phosphocreatine. The changes observed might result from heat shock-induced changes in enzyme activities of the mitochondria, from alterations in the membrane-embedded specialized carrier proteins that transport metabolites between cytosol and mitochondria or from a disorganization of the electron-transport system normally coupled to oxidative metabolism. The rapid recovery, however, suggested that these changes were transient and readily reversible. PMID:9250392

  18. Competition between shock and turbulent heating in coronal loop system

    NASA Astrophysics Data System (ADS)

    Matsumoto, Takuma

    2016-08-01

    2.5-dimensional magnetohydrodynamic (MHD) simulations are performed with high spatial resolution in order to distinguish between competing models of the coronal heating problem. A single coronal loop powered by Alfvén waves excited in the photosphere is the target of the present study. The coronal structure is reproduced in our simulations as a natural consequence of the transportation and dissipation of Alfvén waves. Further, the coronal structure is maintained as the spatial resolution is changed from 25 to 3 km, although the temperature at the loop top increases with the spatial resolution. The heating mechanisms change gradually across the magnetic canopy at a height of 4 Mm. Below the magnetic canopy, both the shock and the MHD turbulence are dominant heating processes. Above the magnetic canopy, the shock heating rate reduces to less than 10 % of the total heating rate while the MHD turbulence provides significant energy to balance the radiative cooling and thermal conduction loss or gain. The importance of compressibility shown in the present study would significantly impact on the prospects of successful MHD turbulence theory in the solar chromosphere.

  19. A heat shock protein 90 β isoform involved in immune response to bacteria challenge and heat shock from Miichthys miiuy.

    PubMed

    Wei, Tao; Gao, Yunhang; Wang, Rixin; Xu, Tianjun

    2013-08-01

    Heat shock protein 90 (HSP90) is highly conserved molecular chaperone that plays a critical role in cellular stress response. In this study, we reported the identification and functional analysis of a heat shock protein 90 gene from miiuy croaker (designated Mimi-HSP90). Mimi-HSP90 contained five conserved HSP90 protein family signatures and shared 89.6%-99.5% similarity with other known HSP90 β isoform. Homology analysis and structure comparison further indicated that Mimi-HSP90 should be β isoform member of the HSP90 family. The molecular evolutionary analysis showed that HSP90 was under an overall strong purifying select pressure among fish species. Mimi-HSP90 gene was constitutively expressed in ten examined tissues, and the expression level of liver was higher than in other tissues. The expression level of Mimi-HSP90 gene under bacterial infection and heat shock were analyzed by real-time quantitative RT-PCR, resulted in significant changes in liver, spleen, and kidney tissues. The purified recombinant pET-HSP90 protein was used to produce the polyclonal antibody in mice. The specificity of the antibody was determined by Western blot analysis. All results suggested that Mimi-HSP90 was involved in thermal stress and immune response in miiuy croaker. PMID:23684810

  20. A critical role for heat shock transcription factor in establishing a nucleosome-free region over the TATA-initiation site of the yeast HSP82 heat shock gene.

    PubMed Central

    Gross, D S; Adams, C C; Lee, S; Stentz, B

    1993-01-01

    Heat shock genes are poised for rapid transcriptional activation in response to environmental stress. A universal structural characteristic of such genes is the presence of a nucleosome-free, DNase I hypersensitive promoter region. Here we investigate the structural and functional effects of mutating HSE1, the preferred heat shock factor (HSF) binding site upstream of the yeast HSP82 gene. In situ deletion or substitution of this sequence reduces both basal and induced transcription by at least two orders of magnitude. Moreover, such mutations lead to a dramatic transition in chromatin structure: the DNase I hypersensitive region is replaced by two stable, sequence-positioned nucleosomes. One of these is centered over the mutated heat shock element, while the other--as revealed by DNase I genomic footprinting--is precisely positioned in a rotational sense over the TATA-initiation site. Overexpression of yeast HSF strongly suppresses the null phenotype of the induced hsp82-delta HSE1 gene and re-establishes DNase I hypersensitivity over its promoter. Such suppression is mediated through sequence disposed immediately upstream of HSE1 and containing two low affinity heat shock elements. These data imply a critical role for HSF in displacing stably positioned nucleosomes in Saccharomyces cerevisiae and suggest that HSF transcriptionally activates HSP82 at least partly through its ability to alleviate nucleosome repression of the core promoter. Images PMID:8404861

  1. Heat shock response for ischemic kidney preservation and transplantation.

    PubMed

    Kaneko, H; Perdrizet, G A; Schweizer, R T

    1993-01-01

    The heat shock response (HSR) is a form of stress conditioning during which reversible changes in cellular metabolism are rapidly induced by brief exposure to supra-physiologic levels of heat. The nature of these adaptive adjustments has been widely investigated and has received much attention in molecular biology and cancer research. Recent evidence indicates that a basic form of this stress response exists at the cellular level of virtually every organism. Although the physiological phenomenon of HSR is complex, it is well known that it can induce specific proteins, known as heat shock proteins (HSP's), which are not normally synthesized. HSP's become the major proteins synthesized during the heat shock response while normal protein synthesis is suppressed. In addition, the HSR has been demonstrated to confer a transient resistance to the organism to subsequent episodes of stress. Recently it has been reported that the HSR confers protection against cold ischemic injury and extends the cold preservation time of the rat kidney to 48 hours. In this study, we have applied the concept of HSR to the preservation, and transplantation of warm ischemically injured pig kidneys. Since there is a serious shortage of cadaver kidneys available for transplantation worldwide, this number would increase if warm ischemic kidneys could be utilized. However with present methods of organ recovery and preservation, such kidneys are not likely to function after transplantation even if they were removed. We hypothesized that the application of a thermal stress to pig kidneys prior to organ procurement and preservation will enhance the organs' ability to function after warm ischemic injury. PMID:8352637

  2. The Molecular Evolution of the Small Heat-Shock Proteins in Plants

    PubMed Central

    Waters, E. R.

    1995-01-01

    The small heat-shock proteins have undergone a tremendous diversification in plants; whereas only a single small heat-shock protein is found in fungi and many animals, over 20 different small heat-shock proteins are found in higher plants. The small heat-shock proteins in plants have diversified in both sequence and cellular localization and are encoded by at least five gene families. In this study, 44 small heat-shock protein DNA and amino acid sequences were examined, using both phylogenetic analysis and analysis of nucleotide substitution patterns to elucidate the evolutionary history of the small heat-shock proteins. The phylogenetic relationships of the small heat-shock proteins, estimated using parsimony and distance methods, reveal that gene duplication, sequence divergence and gene conversion have all played a role in the evolution of the small heat-shock proteins. Analysis of nonsynonymous substitutions and conservative and radical replacement substitutions (in relation to hydrophobicity) indicates that the small heat-shock protein gene families are evolving at different rates. This suggests that the small heat-shock proteins may have diversified in function as well as in sequence and cellular localization. PMID:8647410

  3. Alpha subunit of eukaryotic translational initiation factor-2 is a heat-shock protein.

    PubMed

    Colbert, R A; Hucul, J A; Scorsone, K A; Young, D A

    1987-12-15

    The use of ultra high resolution giant two-dimensional gel electrophoresis has expanded the number of recognizable heat-shock proteins to 68 inductions in rat thymic lymphocytes, many of which are among the less abundant cellular proteins (Maytin, E. V., Colbert, R. A., and Young, D. A. (1985) J. Biol. Chem. 260, 2384-2392). Previous studies also show that cells receiving a prior heat shock recover more rapidly from the inhibition of protein synthesis induced by a second heat shock. In this report we use a monoclonal antibody to identify the alpha subunit of eukaryotic initiation factor-2 (eIF-2 alpha) as a heat-shock protein. Its relative rate of synthesis increases approximately 40% in the 2nd h and 5-fold in the 4th h of a continuous heat shock and is stimulated more dramatically, 15-fold, in the 3rd h of recovery from a 1-h heat shock. These results suggest that the induction of eIF-2 alpha in the heat-shock response may be important for restoring the cell's ability to initiate protein synthesis. In addition to identifying a function for one of the heat-shock proteins, our findings draw attention to the likelihood that other low-abundance heat-shock proteins may play critical roles in the heat-shock response. PMID:3500171

  4. Structure of human heat-shock transcription factor 1 in complex with DNA.

    PubMed

    Neudegger, Tobias; Verghese, Jacob; Hayer-Hartl, Manajit; Hartl, F Ulrich; Bracher, Andreas

    2016-02-01

    Heat-shock transcription factor 1 (HSF1) has a central role in mediating the protective response to protein conformational stresses in eukaryotes. HSF1 consists of an N-terminal DNA-binding domain (DBD), a coiled-coil oligomerization domain, a regulatory domain and a transactivation domain. Upon stress, HSF1 trimerizes via its coiled-coil domain and binds to the promoters of heat shock protein-encoding genes. Here, we present cocrystal structures of the human HSF1 DBD in complex with cognate DNA. A comparative analysis of the HSF1 paralog Skn7 from Chaetomium thermophilum showed that single amino acid changes in the DBD can switch DNA binding specificity, thus revealing the structural basis for the interaction of HSF1 with cognate DNA. We used a crystal structure of the coiled-coil domain of C. thermophilum Skn7 to develop a model of the active human HSF1 trimer in which HSF1 embraces the heat-shock-element DNA. PMID:26727489

  5. Seed germination of montane forest species in response to ash, smoke and heat shock in Mexico

    NASA Astrophysics Data System (ADS)

    Zuloaga-Aguilar, Susana; Briones, Oscar; Orozco-Segovia, Alma

    2011-05-01

    In many fire-prone ecosystems, seed germination is triggered by heat shock, smoke, ash and charred wood. However, few studies concerning the effect of these fire products on the germination of tropical and subtropical species exist. We assessed the effect of fire products and their interactions on seed germination in 12 species that frequently grow in burned areas of pine-oak and mixed forest in a mountainous subtropical area. Each species was exposed to a predetermined treatment of heat shock, which was optimised in accordance with a previous study. For smoke treatments, seeds were immersed in smoke water, whereas for ash treatments, 1.5 g of ash was added to the incubation medium. Germination increased in 92% of the species in response to the products of fire. Both the smoke water and the ash treatments promoted germination in four species that had permeable seed covers and physiological dormancy. Six species with physical dormancy required both heat shock and smoke water or ash to break dormancy. Our results indicate that seed germination response to fire products depends on the species and/or dormancy type. The germination response to the fire products varied between species; therefore, fire products may influence the species composition in post-fire regeneration.

  6. Molecular mechanism of thermosensory function of human heat shock transcription factor Hsf1

    PubMed Central

    Hentze, Nikolai; Le Breton, Laura; Wiesner, Jan; Kempf, Georg; Mayer, Matthias P

    2016-01-01

    The heat shock response is a universal homeostatic cell autonomous reaction of organisms to cope with adverse environmental conditions. In mammalian cells, this response is mediated by the heat shock transcription factor Hsf1, which is monomeric in unstressed cells and upon activation trimerizes, and binds to promoters of heat shock genes. To understand the basic principle of Hsf1 activation we analyzed temperature-induced alterations in the conformational dynamics of Hsf1 by hydrogen exchange mass spectrometry. We found a temperature-dependent unfolding of Hsf1 in the regulatory region happening concomitant to tighter packing in the trimerization region. The transition to the active DNA binding-competent state occurred highly cooperative and was concentration dependent. Surprisingly, Hsp90, known to inhibit Hsf1 activation, lowered the midpoint temperature of trimerization and reduced cooperativity of the process thus widening the response window. Based on our data we propose a kinetic model of Hsf1 trimerization. DOI: http://dx.doi.org/10.7554/eLife.11576.001 PMID:26785146

  7. Electron heating in a Monte Carlo model of a high Mach number, supercritical, collisionless shock

    NASA Technical Reports Server (NTRS)

    Ellison, Donald C.; Jones, Frank C.

    1987-01-01

    Preliminary work in the investigation of electron injection and acceleration at parallel shocks is presented. A simple model of electron heating that is derived from a unified shock model which includes the effects of an electrostatic potential jump is described. The unified shock model provides a kinetic description of the injection and acceleration of ions and a fluid description of electron heating at high Mach number, supercritical, and parallel shocks.

  8. The Shock of Aging: Molecular Chaperones and the Heat Shock Response in Longevity and Aging – A Mini-Review

    PubMed Central

    Calderwood, Stuart K.; Murshid, Ayesha; Prince, Thomas

    2009-01-01

    Background Aging can be thought of as the collision between destructive processes that act on cells and organs over the lifetime and the responses that promote homeostasis, vitality and longevity. However, the precise mechanisms that determine the rates of aging in organisms are not known. Objective Macromolecules such as proteins are continuously exposed to potential damaging agents that can cause loss of molecular function and depletion of cell populations over the lifetime of essential organs. One of the key homeostatic responses involved in maintaining longevity is the induction of heat shock proteins (HSPs), a conserved reaction to damaged intracellular proteins. We aim to discuss how the interplay between protein damage and its repair or removal from the cell may influence longevity and aging. Methods We have reviewed experiments carried out in mammalian and non-mammalian organisms on molecular chaperones and the transcription factor (heat shock factor 1, HSF1) responsible for their expression. We have discussed mechanisms through which these molecules are regulated in cells, respond to stimuli that enhance longevity and become impaired during aging. Results The transcription factor HSF1 initiates the prolific induction of HSP when cells are exposed to protein damage. HSPs are molecular chaperones that protect the proteome by folding denatured polypeptides and promoting the degradation of severely damaged proteins. Activation of HSF1 is coupled functionally to fundamental pathways of longevity and orchestrates the evasion of aging through HSP induction and antagonism of protein aggregation. In addition to mediating protein quality control, some HSPs such as Hsp27 and Hsp70 directly protect cells against damage-induced entry into death pathways. However, the heat shock response declines in potency over the lifetime, and enfeeblement of the response contributes to aging by permitting the emergence of protein aggregation diseases, reduction in cellular vigor and

  9. Paeoniflorin, a novel heat shock protein–inducing compound

    PubMed Central

    Yan, Dai; Saito, Kiyoto; Ohmi, Yuri; Fujie, Noriyo; Ohtsuka, Kenzo

    2004-01-01

    Heat shock proteins (HSPs) are induced by various physical, chemical, and biological stresses. HSPs are known to function as molecular chaperones, and they not only regulate various processes of protein biogenesis but also function as lifeguards against proteotoxic stresses. Because it is very useful to discover nontoxic chaperone-inducing compounds, we searched for them in herbal medicines. Some herbal medicines had positive effects on the induction of HSPs (Hsp70, Hsp40, and Hsp27) in cultured mammalian cells. We next examined 2 major constituents of these herbal medicines, glycyrrhizin and paeoniflorin, with previously defined chemical structures. Glycyrrhizin had an enhancing effect on the HSP induction by heat shock but could not induce HSPs by itself. In contrast, paeoniflorin had not only an enhancing effect but also an inducing effect by itself on HSP expression. Thus, paeoniflorin might be termed a chaperone inducer and glycyrrhizin a chaperone coinducer. Treatment of cells with paeoniflorin but not glycyrrhizin resulted in enhanced phosphorylation and acquisition of the deoxyribonucleic acid–binding ability of heat shock transcription factor 1 (HSF1), as well as the formation of characteristic HSF1 granules in the nucleus, suggesting that the induction of HSPs by paeoniflorin is mediated by the activation of HSF1. Also, thermotolerance was induced by treatment with paeoniflorin but not glycyrrhizin. Paeoniflorin had no toxic effect at concentrations as high as 80 μg/ mL (166.4 μM). To our knowledge, this is the first report on the induction of HSPs by herbal medicines. PMID:15633296

  10. Dynamic m6A mRNA methylation directs translational control of heat shock response

    PubMed Central

    Zhou, Jun; Wan, Ji; Gao, Xiangwei; Zhang, Xingqian; Qian, Shu-Bing

    2015-01-01

    The most abundant mRNA post-transcriptional modification is N6-methyladenosine (m6A) that has broad roles in RNA biology1-5. In mammalian cells, the asymmetric distribution of m6A along mRNAs leaves relatively less methylation in the 5′ untranslated region (5′UTR) compared to other regions6,7. However, whether and how 5′UTR methylation is regulated is poorly understood. Despite the crucial role of the 5′UTR in translation initiation, very little is known whether m6A modification influences mRNA translation. Here we show that in response to heat shock stress, m6A is preferentially deposited to the 5′UTR of newly transcribed mRNAs. We found that the dynamic 5′UTR methylation is a result of stress-induced nuclear localization of YTHDF2, a well characterized m6A “reader”. Upon heat shock stress, the nuclear YTHDF2 preserves 5′UTR methylation of stress-induced transcripts by limiting the m6A “eraser” FTO from demethylation. Remarkably, the increased 5′UTR methylation in the form of m6A promotes cap-independent translation initiation, providing a mechanism for selective mRNA translation under heat shock stress. Using Hsp70 mRNA as an example, we demonstrate that a single site m6A modification in the 5′UTR enables translation initiation independent of the 5′ end m7G cap. The elucidation of the dynamic feature of 5′UTR methylation and its critical role in cap-independent translation not only expands the breadth of physiological roles of m6A, but also uncovers a previously unappreciated translational control mechanism in heat shock response. PMID:26458103

  11. Novel interaction between the major bacterial heat shock chaperone (GroESL) and an RNA chaperone (CspC).

    PubMed

    Lenz, Gal; Ron, Eliora Z

    2014-01-23

    The heat shock response is one of the main global regulatory networks in all organisms and involves an increased cellular level of chaperones and proteases to enable correct protein folding and balanced growth. One of the major heat shock chaperones in Escherichia coli is GroESL, composed of GroES and GroEL (the bacterial Hsp10 and Hsp60 homologues), which is essential for refolding of misfolded proteins. GroESL was previously shown to play a role in the regulation of the heat shock response by promoting the proteolysis of the regulatory protein--sigma32 (RpoH), the heat shock transcription activator. Here we show the involvement of GroESL in another proteolytic process, this of the major RNA chaperone--CspC--that specifically stabilizes the transcripts of several stress-related genes. Evidence is provided for an interaction between GroESL and CspC that results in enhanced, temperature-dependent proteolysis of the latter. This interaction is of regulatory importance, as reduction in the cellular levels of CspC leads to a decrease in stability of the major heat shock gene transcripts. PMID:24148697

  12. Isolation of a cDNA for HSF 2: Evidence for two heat shock factor genes in humans

    SciTech Connect

    Schuetz, T.J.; Gallo, G.J.; Sheldon, L.; Kingston, R.E. Harvard Medical School, Boston, MA ); Tempst, P. )

    1991-08-15

    The heat shock response is transcriptionally regulated by an evolutionarily conserved protein termed heat shock factor (HSF). The authors report the purification to homogeneity and the partial peptide sequence of HSF from HeLa cells. The peptide sequence was used to isolate a human cDNA with a predicted open reading frame that has homology to the DNA binding domains of both Saccharomyces cerevisiae and Drosophila HSFs. The cDNA directs the synthesis of a protein that binds to the heat shock element with specificity identical to HeLa HSF and stimulates transcription from a heat shock promoter. The expressed protein cross-reacts with anti-HSF antibodies. Surprisingly, however, this cDNA does not encode all of the peptides obtained from purified HeLa HSF. These peptides are encoded by a distinct human cDNA. HSF1. It therefore appears that there is a human heat shock factor gene family and that at least two separate but related HSF proteins regulate the stress response in humans.

  13. Associations between heat shock protein 70 genetic polymorphisms and calving traits in crossbred Brahman cows

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stressors such as heat, cold, toxins, and oxygen deprivation are known to induce heat shock proteins. Genetic polymorphisms associated with heat shock protein genes have been associated with decreased male and female fertility. Our objectives were to 1) confirm single nucleotide polymorphisms (SNP) ...

  14. Intra-binary Shock Heating of Black Widow Companions

    NASA Astrophysics Data System (ADS)

    Romani, Roger W.; Sanchez, Nicolas

    2016-09-01

    The low-mass companions of evaporating binary pulsars (black widows and similar) are strongly heated on the side facing the pulsar. However, in high-quality photometric and spectroscopic data, the heating pattern does not match that expected for direct pulsar illumination. Here we explore a model where the pulsar power is intercepted by an intra-binary shock (IBS) before heating the low-mass companion. We develop a simple analytic model and implement it in the popular “ICARUS” light curve code. The model is parameterized by the wind momentum ratio β and the companion wind speed {f}v{v}{{orb}}, and assumes that the reprocessed pulsar wind emits prompt particles or radiation to heat the companion surface. We illustrate an interesting range of light curve asymmetries controlled by these parameters. The code also computes the IBS synchrotron emission pattern, and thus can model black widow X-ray light curves. As a test, we apply the results to the high-quality asymmetric optical light curves of PSR J2215+5135; the resulting fit gives a substantial improvement upon direct heating models and produces an X-ray light curve consistent with that seen. The IBS model parameters imply that at the present loss rate, the companion evaporation has a characteristic timescale of {τ }{{evap}}≈ 150 Myr. Still, the model is not fully satisfactory, indicating that there are additional unmodeled physical effects.

  15. Constitutive heat shock protein 70 (HSC70) expression in rainbow trout hepatocytes: effect of heat shock and heavy metal exposure.

    PubMed

    Boone, Adrienne N; Vijayan, Mathilakath M

    2002-06-01

    The 70-kDa family of heat shock proteins plays an important role as molecular chaperones in unstressed and stressed cells. The constitutive member of the 70 family (hsc70) is crucial for the chaperoning function of unstressed cells, whereas the inducible form (hsp70) is important for allowing cells to cope with acute stressor insult, especially those affecting the protein machinery. In fish, the role of hsc70 in the cellular stress response process is less clear primarily because of the lack of a fish-specific antibody for hsc70 detection. In this study, we purified hsc70 to homogeneity from trout liver using a three-step purification protocol with differential centrifugation, ATP-agarose affinity chromatography and electroelution. Polyclonal antibodies to trout hsc70 generated in rabbits cross-reacted strongly with both purified trout hsc70 protein and also purified recombinant bovine hsc70. Two-dimensional electrophoresis followed by Western blotting confirmed that the isoelectric point of rainbow trout hsc70 was more acidic than hsp70. Using this antibody, we detected hsc70 content in the liver, heart, gill and skeletal muscle of unstressed rainbow trout. Primary cultures of trout hepatocytes subjected to a heat shock (+15 degrees C for 1 h) or exposed to either CuSO(4) (200 microM for 24 h), CdCl(2) (10 microM for 24 h) or NaAsO(2) (50 microM for 1 h) resulted in higher hsp70 accumulation over a 24-h period. However, hsc70 content showed no change with either heat shock or heavy metal exposure suggesting that hsc70 is not modulated by sublethal acute stressors in trout hepatocytes. Taken together, we have for the first time generated polyclonal antibodies specific to rainbow trout hsc70 and this antibody will allow for the characterization of the role of hsc70 in the cellular stress response process in fish. PMID:12106899

  16. Increased proteolysis of diphtheria toxin by human monocytes after heat shock: a subsidiary role for heat-shock protein 70 in antigen processing

    PubMed Central

    Polla, Barbara S; Gabert, Françoise; Peyrusse, Brigitte M-N; Jacquier-Sarlin, Muriel R

    2007-01-01

    The expression of heat-shock proteins (hsp) increases after exposure to various stresses including elevated temperatures, oxidative injury, infection and inflammation. As molecular chaperones, hsp have been shown to participate in antigen processing and presentation, in part through increasing the stability and expression of major histocompatibility complex molecules. Heat shock selectively increases human T-cell responses to processed antigen, but does not affect T-cell proliferation induced by non-processed antigens. Here, we have analysed the mechanisms by which stress such as heat shock, and the ensuing hsp over-expression affect the processing of diphtheria toxin (DT) in peripheral blood monocytes. We found that heat shock increased DT proteolysis in endosomes and lysosomes while the activities of the cathepsins B and D, classically involved in DT proteolysis, were decreased. These effects correlated with the heat-shock-mediated increase in hsp 70 expression observed in endosomes and lysosomes. Actinomycin D or blocking anti-hsp 70 antibodies abolished the heat-shock-mediated increase in DT proteolysis. These data indicate that the increased expression of hsp 70 constitutes a subsidiary mechanism that facilitates antigen proteolysis in stressed cells. Confirming these data, presentation by formaldehyde-fixed cells of DT proteolysates that were obtained with endosomes and lysosomes from heat-shocked peripheral blood monocytes showed higher stimulation of T cells than those generated with endosomes and lysosomes from control peripheral blood monocytes. PMID:17116171

  17. Heat-shock response in Arabidopsis thaliana explored by multiplexed quantitative proteomics using differential metabolic labeling.

    PubMed

    Palmblad, Magnus; Mills, Davinia J; Bindschedler, Laurence V

    2008-02-01

    We have developed a general method for multiplexed quantitative proteomics using differential metabolic stable isotope labeling and mass spectrometry. The method was successfully used to study the dynamics of heat-shock response in Arabidopsis thaliana. A number of known heat-shock proteins were confirmed, and some proteins not previously associated with heat shock were discovered. The method is applicable in stable isotope labeling and allows for high degrees of multiplexing. PMID:18189342

  18. DNA damage-responsive Drosophila melanogaster gene is also induced by heat shock

    SciTech Connect

    Vivino, A.A.; Smith, M.D.; Minton, K.W.

    1986-12-01

    A gene isolated by screening Drosophila melanogaster tissue culture cells for DNA damage regulation was also found to be regulated by heat shock. After UV irradiation or heat shock, induction is at the transcriptional level and results in the accumulation of a 1.0-kilobase polyadenylated transcript. The restriction map of the clone bears no resemblance to the known heat shock genes, which are shown to be uninduced by UV irradiation.

  19. Cross talk between cytokine and hyperthermia-induced pathways: identification of different subsets of NF-κB-dependent genes regulated by TNFα and heat shock.

    PubMed

    Janus, Patryk; Stokowy, Tomasz; Jaksik, Roman; Szoltysek, Katarzyna; Handschuh, Luiza; Podkowinski, Jan; Widlak, Wieslawa; Kimmel, Marek; Widlak, Piotr

    2015-10-01

    Heat shock inhibits NF-κB signaling, yet the knowledge about its influence on the regulation of NF-κB-dependent genes is limited. Using genomic approaches, i.e., expression microarrays and ChIP-Seq, we aimed to establish a global picture for heat shock-mediated impact on the expression of genes regulated by TNFα cytokine. We found that 193 genes changed expression in human U-2 osteosarcoma cells stimulated with cytokine (including 77 genes with the κB motif in the proximal promoters). A large overlap between sets of genes modulated by cytokine or by heat shock was revealed (86 genes were similarly affected by both stimuli). Binding sites for heat shock-induced HSF1 were detected in regulatory regions of 1/3 of these genes. Furthermore, pre-treatment with heat shock affected the expression of 2/3 of cytokine-modulated genes. In the largest subset of co-affected genes, heat shock suppressed the cytokine-mediated activation (antagonistic effect, 83 genes), which genes were associated with the canonical functions of NF-κB signaling. However, subsets of co-activated and co-repressed genes were also revealed. Importantly, pre-treatment with heat shock resulted in the suppression of NF-κB binding in the promoters of the cytokine-upregulated genes, either antagonized or co-activated by both stimuli. In conclusion, we confirmed that heat shock inhibited activation of genes involved in the classical cytokine-mediated functions of NF-κB. On the other hand, genes involved in transcription regulation were over-represented in the subset of genes upregulated by both stimuli. This suggests the replacement of NF-κB-mediated regulation by heat shock-mediated regulation in the latter subset of genes, which may contribute to the robust response of cells to both stress conditions. PMID:25944781

  20. KPNA3-knockdown eliminates the second heat shock protein peak associated with the heat shock response of male silkworm pupae (Bombyx mori) by reducing heat shock factor transport into the nucleus.

    PubMed

    Li, Jun; Wei, Guoqing; Wang, Lei; Qian, Cen; Li, Kedong; Zhang, Congfen; Dai, Lishang; Sun, Yu; Liu, Dongran; Zhu, Baojian; Liu, Chaoliang

    2016-01-10

    In this study, we investigated the role of karyopherin alpha 3 in the heat shock response in male silkworm pupae. Karyopherin alpha recognizes the classical nuclear location sequence on proteins and transports them into the nucleus by forming a trimetric complex with karyopherin beta. Three predicted karyopherin alphas (KPNA1, KPNA2 and KPNA3) have been identified from the silkworm Bombyx mori. Pull-down assay result showed that KPNA3 can pull down heat shock transcription factor (HSF) from proteins extracted from tissues using non-denature lysis buffer. After 45 °C heat shock on male B. mori pupae for 30 min, we identified two heat shock protein (HSP) mRNA expression peaks correlating with HSP19.9, HSP20.4 and HSP25.4 at 4 h (peak 1) and 24 h (peak 2). The second peak was eliminated after knockdown of KPNA3. Similar results were obtained following knockdown of HSF, which is the trans-activating factor of heat shock. However, KPNA3 knockdown was not accompanied by the decreased HSF protein levels at 24 h after heat shock which were observed following HSF knockdown. We also expressed recombinant protein GST-KPNA3 and His-HSF in Escherichia coli to perform GST pull-down assay and the result confirmed the interaction between KPNA3 and HSF. We concluded that KPNA3 knockdown eliminates the second heat shock protein peak in the heat shock response of male silkworm pupae by reducing HSF transport into the nucleus. PMID:26367326

  1. Heat shock-induced interactions among nuclear HSFs detected by fluorescence cross-correlation spectroscopy

    SciTech Connect

    Pack, Chan-Gi; Ahn, Sang-Gun

    2015-07-31

    The cellular response to stress is primarily controlled in cells via transcriptional activation by heat shock factor 1 (HSF1). HSF1 is well-known to form homotrimers for activation upon heat shock and subsequently bind to target DNAs, such as heat-shock elements, by forming stress granules. A previous study demonstrated that nuclear HSF1 and HSF2 molecules in live cells interacted with target DNAs on the stress granules. However, the process underlying the binding interactions of HSF family in cells upon heat shock remains unclear. This study demonstrate for the first time that the interaction kinetics among nuclear HSF1, HSF2, and HSF4 upon heat shock can be detected directly in live cells using dual color fluorescence cross-correlation spectroscopy (FCCS). FCCS analyses indicated that the binding between HSFs was dramatically changed by heat shock. Interestingly, the recovery kinetics of interaction between HSF1 molecules after heat shock could be represented by changes in the relative interaction amplitude and mobility. - Highlights: • The binding interactions among nuclear HSFs were successfully detected. • The binding kinetics between HSF1s during recovery was quantified. • HSF2 and HSF4 strongly formed hetero-complex, even before heat shock. • Nuclear HSF2 and HSF4 bound to HSF1 only after heat shock.

  2. Heat Shock Proteins in Brain: Role of Hsp70, Hsp 27 and HO-1 (Hsp32) and Their Therapeutic Potential

    PubMed Central

    Sharp, Frank R; Zhan, Xinhua; Liu, DaZhi

    2013-01-01

    Heat shock proteins are induced by heat shock via HSF proteins binding to heat shock elements in their promoters. Hsp70 is massively induced in response to misfolded proteins following cerebral ischemia in all cell types, but is induced mainly in neurons in the ischemic penumbra. Over expression of Hsp70 via transgenes and viruses or systemic administration of Hsp70 fusion proteins that allow it to cross the blood brain barrier protect brain against ischemia in most reported studies. Hsp27 can exist as unphosphorylated large oligomers that prevent misfolded protein aggregates and improve cell survival. P-Hsp27 small oligomers bind specific protein targets to improve survival. In brain Protein Kinase D phosphorylates Hsp27 following ischemia which then binds ASK1 to prevent MKK4/7, JNK, Jun induced apoptosis and decrease infarct volumes following focal cerebral ischemia. Heme oxygenase-1 (HO-1) metabolizes heme to carbon monoxide, ferrous ion and biliverdin. CO activates cGMP to promote vasodilation, and biliverdin is converted to bilirubin which can serve as an anti-oxidant both of which may contribute to the reported protective role of HO-1 in cerebral ischemia and subarachnoid hemorrhage. However, ferrous ion can react with hydrogen peroxide to produce pro-oxidant hydroxyl radicals which may explain the harmful role of HO-1 in intracerebral hemorrhage. Heat shock proteins as a class have great potential as treatments for cerebrovascular disease and have yet to be tested in the clinic. PMID:24323422

  3. Molecular characterization of the gene encoding an 18-kilodalton small heat shock protein associated with the membrane of Leuconostoc oenos.

    PubMed Central

    Jobin, M P; Delmas, F; Garmyn, D; Diviès, C; Guzzo, J

    1997-01-01

    In Leuconostoc oenos, different stresses such as heat, ethanol, and acid shocks dramatically induce the expression of an 18-kDa small heat shock protein called Lo 18. The corresponding gene (hsp18) was cloned from a genomic library of L. oenos constructed in Escherichia coli. A 2.3-kb DNA fragment carrying the hsp18 gene was sequenced. The hsp18 gene encodes a polypeptide of 148 amino acids with a calculated molecular mass of 16,938 Da. The Lo18 protein has a significant identity with small heat shock proteins of the alpha-crystallin family. The transcriptional start site was determined by primer extension. This experiment allowed us to identify the promoter region exhibiting high similarity to consensus promoter sequences of gram-positive bacteria, as well as E. coli. Northern blot analysis showed that hsp18 consists of a unique transcription unit of 0.6 kb. Moreover, hsp18 expression seemed to be controlled at the transcriptional level. This small heat shock protein was found to be peripherally associated with the membrane of L. oenos. PMID:9023938

  4. Heat Shock Gene Expression Is Controlled Primarily at the Translational Level in Carrot Cells and Somatic Embryos.

    PubMed Central

    Apuya, NR; Zimmerman, JL

    1992-01-01

    We have determined that the synthesis of heat shock proteins is regulated ultimately at the translational level in heat-shocked carrot callus cells and somatic embryos. Polysome analysis revealed that heat-shocked callus cells do not translate most heat shock transcripts, which they abundantly synthesize and accumulate. By contrast, heat-shocked globular embryos accumulate low levels of heat shock mRNA but selectively translate more of the heat shock mRNA molecules compared to callus cells and embryos of later stages. The overall result of these different translational control schemes is that undifferentiated callus cells and globular embryos synthesize comparable levels of heat shock proteins even though they have large differences in heat shock transcript levels. PMID:12297657

  5. Carbachol promotes gastrointestinal function during oral resuscitation of burn shock

    PubMed Central

    Hu, Sen; Che, Jin-Wei; Tian, Yi-Jun; Sheng, Zhi-Yong

    2011-01-01

    AIM: To investigate the effect of carbachol on gastrointestinal function in a dog model of oral resuscitation for burn shock. METHODS: Twenty Beagle dogs with intubation of the carotid artery, jugular vein and jejunum for 24 h were subjected to 35% total body surface area full-thickness burns, and were divided into three groups: no fluid resuscitation (NR, n = 10), in which animals did not receive fluid by any means in the first 24 h post-burn; oral fluid resuscitation (OR, n = 8), in which dogs were gavaged with glucose-electrolyte solution (GES) with volume and rate consistent with the Parkland formula; and oral fluid with carbachol group (OR/CAR, n = 8), in which dogs were gavaged with GES containing carbachol (20 μg/kg), with the same volume and rate as the OR group. Twenty-four hours after burns, all animals were given intravenous fluid replacement, and 72 h after injury, they received nutritional support. Hemodynamic and gastrointestinal parameters were measured serially with animals in conscious and cooperative state. RESULTS: The mean arterial pressure, cardiac output and plasma volume dropped markedly, and gastrointestinal tissue perfusion was reduced obviously after the burn injury in all the three groups. Hemodynamic parameters and gastrointestinal tissue perfusion in the OR and OR/CAR groups were promoted to pre-injury level at 48 and 72 h, respectively, while hemodynamic parameters in the NR group did not return to pre-injury level till 72 h, and gastrointestinal tissue perfusion remained lower than pre-injury level until 120 h post-burn. CO2 of the gastric mucosa and intestinal mucosa blood flow of OR/CAR groups were 56.4 ± 4.7 mmHg and157.7 ± 17.7 blood perfusion units (BPU) at 24 h post-burn, respectively, which were significantly superior to those in the OR group (65.8 ± 5.8 mmHg and 127.7 ± 11.9 BPU, respectively, all P < 0.05). Gastric emptying and intestinal absorption rates of GES were significantly reduced to the lowest level (52.8% and

  6. Involvement of heat shock protein 47 in Schistosoma japonicum-induced hepatic fibrosis in mice.

    PubMed

    Huang, Jia-Quan; Tao, Ran; Li, Lan; Ma, Ke; Xu, Lei; Ai, Guo; Fan, Xiang-Xue; Jiao, Yun-Tao; Ning, Qin

    2014-01-01

    Chronic infection with the blood fluke Schistosoma japonicum is associated with both liver cirrhosis and liver cancer. Previously, heat shock protein 47, a collagen-specific molecular chaperone, was shown to play a critical role in the maturation of procollagen. However, less is known about the role of heat shock protein 47 in S. japonicum-induced hepatic fibrosis. We therefore investigated the expression of heat shock protein 47 in S. japonicum-induced liver fibrosis and attempted to determine whether inhibition of heat shock protein 47 could have beneficial effects on fibrosis in vitro and in vivo. In this study, we found that the expression of heat shock protein 47 was significantly increased in patients with Schistosoma-induced fibrosis, as well as in rodent models. Immunohistochemistry revealed heat shock protein 47-positive cells were found in the periphery of egg granulomas. Administration of heat shock protein 47-targeted short hairpin (sh)RNA remarkably reduced heat shock protein 47 expression and collagen deposition in NIH3T3 cells and liver tissue of S. japonicum-infected mice. Life-table analysis revealed a dose-dependent prolongation of survival rates with the treatment of heat shock protein 47-shRNA in murine fibrosis models. Moreover, serum alanine aminotransferase and aspartate transaminase activity, splenomegaly, spleen weight index and portal hypertension were also measured, which showed improvement with the anti-fibrosis treatment. The fibrosis-related parameters assessed were expressions of Col1a1, Col3a1, TGF-β1, CTGF, IL-13, IL-17, MMP-9, TIMP-1 and PAI-1 in the liver. This study demonstrated that heat shock protein 47-targeted shRNA directly reduced collagen production of mouse liver fibrosis associated with S. japonicum. We conclude that heat shock protein 47 plays an essential role in S. japonicum-induced hepatic fibrosis in mice and may be a potential target for ameliorating the hepatic fibrosis caused by this parasite. PMID:24295791

  7. Large changes in intracellular pH and calcium observed during heat shock are not responsible for the induction of heat shock proteins in Drosophila melanogaster.

    PubMed Central

    Drummond, I A; McClure, S A; Poenie, M; Tsien, R Y; Steinhardt, R A

    1986-01-01

    Heat shock caused significant changes in intracellular pH (pHi) and intracellular free calcium concentration [( Ca2+]i) which occurred rapidly after temperature elevation. pHi fell from a resting level value at 25 degrees C of 7.38 +/- 0.02 (mean +/- standard error of the mean, n = 15) to 6.91 +/- 0.11 (n = 7) at 35 degrees C. The resting level value of [Ca2+]i in single Drosophila melanogaster larval salivary gland cells was 198 +/- 31 nM (n = 4). It increased approximately 10-fold, to 1,870 +/- 770 nM (n = 4), during a heat shock. When salivary glands were incubated in calcium-free, ethylene glycol-bis(beta-aminoethyl ether)-N,N',N'-tetraacetic acid (EGTA)-buffered medium, the resting level value of [Ca2+]i was reduced to 80 +/- 7 nM (n = 3), and heat shock resulted in a fourfold increase in [Ca2+]i to 353 +/- 90 nM (n = 3). The intracellular free-ion concentrations of Na+, K+, Cl-, and Mg2+ were 9.6 +/- 0.8, 101.9 +/- 1.7, 36 +/- 1.5, and 2.4 +/- 0.2 mM, respectively, and remained essentially unchanged during a heat shock. Procedures were devised to mimic or block the effects of heat shock on pHi and [Ca2+]i and to assess their role in the induction of heat shock proteins. We report here that the changes in [Ca2+]i and pHi which occur during heat shock are not sufficient, nor are they required, for a complete induction of the heat shock response. Images PMID:3097504

  8. DYNAMICS OF A SPHERICAL ACCRETION SHOCK WITH NEUTRINO HEATING AND ALPHA-PARTICLE RECOMBINATION

    SciTech Connect

    Fernandez, Rodrigo; Thompson, Christopher

    2009-10-01

    We investigate the effects of neutrino heating and alpha-particle recombination on the hydrodynamics of core-collapse supernovae. Our focus is on the nonlinear dynamics of the shock wave that forms in the collapse and the assembly of positive energy material below it. To this end, we perform time-dependent hydrodynamic simulations with FLASH2.5 in spherical and axial symmetry. These generalize our previous calculations by allowing for bulk neutrino heating and for nuclear statistical equilibrium between n, p, and alpha. The heating rate is freely tunable, as is the starting radius of the shock relative to the recombination radius of alpha-particles. An explosion in spherical symmetry involves the excitation of an overstable mode, which may be viewed as the l = 0 version of the 'Standing Accretion Shock Instability'. In two-dimensional simulations, nonspherical deformations of the shock are driven by plumes of material with positive Bernoulli parameter, which are concentrated well outside the zone of strong neutrino heating. The nonspherical modes of the shock reach a large amplitude only when the heating rate is also high enough to excite convection below the shock. The critical heating rate that causes an explosion depends sensitively on the initial position of the shock relative to the recombination radius. Weaker heating is required to drive an explosion in two dimensions than in one, but the difference also depends on the size of the shock. Forcing the infalling heavy nuclei to break up into n and p below the shock only causes a slight increase in the critical heating rate, except when the shock starts out at a large radius. This shows that heating by neutrinos (or some other mechanism) must play a significant role in pushing the shock far enough out that recombination heating takes over.

  9. Heat Shock Protein 90 regulates encystation in Entamoeba

    PubMed Central

    Singh, Meetali; Sharma, Shalini; Bhattacharya, Alok; Tatu, Utpal

    2015-01-01

    Enteric protozoan Entamoeba histolytica is a major cause of debilitating diarrheal infection worldwide with high morbidity and mortality. Even though the clinical burden of this parasite is very high, this infection is categorized as a neglected disease. Parasite is transmitted through feco-oral route and exhibit two distinct stages namely – trophozoites and cysts. Mechanism and regulation of encystation is not clearly understood. Previous studies have established the role of Heat shock protein 90 (Hsp90) in regulating stage transition in various protozoan parasites like Giardia, Plasmodium, Leishmania, and Toxoplasma. Our study for the first time reports that Hsp90 plays a crucial role in life cycle of Entamoeba as well. We identify Hsp90 to be a negative regulator of encystation in Entamoeba. We also show that Hsp90 inhibition interferes with the process of phagocytosis in Entamoeba. Overall, we show that Hsp90 plays an important role in virulence and transmission of Entamoeba. PMID:26528271

  10. Immunity to heat shock proteins and arthritic disorders.

    PubMed Central

    van Eden, W

    1999-01-01

    Adjuvant arthritis (AA) is a frequently used model of experimental arthritis. Because of its histopathology, which is reminiscent of rheumatoid arthritis in humans, AA is used as a model for the development of novel anti-inflammatory drugs. Recently, it has become evident that AA is a typical T-cell-mediated autoimmune condition. Therefore, novel immunotherapies targeted to T cells can be developed in this model. Analysis of responding T cells in AA have now led to the definition of various antigens with potential relevance to arthritis, including human arthritic conditions. One such antigen defined in AA is the 60kD heat shock protein. Both T-cell vaccination approaches and active antigen immunizations and antigen toleration approaches have turned out to be effective in suppressing AA. PMID:10231009

  11. Proteomic Analysis of Trypanosoma cruzi Epimastigotes Subjected to Heat Shock

    PubMed Central

    Pérez-Morales, Deyanira; Lanz-Mendoza, Humberto; Hurtado, Gerardo; Martínez-Espinosa, Rodrigo; Espinoza, Bertha

    2012-01-01

    Trypanosoma cruzi is exposed to sudden temperature changes during its life cycle. Adaptation to these variations is crucial for parasite survival, reproduction, and transmission. Some of these conditions may change the pattern of genetic expression of proteins involved in homeostasis in the course of stress treatment. In the present study, the proteome of T. cruzi epimastigotes subjected to heat shock and epimastigotes grow normally was compared by two-dimensional gel electrophoresis followed by mass spectrometry for protein identification. Twenty-four spots differing in abundance were identified. Of the twenty-four changed spots, nineteen showed a greater intensity and five a lower intensity relative to the control. Several functional categories of the identified proteins were determined: metabolism, cell defense, hypothetical proteins, protein fate, protein synthesis, cellular transport, and cell cycle. Proteins involved in the interaction with the cellular environment were also identified, and the implications of these changes are discussed. PMID:22287837

  12. Heat Shock Protein 70: Roles in Multiple Sclerosis

    PubMed Central

    Mansilla, María José; Montalban, Xavier; Espejo, Carmen

    2012-01-01

    Heat shock proteins (HSP) have long been considered intracellular chaperones that possess housekeeping and cytoprotective functions. Consequently, HSP overexpression was proposed as a potential therapy for neurodegenerative diseases characterized by the accumulation or aggregation of abnormal proteins. Recently, the discovery that cells release HSP with the capacity to trigger proinflammatory as well as immunoregulatory responses has focused attention on investigating the role of HSP in chronic inflammatory autoimmune diseases such as multiple sclerosis (MS). To date, the most relevant HSP is the inducible Hsp70, which exhibits both cytoprotectant and immunoregulatory functions. Several studies have presented contradictory evidence concerning the involvement of Hsp70 in MS or experimental autoimmune encephalomyelitis (EAE), the MS animal model. In this review, we dissect the functions of Hsp70 and discuss the controversial data concerning the role of Hsp70 in MS and EAE. PMID:22669475

  13. Heat shock proteins: possible biomarkers in pulmonary and extrapulmonary tuberculosis.

    PubMed

    Shekhawat, Seema D; Jain, Ruchika K; Gaherwar, Hari M; Purohit, Hemant J; Taori, Girdhar M; Daginawala, Hatim F; Kashyap, Rajpal S

    2014-02-01

    Tuberculosis (TB) and Tuberculous meningitis (TBM) caused by Mycobacterium tuberculosis (MTB) continue to be a major cause of morbidity and mortality. Therefore there is a need to explore potential biomarkers and heat shock proteins [Hsp(s)] could be one such candidate. We found that host (Hsp 25, Hsp 60, Hsp 70 and Hsp 90) and MTB Hsp(s) (Hsp 16, Hsp 65 and Hsp 71) to be an important feature of the immune response in human clinical samples of pulmonary and extrapulmonary TB patients and in MTB infected monocytes. Notably, the host (Hsp 25, Hsp 70 and Hsp 90) and MTB (Hsp 16, Hsp 65 and Hsp 71) Hsp(s) increases significantly in the clinical samples as well as in cell line model after TB infection. Collectively, results revealed that alteration in immune response leads to a change in the both host and MTB Hsp profile, highlighting them as possible biomarkers for the disease. PMID:24269695

  14. Glutathione depletion impairs transcriptional activation of heat shock genes in primary cultures of guinea pig gastric mucosal cells.

    PubMed

    Rokutan, K; Hirakawa, T; Teshima, S; Honda, S; Kishi, K

    1996-05-15

    When primary cultures of guinea pig gastric mucosal cells were exposed to heat (43 degree C), ethanol, hydrogen peroxide (H2O2), or diamide, heat shock proteins (HSP90, HSP70, HSP60, and HSC73) were rapidly synthesized. The extent of each HSP induction varied with the type of stress. Ethanol, H2O2, and diamide increased the syntheses of several other undefined proteins besides the HSPs. However, none of these proteins were induced by exposure to heat or the reagents, when intracellular glutathione was depleted to <10% of the control level by pretreatment with DL-buthionine-[S,R]-sulfoximine. Gel mobility shift assay using a synthetic oligonucleotide coding HSP70 heat shock element showed that glutathione depletion inhibited the heat- and the reagent-initiated activation of the heat shock factor 1 (HSF1) and did not promote the expression of HSP70 mRNA. Immunoblot analysis with antiserum against HSF1 demonstrated that the steady-state level of HSF1 was not changed in glutathione-depleted cells, but glutathione depletion inhibited the nuclear translocation of HSF1 after exposure to heat stress. These results suggest that intracellular glutathione may support early and important biochemical events in the acquisition by gastric mucosal cells of an adaptive response to irritants. PMID:8636403

  15. Modification of tooth development by heat shock protein 60.

    PubMed

    Papp, Tamas; Polyak, Angela; Papp, Krisztina; Meszar, Zoltan; Zakany, Roza; Meszar-Katona, Eva; Tünde, Palne Terdik; Ham, Chang Hwa; Felszeghy, Szabolcs

    2016-01-01

    Although several heat shock proteins have been investigated in relation to tooth development, no available information is available about the spatial and temporal expression pattern of heat shock protein 60 (Hsp 60). To characterize Hsp 60 expression in the structures of the developing tooth germ, we used Western blotting, immunohistochemistry and in situ hybridization. Hsp 60 was present in high amounts in the inner and outer enamel epithelia, enamel knot (EK) and stratum intermedium (SI). Hsp 60 also appeared in odontoblasts beginning in the bell stage. To obtain data on the possible effect of Hsp 60 on isolated lower incisors from mice, we performed in vitro culturing. To investigate the effect of exogenous Hsp 60 on the cell cycle during culturing, we used the 5-bromo-2-deoxyuridine (BrdU) incorporation test on dental cells. Exogenously administered Hsp 60 caused bluntness at the apical part of the 16.5-day-old tooth germs, but it did not influence the proliferation rate of dental cells. We identified the expression of Hsp 60 in the developing tooth germ, which was present in high concentrations in the inner and outer enamel epithelia, EK, SI and odontoblasts. High concentration of exogenous Hsp 60 can cause abnormal morphology of the tooth germ, but it did not influence the proliferation rate of the dental cells. Our results suggest that increased levels of Hsp 60 may cause abnormalities in the morphological development of the tooth germ and support the data on the significance of Hsp during the developmental processes. PMID:27025262

  16. Modification of tooth development by heat shock protein 60

    PubMed Central

    Papp, Tamas; Polyak, Angela; Papp, Krisztina; Meszar, Zoltan; Zakany, Roza; Meszar-Katona, Eva; Tünde, Palne Terdik; Ham, Chang Hwa; Felszeghy, Szabolcs

    2016-01-01

    Although several heat shock proteins have been investigated in relation to tooth development, no available information is available about the spatial and temporal expression pattern of heat shock protein 60 (Hsp 60). To characterize Hsp 60 expression in the structures of the developing tooth germ, we used Western blotting, immunohistochemistry and in situ hybridization. Hsp 60 was present in high amounts in the inner and outer enamel epithelia, enamel knot (EK) and stratum intermedium (SI). Hsp 60 also appeared in odontoblasts beginning in the bell stage. To obtain data on the possible effect of Hsp 60 on isolated lower incisors from mice, we performed in vitro culturing. To investigate the effect of exogenous Hsp 60 on the cell cycle during culturing, we used the 5-bromo-2-deoxyuridine (BrdU) incorporation test on dental cells. Exogenously administered Hsp 60 caused bluntness at the apical part of the 16.5-day-old tooth germs, but it did not influence the proliferation rate of dental cells. We identified the expression of Hsp 60 in the developing tooth germ, which was present in high concentrations in the inner and outer enamel epithelia, EK, SI and odontoblasts. High concentration of exogenous Hsp 60 can cause abnormal morphology of the tooth germ, but it did not influence the proliferation rate of the dental cells. Our results suggest that increased levels of Hsp 60 may cause abnormalities in the morphological development of the tooth germ and support the data on the significance of Hsp during the developmental processes. PMID:27025262

  17. The Hexameric Structures of Human Heat Shock Protein 90

    PubMed Central

    Lee, Cheng-Chung; Lin, Ta-Wei; Ko, Tzu-Ping; Wang, Andrew H.-J.

    2011-01-01

    Background The human 90-kDa heat shock protein (HSP90) functions as a dimeric molecular chaperone. HSP90 identified on the cell surface has been found to play a crucial role in cancer invasion and metastasis, and has become a validated anti-cancer target for drug development. It has been shown to self-assemble into oligomers upon heat shock or divalent cations treatment, but the functional role of the oligomeric states in the chaperone cycle is not fully understood. Principal Findings Here we report the crystal structure of a truncated HSP90 that contains the middle segment and the carboxy-terminal domain, termed MC-HSP90. The structure reveals an architecture with triangular bipyramid geometry, in which the building block of the hexameric assembly is a dimer. In solution, MC-HSP90 exists in three major oligomer states, namely dimer, tetramer and hexamer, which were elucidated by size exclusion chromatography and analytical ultracentrifugation. The newly discovered HSP90 isoform HSP90N that lacks the N-terminal ATPase domain also exhibited similar oligomerization states as did MC-HSP90. Conclusions While lacking the ATPase domain, both MC-HSP90 and HSP90N can self-assemble into a hexameric structure, spontaneously. The crystal structure of MC-HSP90 reveals that, in addition to the C-terminal dimerization domain, the residue W320 in the M domain plays a critical role in its oligomerization. This study not only demonstrates how the human MC-HSP90 forms a hexamer, but also justifies the similar formation of HSP90N by using 3D modeling analysis. PMID:21647436

  18. SPERM MOTILITY IN HSF1 KNOCKOUT MICE AFTER HEAT SHOCK IS ASSOCIATED WITH FERTILITY DEFICITS

    EPA Science Inventory

    SPERM MOTILITY IN HSF1 KNOCKOUT MICE AFTER HEAT SHOCK IS ASSOCIATED WITH FERTILITY DEFICITS. L.F. Strader*, S.D. Perreault, J.C. Luft*, and D.J. Dix*. US EPA/ORD, Reproductive Toxicology Div., Research Triangle Park, NC
    Heat shock proteins (HSPs) protect cells from environm...

  19. Effects of several factors on the heat-shock-induced thermotolerance of Listeria monocytogenes.

    PubMed Central

    Pagán, R; Condón, S; Sala, F J

    1997-01-01

    The influence of the temperature at which Listeria monocytogenes had been grown (4 or 37 degrees C) on the response to heat shocks of different durations at different temperatures was investigated. For cells grown at 4 degrees C, the effect of storage, prior to and after heat shock, on the induced thermotolerance was also studied. Death kinetics of heat-shocked cells is also discussed. For L. monocytogenes grown at 37 degrees C, the greatest response to heat shock was a fourfold increase in thermotolerance. For L. monocytogenes grown at 4 degrees C, the greatest response to heat shock was a sevenfold increase in thermotolerance. The only survival curves of cells to have shoulders were those for cells that had been heat shocked. A 3% concentration of sodium chloride added to the recovery medium made these shoulders disappear and decreased decimal reduction times. The percentage of cells for which thermotolerance increased after a heat shock was smaller the milder the heat shock and the longer the prior storage. PMID:9251209

  20. Similarity flow in interaction of a shock wave with an inclined heated channel

    SciTech Connect

    Artemiev, V.I.; Medvedyuk, S.A.; Rybakov, V.A.

    1993-11-01

    A study is made of gasdynamic flow that initiates when a shock wave propagates along a thin heated channel. Analytical conditions of the onset of an unsteady flow precursor are obtained. The flow similarity is proved experimentally; precursor characteristics vs shock wave and heated channel parameters are analyzed.

  1. Synthesis of the low molecular weight heat shock proteins in plants

    SciTech Connect

    Mansfield, M.A.; Key, J.L. )

    1987-08-01

    Heat shock of living tissue induces the synthesis of a unique group of proteins, the heat shock proteins. In plants, the major group of heat shock proteins has a molecular mass of 15 to 25 kilodaltons. Accumulation to these proteins to stainable levels has been reported in only a few species. To examine accumulation of the low molecular weight heat shock proteins in a broader range of species, two-dimensional electrophoresis was used to resolve total protein from the following species: soybean (Glycine max L. Merr., var Wayne), pea (Pisum sativum L., var Early Alaska), sunflower (Helianthus annuus L.), wheat (Triticum asetivum L.), rice (Oryza sativa L., cv IR-36), maize (Zea mays L.), pearl millet (Pennisetum americanum L. Leeke, line 23DB), and Panicum miliaceum L. When identified by both silver staining and incorporation of radiolabel, a diverse array of low molecular weight heat shock proteins was synthesized in each of these species. These proteins accumulated to significant levels after three hours of heat shock but exhibited considerable heterogeneity in isoelectric point, molecular weight, stainability, and radiolabel incorporation. Although most appeared to be synthesized only during heat shock, some were detectable at low levels in control tissue. Compared to the monocots, a higher proportion of low molecular weight heat shock proteins was detectable in control tissues from dicots.

  2. Report on the VIIth International Symposium on Heat Shock Proteins in Biology & Medicine.

    PubMed

    Calderwood, Stuart K; Hightower, Lawrence E

    2015-03-01

    This seventh symposium in a series on heat shock proteins in biology and medicine was held November 1-5, 2014, at the Hilton Hotel in Old Town Alexandria, Virginia. Approximately 70 participants including principal investigators, postdoctoral fellows, and graduate students were in attendance. The major themes were: new properties of heat shock proteins (HSPs) and heat shock factor (HSF) and role in the etiology of cancer, molecular chaperones in aging, extracellular HSPs in inflammation and immunity, role of heat shock and the heat shock response in immunity and cancer, protein aggregation disorders and HSP expression, and Hsp70 in blood cell differentiation. The next meeting is planned for the fall of 2016 in the same venue. PMID:25542250

  3. Mathematical modeling of the heat-shock response in HeLa cells.

    PubMed

    Scheff, Jeremy D; Stallings, Jonathan D; Reifman, Jaques; Rakesh, Vineet

    2015-07-21

    The heat-shock response is a key factor in diverse stress scenarios, ranging from hyperthermia to protein folding diseases. However, the complex dynamics of this physiological response have eluded mathematical modeling efforts. Although several computational models have attempted to characterize the heat-shock response, they were unable to model its dynamics across diverse experimental datasets. To address this limitation, we mined the literature to obtain a compendium of in vitro hyperthermia experiments investigating the heat-shock response in HeLa cells. We identified mechanisms previously discussed in the experimental literature, such as temperature-dependent transcription, translation, and heat-shock factor (HSF) oligomerization, as well as the role of heat-shock protein mRNA, and constructed an expanded mathematical model to explain the temperature-varying DNA-binding dynamics, the presence of free HSF during homeostasis and the initial phase of the heat-shock response, and heat-shock protein dynamics in the long-term heat-shock response. In addition, our model was able to consistently predict the extent of damage produced by different combinations of exposure temperatures and durations, which were validated against known cellular-response patterns. Our model was also in agreement with experiments showing that the number of HSF molecules in a HeLa cell is roughly 100 times greater than the number of stress-activated heat-shock element sites, further confirming the model's ability to reproduce experimental results not used in model calibration. Finally, a sensitivity analysis revealed that altering the homeostatic concentration of HSF can lead to large changes in the stress response without significantly impacting the homeostatic levels of other model components, making it an attractive target for intervention. Overall, this model represents a step forward in the quantitative understanding of the dynamics of the heat-shock response. PMID:26200855

  4. Ste20-like kinase, SLK, activates the heat shock factor 1 - Hsp70 pathway.

    PubMed

    Cybulsky, Andrey V; Guillemette, Julie; Papillon, Joan

    2016-09-01

    Expression and activation of SLK increases during renal ischemia-reperfusion injury. When highly expressed, SLK signals via c-Jun N-terminal kinase and p38 to induce apoptosis, and it exacerbates apoptosis induced by ischemia-reperfusion injury. Overexpression of SLK in glomerular epithelial cells (GECs)/podocytes in vivo induces injury and proteinuria. In response to various stresses, cells enhance expression of chaperones or heat shock proteins (e.g. Hsp70), which are involved in the folding and maturation of newly synthesized proteins, and can refold denatured or misfolded proteins. We address the interaction of SLK with the heat shock factor 1 (HSF1)-Hsp70 pathway. Increased expression of SLK in GECs (following transfection) induced HSF1 transcriptional activity. Moreover, HSF1 transcriptional activity was increased by in vitro ischemia-reperfusion injury (chemical anoxia/recovery) and heat shock, and in both instances was amplified further by SLK overexpression. HSF1 binds to promoters of target genes, such as Hsp70 and induces their transcription. By analogy to HSF1, SLK stimulated Hsp70 expression. Hsp70 was also enhanced by anoxia/recovery and was further amplified by SLK overexpression. Induction of HSF1 and Hsp70 was dependent on the kinase activity of SLK, and was mediated via polo-like kinase-1. Transfection of constitutively active HSF1 enhanced Hsp70 expression and inhibited SLK-induced apoptosis. Conversely, the proapoptotic action of SLK was augmented by HSF1 shRNA, or the Hsp70 inhibitor, pifithrin-μ. In conclusion, increased expression/activity of SLK activates the HSF1-Hsp70 pathway. Hsp70 attenuates the primary proapoptotic effect of SLK. Modulation of chaperone expression may potentially be harnessed as cytoprotective therapy in renal cell injury. PMID:27216364

  5. Repression of hsp70 heat shock gene transcription by the suppressor of hairy-wing protein of Drosophila melanogaster

    SciTech Connect

    Holdridge, C.; Dorsett, D. )

    1991-04-01

    The suppressor of hairy-wing [su(Hw)] locus of Drosophila melanogaster encodes a zinc finger protein that binds a repeated motif in the gypsy retroposon. Mutations of su(Hw) suppress the phenotypes associated with mutations caused by gypsy insertions. To examine the mechanisms by which su(Hw) alters gene expression, a fragment of gypsy containing multiple su(Hw) protein-binding sites was inserted into various locations in the well-characterized Drosophila hsp70 heat shock gene promoter. The authors found no evidence for activation of basal hsp70 transcription by su(Hw) protein in cultured Drosophila cells but observed that it can repress heat shock-induced transcription. Repression occurred only when su(Hw) protein-binding sites were positioned between binding sites for proteins required for heat shock transcription. They propose that su(Hw) protein interferes nonspecifically with protein-protein interactions required for heat shock transcription, perhaps sterically, or by altering the ability of DNA to bend or twist.

  6. Direct link between metabolic regulation and the heat-shock response through the transcriptional regulator PGC-1α

    PubMed Central

    Minsky, Neri; Roeder, Robert G.

    2015-01-01

    In recent years an extensive effort has been made to elucidate the molecular pathways involved in metabolic signaling in health and disease. Here we show, surprisingly, that metabolic regulation and the heat-shock/stress response are directly linked. Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a critical transcriptional coactivator of metabolic genes, acts as a direct transcriptional repressor of heat-shock factor 1 (HSF1), a key regulator of the heat-shock/stress response. Our findings reveal that heat-shock protein (HSP) gene expression is suppressed during fasting in mouse liver and in primary hepatocytes dependent on PGC-1α. HSF1 and PGC-1α associate physically and are colocalized on several HSP promoters. These observations are extended to several cancer cell lines in which PGC-1α is shown to repress the ability of HSF1 to activate gene-expression programs necessary for cancer survival. Our study reveals a surprising direct link between two major cellular transcriptional networks, highlighting a previously unrecognized facet of the activity of the central metabolic regulator PGC-1α beyond its well-established ability to boost metabolic genes via its interactions with nuclear hormone receptors and nuclear respiratory factors. Our data point to PGC-1α as a critical repressor of HSF1-mediated transcriptional programs, a finding with possible implications both for our understanding of the full scope of metabolically regulated target genes in vivo and, conceivably, for therapeutics. PMID:26438876

  7. Effects of wake and shock passing on the heat transfer to a film cooled transonic turbine blade

    NASA Astrophysics Data System (ADS)

    Rigby, M. J.

    An attempt is made to further the understanding of film cooling process in an engine environment. The environment in a gas turbine is unsteady. A source of unsteadiness, the cutting of nozzle guide vane (NGV) wakes and shock waves by the rotor, was modeled experimentally. The influence of the unsteady wakes and shock waves on the heat transfer to a film cooled rotor blade was studied for five film cooling configurations using a rotating bar apparatus in front of a 2-D cascade. Heat transfer measurements were made using thin film gauges placed at the mid-span of the test blade. Schlieren photography was used to study the behavior of the coolant film and the movement of the unsteady shock waves and wakes. The effect of simulated NGV wake passing observed on the uncooled airfoil is to promote an intermittent transition of the suction surface. The effect of the wake on the turbulent pressure surface is small. With injection on the suction surface, the film acts as a boundary layer trip which offsets the rise in heat transfer due to the wake. The simulated NGV trailing edge shock wave had a dramatic effect on the suction surface heat transfer.

  8. HEAT SHOCK PROTEINS IN DIABETES AND WOUND HEALING

    PubMed Central

    Atalay, Mustafa; Oksala, Niku; Lappalainen, Jani; Laaksonen, David E.; Sen, Chandan K.; Roy, Sashwati

    2009-01-01

    The heat shock proteins (HSPs), originally identified as heat-inducible gene products, are a highly conserved family of proteins that respond to a wide variety of stress. Although HSPs are among the most abundant intracellular proteins, they are expressed at low levels under normal physiological conditions, and show marked induction in response to various stressors. HSPs function primarily as molecular chaperones, facilitating the folding of other cellular proteins, preventing protein aggregation, or targeting improperly folded proteins to specific pathways for degradation. By modulating inflammation, wound debris clearance, cell proliferation, migration and collagen synthesis, HSPs are essential for normal wound healing of the skin. In this review, our goal is to discuss the role and clinical implications of HSP with respect to skin wound healing and diabetes. The numerous defects in the function of HSPs associated with diabetes could contribute to the commonly observed complications and delayed wound healing in diabetics. Several physical, pharmacological and genetic approaches may be considered to address HSP-directed therapies both in the laboratory and in the clinics. PMID:19275675

  9. Heat shock proteins: molecular chaperones of protein biogenesis.

    PubMed Central

    Craig, E A; Gambill, B D; Nelson, R J

    1993-01-01

    Heat shock proteins (Hsps) were first identified as proteins whose synthesis was enhanced by stresses such as an increase in temperature. Recently, several of the major Hsps have been shown to be intimately involved in protein biogenesis through a direct interaction with a wide variety of proteins. As a reflection of this role, these Hsps have been referred to as molecular chaperones. Hsp70s interact with incompletely folded proteins, such as nascent chains on ribosomes and proteins in the process of translocation from the cytosol into mitochondria and the endoplasmic reticulum. Hsp60 also binds to unfolded proteins, preventing aggregation and facilitating protein folding. Although less well defined, other Hsps such as Hsp90 also play important roles in modulating the activity of a number of proteins. The function of the proteolytic system is intertwined with that of molecular chaperones. Several components of this system, encoded by heat-inducible genes, are responsible for the degradation of abnormal or misfolded proteins. The budding yeast Saccharomyces cerevisiae has proven very useful in the analysis of the role of molecular chaperones in protein maturation, translocation, and degradation. In this review, results of experiments are discussed within the context of experiments with other organisms in an attempt to describe the current state of understanding of these ubiquitous and important proteins. PMID:8336673

  10. Electron heating by ion acoustic turbulence in simulated low Mach number shocks

    NASA Technical Reports Server (NTRS)

    Tokar, Robert L.; Gary, S. Peter; Quest, Kevin B.

    1987-01-01

    Explicit and fully electromagnetic particle-in-cell simulations of perpendicular, collisionless, and nominally subcritical shocks are performed in one and two spatial dimensions using the code wave. Shock parameters are chosen to maximixe the growth rates of the current-driven ion acoustic instability in the shock. Electron heating by ion acoustic turbulence is observed at the shocks, at rates in agreement with second-order Vlasov theory predictions. However, the amount of resistive electron heating is small and ion reflection provides the major source of dissipation. Strictly resistive shocks do not exist for the parameters suitable for explicit particle codes running on today's supercomputers, because the plasma convects through these shocks so quickly that current-driven instabilities have little time to be amplified and to heat the electrons resistively. This effect is primarily a result of the relatively small values of omega(pe)/omega(ce) that can be analyzed.

  11. Ecotypic variation in chloroplast small heat-shock proteins and related thermotolerance in Chenopodium album.

    PubMed

    Shakeel, Samina; Haq, Noor Ul; Heckathorn, Scott A; Hamilton, E William; Luthe, Dawn S

    2011-08-01

    Production of chloroplast-localized small heat-shock proteins (Cp-sHSP) is correlated with increased thermotolerance in plants. Ecotypic variation in function and expression of Cp-sHSPs was analyzed in two Chenopodium album ecotypes from cool vs. warm-temperate USA habitats [New York (NY) and Mississippi (MS) respectively]. P(et) was more heat tolerant in the MS than the NY ecotype, and MS ecotype derived proportionally greater protection of P(et) by Cp-sHSP during high temperatures. Four genes encoding Cp-sHSPs were isolated and characterized: CaHSP25.99n (NY-1) and CaHSP26.23n (NY-2) from NY ecotype, and CaHSP26.04m (MS-1) and CaHSP26.26m (MS-2) from MS ecotype. The genes were nearly identical in predicted amino-acid sequence and hydrophobicity. Gene expression analysis indicated that MS-1 and MS-2 transcripts were constitutively expressed at low levels at 25 °C, while no NY-1 and NY-2 transcripts were detected at this temperature. Maximum accumulation of NY-1 and NY-2 transcripts occurred at 33 °C and 40 °C for MS-1 and MS-2. Immunoblot analysis revealed that (1) protein expression was highest at 37 °C in both ecotypes, but was greater in MS than NY ecotype at 40 °C; and (2) import of Cp-sHSP into chloroplasts was more heat-labile in NY ecotype. The higher expression of one isoform in MS ecotype may contribute to its enhanced thermotolerance. Absence of correlation between protein and transcript levels, suggests the post-transcriptional regulation is occurring. Promoter analysis of these genes revealed significant variations in heat-shock elements (HSE), core motifs required for heat-shock-factor binding. We propose a correlation between unique promoter architecture, Cp-sHSP expression and thermotolerance in both ecotypes. PMID:21684754

  12. Heating a plasma by a broadband stream of fast electrons: Fast ignition, shock ignition, and Gbar shock wave applications

    SciTech Connect

    Gus’kov, S. Yu.; Nicolai, Ph.; Ribeyre, X.; Tikhonchuk, V. T.

    2015-09-15

    An exact analytic solution is found for the steady-state distribution function of fast electrons with an arbitrary initial spectrum irradiating a planar low-Z plasma with an arbitrary density distribution. The solution is applied to study the heating of a material by fast electrons of different spectra such as a monoenergetic spectrum, a step-like distribution in a given energy range, and a Maxwellian spectrum, which is inherent in laser-produced fast electrons. The heating of shock- and fast-ignited precompressed inertial confinement fusion (ICF) targets as well as the heating of a target designed to generate a Gbar shock wave for equation of state (EOS) experiments by laser-produced fast electrons with a Maxwellian spectrum is investigated. A relation is established between the energies of two groups of Maxwellian fast electrons, which are responsible for generation of a shock wave and heating the upstream material (preheating). The minimum energy of the fast and shock igniting beams as well as of the beam for a Gbar shock wave generation increases with the spectral width of the electron distribution.

  13. The Stress Granule RNA-Binding Protein TIAR-1 Protects Female Germ Cells from Heat Shock in Caenorhabditis elegans

    PubMed Central

    Huelgas-Morales, Gabriela; Silva-García, Carlos Giovanni; Salinas, Laura S.; Greenstein, David; Navarro, Rosa E.

    2016-01-01

    In response to stressful conditions, eukaryotic cells launch an arsenal of regulatory programs to protect the proteome. One major protective response involves the arrest of protein translation and the formation of stress granules, cytoplasmic ribonucleoprotein complexes containing the conserved RNA-binding proteins TIA-1 and TIAR. The stress granule response is thought to preserve mRNA for translation when conditions improve. For cells of the germline—the immortal cell lineage required for sexual reproduction—protection from stress is critically important for perpetuation of the species, yet how stress granule regulatory mechanisms are deployed in animal reproduction is incompletely understood. Here, we show that the stress granule protein TIAR-1 protects the Caenorhabditis elegans germline from the adverse effects of heat shock. Animals containing strong loss-of-function mutations in tiar-1 exhibit significantly reduced fertility compared to the wild type following heat shock. Analysis of a heat-shock protein promoter indicates that tiar-1 mutants display an impaired heat-shock response. We observed that TIAR-1 was associated with granules in the gonad core and oocytes during several stressful conditions. Both gonad core and oocyte granules are dynamic structures that depend on translation; protein synthesis inhibitors altered their formation. Nonetheless, tiar-1 was required for the formation of gonad core granules only. Interestingly, the gonad core granules did not seem to be needed for the germ cells to develop viable embryos after heat shock. This suggests that TIAR-1 is able to protect the germline from heat stress independently of these structures. PMID:26865701

  14. The Stress Granule RNA-Binding Protein TIAR-1 Protects Female Germ Cells from Heat Shock in Caenorhabditis elegans.

    PubMed

    Huelgas-Morales, Gabriela; Silva-García, Carlos Giovanni; Salinas, Laura S; Greenstein, David; Navarro, Rosa E

    2016-01-01

    In response to stressful conditions, eukaryotic cells launch an arsenal of regulatory programs to protect the proteome. One major protective response involves the arrest of protein translation and the formation of stress granules, cytoplasmic ribonucleoprotein complexes containing the conserved RNA-binding proteins TIA-1 and TIAR. The stress granule response is thought to preserve mRNA for translation when conditions improve. For cells of the germline-the immortal cell lineage required for sexual reproduction-protection from stress is critically important for perpetuation of the species, yet how stress granule regulatory mechanisms are deployed in animal reproduction is incompletely understood. Here, we show that the stress granule protein TIAR-1 protects the Caenorhabditis elegans germline from the adverse effects of heat shock. Animals containing strong loss-of-function mutations in tiar-1 exhibit significantly reduced fertility compared to the wild type following heat shock. Analysis of a heat-shock protein promoter indicates that tiar-1 mutants display an impaired heat-shock response. We observed that TIAR-1 was associated with granules in the gonad core and oocytes during several stressful conditions. Both gonad core and oocyte granules are dynamic structures that depend on translation; protein synthesis inhibitors altered their formation. Nonetheless, tiar-1 was required for the formation of gonad core granules only. Interestingly, the gonad core granules did not seem to be needed for the germ cells to develop viable embryos after heat shock. This suggests that TIAR-1 is able to protect the germline from heat stress independently of these structures. PMID:26865701

  15. Induction of heat shock proteins in B-cell exosomes.

    PubMed

    Clayton, Aled; Turkes, Attilla; Navabi, Hossein; Mason, Malcolm D; Tabi, Zsuzsanna

    2005-08-15

    Exosomes are nanometer-sized vesicles secreted by a diverse range of live cells that probably have physiological roles in modulating cellular immunity. The extracellular factors that regulate the quantity and phenotype of exosomes produced are poorly understood, and the properties of exosomes that dictate their immune functions are not yet clear. We investigated the effect of cellular stress on the exosomes produced by B-lymphoblastoid cell lines. Under steady-state conditions, the exosomes were positive for hsp27, hsc70, hsp70 and hsp90, and other recognised exosome markers such as MHC class I, CD81, and LAMP-2. Exposing cells to heat stress (42 degrees C for up to 3 hours), resulted in a marked increase in these heat shock proteins (hsps), while the expression of other stress proteins such as hsp60 and gp96 remained negative, and other exosome markers remained unchanged. Stress also triggered a small increase in the quantity of exosomes produced [with a ratio of 1.245+/-0.07 to 1 (mean+/-s.e.m., n=20) of 3-hour-stress-exosomes to control-exosomes]. Flow-cytometric analysis of exosome-coated beads and immuno-precipitation of intact exosomes demonstrated that hsps were located within the exosome lumen, and not present at the exosome-surface, suggesting that such exosomes may not interact with target cells through cell-surface hsp-receptors. Functional studies further supported this finding, in that exosomes from control or heat-stressed B cells did not trigger dendritic cell maturation, assessed by analysis of dendritic-cell-surface phenotype, and cytokine secretion profile. Our findings demonstrate that specific alterations in exosome phenotype are a hitherto unknown component of the cellular response to environmental stress and their extracellular function does not involve the direct activation of dendritic cells. PMID:16046478

  16. Selective activation of human heat shock gene transcription by nitrosourea antitumor drugs mediated by isocyanate-induced damage and activation of heat shock transcription factor

    SciTech Connect

    Kroes, R.A. Northwestern Univ., Evanston, IL ); Abravaya, K.; Morimoto, R.I. ); Seidenfeld, J. )

    1991-06-01

    Treatment of cultured human tumor cells with the chloroethylnitrosourea antitumor drug 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) selectively induces transcription and protein synthesis of a subset of the human heat shock or stress-induced genes (HSP90 and HSP70) with little effect on other stress genes or on expression of the c-fos, c-myc, or {beta}-actin genes. The active component of BCNU and related compounds appears to be the isocyanate moiety that causes carbamoylation of proteins and nucleic acids. Transcriptional activation of the human HSP70 gene by BCNU is dependent on the heat shock element and correlates with the level of heat shock transcription factor and its binding to the heat shock element in vivo. Unlike activation by heat or heavy metals, BCNU-mediated activation is strongly dependent upon new protein synthesis. This suggests that BCNU-induced, isocyanate-mediated damage to newly synthesized protein(s) may be responsible for activation of the heat shock transcription factor and increased transcription of the HSP90 and HSP70 genes.

  17. The Membrane-Associated Transient Receptor Potential Vanilloid Channel Is the Central Heat Shock Receptor Controlling the Cellular Heat Shock Response in Epithelial Cells

    PubMed Central

    Bromberg, Zohar; Goloubinoff, Pierre; Saidi, Younousse; Weiss, Yoram George

    2013-01-01

    The heat shock response (HSR) is a highly conserved molecular response to various types of stresses, including heat shock, during which heat-shock proteins (Hsps) are produced to prevent and repair damages in labile proteins and membranes. In cells, protein unfolding in the cytoplasm is thought to directly enable the activation of the heat shock factor 1 (HSF-1), however, recent work supports the activation of the HSR via an increase in the fluidity of specific membrane domains, leading to activation of heat-shock genes. Our findings support the existence of a plasma membrane-dependent mechanism of HSF-1 activation in animal cells, which is initiated by a membrane-associated transient receptor potential vanilloid receptor (TRPV). We found in various non-cancerous and cancerous mammalian epithelial cells that the TRPV1 agonists, capsaicin and resiniferatoxin (RTX), upregulated the accumulation of Hsp70, Hsp90 and Hsp27 and Hsp70 and Hsp90 respectively, while the TRPV1 antagonists, capsazepine and AMG-9810, attenuated the accumulation of Hsp70, Hsp90 and Hsp27 and Hsp70, Hsp90, respectively. Capsaicin was also shown to activate HSF-1. These findings suggest that heat-sensing and signaling in mammalian cells is dependent on TRPV channels in the plasma membrane. Thus, TRPV channels may be important drug targets to inhibit or restore the cellular stress response in diseases with defective cellular proteins, such as cancer, inflammation and aging. PMID:23468922

  18. Cellular response to heat shock studied by multiconfocal fluorescence correlation spectroscopy.

    PubMed

    Kloster-Landsberg, Meike; Herbomel, Gaëtan; Wang, Irène; Derouard, Jacques; Vourc'h, Claire; Usson, Yves; Souchier, Catherine; Delon, Antoine

    2012-09-19

    Heat shock triggers a transient and ubiquitous response, the function of which is to protect cells against stress-induced damage. The heat-shock response is controlled by a key transcription factor known as heat shock factor 1 (HSF1). We have developed a multiconfocal fluorescence correlation spectroscopy setup to measure the dynamics of HSF1 during the course of the heat-shock response. The system combines a spatial light modulator, to address several points of interest, and an electron-multiplying charge-coupled camera for fast multiconfocal recording of the photon streams. Autocorrelation curves with a temporal resolution of 14 μs were analyzed before and after heat shock on eGFP and HSF1-eGFP-expressing cells. Evaluation of the dynamic parameters of a diffusion-and-binding model showed a slower HSF1 diffusion after heat shock. It is also observed that the dissociation rate decreases after heat shock, whereas the association rate is not affected. In addition, thanks to the multiconfocal fluorescence correlation spectroscopy system, up to five spots could be simultaneously located in each cell nucleus. This made it possible to quantify the intracellular variability of the diffusion constant of HSF1, which is higher than that of inert eGFP molecules and increases after heat shock. This finding is consistent with the fact that heat-shock response is associated with an increase of HSF1 interactions with DNA and cannot be explained even partially by heat-induced modifications of nuclear organization. PMID:22995483

  19. Heat Shock Protein–Peptide and HSP-Based Immunotherapies for the Treatment of Cancer

    PubMed Central

    Shevtsov, Maxim; Multhoff, Gabriele

    2016-01-01

    Intracellular residing heat shock proteins (HSPs) with a molecular weight of approximately 70 and 90 kDa function as molecular chaperones that assist folding/unfolding and transport of proteins across membranes and prevent protein aggregation after environmental stress. In contrast to normal cells, tumor cells have higher cytosolic heat shock protein 70 and Hsp90 levels, which contribute to tumor cell propagation, metastasis, and protection against apoptosis. In addition to their intracellular chaperoning functions, extracellular localized and membrane-bound HSPs have been found to play key roles in eliciting antitumor immune responses by acting as carriers for tumor-derived immunogenic peptides, as adjuvants for antigen presentation, or as targets for the innate immune system. The interaction of HSP–peptide complexes or peptide-free HSPs with receptors on antigen-presenting cells promotes the maturation of dendritic cells, results in an upregulation of major histocompatibility complex class I and class II molecules, induces secretion of pro- and anti-inflammatory cytokines, chemokines, and immune modulatory nitric oxides, and thus integrates adaptive and innate immune phenomena. Herein, we aim to recapitulate the history and current status of HSP-based immunotherapies and vaccination strategies in the treatment of cancer. PMID:27199993

  20. Oligomers of Heat-Shock Proteins: Structures That Don’t Imply Function

    PubMed Central

    Jacobs, William M.; Knowles, Tuomas P. J.; Frenkel, Daan

    2016-01-01

    Most proteins must remain soluble in the cytosol in order to perform their biological functions. To protect against undesired protein aggregation, living cells maintain a population of molecular chaperones that ensure the solubility of the proteome. Here we report simulations of a lattice model of interacting proteins to understand how low concentrations of passive molecular chaperones, such as small heat-shock proteins, suppress thermodynamic instabilities in protein solutions. Given fixed concentrations of chaperones and client proteins, the solubility of the proteome can be increased by tuning the chaperone–client binding strength. Surprisingly, we find that the binding strength that optimizes solubility while preventing irreversible chaperone binding also promotes the formation of weakly bound chaperone oligomers, although the presence of these oligomers does not significantly affect the thermodynamic stability of the solution. Such oligomers are commonly observed in experiments on small heat-shock proteins, but their connection to the biological function of these chaperones has remained unclear. Our simulations suggest that this clustering may not have any essential biological function, but rather emerges as a natural side-effect of optimizing the thermodynamic stability of the proteome. PMID:26928170

  1. Emerging Role of Nitric Oxide and Heat Shock Proteins in Insulin Resistance.

    PubMed

    Molina, Marisa Nile; Ferder, León; Manucha, Walter

    2016-01-01

    Insulin resistance (IR) is present in pathologies such as diabetes, obesity, metabolic syndrome, impaired glucose tolerance, hypertension, inflammation, cardiac disease, and dyslipidemias. Population studies show that IR is multifactorial and has genetic components, such as defects in the insulin-signaling pathway (as serine phosphorylation on insulin substrate or decreased activation of signaling molecules) and RAS/MAPK-dependent pathways. IR is connected to mitochondrial dysfunction, overproduction of oxidants, accumulation of fat, and an over-activation of the renin-angiotensin system linked to the NADPH oxidase activity. In addition, nitric oxide (NO), synthesized by nitric oxide synthases (endothelial and inducible), is also associated with IR when both impaired release and reduced bioavailability of all which lead to inflammation and hypertension. However, increased NO may promote vasculoprotection. Moreover, reduced NO release induces heat shock protein 70 kDa (HSP70) expression in IR and diabetes, mediating beneficial effects against oxidative stress injury, inflammation and apoptosis. HSP70 may be used as biomarker of the chronicity of diabetes. Hsp72 (inducible protein) is linked to vascular complications with a high-fat diet by blocking inflammation signaling (cytoprotective and anti-cytotoxicity intracellular role). Elucidating the IR signaling pathways and the roles of NO and HSPs is relevant to the application of new treatments, such as heat shock and thermal therapy, nitrosylated drugs, chemical chaperones or exercise training. PMID:26694820

  2. Modeling and effects of nonlocal electron heat flow in planar shock waves

    SciTech Connect

    Vidal, F.; Matte, J.P.; Casanova, M.; Larroche, O.

    1995-05-01

    Electron heat flow was computed in the context of a steadily propagating shock wave. Two problems were studied: a Mach 8 shock in hydrogen, simulated with an ion kinetic code, and a Mach 5 shock in lithium, simulated with an Eulerian hydrodynamic code. The electron heat flow was calculated with Spitzer--Haerm classical conductivity, with and without a flux limit, and several nonlocal electron heat flow formulas published in the literature. To evaluate these, the shock`s density, velocity, and ion temperature profiles were fixed, and the electron temperature and heat flow were compared to those computed by an electron kinetic code. There were quantitative differences between the electron temperature profiles calculated with the various formulas. For the Mach 8 shock in hydrogen, the best agreement with the kinetic simulation was obtained with the Epperlein--Short delocalization formula [Phys. Fluids B {bold 4}, 2211 and 4190 (1992)], and the Luciani--Mora--Bendib formula [Phys. Rev. Lett. {bold 55}, 2421 (1985)] gave good agreement. For the Mach 5 shock in lithium, both of these gave good agreement. The earlier Luciani--Mora--Virmont formula [Phys. Rev. Lett. {bold 51}, 1664 (1983)] gave fair agreement, while that of San Martin {ital et} {ital al}. [Phys. Fluids B {bold 4}, 3579 (1992); {bold 5}, 1485 (1993)] was even further off than the classical Spitzer--Haerm [Phys. Rev. {bold 89}, 977 (1953)] formula for thermal conduction. To assess the effect of nonlocal electron heat flow on the shock`s hydrodynamics and ion kinetics, each of the two problems was done with two different electron heat flow models: the classical Spitzer--Haerm local heat conductivity, and the Epperlein--Short nonlocal electron heat-flow formula. In spite of the somewhat different electron temperature profiles, the effect on the shock dynamics was not important. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  3. Escape of heated ions upstream of quasi-parallel shocks

    NASA Technical Reports Server (NTRS)

    Edmiston, J. P.; Kennel, C. F.; Eichler, D.

    1982-01-01

    A simple theoretical criterion by which quasi-parallel and quasi-perpendicular collisionless shocks may be distinguished is proposed on the basis of an investigation of the free escape of ions from the post-shock plasma into the region upstream of a fast collisionless shock. It was determined that the accessibility of downstream ions to the upstream region depends on upstream magnetic field shock normal angle, in addition to the upstream plasma parameters, with post-shock ions escaping upstream for shock normal angles of less than 45 deg, in agreement with the observed transition between quasi-parallel and quasi-perpendicular shock structure. Upstream ion distribution functions resembling those of observed intermediate ions and beams are also calculated.

  4. Exercise-induced ROS in heat shock proteins response.

    PubMed

    Dimauro, Ivan; Mercatelli, Neri; Caporossi, Daniela

    2016-09-01

    Cells have evolved multiple and sophisticated stress response mechanisms aiming to prevent macromolecular (including proteins, lipids, and nucleic acids) damage and to maintain or re-establish cellular homeostasis. Heat shock proteins (HSPs) are among the most highly conserved, ubiquitous, and abundant proteins in all organisms. Originally discovered more than 50 years ago through heat shock stress, they display multiple, remarkable roles inside and outside cells under a variety of stresses, including also oxidative stress and radiation, recognizing unfolded or misfolded proteins and facilitating their restructuring. Exercise consists in a combination of physiological stresses, such as metabolic disturbances, changes in circulating levels of hormones, increased temperature, induction of mild to severe inflammatory state, increased production of reactive oxygen and nitrogen species (ROS and RNS). As a consequence, exercise is one of the main stimuli associated with a robust increase in different HSPs in several tissues, which appears to be also fundamental in facilitating the cellular remodeling processes related to the training regime. Among all factors involved in the exercise-related modulation of HSPs level, the ROS production in the contracting muscle or in other tissues represents one of the most attracting, but still under discussion, mechanism. Following exhaustive or damaging muscle exercise, major oxidative damage to proteins and lipids is likely involved in HSP expression, together with mechanically induced damage to muscle proteins and the inflammatory response occurring several days into the recovery period. Instead, the transient and reversible oxidation of proteins by physiological concentrations of ROS seems to be involved in the activation of stress response following non-damaging muscle exercise. This review aims to provide a critical update on the role of HSPs response in exercise-induced adaptation or damage in humans, focusing on experimental

  5. Plasma heating at collisionless shocks due to the kinetic cross-field streaming instability

    NASA Technical Reports Server (NTRS)

    Winske, D.; Quest, K. B.; Tanaka, M.; Wu, C. S.

    1985-01-01

    Heating at collisionless shocks due to the kinetic cross-field streaming instability, which is the finite beta (ratio of plasma to magnetic pressure) extension of the modified two stream instability, is studied. Heating rates are derived from quasi-linear theory and compared with results from particle simulations to show that electron heating relative to ion heating and heating parallel to the magnetic field relative to perpendicular heating for both the electrons and ions increase with beta. The simulations suggest that electron dynamics determine the saturation level of the instability, which is manifested by the formation of a flattop electron distribution parallel to the magnetic field. As a result, both the saturation levels of the fluctuations and the heating rates decrease sharply with beta. Applications of these results to plasma heating in simulations of shocks and the earth's bow shock are described.

  6. The identification of a heat-shock protein complex in chloroplasts of barley leaves.

    PubMed

    Clarke, A K; Critchley, C

    1992-12-01

    In vivo radiolabeling of chloroplast proteins in barley (Hordeum vulgare L. cv Corvette) leaves and their separation by one-dimensional electrophoresis revealed at least seven heat-shock proteins between 24 and 94 kD, of which most have not been previously identified in this C(3) species. Fractionation into stromal and thylakoid membrane components showed that all chloroplast heat-shock proteins were synthesized on cytoplasmic ribosomes, translocated into the chloroplast, and located in the stroma. Examination of stromal preparations by native (nondissociating) polyacrylamide gel electrophoresis revealed the presence of a high-molecular mass heat-shock protein complex in barley. This complex was estimated to be 250 to 265 kD in size. Dissociation by denaturing polyacrylamide gel electrophoresis revealed a single protein component, a 32-kD heat-shock protein. The synthesis of this protein and the formation of the heat-shock protein complex were dependent on functional cytoplasmic ribosomes. Immunological studies showed that the heat-shock protein complex did not contain any proteins homologous to the alpha-subunit of ribulose bisphosphate carboxylase oxygenase subunit-binding protein. Other features about the complex included the absence of nucleic acid (RNA or DNA) and its nondissociation in the presence of Mg(2+)/ATP. These results suggest that the heat-shock protein complex in barley chloroplasts is a homogeneous octamer of 32-kD subunits. PMID:16653243

  7. The Identification of a Heat-Shock Protein Complex in Chloroplasts of Barley Leaves 1

    PubMed Central

    Clarke, Adrian K.; Critchley, Christa

    1992-01-01

    In vivo radiolabeling of chloroplast proteins in barley (Hordeum vulgare L. cv Corvette) leaves and their separation by one-dimensional electrophoresis revealed at least seven heat-shock proteins between 24 and 94 kD, of which most have not been previously identified in this C3 species. Fractionation into stromal and thylakoid membrane components showed that all chloroplast heat-shock proteins were synthesized on cytoplasmic ribosomes, translocated into the chloroplast, and located in the stroma. Examination of stromal preparations by native (nondissociating) polyacrylamide gel electrophoresis revealed the presence of a high-molecular mass heat-shock protein complex in barley. This complex was estimated to be 250 to 265 kD in size. Dissociation by denaturing polyacrylamide gel electrophoresis revealed a single protein component, a 32-kD heat-shock protein. The synthesis of this protein and the formation of the heat-shock protein complex were dependent on functional cytoplasmic ribosomes. Immunological studies showed that the heat-shock protein complex did not contain any proteins homologous to the α-subunit of ribulose bisphosphate carboxylase oxygenase subunit-binding protein. Other features about the complex included the absence of nucleic acid (RNA or DNA) and its nondissociation in the presence of Mg2+/ATP. These results suggest that the heat-shock protein complex in barley chloroplasts is a homogeneous octamer of 32-kD subunits. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:16653243

  8. Heat-shock-induced cellular responses to temperature elevations occurring during orthopaedic cutting.

    PubMed

    Dolan, E B; Haugh, M G; Tallon, D; Casey, C; McNamara, L M

    2012-12-01

    Severe heat-shock to bone cells caused during orthopaedic procedures can result in thermal damage, leading to cell death and initiating bone resorption. By contrast, mild heat-shock has been proposed to induce bone regeneration. In this study, bone cells are exposed to heat-shock for short durations occurring during surgical cutting. Cellular viability, necrosis and apoptosis are investigated immediately after heat-shock and following recovery of 12, 24 h and 4 days, in osteocyte-like MLO-Y4 and osteoblast-like MC3T3-E1 cells, using flow cytometry. The regeneration capacity of heat-shocked Balb/c mesenchymal stem cells (MSCs) and MC3T3-E1s has been investigated following 7 and 14 day's recovery, by quantifying proliferation, differentiation and mineralization. An immediate necrotic response to heat-shock was shown in cells exposed to elevated temperatures (45°C, 47°C and most severe at 60°C). A longer-term apoptotic response is induced in MLO-Y4s and, to a lesser extent, in MC3T3-E1s. Heat-shock-induced differentiation and mineralization by MSCs. These findings indicate that heat-shock is more likely to induce apoptosis in osteocytes than osteoblasts, which might reflect their role as sensors detecting and communicating damage within bone. Furthermore, it is shown for the first time that mild heat-shock (less than equal to 47°C) for durations occurring during surgical cutting can positively enhance osseointegration by osteoprogenitors. PMID:22915633

  9. Shock

    MedlinePlus

    ... Emergencies A-Z Share this! Home » Emergency 101 Shock Shock is a serious, often life-threatening medical condition ... of death for critically ill or injured people. Shock results when the body is not getting enough ...

  10. Shock

    MedlinePlus

    ... problems) Hypovolemic shock (caused by too little blood volume) Anaphylactic shock (caused by allergic reaction) Septic shock ( ... as heart attack or heart failure ) Low blood volume (as with heavy bleeding or dehydration ) Changes in ...

  11. Responses to heat shock, arsenite and cadmium in soybean

    SciTech Connect

    Edelman, L. ); Key, J.L. )

    1989-04-01

    Heat shock (HS), arsenite (As) and cadmium (Cd) treatments induced the HS response in soybean seedlings but differed in their abilities to induce stress tolerance. Pretreatment of seedlings with sub-lethal HS protected them from subsequent normally lethal HS treatment. However, the protection was much more pronounced in 1 day-old than in 2 day-old plants. Sublethal arsenite pretreatment resulted in only a low level of protection against lethal As or HS treatment and severe damage still occurred in specific tissues. Cadmium did not induce any self- or cross-protection. DNA sequence analyses revealed that HS, As and Cd induced the transcription of similar sequences. However, Northern blot analyses of HS mRNAs, and analyses of in vitro translation products and in vivo-labeled proteins by 1D and 2D SDS-PAGE demonstrated that, compared to HS, the response to the chemical stresses was slower, less intense and not as selective. Apparently any causal relationship between HS proteins and induced stress tolerance must also involve developmental-, tissue-, and/or quantitative-specificities.

  12. Urease-associated heat shock protein of Helicobacter pylori.

    PubMed Central

    Evans, D J; Evans, D G; Engstrand, L; Graham, D Y

    1992-01-01

    Helicobacter pylori urease is an extracellular, cell-bound enzyme with a molecular weight of approximately 600,000 (600K enzyme) comprising six 66K and six 31K subunits. A 62K protein is closely associated with the H. pylori urease, both in crude preparations and after gel filtration; this protein can be removed from the urease by ion-exchange chromatography without inactivating the enzyme. We purified this urease-associated protein and determined its N-terminal amino acid sequence. The sequence is 80% homologous (identical plus conserved amino acid residues) to the Escherichia coli GroEL heat shock protein (HSP), 75% homologous to the human homolog, and 84% homologous to the HSP homolog found in species of Chlamydia. Thus, the 62K urease-associated protein of H. pylori belongs to the HSP60 family of stress proteins known as chaperonins. Evidently this protein, HSP62, participates in the extracellular assembly and/or protection of the urease against inactivation in the hostile environment of the stomach. Images PMID:1348725

  13. EXTRACELLULAR HEAT SHOCK PROTEINS: A NEW LOCATION, A NEW FUNCTION

    PubMed Central

    De Maio, Antonio; Vazquez, Daniel

    2015-01-01

    The expression of heat shock proteins (hsp) is a basic and well conserved cellular response to an array of stresses. These proteins are involved in the repair of cellular damage induced by the stress, which is necessary for the salutary resolution from the insult. Moreover, they confer protection from subsequent insults, which has been coined stress tolerance. Since these proteins are expressed in subcellular compartments, it was thought that their function during stress conditions was circumscribed to the intracellular environment. However, it is now well established that hsp can also be present outside cells where they appear to display a function different than the well understood chaperone role. Extracellular hsp act as alert stress signals priming other cells, particularly of the immune system, to avoid the propagation of the insult and favor resolution. Since the majority of hsp do not possess a secretory peptide signal, they are likely be exported by a non-classical secretory pathway. Different mechanisms have been proposed to explain the export of hsp, including translocation across the plasma membrane and release associated with lipid vesicles, as well as the passive release after cell death by necrosis. Extracellular hsp appear in various flavors, including membrane-bound and membrane-free forms. All of these variants of extracellular hsp suggest that their interactions with cells may be quite diverse, both in target cell types and the activation signaling pathways. This review addresses some of our current knowledge about the release and relevance of extracellular hsp. PMID:23807250

  14. Heat Shock Factor 1 Mediates Latent HIV Reactivation

    PubMed Central

    Pan, Xiao-Yan; Zhao, Wei; Zeng, Xiao-Yun; Lin, Jian; Li, Min-Min; Shen, Xin-Tian; Liu, Shu-Wen

    2016-01-01

    HSF1, a conserved heat shock factor, has emerged as a key regulator of mammalian transcription in response to cellular metabolic status and stress. To our knowledge, it is not known whether HSF1 regulates viral transcription, particularly HIV-1 and its latent form. Here we reveal that HSF1 extensively participates in HIV transcription and is critical for HIV latent reactivation. Mode of action studies demonstrated that HSF1 binds to the HIV 5′-LTR to reactivate viral transcription and recruits a family of closely related multi-subunit complexes, including p300 and p-TEFb. And HSF1 recruits p300 for self-acetylation is also a committed step. The knockout of HSF1 impaired HIV transcription, whereas the conditional over-expression of HSF1 improved that. These findings demonstrate that HSF1 positively regulates the transcription of latent HIV, suggesting that it might be an important target for different therapeutic strategies aimed at a cure for HIV/AIDS. PMID:27189267

  15. Molecular chaperones and heat shock proteins in atherosclerosis

    PubMed Central

    Xu, Qingbo; Metzler, Bernhard; Jahangiri, Marjan

    2012-01-01

    In response to stress stimuli, mammalian cells activate an ancient signaling pathway leading to the transient expression of heat shock proteins (HSPs). HSPs are a family of proteins serving as molecular chaperones that prevent the formation of nonspecific protein aggregates and assist proteins in the acquisition of their native structures. Physiologically, HSPs play a protective role in the homeostasis of the vessel wall but have an impact on immunoinflammatory processes in pathological conditions involved in the development of atherosclerosis. For instance, some members of HSPs have been shown to have immunoregulatory properties and modification of innate and adaptive response to HSPs, and can protect the vessel wall from the disease. On the other hand, a high degree of sequence homology between microbial and mammalian HSPs, due to evolutionary conservation, carries a risk of misdirected autoimmunity against HSPs expressed on the stressed cells of vascular endothelium. Furthermore, HSPs and anti-HSP antibodies have been shown to elicit production of proinflammatory cytokines. Potential therapeutic use of HSP in prevention of atherosclerosis involves achieving optimal balance between protective and immunogenic effects of HSPs and in the progress of research on vaccination. In this review, we update the progress of studies on HSPs and the integrity of the vessel wall, discuss the mechanism by which HSPs exert their role in the disease development, and highlight the potential clinic translation in the research field. PMID:22058161

  16. Heat-Shock Protein 90-Targeted Nano Anticancer Therapy.

    PubMed

    Rochani, Ankit K; Ravindran Girija, Aswathy; Borah, Ankita; Maekawa, Toru; Sakthi Kumar, D

    2016-04-01

    Suboptimal chemotherapy of anticancer drugs may be attributed to a variety of cellular mechanisms, which synergize to dodge the drug responses. Nearly 2 decades of heat-shock protein 90 (Hsp90)-targeted drug discovery has shown that the mono-therapy with Hsp90 inhibitors seems to be relatively ineffective compared with combination treatment due to several cellular dodging mechanisms. In this article, we have tried to analyze and review the Hsp90 and mammalian target of rapamycin (m-TOR)-mediated drug resistance mechanisms. By using this information we have discussed about the rationale behind use of drug combinations that includes both or any one of these inhibitors for cancer therapy. Currently, biodegradable nano vector (NV)-loaded novel drug delivery systems have shown to resolve the problems of poor bioavailability. NVs of drugs such as paclitaxel, doxorubicin, daunorubicin, and others have been successfully introduced for medicinal use. Hence, looking at the success of NVs, in this article we have also discussed the progress made in the delivery of biodegradable NV-loaded Hsp90 and m-TOR-targeted inhibitors in multiple drug combinations. We have also discussed the possible ways by which the market success of biodegradable NVs can positively impact the clinical trials of anti-Hsp90 and m-TOR combination strategy. PMID:26886301

  17. Involvement of heat shock proteins in gluten-sensitive enteropathy

    PubMed Central

    Sziksz, Erna; Pap, Domonkos; Veres, Gábor; Fekete, Andrea; Tulassay, Tivadar; Vannay, Ádám

    2014-01-01

    Gluten-sensitive enteropathy, also known as coeliac disease (CD), is an autoimmune disorder occurring in genetically susceptible individuals that damages the small intestine and interferes with the absorption of other nutrients. As it is triggered by dietary gluten and related prolamins present in wheat, rye and barley, the accepted treatment for CD is a strict gluten-free diet. However, a complete exclusion of gluten-containing cereals from the diet is often difficult, and new therapeutic strategies are urgently needed. A class of proteins that have already emerged as drug targets for other autoimmune diseases are the heat shock proteins (HSPs), which are highly conserved stress-induced chaperones that protect cells against harmful extracellular factors. HSPs are expressed in several tissues, including the gastrointestinal tract, and their levels are significantly increased under stress circumstances. HSPs exert immunomodulatory effects, and also play a crucial role in the maintenance of epithelial cell structure and function, as they are responsible for adequate protein folding, influence the degradation of proteins and cell repair processes after damage, and modulate cell signalling, cell proliferation and apoptosis. The present review discusses the involvement of HSPs in the pathophysiology of CD. Furthermore, HSPs may represent a useful therapeutic target for the treatment of CD due to the cytoprotective, immunomodulatory, and anti-apoptotic effects in the intestinal mucosal barrier. PMID:24914370

  18. Heat Shock Proteins: Cellular and molecular mechanisms in the CNS

    PubMed Central

    Stetler, R. Anne; Gan, Yu; Zhang, Wenting; Liou, Anthony K.; Gao, Yanqin; Cao, Guodong; Chen, Jun

    2010-01-01

    Emerging evidence describe heat shock proteins (HSPs) as critical regulators in normal neural physiological function as well as in cell stress responses. The functions of HSPs represent an enormous and diverse range of cellular activities, far beyond the originally identified role in protein folding and chaperoning. Now understood to be involved in processes such as synaptic transmission, autophagy, ER stress response, protein kinase and cell death signaling as well as protein chaperone and folding, manipulation of HSPs have robust effects on the fate of cells in neurological injury and disease states. The ongoing exploration of multiple HSP superfamilies has underscored the pluripotent nature of HSPs in the cellular context, and demanded the recent restructuring of the nomenclature referring to these families to reflect a re-organization based on structure and function. In keeping with this re-organization, we have first discussed the HSP superfamilies in terms of protein structure, regulation and expression and distribution in the brain. We then explore major cellular functions of HSPs that are relevant to neural physiological states, and from there discuss known and proposed HSP impact on major neurological disease states. This review article presents a three-part discussion on the array of HSPs families relevant to neuronal tissue, their cellular functions, and the exploration of therapeutic targets of these proteins in the context of neurological diseases. PMID:20685377

  19. A Bipolar Planetary Nebula NGC 6537: Photoionization or Shock Heating?

    NASA Astrophysics Data System (ADS)

    Hyung, Siek

    1999-04-01

    NGC 6537 is an extremely high excitation bipolar planetary nebula. It exhibits a huge range of excitation from lines of [N I] to [Si VI] or [Fe VII], i.e. from neutral atoms to atoms requiring an ionization potential of 167eV. Its kinematical structures are of special interest. We are here primarily concerned with its high resolution spectrum as revealed by the Hamilton Echelle Spectrograph at Lick Observatory (resolution 0.2 A,) and supplemented by UV and near-UV data. Photoionization model reproduces the observed global spectrum of NGC 6537, the absolute H beta flux, and the observed visual or blue magnitude fairly well. The nebulosity of NGC 6537 is likely to be the result of photo-ionization by a very hot star of Teff 180,000 K, although the global nebular morphology and kinematics suggest an effect by strong stellar winds and resulting shock heating. NGC 6537 can be classified as a Peimbert Type I planetary nebula. It is extremely young and it may have originated from a star of about 5 M_sun.

  20. The role of heat shock proteins in gastrointestinal diseases

    PubMed Central

    Dudeja, V; Vickers, S M; Saluja, A K

    2009-01-01

    Heat shock proteins (HSPs) are a highly conserved family of proteins which inhabit almost all subcellular locations and cellular membranes. Depending on their location, these proteins perform a variety of chaperoning functions including folding of newly synthesised polypeptides. HSPs also play a major role in the protection of cells against stressful and injury-inciting stimuli. By virtue of this protective function, HSPs have been shown to prevent acinar cell injury in acute pancreatitis. Also, the levels of HSPs have been shown to be markedly elevated in various forms of cancers when compared with non-transformed cells. Further, inhibition of HSPs has been shown to induce apoptotic cell death in cancer cells suggesting that inhibition of HSPs has a potential to emerge as novel anti-cancer therapy, either as monotherapy or in combination with other chemotherapeutic agents. Several studies have suggested that HSPs can interact with and inhibit both intrinsic and extrinsic pathways of apoptosis at multiple sites. Besides the anti-apoptotic role of HSPs, recent studies suggest that they play a role in the generation of anti-cancer immunity, and attempts have been made to utilise this property of HSPs in the generation of anti-cancer vaccines. The anti-apoptotic function and mechanism of various subtypes of HSPs as well as the current status of anti-HSP therapy are discussed in this review. PMID:19520890

  1. [Small heat shock proteins and adaptation to hypertermia in various Drosophila species].

    PubMed

    Shilova, V Iu; Garbuz, D G; Evgen'ev, M B; Zatsepina, O G

    2006-01-01

    Expression level and kinetics of accumulation of small heat shock proteins (21-27 kDa group) have been investigated in three Drosophila species differing significantly by temperature niche and thermosensitivity. It was shown that low-latitude thermotolerant species D. virilis exceeds the high-latitude thermosensitive closely-related species D. lummei as well as distant thermosensitive species D. melanogaster in terms of small heat shock proteins expression and accumulation after temperature elevation. The data obtained enable to postulate an important role of small heat shock proteins in organism basal thermotolerance and general adaptation to adverse conditions of environment. PMID:16637267

  2. Heat-shock induction of ultraviolet light resistance in Saccharomyces cerevisiae

    SciTech Connect

    Mitchel, R.E.J.; Morrison, D.P.

    1983-10-01

    When exponentially growing diploid wild type Saccharomyces cervisiae cells were subjected to a sudden rise in temperature (heat shock) they responded by increasing their resistance to the lethal effects of ultraviolet light. We have previously reported heat shock-induced increases in heat and ionizing radiation resistance. The shock-induced rise in resistance to uv light reported here was examined in terms of DNA repair capacity, and we find that the increase is due to induction of the recombinational repair system with no significant response from the uv-excision repair process.

  3. Loss of σI affects heat-shock response and virulence gene expression in Bacillus anthracis.

    PubMed

    Kim, Jenny Gi Yae; Wilson, Adam C

    2016-03-01

    The pathogenesis of Bacillus anthracis depends on several virulence factors, including the anthrax toxin. Loss of the alternative sigma factor σI results in a coordinate decrease in expression of all three toxin subunits. Our observations suggest that loss of σI alters the activity of the master virulence regulator AtxA, but atxA transcription is unaffected by loss of σI. σI-containing RNA polymerase does not appear to directly transcribe either atxA or the toxin gene pagA. As in Bacillus subtilis, loss of σI in B. anthracis results in increased sensitivity to heat shock and transcription of sigI, encoding σI, is induced by elevated temperature. Encoded immediately downstream of and part of a bicistronic message with sigI is an anti-sigma factor, RsgI, which controls σI activity. Loss of RsgI has no direct effect on virulence gene expression. sigI appears to be expressed from both the σI and σA promoters, and transcription from the σA promoter is likely more significant to virulence regulation. We propose a model in which σI can be induced in response to heat shock, whilst, independently, σI is produced under non-heat-shock, toxin-inducing conditions to indirectly regulate virulence gene expression. PMID:26744224

  4. Cross-tolerance in the tidepool sculpin: the role of heat shock proteins.

    PubMed

    Todgham, Anne E; Schulte, Patricia M; Iwama, George K

    2005-01-01

    Cross-tolerance, or the ability of one stressor to transiently increase tolerance to a second heterologous stressor, is thought to involve the induction of heat shock proteins (Hsp). We thus investigated the boundaries of cross-tolerance in tidepool sculpins (Oligocottus maculosus) and their relationship to Hsp70 levels. Survival of sculpins exposed to severe osmotic (90 ppt, 2 h) and hypoxic (0.33 mg O(2)/L, 2 h) stressors increased from 68% to 96%, and from 47% to 76%, respectively, following a +12 degrees C heat shock. The magnitude of this heat shock was critical for protection. A +10 degrees C heat shock did not confer cross-tolerance, while a +15 degrees C heat shock was deleterious. Sculpins required between 8 and 48 h of recovery following the +12 degrees C heat shock to develop cross-tolerance. There was no association between Hsp70 levels before the onset of the secondary stressor and cross-tolerance. However, branchial Hsp70 levels following osmotic shock were highly correlated with the time frame of cross-tolerance. Thus, Hsp70 induction by the priming stressor may be less important than the ability of the cell to mount an Hsp response to subsequent stressors. The time frame of cross-tolerance is similar to the interval between low tides, suggesting the possible relevance of this response in nature. PMID:15778933

  5. Role of TRP channels in the induction of heat shock proteins (Hsps) by heating skin

    PubMed Central

    Hsu, Wen-Li; Yoshioka, Tohru

    2015-01-01

    Transient receptor potential (TRP) channels in skin are crucial for achieving temperature sensitivity to maintain internal temperature balance and thermal homeostasis, as well as to protect skin cells from environmental stresses such as infrared (IR) or near-infrared (NIR) radiation via heat shock protein (Hsp) production. However, the mechanisms by which IR and NIR activate TRP channels and produce Hsps intracellularly have been independently reported. In this review, we discuss the relationship between TRP channel activation and Hsp production, and introduce the roles of several skin TRP channels in the regulation of HSP production by IR and NIR exposure. PMID:27493511

  6. The expression patterns of heat shock genes and proteins and their role during vertebrate's development.

    PubMed

    Rupik, Weronika; Jasik, Krzysztof; Bembenek, Jadwiga; Widłak, Wiesława

    2011-08-01

    Highly evolutionary conserved heat shock proteins (HSPs) act as molecular chaperones in regulation of cellular homeostasis and promoting survival. Generally they are induced by a variety of stressors whose effect could be disastrous on the organism, but they are also widely constitutively expressed in the absence of stress. Varied HSP expressions seem to be very essential in the critical steps of embryonic and extra-embryonic structures formation and may correspond to cell movements, proliferation, morphogenesis and apoptosis, which occur during embryonic development. While our knowledge of detailed HSP expression patterns is in constant progress, their functions during embryonic development are not yet fully understood. In the paper, we review available data on HSP expression and discuss their role during vertebrate development. PMID:21527352

  7. Small Molecule Activators of the Heat Shock Response: Chemical Properties, Molecular Targets, and Therapeutic Promise

    PubMed Central

    West, James D.; Wang, Yanyu; Morano, Kevin A.

    2012-01-01

    All cells have developed various mechanisms to respond and adapt to a variety of environmental challenges, including stresses that damage cellular proteins. One such response, the heat shock response (HSR), leads to the transcriptional activation of a family of molecular chaperone proteins that promote proper folding or clearance of damaged proteins within the cytosol. In addition to its role in protection against acute insults, the HSR also regulates lifespan and protects against protein misfolding that is associated with degenerative diseases of aging. As a result, identifying pharmacological regulators of the HSR has become an active area of research in recent years. Here, we review progress made in identifying small molecule activators of the HSR, what cellular targets these compounds interact with to drive response activation, and how such molecules may ultimately be employed to delay or reverse protein misfolding events that contribute to a number of diseases. PMID:22799889

  8. Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress.

    PubMed Central

    Sarge, K D; Murphy, S P; Morimoto, R I

    1993-01-01

    The existence of multiple heat shock factor (HSF) genes in higher eukaryotes has promoted questions regarding the functions of these HSF family members, especially with respect to the stress response. To address these questions, we have used polyclonal antisera raised against mouse HSF1 and HSF2 to examine the biochemical, physical, and functional properties of these two factors in unstressed and heat-shocked mouse and human cells. We have identified HSF1 as the mediator of stress-induced heat shock gene transcription. HSF1 displays stress-induced DNA-binding activity, oligomerization, and nuclear localization, while HSF2 does not. Also, HSF1 undergoes phosphorylation in cells exposed to heat or cadmium sulfate but not in cells treated with the amino acid analog L-azetidine-2-carboxylic acid, indicating that phosphorylation of HSF1 is not essential for its activation. Interestingly, HSF1 and HSF2 overexpressed in transfected 3T3 cells both display constitutive DNA-binding activity, oligomerization, and transcriptional activity. These results demonstrate that HSF1 can be activated in the absence of physiological stress and also provide support for a model of regulation of HSF1 and HSF2 activity by a titratable negative regulatory factor. Images PMID:8441385

  9. Chalcones from Angelica keiskei: Evaluation of Their Heat Shock Protein Inducing Activities.

    PubMed

    Kil, Yun-Seo; Choi, Seul-Ki; Lee, Yun-Sil; Jafari, Mahtab; Seo, Eun-Kyoung

    2015-10-23

    Five new chalcones, 4,2',4'-trihydroxy-3'-[(2E,5E)-7-methoxy-3,7-dimethyl-2,5-octadienyl]chalcone (1), (±)-4,2',4'-trihydroxy-3'-[(2E)-6-hydroxy-7-methoxy-3,7-dimethyl-2-octenyl]chalcone (2), 4,2',4'-trihydroxy-3'-[(2E)-3-methyl-5-(1,3-dioxolan-2-yl)-2-pentenyl]chalcone (3), 2',3'-furano-4-hydroxy-4'-methoxychalcone (4), and (±)-4-hydroxy-2',3'-(2,3-dihydro-2-methoxyfurano)-4'-methoxychalcone (5), were isolated from the aerial parts of Angelica keiskei Koidzumi together with eight known chalcones, 6-13, which were identified as (±)-4,2',4'-trihydroxy-3'-[(6E)-2-hydroxy-7-methyl-3-methylene-6-octenyl]chalcone (6), xanthoangelol (7), xanthoangelol F (8), xanthoangelol G (9), 4-hydroxyderricin (10), xanthoangelol D (11), xanthoangelol E (12), and xanthoangelol H (13), respectively. Chalcones 1-13 were evaluated for their promoter activity on heat shock protein 25 (hsp25, murine form of human hsp27). Compounds 1 and 6 activated the hsp25 promoter by 21.9- and 29.2-fold of untreated control at 10 μM, respectively. Further protein expression patterns of heat shock factor 1 (HSF1), HSP70, and HSP27 by 1 and 6 were examined. Compound 6 increased the expression of HSF1, HSP70, and HSP27 by 4.3-, 1.5-, and 4.6-fold of untreated control, respectively, without any significant cellular cytotoxicities, whereas 1 did not induce any expression of these proteins. As a result, 6 seems to be a prospective HSP inducer. PMID:26431394

  10. A Review of Acquired Thermotolerance, Heat Shock Proteins, and Molecular Chaperones in Archaea: Heat Shock in Archaea

    DOE R&D Accomplishments Database

    Trent, J. D.

    1996-02-09

    Acquired thermotolerance, the associated synthesis of heat-shock proteins (HSPs) under stress conditions, and the role of HSPs as molecular chaperones under normal growth conditions have been studied extensively in eukaryotes and bacteria, whereas research in these areas in archaea is only beginning. All organisms have evolved a variety of strategies for coping with high-temperature stress, and among these strategies is the increased synthesis of HSPs. The facts that both high temperatures and chemical stresses induce the HSPs and that some of the HSPs recognize and bind to unfolded proteins in vitro have led to the theory that the function of HSPs is to prevent protein aggregation in vivo. The facts that some HSPs are abundant under normal growth conditions and that they assist in protein folding in vitro have led to the theory that they assist protein folding in vivo; in this role, they are referred to as molecular chaperones. The limited research on acquired thermotolerance, HSPs, and molecular chaperones in archaea, particularly the hyperthermophilic archaea, suggests that these extremophiles provide a new perspective in these areas of research, both because they are members of a separate phylogenetic domain and because they have evolved to live under extreme conditions.

  11. Heat-shock Treatment-mediated Increase in Transduction by Recombinant Adeno-associated Virus 2 Vectors Is Independent of the Cellular Heat-shock Protein 90*

    PubMed Central

    Zhong, Li; Qing, Keyun; Si, Yue; Chen, Linyuan; Tan, Mengqun; Srivastava, Arun

    2007-01-01

    Recombinant adeno-associated virus 2 (AAV) vectors transduction efficiency varies greatly in different cell types. We have described that a cellular protein, FKBP52, in its phosphorylated form interacts with the D-sequence in the viral inverted terminal repeat, inhibits viral second strand DNA synthesis, and limits transgene expression. Here we investigated the role of cellular heat-shock protein 90 (HSP90) in AAV transduction because FKBP52 forms a complex with HSP90, and because heat-shock treatment augments AAV transduction efficiency. Heat-shock treatment of HeLa cells resulted in tyrosine dephosphorylation of FKBP52, led to stabilization of the FKBP52-HSP90 complex, and resulted in ∼6-fold increase in AAV transduction. However, when HeLa cells were pre-treated with tyrphostin 23, a specific inhibitor of cellular epidermal growth factor receptor tyrosine kinase, which phosphorylates FKBP52 at tyrosine residues, heat-shock treatment resulted in a further 18-fold increase in AAV transduction. HSP90 was shown to be a part of the FKBP52-AAV D-sequence complex, but HSP90 by itself did not bind to the D-sequence. Geldanamycin treatment, which disrupts the HSP90-FKBP52 complex, resulted in >22-fold increase in AAV transduction in heat-shock-treated cells compared with heat shock alone. Deliberate overexpression of the human HSP90 gene resulted in a significant decrease in AAV-mediated transduction in tyrphostin 23-treated cells, whereas down-modulation of HSP90 levels led to a decrease in HSP90-FKBP52-AAV D-sequence complex formation, resulting in a significant increase in AAV transduction following pre-treatment with tyrphostin 23. These studies suggest that the observed increase in AAV transduction efficiency following heat-shock treatment is unlikely to be mediated by HSP90 alone and that increased levels of HSP90, in the absence of heat shock, facilitate binding of FKBP52 to the AAV D-sequence, thereby leading to inhibition of AAV-mediated transgene expression

  12. Nonadiabatic electron heating at high-Mach-number perpendicular shocks

    NASA Technical Reports Server (NTRS)

    Tokar, R. L.; Aldrich, C. H.; Forslund, D. W.; Quest, K. B.

    1986-01-01

    Fully kinetic simulations of high-Mach-number (HMN) perpendicular collisionless shocks are described. It is shown that electron acceleration in the cross-shock electron field can produce downstream electron temperature significantly higher than those expected for adiabatic compression. The momentum space for test electrons at Mach 6 is illustrated.

  13. Aerobic heat shock activates trehalose synthesis in embryos of Artemia franciscana.

    PubMed

    Clegg, J S; Jackson, S A

    1992-05-25

    Encysted embryos (cysts) of the brine shrimp, Artemia franciscana, contain large amounts of trehalose which they use as a major substrate for energy metabolism and biosynthesis for development under aerobic conditions at 25 degrees C. When cysts are placed at 42 degrees C (heat shock) these pathways stop, and the cysts re-synthesize the trehalose that was utilized during the previous incubation at 25 degrees C. Glycogen and glycerol, produced from trehalose at 25 degrees C, appear to be substrates for trehalose synthesis during heat shock. Anoxia prevents trehalose synthesis in cysts undergoing heat shock. These results are consistent with the view that trehalose may play a protective role in cells exposed to heat shock, and other environmental insults, in addition to being a storage form of energy and organic carbon for development. PMID:1592115

  14. Exploring systems affected by the heat shock response in Plasmodium falciparum via protein association networks

    PubMed Central

    Lilburn, Timothy G.; Cai, Hong; Gu, Jianying; Zhou, Zhan; Wang, Yufeng

    2015-01-01

    The heat shock response is a general mechanism by which organisms deal with physical insults such as sudden changes in temperature, osmotic and oxidative stresses, and exposure to toxic substances. Plasmodium falciparum is exposed to drastic temperature changes as a part of its life cycle and maintains an extensive repertoire of heat shock response-related proteins. As these proteins serve to maintain the parasite in the face of anti-malarial drugs as well, better understanding of the heat shock-related systems in the malaria parasite will lead to therapeutic approaches that frustrate these systems, leading to more effective use of anti-malarials. Here we use protein association networks to broaden our understanding of the systems impacted by and/or implicated in the heat shock response. PMID:25539848

  15. Arabidopsis HEAT SHOCK TRANSCRIPTION FACTORA1b overexpression enhances water productivity, resistance to drought, and infection.

    PubMed

    Bechtold, Ulrike; Albihlal, Waleed S; Lawson, Tracy; Fryer, Michael J; Sparrow, Penelope A C; Richard, François; Persad, Ramona; Bowden, Laura; Hickman, Richard; Martin, Cathie; Beynon, Jim L; Buchanan-Wollaston, Vicky; Baker, Neil R; Morison, James I L; Schöffl, Friedrich; Ott, Sascha; Mullineaux, Philip M

    2013-08-01

    Heat-stressed crops suffer dehydration, depressed growth, and a consequent decline in water productivity, which is the yield of harvestable product as a function of lifetime water consumption and is a trait associated with plant growth and development. Heat shock transcription factor (HSF) genes have been implicated not only in thermotolerance but also in plant growth and development, and therefore could influence water productivity. Here it is demonstrated that Arabidopsis thaliana plants with increased HSFA1b expression showed increased water productivity and harvest index under water-replete and water-limiting conditions. In non-stressed HSFA1b-overexpressing (HSFA1bOx) plants, 509 genes showed altered expression, and these genes were not over-represented for development-associated genes but were for response to biotic stress. This confirmed an additional role for HSFA1b in maintaining basal disease resistance, which was stress hormone independent but involved H₂O₂ signalling. Fifty-five of the 509 genes harbour a variant of the heat shock element (HSE) in their promoters, here named HSE1b. Chromatin immunoprecipitation-PCR confirmed binding of HSFA1b to HSE1b in vivo, including in seven transcription factor genes. One of these is MULTIPROTEIN BRIDGING FACTOR1c (MBF1c). Plants overexpressing MBF1c showed enhanced basal resistance but not water productivity, thus partially phenocopying HSFA1bOx plants. A comparison of genes responsive to HSFA1b and MBF1c overexpression revealed a common group, none of which harbours a HSE1b motif. From this example, it is suggested that HSFA1b directly regulates 55 HSE1b-containing genes, which control the remaining 454 genes, collectively accounting for the stress defence and developmental phenotypes of HSFA1bOx. PMID:23828547

  16. Tolerization against atherosclerosis using heat shock protein 60.

    PubMed

    Wick, Cecilia

    2016-03-01

    Atherosclerosis is a chronic inflammatory disease of the artery wall, and both innate and adaptive immunity play important roles in the pathogenesis of this disease. In several experimental and human experiments of early atherosclerotic lesions, it has been shown that the first pathogenic event in atherogenesis is intimal infiltration of T cells at predilection sites. These T cells react to heat shock protein 60 (HSP60), which is a ubiquitous self-antigen expressed on the surface of endothelial cells (ECs) together with adhesion molecules in response to classical risk factors for atherosclerosis. When HSP60 is expressed on the EC surface, it can act as a "danger-signal" for both cellular and humoral immune reactions. Acquired by infection or vaccination, beneficial protective immunity to microbial HSP60 and bona fide autoimmunity to biochemically altered autologous HSP60 is present in all humans. Thus, the development of atherosclerosis during aging is paid by the price for lifelong protective preexisting anti-HSP60 immunity by harmful (auto)immune cross-reactive attack on arterial ECs maltreated by atherosclerosis risk factors. This is supported by experiments, which shows that bacterial HSP60 immunization can lead and accelerate experimental atherosclerosis. This review article presents accumulating proof that supports the idea that tolerization with antigenic HSP60 protein or its peptides may arrest or even prevent atherosclerosis by increased production of regulatory T cells and/or anti-inflammatory cytokines. Recent data indicates that HSP60, or more likely some of its derivative peptides, has immunoregulatory functions. Therefore, these peptides may have important potential for being used as diagnostic agents or therapeutic targets. PMID:26577462

  17. Efficient electron heating in relativistic shocks and gamma-ray-burst afterglow.

    PubMed

    Gedalin, M; Balikhin, M A; Eichler, D

    2008-02-01

    Electrons in shocks are efficiently energized due to the cross-shock potential, which develops because of differential deflection of electrons and ions by the magnetic field in the shock front. The electron energization is necessarily accompanied by scattering and thermalization. The mechanism is efficient in both magnetized and nonmagnetized relativistic electron-ion shocks. It is proposed that the synchrotron emission from the heated electrons in a layer of strongly enhanced magnetic field is responsible for gamma-ray-burst afterglows. PMID:18352129

  18. Global Analysis of Heat Shock Response in Desulfovibrio vulgaris Hildenborough.

    SciTech Connect

    Chhabra, S.R.; He, Q.; Huang, K.H.; Gaucher, S.P.; Alm, E.J.; He,Z.; Hadi, M.Z.; Hazen, T.C.; Wall, J.D.; Zhou, J.; Arkin, A.P.; Singh, A.K.

    2005-09-16

    Desulfovibrio vulgaris Hildenborough belongs to a class ofsulfate-reducing bacteria (SRB) and is found ubiquitously in nature.Given the importance of SRB-mediated reduction for bioremediation ofmetal ion contaminants, ongoing research on D. vulgaris has been in thedirection of elucidating regulatory mechanisms for this organism under avariety of stress conditions. This work presents a global view of thisorganism's response to elevated growth temperature using whole-celltranscriptomics and proteomics tools. Transcriptional response (1.7-foldchange or greater; Z>1.5) ranged from 1,135 genes at 15 min to 1,463genes at 120 min for a temperature up-shift of 13oC from a growthtemperature of 37oC for this organism and suggested both direct andindirect modes of heat sensing. Clusters of orthologous group categoriesthat were significantly affected included posttranslationalmodifications; protein turnover and chaperones (up-regulated); energyproduction and conversion (down-regulated), nucleotide transport,metabolism (down-regulated), and translation; ribosomal structure; andbiogenesis (down-regulated). Analysis of the genome sequence revealed thepresence of features of both negative and positive regulation whichincluded the CIRCE element and promoter sequences corresponding to thealternate sigma factors ?32 and ?54. While mechanisms of heat shockcontrol for some genes appeared to coincide with those established forEscherichia coli and Bacillus subtilis, the presence of unique controlschemes for several other genes was also evident. Analysis of proteinexpression levels using differential in-gel electrophoresis suggestedgood agreement with transcriptional profiles of several heat shockproteins, including DnaK (DVU0811), HtpG (DVU2643), HtrA (DVU1468), andAhpC (DVU2247). The proteomics study also suggested the possibility ofposttranslational modifications in the chaperones DnaK, AhpC, GroES(DVU1977), and GroEL (DVU1976) and also several periplasmic ABCtransporters.

  19. A potential role for Helicobacter pylori heat shock protein 60 in gastric tumorigenesis

    SciTech Connect

    Lin, Chen-Si; He, Pei-Juin; Tsai, Nu-Man; Li, Chi-Han; Yang, Shang-Chih; Hsu, Wei-Tung; Wu, Ming-Shiang; Wu, Chang-Jer; Cheng, Tain-Lu; Liao, Kuang-Wen

    2010-02-05

    Helicobacter pylori has been found to promote the malignant process leading to gastric cancer. Heat shock protein 60 of H. pylori (HpHSP60) was previously been identified as a potent immunogene. This study investigates the role of HpHSP60 in gastric cancer carcinogenesis. The effect of HpHSP60 on cell proliferation, anti-death activity, angiogenesis and cell migration were explored. The results showed that HpHSP60 enhanced migration by gastric cancer cells and promoted tube formation by umbilical vein endothelial cells (HUVECs); however, HpHSP60 did not increase cell proliferation nor was this protein able to rescue gastric cancer cells from death. Moreover, the results also indicated HpHSP60 had different effects on AGS gastric cancer cells or THP-1 monocytic cells in terms of their expression of pro-inflammatory cytokines, which are known to be important to cancer development. We propose that HpHSP60 may trigger the initiation of carcinogenesis by inducing pro-inflammatory cytokine release and by promoting angiogenesis and metastasis. Thus, this extracellular pathogen-derived HSP60 is potentially a vigorous virulence factor that can act as a carcinogen during gastric tumorigenesis.

  20. Quantum dots induce heat shock-related cytotoxicity at intracellular environment.

    PubMed

    Migita, Satoshi; Moquin, Alexandre; Fujishiro, Hitomi; Himeno, Seiichiro; Maysinger, Dusica; Winnik, Françoise M; Taniguchi, Akiyoshi

    2014-04-01

    Quantum dots (QDs) are semiconductor nanocrystals with unique optical properties. Different proteins or polymers are commonly bound to their surfaces to improve biocompatibility. However, such surface modifications may not provide sufficient protection from cytotoxicity due to photodegradation and oxidative degradation. In this study, the cytotoxic effects of QDs, CdTe, and CdSe/ZnS were investigated using cadmium-resistant cells. CdTe QDs significantly reduced cell viability, whereas, CdSe/ZnS treatment did not markedly decrease the cell number. CdTe QDs were cytotoxic in cadmium-resistant cells suggesting that internalized QDs degraded and cadmium ions contributed to the cytotoxic effects. CdTe QDs were consistently more cytotoxic than CdSe/ZnS QDs, but both QDs as well as cadmium ions activated heat shock protein 70B' promoter. QDs themselves are likely to contribute to HSP70B' promoter activation in cadmium-resistant cells, because CdSe/ZnS QDs do not release sufficient cadmium to activate this promoter. PMID:24092018

  1. Heat shock disassembles the nucleolus and inhibits nuclear protein import and poly(A)+ RNA export.

    PubMed Central

    Liu, Y; Liang, S; Tartakoff, A M

    1996-01-01

    Heat shock causes major positive and negative changes in gene expression, drastically alters the appearance of the nucleolus and inhibits rRNA synthesis. We here show that it causes many yeast nucleolar proteins, including the fibrillarin homolog Nop1p, to relocate to the cytoplasm. Relocation depends on several proteins implicated in mRNA transport (Mtrps) and is reversible. Two observations indicate, surprisingly, that disassembly results from a reduction in Ssa protein (Hsp70) levels: (i) selective depletion of Ssa1p leads to disassembly of the nucleolus; (ii) preincubation at 37 degrees C protects the nucleolus against disassembly by heat shock, unless expression of Ssa proteins is specifically inhibited. We observed that heat shock or reduction of Ssa1p levels inhibits protein import into the nucleus and therefore we propose that inhibition of import leads to disassembly of the nucleolus. These observations provide a simple explanation of the effects of heat shock on the anatomy of the nucleolus and rRNA transcription. They also extend understanding of the path of nuclear export. Since a number of nucleoplasmic proteins also relocate upon heat shock, these observations can provide a general mechanism for regulation of gene expression. Relocation of the hnRNP-like protein Mtr13p (= Npl3p, Nop3p), explains the heat shock sensitivity of export of average poly(A)+ RNA. Strikingly, Hsp mRNA export appears not to be affected. Images PMID:8978700

  2. c-myc and c-myb protein degradation: effect of metabolic inhibitors and heat shock.

    PubMed Central

    Lüscher, B; Eisenman, R N

    1988-01-01

    The proteins encoded by both viral and cellular forms of the c-myc oncogene have been previously demonstrated to have exceptionally short in vivo half-lives. In this paper we report a comparative study on the parameters affecting turnover of nuclear oncoproteins c-myc, c-myb, and the rapidly metabolized cytoplasmic enzyme ornithine decarboxylase. The degradation of all three proteins required metabolic energy, did not result in production of cleavage intermediates, and did not involve lysosomes or ubiquitin. A five- to eightfold increase in the half-life of c-myc proteins, and a twofold increase in the half-life of c-myb proteins was detected after heat-shock treatment at 46 degrees C. In contrast, heat shock had no effect on the turnover of ornithine decarboxylase. Heat shock also had the effect of increasing the rate of c-myc protein synthesis twofold, whereas c-myb protein synthesis was decreased nearly fourfold. The increased stability and synthesis of c-myc proteins led to an overall increase in the total level of c-myc proteins in response to heat-shock treatment. Furthermore, treatments which reduced c-myc and c-myb protein turnover, such as heat shock and exposure to inhibitors of metabolic energy production, resulted in reduced detergent solubility of both proteins. The recovery from heat shock, as measured by increased turnover and solubility, was energy dependent and considerably more rapid in thermotolerant cells. Images PMID:3043180

  3. Effects of heat shock on survival, proliferation and differentiation of mouse neural stem cells.

    PubMed

    Omori, Hiroyuki; Otsu, Masahiro; Suzuki, Asami; Nakayama, Takashi; Akama, Kuniko; Watanabe, Masaru; Inoue, Nobuo

    2014-02-01

    Hyperthermia during pregnancy is a significant cause of reproductive problems ranging from abortion to congenital defects of the central nervous system (CNS), including neural tube defects and microcephaly. Neural stem cells (NSCs) can proliferate and differentiate into neurons and glia, playing a key role in the formation of the CNS. Here, we examined the effects of heat shock on homogeneous proliferating NSCs derived from mouse embryonic stem cells. After heat shock at 42 °C for 20 min, the proliferating NSCs continued to proliferate, although subtle changes were observed in gene expression and cell survival and proliferation. In contrast, heat shock at 43 °C caused a variety of responses: the up-regulation of genes encoding heat shock proteins (HSP), induction of apoptosis, temporal inhibition of cell proliferation and retardation of differentiation. Finally, effects of heat shock at 44 °C were severe, with almost all cells disappearing and the remaining cells losing the capacity to proliferate and differentiate. These temperature-dependent effects of heat shock on NSCs may be valuable in elucidating the mechanisms by which hyperthermia during pregnancy causes various reproductive problems. PMID:24316183

  4. Synthesis of Early Heat Shock Proteins in Young Leaves of Barley and Sorghum

    PubMed Central

    Clarke, Adrian K.; Critchley, Christa

    1990-01-01

    The in vivo synthesis of early heat-shock proteins in young leaves of barley (Hordeum vulgare L.) and sorghum (Sorghum bicolor L.) was studied by one- and two-dimensional electrophoresis. Analysis of whole leaf protein patterns demonstrated clearly the enhanced resolution of heat-shock proteins, especially those of low molecular weight, when separated by two-dimensional electrophoresis. Comparison between the two cereals showed that a greater number and diversity of heat-shock proteins were induced in the subtropical C4 (sorghum) species compared to the temperate C3 (barley) species. Fractionation of whole leaf proteins into soluble and membrane fractions showed the majority of heat-shock proteins to be associated with the soluble fraction in both sorghum and barley. However, several low molecular mass (17-24 kilodalton) heat-shock proteins were clearly identified in the membrane fractions, indicating a likely association with thylakoid membranes in vivo during the early stages of a heat-shock response in both species. Images Figure 1 Figure 2 Figure 4 Figure 5 Figure 6 PMID:16667750

  5. Aging results in an unusual expression of Drosophila heat shock proteins

    SciTech Connect

    Fleming, J.E.; Walton, J.K.; Dubitsky, R.; Bensch, K.G. )

    1988-06-01

    The authors used high-resolution two-dimensional polyacrylamide gel electrophoresis to evaluate the effect of aging on the heat shock response in Drosophila melanogaster. Although the aging process is not well understood at the molecular level, recent observations suggest that quantitative changes in gene expression occur as these fruit flies approach senescence. Such genetic alterations are in accord with our present data, which clearly show marked differences in the synthesis of heat shock proteins between young and old fruit flies. In 10-day-old flies, a heat shock of 20 min results in the expression of 14 new proteins as detectable by two-dimensional electrophoresis of ({sup 35}S)methionine-labeled polypeptides, whereas identical treatment of 45-day-old flies leads to the expression of at least 50 new or highly up-regulated proteins. In addition, there is also a concomitant increase in the rate of synthesis of a number of the normal proteins in the older animals. Microdensitometric determinations of the low molecular weight heat shock polypeptides on autoradiographs of five age groups revealed that their maximum expression occurs at 47 days for a population of flies with a mean life span of 33.7 days. Moreover, a heat shock effect similar to that observed in senescent flies occurs in young flies fed canavanine, an arginine analogue, before heat shock.

  6. Heat shock factor 1 induces crystallin-αB to protect against cisplatin nephrotoxicity.

    PubMed

    Lou, Qiang; Hu, Yanzhong; Ma, Yuanfang; Dong, Zheng

    2016-07-01

    Cisplatin, a wildly used chemotherapy drug, induces nephrotoxicity that is characterized by renal tubular cell apoptosis. In response to toxicity, tubular cells can activate cytoprotective mechanisms, such as the heat shock response. However, the role and regulation of the heat shock response in cisplatin-induced nephrotoxicity remain largely unclear. In the present study, we demonstrated the induction of heat shock factor (Hsf)1 and the small heat shock protein crystallin-αB (CryAB) during cisplatin nephrotoxicity in mice. Consistently, cisplatin induced Hsf1 and CryAB in a cultured renal proximal tubular cells (RPTCs). RPTCs underwent apoptosis during cisplatin treatment, which was increased when Hsf1 was knocked down. Transfection or restoration of Hsf1 into Hsf1 knockdown cells suppressed cisplatin-induced apoptosis, further supporting a cytoprotective role of Hsf1 and its associated heat shock response. Moreover, Hsf1 knockdown increased Bax translocation to mitochondria and cytochrome c release into the cytosol. In RPTCs, Hsf1 knockdown led to a specific downregulation of CryAB. Transfection of CryAB into Hsf1 knockdown cells diminished their sensitivity to cisplatin-induced apoptosis, suggesting that CryAB may be a key mediator of the cytoprotective effect of Hsf1. Taken together, these results demonstrate a heat shock response in cisplatin nephrotoxicity that is mediated by Hsf1 and CryAB to protect tubular cells against apoptosis. PMID:27194715

  7. Short communication: lack of breed differences in responses of bovine spermatozoa to heat shock.

    PubMed

    Chandolia, R K; Reinertsen, E M; Hansen, P J

    1999-12-01

    An experiment was conducted to test whether the magnitude of effects of heat shock on spermatozoal function were less for thermotolerant breeds (Brahman and other breeds with Brahman influence) than for breeds that evolved in northern Europe (Angus and Holstein). Frozen spermatozoa were thawed, purified by Percoll gradient centrifugation and incubated at 38.5, 41, or 42 degrees C for 4 h. Sperm motility was then analyzed with a Hamilton Thorn Motility Analyzer. Heat shock reduced the percentage of sperm that were motile, mean track speed, and mean path velocity. There were no significant breed x temperature interactions for these traits. The mean frequency of tail beat tended to be reduced by heat shock in bulls of Brahman-influenced breeds and, to a lesser extent, in Brahman bulls, but it was not affected by heat shock in Angus or Holstein bulls. For no traits were there significant temperature x bull within breed interactions. Overall, results indicate that 1) heat shock reduces motility of bovine spermatozoa and 2) genetic effects are unlikely to be an important determinant of the function of ejaculated sperm following heat shock. PMID:10629808

  8. The plastid metalloprotease FtsH6 and small heat shock protein HSP21 jointly regulate thermomemory in Arabidopsis.

    PubMed

    Sedaghatmehr, Mastoureh; Mueller-Roeber, Bernd; Balazadeh, Salma

    2016-01-01

    Acquired tolerance to heat stress is an increased resistance to elevated temperature following a prior exposure to heat. The maintenance of acquired thermotolerance in the absence of intervening stress is called 'thermomemory' but the mechanistic basis for this memory is not well defined. Here we show that Arabidopsis HSP21, a plastidial small heat shock protein that rapidly accumulates after heat stress and remains abundant during the thermomemory phase, is a crucial component of thermomemory. Sustained memory requires that HSP21 levels remain high. Through pharmacological interrogation and transcriptome profiling, we show that the plastid-localized metalloprotease FtsH6 regulates HSP21 abundance. Lack of a functional FtsH6 protein promotes HSP21 accumulation during the later stages of thermomemory and increases thermomemory capacity. Our results thus reveal the presence of a plastidial FtsH6-HSP21 control module for thermomemory in plants. PMID:27561243

  9. The plastid metalloprotease FtsH6 and small heat shock protein HSP21 jointly regulate thermomemory in Arabidopsis

    PubMed Central

    Sedaghatmehr, Mastoureh; Mueller-Roeber, Bernd; Balazadeh, Salma

    2016-01-01

    Acquired tolerance to heat stress is an increased resistance to elevated temperature following a prior exposure to heat. The maintenance of acquired thermotolerance in the absence of intervening stress is called ‘thermomemory' but the mechanistic basis for this memory is not well defined. Here we show that Arabidopsis HSP21, a plastidial small heat shock protein that rapidly accumulates after heat stress and remains abundant during the thermomemory phase, is a crucial component of thermomemory. Sustained memory requires that HSP21 levels remain high. Through pharmacological interrogation and transcriptome profiling, we show that the plastid-localized metalloprotease FtsH6 regulates HSP21 abundance. Lack of a functional FtsH6 protein promotes HSP21 accumulation during the later stages of thermomemory and increases thermomemory capacity. Our results thus reveal the presence of a plastidial FtsH6–HSP21 control module for thermomemory in plants. PMID:27561243

  10. Stimulation of glycogen synthesis by heat shock in L6 skeletal-muscle cells: regulatory role of site-specific phosphorylation of glycogen-associated protein phosphatase 1.

    PubMed Central

    Moon, Byoung; Duddy, Noreen; Ragolia, Louis; Begum, Najma

    2003-01-01

    Recent evidence suggests that glycogen-associated protein phosphatase 1 (PP-1(G)) is essential for basal and exercise-induced glycogen synthesis, which is mediated in part by dephosphorylation and activation of glycogen synthase (GS). In the present study, we examined the potential role of site-specific phosphorylation of PP-1(G) in heat-shock-induced glycogen synthesis. L6 rat skeletal-muscle cells were stably transfected with wild-type PP-1(G) or with PP-1(G) mutants in which site-1 (S1) Ser(48) and site-2 (S2) Ser(67) residues were substituted with Ala. Cells expressing wild-type and PP-1(G) mutants, S1, S2 and S1/S2, were examined for potential alterations in glycogen synthesis after a 60 min heat shock at 45 degrees C, followed by analysis of [(14)C]glucose incorporation into glycogen at 37 degrees C. PP-1(G) S1 mutation caused a 90% increase in glycogen synthesis on heat-shock treatment, whereas the PP-1(G) S2 mutant was not sensitive to heat stress. The S1/S2 double mutant was comparable with wild-type, which showed a 30% increase over basal. Heat-shock-induced glycogen synthesis was accompanied by increased PP-1 and GS activities. The highest activation was observed in S1 mutant. Heat shock also resulted in a rapid and sustained Akt/ glycogen synthase kinase 3 beta (GSK-3 beta) phosphorylation. Wortmannin blocked heat-shock-induced Akt/GSK-3 beta phosphorylation, prevented 2-deoxyglucose uptake and abolished the heat-shock-induced glycogen synthesis. Muscle glycogen levels regulate GS activity and glycogen synthesis and were found to be markedly depleted in S1 mutant on heat-shock treatment, suggesting that PP-1(G) S1 Ser phosphorylation may inhibit glycogen degradation during thermal stimulation, as S1 mutation resulted in excessive glycogen synthesis on heat-shock treatment. In contrast, PP-1(G) S2 Ser phosphorylation may promote glycogen breakdown under stressful conditions. Heat-shock-induced glycogenesis appears to be mediated via phosphoinositide 3