Science.gov

Sample records for heat storage medium

  1. Medium Deep High Temperature Heat Storage

    NASA Astrophysics Data System (ADS)

    Bär, Kristian; Rühaak, Wolfram; Schulte, Daniel; Welsch, Bastian; Chauhan, Swarup; Homuth, Sebastian; Sass, Ingo

    2015-04-01

    Heating of buildings requires more than 25 % of the total end energy consumption in Germany. Shallow geothermal systems for indirect use as well as shallow geothermal heat storage systems like aquifer thermal energy storage (ATES) or borehole thermal energy storage (BTES) typically provide low exergy heat. The temperature levels and ranges typically require a coupling with heat pumps. By storing hot water from solar panels or thermal power stations with temperatures of up to 110 °C a medium deep high temperature heat storage (MDHTS) can be operated on relatively high temperature levels of more than 45 °C. Storage depths of 500 m to 1,500 m below surface avoid conflicts with groundwater use for drinking water or other purposes. Permeability is typically also decreasing with greater depth; especially in the crystalline basement therefore conduction becomes the dominant heat transport process. Solar-thermal charging of a MDHTS is a very beneficial option for supplying heat in urban and rural systems. Feasibility and design criteria of different system configurations (depth, distance and number of BHE) are discussed. One system is designed to store and supply heat (300 kW) for an office building. The required boreholes are located in granodioritic bedrock. Resulting from this setup several challenges have to be addressed. The drilling and completion has to be planned carefully under consideration of the geological and tectonical situation at the specific site.

  2. Research on medium and high temperature solar heat storage materials

    NASA Technical Reports Server (NTRS)

    Heine, D.; Jucker, J.; Koch, D.; Krahling, H.; Supper, W.

    1979-01-01

    Characteristics of solar heat storage materials, preliminary tests in which melting and solidification characteristics are tested, and service life and cycling tests are reported. Various aspects of corrosion are discussed as well as decision about ultimate selection of materials. A program for storage and evaluation of data is included.

  3. Permanent holographic storage medium

    NASA Technical Reports Server (NTRS)

    Gange, R. A.

    1976-01-01

    Storage unit is electrostatically-charged multilayered laminate. Ability of system to store information in holographic forms is due to specific electrical, optical, and chemical characteristics of its materials.

  4. HEATS: Thermal Energy Storage

    SciTech Connect

    2012-01-01

    HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

  5. Solar Energy: Heat Storage.

    ERIC Educational Resources Information Center

    Knapp, Henry H., III

    This module on heat storage is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies. The module…

  6. On the Method of Efficient Ice Cold Energy Storage Using a Heat Transfer of Direct Contact Phase Change and a Natural Circulation of a Working Medium in an Enclosure

    NASA Astrophysics Data System (ADS)

    Utaka, Yoshio; Saito, Akio; Nakata, Naoki

    The objectives of this report are to propose a new method of the high performance cold energy storage using ice as a phase change material and to clarify the heat transfer characteristics of the apparatus of ice cold energy storage based on the proposed principle. A working medium vapor layer a water layer and a working medium liquid layer stratified in this order from the top were kept in an enclosure composed of a condenser, an evaporator and a condensate receiver-and-return tube. The direct contact heat transfers between water or ice and a working medium in an enclosure were applied for realizing the high performance cold energy storage and release. In the storage and release processes, water changes the phase between the liquid and the solid, and the working medium cnanges between the vapor and the liquid with a natural circulation. Experimental apparatus was manufactured and R12 and R114 were selected as working media in the thermal energy storage enclosure. It was confirmed by the measurements that the efficient formation and melting of ice were achieved. Then, th e heat transfer characteristics were clarified for the effects of the initial water height, the initial height of woking medium liquid layer and the inlet coolant temperature.

  7. Advanced solar thermal storage medium test data and analysis

    NASA Technical Reports Server (NTRS)

    Saha, H.

    1981-01-01

    A comparative study has been made of experimentally obtained heat transfer and heat storage characteristics of a solar thermal energy storage bed utilizing containerized water or phase change material (PCM) and rock or brick. It is shown that (1) containers with an L/D ratio of 0.80 and a mass/surface area ratio of 2.74 in a random stacking arrangement have the optimum heat transfer characteristics; and (2) vertical stacking has the least pressure drop across the test bed. It is also found that standard bricks with appropriate holes make an excellent storage medium.

  8. Seasonal storage of energy in solar heating

    NASA Astrophysics Data System (ADS)

    Braun, J. E.; Klein, S. A.; Mitchell, J. W.

    1981-01-01

    This paper focuses on several aspects of seasonal storage for space heating using water as the storage medium. The interrelationships between collector area, storage volume, and system performance are investigated using the transient simulation program TRNSYS. The situations for which seasonal storage is most promising are presented. Particular emphasis is placed upon design of seasonal storage systems. A design method is presented which is applicable for storage capacities ranging from a few days to seasonal storage. This design method, coupled with cost information, should be useful in assessing the economic viability of seasonal storage systems. Also investigated are the importance of the load heat exchanger size, tank insulation, collector slope, and year-to-year weather variations in system design.

  9. Low temperature latent heat thermal energy storage - Heat storage materials

    NASA Astrophysics Data System (ADS)

    Abhat, A.

    1983-01-01

    Heat-of-fusion storage materials for low temperature latent heat storage in the temperature range 0-120 C are reviewed. Organic and inorganic heat storage materials classified as paraffins, fatty acids, inorganic salt hydrates and eutectic compounds are considered. The melting and freezing behavior of the various substances is investigated using the techniques of Thermal Analysis and Differential Scanning Calorimetry. The importance of thermal cycling tests for establishing the long-term stability of the storage materials is discussed. Finally, some data pertaining to the corrosion compatibility of heat-of-fusion substances with conventional materials of construction is presented.

  10. Heat resistance of Escherichia coli O157:H7 in a nutrient medium and in ground beef patties as influenced by storage and holding temperatures.

    PubMed

    Jackson, T C; Hardin, M D; Acuff, G R

    1996-03-01

    Stationary-phase cultures of Escherichia coli O157:H7 were inoculated into tryptic soy broth, sealed in vials, and stored at -18 degrees C for 1, 8, and 15 days, or 3 or 15 degrees C for 3, 6, and 9 h. Thermal resistance was determined at 55 degrees C. Each storage treatment was repeated with additional holding at 23 or 30 degrees C for 1, 2, 3, or 4 h prior to heating to simulate potential temperature abuse during handling. Cultures under treatments enabling the growth of E. coli O157:H7 were generally more heat sensitive than those held at temperatures which restricted growth or enabled growth to stationary phase. Cultures stored frozen (-18 degrees C) without holding at elevated temperatures had greater heat resistance than those stored under refrigeration (3 degrees C) or at 15 degrees C. Subsequent holding of frozen cultures at 23 or 30 degrees C resulted in a decrease in heat resistance. To determine whether these responses would be observed under typical commercial preparation procedures, ground beef patties were inoculated with E. coli O157:H7 and stored at 3 or 15 degrees C for 9 h or at -18 degrees C for 8 d and then held at 21 or 30 degrees C for 0 or 4 h. Patties were grilled to an internal temperature of 54.4 degrees C (130 degrees F), 62.8 degrees C (145 degrees F), or 68.3 degrees C (155 degrees F). Cultures were most resistant in frozen patties, while cultures in patties stored at 15 degrees C were the most heat sensitive. Holding patties at 21 or 30 degrees C prior to grilling resulted in increased sensitivity. Storage and holding temperatures similar to those encountered in food service may influence the ability of E. coli O157:H7 to survive heat treatments. PMID:10463438

  11. Static solar heat storage composition

    SciTech Connect

    Phillips, H.J.

    1981-09-08

    A composition for the storage of heat energy utilizing the heat of fusion of the composition. The composition includes a salthydrate, a nucleating agent and a porous solid. The porous solid is selected from calcium sulfate hemihydrate and soluble calcium sulfate anhydride.

  12. Heat storage in alloy transformations

    NASA Technical Reports Server (NTRS)

    Birchenall, C. E.; Gueceri, S. I.

    1980-01-01

    The theory of eutectic transformation was examined to find guidelines to the best material combinations to examine. The heats of transformation were measured calorimetrically, and the volume changes of expanding solid mixtures and homogeneous liquid solutions, especially during the transformation between the two states at fixed temperature, were measured by changes in X-ray absorption. Heat flow models appropriate to storage in phase change materials were developed along with efficient calculating procedures so that the relative importance of the problems associated with energy storage density, heat conduction, and similar properties could be assessed.

  13. A solar heating system with annual storage

    NASA Astrophysics Data System (ADS)

    Lazzari, F.; Raffellini, G.

    1981-07-01

    A solar heated house with long term storage capability, built in Trento, Italy, is described. The one story house was built from modular components and has a total heated volume of 1130 cu m. Flat plate solar collectors with a water-antifreeze medium are located beneath the lawn, and six cylindrical underground tanks holding 130 cu m of water heated by thermal energy from the collectors are situated under the garden. The house walls have an 8 cm cavity filled with 5 cm of formaldehyde foam, yielding a heat transmission (U) of 0.37 W/sq m/deg C. The roof and ceilings are insulated with fiberglass and concrete, producing U-values of 0.46 W/sq m/deg C and 0.57 W/sq m/deg C, respectively. Heat pumps using 6 kW move thermal energy between the house and the tanks. Direct hot water heating occurs in the summer, and direct home heating when the stored water temperature exceeds 32 C. A computer model was developed which traces the annual heat flow and it is shown that the system supplies all heating requirements for the house, with electrical requirements equal to 20 percent of the annual house needs.

  14. Basalt-Block Heat-Storage Plant

    NASA Technical Reports Server (NTRS)

    Sullivan, Thomas A.

    1992-01-01

    Concept for storage of solar heat for later use based on use of basalt, cast into blocks and stacked in inflatable gas-tight enclosure serving as heat-storage chamber. Heat flows to blocks from solar collector during day and from blocks to heat engine at night.

  15. Storage of Heat, Cold and Electricity.

    PubMed

    Stamatiou, Anastasia; Ammann, Andreas; Abdon, Andreas; Fischer, Ludger J; Gwerder, Damian; Worlitschek, Jörg

    2015-01-01

    A promising energy storage system is presented based on the combination of a heat pump, a heat engine, a hot and a cold storage. It can be operated as a pure bulk electricity storage (alternative to Pumped Heat Electrical Storage (PHES)/Compressed Air Energy Storage (CAES)) or as combined storage of heat, cold and electricity. Both variations have been evaluated using a steady state, thermodynamic model and two promising concepts are proposed: A transcritical CO(2) cycle for the pure electricity storage and a subcritical NH(3) cycle for combined storage of electricity, heat and cold. Parametric studies are used to evaluate the influence of different parameters on the roundtrip efficiency of the storage system. PMID:26842329

  16. Phase-Change Heat-Storage Module

    NASA Technical Reports Server (NTRS)

    Mulligan, James C.

    1989-01-01

    Heat-storage module accommodates momentary heating or cooling overload in pumped-liquid heat-transfer system. Large heat-storage capacity of module provided by heat of fusion of material that freezes at or near temperature desired to maintain object to be heated or cooled. Module involves relatively small penalties in weight, cost, and size and more than compensates by enabling design of rest of system to handle only average load. Latent heat of fusion of phase-change material provides large heat-storage capacity in small volume.

  17. Metal-halide mixtures for latent heat energy storage

    NASA Technical Reports Server (NTRS)

    Chen, K.; Manvi, R.

    1981-01-01

    Some candidates for alkali metal and alkali halide mixtures suitable for thermal energy storage at temperatures 600 C are identified. A solar thermal system application which offer advantages such as precipitation of salt crystals away from heat transfer surfaces, increased thermal conductivity of phase change materials, corrosion inhibition, and a constant monotectic temperature, independent of mixture concentrations. By using the lighters, metal rich phase as a heat transfer medium and the denser, salt rich phase as a phase change material for latent heat storage, undesirable solidification on the heat transfer surface may be prevented, is presented.

  18. Heat storage in alloy transformations

    NASA Technical Reports Server (NTRS)

    Birchenall, C. E.

    1980-01-01

    Heats of transformation of eutectic alloys were measured for many binary and ternary systems by differential scanning calorimetry and thermal analysis. Only the relatively cheap and plentiful elements Mg, Al, Si, P, Ca, Cu, Zn were considered. A method for measuring volume change during transformation was developed using x-ray absorption in a confined sample. Thermal expansion coefficients of both solid and liquid states of aluminum and of its eutectics with copper and with silicon also were determined. Preliminary evaluation of containment materials lead to the selection of silicon carbide as the initial material for study. Possible applications of alloy PCMs for heat storage in conventional and solar central power stations, small solar receivers and industrial furnace operations are under consideration.

  19. Heat storage in alloy transformations

    NASA Technical Reports Server (NTRS)

    Birchenall, C. E.; Gueceri, S. I.; Farkas, D.; Labdon, M. B.; Nagaswami, N.; Pregger, B.

    1981-01-01

    The feasibility of using metal alloys as thermal energy storage media was determined. The following major elements were studied: (1) identification of congruently transforming alloys and thermochemical property measurements; (2) development of a precise and convenient method for measuring volume change during phase transformation and thermal expansion coefficients; (3) development of a numerical modeling routine for calculating heat flow in cylindrical heat exchangers containing phase change materials; and (4) identification of materials that could be used to contain the metal alloys. Several eutectic alloys and ternary intermetallic phases were determined. A method employing X-ray absorption techniques was developed to determine the coefficients of thermal expansion of both the solid and liquid phases and the volume change during phase transformation from data obtained during one continuous experimental test. The method and apparatus are discussed and the experimental results are presented. The development of the numerical modeling method is presented and results are discussed for both salt and metal alloy phase change media.

  20. Heat storage in alloy transformations

    NASA Astrophysics Data System (ADS)

    Birchenall, C. E.

    1980-03-01

    Heats of transformation of eutectic alloys were measured for many binary and ternary systems by differential scanning calorimetry and thermal analysis. Only the relatively cheap and plentiful elements Mg, Al, Si, P, Ca, Cu, Zn were considered. A method for measuring volume change during transformation was developed using x-ray absorption in a confined sample. Thermal expansion coefficients of both solid and liquid states of aluminum and of its eutectics with copper and with silicon also were determined. Preliminary evaluation of containment materials lead to the selection of silicon carbide as the initial material for study. Possible applications of alloy PCMs for heat storage in conventional and solar central power stations, small solar receivers and industrial furnace operations are under consideration.

  1. Pore scale Assessment of Heat and Mass transfer in Porous Medium Using Phase Field Method with Application to Soil Borehole Thermal Storage (SBTES) Systems

    NASA Astrophysics Data System (ADS)

    Moradi, A.

    2015-12-01

    To properly model soil thermal performance in unsaturated porous media, for applications such as SBTES systems, knowledge of both soil hydraulic and thermal properties and how they change in space and time is needed. Knowledge obtained from pore scale to macroscopic scale studies can help us to better understand these systems and contribute to the state of knowledge which can then be translated to engineering applications in the field (i.e. implementation of SBTES systems at the field scale). One important thermal property that varies with soil water content, effective thermal conductivity, is oftentimes included in numerical models through the use of empirical relationships and simplified mathematical formulations developed based on experimental data obtained at either small laboratory or field scales. These models assume that there is local thermodynamic equilibrium between the air and water phases for a representative elementary volume. However, this assumption may not always be valid at the pore scale, thus questioning the validity of current modeling approaches. The purpose of this work is to evaluate the validity of the local thermodynamic equilibrium assumption as related to the effective thermal conductivity at pore scale. A numerical model based on the coupled Cahn-Hilliard and heat transfer equation was developed to solve for liquid flow and heat transfer through variably saturated porous media. In this model, the evolution of phases and the interfaces between phases are related to a functional form of the total free energy of the system. A unique solution for the system is obtained by solving the Navier-Stokes equation through free energy minimization. Preliminary results demonstrate that there is a correlation between soil temperature / degree of saturation and equivalent thermal conductivity / heat flux. Results also confirm the correlation between pressure differential magnitude and equilibrium time for multiphase flow to reach steady state conditions

  2. Heat storage in alloy transformations

    NASA Technical Reports Server (NTRS)

    Birchenall, C. E.

    1980-01-01

    The feasibility of using metal alloys as thermal energy storage media was investigated. The elements selected as candidate media were limited to aluminum, copper, magnesium, silicon, zinc, calcium, and phosphorus on the basis of low cost and latent heat of transformation. Several new eutectic alloys and ternary intermetallic phases were determined. A new method employing X-ray absorption techniques was developed to determine the coefficients of thermal expansion of both the solid and liquid phases and the volume change during phase transformation. The method and apparatus are discussed and the experimental results are presented for aluminum and two aluminum-eutectic alloys. Candidate materials were evaluated to determine suitable materials for containment of the metal alloys. Graphite was used to contain the alloys during the volume change measurements. Silicon carbide was identified as a promising containment material and surface-coated iron alloys were also evaluated. System considerations that are pertinent if alloy eutectics are used as thermal energy storage media are discussed. Potential applications to solar receivers and industrial furnaces are illustrated schematically.

  3. Heat storage in alloy transformations

    NASA Astrophysics Data System (ADS)

    Birchenall, C. E.

    1980-04-01

    The feasibility of using metal alloys as thermal energy storage media was investigated. The elements selected as candidate media were limited to aluminum, copper, magnesium, silicon, zinc, calcium, and phosphorus on the basis of low cost and latent heat of transformation. Several new eutectic alloys and ternary intermetallic phases were determined. A new method employing X-ray absorption techniques was developed to determine the coefficients of thermal expansion of both the solid and liquid phases and the volume change during phase transformation. The method and apparatus are discussed and the experimental results are presented for aluminum and two aluminum-eutectic alloys. Candidate materials were evaluated to determine suitable materials for containment of the metal alloys. Graphite was used to contain the alloys during the volume change measurements. Silicon carbide was identified as a promising containment material and surface-coated iron alloys were also evaluated. System considerations that are pertinent if alloy eutectics are used as thermal energy storage media are discussed. Potential applications to solar receivers and industrial furnaces are illustrated schematically.

  4. Sensitivity Analysis on the Performance of Medium Deep Borehole Thermal Energy Storage Systems

    NASA Astrophysics Data System (ADS)

    Welsch, Bastian; Rühaak, Wolfram; Schulte, Daniel O.; Bär, Kristian; Sass, Ingo

    2016-04-01

    Seasonal thermal energy storages using arrays of medium deep (400 m - 1500 m) borehole heat exchangers (BHE) have two main advantages over near surface (< 400 m) BHE storages. Medium deep borehole thermal energy storages (MD-BTES) have a lower thermal impact on shallow groundwater resources and require less surface area. However, the storage performance indicators like the efficiency, the storage capacity and the supplied fluid temperature of MD-BTES are unknown as such system has not been put into practice so far. To study the influence of various design and operation parameters on the storage performance, more than 240 numerical models of different MD-BTES systems were compared in a sensitivity analysis. Most importantly, the BHE length, the number of BHEs, the spacing between the BHEs, the inlet temperatures of the heat transfer fluid into the BHEs and the underground properties were varied. A simplified underground model was used and also a simplified operation procedure was applied for a period of 30 years of storage operation. The results show a strong dependency of the storage performance on the studied design and operation parameters as well as on the underground properties. In the best case, storage efficiency reaches over 80 % in the 30th year of operation, whereas poorly designed storage systems show efficiencies of less than 20 %.

  5. Solar heat storage in phase change material

    SciTech Connect

    Phillips, H.J.

    1984-02-28

    The objective of this project was to develop a chemical heat storage system that had a phase change with release of latent heat at about 105/sup 0/F. The primary reason this kind on system was sought was that heat storage capacity of commonly used storage systems do not match the heat collection capacity of open air collectors. In addition to the phase change three other factors were considered: the cost of the material, the amount of heat the system would hold per unit volume, and the rate at which the system released sensible and latent heat. One hundred nineteen tests were made on 32 systems. Only data on six of the more promising are presented. In the six systems, borax was used as the major component with other materials used as nucleating agents toraise the temperature of phase change.

  6. Electrochemical cells for medium- and large-scale energy storage

    SciTech Connect

    Wang, Wei; Wei, Xiaoliang; Choi, Daiwon; Lu, Xiaochuan; Yang, G.; Sun, C.

    2014-12-12

    This is one of the chapters in the book titled “Advances in batteries for large- and medium-scale energy storage: Applications in power systems and electric vehicles” that will be published by the Woodhead Publishing Limited. The chapter discusses the basic electrochemical fundamentals of electrochemical energy storage devices with a focus on the rechargeable batteries. Several practical secondary battery systems are also discussed as examples

  7. Dynamics of heat storage in evapotranspiration estimate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the widely discussed reasons for a lack of surface energy balance closure when using eddy covariance is neglect of storage term elements. Storage as related to the surface energy balance refers to all heat stored below the observation level of eddies. It represents the sum of several componen...

  8. Dish-mounted latent heat buffer storage

    NASA Technical Reports Server (NTRS)

    Manvi, R.

    1981-01-01

    Dish-mounted latent heat storage subsystems for Rankine, Brayton, and Stirling engines operating at 427 C, 816 C, and 816 C respectively are discussed. Storage requirements definition, conceptual design, media stability and compatibility tests, and thermal performance analyses are considered.

  9. Fusible pellet transport and storage of heat

    NASA Technical Reports Server (NTRS)

    Bahrami, P. A.

    1982-01-01

    A new concept for both transport and storage of heat at high temperatures and heat fluxes is introduced and the first steps in analysis of its feasibility is taken. The concept utilizes the high energy storage capability of materials undergoing change of phase. The phase change material, for example a salt, is encapsulated in corrosion resistant sealed pellets and transported in a carrier fluid to heat source and storage. Calculations for heat transport from a typical solar collector indicate that the pellet mass flow rates are relatively small and that the required pumping power is only a small fraction of the energy transport capability of the system. Salts and eutectic salt mixtures as candidate phase change materials are examined and discussed. Finally, the time periods for melting or solidification of sodium chloride pellets is investigated and reported.

  10. Sulfuric acid-sulfur heat storage cycle

    DOEpatents

    Norman, John H.

    1983-12-20

    A method of storing heat is provided utilizing a chemical cycle which interconverts sulfuric acid and sulfur. The method can be used to levelize the energy obtained from intermittent heat sources, such as solar collectors. Dilute sulfuric acid is concentrated by evaporation of water, and the concentrated sulfuric acid is boiled and decomposed using intense heat from the heat source, forming sulfur dioxide and oxygen. The sulfur dioxide is reacted with water in a disproportionation reaction yielding dilute sulfuric acid, which is recycled, and elemental sulfur. The sulfur has substantial potential chemical energy and represents the storage of a significant portion of the energy obtained from the heat source. The sulfur is burned whenever required to release the stored energy. A particularly advantageous use of the heat storage method is in conjunction with a solar-powered facility which uses the Bunsen reaction in a water-splitting process. The energy storage method is used to levelize the availability of solar energy while some of the sulfur dioxide produced in the heat storage reactions is converted to sulfuric acid in the Bunsen reaction.

  11. Immiscible fluid: Heat of fusion heat storage system

    NASA Technical Reports Server (NTRS)

    Edie, D. D.; Melsheimer, S. S.; Mullins, J. C.

    1980-01-01

    Both heat and mass transfer in direct contact aqueous crystallizing systems were studied as part of a program desig- ned to evaluate the feasibility of direct contact heat transfer in phase change storage using aqueous salt system. Major research areas, discussed include (1) crystal growth velocity study on selected salts; (2) selection of salt solutions; (3) selection of immiscible fluids; (4) studies of heat transfer and system geometry; and (5) system demonstration.

  12. Cyclic high temperature heat storage using borehole heat exchangers

    NASA Astrophysics Data System (ADS)

    Boockmeyer, Anke; Delfs, Jens-Olaf; Bauer, Sebastian

    2016-04-01

    The transition of the German energy supply towards mainly renewable energy sources like wind or solar power, termed "Energiewende", makes energy storage a requirement in order to compensate their fluctuating production and to ensure a reliable energy and power supply. One option is to store heat in the subsurface using borehole heat exchangers (BHEs). Efficiency of thermal storage is increasing with increasing temperatures, as heat at high temperatures is more easily injected and extracted than at temperatures at ambient levels. This work aims at quantifying achievable storage capacities, storage cycle times, injection and extraction rates as well as thermal and hydraulic effects induced in the subsurface for a BHE storage site in the shallow subsurface. To achieve these aims, simulation of these highly dynamic storage sites is performed. A detailed, high-resolution numerical simulation model was developed, that accounts for all BHE components in geometrical detail and incorporates the governing processes. This model was verified using high quality experimental data and is shown to achieve accurate simulation results with excellent fit to the available experimental data, but also leads to large computational times due to the large numerical meshes required for discretizing the highly transient effects. An approximate numerical model for each type of BHE (single U, double U and coaxial) that reduces the number of elements and the simulation time significantly was therefore developed for use in larger scale simulations. The approximate numerical model still includes all BHE components and represents the temporal and spatial temperature distribution with a deviation of less than 2% from the fully discretized model. Simulation times are reduced by a factor of ~10 for single U-tube BHEs, ~20 for double U-tube BHEs and ~150 for coaxial BHEs. This model is then used to investigate achievable storage capacity, injection and extraction rates as well as induced effects for

  13. Advanced Heat Transfer and Thermal Storage Fluids

    SciTech Connect

    Moens, L.; Blake, D.

    2005-01-01

    The design of the next generation solar parabolic trough systems for power production will require the development of new thermal energy storage options with improved economics or operational characteristics. Current heat-transfer fluids such as VP-1?, which consists of a eutectic mixture of biphenyl and diphenyl oxide, allow a maximum operating temperature of ca. 300 C, a limit above which the vapor pressure would become too high and would require pressure-rated tanks. The use of VP-1? also suffers from a freezing point around 13 C that requires heating during cold periods. One of the goals for future trough systems is the use of heat-transfer fluids that can act as thermal storage media and that allow operating temperatures around 425 C combined with lower limits around 0 C. This paper presents an outline of our latest approach toward the development of such thermal storage fluids.

  14. An Assessment of Nuclear Isomers as an Energy Storage Medium

    SciTech Connect

    Hartouni, Edward P.

    2009-03-16

    Nuclear Isomers have been suggested as a potential high energy density medium that might be used to store energy. This talk assesses the state of the science supporting key elements of using nuclear isomers in energy storage applications. The focus is on the nuclear isomer {sup 178m2}Hf which has been most widely suggested for energy storage applications. However, the science issues apply to all nuclear isomer. The assessment addresses the production of the nuclear isomer, and inducing the release of the isomer. Also discussed are novel speculations on photon and/or neutron chain reactions, both as a 'pure' material as well as mixed with other materials.

  15. An Assessment of Nuclear Isomers as an Energy Storage Medium

    SciTech Connect

    Hartouni, E P

    2008-12-08

    Nuclear Isomers have been suggested as a potential high energy density medium that might be used to store energy. This talk assesses the state of the science supporting key elements of using nuclear isomers in energy storage applications. The focus is on the nuclear isomer {sup 178m2}Hf which has been most widely suggested for energy storage applications. However, the science issues apply to all nuclear isomer. The assessment addresses the production of the nuclear isomer, and inducing the release of the isomer. Also discussed are novel speculations on photon and/or neutron chain reactions, both as a 'pure' material as well as mixed with other materials.

  16. Thermodynamic Efficiency of Pumped Heat Electricity Storage

    NASA Astrophysics Data System (ADS)

    Thess, André

    2013-09-01

    Pumped heat electricity storage (PHES) has been recently suggested as a potential solution to the large-scale energy storage problem. PHES requires neither underground caverns as compressed air energy storage (CAES) nor kilometer-sized water reservoirs like pumped hydrostorage and can therefore be constructed anywhere in the world. However, since no large PHES system exists yet, and theoretical predictions are scarce, the efficiency of such systems is unknown. Here we formulate a simple thermodynamic model that predicts the efficiency of PHES as a function of the temperature of the thermal energy storage at maximum output power. The resulting equation is free of adjustable parameters and nearly as simple as the well-known Carnot formula. Our theory predicts that for storage temperatures above 400°C PHES has a higher efficiency than existing CAES and that PHES can even compete with the efficiencies predicted for advanced-adiabatic CAES.

  17. Thermodynamic efficiency of pumped heat electricity storage.

    PubMed

    Thess, André

    2013-09-13

    Pumped heat electricity storage (PHES) has been recently suggested as a potential solution to the large-scale energy storage problem. PHES requires neither underground caverns as compressed air energy storage (CAES) nor kilometer-sized water reservoirs like pumped hydrostorage and can therefore be constructed anywhere in the world. However, since no large PHES system exists yet, and theoretical predictions are scarce, the efficiency of such systems is unknown. Here we formulate a simple thermodynamic model that predicts the efficiency of PHES as a function of the temperature of the thermal energy storage at maximum output power. The resulting equation is free of adjustable parameters and nearly as simple as the well-known Carnot formula. Our theory predicts that for storage temperatures above 400 °C PHES has a higher efficiency than existing CAES and that PHES can even compete with the efficiencies predicted for advanced-adiabatic CAES. PMID:24074066

  18. Experimental Study on Enhancing the Productivity of Solar Still Using Locally Available Material as a Storage Medium

    NASA Astrophysics Data System (ADS)

    Arjunan, Thottipalayam Vellingri; Aybar, Hikmet Şelli; Nedunchezhian, Natarajan

    2016-06-01

    This experimental study focuses on the effect of pebbles as an energy storage medium on the performance of a solar distillation system. Two single basin solar stills are fabricated with an effective area of 0.5 m2, the glass cover was tilted at 10° with respect to the horizontal. The experiments on the still were carried out under the same climatic conditions for two different modes of operations, (1) conventional still and (2) modified still (pebbles as storage medium). From the study, it could be concluded that (1) the productivity of solar still is increases 9.5 % when pebbles are used as storage medium (2) the maximum amount of heat losses occurs in the solar still is the combined effect of radiation and convection heat transfer from glass to ambient (3) pebbles have the potentiality to store the heat during high solar intensity period and to release the stored energy to water when the solar intensity is low.

  19. Solar thermoelectricity via advanced latent heat storage

    NASA Astrophysics Data System (ADS)

    Olsen, M. L.; Rea, J.; Glatzmaier, G. C.; Hardin, C.; Oshman, C.; Vaughn, J.; Roark, T.; Raade, J. W.; Bradshaw, R. W.; Sharp, J.; Avery, A. D.; Bobela, D.; Bonner, R.; Weigand, R.; Campo, D.; Parilla, P. A.; Siegel, N. P.; Toberer, E. S.; Ginley, D. S.

    2016-05-01

    We report on a new modular, dispatchable, and cost-effective solar electricity-generating technology. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) integrates several state-of-the-art technologies to provide electricity on demand. In the envisioned STEALS system, concentrated sunlight is converted to heat at a solar absorber. The heat is then delivered to either a thermoelectric (TE) module for direct electricity generation, or to charge a phase change material for thermal energy storage, enabling subsequent generation during off-sun hours, or both for simultaneous electricity production and energy storage. The key to making STEALS a dispatchable technology lies in the development of a "thermal valve," which controls when heat is allowed to flow through the TE module, thus controlling when electricity is generated. The current project addresses each of the three major subcomponents, (i) the TE module, (ii) the thermal energy storage system, and (iii) the thermal valve. The project also includes system-level and techno- economic modeling of the envisioned integrated system and will culminate in the demonstration of a laboratory-scale STEALS prototype capable of generating 3kWe.

  20. Heat Sponge: A Concept for Mass-Efficient Heat Storage

    NASA Technical Reports Server (NTRS)

    Splinter, Scott C.; Blosser, Max L.; Gifford, Andrew R.

    2008-01-01

    The heat sponge is a device for mass-efficient storage of heat. It was developed to be incorporated in the substructure of a re-entry vehicle to reduce thermal- protection-system requirements. The heat sponge consists of a liquid/vapor mixture contained within a number of miniature pressure vessels that can be embedded within a variety of different types of structures. As temperature is increased, pressure in the miniature pressure vessels also increases so that heat absorbed through vaporization of the liquid is spread over a relatively large temperature range. Using water as a working fluid, the heat-storage capacity of the liquid/vapor mixture is many times higher than that of typical structural materials and is well above that of common phase change materials over a temperature range of 200 F to 700 F. The use of pure ammonia as the working fluid provides a range of application between 432 deg R and 730 deg R, or the use of the more practical water-ammonia solution provides a range of application between 432 deg R and 1160 deg R or in between that of water and pure ammonia. Prototype heat sponges were fabricated and characterized. These heat sponges consisted of 1.0-inch-diameter, hollow, stainless-steel spheres with a wall thickness of 0.020 inches which had varying percentages of their interior volumes filled with water and a water-ammonia solution. An apparatus to measure the heat stored in these prototype heat sponges was designed, fabricated, and verified. The heat-storage capacity calculated from measured temperature histories is compared to numerical predictions.

  1. Position paper -- Waste storage tank heat removal

    SciTech Connect

    Stine, M.D.

    1995-01-03

    The purpose of this paper is to develop and document a position on the heat removal system to be used on the waste storage tanks currently being designed for the Multi-Function Waste Tank Facility (MWTF), project W-236A. The current preliminary design for the waste storage primary tank heat removal system consists of the following subsystems: (1) a once-through dome space ventilation system; (2) a recirculation dome space ventilation system; and (3) an annulus ventilation system. Recently completed and ongoing studies have evaluated alternative heat removal systems in an attempt to reduce system costs and to optimize heat removal capabilities. In addition, a thermal/heat transfer analysis is being performed that will provide assurance that the heat removal systems selected will be capable of removing the total primary tank design heat load of 1.25 MBtu/hr at an allowable operating temperature of 190 F. Although 200 F is the design temperature limit, 190 F has been selected as the maximum allowable operating temperature limit based on instrumentation sensitivity, instrumentation location sensitivity, and other factors. Seven options are discussed and recommendations are made.

  2. Development of composite latent/sensible heat storage media

    SciTech Connect

    Petri, R.; Ong, E.T.; Kardas, A. )

    1990-12-01

    Results of an on-going program to develop a composite latent-sensible thermal energy storage medium, trade marked CompPhase, are presented. The target application area was periodic kiln energy recovery. The concept is that of a composite salt/ceramic material processed such that the medium maintains its shape and mechanical integrity through the salt melting temperature. As such, the media can be fabricated into a variety of shapes suitable for packed beds, fluidized beds, or direct contact heat exchangers. The properties of ten carbonate salt or eutectic mixtures of carbonate salts were reviewed to select the most appropriate candidates for development. Three salts and two ceramic materials were evaluated in laboratory tests to select the final material, a composite of sodium-barium eutectic/magnesium oxide, for development. Two methods of processing the constituent powders for fabrication into storage pellets were developed, and one method was applied to pellet fabrication by commercial processing equipment. Two different preliminary cost estimates bracketed the expected cost of commercially fabricating storage pellets. Also, two modifications to the material processing method were suggested to reduce costs. Thermal cycling was conducted on laboratory produced experimental pellets and on prototype pellets fabricated by commercial processes. Detailed laboratory tests to determine composite mechanical and thermal properties were conducted. It is concluded that further laboratory, field, and economic studies are required before the concept of composite storage media can be considered fully developed for commercialization. 5 refs., 73 figs., 20 tabs.

  3. Experimental testing of various heat transfer structures in a flat plate thermal energy storage unit

    NASA Astrophysics Data System (ADS)

    Johnson, Maike; Fiß, Michael; Klemm, Torsten

    2016-05-01

    For solar process heat applications with steam as the working fluid and varying application parameters, a novel latent heat storage concept has been developed using an adaptation of a flat plate heat exchanger as the storage concept. Since the pressure level in these applications usually does not exceed 30 bar, an adaptation with storage material chambers arranged between heat transfer medium chambers is possible. Phase change materials are used as the storage medium, so that the isothermal evaporation of steam during discharging of the storage is paired with the isothermal solidification of the storage material. Heat transfer structures can be inserted into the chambers to adjust the power level for a given application. By combining the required number of flat plate heat exchanger compartments and inserting the appropriate heat transfer structure, the design can easily be adjusted for the required power level and capacity for a specific application. Within this work, the technical feasibility of this concept is proven. The dependence of the operating characteristics on the geometry of the heat exchanger is identified. A focus is on varying the power density by integrating conductive heat structures in the PCM.

  4. Catalytic combustion of actual low and medium heating value gases

    NASA Technical Reports Server (NTRS)

    Bulzan, D. L.

    1982-01-01

    Catalytic combustion of both low and medium heating value gases using actual coal derived gases obtained from operating gasifiers was demonstrated. A fixed bed gasifier with a complete product gas cleanup system was operated in an air blown mode to produce low heating value gas. A fluidized bed gasifier with a water quench product gas cleanup system was operated in both an air enriched and an oxygen blown mode to produce low and medium, heating value gas. Noble metal catalytic reactors were evaluated in 12 cm flow diameter test rigs on both low and medium heating value gases. Combustion efficiencies greater than 99.5% were obtained with all coal derived gaseous fuels. The NOx emissions ranged from 0.2 to 4 g NO2 kg fuel.

  5. Distributed Generation with Heat Recovery and Storage

    SciTech Connect

    Siddiqui, Afzal; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2005-07-29

    Electricity generated by distributed energy resources (DER) located close to end-use loads has the potential to meet consumer requirements more efficiently than the existing centralized grid. Installation of DER allows consumers to circumvent the costs associated with transmission congestion and other non-energy costs of electricity delivery and potentially to take advantage of market opportunities to purchase energy when attractive. On-site thermal power generation is typically less efficient than central station generation, but by avoiding non-fuel costs of grid power and utilizing combined heat and power (CHP) applications, i.e., recovering heat from small-scale on-site generation to displace fuel purchases, then DER can become attractive to a strictly cost-minimizing consumer. In previous efforts, the decisions facing typical commercial consumers have been addressed using a mixed-integer linear programme, the DER Customer Adoption Model(DER-CAM). Given the site s energy loads, utility tariff structure, and information (both technical and financial) on candidate DER technologies, DER-CAM minimizes the overall energy cost for a test year by selecting the units to install and determining their hourly operating schedules. In this paper, the capabilities of DER-CAM are enhanced by the inclusion of the option to store recovered low-grade heat. By being able to keep an inventory of heat for use in subsequent periods, sites are able to lower costs even further by reducing off-peak generation and relying on storage. This and other effects of storages are demonstrated by analysis of five typical commercial buildings in San Francisco, California, and an estimate of the cost per unit capacity of heat storage is calculated.

  6. Increasing Soil Heat Storage across Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Troy, T. J.; Wood, E. F.

    2009-12-01

    Recent studies have shown that the ocean, atmosphere, cryosphere, and continental land masses have gained heat over the past century [Hansen et al., 2009; Beltrami et al., 2002]. Although soil heat storage may play a lesser role than the ocean in absorbing heat, it plays an important role in identifying and understanding changes in climate, especially relating to changes in the permafrost active layer. Northern Eurasia has experienced some of the strongest warming trends over the twentieth century, and in situ measurements of soil temperature have shown that the land surface is responding by warming accordingly. The observational network presents an incomplete picture of the soil heat gain because the network is sparse and temperature does not account for latent heat effects and moisture dynamics in the soil column, which also affect the change in enthalpy. In the winter, the snowpack insulates the soil column, which may decouple the air and ground temperatures. To bridge this gap in our understanding, we use the VIC land surface model, which solves for both the energy and water budget at the land surface and subsurface with a 50 meter soil column, to calculate the change in ground heat between 1901 and 2005 after a 500-year model spin-up. We find that the heat stored in the soil column experienced a small but steady increase at the beginning of the twentieth century, with an abrupt increase in heat accumulation after 1980, indicating a possible tipping point in the system. There is heterogeneity in the spatial pattern of heat accumulation, with larger accumulation in the southern Ob River basin and the permafrost-dominated regions of Eurasia. The modeled heat accumulation in the permafrost zone confirms concerns in the scientific literature that the permafrost is particularly vulnerable to climate changes.

  7. Cooperative heat transfer and ground coupled storage system

    DOEpatents

    Metz, P.D.

    A cooperative heat transfer and ground coupled storage system wherein collected solar heat energy is ground stored and permitted to radiate into the adjacent ground for storage therein over an extended period of time when such heat energy is seasonally maximally available. Thereafter, when said heat energy is seasonally minimally available and has propagated through the adjacent ground a substantial distance, the stored heat energy may be retrieved by a circumferentially arranged heat transfer means having a high rate of heat transfer.

  8. Cooperative heat transfer and ground coupled storage system

    DOEpatents

    Metz, Philip D.

    1982-01-01

    A cooperative heat transfer and ground coupled storage system wherein collected solar heat energy is ground stored and permitted to radiate into the adjacent ground for storage therein over an extended period of time when such heat energy is seasonally maximally available. Thereafter, when said heat energy is seasonally minimally available and has propagated through the adjacent ground a substantial distance, the stored heat energy may be retrieved by a circumferentially arranged heat transfer means having a high rate of heat transfer.

  9. Thermal analysis of energy storage in packed beds of multilayer storing medium

    SciTech Connect

    Ziada, M.A.; Abdel Rehim, Z.S.

    1998-04-01

    Thermal analysis of energy storage in layers of various materials used as a packed bed storage system is presented. It is more economical to minimize insulation costs, to store more energy from the same input conditions, to lengthen the time of charging that the energy could be kept stored with acceptable losses, and to obtain higher storage capacity. These are the focus of this work. A cylindrical bed is formed from three layers of different materials, equal in length, as heat-absorbing media. The bed is charged with flowing hot air in the axial direction, the hot air representing the heat source. A transient one-dimensional model is used to describe the thermal behavior of the system. The partial differential equations that govern the flow and heat transfer for both the air and the solid, constituting the bed and their boundary conditions, are driven. The numerical solution of two partial differential equations is obtained using the finite difference method through a computer program especially constructed for this purpose. The temperature field for the air and the solid are obtained, and the energy stored inside the bed is computed. A wide range of layers of storage media of different materials with different thermal properties is selected. Comparison is made between the present system and packed bed systems using one storing medium. The results show that the bed packed with different layers has higher storage capacity and there is step stratification of the temperature between the materials layers. Also, the bed that includes metal material (such as steel) has a maximum storage capacity, and less considerable temperature than other beds, so such a bed can realize the claimed function.

  10. Central solar heating plants with seasonal storage

    SciTech Connect

    Breger, D.S.; Sunderland, J.E.

    1989-03-01

    The University of Massachusetts has recently started a two year effort to identify and design a significant Central Solar Heating Plant with Seasonal Storage (CSHPSS) in Massachusetts. The work is closely associated with the U.S. participation in the International Energy Agency (IEA) Task on CSHPSS. The University is working closely with the Commonwealth of Massachusetts to assist in identifying State facilities as potential sites and to explore and secure State support which will be essential for product development after the design phase. Currently, the primary site is the University of Massachusetts, Amherst campus with particular interest in several large buildings which are funded for construction over the next 4-5 years. Seasonal thermal energy storage will utilize one of several geological formations.

  11. Heating of the interstellar medium by supernova remnants

    NASA Technical Reports Server (NTRS)

    Cox, D. P.

    1983-01-01

    Models for the mechanisms active during supernova (SN) heating of surrounding regions are examined. SNs heat both the matrix material and material in the nearby interstellar medium, and also accelerate cosmic rays with shock waves. Fountain and wind models vary according to the SN power and mass acquisition rate. Additionally, a warm intercloud medium may be fed by returning fountain material and stellar mass loss. The thermal wind temperature varies with the number of solar massess heated, although remnants have been observed to vanish in the LMC when more than 100 solar masses were heated. The possibility that the solar system is inside a remnant that produces the observed soft X-ray background is considered.

  12. Heating the intracluster medium by jet-inflated bubbles

    NASA Astrophysics Data System (ADS)

    Hillel, Shlomi; Soker, Noam

    2016-01-01

    We examine the heating of the intracluster medium (ICM) of cooling flow clusters of galaxies by jet-inflated bubbles and conclude that mixing of hot bubble gas with the ICM is more important than turbulent heating and shock heating. We use the PLUTO hydrodynamical code in full 3D to properly account for the inflation of the bubbles and to the multiple vortices induced by the jets and bubbles. The vortices mix some hot shocked jet gas with the ICM. For the parameters used by us the mixing process accounts for about four times as much heating as that by the kinetic energy in the ICM, namely, turbulence and sound waves. We conclude that turbulent heating plays a smaller role than mixing. Heating by shocks is even less efficient.

  13. Thermal storage technologies for solar industrial process heat applications

    NASA Technical Reports Server (NTRS)

    Gordon, L. H.

    1979-01-01

    The state-of-the-art of thermal storage subsystems for the intermediate and high temperature (100 C to 600 C) solar industrial process heat generation is presented. Primary emphasis is focused on buffering and diurnal storage as well as total energy transport. In addition, advanced thermal storage concepts which appear promising for future solar industrial process heat applications are discussed.

  14. THERMOCHEMICAL HEAT STORAGE FOR CONCENTRATED SOLAR POWER

    SciTech Connect

    PROJECT STAFF

    2011-10-31

    Thermal energy storage (TES) is an integral part of a concentrated solar power (CSP) system. It enables plant operators to generate electricity beyond on sun hours and supply power to the grid to meet peak demand. Current CSP sensible heat storage systems employ molten salts as both the heat transfer fluid and the heat storage media. These systems have an upper operating temperature limit of around 400 C. Future TES systems are expected to operate at temperatures between 600 C to 1000 C for higher thermal efficiencies which should result in lower electricity cost. To meet future operating temperature and electricity cost requirements, a TES concept utilizing thermochemical cycles (TCs) based on multivalent solid oxides was proposed. The system employs a pair of reduction and oxidation (REDOX) reactions to store and release heat. In the storage step, hot air from the solar receiver is used to reduce the oxidation state of an oxide cation, e.g. Fe3+ to Fe2+. Heat energy is thus stored as chemical bonds and the oxide is charged. To discharge the stored energy, the reduced oxide is re-oxidized in air and heat is released. Air is used as both the heat transfer fluid and reactant and no storage of fluid is needed. This project investigated the engineering and economic feasibility of this proposed TES concept. The DOE storage cost and LCOE targets are $15/kWh and $0.09/kWh respectively. Sixteen pure oxide cycles were identified through thermodynamic calculations and literature information. Data showed the kinetics of re-oxidation of the various oxides to be a key barrier to implementing the proposed concept. A down selection was carried out based on operating temperature, materials costs and preliminary laboratory measurements. Cobalt oxide, manganese oxide and barium oxide were selected for developmental studies to improve their REDOX reaction kinetics. A novel approach utilizing mixed oxides to improve the REDOX kinetics of the selected oxides was proposed. It partially

  15. Heat storage in alloy transformations. Final report

    SciTech Connect

    Birchenall, C E; Gueceri, S I; Farkas, D; Labdon, M B; Nagaswami, N; Pregger, B

    1981-03-01

    A study conducted to determine the feasibility of using metal alloys as thermal energy storage media is described. The study had the following major elements: (1) the identification of congruently transforming alloys and thermochemical property measurements, (2) the development of a precise and convenient method for measuring volume change during phase transformation and thermal expansion coefficients, (3) the development of a numerical modeling routine for calculating heat flow in cylindrical heat exchangers containing phase-change materials, and (4) the identification of materials that could be used to contain the metal alloys. The elements selected as candidate media were limited to aluminum, copper, magnesium, silicon, zinc, calcium, and phosphorus on the basis of low cost and latent heat of transformation. Several new eutectic alloys and ternary intermetallic phases have been determined. A new method employing x-ray absorption techniques was developed to determine the coefficients of thermal expansion of both the solid and liquid phases and the volume change during phase transformation from data that are obtained during one continuous experimental test. The method and apparatus are discussed and the experimental results are presented. The development of the numerical modeling method is presented and results are discussed for both salt and metal alloy phase-change media. Candidate materials were evaluated to determine suitable materials for containment of the metal alloys. Graphite was used to contain the alloys during the volume change measurements. Silicon carbide has been identified as a promising containment material and surface-coated iron alloys were considered.

  16. Survey of sensible and latent heat thermal energy storage projects

    NASA Astrophysics Data System (ADS)

    Baylin, F.; Merino, M.

    1981-05-01

    Ongoing and completed research projects on sensible and latent heat thermal enegy storage for low, intermediate, and high temperature applications are reviewed. Projects in the United States and abroad are included. Several research efforts are in the index although the project descriptions are absent. Project lists are organized into four sections: short term sensible heat storage; seasonal sensible heat storage; latent heat storage; and models, economic analysis, and support studies. The organization of the Department of Energy programs managing many of these projects is also outlined. Projects are presented in a standard format that includes laboratory; funding level and period; status; project description; technical and economic parameters; and applications.

  17. Simulation and evaluation of latent heat thermal energy storage

    NASA Technical Reports Server (NTRS)

    Sigmon, T. W.

    1980-01-01

    The relative value of thermal energy storage (TES) for heat pump storage (heating and cooling) as a function of storage temperature, mode of storage (hotside or coldside), geographic locations, and utility time of use rate structures were derived. Computer models used to simulate the performance of a number of TES/heat pump configurations are described. The models are based on existing performance data of heat pump components, available building thermal load computational procedures, and generalized TES subsystem design. Life cycle costs computed for each site, configuration, and rate structure are discussed.

  18. Information storage medium and method of recording and retrieving information thereon

    DOEpatents

    Marchant, D. D.; Begej, Stefan

    1986-01-01

    Information storage medium comprising a semiconductor doped with first and second impurities or dopants. Preferably, one of the impurities is introduced by ion implantation. Conductive electrodes are photolithographically formed on the surface of the medium. Information is recorded on the medium by selectively applying a focused laser beam to discrete regions of the medium surface so as to anneal discrete regions of the medium containing lattice defects introduced by the ion-implanted impurity. Information is retrieved from the storage medium by applying a focused laser beam to annealed and non-annealed regions so as to produce a photovoltaic signal at each region.

  19. Parametric study of rock pile thermal storage for solar heating and cooling phase 1

    NASA Technical Reports Server (NTRS)

    Saha, H.

    1977-01-01

    The test data and an analysis were presented, of heat transfer characteristics of a solar thermal energy storage bed utilizing water filled cans as the energy storage medium. An attempt was made to optimize can size, can arrangement, and bed flow rates by experimental and analytical means. Liquid filled cans, as storage media, utilize benefits of both solids like rocks, and liquids like water. It was found that this combination of solid and liquid media shows unique heat transfer and heat content characteristics and is well suited for use with solar air systems for space and hot water heating. An extensive parametric study was made of heat transfer characteristics of rocks, of other solids, and of solid containers filled with liquids.

  20. Thermal Storage and Advanced Heat Transfer Fluids (Fact Sheet)

    SciTech Connect

    Not Available

    2010-08-01

    Fact sheet describing NREL CSP Program capabilities in the area of thermal storage and advanced heat transfer fluids: measuring thermophysical properties, measuring fluid flow and heat transfer, and simulating flow of thermal energy and fluid.

  1. Heat and Mass Transfer in a Freezing Unsaturated Porous Medium

    NASA Astrophysics Data System (ADS)

    Jame, Yih-Wu; Norum, Donald I.

    1980-08-01

    A numerical simulation of a laboratory experiment involving coupled heat and mass transfer in a horizontal porous medium column with one end subjected to a temperature below 0°C has been carried out. The model is essentially that of Harlan (1973) and is solved numerically by the finite difference method using the Crank-Nicholson scheme. The solution yields temperature, liquid water content, and ice content profiles along the column as a function of time. Comparison of the experimental results and the simulation analysis results shows that Harlan's model, with some modification in the hydraulic conductivity of the frozen medium, can be used successfully to simulate numerically the coupled heat and mass transfer processes when ice lensing does not occur.

  2. Combined conjugated heat transfer from a scattering medium

    NASA Technical Reports Server (NTRS)

    Kassemi, M.; Chung, B. T. F.

    1992-01-01

    Combined heat transfer from a radiating and convecting flow of an absorbing, emitting, and scattering medium in a reflecting channel with conducting wall was numerically investigated. The results clearly indicate that in any high-temperature applications, if the effects of scattering and wall reflection are ignored, the position and magnitude of the maximum wall temperature and the behavior of the convective Nusselt number can be grossly misrepresented.

  3. Thermal energy storage for industrial waste heat recovery

    NASA Technical Reports Server (NTRS)

    Hoffman, H. W.; Kedl, R. J.; Duscha, R. A.

    1978-01-01

    Thermal energy storage systems designed for energy conservation through the recovery, storage, and reuse of industrial process waste heat are reviewed. Consideration is given to systems developed for primary aluminum, cement, the food processing industry, paper and pulp, and primary iron and steel. Projected waste-heat recovery and energy savings are listed for each category.

  4. Devolatilization of bituminous coals at medium to high heating rates

    SciTech Connect

    Jamaluddin, A.S.; Truelove, J.S.; Wall, T.F.

    1986-03-01

    A high-volatile and a medium volatile bituminous coal, size-graded between 53 and 63 ..mu..m, were devolatilized in a laboratory-scale laminar-flow furnace at 800-1400/sup 0/C at heating rates of 1 x 10/sup 4/-5 x 10/sup 4/ /sup 0/C s. The weight loss was determined by both gravimetric and ash-tracer techniques. The experimental results were well correlated by a two-competing-reactions devolatilization model. The model was also evaluated against data from captive-sample experiments at moderate heating rates of 250-1000/sup 0/C/s. Heating rate was found to affect substantially the devolatilization weight loss.

  5. A solar air collector with integrated latent heat thermal storage

    NASA Astrophysics Data System (ADS)

    Charvat, Pavel; Ostry, Milan; Mauder, Tomas; Klimes, Lubomir

    2012-04-01

    Simulations of the behaviour of a solar air collector with integrated latent heat thermal storage were performed. The model of the collector was created with the use of coupling between TRNSYS 17 and MATLAB. Latent heat storage (Phase Change Material - PCM) was integrated with the solar absorber. The model of the latent heat storage absorber was created in MATLAB and the model of the solar air collector itself was created in TRNSYS with the use of TYPE 56. The model of the latent heat storage absorber allows specification of the PCM properties as well as other parameters. The simulated air collector was the front and back pass collector with the absorber in the middle of the air cavity. Two variants were considered for comparison; the light-weight absorber made of sheet metal and the heat-storage absorber with the PCM. Simulations were performed for the climatic conditions of the Czech Republic (using TMY weather data).

  6. Development of a low-cost heat storage furnace

    SciTech Connect

    Lentz, E. )

    1987-01-01

    The author describes the development of a low cost central electric heat storage furnace for residential use in the USA. The heat storage furnace design uses crushed trap rock, a basaltic rock found throughout the USA. Residential furnaces were built and successfully tested both under laboratory conditions and in residences from Minnesota to New England. Although the furnace was developed for residential space heating, applications for commercial and industrial heating are under consideration. Heat storage using off-peak electricity is used as a load management tool in several ways. The specific application considered in this paper is space heating with warm air. In this application, the furnace converts off-peak electric power to heat and stores it for space heating during non-peak periods on a daily cycle basis.

  7. Heat Transfer Modeling of Dry Spent Nuclear Fuel Storage Facilities

    SciTech Connect

    Lee, S.Y.

    1999-01-13

    The present work was undertaken to provide heat transfer model that accurately predicts the thermal performance of dry spent nuclear fuel storage facilities. One of the storage configurations being considered for DOE Aluminum-clad Spent Nuclear Fuel (Al-SNF), such as the Material and Testing Reactor (MTR) fuel, is in a dry storage facility. To support design studies of storage options a computational and experimental program has been conducted at the Savannah River Site (SRS). The main objective is to develop heat transfer models including natural convection effects internal to an interim dry storage canister and to geological codisposal Waste Package (WP). Calculated temperatures will be used to demonstrate engineering viability of a dry storage option in enclosed interim storage and geological repository WP and to assess the chemical and physical behaviors of the Al-SNF in the dry storage facilities. The current paper describes the modeling approaches and presents the computational results along with the experimental data.

  8. Parametric study of thermal storage containing rocks or fluid filled cans for solar heating and cooling, phase 2

    NASA Technical Reports Server (NTRS)

    Saha, H.

    1981-01-01

    The test data and an analysis of the heat transfer characteristics of a solar thermal energy storage bed utilizing water filled cans and standard bricks as energy storage medium are presented. This experimental investigation was initiated to find a usable heat intensive solar thermal storage device other than rock storage and water tank. Four different sizes of soup cans were stacked in a chamber in three different arrangements-vertical, horizontal, and random. Air is used as transfer medium for charging and discharge modes at three different mass flow rates and inlet air temperature respectively. These results are analyzed and compared, which show that a vertical stacking and medium size cans with Length/Diameter (L/D) ratio close to one have better average characteristics of heat transfer and pressure drop.

  9. Evaluation of thermal energy storage for the proposed Twin Cities District Heating system. [using cogeneration heat production and aquifiers for heat storage

    NASA Technical Reports Server (NTRS)

    Meyer, C. F.

    1980-01-01

    The technical and economic feasibility of incorporating thermal energy storage components into the proposed Twin Cities District heating project was evaluated. The technical status of the project is reviewed and conceptual designs of district heating systems with and without thermal energy storage were compared in terms of estimated capital requirements, fuel consumption, delivered energy cost, and environmental aspects. The thermal energy storage system is based on cogeneration and the storage of heat in aquifers.

  10. Chemical heat pump and chemical energy storage system

    DOEpatents

    Clark, Edward C.; Huxtable, Douglas D.

    1985-08-06

    A chemical heat pump and storage system employs sulfuric acid and water. In one form, the system includes a generator and condenser, an evaporator and absorber, aqueous acid solution storage and water storage. During a charging cycle, heat is provided to the generator from a heat source to concentrate the acid solution while heat is removed from the condenser to condense the water vapor produced in the generator. Water is then stored in the storage tank. Heat is thus stored in the form of chemical energy in the concentrated acid. The heat removed from the water vapor can be supplied to a heat load of proper temperature or can be rejected. During a discharge cycle, water in the evaporator is supplied with heat to generate water vapor, which is transmitted to the absorber where it is condensed and absorbed into the concentrated acid. Both heats of dilution and condensation of water are removed from the thus diluted acid. During the discharge cycle the system functions as a heat pump in which heat is added to the system at a low temperature and removed from the system at a high temperature. The diluted acid is stored in an acid storage tank or is routed directly to the generator for reconcentration. The generator, condenser, evaporator, and absorber all are operated under pressure conditions specified by the desired temperature levels for a given application. The storage tanks, however, can be maintained at or near ambient pressure conditions. In another form, the heat pump system is employed to provide usable heat from waste process heat by upgrading the temperature of the waste heat.

  11. Thermal energy storage heat exchanger: Molten salt heat exchanger design for utility power plants

    NASA Technical Reports Server (NTRS)

    Ferarra, A.; Yenetchi, G.; Haslett, R.; Kosson, R.

    1977-01-01

    Sizing procedures are presented for latent heat thermal energy storage systems that can be used for electric utility off-peak energy storage, solar power plants and other preliminary design applications.

  12. Shock-Bubble Heating of the Intracluster Medium

    NASA Astrophysics Data System (ADS)

    Friedman, Samuel H.; Heinz, S.; Churazov, E.

    2011-01-01

    Active galactic nuclei (AGN) Feedback via extragalactic jets requires a thermalization of the energy injected into the intracluster medium (ICM) in order for energy feedback to occur. Heinz and Churazov (2005) proposed a method using shock waves and previously inflated bubbles in the ICM to extract energy from the shock waves and turn the energy into rotational kinetic energy. This energy would decay and allow heating to occur elsewhere throughout the galaxy cluster. In this paper, we extend to three dimensions (3D) the previous work using hydrodynamic simulations. We also compare our results to previous related work done performed experimentally.

  13. Low and medium heating value coal gas catalytic combustor characterization

    NASA Technical Reports Server (NTRS)

    Schwab, J. A.

    1982-01-01

    Catalytic combustion with both low and medium heating value coal gases obtained from an operating gasifier was demonstrated. A practical operating range for efficient operation was determined, and also to identify potential problem areas were identified for consideration during stationary gas turbine engine design. The test rig consists of fuel injectors, a fuel-air premixing section, a catalytic reactor with thermocouple instrumentation and a single point, water cooled sample probe. The test rig included inlet and outlet transition pieces and was designed for installation into an existing test loop.

  14. Method and apparatus for inoculating crystallization seeds into a liquid latent heat storage substance

    SciTech Connect

    Lindner, F.; Scheunemann, K.

    1984-07-24

    A method and apparatus for inoculating a liquid latent heat storage substance of the type convertible to the solid state on cooling is disclosed. A portion of the substance is caused to crystallize on a cooled active surface, immersed in the substance and preferably vertically arranged, whereupon the active surface is heated to fuse-off the formed crystals to release them into the liquid portion of the storage substance to thus form inoculation seeds on which further crystallization of the storage substance takes place on withdrawal of heat from same. In one described embodiment, a pair of active surfaces is provided by using a Peltier element operating with a DC source having selectively reversible polarity whereby one surface is cooled down while the other is heated and vice versa, depending on the instant polarity of the DC source. In another embodiment, the active surface is alternately heated and cooled by heat carrier medium of a heat pump circulation system drawn from the respective sections of the system in alternating fashion. Due to the formation of crystallization seeds from the heat storage substance, problems normally associated with the use of a foreign inoculation substance are avoided.

  15. Central solar heating plants with seasonal storage in mines

    SciTech Connect

    Eikmeier, B.; Mohr, M.; Unger, H.

    1999-07-01

    The solar assisted heat supply of building offers a great technical potential for the substitution of fossil energy sources. Central solar Heating Plants with Seasonal Storage (CSHPSS) supply 100 and more buildings and reach a solar fraction of 50% or more of the total load with far less specific heat costs [$/kWh{sub solar}] compared to small domestic hot water systems (DHW) for single-family houses. However, the construction of seasonal storage is too expensive. At the Ruhu University Bochum the use of mines for a seasonal storage of low temperature heat is examined in cooperation with industrial partners. The use of available storage volumes may lead to a decrease of investment costs. Additional geothermal heat gains can be obtained from the warm surrounding rock; therefore a high efficiency can be achieved.

  16. Design and simulation of latent heat storage units. Final report

    SciTech Connect

    Shamsundar, N.; Stein, E.; Rooz, E.; Bascaran, E.; Lee, T.C.

    1992-04-01

    This report presents the results of two years of research and development on passive latent heat storage systems. Analytical models have been developed and extended, and a computer code for simulating the performance of a latent heat storage has been developed. The code is intended to be merged into a larger solar energy system simulation code and used for making realistic system studies. Simulation studies using a code which has a flexible and accurate routine for handling the storage subsystem should lead to the development of better systems than those in which storage is added on after the rest of the system has already been selected and optimized.

  17. Design and simulation of latent heat storage units

    SciTech Connect

    Shamsundar, N.; Stein, E.; Rooz, E.; Bascaran, E.; Lee, T.C. )

    1992-04-01

    This report presents the results of two years of research and development on passive latent heat storage systems. Analytical models have been developed and extended, and a computer code for simulating the performance of a latent heat storage has been developed. The code is intended to be merged into a larger solar energy system simulation code and used for making realistic system studies. Simulation studies using a code which has a flexible and accurate routine for handling the storage subsystem should lead to the development of better systems than those in which storage is added on after the rest of the system has already been selected and optimized.

  18. Molten Glass for Thermal Storage: Advanced Molten Glass for Heat Transfer and Thermal Energy Storage

    SciTech Connect

    2012-01-01

    HEATS Project: Halotechnics is developing a high-temperature thermal energy storage system using a new thermal-storage and heat-transfer material: earth-abundant and low-melting-point molten glass. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun is not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. Halotechnics new thermal storage material targets a price that is potentially cheaper than the molten salt used in most commercial solar thermal storage systems today. It is also extremely stable at temperatures up to 1200°C—hundreds of degrees hotter than the highest temperature molten salt can handle. Being able to function at high temperatures will significantly increase the efficiency of turning heat into electricity. Halotechnics is developing a scalable system to pump, heat, store, and discharge the molten glass. The company is leveraging technology used in the modern glass industry, which has decades of experience handling molten glass.

  19. Control Spin Current and Data Recording on Spin Storage Medium

    NASA Astrophysics Data System (ADS)

    Krupa, M. M.

    2014-12-01

    The paper presents the results of experimental studies of the physical mechanisms and dynamics of magnetization reversal of the films Al2O3/Tb25Co5Fe70/Al2O3, Al2O3/Tb22Co5Fe73/Al2O3, Al2O3/Tb19Co5Fe76/Al2O3, Al2O3/Co30Fe70/Al2O3 with a single magnetic layer and the films Al2O3/Tb22Co5Fe73/Pr6O11/Tb19Co5Fe76/Al2O3, Al2O3/Co80Fe20/Pr6O11/Co30Fe70/Al2O3 with two magnetic layers radiated by picosecond (τi ≈ 80 ps) and femtosecond (τi ≈ 130 fs) laser pulses. The experimental samples of spin transistors and data recording devices on the spin storage medium are also described. The results of studies have shown that magnetic switching effects in the nanolayers under femtosecond laser pulses can be used for creation of systems of high-speed controlling of spin currents with the response time τ ≤ 10-11s. Conclusions from the studies are the following: thermomagnetic switching under the influence of an external magnetic field or a demagnetization field, magnetic switching of antiferromagnetic films under the influence of an effective internal field of antiferromagnetic interaction between magnetic sublattices rare-earth and transitive metals, magnetic switching under the influence of a magnetic field of the inverse Faraday effect, or under the influence of a magnetic field of a spin current. The magnetic switching of magnetic layers under action of the magnetic field of a spin current is the most important for practical use in elements of spintronics. This mechanism of magnetic reversal takes place only in multilayer nanofilms and the heterogeneous multilayer magnetic nanofilms are the base material for creation of spintronic devices. The great advantage of the magnetization reversal of magnetic nanolayers of the spin current is that the mechanism of magnetization reversal is working in the films with perpendicular anisotropy and in the films with in-plane anisotropy. The injection of polarized electrons can also be realized using short electrical pulses. That is

  20. OVERVIEW OF CENTRAL HEATING PLANT, WITH OIL STORAGE ON LEFT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERVIEW OF CENTRAL HEATING PLANT, WITH OIL STORAGE ON LEFT, BOILER BUILDING ON RIGHT, SOUTH AND EAST ELEVATIONS, CAMERA FACING NORTH. - New Haven Rail Yard, Central Steam Plant and Oil Storage, Vicinity of Union Avenue, New Haven, New Haven County, CT

  1. Filled Carbon Nanotubes: Superior Latent Heat Storage Enhancers

    SciTech Connect

    2009-04-01

    This factsheet describes a rstudy whose technical objective is to demonstrate the feasibility of filled carbon nanotubes (CNT) as latent heat storage enhancers, with potential applications as next generation thermal management fluids in diverse applications in industries ranging from high-demand microelectronic cooling, manufacturing, power generation, transportation, to solar energy storage.

  2. Storage-stable foamable polyurethane is activated by heat

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Polyurethane foamable mixture remains inert in storage unit activated to produce a rapid foaming reaction. The storage-stable foamable composition is spread as a paste on the surface of an expandable structure and, when heated, yields a rigid open-cell polyurethane foam that is self-bondable to the substrate.

  3. Phase Change Material Systems for High Temperature Heat Storage.

    PubMed

    Perraudin, David Y S; Binder, Selmar R; Rezaei, Ehsan; Ortonaa, Alberto; Haussener, Sophia

    2015-01-01

    Efficient, cost effective, and stable high-temperature heat storage material systems are important in applications such as high-temperature industrial processes (metal processing, cement and glass manufacturing, etc.), or electricity storage using advanced adiabatic compressed air energy storage. Incorporating phase change media into heat storage systems provides an advantage of storing and releasing heat at nearly constant temperature, allowing steady and optimized operation of the downstream processes. The choice of, and compatibility of materials and encapsulation for the phase change section is crucial, as these must guarantee good and stable performance and long lifetime at low cost. Detailed knowledge of the material properties and stability, and the coupled heat transfer, phase change, and fluid flow are required to allow for performance and lifetime predictions. We present coupled experimental-numerical techniques allowing prediction of the long-term performance of a phase change material-based high-temperature heat storage system. The experimental investigations focus on determination of material properties (melting temperature, heat of fusion, etc.) and phase change material and encapsulation interaction (stability, interface reactions, etc.). The computational investigations focus on an understanding of the multi-mode heat transfer, fluid flow, and phase change processes in order to design the material system for enhanced performance. The importance of both the experimental and numerical approaches is highlighted and we give an example of how both approaches can be complementarily used for the investigation of long-term performance. PMID:26842330

  4. Parametric study on the operating efficiencies of a packed bed for high-temperature sensible heat storage

    SciTech Connect

    Adebiyi, G.A.; Steele, W.G.; Jalalzadeh-Azar, A.A.; Nsofor, E.C.

    1998-02-01

    A comprehensive computer model of a packed bed thermal energy storage system originally developed for storage media employing either sensible heat storage (SHS) materials or phase-change material (PCM), was validated for the sensible heat storage media using a rather extensive set of data obtained with a custom-made experimental facility for high-temperature energy storage. The model is for high-temperature storage and incorporates several features including (a) allowance for media property variations with temperature, (b) provisions for arbitrary initial conditions and time-dependent varying fluid inlet temperature to be set, (c) formulation for axial thermal dispersion effects in the bed, (d) modeling for intraparticle transient conduction in the storage medium, (e) provision for energy storage (or accumulation) in the fluid medium, (f) modeling for the transient conduction in the containment vessel wall, (g) energy recovery in two modes, one with flow direction parallel with that in the storage mode (cocurrent) and the other with flow in the opposite direction (countercurrent), and (h) computation of the first and second-law efficiencies. Parametric studies on the sensible heat storage system were carried out using the validated model to determine the effects of several of the design and operating parameters on the first and second-law efficiencies of the packed bed. Decisions on the thermodynamic optimum system design and operating parameters for the packed bed are based on the second-law evaluations made.

  5. Bacillus cereus endospores exhibit a heterogeneous response to heat treatment and low-temperature storage.

    PubMed

    Cronin, Ultan P; Wilkinson, Martin G

    2008-04-01

    Bacillus cereus endospores were challenged by heat treatments simulating typical domestic/industrial cooking regimes and the resulting effects on germination, viability and sub-lethal heat damage determined using differential plate counting on a rich versus selective medium, flow cytometry (FCM), beta-D-glucuronidase (GUD) activity and OD(600) measurement. Additionally, these techniques were used to investigate the effect on endospores of storage in a non-nutrient medium at 4 degrees C for 1 month. Plate counting revealed that heating generated sub-populations of sub-lethally damaged endospores, with the more severe heat treatments generating larger proportions of sub-lethally damaged endospores. These findings were also reflected in FCM analyses, which detected large amounts of heterogeneity among the populations of heat-treated endospores and uncovered differences in the proportions of membrane-damaged endospores and those displaying esterase activity pre- and post-treatment. Plate count data suggested that both the control and heat-treated endospores lost viability during storage, with FCM data indicating that the proportion of membrane-damaged endospores increased and those displaying the esterase activity decreased. The FCM, GUD and OD(600) data suggested that germination rates decreased with the increasing severity of heat treatment. This study demonstrates that a combination of plate counting and FCM can be used to detect heterogeneity in the response of endospores to insults. PMID:18206765

  6. Improved Heat-of-Fusion Energy Storage

    NASA Technical Reports Server (NTRS)

    Chen, K. H.; Manvi, R.

    1982-01-01

    Alkali metal/alkali-halide mixtures proposed for preventing solid buildup during energy recovery. When mixture melts (by absorption of heat of fusion), it forms two immiscible liquids. Salt-rich phase is heavier and has higher melting/recrysallization temperature; so during energy recovery salt crystallizes in this phase first. Since heat exchanger for energy recovery is in lighter metal-rich phase, solids do not form and there is no reduction of heat-recovery efficiency.

  7. Characterization and Evaluation of a Mass Efficient Heat Storage Device.

    NASA Technical Reports Server (NTRS)

    Splinter, Scott C.; Blosser, Max L.; Gifford, Andrew R.

    2007-01-01

    The heat sponge is a device for mass-efficient storage of heat. It was developed to be incorporated in the substructure of a reentry or hypersonic vehicle to reduce thermal protection system requirements. The heat sponge consists of a liquid-vapor mixture contained within a number of miniature pressure vessels that can be embedded within a variety of different types of structures. As temperature is increased, pressure in the miniature pressure vessels also increases so that heat absorbed through vaporization of the liquid is spread over a relatively large temperature range. Using water as a working fluid, the heat storage capacity of the liquid-vapor mixture is many times higher than that of typical structural materials and is well above that of common phase change materials over the temperature range of 660oR to 1160oR. Prototype heat sponges were fabricated and characterized. These heat sponges consisted of 1.0 inch diameter hollow stainless steel spheres with a wall thickness of 0.020 inches which had varying percentages of their interior volumes filled with water. An apparatus to measure the heat stored in these prototype heat sponges was designed, fabricated, and verified. The heat storage capacity calculated from measured temperature histories is compared to numerical predictions.

  8. Aquifer thermal energy (heat and chill) storage

    SciTech Connect

    Jenne, E.A.

    1992-11-01

    As part of the 1992 Intersociety Conversion Engineering Conference, held in San Diego, California, August 3--7, 1992, the Seasonal Thermal Energy Storage Program coordinated five sessions dealing specifically with aquifer thermal energy storage technologies (ATES). Researchers from Sweden, The Netherlands, Germany, Switzerland, Denmark, Canada, and the United States presented papers on a variety of ATES related topics. With special permission from the Society of Automotive Engineers, host society for the 1992 IECEC, these papers are being republished here as a standalone summary of ATES technology status. Individual papers are indexed separately.

  9. Microencapsulated Phase-Change Materials For Storage Of Heat

    NASA Technical Reports Server (NTRS)

    Colvin, David P.

    1989-01-01

    Report describes research on engineering issues related to storage and transport of heat in slurries containing phase-change materials in microscopic capsules. Specific goal of project to develop lightweight, compact, heat-management systems used safely in inhabited areas of spacecraft. Further development of obvious potential of technology expected to lead to commercialization and use in aircraft, electronic equipment, machinery, industrial processes, and other sytems in which requirements for management of heat compete with severe restrictions on weight or volume.

  10. Rapid Charging of Thermal Energy Storage Materials through Plasmonic Heating

    PubMed Central

    Wang, Zhongyong; Tao, Peng; Liu, Yang; Xu, Hao; Ye, Qinxian; Hu, Hang; Song, Chengyi; Chen, Zhaoping; Shang, Wen; Deng, Tao

    2014-01-01

    Direct collection, conversion and storage of solar radiation as thermal energy are crucial to the efficient utilization of renewable solar energy and the reduction of global carbon footprint. This work reports a facile approach for rapid and efficient charging of thermal energy storage materials by the instant and intense photothermal effect of uniformly distributed plasmonic nanoparticles. Upon illumination with both green laser light and sunlight, the prepared plasmonic nanocomposites with volumetric ppm level of filler concentration demonstrated a faster heating rate, a higher heating temperature and a larger heating area than the conventional thermal diffusion based approach. With controlled dispersion, we further demonstrated that the light-to-heat conversion and thermal storage properties of the plasmonic nanocomposites can be fine-tuned by engineering the composition of the nanocomposites. PMID:25175717

  11. Solar heating with seasonal storage (SHSS) prefeasibility study

    SciTech Connect

    Goodman, J.H.

    1997-12-31

    Large annual solar fractions are possible with full capacity of active thermal collectors for room heating and DHW with seasonal storage. Urban housing schematic designs studied with heat load ranges include: townhouses (100 units) and apartments (3,4,5, and 10 story). Performance and economics are predicted with Seasonal.EES software for Madison, WI. Annual solar fractions of 82% and 75% resulted for a 3-story 138 apartment complex with 3.5 BTU/ft{sup 2}{sup {minus}}FDD room heating and 21,600 liters/d DHW, with rooftop flat-plate liquid collectors (tauAlpha{sub n} = .88 and .76) (3620 m{sup 2}/38,965 ft{sup 2}), and insulated cylindrical water storage tank (8482m{sup 3}/2.24 milgals). Influence of solar heating with seasonal storage (SHSS)(aka CSHPSS) to cold-grey climate big city building/urban sustainable design is discussed.

  12. Heat transfer in completely and partially filled spherical phase change thermal energy storage modules

    NASA Astrophysics Data System (ADS)

    Rahman, Muhammad Mustafizur

    2016-07-01

    A comprehensive investigation of heat transfer and induced fluid flow interactions during melting in a confined storage medium is reported in this paper. This study focuses on thermal characterization of a single constituent storage module rather than an entire storage system to precisely capture the energy exchange contributions of all fundamental heat transfer mechanisms during phase change process. Two-dimensional, axisymmetric, transient equations for mass, momentum and energy conservation were solved numerically by the finite volume scheme. Results report the influence of the Grashof, Stefan and Prandtl numbers on the melting dynamics of capsules with various diameters (20, 30, 40, and 50 mm). Also the effects of the shell material have been analyzed. Correlating equations for melt fraction and Nusselt number have been developed for possible general design applications.

  13. Integrated heat pipe-thermal storage system performance evaluation

    SciTech Connect

    Keddy, E.; Sena, J.T.; Merrigan, M.

    1987-01-01

    Performance verification tests of an integrated heat pipe-thermal energy storage system have been conducted. This system is being developed as a part of an Organic Rankine Cycle-Solar Dynamic Power System (ORC-SDPS) receiver for future space stations. The integrated system consists of potassium heat pipe elements that incorporate thermal energy storage (TES) canisters within the vapor space along with an organic fluid (toluene) heater tube used as the condenser region of the heat pipe. During the insolation period of the earth orbit, solar energy is delivered to the surface of the heat pipe elements of the ORC-SDPS receiver and is internally transferred by the potassium vapor for use and storage. Part of the thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of the orbit, the stored energy in the TES units is transferred by the potassium vapor to the toluene heater tube. A developmental heat pipe element was fabricated that employs axial arteries and a distribution wick connecting the wicked TES units and the heater to the solar insolation surface of the heat pipe. Tests were conducted to verify the heat pipe operation and to evaluate the heat pipe/TES units/heater tube operation by interfacing the heater unit to a heat exchanger.

  14. A&M. Radioactive parts security storage area, heat removal storage casks. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. Radioactive parts security storage area, heat removal storage casks. Plan, section, and details. Ralph M. Parsons 1480-7 ANP/GE-3-720-S-1. Date: November 1958. Approved by INEEL Classification Office for public release. INEEL index no. 034-0720-60-693-107459 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  15. Efficient numerical simulation of heat storage in subsurface georeservoirs

    NASA Astrophysics Data System (ADS)

    Boockmeyer, A.; Bauer, S.

    2015-12-01

    The transition of the German energy market towards renewable energy sources, e.g. wind or solar power, requires energy storage technologies to compensate for their fluctuating production. Large amounts of energy could be stored in georeservoirs such as porous formations in the subsurface. One possibility here is to store heat with high temperatures of up to 90°C through borehole heat exchangers (BHEs) since more than 80 % of the total energy consumption in German households are used for heating and hot water supply. Within the ANGUS+ project potential environmental impacts of such heat storages are assessed and quantified. Numerical simulations are performed to predict storage capacities, storage cycle times, and induced effects. For simulation of these highly dynamic storage sites, detailed high-resolution models are required. We set up a model that accounts for all components of the BHE and verified it using experimental data. The model ensures accurate simulation results but also leads to large numerical meshes and thus high simulation times. In this work, we therefore present a numerical model for each type of BHE (single U, double U and coaxial) that reduces the number of elements and the simulation time significantly for use in larger scale simulations. The numerical model includes all BHE components and represents the temporal and spatial temperature distribution with an accuracy of less than 2% deviation from the fully discretized model. By changing the BHE geometry and using equivalent parameters, the simulation time is reduced by a factor of ~10 for single U-tube BHEs, ~20 for double U-tube BHEs and ~150 for coaxial BHEs. Results of a sensitivity study that quantify the effects of different design and storage formation parameters on temperature distribution and storage efficiency for heat storage using multiple BHEs are then shown. It is found that storage efficiency strongly depends on the number of BHEs composing the storage site, their distance and

  16. Conversion of medium and low temperature heat to power

    NASA Astrophysics Data System (ADS)

    Fischer, Johann; Wendland, Martin; Lai, Ngoc Anh

    2013-04-01

    Presently most electricity is produced in power plants which use high temperature heat supplied by coal, oil, gas or nuclear fission and Clausius-Rankine cycles (CRC) with water as working fluid (WF). On the other hand, geo-, solar-, ocean-, and biogenic-heat have medium and low temperatures. At these temperatures, however, the use of other WF and/or other cycles can yield higher efficiencies than those of the water-CRC. For an assessment of the efficiency we model systems which include the heat transfer to and from the WF and the cycle. Optimization criterion is the exergy efficiency defined as the ratio of the net power output to the incoming exergy flow of the heat carrier. First, for a better understanding we discuss some thermodynamic properties of the WFs: 1) the critical point parameters, 2) the shape of the vapour- liquid coexistence curve in the temperature vs entropy (T,s)-diagram which may be either bell-shaped or overhanging [1,2], and 3) the shape of sub- and supercritical isobars for pure fluids and fluid mixtures. Second, we show that the problems of a CRC with water at lower temperatures are 1) the shape of the T,s-diagram and 2) the exergy loss during heat transfer to the WF. The first problem can be overcome by using an organic working fluid in the CRC which then is called organic Rankine cycle (ORC). The second problem is reduced by supercritical organic Rankine cycles (sORC) [1,2], trilateral cycles (TLC) and the more general power-flash cycles (PFC) [2], and organic flash cycles (OFC) [3]. Next, selected results for systems with the above mentioned cycles will be presented. The heat carrier inlet temperatures THC range from 120°C to 350°C.The pure working fluids are water, refrigerants, alkanes, aromates and siloxanes and have to be selected to match with THC. It is found that TLC with water have the highest efficiencies but show very large volume flows at lower temperatures. Moreover, expansion machines for TLC and PFC are still under

  17. Heat transfer characteristics of a high temperature sensible heat storage water heater using cast iron as a storage material

    SciTech Connect

    Jotshi, C.K.; Goswami, D.Y.; Klausner, J.F.; Hsieh, C.K.; Leung, M.; Li, H.; Malakar, S.; Colacino, F.

    1996-12-31

    This paper describes the heat transfer characteristics of high temperature sensible heat storage in cast iron for water heating applications. An experimental setup consisting of a cast iron cylinder and a tube running through its center was fabricated and tested. The experimental data were compared with the theoretical model. It was observed that the contact resistance between the cast iron and the tube plays a dominant role in extracting the heat. An approximate contact resistance prediction was obtained by assuming the resistance due to the air gap modulated by a correction factor, which accounts for the contacting surface area. Based on the results from the experimental setup and theoretical modeling a prototype storage water heater using cast iron blocks as the storage material was designed, fabricated and tested.

  18. External stimulation-controllable heat-storage ceramics

    NASA Astrophysics Data System (ADS)

    Tokoro, Hiroko; Yoshikiyo, Marie; Imoto, Kenta; Namai, Asuka; Nasu, Tomomichi; Nakagawa, Kosuke; Ozaki, Noriaki; Hakoe, Fumiyoshi; Tanaka, Kenji; Chiba, Kouji; Makiura, Rie; Prassides, Kosmas; Ohkoshi, Shin-Ichi

    2015-05-01

    Commonly available heat-storage materials cannot usually store the energy for a prolonged period. If a solid material could conserve the accumulated thermal energy, then its heat-storage application potential is considerably widened. Here we report a phase transition material that can conserve the latent heat energy in a wide temperature range, T<530 K and release the heat energy on the application of pressure. This material is stripe-type lambda-trititanium pentoxide, λ-Ti3O5, which exhibits a solid-solid phase transition to beta-trititanium pentoxide, β-Ti3O5. The pressure for conversion is extremely small, only 600 bar (60 MPa) at ambient temperature, and the accumulated heat energy is surprisingly large (230 kJ L-1). Conversely, the pressure-produced beta-trititanium pentoxide transforms to lambda-trititanium pentoxide by heat, light or electric current. That is, the present system exhibits pressure-and-heat, pressure-and-light and pressure-and-current reversible phase transitions. The material may be useful for heat storage, as well as in sensor and switching memory device applications.

  19. External stimulation-controllable heat-storage ceramics

    PubMed Central

    Tokoro, Hiroko; Yoshikiyo, Marie; Imoto, Kenta; Namai, Asuka; Nasu, Tomomichi; Nakagawa, Kosuke; Ozaki, Noriaki; Hakoe, Fumiyoshi; Tanaka, Kenji; Chiba, Kouji; Makiura, Rie; Prassides, Kosmas; Ohkoshi, Shin-ichi

    2015-01-01

    Commonly available heat-storage materials cannot usually store the energy for a prolonged period. If a solid material could conserve the accumulated thermal energy, then its heat-storage application potential is considerably widened. Here we report a phase transition material that can conserve the latent heat energy in a wide temperature range, T<530 K and release the heat energy on the application of pressure. This material is stripe-type lambda-trititanium pentoxide, λ-Ti3O5, which exhibits a solid–solid phase transition to beta-trititanium pentoxide, β-Ti3O5. The pressure for conversion is extremely small, only 600 bar (60 MPa) at ambient temperature, and the accumulated heat energy is surprisingly large (230 kJ L−1). Conversely, the pressure-produced beta-trititanium pentoxide transforms to lambda-trititanium pentoxide by heat, light or electric current. That is, the present system exhibits pressure-and-heat, pressure-and-light and pressure-and-current reversible phase transitions. The material may be useful for heat storage, as well as in sensor and switching memory device applications. PMID:25962982

  20. High-capacity hydrogen storage medium: Ti doped fullerene

    NASA Astrophysics Data System (ADS)

    Guo, Jun; Liu, Zhiguo; Liu, Suqin; Zhao, Xuehui; Huang, Kelong

    2011-01-01

    Using density functional theory, it is shown that titanium doped heterofullerene has superior property of hydrogen storage. The single titanium atom lies at a double bond position of C60 and bonds to four carbons by Dewar interaction. Each titanium atom binds up to six hydrogen molecules. The first and second hydrogen molecules are dissociated to form carbon hydrides with binding energy of -0.43 eV/H. The other four adsorptions are molecular with binding energy of -0.14 eV/H2. For substitutionally dope C60 with six titanium atoms, the gravimetric density of hydrogen reaches the 7.7 wt % limit necessary for applications in the mobile industry.

  1. Integrated heat pipe-thermal storage system performance evaluation

    NASA Technical Reports Server (NTRS)

    Keddy, E.; Sena, J. T.; Merrigan, M.; Heidenreich, Gary

    1987-01-01

    An integrated thermal energy storage (TES) system, developed as a part of an organic Rankine cycle solar dynamic power system is described, and the results of the performance verification tests of this TES system are presented. The integrated system consists of potassium heat-pipe elements that incorporate TES canisters within the vapor space, along with an organic fluid heater tube used as the condenser region of the heat pipe. The heat pipe assembly was operated through the range of design conditions from the nominal design input of 4.8 kW to a maximum of 5.7 kW. The performance verification tests show that the system meets the functional requirements of absorbing the solar energy reflected by the concentrator, transporting the energy to the organic Rankine heater, providing thermal storage for the eclipse phase, and allowing uniform discharge from the thermal storage to the heater.

  2. Earth storage of solar heat. Final report

    SciTech Connect

    Garst, P.

    1982-04-19

    The purpose of this project was to demonstrate that large quantities of heat could be collected and stored by modifing large buildings such as those commonly found on farms. The basic idea was to install a solar collection system on the south roof of such a building and store the heat collected in the earth under the building. To implement the project, a pole type sheet metal building was constructed. The size of the building was 20' x 40'. The peak of the roof ran down the 40' dimension and was offset from the center line so that the roof surface facing south was larger than that facing north. The collector was built on the south side by first constructing a roof of sheet metal with 2-1/2'' corrugations. The sheet metal was painted with flat black paint to absorb the solar heat. A space was created over the sheet metal roof by nailing 2 x 4's spaced 2' apart to it. Corrugated fiberglass sheets were nailed to these 2 x 4's to make the collector cover. At the top of the roof, a distribution pipe made of 3/4'' CVCP plastic pipe with 1/8'' holes to match the corrugations of the sheet metal was installed. A gutter was installed at the bottom to collect the heated water which flowed down the sheet metal. The collector roof and the gutter were insulated with 6'' fiberglass batts to complete the collector. Instrumentation, cost, and performance results are discussed.

  3. Do Heat Waves have an Impact on Terrestrial Water Storage?

    NASA Astrophysics Data System (ADS)

    Brena-Naranjo, A.; Teuling, R.; Pedrozo-Acuña, A.

    2014-12-01

    Recent works have investigated the impact of heat waves on the surface energy and carbon balance. However, less attention has been given to the impacts on terrestrial hydrology. During the summer of 2010, the occurrence of an exceptional heat wave affected severely the Northern Hemisphere. The extension (more than 2 million km2) and severity of this extreme event caused substantial ecosystem damage (more than 1 million ha of forest fires), economic and human losses (~500 billion USD and more than 17 million of indirect deaths, respectively). This work investigates for the first time the impacts of the 2010 summer heat wave on terrestrial water storage. Our study area comprises three different regions where air temperature records were established or almost established during the summer: Western Russia, the Middle East and Eastern Sahel. Anomalies of terrestrial water storage derived from the Gravity Recovery and Climate Experiment (GRACE) were used to infer water storage deficits during the 2003-2013 period. Our analysis shows that Russia experienced the most severe water storage decline, followed by the Middle East, whereas Eastern Sahel was not significantly affected. The impact of the heat wave was spatially uniform in Russia but highly variable in the Middle East, with the Northern part substantially more affected than the Southern region. Lag times between maxima air temperatures and lower water storage deficits for Russia and the Middle East were approximately two and seven months, respectively. The results suggest that the response of terrestrial water storage to heat waves is stronger in energy-limited environments than in water-limited regions. Such differences in the magnitude and timing between meteorological and hydrological extremes can be explained by the propagation time between atmospheric water demand and natural or anthropogenic sources of water storage.

  4. Heat loading limits for solid transuranic wastes storage

    SciTech Connect

    Spatz, T.L.

    1993-07-01

    Heat loading limits have been established for four storage configurations of TRU wastes. The calculations were performed assuming the worst case scenario whereby all the heat generated within a drum was generated within one ``cut`` and that this cut was located in the very center of the drum. Poly-boxes containing one HEPA filter were assumed to have a uniform heat generation throughout the filter. The maximum allowable temperatures were based on the materials in the containers. A comparison between the drum center temperature for a uniform heat load distribution and for the center temperature when the heat load is confined to one cut in the center of the drum is also illustrated. This comparison showed that the heat load of a particular drum can be more than doubled by distributing the sources of heat uniformly throughout the container.

  5. Studies of Phase Change Materials and a Latent Heat Storage Unit Used for a Natural Circulation Cooling/Latent Heat Storage System

    NASA Astrophysics Data System (ADS)

    Sakitani, Katsumi; Honda, Hiroshi

    Experimental and theoretical studies were made of the heat transfer characteristics of a latent heat storage unit used for a natural circulation cooling /latent heat storage system. Heating and cooling curves of the latent heat storage unit undergoing solid-liquid phase change of a PCM (lauric acid) was obtained by using anatural circulation loop of R22 which consisted of an electrically heated evaporater, a water cooled condenser and the latent heat storage unit. The latent heat storage unit showed a heat transfer performance which was high enough for practical use. An approximate theoretical analysis was conducted to investigate transient behavior of the latent heat storage unit. Predictions of the refrigerant and outer surface temperatures during the melting process were in fair agreement with the experimental data, whereas that of the refrigerant temperature during the solidification process was considerably lower than the measurement.

  6. Use of moving interference fringes for holographic recording onto a moving storage medium.

    PubMed

    Tatemichi, H; Yamamoto, M

    1993-07-10

    We describe a feasibility study of a multiplexed holographic recording method onto a moving storage medium by using moving interference fringes caused by diffracted light beams that are generated from an acousto-optic deflector (AOD). The AOD, driven by amplitude-modulated electric signals, generates several diffracted beams with different frequencies because of Doppler shifting by AOD driving-frequency components. The interference between the beams results in a nonstationary light intensity distribution, i.e., a moving interference fringe. Its velocity is reduced by an image-reduction optical system, and the storage medium is moved at the same velocity as the fringe motion at the image-formation point. This compensates for a reduction of visibility with the movement of the medium, so a holographic recording onto a moving medium can be achieved. In addition, angular multiplexing is achieved by switching the AOD driving frequencies. PMID:20829997

  7. Flexible storage medium for write-once optical tape

    NASA Technical Reports Server (NTRS)

    Strandjord, Andrew J. G.; Webb, Steven P.; Perettie, Donald J.; Cipriano, Robert A.

    1993-01-01

    A write-once data storage media was developed which is suitable for optical tape applications. The media is manufactured using a continuous film process to deposit a ternary alloy of tin, bismuth, and copper. This laser sensitive layer is sputter deposited onto commercial plastic web as a single-layer thin film. A second layer is sequentially deposited on top of the alloy to enhance the media performance and act as an abrasion resistant hard overcoat. The media was observed to have laser write sensitivities of less than 2.0 njoules/bit, carrier-to-noise levels of greater than 50dB's, modulation depths of approximately 100 percent, read-margins of greater than 35, uniform grain sizes of less than 200 Angstroms, and a media lifetime that exceeds 10 years. Prototype tape media was produced for use in the CREO drive system. The active and overcoat materials are first sputter deposited onto three mil PET film in a single pass through the vacuum coating system, and then converted down into multiple reels of 35mm x 880m tape. One mil PET film was also coated in this manner and then slit and packaged into 3480 tape cartridges.

  8. Building heating and cooling applications thermal energy storage program overview

    NASA Technical Reports Server (NTRS)

    Eissenberg, D. M.

    1980-01-01

    Thermal energy storage technology and development of building heating and cooling applications in the residential and commercial sectors is outlined. Three elements are identified to undergo an applications assessment, technology development, and demonstration. Emphasis is given to utility load management thermal energy system application where the stress is on the 'customer side of the meter'. Thermal storage subsystems for space conditioning and conservation means of increased thermal mass within the building envelope and by means of low-grade waste heat recovery are covered.

  9. Copper-silicon-magnesium alloys for latent heat storage

    DOE PAGESBeta

    Gibbs, P. J.; Withey, E. A.; Coker, E. N.; Kruizenga, A. M.; Andraka, C. E.

    2016-06-21

    The systematic development of microstructure, solidification characteristics, and heat of solidification with composition in copper-silicon-magnesium alloys for thermal energy storage is presented. Differential scanning calorimetry was used to relate the thermal characteristics to microstructural development in the investigated alloys and clarifies the location of one of the terminal three-phase eutectics. Repeated thermal cycling highlights the thermal storage stability of the transformation through multiple melting events. In conclusion, two near-terminal eutectic alloys display high enthalpies of solidification, relatively narrow melting ranges, and stable transformation hysteresis behaviors suited to thermal energy storage.

  10. Copper-Silicon-Magnesium Alloys for Latent Heat Storage

    NASA Astrophysics Data System (ADS)

    Gibbs, P. J.; Withey, E. A.; Coker, E. N.; Kruizenga, A. M.; Andraka, C. E.

    2016-06-01

    The systematic development of microstructure, solidification characteristics, and heat of solidification with composition in copper-silicon-magnesium alloys for thermal energy storage is presented. Differential scanning calorimetry was used to relate the thermal characteristics to microstructural development in the investigated alloys and clarifies the location of one of the terminal three-phase eutectics. Repeated thermal cycling highlights the thermal storage stability of the transformation through multiple melting events. Two near-terminal eutectic alloys display high enthalpies of solidification, relatively narrow melting ranges, and stable transformation hysteresis behaviors suited to thermal energy storage.

  11. Radiant heat transfer from storage casks to the environment

    SciTech Connect

    Carlson, R W; Hovingh, J; Thomas, G R

    1999-05-10

    A spent fuel storage cask must efficiently transfer the heat released by the fuel assemblies through the cask walls to the environment. This heat must be transferred through passive means, limiting the energy transfer mechanisms from the cask to natural convection and radiation heat transfer.. Natural convection is essentially independent of the characteristics of the array of casks, provided there is space between casks to permit a convection loop. Radiation heat transfer, however, depends on the geometric arrangement of the array of casks because the peripheral casks will shadow the interior casks and restrict radiant heat transfer from all casks to the environment. The shadowing of one cask by its neighbors is determined by a view factor that represents the fraction of radiant energy that leaves the surface of a cask and reaches the environment. This paper addresses the evaluation of the view factor between a centrally located spent fuel storage cask and the environment. By combining analytic expressions for the view factor of (1) infinitely long cylinders and (2) finite cylinders with a length-to-diameter ratio of 2 to represent spent fuel storage casks, the view factor can be evaluated for any practical array of spent fuel storage casks.

  12. Heat transfer characteristics of uc(d)-mannitol as a phase change material for a medium thermal energy system

    NASA Astrophysics Data System (ADS)

    Shibahara, Makoto; Liu, Qiusheng; Fukuda, Katsuya

    2015-11-01

    Melting process and heat transfer characteristics of uc(d)-mannitol were investigated experimentally and numerically to construct a fundamental database of the waste heat recovery systems for ships. uc(d-)Mannitol which has relatively high latent heat was selected in this study as a phase-change material for medium thermal energy storage. Experimental results indicate that the melting temperature and latent heat of uc(d)-mannitol were affected by the heating rate. The weight of uc(d)-mannitol did not decrease with the increase in temperature between 436 and 455 K. Moreover, numerical simulation was conducted using the commercial CFD code, ANSYS FLUENT. On the basis of the numerical simulation, melting process was affected by natural convection at the inner wall. As the heat flux of the cartridge heater input came from the inner wall, the liquid fraction increased from the inner wall to the outer wall through natural convection. The numerical result was compared with the experimental data. The temperature of the numerical simulation was approximately consistent with the experimental data. Moreover, the local heat transfer coefficients at the heater surface were calculated by the result of the numerical simulation. The heat transfer coefficients decreased during the phase change. It was considered that the heat transfer process changed from conductive heat transfer of solid state to natural convection heat transfer of liquid state as the liquid fraction increased with time.

  13. Heat pipe solar receiver with thermal energy storage

    NASA Technical Reports Server (NTRS)

    Zimmerman, W. F.

    1981-01-01

    An HPSR Stirling engine generator system featuring latent heat thermal energy storge, excellent thermal stability and self regulating, effective thermal transport at low system delta T is described. The system was supported by component technology testing of heat pipes and of thermal storage and energy transport models which define the expected performance of the system. Preliminary and detailed design efforts were completed and manufacturing of HPSR components has begun.

  14. Heat storage capability of a rolling cylinder using Glauber's salt

    NASA Technical Reports Server (NTRS)

    Herrick, C. S.; Zarnoch, K. P.

    1980-01-01

    The rolling cylinder phase change heat storage concept was developed to the point where a prototype design is completed and a cost analysis is prepared. A series of experimental and analytical tasks are defined to establish the thermal, mechanical, and materials behavior of rolling cylinder devices. These tasks include: analyses of internal and external heat transfer; performance and lifetime testing of the phase change materials; corrosion evaluation; development of a mathematical model; and design of a prototype and associated test equipment.

  15. Latent heat thermal energy storage: Determination of properties of storage media and development of a new transfer system

    NASA Astrophysics Data System (ADS)

    Abhat, A.; Aboul-Enein, S.; Malatidis, N. A.

    1982-01-01

    A latent heat storage system for low temperature solar heating applications was developed. Latent heat storage materials were studied and a heat exchanger design was evaluated. Thermophysical properties of 14 organic and inorganic heat storage materials, including 5 inexpensive commercial paraffins, 2 fatty acids, and 5 salt hydrates, were measured with a precision differential scanning calorimeter. Data pertaining to phase transition temperature, enthalphy and, specific heat of the heat storage materials in solid and liquid phases were taken. The influence of thermal cycling on the melting and freezing behavior of the materials and on changes in thermophysical properties was analyzed. A heat exchanger with finned annulus heat exchanger elements was investigated. Tests were performed, using two laboratory models that employed a paraffin, two fatty acids and one salt hydrate as heat storage materials.

  16. The concrete columns as a sensible thermal energy storage medium and a heater

    NASA Astrophysics Data System (ADS)

    Ünalan, Sebahattin; Özrahat, Evrim

    2014-08-01

    This study investigated storage possibility of sensible thermal energy in the concrete columns of multi-storey buildings and the heating performance of the indoors with the stored energy. In the suggested system, the dry air heated in an energy center will be circulated in stainless steel pipes through columns. The sensible thermal energy would firstly be stored by means of forced convection in column medium. Then, the stored thermal energy will transfer by natural convection and radiation from the column surfaces to indoor spaces. The transient thermal calculations are realized for a flat of the 11-storey building in Kayseri city of Turkey. The thermal energy requirement of the flat is nearby 5.3 kW as an average of a winter season. The simplified transient calculations were carried out over a concrete hollow cylindrical column having outer radius of 0.31 m and inner radius of 0.05 m corresponding an averaged column section in the sample flat. The flow temperature was selected between T = 350 and 500 K, which are considerably lower than the temperature of 573 K assumed as a limit for thermal strength of the concrete in the literature. The flow velocity ranges were selected between V = 1.0 and 5.0 m/s. The initial temperature was assumed as 293 K. After the first energy charging process of 23 h, for T = 350 K and V = 1.0 m/s, the total heat flux from the column surfaces into indoors are nearby 5.5 kW. The first charging time required to reach the energy requirement of 5.3 kW is decreased by increasing the flow velocity and temperature. Also for 5.0 m/s-350 K and 5.0 m/s-450 K, this time can decrease to 10 and 4.5 h, respectively. In addition, with 4.0 m/s-360 K or 2.0 m/s-400 K, after the energy charging of 8 h, the energy requirement of 5.3 kW can be provided by the energy discharging of 16 h and the energy charging of 8 h during 7 days. The results are very attractive in terms of the building heating systems of the future.

  17. Building with integral solar-heat storage--Starkville, Mississippi

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Column supporting roof also houses rock-storage bin of solar-energy system supplying more than half building space heating load. Conventional heaters supply hot water. Since bin is deeper and narrower than normal, individual pebble size was increased to keep airflow resistance at minimum.

  18. Anisotropic storage medium development in a full-scale, sodium alanate-based, hydrogen storage system

    DOE PAGESBeta

    Jorgensen, Scott W.; Johnson, Terry A.; Payzant, E. Andrew; Bilheux, Hassina Z.

    2016-06-11

    Deuterium desorption in an automotive-scale hydrogen storage tube was studied in-situ using neutron diffraction. Gradients in the concentration of the various alanate phases were observed along the length of the tube but no significant radial anisotropy was present. In addition, neutron radiography and computed tomography showed large scale cracks and density fluctuations, confirming the presence of these structures in an undisturbed storage system. These results demonstrate that large scale storage structures are not uniform even after many absorption/desorption cycles and that movement of gaseous hydrogen cannot be properly modeled by a simple porous bed model. In addition, the evidence indicatesmore » that there is slow transformation of species at one end of the tube indicating loss of catalyst functionality. These observations explain the unusually fast movement of hydrogen in a full scale system and shows that loss of capacity is not occurring uniformly in this type of hydrogen-storage system.« less

  19. Anisotropic Storage Medium Development in a Full-Scale, Sodium Alanate-Based, Hydrogen Storage System

    SciTech Connect

    Jorgensen, Scott W; Johnson, Terry A; Payzant, E Andrew; Bilheux, Hassina Z

    2016-01-01

    Deuterium desorption in an automotive-scale hydrogen storage tube was studied in-situ using neutron diffraction. Gradients in the concentration of the various alanate phases were observed along the length of the tube but no significant radial anisotropy was present. In addition, neutron radiography and computed tomography showed large scale cracks and density fluctuations, confirming the presence of these structures in an undisturbed storage system. These results demonstrate that large scale storage structures are not uniform even after many absorption/desorption cycles and that movement of gaseous hydrogen cannot be properly modeled by a simple porous bed model. Furthermore, the evidence indicates that there is slow transformation of species at one end of the tube indicating loss of catalyst functionality. These observations explain the unusually fast movement of hydrogen in a full scale system and shows that loss of capacity is not occurring uniformly in this type of hydrogen-storage system.

  20. In Pursuit of Sustainable Hydrogen Storage with Boron-Nitride Fullerene as the Storage Medium.

    PubMed

    Ganguly, Gaurab; Malakar, Tanmay; Paul, Ankan

    2016-06-22

    Using well calibrated DFT studies we predict that experimentally synthesized B24 N24 fullerene can serve as a potential reversible chemical hydrogen storage material with hydrogen-gas storage capacity up to 5.13 wt %. Our theoretical studies show that hydrogenation and dehydrogenation of the fullerene framework can be achieved at reasonable rates using existing metal-free hydrogenating agents and base metal-containing dehydrogenation catalysts. PMID:27174725

  1. Results on the characterization of gas hydrate formation in a direct contact heat pump cool storage system

    NASA Astrophysics Data System (ADS)

    Ternes, M. P.

    1985-07-01

    This report describes an investigation of a latent cool storage system which employs a refrigerant gas hydrate as the storage medium. A refrigerant gas hydrate is a compound consisting of a refrigerant gas molecule contained within a crystalline water molecule cage. In this system, the storage component is incorporated directly into the refrigeration cycle, replacing the conventional evaporator. The refrigerant is used not only to form the gas hydrate, but also as a direct contact heat exchange fluid to remove heat from the storage tank. In this investigation, only the charging phase of the process was examined; that is, only the characteristics of the formation of gas hydrate were studied. The results of the tests showed that liquid refrigerant must be dispersed throughout the water in the storage tank during charging to obtain acceptance.

  2. Efficient Heat Storage Materials: Metallic Composites Phase-Change Materials for High-Temperature Thermal Energy Storage

    SciTech Connect

    2011-11-21

    HEATS Project: MIT is developing efficient heat storage materials for use in solar and nuclear power plants. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun’s not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. MIT is designing nanostructured heat storage materials that can store a large amount of heat per unit mass and volume. To do this, MIT is using phase change materials, which absorb a large amount of latent heat to melt from solid to liquid. MIT’s heat storage materials are designed to melt at high temperatures and conduct heat well—this makes them efficient at storing and releasing heat and enhances the overall efficiency of the thermal storage and energy-generation process. MIT’s low-cost heat storage materials also have a long life cycle, which further enhances their efficiency.

  3. Prolonging storage time of baby ginger by using a sand-based storage medium and essential oil treatment.

    PubMed

    Liu, Ji; Sui, Guoliang; He, Yongzhou; Liu, Dongjie; Yan, Jing; Liu, Shuxiang; Qin, Wen

    2014-04-01

    Wilt and rot occur readily during storage of baby ginger because of its tender skin and high moisture content (MC). A storage medium, which consisted of sand, 20% water, and 3.75% super absorbent polymers delayed weight loss and loss of firmness at 12 °C and 90% relative humidity. Microorganisms were isolated and purified from decayed rhizomes; among these, 3 fungi were identified as pathogens. The results of 18S rDNA sequence analysis showed that these fungi belonged to Penicillium, Fusarium, and Mortierella genera. The use of essential oil for controlling these pathogens was then investigated in vitro. Essential oils extracted from Cinnamomum zeylanicum (cinnamon) and Thymus vulgaris (thyme) completely inhibited the growth of all of the above pathogens at a concentration of 2000 ppm. Cinnamon oil showed higher antifungal activity in the drug sensitivity test with minimal fungicidal concentration (<500 ppm against all pathogens). In the in vivo test, cinnamon fumigation at a concentration of 500 ppm reduced infection rates of Penicillium, Fusarium, and Mortierella by 50.3%, 54.3%, and 60.7%, respectively. We recommended cinnamon oil fumigation combined with medium storage at 12 °C as an integrated approach to baby ginger storage. PMID:24547773

  4. Sub-basement sensible heat storage for solar energy

    SciTech Connect

    Doty, F.D.

    1982-03-30

    A sensible heat storage method for use in conventional buildings with basements is disclosed that permits the long term storage of solar energy at reasonable efficiency in amounts appropriate for home heating. An exchanger consisting of a plurality of closely spaced, small diameter parallel or serpentine tubes with suitable manifolds is constructed on the central portion of the basement floor. The exchanger is covered with a layer of fine gravel, followed with a layer of waterproof insulation. Finally a second floor is supported on studs resting edgewise on the original basement floor. Horizontal conduction heat losses are reduced by allowing a peripheral margin, insulated from above, about the exchanger and by using a flow reversing system that maintains a horizontal temperature gradient within the exchanger.

  5. Heat storage for a bus petrol internal-combustion engine

    NASA Astrophysics Data System (ADS)

    Vasiliev, Leonard L.; Burak, Victor S.; Kulakov, Andry G.; Mishkinis, Donatas A.; Bohan, Pavel V.

    The heat storage (HS) system for pre-heating a bus petrol internal combustion engine to starting was mathematically modelled and experimentally investigated. The development of such devices is an extremely urgent problem especially for regions with a cold climate. We discuss how HS works on the effect of absorption and rejection of heat energy at a solid-liquid phase change of a HS substance. In the first part of the paper a numerical method to calculate the HS mass-dimensional parameters and their characteristics are described. In the experimental part of the paper results are given of experiments on the pre-heating device aiding to start a carburettor engine under operational conditions and analysis of data received. Practical confirmation of the theoretical development of HS devices for a bus engine for starting by pre-heating is given.

  6. Heat and storage effects on the flavour of peanuts.

    PubMed

    el-Kayati, S M; Fadel, H H; Abdel Mageed, M; Farghal, S A

    1998-12-01

    Two peanut varieties, Giza 4 and Giza 5 were subjected to different heat treatments such as drying in solar drier at air speed 0.5 and 2 m/sec with average temperature 45 and 60 degrees C and heating in oven at 120 and 150 degrees C. The sensory evaluation of the two varieties showed insignificant differences among varieties and heating processes. A correlation between the sensory and instrumental data was found. The high sensory scores of samples heated at 150 degrees C were attributed to the presence of high concentration of pyrazines which were thought to contribute to flavour and aroma of fresh roasted peanut. A comparative study between the main chemical classes retained in peanut samples after storage for 3 months at room temperature showed that the aldehydes derived lipids increased significantly in the solar dried samples. The antioxidative components produced via Maillard reaction resulted in oxidative stability of the samples heated in oven. PMID:9881373

  7. Medium- and long-term storage of the Pycnanthemum (mountain mint) germplasm collection.

    PubMed

    Jenderek, Maria M; Holman, Gregory E; DeNoma, Jeanine; Reed, Barbara M

    2013-01-01

    The United States of America collection of mountain mint (Pycnanthemum Michx.) is held at the USDA-ARS National Clonal Germplasm Repository (NCGR) in Corvallis, Oregon as seed, potted plants and tissue cultures and a long-term storage collection is preserved at the USDA-ARS National Center for Genetic Resources Preservation (NCGRP) in Fort Collins, Colorado. The clonal collection is comprised of 34 accessions as potted plants that are duplicated with 31 accessions stored as in vitro cultures at 4 degrees C in tissue culture bags for medium-term storage at NCGR and as cryopreserved shoot tips in liquid nitrogen at NCGRP for long-term storage. This study reports on these two models of preservation of mountain mint at the U.S. National Plant Germplasm System. In vitro plants required 2 to 7 months for propagation on MS medium without growth regulators before storage at 4 degrees C. Plants remained in storage with good vigour in bags on 1/2x nitrogen MS medium without growth regulators for a mean of 2.08 y. An encapsulation-dehydration protocol was successful for cryopreservation of shoot tips from cold acclimated in vitro plants. Post-cryo viability, indicated by shoot tips with developed leaves and roots, ranged from 60 to 100 % for 27 accessions and 40 to 50 % for the other four. The encapsulation-dehydration cryopreservation method proved suitable for long-term preservation of the 31 Pycnanthemum accessions. These alternative storage forms allow for active use of the collection as well as base storage for clonally propagated accessions. PMID:24448768

  8. Influence of geologic layering on heat transport and storage in an aquifer thermal energy storage system

    NASA Astrophysics Data System (ADS)

    Bridger, D. W.; Allen, D. M.

    2013-09-01

    A modeling study was carried out to evaluate the influence of aquifer heterogeneity, as represented by geologic layering, on heat transport and storage in an aquifer thermal energy storage (ATES) system in Agassiz, British Columbia, Canada. Two 3D heat transport models were developed and calibrated using the flow and heat transport code FEFLOW including: a "non-layered" model domain with homogeneous hydraulic and thermal properties; and, a "layered" model domain with variable hydraulic and thermal properties assigned to discrete geological units to represent aquifer heterogeneity. The base model (non-layered) shows limited sensitivity for the ranges of all thermal and hydraulic properties expected at the site; the model is most sensitive to vertical anisotropy and hydraulic gradient. Simulated and observed temperatures within the wells reflect a combination of screen placement and layering, with inconsistencies largely explained by the lateral continuity of high permeability layers represented in the model. Simulation of heat injection, storage and recovery show preferential transport along high permeability layers, resulting in longitudinal plume distortion, and overall higher short-term storage efficiencies.

  9. Candidate thermal energy storage technologies for solar industrial process heat applications

    NASA Technical Reports Server (NTRS)

    Furman, E. R.

    1979-01-01

    A number of candidate thermal energy storage system elements were identified as having the potential for the successful application of solar industrial process heat. These elements which include storage media, containment and heat exchange are shown.

  10. Active heat exchange system development for latent heat thermal energy storage

    NASA Technical Reports Server (NTRS)

    Lefrois, R. T.; Knowles, G. R.; Mathur, A. K.; Budimir, J.

    1979-01-01

    Active heat exchange concepts for use with thermal energy storage systems in the temperature range of 250 C to 350 C, using the heat of fusion of molten salts for storing thermal energy are described. Salt mixtures that freeze and melt in appropriate ranges are identified and are evaluated for physico-chemical, economic, corrosive and safety characteristics. Eight active heat exchange concepts for heat transfer during solidification are conceived and conceptually designed for use with selected storage media. The concepts are analyzed for their scalability, maintenance, safety, technological development and costs. A model for estimating and scaling storage system costs is developed and is used for economic evaluation of salt mixtures and heat exchange concepts for a large scale application. The importance of comparing salts and heat exchange concepts on a total system cost basis, rather than the component cost basis alone, is pointed out. The heat exchange concepts were sized and compared for 6.5 MPa/281 C steam conditions and a 1000 MW(t) heat rate for six hours. A cost sensitivity analysis for other design conditions is also carried out.

  11. Heat storage system utilizing phase change materials government rights

    DOEpatents

    Salyer, Ival O.

    2000-09-12

    A thermal energy transport and storage system is provided which includes an evaporator containing a mixture of a first phase change material and a silica powder, and a condenser containing a second phase change material. The silica powder/PCM mixture absorbs heat energy from a source such as a solar collector such that the phase change material forms a vapor which is transported from the evaporator to the condenser, where the second phase change material melts and stores the heat energy, then releases the energy to an environmental space via a heat exchanger. The vapor is condensed to a liquid which is transported back to the evaporator. The system allows the repeated transfer of thermal energy using the heat of vaporization and condensation of the phase change material.

  12. Tunable blue laser compensates for thermal expansion of the medium in holographic data storage.

    PubMed

    Tanaka, Tomiji; Sako, Kageyasu; Kasegawa, Ryo; Toishi, Mitsuru; Watanabe, Kenjiro

    2007-09-01

    A tunable laser optical source equipped with wavelength and mode-hop monitors was developed to compensate for thermal expansion of the medium in holographic data storage. The laser's tunable range is 402-409 nm, and supplying 90 mA of laser diode current provides an output power greater than 40 mW. The aberration of output light is less than 0.05 lambdarms. The temperature range within which the laser can compensate for thermal expansion of the medium is estimated based on the tunable range, which is +/-13.5 degrees C for glass substrates and +/-17.5 degrees C for amorphous polyolefin substrates. PMID:17805360

  13. (Thermal energy storage technologies for heating and cooling applications)

    SciTech Connect

    Tomlinson, J.J.

    1990-12-19

    Recent results from selected TES research activities in Germany and Sweden under an associated IEA annex are discussed. In addition, several new technologies for heating and cooling of buildings and automobiles were reviewed and found to benefit similar efforts in the United states. Details of a meeting with Didier-Werke AG, a leading German ceramics manufacturer who will provide TES media necessary for the United States to complete field tests of an advanced high temperature latent heat storage material, are presented. Finally, an overview of the December 1990 IEA Executive Committee deliberations on TES is presented.

  14. Thermal energy storage systems using fluidized bed heat exchangers

    NASA Technical Reports Server (NTRS)

    Ramanathan, V.; Weast, T. E.; Ananth, K. P.

    1980-01-01

    The viability of using fluidized bed heat exchangers (FBHX) for thermal energy storage (TES) in applications with potential for waste heat recovery was investigated. Of the candidate applications screened, cement plant rotary kilns and steel plant electric arc furnaces were identified, via the chosen selection criteria, as having the best potential for successful use of FBHX/TES system. A computer model of the FBHX/TES systems was developed and the technical feasibility of the two selected applications was verified. Economic and tradeoff evaluations in progress for final optimization of the systems and selection of the most promising system for further concept validation are described.

  15. Fluid Latent Heat Storage Material Using Ethanol Water Mixture

    NASA Astrophysics Data System (ADS)

    Ohkubo, Hidetoshi; Yasunari, Yuki

    Ethanol water mixture has a liquidus line ( or crystallizing line) and a solidus line (or melting line) that are separated, and therefore it can have both liquid and solid phases existing together. With advances in low temperature technology in recent days, ethanol water mixture is attaching more and more attention as an environment-friendly coolant or as a thermal storage material. In the present study, we observed the crystallization process in the mixture and carried out experiments to evaluate fluidity of the mixture, with the objective of utilizing an ethanol water mixture as a coolant or a thermal energy storage material. Crystal formation and growing process within a minute droplet of a binary mixture was modeled. As a result, we found a novel method to produce a fluid latent heat storage material continuously and an apparent coefficient of viscosity show that rotational speed and solid phase fraction have a strong effect on the fluidity of the mixture.

  16. Wallboard with Latent Heat Storage for Passive Solar Applications

    SciTech Connect

    Kedl, R.J.

    2001-05-31

    Conventional wallboard impregnated with octadecane paraffin [melting point-23 C (73.5 F)] is being developed as a building material with latent heat storage for passive solar and other applications. Impregnation was accomplished simply by soaking the wallboard in molten wax. Concentrations of wax in the combined product as high as 35% by weight can be achieved. Scale-up of the soaking process, from small laboratory samples to full-sized 4- by 8-ft sheets, has been successfully accomplished. The required construction properties of wallboard are maintained after impregnation, that is, it can be painted and spackled. Long-term, high-temperature exposure tests and thermal cycling tests showed no tendency of the paraffin to migrate within the wallboard, and there was no deterioration of thermal energy storage capacity. In support of this concept, a computer model was developed to handle thermal transport and storage by a phase change material (PCM) dispersed in a porous media. The computer model was confirmed by comparison with known analytical solutions and also by comparison with temperatures measured in wallboard during an experimentally generated thermal transient. Agreement between the model and known solution was excellent. Agreement between the model and thermal transient was good, only after the model was modified to allow the PCM to melt over a temperature range, rather than at a specific melting point. When the melting characteristics of the PCM (melting point, melting range, and heat of fusion), as determined from a differential scanning calorimeter plot, were used in the model, agreement between the model and transient data was very good. The confirmed computer model may now be used in conjunction with a building heating and cooling code to evaluate design parameters and operational characteristics of latent heat storage wallboard for passive solar applications.

  17. Integrated heat exchanger design for a cryogenic storage tank

    SciTech Connect

    Fesmire, J. E.; Bonner, T.; Oliveira, J. M.; Johnson, W. L.; Notardonato, W. U.; Tomsik, T. M.; Conyers, H. J.

    2014-01-29

    Field demonstrations of liquid hydrogen technology will be undertaken for the proliferation of advanced methods and applications in the use of cryofuels. Advancements in the use of cryofuels for transportation on Earth, from Earth, or in space are envisioned for automobiles, aircraft, rockets, and spacecraft. These advancements rely on practical ways of storage, transfer, and handling of liquid hydrogen. Focusing on storage, an integrated heat exchanger system has been designed for incorporation with an existing storage tank and a reverse Brayton cycle helium refrigerator of capacity 850 watts at 20 K. The storage tank is a 125,000-liter capacity horizontal cylindrical tank, with vacuum jacket and multilayer insulation, and a small 0.6-meter diameter manway opening. Addressed are the specific design challenges associated with the small opening, complete modularity, pressure systems re-certification for lower temperature and pressure service associated with hydrogen densification, and a large 8:1 length-to-diameter ratio for distribution of the cryogenic refrigeration. The approach, problem solving, and system design and analysis for integrated heat exchanger are detailed and discussed. Implications for future space launch facilities are also identified. The objective of the field demonstration will be to test various zero-loss and densified cryofuel handling concepts for future transportation applications.

  18. Integrated heat exchanger design for a cryogenic storage tank

    NASA Astrophysics Data System (ADS)

    Fesmire, J. E.; Tomsik, T. M.; Bonner, T.; Oliveira, J. M.; Conyers, H. J.; Johnson, W. L.; Notardonato, W. U.

    2014-01-01

    Field demonstrations of liquid hydrogen technology will be undertaken for the proliferation of advanced methods and applications in the use of cryofuels. Advancements in the use of cryofuels for transportation on Earth, from Earth, or in space are envisioned for automobiles, aircraft, rockets, and spacecraft. These advancements rely on practical ways of storage, transfer, and handling of liquid hydrogen. Focusing on storage, an integrated heat exchanger system has been designed for incorporation with an existing storage tank and a reverse Brayton cycle helium refrigerator of capacity 850 watts at 20 K. The storage tank is a 125,000-liter capacity horizontal cylindrical tank, with vacuum jacket and multilayer insulation, and a small 0.6-meter diameter manway opening. Addressed are the specific design challenges associated with the small opening, complete modularity, pressure systems re-certification for lower temperature and pressure service associated with hydrogen densification, and a large 8:1 length-to-diameter ratio for distribution of the cryogenic refrigeration. The approach, problem solving, and system design and analysis for integrated heat exchanger are detailed and discussed. Implications for future space launch facilities are also identified. The objective of the field demonstration will be to test various zero-loss and densified cryofuel handling concepts for future transportation applications.

  19. Constant Temperature Storage House Heated by the Respiration Heat of Agricultural Products

    NASA Astrophysics Data System (ADS)

    Kobiyama, Masayoshi; Takegata, Kiyohide; Hashimoto, Yoshiaki; Kawamoto, Syuroh; Ohno, Syozi

    HIMURO type storage house, cooled by natural snow/ice, has been practically applied by means of its good storing condition and of the easy handling. As this type storage house is constructed by enough insulation structure, it can been used not only for a cool house in the summer but also a constant temperature storage house in the winter. In this paper, the authors suggested that the HIMURO type storage house might be used as the constant temperature house in the severe cold winter season after the theoretical investigation on the thermal characteristics of it. In general, the conventional type constant temperature storage house is heated by heater throughout storing period, that of this paper is self heated by the respiration heat of agricultural products stored in this house, so the house proposed in this paper look forward to smaller heat addition than that of conventional house. The practical experiment was performed to verify the theoretical investigation and to observe the storing condition of the product and we obtained enough results.

  20. Studies of Phase Change Materials and a Latent Heat Storage Unit Used for a Natural Circulation Cooling/Latent Heat Storage System

    NASA Astrophysics Data System (ADS)

    Sakitani, Katsumi; Honda, Hiroshi

    Experiments were performed to investigate feasibility of using organic materials as a PCM for a latent heat storage unit of a natural circulation cooling/latent heat storage system. This system was designed to cool a shelter accommodating telecommunication equipment located in subtropical deserts or similar regions without using a power source. Taking into account practical considerations and the results of various experiments regarding the thermodynamic properties, thermal degradation, and corrosiveness to metals, lauric acid and iron was selected for the PCM and the latent heat storage unit material, respectively. Cyclic heating and cooling of the latent heat storage unit undergoing solid-liquid phase change was repeated for more than 430 days. The results showed that the heating-cooling curve was almost unchanged between the early stage and the 1,870th cycle. It was concluded that the latent heat storage unit could be used safely for more than ten years as a component of the cooling system.

  1. Light storage in a tripod medium as a basis for logical operations

    NASA Astrophysics Data System (ADS)

    Słowik, K.; Raczyński, A.; Zaremba, J.; Zielińska-Kaniasty, S.

    2012-05-01

    A photon being a carrier of a polarization qubit is stored inside an atomic medium in the tripod configuration in the form of atomic excitations. Such stored information can be processed in the atomic memory and carried away by the released photon. An implementation is proposed of single qubit gates, e.g., phase, NOT, √{NOT} and Hadamard, as well as for a two-qubit CNOT gate, operating on polarized photons and based on light storage.

  2. Active latent heat storage with a screw heat exchanger - experimental results for heat transfer and concept for high pressure steam

    NASA Astrophysics Data System (ADS)

    Zipf, Verena; Willert, Daniel; Neuhäuser, Anton

    2016-05-01

    An innovative active latent heat storage concept was invented and developed at Fraunhofer ISE. It uses a screw heat exchanger (SHE) for the phase change during the transport of a phase change material (PCM) from a cold to a hot tank or vice versa. This separates heat transfer and storage tank in comparison to existing concepts. A test rig has been built in order to investigate the heat transfer coefficients of the SHE during melting and crystallization of the PCM. The knowledge of these characteristics is crucial in order to assess the performance of the latent heat storage in a thermal system. The test rig contains a double shafted SHE, which is heated or cooled with thermal oil. The overall heat transfer coefficient U and the convective heat transfer coefficient on the PCM side hPCM both for charging and discharging have been calculated based on the measured data. For charging, the overall heat transfer coefficient in the tested SHE was Uch = 308 W/m2K and for discharging Udis = 210 W/m2K. Based on the values for hPCM the overall heat transfer coefficients for a larger SHE with steam as heat transfer fluid and an optimized geometry were calculated with Uch = 320 W/m2K for charging and Udis = 243 W/m2K for discharging. For pressures as high as p = 100 bar, an SHE concept has been developed, which uses an organic fluid inside the flight of the SHE as working media. With this concept, the SHE can also be deployed for very high pressure, e.g. as storage in solar thermal power plants.

  3. Preparation of fine powdered composite for latent heat storage

    NASA Astrophysics Data System (ADS)

    Fořt, Jan; Pomaleski, Marina; Trník, Anton; Pavlíková, Milena; Pavlík, Zbyšek

    2016-07-01

    Application of latent heat storage building envelope systems using phase-change materials represents an attractive method of storing thermal energy and has the advantages of high-energy storage density and the isothermal nature of the storage process. This study deals with a preparation of a new type of powdered phase change composite material for thermal energy storage. The idea of a composite is based upon the impregnation of a natural silicate material by a reasonably priced commercially produced pure phase change material and forming the homogenous composite powdered structure. For the preparation of the composite, vacuum impregnation method is used. The particle size distribution accessed by the laser diffraction apparatus proves that incorporation of the organic phase change material into the structure of inorganic siliceous pozzolana does not lead to the clustering of the particles. The compatibility of the prepared composite is characterized by the Fourier transformation infrared analysis (FTIR). Performed DSC analysis shows potential of the developed composite for thermal energy storage that can be easily incorporated into the cement-based matrix of building materials. Based on the obtained results, application of the developed phase change composite can be considered with a great promise.

  4. Integral collector storage system with heat exchange apparatus

    DOEpatents

    Rhodes, Richard O.

    2004-04-20

    The present invention relates to an integral solar energy collector storage systems. Generally, an integral collector storage system includes a tank system, a plurality of heat exchange tubes with at least some of the heat exchange tubes arranged within the tank system, a first glazing layer positioned over the tank system and a base plate positioned under the tank system. In one aspect of the invention, the tank system, the first glazing layer an the base plate each include protrusions and a clip is provided to hold the layers together. In another aspect of the invention, the first glazing layer and the base plate are ribbed to provide structural support. This arrangement is particularly useful when these components are formed from plastic. In yet another aspect of the invention, the tank system has a plurality of interconnected tank chambers formed from tubes. In this aspect, a supply header pipe and a fluid return header pipe are provided at a first end of the tank system. The heat exchange tubes have inlets coupled to the supply header pipe and outlets coupled to the return header pipe. With this arrangement, the heat exchange tubes may be inserted into the tank chambers from the first end of the tank system.

  5. Quantum Storage and Cloning of Light States in Eit-Like Medium

    NASA Astrophysics Data System (ADS)

    Alodjants, A. P.; Arakelian, S. M.

    In the paper we consider a new approach for storage and cloning of quantum information by three level atomic (molecular) systems in the presence of the electromagnetically induced transparency (EIT) effect. For that, the various schemes of transformation into the bright and dark polaritons for quantum states of optical field in the medium are proposed. Physical conditions of realization of quantum nondemolition (QND) storage of quantum optical state are formulated for the first time. We have shown that the best storage and cloning of can be achieved with the atomic ensemble in the Bose-Einstein condensation state. We discuss stimulated Raman two-color photoassociation for experimental realization of the schemes under consideration.

  6. Experimental simulation of latent heat thermal energy storage and heat pipe thermal transport for dish concentrator solar receiver

    NASA Technical Reports Server (NTRS)

    Narayanan, R.; Zimmerman, W. F.; Poon, P. T. Y.

    1981-01-01

    Test results on a modular simulation of the thermal transport and heat storage characteristics of a heat pipe solar receiver (HPSR) with thermal energy storage (TES) are presented. The HPSR features a 15-25 kWe Stirling engine power conversion system at the focal point of a parabolic dish concentrator operating at 827 C. The system collects and retrieves solar heat with sodium pipes and stores the heat in NaF-MgF2 latent heat storage material. The trials were run with a single full scale heat pipe, three full scale TES containers, and an air-cooled heat extraction coil to replace the Stirling engine heat exchanger. Charging and discharging, constant temperature operation, mixed mode operation, thermal inertial, etc. were studied. The heat pipe performance was verified, as were the thermal energy storage and discharge rates and isothermal discharges.

  7. Conventional wallboard with latent heat storage for passive solar applications

    SciTech Connect

    Kedl, R.J.

    1990-01-01

    Conventional wallboard impregnated with octadecane paraffin (Melting Point -- 73.5{degree}F) is being developed as a building material with latent heat storage for passive solar applications. Impregnation was accomplished simply by soaking the wallboard in molten paraffin. Concentrations of paraffin in the combined product as high as 35{percent} by weight were achieved. In support of this concept, a computer model was developed to describe thermal transport and storage by a phase change material (PCM) dispersed in a porous media. The computer model was confirmed by comparison with known analytical solutions where the PCM melts at a specific melting point. However, agreement between the model and an experimentally produced thermal transient involving impregnated wallboard was only good after the model was modified to allow the paraffin to melt over a temperature range. This was accomplished by replacing the heat of fusion with a triangular heat capacity relationship that mimics the triangular melt curve found through differential scanning calorimetry. When this change was made, agreement between the model and the experimental transient was very good. 4 refs., 8 figs.

  8. [Forecasting heat and functional state of human exposed to cooling in water medium].

    PubMed

    Afanas'eva, R F; Losik, T K; Bobrov, A F; Azhaev, A N; Ivanov, I V

    2005-01-01

    Based on mathematic and statistic analysis of results obtained in studies of human heat exchange with cooling water medium, the authors represented canonical correlational patterns to determine integral parameter of cooling conditions (IPCC) referred to naked human and with various clothes on, both with and without additional heat releasing sources. Mathematic and statistic analysis helped to present correlational patterns for predicting levels of changes in human functional state according to IPCC comprising complex of factors that determine heat exchange in water medium, including safe time for stay in it. PMID:16048063

  9. Heat transfer in porous medium embedded with vertical plate: Non-equilibrium approach - Part A

    NASA Astrophysics Data System (ADS)

    Badruddin, Irfan Anjum; Quadir, G. A.

    2016-06-01

    Heat transfer in a porous medium embedded with vertical flat plate is investigated by using thermal non-equilibrium model. Darcy model is employed to simulate the flow inside porous medium. It is assumed that the heat transfer takes place by natural convection and radiation. The vertical plate is maintained at isothermal temperature. The governing partial differential equations are converted into non-dimensional form and solved numerically using finite element method. Results are presented in terms of isotherms and streamlines for various parameters such as heat transfer coefficient parameter, thermal conductivity ratio, and radiation parameter

  10. High Temperature Metal Hydrides as Heat Storage Materials for Solar and Related Applications

    PubMed Central

    Felderhoff, Michael; Bogdanović, Borislav

    2009-01-01

    For the continuous production of electricity with solar heat power plants the storage of heat at a temperature level around 400 °C is essential. High temperature metal hydrides offer high heat storage capacities around this temperature. Based on Mg-compounds, these hydrides are in principle low-cost materials with excellent cycling stability. Relevant properties of these hydrides and their possible applications as heat storage materials are described. PMID:19333448

  11. High temperature metal hydrides as heat storage materials for solar and related applications.

    PubMed

    Felderhoff, Michael; Bogdanović, Borislav

    2009-01-01

    For the continuous production of electricity with solar heat power plants the storage of heat at a temperature level around 400 degrees C is essential. High temperature metal hydrides offer high heat storage capacities around this temperature. Based on Mg-compounds, these hydrides are in principle low-cost materials with excellent cycling stability. Relevant properties of these hydrides and their possible applications as heat storage materials are described. PMID:19333448

  12. A method to determine stratification efficiency of thermal energy storage processes independently from storage heat losses

    SciTech Connect

    Haller, Michel Y.; Streicher, Wolfgang; Bales, Chris

    2010-06-15

    A new method for the calculation of a stratification efficiency of thermal energy storages based on the second law of thermodynamics is presented. The biasing influence of heat losses is studied theoretically and experimentally. Theoretically, it does not make a difference if the stratification efficiency is calculated based on entropy balances or based on exergy balances. In practice, however, exergy balances are less affected by measurement uncertainties, whereas entropy balances can not be recommended if measurement uncertainties are not corrected in a way that the energy balance of the storage process is in agreement with the first law of thermodynamics. A comparison of the stratification efficiencies obtained from experimental results of charging, standby, and discharging processes gives meaningful insights into the different mixing behaviors of a storage tank that is charged and discharged directly, and a tank-in-tank system whose outer tank is charged and the inner tank is discharged thereafter. The new method has a great potential for the comparison of the stratification efficiencies of thermal energy storages and storage components such as stratifying devices. (author)

  13. Heat transfer in vertically aligned phase change energy storage systems

    SciTech Connect

    El-Dessouky, H.T.; Bouhamra, W.S.; Ettouney, H.M.; Akbar, M.

    1999-05-01

    Convection effects on heat transfer are analyzed in low temperature and vertically aligned phase change energy storage systems. This is performed by detailed temperature measurements in the phase change material (PCM) in eighteen locations forming a grid of six radial and three axial positions. The system constitutes a double pipe configuration, where commercial grade paraffin wax is stored in the annular space between the two pipes and water flows inside the inner pipe. Vertical alignment of the system allowed for reverse of the flow direction of the heat transfer fluid (HTF), which is water. Therefore, the PCM is heated from the bottom for HTF flow from bottom to top and from the top as the HTF flow direction is reversed. For the former case, natural convection affects the melting process. Collected data are used to study variations in the transient temperature distribution at axial and radial positions as well as for the two-dimensional temperature field. The data are used to calculate the PCM heat transfer coefficient and to develop correlations for the melting Fourier number. Results indicate that the PCM heat transfer coefficient is higher for the case of PCM heating from bottom to top. Nusselt number correlations are developed as a function of Rayleigh, Stefan, and Fourier numbers for the HTF flow from bottom to top and as a function of Stefan and Fourier numbers for HTF flow from top to bottom. The enhancement ratio for heat transfer caused by natural convection increases and then levels off as the inlet temperature of the HTF is increased.

  14. Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for Concentrating Solar Power Plants

    SciTech Connect

    Mathur, Anoop

    2013-08-14

    A key technological issue facing the success of future Concentrating Solar Thermal Power (CSP) plants is creating an economical Thermal Energy Storage (TES) system. Current TES systems use either sensible heat in fluids such as oil, or molten salts, or use thermal stratification in a dual-media consisting of a solid and a heat-transfer fluid. However, utilizing the heat of fusion in inorganic molten salt mixtures in addition to sensible heat , as in a Phase change material (PCM)-based TES, can significantly increase the energy density of storage requiring less salt and smaller containers. A major issue that is preventing the commercial use of PCM-based TES is that it is difficult to discharge the latent heat stored in the PCM melt. This is because when heat is extracted, the melt solidifies onto the heat exchanger surface decreasing the heat transfer. Even a few millimeters of thickness of solid material on heat transfer surface results in a large drop in heat transfer due to the low thermal conductivity of solid PCM. Thus, to maintain the desired heat rate, the heat exchange area must be large which increases cost. This project demonstrated that the heat transfer coefficient can be increase ten-fold by using forced convection by pumping a hyper-eutectic salt mixture over specially coated heat exchanger tubes. However,only 15% of the latent heat is used against a goal of 40% resulting in a projected cost savings of only 17% against a goal of 30%. Based on the failure mode effect analysis and experience with pumping salt at near freezing point significant care must be used during operation which can increase the operating costs. Therefore, we conclude the savings are marginal to justify using this concept for PCM-TES over a two-tank TES. The report documents the specialty coatings, the composition and morphology of hypereutectic salt mixtures and the results from the experiment conducted with the active heat exchanger along with the lessons learnt during

  15. Sensible heat storage technologies for solar thermal applications

    SciTech Connect

    Dincer, I.; Dost, S.; Li, X.

    1997-07-01

    This study mainly deals with the sensible heat storage (SHS) systems and their performance evaluations. In this respect, a detailed investigation on the availability of SHS techniques for solar thermal applications, selection criteria of SHS systems, economics of SHS systems, main issues for evaluating SHS systems, the viability of SHS systems, environmental impacts of SHS systems and criteria for a SHS feasibility study, as well as energy saving options is presented. In addition, several definitions of energy and exergy efficiency for the performance of SHS systems are provided with an illustrative example.

  16. Thermal energy storage for industrial waste heat recovery

    NASA Technical Reports Server (NTRS)

    Hoffman, H. W.; Kedl, R. J.; Duscha, R. A.

    1978-01-01

    The potential is examined for waste heat recovery and reuse through thermal energy storage in five specific industrial categories: (1) primary aluminum, (2) cement, (3) food processing, (4) paper and pulp, and (5) iron and steel. Preliminary results from Phase 1 feasibility studies suggest energy savings through fossil fuel displacement approaching 0.1 quad/yr in the 1985 period. Early implementation of recovery technologies with minimal development appears likely in the food processing and paper and pulp industries; development of the other three categories, though equally desirable, will probably require a greater investment in time and dollars.

  17. Nanoparticles for heat transfer and thermal energy storage

    DOEpatents

    Singh, Dileep; Cingarapu, Sreeram; Timofeeva, Elena V.; Moravek, Michael

    2015-07-14

    An article of manufacture and method of preparation thereof. The article of manufacture and method of making the article includes an eutectic salt solution suspensions and a plurality of nanocrystalline phase change material particles having a coating disposed thereon and the particles capable of undergoing the phase change which provides increase in thermal energy storage. In addition, other articles of manufacture can include a nanofluid additive comprised of nanometer-sized particles consisting of copper decorated graphene particles that provide advanced thermal conductivity to heat transfer fluids.

  18. Thermal storage for industrial process and reject heat

    NASA Technical Reports Server (NTRS)

    Duscha, R. A.; Masica, W. J.

    1978-01-01

    Industrial production uses about 40 percent of the total energy consumed in the United States. The major share of this is derived from fossil fuel. Potential savings of scarce fuel is possible through the use of thermal energy storage (TES) of reject or process heat for subsequent use. Three especially significant industries where high temperature TES appears attractive - paper and pulp, iron and steel, and cement are discussed. Potential annual fuel savings, with large scale implementation of near-term TES systems for these three industries, is nearly 9,000,000 bbl of oil.

  19. Thermal storage for industrial process and reject heat

    NASA Technical Reports Server (NTRS)

    Duscha, R. A.; Masica, W. J.

    1978-01-01

    Industrial production uses about 40% of the total energy consumed in the United States. The major share of this is derived from fossil fuel. Potential savings of scarce fuel is possible through the use of thermal energy storage (TES) of reject or process heat for subsequent use. Results of study contracts awarded by the Department of Energy (DOE) and managed by the NASA Lewis Research Center have identified three especially significant industries where high temperature TES appears attractive - paper and pulp, iron and steel, and cement. Potential annual fuel savings with large scale implementation of near-term TES systems for these three industries is nearly 9 million bbl of oil.

  20. Optimization of storage in passive solar heating systems. Final report

    SciTech Connect

    Bahm, R.J.

    1980-05-01

    The search for a simple method of estimating the optimum amount of storage for passive solar space heating system designs and the results of that search are described. The project goals, and why the project is important are described. The major project results are presented in the order of their importance with respect to meeting the project goal. A narrative description of the project is given. Here the various approaches attempted are described, giving the reasons for failure in those areas that were not successful. The Appendices contain the bulk of data generated by this project. Most of the data is presented in graphical form. (MHR)

  1. Study of thermal energy storage using fluidized bed heat exchangers

    NASA Technical Reports Server (NTRS)

    Weast, T. E.; Shannon, L. J.; Ananth, K. P.

    1980-01-01

    The technical and economic feasibility of fluid bed heat exchangers (FBHX) for thermal energy storage (TES) in waste heat recovery applications is assessed by analysis of two selected conceptual systems, the rotary cement kiln and the electric arc furnace. It is shown that the inclusion of TES in the energy recovery system requires that the difference in off-peak and on-peak energy rates be large enough so that the value of the recovered energy exceeds the value of the stored energy by a wide enough margin to offset parasitic power and thermal losses. Escalation of on-peak energy rates due to fuel shortages could make the FBHX/TES applications economically attractive in the future.

  2. Monitoring changes in upper ocean heat storage from satellites

    NASA Technical Reports Server (NTRS)

    Miller, J. R.

    1978-01-01

    A one-dimensional model of the upper ocean mixed-layer was developed to determine how the parameters which can be measured from satellites affect the development of the layer. The results show that the form of the dissipation term is important in achieving cyclic annual states, that the layer deepending rate depends on the averaging period for the surface heat flux and wind stress, that wind direction, as well as magnitude, can affect the deepening rate and that horizontal advective effects cannot simply be superimposed on the model results. An algorithm is given which uses satellite derived wind stress and sea surface temperature data to predict real time changes in upper ocean heat storage during the cooling seasons.

  3. Iron-doped lithium niobate as a read-write holographic storage medium

    NASA Technical Reports Server (NTRS)

    Alphonse, G. A.; Phillips, W.

    1976-01-01

    The response of iron-doped lithium niobate under conditions corresponding to hologram storage and retrieval is described, and the material characteristics are discussed. The optical sensitivity can be improved by heavy chemical reduction of lightly doped crystals such that most of the iron is in the divalent state, the remaining part being trivalent. The best reduction process found to be reproducible so far is the anneal of the doped crystal in the presence of a salt such as lithium carbonate. It is shown by analysis and simulation that a page-oriented read-write holographic memory with 1000 bits per page would have a cycle time of about 60 msec and a signal-to-noise ratio of 27 dB. This cycle time, although still too long for a practical memory, represents an improvement of two orders of magnitude over that of previous laboratory prototypes using a thermoplastic storage medium

  4. Performance of direct contact latent heat storage unit

    SciTech Connect

    Farid, M.; Yacoub, K. )

    1989-01-01

    The performance of direct contact latent heat storage unit has been investigated in a glass column having an inside diameter and length of 0.2 m and 1.5 m respectively. Kerosene, as a heat transfer fluid, was bubbled through the continuous phase which was a solution of one of the hydrated salts: Na{sub 2}CO{sub 3}{center dot}10H{sub 2}O, Na{sub 2}SO{sub 4}{center dot}10H{sub 2}O, and Na{sub 2}HPO{sub 4}{center dot}12H{sub 2}O. The continuous phase temperature at different heights together with the kerosene inlet and outlet temperatures were measured with time during both heat charge and discharge. Theoretical prediction of the performance of the unit has been achieved employing the model for drop with internal circulation which was used to evaluate the transfer efficiency. Thermal efficiency of the nit was found to increase with the larger column. A sharp decrease in the magnitude of the heat transfer coefficient was observed soon after crystallization started. The coefficient increased significantly at higher kerosene flow rates due to the information of smaller bubbles.

  5. Central unresolved issues in thermal energy storage for building heating and cooling

    SciTech Connect

    Swet, C.J.; Baylin, F.

    1980-07-01

    This document explores the frontier of the rapidly expanding field of thermal energy storage, investigates unresolved issues, outlines research aimed at finding solutions, and suggests avenues meriting future research. Issues related to applications include value-based ranking of storage concepts, temperature constraints, consistency of assumptions, nomenclature and taxonomy, and screening criteria for materials. Issues related to technologies include assessing seasonal storage concepts, diurnal coolness storage, selection of hot-side storage concepts for cooling-only systems, phase-change storage in building materials, freeze protection for solar water heating systems, and justification of phase-change storage for active solar space heating.

  6. Packed bed heat storage: Continuum mechanics model and validation

    NASA Astrophysics Data System (ADS)

    Knödler, Philipp; Dreißigacker, Volker; Zunft, Stefan

    2016-05-01

    Thermal energy storage (TES) systems are key elements for various types of new power plant concepts. As possible cost-effective storage inventory option, packed beds of miscellaneous material come into consideration. However, high technical risks arise due to thermal expansion and shrinking of the packed bed's particles during cyclic thermal operation, possibly leading to material failure. Therefore, suitable tools for designing the heat storage system are mandatory. While particle discrete models offer detailed simulation results, the computing time for large scale applications is inefficient. In contrast, continuous models offer time-efficient simulation results but are in need of effective packed bed parameters. This work focuses on providing insight into some basic methods and tools on how to obtain such parameters and on how they are implemented into a continuum model. In this context, a particle discrete model as well as a test rig for carrying out uniaxial compression tests (UCT) is introduced. Performing of experimental validation tests indicate good agreement with simulated UCT results. In this process, effective parameters required for a continuous packed bed model were identified and used for continuum simulation. This approach is validated by comparing the simulated results with experimental data from another test rig. The presented method significantly simplifies subsequent design studies.

  7. Wallboard with latent heat storage for passive solar applications

    SciTech Connect

    Kedl, R.J.

    1991-05-01

    Conventional wallboard impregnated with octadecane paraffin is being developed as a building material with latent heat storage for passive solar and other applications. Impregnation was accomplished simply by soaking the wallboard in molten wax. Concentrations of wax in the combined product as high as 35% by weight can be achieved. Scale-up of the soaking process, from small laboratory samples to full-sized 4- by 8-ft sheets, has been successfully accomplished. The required construction properties of wallboard are maintained after impregnation, that is, it can be painted and spackled. Long-term, high-temperature exposure tests and thermal cycling tests showed no tendency of the paraffin to migrate within the wallboard, and there was no deterioration of thermal energy storage capacity. In support of this concept, a computer model was developed to handle thermal transport and storage by a phase change material (PCM) dispersed in a porous media. The computer model was confirmed by comparison with known analytical solutions and also by comparison with temperatures measured in wallboard during an experimentally generated thermal transient. Agreement between the model and known solution was excellent. Agreement between the model and thermal transient was good, only after the model was modified to allow the PCM to melt over a temperature range, rather than at a specific melting point. When the melting characteristics of the PCM, as determined from a differential scanning calorimeter plot, were used in the model, agreement between the model and transient data was very good. 11 refs., 25 figs., 2 tabs.

  8. Thermal Assessment of a Latent-Heat Energy Storage Module During Melting and Freezing for Solar Energy Applications

    NASA Astrophysics Data System (ADS)

    Ramos Archibold, Antonio

    Capital investment reduction, exergetic efficiency improvement and material compatibility issues have been identified as the primary techno-economic challenges associated, with the near-term development and deployment of thermal energy storage (TES) in commercial-scale concentrating solar power plants. Three TES techniques have gained attention in the solar energy research community as possible candidates to reduce the cost of solar-generated electricity, namely (1) sensible heat storage, (2) latent heat (tank filled with phase change materials (PCMs) or encapsulated PCMs packed in a vessel) and (3) thermochemical storage. Among these the PCM macro-encapsulation approach seems to be one of the most-promising methods because of its potential to develop more effective energy exchange, reduce the cost associated with the tank and increase the exergetic efficiency. However, the technological barriers to this approach arise from the encapsulation techniques used to create a durable capsule, as well as an assessment of the fundamental thermal energy transport mechanisms during the phase change. A comprehensive study of the energy exchange interactions and induced fluid flow during melting and solidification of a confined storage medium is reported in this investigation from a theoretical perspective. Emphasis has been placed on the thermal characterization of a single constituent storage module rather than an entire storage system, in order to, precisely capture the energy exchange contributions of all the fundamental heat transfer mechanisms during the phase change processes. Two-dimensional, axisymmetric, transient equations for mass, momentum and energy conservation have been solved numerically by the finite volume scheme. Initially, the interaction between conduction and natural convection energy transport modes, in the absence of thermal radiation, is investigated for solar power applications at temperatures (300--400°C). Later, participating thermal radiation

  9. Experimental determination of soil heat storage for the simulation of heat transport in a coastal wetland

    NASA Astrophysics Data System (ADS)

    Swain, Michael; Swain, Matthew; Lohmann, Melinda; Swain, Eric

    2012-02-01

    SummaryTwo physical experiments were developed to better define the thermal interaction of wetland water and the underlying soil layer. This information is important to numerical models of flow and heat transport that have been developed to support biological studies in the South Florida coastal wetland areas. The experimental apparatus consists of two 1.32 m diameter by 0.99 m tall, trailer-mounted, well-insulated tanks filled with soil and water. A peat-sand-soil mixture was used to represent the wetland soil, and artificial plants were used as a surrogate for emergent wetland vegetation based on size and density observed in the field. The tanks are instrumented with thermocouples to measure vertical and horizontal temperature variations and were placed in an outdoor environment subject to solar radiation, wind, and other factors affecting the heat transfer. Instruments also measure solar radiation, relative humidity, and wind speed. Tests indicate that heat transfer through the sides and bottoms of the tanks is negligible, so the experiments represent vertical heat transfer effects only. The temperature fluctuations measured in the vertical profile through the soil and water are used to calibrate a one-dimensional heat-transport model. The model was used to calculate the thermal conductivity of the soil. Additionally, the model was used to calculate the total heat stored in the soil. This information was then used in a lumped parameter model to calculate an effective depth of soil which provides the appropriate heat storage to be combined with the heat storage in the water column. An effective depth, in the model, of 5.1 cm of wetland soil represents the heat storage needed to match the data taken in the tank containing 55.9 cm of peat/sand/soil mix. The artificial low-density laboratory sawgrass reduced the solar energy absorbed by the 35.6 cm of water and 55.9 cm of soil at midday by less than 5%. The maximum heat transfer into the underlying peat

  10. Experimental determination of soil heat storage for the simulation of heat transport in a coastal wetland

    USGS Publications Warehouse

    Swain, Michael; Swain, Matthew; Lohmann, Melinda; Swain, Eric

    2012-01-01

    Two physical experiments were developed to better define the thermal interaction of wetland water and the underlying soil layer. This information is important to numerical models of flow and heat transport that have been developed to support biological studies in the South Florida coastal wetland areas. The experimental apparatus consists of two 1.32. m diameter by 0.99. m tall, trailer-mounted, well-insulated tanks filled with soil and water. A peat-sand-soil mixture was used to represent the wetland soil, and artificial plants were used as a surrogate for emergent wetland vegetation based on size and density observed in the field. The tanks are instrumented with thermocouples to measure vertical and horizontal temperature variations and were placed in an outdoor environment subject to solar radiation, wind, and other factors affecting the heat transfer. Instruments also measure solar radiation, relative humidity, and wind speed.Tests indicate that heat transfer through the sides and bottoms of the tanks is negligible, so the experiments represent vertical heat transfer effects only. The temperature fluctuations measured in the vertical profile through the soil and water are used to calibrate a one-dimensional heat-transport model. The model was used to calculate the thermal conductivity of the soil. Additionally, the model was used to calculate the total heat stored in the soil. This information was then used in a lumped parameter model to calculate an effective depth of soil which provides the appropriate heat storage to be combined with the heat storage in the water column. An effective depth, in the model, of 5.1. cm of wetland soil represents the heat storage needed to match the data taken in the tank containing 55.9. cm of peat/sand/soil mix. The artificial low-density laboratory sawgrass reduced the solar energy absorbed by the 35.6. cm of water and 55.9. cm of soil at midday by less than 5%. The maximum heat transfer into the underlying peat-sand-soil mix

  11. Castor-1C spent fuel storage cask decay heat, heat transfer, and shielding analyses

    SciTech Connect

    Rector, D.R.; McCann, R.A.; Jenquin, U.P.; Heeb, C.M.; Creer, J.M.; Wheeler, C.L.

    1986-12-01

    This report documents the decay heat, heat transfer, and shielding analyses of the Gesellschaft fuer Nuklear Services (GNS) CASTOR-1C cask used in a spent fuel storage demonstration performed at Preussen Elektra's Wurgassen nuclear power plant. The demonstration was performed between March 1982 and January 1984, and resulted in cask and fuel temperature data and cask exterior surface gamma-ray and neutron radiation dose rate measurements. The purpose of the analyses reported here was to evaluate decay heat, heat transfer, and shielding computer codes. The analyses consisted of (1) performing pre-look predictions (predictions performed before the analysts were provided the test data), (2) comparing ORIGEN2 (decay heat), COBRA-SFS and HYDRA (heat transfer), and QAD and DOT (shielding) results to data, and (3) performing post-test analyses if appropriate. Even though two heat transfer codes were used to predict CASTOR-1C cask test data, no attempt was made to compare the two codes. The codes are being evaluated with other test data (single-assembly data and other cask data), and to compare the codes based on one set of data may be premature and lead to erroneous conclusions.

  12. Reversible storage of a weak light pulse in a thermal atomic medium

    NASA Astrophysics Data System (ADS)

    Yang, Guo-Jian; Qiu, Tianhui; Wang, Kaige; Xie, Min

    2010-06-01

    We investigate the storage and retrieval of a weak signal pulse in a medium composed of NΛ-type three-level atoms in thermal motion. Both atomic internal and translational degrees of freedom are treated quantum mechanically, based on which momentum families that are closed with respect to the action of the interaction Hamiltonian are defined. We introduce momentum-dependent collective atomic density operators by sorting the atoms into groups according to their momenta and establish Heisenberg equations for these atomic operators and the signal field. Because of the thermal-motion-dependent dephasing effect in the establishment of electromagnetically induced transparency of the medium, the efficiency of transfer between the signal pulse and the medium is reduced. The numerical simulations show that the performance of the scheme can be improved by applying the copropagation configuration of the light fields and preparing the atoms initially with a small width of the thermal momentum distribution, which is assumed to be the Gaussian function, or in the state where the Raman-Nath approximation is tenable.

  13. Novel metallic alloys as phase change materials for heat storage in direct steam generation applications

    NASA Astrophysics Data System (ADS)

    Nieto-Maestre, J.; Iparraguirre-Torres, I.; Velasco, Z. Amondarain; Kaltzakorta, I.; Zubieta, M. Merchan

    2016-05-01

    Concentrating Solar Power (CSP) is one of the key electricity production renewable energy technologies with a clear distinguishing advantage: the possibility to store the heat generated during the sunny periods, turning it into a dispatchable technology. Current CSP Plants use an intermediate Heat Transfer Fluid (HTF), thermal oil or inorganic salt, to transfer heat from the Solar Field (SF) either to the heat exchanger (HX) unit to produce high pressure steam that can be leaded to a turbine for electricity production, or to the Thermal Energy Storage (TES) system. In recent years, a novel CSP technology is attracting great interest: Direct Steam Generation (DSG). The direct use of water/steam as HTF would lead to lower investment costs for CSP Plants by the suppression of the HX unit. Moreover, water is more environmentally friendly than thermal oils or salts, not flammable and compatible with container materials (pipes, tanks). However, this technology also has some important challenges, being one of the major the need for optimized TES systems. In DSG, from the exergy point of view, optimized TES systems based on two sensible heat TES systems (for preheating of water and superheating vapour) and a latent heat TES system for the evaporation of water (around the 70% of energy) is the preferred solution. This concept has been extensively tested [1, 2, 3] using mainly NaNO3 as latent heat storage medium. Its interesting melting temperature (Tm) of 306°C, considering a driving temperature difference of 10°C, means TES charging steam conditions of 107 bar at 316°C and discharging conditions of 81bar at 296°C. The average value for the heat of fusion (ΔHf) of NaNO3 from literature data is 178 J/g [4]. The main disadvantage of inorganic salts is their very low thermal conductivity (0.5 W/m.K) requiring sophisticated heat exchanging designs. The use of high thermal conductivity eutectic metal alloys has been recently proposed [5, 6, 7] as a feasible alternative. Tms

  14. Engineering Model of Liquid Storage Utility Tank for Heat Transfer Analysis

    SciTech Connect

    Kwon, K.C.

    1995-09-27

    The utility or chemical storage tank requires special engineering attention and heat transfer analysis because the tank content is very sensitive to temperature and surrounding environment such as atmospheric or outside air, humidity, and solar radiation heat. A simplified heat transfer model was developed to calculate the liquid content temperature of utility storage tank. The content of the utility storage tanks can be water or any other chemical liquid. An engineering model of liquid storage tank for heat transfer analysis and temperature calculations are presented and discussed in the examples of Tanks No. 1 containing oxalic acid and No. 2 containing sodium tetraphenylborate solution.

  15. Heating of the Warm Ionized Medium by Low-energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Walker, Mark A.

    2016-02-01

    In light of evidence for a high ionization rate due to low-energy cosmic rays (LECR) in diffuse molecular gas in the solar neighborhood, we evaluate their heat input to the warm ionized medium (WIM). LECR are much more effective at heating plasma than they are at heating neutrals. We show that the upper end of the measured ionization rates corresponds to a local LECR heating rate sufficient to maintain the WIM against radiative cooling, independent of the nature of the ionizing particles or the detailed shape of their spectrum. Elsewhere in the Galaxy the LECR heating rates may be higher than those measured locally. In particular, higher fluxes of LECR have been suggested for the inner Galactic disk, based on the observed hard X-ray emission, with correspondingly larger heating rates implied for the WIM. We conclude that LECR play an important and perhaps dominant role in the thermal balance of the WIM.

  16. The effect of heat treatment on the hardness and impact properties of medium carbon steel

    NASA Astrophysics Data System (ADS)

    Mazni Ismail, Noor; Khatif, Nurul Aida Amir; Aliff Kamil Awang Kecik, Mohamad; Hanafiah Shaharudin, Mohd Ali

    2016-02-01

    This paper covers the effect of heat treatment on the mechanical properties of medium carbon steel. The main objective of this project is to investigate the hardness and impact properties of medium carbon steel treated at different heat treatment processes. Three types of heat treatment were performed in this project which are annealing, quenching and tempering. During annealing process, the specimens were heated at 900°C and soaked for 1 hour in the furnace. The specimens were then quenched in a medium of water and open air, respectively. The treatment was followed by tempering processes which were done at 300°C, 450°C, and 600°C with a soaking time of 2 hours for each temperature. After the heat treatment process completed, Rockwell hardness test and Charpy impact test were performed. The results collected from the Rockwell hardness test and Charpy impact test on the samples after quenching and tempering were compared and analysed. The fractured surfaces of the samples were also been examined by using Scanning Electron Microscope. It was observed that different heat treatment processes gave different hardness value and impact property to the steel. The specimen with the highest hardness was found in samples quenched in water. Besides, the microstructure obtained after tempering provided a good combination of mechanical properties due to the process reduce brittleness by increasing ductility and toughness.

  17. Metal-halide mixtures for latent heat energy storage

    NASA Technical Reports Server (NTRS)

    Chen, K.; Manvi, R.

    1981-01-01

    Alkali metal and alkali halide mixtures are identified which may be suitable for thermal energy storage at temperatures above 600 C. The use of metal-halides is appropriate because of their tendency to form two immiscible melts with a density difference, which reduces scale formation and solidification on heat transfer surfaces. Also, the accumulation of phase change material along the melt interface is avoided by the self-dispersing characteristic of some metal-halides, in particular Sr-SrCl2, Ba-BaCl2, and Ba-BaBr2 mixtures. Further advantages lie in their high thermal conductivities, ability to cope with thermal shock, corrosion inhibition, and possibly higher energy densities.

  18. Magnesium fluoride as energy storage medium for spacecraft solar thermal power systems

    NASA Technical Reports Server (NTRS)

    Lurio, Charles A.

    1992-01-01

    MgF2 was investigated as a phase-change energy-storage material for LEO power systems using solar heat to run thermal cycles. It provides a high heat of fusion per unit mass at a high melting point (1536 K). Theoretical evaluation showed the basic chemical compatibility of liquid MgF2 with refractory metals at 1600 K, though transient high pressures of H2 can occur in a closed container due to reaction with residual moisture. The compatibility was tested in two refractory metal containers for over 2000 h. Some showed no deterioration, while there was evidence that the fluoride reacted with hafnium in others. Corollary tests showed that the MgF2 supercooled by 10-30 K and 50-90 K.

  19. Characterization of desert sand as a sensible thermal energy storage medium

    NASA Astrophysics Data System (ADS)

    Diago, Miguel; Iniesta, Alberto Crespo; Delclos, Thomas; Soum-Glaude, Audrey; Shamim, Tariq; Calvet, Nicolas

    2016-05-01

    Desert sand from the United Arab Emirates (UAE) is considered as a possible sensible heat, thermal energy storage (TES) material. Its thermal stability, specific heat capacity and tendency to agglomerate are studied at high temperatures. The analyses show that it is possible to use desert sand as a TES material up to 800-1000 °C. Above 800 °C, weak agglomeration effects start to become significant. The samples become solid above 1000 °C. This may represent a major operating limit depending on the handling mechanism in place for the possible transport of the sand. The sand chemical composition is analyzed with the XRF and XRD techniques, which reveal the dominance of quartz and carbonates. Finally, the spectral absorptivity of the samples is measured before and after a thermal cycle, as it may be possible to use the desert sand not only as a TES material but also as a direct solar absorber.

  20. Origin of abnormal formation of pearlite in medium-carbon steel under nonequilibrium conditions of heating

    NASA Astrophysics Data System (ADS)

    Mirzaev, D. A.; Yakovleva, I. L.; Tereshchenko, N. A.; Urtsev, V. N.; Degtyarev, V. N.; Shmakov, A. V.

    2016-06-01

    The structure and kinetics of the formation of austenite in medium-carbon steel during shortterm heating above the temperature Ac 1 followed by accelerated cooling are analyzed. It has been shown that the abnormal formation of pearlite in steel results from the concentrational and structural inhomogeneity of austenite, as well as the presence of carbide particles in ferrite areas.

  1. Applications of thermal energy storage to waste heat recovery in the food processing industry

    NASA Technical Reports Server (NTRS)

    Wojnar, F.; Lunberg, W. L.

    1980-01-01

    A study to assess the potential for waste heat recovery in the food industry and to evaluate prospective waste heat recovery system concepts employing thermal energy storage was conducted. The study found that the recovery of waste heat in canning facilities can be performed in significant quantities using systems involving thermal energy storage that are both practical and economical. A demonstration project is proposed to determine actual waste heat recovery costs and benefits and to encourage system implementation by the food industry.

  2. Heat transfer in porous medium embedded with vertical plate: Non-equilibrium approach - Part B

    NASA Astrophysics Data System (ADS)

    Quadir, G. A.; Badruddin, Irfan Anjum

    2016-06-01

    This work is continuation of the paper Part A. Due to large number of results, the paper is divided into two section with section-A (Part A) discussing the effect of various parameters such as heat transfer coefficient parameter, thermal conductivity ratio etc. on streamlines and isothermal lines. Section-B highlights the heat transfer characteristics in terms of Nusselt number The Darcy model is employed to simulate the flow inside the medium. It is assumed that the heat transfer takes place by convection and radiation. The governing partial differential equations are converted into non-dimensional form and solved numerically using finite element method.

  3. Li-doped B2C graphene as potential hydrogen storage medium

    NASA Astrophysics Data System (ADS)

    An, Hui; Liu, Chun-sheng; Zeng, Zhi; Fan, Chao; Ju, Xin

    2011-04-01

    Based on first-principles density functional theory, we show that Li-doped B2C graphene can serve as a high-capacity hydrogen storage medium with the gravimetric density of 7.54 wt %. The present results indicate that the strong binding of Li onto the substrate comes from the hybridizations of B 2p and C 2p orbitals with the partial occupancy of Li 2p orbitals. Both the polarization mechanism and the orbital hybridizations contribute to the adsorption of H2 molecules and the resulting adsorption energy is in the range of 0.12-0.22 eV/H2. The system reported here is favorable for the reversible hydrogen adsorption/desorption at the room temperature.

  4. Pressure loss and heat transfer in a toothed finned heat transfer medium

    NASA Astrophysics Data System (ADS)

    Ebeling, W. D.; Leidinger, B. J. G.

    Thermohydraulic investigation was carried out in a special toothed-finned geometry, which was provided for increasing heat transfer in an evaporator cooler. The evaporator cooler has applications in space navigation. The toothed-finned heat carrier was used in a counter current, with a view to simplifying the heat transfer coefficient evaluation, from the temperature and volume flows measured. Test results obtained confirmed the suitability of this test arrangement. Relationships were derived from test results, for the pressure loss coefficient and the Nusselt number, with regard to the Reynolds number for this determined finned geometry.

  5. Numerical model of heat transfer in three phases of the poroelastic medium

    NASA Astrophysics Data System (ADS)

    Uciechowska-Grakowicz, Anna; Strzelecki, Tomasz

    2016-06-01

    In this paper, the results of numerical analysis of the thermal consolidation of a two phase medium, under the assumption of independent heat transfer in fluid and the solid phase of the medium, are presented. Three cases of pore fluid were considered: liquid, represented by water, and gas, represented by air and carbon dioxide. The mathematical model was derived from irreversible thermodynamics, with the assumption of a constant heat transfer between the phases. In the case of the accepted geometry of the classical dimensions of the soil sample and boundary conditions, the process leads to equalization of temperatures of the skeleton on the pore fluid. Heat transfer is associated with the fluid flow in the pores of the medium. In the case of gas as the pore fluid, a non-linear mathematical model of gas filtration through the pores of the medium was accepted. For the computing process, relationships between viscosity or density and temperature proposed by other authors were taken into account. Despite accepting mechanical constants of the solid phase that do not depend on temperature, the obtained model is nonlinear and develops the classical Biot-Darcy model.

  6. Natural convection heat transfer of nanofluids along a vertical plate embedded in porous medium

    PubMed Central

    2013-01-01

    The unsteady natural convection heat transfer of nanofluid along a vertical plate embedded in porous medium is investigated. The Darcy-Forchheimer model is used to formulate the problem. Thermal conductivity and viscosity models based on a wide range of experimental data of nanofluids and incorporating the velocity-slip effect of the nanoparticle with respect to the base fluid, i.e., Brownian diffusion is used. The effective thermal conductivity of nanofluid in porous media is calculated using copper powder as porous media. The nonlinear governing equations are solved using an unconditionally stable implicit finite difference scheme. In this study, six different types of nanofluids have been compared with respect to the heat transfer enhancement, and the effects of particle concentration, particle size, temperature of the plate, and porosity of the medium on the heat transfer enhancement and skin friction coefficient have been studied in detail. It is found that heat transfer rate increases with the increase in particle concentration up to an optimal level, but on the further increase in particle concentration, the heat transfer rate decreases. For a particular value of particle concentration, small-sized particles enhance the heat transfer rates. On the other hand, skin friction coefficients always increase with the increase in particle concentration and decrease in nanoparticle size. PMID:23391481

  7. Natural convection heat transfer of nanofluids along a vertical plate embedded in porous medium

    NASA Astrophysics Data System (ADS)

    Uddin, Ziya; Harmand, Souad

    2013-02-01

    The unsteady natural convection heat transfer of nanofluid along a vertical plate embedded in porous medium is investigated. The Darcy-Forchheimer model is used to formulate the problem. Thermal conductivity and viscosity models based on a wide range of experimental data of nanofluids and incorporating the velocity-slip effect of the nanoparticle with respect to the base fluid, i.e., Brownian diffusion is used. The effective thermal conductivity of nanofluid in porous media is calculated using copper powder as porous media. The nonlinear governing equations are solved using an unconditionally stable implicit finite difference scheme. In this study, six different types of nanofluids have been compared with respect to the heat transfer enhancement, and the effects of particle concentration, particle size, temperature of the plate, and porosity of the medium on the heat transfer enhancement and skin friction coefficient have been studied in detail. It is found that heat transfer rate increases with the increase in particle concentration up to an optimal level, but on the further increase in particle concentration, the heat transfer rate decreases. For a particular value of particle concentration, small-sized particles enhance the heat transfer rates. On the other hand, skin friction coefficients always increase with the increase in particle concentration and decrease in nanoparticle size.

  8. Relations for local radiative heat transfer between rectangular boundaries of an absorbing-emitting medium

    NASA Technical Reports Server (NTRS)

    Siegel, R.

    1993-01-01

    An analytical solution was obtained by Siegel (1991, 1992) for local boundary heat fluxes by a radiating medium at uniform temperature in a 2D rectangular region. It is shown here that, after local fluxes from the medium to the walls have been evaluated, it is very easy to compute local fluxes arriving from the adjacent and opposite walls. This extends the previous analysis and provides convenient relations to include radiation from a black boundary, each side of the rectangle being at a different uniform temperature. The final expressions are helpful in performing spectral calculations that must be made for many spectral bands.

  9. Nonsimilar hydromagnetic simultaneous heat and mass transfer by mixed convection from a vertical plate embedded in a uniform porous medium

    SciTech Connect

    Chamkha, A.J.; Khaled, A.R.A.

    1999-08-27

    Simultaneous heat and mass transfer from different geometries embedded in porous media has many engineering and geophysical applications, such as migration of water in geothermal reservoirs, underground spreading of chemical wastes and other pollutants, thermal insulation, enhanced oil recovery, packed-bed catalytic reactors, cooling of nuclear reactors, grain storage, and evaporative cooling and solidification. This work considers steady, laminar, hydromagnetic simultaneous heat and mass transfer by mixed convection flow over a permeable vertical plate immersed in a uniform porous medium for the cases of power law variations of both the wall temperature and concentration and the wall heat flux and mass flux. Appropriate transformations are employed to transform the governing differential equations to a nonsimilar form. The transformed equations are solved numerically by an accurate, implicit, iterative, finite difference method. The obtained results are validated by favorable comparisons with previously published work on special cases of the problem. A parametric study illustrating the influence of all involved parameters on the local Nusselt and Sherwood numbers is conducted. The results of this parametric study are shown graphically, and the physical aspects of the problem are discussed.

  10. Effect of pre-storage heat treatment on enzymological changes in peach.

    PubMed

    Bakshi, Parshant; Masoodi, F A

    2010-08-01

    Peach (Prunus persica (L.) Batsch) fruit was subjected to hot water and moist hot air treatment at varying temperatures. The activities of polyphenoloxidase (PPO) and polygalacturonase (PG) were monitored during storage for 0, 3 and 6 days. PPO activity decreased in all treatments during storage. This decrease was more in hot water treated fruits than in hot air. PPO activity decreased with the increase in treatment duration. However, the PG activity increased in heat treated fruits as well as control. This increase was more in mild heat treatments as compared to severe heat treatment. Both polyphenol and pectin contents decreased during storage in both heat treatments. PMID:23572672

  11. Design and development of integral heat pipe/thermal energy storage devices. [used with spacecraft cryocoolers

    NASA Technical Reports Server (NTRS)

    Mahefkey, E. T.; Richter, R.

    1981-01-01

    The major design and performance test subtasks in the development of small (200 to 1,000 whr) integral heat pipe/thermal energy storage devices for use with thermally driven spacecraft cryo-coolers are described. The design of the integral heat pipe/thermal energy storage device was based on a quasi steady resistance heat transfer, lumped capacitance model. Design considerations for the heat pipe and thermal storage annuli are presented. The thermomechanical stress and insulation system design for the device are reviewed. Experimental correlations are described, as are the plans for the further development of the concept.

  12. Thermal energy storage heat exchanger: Molten salt heat exchanger design for utility power plants

    NASA Technical Reports Server (NTRS)

    Ferarra, A.; Yenetchi, G.; Haslett, R.; Kosson, R.

    1977-01-01

    The use of thermal energy storage (TES) in the latent heat of molten salts as a means of conserving fossil fuels and lowering the cost of electric power was evaluated. Public utility systems provided electric power on demand. This demand is generally maximum during late weekday afternoons, with considerably lower overnight and weekend loads. Typically, the average demand is only 60% to 80% of peak load. As peak load increases, the present practice is to purchase power from other grid facilities or to bring older less efficient fossil-fuel plants on line which increase the cost of electric power. The widespread use of oil-fired boilers, gas turbine and diesel equipment to meet peaking loads depletes our oil-based energy resources. Heat exchangers utilizing molten salts can be used to level the energy consumption curve. The study begins with a demand analysis and the consideration of several existing modern fossil-fuel and nuclear power plants for use as models. Salts are evaluated for thermodynamic, economic, corrosive, and safety characteristics. Heat exchanger concepts are explored and heat exchanger designs are conceived. Finally, the economics of TES conversions in existing plants and new construction is analyzed. The study concluded that TES is feasible in electric power generation. Substantial data are presented for TES design, and reference material for further investigation of techniques is included.

  13. Active heat exchange system development for latent heat thermal energy storage

    NASA Technical Reports Server (NTRS)

    Alario, J.; Kosson, R.; Haslett, R.

    1980-01-01

    Various active heat exchange concepts were identified from among three generic categories: scrapers, agitators/vibrators and slurries. The more practical ones were given a more detailed technical evaluation and an economic comparison with a passive tube-shell design for a reference application (300 MW sub t storage for 6 hours). Two concepts were selected for hardware development: (1) a direct contact heat exchanger in which molten salt droplets are injected into a cooler counterflowing stream of liquid metal carrier fluid, and (2) a rotating drum scraper in which molten salt is sprayed onto the circumference of a rotating drum, which contains the fluid salt is sprayed onto the circumference of a rotating drum, which contains the fluid heat sink in an internal annulus near the surface. A fixed scraper blade removes the solidified salt from the surface which was nickel plated to decrease adhesion forces. In addition to improving performance by providing a nearly constant transfer rate during discharge, these active heat exchanger concepts were estimated to cost at least 25% less than the passive tube-shell design.

  14. Combined solar heat and power system with a latent heat storage - system simulations for an economic assessment

    NASA Astrophysics Data System (ADS)

    Zipf, Verena; Neuhäuser, Anton

    2016-05-01

    Decentralized solar combined heat and power (CHP) systems can be economically feasible, especially when they have a thermal storage. In such systems, heat provided by solar thermal collectors is used to generate electricity and useful heat for e.g. industrial processes. For the supply of energy in times without solar irradiation, a thermal storage can be integrated. In this work, the performance of a solar CHP system using an active latent heat storage with a screw heat exchanger is investigated. Annual yield calculations are conducted in order to calculate annual energy gains and, based on them; economic assumptions are used to calculated economic numbers in order to assess the system performance. The energy savings of a solar system, compared to a system with a fossil fuel supply, are calculated. Then the net present value and the dynamic payback are calculated with these savings, the initial investment costs and the operational costs. By interpretation and comparison of these economic numbers, an optimum system design in terms of solar field size and storage size was determined. It has been shown that the utilization of such systems can be economical in remote areas without gas and grid connection. Optimal storage design parameters in terms of the temperature differences in the heat exchanger and the storage capacity have been determined which can further increase the net present value of such system.

  15. Effective-medium model of wire metamaterials in the problems of radiative heat transfer

    SciTech Connect

    Mirmoosa, M. S. Nefedov, I. S. Simovski, C. R.; Rüting, F.

    2014-06-21

    In the present work, we check the applicability of the effective medium model (EMM) to the problems of radiative heat transfer (RHT) through so-called wire metamaterials (WMMs)—composites comprising parallel arrays of metal nanowires. It is explained why this problem is so important for the development of prospective thermophotovoltaic (TPV) systems. Previous studies of the applicability of EMM for WMMs were targeted by the imaging applications of WMMs. The analogous study referring to the transfer of radiative heat is a separate problem that deserves extended investigations. We show that WMMs with practically realizable design parameters transmit the radiative heat as effectively homogeneous media. Existing EMM is an adequate tool for qualitative prediction of the magnitude of transferred radiative heat and of its effective frequency band.

  16. Microscale Enhancement of Heat and Mass Transfer for Hydrogen Energy Storage

    SciTech Connect

    Drost, Kevin; Jovanovic, Goran; Paul, Brian

    2015-09-30

    The document summarized the technical progress associated with OSU’s involvement in the Hydrogen Storage Engineering Center of Excellence. OSU focused on the development of microscale enhancement technologies for improving heat and mass transfer in automotive hydrogen storage systems. OSU’s key contributions included the development of an extremely compact microchannel combustion system for discharging hydrogen storage systems and a thermal management system for adsorption based hydrogen storage using microchannel cooling (the Modular Adsorption Tank Insert or MATI).

  17. Heat pump water heater and storage tank assembly

    DOEpatents

    Dieckmann, John T.; Nowicki, Brian J.; Teagan, W. Peter; Zogg, Robert

    1999-09-07

    A water heater and storage tank assembly comprises a housing defining a chamber, an inlet for admitting cold water to the chamber, and an outlet for permitting flow of hot water from the chamber. A compressor is mounted on the housing and is removed from the chamber. A condenser comprises a tube adapted to receive refrigerant from the compressor, and winding around the chamber to impart heat to water in the chamber. An evaporator is mounted on the housing and removed from the chamber, the evaporator being adapted to receive refrigerant from the condenser and to discharge refrigerant to conduits in communication with the compressor. An electric resistance element extends into the chamber, and a thermostat is disposed in the chamber and is operative to sense water temperature and to actuate the resistance element upon the water temperature dropping to a selected level. The assembly includes a first connection at an external end of the inlet, a second connection at an external end of the outlet, and a third connection for connecting the resistance element, compressor and evaporator to an electrical power source.

  18. Thermal energy storage systems using fluidized bed heat exchangers

    NASA Technical Reports Server (NTRS)

    Weast, T.; Shannon, L.

    1980-01-01

    A rotary cement kiln and an electric arc furnace were chosen for evaluation to determine the applicability of a fluid bed heat exchanger (FBHX) for thermal energy storage (TES). Multistage shallow bed FBHX's operating with high temperature differences were identified as the most suitable for TES applications. Analysis of the two selected conceptual systems included establishing a plant process flow configuration, an operational scenario, a preliminary FBHX/TES design, and parametric analysis. A computer model was developed to determine the effects of the number of stages, gas temperatures, gas flows, bed materials, charge and discharge time, and parasitic power required for operation. The maximum national energy conservation potential of the cement plant application with TES is 15.4 million barrels of oil or 3.9 million tons of coal per year. For the electric arc furnance application the maximum national conservation potential with TES is 4.5 million barrels of oil or 1.1 million tons of coal per year. Present time of day utility rates are near the breakeven point required for the TES system. Escalation of on-peak energy due to critical fuel shortages could make the FBHX/TES applications economically attractive in the future.

  19. Thermodynamic and thermoeconomic analysis of combined geothermal space heating and thermal storage using phase change materials

    NASA Astrophysics Data System (ADS)

    Chauhan, V.; Ragnarsson, Á.

    2015-12-01

    The present work discusses the utilization of phase change materials for energy storage in geothermal space heating systems. Thermodynamics and thermoeconomics of the combined heating and thermal storing system were studied to show the scope of energy storage and cost savings. A computational model of the combined space heating and thermal storage system was developed and used to perform thermodynamic studies of the heat storage process and heating system efficiency at different times and ambient temperatures. The basis for these studies is daily variations in heating demand that is higher during the night than during the day. The results show the scope of the utilization of phase change material for low ambient temperature conditions. Under proper conditions a sufficient amount of exergy is stored during the charging period at a low ambient temperature to fulfill the daytime heat load requirement. Under these conditions the cost flow rate of exergy storage is found to be lower than the radiator heating cost flow rate. Thus, the use of exergy storage at low ambient temperatures for heating at higher ambient temperatures makes a significant contribution to cost savings.

  20. Inverse coefficient problems for one-dimensional heat transfer with a preservation of medium temperature condition

    NASA Astrophysics Data System (ADS)

    Oralsyn, Gulaym

    2016-08-01

    We study an inverse coefficient problem for a model equation for one-dimensional heat transfer with a preservation of medium temperature. It is needed (together with finding its solution) to find time dependent unknown coefficient of the equation. So, for this inverse problem, existence of an unique generalized solution is proved. The main difficulty of the considered problems is that the eigenfunction system of the corresponding boundary value problems does not have the basis property.

  1. Research of Operation Modes of Heat Storage Tank in CHP Plant Using Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Streckiene, Giedre; Miseviciute, Violeta

    2011-01-01

    The installation of a heat storage tank is a very cost-effective way to improve the performance and flexibility of a CHP plant. Such a heat storage tank usually accumulates heat by thermal stratification. This phenomenon is caused by the thermal buoyancy because of the difference in temperature between cold and hot water. The heat storage tank may have three operating modes, i. e. charge, discharge and storage in a CHP plant. When CHP units, which charge the heat storage tank, operate at full load, usually only two operation modes occur in the tank, i.e. charge and discharge. The paper presents numerical simulation of heat storage tank operation modes in a CHP plant using PHOENICS - a multi-purpose computation fluid dynamics (CFD) software. Two-dimensional and three-dimensional transient models were created and solved numerically. Three domain grids were tested. Several charging and discharging processes with different flow rates were simulated. The influence of flow rate on the degree of thermal stratification during charging and discharging processes is analyzed. The computation possibilities and limitations of the numerical experiments are pointed out. Special attention is given to the validation of the numerical solutions. The validation of simulated results is made by comparison with the real data from the heat storage installed in the Hvide Sande CHP plant.

  2. Active heat exchange system development for latent heat thermal energy storage

    NASA Technical Reports Server (NTRS)

    Alario, J.; Haslett, R.

    1980-01-01

    Various active heat exchange concepts were identified from among three generic categories: scrapers, agitators/vibrators and slurries. The more practical ones were given a more detailed technical evaluation and an economic comparison with a passive tube-shell design for a reference application. Two concepts selected for hardware development are a direct contact heat exchanger in which molten salt droplets are injected into a cooler counterflowing stream of liquid metal carrier fluid, and a rotating drum scraper in which molten salt is sprayed onto the circumference of a rotating drum, which contains the fluid heat sink in an internal annulus near the surface. A fixed scraper blade removes the solidified salt from the surface which has been nickel plated to decrease adhesion forces. Suitable phase change material (PCM) storage media with melting points in the temperature range of interest (250 C to 400 C) were investigated. The specific salt recommended for laboratory tests was a chloride eutectic (20.5KCl-24/5 NaCl-55.0MgCl 2% by wt.), with a nominal melting point of 385 C.

  3. Localized heating of nickel nitride/aluminum nitride nanocomposite films for data storage

    SciTech Connect

    Maya, L.; Thundat, T.; Thompson, J.R.; Stevenson, R.J.

    1995-11-13

    Nickel--aluminum nitride films were prepared by reactive sputtering of a nickel aluminide plate in a nitrogen plasma. The initial product is a nanocomposite containing the nickel as the nitride, Ni{sub 3}N, in aluminum nitride. Heating in vacuum to 500 {degree}C causes selective decomposition of the thermally labile nickel nitride leaving the aluminum nitride unaffected. The nickel nanocomposite is of interest for potential applications as recording media, as are other finely divided dispersions of ferromagnetic metals in insulating matrices. The nickel--aluminum nitride nanocomposite shows a moderate coercive field of 35 Oe at 300 K and, in common with ultrafine particles of ferromagnetic materials, shows superparamagnetic behavior. The Ni{sub 3}N/AlN nanocomposite was subjected to localized heating with the focused beam of an argon-ion laser; this created features several microns in width that could be imaged with a magnetic force microscope, thus confirming its potential as a high density data storage medium. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  4. Effects of storage medium and UV photofunctionalization on time-related changes of titanium surface characteristics and biocompatibility.

    PubMed

    Shen, Jian-Wei; Chen, Yun; Yang, Guo-Li; Wang, Xiao-Xiang; He, Fu-Ming; Wang, Hui-Ming

    2016-07-01

    Storage in aqueous solution and ultraviolet (UV) photofunctionalization are two applicable methods to overcome the biological aging and increase the bioactivity of titanium. As information regarding the combined effects of storage medium and UV photofunctionalization has never been found in published literatures, this study focused on whether appropriate storage methods and UV photofunctionalization have synergistic effects on the biological properties of aged titanium surfaces. Titanium plates and discs were sandblasted and acid etched and then further prepared in five different modes as using different storage mediums (air or dH2 O) for 4 weeks and then with or without UV treatment. The surface characteristics were evaluated with scanning electron microscopy, contact angle measurements, and X-ray photoelectron spectroscopy. MC3T3-E1 cells were cultured on the surfaces, and cellular morphology, proliferation, alkaline phosphatase activity, and osteocalcin release were evaluated. The results showed that nanostructures were observed on water-stored titanium surfaces with a size of about 15 × 20 nm(2) . UV treatment was effective to remove the hydrocarbon contamination on titanium surfaces stored in either air or water. UV photofunctionalization further enhanced the already increased bioactivity of modSLA on initial cell attachment, proliferation, alkaline phosphatase activity, and osteocalcin release. Overall, UV photofunctionalization was effective in further enhancing the already increased bioactivity by using dH2 O as storage medium, and the effect of UV treatment was much more overwhelming than that of the storage medium. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 932-940, 2016. PMID:25969950

  5. Heat storage rate and acute fatigue in rats.

    PubMed

    Rodrigues, L O C; Oliveira, A; Lima, N R V; Machado-Moreira, C A

    2003-01-01

    Thermal environmental stress can anticipate acute fatigue during exercise at a fixed intensity (%VO2max). Controversy exists about whether this anticipation is caused by the absolute internal temperature (Tint, degrees C), by the heat storage rate (HSR, cal/min) or by both mechanisms. The aim of the present study was to study acute fatigue (total exercise time, TET) during thermal stress by determining Tint and HSR from abdominal temperature. Thermal environmental stress was controlled in an environmental chamber and determined as wet bulb globe temperature ( degrees C), with three environmental temperatures being studied: cold (18 degrees C), thermoneutral (23.1 degrees C) or hot (29.4 degrees C). Six untrained male Wistar rats weighing 260-360 g were used. The animals were submitted to exercise at the same time of day in the three environments and at two treadmill velocities (21 and 24 m/min) until exhaustion. After implantation of a temperature sensor and treadmill adaptation, the animals were submitted to a Latin square experimental design using a 2 x 3 factorial scheme (velocity and environment), with the level of significance set at P<0.05. The results showed that the higher the velocity and the ambient temperature, the lower was the TET, with these two factors being independent. This result indicated that fatigue was independently affected by both the increase in exercise intensity and the thermal environmental stress. Fatigue developed at different Tint and HSR showed the best inverse relationship with TET. We conclude that HSR was the main anticipating factor of fatigue. PMID:12532237

  6. Natural convection on a vertical plate in a saturated porous medium with internal heat generation

    NASA Astrophysics Data System (ADS)

    Guedda, M.; Sriti, M.; Achemlal, D.

    2014-08-01

    The main goal of this paper is to re-exam a class of exact solutions for the two-dimensional free convection boundary layers induced by a heated vertical plate embedded in a saturated porous medium with an exponential decaying heat generation. The temperature distribution of the plate has been assumed to vary as a power of the axial coordinate measured from the leading edge of the plate and subjected to an applied lateral mass flux. The boundary layer equations are solved analytically and numerically using a fifth-order Runge-Kutta scheme coupled with the shooting iteration method. As for the classical problem without internal heat generation, it is proved that multiple (unbounded) solutions arise for any and for any suction/injection parameter. For such solutions, the asymptotic behavior as the similarity variable approaches infinity is determined.

  7. Experimental Analysis of Thermal Stratification in a Heat Storage Tank Using Stratification Pipe

    NASA Astrophysics Data System (ADS)

    Boloņina, A.; Rochas, C.; Blumberga, D.

    2009-01-01

    The heat storage tank is an important element in any heating system where the heat source is not able to provide heat accordingly to consumer demand (for example solar collector systems, solid fuel boilers etc). Better heat storage efficiency can be achieved by providing good thermal stratification in the heat storage tanks. One of the best methods of increasing the degree of thermal stratification is the stratification pipes. In the Environmental monitoring laboratory of the Institute of Energy Systems and Environment (Riga Technical University, an experimental heat storage system has been developed and used for testing and studying stratification devices under different thermodynamic and hydraulic conditions. The experimental study carried out on the efficiency of the stratification pipe produced by German company SOLVIS Solar Systeme GmbH under different flow parameters, has been analyzed. The main aim of the experimental study was to define optimal heating system operation parameters to achieve good performance of the stratification pipe and a high degree of thermal stratification in the heat storage tank.

  8. Experimental investigation on performance of ice storage air-conditioning system with separate heat pipe

    SciTech Connect

    Fang, Guiyin; Liu, Xu; Wu, Shuangmao

    2009-11-15

    An experimental study on operation performance of ice storage air-conditioning system with separate helical heat pipe is conducted in this paper. The experimental system of ice storage air-conditioning system with separate heat pipe is set up. The performance parameters such as the evaporation pressure and the condensation pressure of refrigeration system, the refrigeration capacity and the COP (coefficient of performance) of the system, the IPF (ice packing factor) and the cool storage capacity in the cool storage tank during charging period, and the cool discharge rate and the cool discharge capacity in the cool storage tank, the outlet water temperature in the cool storage tank and the outlet air temperature in room unit during discharging period are investigated. The experimental results show that the ice storage air-conditioning system with separate helical heat pipe can stably work during charging and discharging period. This indicates that the ice storage air-conditioning system with separate helical heat pipe is well adapted to cool storage air-conditioning systems in building. (author)

  9. Performance analysis of a latent heat storage system with phase change material for new designed solar collectors in greenhouse heating

    SciTech Connect

    Benli, Hueseyin; Durmus, Aydin

    2009-12-15

    The continuous increase in the level of greenhouse gas emissions and the rise in fuel prices are the main driving forces behind the efforts for more effectively utilize various sources of renewable energy. In many parts of the world, direct solar radiation is considered to be one of the most prospective sources of energy. In this study, the thermal performance of a phase change thermal storage unit is analyzed and discussed. The storage unit is a component of ten pieced solar air collectors heating system being developed for space heating of a greenhouse and charging of PCM. CaCl{sub 2}6H{sub 2}O was used as PCM in thermal energy storage with a melting temperature of 29 C. Hot air delivered by ten pieced solar air collector is passed through the PCM to charge the storage unit. The stored heat is utilized to heat ambient air before being admitted to a greenhouse. This study is based on experimental results of the PCM employed to analyze the transient thermal behavior of the storage unit during the charge and discharge periods. The proposed size of collectors integrated PCM provided about 18-23% of total daily thermal energy requirements of the greenhouse for 3-4 h, in comparison with the conventional heating device. (author)

  10. NaOH-based high temperature heat-of-fusion thermal energy storage device

    NASA Technical Reports Server (NTRS)

    Cohen, B. M.; Rice, R. E.

    1978-01-01

    A material called Thermkeep, developed as a low-cost method for the storage of thermal energy for solar electric power generating systems is discussed. The storage device consists of an insulated cylinder containing Thermkeep in which coiled tubular heat exchangers are immersed. A one-tenth scale model of the design contains 25 heat-exchanger tubes and 1500 kg of Thermkeep. Its instrumentation includes thermocouples to measure internal Thermkeep temperatures, vessel surface, heated shroud surface, and pressure gauges to indicate heat-exchanger pressure drops. The test-circuit design is presented and experimental results are discussed.

  11. Application of thermal energy storage to process heat recovery in the aluminum industry

    NASA Technical Reports Server (NTRS)

    Mccabe, J.

    1980-01-01

    The economic viability and the institutional compatibility of a district heating system in the city of Bellingham, Washington are assessed and the technical and economic advantages of using thermal energy storage methods are determined.

  12. Solar powered absorption cycle heat pump using phase change materials for energy storage

    NASA Technical Reports Server (NTRS)

    Middleton, R. L.

    1972-01-01

    Solar powered heating and cooling system with possible application to residential homes is described. Operating principles of system are defined and illustration of typical energy storage and exchange system is provided.

  13. Cold Heat Storage Characteristics of O/W-type Latent Heat Emulsion Including Continuum Phase of Water Treated with a Freezing Point Depression

    NASA Astrophysics Data System (ADS)

    Inaba, Hideo; Morita, Shin-Ichi

    This paper deals with flow and cold heat storage characteristics of the oil (tetradecane, C14H30, freezing point 278.9 K, Latent heat 229 kJ/kg)/water emulsion as a latent heat storage material having a low melting point. The test emulsion includes a water-urea solution as a continuum phase. The freezing point depression of the continuum phase permits enhancement of the heat transfer rate of the emulison, due to the large temperature difference between the latent heat storage material and water-urea solution. The velocity of emulsion flow and the inlet temperature of coolant in a coiled double tube heat exchanger are chosen as the experimental parameters. The pressure drop, the heat transfer coefficient of the emulsion in the coiled tube are measured in the temperture region over solid and liquid phase of the latent heat storage material. The finishing time of the cold heat storage is defined experimentally in the range of sensible and latent heat storage. It is clarified that the flow behavior of the emulsion as a non-Newtonian fluid has an important role in cold heat storage. The useful nondimentional correlation equations for the additional pressure loss coefficient, the heat transfer coefficient and the finishing time of the cold heat storage are derived in terms of Dean number and heat capacity ratio.

  14. Magneto-rotatory compressible couple-stress fluid heated from below in porous medium

    NASA Astrophysics Data System (ADS)

    Mehta, Chander Bhan

    2016-03-01

    The study is aimed at analysing thermal convection in a compressible couple stress fluid in a porous medium in the presence of rotation and magnetic field. After linearizing the relevant equations, the perturbation equations are analysed in terms of normal modes. A dispersion relation governing the effects of rotation, magnetic field, couple stress parameter and medium permeability have been examined. For a stationary convection, the rotation postpones the onset of convection in a couple stress fluid heated from below in a porous medium in the presence of a magnetic field. Whereas, the magnetic field and couple stress postpones and hastens the onset of convection in the presence of rotation and the medium permeability hastens and postpones the onset of convection with conditions on Taylor number. Further the oscillatory modes are introduced due to the presence of rotation and the magnetic field which were non-existent in their absence, and hence the principle of exchange stands valid. The sufficient conditions for nonexistence of over stability are also obtained.

  15. Natural element method for radiative heat transfer in a semitransparent medium with irregular geometries

    SciTech Connect

    Zhang, Yong; Yi, Hong-Liang; Tan, He-Ping

    2013-05-15

    This paper develops a numerical solution to the radiative heat transfer problem coupled with conduction in an absorbing, emitting and isotropically scattering medium with the irregular geometries using the natural element method (NEM). The walls of the enclosures, having temperature and mixed boundary conditions, are considered to be opaque, diffuse as well as gray. The NEM as a meshless method is a new numerical scheme in the field of computational mechanics. Different from most of other meshless methods such as element-free Galerkin method or those based on radial basis functions, the shape functions used in NEM are constructed by the natural neighbor interpolations, which are strictly interpolant and the essential boundary conditions can be imposed directly. The natural element solutions in dealing with the coupled heat transfer problem for the mixed boundary conditions have been validated by comparison with those from Monte Carlo method (MCM) generated by the authors. For the validation of the NEM solution to radiative heat transfer in the semicircular medium with an inner circle, the results by NEM have been compared with those reported in the literatures. For pure radiative transfer, the upwind scheme is employed to overcome the oscillatory behavior of the solutions in some conditions. The steady state and transient heat transfer problem combined with radiation and conduction in the semicircular enclosure with an inner circle are studied. Effects of various parameters such as the extinction coefficient, the scattering albedo, the conduction–radiation parameter and the boundary emissivity are analyzed on the radiative and conductive heat fluxes and transient temperature distributions.

  16. Natural element method for radiative heat transfer in a semitransparent medium with irregular geometries

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Yi, Hong-Liang; Tan, He-Ping

    2013-05-01

    This paper develops a numerical solution to the radiative heat transfer problem coupled with conduction in an absorbing, emitting and isotropically scattering medium with the irregular geometries using the natural element method (NEM). The walls of the enclosures, having temperature and mixed boundary conditions, are considered to be opaque, diffuse as well as gray. The NEM as a meshless method is a new numerical scheme in the field of computational mechanics. Different from most of other meshless methods such as element-free Galerkin method or those based on radial basis functions, the shape functions used in NEM are constructed by the natural neighbor interpolations, which are strictly interpolant and the essential boundary conditions can be imposed directly. The natural element solutions in dealing with the coupled heat transfer problem for the mixed boundary conditions have been validated by comparison with those from Monte Carlo method (MCM) generated by the authors. For the validation of the NEM solution to radiative heat transfer in the semicircular medium with an inner circle, the results by NEM have been compared with those reported in the literatures. For pure radiative transfer, the upwind scheme is employed to overcome the oscillatory behavior of the solutions in some conditions. The steady state and transient heat transfer problem combined with radiation and conduction in the semicircular enclosure with an inner circle are studied. Effects of various parameters such as the extinction coefficient, the scattering albedo, the conduction-radiation parameter and the boundary emissivity are analyzed on the radiative and conductive heat fluxes and transient temperature distributions.

  17. Energy-Storage Modules for Active Solar Heating and Cooling

    NASA Technical Reports Server (NTRS)

    Parker, J. C.

    1982-01-01

    34 page report describes a melting salt hydrate that stores 12 times as much heat as rocks and other heavy materials. Energy is stored mostly as latent heat; that is, heat that can be stored and recovered without any significant change in temperature. Report also describes development, evaluation and testing of permanently sealed modules containing salt hydrate mixture.

  18. Theoretical analysis of screened heat pipes for medium and high temperature solar applications

    NASA Astrophysics Data System (ADS)

    Di Marco, P.; Filippeschi, S.; Franco, A.; Jafari, D.

    2014-11-01

    A mathematical model is applied to study the cylindrical heat pipes (HPs) behaviour when it is exposed to higher heat input at the evaporator for solar collector applications. The steady state analytical model includes two-dimensional heat conduction in the wall, the liquid flow in the wick and vapour hydrodynamics, and can be used to evaluate the working limits and to optimize the HP. The results of the analytical model are compared with numerical and experimental results available in literature, with good agreement. The effects of heat transfer coefficient, power input, evaporator length, pipe diameter, wick thickness and effective pore radius on the vapour temperature, maximum pressure drop and maximum heat transfer capability (HTC) of the HP are studied. The analysis shows that wick thickness plays an important role in the enhancement of HTC. Results show that it is possible to improve HTC of a HP by selecting the appropriate wick thickness, effective pore radius, and evaporator length. The parametric investigations are aimed to determine working limits and thermal performance of HP for medium temperature solar collector application.

  19. Experimental investigation on the thermal performance of heat storage walls coupled with active solar systems

    NASA Astrophysics Data System (ADS)

    Zhao, Chunyu; You, Shijun; Zhu, Chunying; Yu, Wei

    2016-02-01

    This paper presents an experimental investigation of the performance of a system combining a low-temperature water wall radiant heating system and phase change energy storage technology with an active solar system. This system uses a thermal storage wall that is designed with multilayer thermal storage plates. The heat storage material is expanded graphite that absorbs a mixture of capric acid and lauric acid. An experiment is performed to study the actual effect. The following are studied under winter conditions: (1) the temperature of the radiation wall surface, (2) the melting status of the thermal storage material in the internal plate, (3) the density of the heat flux, and (4) the temperature distribution of the indoor space. The results reveal that the room temperature is controlled between 16 and 20 °C, and the thermal storage wall meets the heating and temperature requirements. The following are also studied under summer conditions: (1) the internal relationship between the indoor temperature distribution and the heat transfer within the regenerative plates during the day and (2) the relationship between the outlet air temperature and inlet air temperature in the thermal storage wall in cooling mode at night. The results indicate that the indoor temperature is approximately 27 °C, which satisfies the summer air-conditioning requirements.

  20. Longterm solar heat storage in an underground water cistern retrofitted with thermal insulation

    NASA Astrophysics Data System (ADS)

    Borst, W. L.

    1980-10-01

    The performance of the cistern was tested by measuring storage and surrounding soil temperatures over extended periods of time as heat was added from a solar collector (summer, fall, and winter) or environmental coolness was added (via cold air blown into the cistern) in winter. From these measurements, storage time-constants of the order of 6 months were inferred and verified.

  1. Heat transfer analysis of the geologic disposal of spent fuel and high level waste storage canisters

    NASA Astrophysics Data System (ADS)

    Allen, G. K.

    1980-08-01

    Near-field temperatures resulting from the storage of high-level waste canisters and spent unreprocessed fuel assembly canisters in geologic formations were determined. Preliminary design of the repository was modeled for a heat transfer computer code, HEATING5, which used the finite difference method to evaluate transient heat transfer. The heat transfer system was evaluated with several two and three dimensional models which transfer heat by a combination of conduction, natural convention, and radiation. Physical properties of the materials in the model were based upon experimental values for the various geologic formations. The effects of canister spacing, fuel age, and use of an overpack were studied for the analysis of the spent fuel canisters; salt, granite, and basalt were considered as the storage media. The effects of canister diameter and use of an overpack were studied for the analysis of the high-level waste canisters; salt was considered as the only storage media for high-level waste canisters.

  2. Low, medium and high heat tolerant strains of Listeria monocytogenes and increased heat stress resistance after exposure to sublethal heat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Listeria monocytogenes exhibits sophisticated adaptive mechanisms to counteract higher levels of lethal acid, heat, salt or oxidative stresses after pre-exposure to sublethal concentrations of homogenous stress. A group of 37 strains representing all 13 serotypes of Listeria monocytogenes with initi...

  3. Metal glass vacuum tube solar collectors are approaching lower-medium temperature heat application.

    PubMed

    Jiang, Xinian

    2010-04-26

    Solar thermal collectors are widely used worldwide mainly for hot water preparation at a low temperature (less than 80 degrees C). Applications including many industrial processes and central air conditioning with absorption chillers, instead require lower-medium temperature heat (between 90 degrees C and 150 degrees C) to be driven when using solar thermal energy. The metal absorber glass vacuum tube collectors (MGVT) are developed for this type of applications. Current state-of-art and possible future technology development of MGVT are presented. PMID:20607893

  4. Metal glass vacuum tube solar collectors are approaching lower-medium temperature heat application.

    PubMed

    Jiang, Xinian

    2010-04-26

    Solar thermal collectors are widely used worldwide mainly for hot water preparation at a low temperature (less than 80?C). Applications including many industrial processes and central air conditioning with absorption chillers, instead require lower-medium temperature heat (between 90 degrees C and 150 degrees C) to be driven when using solar thermal energy. The metal absorber glass vacuum tube collectors (MGVT) are developed for this type of applications. Current state-of-art and possible future technology development of MGVT are presented. PMID:20588568

  5. Simulation of Porous Medium Hydrogen Storage - Estimation of Storage Capacity and Deliverability for a North German anticlinal Structure

    NASA Astrophysics Data System (ADS)

    Wang, B.; Bauer, S.; Pfeiffer, W. T.

    2015-12-01

    Large scale energy storage will be required to mitigate offsets between electric energy demand and the fluctuating electric energy production from renewable sources like wind farms, if renewables dominate energy supply. Porous formations in the subsurface could provide the large storage capacities required if chemical energy carriers such as hydrogen gas produced during phases of energy surplus are stored. This work assesses the behavior of a porous media hydrogen storage operation through numerical scenario simulation of a synthetic, heterogeneous sandstone formation formed by an anticlinal structure. The structural model is parameterized using data available for the North German Basin as well as data given for formations with similar characteristics. Based on the geological setting at the storage site a total of 15 facies distributions is generated and the hydrological parameters are assigned accordingly. Hydraulic parameters are spatially distributed according to the facies present and include permeability, porosity relative permeability and capillary pressure. The storage is designed to supply energy in times of deficiency on the order of seven days, which represents the typical time span of weather conditions with no wind. It is found that using five injection/extraction wells 21.3 mio sm³ of hydrogen gas can be stored and retrieved to supply 62,688 MWh of energy within 7 days. This requires a ratio of working to cushion gas of 0.59. The retrievable energy within this time represents the demand of about 450000 people. Furthermore it is found that for longer storage times, larger gas volumes have to be used, for higher delivery rates additionally the number of wells has to be increased. The formation investigated here thus seems to offer sufficient capacity and deliverability to be used for a large scale hydrogen gas storage operation.

  6. Process Integrated Heat Treatment of a Microalloyed Medium Carbon Steel: Microstructure and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Herbst, Sebastian; Schledorn, Mareike; Maier, Hans Jürgen; Milenin, Andrij; Nürnberger, Florian

    2016-04-01

    Air-water spray cooling was employed during a heat treatment to enhance the mechanical properties of microalloyed medium carbon steel test cylinders (38MnVS6, 88 mm diameter). Using appropriate cooling times and intensities, the test cylinders' surfaces could be quenched and subsequently self-tempered by the residual heat of the core. Simultaneously, it was possible to keep the core regions of the cylinders in the bainitic regime and carry out a quasi-isothermal holding. The resulting microstructures consisted of tempered martensite (near-surface) and bainite with pearlite and ferrite (core). Compared to the standard heat treatment (controlled air cooling), the tensile properties (proof stress and ultimate tensile strength) could be improved for both near-surface and core regions with the adapted spray cooling. A hardness profile with 450 HV10 surface hardness and a hardening depth of more than 11 mm could be realized. In addition, an increase of the impact toughness for the core was achieved, resulting in approximately 25 J charpy impact energy. This is a substantial improvement compared to standard heat treatment procedure and values reported in the literature and can be attributed to the reduced pearlite volume fraction and the increased amount of fine bainite.

  7. Photoionization and heating of a supernova-driven turbulent interstellar medium

    NASA Astrophysics Data System (ADS)

    Barnes, J. E.; Wood, Kenneth; Hill, Alex S.; Haffner, L. M.

    2014-06-01

    The diffuse ionized gas (DIG) in galaxies traces photoionization feedback from massive stars. Through three-dimensional photoionization simulations, we study the propagation of ionizing photons, photoionization heating and the resulting distribution of ionized and neutral gas within snapshots of magnetohydrodynamic simulations of a supernova-driven turbulent interstellar medium. We also investigate the impact of non-photoionization heating on observed optical emission line ratios. Inclusion of a heating term which scales less steeply with electron density than photoionization is required to produce diagnostic emission line ratios similar to those observed with the Wisconsin Hα Mapper. Once such heating terms have been included, we are also able to produce temperatures similar to those inferred from observations of the DIG, with temperatures increasing to above 15 000 K at heights |z| ≳ 1 kpc. We find that ionizing photons travel through low-density regions close to the mid-plane of the simulations, while travelling through diffuse low-density regions at large heights. The majority of photons travel small distances (≲100 pc); however some travel kiloparsecs and ionize the DIG.

  8. Dynamics of slow light and light storage in a Doppler-broadened electromagnetically-induced-transparency medium: A numerical approach

    NASA Astrophysics Data System (ADS)

    Su, Shih-Wei; Chen, Yi-Hsin; Gou, Shih-Chuan; Horng, Tzyy-Leng; Yu, Ite A.

    2011-01-01

    We present a numerical scheme to study the dynamics of slow light and light storage in an electromagnetically-induced-transparency (EIT) medium at finite temperatures. Allowing for the motional coupling, we derive a set of coupled Schrödinger equations describing a boosted closed three-level EIT system according to the principle of Galilean relativity. The dynamics of a uniformly moving EIT medium can thus be determined by numerically integrating the coupled Schrödinger equations for atoms plus one ancillary Maxwell-Schrödinger equation for the probe pulse. The central idea of this work rests on the assumption that the loss of ground-state coherence at finite temperatures can be ascribed to the incoherent superposition of density matrices representing the EIT systems with various velocities. Close agreements are demonstrated in comparing the numerical results with the experimental data for both slow light and light storage. In particular, the distinct characters featuring the decay of ground-state coherence can be well verified for slow light and light storage. This warrants that the current scheme can be applied to determine the decaying profile of the ground-state coherence as well as the temperature of the EIT medium.

  9. Occupational exposure in small and medium scale industry with specific reference to heat and noise.

    PubMed

    Singh, Lakhwinder Pal; Bhardwaj, Arvind; Deepak, Kishore Kumar

    2010-01-01

    This study was undertaken to assess heat and noise exposure and occupational safety practices in small and medium scale casting and forging units (SMEs) of Northern India. We conducted personal interviews of 350 male workers of these units through a comprehensive questionnaire and collected information on heat and noise exposure, use of protective equipment, sweat loss and water intake, working hour. The ambient wet bulb globe temperature (WBGT index) was measured using quest temp 34/36o area heat stress monitor. A-weighted Leq ambient noise was measured using a quest sound level meter "ANSI SI. 43-1997 (R 2002) type-1 model SOUNDPRO SE/DL". We also incorporated OSHA norms for hearing conservation which include - an exchange rate of 5dB(A), criterion level at 90dB(A), criterion time of eight hours, threshold level is equal to 80dB(A), upper limit is equal to 140dB(A) and with F/S response rate. Results of the study revealed that occupational heat exposure in melting, casting, forging and punching sections is high compared to ACGIH/NIOSH norms. Ambience noise in various sections like casting / molding, drop forging, cutting presses, punching, grinding and barreling process was found to be more than 90dB(A). About 95% of the workers suffered speech interference where as high noise annoyance was reported by only 20%. Overall, 68% workers were not using any personal protective equipment (PPE). The study concluded that the proportion of SME workers exposed to high level heat stress and noise (60 - 72 hrs/week) is high. The workers engaged in forging and grinding sections are more prone to noise induced hearing loss (NIHL) at higher frequencies as compared to workers of other sections. It is recommended that there is a strong need to implement the standard of working hours as well as heat stress and noise control measures. PMID:20160389

  10. Importance of Salinity Measurements in the Heat Storage Estimation from Topex/Poseidon

    NASA Technical Reports Server (NTRS)

    Sato, O.; Polito, P.; Liu, W.

    1999-01-01

    Sea surface height anomaly signals from satellite altimeter data are used to estimate heat storage. Since variability in sea surface height is mostly due to expansion and contraction of the water column it can be correlated with variations in the heat and salt content.

  11. Effect of storage and subsequent re-heating on viability of Listeria monocytogenes on pork scrapple

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We evaluated the fate of Listeria monocytogenes on pork scrapple, a regionally-popular, ready-to-eat (RTE) meat product, both during storage and following re-heating. We also conducted an informal survey to address consumer practices for storing and re-heating scrapple. Regarding the survey, of some...

  12. Fundamental Research on Heat Transfer Characteristics in Shell & Tube Type Ice Forming Cold Energy Storage

    NASA Astrophysics Data System (ADS)

    Saito, Akio; Utaka, Yoshio; Okawa, Seiji; Ishibashi, Hiroaki

    Investigation of heat transfer characteristics in an ice making cold energy storage using a set of horizontal cooling pipes was carried out experimentally. Cooling pipe arrangement, number of pipes used and initial water temperature were varied, and temperature distribution in the tank and the volume of ice formed around the pipe were measured. Natural convection was also observed visually. During the experiment, two kinds of layers were observed. One is the layer where ice forming is interfered by natural convection and its temperature decreases rapidly with an almost uniform temperature distribution, and the other is the layer where ice forms steadily under a stagnant water condition. The former was called that the layer is under a cooling process and the latter that the layer is under an ice forming process. The effect of the experimental parameters, such as the arrangement of the cooling pipes, the number of pipes, the initial water temperature and the flow rate of the cooling medium, on the cooling process and the ice forming process were discussed. Approximate analysis was also carried out and compared with the experimental results. Finally, the relationship between the ice packing factor, which is significant in preventing the blockade, and experimental parameters was discussed.

  13. An integrated heat pipe-thermal storage design for a solar receiver

    NASA Astrophysics Data System (ADS)

    Keddy, E.; Sena, J. T.; Woloshun, K.; Merrigan, M. A.; Heidenreich, G.

    Light-weight heat pipe wall elements that incorporate a thermal storage subassembly within the vapor space are being developed as part of the Organic Rankine Cycle Solar Dynamic Power System (ORC-SDPS) receiver for the Space Station application. The operating temperature of the heat pipe elements is in the 770 to 810 K range with a design power throughput of 4.8 kW per pipe. The total heat pipe length is 1.9 M. The Rankine cycle boiler heat transfer surfaces are positioned within the heat pipe vapor space, providing a relatively constant temperature input to the vaporizer. The heat pipe design employs axial arteries and distribution wicked thermal storage units with potassium as the working fluid. Performance predictions for this configuration have been conducted and the design characterized as a function of artery geometry, distribution wick thickness, porosity, pore size, and permeability.

  14. Thermal energy storage – overview and specific insight into nitrate salts for sensible and latent heat storage

    PubMed Central

    Bauer, Thomas; Martin, Claudia; Eck, Markus; Wörner, Antje

    2015-01-01

    Summary Thermal energy storage (TES) is capable to reduce the demand of conventional energy sources for two reasons: First, they prevent the mismatch between the energy supply and the power demand when generating electricity from renewable energy sources. Second, utilization of waste heat in industrial processes by thermal energy storage reduces the final energy consumption. This review focuses mainly on material aspects of alkali nitrate salts. They include thermal properties, thermal decomposition processes as well as a new method to develop optimized salt systems. PMID:26199853

  15. The Development of Small Solar Concentrating Systems with Heat Storage for Rural Food Preparation

    NASA Astrophysics Data System (ADS)

    van den Heetkamp, R. R. J.

    A system, consisting of a parabolic reflector mounted on a polar axis tracker, has been designed and built. Air at atmospheric pressure is heated by the concentrated solar radiation to temperatures of up to 400°C as it is sucked through the receiver and into the pebble-bed heat storage unit, by means of a fan at the bottom of the storage. The stored heat is recovered by the reversal of the fan and the resulting hot air can be used in a convection oven and other appliances. This report discusses practical aspects, as well as preliminary test results, of such a system.

  16. Evaluation of the HB&L System for the Microbiological Screening of Storage Medium for Organ-Cultured Corneas.

    PubMed

    Camposampiero, D; Grandesso, S; Zanetti, E; Mazzucato, S; Solinas, M; Parekh, M; Frigo, A C; Gion, M; Ponzin, D

    2013-01-01

    Aims. To compare HB&L and BACTEC systems for detecting the microorganisms contaminating the corneal storage liquid preserved at 31°C. Methods. Human donor corneas were stored at 4°C followed by preservation at 31°C. Samples of the storage medium were inoculated in BACTEC Peds Plus/F (aerobic microorganisms), BACTEC Plus Anaerobic/F (anaerobic microorganisms), and HB&L bottles. The tests were performed (a) after six days of storage, (b) end of storage, and (c) after 24 hours of preservation in deturgescent liquid sequentially. 10,655 storage and deturgescent media samples were subjected to microbiological control using BACTEC (6-day incubation) and HB&L (24-hour incubation) systems simultaneously. BACTEC positive/negative refers to both/either aerobic and anaerobic positives/negatives, whereas HB&L can only detect the aerobic microbes, and therefore the positives/negatives depend on the presence/absence of aerobic microorganisms. Results. 147 (1.38%) samples were identified positive with at least one of the two methods. 127 samples (134 identified microorganisms) were positive with both HB&L and BACTEC. 14 HB&L+/BACTEC- and 6 BACTEC+/HB&L- were identified. Sensitivity (95.5%), specificity (99.8%), and positive (90.1%) and negative predictive values (99.9%) were high with HB&L considering a 3.5% annual contamination rate. Conclusion. HB&L is a rapid system for detecting microorganisms in corneal storage medium in addition to the existing methods. PMID:24069532

  17. Evaluation of the HB&L System for the Microbiological Screening of Storage Medium for Organ-Cultured Corneas

    PubMed Central

    Camposampiero, D.; Grandesso, S.; Zanetti, E.; Mazzucato, S.; Solinas, M.; Parekh, M.; Frigo, A. C.; Gion, M.; Ponzin, D.

    2013-01-01

    Aims. To compare HB&L and BACTEC systems for detecting the microorganisms contaminating the corneal storage liquid preserved at 31°C. Methods. Human donor corneas were stored at 4°C followed by preservation at 31°C. Samples of the storage medium were inoculated in BACTEC Peds Plus/F (aerobic microorganisms), BACTEC Plus Anaerobic/F (anaerobic microorganisms), and HB&L bottles. The tests were performed (a) after six days of storage, (b) end of storage, and (c) after 24 hours of preservation in deturgescent liquid sequentially. 10,655 storage and deturgescent media samples were subjected to microbiological control using BACTEC (6-day incubation) and HB&L (24-hour incubation) systems simultaneously. BACTEC positive/negative refers to both/either aerobic and anaerobic positives/negatives, whereas HB&L can only detect the aerobic microbes, and therefore the positives/negatives depend on the presence/absence of aerobic microorganisms. Results. 147 (1.38%) samples were identified positive with at least one of the two methods. 127 samples (134 identified microorganisms) were positive with both HB&L and BACTEC. 14 HB&L+/BACTEC− and 6 BACTEC+/HB&L− were identified. Sensitivity (95.5%), specificity (99.8%), and positive (90.1%) and negative predictive values (99.9%) were high with HB&L considering a 3.5% annual contamination rate. Conclusion. HB&L is a rapid system for detecting microorganisms in corneal storage medium in addition to the existing methods. PMID:24069532

  18. Small scale changes of geochemistry and flow field due to transient heat storage in aquifers

    NASA Astrophysics Data System (ADS)

    Bauer, S.; Boockmeyer, A.; Li, D.; Beyer, C.

    2013-12-01

    Heat exchangers in the subsurface are increasingly installed for transient heat storage due to the need of heating or cooling of buildings as well as the interim storage of heat to compensate for the temporally fluctuating energy production by wind or solar energy. For heat storage to be efficient, high temperatures must be achieved in the subsurface. Significant temporal changes of the soil and groundwater temperatures however effect both the local flow field by temperature dependent fluid parameters as well as reactive mass transport through temperature dependent diffusion coefficients, geochemical reaction rates and mineral equilibria. As the use of heat storage will be concentrated in urban areas, the use of the subsurface for (drinking) water supply and heat storage will typically coincide and a reliable prognosis of the processes occurring is needed. In the present work, the effects of a temporal variation of the groundwater temperature, as induced by a local heat exchanger introduced into a groundwater aquifer, are studied. For this purpose, the coupled non-isothermal groundwater flow, heat transport and reactive mass transport is simulated in the near filed of such a heat exchanger. By explicitly discretizing and incorporating the borehole, the borehole cementation and the heat exchanger tubes, a realistic geometrical and process representation is obtained. The numerical simulation code OpenGeoSys is used in this work, which incorporates the required processes of coupled groundwater flow, heat and mass transport as well as temperature dependent geochemistry. Due to the use of a Finite Element Method, a close representation of the geometric effects can be achieved. Synthetic scenario simulations for typical settings of salt water formations in northern Germany are used to investigate the geochemical effects arising from a high temperature heat storage by quantifying changes in groundwater chemistry and overall reaction rates. This work presents the

  19. Integrated heat pipe-thermal storage design for a solar receiver. [Constant power source with heat from sun or from storage

    SciTech Connect

    Keddy, E.S.; Sena, J.T.; Woloshun, K.; Merrigan, M.A.; Heidenreich, G.

    1986-01-01

    Light-weight heat pipe wall elements that incorporate a thermal storage subassembly within the vapor space are being developed as part of the Organic Rankine Cycle Solar Dynamic Power Systems (ORC-SDPS) receiver for the space station application. The operating temperature of he heat pipe elements is in the 770 to 810/sup 0/K range with a design power throughput of 4.8 kW per pipe. The total heat pipe length is 1.9 M. The Rankine cycle boiler heat transfer surfaces are positioned within the heat pipe vapor space, providing a relatively constant temperature input to the vaporizer. The heat pipe design employs axial arteries and distribution wicked thermal storage units with potassium as the working fluid. Stainless steel is used as the containment tube and screen material. Performance predictions for this configuration have been conducted and the design characterized as a function of artery geometry, distribution wick thickness, porosity, pore size, and permeability. Details of the analysis and of fabrication and assembly procedures are presented. 2 refs., 8 figs.

  20. Numerical heat transfer study in a scattering, absorbing and emitting semi-transparent porous medium in a cylindrical enclosure

    NASA Astrophysics Data System (ADS)

    Timoumi, M.; Chérif, B.; Sifaoui, M. S.

    2005-12-01

    In this paper, heat transfer problem through a semi-transparent porous medium in a cylindrical enclosure is investigated. The governing equations for this problem and the boundary conditions are non-linear differential equations depending on the dimensionless radial coordinate, Planck number N, scattering albedo ω, walls emissivity and thermal conductivity ratio kr. The set of differential equations are solved by a numerical technique taken from the IMSL MATH/LIBRARY. Various results are obtained for the dimensionless temperature profiles in the solid and fluid phases and the radiative heat flux. The effects of some radiative properties of the medium on the heat transfer rate are examined.

  1. Development of an integrated heat pipe-thermal storage system for a solar receiver

    NASA Technical Reports Server (NTRS)

    Keddy, E.; Sena, J. Tom; Merrigan, M.; Heidenreich, Gary; Johnson, Steve

    1988-01-01

    An integrated heat pipe-thermal storage system was developed as part of the Organic Rankine Cycle Solar Dynamic Power System solar receiver for space station application. The solar receiver incorporates potassium heat pipe elements to absorb and transfer the solar energy within the receiver cavity. The heat pipes contain thermal energy storage (TES) canisters within the vapor space with a toluene heater tube used as the condenser region of the heat pipe. During the insolation period of the earth orbit, solar energy is delivered to the heat pipe. Part of this thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of earth orbit, the stored energy in the TES units is transferred by the potassium vapor to the toluene heater tube. A developmental heat pipe element was constructed that contains axial arteries and a distribution wick connecting the toluene heater and the TES units to the solar insolation surface of the heat pipe. Tests were conducted to demonstrate the heat pipe, TES units, and the heater tube operation. The heat pipe element was operated at design input power of 4.8 kW. Thermal cycle tests were conducted to demonstrate the successful charge and discharge of the TES units. Axial power flux levels up to 15 watts/sq cm were demonstrated and transient tests were conducted on the heat pipe element. Details of the heat pipe development and test procedures are presented.

  2. A chemical heat pump based on the reaction of calcium chloride and methanol for solar heating, cooling and storage

    NASA Astrophysics Data System (ADS)

    Offenhartz, P. O.

    1981-03-01

    An engineering development test prototype of the CaCl2-CheOH chemical heat pump was tested. The unit, which has storage capacity in excess of 100,000 BTU, completed over 100 full charge-discharge cycles. Cycling data show that the rate of heat pumping depends strongly on the absorber-evaporator temperature difference. These rates are more than adequate for solar heating or for solar cooling using dry ambient air heat rejection. Performance degradation after 100 cycles, expressed as a contact resistance, was less than 2 C. The heat exchangers showed some warpage due to plastic flow of the salt, producing the contact resistance. The experimental COP for cooling was 0.52, close to the theoretically predicted value.

  3. Storage of H.sub.2 by absorption and/or mixture within a fluid medium

    DOEpatents

    Berry, Gene David; Aceves, Salvador Martin

    2007-03-20

    For the first time, a hydrogen storage method, apparatus and system having a fluid mixture is provided. At predetermined pressures and/or temperatures within a contained substantially fixed volume, the fluid mixture can store a high density of hydrogen molecules, wherein a predetermined phase of the fluid mixture is capable of being withdrawn from the substantially fixed volume for use as a vehicle fuel or energy storage having reduced and/or eliminated evaporative losses, especially where storage weight, vessel cost, vessel shape, safety, and energy efficiency are beneficial.

  4. Scenario Development and Analysis of Hydrogen as a Large-Scale Energy Storage Medium (Presentation)

    SciTech Connect

    Steward, D. M.

    2009-06-10

    The conclusions from this report are: (1) hydrogen has several important advantages over competing technologies, including - very high storage energy density (170 kWh/m{sup 3} vs. 2.4 for CAES and 0.7 for pumped hydro) which allows for potential economic viability of above-ground storage and relatively low environmental impact in comparison with other technologies; and (2) the major disadvantage of hydrogen energy storage is cost but research and deployment of electrolyzers and fuel cells may reduce cost significantly.

  5. Transient performance evaluation of an integrated heat pipe-thermal storage system

    NASA Technical Reports Server (NTRS)

    Keddy, E.; Sena, J. T.; Merrigan, M.; Heidenreich, Gary; Johnson, Steve

    1988-01-01

    Transient performance tests of an integrated heat pipe-thermal storage system have been conducted. This system was developed as a part of an Organic Rankine Cycle-Solar Dynamic Power System receiver for future power systems. The integrated system consists of potassium heat pipe elements that incorporate thermal energy storage canisters within the vapor space and an organic fluid (toluene) heater tube used as the condenser region of the heat pipe. The transient performance tests determined the operating characteristics and power input limits of the integrated heat pipe-thermal storage unit under conditions corresponding to re-acquisition of the sun during emergence from eclipse conditions and to the initial start-up of the solar dynamic power system. The tests demonstrated that the heat pipe-thermal storage element is not limited under conditions corresponding to emergence from eclipse during normal orbital operations and the heat pipe will successfully start-up from the frozen condition with full input power at the onset. Details of the test procedures and results of the tests are presented in this paper.

  6. Processes of heat and mass transfer in straw bales using flue gasses as a drying medium

    NASA Astrophysics Data System (ADS)

    Goryl, Wojciech; Szubel, Mateusz; Filipowicz, Mariusz

    2016-03-01

    Moisture content is a main problem of using straw in form of bales for energy production. The paper presents possibility of straw drying in dedicated, innovative and patented in Poland straw dryers which using flue gasses as a drying medium. Paper presents an improved way of drying which proved to be very sufficient. Temperature and humidity of straw during the process of drying were measured. The measurements helped understand and perform numerical model of heat and mass transfer inside the straw bale. By using CFD codes it was possible to perform analysis of phenomenon occurring inside the dried straw bale. Based on the CFD model, proposals of the optimization and improvement process of drying have been discussed. Experimental and computational data have been compared in terms of convergence. A satisfying degree of agreement has been achieved. Applying improved drying method, homogenous field of moisture content and temperature in the straw bale is achieved in a very cost effective way.

  7. Continued development of a semianalytical solution for two-phase fluid and heat flow in a porous medium

    SciTech Connect

    Doughty, C.; Pruess, K.

    1991-06-01

    Over the past few years the authors have developed a semianalytical solution for transient two-phase water, air, and heat flow in a porous medium surrounding a constant-strength linear heat source, using a similarity variable {eta} = r/{radical}t. Although the similarity transformation approach requires a simplified geometry, all the complex physical mechanisms involved in coupled two-phase fluid and heat flow can be taken into account in a rigorous way, so that the solution may be applied to a variety of problems of current interest. The work was motivated by adverse to predict the thermohydrological response to the proposed geologic repository for heat-generating high-level nuclear wastes at Yucca Mountain, Nevada, in a partially saturated, highly fractured volcanic formation. The paper describes thermal and hydrologic conditions near the heat source; new features of the model; vapor pressure lowering; and the effective-continuum representation of a fractured/porous medium.

  8. Performance of direct contact latent heat storage units with two hydrated salts

    SciTech Connect

    Farid, M.M. ); Khalaf, A.N. )

    1994-02-01

    The performance of a direct contact latent heat storage unit, that consists of two columns with different hydrated salts, has been investigated. Na[sub 2]CO[sub 3]-10H[sub 2]O (sodium carbonate decahydrate) and Na[sub 2]S[sub 2]O[sub 3][center dot]5H[sub 2]O (sodium thiosulphate pentahydrate) were contained in separate columns both having an inside diameter and total length of 0.184 m and 1.0 m, respectively. During heat charge, the hot keresone as a heat transfer fluid was bubbled through the sodium thiosulfate solution first. The partially cooled kerosene was then pumped to the second column containing the sodium thiosulfate solution first. The partially cooled kerosene was then pumped to the second column containing the sodium carbonate solution, discharging most of its heat content. Flow direction was reversed during heat discharge. The continuous phase temperature in the two columns, as well as kerosene inlet and outlet temperatures, were measured continuously. Results showed significant improvement in heat transfer rates by using two separate columns containing similar or different salts. The use of a combination of two different salts, having different crystallization temperatures, and contained in different columns connected in series, may provide better means of heat storage by allowing the system to operate as a phase change storage for longer periods of operation. This is particularly suitable for solar energy applications in which the collector temperature may vary significantly during the day.

  9. Toxicological effects of particulate emissions - A comparison of oil and wood fuels in small- and medium-scale heating systems

    NASA Astrophysics Data System (ADS)

    Kasurinen, Stefanie; Jalava, Pasi I.; Tapanainen, Maija; Uski, Oskari; Happo, Mikko S.; Mäki-Paakkanen, Jorma; Lamberg, Heikki; Koponen, Hanna; Nuutinen, Ilpo; Kortelainen, Miika; Jokiniemi, Jorma; Hirvonen, Maija-Riitta

    2015-02-01

    The use of wood instead of oil fuels in heating systems is strongly encouraged in many countries. Yet it is unknown to what extent such a large-scale change from oil to wood fuels in heating systems would contribute to any negative health effects from their emissions. We compared the toxicological properties of particulate matter (PM) emissions from wood and oil fuels from two small-scale and two medium-scale heating systems. To assess whether oil or wood combustion emissions cause adverse effects and which PM emissions' effects are more profound, we measured cell viability and proliferation, inflammatory markers, as well as DNA damage in RAW264.7 mouse macrophages. We found that the medium-scale oil-fueled heating system induced a dose-dependent increase of DNA damage, short-term cytotoxic effects, and a cell cycle arrest in the G2/M-phase. We did not detect an induction of DNA damage by the medium-scale wood-fired system. However, we detected significant short-term cytotoxicity. We found that both oil and wood combustion emission samples from the small-scale heating systems induced DNA damage. However, the short-term cytotoxic effects were greater for the PM emissions from the oil-fired heating system. PM mass emissions differed significantly between the tested heating systems. The lowest emissions, 0.1 mg/MJ, were produced by the small-scale oil-fired heating system; the highest emissions, 20.3 mg/MJ, by the medium-scale oil-fired heating system. The wood-fired heating systems' PM mass emissions were in between these concentrations, complicating the direct comparison of the emissions' health related toxic effects. Conclusively, our results indicate that the emissions from both the small- and the medium-scale wood-fueled heating systems cause overall less cytotoxicity and DNA damage in a cell model than the emissions from the corresponding oil-fueled heating systems. Hence, controlled wood-fueled heating systems may be good alternatives to heating systems fired

  10. Densities of some molten fluoride salt mixtures suitable for heat storage in space power applications

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1988-01-01

    Liquid densities were determined for a number of fluoride salt mixtures suitable for heat storage in space power applications, using a procedure that consisted of measuring the loss of weight of an inert bob in the melt. The density apparatus was calibrated with pure LiF and NaF at different temperatures. Density data for safe binary and ternary fluoride salt eutectics and congruently melting intermediate compounds are presented. In addition, a comparison was made between the volumetric heat storage capacity of different salt mixtures.

  11. Two-tank working gas storage system for heat engine

    DOEpatents

    Hindes, Clyde J.

    1987-01-01

    A two-tank working gas supply and pump-down system is coupled to a hot gas engine, such as a Stirling engine. The system has a power control valve for admitting the working gas to the engine when increased power is needed, and for releasing the working gas from the engine when engine power is to be decreased. A compressor pumps the working gas that is released from the engine. Two storage vessels or tanks are provided, one for storing the working gas at a modest pressure (i.e., half maximum pressure), and another for storing the working gas at a higher pressure (i.e., about full engine pressure). Solenoid valves are associated with the gas line to each of the storage vessels, and are selectively actuated to couple the vessels one at a time to the compressor during pumpdown to fill the high-pressure vessel with working gas at high pressure and then to fill the low-pressure vessel with the gas at low pressure. When more power is needed, the solenoid valves first supply the low-pressure gas from the low-pressure vessel to the engine and then supply the high-pressure gas from the high-pressure vessel. The solenoid valves each act as a check-valve when unactuated, and as an open valve when actuated.

  12. Same magnetic nanoparticles, different heating behavior: Influence of the arrangement and dispersive medium

    NASA Astrophysics Data System (ADS)

    Andreu, Irene; Natividad, Eva; Solozábal, Laura; Roubeau, Olivier

    2015-04-01

    The heating ability of the same magnetic nanoparticles (MNPs) dispersed in different media has been studied in the 170-310 K temperature range. For this purpose, the biggest non-twinned nanoparticles have been selected among a series of magnetite nanoparticles of increasing sizes synthesized via a seeded growth method. The sample with nanoparticles dispersed in n-tetracosane, thermally quenched from 100 °C and solid in the whole measuring range, follows the linear response theoretical behavior for non-interacting nanoparticles, and displays a remarkably large maximum specific absorption rate (SAR) value comparable to that of magnetosomes at the alternating magnetic fields used in the measurements. The other samples, with nanoparticles dispersed either in alkane solvents of sub-ambient melting temperatures or in epoxy resin, display different thermal behaviors and maximum SAR values ranging between 11 and 65% of that achieved for the sample with n-tetracosane as dispersive medium. These results highlight the importance of the MNPs environment and arrangement to maintain optimal SAR values, and may help to understand the disparity sometimes found between MNPs heating performance measured in a ferrofluid and after injection in an animal model, where MNP arrangement and environment are not the same.

  13. Optimization of magnetic refrigerators by tuning the heat transfer medium and operating conditions

    NASA Astrophysics Data System (ADS)

    Ghahremani, Mohammadreza; Aslani, Amir; Bennett, Lawrence; Della Torre, Edward

    A new reciprocating Active Magnetic Regenerator (AMR) experimental device has been designed, built and tested to evaluate the effect of the system's parameters on a reciprocating Active Magnetic Regenerator (AMR) near room temperature. Gadolinium turnings were used as the refrigerant, silicon oil as the heat transfer medium, and a magnetic field of 1.3 T was cycled. This study focuses on the methodology of single stage AMR operation conditions to get a higher temperature span near room temperature. Herein, the main objective is not to report the absolute maximum attainable temperature span seen in an AMR system, but rather to find the system's optimal operating conditions to reach that maximum span. The results of this work show that there is an optimal operating frequency, heat transfer fluid flow rate, flow duration, and displaced volume ratio in an AMR system. It is expected that such optimization and the results provided herein will permit the future design and development of more efficient room-temperature magnetic refrigeration systems.

  14. Tuning the heat transfer medium and operating conditions in magnetic refrigeration

    NASA Astrophysics Data System (ADS)

    Ghahremani, Mohammadreza; Aslani, Amir; Siddique, Abid; Bennett, Lawrence H.; Della Torre, Edward

    2016-07-01

    A new experimental test bed has been designed, built, and tested to evaluate the effect of the system's parameters on a reciprocating Active Magnetic Regenerator (AMR) near room temperature. Bulk gadolinium was used as the refrigerant, silicon oil as the heat transfer medium, and a magnetic field of 1.3 T was cycled. This study focuses on the methodology of single stage AMR operation conditions to get a high temperature span near room temperature. Herein, the main objective is not to report the absolute maximum attainable temperature span seen in an AMR system, but rather to find the system's optimal operating conditions to reach that maximum span. The results of this research show that there is a optimal operating frequency, heat transfer fluid flow rate, flow duration, and displaced volume ratio in any AMR system. By optimizing these parameters in our AMR apparatus the temperature span between the hot and cold ends increased by 24%. The optimized values are system dependent and need to be determined and measured for any AMR system by following the procedures that are introduced in this research. It is expected that such optimization will permit the design of a more efficient magnetic refrigeration system.

  15. Short-term storage of canine preantral ovarian follicles using a powdered coconut water (ACP)-based medium.

    PubMed

    Lima, G L; Costa, L L M; Cavalcanti, D M L P; Rodrigues, C M F; Freire, F A M; Fontenele-Neto, J D; Silva, A R

    2010-07-01

    The objective was to investigate the use of powdered coconut water (ACP)-based medium for short-term preservation of canine preantral follicles. Pairs of ovaries from mongrel bitches (n=9) were divided into fragments. One ovarian fragment, treated as a fresh control, was immediately fixed for histological analysis, whereas the other six ovarian fragments were stored either in phosphate-buffered saline (PBS; control group) or ACP medium in isothermal Styrofoam boxes containing biological ice packs. The boxes were sealed and opened only after 12, 24, or 36h. After opening each box, the ovarian fragments were submitted to histological analysis. In total, 12,302 preantral follicles were evaluated, with 64.5% primordial, 33.3% primary, and 2.3% secondary follicles. There were multiple oocytes in 1.3% of the follicles analyzed. At 24h, ACP was more efficient in preserving follicular morphology than PBS (P<0.05). Compared with the fresh control group, a significant reduction in the percentage of morphologically normal ovarian follicles was observed for PBS, starting at 24h; however, the decline started only at 36h for the ACP medium. During the experiment, the temperature inside the isothermal boxes increased from 3 to 9 degrees C (P<0.05), despite a constant room temperature. In conclusion, powdered coconut water (ACP) was an appropriate medium for short-term storage of canine preantral ovarian follicles. PMID:20207405

  16. Hexagonal boron nitride nanoparticles decorated halloysite clay nanotubes as a potential hydrogen storage medium

    NASA Astrophysics Data System (ADS)

    Muthu, R. Naresh; Rajashabala, S.; Kannan, R.

    2016-05-01

    The light weight and compact hydrogen storage materials is still prerequisite for the carbon free hydrogen fuel cell technology. In this work, the hydrogen storage performance of acid treated halloysite clay nanotubes (A-HNTs) and hexagonal boron nitride (h-BN) nanoparticles decorated acid treated halloysite nanoclay composite (A-HNT-h-BN) are demonstrated, where facile ultrasonic technique is adopted for the synthesis of A-HNT-h-BN nanoclay composite. Hydrogen storage studies were carried out using Sieverts-like hydrogenation setup. The A-HNTs and A-HNT-h-BN nanoclay composite were analyzed by XRD, FTIR, HRTEM, EDX, CHNS-elemental analysis and TGA. The A-HNT-h-BN nanoclay composite shows superior storage capacity of 2.19 wt% at 50 °C compared to the A-HNTs (0.58 wt%). A 100% desorption of stored hydrogen is noted in the temperature range of 138-175 °C. The average binding energy of hydrogen was found to be 0.34 eV for the prepared A-HNT-h-BN nanoclay composite. The excellent storage capability of A-HNT-h-BN nanoclay composite towards hydrogen at ambient temperature may find bright perspective in hydrogen fuel cell technology in near future.

  17. A study on cooling characteristics of clathrate compound as low temperature latent heat storage material

    NASA Astrophysics Data System (ADS)

    Kim, Chang Oh; Kim, Jin Heung; Chung, Nak Kyu

    2007-07-01

    Materials that can store low temperature latent heat are organic/inorganic chemicals, eutectic salt system and clathrate compound. Clathrate compound is the material that host compound in hydrogen bond forms cage and guest compound is included into it and combined. Crystallization of hydrate is generated at higher temperature than that of ice from pure water. And physical properties according to temperature are stable and congruent melting phenomenon is occurred without phase separation and it has relatively high latent heat. But clathrate compound still has supercooling problem occurred in the course of phase change and supercooling should be minimized because it affects efficiency of equipment very much. Therefore, various studies on additives to restrain this or heat storage methods are needed. Supercooling is the phenomenon that low temperature thermal storage material is not crystallized and existed as liquid for some time under phase change temperature. Because phase change into solid is delayed and it is existed as liquid due to this, heat transfer from low temperature thermal storage material is lowered. Therefore it is not crystallized at original phase change temperature and crystallized after cooled as much as supercooling degree and operation time of refrigerator is increased. In this study was investigated the cooling characteristics of the clathrate compound as a low temperature latent heat storage material. And additive was added to clathrate compound and its supercooling restrain effect was studied experimentally.

  18. A feasible way to remove the heat during adsorptive methane storage.

    PubMed

    Gütlein, Stefan; Burkard, Christoph; Zeilinger, Johannes; Niedermaier, Matthias; Klumpp, Michael; Kolb, Veronika; Jess, Andreas; Etzold, Bastian J M

    2015-01-01

    Methane originating from biogas or natural gas is an attractive and environmentally friendly alternative to gasoline. Adsorption is seen as promising storage technology, but the heat released limits fast filling of these systems. Here a lab scale adsorptive methane storage tank, capable to study the temperature increase during fast filling, was realized. A variation of the filling time from 1 h to 31 s, showed a decrease of the storage capacity of 14% and temperature increase of 39.6 °C. The experimental data could be described in good accordance with a finite element simulation solving the transient mass, energy, and impulse balance. The simulation was further used to extrapolate temperature development in real sized car tanks and for different heat pipe scenarios, resulting in temperature rises of approximately 110 °C. It could be clearly shown, that with heat conductivity as solei mechanism the heat cannot be removed in acceptable time. By adding an outlet to the tank a feed flow cooling with methane as heat carrier was realized. This setup was proofed in simulation and lab scale experiments to be a promising technique for fast adsorbent cooling and can be crucial to leverage the full potential of adsorptive methane gas storage. PMID:25485691

  19. Experimental and numerical simulations of heat transfers between flowing water and a horizontal frozen porous medium

    NASA Astrophysics Data System (ADS)

    Roux, N.; Costard, F.; Grenier, C. F.

    2013-12-01

    In permafrost-affected regions, hydrological changes due to global warming are still under investigation. But yet, we can already foresee from recent studies that for example, the variability and intensity of surface/subsurface flow are likely to be affected by permafrost degradation. And the feedback induced by such changes on permafrost degradation is still not clearly assessed. Of particular interest are lake and river-taliks. A talik is a permanently unfrozen zone that lies below rivers or lake. They should play a key role in these interactions given that they are the only paths for groundwater flow in permafrost regions. Thus heat transfers on a regional scale are potentially influenced by groundwater circulation. The aim of our study is therefore to investigate the evolution of river taliks. We developed a multidisciplinary approach coupling field investigation, experimental studies in a cold room and numerical modeling. In Central Yakutia, Siberia, where permafrost is continuous, we recently installed instruments to monitor ground temperature and water pressure in a river talik between two thermokarst lakes. We present here the coupling of numerical modeling and laboratory experiments in order to look after the main parameters controlling river-talik installation. In a cold room at IDES, where a metric scale channel is filled with sand as a porous medium, we are able to control air, water and permafrost temperature, but also water flow, so that we can test various parameter sets for a miniaturized river. These results are confronted with a numerical model developed at the LSCE with Cast3m (www-cast3m.cea.fr), that couples heat and water transfer. In particular, expressions for river-talik heat exchange terms are investigated. A further step will come in the near future with results from field investigation providing the full complexity of a natural system. Keywords: Talik, River, Numerical Modeling, Cold Room, Permafrost.

  20. Sc-coated Si@Al12 as high-capacity hydrogen storage medium

    NASA Astrophysics Data System (ADS)

    Lu, Q. L.; Wan, J. G.

    2010-06-01

    Hydrogen molecules adsorption and storage in Sc coated Si@Al12 cluster were investigated using density functional theory methods. Scandium atoms can bind strongly to the surfaces of Si@Al12 due to the charge transfer between Sc and Si@Al12, and do not suffer from clustering on the substrate. Si@Al12 cluster coated with three and four Sc atoms can adsorb 16 and 18 H2 molecules with a binding energy of 0.28-0.63 eV/H2, corresponding to hydrogen storage capacity of 6.0 and 6.3 wt %, respectively. The stable Si@Al12 can be applied as one of candidates for hydrogen storage materials at ambient conditions.

  1. Two-dimensional simulation of holographic data storage medium for multiplexed recording.

    PubMed

    Toishi, Mitsuru; Takeda, Takahiro; Tanaka, Kenji; Tanaka, Tomiji; Fukumoto, Atsushi; Watanabe, Kenjiro

    2008-02-18

    In this paper, we propose a new analysis model for photopolymer recording processes that calculate the two-dimensional refractive index distribution of multiplexed holograms. For the simulation of the photopolymer medium, time evolution of monomer diffusion and polymerization need to be calculated simultaneously. The distribution of the refractive index inside the medium is induced by these processes. By evaluating the refractive index pattern on each layer, the diffraction beams from the multiplexed hologram can be read out by beam propagation method (BPM). This is the first paper to determine the diffraction beam from a multiplexed hologram in a simulated photopolymer medium process. We analyze the time response of the multiplexed hologram recording processes in the photopolymer, and estimate the degradation of diffraction efficiency with multiplexed recording. This work can greatly contribute to understanding the process of hologram recording. PMID:18542367

  2. Measurement of Latent Heat of Melting of Thermal Storage Materials for Dynamic Type Ice Thermal Storage

    NASA Astrophysics Data System (ADS)

    Sawada, Hisashi; Okada, Masashi; Nakagawa, Shinji

    In order to measure the latent heat of melting of ice slurries with various solute concentrations, an adiabatic calorimeter was constructed. Ice slurries were made from each aqueous solution of ethanol, ethylene glycol and silane coupling agent. The latent heat of melting of ice made from tap water was measured with the present calorimeter and the uncertainty of the result was one percent. Ice slurries were made both by mixing ice particles made from water with each aqueous solution and by freezing each aqueous solution with stirring in a vessel. The latent heat of melting of these ice slurries was measured with various concentrations of solution. The latent heat of melting decreased as the solute concentration or the freezing point depression increased. The latent heat of ice slurries made from ethanol or ethylene glycol aqueous solution agreed with that of ice made from pure water known already. The latent heat of melting of ice slurries made from silane coupling agent aqueous solution got smaller than that of ice made from pure water as the freezing point depression increased.

  3. Development of in-aquifer heat testing for high resolution subsurface thermal-storage capability characterisation

    NASA Astrophysics Data System (ADS)

    Seibertz, Klodwig Suibert Oskar; Chirila, Marian Andrei; Bumberger, Jan; Dietrich, Peter; Vienken, Thomas

    2016-03-01

    The ongoing transition from fossil fuels to alternative energy source provision has resulted in increased geothermal uses as well as storage of the shallow subsurface. Existing approaches for exploration of shallow subsurface geothermal energy storage often lack the ability to provide information concerning the spatial variability of thermal storage parameters. However, parameter distributions have to be known to ensure that sustainable geothermal use of the shallow subsurface can take place - especially when it is subject to intensive usage. In this paper, we test a temperature decay time approach to obtain in situ, direct, qualitative, spatial high-resolution information about the distribution of thermal storage capabilities of the shallow subsurface. To achieve this, temperature data from a high-resolution Fibre-Optic-Distributed-Temperature-Sensing device, as well as data from conventional Pt100-temperature-sensors were collected during a heat injection test. The latter test was used to measure the decay time of temperature signal dissipation of the subsurface. Signal generation was provided by in-aquifer heating with a temperature self-regulating electric heating cable. Heating was carried out for 4.5 days. After this, a cooling period of 1.5 weeks was observed. Temperature dissipation data was also compared to Direct-Push-derived high-resolution (hydro-)geological data. The results show that besides hydraulic properties also the bedding and compaction state of the sediment have an impact on the thermal storage capability of the saturated subsurface. The temperature decay time approach is therefore a reliable method for obtaining information regarding the qualitative heat storage capability of heterogeneous aquifers for the use with closed loop system geothermal storage systems. Furthermore, this approach is advantageous over other commonly used methods, e.g. soil-sampling and laboratory analysis, as even small changes in (hydro-)geological properties lead to

  4. Some aspects of two-phase flow, heat transfer and dynamic instabilities in medium and high pressure steam generators

    NASA Astrophysics Data System (ADS)

    Unal, H. C.

    1981-03-01

    Experimental data for void fraction, incipient point of boiling, initial point of net vapor generation, bubble dynamics, dryout, two-phase flow pressure drop and density-wave oscillations were obtained in long, sodium heated steam generator tubes of different geometries for a wide range of operating conditions and at medium and high pressures. These data and data from literature taken in sodium and electrically heated steam generator tubes were correlated. Aspects of two-phase flow, heat transfer and density-wave oscillations in these steam generators disclosed include the distribution factor in small- and medium-size diameter steam generator tubes, the characteristic of the transitions at the incipient point of boiling and initial point of net vapor generation, bubble growth during subcooled nucleate flow boiling, the importance of the equivalent length for dryout in non-uniformly heated steam generator tubes and the mechanisms of density-wave oscillations in once-through steam generator tubes.

  5. Generalized assessment of heat-storage accumulators based on energy profiles

    SciTech Connect

    Hemzal, K.; Wurm, J.

    1994-09-01

    The analytical and experimental work described in this paper has to do with the development of a new and practical method for designing and rating heat-storage systems operating on a heat-capacity duty cycle of several days. It was carried out as part of a broader project evaluating equipment for exploiting solar energy and heat produced by animals on animal farms. Water-type heat accumulators were found to be an essential component of these systems; however, no generalized or specialized criteria were available for their effective design. Therefore, design optimization was carried out analytically, and the resulting approach was experimentally verified. This process led to the development of generalized criteria for rating the efficiency of stored heat utilization and to the development of reservoir design guidelines that, for practical design purposes, eliminated the need for knowing storage temperature histograms. The analysis is based on defining the storage quality as the degree of perfection ({zeta}{sub e}) in terms of the initial and final exergy (available energy) ratios of the stored heat during the storage period. This function was determined analytically, experimentally verified for four design cases (with and without insulation), and related to the normalized design parameters, rate of temperature degradation, and fluid properties by time-dependent Fourier similarity number Fo. The resulting relationship of the form -- {zeta}{sub e} = k log Fo + q was correlated with the measurements. For a specified storage, the ``degree of perfection`` ({zeta}{sub e}) can then be optimized and the desirable dimensions of a reservoir selected by calculating the characteristic (or normalized) dimension from the Fourier number (Fo).

  6. Medium- and long-term storage of the Pycnanthemum (Mountain mint) germplasm collection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The US collection of mountain mint (Pycnanthemum Michx.) is held at the USDA-ARS National Clonal Germplasm Repository (NCGR) in Corvallis, OR as seed, potted plants and tissue cultures and a long-term storage collection is preserved at the USDA-ARS National Center for Genetic Resources Preservation ...

  7. Medium-term in vitro storage as a complementary germplasm preservation technique

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A Germplasm preservation of vegetatively propagated crops may be accomplished using a range of old and new technologies. Field collections, potted plants, or some cases whole plants stored under cool to cold conditions are complemented by in vitro culture, in vitro storage, and cryopreservation. The...

  8. Development of an integrated heat pipe-thermal storage system for a solar receiver

    NASA Astrophysics Data System (ADS)

    Keddy, E. S.; Sena, J. T.; Merrigan, M. A.; Heidenreich, G.; Johnson, S.

    1987-07-01

    The Organic Rankine Cycle (ORC) Solar Dynamic Power System (SDPS) is one of the candidates for Space Station prime power application. In the low Earth orbit of the Space Station approximately 34 minutes of the 94-minute orbital period is spent in eclipse with no solar energy input to the power system. For this period the SDPS will use thermal energy storage (TES) material to provide a constant power output. An integrated heat-pipe thermal storage receiver system is being developed as part of the ORC-SDPS solar receiver. This system incorporates potassium heat pipe elements to absorb and transfer the solar energy within the receiver cavity. The heat pipes contain the TES canisters within the potassium vapor space with the toluene heater tube used as the condenser region of the heat pipe. During the insolation period of the Earth orbit, solar energy is delivered to the heat pipe in the ORC-SDPS receiver cavity. The heat pipe transforms the non-uniform solar flux incident in the heat pipe surface within the receiver cavity to an essentially uniform flux at the potassium vapor condensation interface in the heat pipe. During solar insolation, part of the thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of the orbit, the balance stored in the TES units is transferred by the potassium vapor to the toluene heater tube.

  9. Development of an integrated heat pipe-thermal storage system for a solar receiver

    NASA Technical Reports Server (NTRS)

    Keddy, E. S.; Sena, J. T.; Merrigan, M. A.; Heidenreich, G.; Johnson, S.

    1987-01-01

    The Organic Rankine Cycle (ORC) Solar Dynamic Power System (SDPS) is one of the candidates for Space Station prime power application. In the low Earth orbit of the Space Station approximately 34 minutes of the 94-minute orbital period is spent in eclipse with no solar energy input to the power system. For this period the SDPS will use thermal energy storage (TES) material to provide a constant power output. An integrated heat-pipe thermal storage receiver system is being developed as part of the ORC-SDPS solar receiver. This system incorporates potassium heat pipe elements to absorb and transfer the solar energy within the receiver cavity. The heat pipes contain the TES canisters within the potassium vapor space with the toluene heater tube used as the condenser region of the heat pipe. During the insolation period of the Earth orbit, solar energy is delivered to the heat pipe in the ORC-SDPS receiver cavity. The heat pipe transforms the non-uniform solar flux incident in the heat pipe surface within the receiver cavity to an essentially uniform flux at the potassium vapor condensation interface in the heat pipe. During solar insolation, part of the thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of the orbit, the balance stored in the TES units is transferred by the potassium vapor to the toluene heater tube.

  10. Effect of Storage Temperature on Cultured Epidermal Cell Sheets Stored in Xenobiotic-Free Medium

    PubMed Central

    Jackson, Catherine; Aabel, Peder; Eidet, Jon R.; Messelt, Edward B.; Lyberg, Torstein; von Unge, Magnus; Utheim, Tor P.

    2014-01-01

    Cultured epidermal cell sheets (CECS) are used in regenerative medicine in patients with burns, and have potential to treat limbal stem cell deficiency (LSCD), as demonstrated in animal models. Despite widespread use, short-term storage options for CECS are limited. Advantages of storage include: flexibility in scheduling surgery, reserve sheets for repeat operations, more opportunity for quality control, and improved transportation to allow wider distribution. Studies on storage of CECS have thus far focused on cryopreservation, whereas refrigeration is a convenient method commonly used for whole skin graft storage in burns clinics. It has been shown that preservation of viable cells using these methods is variable. This study evaluated the effect of different temperatures spanning 4°C to 37°C, on the cell viability, morphology, proliferation and metabolic status of CECS stored over a two week period in a xenobiotic–free system. Compared to non-stored control, best cell viability was obtained at 24°C (95.2±9.9%); reduced cell viability, at approximately 60%, was demonstrated at several of the temperatures (12°C, 28°C, 32°C and 37°C). Metabolic activity was significantly higher between 24°C and 37°C, where glucose, lactate, lactate/glucose ratios, and oxygen tension indicated increased activation of the glycolytic pathway under aerobic conditions. Preservation of morphology as shown by phase contrast and scanning electron micrographs was best at 12°C and 16°C. PCNA immunocytochemistry indicated that only 12°C and 20°C allowed maintenance of proliferative function at a similar level to non-stored control. In conclusion, results indicate that 12°C and 24°C merit further investigation as the prospective optimum temperature for short-term storage of cultured epidermal cell sheets. PMID:25170754

  11. Thermal energy storage for low grade heat in the organic Rankine cycle

    NASA Astrophysics Data System (ADS)

    Soda, Michael John

    Limits of efficiencies cause immense amounts of thermal energy in the form of waste heat to be vented to the atmosphere. Up to 60% of unrecovered waste heat is classified as low or ultra-low quality, making recovery difficult or inefficient. The organic Rankine cycle can be used to generate mechanical power and electricity from these low temperatures where other thermal cycles are impractical. A variety of organic working fluids are available to optimize the ORC for any target temperature range. San Diego State University has one such experimental ORC using R245fa, and has been experimenting with multiple expanders. One limitation of recovering waste heat is the sporadic or cyclical nature common to its production. This inconsistency makes sizing heat recovery ORC systems difficult for a variety of reasons including off-design-point efficiency loss, increased attrition from varying loads, unreliable outputs, and overall system costs. Thermal energy storage systems can address all of these issues by smoothing the thermal input to a constant and reliable level and providing back-up capacity for times when the thermal input is deactivated. Multiple types of thermal energy storage have been explored including sensible, latent, and thermochemical. Latent heat storage involves storing thermal energy in the reversible phase change of a phase change material, or PCM, and can have several advantages over other modalities including energy storage density, cost, simplicity, reliability, relatively constant temperature output, and temperature customizability. The largest obstacles to using latent heat storage include heat transfer rates, thermal cycling stability, and potentially corrosive PCMs. Targeting 86°C, the operating temperature of SDSU's experimental ORC, multiple potential materials were explored and tested as potential PCMs including Magnesium Chloride Hexahydrate (MgCl2˙6H2O), Magnesium Nitrate Hexahydrate (Mg(NO3)2˙6H 2O), montan wax, and carnauba wax. The

  12. Effect of sperm concentration, medium osmolality and oocyte storage on artificial fertilisation success in a myobatrachid frog (Limnodynastes tasmaniensis).

    PubMed

    Edwards, D L; Mahony, M J; Clulow, J

    2004-01-01

    The present study optimised artificial fertilisation and oocyte storage conditions in Limnodynastes tasmaniensis (Myobatrachidae). Data on general reproductive biology, the effect of sperm motility and concentration, medium osmolality and oocyte storage on artificial fertilisation success are presented. Egg number was most strongly correlated with bodyweight (r = 0.819). Sperm yield was correlated with testes weight (r = 0.827), which was strongly correlated with snout-vent length (r = 0.772). Optimal artificial fertilisation occurred in 0-7 mOsm kg(-1) amphibian Ringer, similar to ranid, bufonid and hylid species. High fertilisation rates were achieved using spermatozoa with little forwards progressive motility at comparatively low concentrations (3 x10(4) sperm cells mL(-1)) and with no relationship between percentage sperm motility and fertilisation success (correlation of fertilisation rate with sperm motility after activation: r = -0.145). Oocytes stored in 5 mOsm kg(-1) solutions showed no significant decline in fertilisability after 2 h, showing that swelling of the jelly surrounding the eggs does not prevent sperm from fusing with the oocyte in this species. Fertilisability of oocytes was extended to > 4 h in medium to high osmolality solutions (124-271 mOsm kg(-1)). These data allow for the future use of L. tasmaniensis in developing assisted reproductive technology protocols for foam-nesting myobatrachid species, many of which are now threatened with extinction in the wild. PMID:15304208

  13. Study on Heat Transfer Phenomena of Inorganic Hydrate Thermal Energy Storage Capsule while the Capsule is Heated and Cooled Periodically

    NASA Astrophysics Data System (ADS)

    Saito, Akio; Okawa, Seiji; Shintani, Tadafumi

    Purpose of this sturdy is to clarify the heat transfer phenomena of inorganic hydrate thermal energy storage capsule in a case of heating and cooling the capsule periodically. When the inorganic hydrate is absorbing and discharging heat periodically,heat transfer phenomena is dominated not only by thermal conduction but also by heat absorbed during melting of crystal, heat discharged during forming of crystal nuclei, crystal growth and so on. It also depends upon the highest temperature whether it is higher than the saturation temperature or not. Those phenomena can be observed in a capsule at the same time in different locations. In this report, analytical method to solve such a complex system is introduced. Gelled Glauber Salt is used as PCM. The highest and the lowest temperature of the outer surface of the capsule and rate of changing of the temperature are set to a certain value, and the experiment was carried out. The parameters used in the analysis was obtained to fit with the experimental results. Then, experiments and analysis were carried out under various conditions determined by changing the setting temperature or its cycle. The analytical results and the experimental results agreed well with each other. Hence, the adequancy of the analytical method and the heat transfer phenomena were clarified.

  14. DYNAMICS OF WATER TRANSPORT AND STORAGE IN CONIFERS STUDIED WITH DEUTERIUM AND HEAT TRACING TECHNIQUES

    EPA Science Inventory

    The volume and complexity of their vascular systems make the dynamics of long-distance water transport difficult to study. We used heat and deuterated water (D2O) as tracers to characterize whole-tree water transport and storage properties in individual trees belonging to the co...

  15. Heat-Storage Modules Containing LiNO3-3H2O and Graphite Foam

    NASA Technical Reports Server (NTRS)

    Bootle, John

    2008-01-01

    A heat-storage module based on a commercial open-cell graphite foam (Poco-Foam or equivalent) imbued with lithium nitrate trihydrate (LiNO3-3H2O) has been developed as a prototype of other such modules for use as short-term heat sources or heat sinks in the temperature range of approximately 28 to 30 C. In this module, the LiNO3-3H2O serves as a phase-change heat-storage material and the graphite foam as thermally conductive filler for transferring heat to or from the phase-change material. In comparison with typical prior heat-storage modules in which paraffins are the phase-change materials and aluminum fins are the thermally conductive fillers, this module has more than twice the heat-storage capacity per unit volume.

  16. Using Sea Level to Probe Linkages Between Heat Transport Convergence, Heat Storage Rate, and Air-Sea Heat Exchange in the Subtropical North Atlantic

    NASA Astrophysics Data System (ADS)

    Thompson, L.; Kelly, K. A.; Booth, J. F.

    2014-12-01

    Annual mean surface heat fluxes from the ocean to the atmosphere in midlatitudes are maximum in the Gulf Stream and that surface flux is driven by geostrophic heat transport convergence. Evidence is mounting that on interannual times scales, the surface flux of heat in the Gulf Stream region is controlled by the amount of heat that is stored in the region and that the heat storage rate is in turn controlled by geostrophic heat transport convergence. In addition, variations in meridional heat transport have been linked to the meridional overturning circulation just to the south of the Gulf Stream at the RAPID/MOCHA array at 26.5N, suggesting that changes in the meridional overturning circulation might be linked to surface heat exchange in the Gulf Stream. The twenty-year record of satellite sea level (SSH) along with high quality surface heat fluxes allow a detailed evaluation of the interaction between stored oceanic heat in this region and surface heat fluxes on interannual times scales. Using gridded sea level from AVISO as a proxy for upper ocean heat content along with surface turbulent heat flux from OAFlux, we evaluate the lagged correlations between interannual surface turbulent heat fluxes and SSH variability. Previous work has shown that where advection is small lagged correlations between SST (sea surface temperature) and surface turbulent heat flux are generally antisymmetric about zero lag with negative correlations when SST leads and positive correlations when SST lags. This indicates that surface heat fluxes force SST anomalies that at later times are damped by surface fluxes. In contrast, the lagged correlation between SSH anomalies and the turbulent flux of heat in the Gulf Stream region show a distinctly asymmetric relationship about zero-lag. The correlations are negative when SSH leads but are not significant when SSH lags indicating the dominant role in heat transport convergence in driving heat content changes, and that the heat content

  17. Sulfur Based Thermochemical Heat Storage for Baseload Concentrated Solar Power Generation

    SciTech Connect

    wong, bunsen

    2014-11-20

    This project investigates the engineering and economic feasibility of supplying baseload power using a concentrating solar power (CSP) plant integrated with sulfur based thermochemical heat storage. The technology stores high temperature solar heat in the chemical bonds of elemental sulfur. Energy is recovered as high temperature heat upon sulfur combustion. Extensive developmental and design work associated with sulfur dioxide (SO2) disproportionation and sulfuric acid (H2SO4) decomposition chemical reactions used in this technology had been carried out in the two completed phases of this project. The feasibility and economics of the proposed concept was demonstrated and determined.

  18. Maximum urban heat island intensity in a medium-sized coastal Mediterranean city

    NASA Astrophysics Data System (ADS)

    Papanastasiou, Dimitris K.; Kittas, Constantinos

    2012-02-01

    This paper studies the maximum intensity of the urban heat island (UHI) that develops in Volos urban area, a medium-sized coastal city in central Greece. The maximum temperature difference between the city center and a suburb is 3.4°C and 3.1°C during winter and summer, respectively, while during both seasons the average maximum UHI intensity is 2.0°C. The UHI usually starts developing after sunset during both seasons. It could be attributed to the different nocturnal radiative cooling rate and to the different anthropogenic heat emission rate that are observed at the city center and at the suburb, as well as to meteorological conditions. The analysis reveals that during both seasons the daily maximum hourly (DMH) UHI intensity is positively correlated with solar radiation and with previous day's maximum hourly UHI intensity and negatively correlated with wind speed. It is also negatively correlated with relative humidity during winter but positively correlated with it during summer. This difference could be attributed to the different mechanisms that mainly drive humidity levels (i.e., evaporation in winter and sea breeze (SB) in summer). Moreover, it is found that SB development triggers a delay in UHI formation in summer. The impact of atmospheric pollution on maximum UHI intensity is also examined. An increase in PM10 concentration is associated with an increase in maximum UHI intensity during winter and with a decrease during summer. The impact of PM10 on UHI is caused by the attenuation of the incoming and the outgoing radiation. Additionally, this study shows that the weekly cycle of the city activities induces a weekly variation in maximum UHI intensity levels. The weekly range of DMH UHI intensity is not very large, being more pronounced during winter (0.4°C). Moreover, a first attempt is made to predict the DMH UHI intensity by applying regression models, whose success is rather promising.

  19. The medium is NOT the message or Indefinitely long-term file storage at Leeds University

    NASA Technical Reports Server (NTRS)

    Holdsworth, David

    1996-01-01

    Approximately 3 years ago we implemented an archive file storage system which embodies experiences gained over more than 25 years of using and writing file storage systems. It is the third in-house system that we have written, and all three systems have been adopted by other institutions. This paper discusses the requirements for long-term data storage in a university environment, and describes how our present system is designed to meet these requirements indefinitely. Particular emphasis is laid on experiences from past systems, and their influence on current system design. We also look at the influence of the IEEE-MSS standard. We currently have the system operating in five UK universities. The system operates in a multi-server environment, and is currently operational with UNIX (SunOS4, Solaris2, SGI-IRIX, HP-UX), NetWare3 and NetWare4. PCs logged on to NetWare can also archive and recover files that live on their hard disks.

  20. The H60Si6C54 heterofullerene as high-capacity hydrogen storage medium

    NASA Astrophysics Data System (ADS)

    Yong, Yongliang; Zhou, Qingxiao; Li, Xiaohong; Lv, Shijie

    2016-07-01

    With the great success in Si atoms doped C60 fullerene and the well-established methods for synthesis of hydrogenated carbon fullerenes, this leads naturally to wonder whether Si-doped fullerenes are possible for special applications such as hydrogen storage. Here by using first-principles calculations, we design a novel high-capacity hydrogen storage material, H60Si6C54 heterofullerene, and confirm its geometric stability. It is found that the H60Si6C54 heterofullerene has a large HOMO-LUMO gap and a high symmetry, indicating it is high chemically stable. Further, our finite temperature simulations indicate that the H60Si6C54 heterofullerene is thermally stable at 300 K. H2 molecules would enter into the cage from the Si-hexagon ring because of lower energy barrier. Through our calculation, a maximum of 21 H2 molecules can be stored inside the H60Si6C54 cage in molecular form, leading to a gravimetric density of 11.11 wt% for 21H2@H60Si6C54 system, which suggests that the hydrogenated Si6C54 heterofullerene could be suitable as a high-capacity hydrogen storage material.

  1. New latent heat storage system with nanoparticles for thermal management of electric vehicles

    NASA Astrophysics Data System (ADS)

    Javani, N.; Dincer, I.; Naterer, G. F.

    2014-12-01

    In this paper, a new passive thermal management system for electric vehicles is developed. A latent heat thermal energy storage with nanoparticles is designed and optimized. A genetic algorithm method is employed to minimize the length of the heat exchanger tubes. The results show that even the optimum length of a shell and tube heat exchanger becomes too large to be employed in a vehicle. This is mainly due to the very low thermal conductivity of phase change material (PCM) which fills the shell side of the heat exchanger. A carbon nanotube (CNT) and PCM mixture is then studied where the probability of nanotubes in a series configuration is defined as a deterministic design parameter. Various heat transfer rates, ranging from 300 W to 600 W, are utilized to optimize battery cooling options in the heat exchanger. The optimization results show that smaller tube diameters minimize the heat exchanger length. Furthermore, finned tubes lead to a higher heat exchanger length due to more heat transfer resistance. By increasing the CNT concentration, the optimum length of the heat exchanger decreases and makes the improved thermal management system a more efficient and competitive with air and liquid thermal management systems.

  2. Heat recovery/thermal energy storage for energy conservation in food processing

    SciTech Connect

    Combes, R.S.; Boykin, W.B.

    1981-01-01

    Based on energy consumption data compiled for 1974, 59% of the total energy consumed in the US food processing industry was thermal energy. The energy-consuming processes which utilize this thermal energy reject significant quantities of waste heat, usually to the atmosphere or to the wastewater discharged from the plant. Design considerations for waste heat recovery systems in the food processing industry are discussed. A systematic analysis of the waste heat source, in terms of quantity and quality is explored. Other aspects of the waste heat source, such as contamination, are addressed as potential impediments to practical heat recovery. The characteristics of the recipient process which will utilize the recovered waste heat are discussed. Thermal energy storage, which can be used as a means of allowing the waste eat recovery process to operate independent of the subsequent utilization of the recovered energy, is discussed. The project included the design, installation and monitoring of two heat recovery systems in a Gold Kist broiler processing plant. These systems recover waste heat from a poultry scalder overflow (heated wastewater) and from a refrigeration condenser utilizing ammonia as the refrigerant. The performance and economic viability of the heat recovery systems are presented.

  3. [The design of heat dissipation of the field low temperature box for storage and transportation].

    PubMed

    Wei, Jiancang; Suin, Jianjun; Wu, Jian

    2013-02-01

    Because of the compact structure of the field low temperature box for storage and transportation, which is due to the same small space where the compressor, the condenser, the control circuit, the battery and the power supply device are all placed in, the design for heat dissipation and ventilation is of critical importance for the stability and reliability of the box. Several design schemes of the heat dissipation design of the box were simulated using the FLOEFD hot fluid analysis software in this study. Different distributions of the temperature field in every design scheme were constructed intimately in the present study. It is well concluded that according to the result of the simulation analysis, the optimal heat dissipation design is decent for the field low temperature box for storage and transportation, and the box can operate smoothly for a long time using the results of the design. PMID:23488142

  4. Thermal performance of a heat storage module using PCM's with different melting temperature; Experimental

    SciTech Connect

    Farid, M.M. ); Kim, Y.; Kansawa, A. )

    1990-05-01

    A latent heat storage module was constructed, consisting of 45 cylindrical capsules fixed vertically in 15 rows. The capsules, made of 0.335-m long copper tubes having external diameters of 31.8 mm, were fixed in an insulated rectangular duct. Three commercial waxes having melting temperatures of 44{degrees}C, 53{degrees}C, and 64{degrees}C were selected. Each of the three sets of 15 tubes was filled with different wax. For comparison purposes, experiments were also done with a single commercial wax, having a melting temperature of 53{degrees}C, in all the tubes. During heat charge, hot air flowed across the capsules such that the melting temperature of the waxes decreased in the flow direction. Air flow direction was reversed during heat discharge. This paper reports that experimental measurements showed some improvement in the heat transfer rates during both heat charge and discharge when three types of PCM's were used.

  5. The seasonal cycle of diabatic heat storage in the Pacific Ocean

    USGS Publications Warehouse

    White, Warren B.; Cayan, D.R.; Niiler, P.P.; Moisan, J.; Lagerloef, G.; Bonjean, F.; Legler, D.

    2005-01-01

    This study quantifies uncertainties in closing the seasonal cycle of diabatic heat storage (DHS) over the Pacific Ocean from 20??S to 60??N through the synthesis of World Ocean Circulation Experiment (WOCE) reanalysis products from 1993 to 1999. These products are DHS from Scripps Institution of Oceanography (SIO); near-surface geostrophic and Ekman currents from Earth and Space Research (ESR); and air-sea heat fluxes from Comprehensive Ocean-Atmosphere Data Set (COADS), National Centers for Environmental Prediction (NCEP), and European Center for Mid-Range Weather Forecasts (ECMWF). With these products, we compute residual heat budget components by differencing long-term monthly means from the long-term annual mean. This allows the seasonal cycle of the DHS tendency to be modeled. Everywhere latent heat flux residuals dominate sensible heat flux residuals, shortwave heat flux residuals dominate longwave heat flux residuals, and residual Ekman heat advection dominates residual geostrophic heat advection, with residual dissipation significant only in the Kuroshio-Oyashio current extension. The root-mean-square (RMS) of the differences between observed and model residual DHS tendencies (averaged over 10??latitude-by-20??longitude boxes) is <20 W m-2 in the interior ocean and <100 W m-2 in the Kuroshio-Oyashio current extension. This reveals that the residual DHS tendency is driven everywhere by some mix of residual latent heat flux, shortwave heat flux, and Ekman heat advection. Suppressing bias errors in residual air-sea turbulent heat fluxes and Ekman heat advection through minimization of the RMS differences reduces the latter to <10 W m-2 over the interior ocean and <25 W m -2 in the Kuroshio-Oyashio current extension. This reveals air-sea temperature and specific humidity differences from in situ surface marine weather observations to be a principal source of bias error, overestimated over most of ocean but underestimated near the Intertropical Convergence Zone

  6. Experimental study on latent heat storage characteristics of W/O emulsion -Supercooling rate of dispersed water drops by direct contact heat exchange-

    NASA Astrophysics Data System (ADS)

    Morita, Shin-ichi; Hayamizu, Yasutaka; Horibe, Akihiko; Haruki, Naoto; Inaba, Hideo

    2013-04-01

    Recently, much attention has been paid to investigate the latent heat storage system. Using of ice heat storage system brings an equalization of electric power demand, because it will solved the electric -power-demand-concentration on day-time of summer by the air conditioning. The flowable latent heat storage material, Oil/Water type emulsion, microencapsulated latent heat material-water mixture or ice slurry, etc., is enable to transport the latent heat in a pipe. The flowable latent heat storage material can realize the pipe size reduction and system efficiency improvement. Supercooling phenomenon of the dispersed latent heat storage material in continuous phase brings the obstruction of latent heat storage. The latent heat storage rates of dispersed water drops in W/O (Water/Oil) emulsion are investigated experimentally in this study. The water drops in emulsion has the diameter within 3 ˜ 25μm, the averaged water drop diameter is 7.3μm and the standard deviation is 2.9μm. The direct contact heat exchange method is chosen as the phase change rate evaluation of water drops in W/O emulsion. The supercooled temperature and the cooling rate are set as parameters of this study. The evaluation is performed by comparison between the results of this study and the past research. The obtained experimental result is shown that the 35K or more degree from melting point brings 100% latent heat storage rate of W/O emulsion. It was clarified that the supercooling rate of dispersed water particles in emulsion shows the larger value than that of the bulk water.

  7. Effects of heating, storage, and ultraviolet exposure on antimicrobial activity of garlic juice.

    PubMed

    Al-Waili, Noori S; Saloom, Khelod Y; Akmal, M; Al-Waili, Thia N; Al-Waili, Ali N; Al-Waili, Hamza; Ali, Amjed; Al-Sahlani, Karem

    2007-03-01

    This study was designed to investigate the effect of heating, storage, and ultraviolet exposure on antimicrobial activity of garlic juice and its bacteriocidal activity against common human pathogens. Antimicrobial activity of fresh garlic juice was tested against Escherichia coli, Staphylococcus aureus, Streptococcus hemolyticus B, S. hemolyticus A, Klebsiella sp., Shigella dysenteriae, and Candida albicans using the disc method. The dilution method was performed by addition of garlic juice to broth media to obtain 1-100% concentrations as vol/vol or wt/vol. Garlic juice was used after 24 hours of storage at 4 degrees C, heating to 100 degrees C for 5 minutes, 10 minutes, 30 minutes, and 60 minutes, heating to 80 degrees C for 60 minutes, and 4 hours of exposure to ultraviolet light. Re-culture of specimens taken from garlic-induced negative media was performed in fresh broth free of garlic juice. Results showed that all the isolates were sensitive to fresh garlic juice; the most sensitive was C. albicans, and the least sensitive was S. hemolyticus A. Heating to 100 degrees C for 30 and 60 minutes completely abolished the antimicrobial activity, while heating for 5 and 10 minutes, storage for 24 hours, and 4 hours of ultraviolet exposure decreased it. Garlic juice was bactericidal at concentrations of 5% and more. Thus garlic juice has marked antimicrobial activity that makes it a potential agent to be tested in clinical trials. The antimicrobial activity was compromised by storage and heating; therefore it is advisable to use fresh garlic and avoid boiling it for more than 5 minutes during cooking. PMID:17472490

  8. Modeling thermochemical heat storage in porous media with local thermal nonequilibrium - From constitutive theory to application

    NASA Astrophysics Data System (ADS)

    Nagel, T.; Shao, H.; Linder, M.; Wörner, A.; Kolditz, O.

    2013-12-01

    Heat processes in industry and for power generation can be made more cost-efficient and climate friendly by the integration of thermal energy storage devices. Due to high storage densities and superior long term storage characteristics, systems relying on thermochemical reactions are of great interest and often based on porous or granular media. As such, they share characteristic features in terms of mass and heat transport that are strongly coupled by physical and chemical phenomena. We have employed the theory of porous media to establish a model featuring reactive multicomponent compressible fluid mass transport through solid particle bed coupled to local thermal nonequilibrium heat transport. The model development has been based on an extensive evaluation of the Clausius-Duhem inequality to derive thermodynamically consistent constitutive relations for secondary variables as well as direct and indirect coupling terms. The model has then been implemented into the open source scientific simulation code OpenGeoSys using the finite element method. Lab and pilot scale thermochemical heat storage reactors with different reaction systems (oxidation reactions, hydration reactions) have been simulated successfully using axisymmetric geometries. The simulations show the strong coupling of pressure, concentration and temperature fields as well as the gas-solid reactions occurring inside the reactors. The effect of certain process parameters, such as mass flow and particle size, on the occurrence of local thermal nonequilibrium is illustrated. It is shown that the reactors can be used in a number of operating modes such as the extraction or release of heat accompanied by significant temperature drops or raises; the buffering or smoothing of temperature fluctuations at the inlet; the up- or downgrading of heat. The developed model therefore represents a useful tool to understand reactor behavior, optimize operating parameters, estimate thermal and parasitic losses, and

  9. Citric acid demineralization of cementum and dentin: the effect of the storage medium.

    PubMed

    Hawkins, C; Sterrett, J D; Russell, C

    1997-04-01

    The purpose of this study was to see if the root surface topography of teeth, stored in saline and subsequently treated with citric acid, differred from the root surface topography of teeth that were treated immediately upon extraction, 12 freshly extracted adult human permanent teeth, with proximal surfaces free of caries and periodontal disease, were treated in succession. The crowns were removed at the level of periodontal attachment, the teeth sectioned buccal-lingually and a treatment area deligniated on each proximal section. The treatment area of 6 teeth was root planed to expose dentin (D) and scaled to remove adherent tissue and leave a cementum surfaces (C) on the other 6 teeth. A coronal-apical groove down the middle of the treatment area divided it into approximately equal parts or experimental regions. One proximal section of each tooth was placed in physiologic saline (S) and treated after 6 weeks of storage while the other proximal section was freshly treated (F). Treatment consisted of applying a 30% citric acid (CA) solution (pH = 1.60) for 5 min. Cotton pellets soaked in the citric acid solution were placed (P) on one half of the experimental area and heavily burnished (B) on the other half. Treatment areas were subsequently prepared for scanning electron microscopy analysis. Assessment was made of (i) the % of surface area tufted, (ii) fibril tufting depth (0.3) and (iii) fibril tufting density (1.3). Similarities were found in the data for both storage methods (F and S) across each application technique (P or B) and each tooth surface (D or C) with respect to the (i) % area tufted and (ii) frequency distribution of tufting depth scores. As for the application techniques, the data for burnishing was greater than placed across each storage method (F or S) and each tooth surface (D or C) for the same two parameters. The results of the study indicated that 6-week physiologic saline storage does not affect root surface demineralization by citric acid

  10. Yttrium-dispersed C60 fullerenes as high-capacity hydrogen storage medium

    NASA Astrophysics Data System (ADS)

    Tian, Zi-Ya; Dong, Shun-Le

    2014-02-01

    Interaction between hydrogen molecules and functionalized C60 is investigated using density functional theory method. Unlike transition metal atoms that tend to cluster on the surface, C60 decorated with 12 Yttrium atoms on each of its 12 pentagons is extremely stable and remarkably enhances the hydrogen adsorption capacity. Four H2 molecules can be chemisorbed on a single Y atom through well-known Dewar-Chatt-Duncanson interaction. The nature of bonding is a weak physisorption for the fifth adsorbed H2 molecule. Consequently, the C60Y12 complex with 60 hydrogen molecules has been demonstrated to lead to a hydrogen storage capacity of ˜6.30 wt. %.

  11. Magnetohydrodynamic peristaltic transport of couple stress fluid through porous medium in an inclined asymmetric channel with heat transfer

    NASA Astrophysics Data System (ADS)

    Ramesh, K.; Devakar, M.

    2015-11-01

    In the present paper, the effects of magnetic field and heat transfer on the peristaltic flow of an incompressible couple stress fluid through porous medium in an inclined asymmetric channel have been studied under the long wavelength approximation. The exact solutions of the resultant governing equations have been obtained for the stream function, pressure gradient, temperature and heat transfer coefficients. The pressure difference and frictional forces have been computed numerically. The effects of Hartmann number, Darcy number, Grashof number, couple stress parameter, heat generation parameter and inclination angle on the heat characteristics, velocity characteristics, pumping characteristics and trapping phenomena are discussed in detail. It is found that the pressure gradient increases from horizontal channel to vertical channel. The best pumping can be seen at higher Hartmann number. The size of trapped bolus decreases with the increase of couple stress parameter and the strength of the magnetic flied. Increase of heat generation parameter increases the pressure gradient, temperature and the size of the bolus.

  12. A portable direct-PV thermoelectric vaccine refrigerator with ice storage through heat pipes

    NASA Astrophysics Data System (ADS)

    Jiajitsawat, Somchai

    The objective of this research work was to develop a portable solar refrigeration system capable of maintaining vaccine temperatures between 2 °C and 8 °C. The main system under this study consisted of thermoelectric modules as cooling generators with latent heat energy storage (LHES) using water as cooling backup along with heat pipes as passive temperature controllers to avoid freezing the vaccines. The system was fabricated and tested. The results showed that the system can maintain the vaccine storage temperature at 2 °C and 8 °C under ambient temperature up to 30 °C with minimum power consumption of 30 Watt. The proposed heat pipes to maintain the vaccine storage temperature satisfied the design criteria. However, the energy consumption of the TEM was higher than anticipated. A small vapor compressor system was tested and shows promise to replace the TEM for cooling. Inserting the aluminum matrix in the ice chamber not only decreased the charging time but also decreased the discharging time since less phase change material was available for energy storage. Three models of the system were developed under different assumptions. The lumped model was adequate to predict the system performance during charging process. The other distributed models were able to predict the melting and cooling time more accurately than that of the lumped model and provided more detailed on the temperature distribution and change of the water phase in the ice chamber.

  13. Efficiency of a novel forensic room-temperature DNA storage medium.

    PubMed

    Frippiat, Christophe; Noel, Fabrice

    2014-03-01

    The success of forensic genetics has led to considerable numbers of DNA samples that must be stored. Thus, the ability to preserve the integrity of forensic samples is essential. The possibility of retesting these samples after many years should be guaranteed. DNA storage typically requires the use of freezers. Recently, a new method that enables DNA to be stored at room temperature was developed. This technology is based on the principles of anhydrobiosis and thus permits room-temperature storage of DNA. This study evaluates the ability of this technology to preserve DNA samples mimicking true mixture casework samples for long periods of time. Mixed human DNA from 2 or 3 persons and at low concentrations was dried and stored for a period ranging from 6 months to 2 years in the presence of a desiccant. The quality of the stored DNA was evaluated based on quantitative peak height results from Short Tandem Repeat (STR) genotyping and the number of observed alleles. Furthermore, we determined whether this matrix has a potential inhibitory or enhancing effect on the PCR genotyping reactions. In our previous work, we demonstrated the considerable potential of this new technology. The present study complements our previous work. Our results show that after 2 years of aging at room temperature, there is a decrease in the number of observed alleles and in the peak height of these alleles. PMID:24528585

  14. Gas bremsstrahlung studies for medium energy electron storage rings using FLUKA Monte Carlo code

    NASA Astrophysics Data System (ADS)

    Sahani, Prasanta Kumar; Haridas, G.; Sinha, Anil K.; Hannurkar, P. R.

    2016-02-01

    Gas bremsstrahlung is generated due to the interaction of the stored electron beam with residual gas molecules of the vacuum chamber in a storage ring. As the opening angle of the bremsstrahlung is very small, the scoring area used in Monte Carlo simulation plays a dominant role in evaluating the absorbed dose. In the present work gas bremsstrahlung angular distribution and absorbed dose for the energies ranging from 1 to 5 GeV electron storage rings are studied using the Monte Carlo code, FLUKA. From the study, an empirical formula for gas bremsstrahlung dose estimation was deduced. The results were compared with the data obtained from reported experimental values. The results obtained from simulations are found to be in very good agreement with the reported experimental data. The results obtained are applied in estimating the gas bremsstrahlung dose for 2.5 GeV synchrotron radiation source, Indus-2 at Raja Ramanna Centre for Advanced Technology, India. The paper discusses the details of the simulation and the results obtained.

  15. Characterisation of the bacterial populations in a saline heat storage aquifer in the North German Basin

    NASA Astrophysics Data System (ADS)

    Alawi, M.; Lerm, S.; Vetter, A.; Vieth, A.; Mangelsdorf, K.; Seibt, A.; Wolfgramm, M.; Würdemann, H.

    2009-04-01

    The colonization and the ecology of microorganisms in the deep biosphere arouse increasing interest of scientists because of utilizing the subsurface for e.g. energy storage and recovery. The research project AquiScreen investigates the operational reliability of eight geothermally used groundwater systems in Germany under microbial, geochemical, mineralogical, and petrological aspects. This study shows the results of the heat storage in Neubrandenburg (depth: 1250 m), a typical site for saline fluids in the North German Basin. The seasonal alternation in charge and discharge mode enabled sampling the warm (75˚ C) and the cold (45˚ C) side of the geothermal doublet. The analyses focus on microbially induced corrosion on plant components and scaling resulting in filter and/or formation clogging. Microbiological analyses were carried out with fluid and solid phase samples by 16S rDNA based Single Strand Conformation Polymorphism (SSCP) fingerprinting. The analyses are utilized to evaluate the impact of microbial populations on such systems. The genetic fingerprinting revealed significant differences in the bacterial community structure between the warm and cold side of the heat storage. Since the geochemical analyses revealed no remarkable differences, the temperature might be crucial for the different community structures. At the warm side of the aquifer the identified bacteria are closely related to Variovorax and Sphingomonas. At the cold side of the heat storage sulphate reducing and fermentative bacteria were detected. These results correspond with locally observed iron sulphide precipitation and corrosion processes on plant components. Particularly the bacterial population of the cold side was studied over a period of two years. Thereby seasonal changes in the abundance of the identified bacteria, depending on the operational mode of the geothermal plant, were observed. After a malfunction in the pump system of the cold side of the heat storage changes in

  16. Radiotoxicity and decay heat power of spent nuclear fuel of VVER type reactors at long-term storage.

    PubMed

    Bergelson, B R; Gerasimov, A S; Tikhomirov, G V

    2005-01-01

    Radiotoxicity and decay heat power of the spent nuclear fuel of VVER-1000 type reactors are calculated during storage time up to 300,000 y. Decay heat power of radioactive waste (radwaste) determines parameters of the heat removal system for the safe storage of spent nuclear fuel. Radiotoxicity determines the radiological hazard of radwaste after its leakage and penetration into the environment. PMID:16381764

  17. Active heat exchange system development for latent heat thermal energy storage

    NASA Technical Reports Server (NTRS)

    Lefrois, R. T.; Mathur, A. K.

    1980-01-01

    Five tasks to select, design, fabricate, test and evaluate candidate active heat exchanger modules for future applications to solar and conventional utility power plants were discussed. Alternative mechanizations of active heat exchange concepts were analyzed for use with heat of fusion phase change materials (PCMs) in the temperature range of 250 to 350 C. Twenty-six heat exchange concepts were reviewed, and eight were selected for detailed assessment. Two candidates were selected for small-scale experimentation: a coated tube and shell heat exchanger and a direct contact reflux boiler. A dilute eutectic mixture of sodium nitrate and sodium hydroxide was selected as the PCM from over 50 candidate inorganic salt mixtures. Based on a salt screening process, eight major component salts were selected initially for further evaluation. The most attractive major components in the temperature range of 250 to 350 C appeared to be NaNO3, NaNO2, and NaOH. Sketches of the two active heat exchange concepts selected for test are given.

  18. Influence of Heat Treatment and Veneering on the Storage Modulus and Surface of Zirconia Ceramic

    PubMed Central

    Siavikis, Georgius; Behr, Michael; van der Zel, Jef M; Feilzer, Albert J; Rosentritt, Martin

    2011-01-01

    Objectives: Glass-ceramic veneered zirconia is used for the application as fixed partial dentures. The aim of this investigation was to evaluate whether the heat treatment during veneering, the application of glass-ceramic for veneering or long term storage has an influence on the storage modulus of zirconia. Methods: Zirconia bars (Cercon, DeguDent, G; 0.5x2x20 mm) were fabricated and treated according to veneering conditions. Besides heating regimes between 680°C and 1000°C (liner bake and annealing), sandblasting (Al2O3) or steam cleaning were used. The bars were investigated after 90 days storage in water and acid. For investigating the influence of veneering, the bars were veneered in press- or layer technique. Dynamic mechanical analysis (DMA) in a three-point-bending design was performed to determine the storage modulus between 25°C and 200°C at a frequency of 1.66 Hz. All specimens were loaded on top and bottom (treatment on pressure or tensile stress side). Scanning electron microscopy (SEM) was used for evaluating the superficial changes of the zirconia surface due to treatment. Statistical analysis was performed using Mann Whitney U-test (α=0.05). Results: Sintered zirconia provided a storage modulus E’ of 215 (203/219) GPa and tan δ of 0.04 at 110°C. A 10%-decrease of E’ was found up to 180°C. The superficial appearance changed due to heating regime. Sandblasting reduced E’ to 213 GPa, heating influenced E’ between 205 GPa (liner bake 1) and 222 GPa (dentin bake 1). Steam cleaning, annealing and storage changed E’ between 4 GPa and 22 GPa, depending on the side of loading. After veneering, strong E’-reduction was found down to 84 GPa and 125 GPa. Conclusions: Veneering of zirconia with glass-ceramic in contrast to heat treating during veneering procedure had a strong influence on the modulus. The application of the glass-ceramic caused a stronger decrease of the storage modulus. PMID:21494388

  19. Thermal Storage System for Electric Vehicle Cabin Heating Component and System Analysis

    SciTech Connect

    LaClair, Tim J; Gao, Zhiming; Abdelaziz, Omar; Wang, Mingyu; WolfeIV, Edward; Craig, Timothy

    2016-01-01

    Cabin heating of current electric vehicle (EV) designs is typically provided using electrical energy from the traction battery, since waste heat is not available from an engine as in the case of a conventional automobile. In very cold climatic conditions, the power required for space heating of an EV can be of a similar magnitude to that required for propulsion of the vehicle. As a result, its driving range can be reduced very significantly during the winter season, which limits consumer acceptance of EVs and results in increased battery costs to achieve a minimum range while ensuring comfort to the EV driver. To minimize the range penalty associated with EV cabin heating, a novel climate control system that includes thermal energy storage from an advanced phase change material (PCM) has been designed for use in EVs and plug-in hybrid electric vehicles (PHEVs). The present paper focuses on the modeling and analysis of this electrical PCM-Assisted Thermal Heating System (ePATHS) and is a companion to the paper Design and Testing of a Thermal Storage System for Electric Vehicle Cabin Heating. A detailed heat transfer model was developed to simulate the PCM heat exchanger that is at the heart of the ePATHS and was subsequently used to analyze and optimize its design. The results from this analysis were integrated into a MATLAB Simulink system model to simulate the fluid flow, pressure drop and heat transfer in all components of the ePATHS. The system model was then used to predict the performance of the climate control system in the vehicle and to evaluate control strategies needed to achieve the desired temperature control in the cabin. The analysis performed to design the ePATHS is described in detail and the system s predicted performance in a vehicle HVAC system is presented.

  20. Maintenance and storage of fuel oil for residential heating systems: A guide for residential heating system maintenance personnel

    SciTech Connect

    Litzke, Wai-Lin

    1992-12-01

    The quality of No. 2 fuel affects the performance of the heating system and is an important parameter in the proper and efficient operation of an oil-burning system. The physical and chemical characteristics of the fuel can affect the flow, atomization and combustion processes, all of which help to define and limit the overall performance of the heating system. The use of chemical additives by fuel oil marketershas become more common as a method of improving the quality of the fuel, especially for handling and storage. Numerous types of additives are available, but reliable information on their effectiveness and proper use is limited. This makes selecting an additive difficult in many situations. Common types of problems that contribute to poor fuel quality and how they affect residential heating equipment are identified inof this booklet. It covers the key items that are needed in an effective fuel quality monitoring program, such as what to look for when evaluating the quality of fuel as it is received from a supplier, or how to assess fuel problems associated with poor storage conditions. References to standard procedures and brief descriptions of the procedures also are given. Approaches for correcting a fuel-related problem, including the potential uses of chemical additives are discussed. Different types of additives are described to help users understand the functions and limitations of chemical treatment. Tips on how to select andeffectively use additives also are included. Finally, the importance of preventative maintenance in any fuel monitoring program is emphasized.

  1. The Effect of Porous Medium Storage on Unstable Density-Driven Solute Transport.

    PubMed

    Xie, Yueqing; Graf, Thomas; Simmons, Craig T; Diersch, Hans-Jörg G

    2015-01-01

    Unstable density-driven groundwater flow and solute transport (i.e., free convection) leads to spatiotemporal variations in pressure. Specific storage (So ) indicates the capability of a confined aquifer to release or store groundwater associated with a pressure change. Although So is known to dampen pressure propagation, So has been implicitly assumed to have a negligible impact on the unstable free convective process in prior studies. This work explores the effect of So on both the classic onset criterion and the fingering process using numerical models. Results show that the classic onset criterion is applicable when So is smaller than 10(-1) m(-1) . Results also demonstrate that So does not play a significant role in the free convective fingering process unless it is greater than 10(-3) m(-1) . For most practical purposes in hydrogeology (large Rayleigh number and small So ), the implicit assumption of small or zero So is appropriate. PMID:25393965

  2. Yttrium-dispersed C{sub 60} fullerenes as high-capacity hydrogen storage medium

    SciTech Connect

    Tian, Zi-Ya; Dong, Shun-Le

    2014-02-28

    Interaction between hydrogen molecules and functionalized C{sub 60} is investigated using density functional theory method. Unlike transition metal atoms that tend to cluster on the surface, C{sub 60} decorated with 12 Yttrium atoms on each of its 12 pentagons is extremely stable and remarkably enhances the hydrogen adsorption capacity. Four H{sub 2} molecules can be chemisorbed on a single Y atom through well-known Dewar-Chatt-Duncanson interaction. The nature of bonding is a weak physisorption for the fifth adsorbed H{sub 2} molecule. Consequently, the C{sub 60}Y{sub 12} complex with 60 hydrogen molecules has been demonstrated to lead to a hydrogen storage capacity of ∼6.30 wt. %.

  3. Experimental and numerical simulations of heat transfers between flowing water and a frozen porous medium

    NASA Astrophysics Data System (ADS)

    Roux, Nicolas; Grenier, Christophe; Costard, François

    2015-04-01

    In permafrost-affected regions, hydrological changes due to global warming are still under investigation. But yet, we can already foresee from recent studies that for example, the variability and intensity of surface/subsurface flow are likely to be affected by permafrost degradation. The feedback induced by such changes on permafrost degradation is still not clearly assessed. Of particular interest are lake and river's taliks. A talik is a permanently unfrozen zone that lies below rivers or lakes. They are likely to play a key role in the formerly presented interactions, given that they are the only paths for groundwater flow in permafrost regions. Thus heat transfers on a regional scale are influenced by groundwater circulation. The aim of our study is therefore to investigate the evolution of river's taliks. In addition, they are the only perennial liquid water resources in continuous permafrost environments. The issue associated is to what extent can taliks develop into the future because of climate change and how likely are they to become open taliks, connecting sub-permafrost water with surface water with potentially strong geochemical changes? We developed a multidisciplinary approach coupling field investigation, experimental studies in a cold room and numerical modeling. The field investigation concerns Central Yakutia, Siberia, where we have installed instruments to monitor ground temperatures and water pressure in a small river's talik between two thermokarst lakes. We present here the results corresponding to the cold room experimental work, associating numerical modeling and laboratory experiments in order to look after the main parameters controlling river's talik installation and validate our numerical simulation approach. In a cold room at GEOPS, where a metric scale channel is filled with a porous medium (sand or silty-clay), we are able to control air, water and permafrost initial temperature, but also water flow. At initial time, the "river

  4. Heat Transfer Analysis of Encapsulated Phase Change Materials for Thermal Energy Storage

    NASA Astrophysics Data System (ADS)

    Elmozughi, Ali F.

    Thermal analysis of high temperature phase change materials (PCMs) is conducted. Transient two dimensional heat transfer analysis is performed to investigate high temperature energy storage and retrieval for concentrated solar power applications. The phase change materials are considered are NaNO 3 and the eutectic of MgCl2 and NaCl. Phase change material is encapsulated by a stainless steel in a cylindrical shaped capsule. Energy storage/retrieval into/from various sizes of encapsulated phase change material (EPCM) capsules is simulated for both laminar and turbulent flow conditions of the heat transfer fluid (HTF) by an accurate modeling of the propagating liquid/solid interface in a PCM. Heat transfer inside EPCM capsule and the phase change of PCM are modeled by an enthalpy - porosity method. A two-dimensional cylindrical shaped EPCM capsule or tube is considered in simulations using gas (air) and liquid (Therminol/VP-1) as heat transfer fluids in a cross flow and an axial flow arrangement. The energy storage/retrieval times into/out of the EPCM capsule is dictated by the surface heat transfer of the EPCM for the capsule sizes considered in this study. A single horizontally placed rod in a channel with different blockage ratios for laminar and turbulence flows of HTF is studied in the present study. It is illustrated by the present work that enthalpy-porosity method can be applied to simulate heat transfer at the capsule level and the system level. System level storage module is a thermocline that includes an arrangement of several EPCMs for several megawatts of thermal energy storage (TES) for several hours used in concentrated solar power applications and other industrial thermal systems. Transport phenomena inside the EPCM are modeled accurately by considering a 20% air void and the buoyancy-driven convection in a stainless steel capsule. The effects of the thermal expansion and the volume expansion due to phase change on the energy storage and retrieval

  5. High resolution numerical modelling of high temperature heat storage in geological media

    NASA Astrophysics Data System (ADS)

    Boockmeyer, Anke; Bauer, Sebastian

    2014-05-01

    Increasing use of energy stemming from renewable sources, such as wind or solar power plants, requires development of new and improvement of existing energy storage options on different time scales. One potential storage option is high temperature heat storage with temperatures of up to 100°C in the geological subsurface using borehole heat exchanger (BHE). Numerical scenario simulations are performed to assess feasibility and storage capacity and, furthermore, to predict the effects induced. To allow for accurate and reliable results, the BHE must be represented correctly and realistic in the numerical model. Therefore, a detailed model of a single BHE and the surrounding aquifer, accounting for the full geometry and component parametrisation (circulating working fluid, pipe and grout), is set up. This model setup is used to simulate an experimental data set from a laboratory sandbox by Beier et al. (2011), containing an 18 m long single U-tube BHE centered horizontally along it. Temperature curves observed in different radial distances as well as at the pipe outflow can be matched well with the model setup used, which is thus verified. Potential geological formations for high temperature heat storage are located in greater depths below fresh water aquifers that are used for drinking water. Therefore, the above model is adapted to represent a 100 m long vertical double U-tube BHE placed in an average depth of 500 m. The processes of heat transport and groundwater flow are coupled by water density and viscosity, which both depend on pressure and temperature. A sensitivity study is done to quantify the effects of the thermal parameters of grout and aquifer on the amount of heat stored and the temperature distribution in the aquifer. It was found that the amount of heat stored through the BHE is most sensitive to the heat conductivity of the aquifer. Increasing the aquifer heat conductivity by 50 % increases the amount of heat stored in the numerical model by 30

  6. One-Step Quenching and Partitioning Heat Treatment of Medium Carbon Low Alloy Steel

    NASA Astrophysics Data System (ADS)

    Tariq, Fawad; Baloch, Rasheed Ahmed

    2014-05-01

    This paper presents the results of novel one-step quenching and partitioning (Q&P) heat treatment conducted on medium carbon low alloy steel sheet. Samples were austenitised at 1193 K followed by interrupted quenching at 473 K for different partitioning times and finally they were quenched in water. Dilatometry was employed for selection of treatment temperatures. Optical and scanning electron microscopy was carried out to examine the microstructural changes. Volume fraction of retained austenite was measured by x-ray diffraction technique. Resulting microstructures were correlated with the mechanical properties such hardness, tensile strength, elongation, impact absorbed energy, etc. The notch tensile and fracture toughness properties of Q&P steels are still lacking therefore notch tensile strength and plain strain fracture toughness tests were conducted and results are reported here. Results of Q&P treatments were also compared with the properties obtained by conventional Quenching and Tempering (Q&T) and normalizing treatments. Optimum strength-ductility balance of about 2000 MPa tensile strength with 11% elongation was achieved in samples quenched at 473 K and isothermally partitioned for 100 s. Higher ductility of Q&P steel was attributed to the presence of 6.8% film-type interlath retained austenite. Fine-grained martensitic structure with high density of interphase boundaries imparted ultrahigh strength. It was further noted that the impact toughness, notch tensile strength and fracture toughness of 1000 s partitioned samples was higher than 100 s partitioned samples. Possible reasons for high toughness are synergetic effect of recovery of dislocations, partial loss of martensite tetragonality and precipitation of fine transition carbides.

  7. Active heat exchange system development for latent heat thermal energy storage

    NASA Technical Reports Server (NTRS)

    Lefrois, R. T.

    1980-01-01

    Alternative mechanizations of active heat exchange concepts were analyzed for use with heat of fusion Phase Change Materials (PCM's) in the temperature range of 250 C to 350 C for solar and conventional power plant applications. Over 24 heat exchange concepts were reviewed, and eight were selected for detailed assessment. Two candidates were chosen for small-scale experimentation: a coated tube and shell that exchanger, and a direct contact reflux boiler. A dilute eutectic mixture of sodium nitrate and sodium hydroxide was selected as the PCM from over fifty inorganic salt mixtures investigated. Preliminary experiments with various tube coatings indicated that a nickel or chrome plating of Teflon or Ryton coating had promise of being successful. An electroless nickel plating was selected for further testing. A series of tests with nickel-plated heat transfer tubes showed that the solidifying sodium nitrate adhered to the tubes and the experiment failed to meet the required discharge heat transfer rate of 10 kW(t). Testing of the reflux boiler is under way.

  8. Fundamental Properties of TBAF Clathrate for Usage as a Latent Heat Storage at a Room Temperature

    NASA Astrophysics Data System (ADS)

    Mizushima, Takanari; Kawamura, Hiroshi; Takao, Shingo; Yabe, Akira

    For promotion of further energy conservation, development of a coolant with a higher heat capacity regulated around a room temperature is strongly required. As a candidate of such a new coolant, we employ the clathrate hydrate, i.e., a mixture of Tetra n-butyl ammonium fluoride (TBAF) and water. This clathrate hydrate is composed of the micro crystals with an order of 100 μm in dimension. It retains fluidity and melting point at a room temperature of about 25 °C. Moreover, the melting point is able to be controlled between 25 °C and 0 °C by changing the concentration of TBAF. The temperature can be regulated by its latent heat at the melting point. Characteristics such as the latent heat and the crystal structure of the clathrate have been experimentally obtained to confirm the feasibility for its usage as the latent heat storage around a room temperature.

  9. Development of an integrated heat pipe-thermal storage system for a solar receiver

    SciTech Connect

    Keddy, E.S.; Sena, J.T.; Merrigan, M.A.; Heidenreich, G.; Johnson, S.

    1987-01-01

    The Organic Rankine Cycle (ORC) Solar Dynamic Power System (SDPS) is one of the candidates for Space Station prime power application. In the low earth orbit of the Space Station approximately 34 minutes of the 94-minute orbital period is spent in eclipse with no solar energy input to the power system. For this period the SDPS will use thermal energy storage (TES) material to provide a constant power output. Sundstrand Corporation is developing a ORC-SDPS candidate for the Space Station that uses toluene as the organic fluid and LiOH as the TES material. An integrated heat-pipe thermal storage receiver system is being developed as part of the ORC-SDPS solar receiver. This system incorporates potassium heat pipe elements to absorb and transfer the solar energy within the receiver cavity. The heat pipes contain the TES canisters within the potassium vapor space with the toluene heater tube used as the condenser region of the heat pipe. During the insolation period of the earth orbit, solar energy is delivered to the heat pipe in the ORC-SDPS receiver cavity. The heat pipe transforms the non-uniform solar flux incident in the heat pipe surface within the receiver cavity to an essentially uniform flux at the potassium vapor condensation interface in the heat pipe. During solar insolation, part of the thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of the orbit, the balance stored in the TES units is transferred by the potassium vapor to the toluene heater tube. 3 refs., 8 figs.

  10. Radiation Heat Transfer Modeling Improved for Phase-Change, Thermal Energy Storage Systems

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.; Jacqmin, David A.

    1998-01-01

    Spacecraft solar dynamic power systems typically use high-temperature phase-change materials to efficiently store thermal energy for heat engine operation in orbital eclipse periods. Lithium fluoride salts are particularly well suited for this application because of their high heat of fusion, long-term stability, and appropriate melting point. Considerable attention has been focused on the development of thermal energy storage (TES) canisters that employ either pure lithium fluoride (LiF), with a melting point of 1121 K, or eutectic composition lithium-fluoride/calcium-difluoride (LiF-20CaF2), with a 1040 K melting point, as the phase-change material. Primary goals of TES canister development include maximizing the phase-change material melt fraction, minimizing the canister mass per unit of energy storage, and maximizing the phase-change material thermal charge/discharge rates within the limits posed by the container structure.

  11. Lithium Storage in Heat-Treated SnF2 /Polyacrylonitrile Anode.

    PubMed

    Shen, Lian; Shen, Lanyao; Wang, Zhaoxiang; Chen, Liquan

    2015-06-01

    Tin(II) fluoride (SnF2 ) has a high Li-storage capacity because it stores lithium first by a conversion reaction and then by a Li/Sn alloying/dealloying reaction. A polyacrylonitrile (PAN)-bound SnF2 electrode was heat-treated to enhance the integral electrical contact and the mechanical strength through its cross-linked framework. The heat-treated SnF2 electrode showed reversible capacities of 1047 mAh g(-1) in the first cycle and 902 mAh g(-1) after 100 cycles. Part of the excess capacity is due to lithium storage at the Sn/LiF interface, and the other part is assumed to correspond to the presence of reduced SnF2 with protons released during the thermal cross-linking of PAN. PMID:25925247

  12. Performance improvement studies in a solar greenhouse drier using sensible heat storage materials

    NASA Astrophysics Data System (ADS)

    Ayyappan, S.; Mayilsamy, K.; Sreenarayanan, V. V.

    2016-03-01

    Experiments were conducted in a natural convection solar greenhouse dryer using different sensible heat storage materials (concrete, sand and rock-bed) in order to study their thermal performance. For both sand and rock-bed, 4″ thickness was found to be optimum as it provides better drying environment both during day and night. The dryer reduced the moisture content of coconuts from 52 (w.b.) to 7 % (w.b.) using concrete as heat storage material in 78 h saving 55 % of drying time compared to open sun drying which takes 174 h for reducing the moisture content to the same level. The sand took 66 h saving 62 % of drying time whereas rock-bed took only 53 h thereby saving 69 % of drying time compared to open sun drying. The efficiency of the dryer was found to be 9.5, 11 and 11.65 % using concrete, sand and rock-bed respectively.

  13. Estimated heats of fusion of fluoride salt mixtures suitable for thermal energy storage applications

    NASA Technical Reports Server (NTRS)

    Misra, A. K.; Whittenberger, J. D.

    1986-01-01

    The heats of fusion of several fluoride salt mixtures with melting points greater than 973 K were estimated from a coupled analysis of the available thermodynamic data and phase diagrams. Simple binary eutectic systems with and without terminal solid solutions, binary eutectics with congruent melting intermediate phases, and ternary eutectic systems were considered. Several combinations of salts were identified, most notable the eutectics LiF-22CaF2 and NaF-60MgF2 which melt at 1039 and 1273 K respectively which posses relatively high heats of fusion/gm (greater than 0.7 kJ/g). Such systems would seemingly be ideal candidates for the light weight, high energy storage media required by the thermal energy storage unit in advanced solar dynamic power systems envisioned for the future space missions.

  14. Facile synthesis of graphene oxide-modified lithium hydroxide for low-temperature chemical heat storage

    NASA Astrophysics Data System (ADS)

    Yang, Xixian; Huang, Hongyu; Wang, Zhihui; Kubota, Mitsuhiro; He, Zhaohong; Kobayashi, Noriyuki

    2016-01-01

    LiOH·H2O nanoparticles supported on graphene oxide (GO) were facilely synthesized by a hydrothermal process. The mean diameter of nanoparticles on the integrated graphene sheet was about 5-10 nm showed by SEM and TEM results. XRD results suggested that the nanoparticles are in good agreement with the data of LiOH·H2O. The as-prepared sample showed a greatly enhanced thermal energy storage density and exhibit higher rate of heat release than pure lithium hydroxide, and thermal conductivity of composites increased due to the introduction of nano carbon. LiOH·H2O/GO nanocomposites are novel chemical heat storage materials for potential highly efficient energy system.

  15. Surface heat storage in the subtropical North Atlantic during the LGM

    NASA Astrophysics Data System (ADS)

    Repschlaeger, Janne; Weinelt, Mara; Garbe-Schönberg, Dieter; Andersen, Nils; Schneider, Ralph

    2016-04-01

    The transport of warm saline waters from the subtropical into the subpolar North Atlantic plays a major role in the stabilization of AMOC. During the Late Pleistocene this system experienced millennial scale variability with weak AMOC phases that are associated with heat and salt storage within the subtropics. The subsequent onset of AMOC is supposed to be fueled by the release and transport of the warm saline water into the northern hemisphere deepwater convection sites. Despite this conceptual model, contradicting reconstructions for such warm water storage exist for the Deglaciation to early Holocene and full glacial periods, either asserting a southward movement of the Subtropical gyre (STG) and subsurface heat storage or northward extension of the STG with warming of the surface waters. Here we investigate the heat and salt storage patterns and extension of the warm subtropical gyre (STG) during MIS 2 well into MIS 3 (16- 30 ka BP) at centennial scale resolution using sediment core MD08-3181 (38°N; 31.13°W, 3060 m w.d.) retrieved immediately east of the Mid Atlantic Ridge south of the Azores Islands with sedimentation rates up to 100 cm/ ka. At present, this site is located at the northern rim of the Azores Current, which delineates the STG, recirculating warm waters of the North Atlantic Current. Due to its position at the boundary between temperate Northeast Atlantic waters and warm STG waters, the coring site is ideal to trace past changes in the influence of both water masses. Parallel stable-oxygen isotope and Mg/Ca temperature records of surface-water dwelling foraminifera Globigerina bulloides (habitat depth 0-200 m) and subsurface dweller Globorotalia inflata (habitat depth 100-300 m) and foraminiferal transfer functions are used to reconstruct the temperature and salinity structure of the mixed layer. Additionally, the AF position is reconstructed using the abundance of the tropical to subtropical species Globigerinoides ruber white. Preliminary

  16. Experimental investigation of solid by-product as sensible heat storage material: Characterization and corrosion study

    NASA Astrophysics Data System (ADS)

    Ortega-Fernández, Iñigo; Faik, Abdessamad; Mani, Karthik; Rodriguez-Aseguinolaza, Javier; D'Aguanno, Bruno

    2016-05-01

    The experimental investigation of water cooled electrical arc furnace (EAF) slag used as filler material in the storage tank for sensible heat storage application was demonstrated in this study. The physicochemical and thermal properties of the tested slags were characterized by using X-ray diffraction, scanning electron microcopy, Fourier transform infrared spectroscopy, Raman spectroscopy and laser flash analysis, respectively. In addition, the chemical compatibility between slags and molten nitrate salt (60 wt. % NaNO3 and 40 wt. % KNO3) was investigated at 565 °C for 500 hrs. The obtained results were clearly demonstrated that the slags showed a good corrosion resistance in direct contact with molten salt at elevated temperature. The present study was clearly indicated that a low-cost filler material used in the storage tank can significantly reduce the overall required quantities of the relatively higher cost molten salt and consequently reduce the overall cost of the electricity production.

  17. Integrated hydrological modelling of small- and medium-sized water storages with application to the upper Fengman Reservoir Basin of China

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Peng, Y.; Chu, J.; Shoemaker, C. A.; Zhang, A.

    2012-11-01

    Hydrological simulation in regions with a large number of water storages is difficult due to inaccurate water storage data. To address this issue, this paper presents an improved version of SWAT2005 (Soil and Water Assessment Tool, version 2005) using Landsat, a satellite-based dataset, an empirical storage classification method and some empirical relationships to estimate water storage and release from the various sizes of flow detention and regulation facilities. The SWAT2005 is enhanced by three features: (1) a realistic representation of the relationships between the surface area and volume of each type of water storages, ranging from small-sized flow detention ponds to medium- and large-sized reservoirs with the various flow regulation functions; (2) water balance and transport through a network combining both sequential and parallel streams and storage links; and (3) calibrations for both physical and human interference parameters. Through a real-world watershed case study, it is found that the improved SWAT2005 more accurately models small- and medium-sized storages than the original model in reproducing streamflows in the watershed. The improved SWAT2005 can be an effective tool to assess the impact of water storage on hydrologic processes, which has not been well addressed in the current modelling exercises.

  18. A new kind of efficient solar cookers with and without temporary heat storage

    SciTech Connect

    Schwarzer, K.; Bieger, W.; Meer, A. von; Krings, T.

    1992-12-31

    Solar cookers are described that were tested for future use in developing countries. They consisted of a flat plate collector and one cooking unit with or without temporary heat storage. The goal was to develop inexpensive and efficient systems using materials available in developing countries. The tests showed that cooking with solar is comparable to cooking with electricity or gas and can be adapted to daily cooking processes, including broiling and baking.

  19. Solar passive ceiling system. Final report. [Passive solar heating system with venetian blind reflectors and latent heat storage in ceiling

    SciTech Connect

    Schneider, A.R.

    1980-01-01

    The construction of a 1200 square foot building, with full basement, built to be used as a branch library in a rural area is described. The primary heating source is a passive solar system consisting of a south facing window system. The system consists of: a set of windows located in the south facing wall only, composed of double glazed units; a set of reflectors mounted in each window which reflects sunlight up to the ceiling (the reflectors are similar to venetian blinds); a storage area in the ceiling which absorbs the heat from the reflected sunlight and stores it in foil salt pouches laid in the ceiling; and an automated curtain which automatically covers and uncovers the south facing window system. The system is totally passive and uses no blowers, pumps or other active types of heat distribution equipment. The building contains a basement which is normally not heated, and the north facing wall is bermed four feet high around the north side.

  20. Thermal energy storage apparatus, controllers and thermal energy storage control methods

    DOEpatents

    Hammerstrom, Donald J.

    2016-05-03

    Thermal energy storage apparatus, controllers and thermal energy storage control methods are described. According to one aspect, a thermal energy storage apparatus controller includes processing circuitry configured to access first information which is indicative of surpluses and deficiencies of electrical energy upon an electrical power system at a plurality of moments in time, access second information which is indicative of temperature of a thermal energy storage medium at a plurality of moments in time, and use the first and second information to control an amount of electrical energy which is utilized by a heating element to heat the thermal energy storage medium at a plurality of moments in time.

  1. MHD flow of a micropolar fluid over a stretchable disk in a porous medium with heat and mass transfer

    SciTech Connect

    Rauf, A. Meraj, M. A.; Ashraf, M.; Batool, K.; Hussain, M.

    2015-07-15

    This article studies the simultaneous impacts of heat and mass transfer of an incompressible electrically conducting micropolar fluid generated by the stretchable disk in presence of porous medium. The thermal radiation effect is accounted via Rosseland’s approximation. The governing boundary layer equations are reduced into dimensionless form by employing the suitable similarity transformations. A finite difference base algorithm is utilized to obtain the solution expressions. The impacts of physical parameters on dimensionless axial velocity, radial velocity, micro-rotation, temperature and concentrations profiles are presented and examined carefully. Numerical computation is performed to compute shear stress, couple stress, heat and mass rate at the disk.

  2. MHD flow of a micropolar fluid over a stretchable disk in a porous medium with heat and mass transfer

    NASA Astrophysics Data System (ADS)

    Rauf, A.; Ashraf, M.; Batool, K.; Hussain, M.; Meraj, M. A.

    2015-07-01

    This article studies the simultaneous impacts of heat and mass transfer of an incompressible electrically conducting micropolar fluid generated by the stretchable disk in presence of porous medium. The thermal radiation effect is accounted via Rosseland's approximation. The governing boundary layer equations are reduced into dimensionless form by employing the suitable similarity transformations. A finite difference base algorithm is utilized to obtain the solution expressions. The impacts of physical parameters on dimensionless axial velocity, radial velocity, micro-rotation, temperature and concentrations profiles are presented and examined carefully. Numerical computation is performed to compute shear stress, couple stress, heat and mass rate at the disk.

  3. Performance analysis of innovative collector fields for solar-electric plants, using air as heat transfer medium

    SciTech Connect

    De Marchi Desenzani, P.; Gaia, M.

    1984-08-01

    The production of electricity by thermodynamic conversion of the heat supplied by flat plate collectors has been tried many times. The use of air as heat transfer medium could allow a dramatic simplification of the collector field and a relevant reduction of thermal inertia. The paper discusses the characteristics of a system based on air collectors and ORC engine. Both multilayer inflated plastic sheet collectors and vacuum tubes collectors are proposed as suitable solutions. The field fan power consumption is optimized jointly with the power cycle evaporator design. Both the envisaged solutions are investigated on the point of view of overall cost/performance ratio.

  4. Thermal performance of a heat storage module using PCM's with different melting temperatures

    SciTech Connect

    Farid, M.M.; Kanzawa, A.

    1989-05-01

    The performance of a heat storage unit consisting of number of vertical cylindrical capsules filled with phase change materials, with air flowing across them for heat exchange has been analyzed. Earlier theoretical models did not consider temperature distribution in the radial direction within the capsules, an assumption that limits their applications for small diameter capsules. The mathematical model developed in this work is based on solving the heat conduction equation in both melt and solid phases in cylindrical coordinates, taking into account the radial temperature distribution in both phases. Heat flux was then evaluated at the surface of the first row of the capsules to determine the temperature of the air leaving that row by a simple heat balance. It was found that such computation may be carried out for every few rows rather than for a single row to minimize computer time. The simulation study showed a significant improvement in the rate of heat transfer during heat charge and discharge when phase change materials with different melting temperatures were used.

  5. System for thermal energy storage, space heating and cooling and power conversion

    DOEpatents

    Gruen, Dieter M.; Fields, Paul R.

    1981-04-21

    An integrated system for storing thermal energy, for space heating and cong and for power conversion is described which utilizes the reversible thermal decomposition characteristics of two hydrides having different decomposition pressures at the same temperature for energy storage and space conditioning and the expansion of high-pressure hydrogen for power conversion. The system consists of a plurality of reaction vessels, at least one containing each of the different hydrides, three loops of circulating heat transfer fluid which can be selectively coupled to the vessels for supplying the heat of decomposition from any appropriate source of thermal energy from the outside ambient environment or from the spaces to be cooled and for removing the heat of reaction to the outside ambient environment or to the spaces to be heated, and a hydrogen loop for directing the flow of hydrogen gas between the vessels. When used for power conversion, at least two vessels contain the same hydride and the hydrogen loop contains an expansion engine. The system is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators, but may be used with any source of heat, including a source of low-grade heat.

  6. Charge storage in a nitride-oxide-silicon medium by scanning capacitance microscopy

    NASA Astrophysics Data System (ADS)

    Barrett, R. C.; Quate, C. F.

    1991-09-01

    In this paper we describe a variant of the scanning capacitance microscope (SCaM) which is based on the atomic force microscope. Our SCaM involves a cantilever beam that is used to press a conducting tip against a conducting substrate coated with a dielectric film. A capacitance sensor is then used to measure the tip-sample capacitance as a function of lateral position. The deflection of the cantilever can also be used to measure independently the surface topography. This microscope can be used to measure electrical properties of dielectric films and their underlying substrates. We have applied this microscope to the study of the nitride-oxide-silicon (NOS) system. This system has been studied extensively because of its ability to store information by trapping charge in the silicon nitride. Commercial semiconductor nonvolatile memories have been designed using this NOS technology. We have used the SCaM tip to apply a localized bias to the NOS sample, causing charge to tunnel through the oxide layer and to be trapped in the nitride film. This trapped charge induces a depletion region in the silicon substrate, which can be detected by the resulting depletion capacitance between the tip and sample. The stored charge can be interpreted as a digital memory. Bit sizes as small as 750 Å full width at half maximum have been stored using this technique. The stored charge has been observed to be stable over a period of seven days. The stored charge can be removed by applying a reverse bias to the region, and the bit can be subsequently rewritten. By simultaneously measuring capacitance and topography images, we have demonstrated that the stored information is not the result of any topographic change to the surface. Simulations of the potential distributions resulting from this trapped charge have been performed and are compared with the experiments. Finally, a discussion is presented on the ultimate density and speed limits of such a storage technology.

  7. Ion-implanted PLZT ceramics: a new high-sensitivity image storage medium

    SciTech Connect

    Peercy, P.S.; Land, C.E.

    1980-01-01

    Results were presented of our studies of photoferroelectric (PFE) image storage in H- and He-ion implanted PLZT (lead lanthanum zirconate titanate) ceramics which demonstrate that the photosensitivity of PLZT can be significantly increased by ion implantation in the ceramic surface to be exposed to image light. More recently, implantations of Ar and Ar + Ne into the PLZT surface have produced much greater photosensitivity enhancement. For example, the photosensitivity after implantation with 1.5 x 10/sup 14/ 350 keV Ar/cm/sup 2/ + 1 x 10/sup 15/ 500 keV Ne/cm/sup 2/ is increased by about four orders of magnitude over that of unimplanted PLZT. Measurements indicate that the photosensitivity enhancement in ion-implanted PLZT is controlled by implantation-produced disorder which results in marked decreases in dielectric constant and dark conductivity and changes in photoconductivity of the implanted layer. The effects of Ar- and Ar + Ne-implantation are presented along with a phenomenological model which describes the enhancement in photosensitivity obtained by ion implantation. This model takes into account both light- and implantation-induced changes in conductivity and gives quantitative agreement with the measured changes in the coercive voltage V/sub c/ as a function of near-uv light intensity for both unimplanted and implanted PLZT. The model, used in conjunction with calculations of the profiles of implantation-produced disorder, has provided the information needed for co-implanting ions of different masses, e.g., Ar and Ne, to improve photosensitivity.

  8. Numerical simulations of the impact of seasonal heat storage on source zone emission in a TCE contaminated aquifer

    NASA Astrophysics Data System (ADS)

    Popp, Steffi; Beyer, Christof; Dahmke, Andreas; Bauer, Sebastian

    2016-04-01

    In urban regions, with high population densities and heat demand, seasonal high temperature heat storage in the shallow subsurface represents an attractive and efficient option for a sustainable heat supply. In fact, the major fraction of energy consumed in German households is used for room heating and hot water production. Especially in urbanized areas, however, the installation of high temperature heat storage systems is currently restricted due to concerns on negative influences on groundwater quality caused e.g. by possible interactions between heat storages and subsurface contaminants, which are a common problem in the urban subsurface. Detailed studies on the overall impact of the operation of high temperature heat storages on groundwater quality are scarce. Therefore, this work investigates possible interactions between groundwater temperature changes induced by heat storage via borehole heat exchangers and subsurface contaminations by numerical scenario analysis. For the simulation of non-isothermal groundwater flow, and reactive transport processes the OpenGeoSys code is used. A 2D horizontal cross section of a shallow groundwater aquifer is assumed in the simulated scenario, consisting of a sandy sediment typical for Northern Germany. Within the aquifer a residual trichloroethene (TCE) contaminant source zone is present. Temperature changes are induced by a seasonal heat storage placed within the aquifer with scenarios of maximum temperatures of 20°C, 40°C and 60°C, respectively, during heat injection and minimum temperatures of 2°C during heat extraction. In the scenario analysis also the location of the heat storage relative to the TCE source zone and plume was modified. Simulations were performed in a homogeneous aquifer as well as in a set of heterogeneous aquifers with hydraulic conductivity as spatially correlated random fields. In both cases, results show that the temperature increase in the heat plume and the consequential reduction of water

  9. Perpendicular magnetization reversal mechanism of functional FePt films for magnetic storage medium

    NASA Astrophysics Data System (ADS)

    Wei, Da-Hua; Chi, Po-Wei; Chao, Chung-Hua

    2014-11-01

    Magnetization reversal mechanism and related surface morphology of functional FePt(001) alloy films with large perpendicular magnetic anisotropy have been explored by alternate-atomic-layer deposition onto Pt/MgO(100) substrates via electron beam evaporation, and all evaporated films have been kept at in-situ substrate heating temperature of 400 °C. The FePt alloy film was composed of ultrathin [Fe (0.5 nm)/Pt (0.5 nm)]n Fe/Pt multilayer structures. The corresponding thickness of multilayer films was controlled by the periodic bilayer numbers (n) and varied in the range from 15 nm (n = 15) to 30 nm (n = 30). The surface topography was observed and varied from granular-like island to continuous microstructures with increasing the periodic numbers of Fe/Pt bilayer films. The measurement of angular dependent coercivity showed a tendency of the near rotation of reverse-domain type (n = 15) shift towards the domain-wall motion as a typical peak behavior (n = 30) with increasing the periodic bilayer numbers of Fe/Pt multilayers. On the basis of all magnetic measurements and corresponding magnetization analysis, indicating that the perpendicular magnetization reversal mechanism and related surface morphology of ordered FePt(001) alloy films could be systematically controlled by varying the periodic bilayer numbers accompanied with the thickness dependence.

  10. Effect of heat treatment on the storage stability of low calorie milk drinks.

    PubMed

    Mittal, Shikha; Bajwa, Usha

    2014-09-01

    The study was undertaken to study the effect of heat treatment on the storage stability of cardamom flavoured low calorie milk drinks (CFDs). The drinks prepared by replacing sugar with sucralose and adding inulin in milk of 0.5 % fat and 8.5 % milk solid-not-fat were subjected to pasteurization and sterilization and stored at refrigeration and room temperature, respectively. The stored samples were evaluated for changes in physico-chemical and sensory attributes at regular intervals. In pasteurized drinks, the total solids (TS) and pH declined while the total soluble solids (TSS), titratable acidity and viscosity increased significantly (p < 0.01) with storage. A significant reduction in the flavour and body and mouthfeel scores was observed. Standard plate count (SPC) increased in both control and low calorie drinks with storage period. In sterilized CFDs, TS and TSS were not affected appreciably whereas titratable acidity increased and viscosity decreased significantly (p < 0.01) with storage. Though the sensory scores also declined with storage, the drinks obtained high acceptability scores even after 150 days of storage at room temperature. However, the changes in colour components (L, a and b values) indicated increased browning in the drinks with storage time. SPC was not detected until 120 days in control and 135 days in low calorie drink. Yeast and molds were not evident until 135 days in control and 150 days in low calorie drink. The shelf life was found to be 10 and 150 days of pasteurized and sterilized CFDs at refrigeration and room temperature, respectively. PMID:25190842

  11. Integrated hydrological modelling of small- and medium-sized water storages with application to the upper Fengman Reservoir Basin of China

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Peng, Y.; Chu, J.; Shoemaker, C. A.

    2012-03-01

    Hydrological simulation in regions with a large number of water storages is difficult due to the inaccurate water storage data, including both topologic parameters and operational rules. To address this issue, this paper presents an improved version of SWAT2005 (Soil and Water Assessment Tool, version 2005) using the satellite-based dataset Landsat, an empirical storage classification method, and some empirical relationships to estimate water storage and release from the various levels of flow regulation facilities. The improved SWAT2005 is characterised by three features: (1) a realistic representation of the relationships between the water surface area and volume of each type of water storage, ranging from small-sized ponds for water flow regulation to large-sized and medium-sized reservoirs for water supply and hydropower generation; (2) water balance and transport through a network combining both sequential and parallel streams and storage links; and (3) calibrations for the physical parameters and the human interference parameters. Both the original and improved SWAT2005 are applied to the upper Fengman Reservoir Basin, and the results of these applications are compared. The improved SWAT2005 accurately models small- and medium-sized storages, indicating a significantly improved performance from that of the original model in reproducing streamflows.

  12. Computational modeling of latent-heat-storage in PCM modified interior plaster

    NASA Astrophysics Data System (ADS)

    Fořt, Jan; Maděra, Jiří; Trník, Anton; Pavlíková, Milena; Pavlík, Zbyšek

    2016-06-01

    The latent heat storage systems represent a promising way for decrease of buildings energy consumption with respect to the sustainable development principles of building industry. The presented paper is focused on the evaluation of the effect of PCM incorporation on thermal performance of cement-lime plasters. For basic characterization of the developed materials, matrix density, bulk density, and total open porosity are measured. Thermal conductivity is accessed by transient impulse method. DSC analysis is used for the identification of phase change temperature during the heating and cooling process. Using DSC data, the temperature dependent specific heat capacity is calculated. On the basis of the experiments performed, the supposed improvement of the energy efficiency of characteristic building envelope system where the designed plasters are likely to be used is evaluated by a computational analysis. Obtained experimental and computational results show a potential of PCM modified plasters for improvement of thermal stability of buildings and moderation of interior climate.

  13. Development and testing of thermal-energy-storage modules for use in active solar heating and cooling systems. Final report

    SciTech Connect

    Parker, J.C.

    1981-04-01

    Additional development work on thermal-energy-storage modules for use with active solar heating and cooling systems is summarized. Performance testing, problems, and recommendations are discussed. Installation, operation, and maintenance instructions are included. (MHR)

  14. Die another day: Fate of heat-treated Geobacillus stearothermophilus ATCC 12980 spores during storage under growth-preventing conditions.

    PubMed

    Mtimet, Narjes; Trunet, Clément; Mathot, Anne-Gabrielle; Venaille, Laurent; Leguérinel, Ivan; Coroller, Louis; Couvert, Olivier

    2016-06-01

    Geobacillus stearothermophilus spores are recognized as one of the most wet-heat resistant among aerobic spore-forming bacteria and are responsible for 35% of canned food spoilage after incubation at 55 °C. The purpose of this study was to investigate and model the fate of heat-treated survivor spores of G. stearothermophilus ATCC 12980 in growth-preventing environment. G. stearothermophilus spores were heat-treated at four different conditions to reach one or two decimal reductions. Heat-treated spores were stored in nutrient broth at different temperatures and pH under growth-preventing conditions. Spore survival during storage was evaluated by count plating over a period of months. Results reveal that G. stearothermophilus spores surviving heat treatment lose their viability during storage under growth-preventing conditions. Two different subpopulations were observed during non-thermal inactivation. They differed according to the level of their resistance to storage stress, and the proportion of each subpopulation can be modulated by heat treatment conditions. Finally, tolerance to storage stress under growth-preventing conditions increases at refrigerated temperature and neutral pH regardless of heat treatment conditions. Such results suggest that spore inactivation due to heat treatment could be completed by storage under growth-preventing conditions. PMID:26919821

  15. A mathematical model for two-phase water, air, and heat flow around a linear heat source emplaced in a permeable medium

    SciTech Connect

    Doughty, C.; Pruess, K.

    1991-03-01

    A semianalytical solution for transient two-phase water, air, and heat flow in a uniform porous medium surrounding a constant-strength linear heat source has been developed, using a similarity variable {eta}=r/{radical}t (r is radial distance, t is time). Although the similarity transformation requires a simplified radial geometry, all the physical mechanisms involved in two-phase fluid and heat flow may be taken into account in a rigorous way. The solution includes nonlinear thermophysical fluid and material properties, such as relative permeability and capillary pressure variations with saturation, and density and viscosity variations with temperature and pressure. The resulting governing equations form a set of coupled nonlinear ODEs, necessitating numerical integration. The solution has been applied to a partially saturated porous medium initially at a temperature well below the saturation temperature, which is the setting for the potential nuclear waste repository site at Yucca Mountain, Nevada. The resulting heat and fluid flows provide a stringent test of many of the capabilities of numerical simulation models, making the similarity solution a useful tool for model verification. Comparisons to date have shown excellent agreement between the TOUGH2 simulator and the similarity solution for a variety of conditions. 13 refs., 6 figs., 1 tab.

  16. Heat and mass transfer analysis of unsteady MHD nanofluid flow through a channel with moving porous walls and medium

    NASA Astrophysics Data System (ADS)

    Zubair Akbar, Muhammad; Ashraf, Muhammad; Farooq Iqbal, Muhammad; Ali, Kashif

    2016-04-01

    The paper presents the numerical study of heat and mass transfer analysis in a viscous unsteady MHD nanofluid flow through a channel with porous walls and medium in the presence of metallic nanoparticles. The two cases for effective thermal conductivity are discussed in the analysis through H-C model. The impacts of the governing parameters on the flow, heat and mass transfer aspects of the issue are talked about. Under the patronage of small values of permeable Reynolds number and relaxation/contraction parameter, we locate that, when wall contraction is together with suction, flow turning is encouraged close to the wall where the boundary layer is shaped. On the other hand, when the wall relaxation is coupled with injection, the flow adjacent to the porous walls decreased. The outcome of the exploration may be beneficial for applications of biotechnology. Numerical solutions for the velocity, heat and mass transfer rate at the boundary are obtained and analyzed.

  17. Underground natural gas storage in the United States 1979 - 1980 heating year

    NASA Astrophysics Data System (ADS)

    1980-09-01

    Total gas in storage in the nation's active underground natural gas storage reservoirs as of March 31, 1980, the end of the 1979-1980 heating year, was reported at 5,129 billion cubic feet. Of this total, approximately 69.1 percent was base, or cushion, gas and 30.9 percent was working gas. Working gas totaled 1,586 billion cubic feet, approximately 28.2 percent above that available at the beginning of the heating year. The nation's 383 active storage reservoirs were operated by 77 companies. Total reservoir capacity was reported at 7,287 billion cubic feet, approximately 51.4 percent, or 3,744 billion cubic feet of which was working gas capacity. Approximately 67.9 percent of this working gas capacity was in 228 reservoirs operated by 30 interstate pipeline companies, 29.1 percent was in 142 reservoirs operated by 42 intrastate companies, and 3.1 percent was in 13 reservoirs operated by 5 independent producers.

  18. Heat storage in the Hettangian aquifer in Berlin - results from a column experiment

    NASA Astrophysics Data System (ADS)

    Milkus, Chri(Sch)augott

    2015-04-01

    Aquifer Thermal Energy Storage (ATES) is a sustainable alternative for storage and seasonal availability of thermal energy. However, its impact on the subsurface flow regime is not well known. In Berlin (Germany), the Jurassic (Hettangian) sandstone aquifer with highly mineralized groundwater (TDS 27 g/L) is currently used for heat storage. The aim of this study was to examine the hydrogeochemical changes that are caused by the induced temperature shift and its effects on the hydraulic permeability of the aquifer. Column experiments were conducted, in which stainless steel columns were filled with sediment from the aquifer and flushed with native groundwater for several weeks. The initial temperature of the experiment was 20°C, comparable to the in-situ conditions within the aquifer. After reaching equilibrium between sediment and water, the temperature was increased to simulate heating of the aquifer. During the experiment, physical and chemical parameters (pH, ORP, dissolved oxygen and dissolved carbon dioxide) were measured at the outflow of the column and the effluent water was sampled. Using a Scanning Electron Microscope, the deposition of precipitated minerals and biofilm on sediment grains was analyzed. Changes in hydraulic properties of the sediment were studied by the use of tracer tests with Uranin.

  19. Accumulation of plant small heat-stress proteins in storage organs.

    PubMed

    Lubaretz, Olga; Zur Nieden, Uta

    2002-06-01

    Plant small heat-stress proteins (sHSPs) have been shown to be expressed not only after exposure to elevated temperatures, but also at particular developmental stages such as embryogenesis, microsporogenesis, and fruit maturation. This paper presents new data on the occurrence of sHSPs in vegetative tissues, their tissue-specific distribution, and cellular localization. We have found sHSPs in 1-year-old twigs of Acer platanoides L. and Sambucus nigra L. and in the liana Aristolochia macrophylla Lamk. exclusively in the winter months. In tendrils of Aristolochia, sHSPs were localized in vascular cambium cells. After budding, in spring, these proteins were no longer present. Furthermore, accumulation of sHSPs was demonstrated in tubers and bulbs of Allium cepa L., Amaryllis ( Hippeastrum hybridum hort.), Crocus albiflorus L., Hyacinthus orientalis L., Narcissus pseudonarcissus L., Tulipa gesneriana L., and Solanum tuberosum L. (potato). In potato tubers and bulb scales of Narcissus the stress proteins were localized in the central vacuoles of storage parenchyma cells. In order to obtain more information on a possible functional correlation between storage proteins and sHSPs, the accumulation of both types of protein in tobacco seeds during seed ripening and germination was monitored. The expression of sHSPs and globulins started simultaneously at about the 17th day after anthesis. During seed germination the sHSPs disappeared in parallel with the storage proteins. Furthermore, in embryos of transgenic tobacco plants, which do not contain any protein bodies or storage proteins, no sHSPs were found. Thus, the occurrence of sHSPs in perennial plant storage organs seems to be associated with the presence of storage proteins. PMID:12029471

  20. Design and Testing of a Thermal Storage System for Electric Vehicle Cabin Heating

    SciTech Connect

    Wang, Mingyu; WolfeIV, Edward; Craig, Timothy; LaClair, Tim J; Gao, Zhiming; Abdelaziz, Omar

    2016-01-01

    Without the waste heat available from the engine of a conventional automobile, electric vehicles (EVs) must provide heat to the cabin for climate control using energy stored in the vehicle. In current EV designs, this energy is typically provided by the traction battery. In very cold climatic conditions, the power required to heat the EV cabin can be of a similar magnitude to that required for propulsion of the vehicle. As a result, the driving range of an EV can be reduced very significantly during winter months, which limits consumer acceptance of EVs and results in increased battery costs to achieve a minimum range while ensuring comfort to the EV driver. To minimize the range penalty associated with EV cabin heating, a novel climate control system that includes thermal energy storage has been designed for use in EVs and plug-in hybrid electric vehicles (PHEVs). The system uses the stored latent heat of an advanced phase change material (PCM) to provide cabin heating. The PCM is melted while the EV is connected to the electric grid for charging of the electric battery, and the stored energy is subsequently transferred to the cabin during driving. To minimize thermal losses when the EV is parked for extended periods, the PCM is encased in a high performance insulation system. The electrical PCM-Assisted Thermal Heating System (ePATHS) was designed to provide enough thermal energy to heat the EV s cabin for approximately 46 minutes, covering the entire daily commute of a typical driver in the U.S.

  1. Heat storage in Asian elephants during submaximal exercise: behavioral regulation of thermoregulatory constraints on activity in endothermic gigantotherms.

    PubMed

    Rowe, M F; Bakken, G S; Ratliff, J J; Langman, V A

    2013-05-15

    Gigantic size presents both opportunities and challenges in thermoregulation. Allometric scaling relationships suggest that gigantic animals have difficulty dissipating metabolic heat. Large body size permits the maintenance of fairly constant core body temperatures in ectothermic animals by means of gigantothermy. Conversely, gigantothermy combined with endothermic metabolic rate and activity likely results in heat production rates that exceed heat loss rates. In tropical environments, it has been suggested that a substantial rate of heat storage might result in a potentially lethal rise in core body temperature in both elephants and endothermic dinosaurs. However, the behavioral choice of nocturnal activity might reduce heat storage. We sought to test the hypothesis that there is a functionally significant relationship between heat storage and locomotion in Asian elephants (Elephas maximus), and model the thermoregulatory constraints on activity in elephants and a similarly sized migratory dinosaur, Edmontosaurus. Pre- and post-exercise (N=37 trials) measurements of core body temperature and skin temperature, using thermography were made in two adult female Asian elephants at the Audubon Zoo in New Orleans, LA, USA. Over ambient air temperatures ranging from 8 to 34.5°C, when elephants exercised in full sun, ~56 to 100% of active metabolic heat production was stored in core body tissues. We estimate that during nocturnal activity, in the absence of solar radiation, between 5 and 64% of metabolic heat production would be stored in core tissues. Potentially lethal rates of heat storage in active elephants and Edmontosaurus could be behaviorally regulated by nocturnal activity. PMID:23785105

  2. Godunov Method for Calculating Flows of a one-Velocity Viscous Heat-Conducting Medium

    NASA Astrophysics Data System (ADS)

    Surov, V. S.

    2015-05-01

    For a hyperbolic model of a one-velocity viscous heat-conducting mixture, a modifi ed Godunov method with approximate Riemann solvers is developed. Using this method, we studied wave processes in frothing and bubble media. It is shown that the fl ow picture is signifi cantly infl uenced by heat transfer processes, which are manifested to a greater extent for bubble liquids.

  3. Thermal analysis of heat storage canisters for a solar dynamic, space power system

    NASA Technical Reports Server (NTRS)

    Wichner, R. P.; Solomon, A. D.; Drake, J. B.; Williams, P. T.

    1988-01-01

    A thermal analysis was performed of a thermal energy storage canister of a type suggested for use in a solar receiver for an orbiting Brayton cycle power system. Energy storage for the eclipse portion of the cycle is provided by the latent heat of a eutectic mixture of LiF and CaF2 contained in the canister. The chief motivation for the study is the prediction of vapor void effects on temperature profiles and the identification of possible differences between ground test data and projected behavior in microgravity. The first phase of this study is based on a two-dimensional, cylindrical coordinates model using an interim procedure for describing void behavor in 1-g and microgravity. The thermal analysis includes the effects of solidification front behavior, conduction in liquid/solid salt and canister materials, void growth and shrinkage, radiant heat transfer across the void, and convection in the melt due to Marangoni-induced flow and, in 1-g, flow due to density gradients. A number of significant differences between 1-g and o-g behavior were found. This resulted from differences in void location relative to the maximum heat flux and a significantly smaller effective conductance in 0-g due to the absence of gravity-induced convection.

  4. Astaxanthin present in the maturation medium reduces negative effects of heat shock on the developmental competence of porcine oocytes.

    PubMed

    Do, Lanh Thi Kim; Luu, Vien Viet; Morita, Yasuhiro; Taniguchi, Masayasu; Nii, Masahiro; Peter, Augustine T; Otoi, Takeshige

    2015-06-01

    Astaxanthin, one of the most common carotenoids, elicits antioxidant effects on cellular viability and embryonic development. This study was conducted to investigate the effects of astaxanthin on maturation, fertilization and development of porcine oocytes matured in vitro under heat stress conditions, and then fertilized and cultured under standard conditions. Porcine oocytes were cultured in maturation medium supplemented with different concentrations of astaxanthin (0, 0.25, 0.5 or 1 ppm) for 46 h at either 38.5 or 41 °C. In comparison to oocytes cultured at 38.5 °C, the exposure of porcine oocytes to 41.0 °C during in vitro maturation (IVM) significantly inhibited maturation and development of fertilized oocytes to the blastocyst stage. Supplementation of maturation medium with astaxanthin (0.5 ppm) significantly improved oocyte maturation, fertilization and development to the blastocysts stage in both oocyte groups. However, the total cell number and apoptosis index of blastocysts did not differ among groups. Moreover, astaxanthin (0.5 ppm) significantly increased the rate of oocytes that reached metaphase II and decreased proportion of apoptotic oocytes exposed to H2O2 (1.0mM) during IVM. In summary, we demonstrated that supplementation of maturation medium with astaxanthin (0.5 ppm) exerted antioxidative effects and improved the ability of maturation, fertilization, and development of porcine oocytes exposed to heat stress. PMID:26051456

  5. Behavior of Propagation and Heating Due to Absorption of Ultrasound in Medium

    NASA Astrophysics Data System (ADS)

    Yamaya, Chiaki; Inoue, Hiroshi

    2006-05-01

    Recently, ultrasound waves have been put to practical use not only in diagnostic equipment but also in thermotherapy that uses the effect of ultrasound waves in a living body. The analysis of temperature rise due to the absorption of ultrasound in a soft tissue medium is an important analyzing object for the clarification of the effect of ultrasound waves in biological tissues and the estimation of medium constants. Three-dimensional simulations by the finite-difference time-domain (FDTD) method which used the equations that considers the absorption attenuation based on acoustic basic equations (ABEs) and the Westervelt equation have been performed. The consistency between the ABEs and the Westervelt equation is confirmed. The results of temperature measurement that uses glycerin as the absorbing medium of ultrasound are compared with those of FDTD simulation. The temperature distribution obtained by FDTD simulation almost corresponds to that obtained by experiment.

  6. Automatic control of electric thermal storage (heat) under real-time pricing. Final report

    SciTech Connect

    Daryanian, B.; Tabors, R.D.; Bohn, R.E.

    1995-01-01

    Real-time pricing (RTP) can be used by electric utilities as a control signal for responsive demand-side management (DSM) programs. Electric thermal storage (ETS) systems in buildings provide the inherent flexibility needed to take advantage of variations in prices. Under RTP, optimal performance for ETS operations is achieved under market conditions where reductions in customers` costs coincide with the lowering of the cost of service for electric utilities. The RTP signal conveys the time-varying actual marginal cost of the electric service to customers. The RTP rate is a combination of various cost components, including marginal generation fuel and maintenance costs, marginal costs of transmission and distribution losses, and marginal quality of supply and transmission costs. This report describes the results of an experiment in automatic control of heat storage systems under RTP during the winter seasons of 1989--90 and 1990--91.

  7. BWR spent fuel storage cask performance test. Volume 1. Cask handling experience and decay heat, heat transfer, and shielding data

    SciTech Connect

    McKinnon, M.A.; Doman, J.W.; Tanner, J.E.; Guenther, R.J.; Creer, J.M.; King, C.E.

    1986-02-01

    This report documents a heat transfer and shielding performance test conducted on a Ridihalgh, Eggers and Associates REA 2023 boiling water reactor (BWR) spent fuel storage cask. The testing effort consisted of three parts: pretest preparations, performance testing, and post-test activities. Pretest preparations included conducting cask handling dry runs and characterizing BWR spent fuel assemblies from Nebraska Public Power District's Cooper Nuclear Station. The performance test matrix included 14 runs consisting of two loadings, two cask orientations, and three backfill environments. Post-test activities included calorimetry and axial radiation scans of selected fuel assemblies, in-basin sipping of each assembly, crud collection, video and photographic scans, and decontamination of the cask interior and exterior.

  8. Materials compatibility in Dish-Stirling solar generators using Cu-Si-Mg eutectic for latent heat storage

    NASA Astrophysics Data System (ADS)

    Kruizenga, A. M.; Withey, E. A.; Andraka, C. E.; Gibbs, P. J.

    2016-05-01

    Dish-Stirling systems are a strong candidate to meet cost production goals for solar thermal power production. Thermal energy storage improves the capacity factor of thermal power systems; copper-silicon-magnesium eutectic alloys have been investigated as potential latent heat storage materials. This work examines the ability of commercially available plasma spray coatings to serve as protective barriers with these alloys, while highlighting mechanistic insights into materials for latent heat storage systems. Computed tomography was leveraged as a rapid screening tool to assess the presence of localized attack in tested coatings.

  9. Gas hydrate cool storage system

    DOEpatents

    Ternes, M.P.; Kedl, R.J.

    1984-09-12

    The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

  10. Heat Storage and Energy Closure in Two Tropical Montane Forests in Hawaii

    NASA Astrophysics Data System (ADS)

    Mudd, R. G.; Giambelluca, T. W.; Huang, M.

    2012-12-01

    To date, eddy covariance observations of evapotranspiration (ET) in tropical rainforest ecosystems are limited and thorough assessments of such observations are rare. In this study, we present a detailed evaluation of eddy covariance data collected at two sites in Hawaii Volcanoes National Park, Hawaii, for a 34 month period to evaluate the importance of biomass and air heat storage to the energy balance and determine site specific energy closure characteristics. One site is located in a native Hawaiian tropical montane forest dominated by Metrosideros polymorpha (Nahuku), while the other is located in a nearby forest (Olaa) that has been partially invaded by strawberry guava (Psidium cattleianum). Vertical and radial distribution of all biomass components were evaluated from detailed stand surveys, biomass samples, allometric relationships, wood density, fresh to dry weight ratios of plant materials, and temperature measurements of stem biomass. Total fresh biomass was estimated to be 69.8 ± 11.7 kg m-2 and 75.9 ± 16.6 kg m-2 at Nahuku and Olaa, respectively, and the contribution of separate biomass components to energy closure were evaluated in detail. Despite statistically similar fresh biomass between stands, energy storage was found to be significantly greater at the forest site with P. cattleianum tree invasion (Olaa) than at the native forest stand (Nahuku). The difference was attributed to a higher proportion of smaller stems at Olaa, absorbing and releasing more heat for a given mass. Inclusion of biomass and air heat storage in the energy balance improved the relative energy closure, the slope of the linear regression (forced through the origin) of the sum of latent and sensible heat fluxes measured above the canopies for each 30-minute period from 0.767 to 0.805 at Nahuku and from 0.918 to 0.997 at Olaa. The mean absolute energy imbalance, the mean of the differences between the available energy and the sum of latent and sensible heat fluxes for each

  11. Heating of the Hot Intergalactic Medium by Powerful Radio Galaxies and Associated High-Energy Gamma-Ray Emission

    NASA Astrophysics Data System (ADS)

    Inoue, Susumu; Sasaki, Shin

    2001-12-01

    There is increasing evidence that some heating mechanism in addition to gravitational shock heating has been important for the hot gas inside clusters and groups of galaxies, as indicated by their observed X-ray scaling properties. While supernovae are the most obvious candidate heating sources, a number of recent studies have suggested that they may be energetically insufficient. Here we consider high-power, FR II radio galaxies and shock heating of the intracluster medium (ICM including the case of the intergalactic medium prior to cluster formation) by their large-scale jets. Based on the observed statistics of radio galaxies in clusters and their evolution, along with the most reasonable assumptions, it is shown that they can provide the ICM with excess specific energies of 1-2 keV particle-1, mainly during the redshift interval z~1-3. This naturally meets the requirements of cluster evolution models with nongravitational feedback in accounting for the observed deviations in the X-ray luminosity-temperature relation. In contrast to supernovae, such large-scale jets deposit their energy directly into the low-density ICM outside galaxies and are much less susceptible to radiative losses. As a clear and potentially decisive test of this scenario, we propose the observation of ``prompt'' high-energy gamma rays emitted by shock-accelerated, nonthermal electrons during the epoch of ICM heating by radio galaxies, which may be feasible with the GLAST satellite. Implications for recent detections of excess hard X-rays from groups are also discussed.

  12. The integration of water loop heat pump and building structural thermal storage systems

    SciTech Connect

    Marseille, T.J.; Schliesing, J.S.

    1991-10-01

    Many commercial buildings need heat in one part and, at the same time, cooling in another part. Even more common is the need for heating during one part of the day and cooling during another in the same spaces. If that energy could be shifted or stored for later use, significant energy might be saved. If a building's heating and cooling subsystems could be integrated with the building's structural mass and used to collect, store, and deliver energy, the energy might be save cost-effectively. To explore this opportunity, researchers at the Pacific Northwest Laboratory (PNL) examined the thermal interactions between the heating, ventilating, and air-conditioning (HVAC) system and the structure of a commercial building. Computer models were developed to simulate the interactions in an existing building located in Seattle, Washington, to determine how these building subsystems could be integrated to improve energy efficiency. The HVAC subsystems in the existing building were modeled. These subsystems consist of decentralized water-source heat pumps (WSHP) in a closed water loop, connected to cooling towers for heat rejection during cooling mode and boilers to augment heating. An initial base case'' computer model of the Seattle building, as-built, was developed. Metered data available for the building were used to calibrate this model to ensure that the analysis would provide information that closely reflected the operation of a real building. The HVAC system and building structure were integrated in the model using the concrete floor slabs as thermal storage media. The slabs may be actively charged during off-peak periods with the chilled water in the loop and then either actively or passively discharged into the conditioned space during peak periods. 21 refs., 37 figs., 17 tabs.

  13. Buffer storage of thermal energy using the reaction heat of the system calcium oxide/calcium hydroxide

    NASA Astrophysics Data System (ADS)

    Lehmann, B.

    1986-12-01

    The reaction heat of the system CaO/Ca(OH)2 was investigated as storage effect for thermal energy. The heat from the chemical system is used as a buffer facility for thermal energy, i.e., sensible heat is stored without thermal losses to the environment. In the forward reaction by adding water to the CaO, sensible heat is released, which can be used for heating houses or water, and for generation of steam for industrial purposes. The necessary heat to be fed to the Ca(OH)2 in order to run the reaction inversely can be supplied by solar collector, high temperature reactors, geothermal energy, or combustion of wastes. Heat at temperatures less than 450 C has to be furnished for the loading phase of the reaction. The discharging reaction delivers temperatures up to 400 C. A gas loop was designed, built, and operated to test this kind of heat storage. The quantities which determine the storage and release of energy were deduced and documented. Pressure drops and storage mass behavior are discussed.

  14. Temperature distribution of a hot water storage tank in a simulated solar heating and cooling system

    NASA Technical Reports Server (NTRS)

    Namkoong, D.

    1976-01-01

    A 2,300-liter hot water storage tank was studied under conditions simulating a solar heating and cooling system. The initial condition of the tank, ranging from 37 C at the bottom to 94 C at the top, represented a condition midway through the start-up period of the system. During the five-day test period, the water in the tank gradually rose in temperature but in a manner that diminished its temperature stratification. Stratification was found not to be an important factor in the operation of the particular solar system studied.

  15. Inorganic compounds for passive solar energy storage: Solid-state dehydration materials and high specific heat materials

    NASA Astrophysics Data System (ADS)

    Struble, L. J.; Brown, P. W.

    1986-04-01

    Two classes of hydrated inorganic salts have been studied to assess their potential as materials for passive solar energy storage. The materials are part of the quaternary system CaO-Al2O3-SO3-H2O and related chemical systems, and the two classes are typified by ettringite, a trisubstituted salt, and Friedel's salt, a monosubstituted salt. The trisubstituted salts were studied for their possible application in latent heat storage, utilizing a low-temperature dehydration reaction, and both classes were studies for their application in sensible heat storage. In order to assess their potential for energy storage, the salts have been synthesized, characterized by several analytical techniques, and thermal properties measured. The dehydration data of that the trisubstituted salts vary somewhat with chemical composition, with the temperature of the onset of dehydration ranging from 6(0)C to 33(0)C, and enthalpy changes on dehydration ranging from 60 to 200 cal/g. Heat capacity is less variable with composition; values for the trisubstituted phases are 30 cal/g/(0)C and for the monosubstituted phases between 0.23 and 0.28 cal/g/(0)C. Preliminary experiments indicate that the dehydration is reversible, and suggest that the materials might have additional potential as solar desiccant materials. These thermal data demonstrate the trisubstituted salts have potential as latent heat storage materials, and that both classes of salts have potential as sensible heat storage materials.

  16. Effect of porosity and the inlet heat transfer fluid temperature variation on the performance of cool thermal energy storage system

    NASA Astrophysics Data System (ADS)

    Cheralathan, M.; Velraj, R.; Renganarayanan, S.

    2007-06-01

    This paper discusses the results of numerical and experimental study of an encapsulated cool thermal energy storage system. The storage system is a cylindrical storage tank filled with phase change material encapsulated in spherical container, placed in a refrigeration loop. A simulation program was developed to evaluate the temperature histories of the heat transfer fluid and the phase change material at any axial location during the charging period. The present analysis aims at studying the influence of the inlet heat transfer fluid temperature and porosity on system performance. An experimental setup was designed and constructed to conduct the experiments. The results of the model were validated by comparison with experimental results of temperature profiles for different inlet heat transfer fluid temperatures and porosity. The results are in good agreement with the experimental results. The results reported are much useful for designing cool thermal energy storage systems.

  17. Contact heat conductance at a diamond-OFHC copper interface with GaIn eutectic as a heat transfer medium

    NASA Astrophysics Data System (ADS)

    Assoufid, L.; Khounsary, A. M.

    1996-09-01

    The results of an experimental study of the contact heat conductance across a single diamond crystal interface with OFHC copper (Cu) are reported. Gallium-indium (GaIn) eutectic was used as an interstitial material. Contact conductance data are important in the design and the prediction of the performance of x-ray optics under high-heat-load conditions. Two sets of experiments were carried out. In one, the copper surface in contact with diamond was polished and then electroless plated with 1 μm of nickel, while in the other, the copper contact surface was left as machined. The measured average interface heat conductances are 44.7±8 W/cm2-K for nonplated copper and 23.0±8 W/cm2-K for nickel-plated copper. For reference, the thermal contact conductances at a copper-copper interface (without diamond) were also measured, and the results are reported. A typical diamond monochromator, 0.2 mm thick, will absorb about 44 W under a standard undulator beam at the Advanced Photon Source. The measured conductance for nickel-plated copper suggests that the temperature drop across the interface of diamond and nickel-plated copper, with a 20 mm 2 contact area, will be about 10°C. Therefore temperature rises are rather modest, and the accuracy of the measured contact conductances presented here are sufficient for design purposes.

  18. Contact heat conductance at a diamond-OFHC copper interface with GaIn eutectic as a heat transfer medium

    SciTech Connect

    Assoufid, L.; Khounsary, A.

    1996-09-01

    The results of an experimental study of the contact heat conductance across a single diamond crystal interface with OFHC copper (Cu) are reported. Gallium-indium (GaIn) eutectic was used as an interstitial material. Contact conductance data are important in the design and the prediction of the performance of x-ray optics under high-heat-load conditions. Two sets of experiments were carried out. In one, the copper surface in contact with diamond was polished and then electroless plated with 1 {mu}m of nickel, while in the other, the copper contact surface was left as machined. The measured average interface heat conductances are 44.7{plus_minus}8 W/cm{sup 2}-K for nonplated copper and 23.0{plus_minus}8 W/cm{sup 2}-K for nickel-plated copper. For reference, the thermal contact conductances at a copper-copper interface (without diamond) were also measured, and the results are reported. A typical diamond monochromator, 0.2 mm thick, will absorb about 44 W under a standard undulator beam at the Advanced Photon Source. The measured conductance for nickel-plated copper suggests that the temperature drop across the interface of diamond and nickel-plated copper, with a 20 mm {sup 2}contact area, will be about 10{degree}C. Therefore temperature rises are rather modest, and the accuracy of the measured contact conductances presented here are sufficient for design purposes. {copyright} {ital 1996 American Institute of Physics.}

  19. Effect of Heat and Electricity Storage and Reliability on Microgrid Viability:A Study of Commercial Buildings in California and New York States

    SciTech Connect

    Stadler, Michael; Marnay, Chris; Siddiqui, Afzal; Lai, Judy; Coffey, Brian; Aki, Hirohisa

    2008-12-01

    In past work, Berkeley Lab has developed the Distributed Energy Resources Customer Adoption Model (DER-CAM). Given end-use energy details for a facility, a description of its economic environment and a menu of available equipment, DER-CAM finds the optimal investment portfolio and its operating schedule which together minimize the cost of meeting site service, e.g., cooling, heating, requirements. Past studies have considered combined heat and power (CHP) technologies. Methods and software have been developed to solve this problem, finding optimal solutions which take simultaneity into account. This project aims to extend on those prior capabilities in two key dimensions. In this research storage technologies have been added as well as power quality and reliability (PQR) features that provide the ability to value the additional indirect reliability benefit derived from Consortium for Electricity Reliability Technology Solutions (CERTS) Microgrid capability. This project is intended to determine how attractive on-site generation becomes to a medium-sized commercial site if economical storage (both electrical and thermal), CHP opportunities, and PQR benefits are provided in addition to avoiding electricity purchases. On-site electrical storage, generators, and the ability to seamlessly connect and disconnect from utility service would provide the facility with ride-through capability for minor grid disturbances. Three building types in both California and New York are assumed to have a share of their sensitive electrical load separable. Providing enhanced service to this load fraction has an unknown value to the facility, which is estimated analytically. In summary, this project began with 3 major goals: (1) to conduct detailed analysis to find the optimal equipment combination for microgrids at a few promising commercial building hosts in the two favorable markets of California and New York; (2) to extend the analysis capability of DER-CAM to include both heat and

  20. Thermal energy storage material thermophysical property measurement and heat transfer impact

    NASA Technical Reports Server (NTRS)

    Tye, R. P.; Bourne, J. G.; Destarlais, A. O.

    1976-01-01

    The thermophysical properties of salts having potential for thermal energy storage to provide peaking energy in conventional electric utility power plants were investigated. The power plants studied were the pressurized water reactor, boiling water reactor, supercritical steam reactor, and high temperature gas reactor. The salts considered were LiNO3, 63LiOH/37 LiCl eutectic, LiOH, and Na2B4O7. The thermal conductivity, specific heat (including latent heat of fusion), and density of each salt were measured for a temperature range of at least + or - 100 K of the measured melting point. Measurements were made with both reagent and commercial grades of each salt.

  1. Stratification calculations in a heated cryogenic oxygen storage tank at zero gravity

    NASA Technical Reports Server (NTRS)

    Shuttles, J. T.; Smith, G. L.

    1971-01-01

    A cylindrical one-dimensional model of the Apollo cyrogenic oxygen storage tank has been developed to study the effect of stratification in the tank. Zero gravity was assumed, and only the thermally induced motions were considered. The governing equations were derived from conservation laws and solved on a digital computer. Realistic thermodynamic and transport properties were used. Calculations were made for a wide range of conditions. The results show the fluid behavior to be dependent on the quantity in the tank or equivalently the bulk fluid temperature. For high quantities (low temperatures) the tank pressure rose rapidly with heat addition, the heater temperature remained low, and significant pressure drop potentials accrued. For low quantities the tank pressure rose more slowly with heat addition and the heater temperature became high. A high degree of stratification resulted for all conditions; however, the stratified region extended appreciably into the tank only for the lowest tank quantity.

  2. Laboratory Evaluation of Gas-Fired Tankless and Storage Water Heater Approaches to Combination Water and Space Heating

    SciTech Connect

    Kingston, T.; Scott, S.

    2013-03-01

    Homebuilders are exploring more cost-effective combined space and water heating systems (combo systems) with major water heater manufacturers that are offering pre-engineered forced air space heating combo systems. In this project, unlike standardized tests, laboratory tests were conducted that subjected condensing tankless and storage water heater based combo systems to realistic, coincidental space and domestic hot water loads and found that the tankless combo system maintained more stable DHW and space heating temperatures than the storage combo system, among other key findings.

  3. Applications of thermal energy storage to process heat and waste heat recovery in the iron and steel industry

    NASA Technical Reports Server (NTRS)

    Katter, L. B.; Peterson, D. J.

    1978-01-01

    The system identified operates from the primary arc furnace evacuation system as a heat source. Energy from the fume stream is stored as sensible energy in a solid medium (packed bed). A steam-driven turbine is arranged to generate power for peak shaving. A parametric design approach is presented since the overall system design, at optimum payback is strongly dependent upon the nature of the electric pricing structure. The scope of the project was limited to consideration of available technology so that industry-wide application could be achieved by 1985. A search of the literature, coupled with interviews with representatives of major steel producers, served as the means whereby the techniques and technologies indicated for the specific site are extrapolated to the industry as a whole and to the 1985 time frame. The conclusion of the study is that by 1985, a national yearly savings of 1.9 million barrels of oil could be realized through recovery of waste heat from primary arc furnace fume gases on an industry-wide basis. Economic studies indicate that the proposed system has a plant payback time of approximately 5 years.

  4. Testing thermocline filler materials and molten-salt heat transfer fluids for thermal energy storage systems used in parabolic trough solar power plants.

    SciTech Connect

    Kelly, Michael James; Hlava, Paul Frank; Brosseau, Douglas A.

    2004-07-01

    Parabolic trough power systems that utilize concentrated solar energy to generate electricity are a proven technology. Industry and laboratory research efforts are now focusing on integration of thermal energy storage as a viable means to enhance dispatchability of concentrated solar energy. One option to significantly reduce costs is to use thermocline storage systems, low-cost filler materials as the primary thermal storage medium, and molten nitrate salts as the direct heat transfer fluid. Prior thermocline evaluations and thermal cycling tests at the Sandia National Laboratories' National Solar Thermal Test Facility identified quartzite rock and silica sand as potential filler materials. An expanded series of isothermal and thermal cycling experiments were planned and implemented to extend those studies in order to demonstrate the durability of these filler materials in molten nitrate salts over a range of operating temperatures for extended timeframes. Upon test completion, careful analyses of filler material samples, as well as the molten salt, were conducted to assess long-term durability and degradation mechanisms in these test conditions. Analysis results demonstrate that the quartzite rock and silica sand appear able to withstand the molten salt environment quite well. No significant deterioration that would impact the performance or operability of a thermocline thermal energy storage system was evident. Therefore, additional studies of the thermocline concept can continue armed with confidence that appropriate filler materials have been identified for the intended application.

  5. Heat Source/Sink in a Magneto-Hydrodynamic Non-Newtonian Fluid Flow in a Porous Medium: Dual Solutions.

    PubMed

    Hayat, Tasawar; Awais, Muhammad; Imtiaz, Amna

    2016-01-01

    This communication deals with the properties of heat source/sink in a magneto-hydrodynamic flow of a non-Newtonian fluid immersed in a porous medium. Shrinking phenomenon along with the permeability of the wall is considered. Mathematical modelling is performed to convert the considered physical process into set of coupled nonlinear mathematical equations. Suitable transformations are invoked to convert the set of partial differential equations into nonlinear ordinary differential equations which are tackled numerically for the solution computations. It is noted that dual solutions for various physical parameters exist which are analyzed in detail. PMID:27598314

  6. Parametric Analysis of Cyclic Phase Change and Energy Storage in Solar Heat Receivers

    NASA Technical Reports Server (NTRS)

    Hall, Carsie A., III; Glakpe, Emmanuel K.; Cannon, Joseph N.; Kerslake, Thomas W.

    1997-01-01

    A parametric study on cyclic melting and freezing of an encapsulated phase change material (PCM), integrated into a solar heat receiver, has been performed. The cyclic nature of the present melt/freeze problem is relevant to latent heat thermal energy storage (LHTES) systems used to power solar Brayton engines in microgravity environments. Specifically, a physical and numerical model of the solar heat receiver component of NASA Lewis Research Center's Ground Test Demonstration (GTD) project was developed. Multi-conjugate effects such as the convective fluid flow of a low-Prandtl-number fluid, coupled with thermal conduction in the phase change material, containment tube and working fluid conduit were accounted for in the model. A single-band thermal radiation model was also included to quantify reradiative energy exchange inside the receiver and losses through the aperture. The eutectic LiF-CaF2 was used as the phase change material (PCM) and a mixture of He/Xe was used as the working fluid coolant. A modified version of the computer code HOTTube was used to generate results in the two-phase regime. Results indicate that parametric changes in receiver gas inlet temperature and receiver heat input effects higher sensitivity to changes in receiver gas exit temperatures.

  7. Microencapsulated PCM slurries for heat transfer and energy storage in spacecraft systems

    NASA Technical Reports Server (NTRS)

    Colvin, David P.; Mulligan, James C.; Bryant, Yvonne G.; Duncan, John L.; Gravely, Benjamin T.

    1992-01-01

    The technical feasibility for providing significantly enhanced heat transport and storage as well as improved thermal control has been investigated during several Small Business Innovative Research (SBIR) programs for NASA, the United States Air Force (USAF), and the Strategic Defense Initiative Organization (SDIO) using microencapsulated phase change materials (PCMs) in both aqueous and nonaqueous two-component slurries. In the program for SDIO, novel two-component coolant fluids were prepared and successfully tested at both low (300 K) and intermediate temperatures (460 to 700 K). The two-component fluid slurries of microencapsulated PCMs included organic particles in aqueous and nonaqueous liquids, as well as microencapsulated metals that potentially could be carried by liquid metals or used as powdered heat sinks. Simulation and experimental studies showed that such active cooling systems could be designed and operated with enhancements of heat capacity that exceeded 10 times or 1000 percent that for the base fluid along with significant enhancement in the fluid's heat capacity. Furthermore, this enhancement provided essentially isothermal conditions throughout the pumped primary coolant fluid loop. The results suggest that together with much higher fluid thermal capacity, greater uniformity of temperature is achievable with such fluids, and that significant reductions in pumping power, system size, and system mass are also possible.

  8. Self-pressurization of a flightweight liquid hydrogen storage tank subjected to low heat flux

    NASA Technical Reports Server (NTRS)

    Hasan, M. M.; Lin, C. S.; Vandresar, N. T.

    1991-01-01

    Results are presented for an experimental investigation of self-pressurization and thermal stratification of a 4.89 cu m liquid hydrogen (LH2) storage tank subjected to low heat flux (0.35, 2.0, and 3.5 W/sq m) under normal gravity conditions. Tests were performed at fill levels of 83 to 84 percent (by volume). The LH2 tank was representative of future spacecraft tankage, having a low mass-to-volume ratio and high performance multilayer thermal insulation. Results show that the pressure rise rate and thermal stratification increase with increasing heat flux. At the lowest heat flux, the pressure rise rate is comparable to the homogenous rate, while at the highest heat flux, the rate is more than three times the homogeneous rate. It was found that initial conditions have a significant impact on the initial pressure rise rate. The quasi-steady pressure rise rates are nearly independent of the initial condition after an initial transient period has passed.

  9. Tree-Shaped Fluid Flow and Heat Storage in a Conducting Solid

    SciTech Connect

    Combelles, L.; Lorente, S.; Anderson, R.; Bejan, A.

    2012-01-01

    This paper documents the time-dependent thermal interaction between a fluid stream configured as a plane tree of varying complexity embedded in a conducting solid with finite volume and insulated boundaries. The time scales of the convection-conduction phenomenon are identified. Two-dimensional and three-dimensional configurations are simulated numerically. The number of length scales of the tree architecture varies from one to four. The results show that the heat transfer density increases, and the time of approach to equilibrium decreases as the complexity of the tree designs increases. These results are then formulated in the classical notation of energy storage by sensible heating, which shows that the effective number of heat transfer units increases as the complexity of the tree design increases. The complexity of heat transfer designs in many applications is constrained by first cost and operating cost considerations. This work provides a fundamental basis for objective evaluation of cost and performance tradeoffs in thermal design of energy systems with complexity as an unconstrained parameter that can be actively varied over a broad range to determine the optimum system design.

  10. Multiple Solutions of an Unsteady Stagnation-Point Flow with Melting Heat Transfer in a Darcy-Brinkman Porous Medium

    NASA Astrophysics Data System (ADS)

    Khalid Aurangzaib, M.; Bhattacharyya, Krishnendu; Shafie, Sharidan

    2016-06-01

    The characteristics of the unsteady boundary layer flow with melting heat transfer near a stagnation-point towards a flat plate embedded in a DarcyBrinkman porous medium with thermal radiation are investigated. The governing partial differential equations are transformed into self-similar ordinary differential equations by similarity transformations. The transformed self-similar equations are solved numerically using bvp4c from Matlab for several values of the flow parameters. The study reveals that the multiple solutions exist for the decelerating (A < 0) flow, whereas for the accelerating (A ≥ 0) flow, the solution is unique. The results also indicate that the melting phenomenon increases the rate of heat transfer and delays the boundary layer separation. To validate the current numerical results, comparison with available results is made and found to be in a good agreement.

  11. Effects of thermal radiation on Casson flow heat and mass transfer around a circular cylinder in porous medium

    NASA Astrophysics Data System (ADS)

    Mabood, F.; Shateyi, S.; Khan, W. A.

    2015-09-01

    This paper deals with a theoretical investigation of flow and heat transfer of a Casson fluid from a horizontal circular cylinder in a non-Darcy porous medium under the action of slips and thermal radiation parameters. A model of Casson fluid flow for a circular cylinder has been developed to simulate the transport phenomena. The numerical solution has been obtained for the dimensionless velocity and temperature of the Casson fluid. The effects of various important parameters on the dimensionless velocity, temperature as well as on the skin friction and the dimensionless heat transfer rates are investigated and presented graphically. A comparison with previous published data has been done and we found a good agreement with them.

  12. Examinations on the Meteorologic Factors of Urban Heat Island Development in Small and Medium-sized Towns of Hungary

    NASA Astrophysics Data System (ADS)

    Szegedi, S.; Gyarmati, R.; Kapocska, L.; Toth, T.

    2010-09-01

    EXAMINATIONS ON THE METEOROLOGICAL FACTORS OF URBAN HEAT ISLAND DEVELOPMENT IN SMALL AND MEDIUM-SIZED TOWNS OF HUNGARY Sandor Szegedi, Renata Gyarmati, Laszlo Kapocska and Tamas Toth University of Debrecen Department of Meteorology, 4032 Debrecen Egyetem tér 1. The thermal difference between the settlements and their environment is called urban heat island (UHI). Potential UHI intensities are mainly determined by the size, population and built-up structure of settlements. Meteorological conditions have a determinant impact on the development of the heat island at a certain moment. International and Hungarian studies usually deal with metropolises and big cities; much less attention is paid to medium-sized and small towns. Consequently this study has been focused on the development of UHI in such Hungarian urbanized areas as mentioned above. Settlements, located near the city of Debrecen (ca. 220,000 inhabitants) in East Hungary, with population of about 30000, 20000 10000 and 1000 were chosen for the research. Car-mounted digital thermometers with data loggers were used. Twenty four measurements were carried out during a one-year-long campaign in 2003-2004. Synoptic conditions, especially cloudiness, wind direction and wind speed were taken to consideration as determinant factors. Spatial characteristics of UHI have been described. Results have proved the existence of UHI even in the smallest settlement under suitable weather conditions. The non-heating season proved to be more advantageous for the development of UHI due to stronger irradiance and frequent anticyclonic synoptic conditions. Effects of cloudiness and wind speed have been revealed as well. St type clouds have proved to be most effective in preventing the formation of UHI. A 90-100% St cover could completely eliminate the thermal differences between natural and artificial surfaces. Ci type clouds had the weakest impact, they could prevent the formation of the heat island only in the smallest

  13. Simplification of methods for the production and storage of specimens to be tested for heat-stable enterotoxin of Escherichia coli.

    PubMed Central

    Gomes, J A; Rodrigues, A C; Simóes, M; Serafim, M B; De Castro, A F

    1979-01-01

    Experiments with the infant mouse test demonstrated that there is no need of shaking for heat-stable Escherichia coli enterotoxin production when low volume of medium per volume of flask ratios are used in stationary cultures. Centrifugation and filtration of the cultures to be tested are not necessary either, and Merthiolate (1:10,000) used as preservative has no deleterious effect on heat-stable enterotoxin activity. Based upon these findings, some modifications of the procedures for production and storage of heat-stable enterotoxin preparations are suggested. Standardized pieces of filter papers are wetted with Merthiolated stationary cultures which are to be assayed for heat-stable enterotoxin activity by the infant mouse test. From dried filter papers, heat-stable enterotoxin can be eulted unaltered up to 2 months after specimen preparation. With the proposed modifications, even modestly equipped laboratories will be able to carry out the infant mouse test or at least to prepare specimens to be assayed by more specialized laboratories. PMID:391814

  14. Prediction of thermal hydraulic characteristics inside the storage tank of a horizontal condensation heat exchanger using MARS-KS

    NASA Astrophysics Data System (ADS)

    Shin, Byung Soo; Seul, Kwang Won; Do, Kyu Sik; Reactor system evaluation Team

    2012-11-01

    The performance of a horizontal condensation heat exchanger is determined by the condensation heat transfer inside the heat exchanger tubes, convective or boiling heat transfer outside the tubes and flow characteristics in the storage tank. The flow characteristics in the tank are important factors to determine the heat transfer rate outside the tubes. The objective of this work is to develop the method to predict the heat transfer rate outside the tubes properly using MARS-KS code. Two different results from MARS-KS were compared with simplified experimental results in other works to estimate the capacity of MARS-KS. One was by a typical 1D nodalization but another was by a 3D nodalization considering natural circulation in the storage tank. Then, to eliminate the effect of condensation heat transfer inside the tubes, the experimental results on temperature profiles were applied to the inside wall of tubes as boundary conditions. As the result, the 3-D nodalization model had good predictions with experimental results in regard of wall temperature, heat flux and heat transfer coefficients. It was also confirmed that the natural circulation flow was developed inside the storage tank.

  15. Inhibitor of Clostridium perfringens Formed by Heating Sodium Nitrite in a Chemically Defined Medium

    PubMed Central

    Moran, Dennis M.; Tannenbaum, Steven R.; Archer, Michael C.

    1975-01-01

    An inhibitor of Clostridium perfringens formed when low levels of nitrite were autoclaved with a defined chemical medium. A systematic study of the medium revealed that only amino acids and mineral salts were involved in the production of this inhibitor, which was proven to be a toxic compound formed from cysteine, ferrous sulfate, and sodium nitrite. The inhibitor was compared to several known compounds. S-nitrosocysteine inhibited the test organism, but would not form in the test system in amounts large enough to explain the observed inhibition. Roussin red salt was unstable in the test system and therefore was not the inhibitor. Roussin black salt, which was also inhibitory, could form in sufficient amounts to explain the inhibition. A complex of cysteine, iron, and nitrie oxide was detected in the autoclaved solution of cysteine, ferrous sulfate, and sodium nitrite; this cysteine complex did not appear to be inhibitory, however, at levels which could form in the autoclaved medium. The observed inhibition may have been due to the combined effects of sublethal concentrations of each compound. PMID:173239

  16. Thermal shock fracture mechanics analysis of a semi-infinite medium based on the dual-phase-lag heat conduction model

    PubMed Central

    Wang, B.; Li, J. E.; Yang, C.

    2015-01-01

    The generalized lagging behaviour in solids is very important in understanding heat conduction in small-scale and high-rate heating. In this paper, an edge crack in a semi-infinite medium subjected to a heat shock on its surface is studied under the framework of the dual-phase-lag (DPL) heat conduction model. The transient thermal stress in the medium without crack is obtained first. This stress is used as the crack surface traction with an opposite sign to formulate the crack problem. Numerical results of thermal stress intensity factor are obtained as the functions of crack length and thermal shock time. Crack propagation predictions are conducted and results based on the DPL model and those based on the classical Fourier heat conduction model are compared. The thermal shock strength that the medium can sustain without catastrophic failure is established according to the maximum local stress criterion and the stress intensity factor criterion. PMID:25663805

  17. OPTIMIZATION OF INTERNAL HEAT EXCHANGERS FOR HYDROGEN STORAGE TANKS UTILIZING METAL HYDRIDES

    SciTech Connect

    Garrison, S.; Tamburello, D.; Hardy, B.; Anton, D.; Gorbounov, M.; Cognale, C.; van Hassel, B.; Mosher, D.

    2011-07-14

    Two detailed, unit-cell models, a transverse fin design and a longitudinal fin design, of a combined hydride bed and heat exchanger are developed in COMSOL{reg_sign} Multiphysics incorporating and accounting for heat transfer and reaction kinetic limitations. MatLab{reg_sign} scripts for autonomous model generation are developed and incorporated into (1) a grid-based and (2) a systematic optimization routine based on the Nelder-Mead downhill simplex method to determine the geometrical parameters that lead to the optimal structure for each fin design that maximizes the hydrogen stored within the hydride. The optimal designs for both the transverse and longitudinal fin designs point toward closely-spaced, small cooling fluid tubes. Under the hydrogen feed conditions studied (50 bar), a 25 times improvement or better in the hydrogen storage kinetics will be required to simultaneously meet the Department of Energy technical targets for gravimetric capacity and fill time. These models and methodology can be rapidly applied to other hydrogen storage materials, such as other metal hydrides or to cryoadsorbents, in future work.

  18. Development of approximate method to analyze the characteristics of latent heat thermal energy storage system

    SciTech Connect

    Saitoh, T.S.; Hoshi, Akira

    1999-07-01

    Third Conference of the Parties to the U.N. Framework Convention on Climate Change (COP3) held in last December in Kyoto urged the industrialized nation to reduce carbon dioxide (CO{sub 2}) emissions by 5.2 percent (on the average) below 1990 level until the period between 2008 and 2012 (Kyoto protocol). This implies that even for the most advanced countries like the US, Japan, and EU implementation of drastic policies and overcoming many barriers in market should be necessary. One idea which leads to a path of low carbon intensity is to adopt an energy storage concept. One of the reasons that the efficiency of the conventional energy systems has been relatively low is ascribed to lacking of energy storage subsystem. Most of the past energy systems, for example, air-conditioning system, do not have energy storage part and the system usually operates with low energy efficiency. Firstly, the effect of reducing CO{sub 2} emissions was also examined if the LHTES subsystems were incorporated in all the residential and building air-conditioning systems. Another field of application of the LHTES is of course transportation. Future vehicle will be electric or hybrid vehicle. However, these vehicles will need considerable energy for air-conditioning. The LHTES system will provide enough energy for this purpose by storing nighttime electricity or rejected heat from the radiator or motor. Melting and solidification of phase change material (PCM) in a capsule is of practical importance in latent heat thermal energy storage (LHTES) systems which are considered to be very promising to reduce a peak demand of electricity in the summer season and also reduce carbon dioxide (CO{sub 2}) emissions. Two melting modes are involved in melting in capsules. One is close-contact melting between the solid bulk and the capsule wall, and another is natural convection melting in the liquid (melt) region. Close-contact melting processes for a single enclosure have been solved using several

  19. Storage Stability of Lycopene in Tomato Juice Subjected to Combined Pressure–Heat Treatments

    PubMed Central

    Gupta, Rockendra; Balasubramaniam, V. M.; Schwartz, Steven J.; Francis, David M.

    2013-01-01

    A study was conducted to characterize the storage stability of lycopene in hot-break tomato juice prepared from two different cultivars and processed by various pressure–heat combinations. Samples were subjected to pressure assisted thermal processing (PATP; 600 MPa, 100 °C, 10 min), high pressure processing (HPP; 700 MPa, 45 °C, 10 min), and thermal processing (TP; 0.1 MPa, 100 °C, 35 min). Processed samples were stored at 4, 25, and 37 °C for upto 52 weeks. HPP and PATP treatments significantly improved the extractability of lycopene over TP and control. All-trans lycopene was found to be fairly stable to isomerization during processing, and the cis isomer content of the control and processed juice did not differ significantly. During storage, lycopene degradation varied as a function of the cultivar, processing method, storage temperature, and time. This study shows that combined pressure–temperature treatments could be an attractive alternative to thermal sterilization for preserving tomato juice quality. PMID:20593824

  20. Effect of Viscous Dissipation and Thermal Radiation on Heat Transfer over a Non-Linearly Stretching Sheet Through Porous Medium

    NASA Astrophysics Data System (ADS)

    Nandeppanavar, M. M.; Siddalingappa, M. N.

    2013-06-01

    In this present paper, we have discussed the effects of viscous dissipation and thermal radiation on heat transfer over a non-linear stretching sheet through a porous medium. Usual similarity transformations are considered to convert the non-linear partial differential equation of motion and heat transfer into ODE's. Solutions of motion and heat transfer are obtained by the Runge-Kutta integration scheme with most efficient shooting technique. The graphical results are presented to interpret various physical parameters of interest. It is found that the velocity profile decreases with an increase of the porous parameter asymptotically. The temperature field decreases with an increase in the parametric values of the Prandtl number and thermal radiation while with an increase in parameters of the Eckert number and porous parameter, the temperature field increases in both PST (power law surface temperature) and PHF (power law heat flux) cases. The numerical values of the non-dimensional wall temperature gradient and wall temperature are tabulated and discussed.

  1. Boundary Heat Fluxes for Spectral Radiation from a Uniform Temperature Rectangular Medium

    NASA Technical Reports Server (NTRS)

    Siegel, Robert

    1992-01-01

    The effect of spectral behavior is analytically shown for radiation in a 2D rectangular geometry. The solution provides exact boundary heat flux values that can be used for comparison with values obtained from general computer programs. The spectral solution presented can be easily evaluated by numerical integration for complex variations of the spectral absorption coefficient with wavelength.

  2. Hydromagnetic Flow and Heat Transfer over a Porous Oscillating Stretching Surface in a Viscoelastic Fluid with Porous Medium.

    PubMed

    Khan, Sami Ullah; Ali, Nasir; Abbas, Zaheer

    2015-01-01

    An analysis is carried out to study the heat transfer in unsteady two-dimensional boundary layer flow of a magnetohydrodynamics (MHD) second grade fluid over a porous oscillating stretching surface embedded in porous medium. The flow is induced due to infinite elastic sheet which is stretched periodically. With the help of dimensionless variables, the governing flow equations are reduced to a system of non-linear partial differential equations. This system has been solved numerically using the finite difference scheme, in which a coordinate transformation is used to transform the semi-infinite physical space to a bounded computational domain. The influence of the involved parameters on the flow, the temperature distribution, the skin-friction coefficient and the local Nusselt number is shown and discussed in detail. The study reveals that an oscillatory sheet embedded in a fluid-saturated porous medium generates oscillatory motion in the fluid. The amplitude and phase of oscillations depends on the rheology of the fluid as well as on the other parameters coming through imposed boundary conditions, inclusion of body force term and permeability of the porous medium. It is found that amplitude of flow velocity increases with increasing viscoelastic and mass suction/injection parameters. However, it decreases with increasing the strength of the applied magnetic field. Moreover, the temperature of fluid is a decreasing function of viscoelastic parameter, mass suction/injection parameter and Prandtl number. PMID:26657931

  3. Hydromagnetic Flow and Heat Transfer over a Porous Oscillating Stretching Surface in a Viscoelastic Fluid with Porous Medium

    PubMed Central

    Khan, Sami Ullah; Ali, Nasir; Abbas, Zaheer

    2015-01-01

    An analysis is carried out to study the heat transfer in unsteady two-dimensional boundary layer flow of a magnetohydrodynamics (MHD) second grade fluid over a porous oscillating stretching surface embedded in porous medium. The flow is induced due to infinite elastic sheet which is stretched periodically. With the help of dimensionless variables, the governing flow equations are reduced to a system of non-linear partial differential equations. This system has been solved numerically using the finite difference scheme, in which a coordinate transformation is used to transform the semi-infinite physical space to a bounded computational domain. The influence of the involved parameters on the flow, the temperature distribution, the skin-friction coefficient and the local Nusselt number is shown and discussed in detail. The study reveals that an oscillatory sheet embedded in a fluid-saturated porous medium generates oscillatory motion in the fluid. The amplitude and phase of oscillations depends on the rheology of the fluid as well as on the other parameters coming through imposed boundary conditions, inclusion of body force term and permeability of the porous medium. It is found that amplitude of flow velocity increases with increasing viscoelastic and mass suction/injection parameters. However, it decreases with increasing the strength of the applied magnetic field. Moreover, the temperature of fluid is a decreasing function of viscoelastic parameter, mass suction/injection parameter and Prandtl number. PMID:26657931

  4. Demonstration of Mg2FeH6 as heat storage material at temperatures up to 550 °C

    NASA Astrophysics Data System (ADS)

    Urbanczyk, R.; Meggouh, M.; Moury, R.; Peinecke, K.; Peil, S.; Felderhoff, M.

    2016-04-01

    The storage of heat at high temperatures, which can be used to generate electricity after sunset in concentrating solar power plants, is one of the most challenging technologies. The use of metal hydride could be one possibility to solve the problem. During the endothermic heat storage process, the metal hydride is decomposed releasing hydrogen, which then can be stored. During the exothermic reaction of the metal with the hydrogen gas, the stored heat is then released. Previous research had shown that Mg and Fe powders can be used at temperatures up to 550 °C for heat storage and shows excellent cycle stability over hundreds of cycles without any degradation. Here, we describe the results of testing of a tube storage tank that contained 211 g of Mg and Fe powders in 2:1 ratio. Twenty-three dehydrogenations (storage) and 23 hydrogenations (heat release) in the temperature range between of 395 and 515 °C and pressure range between 1.5 and 8.6 MPa were done. During the dehydrogenation, 0.41-0.42 kWhth kg-1 of heat based on material 2 Mg/Fe can be stored in the tank. After testing, mainly Mg2FeH6 was observed and small amounts of MgH2 and Fe metal can be detected in the hydride samples. This means that the heat storage capacity of the system could be further increased if only Mg2FeH6 is produced during subsequent cycles.

  5. Radiant heat transfer modeling in electrorheological fluids: Treatment as an absorbing medium

    SciTech Connect

    Hargrove, J.B.; Lloyd, J.R.; Radcliffe, C.J.

    1996-12-31

    Radiation heat transfer control utilizing the unique properties of electrorheological (ER) fluids has recently been the subject of considerable interest as an innovative new area of research. While much work has been done to demonstrate the concept and show the potential for radiation transmittance control, little has been done to specifically identify the fundamental radiation transport mechanism involved. This paper identifies particle absorption as the dominant mode for attenuation of radiant energy from the range of 500 nm to 800 nm incident upon an ER fluid made of micron sized zeolite particles. Furthermore, appropriate models are developed based on absorption theory to predict radiation heat transfer through a composite window featuring a layer of ER fluid. The levels of extinction predicted by these models are compared to data obtained by experimental measurement, with excellent agreement shown.

  6. MHD Flow and Heat Transfer between Coaxial Rotating Stretchable Disks in a Thermally Stratified Medium.

    PubMed

    Hayat, Tasawar; Qayyum, Sumaira; Imtiaz, Maria; Alsaedi, Ahmed

    2016-01-01

    This paper investigates the unsteady MHD flow of viscous fluid between two parallel rotating disks. Fluid fills the porous space. Energy equation has been constructed by taking Joule heating, thermal stratification and radiation effects into consideration. We convert system of partial differential equations into system of highly nonlinear ordinary differential equations after employing the suitable transformations. Convergent series solutions are obtained. Behavior of different involved parameters on velocity and temperature profiles is examined graphically. Numerical values of skin friction coefficient and Nusselt number are computed and inspected. It is found that tangential velocity profile is increasing function of rotational parameter. Fluid temperature reduces for increasing values of thermal stratification parameter. At upper disk heat transfer rate enhances for larger values of Eckert and Prandtl numbers. PMID:27218651

  7. MHD Flow and Heat Transfer between Coaxial Rotating Stretchable Disks in a Thermally Stratified Medium

    PubMed Central

    Hayat, Tasawar; Qayyum, Sumaira; Imtiaz, Maria; Alsaedi, Ahmed

    2016-01-01

    This paper investigates the unsteady MHD flow of viscous fluid between two parallel rotating disks. Fluid fills the porous space. Energy equation has been constructed by taking Joule heating, thermal stratification and radiation effects into consideration. We convert system of partial differential equations into system of highly nonlinear ordinary differential equations after employing the suitable transformations. Convergent series solutions are obtained. Behavior of different involved parameters on velocity and temperature profiles is examined graphically. Numerical values of skin friction coefficient and Nusselt number are computed and inspected. It is found that tangential velocity profile is increasing function of rotational parameter. Fluid temperature reduces for increasing values of thermal stratification parameter. At upper disk heat transfer rate enhances for larger values of Eckert and Prandtl numbers. PMID:27218651

  8. Modeling Cyclic Phase Change and Energy Storage in Solar Heat Receivers

    NASA Technical Reports Server (NTRS)

    Hall, Carsie A., III; Glakpe, Emmanuel K.; Cannon, Joseph N.; Kerslake, Thomas W.

    1997-01-01

    Numerical results pertaining to cyclic melting and freezing of an encapsulated phase change material (PCM), integrated into a solar heat receiver, have been reported. The cyclic nature of the present melt/freeze problem is relevant to latent heat thermal energy storage (LHTES) systems used to power solar Brayton engines in microgravity environments. Specifically, a physical and numerical model of the solar heat receiver component of NASA Lewis Research Center's Ground Test Demonstration (GTD) project was developed and results compared with available experimental data. Multi-conjugate effects such as the convective fluid flow of a low-Prandtl-number fluid, coupled with thermal conduction in the phase change material, containment tube and working fluid conduit were accounted for in the model. A single-band thermal radiation model was also included to quantify reradiative energy exchange inside the receiver and losses through the aperture. The eutectic LiF-CaF2 was used as the phase change material (PCM) and a mixture of He/Xe was used as the working fluid coolant. A modified version of the computer code HOTTube was used to generate results for comparisons with GTD data for both the subcooled and two-phase regimes. While qualitative trends were in close agreement for the balanced orbit modes, excellent quantitative agreement was observed for steady-state modes.

  9. Evaluation of the heat-storage capability of shallow aquifers using active heat tracer tests and Fiber-Optics Distributed-Temperature-Sensing

    NASA Astrophysics Data System (ADS)

    Suibert Oskar Seibertz, Klodwig; Chirila, Marian Andrei; Bumberger, Jan; Dietrich, Peter; Vienken, Thomas

    2015-04-01

    In the course of the energy transition, geothermal energy storage and heat generation and cooling have proven to be environmental friendly alternatives to conventional energy. However, to ensure sustain usage, the heat transport behavior of aquifers and its distribution has to be studied. A tool to achieve this is the active heat tracer test, eg. Leaf et al. (2012). If active heat tracer tests are combined with in aquifer heat testing via electric heating-cables, eg. Liu et al. (2013), it is possible to observe heat transport and temperature signal decay without disturbing the original pressure field within the aquifer. In this field study a two channel High-Resolution-Fiber-Optic-Distributed-Temperature-Sensing and Pt100 were used to measure temperature signals within in two wells of 1.4 m distance, where the temperature difference was generated using a self regulating heating cable in the upstream well. High resolution Distributed-Temperature-Sensing measurements were achieved by coiling the fiber around screened plastic tubes. The upstream well was also used to observe heating (Δ Tmax approx. 24K) and temperature signal decay, while the downstream well was used to observe heat transport between both wells. The data was analyzed and compared to thermal conductivity of soil samples and Direct-Push (DP) Electrical-Conductivity-Logging and DP Hydraulic-Profiling results. The results show good agreement between DP data and temperature measurements proving the active heat tracer test is a suitable tool for providing reliable information on aquifer heat-storage capability. References Leaf, A.T., Hart, D.J., Bahr, J.M.: Active Thermal Tracer Tests for Improved Hydrostratigraphic Characterization. Ground Water, vol. 50, 2012 Liu, G., Knobbe, S., Butler, J.J.Jr.: Resolving centimeter-scale flows in aquifers and their hydrostratigraphic controls. Geophysical Research Letters, vol. 40, 2013

  10. A New Evaluation Method of Stored Heat Effect of Reinforced Concrete Wall of Cold Storage

    NASA Astrophysics Data System (ADS)

    Nomura, Tomohiro; Murakami, Yuji; Uchikawa, Motoyuki

    Today it has become imperative to save energy by operating a refrigerator in a cold storage executed by external insulate reinforced concrete wall intermittently. The theme of the paper is to get the evaluation method to be capable of calculating, numerically, interval time for stopping the refrigerator, in applying reinforced concrete wall as source of stored heat. The experiments with the concrete models were performed in order to examine the time variation of internal temperature after refrigerator stopped. In addition, the simulation method with three dimensional unsteady FEM for personal-computer type was introduced for easily analyzing the internal temperature variation. Using this method, it is possible to obtain the time variation of internal temperature and to calculate the interval time for stopping the refrigerator.

  11. Design of efficient Mn-based redox materials for thermochemical heat storage at high temperatures

    NASA Astrophysics Data System (ADS)

    Carrillo, Alfonso J.; Serrano, David P.; Pizarro, P.; Coronado, Juan M.

    2016-05-01

    Mn-based oxides are promising materials for thermochemical heat storage based on redox cycles, since they are abundant materials whose reduction and oxidation reactions take place in the temperature range at which future CSP plants will work. However, sintering processes related to high temperature cycling can lead to a complete material deactivation that eventually will suppose the loss of cyclability. In this work we present two approaches that have been proposed as to overcome such deactivation. In this respect morphological and chemical modifications were studied. Results showed that even if the first cycle oxidation is enhanced by the presence of macroporosity, sintering also affects to that structures causing a decrease on the oxidation rate. Conversely, chemical modifications, namely addition of cations of Cr and Fe can stabilize the oxidation rate over long term cycling. Specially, by incorporating Fe to the Mn oxide structure the oxidation reaction is remarkably stabilized and improved.

  12. Effect of heat stress and oil formulation on conidial germination of Metarhizium anisopliae s.s. on tick cuticle and artificial medium.

    PubMed

    Barreto, Lucas P; Luz, Christian; Mascarin, Gabriel M; Roberts, Donald W; Arruda, Walquíria; Fernandes, Éverton K K

    2016-07-01

    The effect of heat stress (45°C) versus non-heat stress (27°C) on germination of Metarhizium anisopliae sensu stricto (s.s.) isolate IP 119 was examined with conidia formulated (suspended) in pure mineral oil or in water (Tween 80, 0.01%), and then applied onto the cuticle of Rhipicephalus sanguineus sensu lato (s.l.) engorged females or onto culture medium (PDAY). In addition, bioassays were performed to investigate the effect of conidia heated while formulated in oil, then applied to blood-engorged adult R. sanguineus females. Conidia suspended in water then exposed to 45°C, in comparison to conidia formulated in mineral oil and exposed to the same temperature, germinated less and more slowly when incubated on either PDAY medium or tick cuticle. Also, conidial germination on tick cuticle was delayed in comparison to germination on artificial culture medium; for example, germination was 13% on tick cuticle 72h after inoculation, in contrast to 61.5% on PDAY medium. Unheated (27°C) conidia suspended in either water or oil and applied to tick cuticle developed appressoria 36h after treatment; whereas only heat-stressed conidia formulated in oil developed appressoria on tick cuticle. In comparison to conidia heated in mineral oil, there was a strong negative effect of heat on germination of conidia heated in water before being applied to arthropod cuticle. Nevertheless, bioassays [based primarily on egg production (quantity) and egg hatchability] exhibited high percentages of tick control regardless of the type of conidial suspension; i.e., water- or oil-formulated conidia, and whether or not conidia were previously exposed to heat. In comparison to aqueous conidial preparations, however, conidia formulated in oil reduced egg hatchability irrespective of heat or no-heat exposure. In conclusion, mineral-oil formulation protected conidia against heat-induced delay of both germination and appressorium production when applied to the cuticle of R. sanguineus. PMID

  13. Enrichment and heating of the intracluster medium by ejection from galaxies

    NASA Technical Reports Server (NTRS)

    Metzler, Chris; Evrard, August

    1993-01-01

    Results of N-body + hydrodynamic simulations designed to model the formation and evolution of clusters of galaxies and intracluster gas are presented. Clusters of galaxies are the largest bound, relaxed objects in the universe. They are strong x-ray emitters; this radiation originates through thermal bremsstrahlung from a diffuse plasma filling the space between cluster galaxies, the intracluster medium or ICM. From observations, one can infer that the mass of the ICM is comparable to or greater than the mass of all the galaxies in the cluster, and that the ratio of mass in hot gas to mass in galaxies, M(sub ICM)/M(sub STARS), increases with the richness of the cluster. Spectroscopic studies of cluster x-ray emission show heavy element emission lines. While M(sub ICM)/M(sub STARS) is greater than or equal to 1 implies that most of the ICM is primordial in nature, the discovery of heavy elements indicates that some of the gas must have been processed through galaxies. Galaxy evolution thus directly impacts cluster evolution.

  14. Heating the intergalactic medium by X-rays from population III binaries in high-redshift galaxies

    SciTech Connect

    Xu, Hao; Norman, Michael L.; Ahn, Kyungjin; Wise, John H.; O'Shea, Brian W. E-mail: mlnorman@ucsd.edu E-mail: jwise@gatech.edu

    2014-08-20

    Due to their long mean free path, X-rays are expected to have an important impact on cosmic reionization by heating and ionizing the intergalactic medium (IGM) on large scales, especially after simulations have suggested that Population III (Pop III) stars may form in pairs at redshifts as high as 20-30. We use the Pop III distribution and evolution from a self-consistent cosmological radiation hydrodynamic simulation of the formation of the first galaxies and a simple Pop III X-ray binary model to estimate their X-ray output in a high-density region larger than 100 comoving (Mpc){sup 3}. We then combine three different methods—ray tracing, a one-zone model, and X-ray background modeling—to investigate the X-ray propagation, intensity distribution, and long-term effects on the IGM thermal and ionization state. The efficiency and morphology of photoheating and photoionization are dependent on the photon energies. The sub-kiloelectronvolt X-rays only impact the IGM near the sources, while the kiloelectronvolt photons contribute significantly to the X-ray background and heat and ionize the IGM smoothly. The X-rays just below 1 keV are most efficient in heating and ionizing the IGM. We find that the IGM might be heated to over 100 K by z = 10 and the high-density source region might reach 10{sup 4} K, limited by atomic hydrogen cooling. This may be important for predicting the 21 cm neutral hydrogen signals. On the other hand, the free electrons from X-ray ionizations are not enough to contribute significantly to the optical depth of the cosmic microwave background to the Thomson scattering.

  15. Formation and catalytic activity of high molecular weight soluble polymers produced by heating amino acids in a modified sea medium

    NASA Astrophysics Data System (ADS)

    Okihana, Hiroyuki

    1982-06-01

    Eighteen protein amino acids with milk casein composition were heated in a modified sea medium. Marigranules were formed in the precipitates and soluble polymers were formed in the supernatant. Time course of the reaction (ultraviolet spectra, the concentration of metal ions, and the concentration of amino acids in the supernatant) were measured. The time course of the formation of the soluble polymers was also studied by Bio-Gel P-2 column. High molecular weight soluble polymers (HMWSP) were separated from low molecular weight ones by dialysis. It was shown that these polymers catalyzed the dehydrogenation of NADH. These polymers also catalyzed the coupled reaction between dehydrogenation of NADH and reduction of resazurin. This coupled reaction was accelerated by the light.

  16. Marangoni boundary layer flow and heat transfer of copper-water nanofluid over a porous medium disk

    NASA Astrophysics Data System (ADS)

    Lin, Yanhai; Zheng, Liancun

    2015-10-01

    In this paper we present a study of the Marangoni boundary layer flow and heat transfer of copper-water nanofluid over a porous medium disk. It is assumed that the base fluid water and the nanoparticles copper are in thermal equilibrium and that no slippage occurs between them. The governing partial differential equations are transformed into a set of ordinary differential equations by generalized Kármán transformation. The corresponding nonlinear two-point boundary value problem is solved by the Homotopy analysis method and the shooting method. The effects of the solid volume fraction, the permeability parameter and the Marangoni parameter on the velocity and temperature fields are presented graphically and analyzed in detail.

  17. Solar collector heat exchanger or hot water storage tank and method of forming same

    SciTech Connect

    Buckley, B. S.

    1985-06-25

    A solar collector, or absorber, panels or a heat storage tank, suitable for heating water using solar energy is formed from two sheets of uncured elastic material, such as EPDM rubber, by simultaneously bonding and curing the peripheral edges of the two sheets and at spaced apart, discrete areas over most of the interior areas of the sheets. In one form one of the sheets is coated with a layer of release agent, over all areas except the discrete areas and the peripheral areas so that only such uncoated areas will bond during cure. In another form, a sheet of non-adherent plastic, slightly smaller than the two sheets and having holes or holidays to form the discrete areas, is bonded between the two sheets. In a third form, the peripheral edges are first sealed to form a chamber, then the chamber is inflated and a forming die presses together the discrete areas only. Reinforcing fibers are employed or molded, into at least one of the uncured sheets. Woven fabric sheets may be stitched or fastened together, coated with a thermosetting plastic and then formed into a panel or tank chamber as above. In the solar collector panel embodiment, at least one of the reinforcing fibers is metal, most preferably, in a metal screen to equalize temperatures between the bonded discrete areas and areas overlying liquid carrying volumes of the panel.

  18. Anisotropic charge and heat conduction through arrays of parallel elliptic cylinders in a continuous medium

    NASA Astrophysics Data System (ADS)

    Martin, James E.; Ribaudo, Troy

    2013-04-01

    Arrays of circular pores in silicon can exhibit a phononic bandgap when the lattice constant is smaller than the phonon scattering length, and so have become of interest for use as thermoelectric materials, due to the large reduction in thermal conductivity that this bandgap can cause. The reduction in electrical conductivity is expected to be less, because the lattice constant of these arrays is engineered to be much larger than the electron scattering length. As a result, electron transport through the effective medium is well described by the diffusion equation, and the Seebeck coefficient is expected to increase. In this paper, we develop an expression for the purely diffusive thermal (or electrical) conductivity of a composite comprised of square or hexagonal arrays of parallel circular or elliptic cylinders of one material in a continuum of a second material. The transport parallel to the cylinders is straightforward, so we consider the transport in the two principal directions normal to the cylinders, using a self-consistent local field calculation based on the point dipole approximation. There are two limiting cases: large negative contrast (e.g., pores in a conductor) and large positive contrast (conducting pillars in air). In the large negative contrast case, the transport is only slightly affected parallel to the major axis of the elliptic cylinders but can be significantly affected parallel to the minor axis, even in the limit of zero volume fraction of pores. The positive contrast case is just the opposite: the transport is only slightly affected parallel to the minor axis of the pillars but can be significantly affected parallel to the major axis, even in the limit of zero volume fraction of pillars. The analytical results are compared to extensive FEA calculations obtained using Comsol™ and the agreement is generally very good, provided the cylinders are sufficiently small compared to the lattice constant.

  19. Applications of thermal energy storage to process heat storage and recovery in the paper and pulp industry

    NASA Technical Reports Server (NTRS)

    Carr, J. H.; Hurley, P. J.; Martin, P. J.

    1978-01-01

    Applications of Thermal Energy Storage (TES) in a paper and pulp mill power house were studied as one approach to the transfer of steam production from fossil fuel boilers to waste fuel of (hog fuel) boilers. Data from specific mills were analyzed, and various TES concepts evaluated for application in the process steam supply system. Constant pressure and variable pressure steam accumulators were found to be the most attractive storage concepts for this application.

  20. Reactive force field development for magnesium chloride hydrates and its application for seasonal heat storage.

    PubMed

    Pathak, Amar Deep; Nedea, Silvia; van Duin, Adri C T; Zondag, Herbert; Rindt, Camilo; Smeulders, David

    2016-06-21

    MgCl2 hydrates are considered as high-potential candidates for seasonal heat storage materials. These materials have high storage capacity and fast dehydration kinetics. However, as a side reaction to dehydration, hydrolysis may occur. Hydrolysis is an irreversible reaction, which produces HCl gas thus affecting the durability of heat storage systems. In this study, we present the parameterization of a reactive force field (ReaxFF) for MgCl2 hydrates to study the dehydration and hydrolysis kinetics of MgCl2·H2O and MgCl2·2H2O. The ReaxFF parameters have been derived by training against quantum mechanics data obtained from Density Functional Theory (DFT) calculations consisting of bond dissociation curves, angle bending curves, reaction enthalpies, and equation of state. A single-parameter search algorithm in combination with a Metropolis Monte Carlo algorithm is successfully used for this ReaxFF parameterization. The newly developed force field is validated by examining the elastic properties of MgCl2 hydrates and the proton transfer reaction barrier, which is important for the hydrolysis reaction. The bulk moduli of MgCl2·H2O and MgCl2·2H2O obtained from ReaxFF are in close agreement with the bulk moduli obtained from DFT. A barrier of 20.24 kcal mol(-1) for the proton transfer in MgCl2·2H2O is obtained, which is in good agreement with the barrier (19.55 kcal mol(-1)) obtained from DFT. Molecular dynamics simulations using the newly developed ReaxFF on 2D-periodic slabs of MgCl2·H2O and MgCl2·2H2O show that the dehydration rate increases more rapidly with temperature in MgCl2·H2O than in MgCl2·2H2O, in the temperature range 300-500 K. The onset temperature of HCl formation, a crucial design parameter in seasonal heat storage systems, is observed at 340 K for MgCl2·H2O, which is in agreement with experiments. The HCl formation is not observed for MgCl2·2H2O. The diffusion coefficient of H2O through MgCl2·H2O is lower than through MgCl2·2H2O, and can

  1. Impact of elevated carbon dioxide on soil heat storage and heat flux under unheated low-tunnels conditions.

    PubMed

    Al-Kayssi, A W; Mustafa, S H

    2016-11-01

    Suboptimal regimes of air and soil temperature usually occur under unheated low-tunnels during winter crop cycles. CO2 is one of the most important gases linked to climate change and posing challenge to the current agricultural productivity. Field experiment was conducted in unheated low-tunnels (10.0 m long, 1.5 m wide and 1.0 m high) during winter and spring periods to evaluate the increasing CO2 concentration (352, 709, 1063, 1407, and 1761 ppm) on net radiation budget, soil-air thermal regime and pepper plants growth development and yield. CO2 was injected into each hollow space of the tunnel double-layer transparent polyethylene covers. Recorded integral net longwave radiation increased from 524.81 to 1111.84 Wm(-2) on January when CO2 concentration increased from 352 to 1761 ppm. A similar trend was recorded on February. Moreover, minimum soil surface and air temperatures were markedly increased from -1.3 and -6.8 °C to 3.4 and 0.6 °C, when CO2 concentration increased from 352 to 1761 ppm. Additionally, soil heat flux as well as soil heat storage increased with increasing CO2 concentrations accordingly. Increasing the tunnel minimum air and soil temperatures with the CO2 concentration treatments 1063, 1407 and 1761 ppm reflected in a significant pepper yield (3.19, 5.06 and 6.13 kg m(-2)) due to the modification of the surrounding plants microenvironment and prevented pepper plants from freezing and the accelerated the plant growth. On the contrary, the drop of minimum air and soil temperatures to freezing levels with the CO2 concentration treatments 352 and 709 ppm resulted in the deterioration of pepper plants development during the early growth stages on January. PMID:27472054

  2. Suppression of local heat flux in a turbulent magnetized intracluster medium

    NASA Astrophysics Data System (ADS)

    Komarov, S. V.; Churazov, E. M.; Schekochihin, A. A.; ZuHone, J. A.

    2014-05-01

    X-ray observations of hot gas in galaxy clusters often show steeper temperature gradients across cold fronts - contact discontinuities, driven by the differential gas motions. These sharp (a few kpc wide) surface brightness/temperature discontinuities would be quickly smeared out by the electron thermal conduction in unmagnetized plasma, suggesting significant suppression of the heat flow across the discontinuities. In fact, the character of the gas flow near cold fronts is favourable for suppression of conduction by aligning magnetic field lines along the discontinuities. We argue that a similar mechanism is operating in the bulk of the gas. Generic 3D random isotropic and incompressible motions increase the temperature gradients (in some places) and at the same time suppress the local conduction by aligning the magnetic field lines perpendicular to the local temperature gradient. We show that the suppression of the effective conductivity in the bulk of the gas can be linked to the increase of the frozen magnetic field energy density. On average the rate of decay of the temperature fluctuations d<δT2>/dt decreases as -1/5.

  3. Programming MOFs for water sorption: amino-functionalized MIL-125 and UiO-66 for heat transformation and heat storage applications.

    PubMed

    Jeremias, Felix; Lozan, Vasile; Henninger, Stefan K; Janiak, Christoph

    2013-12-01

    Sorption-based heat transformation and storage appliances are very promising for utilizing solar heat and waste heat in cooling or heating applications. The economic and ecological efficiency of sorption-based heat transformation depends on the availability of suitable hydrophilic and hydrothermally stable sorption materials. We investigated the feasibility of using the metal-organic frameworks UiO-66(Zr), UiO-67(Zr), H2N-UiO-66(Zr) and H2N-MIL-125(Ti) as sorption materials in heat transformations by means of volumetric water adsorption measurements, determination of the heat of adsorption and a 40-cycle ad/desorption stress test. The amino-modified compounds H2N-UiO-66 and H2N-MIL-125 feature high heat of adsorption (89.5 and 56.0 kJ mol(-1), respectively) and a very promising H2O adsorption isotherm due to their enhanced hydrophilicity. For H2N-MIL-125 the very steep rise of the H2O adsorption isotherm in the 0.1 < p/p0 < 0.2 region is especially beneficial for the intended heat pump application. PMID:23864023

  4. Effect of random structure on permeability and heat transfer characteristics for flow in 2D porous medium based on MRT lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Yang, PeiPei; Wen, Zhi; Dou, RuiFeng; Liu, Xunliang

    2016-08-01

    Flow and heat transfer through a 2D random porous medium are studied by using the lattice Boltzmann method (LBM). For the random porous medium, the influence of disordered cylinder arrangement on permeability and Nusselt number are investigated. Results indicate that the permeability and Nusselt number for different cylinder locations are unequal even with the same number and size of cylinders. New correlations for the permeability and coefficient b‧Den of the Forchheimer equation are proposed for random porous medium composed of Gaussian distributed circular cylinders. Furthermore, a general set of heat transfer correlations is proposed and compared with existing experimental data and empirical correlations. Our results show that the Nu number increases with the increase of the porosity, hence heat transfer is found to be accurate considering the effect of porosity.

  5. Analysis of community solar systems for combined space and domestic hot water heating using annual cycle thermal energy storage

    SciTech Connect

    Hooper, F.C.; McClenahan, J.D.; Cook, J.D.; Baylin, F.; Monte, R.; Sillman, S.

    1980-01-01

    A simplified design procedure is examined for estimating the storage capacity and collector area for annual-cycle-storage, community solar heating systems in which 100% of the annual space heating energy demand is provided from the solar source for the typical meteorological year. Hourly computer simulations of the performance of these systems were carried out for 10 cities in the United States for 3 different building types and 4 community sizes. These permitted the use of design values for evaluation of a more simplified system sizing method. Results of this study show a strong correlation between annual collector efficiency and two major, location-specific, annual weather parameters: the mean air temperature during daylignt hours and the total global insolation on the collector surface. Storage capacity correlates well with the net winter load, which is a measure of the seasonal variation in the total load, a correlation which appears to be independent of collector type.

  6. Heat Production and Storage Are Positively Correlated with Measures of Body Size/Composition and Heart Rate Drift during Vigorous Running

    ERIC Educational Resources Information Center

    Buresh, Robert; Berg, Kris; Noble, John

    2005-01-01

    The purposes of this study were to determine the relationships between: (a) measures of body size/composition and heat production/storage, and (b) heat production/storage and heart rate (HR) drift during running at 95 % of the velocity that elicited lactate threshold, which was determined for 20 healthy recreational male runners. Subsequently,…

  7. Laboratory Evaluation of Gas-Fired Tankless and Storage Water Heater Approaches to Combination Water and Space Heating

    SciTech Connect

    Kingston, T.; Scott, S.

    2013-03-01

    Homebuilders are exploring more cost effective combined space and water heating systems (combo systems) with major water heater manufacturers that are offering pre-engineered forced air space heating combo systems. In this project, unlike standardized tests, laboratory tests were conducted that subjected condensing tankless and storage water heater based combo systems to realistic, coincidental space and domestic hot water loads with the following key findings: 1) The tankless combo system maintained more stable DHW and space heating temperatures than the storage combo system. 2) The tankless combo system consistently achieved better daily efficiencies (i.e. 84%-93%) than the storage combo system (i.e. 81%- 91%) when the air handler was sized adequately and adjusted properly to achieve significant condensing operation. When condensing operation was not achieved, both systems performed with lower (i.e. 75%-88%), but similar efficiencies. 3) Air handlers currently packaged with combo systems are not designed to optimize condensing operation. More research is needed to develop air handlers specifically designed for condensing water heaters. 4) System efficiencies greater than 90% were achieved only on days where continual and steady space heating loads were required with significant condensing operation. For days where heating was more intermittent, the system efficiencies fell below 90%.

  8. Solar heated two level residence--Akron, Ohio

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Report describes 1 year evaluation of solar heating and hot water system which satisfied 24 percent of energy requirements. System uses flat plate solar collectors with air as heat transport medium. Rock storage bin stores collected energy; air to liquid heat pump supplies backup heat.

  9. Rational design of a culture medium for the intensification of lipid storage in Chlorella sp. Performance evaluation in air-lift bioreactor.

    PubMed

    Giordano, Pablo C; Beccaria, Alejandro J; Goicoechea, Héctor C

    2014-04-01

    An optimal medium to culture Chlorella sp., microalgae capable of storage intracellular lipids was obtained. This culture medium consists of a saline base plus carbon-energy and nitrogen sources. Significant factors exerting influence on the culture parameters were selected. Then, by applying response surface methodology coupled to desirability function, an optimal formulation, specific for the heterotrophic growth of Chlorella sp. that allows maximizing lipid concentration was obtained. During the experimental verification, the possibility of replacing commercial glucose by hydrolysates obtained from lignocellulosic materials was evaluated. Biochemical hydrolysate of corn bran allowed obtaining important improvements in lipid concentration. Finally, the optimal formulation was evaluated in an air-lift bioreactor performing a fed-batch culture. Culturing the strain in these conditions allowed rising lipid concentrations. PMID:24607464

  10. Development of media for dynamic latent heat storage for the low-temperature range. Part 1: Thermal analyses of selected salt hydrate systems

    NASA Technical Reports Server (NTRS)

    Kanwischer, H.; Tamme, R.

    1985-01-01

    Phase change temperatures and phase change enthalpies of seventeen salt hydrates, three double salts, and four eutectics were measured thermodynamically and the results reported herein. Good results were obtained, especially for congruently melting salt hydrates. Incongruently melting salt hydrates appear less suitable for heat storage applications. The influence of the second phase - water, acid and hydroxide - to the latent heat is described. From these results, basic values of the working temperatures and storage capabilities of various storage media compositions may be derived.

  11. Improvement of discharge characteristics of latent heat thermal energy storage unit by using carbon fibers

    SciTech Connect

    Fukai, Jun; Oishi, Akira; Kodama, Yoshikazu; Kanou, Makoto; Miyatake, Osamu

    1999-07-01

    Many phase change materials have unacceptably low thermal conductivities. Metal fins, metal honeycombs and metal matrices have been examined to enhance the thermal conductivity of the PCMs. This study proposed an enhancement technique using carbon fibers with high thermal conductivity. The thermal conductivity of the carbon fibers prepared in this study is 220 W/(m{center_dot}K). Paraffin wax (0.26 W/(m{center_dot}K) in solid phase) and Na{sub 2}SO{sub 4}{center_dot}10H{sub 2}O-mixture (0.8 W/(m{center_dot}K) in solid phase) were selected as heat storage media. The fibers were uniformly mixed with th PCM encapsulated in a cylindrical capsule. The effective thermal conductivities of the fibers/PCM composites were measured. Figure A-1 shows the ratio of the effective thermal conductivity of the composite (k{sub c}) to the thermal conductivity of the phase change material (k{sub m}). The figure demonstrates that the fibers essentially enhance the thermal conductivities of paraffin. For paraffin, there is little dependence of the effective thermal conductivity on the fiber length (L{sub f}). Though the k{sub c}/k{sub m} for Na{sub 2}SO{sub 4}{center_dot}10H{sub 2}O-mixture is lower than that of the paraffin wax, 2% fibers increase the thermal conductivity of the PCM by a factor of about three. This value is almost identical to the thermal conductivity of ice (2.2 W/(m{center_dot}K)). The effect of the carbon fibers on discharge characteristics of a thermal energy storage system was investigated. Capsules containing a carbon fibers/paraffin composite are packed into a thermal energy storage unit. The inlet fluid temperature (T{sub in})and the outlet fluid temperature (T{sub out}) were measured during the discharge process. Figure A-2 shows a typical result of the experiments. Remarkable effect of the fibers is observed after the outlet temperature reaches the phase change temperature ({approx}60 C). That is, the period where the outlet temperature is maintained near the

  12. Invariant solutions of the heat-conduction equation describing the directed propagation of combustion and spiral waves in a nonlinear medium

    NASA Astrophysics Data System (ADS)

    Bakirova, M. I.; Dorodnitsyn, V. A.; Kurdiumov, S. P.; Samarskii, A. A.; Dimova, S. N.

    The directed propagation of heat and combustion in an anisotropic medium is analyzed numerically. It is shown that at the asymptotic stage this process is described by an invariant (self-similar) solution obtained by Dorodnitsyn et al. (1983). In the isotropic case, an invariant solution is indicated which can describe circular and spiral combustion waves. The invariant solutions are obtained on the basis of the group properties of the heat-conduction equation.

  13. Lysosomal storage diseases and the heat shock response: convergences and therapeutic opportunities

    PubMed Central

    Ingemann, Linda; Kirkegaard, Thomas

    2014-01-01

    Lysosomes play a vital role in the maintenance of cellular homeostasis through the recycling of cell constituents, a key metabolic function which is highly dependent on the correct function of the lysosomal hydrolases and membrane proteins, as well as correct membrane lipid stoichiometry and composition. The critical role of lysosomal functionality is evident from the severity of the diseases in which the primary lesion is a genetically defined loss-of-function of lysosomal hydrolases or membrane proteins. This group of diseases, known as lysosomal storage diseases (LSDs), number more than 50 and are associated with severe neurodegeneration, systemic disease, and early death, with only a handful of the diseases having a therapeutic option. Another key homeostatic system is the metabolic stress response or heat shock response (HSR), which is induced in response to a number of physiological and pathological stresses, such as protein misfolding and aggregation, endoplasmic reticulum stress, oxidative stress, nutrient deprivation, elevated temperature, viral infections, and various acute traumas. Importantly, the HSR and its cardinal members of the heat shock protein 70 family has been shown to protect against a number of degenerative diseases, including severe diseases of the nervous system. The cytoprotective actions of the HSR also include processes involving the lysosomal system, such as cell death, autophagy, and protection against lysosomal membrane permeabilization, and have shown promise in a number of LSDs. This review seeks to describe the emerging understanding of the interplay between these two essential metabolic systems, the lysosomes and the HSR, with a particular focus on their potential as a therapeutic target for LSDs. PMID:24837749

  14. Chlorophylls and carotenoids of kiwifruit puree are affected similarly or less by microwave than by conventional heat processing and storage.

    PubMed

    Benlloch-Tinoco, María; Kaulmann, Anouk; Corte-Real, Joana; Rodrigo, Dolores; Martínez-Navarrete, Nuria; Bohn, Torsten

    2015-11-15

    The impact of microwave (1000 W - 340 s) and conventional heat (97 °C - 30s) pasteurisation and storage (4, 10, 22 °C for up to 63 d) on total and individual carotenoids and chlorophylls in kiwifruit puree was evaluated. Bioaccessibility of carotenoids, before and after pasteurisation and storage, was also studied. Microwaves and conventional heating led to marked changes in the chlorophyll (42-100% losses) and carotenoid (62-91% losses) content. First- and second-order kinetics appropriately explained the degradation of total carotenoids and chlorophylls over time, respectively. Pasteurised samples showed significantly (p < 0.05) enhanced stability of these pigments, with microwaves (k = 0.007-0.031100 g mg(-1) day(-1) at 4-22 °C) promoting chlorophyll stability to a greater extent than conventional heating (k = 0.0015-0.034100 g mg(-1) day(-1) at 4-22 °C). Bioaccessibility of carotenoids remained (p < 0.05) unaffected by processing and storage. These results highlighted that the pigment composition of microwaved kiwifruit was more similar to that of the fresh fruit and better preserved during storage. PMID:25977024

  15. Melting and solidification characteristics of a mixture of two types of latent heat storage material in a vessel

    NASA Astrophysics Data System (ADS)

    Yu, JikSu; Horibe, Akihiko; Haruki, Naoto; Machida, Akito; Kato, Masashi

    2016-01-01

    In this study, we investigated the fundamental melting and solidification characteristics of mannitol, erythritol, and their mixture (70 % by mass mannitol: 30 % by mass erythritol) as potential phase-change materials (PCMs) for latent heat thermal energy storage systems, specifically those pertaining to industrial waste heat, having temperatures in the range of 100-250 °C. The melting point of erythritol and mannitol, the melting peak temperature of their mixture, and latent heat were measured using differential scanning calorimetry. The thermal performance of the mannitol mixture was determined during melting and solidification processes, using a heat storage vessel with a pipe heat exchanger. Our results indicated phase-change (fusion) temperatures of 160 °C for mannitol and 113 and 150 °C for the mannitol mixture. Nondimensional correlation equations of the average heat transfer during the solidification process, as well as the temperature and velocity efficiencies of flowing silicon oil in the pipe and the phase-change material (PCM), were derived using several nondimensional parameters.

  16. A shielded storage and processing facility for radioisotope thermoelectric generator heat source production

    NASA Astrophysics Data System (ADS)

    Sherrell, Dennis L.

    1993-01-01

    A shielded storage rack has been installed as part of the Radioisotope Power Systems Facility (RPSF) at the U.S. Department of Energy's (DOE) Hanford Site in Washington State. The RPSF is designed to replace an existing facility at DOE's Mound Site near Dayton, Ohio, where General Purpose Heat Source (GPHS) modules are currently assembled and installed into Radioisotope Thermoelectric Generators (RTG). The overall design goal of the RPSF is to increase annual production throughput, while at the same time reducing annual radiation exposure to personnel. The shield rack design successfully achieved this goal for the Module Reduction and Monitoring Facility (MRMF), which processes and stores assembled GPHS modules, prior to their installation into RTGs. The shield rack design is simple and effective, with the result that background radiation levels within Hanford's MRMF room are calculated at just over three percent of those typically experienced during operation of the existing MRMF at Mound, despite the fact that Hanford's calculations assume five times the GPHS inventory of that assumed for Mound.

  17. A shielded storage and processing facility for radioisotope thermoelectric generator heat source production

    SciTech Connect

    Sherrell, D.L.

    1992-06-01

    This report discusses a shielded storage rack which has been installed as part of the Radioisotope Power Systems Facility (RPSF) at the US Department of Energy's (DOE) Hanford Site in Washington State. The RPSF is designed to replace an existing facility at DOE's Mound Site near Dayton, Ohio, where General Purpose Heat Source (GPHS) modules are currently assembled and installed into Radioisotope Thermoelectric Generators (RTG). The overall design goal of the RPSF is to increase annual production throughput, while at the same time reducing annual radiation exposure to personnel. The shield rack design successfully achieved this goal for the Module Reduction and Monitoring Facility (MRMF), which process and stores assembled GPHS modules, prior to their installation into RTGS. The shield rack design is simple and effective, with the result that background radiation levels within Hanford's MRMF room are calculated at just over three percent of those typically experienced during operation of the existing MRMF at Mound, despite the fact that Hanford's calculations assume five times the GPHS inventory of that assumed for Mound.

  18. A shielded storage and processing facility for radioisotope thermoelectric generator heat source production

    SciTech Connect

    Sherrell, D.L.

    1992-06-01

    This report discusses a shielded storage rack which has been installed as part of the Radioisotope Power Systems Facility (RPSF) at the US Department of Energy`s (DOE) Hanford Site in Washington State. The RPSF is designed to replace an existing facility at DOE`s Mound Site near Dayton, Ohio, where General Purpose Heat Source (GPHS) modules are currently assembled and installed into Radioisotope Thermoelectric Generators (RTG). The overall design goal of the RPSF is to increase annual production throughput, while at the same time reducing annual radiation exposure to personnel. The shield rack design successfully achieved this goal for the Module Reduction and Monitoring Facility (MRMF), which process and stores assembled GPHS modules, prior to their installation into RTGS. The shield rack design is simple and effective, with the result that background radiation levels within Hanford`s MRMF room are calculated at just over three percent of those typically experienced during operation of the existing MRMF at Mound, despite the fact that Hanford`s calculations assume five times the GPHS inventory of that assumed for Mound.

  19. Numerical simulation of seasonal heat storage in a contaminated shallow aquifer - Temperature influence on flow, transport and reaction processes

    NASA Astrophysics Data System (ADS)

    Popp, Steffi; Beyer, Christof; Dahmke, Andreas; Bauer, Sebastian

    2015-04-01

    The energy market in Germany currently faces a rapid transition from nuclear power and fossil fuels towards an increased production of energy from renewable resources like wind or solar power. In this context, seasonal heat storage in the shallow subsurface is becoming more and more important, particularly in urban regions with high population densities and thus high energy and heat demand. Besides the effects of increased or decreased groundwater and sediment temperatures on local and large-scale groundwater flow, transport, geochemistry and microbiology, an influence on subsurface contaminations, which may be present in the urban surbsurface, can be expected. Currently, concerns about negative impacts of temperature changes on groundwater quality are the main barrier for the approval of heat storage at or close to contaminated sites. The possible impacts of heat storage on subsurface contamination, however, have not been investigated in detail yet. Therefore, this work investigates the effects of a shallow seasonal heat storage on subsurface groundwater flow, transport and reaction processes in the presence of an organic contamination using numerical scenario simulations. A shallow groundwater aquifer is assumed, which consists of Pleistoscene sandy sediments typical for Northern Germany. The seasonal heat storage in these scenarios is performed through arrays of borehole heat exchangers (BHE), where different setups with 6 and 72 BHE, and temperatures during storage between 2°C and 70°C are analyzed. The developing heat plume in the aquifer interacts with a residual phase of a trichloroethene (TCE) contamination. The plume of dissolved TCE emitted from this source zone is degraded by reductive dechlorination through microbes present in the aquifer, which degrade TCE under anaerobic redox conditions to the degradation products dichloroethene, vinyl chloride and ethene. The temperature dependence of the microbial degradation activity of each degradation step is

  20. Comprehensive Compressor Calorimeter Testing of Lower-GWP Alternative Refrigerants for Heat Pump and Medium Temperature Refrigeration Applications

    SciTech Connect

    Shrestha, Som S; Sharma, Vishaldeep; Abdelaziz, Omar

    2014-01-01

    In response to environmental concerns raised by the use of refrigerants with high Global Warming Potential (GWP), the Air-Conditioning, Heating, and Refrigeration Institute (AHRI) has launched an industry-wide cooperative research program, referred to as the Low-GWP Alternative Refrigerants Evaluation Program (AREP), to identify and evaluate promising alternative refrigerants for major product categories. This paper reports one of the Oak Ridge National Laboratory (ORNL) contributions to AREP. It compares performance of alternative refrigerants to that of R-410A and R-404A for heat pump and medium temperature applications, respectively. The alternatives reported in this paper are: R-32, DR-5, and L-41a for R-410A and ARM-31a, D2Y-65, L-40, and a mixture of R-32 and R-134a for R-404A. All performance comparison tests were conducted using scroll compressors of ~1.85 tons (6.5 kW) cooling capacity. Tests were conducted over a range of combinations of saturation suction and saturation discharge temperatures for both compressors. The tests showed that, in general, energy efficiency ratio (EER) and cooling capacity of R-410A alternative refrigerants were slightly lower than that of the baseline refrigerant with a moderate increases in discharge temperature. On the other hand, R-404A alternative refrigerants showed relative performance dependence on saturation suction and saturation discharge temperatures and larger increases in discharge temperature than for the R-410A alternatives. This paper summarizes the relative performance of all alternative refrigerants compared to their respective baseline.

  1. The roles of thermal insulation and heat storage in the energy performance of the wall materials: a simulation study

    PubMed Central

    Long, Linshuang; Ye, Hong

    2016-01-01

    A high-performance envelope is the prerequisite and foundation to a zero energy building. The thermal conductivity and volumetric heat capacity of a wall are two thermophysical properties that strongly influence the energy performance. Although many case studies have been performed, the results failed to give a big picture of the roles of these properties in the energy performance of an active building. In this work, a traversal study on the energy performance of a standard room with all potential wall materials was performed for the first time. It was revealed that both heat storage materials and insulation materials are suitable for external walls. However, the importances of those materials are distinct in different situations: the heat storage plays a primary role when the thermal conductivity of the material is relatively high, but the effect of the thermal insulation is dominant when the conductivity is relatively low. Regarding internal walls, they are less significant to the energy performance than the external ones, and they need exclusively the heat storage materials with a high thermal conductivity. These requirements for materials are consistent under various climate conditions. This study may provide a roadmap for the material scientists interested in developing high-performance wall materials. PMID:27052186

  2. The roles of thermal insulation and heat storage in the energy performance of the wall materials: a simulation study.

    PubMed

    Long, Linshuang; Ye, Hong

    2016-01-01

    A high-performance envelope is the prerequisite and foundation to a zero energy building. The thermal conductivity and volumetric heat capacity of a wall are two thermophysical properties that strongly influence the energy performance. Although many case studies have been performed, the results failed to give a big picture of the roles of these properties in the energy performance of an active building. In this work, a traversal study on the energy performance of a standard room with all potential wall materials was performed for the first time. It was revealed that both heat storage materials and insulation materials are suitable for external walls. However, the importances of those materials are distinct in different situations: the heat storage plays a primary role when the thermal conductivity of the material is relatively high, but the effect of the thermal insulation is dominant when the conductivity is relatively low. Regarding internal walls, they are less significant to the energy performance than the external ones, and they need exclusively the heat storage materials with a high thermal conductivity. These requirements for materials are consistent under various climate conditions. This study may provide a roadmap for the material scientists interested in developing high-performance wall materials. PMID:27052186

  3. The roles of thermal insulation and heat storage in the energy performance of the wall materials: a simulation study

    NASA Astrophysics Data System (ADS)

    Long, Linshuang; Ye, Hong

    2016-04-01

    A high-performance envelope is the prerequisite and foundation to a zero energy building. The thermal conductivity and volumetric heat capacity of a wall are two thermophysical properties that strongly influence the energy performance. Although many case studies have been performed, the results failed to give a big picture of the roles of these properties in the energy performance of an active building. In this work, a traversal study on the energy performance of a standard room with all potential wall materials was performed for the first time. It was revealed that both heat storage materials and insulation materials are suitable for external walls. However, the importances of those materials are distinct in different situations: the heat storage plays a primary role when the thermal conductivity of the material is relatively high, but the effect of the thermal insulation is dominant when the conductivity is relatively low. Regarding internal walls, they are less significant to the energy performance than the external ones, and they need exclusively the heat storage materials with a high thermal conductivity. These requirements for materials are consistent under various climate conditions. This study may provide a roadmap for the material scientists interested in developing high-performance wall materials.

  4. Energy storage

    NASA Astrophysics Data System (ADS)

    Kaier, U.

    1981-04-01

    Developments in the area of energy storage are characterized, with respect to theory and laboratory, by an emergence of novel concepts and technologies for storing electric energy and heat. However, there are no new commercial devices on the market. New storage batteries as basis for a wider introduction of electric cars, and latent heat storage devices, as an aid for solar technology applications, with satisfactory performance standards are not yet commercially available. Devices for the intermediate storage of electric energy for solar electric-energy systems, and for satisfying peak-load current demands in the case of public utility companies are considered. In spite of many promising novel developments, there is yet no practical alternative to the lead-acid storage battery. Attention is given to central heat storage for systems transporting heat energy, small-scale heat storage installations, and large-scale technical energy-storage systems.

  5. Flow and heat transfer in a Maxwell liquid film over an unsteady stretching sheet in a porous medium with radiation.

    PubMed

    Waheed, Shimaa E

    2016-01-01

    A problem of flow and heat transfer in a non-Newtonian Maxwell liquid film over an unsteady stretching sheet embedded in a porous medium in the presence of a thermal radiation is investigated. The unsteady boundary layer equations describing the problem are transformed to a system of non-linear ordinary differential equations which is solved numerically using the shooting method. The effects of various parameters like the Darcy parameter, the radiation parameter, the Deborah number and the Prandtl number on the flow and temperature profiles as well as on the local skin-friction coefficient and the local Nusselt number are presented and discussed. It is observed that increasing values of the Darcy parameter and the Deborah number cause an increase of the local skin-friction coefficient values and decrease in the values of the local Nusselt number. Also, it is noticed that the local Nusselt number increases as the Prandtl number increases and it decreases with increasing the radiation parameter. However, it is found that the free surface temperature increases by increasing the Darcy parameter, the radiation parameter and the Deborah number whereas it decreases by increasing the Prandtl number. PMID:27462509

  6. Heat-energy storage through semi-opened circulation into low-permeability hard-rock aquifers

    NASA Astrophysics Data System (ADS)

    Pettenati, Marie; Bour, Olivier; Ausseur, Jean-Yves; de Dreuzy, Jean-Raynald; de la Bernardie, Jérôme; Chatton, Eliot; Lesueur, Hervé; Bethencourt, Lorine; Mougin, Bruno; Aquilina, Luc; Koch, Florian; Dewandel, Benoit; Boisson, Alexandre; Mosser, Jean-François; Pauwels, Hélène

    2016-04-01

    In low-permeability environments, the solutions of heat storage are still limited to the capacities of geothermal borehole heat exchangers. The ANR Stock-en-Socle project explores the possibilities of periodic storage of sensitive heat1 in low-permeability environments that would offer much better performance than that of borehole heat exchangers, especially in terms of unit capacity. This project examines the storage possibilities of using semi-open water circulation in typically a Standing Column Well (SCW), using the strong heterogeneity of hard-rock aquifers in targeting the least favorable areas for water resources. To solve the main scientific issues, which include evaluating the minimum level of permeability required around a well as well as its evolution through time (increase and decrease) due to water-rock interaction processes, the study is based on an experimental program of fieldwork and modelling for studying the thermal, hydraulic and geochemical processes involved. This includes tracer and water-circulation tests by injecting hot water in different wells located in distinct hard-rock settings (i.e. granite and schist) in Brittany, Ploemeur (H+ observatory network) and Naizin. A numerical modelling approach allows studying the effects of permeability structures on the storage and heat-recovery capacities, whereas the modelling of reactive transfers will provide an understanding of how permeability evolves under the influence of dissolution and precipitation. Based on the obtained results, technical solutions will be studied for constructing a well of the SCW type in a low-permeability environment. This work will be completed by a technical and economic feasibility study leading to an investment and operations model. This study aims to describe the suitability of SCW storage for shallow geothermal energy. In order to reach these objectives, Stock-en-Socle is constructed around a public/private partnership between two public research organizations, G

  7. [Effect of prolonged cold storage and subsequent heat treatment on the fractional composition of fish muscle proteins].

    PubMed

    Aman, M E; Efimov, A D

    1977-01-01

    The effect of prolonged preservation at -18 degrees C and subsequent culinary heat treatment of the fractional composition of sarcoplasmatic and myofibrillar proteins in the muscles of mirror carp, pike and sheat-fish were studied by the method of gel-filtration on Sephadex G-100. Cold storage of the dish at -18 degrees C for 9 months was found to produce market changes in the qualitative and quantitative composition of muscle proteins. After culinary heat treatment the finished products have lost much of their original quality. PMID:883223

  8. A method for determination of heat storage capacity of the mold materials using a differential thermal analysis

    NASA Astrophysics Data System (ADS)

    Ol'khovik, E.

    2016-04-01

    The article proposes a method for determining of the heat storage capacity of the mould materials. Modern materials for mouldsare made using a variety of technologies, and the manufacturers of binders and additives ensure thermal properties of certain materials only when using a certain recipe. In practice, for management of the casting solidification process (creation of the volume or directed mode) it is favorable to apply various technological methods, including modification of one of the important properties of the casting mould, which is heat storage capacity. A rather simple technique based on the application of the differential thermal analysis was developed for its experimental definition. The obtained data showed a possibility of industrial application of the method.

  9. BWR spent fuel storage cask performance test. Volume 2. Pre- and post-test decay heat, heat transfer, and shielding analyses

    SciTech Connect

    Wiles, L.E.; Lombardo, N.J.; Heeb, C.M.; Jenquin, U.P.; Michener, T.E.; Wheeler, C.L.; Creer, J.M.; McCann, R.A.

    1986-06-01

    This report describes the decay heat, heat transfer, and shielding analyses conducted in support of performance testing of a Ridhihalgh, Eggers and Associates REA 2033 boiling water reactor (BWR) spent fuel storage cask. The cask testing program was conducted for the US Department of Energy (DOE) Commercial Spent Fuel Management Program by the Pacific Northwest Laboratory (PNL) and by General Electric at the latters' Morris Operation (GE-MO) as reported in Volume I. The analyses effort consisted of performing pretest calculations to (1) select spent fuel for the test; (2) symmetrically load the spent fuel assemblies in the cask to ensure lateral symmetry of decay heat generation rates; (3) optimally locate temperature and dose rate instrumentation in the cask and spent fuel assemblies; and (4) evaluate the ORIGEN2 (decay heat), HYDRA and COBRA-SFS (heat transfer), and QAD and DOT (shielding) computer codes. The emphasis of this second volume is on the comparison of code predictions to experimental test data in support of the code evaluation process. Code evaluations were accomplished by comparing pretest (actually pre-look, since some predictions were not completed until testing was in progress) predictions with experimental cask testing data reported in Volume I. No attempt was made in this study to compare the two heat transfer codes because results of other evaluations have not been completed, and a comparison based on one data set may lead to erroneous conclusions.

  10. Structure and thermal properties of salicylate-based-protic ionic liquids as new heat storage media. COSMO-RS structure characterization and modeling of heat capacities.

    PubMed

    Jacquemin, Johan; Feder-Kubis, Joanna; Zorębski, Michał; Grzybowska, Katarzyna; Chorążewski, Mirosław; Hensel-Bielówka, Stella; Zorębski, Edward; Paluch, Marian; Dzida, Marzena

    2014-02-28

    During this research, we present a study on the thermal properties, such as the melting, cold crystallization, and glass transition temperatures as well as heat capacities from 293.15 K to 323.15 K of nine in-house synthesized protic ionic liquids based on the 3-(alkoxymethyl)-1H-imidazol-3-ium salicylate ([H-Im-C1OC(n)][Sal]) with n = 3-11. The 3D structures, surface charge distributions and COSMO volumes of all investigated ions are obtained by combining DFT calculations and the COSMO-RS methodology. The heat capacity data sets as a function of temperature of the 3-(alkoxymethyl)-1H-imidazol-3-ium salicylate are then predicted using the methodology originally proposed in the case of ionic liquids by Ge et al. 3-(Alkoxymethyl)-1H-imidazol-3-ium salicylate based ionic liquids present specific heat capacities higher in many cases than other ionic liquids that make them suitable as heat storage media and in heat transfer processes. It was found experimentally that the heat capacity increases linearly with increasing alkyl chain length of the alkoxymethyl group of 3-(alkoxymethyl)-1H-imidazol-3-ium salicylate as was expected and predicted using the Ge et al. method with an overall relative absolute deviation close to 3.2% for temperatures up to 323.15 K. PMID:24413748

  11. New Carbon-Based Porous Materials with Increased Heats of Adsorption for Hydrogen Storage

    SciTech Connect

    Snurr, Randall Q.; Hupp, Joseph T.; Kanatzidis, Mercouri G.; Nguyen, SonBinh T.

    2014-11-03

    Hydrogen fuel cell vehicles are a promising alternative to internal combustion engines that burn gasoline. A significant challenge in developing fuel cell vehicles is to store enough hydrogen on-board to allow the same driving range as current vehicles. One option for storing hydrogen on vehicles is to use tanks filled with porous materials that act as “sponges” to take up large quantities of hydrogen without the need for extremely high pressures. The materials must meet many requirements to make this possible. This project aimed to develop two related classes of porous materials to meet these requirements. All materials were synthesized from molecular constituents in a building-block approach, which allows for the creation of an incredibly wide variety of materials in a tailorable fashion. The materials have extremely high surface areas, to provide many locations for hydrogen to adsorb. In addition, they were designed to contain cations that create large electric fields to bind hydrogen strongly but not too strongly. Molecular modeling played a key role as a guide to experiment throughout the project. A major accomplishment of the project was the development of a material with record hydrogen uptake at cryogenic temperatures. Although the ultimate goal was materials that adsorb large quantities of hydrogen at room temperature, this achievement at cryogenic temperatures is an important step in the right direction. In addition, there is significant interest in applications at these temperatures. The hydrogen uptake, measured independently at NREL was 8.0 wt %. This is, to the best of our knowledge, the highest validated excess hydrogen uptake reported to date at 77 K. This material was originally sketched on paper based on a hypothesis that extended framework struts would yield materials with excellent hydrogen storage properties. However, before starting the synthesis, we used molecular modeling to assess the performance of the material for hydrogen uptake

  12. Food matrices and cell conditions influence survival of Lactobacillus rhamnosus GG under heat stresses and during storage.

    PubMed

    Endo, Akihito; Teräsjärvi, Johanna; Salminen, Seppo

    2014-03-17

    The present study evaluated impact of moisture content and cell conditions on survival of probiotic strain, Lactobacillus rhamnosus GG, under lethal heat stresses and during long-term storage using freeze-dried cells and oils as matrices. Viable cell counts of freeze-dried L. rhamnosus GG cells suspended in oils had only 1-log-reduction after 5min at 80°C and approximately 3-log-reduction after 20min, while no or very few viable cells were recorded for freeze dried cells suspended in buffer and cultured cells in oils. Surprisingly, freeze-dried cells suspended in oils still contained 4.3 to 6.7logCFU/ml after 5min at 95°C. Long-term storage study indicated that freeze-dried cells suspended in oils kept viable conditions for 4months, and a loss of the viability was only 0.3 to 0.6logCFU/ml. Viable cell counts of cultured cells suspended in oils were not present after 3days to 3months. These results clearly indicate that moisture and cell conditions have a great impact on survival of probiotics under severe heat stress in processing and during long-term storage. Combination of freeze-dried cells and oils as carrier provides beneficial options to preserve viability of probiotics in food processes and storage. PMID:24480189

  13. Thermal energy storage apparatus enabling use of aqueous or corrosive thermal storage media

    SciTech Connect

    James, T.W.

    1993-08-31

    A holdover plate is described for thermal energy storage in refrigeration and air conditioning systems, the holdover plate comprising: a heat exchanger with an adjacent space in close proximity thereto; a plurality of expandable capsules containing a thermal energy storage medium, the capsules substantially filling the adjacent space and the capsules including means to provide for expansion of the thermal energy storage medium without altering outer envelope dimensions of the capsules; a containment means forming an exterior of the holdover plate and surrounding the heat exchanger and the adjacent space filled with the capsules, the containment means further containing a convective coupling fluid which thermally couples and is non-corrosive to the heat exchanger, the capsules, and the containment means; and wherein the convective coupling fluid transfers heat primarily through natural convection and conduction and does not freeze at operational temperatures of the heat exchanger.

  14. Actual information storage with a recording density of 4 Tbit/in.2 in a ferroelectric recording medium

    NASA Astrophysics Data System (ADS)

    Tanaka, Kenkou; Cho, Yasuo

    2010-08-01

    A new method to achieve real information recording with a density above 1 Tbit/in.2 in ferroelectric data storage systems is proposed. In this system, data bits were written in the form of the polarization direction, and the data were read by scanning nonlinear dielectric microscopy technique. The domain-switching characteristics of the virgin and inversely prepolarized media were compared, and the conditions of the pulse voltage for writing were optimized. As a result, actual data containing 64×64 bits were recorded at an areal density of 4 Tbit/in.2. The bit error rate was evaluated to be 1.2×10-2.

  15. Method of forming a solar collector or hot water storage tank and solar water heating apparatus using same

    SciTech Connect

    Anderson, H.M.; Negley, M.E.

    1984-09-18

    The present invention relates to a method of forming a solar collector, or absorber, panels or a heat storage tank, suitable for heating water using solar energy. It also relates to articles of manufacture so formed and to solar water heating apparatus using said articles. Three methods of forming the panel or tank from two sheets of uncured elastic material, such as EPDM rubber, by simultaneously bonding and curing such material around the peripheral edges of the two sheets and at spaced apart, discrete areas over most of the interior areas of the sheets. In one form of the method, one of the sheets is coated with a layer of release agent, over all areas except the discrete areas and the peripheral areas so that only such uncoated areas will bond during cure. In another form, a sheet of non-adherent plastic slightly smaller than the two sheets and having holes or holidays to form the discrete areas is bonded between the two sheets. In a third form, the peripheral edges are first sealed to form a chamber, then the chamber is inflated and a forming die presses together the discrete areas only. Preferably, but not necessarily, reinforcing fibers may be employed or molded, into at least one of the uncured sheets. As articles of manufacture the absorber, or tank, each includes at least one inlet and one outlet at opposed edges of the so formed chamber. Further, the storage tank has a portion of the enclosed volume adapted to receive a heat exchanger. This is made possible by omission of the discrete bonded areas over about one-fourth of the area to the two sheets. In apparatus form, a solar absorption panel and a storage tank so formed (and interconnected inlet to outlet) are mounted back-to-back by an enclosing structure suitable for roof-top or ground-pad mounting and connection into a water system for solar heating of domestic water.

  16. Efficient Phase-Change Materials: Development of a Low-Cost Thermal Energy Storage System Using Phase-Change Materials with Enhanced Radiation Heat Transfer

    SciTech Connect

    2011-12-05

    HEATS Project: USF is developing low-cost, high-temperature phase-change materials (PCMs) for use in thermal energy storage systems. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun is not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. Most PCMs do not conduct heat very well. Using an innovative, electroless encapsulation technique, USF is enhancing the heat transfer capability of its PCMs. The inner walls of the capsules will be lined with a corrosion-resistant, high-infrared emissivity coating, and the absorptivity of the PCM will be controlled with the addition of nano-sized particles. USF’s PCMs remain stable at temperatures from 600 to 1,000°C and can be used for solar thermal power storage, nuclear thermal power storage, and other applications.

  17. Heat transfer performance of a phase-change thermal energy storage water heater using cross-linked high density polyethylene pellets

    SciTech Connect

    Jotshi, C.K.; Klausner, J.F.; Goswami, D.Y.; Hsieh, C.K.; Santhosh, M.K.; Colacino, F.

    1996-12-31

    The objective of this investigation was to develop an efficient water heater that stores thermal energy in a mixture of cross-linked high density polyethylene (HDPE) pellets and propylene glycol. Properties of cross-linked HDPE, such as melting and crystallization temperatures, heat of fusion and crystallization, and volume change were measured in the laboratory. The heat transfer coefficient for the mixture was also measured in a laboratory test. A prototype model of a storage water heater using a mixture of cross-linked HDPE pellets and propylene glycol was designed and fabricated. A copper finned heat transfer coil was used to extract the heat from the storage tank by passing water through it. The heat transfer efficiency (heat extracted by water/heat stored) was measured to be about 70%. To increase the efficiency, the storage unit was modified. In the modified unit, the length of the heat transfer coil was increased and coil spacing optimized. With the modification, the heat transfer efficiency was measured to be about 90%. In addition, a variable heat flux heating element, having high heat flux at the bottom and low heat flux at top, was used to reduce thermal stratification of the propylene glycol/HDPE pellet mixture.

  18. Modelling and optimization of transient processes in line focusing power plants with single-phase heat transfer medium

    NASA Astrophysics Data System (ADS)

    Noureldin, K.; González-Escalada, L. M.; Hirsch, T.; Nouri, B.; Pitz-Paal, R.

    2016-05-01

    A large number of commercial and research line focusing solar power plants are in operation and under development. Such plants include parabolic trough collectors (PTC) or linear Fresnel using thermal oil or molten salt as the heat transfer medium (HTM). However, the continuously varying and dynamic solar condition represent a big challenge for the plant control in order to optimize its power production and to keep the operation safe. A better understanding of the behaviour of such power plants under transient conditions will help reduce defocusing instances, improve field control, and hence, increase the energy yield and confidence in this new technology. Computational methods are very powerful and cost-effective tools to gain such understanding. However, most simulation models described in literature assume equal mass flow distributions among the parallel loops in the field or totally decouple the flow and thermal conditions. In this paper, a new numerical model to simulate a whole solar field with single-phase HTM is described. The proposed model consists of a hydraulic part and a thermal part that are coupled to account for the effect of the thermal condition of the field on the flow distribution among the parallel loops. The model is specifically designed for large line-focusing solar fields offering a high degree of flexibility in terms of layout, condition of the mirrors, and spatially resolved DNI data. Moreover, the model results have been compared to other simulation tools, as well as experimental and plant data, and the results show very good agreement. The model can provide more precise data to the control algorithms to improve the plant control. In addition, short-term and accurate spatially discretized DNI forecasts can be used as input to predict the field behaviour in-advance. In this paper, the hydraulic and thermal parts, as well as the coupling procedure, are described and some validation results and results of simulating an example field are

  19. Considerable Variation of Antibacterial Activity of Cu Nanoparticles Suspensions Depending on the Storage Time, Dispersive Medium, and Particle Sizes.

    PubMed

    Zakharova, Olga V; Godymchuk, Anna Yu; Gusev, Alexander A; Gulchenko, Svyatoslav I; Vasyukova, Inna A; Kuznetsov, Denis V

    2015-01-01

    Suspensions of Cu nanoparticles are promising for creating the new class of alternative antimicrobial products. In this study we examined copper nanoparticles of various sizes obtained by the method of wire electric explosion: nanopowder average size 50 nm (Cu 50) and 100 nm (Cu 100). The paper presents the complex study of the influence of physicochemical properties such as particle size and concentration of the freshly prepared and 24-hour suspensions of Cu nanoparticles in distilled water and physiological solution upon their toxicity to bacteria E. coli M-17. Ionic solution of Cu(2+) and sodium dichloroisocyanurate was used for comparison study. It has been shown that decrease in the nanoparticle size leads to changes in the correlation between toxicity and concentration as toxicity peaks are observed at low concentrations (0.0001⋯0.01 mg/L). It has been observed that antibacterial properties of Cu 50 nanoparticle suspensions are ceased after 24-hour storage, while for Cu 100 suspensions no correlation between antibacterial properties and storage time has been noted. Cu 100 nanoparticle suspensions at 10 mg/L concentration display higher toxicity at substituting physiological solution for water than Cu 50 suspensions. Dependence of the toxicity on the mean particle aggregates size in suspension was not revealed. PMID:26339611

  20. Considerable Variation of Antibacterial Activity of Cu Nanoparticles Suspensions Depending on the Storage Time, Dispersive Medium, and Particle Sizes

    PubMed Central

    Zakharova, Olga V.; Godymchuk, Anna Yu.; Gusev, Alexander A.; Gulchenko, Svyatoslav I.; Vasyukova, Inna A.; Kuznetsov, Denis V.

    2015-01-01

    Suspensions of Cu nanoparticles are promising for creating the new class of alternative antimicrobial products. In this study we examined copper nanoparticles of various sizes obtained by the method of wire electric explosion: nanopowder average size 50 nm (Cu 50) and 100 nm (Cu 100). The paper presents the complex study of the influence of physicochemical properties such as particle size and concentration of the freshly prepared and 24-hour suspensions of Cu nanoparticles in distilled water and physiological solution upon their toxicity to bacteria E. coli M-17. Ionic solution of Cu2+ and sodium dichloroisocyanurate was used for comparison study. It has been shown that decrease in the nanoparticle size leads to changes in the correlation between toxicity and concentration as toxicity peaks are observed at low concentrations (0.0001⋯0.01 mg/L). It has been observed that antibacterial properties of Cu 50 nanoparticle suspensions are ceased after 24-hour storage, while for Cu 100 suspensions no correlation between antibacterial properties and storage time has been noted. Cu 100 nanoparticle suspensions at 10 mg/L concentration display higher toxicity at substituting physiological solution for water than Cu 50 suspensions. Dependence of the toxicity on the mean particle aggregates size in suspension was not revealed. PMID:26339611

  1. Analysis of Influence of Heat Insulation on the Thermal Regime of Storage Tanks with Liquefied Natural Gas

    NASA Astrophysics Data System (ADS)

    Maksimov, Vyacheslav I.; Nagornova, Tatiana A.; Glazyrin, Viktor P.; Shestakov, Igor A.

    2016-02-01

    Is numerically investigated the process of convective heat transfer in the reservoirs of liquefied natural gas (LNG). The regimes of natural convection in a closed rectangular region with different intensity of heat exchange at the external borders are investigated. Is solved the time-dependent system of energy and Navier-Stokes equations in the dimensionless variables "vorticity - the stream function". Are obtained distributions of the hydrodynamic parameters and temperatures, that characterize basic regularities of the processes. The special features of the formation of circulation flows are isolated and the analysis of the temperature distribution in the solution region is carried out. Is shown the influence of geometric characteristics and intensity of heat exchange on the outer boundaries of reservoir on the temperature field in the LNG storage.

  2. Recording and reading temperature tolerance in holographic data storage, in relation to the anisotropic thermal expansion of a photopolymer medium.

    PubMed

    Tanaka, Tomiji

    2009-08-01

    In holographic data storage, it is difficult to retrieve data if the temperature difference between recording and reading exceeds 2 K. To widen this tolerance, a compensation method--adjusting the wavelengths and incident directions of the recording and reading beams--has been proposed. In this paper, for the first time, a method for calculating the recording and reading temperature tolerance using this compensation is introduced. To widen the narrow tolerance, typically +/- 10 K, it is effective to increase the coefficient of thermal expansion (CTE) of the substrate or decrease the CTE of the photopolymer. Although reducing the Numerical aperture of the objective lens is also effective, it degrades the recording density. PMID:19654823

  3. Quantum-state storage and processing for polarization qubits in an inhomogeneously broadened Λ-type three-level medium

    NASA Astrophysics Data System (ADS)

    Viscor, D.; Ferraro, A.; Loiko, Yu.; Mompart, J.; Ahufinger, V.

    2011-10-01

    We address the propagation of a single-photon pulse with two polarization components, i.e., a polarization qubit, in an inhomogeneously broadened “phaseonium” Λ-type three-level medium. We combine some of the nontrivial propagation effects characteristic for this kind of coherently prepared systems and the controlled reversible inhomogeneous broadening technique to propose several quantum information-processing applications, such as a protocol for polarization qubit filtering and sieving as well as a tunable polarization beam splitter. Moreover, we show that by imposing a spatial variation of the atomic coherence phase, an efficient quantum memory for the incident polarization qubit can be also implemented in Λ-type three-level systems.

  4. Thermal analysis of the position of the freezing front around an LNG in-ground storage tank with a heat barrier

    NASA Astrophysics Data System (ADS)

    Watanabe, O.; Tanaka, M.

    A technique of controlling the extent of the freezing zone created by in ground liquefied natural gas storage tanks by installing a heat barrier is described. The freezing conditions around three representative tanks after operating the system were compared.

  5. Preliminary design study of a central solar heating plant with seasonal storage at the University of Massachusetts, Amherst

    NASA Astrophysics Data System (ADS)

    Breger, D. S.; Sunderland, J. E.

    1991-04-01

    This report documents the design development and selection of the final preliminary design of a Central Solar Heating Plant with Seasonal Storage (CSHPSS) for the University of Massachusetts in Amherst (UMass). The effort has been performed by the Department of Mechanical Engineering at UMass under contract with the U.S. Department of Energy. Phase 1 of this project was directed at site selection for the CSHPSS project and was reported earlier. This report focuses on the Phase 2 development of the site conditions and analytical study of project design, performance, and cost. The UMass site presents an excellent opportunity of a CSHPSS project in terms of land availability for a large collector array, a 100 foot deep deposit of soft, saturated clay for seasonal thermal energy storage, and appropriate low temperature heating loads. The project under study represents the first implementation of this solar technology in the United States and results from the International Energy Agency collaboration on CSHPSS since 1979. The preliminary design calls for a large 10,000 m(exp 2) parabolic trough collector array, 70,000 m(exp 3) storage volume in clay with heat transfer through 900 boreholes. Design optimization is based on computer simulations using MINSUN and TRNSYS. The design is expected to provide 95 percent of the 3500 MWh heating and hot water load. A project cost of $3.12 million (plus $240,000 for HVAC load retrofit) is estimated, which provides an annualized cost of $66.2/MWh per unit solar energy delivered. The project will proceed into an engineering phase in Spring 1991.

  6. Effects of chemical reaction on MHD mixed convection stagnation point flow toward a vertical plate in a porous medium with radiation and heat generation

    NASA Astrophysics Data System (ADS)

    Hari, Niranjan; Sivasankaran, S.; Bhuvaneswari, M.; Siri, Zailan

    2015-12-01

    The aim of the present study is to analyze the effects of chemical reaction on MHD mixed convection with the stagnation point flow towards a vertical plate embedded in a porous medium with radiation and internal heat generation. The governing boundary layer equations are transformed into a set of ordinary differential equations using similarity transformations. Then they are solved by shooting technique with Runge-Kutta fourth order iteration. The obtained numerical results are illustrated graphically and the heat and mass transfer rates are given in tabular form. The velocity and temperature profiles overshoot near the plate on increasing the chemical reaction parameter, Richardson number and magnetic field parameter.

  7. Annual Collection and Storage of Solar Energy for the Heating of Buildings, Report No. 3. Semi-Annual Progress Report, August 1977 - January 1978.

    ERIC Educational Resources Information Center

    Beard, J. Taylor; And Others

    This report is part of a series from the Department of Energy on the use of solar energy in heating buildings. Described here is a new system for year around collection and storage of solar energy. This system has been operated at the University of Virginia for over a year. Composed of an underground hot water storage system and solar collection,…

  8. Low-cost phase change material as an energy storage medium in building envelopes: Experimental and numerical analyses

    DOE PAGESBeta

    Biswas, Kaushik; Abhari, Ramin

    2014-10-03

    A promising approach to increasing the energy efficiency of buildings is the implementation of a phase change material (PCM) in the building envelope. Numerous studies over the last two decades have reported the energy saving potential of PCMs in building envelopes, but their wide application has been inhibited, in part, by their high cost. This article describes a novel PCM made of naturally occurring fatty acids/glycerides trapped into high density polyethylene (HDPE) pellets and its performance in a building envelope application. The PCM-HDPE pellets were mixed with cellulose insulation and then added to an exterior wall of a test buildingmore » in a hot and humid climate, and tested over a period of several months, To demonstrate the efficacy of the PCM-enhanced cellulose insulation in reducing the building envelope heat gains and losses, side-by-side comparison was performed with another wall section filled with cellulose-only insulation. Further, numerical modeling of the test wall was performed to determine the actual impact of the PCM-HDPE pellets on wall-generated heating and cooling loads and the associated electricity consumption. The model was first validated using experimental data and then used for annual simulations using typical meteorological year (TMY3) weather data. Furthermore, this article presents the experimental data and numerical analyses showing the energy-saving potential of the new PCM.« less

  9. Low-cost phase change material as an energy storage medium in building envelopes: Experimental and numerical analyses

    SciTech Connect

    Biswas, Kaushik; Abhari, Ramin

    2014-10-03

    A promising approach to increasing the energy efficiency of buildings is the implementation of a phase change material (PCM) in the building envelope. Numerous studies over the last two decades have reported the energy saving potential of PCMs in building envelopes, but their wide application has been inhibited, in part, by their high cost. This article describes a novel PCM made of naturally occurring fatty acids/glycerides trapped into high density polyethylene (HDPE) pellets and its performance in a building envelope application. The PCM-HDPE pellets were mixed with cellulose insulation and then added to an exterior wall of a test building in a hot and humid climate, and tested over a period of several months, To demonstrate the efficacy of the PCM-enhanced cellulose insulation in reducing the building envelope heat gains and losses, side-by-side comparison was performed with another wall section filled with cellulose-only insulation. Further, numerical modeling of the test wall was performed to determine the actual impact of the PCM-HDPE pellets on wall-generated heating and cooling loads and the associated electricity consumption. The model was first validated using experimental data and then used for annual simulations using typical meteorological year (TMY3) weather data. Furthermore, this article presents the experimental data and numerical analyses showing the energy-saving potential of the new PCM.

  10. A Study on a Performance of Water-Spray-Type Ice Thermal Energy Storage Vessel with Vertical Heat Exchanger Plates

    NASA Astrophysics Data System (ADS)

    Yoshimura, Kenji; Sasaguchi, Kengo; Fukuda, Toshihito; Koyama, Shigeru

    A system with a water-embedded-trpe ice storage vessel is widely used because of its simple structure and compactness. However, the water-embedded-type ice storage vessel has a disadvantage, that is, the solidification rate is very small. The use of falling water film seems to be one of promising ways for solving this disadvantage. We have found in a previous study that the use of the falling water film is very effective, especially for high initial water temperatures. In the present study, we eexamined the performance of a faling-water-film-type ice thermal energy storage vessel with pratical size, having vertical heat exchanger plates. The ice making performance coefficient, η, increases with time, and it becomes am aximum value of 2.5, after that, it decreases gradually. In order to make ice efficiently, it is necessary to set a flow rate of refrigerant properly and to adjust a difference between the evaporating temperature of refrigerant and the freezing point of water so that the refrigerant evaporates in the heat exchanger plates overall.

  11. Conventional versus storage phosphor-plate digital images to visualize the root canal system contrasted with a radiopaque medium.

    PubMed

    Naoum, Hani J; Chandler, Nicholas P; Love, Robert M

    2003-05-01

    The pulp tissue was removed from 20 mandibular first molar teeth using 2.5% NaOCl irrigation and hand files. The dried canals were infused with radiopaque contrast medium. Standardized conventional and Digora digital images were obtained of each tooth positioned in a dried mandible at 0- and 30-degree horizontal angulations. Three evaluators rated the image clarity of the 0- and 30-degree original, enhanced, three-dimensional, zoom, and reverse digital image modes as superior, equal, or inferior to corresponding 0- and 30-degree conventional radiographs. The ratings were compared using the Wilcoxon signed rank test. The original, three-dimensional, zoom, or reverse digital images were inferior to the conventional radiographs for clarity of canal anatomy. The enhanced digital images were not always inferior to the conventional radiographs and were the only images superior to the original digital images. Overall, evaluators rated the image clarity of root canal anatomy on conventional radiographs better than on Digora images. However, factors in the experimental design may have contributed to this result. PMID:12775009

  12. Performance of evacuated tubular solar collectors in a residential heating and cooling system

    NASA Astrophysics Data System (ADS)

    Duff, W. S.; Loef, G. O. G.

    1981-03-01

    Operation of CSU Solar House I during the heating season of 1978-1979 and during the 1979 cooling season is discussed. The systems comprised an experimental evacuated tubular solar collector, a nonfreezing aqueous collection medium, heat exchange to an insulated conventional vertical cylindrical storage tank and to a built up rectangular insulated storage tank, heating of circulating air by solar heated water and by electric auxiliary in an off peak heat storage unit, space cooling by lithium bromide absorption chiller, and service water heating by solar exchange and electric auxiliary. The system is compared with CSU Solar Houses I, II and III. The experimental collector provides solar heating and cooling with minimum operational problems. Improved performance, particularly for cooling, resulted from the use of a very well insulated heat storage tank. Day time electric auxiliary heating is avoided by use of off peak electric heat storage.

  13. Synthesis and effect of electrode heat-treatment on the superior lithium storage performance of Co3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Jingjing; Huang, Tao; Yu, Aishui

    2015-01-01

    Single-crystal Co3O4 nanoparticles are produced via a novel lysine-assisted hydrothermal process. When used as anode materials for lithium-ion batteries, a heat-treatment process is first introduced to decrease the initial irreversible loss and enhance the cyclability of Co3O4 nanoparticle-based electrodes using a polyvinylidene fluoride (PVDF) binder. Heat-treated electrodes exhibit improved lithium storage properties relative to those that are unheated. In particular, Co3O4 electrodes heated at 200 °C have the highest capacity and best reversibility: 1000 mA h g-1 with 95.2% capacity retention after 170 cycles at a current density of 100 mA g-1. Even when cycled at a high rate of 1000 mA g-1, a reversible capacity up to 600 mA h g-1 can still be maintained after 500 cycles. These improvements are explained based on the results from thermal analysis, transmission electron microscopy, scanning electron microscopy, nanoscratch tests, and electrochemical impedance spectroscopy measurements. Heat treatment not only improves binder distribution and adhesion to both Co3O4 particles and the substrate but also ensures high interfacial conductivity and keeps the active material particles and carbon black electrically connected, thereby leading to superior electrochemical performance. The results suggest that the heat-treated Co3O4 electrode may be a promising anode for next-generation lithium-ion batteries.

  14. Thermal performance of a heat storage module using calcium chloride hexahydrate

    SciTech Connect

    Dietz, D.

    1984-02-01

    The thermal performance of an air-heated/cooled, phase-change, heat stoage module was tested and evaluated. The module (rated at 38.7 kWh) consist of 130 vertically oriented tubes filled with 729 kg (1607 lb) of calcium chloride hexahydrate and enclosed in a rectangular box. Heat transfer rates measured during charging and discharging decreased with time as a result of decreasing effective heat transfer area and increasing thermal resistance of the phase-change material. These two dominant effects are included in a proposed mathematical model that predicted the experimental data.

  15. Low-Cost Bio-Based Phase Change Materials as an Energy Storage Medium in Building Envelopes

    SciTech Connect

    Biswas, Kaushik; Abhari, Mr. Ramin; Shukla, Dr. Nitin; Kosny, Dr. Jan

    2015-01-01

    A promising approach to increasing the energy efficiency of buildings is the implementation of phase change material (PCM) in building envelope systems. Several studies have reported the energy saving potential of PCM in building envelopes. However, wide application of PCMs in building applications has been inhibited, in part, by their high cost. This article describes a novel paraffin product made of naturally occurring fatty acids/glycerides trapped into high density polyethylene (HDPE) pellets and its performance in a building envelope application, with the ultimate goal of commercializing a low-cost PCM platform. The low-cost PCM pellets were mixed with cellulose insulation, installed in external walls and field-tested under natural weatherization conditions for a period of several months. In addition, several PCM samples and PCM-cellulose samples were prepared under controlled conditions for laboratory-scale testing. The laboratory tests were performed to determine the phase change properties of PCM-enhanced cellulose insulation both at microscopic and macroscopic levels. This article presents the data and analysis from the exterior test wall and the laboratory-scale test data. PCM behavior is influenced by the weather and interior conditions, PCM phase change temperature and PCM distribution within the wall cavity, among other factors. Under optimal conditions, the field data showed up to 20% reduction in weekly heat transfer through an external wall due to the PCM compared to cellulose-only insulation.

  16. Temperature conditioning system suitable for use with a solar energy collection and storage apparatus or a low temperature energy source

    SciTech Connect

    Briley, P.B.

    1983-02-22

    A temperature conditioning system employing an ejector-type compressor and a refrigerant selected for operation at the limited operating temperatures of a heat energy collection and storage apparatus. Improved performance may be achieved by employing a two-tank storage system having a control circuit for supplying heat transfer medium from the hotter of the tanks for return to the cooler.

  17. Temperature conditioning system suitable for use with a solar energy collection and storage apparatus or a low temperature energy source

    SciTech Connect

    Briley, P. B.

    1981-02-03

    A temperature conditioning system is disclosed employing an ejector-type compressor and a refrigerant selected for operation at the limited operating temperatures of a heat energy collection and storage apparatus. Improved performance may be achieved by employing a two-tank storage system having a control circuit for supplying heat transfer medium from the hotter of the tanks for return to the cooler.

  18. Steady Boundary Layer Slip Flow along with Heat and Mass Transfer over a Flat Porous Plate Embedded in a Porous Medium

    PubMed Central

    Aziz, Asim; Siddique, J. I.; Aziz, Taha

    2014-01-01

    In this paper, a simplified model of an incompressible fluid flow along with heat and mass transfer past a porous flat plate embedded in a Darcy type porous medium is investigated. The velocity, thermal and mass slip conditions are utilized that has not been discussed in the literature before. The similarity transformations are used to transform the governing partial differential equations (PDEs) into a nonlinear ordinary differential equations (ODEs). The resulting system of ODEs is then reduced to a system of first order differential equations which was solved numerically by using Matlab bvp4c code. The effects of permeability, suction/injection parameter, velocity parameter and slip parameter on the structure of velocity, temperature and mass transfer rates are examined with the aid of several graphs. Moreover, observations based on Schmidt number and Soret number are also presented. The result shows, the increase in permeability of the porous medium increase the velocity and decrease the temperature profile. This happens due to a decrease in drag of the fluid flow. In the case of heat transfer, the increase in permeability and slip parameter causes an increase in heat transfer. However for the case of increase in thermal slip parameter there is a decrease in heat transfer. An increase in the mass slip parameter causes a decrease in the concentration field. The suction and injection parameter has similar effect on concentration profile as for the case of velocity profile. PMID:25531301

  19. The effect of transpiration on coupled heat and mass transfer in mixed convection over a vertical plate embedded in a saturated porous medium

    SciTech Connect

    Yih, K.A.

    1997-03-01

    Effect of transpiration velocity on the heat and mass transfer characteristics of mixed convection about a permeable vertical plate embedded in a saturated porous medium under the coupled effects of thermal and mass diffusion is numerically analyzed. The plate is maintained at a uniform temperature and species concentration with constant transpiration velocity. The transformed governing equations are solved by Keller box method. Numerical results for the local Nusselt number and local Sherwood number are presented. In general, it has been found for thermally assisted flow that the local surface heat and mass transfer rates increase owing to suction of fluid. This trend reversed for blowing of fluid. It is apparent that the Lewis number has a pronounced effect on the local Sherwood number than it does on the local Nusselt number. Increasing the Lewis number decreases (increases) the local heat (mass) transfer rate.

  20. Environmental assessment for the relocation and storage of isotopic heat sources, Hanford Site, Richland, Washington

    SciTech Connect

    1997-06-01

    As part of a bilateral agreement between the Federal Minister for Research and Technology of the Federal Republic of Germany (FRG) and the DOE, Pacific Northwest National Laboratory (PNNL) developed processes for the treatment and immobilization of high-level radioactive waste. One element of this bilateral agreement was the production of sealed isotopic heat sources. During the mid-1980s, 30 sealed isotopic heat sources were manufactured. The sources contain a total of approximately 8.3 million curies consisting predominantly of cesium-137 and strontium-90 with trace amounts of transuranic contamination. Currently, the sources are stored in A-Cell of the 324 Building. Intense radiation fields from the sources are causing the cell windows and equipment to deteriorate. Originally, it was not intended to store the isotopic heat sources for this length of time in A-cell. The 34 isotopic heat sources are classified as remote handled transuranic wastes. Thirty-one of the isotopic heat sources are sealed, and seals on the three remaining isotopic heat sources have not been verified. However, a decision has been made to place the remaining three isotopic heat sources in the CASTOR cask(s). The Washington State Department of Health (WDOH) has concurred that isotopic heat sources with verified seals or those placed into CASTOR cask(s) can be considered sealed (no potential to emit radioactive air emissions) and are exempt from WAC Chapter 246-247, Radiation Protection-Air Emissions.

  1. Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs)

    SciTech Connect

    Zhao, C.Y.; Lu, W.; Tian, Y.

    2010-08-15

    In this paper the experimental investigation on the solid/liquid phase change (melting and solidification) processes have been carried out. Paraffin wax RT58 is used as phase change material (PCM), in which metal foams are embedded to enhance the heat transfer. During the melting process, the test samples are electrically heated on the bottom surface with a constant heat flux. The PCM with metal foams has been heated from the solid state to the pure liquid phase. The temperature differences between the heated wall and PCM have been analysed to examine the effects of heat flux and metal foam structure (pore size and relative density). Compared to the results of the pure PCM sample, the effect of metal foam on solid/liquid phase change heat transfer is very significant, particularly at the solid zone of PCMs. When the PCM starts melting, natural convection can improve the heat transfer performance, thereby reducing the temperature difference between the wall and PCM. The addition of metal foam can increase the overall heat transfer rate by 3-10 times (depending on the metal foam structures and materials) during the melting process (two-phase zone) and the pure liquid zone. The tests for investigating the solidification process under different cooling conditions (e.g. natural convection and forced convection) have been carried out. The results show that the use of metal foams can make the sample solidified much faster than pure PCM samples, evidenced by the solidification time being reduced by more than half. In addition, a two-dimensional numerical analysis has been carried out for heat transfer enhancement in PCMs by using metal foams, and the prediction results agree reasonably well with the experimental data. (author)

  2. Advanced latent heat of fusion thermal energy storage for solar power systems

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.; Stearns, J. W.

    1985-01-01

    The use of solar thermal power systems coupled with thermal energy storage (TES) is being studied for both terrestrial and space applications. In the case of terrestrial applications, it was found that one or two hours of TES could shift the insolation peak (solar noon) to coincide with user peak loads. The use of a phase change material (PCM) is attractive because of the higher energy storage density which can be achieved. However, the use of PCM has also certain disadvantages which must be addressed. Proof of concept testing was undertaken to evaluate corrosive effects and thermal ratcheting effects in a slurry system. It is concluded that the considered alkali metal/alkali salt slurry approach to TES appears to be very viable, taking into account an elimination of thermal ratcheting in storage systems and the reduction of corrosive effects. The approach appears to be useful for an employment involving temperatures applicable to Brayton or Stirling cycles.

  3. A new method of efficient heat transfer and storage at very high temperatures

    NASA Technical Reports Server (NTRS)

    Shaw, D.; Bruckner, A. P.; Hertzberg, A.

    1980-01-01

    A unique, high temperature (1000-2000 K) continuously operating capacitive heat exchanger system is described. The system transfers heat from a combustion or solar furnace to a working gas by means of a circulating high temperature molten refractory. A uniform aggregate of beads of a glass-like refractory is injected into the furnace volume. The aggregate is melted and piped to a heat exchanger where it is sprayed through a counter-flowing, high pressure working gas. The refractory droplets transfer their heat to the gas, undergoing a phase change into the solid bead state. The resulting high temperature gas is used to drive a suitable high efficiency heat engine. The solidified refractory beads are delivered back to the furnace and melted to continue the cycle. This approach avoids the important temperature limitations of conventional tube-type heat exchangers, giving rise to the potential of converting heat energy into useful work at considerably higher efficiencies than currently attainable and of storing energy at high thermodynamic potential.

  4. Lunox storage and transfer system

    NASA Technical Reports Server (NTRS)

    1987-01-01

    This semester, efforts were concentrated on the design of the Lunox transfer line from the storage area to the launch site. Emphasis was placed on flow and heat transfer problems and their remedies by reducing the effect of radiation by selecting materials for storage tanks, transfer lines and insulation. The design for the storage tank was based on a medium sized Lunox production facility of 6,000 metric tons per year and the frequency of transportation of Lunox from lunar launch site to lower lunar orbit of four launches per month. The design included the selection of materials for cryogenic storage, insulation and radiation shielding. Lunox was pumped to the storage area near the launch site through a piping network designed for maximum mass flow rate with a minimum boil off. The entire network incorporated specially designed radiation shields made of material which was lightweight and low in secondary radiation.

  5. Effect of Heat Treatment Process on Mechanical Properties and Microstructure of a 9% Ni Steel for Large LNG Storage Tanks

    NASA Astrophysics Data System (ADS)

    Zhang, J. M.; Li, H.; Yang, F.; Chi, Q.; Ji, L. K.; Feng, Y. R.

    2013-12-01

    In this paper, two different heat treatment processes of a 9% Ni steel for large liquefied natural gas storage tanks were performed in an industrial heating furnace. The former was a special heat treatment process consisting of quenching and intercritical quenching and tempering (Q-IQ-T). The latter was a heat treatment process only consisting of quenching and tempering. Mechanical properties were measured by tensile testing and charpy impact testing, and the microstructure was analyzed by optical microscopy, transmission electron microscopy, and x-ray diffraction. The results showed that outstanding mechanical properties were obtained from the Q-IQ-T process in comparison with the Q-T process, and a cryogenic toughness with charpy impact energy value of 201 J was achieved at 77 K. Microstructure analysis revealed that samples of the Q-IQ-T process had about 9.8% of austenite in needle-like martensite, while samples of the Q-T process only had about 0.9% of austenite retained in tempered martensite.

  6. Energy storage and heating measurements in flashlamp-pumped Cr:Nd:GSGG and Nd:YAG

    NASA Astrophysics Data System (ADS)

    Sumida, David Shuji; Rockwell, David A.; Mangir, Metin S.

    1988-06-01

    The authors have experimentally measured the energy stored and the heat generated in flashlamp-pumped Cr:Nd:GSGG for three Cr3+ concentrations in the range of 1-2 x 10to the 20th ions/cu cm. It has been found that the energy storage efficiency in these samples is 1.7 times greater than that of the Nd:YAG sample, and the normalized heating parameter chi, defined as the heat deposited per unit of stored energy, is 2.5 under the specified pumping conditions, with no evident dependence on the Cr3+ concentration. It has also been found that the measured chi value for the sample of Nd:YAG is 2.9 for the same pumping conditions. These observed chi values exceed expected values by factors of about 1.1 and 2 for the Cr:Nd:GSGG and Nd:YAG samples, respectively. The thermal focal length in the two materials was measured showing that the lensing is shorter in GSGG by a factor of 2.6 for the same available output power, or a factor of 4.5 for the same input pump power. The expected thermal lensing was determined using measured heat loads with no adjustable parameters, achieving satisfactory agreement with measured lensing values.

  7. Numerical modeling of heat transfer in the fuel oil storage tank at thermal power plant

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Svetlana A.

    2015-01-01

    Presents results of mathematical modeling of convection of a viscous incompressible fluid in a rectangular cavity with conducting walls of finite thickness in the presence of a local source of heat in the bottom of the field in terms of convective heat exchange with the environment. A mathematical model is formulated in terms of dimensionless variables "stream function - vorticity vector speed - temperature" in the Cartesian coordinate system. As the results show the distributions of hydrodynamic parameters and temperatures using different boundary conditions on the local heat source.

  8. Reversible chemical reactions for energy storage in a large-scale heat utility

    NASA Astrophysics Data System (ADS)

    Nix, R. G.; Bergeron, P. W.; West, R. E.

    This paper describes a study of the feasibility of using either Ca(OH)2 or CH4-CO2 reaction systems for long-duration storage in a central receiver, solar energy facility. The system is required to operate 262 MW(t) (8.95 x 10 to the 8th Btu/h) as 4.14-MPa (600-psig), 400 C (750 F) superheated steam, with usage split evenly among 10 users clustered in an industrial park. Results indicate that use of a solar thermal system with long-duration storage of either thermomechanical or direct thermal energy (molten draw salt) is probably not justified when compared to the use of coal-fired boilers for steam generation. However, solar thermal systems with either thermochemical or direct thermal energy storage may be competitive with oil- or natural gas-fired boilers if the cost of the solar energy supplied to the storage system is sufficiently low and the costs of oil and natural gas have escalated to a sufficiently high level.

  9. Effect of processing by hydrostatic high pressure of two ready to heat vegetable meals and stability after refrigerated storage.

    PubMed

    Masegosa, Rosa; Delgado-Adámez, Jonathan; Contador, Rebeca; Sánchez-Íñiguez, Francisco; Ramírez, Rosario

    2014-12-01

    The effect of high pressure processing (HPP) (400 and 600 MPa for 1 and 5 min) and the stability during storage were studied in two ready to heat vegetable meals: meal A, mainly composed by pumpkin and broccoli, and meal B, mainly composed by eggplant, zucchini, chard and spinach. The treatment at 600 MPa/5 min was the most effective to reduce the initial microbial loads of the meals and maintained better the microbial safety during storage. HPP had no effect on the physico-chemical and sensory properties. HPP at 600 MPa increased the antioxidant activity of the meal A. In contrast HPP reduced the antioxidant activity of the meal B, although in general high levels of antioxidants were maintained after processing and during storage. In conclusion, treatments at 600 MPa for 5 min were the most suitable to increase the shelf-life of the meals without affecting their physico-chemical, antioxidant and sensory properties. PMID:23908392

  10. Numerical Investigation of the effect of adiabatic section location on thermal performance of a heat pipe network with the application in thermal energy storage systems

    NASA Astrophysics Data System (ADS)

    Mahdavi, Mahboobe; Tiari, Saeed; Qiu, Songgang

    2015-11-01

    Latent heat thermal energy storage systems benefits from high energy density and isothermal storing process. However, the low thermal conductivity of the phase change material leads to prolong the melting or solidification time. Using a passive device such as heat pipes is required to enhance the heat transfer and to improve the efficiency of the system. In the present work, the performance of a heat pipe network specifically designed for a thermal energy storage system is studied numerically. The network includes a primary heat pipe, which transfers heat received from solar receiver to the heat engine. The excess heat is simultaneously delivered to charge the phase change material via secondary heat pipes. The primary heat pipe composed of a disk shape evaporator, an adiabatic section and a disk shape condenser. The adiabatic section can be either located at the center or positioned outward to the surrounding of the container. Here, the effect of adiabatic section position on thermal performance of the system is investigated. It was concluded that displacing the adiabatic section outwards dramatically increases the average temperatures of the condensers and reduces the thermal resistance of heat pipes.

  11. MHD Natural Convective Flow in an Isosceles Triangular Cavity Filled with Porous Medium due to Uniform/Non-Uniform Heated Side Walls

    NASA Astrophysics Data System (ADS)

    Javed, Tariq; Siddiqui, Muhammad Arshad; Mehmood, Ziafat; Pop, Ioan

    2015-10-01

    In this article, numerical simulations are carried out for fluid flow and heat transfer through natural convection in an isosceles triangular cavity under the effects of uniform magnetic field. The cavity is of cold bottom wall and uniformly/non-uniformly heated side walls and is filled with isotropic porous medium. The governing Navier Stoke's equations are subjected to Penalty finite element method to eliminate pressure term and Galerkin weighted residual method is applied to obtain the solution of the reduced equations for different ranges of the physical parameters. The results are verified as grid independent and comparison is made as a limiting case with the results available in literature, and it is shown that the developed code is highly accurate. Computations are presented in terms of streamlines, isotherms, local Nusselt number and average Nusselt number through graphs and tables. It is observed that, for the case of uniform heating side walls, strength of circulation of streamlines gets increased when Rayleigh number is increased above critical value, but increase in Hartmann number decreases strength of streamlines circulations. For non-uniform heating case, it is noticed that heat transfer rate is maximum at corners of bottom wall.

  12. Calculation of the radiative heat exchange in a conical cavity of complex configuration with an absorptive medium

    NASA Technical Reports Server (NTRS)

    Surinov, Y. A.; Fedyanin, V. E.

    1975-01-01

    The generalized zonal method is used to calculate the distribution of the temperature factor on the lateral surface of a conical cavity of complex configuration (a Laval nozzle) containing an absorptive medium. The highest values of the radiation density occur on the converging part of the lateral surface of the complex conical cavity (Laval nozzle).

  13. Effect of Heat Input on Microstructural Changes and Corrosion Behavior of Commercially Pure Titanium Welds in Nitric Acid Medium

    NASA Astrophysics Data System (ADS)

    Ravi Shankar, A.; Gopalakrishnan, G.; Balusamy, V.; Kamachi Mudali, U.

    2009-11-01

    Commercially pure titanium (Ti) has been selected for the fabrication of dissolver for the proposed fast reactor fuel reprocessing plant at Kalpakkam, India. In the present investigation, microstructural changes and corrosion behavior of tungsten inert gas (TIG) welds of Ti grade-1 and grade-2 with different heat inputs were carried out. A wider heat affected zone was observed with higher heat inputs and coarse grains were observed from base metal toward the weld zone with increasing heat input. Fine and more equiaxed prior β grains were observed at lower heat input and the grain size increased toward fusion zone. The results indicated that Ti grade-1 and grade-2 with different heat inputs and different microstructures were insensitive to corrosion in liquid, vapor, and condensate phases of 11.5 M nitric acid tested up to 240 h. The corrosion rate in boiling liquid phase (0.60-0.76 mm/year) was higher than that in vapor (0.012-0.039 mm/year) and condensate phases (0.04-0.12 mm/year) of nitric acid for Ti grade-1 and grade-2, as well as for base metal for all heat inputs. Potentiodynamic polarization experiment carried out at room temperature indicated higher current densities and better passivation in 11.5 M nitric acid. SEM examination of Ti grade-1 welds for all heat inputs exposed to liquid phase after 240 h showed corrosion attack on the surface, exposing Widmanstatten microstructure containing acicular alpha. The continuous dissolution of the liquid-exposed samples was attributed to the heterogeneous microstructure and non-protective passive film formation.

  14. Solar energy storage via liquid filled cans - Test data and analysis

    NASA Technical Reports Server (NTRS)

    Saha, H.

    1978-01-01

    This paper describes the design of a solar thermal storage test facility with water-filled metal cans as heat storage medium and also presents some preliminary tests results and analysis. This combination of solid and liquid mediums shows unique heat transfer and heat contents characteristics and will be well suited for use with solar air systems for space and hot water heating. The trends of the test results acquired thus far are representative of the test bed characteristics while operating in the various modes.

  15. Second test campaign of a pilot scale latent heat thermal energy storage - Durability and operational strategies

    NASA Astrophysics Data System (ADS)

    Garcia, Pierre; Rougé, Sylvie; Nivelon, Pierre

    2016-05-01

    A Phase Change Material (PCM) thermal energy storage module was tested in the framework of the Alsolen Sup project. Test results prove not only that the equivalent thermal resistance deduced from the first test campaign does not vary after several months and tens of melting and solidification cycles, but also that our modelling approach is valid both for design and non-nominal power rates, even if the model has to be improved to take into account varying water level and temperature stratification.

  16. The absorption process for heating, cooling and energy storage - An historical survey

    NASA Astrophysics Data System (ADS)

    Bjurstrom, H.; Raldow, W.

    1981-03-01

    A historical overview of the absorption process is given and a wide range of applications, from household refrigerators and air conditioners to topping processes in power plants, are surveyed in historical perspective. The production of mechanical energy and open systems are also included. The current development of the absorption process is sketched out and special attention is given to the aspects of thermal energy storage.

  17. Polymer alloys with balanced heat storage capacity and engineering attributes and applications thereof

    DOEpatents

    Soroushian, Parviz

    2002-01-01

    A thermoplastic polymer of relatively low melt temperature is blended with at least one of thermosets, elastomers, and thermoplastics of relatively high melt temperature in order to produce a polymer blend which absorbs relatively high quantities of latent heat without melting or major loss of physical and mechanical characteristics as temperature is raised above the melting temperature of the low-melt-temperature thermoplastic. The polymer blend can be modified by the addition of at least one of fillers, fibers, fire retardants, compatibilisers, colorants, and processing aids. The polymer blend may be used in applications where advantage can be taken of the absorption of excess heat by a component which remains solid and retains major fractions of its physical and mechanical characteristics while absorbing relatively high quantities of latent heat.

  18. Economic analysis of community solar heating systems that use annual cycle thermal energy storage

    NASA Astrophysics Data System (ADS)

    Baylin, F.; Monte, R.; Sillman, S.; Hooper, F. C.; McClenahan, J. D.

    1981-02-01

    Systems were sized for three housing configurations: single unit dwellings, 10 unit, and 200 unit apartment complexes in 50, 200, 400, and 1000 unit communities in 10 geographic locations in the United States. Thermal energy is stored in large, constructed, underground tanks. Costs were assigned to each component of every system in order to allow calculation of total costs. Results are presented as normalized system costs per unit of heat delivered per building unit. These methods allow: identification of the relative importance of each system component in the overall cost; and identification of the key variables that determine the optimum sizing of a district solar heating system.

  19. Preparation of Nano-Composite Ca2-αZnα(OH)4 with High Thermal Storage Capacity and Improved Recovery of Stored Heat Energy

    NASA Astrophysics Data System (ADS)

    Zheng, M.; Sun, S. M.; Hu, J.; Zhao, Y.; Yu, L. J.

    2014-11-01

    Thermal energy storage has very important prospects in many applications related to the use of renewable energies (solar energy, etc.) or other energy sources, such as waste heat from industrial processes. Thermochemical storage is very attractive for long-term storage, since it could be conducted at room temperature without energy losses. In the present paper, a novel nanocomposite material, Ca2-αZnα(OH)4, is prepared using coprecipitation methodology and is characterized by XRD and DSC tests. The XRD result shows that the grain size of the nano-composite ranges from 40 nm to 95 nm. The DSC test result shows that the nano-composite exhibits high thermal storage capacity: 764.5 J/g at α = 0.8555. Its thermal decomposition temperature was found to be approximately 180º. Itwas found possible to recover 63.25% of the stored heat energy.

  20. Thermal and economic assessment of hot side sensible heat and cold side phase change storage combination fo absorption solar cooling system

    NASA Astrophysics Data System (ADS)

    Choi, M. K.; Morehouse, J. H.

    An analysis of a solar assisted absorption cooling system which employs a combination of phase change on the cold side and sensible heat storage on the hot side of the cooling machine for small commercial buildings is given. The year-round thermal performance of this system for space cooling were determined by simulation and compared against conventional cooling systems in three geographic locations: Phoenix, Arizona; Miami, Florida and Washington, D.C. The results indicate that the hot-cold storage combination has a considerable amount of energy and economical savings over hot side sensible heat storage. Using the hot-cold storage combination, the optimum collector areas for Washington, D.C., Phoenix and Miami are 355 m squared, 250 m squared and 495 m squared, respectively. Compared against conventional vapor compression chiller, the net solar fractions are 61, 67 and 69 percent, respectively.

  1. Heat Transfer Analysis for Stationary Boundary Layer Slip Flow of a Power-Law Fluid in a Darcy Porous Medium with Plate Suction/Injection.

    PubMed

    Aziz, Asim; Ali, Yasir; Aziz, Taha; Siddique, J I

    2015-01-01

    In this paper, we investigate the slip effects on the boundary layer flow and heat transfer characteristics of a power-law fluid past a porous flat plate embedded in the Darcy type porous medium. The nonlinear coupled system of partial differential equations governing the flow and heat transfer of a power-law fluid is transformed into a system of nonlinear coupled ordinary differential equations by applying a suitable similarity transformation. The resulting system of ordinary differential equations is solved numerically using Matlab bvp4c solver. Numerical results are presented in the form of graphs and the effects of the power-law index, velocity and thermal slip parameters, permeability parameter, suction/injection parameter on the velocity and temperature profiles are examined. PMID:26407162

  2. Heat Transfer Analysis for Stationary Boundary Layer Slip Flow of a Power-Law Fluid in a Darcy Porous Medium with Plate Suction/Injection

    PubMed Central

    Aziz, Asim; Ali, Yasir; Aziz, Taha; Siddique, J. I.

    2015-01-01

    In this paper, we investigate the slip effects on the boundary layer flow and heat transfer characteristics of a power-law fluid past a porous flat plate embedded in the Darcy type porous medium. The nonlinear coupled system of partial differential equations governing the flow and heat transfer of a power-law fluid is transformed into a system of nonlinear coupled ordinary differential equations by applying a suitable similarity transformation. The resulting system of ordinary differential equations is solved numerically using Matlab bvp4c solver. Numerical results are presented in the form of graphs and the effects of the power-law index, velocity and thermal slip parameters, permeability parameter, suction/injection parameter on the velocity and temperature profiles are examined. PMID:26407162

  3. Runge-Kutta ray tracing technique for solving radiative heat transfer in a two-dimensional graded-index medium

    NASA Astrophysics Data System (ADS)

    Huang, Yong; Shi, Guo-Dong; Zhu, Ke-Yong

    2016-06-01

    This paper adopts the Runge-Kutta ray tracing method to obtain the ray-trajectory numerical solution in a two-dimensional gradient index medium. The emitting, absorbing and scattering processes are simulated by the Monte Carlo method. The temperature field and ray trajectory in the medium are obtained by the three methods, the Runge-Kutta ray tracing method, the ray tracing method with the cell model and the discrete curved ray tracing method with the linear refractive index cell model. Comparing the results of the three methods, it is found that the results by the Monte Carlo Runge-Kutta ray tracing method are of the highest accuracy. To improve the computational speed, the variable step-size Runge-Kutta ray tracing method is proposed, and the maximum relative error between the temperature field in the nonscattering medium by this method and the benchmark solution is less than 0.5%. The results also suggest that the Runge-Kutta ray tracing method would make the radiative transfer solution in the three-dimensional graded index media much easier.

  4. Thermal analysis on organic phase change materials for heat storage applications

    NASA Astrophysics Data System (ADS)

    Lager, Daniel

    2016-07-01

    In this paper, methodologies based on thermal analysis to evaluate specific heat capacity, phase transition enthalpies, thermal cycling stability and thermal conductivity of organic phase change materials (PCMs) are discussed. Calibration routines for a disc type heat flow differential scanning calorimetry (hf-DSC) are compared and the applied heating rates are adapted due to the low thermal conductivity of the organic PCMs. An assessment of thermal conductivity measurements based on "Laser Flash Analysis" (LFA) and the "Transient Hot Bridge" method (THB) in solid and liquid state has been performed. It could be shown that a disc type hf-DSC is a useful method for measuring specific heat capacity, melting enthalpies and cycling stability of organic PCM if temperature and sensitivity calibration are adapted to the material and quantity to be measured. The LFA method shows repeatable and reproducible thermal diffusivity results in solid state and a high effort for sample preparation in comparison to THB in liquid state. Thermal conductivity results of the two applied methods show large deviations in liquid phase and have to be validated by further experiments.

  5. High temperature thermal energy storage in moving sand

    NASA Technical Reports Server (NTRS)

    Turner, R. H.; Awaya, H. I.

    1978-01-01

    Several high-temperature (to 500 C) heat-storage systems using sand as the storage medium are described. The advantages of sand as a storage medium include low cost for sand, widespread availability, non-toxicity, non-degradation characteristics, easy containment, and safety. The systems considered include: stationary sand with closely spaced tubes throughout the volume, the use of a fluidized bed, use of conveyor belt transporter, and the use of a blower rapid transport system. For a stationary sand bed, very close spacing of heat transfer tubes throughout the volume is required, manifesting as high power related system cost. The suggestion of moving sand past or around pipes is intended to reduce the power related costs at the penalty of added system complexity. Preliminary system cost estimates are offered. These rough calculations indicate that mobile sand heat storage systems cost less than the stationary sand approach.

  6. Durability design of heated concrete structures. Methodology and application to long-term interim storage

    NASA Astrophysics Data System (ADS)

    Lagrave, H.; Ranc, G.; Gallé, C.; Durand, S.

    2006-11-01

    The operation of civil engineering structures subjected to thermal and mechanical loading has led the CEA to examine temperature-dependent variations in the concrete properties and the processes affecting the durability of these structures. A new approach has been undertaken to specify the thermal, hydric and mechanical history of these structures. This technical approach is based on three areas of research: material characterization, modelling to identify weaknesses in the structure and validation by experimental tests on heavily instrumented structures subjected to representative loads. The procedure adopted for long-term interim storage facilities [1, 2] can also be applied to other domains.

  7. Mixed convection flow over a horizontal circular cylinder with constant heat flux embedded in a porous medium filled by a nanofluid: Buongiorno-Darcy model

    NASA Astrophysics Data System (ADS)

    Tham, Leony; Nazar, Roslinda; Pop, Ioan

    2015-11-01

    The steady laminar mixed convection boundary layer flow from a horizontal circular cylinder in a nanofluid embedded in a porous medium, which is maintained at a constant surface heat flux, has been studied by using the Buongiorno-Darcy nanofluid model for both cases of a heated and cooled cylinder. The resulting system of nonlinear partial differential equations is solved numerically using an implicit finite-difference scheme known as the Keller box method. The solutions for the flow and heat transfer characteristics are evaluated numerically and studied for various values of the governing parameters, namely the Lewis number, Brownian number, mixed convection parameter, buoyancy ratio parameter and thermophoresis parameter. It is also found that the boundary layer separation occurs at the opposing fluid flow, that is when the mixed convection parameter is negative. It is also observed that increasing the mixed convection parameter delays the boundary layer separation and the separation can be completely suppressed for sufficiently large values of the mixed convection parameter. The Brownian and buoyancy ratio parameters appear to affect the fluid flow and heat transfer profiles.

  8. Heat pump without particle transport or external work on the medium achieved by differential thermostatting of the phase space

    NASA Astrophysics Data System (ADS)

    Patra, Puneet Kumar; Bhattacharya, Baidurya

    2016-03-01

    We propose a mechanism that enables heat flow from a colder region to a hotter region without necessitating either particle transport or external work on the conductor, thereby bypassing the compressor part of a classical heat pump cycle. Our mechanism relies on thermostatting the kinetic and configurational temperatures of the same particle differently. We keep the two ends of a conductor, which in the present study is a single dimensional ϕ4 chain, at the same kinetic temperature T0, but at different configurational temperatures—one end hotter and the other end colder than T0. While external energy is needed within the thermostatted regions to achieve this differential thermostatting, no external work is performed on the system itself. We show that the mechanism satisfies the statistical form of the second law of thermodynamics (the fluctuation theorem). The proposed mechanism reveals two interesting findings: (i) contrary to traditional thermodynamics where only the kinetic temperature is thought to govern heat conduction, configurational temperature can also play an important role, and (ii) the relative temperature difference between the kinetic and configurational variables governs the direction of heat flow. The challenge, however, is in developing experimental techniques to thermostat the kinetic and configurational variables of the same particle at different values.

  9. Heat pump without particle transport or external work on the medium achieved by differential thermostatting of the phase space.

    PubMed

    Patra, Puneet Kumar; Bhattacharya, Baidurya

    2016-03-01

    We propose a mechanism that enables heat flow from a colder region to a hotter region without necessitating either particle transport or external work on the conductor, thereby bypassing the compressor part of a classical heat pump cycle. Our mechanism relies on thermostatting the kinetic and configurational temperatures of the same particle differently. We keep the two ends of a conductor, which in the present study is a single dimensional ϕ(4) chain, at the same kinetic temperature T(0), but at different configurational temperatures--one end hotter and the other end colder than T(0). While external energy is needed within the thermostatted regions to achieve this differential thermostatting, no external work is performed on the system itself. We show that the mechanism satisfies the statistical form of the second law of thermodynamics (the fluctuation theorem). The proposed mechanism reveals two interesting findings: (i) contrary to traditional thermodynamics where only the kinetic temperature is thought to govern heat conduction, configurational temperature can also play an important role, and (ii) the relative temperature difference between the kinetic and configurational variables governs the direction of heat flow. The challenge, however, is in developing experimental techniques to thermostat the kinetic and configurational variables of the same particle at different values. PMID:27078485

  10. The integration of water loop heat pump and building structural thermal storage systems

    SciTech Connect

    Marseille, T.J.; Schliesing, J.S.

    1990-09-01

    Commercial buildings often have extensive periods where one space needs cooling and another heating. Even more common is the need for heating during one part of the day and cooling during another in the same spaces. If a building's heating and cooling system could be integrated with the building's structural mass such that the mass can be used to collect, store, and deliver energy, significant energy might be saved. Computer models were developed to simulate this interaction for an existing office building in Seattle, Washington that has a decentralized water-source heat pump system. Metered data available for the building was used to calibrate a base'' building model (i.e., nonintegrated) prior to simulation of the integrated system. In the simulated integration strategy a secondary water loop was manifolded to the main HVAC hydronic loop. tubing in this loop was embedded in the building's concrete floor slabs. Water was routed to this loop by a controller to charge or discharge thermal energy to and from the slabs. The slabs were also in thermal communication with the conditioned spaces. Parametric studies of the building model, using weather data for five other cities in addition to Seattle, predicted that energy can be saved on cooling dominated days. On hot, dry days and during the night the cooling tower can beneficially be used as a free cooling'' source for thermally charging'' the floor slabs using cooled water. Through the development of an adaptive/predictive control strategy, annual HVAC energy savings as large as 30% appear to be possible in certain climates. 8 refs., 13 figs.

  11. Development of heat exchanger for high temperature energy storage with bulk materials

    NASA Astrophysics Data System (ADS)

    Boura, Cristiano Teixeira; Niederwestberg, Stefan; McLeod, Jacqueline; Herrmann, Ulf; Hoffschmidt, Bernhard

    2016-05-01

    This paper gives a general overview of the concept of a high temperature gas-to-particle heat exchanger, the corresponding test facilities and the results of laboratory tests. A description of the optimal bulk material and separator properties and their influences on the operating conditions is also given. The three phenomena pinning, blistering and blocking could be observed during the tests and were analysed in more detail using simulation software.

  12. Numerical analysis of flow and heat transfer in the VAFB LOX storage Dewar tank

    NASA Technical Reports Server (NTRS)

    Tam, L. T.; Singhal, A. K.

    1984-01-01

    The present report describes numerical simulation of three-dimensional transient distributions of velocity and temperature of liquid oxygen (LOX) in the LOX Dewar tank of Vendenberg Air Force Base (VAFB). The present analyses cover the replenish time period only. Four test cases have been considered. For all four cases, the input boundary conditions are comprised of LOX facility heat loads, drain flow rates, recirculation flow rates and dewar heating. All the quantities are prescribed as functions of time. The first two test cases considered sensitivity of results to the computational grid. In Case 3, system heat load was changed, while in Case 4, a lower LOX level was specified. Cases 1 and 2 showed that the temperatures were not sensitive to the grid refinement. This provided a basic check on the numerical model. Cases 3 and 4 showed that the thermal boundary layer motion near the tank surface becomes more significant at the late time, e.g., 5 1/2 hours from replenish start. Comparison between results of Cases 3 and 4 showed, as expected, that the smaller initial LOX volume given in Case 4, results in higher temperature level. All calculated velocity and temperature distributions were found to be plausible.

  13. Storage of Heat in the Glacial Deep Ocean and the Importance of Seawater Thermodynamics in Climate Change

    NASA Astrophysics Data System (ADS)

    Adkins, J. F.; Pasquero, C.

    2004-12-01

    A variety of records of both oceanic and atmospheric variability link Dansgaard/Oeschger events and Bond Cycles to changes in the overturning strength of the deep ocean. Various models have shown that the observed temperature changes and circulation switches can be forced with variations in the freshwater budget of the North Atlantic surface ocean. However, recent evidence from sediment pore fluids show that the stratification of LGM deep waters was dominated by salinity, rather than temperature. If the saltiest waters of the glacial deep ocean were produced in the Southern Ocean, than salinification of surface waters in the North Atlantic cannot produce large transients in overturning strength without some other source of buoyancy to erode the deep stratification. Here we present an energy storage mechanism, thermobaricity, and an energy source, geothermal heating, that implicate the deep ocean as the origin of the glacial rapid climate changes and the source of this buoyancy. Salinity stratification of the deep ocean during the glacial can lead to heat storage in the abyss that will decrease the deep to surface density difference and then, due to the non-linearity of the seawater equation of state, could periodically cause catastrophic convective events. This "thermobaric convection" arises from the pressure dependence of the seawater thermal expansion coefficient. Our contention is that the thermodynamics of seawater could play an important a role in glacial ocean/atmosphere reorganizations. We will outline how the pressure dependence of the seawater thermal expansion coefficient can lead to occasional rapid overturning of the deep ocean and present some new model results that examine the feasibility of this idea.

  14. Effects of plumbing attachments on heat losses from solar domestic hot water storage tanks. Final report, Part 2

    SciTech Connect

    Song, J.; Wood, B.D.; Ji, L.J.

    1998-03-01

    The Solar Rating and Certification Corporation (SRCC) has established a standardized methodology for determining the performance rating of the Solar Domestic Hot Water (SDHW) systems it certifies under OG-300. Measured performance data for the solar collector component(s) of the system are used along with numerical models for the balance of the system to calculate the system`s thermal performance under a standard set of rating conditions. SRCC uses TRNSYS to model each of the components that comprise the system. The majority of the SRCC certified systems include a thermal storage tank with an auxiliary electrical heater. The most common being a conventional fifty gallon electric tank water heater. Presently, the thermal losses from these tanks are calculated using Q = U {center_dot} A {center_dot} {Delta}T. Unfortunately, this generalized formula does not adequately address temperature stratification both within the tank as well as in the ambient air surrounding the tank, non-uniform insulation jacket, thermal siphoning in the fluid lines attached to the tank, and plumbing fittings attached to the tank. This study is intended to address only that part of the problem that deals with the plumbing fittings attached to the tank. Heat losses from a storage tank and its plumbing fittings involve three different operating modes: charging, discharging and standby. In the charging mode, the tank receives energy from the solar collector. In the discharge mode, water flows from the storage tank through the distribution pipes to the faucets and cold city water enters the tank. In the standby mode, there is no forced water flow into or out of the tank. In this experimental study, only the standby mode was considered.

  15. HOTS; Underground heating oil tanks hold as many liabilities as other underground storage tanks

    SciTech Connect

    Hayman, R. )

    1989-03-01

    This paper reports on the liabilities associated with underground storage tanks (USTs) that are a growing concern. Tank owners worry that they will have or worse, will inherit financial or legal burdens resulting from leaking tanks. Indeed, it appropriate precautions are not taken, the consequences can be devastating. In 1984, after too many tank-related horror stories surfaced, Congress began to act on this dilemma. Seemingly innocuous steel vessels buried throughout the land were recognized as a serious threat to human health and safety as groundwater supplied were jeopardized. In response, Congress passed Subtitle 1 as an amendment to RCRA. Last September, EPA issued regulations required by Congress under the law. States choosing to precede the new federal regulations established UST programs on their own, and began to register tanks and implement integrity-testing schedules.

  16. Structural assessment of a space station solar dynamic heat receiver thermal energy storage canister

    NASA Technical Reports Server (NTRS)

    Thompson, R. L.; Kerslake, T. W.; Tong, M. T.

    1988-01-01

    The structural performance of a space station thermal energy storage (TES) canister subject to orbital solar flux variation and engine cold start up operating conditions was assessed. The impact of working fluid temperature and salt-void distribution on the canister structure are assessed. Both analytical and experimental studies were conducted to determine the temperature distribution of the canister. Subsequent finite element structural analyses of the canister were performed using both analytically and experimentally obtained temperatures. The Arrhenius creep law was incorporated into the procedure, using secondary creep data for the canister material, Haynes 188 alloy. The predicted cyclic creep strain accumulations at the hot spot were used to assess the structural performance of the canister. In addition, the structural performance of the canister based on the analytically determined temperature was compared with that based on the experimentally measured temperature data.

  17. Structural assessment of a Space Station solar dynamic heat receiver thermal energy storage canister

    NASA Technical Reports Server (NTRS)

    Tong, M. T.; Kerslake, T. W.; Thompson, R. L.

    1988-01-01

    This paper assesses the structural performance of a Space Station thermal energy storage (TES) canister subject to orbital solar flux variation and engine cold start-up operating conditions. The impact of working fluid temperature and salt-void distribution on the canister structure are assessed. Both analytical and experimental studies were conducted to determine the temperature distribution of the canister. Subsequent finite-element structural analyses of the canister were performed using both analytically and experimentally obtained temperatures. The Arrhenius creep law was incorporated into the procedure, using secondary creep data for the canister material, Haynes-188 alloy. The predicted cyclic creep strain accumulations at the hot spot were used to assess the structural performance of the canister. In addition, the structural performance of the canister based on the analytically-determined temperature was compared with that based on the experimentally-measured temperature data.

  18. H2O heating in molecular clouds - Line transfer and thermal balance in a warm dusty medium

    NASA Technical Reports Server (NTRS)

    Takahashi, T.; Silk, J.; Hollenbach, D. J.

    1983-01-01

    An investigation is undertaken into the possibility of the heating of molecular gas through collisions with radiatively pumped H2O, in the context of the overall thermal balance of optically thick molecular clouds with embedded sources. In order to solve the line transfer equation, which includes warm dust grains, an extended method of escape probability approximation is developed in which the equilibrium gas temperature arises from the balance of heating by cosmic ray ionization of H2, and by collisions with warm dust grains and radiatively pumped H2O molecules against cooling by collisions with CO and C I. The equilibrium gas temperature for a given dust temperature strongly depends on the efficiency of the cooling species, and is therefore most sensitive to the cloud optical depth. It is less dependent, in decreasing order, on H2O abundance, gas density, and velocity dispersion.

  19. Microbial activity in argillite waste storage cells for the deep geological disposal of French bituminous medium activity long lived nuclear waste: Impact on redox reaction kinetics and potential

    NASA Astrophysics Data System (ADS)

    Albrecht, A.; Leone, L.; Charlet, L.

    2009-04-01

    Micro-organisms are ubiquitous and display remarkable capabilities to adapt and survive in the most extreme environmental conditions. It has been recognized that microorganisms can survive in nuclear waste disposal facilities if the required major (P, N, K) and trace elements, a carbon and energy source as well as water are present. The space constraint is of particular interest as it has been shown that bacteria do not prosper in compacted clay. An evaluation of the different types of French medium and high level waste, in a clay-rich host rock storage environment at a depth between 500 and 600 m, has shown that the bituminous waste is the most likely candidate to accommodate significant microbial activity. The waste consists of a mixture of bitumen (source of bio-available organic matter and H2 as a consequence of its degradation and radiolysis) and nitrates and sulphates kept in a stainless steel container. The assumption, that microbes only have an impact on reaction kinetics needs to be reassessed in the case where nitrates and sulphates are present since both are known not to react at low temperatures without bacterial catalysis. The additional impact of both oxy-anions and their reduced species on redox conditions, radionuclide speciation and mobility gives this evaluation their particular relevance. Storage architecture proposes four primary waste containers positioned into armoured cement over packs and placed with others into the waste storage cell itself composed of a cement mantle enforcing the argillite host rock, the latter being characterized by an excavation damaged zone constricted both in space and in time and a pristine part of 60 m thickness. Bacterial activity within the waste and within the pristine argillite is disregarded because of the low water activity (< 0.7) and the lack of space, respectively. The most probable zones of microbial activity, those likely to develop sustainable biofilms are within the interface zones. A major restriction

  20. Study of stream wise transverse magnetic fluid flow with heat transfer around an obstacle embedded in a porous medium

    NASA Astrophysics Data System (ADS)

    Rashidi, S.; Dehghan, M.; Ellahi, R.; Riaz, M.; Jamal-Abad, M. T.

    2015-03-01

    A mathematical model for two-dimensional fluid flow under the influence of stream wise transverse magnetic fields in laminar regime is simulated in this study. Heat transfer past a square diamond shaped porous obstacle is also taken into account. The attention is focused to investigate the effects of intensity and direction of magnetic field, Darcy and Reynolds numbers on the mechanism of convective heat transfer and flow structures. The Darcy-Brinkman-Forchheimer model along with the Maxwell equations is used. The nonlinear coupled equations using a finite volume approach (FVA) are solved numerically. The calculations are performed for different governing parameters such as Reynolds number, Nusselt number, Stuart number and Prandtl Number. The physical interpretation of velocity and isothermal contours is assigned through graphs. It is shown that the effects of a transverse magnetic field on flow behavior and heat transfer mechanism are more than that of the stream wise magnetic field. The configuration of streamlines and vorticity contours phenomena are also presented for porous diamond obstacle. Comparison of the numerical solutions with existing literature is also made.