Science.gov

Sample records for heat transfer part

  1. Characterization of heat transfer in nutrient materials, part 2

    NASA Technical Reports Server (NTRS)

    Cox, J. E.; Bannerot, R. B.; Chen, C. K.; Witte, L. C.

    1973-01-01

    A thermal model is analyzed that takes into account phase changes in the nutrient material. The behavior of fluids in low gravity environments is discussed along with low gravity heat transfer. Thermal contact resistance in the Skylab food heater is analyzed. The original model is modified to include: equivalent conductance due to radiation, radial equivalent conductance, wall equivalent conductance, and equivalent heat capacity. A constant wall-temperature model is presented.

  2. Double tube heat exchanger with novel enhancement: part II—single phase convective heat transfer

    NASA Astrophysics Data System (ADS)

    Tiruselvam, R.; Chin, W. M.; Raghavan, Vijay R.

    2012-08-01

    The study is conducted to evaluate the heat transfer characteristics of two new and versatile enhancement configurations in a double tube heat exchanger annulus. The novelty is that they are usable in single phase forced convection, evaporation and condensation. Heat transfer coefficients are determined by the Wilson Plot technique in laminar and turbulent flow and correlations are proposed for Nusselt numbers. Comparisons are then made between heat transfer and flow friction.

  3. Nonlinear aspects of high heat flux nucleate boiling heat transfer. Part 1, Formulation

    SciTech Connect

    Sadasivan, P.; Unal, C.; Nelson, R.

    1994-04-01

    This paper outlines the essential details of the formulation and numerical implementation of a model used to study nonlinear aspects of the macrolayer-controlled heat transfer process associated with high heat flux nucleate boiling and the critical heat flux. The model addresses the three-dimensional transient conduction heat transfer process within the problem domain comprised of the macrolayer and heater. Heat dissipation from the heater is modeled as the sum of transient transport into the macrolayer, and the heat loss resulting from evaporation of menisci associated with vapor stems.

  4. Direct contact heat exchange interfacial phenomena for liquid metal reactors : Part I - heat transfer.

    SciTech Connect

    Cho, D.H.; Page, R.J.; Hurtault, D.; Abdulla, S.; Liu, X.; Anderson, M.H.; Bonazza, R.; Corradini, M.

    2002-02-26

    Experiments on direct-contact heat exchange between molten metal and water for steam production were conducted. These experiments involved the injection of water into molten lead-bismuth eutectic for heat transfer measurements in a 1-D geometry. Based on the initial results of the experiments, the effects of the water flow rate and the molten metal superheat (temperature difference between molten metal and saturated water) on the volumetric heat transfer coefficient were discussed.

  5. Heat transfer in porous medium embedded with vertical plate: Non-equilibrium approach - Part B

    NASA Astrophysics Data System (ADS)

    Quadir, G. A.; Badruddin, Irfan Anjum

    2016-06-01

    This work is continuation of the paper Part A. Due to large number of results, the paper is divided into two section with section-A (Part A) discussing the effect of various parameters such as heat transfer coefficient parameter, thermal conductivity ratio etc. on streamlines and isothermal lines. Section-B highlights the heat transfer characteristics in terms of Nusselt number The Darcy model is employed to simulate the flow inside the medium. It is assumed that the heat transfer takes place by convection and radiation. The governing partial differential equations are converted into non-dimensional form and solved numerically using finite element method.

  6. Characterization of heat transfer in nutrient materials, part 1

    NASA Technical Reports Server (NTRS)

    Cox, J. E.; Bannerot, R. B.; Chen, C. K.; Witte, L. C.

    1973-01-01

    The principles involved in food heating are discussed. The food heating system for Skylab is described. Thermal models of nutrient materials are analyzed including models in zero-g and low pressure conditions. Results are presented of parametric studies to establish the effect of individual parameters on the thermal response of the system.

  7. Electrically induced shape oscillation of drops as a means of direct-contact heat transfer enhancement: Part 2 - Heat transfer

    SciTech Connect

    Kaji, N. ); Mori, Y.H. ); Tochitani, Y. )

    1988-08-01

    The heat transfer enhancement caused by the application of a low-frequency (1 {approximately} 16 Hz) alternating field having the sinusoidal waveform has been studied experimentally with water drops in a medium of silicone oil. The heat transfer coefficients has been found to peak at three particular frequencies. The data newly obtained with the sinusoidal waveform are compared with earlier results obained with electric fields having other waveforms. The waveform and the frequency that yield the largest enhancement of heat transfer are sought.

  8. Quenching fundamentals: Heat transfer

    SciTech Connect

    MacKenzie, D.S.; Totten, G.E.; Webster, G.M.

    1996-12-31

    Quenching is essentially a heat transfer problem. It is necessary to quench parts fast enough that adequate mechanical and corrosion properties are achieved, but not so fast that detrimental distortion and residual stresses are formed. In addition, non-uniform heat transfer across the surface of a part will produce thermal gradients which will also create distortion or residual stresses. In this paper, the role of agitation will be discussed in terms of the heat transfer coefficient. A brief review of the published heat transfer literature will be discussed in terms of the fluid flow on heat transfer coefficient, with implications on quenching.

  9. Conjugate heat transfer of a finned tube. Part B: Heat transfer augmentation and avoidance of heat transfer reversal by longitudinal vortex generators

    SciTech Connect

    Fiebig, M.; Chen, Y.; Grosse-Gorgemann, A.; Mitra, N.K.

    1995-08-01

    Numerical investigations of three-dimensional flow and heat transfer in a finned tube with punched longitudinal vortex generators (LVG`s) are carried out for Reynolds number of 250 and 300. Air with a Prandtl number of 0.7 is used as the fluid. The flow is both thermally and hydrodynamically developing. The LVG is a delta winglet pair (DWP) punched out of the fin and is located directly behind the tube, symmetrically separated by one tube diameter. The DWP generates longitudinal vortices in the wake of the tube, defers flow separation on the tube, deflects the main stream into the tube wake, and strong reduces the ``dead water zone.`` Heat transfer reversal is avoided by the DWP. Comparison of the span-averaged Nusselt numbers for the fin with and without DWP shows significant local heat transfer enhancement of several hundred percent in the tube wake. For Re = 300 and Fi = 200 the global heat transfer augmentation by a DWP, which amounts to only 2.5% of the fin area, is 31%.

  10. Mixed-convective, conjugate heat transfer during molten salt quenching of small parts

    SciTech Connect

    Chenoweth, D.R.

    1997-02-01

    It is common in free quenching immersion heat treatment calculations to locally apply constant or surface-averaged heat-transfer coefficients obtained from either free or forced steady convection over simple shapes with small temperature differences from the ambient fluid. This procedure avoids the solution of highly transient, non-Boussinesq conjugate heat transfer problems which often involve mixed convection, but it leaves great uncertainty about the general adequacy of the results. In this paper we demonstrate for small parts (dimensions of the order of inches rather than feet) quenched in molten salt, that it is feasible to calculate such nonuniform surface heat transfer from first principles without adjustable empirical parameters. We use literature physical property salt data from the separate publications of Kirst et al., Nissen, Carling, and Teja, et al. for T<1000 F, and then extrapolate it to the initial part temperature. The reported thermal/chemical breakdown of NaNO{sub 2} for T>800 F is not considered to be important due to the short time the surface temperature exceeds that value for small parts. Similarly, for small parts, the local Reynolds and Rayleigh numbers are below the corresponding critical values for most if not all of the quench, so that we see no evidence of the existence of significant turbulence effects, only some large scale unsteadiness for brief periods. The experimental data comparisons from the open literature include some probe cooling-rate results of Foreman, as well as some cylinder thermal histories of Howes.

  11. Transient PVT measurements and model predictions for vessel heat transfer. Part II.

    SciTech Connect

    Felver, Todd G.; Paradiso, Nicholas Joseph; Winters, William S., Jr.; Evans, Gregory Herbert; Rice, Steven F.

    2010-07-01

    Part I of this report focused on the acquisition and presentation of transient PVT data sets that can be used to validate gas transfer models. Here in Part II we focus primarily on describing models and validating these models using the data sets. Our models are intended to describe the high speed transport of compressible gases in arbitrary arrangements of vessels, tubing, valving and flow branches. Our models fall into three categories: (1) network flow models in which flow paths are modeled as one-dimensional flow and vessels are modeled as single control volumes, (2) CFD (Computational Fluid Dynamics) models in which flow in and between vessels is modeled in three dimensions and (3) coupled network/CFD models in which vessels are modeled using CFD and flows between vessels are modeled using a network flow code. In our work we utilized NETFLOW as our network flow code and FUEGO for our CFD code. Since network flow models lack three-dimensional resolution, correlations for heat transfer and tube frictional pressure drop are required to resolve important physics not being captured by the model. Here we describe how vessel heat transfer correlations were improved using the data and present direct model-data comparisons for all tests documented in Part I. Our results show that our network flow models have been substantially improved. The CFD modeling presented here describes the complex nature of vessel heat transfer and for the first time demonstrates that flow and heat transfer in vessels can be modeled directly without the need for correlations.

  12. Contribution of heat transfer to turbine blades and vanes for high temperature industrial gas turbines. Part 2: Heat transfer on serpentine flow passage.

    PubMed

    Takeishi, K; Aoki, S

    2001-05-01

    The improvement of the heat transfer coefficient of the 1st row blades in high temperature industrial gas turbines is one of the most important issues to ensure reliable performance of these components and to attain high thermal efficiency of the facility. This paper deals with the contribution of heat transfer to increase the turbine inlet temperature of such gas turbines in order to attain efficient and environmentally benign engines. Following the experiments described in Part 1, a set of trials was conducted to clarify the influence of the blade's rotating motion on the heat transfer coefficient for internal serpentine flow passages with turbulence promoters. Test results are shown and discussed in this second part of the contribution. PMID:11460663

  13. Heat transfer in porous medium embedded with vertical plate: Non-equilibrium approach - Part A

    NASA Astrophysics Data System (ADS)

    Badruddin, Irfan Anjum; Quadir, G. A.

    2016-06-01

    Heat transfer in a porous medium embedded with vertical flat plate is investigated by using thermal non-equilibrium model. Darcy model is employed to simulate the flow inside porous medium. It is assumed that the heat transfer takes place by natural convection and radiation. The vertical plate is maintained at isothermal temperature. The governing partial differential equations are converted into non-dimensional form and solved numerically using finite element method. Results are presented in terms of isotherms and streamlines for various parameters such as heat transfer coefficient parameter, thermal conductivity ratio, and radiation parameter

  14. Contribution of heat transfer to turbine blades and vanes for high temperature industrial gas turbines. Part 1: Film cooling.

    PubMed

    Takeishi, K; Aoki, S

    2001-05-01

    This paper deals with the contribution of heat transfer to increase the turbine inlet temperature of industrial gas turbines in order to attain efficient and environmentally benign engines. High efficiency film cooling, in the form of shaped film cooling and full coverage film cooling, is one of the most important cooling technologies. Corresponding heat transfer tests to optimize the film cooling effectiveness are shown and discussed in this first part of the contribution. PMID:11460641

  15. Effect of two-scale roughness on boundary layer transition over a heated flat plate: Part 1 -- Surface heat transfer

    SciTech Connect

    Pinson, M.W.; Wang, T.

    2000-04-01

    An experimental study was conducted to investigate surface heat transfer and boundary layer development associated with flow over a flat test surface covered with two roughness scales. Two-scale roughness was used because in-service aeroengines commonly display larger roughness concentrated at the leading edge with smaller roughness distributed downstream. The first scale, covering up to the first 5 cm of the test surface, was in the form of a sandpaper strip, an aluminum strip, or a cylinder. The second roughness scale covered the remainder of the test surface (2 m) in the form of sandpaper or a smooth surface. In Part 1, the surface heat transfer results are examined. Even though the roughness scales were hydraulically smooth, they induced significantly earlier transition onset, with the two-dimensional roughness causing earlier transition than three-dimensional roughness. All of the rough/smooth cases unexpectedly triggered earlier transition than rough/rough cases. This indicated that the scale of the step-change at the joint between two roughness scales was predominant over the downstream roughness on inducing early transition. Reducing the overall height of the step change was shown to have a greater effect on transition than the specific geometry of the roughness scale.

  16. Heat-Transfer Coupling For Heat Pipes

    NASA Technical Reports Server (NTRS)

    Nesmith, Bill J.

    1991-01-01

    Proposed welded heat-transfer coupling joins set of heat pipes to thermoelectric converter. Design avoids difficult brazing operation. Includes pair of mating flanged cups. Upper cup integral part of housing of thermoelectric converter, while lower cup integral part of plate supporting filled heat pipes. Heat pipes prefilled. Heat of welding applied around periphery of coupling, far enough from heat pipes so it would not degrade working fluid or create excessive vapor pressure in the pipes.

  17. Review of recent research on heat transfer with mixtures. Part 1: Condensation

    SciTech Connect

    Wang, S.P.; Chato, J.C.

    1995-08-01

    During the past 10 years, interest in heat transfer with mixtures has increased for several reasons. First, the use of zeotropic refrigerant mixtures (ZERMs) as working fluids in heat pump and refrigeration systems indicates potential advantages in efficiency and capacity. Second, ZERMs are prospective substitutes for chlorofluorocarbon (CFC) and hydrochlorofluorocarbon (HCFC) refrigerants (such as R12, R-11, and R-22). However, before the refrigerant mixtures will be put to use in heat pump, refrigerator, and air conditioning systems, the problem of possibly changed heat transfer performance and pressure drop in condensation processes has to be considered to realize the claimed advantages. Thus, it is necessary to study the mechanisms of condensation with mixtures. In this paper, a companion to one on boiling and evaporation, the recent research on condensation heat transfer with mixtures is reviewed. The main points are the thermal resistance of the vapor diffusion layer affecting the condensation, the influence of the flow direction of vapor on the condensation, the turbulence in the vapor generated by the fins, and the enhancement of the condensation performance of mixtures. This review is mainly concerned with the condensation of miscible mixtures, especially ZERMs. Only a few selected papers related to immiscible mixtures are reviewed here.

  18. Heat Transfer in Segregated Fluidized Beds Part 2: Particle Motion and Its Effects on the Heat transfer in the Segregated Fluidized Beds

    NASA Astrophysics Data System (ADS)

    Gu, Yihua; Satoh, Isao; Saito, Takushi; Kawaguchi, Tatsuya

    In our previous paper, particle and temperature segregations in a fluidized bed of binary particle mixtures were experimentally examined, and heat transfer in the segregated fluidized bed was investigated. As the results, it was shown that the temperature segregation results mainly from low heat transfer coefficient through the interface layer, which exists between the flotsam-rich and jetsam-rich layers, and that the heat transfer coefficient increases rapidly with increasing the excess gas velocity. Following our previous paper, particle motion in the segregated fluidized bed was experimentally investigated in this paper, in order to make quantitative discussion on the relation between the heat transfer coefficient and particle motion in the interface layer. In the experiment, the Particle Imaging Velocimetry (PIV) method was applied to study the concentration and motion of particles in the segregated fluidized bed. A modified solid circulation model was built up to model the particle motion in the segregated fluidized bed. The experiment results showed that the vertical particle exchange rate of the interface layer increases with the excess gas velocity, and that the vertical heat transfer coefficient through the interface layer is mainly determined by the average particle exchange rate in the interface layer. Variations of the apparent thermal conductivity at different height in the particle layers were also determined by the vertical variation of the particle exchange rate. It was shown that the heat transfer coefficient or the thermal conductivity in the interface layer is influenced by the densities and specific heat capacities of the particles.

  19. Heat transfer system

    DOEpatents

    Not Available

    1980-03-07

    A heat transfer system for a nuclear reactor is described. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  20. Heat transfer system

    DOEpatents

    McGuire, Joseph C.

    1982-01-01

    A heat transfer system for a nuclear reactor. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  1. Thermal conductance and basal metabolic rate are part of a coordinated system for heat transfer regulation

    PubMed Central

    Naya, Daniel E.; Spangenberg, Lucía; Naya, Hugo; Bozinovic, Francisco

    2013-01-01

    Thermal conductance measures the ease with which heat leaves or enters  an organism's body. Although the analysis of this physiological variable in relation to climatic and ecological factors can be traced to studies by Scholander and colleagues, only small advances have occurred ever since. Here, we analyse the relationship between minimal thermal conductance estimated during summer (Cmin) and several ecological, climatic and geographical factors for 127 rodent species, in order to identify the exogenous factors that have potentially affected the evolution of thermal conductance. In addition, we evaluate whether there is compensation between Cmin and basal metabolic rate (BMR)—in such a way that a scale-invariant ratio between both variables is equal to one—as could be expected from the Scholander–Irving model of heat transfer. Our major findings are (i) annual mean temperature is the best single predictor of mass-independent Cmin. (ii) After controlling for the effect of body mass, there is a strong positive correlation between log10 (Cmin) and log10 (BMR). Further, the slope of this correlation is close to one, indicating an almost perfect compensation between both physiological variables. (iii) Structural equation modelling indicated that Cmin values are adjusted to BMR values and not the other way around. Thus, our results strongly suggest that BMR and thermal conductance integrate a coordinated system for heat regulation in endothermic animals and that summer conductance values are adjusted (in an evolutionary sense) to track changes in BMRs. PMID:23902915

  2. Heat transfer in energy problems

    NASA Astrophysics Data System (ADS)

    Mizushina, T.; Yang, W. J.

    Results of recent research are presented concerning heat transfer in energy problems, including high-temperature heat transfer, high-flux heat transfer, high-performance heat transfer, heat transfer in nonconventional energy (power and propulsion) systems, and novel heat transfer techniques. Topics discussed include studies of full-coverage film cooling, radiative properties of metals and alloys at high temperature, critical heat flux conditions in high-quality boiling systems, heat transfer characteristics of the evaporation of a liquid droplet on heated surfaces, high-performance surfaces for non-boiling heat transfer, and high performance heat transfer surfaces for boiling and condensation. Also examined are high flux heat transfer in gaseous solid suspension flow, nuclear process heat applications of high temperature heat exchange, heat transfer considerations in the use of new energy resources, and high performance mist-cooled condensers for geothermal binary cycle plants. No individual items are abstracted in this volume

  3. Heat transfer in pipes

    NASA Technical Reports Server (NTRS)

    Burbach, T.

    1985-01-01

    The heat transfer from hot water to a cold copper pipe in laminar and turbulent flow condition is determined. The mean flow through velocity in the pipe, relative test length and initial temperature in the vessel were varied extensively during tests. Measurements confirm Nusselt's theory for large test lengths in laminar range. A new equation is derived for heat transfer for large starting lengths which agrees satisfactorily with measurements for large starting lengths. Test results are compared with the new Prandtl equation for heat transfer and correlated well. Test material for 200- and to 400-diameter test length is represented at four different vessel temperatures.

  4. Influence of lubricant oil on heat transfer performance of refrigerant flow boiling inside small diameter tubes. Part II: Correlations

    SciTech Connect

    Wei, Wenjian; Ding, Guoliang; Hu, Haitao; Wang, Kaijian

    2007-10-15

    The predictive ability of the available state-of-the-art heat transfer correlations of refrigerant-oil mixture is evaluated with the present experiment data of small tubes with inside diameter of 6.34 mm and 2.50 mm. Most of these correlations can be used to predict the heat transfer coefficient of 6.34 mm tube, but none of them can predict heat transfer coefficient of 2.50 mm tube satisfactorily. A new correlation of two-phase heat transfer multiplier with local properties of refrigerant-oil mixture is developed. This correlation approaches the actual physical mechanism of flow boiling heat transfer of refrigerant-oil mixture and can reflect the actual co-existing conditions of refrigerant and lubricant oil. More than 90% of the experiment data of both test tubes have less than {+-}20% deviation from the prediction values of the new correlations. (author)

  5. Transverse heat transfer coefficient in the dual channel ITER TF CICCs. Part III: Direct method of assessment

    NASA Astrophysics Data System (ADS)

    Lewandowska, Monika; Malinowski, Leszek

    2016-01-01

    The data resulting from the thermal-hydraulic test of the ITER TF CICC are used to determine the flow partition and the overall effective heat transfer coefficient (hBC) between bundle and central channel in a direct way, i.e. by analysis of the heat transfer between both flow channels, based on the mass and energy balance equations and the readings of thermometers located inside the cable. In cases without a local heat source in the considered cable segment the obtained hBC values were consistent with those obtained in earlier studies by analysis of experimental data using indirect methods. It was also observed that the transverse heat transfer was strongly enhanced in a cable segment heated from outside. This phenomenon results from the mass transfer from the bundle region to the central channel. The experimental hBC data obtained for the case without a heat source in the considered segment were also compared with those calculated using various heat transfer correlations.

  6. A heat transfer study for beamline components in high-power wiggler and undulator beamlines. Part I. Beam stops

    SciTech Connect

    Bedzyk, M. J.; Keeffe, M. J.; Schildkamp, W.; Shen, Q.

    1989-07-01

    The heat transfer capabilities of beam stops in CHESS wiggler and undulator beamlines is described. The thermal analysis for the design of these crucial in-vacuum beamline components is based on the use of a finite element analysis computer calculation and experimental heat loading tests.

  7. Heat transfer fluids containing nanoparticles

    DOEpatents

    Singh, Dileep; Routbort, Jules; Routbort, A.J.; Yu, Wenhua; Timofeeva, Elena; Smith, David S.; France, David M.

    2016-05-17

    A nanofluid of a base heat transfer fluid and a plurality of ceramic nanoparticles suspended throughout the base heat transfer fluid applicable to commercial and industrial heat transfer applications. The nanofluid is stable, non-reactive and exhibits enhanced heat transfer properties relative to the base heat transfer fluid, with only minimal increases in pumping power required relative to the base heat transfer fluid. In a particular embodiment, the plurality of ceramic nanoparticles comprise silicon carbide and the base heat transfer fluid comprises water and water and ethylene glycol mixtures.

  8. Regularities pertinent to heat transfer between torch gas layers and steam boiler firebox waterwalls. Part I. Geometrical and physical torch model as a source of heat radiation

    NASA Astrophysics Data System (ADS)

    Makarov, A. N.

    2014-09-01

    The progress seen in the 19th-21st centuries in the development of methods for calculating heat transfer in torch furnaces, fireboxes, and combustion chambers is analyzed. Throughout the 20th century, calculations of heat transfer were carried out based on the law for radiation from solid bodies deduced by Y. Stefan and L. Boltzmann. It is shown that the use of this law for calculating heat transfer of a torch (a gaseous source of radiation) in heating furnaces and power-generating installations leads to incorrect results. It is substantiated that there is crisis of methods for calculating heat transfer in torch furnaces and power-generating installations. Geometrical and physical torch models in the form of radiating cylindrical gas volumes as sources of heat radiation are proposed for overcoming this crisis.

  9. Heat Transfer and Flow on the First Stage Blade Tip of a Power Generation Gas Turbine. Part 2; Simulation Results

    NASA Technical Reports Server (NTRS)

    Ameri, A. A.; Bunker, R. S.

    1999-01-01

    A combined experimental and computational study has been performed to investigate the detailed distribution of convective heat transfer coefficients on the first stage blade tip surface for a geometry typical of large power generation turbines (>1OOMW). This paper is concerned with the numerical prediction of the tip surface heat transfer. Good comparison with the experimental measured distribution was achieved through accurate modeling of the most important features of the blade passage and heating arrangement as well as the details of experimental rig likely to affect the tip heat transfer. A sharp edge and a radiused edge tip were considered. The results using the radiused edge tip agreed better with the experimental data. This improved agreement was attributed to the absence of edge separation on the tip of the radiused edge blade.

  10. Thermal radiation heat transfer.

    NASA Technical Reports Server (NTRS)

    Siegel, R.; Howell, J. R.

    1972-01-01

    A comprehensive discussion of heat transfer by thermal radiation is presented, including the radiative behavior of materials, radiation between surfaces, and gas radiation. Among the topics considered are property prediction by electromagnetic theory, the observed properties of solid materials, radiation in the presence of other modes of energy transfer, the equations of transfer for an absorbing-emitting gas, and radiative transfer in scattering and absorbing media. Also considered are radiation exchange between black isothermal surfaces, radiation exchange in enclosures composed of diffuse gray surfaces and in enclosures having some specularly reflecting surfaces, and radiation exchange between nondiffuse nongray surfaces. The use of the Monte Carlo technique in solving radiant-exchange problems and problems of radiative transfer through absorbing-emitting media is explained.

  11. Solar Energy: Heat Transfer.

    ERIC Educational Resources Information Center

    Knapp, Henry H., III

    This module on heat transfer is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies. The…

  12. Influence of lubricant oil on heat transfer performance of refrigerant flow boiling inside small diameter tubes. Part I: Experimental study

    SciTech Connect

    Wei, Wenjian; Ding, Guoliang; Hu, Haitao; Wang, Kaijian

    2007-10-15

    Two-phase flow pattern and heat transfer characteristics of refrigerant-oil mixture flow boiling inside small tubes with inside diameters of 6.34 mm and 2.50 mm are investigated experimentally. The test condition of nominal oil concentration is from 0% to 5%, mass flux from 200 to 400 kg m{sup -2} s{sup -1}, heat flux from 3.2 to 14 kW m{sup -2}, evaporation temperature of 5 C, inlet quality from 0.1 to 0.8, and quality change from 0.1 to 0.2. Wavy, wavy-annular, annular and mist-annular flow pattern in 6.34 mm tube are observed, while only slug-annular and annular flow pattern are observed in 2.50 mm tube. Oil presence can make annular flow to form early and to retard to diminish in quality direction at nominal oil concentration {>=}3%. Augmentation effect of oil on heat transfer coefficient becomes weakened or even diminishes for small diameter tube while detrimental effect of oil on small tube performance becomes more significant than large tube. For both test tubes, variation of heat transfer coefficient and enhanced factor with oil concentration is irregular. Two-phase heat transfer multiplier with refrigerant-oil mixture properties increases consistently and monotonically with local oil concentration at different vapor quality. (author)

  13. HEAT TRANSFER METHOD

    DOEpatents

    Gambill, W.R.; Greene, N.D.

    1960-08-30

    A method is given for increasing burn-out heat fluxes under nucleate boiling conditions in heat exchanger tubes without incurring an increase in pumping power requirements. This increase is achieved by utilizing a spinning flow having a rotational velocity sufficient to produce a centrifugal acceleration of at least 10,000 g at the tube wall. At this acceleration the heat-transfer rate at burn out is nearly twice the rate which can be achieved in a similar tube utilizing axial flow at the same pumping power. At higher accelerations the improvement over axial flow is greater, and heat fluxes in excess of 50 x 10/sup 6/ Btu/hr/sq ft can be achieved.

  14. Methane heat transfer investigation

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Future high chamber pressure LOX/hydrocarbon booster engines require copper base alloy main combustion chamber coolant channels similar to the SSME to provide adequate cooling and reusable engine life. Therefore, it is of vital importance to evaluate the heat transfer characteristics and coking thresholds for LNG (94% methane) cooling, with a copper base alloy material adjacent to he fuel coolant. High pressure methane cooling and coking characteristics recently evaluated at Rocketdyne using stainless steel heated tubes at methane bulk temperatures and coolant wall temperatures typical of advanced engine operation except at lower heat fluxes as limited by the tube material. As expected, there was no coking observed. However, coking evaluations need be conducted with a copper base surface exposed to the methane coolant at higher heat fluxes approaching those of future high chamber pressure engines.

  15. Methane heat transfer investigation

    NASA Technical Reports Server (NTRS)

    Cook, R. T.

    1984-01-01

    Future high chamber pressure LOX/hydrocarbon booster engines require copper-base alloy main combustion chamber coolant channels similar to the SSME to provide adequate cooling and resuable engine life. Therefore, it is of vital importance to evaluate the heat transfer characteristics and coking thresholds for LNG (94% methane) cooling, with a copper-base alloy material adjacent to the fuel coolant. High-pressure methane cooling and coking characteristics were recently evaluated using stainless-steel heated tubes at methane bulk temperatures and coolant wall temperatures typical of advanced engine operation except at lower heat fluxes as limited by the tube material. As expected, there was no coking observed. However, coking evaluations need be conducted with a copper-base surface exposed to the methane coolant at higher heat fluxes approaching those of future high chamber pressure engines.

  16. Geothermal Heat Transfer

    SciTech Connect

    Basmajian, V.V.

    1986-01-28

    This patent describes a heat transfer apparatus which consists of: heat exchanging means for orientation in the earth below ground substantially vertically, having a hollow conduit of length from top to bottom much greater than the span across the hollow conduit orthogonal to its length with a top, bottom and an intermediate portion contiguous and communicating with the top and bottom portions for allowing thermally conductive fluid to flow freely between the top, intermediate and bottom portions for immersion in thermally conductive fluid in the region around the heat exchanging means for increasing the heat flow between the latter and earth when inserted into a substantially vertical borehole in the earth with the top portion above the bottom portion. The heat exchanger consists of heat exchanging conduit means in the intermediate portion for carrying refrigerant. The heat exchanging conduit consisting of tubes of thermally conductive material for carrying the refrigerant and extending along the length of the hollow conduit for a tube length that is less than the length of the hollow conduit. The hollow conduit is formed with port means between the top and the plurality of tubes for allowing the thermally conductive fluid to pass in a flow path embracing the tubes, the bottom portion, an outer channel around the hollow conduit and the port means.

  17. Experimental Determination of Heat Transfer Within the Metal/Mold Gap in a DC Casting Mold: Part II. Effect of Casting Metal, Mold Material, and Other Casting Parameters

    NASA Astrophysics Data System (ADS)

    Prasad, Arvind; Bainbridge, Ian F.

    2013-07-01

    Extensive experimental studies were conducted to quantify the effect of different parameters that can affect the heat transfer from the metal to the mold during the steady-state phase of DC casting. In the first part previously published, the experimental technique was established and results were reported for the effect of gas type (atmosphere within the mold) and the gap between the metal and the mold. The results showed the significant effect of gas thermal conductivity and the metal-mold gap on the mold wall heat transfer coefficient. In this second publication on heat transfer in the mold wall region of a DC casting mold, the results from the effect of casting temperature, gas flow rate, casting alloy, mold material, and the mold insert material on the mold wall heat transfer coefficient are described. The experiments reported in the current paper show that these additional factors tested do not affect the heat flux through the mold wall to the same extent as the gap size or the gas type. The heat transfer coefficient changes by less than 5 pct when casting temperature is changed by ±25 K, less than 15 pct when the gas flow rate within the metal-mold gap flows at up to 3 LPM, and approximately 30 pct when the mold material is changed from stainless steel to AA601 to copper. Similar results were obtained when different insert materials were used. These results are explained with the help of an electrical analogy of heat transfer and are consistent with the heat transfer theory.

  18. Transferring heat during a bounce

    NASA Astrophysics Data System (ADS)

    Shiri, Samira; Bird, James

    2015-11-01

    When a hot liquid drop impacts a cold non-wetting surface, the temperature difference drives heat transfer. If the drop leaves the surface before reaching thermal equilibrium, the amount of heat transfer may depend on the contact time. Past studies exploring finite-time heat exchange with droplets focus on the Leidenfrost condition where heat transfer is regulated by a thin layer of vapor. Here, we present systematic experiments to measure the heat transferred by a bouncing droplet in non-Leidenfrost conditions. We propose a physical model of this heat transfer and compare our model to the experiments.

  19. Heat transfer in aeropropulsion systems

    NASA Astrophysics Data System (ADS)

    Simoneau, R. J.

    1985-07-01

    Aeropropulsion heat transfer is reviewed. A research methodology based on a growing synergism between computations and experiments is examined. The aeropropulsion heat transfer arena is identified as high Reynolds number forced convection in a highly disturbed environment subject to strong gradients, body forces, abrupt geometry changes and high three dimensionality - all in an unsteady flow field. Numerous examples based on heat transfer to the aircraft gas turbine blade are presented to illustrate the types of heat transfer problems which are generic to aeropropulsion systems. The research focus of the near future in aeropropulsion heat transfer is projected.

  20. Heat transfer in aeropropulsion systems

    NASA Technical Reports Server (NTRS)

    Simoneau, R. J.

    1985-01-01

    Aeropropulsion heat transfer is reviewed. A research methodology based on a growing synergism between computations and experiments is examined. The aeropropulsion heat transfer arena is identified as high Reynolds number forced convection in a highly disturbed environment subject to strong gradients, body forces, abrupt geometry changes and high three dimensionality - all in an unsteady flow field. Numerous examples based on heat transfer to the aircraft gas turbine blade are presented to illustrate the types of heat transfer problems which are generic to aeropropulsion systems. The research focus of the near future in aeropropulsion heat transfer is projected.

  1. Heat transfer probe

    DOEpatents

    Frank, Jeffrey I.; Rosengart, Axel J.; Kasza, Ken; Yu, Wenhua; Chien, Tai-Hsin; Franklin, Jeff

    2006-10-10

    Apparatuses, systems, methods, and computer code for, among other things, monitoring the health of samples such as the brain while providing local cooling or heating. A representative device is a heat transfer probe, which includes an inner channel, a tip, a concentric outer channel, a first temperature sensor, and a second temperature sensor. The inner channel is configured to transport working fluid from an inner inlet to an inner outlet. The tip is configured to receive at least a portion of the working fluid from the inner outlet. The concentric outer channel is configured to transport the working fluid from the inner outlet to an outer outlet. The first temperature sensor is coupled to the tip, and the second temperature sensor spaced apart from the first temperature sensor.

  2. Smooth- and enhanced-tube heat transfer and pressure drop : Part II. The role of transition to turbulent flow.

    SciTech Connect

    Obot, N. T.; Das, L.; Rabas, T. J.

    2000-11-14

    The objectives of this presentation are two-fold: first, to demonstrate the connection between the attainable coefficients and transition to turbulent flow by using the transition-based corresponding states method to generalize results obtained with smooth tubes and enhanced tubes, and second, to provide guidelines on the calculation of heat transfer coefficients from pressure-drop data and vice versa by using the transition concept or the functional law of corresponding states.

  3. Heat Transfer and Flow on the First Stage Blade Tip of a Power Generation Gas Turbine. Part 1; Experimental Results

    NASA Technical Reports Server (NTRS)

    Bunker, Ronald S.; Bailey, Jeremy C.; Ameri, Ali A.

    1999-01-01

    A combined computational and experimental study has been performed to investigate the detailed distribution of convective heat transfer coefficients on the first stage blade tip surface for a geometry typical of large power generation turbines(>100MW). This paper is concerned with the design and execution of the experimental portion of the study. A stationary blade cascade experiment has been run consisting of three airfoils, the center airfoil having a variable tip gap clearance. The airfoil models the aerodynamic tip section of a high pressure turbine blade with inlet Mach number of 0.30, exit Mach number of 0.75, pressure ratio of 1.45, exit Reynolds number based on axial chord of 2.57 x 10(exp 6), and total turning of about 110 degrees. A hue detection based liquid crystal method is used to obtain the detailed heat transfer coefficient distribution on the blade tip surface for flat, smooth tip surfaces with both sharp and rounded edges. The cascade inlet turbulence intensity level took on values of either 5% or 9%. The cascade also models the casing recess in the shroud surface ahead of the blade. Experimental results are shown for the pressure distribution measurements on the airfoil near the tip gap, on the blade tip surface, and on the opposite shroud surface. Tip surface heat transfer coefficient distributions are shown for sharp-edge and rounded-edge tip geometries at each of the inlet turbulence intensity levels.

  4. Heat Transfer in a Complex Trailing Edge Passage for a High Pressure Turbine Blade. Part 2:; Simulation Results

    NASA Technical Reports Server (NTRS)

    Rigby, David L.; Bunker, Ronald S.

    2002-01-01

    A combined experimental and numerical study to investigate the heat transfer distribution in a complex blade trailing edge passage was conducted. The geometry consists of a two pass serpentine passage with taper toward the trailing edge, as well as from hub to tip. The upflow channel has an average aspect ratio of roughly 14:1, while the exit passage aspect ratio is about 5:1. The upflow channel is split in an interrupted way and is smooth on the trailing edge side of the split and turbulated on the other side. A turning vane is placed near the tip of the upflow channel. Reynolds numbers in the range of 31,000 to 61,000, based on inlet conditions, were simulated numerically. The simulation was performed using the Glenn-HT code, a full three-dimensional Navier-Stokes solver using the Wilcox k-omega turbulence model. A structured multi-block grid is used with approximately 4.5 million cells and average y+ values on the order of unity. Pressure and heat transfer distributions are presented with comparison to the experimental data. While there are some regions with discrepancies, in general the agreement is very good for both pressure and heat transfer.

  5. Conduction heat transfer solutions

    SciTech Connect

    VanSant, J.H.

    1983-08-01

    This text is a collection of solutions to a variety of heat conduction problems found in numerous publications, such as textbooks, handbooks, journals, reports, etc. Its purpose is to assemble these solutions into one source that can facilitate the search for a particular problem solution. Generally, it is intended to be a handbook on the subject of heat conduction. There are twelve sections of solutions which correspond with the class of problems found in each. Geometry, state, boundary conditions, and other categories are used to classify the problems. Each problem is concisely described by geometry and condition statements, and many times a descriptive sketch is also included. The introduction presents a synopsis on the theory, differential equations, and boundary conditions for conduction heat transfer. Some discussion is given on the use and interpretation of solutions. Supplementary data such as mathematical functions, convection correlations, and thermal properties are included for aiding the user in computing numerical values from the solutions. 155 figs., 92 refs., 9 tabs.

  6. Conduction heat transfer solutions

    SciTech Connect

    VanSant, J.H.

    1980-03-01

    This text is a collection of solutions to a variety of heat conduction problems found in numerous publications, such as textbooks, handbooks, journals, reports, etc. Its purpose is to assemble these solutions into one source that can facilitate the search for a particular problem solution. Generally, it is intended to be a handbook on the subject of heat conduction. This material is useful for engineers, scientists, technologists, and designers of all disciplines, particularly those who design thermal systems or estimate temperatures and heat transfer rates in structures. More than 500 problem solutions and relevant data are tabulated for easy retrieval. There are twelve sections of solutions which correspond with the class of problems found in each. Geometry, state, boundary conditions, and other categories are used to classify the problems. A case number is assigned to each problem for cross-referencing, and also for future reference. Each problem is concisely described by geometry and condition statements, and many times a descriptive sketch is also included. At least one source reference is given so that the user can review the methods used to derive the solutions. Problem solutions are given in the form of equations, graphs, and tables of data, all of which are also identified by problem case numbers and source references.

  7. Transverse heat transfer coefficient in the dual channel ITER TF CICCs Part II. Analysis of transient temperature responses observed during a heat slug propagation experiment

    NASA Astrophysics Data System (ADS)

    Lewandowska, Monika; Herzog, Robert; Malinowski, Leszek

    2015-01-01

    A heat slug propagation experiment in the final design dual channel ITER TF CICC was performed in the SULTAN test facility at EPFL-CRPP in Villigen PSI. We analyzed the data resulting from this experiment to determine the equivalent transverse heat transfer coefficient hBC between the bundle and the central channel of this cable. In the data analysis we used methods based on the analytical solutions of a problem of transient heat transfer in a dual-channel cable, similar to Renard et al. (2006) and Bottura et al. (2006). The observed experimental and other limits related to these methods are identified and possible modifications proposed. One result from our analysis is that the hBC values obtained with different methods differ by up to a factor of 2. We have also observed that the uncertainties of hBC in both methods considered are much larger than those reported earlier.

  8. Tubing for augmented heat transfer

    SciTech Connect

    Yampolsky, J.S.; Pavlics, P.

    1983-08-01

    The objectives of the program reported were: to determine the heat transfer and friction characteristics on the outside of spiral fluted tubing in single phase flow of water, and to assess the relative cost of a heat exchanger constructed with spiral fluted tubing with one using conventional smooth tubing. An application is examined where an isolation water/water heat exchanger was used to transfer the heat from a gaseous diffusion plant to an external system for energy recovery. (LEW)

  9. Calculation of inviscid surface streamlines and heat transfer on shuttle type configurations. Part 2: Description of computer program

    NASA Technical Reports Server (NTRS)

    Dejarnette, F. R.; Jones, M. H.

    1971-01-01

    A description of the computer program used for heating rate calculation for blunt bodies in hypersonic flow is given. The main program and each subprogram are described by defining the pertinent symbols involved and presenting a detailed flow diagram and complete computer program listing. Input and output parameters are discussed in detail. Listings are given for the computation of heating rates on (1) a blunted 15 deg half-angle cone at 20 deg incidence and Mach 10.6, (2) a blunted 70 deg slab delta wing at 10 deg incidence and Mach 8, and (3) the HL-10 lifting body at 20 deg incidence and Mach 10. In addition, the computer program output for two streamlines on the blunted 15 deg half-angle cone is listed. For Part 1, see N71-36186.

  10. "Nanotechnology Enabled Advanced Industrial Heat Transfer Fluids"

    SciTech Connect

    Dr. Ganesh Skandan; Dr. Amit Singhal; Mr. Kenneth Eberts; Mr. Damian Sobrevilla; Prof. Jerry Shan; Stephen Tse; Toby Rossmann

    2008-06-12

    ABSTRACT Nanotechnology Enabled Advanced industrial Heat Transfer Fluids” Improving the efficiency of Industrial Heat Exchangers offers a great opportunity to improve overall process efficiencies in diverse industries such as pharmaceutical, materials manufacturing and food processing. The higher efficiencies can come in part from improved heat transfer during both cooling and heating of the material being processed. Additionally, there is great interest in enhancing the performance and reducing the weight of heat exchangers used in automotives in order to increase fuel efficiency. The goal of the Phase I program was to develop nanoparticle containing heat transfer fluids (e.g., antifreeze, water, silicone and hydrocarbon-based oils) that are used in transportation and in the chemical industry for heating, cooling and recovering waste heat. Much work has been done to date at investigating the potential use of nanoparticle-enhanced thermal fluids to improve heat transfer in heat exchangers. In most cases the effect in a commercial heat transfer fluid has been marginal at best. In the Phase I work, we demonstrated that the thermal conductivity, and hence heat transfer, of a fluid containing nanoparticles can be dramatically increased when subjected to an external influence. The increase in thermal conductivity was significantly larger than what is predicted by commonly used thermal models for two-phase materials. Additionally, the surface of the nanoparticles was engineered so as to have a minimal influence on the viscosity of the fluid. As a result, a nanoparticle-laden fluid was successfully developed that can lead to enhanced heat transfer in both industrial and automotive heat exchangers

  11. HEAT TRANSFER MEANS

    DOEpatents

    Fraas, A.P.; Wislicenus, G.F.

    1961-07-11

    A heat exchanger is adapted to unifomly cool a spherical surface. Equations for the design of a spherical heat exchanger hav~g tubes with a uniform center-to-center spining are given. The heat exchanger is illustrated in connection with a liquid-fueled reactor.

  12. Transverse heat transfer coefficient in the dual channel ITER TF CICCs. Part I: Analysis of steady state temperature profiles resulting from annular heating

    NASA Astrophysics Data System (ADS)

    Lewandowska, Monika; Herzog, Robert

    2011-10-01

    Two ITER TF dual channel Cable-in-Conduit Conductors (CICCs) have been tested in the SULTAN test facility. The samples were heated either by foil heaters mounted on the outside of the conductor jacket or by induced AC losses. The steady-state temperature response of several thermometers installed on the jacket surface as well as inside the cable were analyzed using the two-channel analytical model proposed by Renard et al. to obtain the equivalent transverse heat transfer coefficient between the bundle and central channel as a function of the mass flow rate. In addition, on the basis of the measured pressure drop and helium flow velocities, the friction factors for helium flow in the bundle and in the central channel were determined. The obtained results may serve as a reference for these cables.

  13. Heat Transfer in a Complex Trailing Edge Passage for a High Pressure Turbine Blade - Part 1: Experimental Measurements. Part 1; Experimental Measurements

    NASA Technical Reports Server (NTRS)

    Bunker, Ronald S.; Wetzel, Todd G.; Rigby, David L.; Reddy, D. R. (Technical Monitor)

    2000-01-01

    A combined experimental and computational study has been performed to investigate the detailed heat transfer coefficient distributions within a complex blade trailing edge passage. The experimental measurements are made using a steady liquid crystal thermography technique applied to one major side of the passage. The geometry of the trailing edge passage is that of a two-pass serpentine circuit with a sharp 180-degree turning region at the tip. The upflow channel is split by interrupted ribs into two major subchannels, one of which is turbulated. This channel has an average aspect ratio of roughly 14:1. The spanwise extent of the channel geometry includes both area convergence from root to tip, as well as taper towards the trailing edge apex. The average section Reynolds numbers tested in this upflow channel range from 55,000 to 98,000. The tip section contains a turning vane near the extreme comer. The downflow channel has an aspect ratio of about 5:1, and also includes convergence and taper. Turbulators of varying sizes are included in this channel also. Both detailed heat transfer and pressure distribution measurements are presented. The pressure measurements are incorporated into a flow network model illustrating the major loss contributors.

  14. Transport phenomena relevant to the impact regime of the process of spray deposition: A review. Part 1: Heat transfer

    SciTech Connect

    Poulikakos, D.; Waldvogel, J.M.

    1995-12-31

    Spray deposition is a novel rapid solidification technology for the creation of advanced metals and metal composites. This technology is particularly attractive to manufacturing because it shows promise to provide materials and products that combine superior properties and near net shape. With reference to the former, the extremely high cooling rates present in the process of spray deposition capture non equilibrium states that cannot be captured by more conventional casting methods because the atomic mobility in the liquid phase of a metal is far greater than that in the solid phase. To this end, the cooling rates at the early stages of the spray deposition process are of the order of (10{sup 6} to 10{sup 8}) {sup 0}C/s. With reference to the latter, the spray deposition process has been shown to produce near net shape products which eliminates the need for additional finishing steps in the manufacturing process. Moreover, the fine and homogeneous microstructure that appears to be resulting from the spray deposition process may eliminate the need for additional mechanical working. In this, as well as its companion paper appearing subsequently in this volume, a review is presented of the existing knowledge base of the impact regime of the process of spray deposition, focusing on issues in which transport phenomena are relevant. Further, this paper addresses only heat transfer aspects of the process which do not involve sophisticated modeling of the accompanying complex fluid dynamics.

  15. Sphere Drag and Heat Transfer

    NASA Astrophysics Data System (ADS)

    Duan, Zhipeng; He, Boshu; Duan, Yuanyuan

    2015-07-01

    Modelling fluid flows past a body is a general problem in science and engineering. Historical sphere drag and heat transfer data are critically examined. The appropriate drag coefficient is proposed to replace the inertia type definition proposed by Newton. It is found that the appropriate drag coefficient is a desirable dimensionless parameter to describe fluid flow physical behavior so that fluid flow problems can be solved in the simple and intuitive manner. The appropriate drag coefficient is presented graphically, and appears more general and reasonable to reflect the fluid flow physical behavior than the traditional century old drag coefficient diagram. Here we present drag and heat transfer experimental results which indicate that there exists a relationship in nature between the sphere drag and heat transfer. The role played by the heat flux has similar nature as the drag. The appropriate drag coefficient can be related to the Nusselt number. This finding opens new possibilities in predicting heat transfer characteristics by drag data. As heat transfer for flow over a body is inherently complex, the proposed simple means may provide an insight into the mechanism of heat transfer for flow past a body.

  16. Sphere Drag and Heat Transfer

    PubMed Central

    Duan, Zhipeng; He, Boshu; Duan, Yuanyuan

    2015-01-01

    Modelling fluid flows past a body is a general problem in science and engineering. Historical sphere drag and heat transfer data are critically examined. The appropriate drag coefficient is proposed to replace the inertia type definition proposed by Newton. It is found that the appropriate drag coefficient is a desirable dimensionless parameter to describe fluid flow physical behavior so that fluid flow problems can be solved in the simple and intuitive manner. The appropriate drag coefficient is presented graphically, and appears more general and reasonable to reflect the fluid flow physical behavior than the traditional century old drag coefficient diagram. Here we present drag and heat transfer experimental results which indicate that there exists a relationship in nature between the sphere drag and heat transfer. The role played by the heat flux has similar nature as the drag. The appropriate drag coefficient can be related to the Nusselt number. This finding opens new possibilities in predicting heat transfer characteristics by drag data. As heat transfer for flow over a body is inherently complex, the proposed simple means may provide an insight into the mechanism of heat transfer for flow past a body. PMID:26189698

  17. Introductory heat-transfer

    NASA Technical Reports Server (NTRS)

    Widener, Edward L.

    1992-01-01

    The objective is to introduce some concepts of thermodynamics in existing heat-treating experiments using available items. The specific objectives are to define the thermal properties of materials and to visualize expansivity, conductivity, heat capacity, and the melting point of common metals. The experimental procedures are described.

  18. Heat-transfer thermal switch

    NASA Technical Reports Server (NTRS)

    Friedell, M. V.; Anderson, A. J.

    1974-01-01

    Thermal switch maintains temperature of planetary lander, within definite range, by transferring heat. Switch produces relatively large stroke and force, uses minimum electrical power, is lightweight, is vapor pressure actuated, and withstands sterilization temperatures without damage.

  19. Heat transfer, diffusion, and evaporation

    NASA Technical Reports Server (NTRS)

    Nusselt, Wilhelm

    1954-01-01

    Although it has long been known that the differential equations of the heat-transfer and diffusion processes are identical, application to technical problems has only recently been made. In 1916 it was shown that the speed of oxidation of the carbon in iron ore depends upon the speed with which the oxygen of the combustion air diffuses through the core of gas surrounding the carbon surface. The identity previously referred to was then used to calculate the amount of oxygen diffusing to the carbon surface on the basis of the heat transfer between the gas stream and the carbon surface. Then in 1921, H. Thoma reversed that procedure; he used diffusion experiments to determine heat-transfer coefficients. Recently Lohrisch has extended this work by experiment. A technically very important application of the identity of heat transfer and diffusion is that of the cooling tower, since in this case both processes occur simultaneously.

  20. Heat exchanger with heat transfer control

    SciTech Connect

    Wiard, M.R.

    1986-11-18

    This patent describes a multi-sided plate and fin type heat exchanger core in which plate elements, intermediately positioning spacer elements and fin strips are stacked in a layered assembly providing fluid passages for different fluids to flow in a segregated heat transfer relation to one another. The core is characterized in that at certain locations in a stacked assembly layers include spacer elements substantially closing all sides of the heat exchangers to define between adjacent fluid passages layers of increased heat transfer resistance. The fin strips are sheet-like elements corrugated to forms specifically identifiable in terms of fins per inch, there being fin strips in at least certain resistance layers differing in terms of fins per inch from other strips in certain resistance layers.

  1. Twin reservoir heat transfer circuit

    SciTech Connect

    Urch, J.F.

    1986-09-23

    This patent describes a heat transfer means comprising circuitry defining a closed flow path for working fluid; a primary circuit forming part of the path and having two ends at one of which the working fluid is at a high pressure and at the other of which the working fluid is at a low pressure. The circuitry defines a fluid supply reservoir and a fluid collection reservoir disposed respectively at the two ends; ejector means in the primary circuit; a drive fluid inlet, and exhaust outlet and a suction inlet provided on the ejector means. Also included are a branch circuit bridging a section of the primary circuit and an outlet end of the branch circuit connected to the suction inlet of the ejector means.

  2. Advanced turbine cooling, heat transfer, and aerodynamic studies

    SciTech Connect

    Je-Chin Han; Schobeiri, M.T.

    1995-10-01

    The contractual work is in three parts: Part I - Effect of rotation on enhanced cooling passage heat transfer, Part II - Effect on Thermal Barrier Coating (TBC) spallation on surface heat transfer, and Part III - Effect of surface roughness and trailing edge ejection on turbine efficiency under unsteady flow conditions. Each section of this paper has been divided into three parts to individually accommodate each part. Part III is further divided into Parts IIIa and IIIb.

  3. Heat transfer from oriented heat exchange areas

    NASA Astrophysics Data System (ADS)

    Vantuch, Martin; Huzvar, Jozef; Kapjor, Andrej

    2014-03-01

    This paper deals with the transfer of heat-driven heat transfer surface area in relation to the construction of the criterion equation for "n" horizontal pipe one about another. On the bases of theoretical models have been developed for calculating the thermal performance of natural convection by Churilla and Morgan, for various pipe diameters and temperatures. These models were compared with models created in CFD-Fluent Ansys the same boundary conditions. The aim of the analyse of heat and fluxional pipe fields "n" pipes one about another at natural convection is the creation of criterion equation on the basis of which the heat output of heat transfer from pipe oriented areas one above another with given spacing could be quantified. At presence a sum of criterion equations exists for simple geometrical shapes of individual oriented geometrical areas but the criterion equation which would consider interaction of fluxional field generated by free convection from multiple oriented areas is not mentioned in standardly accessible technical literature and other magazine publications.

  4. Nanofluid impingement jet heat transfer.

    PubMed

    Zeitoun, Obida; Ali, Mohamed

    2012-01-01

    Experimental investigation to study the heat transfer between a vertical round alumina-water nanofluid jet and a horizontal circular round surface is carried out. Different jet flow rates, jet nozzle diameters, various circular disk diameters and three nanoparticles concentrations (0, 6.6 and 10%, respectively) are used. The experimental results indicate that using nanofluid as a heat transfer carrier can enhance the heat transfer process. For the same Reynolds number, the experimental data show an increase in the Nusselt numbers as the nanoparticle concentration increases. Size of heating disk diameters shows reverse effect on heat transfer. It is also found that presenting the data in terms of Reynolds number at impingement jet diameter can take into account on both effects of jet heights and nozzle diameter. Presenting the data in terms of Peclet numbers, at fixed impingement nozzle diameter, makes the data less sensitive to the percentage change of the nanoparticle concentrations. Finally, general heat transfer correlation is obtained verses Peclet numbers using nanoparticle concentrations and the nozzle diameter ratio as parameters. PMID:22340669

  5. Nanofluid impingement jet heat transfer

    PubMed Central

    2012-01-01

    Experimental investigation to study the heat transfer between a vertical round alumina-water nanofluid jet and a horizontal circular round surface is carried out. Different jet flow rates, jet nozzle diameters, various circular disk diameters and three nanoparticles concentrations (0, 6.6 and 10%, respectively) are used. The experimental results indicate that using nanofluid as a heat transfer carrier can enhance the heat transfer process. For the same Reynolds number, the experimental data show an increase in the Nusselt numbers as the nanoparticle concentration increases. Size of heating disk diameters shows reverse effect on heat transfer. It is also found that presenting the data in terms of Reynolds number at impingement jet diameter can take into account on both effects of jet heights and nozzle diameter. Presenting the data in terms of Peclet numbers, at fixed impingement nozzle diameter, makes the data less sensitive to the percentage change of the nanoparticle concentrations. Finally, general heat transfer correlation is obtained verses Peclet numbers using nanoparticle concentrations and the nozzle diameter ratio as parameters. PMID:22340669

  6. Nonlinear Transient Problems Using Structure Compatible Heat Transfer Code

    NASA Technical Reports Server (NTRS)

    Hou, Gene

    2000-01-01

    The report documents the recent effort to enhance a transient linear heat transfer code so as to solve nonlinear problems. The linear heat transfer code was originally developed by Dr. Kim Bey of NASA Largely and called the Structure-Compatible Heat Transfer (SCHT) code. The report includes four parts. The first part outlines the formulation of the heat transfer problem of concern. The second and the third parts give detailed procedures to construct the nonlinear finite element equations and the required Jacobian matrices for the nonlinear iterative method, Newton-Raphson method. The final part summarizes the results of the numerical experiments on the newly enhanced SCHT code.

  7. Forced Convection Heat Transfer in Circular Pipes

    ERIC Educational Resources Information Center

    Tosun, Ismail

    2007-01-01

    One of the pitfalls of engineering education is to lose the physical insight of the problem while tackling the mathematical part. Forced convection heat transfer (the Graetz-Nusselt problem) certainly falls into this category. The equation of energy together with the equation of motion leads to a partial differential equation subject to various…

  8. Radiative heat transfer

    NASA Astrophysics Data System (ADS)

    Chapman, K. S.; Ramadhyani, S.; Ramamurthy, H.; Viskanta, R.

    1990-04-01

    One and two-dimensional mathematical models have been developed to predict the steady state thermal performance and combustion characteristics of a natural gas-fired straight-through radiant tube. The effects of burner geometry, equivalence ratio, and preheat temperature and fuel firing rate on fuel burn-up have been investigated. The one-dimensional models for straight-through and single-ended recuperative radiant tubes have been validated using available experimental data. Thermal system models have been developed for the continuous and batch indirectly fired (radiant tube) furnaces to identify opportunities for fuel savings and enhanced productivity. Extensive parametric investigations were performed to examine the effects of load and refractory emissivities, load throughput rate and thickness on the thermal performance of the furnaces. Batch and continuous direct-fired furnace thermal system models were developed to analyze the effect of various design and operation parameters on the furnace thermal performance. An attempt was made to validate the batch furnace model by using experimental data from a small experimental furnace. Due to the size of the furnace, the two-dimensional heat conduction effects near the corners and edges of the furnace walls were significant. Since the effects were neglected in the system model, which is intended to simulate a large industrial furnace, the validation was unsuccessful. The parametric study consisted of examining the effect of the load and refractory emissivities and other operating and load parameters on the thermal performance of the batch and continuous furnaces.

  9. Calculation of turbulent boundary layers with heat transfer and pressure gradient utilizing a compressibility transformation. Part 1: Summary report

    NASA Technical Reports Server (NTRS)

    Economos, C.; Boccio, J.

    1971-01-01

    The analysis uses a compressibility transformation and utilizes higher order closure rules to complete the transformation. By requiring that the momentum equations in differential form be satisfied at the wall and at the sublayer edge, correspondence rules are obtained which relate the variable property (VP) flow to a constant property (CP) flow in which mass transfer and pressure gradient occur simultaneously. A new CP formulation is developed and numerical results for a variety of cases are presented. Comparisons with earlier forms of the transformation and with experiment are included. For the zero pressure gradient case some differences between the various predictions are observed. For the several pressure gradient cases examined, the results are found to be essentially identical to those given by first order closure rules; i.e., by a form of transformation which relates the VP flow to a CP flow with pressure gradient but zero mass transfer.

  10. Sodium heat transfer system modeling

    NASA Astrophysics Data System (ADS)

    Baker, A. F.; Fewell, M. E.

    1983-11-01

    The sodium heat transfer system of the international energy agency (IEA) small solar power systems (SSPS) central receiver system (CRS), which includes the heliostat field, receiver, hot and cold storage vessels, and sodium/water steam generator was modeled. The computer code SOLTES (simulator of large thermal energy systems), was used to model this system. The results from SOLTES are compared to measured data.

  11. Host turbine heat transfer overview

    NASA Technical Reports Server (NTRS)

    Rohde, J. E.

    1984-01-01

    Improved methods of predicting airfoil local metal temperatures require advances in the understanding of the physics and methods of analytically predicting the following four aerothermal loads: hot gas flow over airfoils, heat transfer rates on the gas-side of airfoils, cooling air flow inside airfoils, and heat transfer rates on the coolant-side of airfoils. A systematic building block research approach is being pursued to investigate these four areas of concern from both the experimental and analytical sides. Experimental approaches being pursued start with fundamental experiments using simple shapes and flat plates in wind tunnels, progress to more realistic cold and hot cascade tests using airfoils, continue to progress in large low-speed rigs and turbines and warm turbines, and finally, combine all the interactive effects in tests using real engines or real engine type turbine rigs. Analytical approaches being pursued also build from relatively simple steady two dimensional inviscid flow and boundary layer heat transfer codes to more advanced steady two and three dimensional viscous flow and heat transfer codes. These advanced codes provide more physics to model better the interactive effects and the true real-engine environment.

  12. Enhancement of heat transfer in waste-heat heat exchangers

    NASA Astrophysics Data System (ADS)

    Stoeffler, R. C.

    1980-07-01

    The Fluidfire shallow fluidized bed heat transfer facility was modified to give increased air flow capacity and to allow testing with different distributor plates and with two stage heat exchangers. The effect of reduced distributor plate pressure loss and amount and type of bed material on the heat transfer performance of a single stage fluidized bed heat exchanger is explored. Elutriation from the bed was measured for different bed materials and distributor plates; alternate heat exchanger surfaces having different fin spacings were also tested. Two types of two stage fluidized bed heat exchangers were tested: one having a baffle (having almost no pressure loss) located between the stages and which allowed bed material to recirculate between upper and lower beds; the second having two distributor plates in series with no recirculation of the bed material.

  13. Experimental research on heat transfer of pulsating heat pipe

    NASA Astrophysics Data System (ADS)

    Li, Jia; Yan, Li

    2008-06-01

    Experimental research was conducted to understand heat transfer characteristic of pulsating heat pipe in this paper, and the PHP is made of high quality glass capillary tube. Under different fill ratio, heat transfer rate and many other influence factors, the flow patterns were observed in the start-up, transition and stable stage. The effects of heating position on heat transfer were discussed. The experimental results indicate that no annular flow appears in top heating condition. Under different fill ratios and heat transfer rate, the flow pattern in PHP is transferred from bulk flow to semi-annular flow and annular flow, and the performance of heat transfer is improved for down heating case. The experimental results indicate that the total heat resistant of PHP is increased with fill ratio, and heat transfer rate achieves optimum at filling rate 50%. But for pulsating heat pipe with changing diameters the thermal resistance is higher than that with uniform diameters.

  14. Heat transfer in aerospace propulsion

    NASA Technical Reports Server (NTRS)

    Simoneau, Robert J.; Hendricks, Robert C.; Gladden, Herbert J.

    1988-01-01

    Presented is an overview of heat transfer related research in support of aerospace propulsion, particularly as seen from the perspective of the NASA Lewis Research Center. Aerospace propulsion is defined to cover the full spectrum from conventional aircraft power plants through the Aerospace Plane to space propulsion. The conventional subsonic/supersonic aircraft arena, whether commercial or military, relies on the turbine engine. A key characteristic of turbine engines is that they involve fundamentally unsteady flows which must be properly treated. Space propulsion is characterized by very demanding performance requirements which frequently push systems to their limits and demand tailored designs. The hypersonic flight propulsion systems are subject to severe heat loads and the engine and airframe are truly one entity. The impact of the special demands of each of these aerospace propulsion systems on heat transfer is explored.

  15. Electrically induced shape oscillation of drops as a means of direct-contact heat transfer enhancement: Part 1 - Drop dynamics

    SciTech Connect

    Kaji, N. ); Mori, Y.H. ); Tochitani, Y. )

    1988-08-01

    The shape oscillation of liquid drops passing through an immiscible liquid medium subject to a low-frequency (1 {approximately} 16 Hz) alternating electric field having a sinusoidal waveform has been studied experimentally with the intention of investigating the enhancement of the direct-contact heat exahange between the two liquids. The authors have found that the field can induce, depending on its frequency, not only the resonant oscillation of the second mode of the drops, but also another peculiar oscillation that is related to the resonant oscillation of the third mode superposed on the second-mode oscillation.

  16. Frost characteristics and heat transfer on a flat plate under freezer operating conditions: Part 1, Experimentation and correlations

    SciTech Connect

    Mao, Y.; Besant, R.W.; Chen, H.

    1999-07-01

    An experimental investigation of frost growth on a flat, cold surface supplied by subfreezing, turbulent, humid, parallel flow of air is presented. The operating conditions are typical of many commercial freezers. A test loop was constructed to perform the tests, and the frost height, frost mass concentration, and cold surface heat flux were measured using specially designed and calibrated instrumentation. Twenty tests were done for steady operating conditions, each starting with no initial frost accumulation, and were run for two to six hours giving 480 data samples. Measured results show that the frost characteristics differ significantly with frost growth data taken previously for room temperature airflow. Depending on the temperature of the cold plate and the relative humidity of the subfreezing supply air, the frost could appear to be either smooth or rough. Smooth frost, which occurred at warmer plate temperatures and lower supply air relative humidities, gave rise to frost growth that was much thinner and denser than that for the rough, thick, low-density frost. Frost growth characteristics are correlated as a function of five independent variables (time, distance from the leading edge, cold plate temperature ratio, humidity ratio, and Reynolds number). These correlations are presented separately for the full data set, the rough frost data, and the smooth frost data.

  17. Heat transfer reviews 1976-1986

    NASA Astrophysics Data System (ADS)

    Eckert, Ernst Rudolf Georg; Goldstein, R. J.; Irvine, T. F., Jr.; Hartnett, J. P.

    Theoretical and experimental investigations of heat-transfer phenomena are surveyed in a collection of annual review essays. The reviews were originally published in the International Journal of Heat and Mass Transfer. Cumulative author and subject indices are provided.

  18. Boiling Heat Transfer to Halogenated Hydrocarbon Refrigerants

    NASA Astrophysics Data System (ADS)

    Yoshida, Suguru; Fujita, Yasunobu

    The current state of knowledge on heat transfer to boiling refrigerants (halogenated hydrocarbons) in a pool and flowing inside a horizontal tube is reviewed with an emphasis on information relevant to the design of refrigerant evaporators, and some recommendations are made for future research. The review covers two-phase flow pattern, heat transfer characteristics, correlation of heat transfer coefficient, influence of oil, heat transfer augmentation, boiling from tube-bundle, influence of return bend, burnout heat flux, film boiling, dryout and post-dryout heat transfer.

  19. Tip Leakage Flow and Heat Transfer on Turbine Blade Tip and Casing, Part 1: Effect of Tip Clearance Height and Rotation Speed

    NASA Astrophysics Data System (ADS)

    Hamidur Rahman, M.; In Kim, Sung; Hassan, Ibrahim

    2013-06-01

    Steady simulations were performed to investigate tip leakage flow and heat transfer characteristics on the rotor blade tip and casing in a single-stage gas turbine engine. A typical high-pressure gas turbine stage was modeled with a pressure ratio of 3.2. The predicted isentropic Mach number and adiabatic wall temperature on the casing showed good agreement with available experimental data under similar operating condition. The present numerical study focuses extensively on the effects of tip clearance heights and rotor rotational speeds on the blade tip and casing heat transfer characteristics. It was observed that the tip leakage flow structure is highly dependent on the height of the tip gap and the speed of the rotor. In all cases, the tip leakage flow was seen to separate and recirculate just around the corner of the pressure side of the blade tip. This region of re-circulating flow enlarges with increasing clearance heights. The separated leakage flow reattaches afterwards on the tip surface. Leakage flow reattachment was shown to enhance surface heat transfer at the tip. The interaction between tip leakage flow and secondary flows that is induced by the relative casing motion is found to significantly influence the blade tip and casing heat transfer distribution. A region of critical heat transfer exists on the casing near the blade tip leading edge and along the pressure-side edge for all the clearance heights that were investigated. At high rotation speed, the region of critical heat transfer tends to move towards the trailing edge due to the change in inflow angle.

  20. Conceptual design of a laser-fusion power plant. Part II. Two technical options: 1. JADE reactor; 2. Heat transfer by heat pipes

    SciTech Connect

    Not Available

    1981-07-01

    A laser fusion reactor concept is described that employs liquid metal walls. The concept envisions a porous medium, called the JADE, of specific geometry lining the reactor cavity. Some advantages and disadvantages of the concept are pointed out. The possibility of using heat pipes for passive cooling in ICF reactors is discussed. Some of the problems are outlined. (MOW)

  1. Evaluation of manometric temperature measurement (MTM), a process analytical technology tool in freeze drying, part III: heat and mass transfer measurement.

    PubMed

    Tang, Xiaolin Charlie; Nail, Steven L; Pikal, Michael J

    2006-01-01

    This article evaluates the procedures for determining the vial heat transfer coefficient and the extent of primary drying through manometric temperature measurement (MTM). The vial heat transfer coefficients (Kv) were calculated from the MTM-determined temperature and resistance and compared with Kv values determined by a gravimetric method. The differences between the MTM vial heat transfer coefficients and the gravimetric values are large at low shelf temperature but smaller when higher shelf temperatures were used. The differences also became smaller at higher chamber pressure and smaller when higher resistance materials were being freeze-dried. In all cases, using thermal shields greatly improved the accuracy of the MTM Kv measurement. With use of thermal shields, the thickness of the frozen layer calculated from MTM is in good agreement with values obtained gravimetrically. The heat transfer coefficient "error" is largely a direct result of the error in the dry layer resistance (ie, MTM-determined resistance is too low). This problem can be minimized if thermal shields are used for freeze-drying. With suitable use of thermal shields, accurate Kv values are obtained by MTM; thus allowing accurate calculations of heat and mass flow rates. The extent of primary drying can be monitored by real-time calculation of the amount of remaining ice using MTM data, thus providing a process analytical tool that greatly improves the freeze-drying process design and control. PMID:17285746

  2. Study on heat transfer of heat exchangers in the Stirling engine - Performance of heat exchangers in the test Stirling engine

    NASA Astrophysics Data System (ADS)

    Kanzaka, Mitsuo; Iwabuchi, Makio

    1992-11-01

    The heat transfer performance of the actual heat exchangers obtained from the experimental results of the test Stirling engine is presented. The heater for the test engine has 120 heat transfer tubes that consist of a bare-tube part and a fin-tube part. These tubes are located around the combustion chamber and heated by the combustion gas. The cooler is the shell-and-tube-type heat exchanger and is chilled by water. It is shown that the experimental results of heat transfer performance of the heater and cooler of the test Stirling engine are in good agreement with the results calculated by the correlation proposed in our previous heat transfer study under the periodically reversing flow condition. Our correlation is thus confirmed to be applicable to the evaluation of the heat transfer coefficient and the thermal design of the heat exchangers in the Stirling engine.

  3. Heat exchanger device and method for heat removal or transfer

    DOEpatents

    Koplow, Jeffrey P.

    2012-07-24

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  4. Heat exchanger device and method for heat removal or transfer

    DOEpatents

    Koplow, Jeffrey P

    2015-03-24

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  5. Heat exchanger device and method for heat removal or transfer

    DOEpatents

    Koplow, Jeffrey P

    2013-12-10

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  6. Heat exchanger device and method for heat removal or transfer

    SciTech Connect

    Koplow, Jeffrey P.

    2015-12-08

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  7. Heat Transfer in a Thermoacoustic Process

    ERIC Educational Resources Information Center

    Beke, Tamas

    2012-01-01

    Thermoacoustic instability is defined as the excitation of acoustic modes in chambers with heat sources due to the coupling between acoustic perturbations and unsteady heat addition. The major objective of this paper is to achieve accurate theoretical results in a thermoacoustic heat transfer process. We carry out a detailed heat transfer analysis…

  8. Liquid metal heat transfer issues

    SciTech Connect

    Hoffman, H.W.; Yoder, G.L.

    1984-01-01

    An alkali liquid metal cooled nuclear reactor coupled with an alkali metal Rankine cycle provides a practicable option for space systems/missions requiring power in the 1 to 100 MW(e) range. Thermal issues relative to the use of alkali liquid metals for this purpose are identified as these result from the nature of the alkali metal fluid itself, from uncertainties in the available heat transfer correlations, and from design and performance requirements for system components operating in the earth orbital microgravity environment. It is noted that, while these issues require further attention to achieve optimum system performance, none are of such magnitude as to invalidate this particular space power concept.

  9. Heat Transfer in Complex Fluids

    SciTech Connect

    Mehrdad Massoudi

    2012-01-01

    (linear) behavior for a given range of parameters or geometries; there are many empirical or semi-empirical constitutive equations suggested for these fluids. There have also been many non-linear constitutive relations which have been derived based on the techniques of continuum mechanics. The non-linearities oftentimes appear due to higher gradient terms or time derivatives. When thermal and or chemical effects are also important, the (coupled) momentum and energy equations can give rise to a variety of interesting problems, such as instability, for example the phenomenon of double-diffusive convection in a fluid layer. In Conclusion, we have studied the flow of a compressible (density gradient type) non-linear fluid down an inclined plane, subject to radiation boundary condition. The heat transfer is also considered where a source term, similar to the Arrhenius type reaction, is included. The non-dimensional forms of the equations are solved numerically and the competing effects of conduction, dissipation, heat generation and radiation are discussed. It is observed that the velocity increases rapidly in the region near the inclined surface and is slower in the region near the free surface. Since R{sub 7} is a measure of the heat generation due to chemical reaction, when the reaction is frozen (R{sub 7}=0.0) the temperature distributions would depend only on R{sub 1}, and R{sub 2}, representing the effects of the pressure force developed in the material due to the distribution, R{sub 3} and R{sub 4} viscous dissipation, R{sub 5} the normal stress coefficient, R{sub 6} the measure of the emissivity of the particles to the thermal conductivity, etc. When the flow is not frozen (RP{sub 7} > 0) the temperature inside the flow domain is much higher than those at the inclined and free surfaces. As a result, heat is transferred away from the flow toward both the inclined surface and the free surface with a rate that increases as R{sub 7} increases. For a given temperature, an

  10. Heat Transfer in Gas Turbines

    NASA Technical Reports Server (NTRS)

    Garg, Vijay K.

    2001-01-01

    The turbine gas path is a very complex flow field. This is due to a variety of flow and heat transfer phenomena encountered in turbine passages. This manuscript provides an overview of the current work in this field at the NASA Glenn Research Center. Also, based on the author's preference, more emphasis is on the computational work. There is much more experimental work in progress at GRC than that reported here. While much has been achieved, more needs to be done in terms of validating the predictions against experimental data. More experimental data, especially on film cooled and rough turbine blades, are required for code validation. Also, the combined film cooling and internal cooling flow computation for a real blade is yet to be performed. While most computational work to date has assumed steady state conditions, the flow is clearly unsteady due to the presence of wakes. All this points to a long road ahead. However, we are well on course.

  11. Radiative heat transfer in porous uranium dioxide

    SciTech Connect

    Hayes, S.L.

    1992-12-01

    Due to low thermal conductivity and high emissivity of UO{sub 2}, it has been suggested that radiative heat transfer may play a significant role in heat transfer through pores of UO{sub 2} fuel. This possibility was computationally investigated and contribution of radiative heat transfer within pores to overall heat transport in porous UO{sub 2} quantified. A repeating unit cell was developed to model approximately a porous UO{sub 2} fuel system, and the heat transfer through unit cells representing a wide variety of fuel conditions was calculated using a finite element computer program. Conduction through solid fuel matrix as wekk as pore gas, and radiative exchange at pore surface was incorporated. A variety of pore compositions were investigated: porosity, pore size, shape and orientation, temperature, and temperature gradient. Calculations were made in which pore surface radiation was both modeled and neglected. The difference between yielding the integral contribution of radiative heat transfer mechanism to overall heat transport. Results indicate that radiative component of heat transfer within pores is small for conditions representative of light water reactor fuel, typically less than 1% of total heat transport. It is much larger, however, for conditions present in liquid metal fast breeder reactor fuel; during restructuring of this fuel type early in life, the radiative heat transfer mode was shown to contribute as much as 10-20% of total heat transport in hottest regions of fuel.

  12. Heat transfer model for quenching by submerging

    NASA Astrophysics Data System (ADS)

    Passarella, D. N.; Varas, F.; Martín, E. B.

    2011-05-01

    In quenching by submerging the workpiece is cooled due to vaporization, convective flow and interaction of both mechanisms. The dynamics of these phenomena is very complex and the corresponding heat fluxes are strongly dependent on local flow variables such as velocity of fluid and vapor fraction. This local dependence may produce very different cooling rates along the piece, responsible for inappropriate metallurgical transformations, variability of material properties and residual stresses. In order to obtain an accurate description of cooling during quenching, a mathematical model of heat transfer is presented here. The model is based on the drift-flux mixture-model for multiphase flows, including an equation of conservation of energy for the liquid phase and specific boundary conditions that account for evaporation and presence of vapor phase on the surface of the piece. The model was implemented on Comsol Multiphysics software. Generation of appropriate initial and boundary conditions, as well as numerical resolution details, is briefly discussed. To test the model, a simple flow condition was analyzed. The effect of vapor fraction on heat transfer is assessed. The presence of the typical vapor blanket and its collapse can be recovered by the model, and its effect on the cooling rates on different parts of the piece is analyzed. Comparisons between numerical results and data from literature are made.

  13. Flow and heat transfer enhancement in tube heat exchangers

    NASA Astrophysics Data System (ADS)

    Sayed Ahmed, Sayed Ahmed E.; Mesalhy, Osama M.; Abdelatief, Mohamed A.

    2015-11-01

    The performance of heat exchangers can be improved to perform a certain heat-transfer duty by heat transfer enhancement techniques. Enhancement techniques can be divided into two categories: passive and active. Active methods require external power, such as electric or acoustic field, mechanical devices, or surface vibration, whereas passive methods do not require external power but make use of a special surface geometry or fluid additive which cause heat transfer enhancement. The majority of commercially interesting enhancement techniques are passive ones. This paper presents a review of published works on the characteristics of heat transfer and flow in finned tube heat exchangers of the existing patterns. The review considers plain, louvered, slit, wavy, annular, longitudinal, and serrated fins. This review can be indicated by the status of the research in this area which is important. The comparison of finned tubes heat exchangers shows that those with slit, plain, and wavy finned tubes have the highest values of area goodness factor while the heat exchanger with annular fin shows the lowest. A better heat transfer coefficient ha is found for a heat exchanger with louvered finned and thus should be regarded as the most efficient one, at fixed pumping power per heat transfer area. This study points out that although numerous studies have been conducted on the characteristics of flow and heat transfer in round, elliptical, and flat tubes, studies on some types of streamlined-tubes shapes are limited, especially on wing-shaped tubes (Sayed Ahmed et al. in Heat Mass Transf 50: 1091-1102, 2014; in Heat Mass Transf 51: 1001-1016, 2015). It is recommended that further detailed studies via numerical simulations and/or experimental investigations should be carried out, in the future, to put further insight to these fin designs.

  14. Periodic Heat Transfer at Small Pressure Fluctuations

    NASA Technical Reports Server (NTRS)

    Pfriem, H.

    1943-01-01

    The effect of cyclic gas pressure variations on the periodic heat transfer at a flat wall is theoretically analyzed and the differential equation describing the process and its solution for relatively. Small pressure fluctuations developed, thus explaining the periodic heat cycle between gas and wall surface. The processes for pure harmonic pressure and temperature oscillations, respectively, in the gas space are described by means of a constant heat transfer coefficient and the equally constant phase angle between the appearance of the maximum values of the pressure and heat flow most conveniently expressed mathematically in the form of a complex heat transfer coefficient. Any cyclic pressure oscillations, can be reduced by Fourier analysis to harmonic oscillations, which result in specific, mutual relationships of heat-transfer coefficients and phase angles for the different harmonics.

  15. Phase Change Heat Transfer Device for Process Heat Applications

    SciTech Connect

    Piyush Sabharwall; Mike Patterson; Vivek Utgikar; Fred Gunnerson

    2010-10-01

    The next generation nuclear plant (NGNP) will most likely produce electricity and process heat, with both being considered for hydrogen production. To capture nuclear process heat, and transport it to a distant industrial facility requires a high temperature system of heat exchangers, pumps and/or compressors. The heat transfer system is particularly challenging not only due to the elevated temperatures (up to approx.1300 K) and industrial scale power transport (=50MW), but also due to a potentially large separation distance between the nuclear and industrial plants (100+m) dictated by safety and licensing mandates. The work reported here is the preliminary analysis of two-phase thermosyphon heat transfer performance with alkali metals. A thermosyphon is a thermal device for transporting heat from one point to another with quite extraordinary properties. In contrast to single-phased forced convective heat transfer via ‘pumping a fluid’, a thermosyphon (also called a wickless heat pipe) transfers heat through the vaporization/condensing process. The condensate is further returned to the hot source by gravity, i.e., without any requirement of pumps or compressors. With this mode of heat transfer, the thermosyphon has the capability to transport heat at high rates over appreciable distances, virtually isothermally and without any requirement for external pumping devices. Two-phase heat transfer by a thermosyphon has the advantage of high enthalpy transport that includes the sensible heat of the liquid, the latent heat of vaporization, and vapor superheat. In contrast, single-phase forced convection transports only the sensible heat of the fluid. Additionally, vapor-phase velocities within a thermosyphon are much greater than single-phase liquid velocities within a forced convective loop. Thermosyphon performance can be limited by the sonic limit (choking) of vapor flow and/or by condensate entrainment. Proper thermosyphon requires analysis of both.

  16. ASME Heat Transfer Division: Proceedings. Volume 1: Heat transfer in microgravity systems, radiative heat transfer and radiative heat transfer in low-temperature environments, and thermal contact conductance and inverse problems in heat transfer; HTD-Volume 332

    SciTech Connect

    Gopinath, A.; Sadhal, S.S.; Jones, P.D.; Seyed-Yagoobi, J.; Woodbury, K.A.

    1996-12-31

    In the first section on heat transfer in microgravity, the papers cover phase-change phenomena and thermocapillary flows and surface effects. In the second section, several papers cover solution methods for radiative heat transfer while the rest cover heat transfer in low-temperature environments. The last section covers papers containing valuable information for thermal contact conductance of various materials plus papers on inverse problems in heat transfer. Separate abstracts were prepared for most papers in this volume.

  17. High-Power Liquid-Metal Heat-Transfer Loop

    NASA Technical Reports Server (NTRS)

    Bhandari, Pradeep; Fujita, Toshio

    1991-01-01

    Proposed closed-loop system for transfer of thermal power operates at relatively high differential pressure between vapor and liquid phases of liquid-metal working fluid. Resembles "capillary-pumped" liquid-metal heat-transfer loop except electric field across permselective barrier of beta alumina keeps liquid and vapor separate at heat-input end. Increases output thermal power, contains no moving parts, highly reliable and well suited to long-term unattended operation.

  18. Heat and mass transfer considerations in advanced heat pump systems

    SciTech Connect

    Panchal, C.B.; Bell, K.J.

    1992-01-01

    Advanced heat-pump cycles are being investigated for various applications. However, the working media and associated thermal design aspects require new concepts for maintaining high thermal effectiveness and phase equilibrium for achieving maximum possible thermodynamic advantages. In the present study, the heat- and mass-transfer processes in two heat-pump systems -- those based on absorption processes, and those using refrigerant mixtures -- are analyzed. The major technical barriers for achieving the ideal performance predicted by thermodynamic analysis are identified. The analysis provides general guidelines for the development of heat- and mass-transfer equipment for advanced heat-pump systems.

  19. Heat and mass transfer considerations in advanced heat pump systems

    SciTech Connect

    Panchal, C.B.; Bell, K.J.

    1992-08-01

    Advanced heat-pump cycles are being investigated for various applications. However, the working media and associated thermal design aspects require new concepts for maintaining high thermal effectiveness and phase equilibrium for achieving maximum possible thermodynamic advantages. In the present study, the heat- and mass-transfer processes in two heat-pump systems -- those based on absorption processes, and those using refrigerant mixtures -- are analyzed. The major technical barriers for achieving the ideal performance predicted by thermodynamic analysis are identified. The analysis provides general guidelines for the development of heat- and mass-transfer equipment for advanced heat-pump systems.

  20. Thermodynamics of Flow Boiling Heat Transfer

    NASA Astrophysics Data System (ADS)

    Collado, F. J.

    2003-05-01

    Convective boiling in sub-cooled water flowing through a heated channel is essential in many engineering applications where high heat flux needs to be accommodated. It has been customary to represent the heat transfer by the boiling curve, which shows the heat flux versus the wall-minus-saturation temperature difference. However it is a rather complicated problem, and recent revisions of two-phase flow and heat transfer note that calculated values of boiling heat transfer coefficients present many uncertainties. Quite recently, the author has shown that the average thermal gap in the heated channel (the wall temperature minus the average temperature of the coolant) was tightly connected with the thermodynamic efficiency of a theoretical reversible engine placed in this thermal gap. In this work, whereas this correlation is checked again with data taken by General Electric (task III) for water at high pressure, a possible connection between this wall efficiency and the reversible-work theorem is explored.

  1. Droplet heat transfer and chemical reactions during direct containment heating

    SciTech Connect

    Baker, L. Jr.

    1986-01-01

    A simplified model of heat transfer and chemical reaction has been adapted to evaluate the expected behavior of droplets containing unreacted Zircaloy and stainless steel moving through the containment atmosphere during postulated accidents involving direct containment heating. The model includes internal and external diffusive resistances to reaction. The results indicate that reactions will be incomplete for many conditions characteristic of direct containment heating sequences.

  2. Variable-Conductance Heat-Transfer Module

    NASA Technical Reports Server (NTRS)

    Hewitt, D. R.

    1984-01-01

    Working lengths of heat pipes electronically controlled. Rate of heat transfer controlled by electrical heaters shorten effective working lengths of heat pipes. Concept not limited to right circular cylindrical shape. Concept adaptable to terrestrial instruments or processes in which atmospheres or fluids must be cooled and returned to instruments or processes at fixed lower temperatures.

  3. Heat transfer and planetary evolution

    NASA Astrophysics Data System (ADS)

    Tozer, D. C.

    1985-06-01

    The object of this account is to show how much one can interprete and predict about the present state of material forming planet size objects, despite the fact we do not and could never have the kind of exact or prior knowledge of initial conditions and in situ material behaviour that would make a formal mathematical analysis of the dynamical problems of planetary evolution an efficient or meaningful exercise The interest and usefulness of results obtained within these limitations stem from the highly non linear nature of planetary scale heat transfer problems when posed in any physically plausible form. The non linearity arising from a strongly temperature dependent rheology assumed for in situ planetary material is particularly valuable in deriving results insensitive to such uncertainties. Qualitatively, the thermal evolution of a planet is quite unlike that given by heat conduction calculation below a very superficial layer, and much unnecessary argument and confusion results from a persistent failure to recognise that fact. At depths that are no greater on average than a few tens of kilometres in the case of Earth, the temperature distribution is determined by a convective flow regime inaccessble to the laboratory experimenter and to the numerical methods regularly employed to study convective movement. A central and guiding quantitative result is the creation in homogeneous planet size objects having surface temperatures less than about half the absolute melting temperature of their material, of internal states with horizontally a veraged viscosity values ˜1021 poise. This happens in times short compared with the present Solar System age. The significance of this result for an understanding of such processes and features as isostasy, continental drift, a minimum in seismic S wave velocity in Earth's upper mantle, a uniformity of mantle viscosity values, the survival of liquid planetary cores and the differentiation of terrestrial planet material is examined

  4. Near field heat transfer in superlattices

    NASA Astrophysics Data System (ADS)

    Esquivel-Sirvent, Raul

    2015-03-01

    I present a theoretical calculation of the near field heat transfer between super lattices made of alternative layers of both metallic and semiconducting materials. The calculation of the near field transfer requires the knowledge of the reflectivities, that are obtained by calculating the surface impedance of the super lattice. Depending on the periodicity of the lattice and the dielectric function of the materials the near field heat transfer can be modulated or engineered. Additional control on the heat transfer is achieved by introducing defects in the superlattice. The results are extended to include photonic hypercrystals that effectively behave like a hyperbolic metamaterial even in the near field (1), where the tuning of the heat transfer is modified by Partial Support from DGAPA-UNAM project IN 111214.

  5. Heat Transfer of Nanofluid in a Double Pipe Heat Exchanger

    PubMed Central

    Aghayari, Reza; Maddah, Heydar; Zarei, Malihe; Dehghani, Mehdi; Kaskari Mahalle, Sahar Ghanbari

    2014-01-01

    This paper investigates the enhancement of heat transfer coefficient and Nusselt number of a nanofluid containing nanoparticles (γ-AL2O3) with a particle size of 20 nm and volume fraction of 0.1%–0.3% (V/V). Effects of temperature and concentration of nanoparticles on Nusselt number changes and heat transfer coefficient in a double pipe heat exchanger with counter turbulent flow are investigated. Comparison of experimental results with valid theoretical data based on semiempirical equations shows an acceptable agreement. Experimental results show a considerable increase in heat transfer coefficient and Nusselt number up to 19%–24%, respectively. Also, it has been observed that the heat transfer coefficient increases with the operating temperature and concentration of nanoparticles. PMID:27433521

  6. Mathematical Modeling of the Thermal State of an Isothermal Element with Account of the Radiant Heat Transfer Between Parts of a Spacecraft

    NASA Astrophysics Data System (ADS)

    Alifanov, O. M.; Paleshkin, A. V.; Terent‧ev, V. V.; Firsyuk, S. O.

    2016-01-01

    A methodological approach to determination of the thermal state at a point on the surface of an isothermal element of a small spacecraft has been developed. A mathematical model of heat transfer between surfaces of intricate geometric configuration has been described. In this model, account was taken of the external field of radiant fluxes and of the differentiated mutual influence of the surfaces. An algorithm for calculation of the distribution of the density of the radiation absorbed by surface elements of the object under study has been proposed. The temperature field on the lateral surface of the spacecraft exposed to sunlight and on its shady side has been calculated. By determining the thermal state of magnetic controls of the orientation system as an example, the authors have assessed the contribution of the radiation coming from the solar-cell panels and from the spacecraft surface.

  7. Pumped two-phase heat transfer loop

    NASA Technical Reports Server (NTRS)

    Edelstein, Fred

    1988-01-01

    A pumped loop two-phase heat transfer system, operating at a nearly constant temperature throughout, includes several independently operating grooved capillary heat exchanger plates supplied with working fluid through independent flow modulation valves connected to a liquid supply line, a vapor line for collecting vapor from the heat exchangers, a condenser between the vapor and the liquid lines, and a fluid circulating pump between the condenser and the heat exchangers.

  8. Pumped two-phase heat transfer loop

    NASA Technical Reports Server (NTRS)

    Edelstein, Fred (Inventor)

    1987-01-01

    A pumped loop two-phase heat transfer system, operating at a nearly constant temperature throughout, includes a plurality of independently operating grooved capillary heat exchanger plates supplied with working fluid through independent flow modulation valves connected to a liquid supply line, a vapor line for collecting vapor from the heat exchangers, a condenser between the vapor and the liquid lines, and a fluid circulating pump between the condenser and the heat exchangers.

  9. Heat transfer peculiarities in supersonic flows

    NASA Astrophysics Data System (ADS)

    Borovoi, V. Ia.; Brazhko, V. N.; Maikapar, G. I.; Skuratov, A. S.; Struminskaia, I. V.

    1992-12-01

    A method of heat transfer and gas flow investigation based on the application of thermal sensitive coatings or thermocouple sensors and various visualization techniques is described. The thermal sensitive coatings and visualization reveal heat transfer peculiarities, and the complex nature of the method contributes to understanding the processes and generalization of quantitative results. Data concerning heat transfer on the leeward side of a blunt cone in the regions of the shock-wave boundary layer and bow wave interaction, in gaps and cavities of the orbiter's thermal insulation, and in the vicinity of them, are presented.

  10. Passive heat transfer means for nuclear reactors

    DOEpatents

    Burelbach, James P.

    1984-01-01

    An improved passive cooling arrangement is disclosed for maintaining adjacent or related components of a nuclear reactor within specified temperature differences. Specifically, heat pipes are operatively interposed between the components, with the vaporizing section of the heat pipe proximate the hot component operable to cool it and the primary condensing section of the heat pipe proximate the other and cooler component operable to heat it. Each heat pipe further has a secondary condensing section that is located outwardly beyond the reactor confinement and in a secondary heat sink, such as air ambient the containment, that is cooler than the other reactor component. Means such as shrouding normally isolated the secondary condensing section from effective heat transfer with the heat sink, but a sensor responds to overheat conditions of the reactor to open the shrouding, which thereby increases the cooling capacity of the heat pipe. By having many such heat pipes, an emergency passive cooling system is defined that is operative without electrical power.

  11. Determination of the heat transfer coefficients in transient heat conduction

    NASA Astrophysics Data System (ADS)

    Nho Hào, Dinh; Thanh, Phan Xuan; Lesnic, D.

    2013-09-01

    The determination of the space- or time-dependent heat transfer coefficient which links the boundary temperature to the heat flux through a third-kind Robin boundary condition in transient heat conduction is investigated. The reconstruction uses average surface temperature measurements. In both cases of the space- or time-dependent unknown heat transfer coefficient the inverse problems are nonlinear and ill posed. Least-squares penalized variational formulations are proposed and new formulae for the gradients are derived. Numerical results obtained using the nonlinear conjugate gradient method combined with a boundary element direct solver are presented and discussed.

  12. Heat transfer behavior of molten nitrate salt

    NASA Astrophysics Data System (ADS)

    Das, Apurba K.; Clark, Michael M.; Teigen, Bard C.; Fiveland, Woodrow A.; Anderson, Mark H.

    2016-05-01

    The usage of molten nitrate salt as heat transfer fluid and thermal storage medium decouples the generation of electricity from the variable nature of the solar resource, allowing CSP plants to avoid curtailment and match production with demand. This however brings some unique challenges for the design of the molten salt central receiver (MSCR). An aspect critical to the use of molten nitrate (60wt%/40wt% - NaNO3/KNO3) salt as heat transfer fluid in the MSCR is to understand its heat transfer behavior. Alstom collaborated with the University of Wisconsin to conduct a series of experiments and experimentally determined the heat transfer coefficients of molten nitrate salt up to high Reynolds number (Re > 2.0E5) and heat flux (q″ > 1000 kW/m2), conditions heretofore not reported in the literature. A cartridge heater instrumented with thermocouples was installed inside a stainless steel pipe to form an annular test section. The test section was installed in the molten salt flow loop at the University of Wisconsin facility, and operated over a range of test conditions to determine heat transfer data that covered the expected operating regime of a practical molten salt receiver. Heat transfer data were compared to widely accepted correlations found in heat transfer literature, including that of Gnielinski. At lower Reynolds number conditions, the results from this work concurred with the molten salt heat transfer data reported in literature and followed the aforementioned correlations. However, in the region of interest for practical receiver design, the correlations did not accurately model the experimentally determined heat transfer data. Two major effects were observed: (i) all other factors remaining constant, the Nusselt numbers gradually plateaued at higher Reynolds number; and (ii) at higher Reynolds number a positive interaction of heat flux on Nusselt number was noted. These effects are definitely not modeled by the existing correlations. In this paper a new

  13. Nucleation and Heat Transfer in Liquid Nitrogen

    NASA Astrophysics Data System (ADS)

    Roth, Eric Warner

    1993-01-01

    With the advent of the new high Tc superconductors as well as the increasing use of cryo-cooled conventional electronics, liquid nitrogen will be one of the preferred cryogens used to cool these materials. Consequently, a more thorough understanding of the heat transfer characteristics of liquid nitrogen is required. In these investigations the transient heating characteristics of liquid nitrogen to states of nucleate and film boiling under different liquid flow conditions are examined. Using a metal hot wire/plate technique, it is verified that there is a premature transition to film boiling in the transient case at power levels as much as 30 percent lower than under steady state nucleate boiling conditions. It is also shown that the premature transition can be reduced or eliminated depending on the flow velocity. The second part of this research analyses the nucleation (boiling) process from a dynamical systems point of view. By observing how the boiling system variables evolve and fluctuate over time, it is hoped that physical insight and predictive information can be gained. One goal is to discover some indicator or signature in the data that anticipates the transition from nucleate boiling to film boiling. Some of the important variables that make up the boiling system are the temperature of the heater and the heat flux through the heater surface into the liquid nitrogen. The result, gained by plotting the system's trajectory in the heat flux-temperature plane, is that on average the system follows a counterclockwise trajectory. A physical model is constructed that explains this behavior. Also, as the applied heater power approaches levels at which the transition to film is known to occur, the area per unit time swept out in the heat flux-temperature plane is seen to reach a maximum. This could be of practical interest as the threshold to film boiling can be anticipated and possibly prevented.

  14. Numerical simulation of transitional flows with heat transfer

    NASA Astrophysics Data System (ADS)

    Kožíšek, Martin; Příhoda, Jaromír; Fürst, Jiří; Straka, Petr

    2016-06-01

    The contribution deals with simulation of internal flows with the laminar/turbulent transition and heat transfer. The numerical modeling of incompressible flow on a heated flat plate was carried out partly by the k-kL-ω model of Walters and Cokljat [1] and partly by the algebraic transition model of Straka and Příhoda [2] connected with the EARSM turbulence model of Hellsten [3]. Transition models were tested by means of the skin friction and the Stanton number distribution. Used models of turbulent heat transfer were compared with the simplest model based on the constant turbulent Prandtl number. The k-kL-ω model is applied for the simulation of compressible flow through the VKI turbine blade cascade with heat transfer.

  15. Interface elements for heat transfer analysis

    NASA Astrophysics Data System (ADS)

    Mason, W. E.

    1984-08-01

    Interface elements are desirable in finite element heat transfer analyses in situations where dissimilar meshes are to be joined or where contact resistances occur between various parts of a body. In stress codes, such elements are often termed master/slave. A general algorithm for interface elements will be described. The algorithm allows development of interface elements for both two- and three-dimensional applications. Surfaces in contact are automatically determined so that a minimum of input data is required. In addition, the algorithm allows for compatibility in thermal stress calculations with mechanical codes which have sliding interface capabilities. Implementation of the algorithm into the TACO codes will be discussed and examples will be given.

  16. Heat transfer near turbine nozzle endwall.

    PubMed

    Chyu, M K

    2001-05-01

    This paper gives an overview and reviews recent findings concerning turbine endwall cooling in the literature. The text below begins with a brief discussion of the secondary flows and heat transfer around cascade endwall. This will be followed by a review of recent developments in cooling concepts and related heat transfer results. Key topics include: film cooling, upstream bleeding, endwall contouring, and leakage through component interfaces. PMID:11460636

  17. Nanoparticle enhanced ionic liquid heat transfer fluids

    DOEpatents

    Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Gray, Joshua R.; Garcia-Diaz, Brenda L.

    2014-08-12

    A heat transfer fluid created from nanoparticles that are dispersed into an ionic liquid is provided. Small volumes of nanoparticles are created from e.g., metals or metal oxides and/or alloys of such materials are dispersed into ionic liquids to create a heat transfer fluid. The nanoparticles can be dispersed directly into the ionic liquid during nanoparticle formation or the nanoparticles can be formed and then, in a subsequent step, dispersed into the ionic liquid using e.g., agitation.

  18. Heat and mass transfer in materials processing

    NASA Astrophysics Data System (ADS)

    Tanasawa, Ichiro; Lior, Noam

    Various papers on heat and mass transfer in materials processing are presented. The topics addressed include: heat transfer in plasma spraying, structure of ultrashort pulse plasma for CVD processing, heat flow and thermal contraction during plasma spray deposition, metal melting process by laser heating, improved electron beam weld design and control with beam current profile measurements, transport phenomena in laser materials processing, perspectives on integrated modeling of transport processes in semiconductor crystal growth, numerical simulation of natural convection in crystal growth in space and on the earth, conjugate heat transfer in crystal growth, effects of convection on the solidification of binary mixtures. Also discussed are: heat transfer in in-rotating-liquid-spinning process, thermal oscillations in materials processing, modeling and simulation of manufacturing processes of advanced composite materials, reaction engineering principles of combustion synthesis of advanced materials, numerical evaluation of the physical properties of magnetic fluids suitable for heat transfer control, and measurement techniques of thermophysical properties of high temperature melts. (For individual items see A93-10827 to A93-10843)

  19. Examination of Liquid Fluoride Salt Heat Transfer

    SciTech Connect

    Yoder Jr, Graydon L

    2014-01-01

    The need for high efficiency power conversion and energy transport systems is increasing as world energy use continues to increase, petroleum supplies decrease, and global warming concerns become more prevalent. There are few heat transport fluids capable of operating above about 600oC that do not require operation at extremely high pressures. Liquid fluoride salts are an exception to that limitation. Fluoride salts have very high boiling points, can operate at high temperatures and low pressures and have very good heat transfer properties. They have been proposed as coolants for next generation fission reactor systems, as coolants for fusion reactor blankets, and as thermal storage media for solar power systems. In each case, these salts are used to either extract or deliver heat through heat exchange equipment, and in order to design this equipment, liquid salt heat transfer must be predicted. This paper discusses the heat transfer characteristics of liquid fluoride salts. Historically, heat transfer in fluoride salts has been assumed to be consistent with that of conventional fluids (air, water, etc.), and correlations used for predicting heat transfer performance of all fluoride salts have been the same or similar to those used for water conventional fluids an, water, etc). A review of existing liquid salt heat transfer data is presented, summarized, and evaluated on a consistent basis. Less than 10 experimental data sets have been found in the literature, with varying degrees of experimental detail and measured parameters provided. The data has been digitized and a limited database has been assembled and compared to existing heat transfer correlations. Results vary as well, with some data sets following traditional correlations; in others the comparisons are less conclusive. This is especially the case for less common salt/materials combinations, and suggests that additional heat transfer data may be needed when using specific salt eutectics in heat transfer

  20. Heat transfer measurements for Stirling machine cylinders

    NASA Technical Reports Server (NTRS)

    Kornhauser, Alan A.; Kafka, B. C.; Finkbeiner, D. L.; Cantelmi, F. C.

    1994-01-01

    The primary purpose of this study was to measure the effects of inflow-produced heat turbulence on heat transfer in Stirling machine cylinders. A secondary purpose was to provide new experimental information on heat transfer in gas springs without inflow. The apparatus for the experiment consisted of a varying-volume piston-cylinder space connected to a fixed volume space by an orifice. The orifice size could be varied to adjust the level of inflow-produced turbulence, or the orifice plate could be removed completely so as to merge the two spaces into a single gas spring space. Speed, cycle mean pressure, overall volume ratio, and varying volume space clearance ratio could also be adjusted. Volume, pressure in both spaces, and local heat flux at two locations were measured. The pressure and volume measurements were used to calculate area averaged heat flux, heat transfer hysteresis loss, and other heat transfer-related effects. Experiments in the one space arrangement extended the range of previous gas spring tests to lower volume ratio and higher nondimensional speed. The tests corroborated previous results and showed that analytic models for heat transfer and loss based on volume ratio approaching 1 were valid for volume ratios ranging from 1 to 2, a range covering most gas springs in Stirling machines. Data from experiments in the two space arrangement were first analyzed based on lumping the two spaces together and examining total loss and averaged heat transfer as a function of overall nondimensional parameter. Heat transfer and loss were found to be significantly increased by inflow-produced turbulence. These increases could be modeled by appropriate adjustment of empirical coefficients in an existing semi-analytic model. An attempt was made to use an inverse, parameter optimization procedure to find the heat transfer in each of the two spaces. This procedure was successful in retrieving this information from simulated pressure-volume data with artificially

  1. Interactive Heat Transfer Simulations for Everyone

    ERIC Educational Resources Information Center

    Xie, Charles

    2012-01-01

    Heat transfer is widely taught in secondary Earth science and physics. Researchers have identified many misconceptions related to heat and temperature. These misconceptions primarily stem from hunches developed in everyday life (though the confusions in terminology often worsen them). Interactive computer simulations that visualize thermal energy,…

  2. Heat transfer coefficient of nanofluids in minichannel heat sink

    NASA Astrophysics Data System (ADS)

    Utomo, Adi T.; Zavareh, Ashkan I. T.; Poth, Heiko; Wahab, Mohd; Boonie, Mohammad; Robbins, Phillip T.; Pacek, Andrzej W.

    2012-09-01

    Convective heat transfer in a heat sink consisting of rectangular minichannels and cooled with alumina and titania nanofluids has been investigated experimentally and numerically. Numerical simulations were carried out in a three dimensional domain employing homogeneous mixture model with effective thermo-physical properties of nanofluids. The predictions of base temperature profiles of the heat sink cooled with both water and nanofluids agree well with the experimental data. Experimental and numerical results show that the investigated nanofluids neither exhibits unusual enhancement of heat transfer coefficient nor decreases the heat sink base temperature. Although both nanofluids showed marginal thermal conductivity enhancements, the presence of solid nanoparticles lowers the specific heat capacity of nanofluids offseting the advantage of thermal conductivity enhancement. For all investigated flow rates, the Nusselt number of both nanofluids overlaps with that of water indicating that both nanofluids behave like single-phase fluids.

  3. Experimental and numerical investigations of internal heat transfer in an innovative trailing edge blade cooling system: stationary and rotation effects, part 1—experimental results

    NASA Astrophysics Data System (ADS)

    Beniaiche, Ahmed; Ghenaiet, Adel; Facchini, Bruno

    2016-05-01

    The aero-thermal behavior of the flow field inside 30:1 scaled model reproducing an innovative smooth trailing edge of shaped wedge discharge duct with one row of enlarged pedestals have been investigated in order to determine the effect of rotation, inlet velocity and blowing conditions effects, for Re = 20,000 and 40,000 and Ro = 0-0.23. Two configurations are presented: with and without open tip configurations. Thermo-chromic liquid crystals technique is used to ensure a local measurement of the heat transfer coefficient on the blade suction side under stationary and rotation conditions. Results are reported in terms of detailed 2D HTC maps on the suction side surface as well as the averaged Nusselt number inside the pedestal ducts. Two correlations are proposed, for both closed and open tip configurations, based on the Re, Pr, Ro and a new non-dimensional parameter based on the position along the radial distance, to assess a reliable estimation of the averaged Nusselt number at the inter-pedestal region. A good agreement is found between prediction and experimental data with about ±10 to ±12 % of uncertainty, for the simple form correlation, and about ±16 % using a complex form. The obtained results help to predict the flow field visualization and the evaluation of the aero-thermal performance of the studied blade cooling system during the design step.

  4. Heat Transfer to Fuel Sprays Injected into Heated Gases

    NASA Technical Reports Server (NTRS)

    Selden, Robert F; Spencer, Robert C

    1938-01-01

    This report presents the results of a study made of the influence of several variables on the pressure decrease accompanying injection of a relatively cool liquid into a heated compressed gas. Indirectly, this pressure decrease and the time rate of change of it are indicative of the total heat transferred as well as the rate of heat transfer between the gas and the injected liquid. Air, nitrogen, and carbon dioxide were used as ambient gases; diesel fuel and benzene were the injected liquids. The gas densities and gas-fuel ratios covered approximately the range used in compression-ignition engines. The gas temperatures ranged from 150 degrees c. to 350 degrees c.

  5. Interactive Heat Transfer Simulations for Everyone

    NASA Astrophysics Data System (ADS)

    Xie, Charles

    2012-04-01

    Heat transfer is widely taught in secondary Earth science and physics. Researchers have identified many misconceptions related to heat and temperature. These misconceptions primarily stem from hunches developed in everyday life (though the confusions in terminology often worsen them). Interactive computer simulations that visualize thermal energy, temperature distribution, and heat transfer may provide a straightforward method for teaching and learning these concepts. Through interacting with visual representations of the concepts and observing how they respond to manipulations, the misconceptions may be dispelled more effectively. This paper presents a new educational simulation tool called Energy2D developed to explore this idea.

  6. Heat transfer studies. Quarterly report

    SciTech Connect

    Boehm, R.; Chen, Y.T.; Ma, L.

    1995-04-20

    Nitrogen gas has been replaced by room air in the extension of multi-phase models to sub-residual saturation experiments on drying. The TOUGH2 code has been used to simulate the same problem with the identical boundary conditions. A constant heat flux boundary condition on the heater has been performed in the repository drift experiment. The desired constant heat flux can produce a steady-state heater temperature ({approx}238{degrees}C) close to the constant heater surface temperature used before. What occurs in the air annulus and in the porous medium with the different thermal boundary conditions and water quantities is reported.

  7. Heat transfer characteristics for disk fans

    NASA Astrophysics Data System (ADS)

    Prikhodko, Yu. M.; Chekhov, V. P.; Fomichev, V. P.

    2014-08-01

    Multiple-disk fans belong to the class of friction machines; they can be designed in two variants: centrifugal disk fans and diametrical disk fans. Flow patterns in these two types of machines are different, and they possess different heat transfer characteristics. The paper presents results of experimental study for a centrifugal disk fan under atmospheric pressure with air taken as working gas. The radial temperature distribution for a disk was obtained at different rotation speed of the rotor and different heating of the disks. Heat transfer characteristics of a centrifugal disk fan and a diametrical disk fan were compared. The research results demonstrate a higher heat transfer efficiency for centrifugal design versus diametrical disk design.

  8. Indirect evaporative coolers with enhanced heat transfer

    SciTech Connect

    Kozubal, Eric; Woods, Jason; Judkoff, Ron

    2015-09-22

    A separator plate assembly for use in an indirect evaporative cooler (IEC) with an air-to-air heat exchanger. The assembly includes a separator plate with a first surface defining a dry channel and a second surface defining a wet channel. The assembly includes heat transfer enhancements provided on the first surface for increasing heat transfer rates. The heat transfer enhancements may include slit fins with bodies extending outward from the first surface of separator plate or may take other forms including vortex generators, offset strip fins, and wavy fins. In slit fin implementations, the separator plate has holes proximate to each of the slit fins, and the separator plate assembly may include a sealing layer applied to the second surface of the separator plate to block air flow through the holes. The sealing layer can be a thickness of adhesive, and a layer of wicking material is applied to the adhesive.

  9. Revealing the complex conduction heat transfer mechanism of nanofluids.

    PubMed

    Sergis, A; Hardalupas, Y

    2015-12-01

    Nanofluids are two-phase mixtures consisting of small percentages of nanoparticles (sub 1-10 %vol) inside a carrier fluid. The typical size of nanoparticles is less than 100 nm. These fluids have been exhibiting experimentally a significant increase of thermal performance compared to the corresponding carrier fluids, which cannot be explained using the classical thermodynamic theory. This study deciphers the thermal heat transfer mechanism for the conductive heat transfer mode via a molecular dynamics simulation code. The current findings are the first of their kind and conflict with the proposed theories for heat transfer propagation through micron-sized slurries and pure matter. The authors provide evidence of a complex new type of heat transfer mechanism, which explains the observed abnormal heat transfer augmentation. The new mechanism appears to unite a number of popular speculations for the thermal heat transfer mechanism employed by nanofluids as predicted by the majority of the researchers of the field into a single one. The constituents of the increased diffusivity of the nanoparticle can be attributed to mismatching of the local temperature profiles between parts of the surface of the solid and the fluid resulting in increased local thermophoretic effects. These effects affect the region surrounding the solid manifesting interfacial layer phenomena (Kapitza resistance). In this region, the activity of the fluid and the interactions between the fluid and the nanoparticle are elevated. Isotropic increased nanoparticle mobility is manifested as enhanced Brownian motion and diffusion effects. PMID:26058515

  10. Revealing the complex conduction heat transfer mechanism of nanofluids

    NASA Astrophysics Data System (ADS)

    Sergis, A.; Hardalupas, Y.

    2015-06-01

    Nanofluids are two-phase mixtures consisting of small percentages of nanoparticles (sub 1-10 %vol) inside a carrier fluid. The typical size of nanoparticles is less than 100 nm. These fluids have been exhibiting experimentally a significant increase of thermal performance compared to the corresponding carrier fluids, which cannot be explained using the classical thermodynamic theory. This study deciphers the thermal heat transfer mechanism for the conductive heat transfer mode via a molecular dynamics simulation code. The current findings are the first of their kind and conflict with the proposed theories for heat transfer propagation through micron-sized slurries and pure matter. The authors provide evidence of a complex new type of heat transfer mechanism, which explains the observed abnormal heat transfer augmentation. The new mechanism appears to unite a number of popular speculations for the thermal heat transfer mechanism employed by nanofluids as predicted by the majority of the researchers of the field into a single one. The constituents of the increased diffusivity of the nanoparticle can be attributed to mismatching of the local temperature profiles between parts of the surface of the solid and the fluid resulting in increased local thermophoretic effects. These effects affect the region surrounding the solid manifesting interfacial layer phenomena (Kapitza resistance). In this region, the activity of the fluid and the interactions between the fluid and the nanoparticle are elevated. Isotropic increased nanoparticle mobility is manifested as enhanced Brownian motion and diffusion effects

  11. Capillary-Condenser-Pumped Heat-Transfer Loop

    NASA Technical Reports Server (NTRS)

    Silverstein, Calvin C.

    1989-01-01

    Heat being transferred supplies operating power. Capillary-condenser-pumped heat-transfer loop similar to heat pipe and to capillary-evaporator-pumped heat-transfer loop in that heat-transfer fluid pumped by evaporation and condensation of fluid at heat source and sink, respectively. Capillary condenser pump combined with capillary evaporator pump to form heat exchanger circulating heat-transfer fluids in both loops. Transport of heat more nearly isothermal. Thermal stress in loop reduced, and less external surface area needed in condenser section for rejection of heat to heat sink.

  12. Simplified models for heat transfer in rooms

    NASA Astrophysics Data System (ADS)

    Graca, Guilherme C. C. Carrilho Da

    Buildings protect their occupants from the outside environment. As a semi-enclosed environment, buildings tend to contain the internally generated heat and air pollutants, as well as the solar and conductive heat gains that can occur in the facade. In the warmer months of the year this generally leads to overheating, creating a need for a cooling system. Ventilation air replaces contaminated air in the building and is often used as the dominant medium for heat transfer between indoor and outdoor environments. The goal of the research presented in this thesis is to develop a better understanding of the important parameters in the performance of ventilation systems and to develop simplified convective heat transfer models. The general approach used in this study seeks to capture the dominant physical processes for these problems with first order accuracy, and develop simple models that show the correct system behavior trends. Dimensional analysis, in conjunction with simple momentum and energy conservation, scaled model experiments and numerical simulations, is used to improve airflow and heat transfer rate predictions in both single and multi room ventilation systems. This study includes the three commonly used room ventilation modes: mixing, displacement and cross-ventilation. A new modeling approach to convective heat transfer between the building and the outside is presented: the concept of equivalent room heat transfer coefficient. The new model quantifies the reduction in heat transfer between ventilation air and internal room surfaces caused by limited thermal capacity and temperature variation of the air for the three modes studied. Particular emphasis is placed on cross-ventilation, and on the development of a simple model to characterize the airflow patterns that occur in this case. The implementation of the models in a building thermal simulation software tool is presented as well as comparisons between model predictions, experimental results and complex

  13. Modeling microscale heat transfer using Calore.

    SciTech Connect

    Gallis, Michail A.; Rader, Daniel John; Wong, Chung-Nin Channy; Bainbridge, Bruce L.; Torczynski, John Robert; Piekos, Edward Stanley

    2005-09-01

    Modeling microscale heat transfer with the computational-heat-transfer code Calore is discussed. Microscale heat transfer problems differ from their macroscopic counterparts in that conductive heat transfer in both solid and gaseous materials may have important noncontinuum effects. In a solid material, three noncontinuum effects are considered: ballistic transport of phonons across a thin film, scattering of phonons from surface roughness at a gas-solid interface, and scattering of phonons from grain boundaries within the solid material. These processes are modeled for polycrystalline silicon, and the thermal-conductivity values predicted by these models are compared to experimental data. In a gaseous material, two noncontinuum effects are considered: ballistic transport of gas molecules across a thin gap and accommodation of gas molecules to solid conditions when reflecting from a solid surface. These processes are modeled for arbitrary gases by allowing the gas and solid temperatures across a gas-solid interface to differ: a finite heat transfer coefficient (contact conductance) is imposed at the gas-solid interface so that the temperature difference is proportional to the normal heat flux. In this approach, the behavior of gas in the bulk is not changed from behavior observed under macroscopic conditions. These models are implemented in Calore as user subroutines. The user subroutines reside within Sandia's Source Forge server, where they undergo version control and regression testing and are available to analysts needing these capabilities. A Calore simulation is presented that exercises these models for a heated microbeam separated from an ambient-temperature substrate by a thin gas-filled gap. Failure to use the noncontinuum heat transfer models for the solid and the gas causes the maximum temperature of the microbeam to be significantly underpredicted.

  14. A heat transfer model of a horizontal ground heat exchanger

    NASA Astrophysics Data System (ADS)

    Mironov, R. E.; Shtern, Yu. I.; Shtern, M. Yu.; Rogachev, M. S.

    2016-04-01

    Ground-source heat pumps are gaining popularity in Eastern Europe, especially those which are using the horizontal ground heat exchanger (GHX). Due to the difficulty of accessing GHX after the installation, materials and the quality of the installation must satisfy the very high requirements. An inaccurate calculation of GHX can be the reason of a scarcity of heat power in a crucial moment. So far, there isn't any appropriate mathematical description of the horizontal GHX which takes into account the mutual influence of GHX pipes on each other. To solve this problem we used the temperature wave approach. As a result, a mathematical model which describes the dependence of the heat transfer rate per unit length of the horizontal GHX pipe on the thermal properties of soil, operating time of GHX and the distance between pipes was obtained. Using this model, heat transfer rates per unit length of a horizontal GHX were plotted as functions of the distance between pipes and operating time. The modeling shows that heat transfer rates decreases rapidly with the distance between pipes lower then 2 meters. After the launch of heat pump, heat power of GHX is reduced during the first 20 - 30 days and get steady after that. The obtained results correlate with experimental data. Therefore the proposed mathematical model can be used to design a horizontal GHX with the optimal characteristics, and predict its capability during operation.

  15. Characteristics of Transient Boiling Heat Transfer

    SciTech Connect

    Liu, Wei; Monde, Masanori; Mitsutake, Y.

    2002-07-01

    In this paper, one dimensional inverse heat conduction solution is used for a measurement of pool boiling curve. The experiments are performed under atmospheric pressure for copper, brass, carbon steel and gold. Boiling curves, including unsteady transition boiling region, are found can be traced fairly well from a simple experiment system by solving inverse heat conduction solution. Boiling curves for steady heating and transient heating, for heating process and cooling process are compared. Surface behavior around CHF point, transition boiling and film-boiling regions are observed by using a high-speed camera. The results show the practicability of the inverse heat conduction solution in tracing boiling curve and thereby supply us a new way in boiling heat transfer research. (authors)

  16. Heat transfer in pressurized circulating fluidized beds

    SciTech Connect

    Wirth, K.E.

    1997-12-31

    The wall-to-suspension heat transfer in circulating fluidized beds (CFBs) operated at almost atmospheric pressure depends on the fluid mechanics immediately near the wall and on the thermal properties of the gas used. No influence of the superficial gas velocity adjusted is present. Consequently, the wall-to-suspension heat transfer coefficient in the form of the Nusselt number can be described by the Archimedes number of the gas-solid-system and the pressure drop number. The last number relates the cross-sectional average solids concentration to the solids concentration at minimum fluidization condition. However, with pressurized CFBs an influence of the superficial gas velocity on the wall-to-suspension heat transfer can be observed. Normalizing the superficial gas velocity in the form of the particle Froude number, two cases for the heat transfer in pressurized CFBs can be detected: with small particle Froude numbers (smaller than four) the same flow behavior and consequently the same heat transfer correlation is valid as it is for CFBs operated at almost atmospheric conditions; and with high particle Froude numbers (for example higher than four) the flow behavior immediately near the heat exchanger surface (CFB wall) can change. Instead of curtains of solids falling down with almost atmospheric pressure swirls of gas and solids can occur in the vicinity of the CFB wall when the static pressure is increased. With the change of the flow pattern near the CFB wall, i.e., the heat exchanger surface, a change of the heat transfer coefficient takes place. For the same Archimedes number, i.e., the same gas-solid system, and the same pressure drop number, i.e., the same cross-sectional average solids concentration, the Nusselt number, i.e., the heat transfer coefficient, increases when the flow pattern near the CFB wall changes from the curtain-type flow to that of the swirl-type flow. From experimentally obtained data in a cold running CFB a very simple correlation was

  17. Experimental and numerical investigation of HyperVapotron heat transfer

    NASA Astrophysics Data System (ADS)

    Wang, Weihua; Deng, Haifei; Huang, Shenghong; Chu, Delin; Yang, Bin; Mei, Luoqin; Pan, Baoguo

    2014-12-01

    The divertor first wall and neutral beam injection (NBI) components of tokamak devices require high heat flux removal up to 20-30 MW m-2 for future fusion reactors. The water cooled HyperVapotron (HV) structure, which relies on internal grooves or fins and boiling heat transfer to maximize the heat transfer capability, is the most promising candidate. The HV devices, that are able to transfer large amounts of heat (1-20 MW m-2) efficiently, have therefore been developed specifically for this application. Until recently, there have been few attempts to observe the detailed bubble characteristics and vortex evolvement of coolant flowing inside their various parts and understand of the internal two-phase complex heat transfer mechanism behind the vapotron effect. This research builds the experimental facilities of HyperVapotron Loop-I (HVL-I) and Pressure Water HyperVapotron Loop-II (PWHL-II) to implement the subcooled boiling principle experiment in terms of typical flow parameters, geometrical parameters of test section and surface heat flux, which are similar to those of the ITER-like first wall and NBI components (EAST and MAST). The multiphase flow and heat transfer phenomena on the surface of grooves and triangular fins when the subcooled water flowed through were observed and measured with the planar laser induced fluorescence (PLIF) and high-speed photography (HSP) techniques. Particle image velocimetry (PIV) was selected to reveal vortex formation, the flow structure that promotes the vapotron effect during subcooled boiling. The coolant flow data for contributing to the understanding of the vapotron phenomenon and the assessment of how the design and operational conditions that might affect the thermal performance of the devices were collected and analysed. The subcooled flow boiling model and methods of HV heat transfer adopted in the considered computational fluid dynamics (CFD) code were evaluated by comparing the calculated wall temperatures with the

  18. Heat transfer measurements and CFD simulations of an impinging jet

    NASA Astrophysics Data System (ADS)

    Petera, Karel; Dostál, Martin

    2016-03-01

    Heat transport in impinging jets makes a part of many experimental and numerical studies because some similarities can be identified between a pure impingement jet and industrial processes like, for example, the heat transfer at the bottom of an agitated vessel. In this paper, experimental results based on measuring the response to heat flux oscillations applied to the heat transfer surface are compared with CFD simulations. The computational cost of a LES-based approach is usually too high therefore a comparison with less computationally expensive RANS-based turbulence models is made in this paper and a possible improvement of implementing an anisotropic explicit algebraic model for the turbulent heat flux model is evaluated.

  19. HOST turbine heat transfer program summary

    NASA Technical Reports Server (NTRS)

    Gladden, Herbert J.; Simoneau, Robert J.

    1988-01-01

    The objectives of the HOST Turbine Heat Transfer subproject were to obtain a better understanding of the physics of the aerothermodynamic phenomena and to assess and improve the analytical methods used to predict the flow and heat transfer in high temperature gas turbines. At the time the HOST project was initiated, an across-the-board improvement in turbine design technology was needed. A building-block approach was utilized and the research ranged from the study of fundamental phenomena and modeling to experiments in simulated real engine environments. Experimental research accounted for approximately 75 percent of the funding with the remainder going to analytical efforts. A healthy government/industry/university partnership, with industry providing almost half of the research, was created to advance the turbine heat transfer design technology base.

  20. Heat transfer on accreting ice surfaces

    NASA Technical Reports Server (NTRS)

    Yamaguchi, Keiko; Hansman, R. John, Jr.

    1990-01-01

    Based on previous observations of glaze ice accretion, a 'Multi-Zone' model with distinct zones of different surface roughness is demonstrated. The use of surface roughness in the LEWICE ice accretion prediction code is examined. It was found that roughness is used in two ways: to determine the laminar to turbulent transition location and to calculate the turbulent heat transfer coefficient. A two zone version of the Multi-Zone model is implemented in the LEWICE code, and compared with experimental heat transfer coefficient and ice accretin results. The analysis of the boundary layer transition, surface roughness, and viscous flow field effects significantly increased the accuracy in predicting heat transfer coefficients. The Multi-Zone model was found to greatly improve the ice accretion prediction for the cases compared.

  1. Heat transfer on accreting ice surfaces

    NASA Technical Reports Server (NTRS)

    Yamaguchi, Keiko; Hansman, R. John, Jr.

    1993-01-01

    Based on previous observations of glaze ice accretion on aircraft surfaces, a multizone model with distinct zones of different surface roughness is demonstrated. The use of surface roughness in the LEWICE ice accretion prediction code is examined. It was found that roughness is used in two ways: (1) to determine the laminar to turbulent boundary-layer transition location; and (2) to calculate the convective turbulent heat-transfer coefficient. A two-zone version of the multizone model is implemented in the LEWICE code, and compared with experimental convective heat-transfer coefficient and ice accretion results. The analysis of the boundary-layer transition, surface roughness, and viscous flowfield effects significantly increased the accuracy in predicting heat-transfer coefficients. The multizone model was found to significantly improve the ice accretion prediction for the cases compared.

  2. Heat Transfer Enhancement in Separated and Vortex Flows

    SciTech Connect

    Richard J. Goldstein

    2004-05-27

    This document summarizes the research performance done at the Heat Transfer Laboratory of the University of Minnesota on heat transfer and energy separation in separated and vortex flow supported by DOE in the period September 1, 1998--August 31, 2003. Unsteady and complicated flow structures in separated or vortex flows are the main reason for a poor understanding of heat transfer under such conditions. The research from the University of Minnesota focused on the following important aspects of understanding such flows: (1) Heat/mass transfer from a circular cylinder; (2) study of energy separation and heat transfer in free jet flows and shear layers; and (3) study of energy separation on the surface and in the wake of a cylinder in crossflow. The current study used three different experimental setups to accomplish these goals. A wind tunnel and a liquid tunnel using water and mixtures of ethylene glycol and water, is used for the study of prandtl number effect with uniform heat flux from the circular cylinder. A high velocity air jet is used to study energy separation in free jets. A high speed wind tunnel, same as used for the first part, is utilized for energy separation effects on the surface and in the wake of the circular cylinder. The final outcome of this study is a substantial advancement in this research area.

  3. Self supporting heat transfer element

    DOEpatents

    Story, Grosvenor Cook; Baldonado, Ray Orico

    2002-01-01

    The present invention provides an improved internal heat exchange element arranged so as to traverse the inside diameter of a container vessel such that it makes good mechanical contact with the interior wall of that vessel. The mechanical element is fabricated from a material having a coefficient of thermal conductivity above about 0.8 W cm.sup.-1.degree. K.sup.-1 and is designed to function as a simple spring member when that member has been cooled to reduce its diameter to just below that of a cylindrical container or vessel into which it is placed and then allowed to warm to room temperature. A particularly important application of this invention is directed to a providing a simple compartmented storage container for accommodating a hydrogen absorbing alloy.

  4. Axial flow heat exchanger devices and methods for heat transfer using axial flow devices

    DOEpatents

    Koplow, Jeffrey P.

    2016-02-16

    Systems and methods described herein are directed to rotary heat exchangers configured to transfer heat to a heat transfer medium flowing in substantially axial direction within the heat exchangers. Exemplary heat exchangers include a heat conducting structure which is configured to be in thermal contact with a thermal load or a thermal sink, and a heat transfer structure rotatably coupled to the heat conducting structure to form a gap region between the heat conducting structure and the heat transfer structure, the heat transfer structure being configured to rotate during operation of the device. In example devices heat may be transferred across the gap region from a heated axial flow of the heat transfer medium to a cool stationary heat conducting structure, or from a heated stationary conducting structure to a cool axial flow of the heat transfer medium.

  5. Coolant passage heat transfer with rotation

    NASA Astrophysics Data System (ADS)

    Hajek, T. J.; Wagner, J.; Johnson, B. V.

    1986-10-01

    In current and advanced gas turbine engines, increased speeds, pressures and temperatures are used to reduce specific fuel consumption and increase thrust/weight ratios. Hence, the turbine airfoils are subjected to increased heat loads escalating the cooling requirements to satisfy life goals. The efficient use of cooling air requires that the details of local geometry and flow conditions be adequately modeled to predict local heat loads and the corresponding heat transfer coefficients. The objective of this program is to develop a heat transfer and pressure drop data base, computational fluid dynamic techniques and correlations for multi-pass rotating coolant passages with and without flow turbulators. The experimental effort is focused on the simulation of configurations and conditions expected in the blades of advanced aircraft high pressure turbines. With the use of this data base, the effects of Coriolis and buoyancy forces on the coolant side flow can be included in the design of turbine blades.

  6. Metallized Gelled Propellant Heat Transfer Tests Analyzed

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    1997-01-01

    A series of rocket engine heat transfer experiments using metallized gelled liquid propellants was conducted at the NASA Lewis Research Center. These experiments used a small 20- to 40-lbf thrust engine composed of a modular injector, an igniter, a chamber, and a nozzle. The fuels used were traditional liquid RP-1 and gelled RP-1 with 0-, 5-, and 55-wt % loadings of aluminum particles. Gaseous oxygen was used as the oxidizer. Heat transfer measurements were made with a rocket engine calorimeter chamber and nozzle with a total of 31 cooling channels. Each channel used water flow to carry heat away from the chamber and the attached thermocouples; flow meters allowed heat flux estimates at each of the 31 stations.

  7. Enhanced boiling heat transfer using radial fins

    NASA Astrophysics Data System (ADS)

    Razelos, P.; Das, S.; Krikkis, R. N.

    2008-04-01

    A numerical bifurcation analysis is carried out in order to determine the solution structure of radial fins subjected to multi-boiling heat transfer mode. One-dimensional conduction is employed throughout the thermal analysis. The fluid heat transfer coefficient is temperature dependent on the three regimes of phase-change of the fluid. Six fin profiles, defined in the text, are considered. Multiplicity structure is obtained to determine different types of bifurcation diagrams, which describe the dependence of a state variable of the system like the temperature or the heat dissipation on the fin design parameters, conduction convection parameter (CCP) or base temperature difference (Δ T). Specifically, the effects of Δ T, CCP and Biot number are analyzed. The results are presented graphically, showing the significant behavioral features of the heat rejection mechanism.

  8. Heat transfer during evaporation on a small surface (Review)

    NASA Astrophysics Data System (ADS)

    Tolubinskii, V. I.; Antonenko, V. A.; Kudritskii, G. R.; Ostrovskii, Iu. N.

    Experimental data in the literature on the intensity of heat transfer and critical heat loads associated with the boiling of a liquid on a small surface are examined. Various methods for intensifying heat transfer are discussed. Expressions are presented for calculating heat transfer coefficients and critical heat flux densities.

  9. Heat transfer characteristics of an emergent strand

    NASA Technical Reports Server (NTRS)

    Simon, W. E.; Witte, L. C.; Hedgcoxe, P. G.

    1974-01-01

    A mathematical model was developed to describe the heat transfer characteristics of a hot strand emerging into a surrounding coolant. A stable strand of constant efflux velocity is analyzed, with a constant (average) heat transfer coefficient on the sides and leading surface of the strand. After developing a suitable governing equation to provide an adequate description of the physical system, the dimensionless governing equation is solved with Laplace transform methods. The solution yields the temperature within the strand as a function of axial distance and time. Generalized results for a wide range of parameters are presented, and the relationship of the results and experimental observations is discussed.

  10. Heat-transfer tests of aqueous ethylene glycol solutions in an electrically heated tube

    NASA Technical Reports Server (NTRS)

    Bernardo, Everett; Eian, Carroll S

    1945-01-01

    As part of an investigation of the cooling characteristics of liquid-cooled engines, tests were conducted with an electrically heated single-tube heat exchanger to determine the heat-transfer characteristics of an-e-2 ethylene glycol and other ethylene glycol-water mixtures. Similar tests were conducted with water and commercial butanol (n-butyl alcohol) for check purposes. The results of tests conducted at an approximately constant liquid-flow rate of 0.67 pound per second (Reynolds number, 14,500 to 112,500) indicate that at an average liquid temperature 200 degrees f, the heat-transfer coefficients obtained using water, nominal (by volume) 30 percent-70 percent and 70 percent-30 percent glycol-water mixtures are approximately 3.8, 2.8, and 1.4 times higher, respectively, than the heat-transfer coefficients obtained using an-e-2 ethylene glycol.

  11. Evaporative heat transfer in beds of sensible heat pellets

    SciTech Connect

    Arimilli, R.V.; Moy, C.A.

    1989-03-01

    An experimental study of boiling/evaporative heat transfer from heated spheres in vertical packed beds with downward liquid-vapor flow of Refrigerant-113 was conducted. Surface superheats of 1 to 50{degrees}C, mass flow rates of 1.7 to 5.6 Kg/min, sphere diameters of 1.59 and 2.54 cm, quality (i.e., mass fraction of vapor) of the inlet flow of 0.02 to 1.0, and two surface conditions were considered. Instrumented smooth and rough aluminum spheres were used to measure the heat transfer coefficients under steady state conditions. Heat transfer coefficients were independently determined for each sphere at three values three values of surface superheat. The quantitative results of this extensive experimental study are successfully correlated. The correlation equation for the boiling heat transfer coefficients is presented in terms of a homogeneous model. The correlation may be used in the development of numerical models to simulate the transient thermal performance of packed bed thermal energy storage unit while operating as an evaporator. The boiling of the liquid-vapor flow around the spheres in the packed bed was visually observed with a fiber-optic baroscope and recorded on a videotape. The visualization results showed qualitatively the presence of four distinct flow regimes. One of these occurs under saturated inlet conditions and are referred to as the Low-quality, Medium-quality, and High-quality Regimes. The regimes are discussed in detail in this paper.

  12. Heat transfer mechanisms in pulsating heat-pipes with nanofluid

    NASA Astrophysics Data System (ADS)

    Gonzalez, Miguel; Kelly, Brian; Hayashi, Yoshikazu; Kim, Yoon Jo

    2015-01-01

    In this study, the effect of silver nanofluid on a pulsating heat-pipe (PHP) thermal performance was experimentally investigated to figure out how nanofluid works with PHP. A closed loop PHP was built with 3 mm diameter tubes. Thermocouples and pressure transducers were installed for fluid and surface temperature and pressure measurements. The operating temperature of the PHP varied from 30-100 °C, with power rates of 61 W and 119 W. The fill ratio of 30%, 50%, and 70% were tested. The results showed that the evaporator heat transfer performance was degraded by the addition of nanoparticles due to increased viscosity at high power rate, while the positive effects of high thermal conductivity and enhanced nucleate boiling worked better at low power rate. In the condenser section, owing to the relatively high liquid content, nanofluid more effectively improved the heat transfer performance. However, since the PHP performance was dominantly affected by evaporator heat transfer performance, the overall benefit of enhanced condenser section performance was greatly limited. It was also observed that the poor heat transfer performance with nanofluid at the evaporator section led to lower operating pressure of PHP.

  13. Experimental determination of stator endwall heat transfer

    NASA Technical Reports Server (NTRS)

    Boyle, Robert J.; Russell, Louis M.

    1989-01-01

    Local Stanton numbers were experimentally determined for the endwall surface of a turbine vane possage. A six vane linear cascade having vanes with an axial chord of 13.81 cm was used. Resutls were obtained for Reynolds numbers based on inlet velocity and axial chord between 75,000 and 495,000. The test section was connected to a low pressure exhaust system. Ambient air was drawn into the test section, inlet velocity was controlled up to a maximum of 59.4 m/sec. The effect of the inlet boundary layer thickness on the endwall heat transfer was determined for a range of test section flow rates. The liquid crystal measurement technique was used to measure heat transfer. Endwall heat transfer was determined by applying electrical power to a foil heater attached to the cascade endwall. The temperature at which the liquid crystal exhibited a specific color was known from a calibration test. Lines showing this specific color were isotherms, and because of uniform heat generation they were also lines of nearly constant heat transfer. Endwall static pressures were measured, along with surveys of total pressure and flow angles at the inlet and exit of the cascade.

  14. Experimental determination of stator endwall heat transfer

    NASA Technical Reports Server (NTRS)

    Boyle, Robert J.; Russell, Louis M.

    1989-01-01

    Local Stanton numbers were experimentally determined for the endwall surface of a turbine vane passage. A six vane linear cascade having vanes with an axial chord of 13.81 cm was used. Results were obtained for Reynolds numbers based on inlet velocity and axial chord between 73,000 and 495,000. The test section was connected to a low pressure exhaust system. Ambient air was drawn into the test section, inlet velocity was controlled up to a maximum of 59.4 m/sec. The effect of the inlet boundary layer thickness on the endwall heat transfer was determined for a range of test section flow rates. The liquid crystal measurement technique was used to measure heat transfer. Endwall heat transfer was determined by applying electrical power to a foil heater attached to the cascade endwall. The temperature at which the liquid crystal exhibited a specific color was known from a calibration test. Lines showing this specific color were isotherms, and because of uniform heat generation they were also lines of nearly constant heat transfer. Endwall static pressures were measured, along with surveys of total pressure and flow angles at the inlet and exit of the cascade.

  15. Microscale surface modifications for heat transfer enhancement.

    PubMed

    Bostanci, Huseyin; Singh, Virendra; Kizito, John P; Rini, Daniel P; Seal, Sudipta; Chow, Louis C

    2013-10-01

    In this experimental study, two surface modification techniques were investigated for their effect on heat transfer enhancement. One of the methods employed the particle (grit) blasting to create microscale indentations, while the other used plasma spray coating to create microscale protrusions on Al 6061 (aluminum alloy 6061) samples. The test surfaces were characterized using scanning electron microscopy (SEM) and confocal scanning laser microscopy. Because of the surface modifications, the actual surface area was increased up to 2.8× compared to the projected base area, and the arithmetic mean roughness value (Ra) was determined to vary from 0.3 μm for the reference smooth surface to 19.5 μm for the modified surfaces. Selected samples with modified surfaces along with the reference smooth surface were then evaluated for their heat transfer performance in spray cooling tests. The cooling system had vapor-atomizing nozzles and used anhydrous ammonia as the coolant in order to achieve heat fluxes up to 500 W/cm(2) representing a thermal management setting for high power systems. Experimental results showed that the microscale surface modifications enhanced heat transfer coefficients up to 76% at 500 W/cm(2) compared to the smooth surface and demonstrated the benefits of these practical surface modification techniques to enhance two-phase heat transfer process. PMID:24003985

  16. Natural convective heat transfer from square cylinder

    NASA Astrophysics Data System (ADS)

    Novomestský, Marcel; Smatanová, Helena; Kapjor, Andrej

    2016-06-01

    This article is concerned with natural convective heat transfer from square cylinder mounted on a plane adiabatic base, the cylinders having an exposed cylinder surface according to different horizontal angle. The cylinder receives heat from a radiating heater which results in a buoyant flow. There are many industrial applications, including refrigeration, ventilation and the cooling of electrical components, for which the present study may be applicable

  17. Experimental Investigations of Heat and Mass Transfer in Microchannel Heat-Transfer Elements

    NASA Astrophysics Data System (ADS)

    Konovalov, D. A.

    2016-05-01

    The present work seeks to develop and investigate experimentally microchannel heat-exchange apparatuses of two designs: with porous elements manufactured from titanium and copper, and also based on the matrix of filamentary silicon single crystals under operating conditions with high heat loads, unsteadiness, and nonlinear flow of the coolant. For experimental investigations, the authors have developed and manufactured a unique test bench allowing tests of the developed heat-transfer elements in unsteady operating regimes. The performed experimental investigations have made it possible to obtain criterial dependences of the heat-transfer coefficient on the Reynolds and Prandtl numbers and to refine the values of viscous and inertial coefficients. It has been established that microchannel heat-transfer elements based on silicon single crystals, which make it possible to remove a heat flux above 100 W/cm2, are the most efficient. For porous heat-transfer elements, the best result was attained for wedge-shaped copper samples. According to investigation results, the authors have considered the issues of optimization of thermal and hydraulic characteristics of the heat-transfer elements under study. In the work, the authors have given examples of practical use of the developed heat-transfer elements for cooling systems of radioelectronic equipment.

  18. Experimental Investigations of Heat and Mass Transfer in Microchannel Heat-Transfer Elements

    NASA Astrophysics Data System (ADS)

    Konovalov, D. A.

    2016-06-01

    The present work seeks to develop and investigate experimentally microchannel heat-exchange apparatuses of two designs: with porous elements manufactured from titanium and copper, and also based on the matrix of filamentary silicon single crystals under operating conditions with high heat loads, unsteadiness, and nonlinear flow of the coolant. For experimental investigations, the authors have developed and manufactured a unique test bench allowing tests of the developed heat-transfer elements in unsteady operating regimes. The performed experimental investigations have made it possible to obtain criterial dependences of the heat-transfer coefficient on the Reynolds and Prandtl numbers and to refine the values of viscous and inertial coefficients. It has been established that microchannel heat-transfer elements based on silicon single crystals, which make it possible to remove a heat flux above 100 W/cm2, are the most efficient. For porous heat-transfer elements, the best result was attained for wedge-shaped copper samples. According to investigation results, the authors have considered the issues of optimization of thermal and hydraulic characteristics of the heat-transfer elements under study. In the work, the authors have given examples of practical use of the developed heat-transfer elements for cooling systems of radioelectronic equipment.

  19. Heat flux sensors for infrared thermography in convective heat transfer.

    PubMed

    Carlomagno, Giovanni Maria; de Luca, Luigi; Cardone, Gennaro; Astarita, Tommaso

    2014-01-01

    This paper reviews the most dependable heat flux sensors, which can be used with InfraRed (IR) thermography to measure convective heat transfer coefficient distributions, and some of their applications performed by the authors' research group at the University of Naples Federico II. After recalling the basic principles that make IR thermography work, the various heat flux sensors to be used with it are presented and discussed, describing their capability to investigate complex thermo-fluid-dynamic flows. Several applications to streams, which range from natural convection to hypersonic flows, are also described. PMID:25386758

  20. Heat Flux Sensors for Infrared Thermography in Convective Heat Transfer

    PubMed Central

    Carlomagno, Giovanni Maria; de Luca, Luigi; Cardone, Gennaro; Astarita, Tommaso

    2014-01-01

    This paper reviews the most dependable heat flux sensors, which can be used with InfraRed (IR) thermography to measure convective heat transfer coefficient distributions, and some of their applications performed by the authors' research group at the University of Naples Federico II. After recalling the basic principles that make IR thermography work, the various heat flux sensors to be used with it are presented and discussed, describing their capability to investigate complex thermo-fluid-dynamic flows. Several applications to streams, which range from natural convection to hypersonic flows, are also described. PMID:25386758

  1. Capillary Pumped Heat Transfer (CHT) Experiment

    NASA Technical Reports Server (NTRS)

    Hallinan, Kevin P.; Allen, J. S.

    1998-01-01

    The operation of Capillary Pumped Loops (CPL's) in low gravity has generally been unable to match ground-based performance. The reason for this poorer performance has been elusive. In order to investigate the behavior of a CPL in low-gravity, an idealized, glass CPL experiment was constructed. This experiment, known as the Capillary-driven Heat Transfer (CHT) experiment, was flown on board the Space Shuttle Columbia in July 1997 during the Microgravity Science Laboratory mission. During the conduct of the CHT experiment an unexpected failure mode was observed. This failure mode was a result of liquid collecting and then eventually bridging the vapor return line. With the vapor return line blocked, the condensate was unable to return to the evaporator and dry-out subsequently followed. The mechanism for this collection and bridging has been associated with long wavelength instabilities of the liquid film forming in the vapor return line. Analysis has shown that vapor line blockage in present generation CPL devices is inevitable. Additionally, previous low-gravity CPL tests have reported the presence of relatively low frequency pressure oscillations during erratic system performance. Analysis reveals that these pressure oscillations are in part a result of long wavelength instabilities present in the evaporator pores, which likewise lead to liquid bridging and vapor entrapment in the porous media. Subsequent evaporation to the trapped vapor increases the vapor pressure. Eventually the vapor pressure causes ejection of the bridged liquid. Recoil stresses depress the meniscus, the vapor pressure rapidly increases, and the heated surface cools. The process then repeats with regularity.

  2. Heat transfer in magma in situ

    SciTech Connect

    Dunn, J.C.; Carrigan, C.R.; Wemple, R.P.

    1983-12-16

    Heat transfer rates in a basaltic magma were measured under typical magma chamber conditions and a numerical model of the experiment was used to estimate magma viscosity. The results are of value for assessing methods of thermal energy extraction from magma bodies in the upper crust as well as for modeling the evolutionary track of these systems. 13 references, 3 figures.

  3. FED. Zoning for TRUMP Heat Transfer Code

    SciTech Connect

    Elrod, D.

    1987-10-23

    FED reduces the effort required to obtain the necessary geometric input for problems which are to be solved using the heat-transfer code, TRUMP. TRUMP calculates transient and steady-state temperature distributions in multidimensional systems. FED can properly zone any body of revolution in one, two, or three dimensions.

  4. Heat transfer in rotating coolant channels

    NASA Astrophysics Data System (ADS)

    Wang, Baoguan; Zheng, Jirui; Ding, Xiaojiang

    The effect of cooling channels' rotation on the local and mean heat transfer is investigated using an experimental simulation of three types of flow in rotating circular tubes: (1) flow parallel to the rotating axis, (2) radially outward flow perpendicular to the rotating axis, and (3) radially inward flow perpendicular to the rotating axis. Theoretical analysis uses the boundary layer model method, in which the flow in a tube is divided into the core and boundary layer zones with different assumptions for each zone, and the equations are solved using the momentum integration method. Experimental results were obtained using a specially designed facility incorporating all three modes of flow. The results confirm that rotation of the flow in a tube can enhance the heat transfer processes whether the flow is parallel or perpendicular to the rotating axis. The incremental increase in heat transfer rate due to rotation was found to be more pronounced at low rotational speeds than at high speeds. The variation of local heat transfer coefficients along axial direction is affected by the inlet and outlet sections and by the ratio of length to diameter.

  5. Heat Transfer and Thermodynamics: a Compilation

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A compilation is presented for the dissemination of information on technological developments which have potential utility outside the aerospace and nuclear communities. Studies include theories and mechanical considerations in the transfer of heat and the thermodynamic properties of matter and the causes and effects of certain interactions.

  6. Computational Aspects of Heat Transfer in Structures

    NASA Technical Reports Server (NTRS)

    Adelman, H. M. (Compiler)

    1982-01-01

    Techniques for the computation of heat transfer and associated phenomena in complex structures are examined with an emphasis on reentry flight vehicle structures. Analysis methods, computer programs, thermal analysis of large space structures and high speed vehicles, and the impact of computer systems are addressed.

  7. Turbulent Heat Transfer in Ribbed Pipe Flow

    NASA Astrophysics Data System (ADS)

    Kang, Changwoo; Yang, Kyung-Soo

    2012-11-01

    From the view point of heat transfer control, surface roughness is one of the popular ways adopted for enhancing heat transfer in turbulent pipe flow. Such a surface roughness is often modeled with a rib. In the current investigation, Large Eddy Simulation has been performed for turbulent flow in a pipe with periodically-mounted ribs at Reτ=700, Pr=0.71, and p / k =2, 4, and 8. Here, p and k represent the pitch and rib height, respectively. The rib height is fixed as one tenth of the pipe radius. The profiles of mean velocity components, mean temperature, root-mean-squares (rms) of temperature fluctuation are presented at the selected streamwise locations. In comparison with the smooth-pipe case at the same Re and Pr, the effects of the ribs are clearly identified, leading to overall enhancement of turbulent heat transfer in terms of Nu. The budget of temperature variance is presented in the form of contours. The results of an Octant analysis are also given to elucidate the dominant events. Our LES results shed light on a complete understanding of the heat-transfer mechanisms in turbulent ribbed-pipe flow which has numerous applications in engineering. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2012013019).

  8. Information highway and numerical heat transfer

    SciTech Connect

    Shih, T.M.; Minkowycz, W.J.

    1996-11-22

    It is proposed that researchers in the numerical heat transfer community need to realize the trend of the information highway and agree to use a protocol or a module that constitutes the core of a computer program solving heat transfer problems. This will avoid duplicate programming and accelerate the technology advancement of numerical heat transfer. The module for two-dimensional incompressible Navier-Stokes flows is presented and explained. It is further demonstrated that, using this module as the foundation, the user can straightforwardly build up an entire personal computer code by inputting the data, specifying boundary conditions, and outputting the result. Other modules for slightly more complicated problems, such as transient flows with variable viscosity in irregular geometries, are also presented. Other than zoning matches for problems with multizones, the programming task for a user becomes minimal and simple: input, prescribe the boundary conditions, and output. The availability of Navier-Stokes modules is particularly helpful for less experienced numerical researchers, newcomers, and graduate students who have just entered the area of heat transfer and fluid flows.

  9. Heat transfer in a nuclear rocket engine

    SciTech Connect

    Konyukhov, G.V.; Petrov, A.I.

    1995-02-01

    Special features of heat transfer in the reactor of a nuclear rocket engine (NRE) are dealt with. It is shown that the design of the cooling system of the NRE reactor is governed by its stability to small deviations of the parameters from the corresponding calculated values and the possibility of compensating for effects due to nonuniformities and distrubances of various types and scales.

  10. Cooperative heat transfer and ground coupled storage system

    DOEpatents

    Metz, P.D.

    A cooperative heat transfer and ground coupled storage system wherein collected solar heat energy is ground stored and permitted to radiate into the adjacent ground for storage therein over an extended period of time when such heat energy is seasonally maximally available. Thereafter, when said heat energy is seasonally minimally available and has propagated through the adjacent ground a substantial distance, the stored heat energy may be retrieved by a circumferentially arranged heat transfer means having a high rate of heat transfer.

  11. Cooperative heat transfer and ground coupled storage system

    DOEpatents

    Metz, Philip D.

    1982-01-01

    A cooperative heat transfer and ground coupled storage system wherein collected solar heat energy is ground stored and permitted to radiate into the adjacent ground for storage therein over an extended period of time when such heat energy is seasonally maximally available. Thereafter, when said heat energy is seasonally minimally available and has propagated through the adjacent ground a substantial distance, the stored heat energy may be retrieved by a circumferentially arranged heat transfer means having a high rate of heat transfer.

  12. Evaporative Heat Transfer Mechanisms within a Heat Melt Compactor

    NASA Technical Reports Server (NTRS)

    Golliher, Eric L.; Gotti, Daniel J.; Rymut, Joseph Edward; Nguyen, Brian K; Owens, Jay C.; Pace, Gregory S.; Fisher, John W.; Hong, Andrew E.

    2013-01-01

    This paper will discuss the status of microgravity analysis and testing for the development of a Heat Melt Compactor (HMC). Since fluids behave completely differently in microgravity, the evaporation process for the HMC is expected to be different than in 1-g. A thermal model is developed to support the design and operation of the HMC. Also, low-gravity aircraft flight data is described to assess the point at which water may be squeezed out of the HMC during microgravity operation. For optimum heat transfer operation of the HMC, the compaction process should stop prior to any water exiting the HMC, but nevertheless seek to compact as much as possible to cause high heat transfer and therefore shorter evaporation times.

  13. Advanced Heat Transfer and Thermal Storage Fluids

    SciTech Connect

    Moens, L.; Blake, D.

    2005-01-01

    The design of the next generation solar parabolic trough systems for power production will require the development of new thermal energy storage options with improved economics or operational characteristics. Current heat-transfer fluids such as VP-1?, which consists of a eutectic mixture of biphenyl and diphenyl oxide, allow a maximum operating temperature of ca. 300 C, a limit above which the vapor pressure would become too high and would require pressure-rated tanks. The use of VP-1? also suffers from a freezing point around 13 C that requires heating during cold periods. One of the goals for future trough systems is the use of heat-transfer fluids that can act as thermal storage media and that allow operating temperatures around 425 C combined with lower limits around 0 C. This paper presents an outline of our latest approach toward the development of such thermal storage fluids.

  14. BWR Core Heat Transfer Code System.

    Energy Science and Technology Software Center (ESTSC)

    1999-04-27

    Version 00 MOXY is used for the thermal analysis of a planar section of a boiling water reactor (BWR) fuel element during a loss-of-coolant accident (LOCA). The code emplyoys models that describe heat transfer by conduction, convection, and thermal radiation, and heat generation by metal-water reaction and fission product decay. Models are included for considering fuel-rod swelling and rupture, energy transport across the fuel-to-cladding gap, and the thermal response of the canister. MOXY requires thatmore » time-dependent data during the blowdown process for the power normalized to the steady-state power, for the heat-transfer coefficient, and for the fluid temperature be provided as input. Internal models provide these parameters during the heatup and emergency cooling phases.« less

  15. Numerical Modeling of Ablation Heat Transfer

    NASA Technical Reports Server (NTRS)

    Ewing, Mark E.; Laker, Travis S.; Walker, David T.

    2013-01-01

    A unique numerical method has been developed for solving one-dimensional ablation heat transfer problems. This paper provides a comprehensive description of the method, along with detailed derivations of the governing equations. This methodology supports solutions for traditional ablation modeling including such effects as heat transfer, material decomposition, pyrolysis gas permeation and heat exchange, and thermochemical surface erosion. The numerical scheme utilizes a control-volume approach with a variable grid to account for surface movement. This method directly supports implementation of nontraditional models such as material swelling and mechanical erosion, extending capabilities for modeling complex ablation phenomena. Verifications of the numerical implementation are provided using analytical solutions, code comparisons, and the method of manufactured solutions. These verifications are used to demonstrate solution accuracy and proper error convergence rates. A simple demonstration of a mechanical erosion (spallation) model is also provided to illustrate the unique capabilities of the method.

  16. Heat transfer in bioengineering and medicine

    SciTech Connect

    Chato, J.C.; Diller, T.E.; Diller, K.R.; Roemer, R.B.

    1987-01-01

    This book contains the following papers: New ideas in heat transfer for agricultural animals; Issues in heat transfer and tumor blood flow in localized hyperthermia treatments of cancer; Ultrasound enhances adriamycin toxicity in vitro; Scanned, focused ultrasound hyperthermia treatment of brain tumors; Mathematical prediction and phantom studies of the clinical target ''hot spot'' using a three applicator phased array system (TRIPAS); Development of an endoscopic RF hyperthermia system for deep tumor therapy; Simultaneous measurement of intrinsic and effective thermal conductivity; Determination of the transport of thermal energy by conduction in perfused tissue; A whole body thermal model of man with a realistic circulatory system; and Canine muscle blood flow changes in response to initial heating rates.

  17. Proceedings of heat transfer and flow in porous media

    SciTech Connect

    Somerton, C.W.

    1990-01-01

    The topic of heat transfer and flow in porous media continues to be the focus of considerable research efforts. Certainly, this is partly due to the wide application of porous materials in engineering systems as well as the novel application of a porous media model to a variety of engineering problems. The work presented in this volume deals with such applications as papermaking, insulation materials, heat pipes, buried heating systems, tumor treatment, and cooling of microelectronics. This volume contains a nice mixture of experimental and computational approaches to problems and should provide the reader with a sense of the current state-of-the-art in porous media research.

  18. Three-dimensional nonsteady heat-transfer analysis of an indirect heating furnace

    SciTech Connect

    Ito, H.; Umeda, Y.; Nakamura, Y.; Wantanabe, T.; Mitutani, T. ); Arai, N.; Hasatani, M. )

    1991-01-01

    This paper reports on an accurate design method for industrial furnaces from the viewpoint of heat transfer. The authors carried out a three-dimensional nonsteady heat-transfer analysis for a practical-size heat- treatment furnace equipped with radiant heaters. The authors applied three software package programs, STREAM, MORSE, and TRUMP, for the analysis of the combined heat-transfer problems of radiation, conduction, and convection. The authors also carried out experiments of the heating of a charge consisting of packed bolts. The authors found that the air swirled inside the furnace. As for the temperature in each part in the furnace, analytical results were generally in close agreement with the experimental ones. This suggests that our analytical method is useful for a fundamental heat- transfer-based design of a practical-size industrial furnace with an actual charge such as packed bolts. As for the temperature distribution inside the bolt charge (work), the analytical results were also in close agreement with the experimental ones. Consequently, it was found that the heat transfer in the bolt charge could be described with an effective thermal conductivity.

  19. Nonlinear Heat Transfer 2d Structure

    Energy Science and Technology Software Center (ESTSC)

    1987-09-01

    DOT-BPMD is a general-purpose, finite-element, heat-transfer program used to predict thermal environments. The code considers linear and nonlinear transient or steady-state heat conduction in two-dimensional planar or axisymmetric representations of structures. Capabilities are provided for modeling anisotropic heterogeneous materials with temperature-dependent thermal properties and time-dependent temperature, heat flux, convection and radiation boundary conditions, together with time-dependent internal heat generation. DOT-BPMD may be used in the evaluation of steady-state geothermal gradients as well as in themore » transient heat conduction analysis of repository and waste package subsystems. Strengths of DOT-BPMD include its ability to account for a wide range of possible boundary conditions, nonlinear material properties, and its efficient equation solution algorithm. Limitations include the lack of a three-dimensional analysis capability, no radiative or convective internal heat transfer, and the need to maintain a constant time-step in each program execution.« less

  20. Heat transfer in GTA welding arcs

    NASA Astrophysics Data System (ADS)

    Huft, Nathan J.

    Heat transfer characteristics of Gas Tungsten Arc Welding (GTAW) arcs with arc currents of 50 to 125 A and arc lengths of 3 to 11 mm were measured experimentally through wet calorimetry. The data collected were used to calculate how much heat reported to the cathode and anode and how much was lost from the arc column. A Visual Basic for Applications (VBA) macro was written to further analyze the data and account for Joule heating within the electrodes and radiation and convection losses from the arc, providing a detailed account of how heat was generated and dissipated within the system. These values were then used to calculate arc efficiencies, arc column voltages, and anode and cathode fall voltages. Trends were noted for variances in the arc column voltage, power dissipated from the arc column, and the total power dissipated by the system with changing arc length. Trends for variances in the anode and cathode fall voltages, total power dissipated, Joule heating within the torches and electrodes with changing arc current were also noted. In addition, the power distribution between the anode and cathode for each combination of arc length and arc current was examined. Keywords: Gas Tungsten Arc Welding, GTAW, anode fall, cathode fall, heat transfer, wet calorimetry

  1. Analysis of a heat transfer device for measuring film coefficients

    NASA Technical Reports Server (NTRS)

    Medrow, R. A.; Johnson, R. L.; Loomis, W. R.; Wedeven, L. D.

    1975-01-01

    A heat transfer device consisting of a heated rotating cylinder in a bath was analyzed for its effectiveness to determine heat transfer coefficient of fluids. A time dependent analysis shows that the performance is insensitive to the value of heat transfer coefficient with the given rig configuration.

  2. Heterogeneous nanofluids: natural convection heat transfer enhancement

    PubMed Central

    2011-01-01

    Convective heat transfer using different nanofluid types is investigated. The domain is differentially heated and nanofluids are treated as heterogeneous mixtures with weak solutal diffusivity and possible Soret separation. Owing to the pronounced Soret effect of these materials in combination with a considerable solutal expansion, the resulting solutal buoyancy forces could be significant and interact with the initial thermal convection. A modified formulation taking into account the thermal conductivity, viscosity versus nanofluids type and concentration and the spatial heterogeneous concentration induced by the Soret effect is presented. The obtained results, by solving numerically the full governing equations, are found to be in good agreement with the developed solution based on the scale analysis approach. The resulting convective flows are found to be dependent on the local particle concentration φ and the corresponding solutal to thermal buoyancy ratio N. The induced nanofluid heterogeneity showed a significant heat transfer modification. The heat transfer in natural convection increases with nanoparticle concentration but remains less than the enhancement previously underlined in forced convection case. PMID:21711755

  3. Heterogeneous nanofluids: natural convection heat transfer enhancement.

    PubMed

    Oueslati, Fakhreddine Segni; Bennacer, Rachid

    2011-01-01

    Convective heat transfer using different nanofluid types is investigated. The domain is differentially heated and nanofluids are treated as heterogeneous mixtures with weak solutal diffusivity and possible Soret separation. Owing to the pronounced Soret effect of these materials in combination with a considerable solutal expansion, the resulting solutal buoyancy forces could be significant and interact with the initial thermal convection. A modified formulation taking into account the thermal conductivity, viscosity versus nanofluids type and concentration and the spatial heterogeneous concentration induced by the Soret effect is presented. The obtained results, by solving numerically the full governing equations, are found to be in good agreement with the developed solution based on the scale analysis approach. The resulting convective flows are found to be dependent on the local particle concentration φ and the corresponding solutal to thermal buoyancy ratio N. The induced nanofluid heterogeneity showed a significant heat transfer modification. The heat transfer in natural convection increases with nanoparticle concentration but remains less than the enhancement previously underlined in forced convection case. PMID:21711755

  4. Heterogeneous nanofluids: natural convection heat transfer enhancement

    NASA Astrophysics Data System (ADS)

    Oueslati, Fakhreddine Segni; Bennacer, Rachid

    2011-12-01

    Convective heat transfer using different nanofluid types is investigated. The domain is differentially heated and nanofluids are treated as heterogeneous mixtures with weak solutal diffusivity and possible Soret separation. Owing to the pronounced Soret effect of these materials in combination with a considerable solutal expansion, the resulting solutal buoyancy forces could be significant and interact with the initial thermal convection. A modified formulation taking into account the thermal conductivity, viscosity versus nanofluids type and concentration and the spatial heterogeneous concentration induced by the Soret effect is presented. The obtained results, by solving numerically the full governing equations, are found to be in good agreement with the developed solution based on the scale analysis approach. The resulting convective flows are found to be dependent on the local particle concentration φ and the corresponding solutal to thermal buoyancy ratio N. The induced nanofluid heterogeneity showed a significant heat transfer modification. The heat transfer in natural convection increases with nanoparticle concentration but remains less than the enhancement previously underlined in forced convection case.

  5. Unsteady heat transfer during subcooled film boiling

    NASA Astrophysics Data System (ADS)

    Yagov, V. V.; Zabirov, A. R.; Lexin, M. A.

    2015-11-01

    Cooling of high-temperature bodies in subcooled liquid is of importance for quenching technologies and also for understanding the processes initiating vapor explosion. An analysis of the available experimental information shows that the mechanisms governing heat transfer in these processes are interpreted ambiguously; a more clear-cut definition of the Leidenfrost temperature notion is required. The results of experimental observations (Hewitt, Kenning, and previous investigations performed by the authors of this article) allow us to draw a conclusion that there exists a special mode of intense heat transfer during film boil- ing of highly subcooled liquid. For revealing regularities and mechanisms governing intense transfer of energy in this process, specialists of Moscow Power Engineering Institute's (MPEI) Department of Engineering Thermal Physics conduct systematic works aimed at investigating the cooling of high-temperature balls made of different metals in water with a temperature ranging from 20 to 100°C. It has been determined that the field of temperatures that takes place in balls with a diameter of more than 30 mm in intense cooling modes loses its spherical symmetry. An approximate procedure for solving the inverse thermal conductivity problem for calculating the heat flux density on the ball surface is developed. During film boiling, in which the ball surface temperature is well above the critical level for water, and in which liquid cannot come in direct contact with the wall, the calculated heat fluxes reach 3-7 MW/m2.

  6. Coupling heat and chemical tracer experiments for estimating heat transfer parameters in shallow alluvial aquifers.

    PubMed

    Wildemeersch, S; Jamin, P; Orban, P; Hermans, T; Klepikova, M; Nguyen, F; Brouyère, S; Dassargues, A

    2014-11-15

    Geothermal energy systems, closed or open, are increasingly considered for heating and/or cooling buildings. The efficiency of such systems depends on the thermal properties of the subsurface. Therefore, feasibility and impact studies performed prior to their installation should include a field characterization of thermal properties and a heat transfer model using parameter values measured in situ. However, there is a lack of in situ experiments and methodology for performing such a field characterization, especially for open systems. This study presents an in situ experiment designed for estimating heat transfer parameters in shallow alluvial aquifers with focus on the specific heat capacity. This experiment consists in simultaneously injecting hot water and a chemical tracer into the aquifer and monitoring the evolution of groundwater temperature and concentration in the recovery well (and possibly in other piezometers located down gradient). Temperature and concentrations are then used for estimating the specific heat capacity. The first method for estimating this parameter is based on a modeling in series of the chemical tracer and temperature breakthrough curves at the recovery well. The second method is based on an energy balance. The values of specific heat capacity estimated for both methods (2.30 and 2.54MJ/m(3)/K) for the experimental site in the alluvial aquifer of the Meuse River (Belgium) are almost identical and consistent with values found in the literature. Temperature breakthrough curves in other piezometers are not required for estimating the specific heat capacity. However, they highlight that heat transfer in the alluvial aquifer of the Meuse River is complex and contrasted with different dominant process depending on the depth leading to significant vertical heat exchange between upper and lower part of the aquifer. Furthermore, these temperature breakthrough curves could be included in the calibration of a complex heat transfer model for

  7. Heat transfer analysis of the Bridgman-Stockbarger configuration for crystal growth. Part 1: Analytical treatment of the axial temperature distribution

    NASA Technical Reports Server (NTRS)

    Jasinski, T. J.; Rohsenow, W. M.; Witt, A. F.

    1982-01-01

    All first order effects on the axial temperature distribution in a solidifying charge in a Bridgman-Stockbarger configuration for crystal growth are analyzed on the basis of a one dimensional model whose validity can be verified through comparison with published finite difference ana;uses of two dimensional models. The model presented includes an insulated region between axially aligned heat pipes and considers the effects of charge diameter, charge motion, thickness, and thermal conductivity of a confining crucible, thermal conductivity change at the crystal-melt interface, generation of latent heat at the interface, and finite charge length. Results are primarily given in analytical form and can be used without recourse to computer work for both improve furnace design and optimization of growth conditions in a given thermal configuration.

  8. Heat Transfer of Airfoils and Plates

    NASA Technical Reports Server (NTRS)

    Seibert, Otto

    1943-01-01

    The few available test data on the heat dissipation of wholly or partly heated airfoil models are compared with the corresponding data for the flat plate as obtained by an extension of Prandtl's momentum theory, with differentiation between laminar and turbulent boundary layer and transitional region between both, the extent and appearance of which depend upon certain critical factors. The satisfactory agreement obtained justifies far-reaching conclusions in respect to other profile forms and arrangements of heated surface areas. The temperature relationship of the material quantities in its effect on the heat dissipation is discussed as far as is possible at tk.e present state of research, and it is shown that the profile drag of heated wing surfaces can increase or decrease with the temperature increase depending upon the momentarily existent structure of the boundary layer.

  9. Acquisition systems for heat transfer measurement

    SciTech Connect

    De Witt, R.J.

    1983-01-01

    Practical heat transfer data acquisition systems are normally characterized by the need for high-resolution, low-drift, low-speed recording devices. Analog devices such as strip chart or circular recorders and FM analog magnetic tape have excellent resolution and work well when data will be presented in temperature versus time format only and need not be processed further. Digital systems are more complex and require an understanding of the following components: digitizing devices, interface bus types, processor requirements, and software design. This paper discusses all the above components of analog and digital data acquisition, as they are used in current practice. Additional information on thermocouple system analysis will aid the user in developing accurate heat transfer measuring systems.

  10. Heat Transfer in a Superelliptic Transition Duct

    NASA Technical Reports Server (NTRS)

    Poinsatte, Philip; Thurman, Douglas; Hippensteele, Steven

    2008-01-01

    Local heat transfer measurements were experimentally mapped using a transient liquid-crystal heat transfer technique on the surface of a circular-to-rectangular transition duct. The transition duct had a length-to-diameter ratio of 1.5 and an exit-plane aspect ratio of 3. The crosssectional geometry was defined by the equation of a superellipse. The cross-sectional area was the same at the inlet and exit but varied up to 15 percent higher through the transition. The duct was preheated to a uniform temperature (nominally 64 C) before allowing room temperature air to be suddenly drawn through it. As the surface cooled, the resulting isothermal contours on the duct surface were revealed using a surface coating of thermochromic liquid crystals that display distinctive colors at particular temperatures. A video record was made of the surface temperature and time data for all points on the duct surfaces during each test. Using this surface temperature-time data together with the temperature of the air flowing through the model and the initial temperature of the model wall, the heat transfer coefficient was calculated by employing the classic one-dimensional, semi-infinite wall heat transfer conduction model. Test results are reported for inlet diameter-based Reynolds numbers ranging from 0.4x106 to 2.4x106 and two grid-generated freestream turbulence intensities of about 1 percent, which is typical of wind tunnels, and up to 16 percent, which may be more typical of real engine conditions.

  11. Coolant passage heat transfer with rotation

    NASA Astrophysics Data System (ADS)

    Hajek, T. J.; Higgins, A. W.

    1985-10-01

    The objective is to develop a heat transfer and pressure drop data base, computational fluid dynamic techniques, and correlations for multi-pass rotating coolant passages with and without flow turbulators. The experimental effort is focused on the simulation of configurations and conditions expected in the blades of advanced aircraft high pressure turbines. With the use of this data base, the effects of Coriolis and buoyancy forces on the coolant side flow can be included in the design of turbine blades.

  12. Low-melting point heat transfer fluid

    SciTech Connect

    Cordaro, Joseph Gabriel; Bradshaw, Robert W.

    2010-11-09

    A low-melting point, heat transfer fluid made of a mixture of five inorganic salts including about 29.1-33.5 mol % LiNO.sub.3, 0-3.9 mol % NaNO.sub.3, 2.4-8.2 mol % KNO.sub.3, 18.6-19.9 mol % NaNO.sub.2, and 40-45.6 mol % KNO.sub.2. These compositions can have liquidus temperatures below 80.degree. C. for some compositions.

  13. Modeling heat transfer within porous multiconstituent materials

    NASA Astrophysics Data System (ADS)

    Niezgoda, Mathieu; Rochais, Denis; Enguehard, Franck; Rousseau, Benoit; Echegut, Patrick

    2012-06-01

    The purpose of our work has been to determine the effective thermal properties of materials considered heterogeneous at the microscale but which are regarded as homogenous in the macroscale environment in which they are used. We have developed a calculation code that renders it possible to simulate thermal experiments over complex multiconstituent materials from their numerical microstructural morphology obtained by volume segmentation through tomography. This modeling relies on the transient solving of the coupled conductive and radiative heat transfer in these voxelized structures.

  14. Heat and mass transfer in materials processing

    SciTech Connect

    Tanasawa, I. . Inst. of Industrial Science); Lior, N. . Dept. of Mechanical Engineering and Applied Mechanics)

    1992-01-01

    This book contains forty papers presented at the seminar. The papers are representative of the seminar's scope, and include plasma spraying, laser and electron beam processing, crystal growth, solidification, steel processing, casting and molding, and papermaking, as well as fundamental heat transfer issues and physical properties underlying all of the above. The seminar emphasized thorough discussion of the presentations and of the subfields. Brief summaries of the discussions are presented in the rapporteurs' reports.

  15. Radiation heat transfer shapefactors for combustion systems

    NASA Technical Reports Server (NTRS)

    Emery, A. F.; Johansson, O.; Abrous, A.

    1987-01-01

    The computation of radiation heat transfer through absorbing media is commonly done through the zoning method which relies upon values of the geometric mean transmittance and absorptance. The computation of these values is difficult and expensive, particularly if many spectral bands are used. This paper describes the extension of a scan line algorithm, based upon surface-surface radiation, to the computation of surface-gas and gas-gas radiation transmittances.

  16. Parallel and vector computation in heat transfer

    SciTech Connect

    Georgiadis, J.G. ); Murthy, J.Y. )

    1990-01-01

    This collection of manuscripts complements a number of other volumes related to engineering numerical analysis in general; it also gives a preview of the potential contribution of vector and parallel computing to heat transfer. Contributions have been made from the fields of heat transfer, computational fluid mechanics or physics, and from researchers in industry or in academia. This work serves to indicate that new or modified numerical algorithms have to be developed depending on the hardware used (as the long titles of most of the papers in this volume imply). This volume contains six examples of numerical simulation on parallel and vector computers that demonstrate the competitiveness of the novel methodologies. A common thread through all the manuscripts is that they address problems involving irregular geometries or complex physics, or both. Comparative studies of the performance of certain algorithms on various computers are also presented. Most machines used in this work belong to the coarse- to medium-grain group (consisting of a few to a hundred processors) with architectures of the multiple-instruction-stream-multiple- data-stream (MIMD) type. Some of the machines used have both parallel and vector processors, while parallel computations are certainly emphasized. We hope that this work will contribute to the increasing involvement of heat transfer specialists with parallel computation.

  17. Enhanced condensation heat transfer with wettability patterning

    NASA Astrophysics Data System (ADS)

    Sinha Mahapatra, Pallab; Ghosh, Aritra; Ganguly, Ranjan; Megaridis, Constantine

    2015-11-01

    Condensation of water vapor on metal surfaces is useful for many engineering applications. A facile and scalable method is proposed for removing condensate from a vertical plate during dropwise condensation (DWC) in the presence of non-condensable gases (NCG). We use wettability-patterned superhydrophilic tracks (filmwise condensing domains) on a mirror-finish (hydrophilic) aluminum surface that promotes DWC. Tapered, horizontal ``collection'' tracks are laid to create a Laplace pressure driven flow, which collects condensate from the mirror-finish domains and sends it to vertical ``drainage tracks'' for gravity-induced shedding. An optimal design is achieved by changing the fractional area of superhydrophilic tracks with respect to the overall plate surface, and augmenting capillary-driven condensate-drainage by adjusting the track spatial layout. The design facilitates pump-less condensate drainage and enhances DWC heat transfer on the mirror-finish regions. The study highlights the relative influences of the promoting and retarding effects of dropwise and filmwise condensation zones on the overall heat transfer improvement on the substrate. The study demonstrated ~ 34% heat transfer improvement on Aluminum surface for the optimized design.

  18. Combustion and heat transfer in porous media

    SciTech Connect

    Sathe, S.B.; Peck, R.E.; Tong, T.W.

    1990-06-01

    The objective of the present study is to generate fundamental knowledge about heat transfer and combustion in porous radiant burners (PRBs) in order to improve their performance. A theoretical heat transfer and combustion model is developed to study the characteristics of PRBs. The model accounts for non-local thermal equilibrium between the solid and gas phases. The solid is assumed to absorb, emit and scatter radiant energy. Combustion is modeled as a one-step global reaction. It is revealed that the flame speed inside the porous medium is enhanced compared to the adiabatic flame speeds due to the higher conductivity of the solid compared to the gas as well as due to radiative preheating of the reactants. The effects of the properties of the porous material on the flame speeds, radiative outputs and efficiencies were investigated. To improve the radiative output from the burner, it is desirable that the porous layer has an optical thickness of about ten. The radiative output and the efficiency is higher for lower scattering albedo. The heat transfer coupling between the solid and gas phases should be high enough to ensure local thermal equilibrium, by choosing a fine porous matrix. Higher solid phase conduction enhances the flame speed and the radiative output. Experiments are performed on a ceramic foam to verify the theoretical findings. The existence of the two stability regions was verified experimentally.

  19. Pressure loss and heat transfer in a toothed finned heat transfer medium

    NASA Astrophysics Data System (ADS)

    Ebeling, W. D.; Leidinger, B. J. G.

    Thermohydraulic investigation was carried out in a special toothed-finned geometry, which was provided for increasing heat transfer in an evaporator cooler. The evaporator cooler has applications in space navigation. The toothed-finned heat carrier was used in a counter current, with a view to simplifying the heat transfer coefficient evaluation, from the temperature and volume flows measured. Test results obtained confirmed the suitability of this test arrangement. Relationships were derived from test results, for the pressure loss coefficient and the Nusselt number, with regard to the Reynolds number for this determined finned geometry.

  20. Heat transfer education : Keeping it relevant and vibrant.

    SciTech Connect

    Khounsary, A. M.

    1998-08-14

    The motivation for a fresh look at heat transfer education, both in content and in methodology, is generated by a number of trends in engineering practice. These include the increasing demand for engineers with interdisciplinary skills, rapid integration of technology, emergence of computerized and interactive problem-solving tools, shortening time of concept-to-market, availability of new technologies, and an increasing number of new or redesigned products and processes in which heat transfer plays a part. Examination of heat transfer education in this context can be aided by considering the changes, both qualitatively and quantitatively, in the student, educator, and researcher populations, employment opportunities, in the needs of corporations, government, industry, and universities, and in the relevant technical problems and issues of the day. Such an overview provides the necessary background for charting a response to the difficult question of how to maintain excellence and continuity in heat transfer education in the face of rapid, widespread, and complex changes. The present paper addresses how to make heat transfer education more relevant and stimulating. This paper represents a written summary of a 1996 panel discussion at the 1996 International Mechanical Engineering Conference and Exhibition (IMECE) of the American Society of Mechanical Engineers (ASME) in Atlanta, Georgia, on ''Heat Transfer Education: Keeping it Relevant and Vibrant,'' with significant expansion and amplification by the authors and the panelists in the 1997-98 period. The consensus of the participants is that the steps necessary to ensure the desired outcome in heat transfer education should include: (1) a better understanding of the interaction between the student, course content, and market needs; (2) an appreciation of the need in multidisciplinary industrial environments for engineers trained with a broad background: (3) a revision of the introductory heat transfer course to

  1. Visualization study on pool boiling heat transfer

    NASA Astrophysics Data System (ADS)

    Kamei, Shuya; Hirata, Masaru

    1991-04-01

    The visualized boiling phenomena were observed by means of high speed photographic shadowgraphy using a rotating prism camera (nac HIGH SPEED CAMERA model-16HD) with the speed of about 3500 frames per second. The photographs show that pool boiling heat transfer phenomena are varied for the boiling curve based on the experiments. Experiments have been carried out to investigate pool boiling heat transfer phenomena on a horizontal thin filament in subcooled and saturated distilled water. The experiments were performed for atmospheric pressure,for filament diameters of about 0.3 mm, for region of natural convection to film boiling. The color-film made by high speed movie camera are converted to high speed color video-tape. It is convenient to edit and show the tape for visualization with teaching the students. The high speed color video showed that the successive motion and shape of bubbles during their process of detachment varied with increasing heat flux on the heated surface of a filament. From these results, it was confirmed that the high speed phenomena of boiling by the slow motion video pictures could be estimated clearly.

  2. Heat transfer characteristics of tube bundles during boiling in vacuum

    NASA Astrophysics Data System (ADS)

    Slesarenko, V. N.; Zakharov, G. A.

    1992-06-01

    Heat transfer during boiling in vacuum was compared experimentally for single tubes, rows of tube, and tube bundles to analyze characteristic properties of vaporization under such conditions. Relations for calculating heat transfer coefficients are proposed.

  3. Thermal Storage and Advanced Heat Transfer Fluids (Fact Sheet)

    SciTech Connect

    Not Available

    2010-08-01

    Fact sheet describing NREL CSP Program capabilities in the area of thermal storage and advanced heat transfer fluids: measuring thermophysical properties, measuring fluid flow and heat transfer, and simulating flow of thermal energy and fluid.

  4. An experimental study of the flow and heat transfer between enhanced heat transfer plates for PHEs

    SciTech Connect

    Li, Xiao-wei; Meng, Ji-an; Li, Zhi-xin

    2010-11-15

    The flow and heat transfer between inclined discrete rib plates for plate heat exchangers have been experimentally studied. Dye injection method is used to visualize the flow structures. The visualization results show that front vortex, rear vortex and main vortex are formed between the plates. The rib parameter influence is also studied using visualization method. The pressure drop and heat transfer between the inclined discrete rib plates as well as that between inclined continuous rib plates and smooth plates are also measured. The measured results show that the inclined discrete rib plate can enhanced heat transfer 20-25% at the same pumping power compared with the commonly used inclined continuous rib plates. (author)

  5. Measuring Furnace/Sample Heat-Transfer Coefficients

    NASA Technical Reports Server (NTRS)

    Rosch, William R.; Fripp, Archibald L., Jr.; Debnam, William J., Jr.; Woodell, Glenn A.

    1993-01-01

    Complicated, inexact calculations now unnecessary. Device called HTX used to simulate and measure transfer of heat between directional-solidification crystal-growth furnace and ampoule containing sample of crystalline to be grown. Yields measurement data used to calculate heat-transfer coefficients directly, without need for assumptions or prior knowledge of physical properties of furnace, furnace gas, or specimen. Determines not only total heat-transfer coefficients but also coefficients of transfer of heat in different modes.

  6. Study on heat transfer of heat exchangers in the Stirling engine - Heat transfer in a heated tube under the periodically reversing flow condition

    NASA Astrophysics Data System (ADS)

    Kanzaka, Mitsuo; Iwabuchi, Makio

    1992-11-01

    Heat transfer characteristics in heated tubes under periodically reversing flow conditions have been experimentally investigated, using a test apparatus that simulates heat exchangers for an actual Stirling engine. It is shown that the heat transfer characteristics under these conditions are greatly affected by the piston phase difference that generates the reversing flow of working fluid, and this phenomenon is peculiar to heat transfer under periodically reversing flow. The experimental correlation for the heat transfer coefficient under these conditions is obtained through the use of the working gas velocity evaluated from the Schmidt cycle model, which is one of the ideal Stirling cycles concerning the influence of the piston phase difference.

  7. A study of the fundamental operations of a capillary driven heat transfer device in both normal and low gravity Part 1. Liquid slug formation in low gravity

    NASA Astrophysics Data System (ADS)

    Allen, Jeffrey S.; Hallinan, Kevin; Lekan, Jack

    1998-01-01

    Research has been conducted to observe the operation of a capillary pumped loop (CPL) in both normal and low gravity environments in order to ascertain the causes of device failure. The failures of capillary pumped heat transport devices in low gravity; specifically; evaporator dryout, are not understood and the available data for analyzing the failures is incomplete. To observe failure in these devices an idealized experimental CPL was configured for testing in both a normal-gravity and a low-gravity environment. The experimental test loop was constructed completely of Pyrex tubing to allow for visualization of system operations. Heat was added to the liquid on the evaporator side of the loop using resistance heaters and removed on the condenser side via forced convection of ambient air. A video camera was used to record the behavior of both the condenser and the evaporator menisci simultaneously. Low-gravity experiments were performed during the Microgravity Science Laboratory (MSL-1) mission performed onboard the Space Shuttle Columbia in July of 1997. During the MSL-1 mission, a failure mechanism, heretofore unreported, was observed. In every experiment performed a slug of liquid would form at the transition from a bend to a straight run in the vapor line. Ultimately, this liquid slug prevents the flow of vapor to the condenser causing the condenser to eventually dryout. After condenser dryout, liquid is no longer fed into the evaporator and it, too, will dry out resulting in device failure. An analysis is presented to illustrate the inevitable formation of such liquid slugs in CPL devices in low gravity.

  8. Heat Transfer Through Turbulent Friction Layers

    NASA Technical Reports Server (NTRS)

    Reichardt, H.

    1943-01-01

    The "general Prandtl number" Pr(exp 1) - A(sub q)/A Pr, aside from the Reynolds number determines the ratio of turbulent to molecular heat transfer, and the temperature distribution in turbulent friction layers. A(sub q) = exchange coefficient for heat; A = exchange coefficient for momentum transfer. A formula is derived from the equation defining the general Prandtl number which describes the temperature as a function of the velocity. For fully developed thermal boundary layers all questions relating to heat transfer to and from incompressible fluids can be treated in a simple manner if the ratio of the turbulent shear stress to the total stress T(sub t)/T in the layers near the wall is known, and if the A(sub q)/A can be regarded as independent of the distance from the wall. The velocity distribution across a flat smooth channel and deep into the laminar sublayer was measured for isothermal flow to establish the shear stress ratio T(sub t)/T and to extend the universal wall friction law. The values of T(sub t)/T which resulted from these measurements can be approximately represented by a linear function of the velocity in the laminar-turbulent transition zone. The effect of the temperature relationship of the material values on the flow near the wall is briefly analyzed. It was found that the velocity at the laminar boundary (in contrast to the thickness of the laminar layer) is approximately independent of the temperature distribution. The temperature gradient at the wall and the distribution of temperature and heat flow in the turbulent friction layers were calculated on the basis of the data under two equations. The derived formulas and the figures reveal the effects of the Prandtl number, the Reynolds number, the exchange quantities and the temperature relationship of the material values.

  9. Film-Cooling Heat-Transfer Measurements Using Liquid Crystals

    NASA Technical Reports Server (NTRS)

    Hippensteele, Steven A.

    1997-01-01

    The following topics are discussed: (1) The Transient Liquid-Crystal Heat-Transfer Technique; (2) 2-D Film-Cooling Heat-Transfer on an AlliedSignal Vane; and (3) Effects of Tab Vortex Generators on Surface Heat Transfer. Downstream of a Jet in Crossflow.

  10. Heat Transfer in Glass, Aluminum, and Plastic Beverage Bottles

    ERIC Educational Resources Information Center

    Clark, William M.; Shevlin, Ryan C.; Soffen, Tanya S.

    2010-01-01

    This paper addresses a controversy regarding the effect of bottle material on the thermal performance of beverage bottles. Experiments and calculations that verify or refute advertising claims and represent an interesting way to teach heat transfer fundamentals are described. Heat transfer coefficients and the resistance to heat transfer offered…

  11. Enhancement of heat and mass transfer by cavitation

    NASA Astrophysics Data System (ADS)

    Zhang, Y. N.; Zhang, Y. N.; Du, X. Z.; Xian, H. Z.

    2015-01-01

    In this paper, a brief summary of effects of cavitation on the heat and mass transfer are given. The fundamental studies of cavitation bubbles, including its nonlinearity, rectified heat and mass diffusion, are initially introduced. Then selected topics of cavitation enhanced heat and mass transfer were discussed in details including whales stranding caused by active sonar activity, pool boiling heat transfer, oscillating heat pipe and high intensity focused ultrasound treatment.

  12. Coupled reactor kinetics and heat transfer model for heat pipe cooled reactors

    NASA Astrophysics Data System (ADS)

    Wright, Steven A.; Houts, Michael

    2001-02-01

    Heat pipes are often proposed as cooling system components for small fission reactors. SAFE-300 and STAR-C are two reactor concepts that use heat pipes as an integral part of the cooling system. Heat pipes have been used in reactors to cool components within radiation tests (Deverall, 1973); however, no reactor has been built or tested that uses heat pipes solely as the primary cooling system. Heat pipe cooled reactors will likely require the development of a test reactor to determine the main differences in operational behavior from forced cooled reactors. The purpose of this paper is to describe the results of a systems code capable of modeling the coupling between the reactor kinetics and heat pipe controlled heat transport. Heat transport in heat pipe reactors is complex and highly system dependent. Nevertheless, in general terms it relies on heat flowing from the fuel pins through the heat pipe, to the heat exchanger, and then ultimately into the power conversion system and heat sink. A system model is described that is capable of modeling coupled reactor kinetics phenomena, heat transfer dynamics within the fuel pins, and the transient behavior of heat pipes (including the melting of the working fluid). This paper focuses primarily on the coupling effects caused by reactor feedback and compares the observations with forced cooled reactors. A number of reactor startup transients have been modeled, and issues such as power peaking, and power-to-flow mismatches, and loading transients were examined, including the possibility of heat flow from the heat exchanger back into the reactor. This system model is envisioned as a tool to be used for screening various heat pipe cooled reactor concepts, for designing and developing test facility requirements, for use in safety evaluations, and for developing test criteria for in-pile and out-of-pile test facilities. .

  13. Low heat transfer oxidizer heat exchanger design and analysis

    NASA Technical Reports Server (NTRS)

    Kanic, P. G.; Kmiec, T. D.; Peckham, R. J.

    1987-01-01

    The RL10-IIB engine, a derivative of the RLIO, is capable of multi-mode thrust operation. This engine operates at two low thrust levels: tank head idle (THI), which is approximately 1 to 2 percent of full thrust, and pumped idle (PI), which is 10 percent of full thrust. Operation at THI provides vehicle propellant settling thrust and efficient engine thermal conditioning; PI operation provides vehicle tank pre-pressurization and maneuver thrust for log-g deployment. Stable combustion of the RL10-IIB engine at THI and PI thrust levels can be accomplished by providing gaseous oxygen at the propellant injector. Using gaseous hydrogen from the thrust chamber jacket as an energy source, a heat exchanger can be used to vaporize liquid oxygen without creating flow instability. This report summarizes the design and analysis of a United Aircraft Products (UAP) low-rate heat transfer heat exchanger concept for the RL10-IIB rocket engine. The design represents a second iteration of the RL10-IIB heat exchanger investigation program. The design and analysis of the first heat exchanger effort is presented in more detail in NASA CR-174857. Testing of the previous design is detailed in NASA CR-179487.

  14. Experimental and numerical investigations of internal heat transfer in an innovative trailing edge blade cooling system: stationary and rotation effects, part 2: numerical results

    NASA Astrophysics Data System (ADS)

    Beniaiche, Ahmed; Ghenaiet, Adel; Carcasci, Carlo; Facchini, Bruno

    2016-05-01

    This paper presents a numerical validation of the aero-thermal study of a 30:1 scaled model reproducing an innovative trailing edge with one row of enlarged pedestals under stationary and rotating conditions. A CFD analysis was performed by means of commercial ANSYS-Fluent modeling the isothermal air flow and using k-ω SST turbulence model and an isothermal air flow for both static and rotating conditions (Ro up to 0.23). The used numerical model is validated first by comparing the numerical velocity profiles distribution results to those obtained experimentally by means of PIV technique for Re = 20,000 and Ro = 0-0.23. The second validation is based on the comparison of the numerical results of the 2D HTC maps over the heated plate to those of TLC experimental data, for a smooth surface for a Reynolds number = 20,000 and 40,000 and Ro = 0-0.23. Two-tip conditions were considered: open tip and closed tip conditions. Results of the average Nusselt number inside the pedestal ducts region are presented too. The obtained results help to predict the flow field visualization and the evaluation of the aero-thermal performance of the studied blade cooling system during the design step.

  15. A study of the fundamental operation of a Capillary-driven Heat Transfer device in both normal and low gravity Part 2. Effect of evaporator meniscus oscillations

    NASA Astrophysics Data System (ADS)

    Allen, Jeffrey S.; Hallinan, Kevin P.

    1999-01-01

    Research has been conducted to observe the operation of a capillary-pumped loop (CPL) in both normal and low-gravity environments in order to ascertain the causes of device failure. The failures of capillary pumped loops in low gravity are not understood and the available data for analyzing the failures has been scarce. To observe failure in these devices, an idealized experimental CPL was configured for testing. The experimental test loop was constructed of Pyrex tubing to allow for visualization of system operations. Heat was added to the liquid on the evaporator side of the loop using resistance heaters and removed on the condenser side via forced convection of ambient air. A video camera was used to record the behavior of both the condenser and the evaporator menisci simultaneously. Low-gravity experiments were performed during the Microgravity Science Laboratory mission onboard the Space Shuttle Columbia in July of 1997. From this experiment, wall temperature and vapor pressure fluctuations have been correlated directly to oscillations of the evaporating meniscus. This correlation provides evidence that the oscillatory behavior of the evaporating meniscus contributes to evaporator dry out which is the primary cause of failure in capillary-pumped loops in low gravity.

  16. Thermochromic liquid crystals in heat transfer research

    NASA Astrophysics Data System (ADS)

    Stasiek, Jan A.; Kowalewski, Tomasz A.

    2002-06-01

    In recent years Thermochromic Liquid Crystals (TLC) have been successfully used in non-intrusive heat transfer and fluid mechanics studies. Thin coatings of TLC's at surfaces is utilized to obtain detailed heat transfer data of steady or transient process. Application of TLC tracers allows instantaneous measurement of the temperature and velocity fields for two-dimensional cross-section of flow. Computerized flow visualization techniques allow automatic quantification of temperature of the analyzed surface or the visualized flow cross-section. Here we describe our experience in applying the method to selected problems studied in our laboratory. They include modeling flow configurations in the differentially heated inclined cavity with vertical temperature gradient simulating up-slope flow as well as thermal convection under freezing surface. The main aim of these experimental models is to generate reliable experimental database on velocity and temperature fields for specific flow. The methods are based on computerized true-color analysis of digital images for temperature measurements and modified Particle Image Velocimetry and Thermometry (PIVT) used to obtain the flow field velocity.

  17. Laminar heat transfer in annular sector ducts

    SciTech Connect

    Soliman, H.M. )

    1987-02-01

    The continuing interest in compact heat exchangeers has created the need for friction factor and Nusselt number data for different passage shapes. It has long been recognized that circular tube results are generally not applicable to noncircular passages even when the hydraulic diameter is used as the characteristic dimension. Hence, design data should be generated for each passage individually, and a good source of such information is Shah and London. One duct geometry for which complete design information does not appear to be available in the open literature is that of annular sector ducts. Such configuration is encountered in multipassage internally finned tubes and many other compact het exchanger applications. The fluid flow problem for this configuration has been solved by Sparrow et al., and more recently by Niida. However, to the beest of the author's knowledge, the heat transfer results are not available yet. The purpose of this note is to summarize the analysis and results of fluid flow and heat transfer in annular sector ducts.

  18. Heat transfer in circulating fluidized bed combustor

    SciTech Connect

    Bucak, O.; Dogan, O.M.; Uysal, B.Z.

    1999-07-01

    The importance of fluidized bed combustion in utilizing the energy of especially low quality coals is widely accepted. Among various fluidized bed combustion technologies, circulating fluidized beds are preferred as a result of the efforts to get higher combustion efficiencies. The aim of the present research was to investigate the applicability of this technology to Turkish lignites. To achieve this object a 6.5 m tall pilot circulating fluidized bed combustor with 155 mm diameter and all the auxiliary equipment were designed, constructed and tested using Seyitomer lignite of 0.9--2.38 mm in size. Heat transfer from the bed to the water cooling jackets was examined to recover the combustion energy. The inside heat transfer coefficient was determined to be around 121 W/m{sup 2} K for the suspension density of 20--55 kg/m{sup 3}. The agreement of the experimental findings with theoretical estimations was also checked. Furthermore, the thermal efficiency of the system for the heat recovered was found to be 63%.

  19. Heat transfer to a supercritical hydrocarbon fuel with endothermic reaction.

    SciTech Connect

    Yu, W.; France, D. M.; Wambsganss, M. W.; Energy Technology; Univ. of Illinois at Chicago

    2000-01-01

    Supercritical fuel reforming is being studied as a technology for reducing emissions of industrial gas turbine engines. In this study, experiments were performed in a 2.67-mm-inside-diameter stainless steel tube with a heated length of 0.610 m for the purpose of investigating the characteristics of supercritical heat transfer with endothermic fuel reforming. Thermocouples were positioned along the tube both in the fluid stream and on the heated wall for local heat transfer measurements. Both heat transfer coefficients and endotherms were calculated from the measured results. State-of-the-art correlations for heat transfer were evaluated, and a correlation for supercritical heat transfer to hydrocarbon fuel has been developed. The results provide a basis for supercritical fuel heat-exchanger/reactor design and its practical applications, in an area that has received relatively little attention in the engineering literature, viz., supercritical forced convection heat transfer with endothermic chemical reaction.

  20. Macro- to Nanoscale Heat and Mass Transfer: The Lagging Behavior

    NASA Astrophysics Data System (ADS)

    Ghazanfarian, Jafar; Shomali, Zahra; Abbassi, Abbas

    2015-07-01

    The classical model of the Fourier's law is known as the most common constitutive relation for thermal transport in various engineering materials. Although the Fourier's law has been widely used in a variety of engineering application areas, there are many exceptional applications in which the Fourier's law is questionable. This paper gathers together such applications. Accordingly, the paper is divided into two parts. The first part reviews the papers pertaining to the fundamental theory of the phase-lagging models and the analytical and numerical solution approaches. The second part wrap ups the various applications of the phase-lagging models including the biological materials, ultra-high-speed laser heating, the problems involving moving media, micro/nanoscale heat transfer, multi-layered materials, the theory of thermoelasticity, heat transfer in the material defects, the diffusion problems we call as the non-Fick models, and some other applications. It is predicted that the interest in the field of phase-lagging heat transport has grown incredibly in recent years because they show good agreement with the experiments across a wide range of length and time scales.

  1. Advances in refrigeration and heat transfer engineering

    DOE PAGESBeta

    Bansal, Pradeep; Cremaschi, Prof. Lorenzo

    2015-05-13

    This special edition of Science and Technology for the Built Environment (STBE) presents selected high quality papers that were presented at the 15th International Refrigeration and Air Conditioning Conference held at Purdue University during July 14-17 2014. All papers went through the additional review before being finally accepted for publication in this special issue of Science and Technology and the Built Environment. Altogether 20 papers made to this special issue that cover a wide range of topics, including advancements in alternative refrigerants, heat exchangers/heat transfer, nano-fluids, systems design and optimization and modeling approaches. Although CO2 may perhaps have been themore » most researched and popular refrigerant in the past decade, R32 is being seriously considered lately as an alternative and environmentally friendly refrigerant for small systems due to its low Global Warming Potential (GWP).« less

  2. Advances in refrigeration and heat transfer engineering

    SciTech Connect

    Bansal, Pradeep; Cremaschi, Prof. Lorenzo

    2015-05-13

    This special edition of Science and Technology for the Built Environment (STBE) presents selected high quality papers that were presented at the 15th International Refrigeration and Air Conditioning Conference held at Purdue University during July 14-17 2014. All papers went through the additional review before being finally accepted for publication in this special issue of Science and Technology and the Built Environment. Altogether 20 papers made to this special issue that cover a wide range of topics, including advancements in alternative refrigerants, heat exchangers/heat transfer, nano-fluids, systems design and optimization and modeling approaches. Although CO2 may perhaps have been the most researched and popular refrigerant in the past decade, R32 is being seriously considered lately as an alternative and environmentally friendly refrigerant for small systems due to its low Global Warming Potential (GWP).

  3. USINT. Heat and Mass Transfer In Concrete

    SciTech Connect

    Eyberger, L.R.

    1989-12-01

    USINT was developed to model the thermal response of concrete to very high heating rates such as might occur from sodium spills on concrete surfaces in a breeder reactor. The major phenomena treated are conductive energy transport; chemical decomposition of concrete; and two-phase, three-component heat and mass transfer of the decomposition products: steam, liquid water, and carbon dioxide. The USINT model provides for porosity to increase as water and carbon-dioxide are formed from the concrete. The concrete is treated generally as divided into two basic regions, wet and dry. In the wet region, steam, carbon-dioxide, and liquid water may co-exist, but in the dry region, there is no liquid water. There is also the possibility of a third region in which there is only liquid water and no gases.

  4. USINT. Heat and Mass Transfer in Concrete

    SciTech Connect

    Beck, J.V.; Knight, R.L.

    1989-12-01

    USINT was developed to model the thermal response of concrete to very high heating rates such as might occur from sodium spills on concrete surfaces in a breeder reactor. The major phenomena treated are conductive energy transport; chemical decomposition of concrete; and two-phase, three-component heat and mass transfer of the decomposition products: steam, liquid water, and carbon dioxide. The USINT model provides for porosity to increase as water and carbon-dioxide are formed from the concrete. The concrete is treated generally as divided into two basic regions, wet and dry. In the wet region, steam, carbon-dioxide, and liquid water may co-exist, but in the dry region, there is no liquid water. There is also the possibility of a third region in which there is only liquid water and no gases.

  5. 3-D Finite Element Heat Transfer

    Energy Science and Technology Software Center (ESTSC)

    1992-02-01

    TOPAZ3D is a three-dimensional implicit finite element computer code for heat transfer analysis. TOPAZ3D can be used to solve for the steady-state or transient temperature field on three-dimensional geometries. Material properties may be temperature-dependent and either isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation. By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functionalmore » representation of boundary conditions and internal heat generation. TOPAZ3D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.« less

  6. Solar Pond Fluid Dynamics and Heat Transfer

    NASA Technical Reports Server (NTRS)

    Jones, G. F.

    1984-01-01

    The primary objective of the solar pond research was to obtain an indepth understanding of solar pond fluid dynamics and heat transfer. The key product was the development of a validated one-dimensional computer model with the capability to accurately predict time-dependent solar pond temperature, salinities, and interface motions. Laboratory scale flow visualization experiments were conducted to better understand layer motion. Two laboratory small-scale ponds and a large-scale outdoor solar pond were designed and built to provide quantitative data. This data provided a basis for validating the model and enhancing the understanding of pond dynamic behavior.

  7. Heat transfer augmentation in nanofluids via nanofins.

    PubMed

    Vadasz, Peter

    2011-01-01

    Theoretical results derived in this article are combined with experimental data to conclude that, while there is no improvement in the effective thermal conductivity of nanofluids beyond the Maxwell's effective medium theory (J.C. Maxwell, Treatise on Electricity and Magnetism, 1891), there is substantial heat transfer augmentation via nanofins. The latter are formed as attachments on the hot wire surface by yet an unknown mechanism, which could be related to electrophoresis, but there is no conclusive evidence yet to prove this proposed mechanism. PMID:21711695

  8. Heat transfer augmentation in nanofluids via nanofins

    PubMed Central

    2011-01-01

    Theoretical results derived in this article are combined with experimental data to conclude that, while there is no improvement in the effective thermal conductivity of nanofluids beyond the Maxwell's effective medium theory (J.C. Maxwell, Treatise on Electricity and Magnetism, 1891), there is substantial heat transfer augmentation via nanofins. The latter are formed as attachments on the hot wire surface by yet an unknown mechanism, which could be related to electrophoresis, but there is no conclusive evidence yet to prove this proposed mechanism. PMID:21711695

  9. Porous media heat transfer for injection molding

    DOEpatents

    Beer, Neil Reginald

    2016-05-31

    The cooling of injection molded plastic is targeted. Coolant flows into a porous medium disposed within an injection molding component via a porous medium inlet. The porous medium is thermally coupled to a mold cavity configured to receive injected liquid plastic. The porous medium beneficially allows for an increased rate of heat transfer from the injected liquid plastic to the coolant and provides additional structural support over a hollow cooling well. When the temperature of the injected liquid plastic falls below a solidifying temperature threshold, the molded component is ejected and collected.

  10. Flow and heat transfer in a curved channel

    NASA Technical Reports Server (NTRS)

    Brinich, P. F.; Graham, R. W.

    1977-01-01

    Flow and heat transfer in a curved channel of aspect ratio 6 and inner- to outer-wall radius ratio 0.96 were studied. Secondary currents and large longitudinal vortices were found. The heat-transfer rates of the outer and inner walls were independently controlled to maintain a constant wall temperature. Heating the inner wall increased the pressure drop along the channel length, whereas heating the outer wall had little effect. Outer-wall heat transfer was as much as 40 percent greater than the straight-channel correlation, and inner-wall heat transfer was 22 percent greater than the straight-channel correlation.

  11. Heat transfer analysis in rotating sphericall shells

    NASA Astrophysics Data System (ADS)

    Cabello, Ares; Avila, Ruben

    2015-11-01

    The study of flow patterns within rotating spherical annular geometries with natural convection, is essential to understand the internal dynamics of the planets. We investigate the convective flows and the heat transfer rate in an spherical gap in which a temperature difference between the inner sphere and the outer sphere is present. A self gravity field which varies as a function of 1 /rn (where r is the radial position and the integer exponent n has the values 2,3,4,5) is assumed. The Boussinesq fluid equations are solved by using a spectral element method (SEM). To avoid the singularity at the poles, the cubed-sphere algorithm is used to generate the spherical mesh. Heat fluxes at the surface of both spheres are analyzed. We find, for several Ekman and Rayleigh numbers, that there exists a high correlation between the azimuthal motion of both the Busse cells and the zones where the maximum surface heat fluxes occur. The azimuthal position, as a function of time, of the maximum heat flux zones (which are located symmetrically with respect to the equator), allows to speculate on the nature of the phenomena occurring (in geological times) on the surface of the terrestrial planets. Thanks to DGAPA-PAPIIT project: IN117314-3.

  12. Thermodynamics of flame impingement heat transfer

    NASA Astrophysics Data System (ADS)

    Som, S. K.; Agrawal, G. K.; Chakraborty, Suman

    2007-08-01

    A theoretical model for entropy generation and utilization of work potential (exergy) in flame impingement (both premixed and diffusion) heat transfer has been developed in this article, to offer physical insights on the optimal operational regimes, depicting high values of the surface heat flux with minimal exergy destruction, within the practical constraints. The irreversibility components due to different physical processes have been evaluated from a general entropy transport equation. The velocity, temperature, and species concentration fields required for the solution of entropy transport equation have been determined from the numerical computation of flow-field in the flame. Global two-step chemical kinetics has been considered with methane (CH4) and air as fuel and oxidizer, respectively. The results have been predicted in terms of average nondimensional heat flux, expressed as Nusselt number at the target plate, the irreversibility components, and second law efficiency, as functions of the pertinent input parameters such as the jet Reynolds number and the ratio of plate separation distance to nozzle diameter (H /d). The average Nusselt number has been found to increase with an increase in jet Reynolds number and a decrease in H /d ratio, up to a value of 8. The dominant source of thermodynamic irreversibility in a premixed flame has been attributed to the thermal energy exchange whereas, in a diffusion flame, the same has been attributed to an uncontrolled exchange of electrons accompanying the reactive kinetics. The second law efficiency has been found to increase with an increase in jet Reynolds number and an increase in the H /d ratio, up to a value of 20. Values of the jet Reynolds number greater than 10 000 and H /d ratio in the tune of 15 have been observed to pertain to the regime of optimum flame impingement heat transfer, consistent with the energy and exergy balance constraints.

  13. Characterization of heat transfer in ceramic coated internal combustion engines

    NASA Astrophysics Data System (ADS)

    Murray, R. G.; Hoecker, N. E.

    1981-02-01

    The following document is a final report for Grant Number DAAG29-79-G-0021 funded by the U.S. Army Research Office. This project was started 1 January 1979 and had a duration of two years. In general, the project was: (1) to develop a mathematical model describing heat transfer and temperature characteristics in ceramic coated engine components, (2) to measure operational temperatures for such parts with various coating thickness, and (3) to continue a previous endurance test of ceramic parts.

  14. Heat Transfer Phenomena in Supercritical Water Nuclear Reactors

    SciTech Connect

    Mark H. Anderson; MichaelL. Corradini; Riccardo Bonazza; Jeremy R. Licht

    2007-10-03

    A supercritical water heat transfer facility has been built at the University of Wisconsin to study heat transfer in ancircular and square annular flow channel. A series of integral heat transfer measurements has been carried out over a wide range of heat flux, mas velocity and bulk water temperatures at a pressure of 25 MPa. The circular annular test section geometry is a 1.07 cm diameter heater rod within a 4.29 diameter flow channel.

  15. Nanoscale heat transfer and phase transformation surrounding intensely heated nanoparticles

    NASA Astrophysics Data System (ADS)

    Sasikumar, Kiran

    Over the last decade there has been significant ongoing research to use nanoparticles for hyperthermia-based destruction of cancer cells. In this regard, the investigation of highly non-equilibrium thermal systems created by ultrafast laser excitation is a particularly challenging and important aspect of nanoscale heat transfer. It has been observed experimentally that noble metal nanoparticles, illuminated by radiation at the plasmon resonance wavelength, can act as localized heat sources at nanometer-length scales. Achieving biological response by delivering heat via nanoscale heat sources has also been demonstrated. However, an understanding of the thermal transport at these scales and associated phase transformations is lacking. A striking observation made in several laser-heating experiments is that embedded metal nanoparticles heated to extreme temperatures may even melt without an associated boiling of the surrounding fluid. This unusual phase stability is not well understood and designing experiments to understand the physics of this phenomenon is a challenging task. In this thesis, we will resort to molecular dynamics (MD) simulations, which offer a powerful tool to investigate this phenomenon, without assumptions underlying continuum-level model formulations. We present the results from a series of steady state and transient non-equilibrium MD simulations performed on an intensely heated nanoparticle immersed in a model liquid. For small nanoparticles (1-10 nm in diameter) we observe a stable liquid phase near the nanoparticle surface, which can be at a temperature well above the boiling point. Furthermore, we report the existence of a critical nanoparticle size (4 nm in diameter) below which we do not observe formation of vapor even when local fluid temperatures exceed the critical temperature. Instead, we report the existence of a stable fluid region with a density much larger than that of the vapor phase. We explain this stability in terms of the

  16. The effects of inlet turbulence and rotor/stator interactions on the aerodynamics and heat transfer of a large-scale rotating turbine model. Part 4: Aerodynamic data tabulation

    NASA Technical Reports Server (NTRS)

    Dring, R. P.; Joslyn, H. D.; Blair, M. F.

    1987-01-01

    A combined experimental and analytical program was conducted to examine the effects of inlet turbulence and airfoil heat transfer. The experimental portion of the study was conducted in a large-scale (approx. 5X engine), ambient temperature, rotating turbine model configured in both single-stage and stage-and-a-half arrangements. Heat transfer measurements were obtained using low-conductivity airfoils with miniature thermocouples welded to a thin, electrically heated surface skin. Heat transfer data were acquired for various combinations of low or high inlet turbulence intensity, flow coefficient, first stator-rotor axial spacing, Reynolds number and relative circumferential position of the first and second stators. Aerodynamic measurements obtained include distributions of the mean and fluctuating velocities at the turbine inlet and, for each airfoil row, midspan airfoil surface pressures and circumferential distributions of the downstream steady state pressures and fluctuating velocities. Results include airfoil heat transfer predictions produced using existing 2-D boundary layer computation schemes and an examination of solutions of the unsteady boundary layer equations.

  17. Heat Transfer in High Temperature Multilayer Insulation

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Miller, Steve D.; Cunnington, George R.

    2007-01-01

    High temperature multilayer insulations have been investigated as an effective component of thermal-protection systems for atmospheric re-entry of reusable launch vehicles. Heat transfer in multilayer insulations consisting of thin, gold-coated, ceramic reflective foils and Saffil(TradeMark) fibrous insulation spacers was studied both numerically and experimentally. A finite volume numerical thermal model using combined conduction (gaseous and solid) and radiation in porous media was developed. A two-flux model with anisotropic scattering was used for radiation heat transfer in the fibrous insulation spacers between the reflective foils. The thermal model was validated by comparison with effective thermal conductivity measurements in an apparatus based on ASTM standard C201. Measurements were performed at environmental pressures in the range from 1x10(exp -4) to 760 torr over the temperature range from 300 to 1300 K. Four multilayer samples with nominal densities of 48 kg/cu m were tested. The first sample was 13.3 mm thick and had four evenly spaced reflective foils. The other three samples were 26.6 mm thick and utilized either one, two, or four reflective foils, located near the hot boundary with nominal foil spacing of 1.7 mm. The validated thermal model was then used to study relevant design parameters, such as reflective foil spacing and location in the stack-up and coating of one or both sides of foils.

  18. Experimental study of surfactant effects on pool boiling heat transfer

    SciTech Connect

    Ying Liang Tzan; Yu Min Yang )

    1990-02-01

    In the first part of this work, nucleate boiling of aqueous solutions of sodium lauryl sulfate (SLS) over relatively wide ranges of concentration and heat flux was carried out in a pool boiling apparatus. The experimental results show that a small amount of surface active additive makes the nucleate boiling heat transfer coefficient h considerably higher, and that there is an optimum additive concentration for higher heat fluxes. Beyond this optimum point, further increase in additive concentration makes h lower. In the second part of this work, nucleate boiling heat transfer rate for n-propanol-water binary mixtures with various amounts of sodium lauryl sulfate were measured in the same pool boiling apparatus. The importance of the mass diffusion effect, which is caused by preferential evaporation of the more volatile component at the vapor-liquid interface on the boiling of the binary mixture, has been confirmed. However, it is shown that the effect exerted by the addition of a surfactant dominates over the mass diffusion effect in dilute binary mixtures.

  19. Transient critical heat flux and blowdown heat-transfer studies

    SciTech Connect

    Leung, J.C.

    1980-05-01

    Objective of this study is to give a best-estimate prediction of transient critical heat flux (CHF) during reactor transients and hypothetical accidents. To accomplish this task, a predictional method has been developed. Basically it involves the thermal-hydraulic calculation of the heated core with boundary conditions supplied from experimental measurements. CHF predictions were based on the instantaneous ''local-conditions'' hypothesis, and eight correlations (consisting of round-tube, rod-bundle, and transient correlations) were tested against most recent blowdown heat-transfer test data obtained in major US facilities. The prediction results are summarized in a table in which both CISE and Biasi correlations are found to be capable of predicting the early CHF of approx. 1 s. The Griffith-Zuber correlation is credited for its prediction of the delay CHF that occurs in a more tranquil state with slowly decaying mass velocity. In many instances, the early CHF can be well correlated by the x = 1.0 criterion; this is certainly indicative of an annular-flow dryout-type crisis. The delay CHF occurred at near or above 80% void fraction, and the success of the modified Zuber pool-boiling correlation suggests that this CHF is caused by flooding and pool-boiling type hydrodynamic crisis.

  20. Inelastic Heat Transfer in Molecular Quantum Dots

    NASA Astrophysics Data System (ADS)

    Dyrkacz, Joanna; Walczak, Kamil

    We examine electronic heat conduction via molecular complexes in the presence of local electron-phonon coupling effects. In off-resonance transport regime, even weak electron-phonon interactions lead to phonon-mediated changes of transport characteristics. In the nearly resonance conditions, the strong electron-phonon coupling reduces the height of the main conductance peak, generating additional satellites (phonon sidebands) in transport characteristics and shifting molecular energy spectrum via reorganization (polaron) energy. In the past, it was shown that inclusion of electron-phonon coupling effects into computational scheme reduces discrepancy between theoretical results and experimental data. The aim of this project is to study electron-phonon coupling effects on electronic heat transfer at molecular level. For that purpose, we use non-perturbative computational scheme based on inelastic version of Landauer formula, where the Green's functions technique combined with polaron transformation was used to calculate multi-channel transmission probability function, while accessibility of individual conduction channels is governed by Boltzmann statistics. Our analysis is based on the hypothesis that the dynamics created by electron-phonon interaction onto the molecular quantum dot asymmetrically connected to two thermal reservoirs will lead to thermal rectification effect. Our results will be discussed in a few aspects: electron-phonon coupling strength, phonon dispersion relationship, and heat fluxes generated by temperature difference as well as bias voltage.

  1. Boiling local heat transfer enhancement in minichannels using nanofluids

    PubMed Central

    2013-01-01

    This paper reports an experimental study on nanofluid convective boiling heat transfer in parallel rectangular minichannels of 800 μm hydraulic diameter. Experiments are conducted with pure water and silver nanoparticles suspended in water base fluid. Two small volume fractions of silver nanoparticles suspended in water are tested: 0.000237% and 0.000475%. The experimental results show that the local heat transfer coefficient, local heat flux, and local wall temperature are affected by silver nanoparticle concentration in water base fluid. In addition, different correlations established for boiling flow heat transfer in minichannels or macrochannels are evaluated. It is found that the correlation of Kandlikar and Balasubramanian is the closest to the water boiling heat transfer results. The boiling local heat transfer enhancement by adding silver nanoparticles in base fluid is not uniform along the channel flow. Better performances and highest effect of nanoparticle concentration on the heat transfer are obtained at the minichannels entrance. PMID:23506445

  2. Heat transfer assembly for a fluorescent lamp and fixture

    DOEpatents

    Siminovitch, Michael J.; Rubenstein, Francis M.; Whitman, Richard E.

    1992-01-01

    In a lighting fixture including a lamp and a housing, a heat transfer structure is disclosed for reducing the minimum lamp wall temperature of a fluorescent light bulb. The heat transfer structure, constructed of thermally conductive material, extends from inside the housing to outside the housing, transferring heat energy generated from a fluorescent light bulb to outside the housing where the heat energy is dissipated to the ambient air outside the housing. Also disclosed is a method for reducing minimum lamp wall temperatures. Further disclosed is an improved lighting fixture including a lamp, a housing and the aforementioned heat transfer structure.

  3. Heat transfer assembly for a fluorescent lamp and fixture

    DOEpatents

    Siminovitch, M.J.; Rubenstein, F.M.; Whitman, R.E.

    1992-12-29

    In a lighting fixture including a lamp and a housing, a heat transfer structure is disclosed for reducing the minimum lamp wall temperature of a fluorescent light bulb. The heat transfer structure, constructed of thermally conductive material, extends from inside the housing to outside the housing, transferring heat energy generated from a fluorescent light bulb to outside the housing where the heat energy is dissipated to the ambient air outside the housing. Also disclosed is a method for reducing minimum lamp wall temperatures. Further disclosed is an improved lighting fixture including a lamp, a housing and the aforementioned heat transfer structure. 11 figs.

  4. Study and Analysis of Heat Transfer Limitation of Separated Heat Pipe

    NASA Astrophysics Data System (ADS)

    Mou, Qizheng; Mou, Kai

    2002-01-01

    satellite and spacecraft. evaporator, heat isolation and condenser along the axial direction. The working fluid absorbs heat and evaporates in evaporator, and then the vapor flows to condenser and gives out heat. The condensed liquid is pumped to evaporator by wick. By the circulation, the heat can by transferred continuously. heat pipe as follow: - Vapor-liquid two phase flow inside pipe; - The manner of latent heat to transfer heat; - Automatic circulation by working fluid flowing - A certain extent of vacuum. and the traditional heat pipe, that is, the vapor fluid and liquid fluid flow along the same direction. So it is obviously that the separated heat pipe has special internal heat transfer characteristic and crisis. This paper has regard for the heat transfer crisis of the separated heat pipe, and meanwhile relevant calculation and analysis have been done. 1. FLOW TYPE OF THE WORKING FLUID IN SEPARATED HEAT PIPE 2. HEAT TRANSFER CRISIS IN THE EVAPORATOR 3. CARRYING PHENOMENON INSIDE SEPARATED HEAT PIPE 4. THE STAGNANT FLOW PHENOMENON AND THE BACKWARD FLOW PHENOMENON IN EVAPORATOR CONCLUSION transfer limitation of location burn-out, and the heat transfer limitation of flow unconventionality in erective pipe. The carrying phenomenon can occurs not only in evaporator but also in condenser of separated heat pipe. It is in the evaporator that should take place the heat transfer limitation of liquid film dry-out at first. Then with the increasing of heat flux, the heat transfer limitation of location burn-out would happen. In order to avoid the heat transfer limitation of flow unconventionality in erective pipe, the length and diameter of the outflow tube and inflow tube must be reasonably calculated to control the flow velocity of the working fluid inside pipe. Key words:Separated Heat PipeHeat Transfer LimitationDry-OutCarryingStagnancy

  5. Rotating machinery heat and mass transfer research in the People's Republic of China

    NASA Astrophysics Data System (ADS)

    Wu, C.-H.; Ko, S.-Y.; Liu, D.; Shen, J.; Xu, J.-Z.

    A survey of research on rotating machinery heat and mass transfer in the People's Republic of China has been made. Since the later part of 1950's, considerable research and development work has been conducted in this field in China in order to improve the performance and prolong the life of rotating machinery. The emphasis of gas turbine heat transfer has been made in this survey. The water cooling of generator and the heat transfer of rotary piston engine are also included. Researches on the measuring technique of rotating machinery such as the temperature measurement, heat flux gauge, turbulence measurement, optical measurement and flow field visualization are discussed. The following topics of gas turbine heat and mass transfer are included: numerical analysis of air cooling of turbine blades, internal cooling passage heat transfer, impingment cooling, film cooling, transpiration cooling of turbine blades, cooling of blade root tenon, cooling of rotor disc, film cooling of flame tube and cooling of afterburner.

  6. Modeling of Heat and Mass Transfer in Fusion Welding

    SciTech Connect

    Zhang, Wei

    2011-01-01

    In fusion welding, parts are joined together by melting and subsequent solidification. Although this principle is simple, complex transport phenomena take place during fusion welding, and they determine the final weld quality and performance. The heat and mass transfer in the weld pool directly affect the size and shape of the pool, the solidification microstructure, the formation of weld defects such as porosity and humping, and the temperature distribution in the fusion zone and heat-affected zone (HAZ). Furthermore, the temperature evolution affects the kinetics and extent of various solid-state phase transformations, which in turn determine the final weld microstructure and mechanical properties. The formation of residual stresses and distortion originates from the thermal expansion and contraction during welding heating and cooling, respectively.

  7. 46 CFR 153.430 - Heat transfer systems; general.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Heat transfer systems; general. 153.430 Section 153.430... Temperature Control Systems § 153.430 Heat transfer systems; general. Each cargo cooling system required by... transfer rate....

  8. 46 CFR 153.430 - Heat transfer systems; general.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Heat transfer systems; general. 153.430 Section 153.430... Temperature Control Systems § 153.430 Heat transfer systems; general. Each cargo cooling system required by... transfer rate....

  9. 46 CFR 153.430 - Heat transfer systems; general.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Heat transfer systems; general. 153.430 Section 153.430... Temperature Control Systems § 153.430 Heat transfer systems; general. Each cargo cooling system required by... transfer rate....

  10. 46 CFR 153.430 - Heat transfer systems; general.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Heat transfer systems; general. 153.430 Section 153.430... Temperature Control Systems § 153.430 Heat transfer systems; general. Each cargo cooling system required by... transfer rate....