Science.gov

Sample records for heat treatment

  1. Heat treatment study 2

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.

    1990-01-01

    The microstructural variations in nickel based superalloys that result from modifications in processing were examined. These superalloys include MAR-M246(HF) and PWA1480. Alternate heat treatments for equiaxed as-cast specimens were studied and a sample matrix of 42 variations in the heat treatments were processed, as well as different directional solidification parameters. Variation in temperature and times for both solution and aging were performed. Photomicrographs were made of the microstructure and volume fraction analysis of primary gamma-prime and aged gamma-prime precipitates were performed. The results of the heat treatment, cooling rate, and directional solidification experiments are discussed.

  2. Heat treatment for superalloy

    NASA Technical Reports Server (NTRS)

    Harf, Fredric H. (Inventor)

    1987-01-01

    A cobalt-free nickel-base superalloy composed of in weight % 15 Cr-5 Mo-3.5 Ti-4 Al-0.07 (max) C-remainder Ni is given a modified heat treatment. With this heat treatment the cobalt-free alloy achieves certain of the mechanical properties of the corresponding cobalt-containing nickel-base superalloy at 1200 F (650 C). Thus, strategic cobalt can be replaced by nickel in the alloy.

  3. Heat treatment furnace

    DOEpatents

    Seals, Roland D; Parrott, Jeffrey G; DeMint, Paul D; Finney, Kevin R; Blue, Charles T

    2014-10-21

    A furnace heats through both infrared radiation and convective air utilizing an infrared/purge gas design that enables improved temperature control to enable more uniform treatment of workpieces. The furnace utilizes lamps, the electrical end connections of which are located in an enclosure outside the furnace chamber, with the lamps extending into the furnace chamber through openings in the wall of the chamber. The enclosure is purged with gas, which gas flows from the enclosure into the furnace chamber via the openings in the wall of the chamber so that the gas flows above and around the lamps and is heated to form a convective mechanism in heating parts.

  4. The heat treatment of duralumin

    NASA Technical Reports Server (NTRS)

    Nelson, WM

    1927-01-01

    When certain light aluminum alloys are heat-treated, quenched and aged, there is considerable improvement in their tensile properties. This paper presents different methods of accomplishing these heat treatments.

  5. Phytosanitary Heat Treatments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book chapter by Neil Heather and Guy Hallman, in “Pest Management and Phytosanitary Trade Barriers,” CABI Press, deals with disinfestations of food commodities. Disinfestation of food commodities with heat to satisfy phytosanitary requirements has the advantage of freedom from chemical residue...

  6. 2. SALEMBROSIUS CONTINUOUS GASFIRED HEAT TREATING LINE AT HEAT TREATMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. SALEM-BROSIUS CONTINUOUS GAS-FIRED HEAT TREATING LINE AT HEAT TREATMENT PLANT OF THE DUQUESNE WORKS. - U.S. Steel Duquesne Works, Heat Treatment Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  7. Induction heat treatment of steel

    SciTech Connect

    Semiatin, S.L.; Stutz, D.E.

    1985-01-01

    This book discusses the induction heating. After reviewing heat treating operations for steel and the principles of the heat treatment of steel, an overview of induction heat treating is provided. Next, consideration is given to equipment and equipment selection, coil design, power requirements and temperature control. A discussion of surface and through hardening of steel is provided, including information on frequency and power selection and quenching apparatus. Tempering is considered, followed by information on control of residual stresses, cracking, temper brittleness and the important metallurgical and hardness differences between induction and furnace treated steel.

  8. Treatment of suspected heat illness.

    PubMed

    Eichner, E R

    1998-06-01

    1. Despite advances in the art and science of fluid balance, exertional heat illness -- even life-threatening heat stroke -- remains a threat for some athletes today. 2. Risk factors for heat illness include: being unacclimatized, unfit, or hypohydrated; certain illnesses or drugs; not drinking in long events; and a fast finishing pace. 3. Heat cramps typically occur in conditioned athletes who compete for hours in the sun. They can be prevented by increasing dietary salt and staying hydrated. 4. Early diagnosis of heat exhaustion can be vital. Early warning signs include: flushed face, hyperventilation, headache, dizziness, nausea, tingling arms, piloerection, chilliness, incoordination, and confusion. 5. Pitfalls in the diagnosis of heat illness include: confusion preventing self-diagnosis; the lack of trained spotters; rectal temperature not taken promptly; the problem of "seek not, find not;" and the mimicry of heat illness. 6. Heat stroke is a medical emergency. Mainstays of therapy include: emergency on-site cooling; intravenous fluids; treating hypoglycemia as needed; intravenous diazepam for seizures or severe cramping or shivering; and hospitalizing if response is slow or atypical. 7. The best treatment is prevention. Tips to avoiding heat illness include: rely not on thirst; drink on schedule; favor sports drinks; monitor weight; watch urine; shun caffeine and alcohol; key on meals for fluids and salt; stay cool when you can; and know the early warning signs of heat illness. PMID:9694424

  9. Induction heating plant for heat treatment of spherical metal products

    NASA Astrophysics Data System (ADS)

    Meshcheryakov, V. N.; Titov, S. S.

    2015-12-01

    A control system for an induction heating plant is developed and studied to perform symmetric high-rate surface induction heating of spherical metal products with given technological parameters for heat treatment.

  10. Hyperbaric post weld heat treatment

    SciTech Connect

    Saunderson, S.; Waller, D.

    1983-05-01

    This paper describes a sub-sea hyperbaric Post Weld Heat Treatment (PWHT) system developed jointly by SHELL UK EXPLORATION and PRODUCTION and COMEX DIVING. It discusses: assessment of power requirements and equipment, initial tests conducted in the COMEX hydrosphere and in shallow water in Marseille, and full scale North Sea trials at - 150 m, comparing the performance and results of two separate power sources and control units. Particular attention is drawn to the importance of the elements, insulation and controls used to achieve uniform distribution of heat at the required temperature in a HELIOX environment.

  11. 29 CFR 1919.36 - Heat treatment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Heat treatment. 1919.36 Section 1919.36 Labor Regulations...) GEAR CERTIFICATION Certification of Vessels: Tests and Proof Loads; Heat Treatment; Competent Persons § 1919.36 Heat treatment. (a) The annealing of wrought iron gear required by this part shall...

  12. 29 CFR 1919.80 - Heat treatment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Heat treatment. 1919.80 Section 1919.80 Labor Regulations...) GEAR CERTIFICATION Certification of Shore-Based Material Handling Devices § 1919.80 Heat treatment. (a) Wherever heat treatment of any loose gear is recommended by the manufacturer, it shall be carried out...

  13. 29 CFR 1919.80 - Heat treatment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Heat treatment. 1919.80 Section 1919.80 Labor Regulations...) GEAR CERTIFICATION Certification of Shore-Based Material Handling Devices § 1919.80 Heat treatment. (a) Wherever heat treatment of any loose gear is recommended by the manufacturer, it shall be carried out...

  14. 29 CFR 1919.36 - Heat treatment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Heat treatment. 1919.36 Section 1919.36 Labor Regulations...) GEAR CERTIFICATION Certification of Vessels: Tests and Proof Loads; Heat Treatment; Competent Persons § 1919.36 Heat treatment. (a) The annealing of wrought iron gear required by this part shall...

  15. 29 CFR 1919.36 - Heat treatment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Heat treatment. 1919.36 Section 1919.36 Labor Regulations...) GEAR CERTIFICATION Certification of Vessels: Tests and Proof Loads; Heat Treatment; Competent Persons § 1919.36 Heat treatment. (a) The annealing of wrought iron gear required by this part shall...

  16. 29 CFR 1919.36 - Heat treatment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Heat treatment. 1919.36 Section 1919.36 Labor Regulations...) GEAR CERTIFICATION Certification of Vessels: Tests and Proof Loads; Heat Treatment; Competent Persons § 1919.36 Heat treatment. (a) The annealing of wrought iron gear required by this part shall...

  17. 29 CFR 1919.36 - Heat treatment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Heat treatment. 1919.36 Section 1919.36 Labor Regulations...) GEAR CERTIFICATION Certification of Vessels: Tests and Proof Loads; Heat Treatment; Competent Persons § 1919.36 Heat treatment. (a) The annealing of wrought iron gear required by this part shall...

  18. 29 CFR 1919.80 - Heat treatment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Heat treatment. 1919.80 Section 1919.80 Labor Regulations...) GEAR CERTIFICATION Certification of Shore-Based Material Handling Devices § 1919.80 Heat treatment. (a) Wherever heat treatment of any loose gear is recommended by the manufacturer, it shall be carried out...

  19. 29 CFR 1919.80 - Heat treatment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Heat treatment. 1919.80 Section 1919.80 Labor Regulations...) GEAR CERTIFICATION Certification of Shore-Based Material Handling Devices § 1919.80 Heat treatment. (a) Wherever heat treatment of any loose gear is recommended by the manufacturer, it shall be carried out...

  20. 29 CFR 1919.80 - Heat treatment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Heat treatment. 1919.80 Section 1919.80 Labor Regulations...) GEAR CERTIFICATION Certification of Shore-Based Material Handling Devices § 1919.80 Heat treatment. (a) Wherever heat treatment of any loose gear is recommended by the manufacturer, it shall be carried out...

  1. Heat Treatment Procedure Qualification -- Final Technical Report

    SciTech Connect

    Robert C. Voigt

    2004-10-15

    Heat treatment practices used by steel foundries have been carefully studied as part of comprehensive heat treatment procedure development trials. These studies highlight the relationships between critical heat treatment process control parameters and heat treatment success. Foundry heat treatment trials to develop heat treatment procedure qualification have shed light on the relationship between heat treatment theory and current practices. Furnace load time-temperature profiles in steel foundries exhibit significant differences depending on heat treatment equipment, furnace loading practice, and furnace maintenance. Time-temperature profiles of the furnace control thermocouples can be very different from the time-temperature profiles observed at the center of casting loads in the furnace. Typical austenitrization temperatures and holding times used by steel foundries far exceed what is required for transformation to austenite. Quenching and hardenability concepts were also investigated. Heat treatment procedure qualification (HTPQ) schema to demonstrate heat treatment success and to pre-qualify other alloys and section sizes requiring lesser hardenability have been developed. Tempering success is dependent on both tempering time and temperature. As such, furnace temperature uniformity and control of furnace loading during tempering is critical to obtain the desired mechanical properties. The ramp-up time in the furnace prior to the establishment of steady state heat treatment conditions contributes to the extent of heat treatment performed. This influence of ramp-up to temperature during tempering has been quantified.

  2. Heat Treatment Procedure Qualification for Steel Castings

    SciTech Connect

    Mariol Charles; Nicholas Deskevich; Vipin Varkey; Robert Voigt; Angela Wollenburg

    2004-04-29

    Heat treatment practices used by steel foundries have been carefully studied as part of comprehensive heat treatment procedure qualification development trials. These studies highlight the relationships between critical heat treatment process control parameters and heat treatment success. Foundry heat treatment trials to develop heat treatment procedure qualifications have shed light on the relationship between heat treatment theory and current practices. Furnace load time-temperature profiles in steel foundries exhibit significant differences depending on heat treatment equipment, furnace loading practice, and furnace maintenance. Time-temperature profiles of furnace control thermocouples can be very different from the time-temperature profiles observed at the center of casting loads in the furnace. Typical austenitization temperatures and holding times used by steel foundries far exceed what is required for transformation to austenite. Quenching and hardenability concepts were also investigated. Heat treatment procedure qualification (HTPQ) schema to demonstrate heat treatment success and to pre-qualify other alloys and section sizes requiring lesser hardenability have been developed. Tempering success is dependent on both tempering time and temperature. As such, furnace temperature uniformity and control of furnace loading during tempering is critical to obtain the desired mechanical properties. The ramp-up time in the furnace prior to the establishment of steady state heat treatment conditions contributes to the extent of heat treatment performed. This influence of ramp-up to temperature during tempering has been quantified.

  3. 29 CFR 1919.16 - Heat treatment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Heat treatment. 1919.16 Section 1919.16 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) GEAR CERTIFICATION Certification of Vessels' Cargo Gear § 1919.16 Heat treatment. (a) All chains...

  4. 29 CFR 1919.16 - Heat treatment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Heat treatment. 1919.16 Section 1919.16 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) GEAR CERTIFICATION Certification of Vessels' Cargo Gear § 1919.16 Heat treatment. (a) All chains...

  5. 29 CFR 1919.16 - Heat treatment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Heat treatment. 1919.16 Section 1919.16 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) GEAR CERTIFICATION Certification of Vessels' Cargo Gear § 1919.16 Heat treatment. (a) All chains...

  6. 29 CFR 1919.16 - Heat treatment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Heat treatment. 1919.16 Section 1919.16 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) GEAR CERTIFICATION Certification of Vessels' Cargo Gear § 1919.16 Heat treatment. (a) All chains...

  7. 29 CFR 1919.16 - Heat treatment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Heat treatment. 1919.16 Section 1919.16 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) GEAR CERTIFICATION Certification of Vessels' Cargo Gear § 1919.16 Heat treatment. (a) All chains...

  8. Fundamental aspects of postharvest heat treatments.

    PubMed

    Lurie, Susan; Pedreschi, Romina

    2014-01-01

    Heat treatments have been investigated for use in many aspects of postharvest storage. They have been developed for insect control, prevention of fungal development and prevention of postharvest storage disorders including chilling injury. The treatment times and temperature range vary widely, from days at 35 °C to 39 °C in hot air, to up to 63 °C for less than a minute in hot water. Much of the research has been performed to develop solutions to a particular problem, and less investigation has been conducted on the responses of the commodity to the treatment. However, since the turn of the century, a number of groups have been active in examining the molecular responses and changes that occur in commodities during and after the heat treatment. This review examines the changes at the level of transcriptome, proteome and metabolome that occur in response to the different heat treatments. PMID:26504541

  9. PILOT-SCALE ANAEROBIC FILTER TREATMENT OF HEAT TREATMENT LIQUOR

    EPA Science Inventory

    This investigation was undertaken to demonstrate the application of the anaerobic filter in the treatment of liquor waste resulting from heat treatment of raw sludge in municipal sewage treatment plants. The liquor which contains high concentrations of soluble wastes is often ret...

  10. 49 CFR 179.400-12 - Postweld heat treatment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Postweld heat treatment. 179.400-12 Section 179...-12 Postweld heat treatment. (a) Postweld heat treatment of the inner tank is not required. (b) The... postweld heat treatment. Welds securing the following need not be postweld heat treated when it is...

  11. Maraging superalloys and heat treatment processes

    DOEpatents

    Korenko, Michael K.; Gelles, David S.; Thomas, Larry E.

    1986-01-01

    Described herein are nickel-chromium-iron maraging, gamma prime strengthened superalloys containing about 18 to 25 weight percent nickel, about 4 to 8 weight percent chromium, gamma prime forming elements such as aluminum and/or titanium, and a solid solution strengthening element, such as molybdenum. After heat treatment, which includes at least one ausaging treatment and at least one maraging treatment, a microstructure containing gamma prime phase and decomposed Fe-Ni-Cr type martensite is produced.

  12. Predicting microbial heat inactivation under nonisothermal treatments.

    PubMed

    Hassani, Mounir; Condón, Santiago; Pagán, Rafael

    2007-06-01

    The aim of this study was to develop an equation that accurately predicts microbial heat inactivation under nonisothermal treatments at constantly rising heating rates (from 0.5 to 5 degrees C/min) in media with different pH values (4.0 or 7.4). The survival curves of all bacteria (Enterococcus faecium, Escherichia coli, Listeria monocytogenes, Salmonella Senftenberg 775W, Salmonella Typhimurium, and Staphylococcus aureus) tested under isothermal treatments were nearly linear. For the most heat-resistant microorganism (E. faecium), the estimated DT-values at pH 7.4 were at least 100 times those of the second most thermotolerant microorganism (Salmonella Senftenberg 775W). The heat resistance of E. faecium was up to 30 times lower at pH 4.0 than at pH 7.4. However, E. faecium was still the most heat-resistant microorganism under nonisothermal treatments at both pH values. Inactivation under nonisothermal conditions was not accurately estimated from heat resistance parameters of isothermal treatments when microbial adaptation or sensibilization occurred during the heating up lag phases. The under-prediction of the number of survivors might be greater than 15 log CFU within the nonisothermal treatment conditions investigated. Therefore, the nonisothermal survival curves of the most heat-resistant microorganisms were fitted with the following equation: log S(t) = -(t/delta)P. This equation accurately described the survival curves of all the bacteria tested. We observed a linear relationship between the log of the scale parameter (delta) and the log of the heating rate. A p value characteristic of each microorganism and pH tested was calculated. Two equations capable of predicting the inactivation rate of all bacteria tested under nonisothermal treatments at pH 7.4, 5.5, or 4.0 were developed. The model was evaluated in skim milk and apple juice. The results of this study could be used to help minimize public health risks and to extend the shelf life of those foods

  13. Local Laser Heat Treatments of Steel Sheets

    NASA Astrophysics Data System (ADS)

    Järvenpää, A.; Jaskari, M.; Hietala, M.; Mäntyjärvi, K.

    In this work UHS structural and abrasion resistant (AR) steels were heat treated with a single 4 kW Yb: YAG-laser beam. Aim of the softening heat treatments was to enhance the formability locally with minimized strength lose. 1.8 mm thick B24CR boron steel was used for hardening tests. Study presents the possibilities and limitations in laser processing showing that a single laser beam is suitable for heat treating of sheets through the whole cross-section up to the thickness of 6 mm. In the case of the 6 mm thick sheets, the achieved maximum temperature in the cross-section varies as a function of the depth. Consequently, the microstructure and mechanical properties differ between the surfaces and the center of the cross-section (layered microstructure). For better understanding, all layers were tested in tensile tests. The 10 mm thick sheet was heat treated separately on the both surfaces by heating to a lower temperature range to produce a shallow tempered layer. The tensile and bendability tests as well as hardness measurements indicated that laser heat treatment can be used to highly improve the bendability locally without significant strength losses. Laser process has been optimized by transverse scanning movement and with a simple FE-model.

  14. Plasma treatment of heat-resistant materials

    NASA Astrophysics Data System (ADS)

    Vlasov, V. A.; Kosmachev, P. V.; Skripnikova, N. K.; Bezukhov, K. A.

    2015-11-01

    Refractory lining of thermal generating units is exposed to chemical, thermal, and mechanical attacks. The degree of fracture of heat-resistant materials depends on the chemical medium composition, the process temperature and the material porosity. As is known, a shortterm exposure of the surface to low-temperature plasma (LTP) makes possible to create specific coatings that can improve the properties of workpieces. The aim of this work is to produce the protective coating on heat-resistant chamotte products using the LTP technique. Experiments have shown that plasma treatment of chamotte products modifies the surface, and a glass-ceramic coating enriched in mullite is formed providing the improvement of heat resistance. For increasing heat resistance of chamotte refractories, pastes comprising mixtures of Bacor, alumina oxide, and chamot were applied to their surfaces in different ratios. It is proved that the appropriate coating cannot be created if only one of heat-resistant components is used. The required coatings that can be used and recommended for practical applications are obtained only with the introduction of powder chamot. The paste composition of 50% chamot, 25% Bacor, and 25% alumina oxide exposed to plasma treatment, has demonstrated the most uniform surface fusion.

  15. Very high-vacuum heat treatment facility

    NASA Technical Reports Server (NTRS)

    Folkner, W. M.; Moody, M. V.; Richard, J.-P.

    1987-01-01

    A vacuum heat treatment facility, with hot zone dimensions of 12 x 19 x 19 cm, has been designed and constructed at a cost substantially below that of a commercial unit. The design incorporates efficient water cooling and a resistive heating element. A vacuum pressure of 1.5 x 10 to the -8th torr at room temperature has been obtained after baking. The temperature limit is approximately 1900 C. This limit results from the choice of niobium as the hot zone material.

  16. Improved Heat Treatment Of Steel Alloy 4340

    NASA Technical Reports Server (NTRS)

    Cooper, Lawrence B.

    1993-01-01

    New process takes significantly less time than prior heat-treatment processes. Involves placing steel plate directly in furnace and heat-treating. Plate then quenched in slowly moving oil to reduce stresses. Any deflection then pressed out. Possible uses of 4340 steel include new and improved bulletproof vests for military and police personnel and armor for bulletproof automobiles for military, police, diplomatic, and private users. Also used in other military land vehicles as tanks and in both military and civilian aircraft. Lighter armorplate enables land vehicles and aircraft to attain greater speed and maneuverability, consume less fuel, and afford better protection from snipers or terrorists.

  17. 49 CFR 179.220-11 - Postweld heat treatment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... § 171.7 of this subchapter). (c) When cold formed heads are used on the outer shell they must be heat... 49 Transportation 2 2010-10-01 2010-10-01 false Postweld heat treatment. 179.220-11 Section 179... Postweld heat treatment. (a) Postweld heat treatment of the inner container is not a...

  18. 49 CFR 179.400-12 - Postweld heat treatment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Postweld heat treatment. 179.400-12 Section 179... and 107A) § 179.400-12 Postweld heat treatment. (a) Postweld heat treatment of the inner tank is not... closing seams, must be postweld heat treated as prescribed in AAR Specifications for Tank Cars, appendix...

  19. 49 CFR 179.400-12 - Postweld heat treatment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Postweld heat treatment. 179.400-12 Section 179...-12 Postweld heat treatment. (a) Postweld heat treatment of the inner tank is not required. (b) The... postweld heat treated as prescribed in AAR Specifications for Tank Cars, appendix W (IBR, see § 171.7...

  20. 49 CFR 179.400-12 - Postweld heat treatment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Postweld heat treatment. 179.400-12 Section 179...-12 Postweld heat treatment. (a) Postweld heat treatment of the inner tank is not required. (b) The... postweld heat treated as prescribed in AAR Specifications for Tank Cars, appendix W (IBR, see § 171.7...

  1. 49 CFR 179.400-12 - Postweld heat treatment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Postweld heat treatment. 179.400-12 Section 179...-12 Postweld heat treatment. (a) Postweld heat treatment of the inner tank is not required. (b) The... postweld heat treated as prescribed in AAR Specifications for Tank Cars, appendix W (IBR, see § 171.7...

  2. In situ heat treatment process utilizing a closed loop heating system

    DOEpatents

    Vinegar, Harold J.; Nguyen, Scott Vinh

    2010-12-07

    Systems and methods for an in situ heat treatment process that utilizes a circulation system to heat one or more treatment areas are described herein. The circulation system may use a heated liquid heat transfer fluid that passes through piping in the formation to transfer heat to the formation. In some embodiments, the piping may be positioned in at least two of the wellbores.

  3. Assessment of NASA Dual Microstructure Heat Treatment Method for Multiple Forging Batch Heat Treatment

    NASA Technical Reports Server (NTRS)

    Gayda, John (Technical Monitor); Lemsky, Joe

    2004-01-01

    NASA dual microstructure heat treatment technology previously demonstrated on single forging heat treat batches of a generic disk shape was successfully demonstrated on a multiple disk batch of a production shape component. A group of four Rolls-Royce Corporation 3rd Stage AE2100 forgings produced from alloy ME209 were successfully dual microstructure heat treated as a single heat treat batch. The forgings responded uniformly as evidenced by part-to-part consistent thermocouple recordings and resultant macrostructures, and from ultrasonic examination. Multiple disk DMHT processing offers a low cost alternative to other published dual microstructure processing techniques.

  4. 7 CFR 305.29 - Vacuum heat treatment schedule.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Vacuum heat treatment schedule. 305.29 Section 305.29... SERVICE, DEPARTMENT OF AGRICULTURE PHYTOSANITARY TREATMENTS Heat Treatments § 305.29 Vacuum heat treatment schedule. T111-a-1. Place bay leaves in a vacuum chamber. Starting at 0 hour, gradually reduce to 0.133...

  5. 1. VIEW LOOKING SOUTHEAST INSIDE OF THE HEAT TREATMENT BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW LOOKING SOUTHEAST INSIDE OF THE HEAT TREATMENT BUILDING AT BATCH FURNACES, QUENCHING PIT IN FOREGROUND. - U.S. Steel Duquesne Works, Heat Treatment Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  6. 49 CFR 179.200-11 - Postweld heat treatment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Postweld heat treatment. 179.200-11 Section 179... Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-11 Postweld heat treatment. When specified in § 179.201-1, after welding is complete, postweld heat treatment must be in...

  7. 49 CFR 179.220-11 - Postweld heat treatment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Postweld heat treatment. 179.220-11 Section 179... Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-11 Postweld heat treatment. (a) Postweld heat treatment of the inner container is not a specification requirement. (b)...

  8. 49 CFR 179.220-11 - Postweld heat treatment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Postweld heat treatment. 179.220-11 Section 179... Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-11 Postweld heat treatment. (a) Postweld heat treatment of the inner container is not a specification requirement. (b)...

  9. 49 CFR 179.200-11 - Postweld heat treatment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Postweld heat treatment. 179.200-11 Section 179... Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-11 Postweld heat treatment. When specified in § 179.201-1, after welding is complete, postweld heat treatment must be in...

  10. 49 CFR 179.200-11 - Postweld heat treatment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Postweld heat treatment. 179.200-11 Section 179... Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-11 Postweld heat treatment. When specified in § 179.201-1, after welding is complete, postweld heat treatment must be in...

  11. 49 CFR 179.220-11 - Postweld heat treatment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Postweld heat treatment. 179.220-11 Section 179... Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-11 Postweld heat treatment. (a) Postweld heat treatment of the inner container is not a specification requirement. (b)...

  12. 49 CFR 179.200-11 - Postweld heat treatment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Postweld heat treatment. 179.200-11 Section 179... Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-11 Postweld heat treatment. When specified in § 179.201-1, after welding is complete, postweld heat treatment must be in...

  13. 49 CFR 179.220-11 - Postweld heat treatment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Postweld heat treatment. 179.220-11 Section 179... Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-11 Postweld heat treatment. (a) Postweld heat treatment of the inner container is not a specification requirement. (b)...

  14. [Treatment of syphilis with malaria or heat].

    PubMed

    Verhave, Jan Peter

    2016-01-01

    Until the end of the Second World War, syphilis was a common sexually transmitted infection. This stigmatising infectious disease caused mental decline, paralysis and eventually death. The history of syphilis was given public attention because of 'malaria therapy', which had been applied from the First World War onwards in patients with paralytic dementia. In 1917, the Austrian physician Julius Wagner-Jauregg (1857-1940) induced fever in these patients by infecting them with malaria parasites; in 1927, he received the Nobel Prize for his discovery of the healing properties of malarial fever. One source, not cited anywhere, is an interview that the American bacteriologist and science writer/medical journalist Paul de Kruif conducted with Wagner-Jauregg in 1930. The reporting of this meeting, and De Kruif's later involvement in the mechanical heat treatment of patients with syphilis, form the inspiration for this article. When penicillin became available, both treatments became obsolete. PMID:27165455

  15. 7 CFR 305.8 - Heat treatment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... equipment that is capable of adequately circulating air or water (as relevant to the treatment), changing... 7 Agriculture 5 2014-01-01 2014-01-01 false Heat treatment requirements. 305.8 Section 305.8... SERVICE, DEPARTMENT OF AGRICULTURE PHYTOSANITARY TREATMENTS § 305.8 Heat treatment requirements....

  16. 7 CFR 305.8 - Heat treatment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... equipment that is capable of adequately circulating air or water (as relevant to the treatment), changing... 7 Agriculture 5 2013-01-01 2013-01-01 false Heat treatment requirements. 305.8 Section 305.8... SERVICE, DEPARTMENT OF AGRICULTURE PHYTOSANITARY TREATMENTS § 305.8 Heat treatment requirements....

  17. Efficacy of heat treatment for disinfestation of concrete grain silos

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field experiments were conducted in 2007 and 2008 to evaluate heat treatment for disinfestations of empty concrete elevator silos. A Mobile Heat Treatment Unit was used to introduce heat into silos to attain target conditions of 50°C for at least 6 h. Ventilated plastic containers with a capacity of...

  18. 49 CFR 179.300-10 - Postweld heat treatment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Postweld heat treatment. 179.300-10 Section 179... Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.300-10 Postweld heat treatment. After welding is complete, steel tanks and all attachments welded thereto, must be postweld heat...

  19. 49 CFR 179.300-10 - Postweld heat treatment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Postweld heat treatment. 179.300-10 Section 179... Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.300-10 Postweld heat treatment. After welding is complete, steel tanks and all attachments welded thereto, must be postweld heat...

  20. 49 CFR 179.300-10 - Postweld heat treatment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Postweld heat treatment. 179.300-10 Section 179... Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.300-10 Postweld heat treatment. After welding is complete, steel tanks and all attachments welded thereto, must be postweld heat...

  1. Mortality of insect life stages during simulated heat treatment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    . Heat treatment for insect disinfestation uses elevated air temperatures that are lethal to stored-product insects. Heat treatment has been demonstrated in our research to offer a reduced-risk alternative to fumigation or residual pesticide use in empty bins. Heat is also compatible with organic gr...

  2. 49 CFR 179.200-11 - Postweld heat treatment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Postweld heat treatment. 179.200-11 Section 179.200-11 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS... Postweld heat treatment. When specified in § 179.201-1, after welding is complete, postweld heat...

  3. Decomposition of Fluorinated Graphene under Heat Treatment.

    PubMed

    Plšek, Jan; Drogowska, Karolina Anna; Valeš, Václav; Ek Weis, Johan; Kalbac, Martin

    2016-06-20

    Fluorination modifies the electronic properties of graphene, and thus it can be used to provide material with on-demand properties. However, the thermal stability of fluorinated graphene is crucial for any application in electronic devices. Herein, X-ray photoelectron spectroscopy (XPS), temperature-programmed desorption (TPD), and Raman spectroscopy were used to address the impact of the thermal treatment on fluorinated graphene. The annealing, at up to 700 K, caused gradual loss of fluorine and carbon, as was demonstrated by XPS. This loss was associated with broad desorption of CO and HF species, as monitored by TPD. The minor single desorption peak of CF species at 670 K is suggested to rationalize defect formation in the fluorinated graphene layer during the heating. However, fluorine removal from graphene was not complete, as some fraction of strongly bonded fluorine can persist despite heating to 1000 K. The role of intercalated H2 O and OH species in the defluorination process is emphasised. PMID:27161096

  4. Pressurized heat treatment of glass ceramic

    DOEpatents

    Kramer, D.P.

    1984-04-19

    A method of producing a glass-ceramic having a specified thermal expansion value is disclosed. The method includes the step of pressurizing the parent glass material to a predetermined pressure during heat treatment so that the glass-ceramic produced has a specified thermal expansion value. Preferably, the glass-ceramic material is isostatically pressed. A method for forming a strong glass-ceramic to metal seal is also disclosed in which the glass-ceramic is fabricated to have a thermal expansion value equal to that of the metal. The determination of the thermal expansion value of a parent glass material placed in a high-temperature environment is also used to determine the pressure in the environment.

  5. 7 CFR 305.8 - Heat treatment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 5 2012-01-01 2012-01-01 false Heat treatment requirements. 305.8 Section 305.8 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE PHYTOSANITARY TREATMENTS § 305.8 Heat treatment requirements....

  6. 29 CFR 1919.17 - Exemptions from heat treatment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Exemptions from heat treatment. 1919.17 Section 1919.17... from heat treatment. Gear made of steel, or gear which contains (as in ball bearings swivels), or is... treatment shall be exempt from the requirements of § 1919.16. Such gear, however, shall be...

  7. 49 CFR 179.100-10 - Postweld heat treatment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Postweld heat treatment. 179.100-10 Section 179...-10 Postweld heat treatment. (a) After welding is complete, steel tanks and all attachments welded... treatment is prohibited. (c) Tank and welded attachments, fabricated from ASTM A 240/A 240M (IBR, see §...

  8. 49 CFR 179.100-10 - Postweld heat treatment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Postweld heat treatment. 179.100-10 Section 179... treatment. (a) After welding is complete, steel tanks and all attachments welded thereto must be postweld..., appendix W (IBR, see § 171.7 of this subchapter). (b) For aluminum tanks, postweld heat treatment...

  9. 29 CFR 1919.17 - Exemptions from heat treatment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Exemptions from heat treatment. 1919.17 Section 1919.17... from heat treatment. Gear made of steel, or gear which contains (as in ball bearings swivels), or is... treatment shall be exempt from the requirements of § 1919.16. Such gear, however, shall be...

  10. INVESTIGATIONS OF HEAT TREATMENT FOR PAPER MILL SLUDGE CONDITIONING

    EPA Science Inventory

    The capability of oxidative and nonoxidative heat treatment processes for the conditioning of hydrous sludges originating in pulp and paper industry manufacturing or wastewater treatment operations was defined on the basis of laboratory scale investigation. Sludges employed in th...

  11. 49 CFR 179.100-10 - Postweld heat treatment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Postweld heat treatment. 179.100-10 Section 179... Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100-10 Postweld heat... heat treated as a unit in compliance with the requirements of AAR Specifications for Tank...

  12. 49 CFR 179.100-10 - Postweld heat treatment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Postweld heat treatment. 179.100-10 Section 179... Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100-10 Postweld heat... heat treated as a unit in compliance with the requirements of AAR Specifications for Tank...

  13. 49 CFR 179.100-10 - Postweld heat treatment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Postweld heat treatment. 179.100-10 Section 179... Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100-10 Postweld heat... heat treated as a unit in compliance with the requirements of AAR Specifications for Tank...

  14. 29 CFR 1919.17 - Exemptions from heat treatment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Exemptions from heat treatment. 1919.17 Section 1919.17... from heat treatment. Gear made of steel, or gear which contains (as in ball bearings swivels), or is permanently attached to (as with blocks) equipment made of materials which cannot be subjected to...

  15. 29 CFR 1919.17 - Exemptions from heat treatment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Exemptions from heat treatment. 1919.17 Section 1919.17... from heat treatment. Gear made of steel, or gear which contains (as in ball bearings swivels), or is permanently attached to (as with blocks) equipment made of materials which cannot be subjected to...

  16. 29 CFR 1919.17 - Exemptions from heat treatment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Exemptions from heat treatment. 1919.17 Section 1919.17... from heat treatment. Gear made of steel, or gear which contains (as in ball bearings swivels), or is permanently attached to (as with blocks) equipment made of materials which cannot be subjected to...

  17. 49 CFR 179.300-10 - Postweld heat treatment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Postweld heat treatment. 179.300-10 Section 179.300-10 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS... Postweld heat treatment. After welding is complete, steel tanks and all attachments welded thereto, must...

  18. Induction heat treatment as a means of increasing production

    SciTech Connect

    Golovin, G.F.; Shamov, A.N.

    1988-01-01

    The economic effectiveness of induction heat treatment was determined by a number of factors, including: saving energy and resources by substituting surface hardening for bulk or casehardening, improving labor productivity by process automation and including induction heat treatment equipment in the production line. Induction heating was found to be quick, does not require protection from oxidation, makes it possible to mechanize and automate the production process, and improves stabilization properties after annealing.

  19. Effects of heat treatment on carbon fibers

    NASA Technical Reports Server (NTRS)

    Brown, D. Kyle; Phillips, Wayne M.

    1990-01-01

    Commercially produced carbon fibers were heat treated to graphitization temperatures. The fibers were characterized for mechanical and physical properties, including density, D0002 spacing, strength, and modulus in both the 'as received' and heat treated conditions. Mechanical property changes were correlated with the physical property changes in the fibers.

  20. Heat treatment of cobalt-chromium alloy wire.

    PubMed

    Fillmore, G M; Tomlinson, J L

    1976-04-01

    This study shows that the ability of cobalt-chromium wire to resist permanent deformation is definitely affected by the temperature of heat treatment. For each temperature of heat treatment up to 1200 degrees F there is progressively greater resistance to permanent deformation; at temperatures of heat treatment above 1200 degrees F, however, there is a rapid decline in resistance to permanent deformation due to partial annealing. The maximum resistance to permanent deformation occurs from heat treatment in the temperature range of 1100 degrees to 1200 degrees F. A clinician desiring maximum resistance to permanent deformation from a .016 inches x .022 inches cobalt-chromium archwire should heat-treat the wire at 1100 degrees to 1200 degrees F for 5 minutes in a dental furnace. If the wire was in a highly work-hardened condition as were the wire specimens of this study, he could expect an increase in resistance to permanent deformation of approximately 174 percent. Heat treatment at lower temperatures could be used in situations requiring less than maximum resistance to permanent deformation. Heat treatment at 900 degrees F would give approximately a 95 percent increase in resistance to permanent deformation. Of course, heat treatment would not be indicated when the desired level of resistance to permanent deformation was not greater than the amount exhibited in the untreated wires of this study. When an electrical resistance heat-treatment unit and 950 degrees F temper-indicating paste were used, the clinician would expect increased resistance to permanent deformation similar to that seen in the wires heat-treated with a dental furnace at 800 degrees and 900 degrees F, i.e., about half of that obtained by the 1200 degrees F treatment. This study has determined the effects that various temperatures of heat treatment have on the resistance to permanent deformation of cobalt-chromium wire specimens which were formed into a specific pattern of loops. The following

  1. Heat Treatment of Friction-Stir-Welded 7050 Aluminum Plates

    NASA Technical Reports Server (NTRS)

    Petter, George E.; Figert, John D.; Rybicki, Daniel J.; Burns, Timothy

    2006-01-01

    A method of heat treatment has been developed to reverse some of the deleterious effects of friction stir welding of plates of aluminum alloy 7050. This alloy is considered unweldable by arc and high-energy-density beam fusion welding processes. The alloy can be friction stir welded, but as-welded workpieces exhibit low ductility, low tensile and yield strengths, and low resistance to stress corrosion cracking. Heat treatment according to the present method increases tensile and yield strengths, and minimizes or eliminates stress corrosion cracking. It also increases ductility. This method of heat treatment is a superior alternative to a specification-required heat treatment that caused the formation of large columnar grains, which are undesired. Workpieces subjected to the prior heat treatment exhibited elongations <2 percent, and standard three-point bend specimens shattered. The development of the present heat treatment method was guided partly by the principles that (1) by minimizing grain sizes and relieving deformation stresses, one can minimize or eliminate stress corrosion cracking and (2) the key to maximizing strength and eliminating residual stresses is to perform post-weld solution heating for as long a time as possible while incurring little or no development of large columnar grains in friction stir weld nuggets. It is necessary to perform some of the solution heat treatment (to soften the alloy and improve machine welding parameters) before welding. The following is an example of thickness- dependent pre- and post-weld heat treatments according to the present method: For plates 0.270 in. (approx.6.86 mm) thick milled from plates 4.5 in. (114.3 mm) thick, perform pre-weld solution heating at 890 F (477 C) for 1 hour, then cool in air. After friction stir welding, perform solution heating for 10 minutes, quench, hold at room temperature for 96 hours, then age at 250 F (121 C) for 5 hours followed by 325 F (163 C) for 27 hours.

  2. Heat treatment of organic polymers in a flow of a gaseous heat carrier

    NASA Astrophysics Data System (ADS)

    Zhuravskii, G. I.; Vinogradov, L. M.; Greben'kov, A. Zh.; Drozdov, V. N.; Egorov, N. N.

    1996-11-01

    Processes of heat and mass transfer are studied during heat treatment of organic polymers in a superheated-steam flow. Promising environmentally safe engineering processes of treatment of plant biomass, plastics, and rubber wastes that contain petroleum products of sludges and soils are described.

  3. Heat treatment of exchangers to remove coke

    SciTech Connect

    Turner, J.D.

    1990-02-20

    This patent describes a process for preparing furfural coke for removal from metallic surfaces. It comprises: heating the furfural coke without causing an evolution of heat capable of undesirably altering metallurgical properties of the surfaces in the presence of a gas containing molecular oxygen at a sufficient temperature below 800{degrees}F (427{degrees}C) for a sufficient time to change the crush strength of the coke so as to permit removal with a water jet at a pressure of five thousand pounds per square inch.

  4. Characterization of polyparaphenylene subjected to different heat treatment temperatures

    SciTech Connect

    Brown, S.D.M.; Matthews, M.J.; Marucci, A.; Pimenta, M.A.; Dresselhaus, M.S.; Endo, M.; Hiraoka, T.

    1998-07-01

    The authors investigated the structural and electronic properties of samples of polyparaphenylene (PPP), derived from two synthesis methods (the Kovacic and Yamamoto methods). These samples have been subjected to different heat-treatment temperatures (650 C {le} T{sub HT} {le} 2,000 C) and their properties are compared to the polymer prior to heat-treatment (T{sub HT} = 0 C). The photoluminescence (PL) spectra of heat-treated PPP based on the two synthesis methods reflects the differences in electronic structure of the starting polymers. The PL emission from the heat-treated Yamamoto polymer is quenched at much lower T{sub HT} than from the Kovacic material. However, Raman spectra taken of the material resulting from heat-treatment of the polymer (using both preparation methods) indicate the presence of phonon modes for PPP in samples at T{sub HT} up to 650 C.

  5. Effect of Heat Treatment on Properties of Glass Nanocomposite Sealants.

    PubMed

    Lee, Dong Bok; Ha, Su-Jeong; Jang, Dong-Hoon; Park, Sung; Bae, Joongmyeon; Lee, Jae Chun

    2015-01-01

    The objective of this study was to investigate the effect of heat treatments on the viscosities and electrical conductivities of glass sealants to be used in solid oxide fuel cells. Glass-based sealants, both with and without an alumina nanopowder added as a nanofiller, were heat treated at temperatures ranging from 750 degrees C to 770 degrees C for periods of up to 240 h. The effects of heat treatments on the viscosities, electrical conductivities and phase transformations of the sealants were investigated. The results showed that alumina nanopowder added to the glass increased both high-temperature electrical conductivities and the viscosities of the sintered glass nanocomposite sealants. However, lengthy heat treatments decreased the electrical conductivities of the glass nanocomposite sealants. This decrease in the conductivities of the heat-treated glass nanocomposites was attributed to the crystallization of glass phase, owing to the dissolution of the alumina nanofiller in the sealing glass. PMID:26328386

  6. Heat Treatment. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    ERIC Educational Resources Information Center

    Filer, Herb; Broste, Dale

    This lesson was developed for a course in sludge treatment and disposal. The lesson describes the Porteous heat treatment method of sludge conditioning and compares that system to the Zimpro wet air oxidation process. The theory of heat treatment, system of components and functions, and concepts of operation are addressed in the lesson. The…

  7. 9 CFR 590.575 - Heat treatment of dried whites.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... (spray or pan dried) and with the lot number or production code number. (b) The minimum requirements for heat treatment of spray or pan dried albumen shall be as follows: (1) Spray dried albumen shall be... less than 7 days and until it is salmonella negative. (2) Pan dried albumen shall be heated...

  8. 9 CFR 590.575 - Heat treatment of dried whites.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... (spray or pan dried) and with the lot number or production code number. (b) The minimum requirements for heat treatment of spray or pan dried albumen shall be as follows: (1) Spray dried albumen shall be... less than 7 days and until it is salmonella negative. (2) Pan dried albumen shall be heated...

  9. 9 CFR 590.575 - Heat treatment of dried whites.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... whites is an approved method for pasteurization and the product shall be heated throughout for such times... (spray or pan dried) and with the lot number or production code number. (b) The minimum requirements for heat treatment of spray or pan dried albumen shall be as follows: (1) Spray dried albumen shall...

  10. 9 CFR 590.575 - Heat treatment of dried whites.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... whites is an approved method for pasteurization and the product shall be heated throughout for such times... (spray or pan dried) and with the lot number or production code number. (b) The minimum requirements for heat treatment of spray or pan dried albumen shall be as follows: (1) Spray dried albumen shall...

  11. 9 CFR 590.575 - Heat treatment of dried whites.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... whites is an approved method for pasteurization and the product shall be heated throughout for such times... (spray or pan dried) and with the lot number or production code number. (b) The minimum requirements for heat treatment of spray or pan dried albumen shall be as follows: (1) Spray dried albumen shall...

  12. Heat-treatment of metal parts facilitated by sand embedment

    NASA Technical Reports Server (NTRS)

    Briscoe, C. C.; Kelley, R. C.

    1966-01-01

    Embedding metal parts of complex shape in sand contained in a steel box prevents strains and warping during heat treatment. The sand not only provides a simple, inexpensive support for the parts but also ensures more uniform distribution of heat to the parts.

  13. 49 CFR 179.300-10 - Postweld heat treatment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Postweld heat treatment. 179.300-10 Section 179.300-10 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS... Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.300-10 Postweld heat...

  14. 13. INTERIOR MIDDLE BAY DETAIL VIEW, FACING NORTHWEST. HEAT TREATMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. INTERIOR MIDDLE BAY DETAIL VIEW, FACING NORTHWEST. HEAT TREATMENT EQUIPMENT ABANDONED ON SITE. ALSO, TRACKS ALONG EQUIPMENT FOR MOVEMENT OF MATERIAL. - NASA Industrial Plant, Missile Research Laboratory, 12214 Lakewood Boulevard, Downey, Los Angeles County, CA

  15. Evaluating the heat pump alternative for heating enclosed wastewater treatment facilities in cold regions

    NASA Astrophysics Data System (ADS)

    Martel, C. J.; Phetteplace, G. E.

    1982-05-01

    This report presents a five-step procedure for evaluating the technical and economic feasibility of using heat pumps to recover heat from treatment plant effluent. The procedure is meant to be used at the facility planning level by engineers who are unfamiliar with this technology. An example of the use of the procedure and general design information are provided. Also, the report reviews the operational experience with heat pumps at wastewater plants located in Fairbanks, Alaska, Madison, Wisconsin, and Wilton, Maine.

  16. Optical fiber temperature sensors: applications in heat treatments for foods

    NASA Astrophysics Data System (ADS)

    Sosa-Morales, María Elena; Rojas-Laguna, Roberto; López-Malo, Aurelio

    2010-10-01

    Heat treatments are important methods to provide safe foods. Conventional heat treatments involve the application of steam and recently microwave treatments have been studied and applied as they are considered as fast, clean and efficient. Optical fiber sensing is an excellent tool to measure the temperature during microwave treatments. This paper shows the application of optical fiber temperature sensing during the heat treatment of different foods such as vegetables (jalapeño pepper and cilantro), cheese and ostrich meat. Reaching the target temperature, important bacteria were inactivated: Salmonella, Listeria and Escherichia coli. Thus, the use of optical fiber sensors has resulted be a useful way to develop protocols to inactivate microorganisms and to propose new methods for food processing.

  17. Heat treatment of cathodic arc deposited amorphous hard carbon films

    SciTech Connect

    Anders, S.; Ager, J.W. III; Brown, I.G.

    1997-02-01

    Amorphous hard carbon films of varying sp{sup 2}/sp{sup 3} fractions have been deposited on Si using filtered cathodic are deposition with pulsed biasing. The films were heat treated in air up to 550 C. Raman investigation and nanoindentation were performed to study the modification of the films caused by the heat treatment. It was found that films containing a high sp{sup 3} fraction sustain their hardness for temperatures at least up to 400 C, their structure for temperatures up to 500 C, and show a low thickness loss during heat treatment. Films containing at low sp{sup 3} fraction graphitize during the heat treatment, show changes in structure and hardness, and a considerable thickness loss.

  18. An Energy Savings Model for the Heat Treatment of Castings

    SciTech Connect

    Y. Rong; R. Sisson; J. Morral; H. Brody

    2006-12-31

    An integrated system of software, databases, and design rules have been developed, verified, and to be marketed to enable quantitative prediction and optimization of the heat treatment of aluminum castings to increase quality, increase productivity, reduce heat treatment cycle times and reduce energy consumption. The software predicts the thermal cycle in critical locations of individual components in a furnace, the evolution of microstructure, and the attainment of properties in heat treatable aluminum alloy castings. The model takes into account the prior casting process and the specific composition of the component. The heat treatment simulation modules can be used in conjunction with software packages for simulation of the casting process. The system is built upon a quantitative understanding of the kinetics of microstructure evolution in complex multicomponent alloys, on a quantitative understanding of the interdependence of microstructure and properties, on validated kinetic and thermodynamic databases, and validated quantitative models.

  19. Heat-treatment by using induction heating on the Minsk Tractor Plant

    SciTech Connect

    Kosmovich, L.S.; Baranov, V.S.; Koshelenkov, K.N.; Fel'dman, L.Ya.

    1988-01-01

    The Minsk Tractor Plant uses a technique for hardening preceded by induction heating for more than 50% of its heat-treated parts made from 45, 40Kh, 38KhGs, and 33KhS steels. The majority of parts undergo heat-treatment on the machining lines. This method made it possible to develop and put into service an automatic device for strainless hardening of strips in the forced conditions. Improving and introducing this new technological process, equipment, and fittings for heat treatment by induction heating was found to increase the life of the tractor parts, reduce labor costs for their manufacture as well as increase savings in electricity and rolled materials.

  20. Effects of heat treatment parameters on liquid whole egg proteins.

    PubMed

    Uysal, Reyhan Selin; Boyacı, İsmail Hakkı; Soykut, Esra Acar; Ertaş, Nusret

    2017-02-01

    The aim of this study was to analyse the effect of heat treatment parameters on liquid whole egg (LWE) proteins by using ultraviolet-visible (UV-VIS) spectroscopy and capillary electrophoresis (CE). Heat treatment (at 60-68°C for 1-5min) was applied to LWE. Treated LWE was centrifuged and supernatant was taken for measurement of UV-VIS spectroscopy and CE. The change in UV absorbance showed loss of protein solubility depending on heat treatments parameters. Electropherograms of samples demonstrated the effect of treatment parameters on composition of LWE proteins. It was found that conalbumin and lysozyme were influenced by the treatment, while ovalbumin and ovomucoid were not affected. CE combined with principal component analysis (PCA) was used for classification of samples untreated or treated and treated at different treatment parameters. The results of the study revealed that the extent of heat treatment in LWE samples could be determined with PCA of the CE measurements. PMID:27596410

  1. Effect of heat treatment on stainless steel orthodontic wires.

    PubMed

    Cuoghi, Osmar Aparecido; Kasbergen, Geraldo Francisco; Santos, Paulo Henrique dos; Mendonça, Marcos Rogério de; Tondelli, Pedro Marcelo

    2011-01-01

    This study evaluated the effect of heat treatment on CrNi stainless steel orthodontic archwires. Half of forty archwires of each thickness - 0.014" (0.35 mm), 0.016" (0.40 mm), 0.018" (0.45 mm) and 0.020" (0.50 mm) (totalling 160 archwires) - were subjected to heat treatment while the remainder were not. All of the archwires had their individual thickness measured in the anterior and posterior regions using AutoCad 2000 software before and after compressive and tensile strength testing. The data was statistically analysed utilising multivariance ANOVA at a 5% significance level. All archwires without heat treatment that were subjected to tensile strength testing presented with anterior opening, which was more accentuated in the 0.020" archwires. In the posterior region, the opening produced by the tensile force was more accentuated in the archwires without heat treatment. There was greater stability in the thermally treated archwires, especially those subjected to tensile strength testing, which indicates that the heat treatment of orthodontic archwires establishes a favourable and indispensable condition to preserve the intercanine width. PMID:21359492

  2. Compositions produced using an in situ heat treatment process

    DOEpatents

    Roes, Augustinus Wilhelmus Maria; Nair, Vijay; Munsterman, Erwin Hunh; Van Bergen, Petrus Franciscus; Van Den Berg, Franciscus Gondulfus Antonius

    2013-05-28

    Methods for treating a subsurface formation and compositions produced therefrom are described herein. At least one method for producing hydrocarbons from a subsurface formation includes providing heat to the subsurface formation using an in situ heat treatment process. One or more formation particles may be formed during heating of the subsurface formation. Fluid that includes hydrocarbons and the formation particles may be produced from the subsurface formation. The formation particles in the produced fluid may include cenospheres and have an average particle size of at least 0.5 micrometers.

  3. Compositions produced using an in situ heat treatment process

    SciTech Connect

    Roes, Augustinus Wilhelmus Maria; Nair, Vijay; Munsterman, Erwin Henh; Van Bergen, Petrus Franciscus; Van Den Berg, Franciscus Gondulfus Antonius

    2009-10-20

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for producing hydrocarbons from a subsurface formation includes providing heat to the subsurface formation using an in situ heat treatment process. One or more formation particles may be formed during heating of the subsurface formation. Fluid that includes hydrocarbons and the formation particles may be produced from the subsurface formation. The formation particles in the produced fluid may include cenospheres and have an average particle size of at least 0.5 micrometers.

  4. Effect of heat treatment temperature on nitinol wire

    NASA Astrophysics Data System (ADS)

    Cai, S.; Schaffer, J. E.; Daymond, M. R.; Yu, C.; Ren, Y.

    2014-08-01

    In-situ synchrotron X-ray diffraction has been used to study the influence of the heat treatment temperature on the subsequent micromechanical behavior of nitinol wire. It was found that increase in the heat treatment temperature rotated the austenite texture from the {332}B2 fiber towards the {111}B2 fiber, and the texture of the Stress-Induced Martensite phase changed from the ( 1 ¯ 40)B19' to the ( 1 ¯ 20)B19' fiber accordingly. Heat treatment at a low temperature reduces the internal residual strains in the austenite during super-elastic deformation and therefore improves the materials fatigue performance. The development of internal residual strains in austenite is controlled by transformation induced plasticity and the reversal martensite to austenite transformation.

  5. Effect of heat treatment temperature on nitinol wire

    SciTech Connect

    Cai, S.; Schaffer, J. E.; Daymond, M. R.; Yu, C.; Ren, Y.

    2014-08-18

    In-situ synchrotron X-ray diffraction has been used to study the influence of the heat treatment temperature on the subsequent micromechanical behavior of nitinol wire. It was found that increase in the heat treatment temperature rotated the austenite texture from the (332){sub B2} fiber towards the (111){sub B2} fiber, and the texture of the Stress-Induced Martensite phase changed from the (1{sup ¯}40){sub B19'} to the (1{sup ¯}20){sub B19'} fiber accordingly. Heat treatment at a low temperature reduces the internal residual strains in the austenite during super-elastic deformation and therefore improves the materials fatigue performance. The development of internal residual strains in austenite is controlled by transformation induced plasticity and the reversal martensite to austenite transformation.

  6. Field Heat Treatment Technician: Competency Profile. Apprenticeship and Industry Training. 20908.1

    ERIC Educational Resources Information Center

    Alberta Advanced Education and Technology, 2008

    2008-01-01

    The graduate of the Field Heat Treatment Technician apprenticeship program is a certified journeyperson who will be able: (1) use heat treatment equipment to apply heat to materials in order to change a material's properties; (2) Use their knowledge of the properties of heat, industry codes and specifications to determine how heat treatment will…

  7. Ultrasonic verification of microstructural changes due to heat treatment

    NASA Technical Reports Server (NTRS)

    Generazio, E. R.

    1986-01-01

    Ultrasonic attenuation was measured for polycrystalline samples of nickel and copper with various grain-size distributions produced by heat treatment. Attenuation as a function of frequency was determined for a sample having a known mean grain diameter. Once this function was determined, it could be scaled to determine the mean grain size of other samples of the same material with different mean grain diameters. These results were obtained by using broadband pulse-echo ultrasound in the 25 to 100 MHz frequency range. The results suggest an ultrasonic, nondestructive approach for verifying heat treatment of metals.

  8. Rapid Heat Treatment of Aluminum High-Pressure Diecastings

    NASA Astrophysics Data System (ADS)

    Lumley, R. N.; Polmear, I. J.; Curtis, P. R.

    2009-07-01

    Recently, it has been demonstrated that common high-pressure diecasting (HPDC) alloys, such as those based on the Al-Si-Cu and Al-Si-Mg-(Cu) systems, may be successfully heat treated without causing surface blistering or dimensional instability. In some compositions, the capacity to exploit age hardening may allow the proof stress values to be doubled when compared to the as-cast condition. This heat treatment procedure involves the use of severely truncated solution treatment cycles conducted at lower than normal temperatures, followed by quenching and natural or artificial aging. The potential therefore exists to develop and evaluate secondary HPDC alloys designed specifically for rapid heat treatment, while still displaying high castability. This article reports results of an experimental program in which responses of various alloy compositions to age hardening have been investigated with the primary aim of further reducing the duration and cost of the heat treatment cycle while maintaining high tensile properties. Composition ranges have been established for which values of 0.2 pct proof stress exceeding 300 MPa ( i.e., increases of ~100 pct above as-cast values) can be achieved using a procedure that involves a total time for solution treatment plus age hardening of only 30 minutes. This rapid aging behavior is shown to be related to precipitation of the complex Q' phase, which forms primarily when Mg contents of the alloys are above ~0.2 wt pct.

  9. Structural changes of synthetic opal by heat treatment

    NASA Astrophysics Data System (ADS)

    Arasuna, Akane; Okuno, Masayuki; Okudera, Hiroki; Mizukami, Tomoyuki; Arai, Shoji; Katayama, Shin'ichi; Koyano, Mikio; Ito, Nobuaki

    2013-10-01

    The structural changes of synthetic opal by heat treatment up to 1,400 °C were investigated using scanning electron microscopy, X-ray diffraction, and Fourier transform infrared and Raman spectroscopies. The results indicate that the dehydration and condensation of silanol in opal are very important factors in the structural evolution of heat-treated synthetic opal. Synthetic opal releases water molecules and silanols by heat treatment up to 400 °C, where the dehydration of silanol may lead to the condensation of a new Si-O-Si network comprising a four-membered ring structure of SiO4 tetrahedra, even at 400 °C. Above 600 °C, water molecules are lost and the opal surface and internal silanol molecules are completely dehydrated by heat effect, and the medium-temperature range structure of opal may begin to thermally reconstruct to six-membered rings of SiO4 tetrahedra. Above 1,000 °C, the opal structure almost approaches that of silica glass with an average structure of six-membered rings. Above 1,200 °C, the opal changes to low-cristobalite; however, minor evidence of low-tridymite stacking was evident after heat treatment at 1,400 °C.

  10. Using geothermal energy to heat a portion of a formation for an in situ heat treatment process

    DOEpatents

    Pieterson, Roelof; Boyles, Joseph Michael; Diebold, Peter Ulrich

    2010-06-08

    Methods of using geothermal energy to treat subsurface formations are described herein. Methods for using geothermal energy to treat a subsurface treatment area containing or proximate to hydrocarbons may include producing geothermally heated fluid from at least one subsurface region. Heat from at least a portion of the geothermally heated fluid may be transferred to the subsurface treatment area to heat the subsurface treatment area. At least some hydrocarbon fluids may be produced from the formation.

  11. Impact Toughness and Heat Treatment for Cast Aluminum

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A (Inventor)

    2016-01-01

    A method for transforming a cast component made of modified aluminum alloy by increasing the impact toughness coefficient using minimal heat and energy. The aluminum alloy is modified to contain 0.55%-0.60% magnesium, 0.10%-0.15% titanium or zirconium, less than 0.07% iron, a silicon-tomagnesium product ratio of 4.0, and less than 0.15% total impurities. The shortened heat treatment requires an initial heating at 1,000deg F. for up to I hour followed by a water quench and a second heating at 350deg F. to 390deg F. for up to I hour. An optional short bake paint cycle or powder coating process further increase.

  12. Integrated flue gas treatment condensing heat exchanger for pollution control

    SciTech Connect

    Johnson, D.W.; Warchol, J.J.; Schulze, K.H.; Carrigan, J.F.

    1994-12-31

    Condensing heat exchangers recover both sensible and latent heat from flue gases. Using Teflon{reg_sign} to cover the heat exchanger tubes and inside surfaces that are exposed to the flue gas ensures adequate material lifetime in the corrosive environment encountered when the flue gas temperature drops below the acid dew point. A recent design improvement, called the integrated flue gas treatment (IFGT) concept, offers the ability to remove pollutants from the flue gas, as well as recover waste heat. It has been shown to remove SO{sub 2}, SO{sub 3}, particulates, and trace emissions. Babcock and Wilcox (B and W) is undertaking an extensive program to optimize this technology for a variety of flue gas applications. This paper summarizes the current status of IFGT technology and the development activities that are in progress.

  13. Integrated modeling and heat treatment simulation of austempered ductile iron

    NASA Astrophysics Data System (ADS)

    Hepp, E.; Hurevich, V.; Schäfer, W.

    2012-07-01

    The integrated modeling and simulation of the casting and heat treatment processes for producing austempered ductile iron (ADI) castings is presented. The focus is on describing different models to simulate the austenitization, quenching and austempering steps during ADI heat treatment. The starting point for the heat treatment simulation is the simulated microstructure after solidification and cooling. The austenitization model considers the transformation of the initial ferrite-pearlite matrix into austenite as well as the dissolution of graphite in austenite to attain a uniform carbon distribution. The quenching model is based on measured CCT diagrams. Measurements have been carried out to obtain these diagrams for different alloys with varying Cu, Ni and Mo contents. The austempering model includes nucleation and growth kinetics of the ADI matrix. The model of ADI nucleation is based on experimental measurements made for varied Cu, Ni, Mo contents and austempering temperatures. The ADI kinetic model uses a diffusion controlled approach to model the growth. The models have been integrated in a tool for casting process simulation. Results are shown for the optimization of the heat treatment process of a planetary carrier casting.

  14. Research Findings on Heat Treatment of Pathogens and Indicator Organisms

    EPA Science Inventory

    Heat or thermal treatment has been used for many years for reducing the densities of pathogens in food and beverages. Its application for disinfection of municipal sludges has occurred only recently. One method for achieving Class A biosolids is to thermally treat sludges either ...

  15. 49 CFR 179.500-6 - Heat treatment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... proper inspection. (b) To check uniformity of heat treatment, Brinnel hardness tests shall be made at 18 inch intervals on the entire longitudinal axis. The hardness shall not vary more than 35 points in the length of the tank. No hardness tests need be taken within 12 inches from point of head to shell...

  16. 49 CFR 179.500-6 - Heat treatment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... proper inspection. (b) To check uniformity of heat treatment, Brinnel hardness tests shall be made at 18 inch intervals on the entire longitudinal axis. The hardness shall not vary more than 35 points in the length of the tank. No hardness tests need be taken within 12 inches from point of head to shell...

  17. 49 CFR 179.500-6 - Heat treatment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... extent sufficient to allow proper inspection. (b) To check uniformity of heat treatment, Brinnel hardness tests shall be made at 18 inch intervals on the entire longitudinal axis. The hardness shall not vary more than 35 points in the length of the tank. No hardness tests need be taken within 12 inches...

  18. 49 CFR 179.500-6 - Heat treatment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... proper inspection. (b) To check uniformity of heat treatment, Brinnel hardness tests shall be made at 18 inch intervals on the entire longitudinal axis. The hardness shall not vary more than 35 points in the length of the tank. No hardness tests need be taken within 12 inches from point of head to shell...

  19. 49 CFR 179.500-6 - Heat treatment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... proper inspection. (b) To check uniformity of heat treatment, Brinnel hardness tests shall be made at 18 inch intervals on the entire longitudinal axis. The hardness shall not vary more than 35 points in the length of the tank. No hardness tests need be taken within 12 inches from point of head to shell...

  20. 7 CFR 305.25 - Dry heat treatment schedules.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... temperature. T518-2-1 180-200 2 hours. 1 A minimum of two temperature probes must be placed in the heat treating equipment in order to determine that all niger seed being treated reaches the target temperature... schedules. Treatment schedule Temperature ( °F) Time Directions T302-a-1-2 168 minimum At least 2...

  1. Heat treatment stabilizes welded aluminum jigs and tool structures

    NASA Technical Reports Server (NTRS)

    Mehnert, R. S.

    1966-01-01

    Heat treatment processes, applied after welding but before machining, imparts above normal stability to welded aluminum jigs and tool structures. Weight saving will not be realized in these tools if rigidity equal to that of a comparable steel tool is required.

  2. Heat treatment study of aluminum casting alloy M45

    NASA Technical Reports Server (NTRS)

    Lovoy, C. V.

    1967-01-01

    Study determines the heat treatment cycle of aluminum casting alloy M-45 which will increase the strength levels of the alloy while maintaining optimum stress corrosion resistance. Evidence indicates that present production castings are overaged too severely to take full advantage of the strength of the alloy.

  3. Heat treatment procedure to increase ductility of degraded nickel alloy

    NASA Technical Reports Server (NTRS)

    Prager, M.

    1968-01-01

    Tests demonstrate the room temperature ductility of degraded Rene 41 can be increased to acceptable values by solution heat treatment at a temperature of 2050 degrees to 2150 degrees F /1 to 2 hours/ and cooling through a controlled temperature range followed by normal aging in air /16 hours at 1400 degrees F/.

  4. Pre-weld heat treatment improves welds in Rene 41

    NASA Technical Reports Server (NTRS)

    Prager, M.

    1968-01-01

    Cooling of Rene 41 prior to welding reduces the incidence of cracking during post-weld heat treatment. The microstructure formed during the slow cooling rate favors elevated temperature ductility. Some vestiges of this microstructure are apparently retained during welding and thus enhance strain-age crack resistance in air.

  5. Potential heat treatments for quarantine security of exotic tropical fruits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potential heat treatments (HT) were developed to control fruit flies in selected tropical fruits (avocado, guava, longan, passion fruit, and persimmon). Hawaii has three fruit flies of economic and quarantine importance, Mediterranean fruit fly (Medfly), oriental fruit fly, and melon fly. Previous r...

  6. Heat treatment giving a stable high temperature micro-structure in cast austenitic stainless steel

    DOEpatents

    Anton, Donald L.; Lemkey, Franklin D.

    1988-01-01

    A novel micro-structure developed in a cast austenitic stainless steel alloy and a heat treatment thereof are disclosed. The alloy is based on a multicomponent Fe-Cr-Mn-Mo-Si-Nb-C system consisting of an austenitic iron solid solution (.gamma.) matrix reinforced by finely dispersed carbide phases and a heat treatment to produce the micro-structure. The heat treatment includes a prebraze heat treatment followed by a three stage braze cycle heat treatment.

  7. Heat transition during magnetic heating treatment: Study with tissue models and simulation

    NASA Astrophysics Data System (ADS)

    Henrich, Franziska; Rahn, Helene; Odenbach, Stefan

    2015-04-01

    The magnetic heating treatment (MHT) is well known as a promising therapy for cancer diseases. Depending on concentration and specific heating power of the magnetic material as well as on parameters of the magnetic field, temperatures between 43 and 55 °C can be reached. This paper deals with the evaluation of heat distribution around such a heat source in a tissue model, thereby focusing on the heat transfer from tissue enriched with magnetic nanoparticles to regions of no or little enrichment of magnetic nanoparticles. We examined the temperature distribution with several tissue phantoms made of polyurethane (PUR) with similar thermal conductivity coefficient as biological tissue. These phantoms are composed of a cylinder with one sphere embedded, enriched with magnetic fluid. Thereby the spheres have different diameters in order to study the influence of the surface-to-volume ratio. The phantoms were exposed to an alternating magnetic field. The magnetically induced heat increase within the phantoms was measured with thermocouples. Those were placed at defined positions inside the phantoms. Based on the measured results a 3-dimensional simulation of each phantom was built. We achieved an agreement between the measured and simulated temperatures for all phantoms produced in this experimental study. The established experiment theoretically allows a prediction of temperature profiles in tumors and the surrounding tissue for the potential cancer treatment and therefore an optimization of e.g. the respective magnetic nanoparticles concentrations for the desirable rise of temperature.

  8. Effect of mechanical surface and heat treatments on erosion resistance

    NASA Technical Reports Server (NTRS)

    Salik, J.; Buckley, D. H.

    1981-01-01

    The effect of erosion by glass beads and crushed glass and by heat treatments on the erosional resistance of 6061 aluminum alloy and 1045 steel were studied. The aluminum alloy's erosion resistance was found to be insensitive to mechanical surface treatment applied before testing, and was determined to depend on the properties of the work-hardened surface layer; this was also demonstrated for aluminum alloy single crystals. The aluminum alloy heat treatments included annealing, solution, and precipitation. Solution was found to increase erosion resistance but precipitation had the opposite effect. Hardness showed no correlation with erosion resistance for either aluminum alloy steel. The steel tests showed that crushed glass provides an order of magnitude more erosion than glass beads.

  9. Microwave heat treatment of natural ruby and its characterization

    NASA Astrophysics Data System (ADS)

    Swain, S.; Pradhan, S. K.; Jeevitha, M.; Acharya, P.; Debata, M.; Dash, T.; Nayak, B. B.; Mishra, B. K.

    2016-03-01

    Natural ruby (in the form of gemstone) collected from Odisha has been heat-treated by microwave (MW). A 3-kW industrial MW furnace with SiC susceptors was used for the heat treatment. The ruby samples showed noticeable improvements (qualitative), may be attributed to account for the improvement in clarity and lustre. Optical absorption in 200-800 nm range and photoluminescence peak at 693 nm (with 400 nm λ ex) clearly show that subtle changes do take place in the ruby after the heat treatment. Further, inorganic compound phases and valence states of elements (impurities) in the ruby were studied by X-ray diffraction, micro-Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The valence states of the main impurities such as Cr, Fe, and Ti, in the untreated and MW heat-treated ruby, as revealed from XPS, have been discussed in depth. The overall results demonstrate for the first time the effect of fast heating like MW on the microstructural properties of the gemstone and various oxidation states of impurity elements in the natural ruby.

  10. Heat strokes: aetiopathogenesis, neurological characteristics, treatment and outcome.

    PubMed

    Yaqub, B; Al Deeb, S

    1998-04-01

    Heat stroke is a thermal insult to the cerebral thermoregulatory system controlling heat production and heat dissipation. The thermal insult may be environmental as in 'classic heat stroke' or endogenous as in 'exertional heat stroke' in joggers or runners. The insult will lead to a steady rise in body core temperature to 40 degrees C or more, exhaustion of sweating with hot dry skin and central nervous system disturbances ranging from confusion to deep coma. Multisystem insult will follow leading to a fatal outcome, if not diagnosed and treated promptly. Rapid evaporative cooling and support of vital organs are the essential factors in the management of this condition. If treated early, no sequelae results, however, pancerebellar syndrome and spastic or flaccid paraparesis have been described in a few cases. Limited sun exposure, proper use of sunscreens, adequate fluid and electrolyte replacement and acclimatization are the key factors for prevention. Despite appropriate prevention and prompt treatment, heat stroke is unlikely to be totally prevented, but the mortality has improved dramatically to less than 10%. PMID:9588849

  11. Anodic Oxidative Modification of Egg White for Heat Treatment.

    PubMed

    Takahashi, Masahito; Handa, Akihiro; Yamaguchi, Yusuke; Kodama, Risa; Chiba, Kazuhiro

    2016-08-31

    A new functionalization of egg white was achieved by an electrochemical reaction. The method involves electron transfer from thiol groups of egg white protein to form disulfide bonds. The oxidized egg white produced less hydrogen sulfide during heat treatment; with sufficient application of electricity, almost no hydrogen sulfide was produced. In addition, gels formed by heating electrochemically oxidized egg white exhibited unique properties, such as a lower gelation temperature and a softened texture, presumably due to protein aggregation and electrochemically mediated intramolecular disulfide bond formation. PMID:27518910

  12. Sour gas injection for use with in situ heat treatment

    DOEpatents

    Fowler, Thomas David

    2009-11-03

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for providing acidic gas to a subsurface formation is described herein. The method may include providing heat from one or more heaters to a portion of a subsurface formation; producing fluids that include one or more acidic gases from the formation using a heat treatment process. At least a portion of one of the acidic gases may be introduced into the formation, or into another formation, through one or more wellbores at a pressure below a lithostatic pressure of the formation in which the acidic gas is introduced.

  13. Effect of mechanical surface and heat treatments on erosion resistance

    NASA Technical Reports Server (NTRS)

    Salik, J.; Buckley, D. H.

    1980-01-01

    The effects of mechanical surface treatments as well as heat treatments on the erosion resistance of 6061 aluminum alloy and 1045 steel were studied. Mechanical surface treatments were found to have little or no effect on the erosion resistance. This is due to the formation by particle impact of a work hardened surface layer regardless of the initial surface condition. The erosion resistance of Al single crystals is found to be independent of orientation. This is due to destruction of the surface microstructure and formation of a polycrystalline surface layer by the impact of erodant particles as observed by X-ray diffraction. While upon solution treatment of annealed 6061 aluminum the increase in hardness is accompanied by an increase in erosion resistance, precipitation treatment which causes a further increase in hardness results in slightly lower erosion resistance. Using two types of erodant particles, glass beads and crushed glass, the erosion rate is found to be strongly dependent on erodant particle shape, being an order of magnitude higher for erosion with crushed glass as compared to glass beads. While for erosion with glass beads heat treatment of 1045 steel had a profound effect on its erosion resistance, little or no such effect was observed for erosion with crushed glass.

  14. Investigation of heat distribution during magnetic heating treatment using a polyurethane-ferrofluid phantom-model

    NASA Astrophysics Data System (ADS)

    Henrich, F.; Rahn, H.; Odenbach, S.

    2014-02-01

    Magnetic heating treatment can be used as an adjuvant treatment for cancer therapy. In this therapy, magnetic nanoparticles are enriched inside the tumour and exposed to an alternating magnetic field. Due to magnetic losses the temperature in the tumour rises. The resulting temperature profile inside the tumour is useful for the therapeutic success. In this context heat transfer between tissue with nanoparticles and tissue without nanoparticles is a highly important feature which is actually not understood in detail. In order to investigate this, a phantom has been created which can be used to measure the temperature profile around a region enriched with magnetic nanoparticles. This phantom is composed of a material, which has similar thermal conductivity as human tissue. A tempered water bath surrounds the phantom to establish a constant surrounding temperature simulating the heat sink provided by the human body in a real therapeutic application. It has been found that even at a low concentration of magnetic nanoparticles around 13 mg/ml, sufficient heating of the enriched region can be achieved. Moreover it has been observed that the temperature drops rapidly in the material surrounding the enriched region. Corresponding numerical investigations provide a basis for future recalculations of the temperature inside the tumour using temperature data obtained in the surrounding tissue.

  15. Effect of heat treatment on precipitation on V-5Cr-5Ti heat BL63

    SciTech Connect

    Gelles, D.S.; Li, H.

    1996-04-01

    The microstructures of V-5Cr-5Ti heat BL63 are compared following heat treatments at 1125{degrees}C for 1 h and 1125{degrees}C for 1 h followed by 890{degrees}C for 24 h. Following the 890{degrees}C treatment, precipitate density was increased due to the presence of a moderate density of highly elongated particles. Microchemical analysis showed that these particles often contained both Ti and V, some particles showed minor amounts of Si, S, and P, but it was also possible to show that these precipitates were enriched in O rather than C or N. Following the 1125{degrees}C heat treatment, only Si was found as a minor impurity in large particles, but S could be identified at grain boundaries, which were coated with a fine distribution of precipitates. The embrittlement observed is ascribed to a combination of interstitial solid solution hardening and grain boundary embrittlement, with interstitial hardening likely the dominant factor.

  16. 46 CFR 56.80-15 - Heat treatment of bends and formed components.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... reference; see 46 CFR 56.01-2) may be used without a postheat treatment. (e) For other materials the heat... 46 Shipping 2 2010-10-01 2010-10-01 false Heat treatment of bends and formed components. 56.80-15... PIPING SYSTEMS AND APPURTENANCES Bending and Forming § 56.80-15 Heat treatment of bends and...

  17. A method for shipboard treatment of multiple heat casualties.

    PubMed

    Sweeney, W B; Krafte-Jacobs, B; Hansen, W; Saldana, M

    1992-03-01

    A method is presented for the treatment aboard ship of multiple patients afflicted with life-threatening heat illness, using an inflatable life raft cooling system. The potential benefits of this method include: (1) the utilization of readily available materials aboard U.S. Naval vessels; (2) the provision for rapid patient cooling by evaporation while maintaining patient safety and comfort; (3) the ability to treat many patients simultaneously with minimal attendant personnel; and (4) the maintenance of patient access allowing for monitoring and the administration of additional supportive measures. PMID:1603408

  18. Chemical Modification for PAN Fibers during Heat-treatment Process

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Yin, Wenyan

    Chemical modification for Polyacrylonitrile (PAN) fibers during heat-treatment process were systematically studied by DSC, FT-IR, EA, XPS, etal. Comparing with original PAN fibers, chemical reactions, structures and elemental compositions of fibers modified with potassium permanganate (KMnO4) solutions were totally changed at a certain extent. KMnO4 had reduced the activation energy of cyclization, decreased the area and widened the peak of exothermic curve, decreased the velocity of cyclization reaction, increased the oxygen content about 67%, hence increased C-O-C and C=O groups and the core/shell ratio.

  19. Effect of Boron Addition and Initial Heat-Treatment Temperature on Microstructure and Mechanical Properties of Modified 9Cr-1Mo Steels Under Different Heat-Treatment Conditions

    NASA Astrophysics Data System (ADS)

    Das, C. R.; Albert, S. K.; Bhaduri, A. K.; Murty, B. S.

    2013-05-01

    The effect of initial heat treatment on microstructure and mechanical properties of boron-free and boron-containing modified 9Cr-1Mo steel (P91 and P91B, respectively) has been studied under different heat-treatment conditions. The prior austenite grains evolved in P91 steel, having different prior austenite grain sizes, were found to be similar in size after heat treatment in the range of 1073 K to 1448 K (800 °C to 1175 °C) for 5 minutes. The microstructural evolution in P91B steel having different prior austenite grain sizes appeared to be uniform when subjected to different heat-treatment temperatures with the prior austenite grain size being similar to that of initial grain size. Lath martensite was observed in P91B steel after all heat treatments. On the other hand, lath martensite was observed in P91 steel only when subjected to high-temperature heat treatment, whereas subgrain/substructure as well as coarse precipitates were observed after a lower temperature heat treatment. Large differences in the hardness/strength values between different microstructures corresponding to coarse-grained heat-affected zone (CGHAZ) and intercritical HAZ (ICHAZ) of P91 steel weldment were due to the distinct difference in these microstructures. The difference in hardness/strength values between the CGHAZ and ICHAZ was found to be insignificant in P91B steel under similar heat-treatment conditions.

  20. Assessment of heat treatment of various types of milk.

    PubMed

    Sakkas, Lambros; Moutafi, Alexandra; Moschopoulou, Ekaterini; Moatsou, Golfo

    2014-09-15

    Raw milk (RM), reconstituted condensed milk (CM) and three types of reconstituted milk powders (SMPs) were heated indirectly at 80-140°C for 4 s. Native β-lactoglobulin after 90°C treatment of RM was 1132±167 mg/L but no reliable quantities were estimated at temperatures >100°C, whereas 218±43 mg/L residual α-lactalbumin were found at 130°C. Average lactulose contents from 51 to 1549 mg/L were detected at ⩾100°C; average furosine was 1.9 and 126.5 mg/L in raw and 140°C treated milks respectively. The behaviour of heated CM was similar to that of heated RM except for higher furosine concentration. Reconstituted SMPs contained high quantities of lactulose and furosine, the ratio of which was lower than in similarly treated RM. Among the market milks analysed, the group of high-pasteurised milks was highly variable; i.e. native β-lactoglobulin was 69-2831 mg/L, lactulose 0-824 mg/L and furosine 3.3-68.8 mg/L. PMID:24767058

  1. Changes in some physical properties induced by vacuum heat treatment

    NASA Technical Reports Server (NTRS)

    Hultquist, A. E.

    1972-01-01

    A method is proposed for reducing or eliminating outgassing of materials by heat treating them in vacuum prior to use. This may be performed on the raw material prior to manufacturing and installation or after fabrication of parts. Processing of a fabricated part can be performed only on relatively small parts and on assemblies containing no components which are affected by the required temperatures and pressures. Processing conditions of temperature and time are dependent on the particular application and the materials involved. Silicone-coated fiber glass cloth was vacuum-heat treated for 100 hrs at 400 + or - 25 F at pressures of 0.001 torr or less. The materials were tested in terms of tensile strength and tear properties in both the smooth and several creased configurations. Data obtained on one side silicone coated fiber glass showed large reductions in these properties as a result of the vacuum-heat treatment. The problem was alleviated by coating both sides of the fiber glass.

  2. The Effects of Heat Treatment and Microstructure Variations on Disk Superalloy Properties at High Temperature

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Gayda, John; Telesman, Jack; Garg, Anita

    2008-01-01

    The effects of heat treatment and resulting microstructure variations on high temperature mechanical properties were assessed for a powder metallurgy disk superalloy LSHR. Blanks were consistently supersolvus solution heat treated and quenched at two cooling rates, than aged at varying temperatures and times. Tensile, creep, and dwell fatigue crack growth tests were then performed at 704 C. Gamma' precipitate microstructures were quantified. Relationships between heat treatment-microstructure, heat treatment-mechanical properties, and microstructure-mechanical properties were assessed.

  3. Gas injection to inhibit migration during an in situ heat treatment process

    SciTech Connect

    Kuhlman, Myron Ira; Vinegar; Harold J.; Baker, Ralph Sterman; Heron, Goren

    2010-11-30

    Methods of treating a subsurface formation are described herein. Methods for treating a subsurface treatment area in a formation may include introducing a fluid into the formation from a plurality of wells offset from a treatment area of an in situ heat treatment process to inhibit outward migration of formation fluid from the in situ heat treatment process.

  4. Effect of pre-storage heat treatment on enzymological changes in peach.

    PubMed

    Bakshi, Parshant; Masoodi, F A

    2010-08-01

    Peach (Prunus persica (L.) Batsch) fruit was subjected to hot water and moist hot air treatment at varying temperatures. The activities of polyphenoloxidase (PPO) and polygalacturonase (PG) were monitored during storage for 0, 3 and 6 days. PPO activity decreased in all treatments during storage. This decrease was more in hot water treated fruits than in hot air. PPO activity decreased with the increase in treatment duration. However, the PG activity increased in heat treated fruits as well as control. This increase was more in mild heat treatments as compared to severe heat treatment. Both polyphenol and pectin contents decreased during storage in both heat treatments. PMID:23572672

  5. Efficacy of delayed atmospheric modification in a heat/modified atmosphere phytosanitary treatment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The combination of heat and low levels of oxygen increases mortality to insects infesting fruit compared with either heat or low oxygen alone. This combination treatment shows promise to disinfest commodities of quarantine pests. Heated air/modified atmosphere treatments employ the modified atmosp...

  6. 46 CFR 54.25-7 - Requirement for postweld heat treatment (modifies UCS-56).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) for applicable requirements.) (b) Cargo tanks which are fabricated of carbon or low alloy steel as... ENGINEERING PRESSURE VESSELS Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-7 Requirement for postweld heat treatment (modifies UCS-56). (a) Postweld heat treatment is required for all...

  7. Hemodialysis Catheter Heat Transfer for Biofilm Prevention and Treatment.

    PubMed

    Richardson, Ian P; Sturtevant, Rachael; Heung, Michael; Solomon, Michael J; Younger, John G; VanEpps, J Scott

    2016-01-01

    Central line-associated bloodstream infections (CLABSIs) are not easily treated, and many catheters (e.g., hemodialysis catheters) are not easily replaced. Biofilms (the source of infection) on catheter surfaces are notoriously difficult to eradicate. We have recently demonstrated that modest elevations of temperature lead to increased staphylococcal susceptibility to vancomycin and significantly soften the biofilm matrix. In this study, using a combination of microbiological, computational, and experimental studies, we demonstrate the efficacy, feasibility, and safety of using heat as an adjuvant treatment for infected hemodialysis catheters. Specifically, we show that treating with heat in the presence of antibiotics led to additive killing of Staphylococcus epidermidis with similar trends seen for Staphylococcus aureus and Klebsiella pneumoniae. The magnitude of temperature elevation required is relatively modest (45-50°C) and similar to that used as an adjuvant to traditional cancer therapy. Using a custom-designed benchtop model of a hemodialysis catheter, positioned with tip in the human vena cava as well as computational fluid dynamic simulations, we demonstrate that these temperature elevations are likely achievable in situ with minimal increased in overall blood temperature. PMID:26501916

  8. Structural transitions in alumina nanoparticles by heat treatment

    NASA Astrophysics Data System (ADS)

    Kaur, Nirmal; Khanna, Atul; Chen, Banghao; González, Fernando

    2016-05-01

    γ-alumina nanoparticles were annealed sequentially at 800°C, 950°C and 1100°C and structural transitions as a function of heat treatment were studied by X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC) and 27Al Magic Angle Spinning Nuclear Magnetic Resonance (MAS-NMR) methods.. XRD studies found that γ-Al2O3 is stable upto a temperature of at least 950°C and transforms to the thermodynamically stable α-phase after annealing at 1100°C. MAS-NMR revealed that γ-alumina contains AlO4 and AlO6 structural units in the ratio 1: 2, while α-phase contains only AlO6 units. DSC confirmed that γ → α transition initiates at 1060°C.

  9. Post weld heat treatment of offshore structures -- A fabricators viewpoint

    SciTech Connect

    Lochhead, J.C.

    1996-12-01

    The operation involving post weld heat treatment (PWHT) of certain components during the fabrication of offshore structures has been a contentious issue since its inception. It has been driven by parent material property requirements, inadequacy of early welding consumables, lack of fundamental performance data and, as a result, over conservative engineering. It inherited procedures generally derived from the pressure vessel industry and until relatively recently did not receive specialized attention. The history of the route by which the current regulations or guidelines have been derived is clearly explained in other dissertations. This paper attempts to explain the ramifications of the current situation as seen by a fabricator. At first sight it may appear a relatively simple exercise which does not create fundamental problems. Unfortunately this is not the situation.

  10. Tolerance of Sitophilus zeamais (Coleoptera: Curculionidae) to heated controlled atmosphere treatments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Combination heat and controlled atmosphere (CA) postharvest phytosanitary treatments are environmentally friendly alternatives to chemical fumigants. A controlled atmosphere/ heating block system (CA-HBS) was used to rapidly assess tolerances of adult maize weevil, Sitophilus zeamais, both under reg...

  11. Effect of heat treatment on stiffness and damping of Sic/Ti-15-3

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.; Lerch, Bradley A.

    1992-01-01

    The effect of heat treatment on material properties of Sic/Ti-15-3 was measured by vibration tests. Heat treatment changes the microstructure, which stiffens the matrix and reduces its damping capacity. Test results illustrate how the changes in matrix material affect the stiffness and damping properties of the composite. Damping was found to be more sensitive than stiffness to microstructural changes in the matrix. Effects of heat treatment temperature and exposure time are presented.

  12. DNA polymerase activity in heat killing and hyperthermic radiosensitization of mammalian cells as observed after fractionated heat treatments.

    PubMed

    Jorritsma, J B; Burgman, P; Kampinga, H H; Konings, A W

    1986-03-01

    Possible relations between hyperthermic inactivation of alpha and beta DNA polymerase activity and hyperthermic cell killing or hyperthermic radiosensitization were investigated. Ehrlich Ascites Tumor (EAT) cells and HeLa S3 cells were treated with fractionated doses of hyperthermia. The heating schedules were chosen such that the initial heat treatment resulted in either thermotolerance or thermosensitization (step-down heating) for the second heat treatment. The results show that for DNA polymerase activity and heat radiosensitization (cell survival) no thermotolerance or thermosensitization is observed. Thus hyperthermic cell killing and DNA polymerase activity are not correlated. The correlation of hyperthermic radiosensitization and DNA polymerase activity was substantially less than observed in previous experiments with normotolerant and thermotolerant HeLa S3 cells. We conclude that alpha and beta DNA polymerase inactivation is not always the critical cellular process responsible for hyperthermic cell killing or hyperthermic radiosensitization. Other possible cellular systems that might determine these processes are discussed. PMID:3754338

  13. Effect of heat treatment on stiffness and damping of SiC/Ti-15-3

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.; Lerch, Bradley A.

    1992-01-01

    The effect of heat treatment on material properties of SiC/Ti-15-3 was measured by vibration tests. Heat treatment changes the microstructure, which was found to stiffen the matrix and reduce its damping capacity. Test results indicate how these changes in the matrix affect the corresponding properties of the composite. Measurements show that heat treatment affects damping properties of the composite to a greater extent than stiffness properties. The extent of change in mechanical properties is shown to depend on heat treatment temperature and exposure time.

  14. Temperature Profile Measurements During Heat Treatment of BSCCO 2212 Coils

    SciTech Connect

    Tollestrup, Alvin; /Fermilab

    2011-04-14

    The temperature profile of two different BSCCO 2212 coils has been analyzed. The profiles are obtained from thermocouples imbedded in the windings during the heat treatment that activates the 2212. The melting and freezing of the 2212 is clearly observed. A model that describes the data and can be used to guide the processing of new coils has been developed. We have obtained the thermal history of two BSCCO coils, one from NHMFL (1) that had 10 layers of 1 mm diameter wire with 0.15 mm insulation and a second coil from OST that had 24 layers with similar insulation and conductor size. Both coils had thermocouples imbedded in the windings and excellent recordings of the temperature over the whole reaction cycle were available for analysis. There are several features that we will address in this note. Measurements have shown that the I{sub c} of the conductor is a sensitive function of its thermal history. This brings up the question of the absolute accuracy of the thermometry in the range around 882 C, the MP of 2212. The reference for the treatment profile is really related to this MP and to small deviations around it. Since the heat of fusion of 2212 is rather large, it generates a clear signal during the melting and cooling transition that automatically generates the relative temperature markers. The physics is the same as the way ice in water maintains an isothermal environment until it is all melted. A related question is the thermal response time of the coil package. The temperature cycles that are being used to optimize strand and small coils can have rapid changes easily implemented whereas a large coil may have such a large thermal time constant that the optimum cycle may not be attainable. A simple analytical model that works well for small solenoids has been developed and an ANSYS (5) program that works for larger coils with more complicated geometry has been set up but will not be discussed in this note.

  15. Apparatus for microwave heat treatment of manufactured components

    DOEpatents

    Ripley, Edward B.

    2008-04-15

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases. The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.

  16. Methods for microwave heat treatment of manufactured components

    DOEpatents

    Ripley, Edward B.

    2010-08-03

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases. The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.

  17. Effects of heat treatment on the mechanical properties of SiC p/6061 Al composite

    NASA Astrophysics Data System (ADS)

    Aldun, D.; Martin, P.; Sun, J.

    1992-10-01

    Metal-matrix composites have been receiving considerable attention as light-weight materials for use in many advanced technology applications. Silicon carbide (SiC) particles and whiskers have several advantages over other discontinuous reinforcements. Studies have shown that heat treatment can change the mechanical properties of metal-matrix composites. Modified heat treatments were developed for SiC p/6061 Al composites through a series of heat treatment with varied solution temperatures and aging time. Mechanical tests were conducted to determine the mechanical properties of the composites in three conditions; as-received, annealed, and heat treated. The modified heat treatments resulted in increases in the yield strength of up to 12% over the manufacturer’s reported yield strength for the standard T6 heat treatment. The trends which occur during heat treatment of SiC p/6061 Al are simular to those which occur during heat treatment of aluminum alloys. In addition, the relationship between the mechanical properties and the heat treatment parameters was documented. Throughout this study, the values of elastic modules were rather erratic compared to the strength values. Scanning Electron Microscope fractographic analysis revealed various fracture initiation sites, such as particle clusters and iron inclusions.

  18. IMPROVING DESIGN AND OPERATION OF HEAT TREATMENT/LOW PRESSURE OXIDATION SYSTEMS

    EPA Science Inventory

    The purpose of the investigation is to document possible improvements to design, operation, and maintenance of heat treatment and low pressure oxidation systems for conditioning sludge prior to dewatering in municipal wastewater treatment plants. The information in the report is ...

  19. Influence of Heat Treatment on Mercury Cavitation Resistance of Surface Hardened 316LN Stainless Steel

    SciTech Connect

    Pawel, Steven J; Hsu, Julia

    2010-11-01

    The cavitation-erosion resistance of carburized 316LN stainless steel was significantly degraded but not destroyed by heat treatment in the temperature range 500-800 C. The heat treatments caused rejection of some carbon from the carburized layer into an amorphous film that formed on each specimen surface. Further, the heat treatments encouraged carbide precipitation and reduced hardness within the carburized layer, but the overall change did not reduce surface hardness fully to the level of untreated material. Heat treatments as short as 10 min at 650 C substantially reduced cavitation-erosion resistance in mercury, while heat treatments at 500 and 800 C were found to be somewhat less detrimental. Overall, the results suggest that modest thermal excursions perhaps the result of a weld made at some distance to the carburized material or a brief stress relief treatment will not render the hardened layer completely ineffective but should be avoided to the greatest extent possible.

  20. Effect of crystallization heat treatment on the microstructure of niobium-doped fluorapatite glass-ceramics

    PubMed Central

    Denry, I.; Holloway, J.A.; Gupta, P.K.

    2012-01-01

    Our goal was to study the effect of heat treatment temperature and heating rate on the microstructure and crystalline phases and assess the domain of existence of sub-micrometer fluorapatite crystals in niobium-doped fluorapatite glass-ceramics for biomedical applications. Glass-ceramic specimens were prepared by casting and heat treatment between 700 and 1200°C using a fast or a slow heating rate. The microstructure was characterized by atomic force microscopy and scanning electron microscopy. Crystalline phases were analyzed by x-ray diffraction. AFM of the as-cast glass revealed that amorphous phase separation occurred in this system. XRD confirmed the presence of fluorapatite in all specimens, together with forsterite and enstatite at higher temperatures. Both heating rate and heat treatment temperature strongly influenced microstructure and crystallinity. A dual microstructure with sub-micrometer fluorapatite crystals and polygonal forsterite crystals was obtained when slow heating rates and crystallization temperatures between 950 and 1100°C were used. Needle-shaped fluorapatite crystals appeared after heat treatment above 1100°C. Fast heating rates led to an increase in crystal size. Heat treatment temperatures should remain below 1100°C, together with slow heating rates, to prevent crystal dissolution, and preserve a dual microstructure of finely dispersed sub-micrometer crystals without growth of needle-shaped crystals. PMID:22454333

  1. High-temperature strength of prealloyed-powder products increased by heat/pressure treatment

    NASA Technical Reports Server (NTRS)

    Ashbrook, R. L.; Freche, J. C.; Waters, W. J.

    1971-01-01

    Heat treatment process involves heating products to a temperature above the solidus, and subsequently applying pressure at a temperature below the solidus. Technique can be modified to one step process involving simultaneous application if both high pressure and heat. Process is not limited to cobalt-base alloys.

  2. Archaeological investigations of stone tool heat treatment technology in southeastern Missouri: An experimental approach

    NASA Astrophysics Data System (ADS)

    McCutcheon, Patrick T.

    Nearly sixty years of research demonstrate that stone tool heat treatment was practiced in prehistory and has a discontinuous, global distribution. Yet, the ability to positively identify heat treatment in the archaeological record or explain exactly how it works remains out of reach. A review of heat-treatment literature reveals that researchers attempting to identify the heat-treatment mechanism have used multiple experimental protocols. Reliance on replicative knapping to assess thermally induced mechanical alterations in heat-treated chert has introduced uncontrolled variation. Absence of explicit theory to guide such research has generated differing descriptions of results when rock is heated. A research design sets out three questions: (1) What is the heat-treatment mechanism? (2) Is this mechanism reversible? (3) How can we identify heat treatment in the archaeological record? A series of experiments are performed to test some of the hypotheses from the heat-treatment literature. Once these are tested and found false, an hypothesis from fracture mechanics theory is forwarded and tested with additional experiments. The results of these experiments substantiate (do not reject) the hypothesis that water loss occurring between 250sp°C and 375sp°C makes chert a more homogeneous material which breaks more easily and predictably. Another series of experiments tests the reversibility of thermally induced water loss (the basis of the heat-treatment mechanism). These results reveal that the flatter, more specular fracture surfaces present on post-heating flake scars are not reversible. In the absence of physical post-depositional alteration of the archaeological record, lustrous flake scars can be used to identify heat treatment. An archaeological application is based in evolutionary theory and a model for the use of heat-treatment technology is constructed to identify crucial variables necessary when considering the use and change in frequency of heat treatment

  3. Computer simulation of velocity and temperature fields during gas quenching in vacuum heat treatment furnace

    SciTech Connect

    Chen, X.; Meekisho, L.; Zhang, J.; Blicblau, A.; Doyle, D.

    1995-12-31

    Gas quenching is a form of cooling process in heat treatment, especially widely applied in vacuum heat treatment. Using computational fluid dynamic package Flow-3D and self-programmed heat transfer software, the gas flow velocity distribution during some of the typical gas quenching processes and temperature fields within the components are simulated. The simulated results are not only important in determining the heat transfer behavior of the quenched components, but also helpful in quenching optimization, quenching equipment design and further simulation and final distortion control of the heat treated components.

  4. 49 CFR 179.201-5 - Postweld heat treatment and corrosion resistance.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Postweld heat treatment and corrosion resistance....201-5 Postweld heat treatment and corrosion resistance. (a) Tanks and attachments welded directly... tested to demonstrate that they possess the corrosion resistance specified in § 179.200-7(d), Footnote...

  5. 49 CFR 179.201-5 - Postweld heat treatment and corrosion resistance.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Postweld heat treatment and corrosion resistance....201-5 Postweld heat treatment and corrosion resistance. (a) Tanks and attachments welded directly... tested to demonstrate that they possess the corrosion resistance specified in § 179.200-7(d), Footnote...

  6. 49 CFR 179.201-5 - Postweld heat treatment and corrosion resistance.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Postweld heat treatment and corrosion resistance....201-5 Postweld heat treatment and corrosion resistance. (a) Tanks and attachments welded directly... tested to demonstrate that they possess the corrosion resistance specified in § 179.200-7(d), Footnote...

  7. 49 CFR 179.201-5 - Postweld heat treatment and corrosion resistance.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Postweld heat treatment and corrosion resistance....201-5 Postweld heat treatment and corrosion resistance. (a) Tanks and attachments welded directly... tested to demonstrate that they possess the corrosion resistance specified in § 179.200-7(d), Footnote...

  8. 46 CFR 56.80-15 - Heat treatment of bends and formed components.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Heat treatment of bends and formed components. 56.80-15 Section 56.80-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Bending and Forming § 56.80-15 Heat treatment of bends and formed components. (a) Carbon-steel piping that has...

  9. 49 CFR 179.201-5 - Postweld heat treatment and corrosion resistance.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Postweld heat treatment and corrosion resistance....201-5 Postweld heat treatment and corrosion resistance. (a) Tanks and attachments welded directly... tested to demonstrate that they possess the corrosion resistance specified in § 179.200-7(d), Footnote...

  10. 76 FR 3077 - Notice of Decision To Revise a Heat Treatment Schedule for Emerald Ash Borer

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-19

    ... accordance with Sec. 305.3(a)(1), we published a notice \\2\\ in the Federal Register on August 25, 2010 (75 FR... Animal and Plant Health Inspection Service Notice of Decision To Revise a Heat Treatment Schedule for... are advising the public of our decision to revise a heat treatment schedule for the emerald ash...

  11. 7 CFR 58.236 - Pasteurization and heat treatment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...-heat. The finished product shall not exceed 1.5 mg. undenatured whey protein nitrogen per gram of...) Medium-heat. The finished product shall show undenatured whey protein nitrogen between the levels of... than 6.0 undenatured whey protein nitrogen per gram of non-fat dry milk as classified in the...

  12. 7 CFR 58.236 - Pasteurization and heat treatment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...-heat. The finished product shall not exceed 1.5 mg. undenatured whey protein nitrogen per gram of...) Medium-heat. The finished product shall show undenatured whey protein nitrogen between the levels of... than 6.0 undenatured whey protein nitrogen per gram of non-fat dry milk as classified in the...

  13. 7 CFR 58.236 - Pasteurization and heat treatment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...-heat. The finished product shall not exceed 1.5 mg. undenatured whey protein nitrogen per gram of...) Medium-heat. The finished product shall show undenatured whey protein nitrogen between the levels of... than 6.0 undenatured whey protein nitrogen per gram of non-fat dry milk as classified in the...

  14. 7 CFR 58.236 - Pasteurization and heat treatment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...-heat. The finished product shall not exceed 1.5 mg. undenatured whey protein nitrogen per gram of...) Medium-heat. The finished product shall show undenatured whey protein nitrogen between the levels of... than 6.0 undenatured whey protein nitrogen per gram of non-fat dry milk as classified in the...

  15. Solar Injury and Heat Illness. Treatment and Prevention in Children.

    ERIC Educational Resources Information Center

    Gutierrez, Greg

    1995-01-01

    Children are especially vulnerable to solar injury and heat illness. Physicians can lower children's risk through education about short-term and long-term sequelae and through various prevention efforts. The paper discusses how to screen for risk factors and how to prevent and treat heat illness and solar injury. (SM)

  16. Heat Treatments of ZnSe Starting Materials for Physical Vapor Transport

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Palosz, W.; Feth, S.; Lehoczky, S. L.

    1997-01-01

    The effect of different heat treatments on stoichiometry and residual gas pressure in ZnSe physical vapor transport system was investigated. The dependence of the amount and composition of the residual gas on various heat treatment procedures is reported. Heat treatment of ZnSe starting materials by baking under the condition of dynamic vacuum to adjust its stoichiometry was performed and the effectiveness of the treatment was confirmed by the measurements of the partial pressure of Se2, P(sub Se2), in equilibrium with the heat treated samples. Optimum heat treatment procedures on the ZnSe starting material for the physical vapor transport process are discussed and verified experimentally.

  17. Structural modifications of disordered mesocarbon microbeads with lower temperatures of heat treatment

    SciTech Connect

    Haridoss, P.; Uribe, F.A.; Garzon, F.H.; Zawodzinski, T.A. Jr.

    1998-07-01

    We describe the variation of structural and physical properties of mesocarbon microbeads, a potential anode material for rechargeable lithium batteries, as a function of heat-treatment temperature in the range 400{endash}1100thinsp{degree}C. Scanning electron microscope (SEM) studies indicated changes in the morphology of the mesocarbons with heat treatment. X-ray studies show that average crystallite size varies considerably with heat treatment. The d{sub 002} spacing decreases with increasing heat treatment temperatures. The electronic conductivity of the mesocarbon microbeads also increases substantially with increasing heat-treatment temperature. Based on thermogravimetrical analysis (TGA) and other measurements, we find that organic fractions volatilizes out of these carbons in two distinct stages. The observed weight loss correlates with the structural changes observed. We suggest that these observations are consistent with two types of hydrogenated fractions present in the {open_quotes}green{close_quotes} mesocarbons. {copyright} {ital 1998 Materials Research Society.}

  18. The Tensile Properties of Advanced Nickel-Base Disk Superalloys During Quenching Heat Treatments

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Gayda, John; Kantzos, Pete T.; Biles, Tiffany; Konkel, William

    2001-01-01

    There is a need to increase the temperature capabilities of superalloy turbine disks. This would allow full utilization of higher temperature combustor and airfoil concepts under development. One approach to meet this goal is to modify the processing and chemistry of advanced alloys, while preserving the ability to use rapid cooling supersolvus heat treatments to achieve coarse grain, fine gamma prime microstructures. An important step in this effort is to understand the key high temperature tensile properties of advanced alloys as they exist during supersolvus heat treatments. This could help in projecting cracking tendencies of disks during quenches from supersolvus heat treatments. The objective of this study was to examine the tensile properties of two advanced disk superalloys during simulated quenching heat treatments. Specimens were cooled from the solution heat treatment temperatures at controlled rates, interrupted, and immediately tensile tested at various temperatures. The responses and failure modes were compared and related to the quench cracking tendencies of disk forgings.

  19. Heat Treatments of ZnSe Starting Materials for Physical Vapor Transport

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Palosz, W.; Feth, S.; Lehoczky, S. L.

    1998-01-01

    The effect of different heat treatments on stoichiometry and residual gas pressure in ZnSe physical vapor transport system was investigated. The dependence of the amount and composition of the residual gas on various heat treatment procedures is reported. Heat treatment of ZnSe starting materials by baking under the condition of dynamic vacuum to adjust its stoichiometry was performed and the effectiveness of the treatment was confirmed by the measurements of the partial pressure of Se2, P(sub Se2), in equilibrium with the heat treated samples. Optimum heat treatment procedures on the ZnSe starting material for the physical vapor transport process are discussed and verified experimentally.

  20. Effects of heat treatment on the mechanical properties of kenaf fiber

    NASA Astrophysics Data System (ADS)

    Carada, Paulo Teodoro D. L.; Fujii, Toru; Okubo, Kazuya

    2016-05-01

    Natural fibers are utilized in various ways. One specific application of it, is in the field natural fiber composite (NFC). Considerable amount of researches are conducted in this field due to rising concerns in the harmful effects of synthetic materials to the environment. Additionally, these researches are done in order to overcome the drawbacks which limit the wide use of natural fiber. A way to improve NFC is to look into the reinforcing component (natural fiber). Treatments, which are classified as mechanical or chemical in nature, can be done in order to improve the performance of the natural fiber. The aim of this study is to assess the effects of heat treatment in the mechanical properties of kenaf fiber. In addition, the response of mechanical properties after exposure to high moisture environment of heat-treated kenaf fibers was observed. Heat treatment was done for one hour with the following heating temperatures: 140, 160, 180, and 200 °C. X-ray diffraction analysis was done to calculate the crystallinity index of kenaf fibers after heat treatment. The results showed that increase in tensile strength can be attained when kenaf fibers are heat treated at 140 °C. However, the tensile modulus showed inconsistency with respect to heat treatment temperature. The computed crystallinity index of the fiber matched the tensile strength observed in non-treated and heat-treated kenaf fibers. The results obtained in this study can be used for applications where heat treatment on kenaf fibers is needed.

  1. 7 CFR 305.8 - Heat treatment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... the treatment container. (2) Sensor equipment must be adequate to monitor the treatment, its type and... official authorized by APHIS prior to beginning the treatment. Sensor equipment must be locked before...

  2. Bioactive titanate layers formed on titanium and its alloys by simple chemical and heat treatments.

    PubMed

    Kokubo, Tadashi; Yamaguchi, Seiji

    2015-01-01

    To reveal general principles for obtaining bone-bonding bioactive metallic titanium, Ti metal was heat-treated after exposure to a solution with different pH. The material formed an apatite layer at its surface in simulated body fluid when heat-treated after exposure to a strong acid or alkali solution, because it formed a positively charged titanium oxide and negatively charged sodium titanate film on its surface, respectively. Such treated these Ti metals tightly bonded to living bone. Porous Ti metal heat-treated after exposure to an acidic solution exhibited not only osteoconductive, but also osteoinductive behavior. Porous Ti metal exposed to an alkaline solution also exhibits osteoconductivity as well as osteoinductivity, if it was subsequently subjected to acid and heat treatments. These acid and heat treatments were not effective for most Ti-based alloys. However, even those alloys exhibited apatite formation when they were subjected to acid and heat treatment after a NaOH treatment, since the alloying elements were removed from the surface by the latter. The NaOH and heat treatments were also not effective for Ti-Zr-Nb-Ta alloys. These alloys displayed apatite formation when subjected to CaCl2 treatment after NaOH treatment, forming Ca-deficient calcium titanate at their surfaces after subsequent heat and hot water treatments. The bioactive Ti metal subjected to NaOH and heat treatments has been clinically used as an artificial hip joint material in Japan since 2007. A porous Ti metal subjected to NaOH, HCl and heat treatments has successfully undergone clinical trials as a spinal fusion device. PMID:25893014

  3. Bioactive Titanate Layers Formed on Titanium and Its Alloys by Simple Chemical and Heat Treatments

    PubMed Central

    Kokubo, Tadashi; Yamaguchi, Seiji

    2015-01-01

    To reveal general principles for obtaining bone-bonding bioactive metallic titanium, Ti metal was heat-treated after exposure to a solution with different pH. The material formed an apatite layer at its surface in simulated body fluid when heat-treated after exposure to a strong acid or alkali solution, because it formed a positively charged titanium oxide and negatively charged sodium titanate film on its surface, respectively. Such treated these Ti metals tightly bonded to living bone. Porous Ti metal heat-treated after exposure to an acidic solution exhibited not only osteoconductive, but also osteoinductive behavior. Porous Ti metal exposed to an alkaline solution also exhibits osteoconductivity as well as osteoinductivity, if it was subsequently subjected to acid and heat treatments. These acid and heat treatments were not effective for most Ti-based alloys. However, even those alloys exhibited apatite formation when they were subjected to acid and heat treatment after a NaOH treatment, since the alloying elements were removed from the surface by the latter. The NaOH and heat treatments were also not effective for Ti-Zr-Nb-Ta alloys. These alloys displayed apatite formation when subjected to CaCl2 treatment after NaOH treatment, forming Ca-deficient calcium titanate at their surfaces after subsequent heat and hot water treatments. The bioactive Ti metal subjected to NaOH and heat treatments has been clinically used as an artificial hip joint material in Japan since 2007. A porous Ti metal subjected to NaOH, HCl and heat treatments has successfully undergone clinical trials as a spinal fusion device. PMID:25893014

  4. Carbonated aqueous media for quench heat treatment of steels

    NASA Astrophysics Data System (ADS)

    Nayak, U. Vignesh; Rao, K. M. Pranesh; Pai, M. Ashwin; Prabhu, K. Narayan

    2016-07-01

    Distilled water and polyalkylene glycol (PAG)-based aqueous quenchants of 5 and 10 vol.% with and without carbonation were prepared and used as heat transfer media during immersion quenching. Cooling curves were recorded during quenching of an inconel 600 cylindrical probe instrumented with multiple thermocouples. It was observed that the vapor stage duration was prolonged and the wetting front ascended uniformly for quenching with carbonated media. The cooling data were analyzed by determining the critical cooling parameters and by estimating the spatially dependent probe/quenchant interfacial heat flux transients. The study showed significantly reduced values of heat transfer rate for carbonated quenchants compared to quenchants without carbonation. Further, the reduction was more pronounced in the case of PAG-based carbonated quenchants than carbonated distilled water. The results also showed the dependence of heat transfer characteristics of the carbonated media on polymer concentration. The effect of quench uniformity on the microstructure of the material was assessed.

  5. 7 CFR 58.236 - Pasteurization and heat treatment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...-heat. The finished product shall not exceed 1.5 mg. undenatured whey protein nitrogen per gram of... than 6.0 undenatured whey protein nitrogen per gram of non-fat dry milk as classified in the...

  6. High-Temperature Heat Treatment Study on a Large-Grain Nb Cavity

    SciTech Connect

    G. Ciovati, P. Dhakal, R. Myneni, P. Maheshwari, F.A. Stevie

    2011-07-01

    Improvement of the cavity performance by a high-temperature heat-treatment without subsequent chemical etching have been reported for large-grain Nb cavities treated by buffered chemical polishing, as well as for a fine-grain cavity treated by vertical electropolishing. Changes in the quality factor, Q{sub 0}, and maximum peak surface magnetic field achieved in a large-grain Nb single-cell cavity have been determined as a function of the heat treatment temperature, between 600 °C and 1200 °C. The highest Q{sub 0} improvement of about 30% was obtained after heat-treatment at 800 °C-1000 °C. Measurements by secondary ion mass spectrometry on large-grain samples heat-treated with the cavity showed large reduction of hydrogen concentration after heat treatment.

  7. Effect of heat treatment and heat-to-heat variations in the fatigue-crack growth response of Alloy 718. Part 2. Microscopic observation

    SciTech Connect

    Mills, W.J.; James, L.A.

    1980-04-01

    The microstructural aspects that influenced the room temperature and elevated temperature fatigue-crack propagation response of annealed, conventional, and modified heat-treated Alloy 718 were studied. Electron fractographic examination of Alloy 718 fatigue fracture surfaces revealed that operative crack growth mechanisms were dependent on heat treatment, heat-to-heat variations, temperature, and prevailing crack tip stress intensity level. In the low temperature regime (below 538{sup 0}C), all fracture surfaces exhibited a faceted appearance at low {Delta} levels, which is indicative of crystallographic fracture along intense inhomogeneous slip bands. The facets in the modified Alloy 718, however, were found to be rather poorly defined since the modified heat treatment tends to promote more homogeneous slip processes. Under progressively higher stress intensity levels, the room temperature and elevated temperature fatigue fracture surfaces exhibited striations, followed by a combination of striations and dimple rupture at the highest {Delta} values. Striation spacing measurements in all three heat-treated conditions were generally found to be in agreement with macroscopic growth rates at 24 and 538{sup 0}C. Under high temperature conditions (above 538{sup 0}C), evidence of intergranular fracture was also detected on the fatigue fracture surfaces, particularly at low stress intensity levels. This intergranular failure mechanism was found to be more extensive in the modified heat-treated Alloy 718. 17 figures.

  8. HEAT INPUT AND POST WELD HEAT TREATMENT EFFECTS ON REDUCED-ACTIVATION FERRITIC/MARTENSITIC STEEL FRICTION STIR WELDS

    SciTech Connect

    Tang, Wei; Chen, Gaoqiang; Chen, Jian; Yu, Xinghua; Frederick, David Alan; Feng, Zhili

    2015-01-01

    Reduced-activation ferritic/martensitic (RAFM) steels are an important class of structural materials for fusion reactor internals developed in recent years because of their improved irradiation resistance. However, they can suffer from welding induced property degradations. In this paper, a solid phase joining technology friction stir welding (FSW) was adopted to join a RAFM steel Eurofer 97 and different FSW parameters/heat input were chosen to produce welds. FSW response parameters, joint microstructures and microhardness were investigated to reveal relationships among welding heat input, weld structure characterization and mechanical properties. In general, FSW heat input results in high hardness inside the stir zone mostly due to a martensitic transformation. It is possible to produce friction stir welds similar to but not with exactly the same base metal hardness when using low power input because of other hardening mechanisms. Further, post weld heat treatment (PWHT) is a very effective way to reduce FSW stir zone hardness values.

  9. Specific heat treatment of selective laser melted Ti-6Al-4V for biomedical applications

    NASA Astrophysics Data System (ADS)

    Huang, Qianli; Liu, Xujie; Yang, Xing; Zhang, Ranran; Shen, Zhijian; Feng, Qingling

    2015-12-01

    The ductility of as-fabricated Ti-6Al-4V falls far short of the requirements for biomedical titanium alloy implants and the heat treatment remains the only applicable option for improvement of their mechanical properties. In the present study, the decomposition of as-fabricated martensite was investigated to provide a general understanding on the kinetics of its phase transformation. The decomposition of asfabricated martensite was found to be slower than that of water-quenched martensite. It indicates that specific heat treatment strategy is needed to be explored for as-fabricated Ti-6Al-4V. Three strategies of heat treatment were proposed based on different phase transformation mechanisms and classified as subtransus treatment, supersolvus treatment and mixed treatment. These specific heat treatments were conducted on selective laser melted samples to investigate the evolutions of microstructure and mechanical properties. The subtransus treatment leaded to a basket-weave structure without changing the morphology of columnar prior β grains. The supersolvus treatment resulted in a lamellar structure and equiaxed β grains. The mixed treatment yielded a microstructure that combines both features of the subtransus treatment and supersolvus treatment. The subtransus treatment is found to be the best choice among these three strategies for as-fabricated Ti-6Al-4V to be used as biomedical implants.

  10. Effect of ultrahigh-temperature continuous ohmic heating treatment on fresh orange juice.

    PubMed

    Leizerson, Shirly; Shimoni, Eyal

    2005-05-01

    The scope of this study is the effect of ohmic heating thermal treatment on liquid fruit juice made of oranges. Effects of ohmic heating on the quality of orange juice were examined and compared to those of heat pasteurization at 90 degrees C for 50 s. Orange juice was treated at temperatures of 90, 120, and 150 degrees C for 1.13, 0.85, and 0.68 s in an ohmic heating system. Microbial counts showed complete inactivation of bacteria, yeast, and mold during ohmic and conventional treatments. The ohmic heating treatment reduced pectin esterase activity by 98%. The reduction in vitamin C was 15%. Ohmic-heated orange juice maintained higher amounts of the five representative flavor compounds than did heat-pasteurized juice. Sensory evaluation tests showed no difference between fresh and ohmic-heated orange juice. Thus, high-temperature ohmic-heating treatment can be effectively used to pasteurize fresh orange juice with minimal sensory deterioration. PMID:15853396

  11. Thermal treatment of low permeability soils using electrical resistance heating

    SciTech Connect

    Udell, K.S.

    1996-08-01

    The acceleration of recovery rates of second phase liquid contaminants from the subsurface during gas or water pumping operations is realized by increasing the soil and ground water temperature. Electrical heating with AC current is one method of increasing the soil and groundwater temperature and has particular applicability to low permeability soils. Several mechanisms have been identified that account for the enhanced removal of the contaminants during electrical heating. These are vaporization of liquid contaminants with low boiling points, temperature-enhanced evaporation rates of semi-volatile components, and removal of residual contaminants by the boiling of residual water. Field scale studies of electrical heating and fluid extraction show the effectiveness of this technique and its applicability to contaminants found both above and below the water table and within low permeability soils. 10 refs., 8 figs.

  12. Heat-treatment effects in neutron transmutation doped epitaxial silicon

    SciTech Connect

    Cleland, J.W.

    1983-01-01

    Chemical vapor deposition (CVD) of silicon from a gaseous silicon compound onto a heated silicon substrate may be used to deposit an epitaxial SI layer and to obtain an electrical p-n junction. The dopant concentration in the epi-Si layer is a function of the gaseous dopant ion content, flow rate, temperature gradient, and any migration of impurities (autodoping) from the heated substrate. This technical note describes some results of carrier concentration, mobility, and resistivity measurements on small (0.5 cm/sup 2/) epi-Si samples using the van der Pauw (vdP) technique.

  13. Heat Treatment of Friction Stir Welded 7X50 Aluminum

    NASA Technical Reports Server (NTRS)

    Petter, George E. (Inventor); Figert, John D. (Inventor); Rybicki, Daniel J. (Inventor); Burnes, Timothy H. (Inventor)

    2004-01-01

    A method for treating alloy before and after friction stir welding, the method comprising the following steps. First solution heat treating a multiplicity of aluminum-zinc alloy engineered components for a first time period at a first temperature. First air cooling the components in ambient air at room temperatwe until the components are cooled to room temperature. Friction stir welding the components to form an assembly. Second solution heat treating the assembly for a second time period at a second temperature. Additional steps and embodiments are considered.

  14. Review of thermo-physical properties, wetting and heat transfer characteristics of nanofluids and their applicability in industrial quench heat treatment

    PubMed Central

    2011-01-01

    The success of quenching process during industrial heat treatment mainly depends on the heat transfer characteristics of the quenching medium. In the case of quenching, the scope for redesigning the system or operational parameters for enhancing the heat transfer is very much limited and the emphasis should be on designing quench media with enhanced heat transfer characteristics. Recent studies on nanofluids have shown that these fluids offer improved wetting and heat transfer characteristics. Further water-based nanofluids are environment friendly as compared to mineral oil quench media. These potential advantages have led to the development of nanofluid-based quench media for heat treatment practices. In this article, thermo-physical properties, wetting and boiling heat transfer characteristics of nanofluids are reviewed and discussed. The unique thermal and heat transfer characteristics of nanofluids would be extremely useful for exploiting them as quench media for industrial heat treatment. PMID:21711877

  15. Application of high performance industrial furnace to heat treatment technology and its possibilities

    SciTech Connect

    Ishimoto, Takashi; Tsuzuki, Hitoshi

    1999-07-01

    Gas firing heat treatment furnaces in which the protective gas must be sent for the purpose of non-decarburization and non-oxidation or carburizing are heated up indirectly by means of radiant tube burners, and regenerative burners are applied to the radiant tube combustion for High Performance Heat Treatment Furnace. As the result of regenerative burner application, the surface temperature distribution at the radiant tube is unified low in comparison with conventional radiant tube burners. This means that the radiant tube burner can be applied to high temperature heat treatment furnaces (e.g., brazing furnace, sintering furnace) in place of the electric heating. As regards the direct firing heat treatment furnace, the agitating effect of the regenerative burner combustion by the high-cycle switched operation and the high nozzle speed of the combustion air, can make the furnace compact and simple even at the lower furnace temperature. And the development of the gas-rich firing for the regenerative burner can extend the application range of High Performance Heat Treatment Furnace to the field of the non-oxidation treatment. (e.g., copper bright annealing etc.)

  16. Influence of Heat Treatment for Coating of Nickel Plating on Hollow Glass Beads

    NASA Astrophysics Data System (ADS)

    Wang, Sijie; Zhang, Wei

    Ni-plated hollow glass beads (GBs) were firstly prepared by pd-activation and electroless plating, then Ni-plated GBs were heat treated at 450°C for 1 h, Ni-plated GBs/PVC composite was fabricated by using polyvinyl chloride (PVC) adhesive. The microstructure and component of Ni-plated GBs surface were studied by scanning electron microscopy and energy dispersive spectrometer; heat insulation and reflectivity were detected by heat insulation instrument (home-made) and vector network analyzer. The results show coatings prepared by electroless plating were uniform, the nickel element in the coating was higher than 95.71% (mass fraction); with heat treatment, the surface roughness of coating was greater, and the reflectivity descended apparently, the D-value was 1 dB at the frequency of 15 GHz, but the influence of heat treatment for heat insulation of Ni-plated GBs was not great.

  17. Heat treatment effect on microstructure, hardness and wear resistance of Cr26 white cast iron

    NASA Astrophysics Data System (ADS)

    Zhou, Shaoping; Shen, Yehui; Zhang, Hao; Chen, Dequan

    2015-01-01

    High chromium cast iron(HCCI) is taken as material of coal water slurry pump impeller, but it is susceptible to produce serious abrasive wear and erosion wear because of souring of hard coal particles. The research on optimization of heat treatments to improve abrasive wear properties of HCCI is insufficient, so effect of heat treatments on the microstructure, hardness, toughness, and wear resistance of Cr26 HCCI is investigated to determine the optimal heat treatment process for HCCI. A series of heat treatments are employed. The microstructures of HCCI specimens are examined by using optical microscopy and scanning electron microscopy. The hardness and impact fracture toughness of as-cast and heat treated specimens are measured. The wear tests are assessed by a Type M200 ring-on block wear tester. The results show the following: With increase of the quenching temperature from 950 °C to 1050 °C, the hardness of Cr26 HCCI increased to a certain value, kept for a time and then decreased. The optimal heat treatment process is 2 h quenching treatment at 1000 °C, followed by a subsequent 2 h tempering at 400 °C. The hardness of HCCI is related to the precipitation and redissolution of secondary carbides in the process of heat treatment. The subsequent tempering treatment would result in a slight decrease of hardness but increase of toughness. The wear resistance is much related to the "supporting" effect of the matrix and the "protective" effect of the hard carbide embedded in the matrix, and the wear resistance is further dependent on the hardness and the toughness of the matrix. This research can provide an important insight on developing an optimized heat treatment method to improve the wear resistance of HCCI.

  18. [The influence of oil heat treatment on wood decay resistance by Fourier infrared spectrum analysis].

    PubMed

    Wang, Ya-Mei; Ma, Shu-Ling; Feng, Li-Qun

    2014-03-01

    Wood preservative treatment can improve defects of plantation wood such as easy to corrupt and moth eaten. Among them heat-treatment is not only environmental and no pollution, also can improve the corrosion resistance and dimension stability of wood. In this test Poplar and Mongolian Seoteh Pine was treated by soybean oil as heat-conducting medium, and the heat treatment wood was studied for indoor decay resistance; wood chemical components before and after treatment, the effect of heat treatment on wood decay resistance performance and main mechanism of action were analysed by Fourier infrared spectrometric. Results showed that the mass loss rate of poplar fell from 19.37% to 5% and Mongolian Seoteh Pine's fell from 8.23% to 3.15%, so oil heat treatment can effectively improve the decay resistance. Infrared spectrum analysis shows that the heat treatment made wood's hydrophilic groups such as hydroxyl groups in largely reduced, absorbing capacity decreased and the moisture of wood rotting fungi necessary was reduced; during the heat treatment wood chemical components such as cellulose, hemicellu lose were degraded, and the nutrient source of wood rotting fungi growth necessary was reduced. Wood decay fungi can grow in the wood to discredit wood is because of that wood can provide better living conditions for wood decay fungi, such as nutrients, water, oxygen, and so on. The cellulose and hemicellulose in wood is the main nutrition source of wood decay fungi. So the oil heat-treatment can reduce the cellulose, hemicellulose nutrition source of wood decay fungi so as to improve the decay resistance of wood. PMID:25208386

  19. 46 CFR 56.80-15 - Heat treatment of bends and formed components.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... reference; see 46 CFR 56.01-2) may be used without a postheat treatment. (e) For other materials the heat... installation. (g) Austenitic stainless-steel pipe that has been heated for bending or other forming may be used... components. (a) Carbon-steel piping that has been heated to at least 1,650 °F (898 °C) for bending or...

  20. 46 CFR 56.80-15 - Heat treatment of bends and formed components.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... reference; see 46 CFR 56.01-2) may be used without a postheat treatment. (e) For other materials the heat... installation. (g) Austenitic stainless-steel pipe that has been heated for bending or other forming may be used... components. (a) Carbon-steel piping that has been heated to at least 1,650 °F (898 °C) for bending or...

  1. 46 CFR 56.80-15 - Heat treatment of bends and formed components.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... reference; see 46 CFR 56.01-2) may be used without a postheat treatment. (e) For other materials the heat... installation. (g) Austenitic stainless-steel pipe that has been heated for bending or other forming may be used... components. (a) Carbon-steel piping that has been heated to at least 1,650 °F (898 °C) for bending or...

  2. Radio Frequency Heat Treatments to Disinfest Dried Pulses of Cowpea Weevil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To explore the potential of radio frequency (RF) heat treatments as an alternative to chemical fumigants for disinfestation of dried pulses, the relative heat tolerance and dielectric properties of different stages of the cowpea weevil (Callosobruchus maculatus) was determined. Among the immature st...

  3. 9 CFR 590.548 - Drying, blending, packaging, and heat treatment rooms and facilities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Drying, blending, packaging, and heat..., blending, packaging, and heat treatment rooms and facilities. (a) General. Processing rooms shall be... seams and of materials that can be kept clean and which will have no deleterious effect on the...

  4. 9 CFR 590.548 - Drying, blending, packaging, and heat treatment rooms and facilities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Drying, blending, packaging, and heat..., blending, packaging, and heat treatment rooms and facilities. (a) General. Processing rooms shall be... seams and of materials that can be kept clean and which will have no deleterious effect on the...

  5. 9 CFR 590.548 - Drying, blending, packaging, and heat treatment rooms and facilities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Drying, blending, packaging, and heat..., blending, packaging, and heat treatment rooms and facilities. (a) General. Processing rooms shall be... seams and of materials that can be kept clean and which will have no deleterious effect on the...

  6. Dry heat and hot water treatments for disinfesting cottonseed of Fusarium oxysporum f. sp. vasinfectum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The potential of low- and high-temperature dry heat, and hot water treatments, for disinfesting cottonseed of Fusarium oxysporum f. sp. vasinfectum was investigated. Naturally infected seeds from Louisiana were air-heated in incubators set at temperatures of 30, 35, and 40 degrees C for up to 24 we...

  7. Development of the heat treatment system for the 40 T hybrid magnet superconducting outsert.

    PubMed

    Chen, W G; Chen, Z M; Chen, Z Y; Huang, P C; He, P; Zhu, J W

    2011-10-01

    The heat treatment of Nb(3)Sn coil with the glass fabric insulation is one of the key and critical processes for the outsert solenoids of the 40 T hybrid magnet, which could be wound with cable-in-conduit conductors using the insulation-wind-and-react technique. The manufacturing of the large vertical type vacuum/Ar atmosphere-protection heat treatment system has been completed and recently installed in the High Magnetic Filed Laboratory, Chinese Academy of Sciences. The heat treatment system composed mainly the furnace, the purging gas supply system, the control system, the gas impurities monitoring system, and so on. At present, the regulation and testing of the heat treatment system has been successfully finished, and all of technical parameters meet or exceed specifications. PMID:22047328

  8. Reproducibility of High-Q SRF Cavities by High Temperature Heat Treatment

    SciTech Connect

    Dhakal, Pashupati; Ciovati, Gianluigi; Kneisel, Peter; Myneni, Ganapati Rao

    2014-07-01

    Recent work on high-temperature (> 600 °C) heat treatment of ingot Nb cavities in a customized vacuum furnace for several hours showed the possibility of achieving Q0-values of up to ~5×1010 at 2.0 K, 1.5 GHz and accelerating gradients of ~20 MV/m. This contribution presents results on further studies of the heat treatment process to produce cavities with high Q0 values for continuous-wave accelerator application. Single-cell cavities of different Nb purity have been processed through few cycles of heat-treatments and chemical etching. Measurements of Q0 as a function of temperature at low RF field and of Q0 as a function of the RF field at or below 2.0 K have been made after each treatment. Measurements by TOF-SIMS of the impurities depth profiles were made on samples heat treated with the cavities.

  9. Effects of Winding Strain and Heat Treatment on Properties of 316 LN and Haynes 242

    NASA Astrophysics Data System (ADS)

    Han, K.; Walsh, R. P.; Toplosky, V. J.; Goddard, R. E.; Lu, J.; Dixon, I. R.

    2008-03-01

    The outer coils of the hybrid magnets at the NHMFL are superconducting magnet and use Cable-in-Conduit-Conductor (CICC) technology. This technology requires us to wind the coils before the Nb3Sn heat treatment is undertaken. The winding introduces both tensile and compressive stresses to the conduit alloys. The subsequent heat treatment has to be done when the conduit alloys are under the pre-stress. We have simulated the conduit heat treatments with the alloys under various stress levels, and undertaken tensile tests at 4 K and microstructure examinations. The results indicate that the pre-stress before the heat treatment influences the microstructure and therefore tensile test properties of the conduit alloys at 4 K. The tensile test property changes are related to the grain boundary precipitation variation introduced by pre-stress.

  10. Measurements of Nb3Sn conductor dimension changes during heat treatment

    SciTech Connect

    Bocian, D.; Ambrosio, G.; Whitson, G.M.; /Fermilab

    2011-06-01

    During the heat treatment of Nb{sub 3}Sn coils the conductor material properties change significantly. These effects together with the changes of the conductor dimensions during heat treatment may introduce large strain in the coils for accelerator magnets. The US LHC Accelerator Research Program (LARP) has initiated a study aiming at understanding the thermal expansion and contraction of Nb3Sn strands, cables and coils during heat treatment. Several measurements on strands and cables were performed in order to have sufficient inputs for finite element simulation of the dimensional changes during heat treatment. In this paper the results of measurements of OST-RRP Nb{sub 3}Sn conductor used in the LARP magnet program are discussed.

  11. Heat Treatment Devices and Method of Operation Thereof to Produce Dual Microstructure Superalloys Disks

    NASA Technical Reports Server (NTRS)

    Gayda, John (Inventor); Gabb, Timothy P. (Inventor); Kantzos, Peter T. (Inventor)

    2003-01-01

    A heat treatment assembly and heat treatment methods are disclosed for producing different microstructures in the bore and rim portions of nickel-based superalloy disks, particu- larly suited for gas turbine applications. The heat treatment assembly is capable of being removed from the furnace and disassembled to allow rapid fan or oil quenching of the disk. For solutioning heat treatments of the disk, temperatures higher than that of this solvus temperature of the disk are used to produce coarse grains in the rim of each disk so as to give maximum creep and dwell crack resistance at the rim service temperature. At the same time, solution temperature lower than the solvus temperature of the disk are provided to produce fine grain in the bore of the disk so as to give maximum strength and low cycle fatigue resistance.

  12. Simulation of Distortion and Residual Stress Development During Heat Treatment of Steel Castings

    SciTech Connect

    Beckermann, Christoph; Carlson, Kent

    2011-07-22

    Heat treatment and associated processing, such as quenching, are critical during high strength steel casting production. These processes must be managed closely to prevent thermal and residual stresses that may result in distortion, cracking (particularly after machining), re-work, and weld repair. The risk of casting distortion limits aggressive quenching that can be beneficial to the process and yield an improved outcome. As a result of these distortions, adjustments must be made to the casting or pattern design, or tie bars must be added. Straightening castings after heat treatments can be both time-consuming and expensive. Residual stresses may reduce a casting's overall service performance, possibly resulting in catastrophic failure. Stress relieving may help, but expends additional energy in the process. Casting software is very limited in predicting distortions during heat treatment, so corrective measures most often involve a tedious trial-and-error procedure. An extensive review of existing heat treatment residual stress and distortion modeling revealed that it is vital to predict the phase transformations and microstructure of the steel along with the thermal stress development during heat treatment. After reviewing the state-of-the-art in heat treatment residual stress and distortion modeling, an existing commercial code was selected because of its advanced capabilities in predicting phase transformations, the evolving microstructure and related properties along with thermal stress development during heat treatment. However, this software was developed for small parts created from forgings or machined stock, and not for steel castings. Therefore, its predictive capabilities for heat treatment of steel castings were investigated. Available experimental steel casting heat treatment data was determined to be of insufficient detail and breadth, and so new heat treatment experiments were designed and performed, casting and heat treating modified versions of

  13. Use of heat treatment to modify the structure of a hard-faced layer

    NASA Astrophysics Data System (ADS)

    Borisov, M. D.; Kraev, G. V.; Poletika, I. M.

    1992-02-01

    The methods of metal physics and x-ray diffraction analysis are used to study the effect of heat treatments (quenching, tempering, high-temperature tempering) on the structure and properties (hardness, wear resistance) of a layer composed of an electroslag hard-facing alloyed with boron carbide and chromium. It is shown that the most effective heat treatment for increasing the hardness and wear resistance of the layer is one which includes high-temperature tempering, quenching, and low-temperature tempering.

  14. High pressure homogenization versus heat treatment: effect on survival, growth, and metabolism of dairy Leuconostoc strains.

    PubMed

    Guglielmotti, D M; Patrignani, F; Lanciotti, R; Guerzoni, M E; Reinheimer, J A; Quiberoni, A

    2012-09-01

    The effect of high pressure homogenization (HPH) with respect to a traditional heat treatment on the inactivation, growth at 8°C after treatments, and volatile profile of adventitious Leuconostoc strains isolated from Cremoso Argentino spoiled cheeses and ingredients used for their manufacture was evaluated. Most Leuconostoc strains revealed elevated resistance to HPH (eight passes, 100 MPa), especially when resuspended in skim milk. Heat treatment was more efficient than HPH in inactivating Leuconostoc cells at the three initial levels tested. The levels of alcohols and sulfur compounds increased during incubation at 8°C in HPH-treated samples, while the highest amounts of aldehydes and ketones characterized were in heated samples. Leuconostoc cells resuspended in skim milk and subjected to one single-pass HPH treatment using an industrial-scale machine showed remarkable reductions in viable cell counts only when 300 and 400 MPa were applied. However, the cell counts of treated samples rose rapidly after only 5 days of storage at 8°C. The Leuconostoc strains tested in this work were highly resistant to the inactivation treatments applied. Neither HPH nor heat treatment assured their total destruction, even though they were more sensitive to the thermal treatment. To enhance the inhibitory effect on Leuconostoc cells, HPH should be combined with a mild heat treatment, which in addition to efficient microbial inactivation, could allow maximal retention of the physicochemical properties of the product. PMID:22947471

  15. Heat treatment adaptations in Clostridium perfringens vegetative cells.

    PubMed

    Novak, J S; Tunick, M H; Juneja, V K

    2001-10-01

    Vegetative cells of Clostridium perfringens enterotoxigenic strains NCTC 8679, NCTC 8238. and H6 were grown at 37 degrees C followed by a 60-min exposure to 28 degrees C or 46 degrees C. D10-values, as a measure of thermal resistance at 60 degrees C, were significantly lower for 28 degrees C exposures as compared with cultures given 37 and 46 degrees C exposures. Following refrigeration at 4 degrees C for 24 h, D10-values for the 37 and 46 degrees C samples could not be differentiated from 28 degrees C samples. Western immunoblot analyses of lysates from heat-adapted cells also detected the increased expression of proteins reacting with antiserum directed against the molecular chaperonins from Escherichia coli; GroEL, DnaJ, and the small acid soluble protein from Bacillus subtilis, SspC. Differential scanning calorimetry (DSC) identified thermal transitions corresponding to ribosomal protein denaturations at 72.1 +/- 0.5 degrees C. Any cellular heat adaptations in the DSC profiles were lost following refrigeration for several days to simulate minimally processed food storage conditions. Further analyses of high-speed pellets from crude cell extract fractions using two-dimensional gel electrophoresis detected the differential gene expression of at least four major proteins in heat-adapted vegetative cells of C. perfringens. N-terminal amino acid analyses identified two of the proteins as glyceraldehyde 3-phosphate dehydrogenase and rubrerythrin. Both appear to have roles in this anaerobe under stressful conditions. PMID:11601701

  16. Nanoparticles for cancer treatment: role of heat transfer.

    PubMed

    Avedisian, C Thomas; Cavicchi, Richard E; McEuen, Paul L; Zhou, Xinjian

    2009-04-01

    An overview is presented of an approach for treating cancer that uses nanoparticles to deliver heat to diseased areas after absorbing energy from a laser of the appropriate wavelength. The implications are discussed of the relationship of parameters necessary to raise the temperature to therapeutically beneficial levels. Tight focusing is required for a continuous-wave laser to sufficiently heat individual nanoparticles because of heat loss to the surrounding fluid during the period of exposure. The natural thermal confinement of pulse lasers minimizes this effect because of the finite thermal diffusion time, which restricts the absorbed energy to a region around the particle, that offers the potential for achieving high temperatures that can promote phase change on the surface of a nanoparticle or even melting of the particle. A discussion of a way to potentially measure temperature on the scale of an individual nanoparticle is included based on using a single-walled nanotube (SWNT) of carbon as a thermistor. The challenges of this undertaking are that SWNTs do not always follow Ohm's law, they may exhibit metallic or semiconductor behavior with an often unpredictable result in manufacturing, and no two SWNTs behave identically, which necessitates calibration for each SWNT. Some results are presented that show the electrical characteristics of SWNTs and their potential for exploitation in this application. PMID:19426306

  17. Smoothing of surface of silica glass by heat treatment in wet atmosphere

    SciTech Connect

    Osawa, Kenta; Katayama, Keiichi; Inoue, Hiroyuki; Masuno, Atsunobu; Zhang Yingjiu; Utsuno, Futoshi; Sugahara, Yoshiyuki; Koya, Kazuo; Fujinoki, Akira; Tawarayama, Hiromasa; Kawazoe, Hiroshi

    2011-05-15

    The effect of heat treatment on the surface morphology of fused silica glass substrates was investigated. It was found that the water vapor pressure during heat treatment had a strong influence on the flattening of the silica glass surface. The surface of the frosted glass changed into a transparent and lustrous surface after heat treatment with water vapor at 1200 deg. C for 48 h, whereas surface irregularities remained for heat treatment under a dry atmosphere. It was suggested that the difference in surface flattening was caused by changes in surface viscosity that depended on the concentration of OH groups on the surface. In order to quantitatively understand the effect of the heat treatment atmosphere, power spectral density (PSD) analysis and a novel peak and valley method were applied to the experimental results. From the PSD analysis, it was found that the Mullins' model could not explain the smoothing behavior by heat treatment. The peak and valley method, which could separate the surface morphology into the surface irregularities and the background undulation, revealed that the Mullins' model limitation was mainly for the surface and the background undulation could be understood within the model. These results indicate that there are different mechanisms between for the surface smoothing and for the relaxation of the background undulation.

  18. The effect of heat treatment on the hardness and impact properties of medium carbon steel

    NASA Astrophysics Data System (ADS)

    Mazni Ismail, Noor; Khatif, Nurul Aida Amir; Aliff Kamil Awang Kecik, Mohamad; Hanafiah Shaharudin, Mohd Ali

    2016-02-01

    This paper covers the effect of heat treatment on the mechanical properties of medium carbon steel. The main objective of this project is to investigate the hardness and impact properties of medium carbon steel treated at different heat treatment processes. Three types of heat treatment were performed in this project which are annealing, quenching and tempering. During annealing process, the specimens were heated at 900°C and soaked for 1 hour in the furnace. The specimens were then quenched in a medium of water and open air, respectively. The treatment was followed by tempering processes which were done at 300°C, 450°C, and 600°C with a soaking time of 2 hours for each temperature. After the heat treatment process completed, Rockwell hardness test and Charpy impact test were performed. The results collected from the Rockwell hardness test and Charpy impact test on the samples after quenching and tempering were compared and analysed. The fractured surfaces of the samples were also been examined by using Scanning Electron Microscope. It was observed that different heat treatment processes gave different hardness value and impact property to the steel. The specimen with the highest hardness was found in samples quenched in water. Besides, the microstructure obtained after tempering provided a good combination of mechanical properties due to the process reduce brittleness by increasing ductility and toughness.

  19. Heat treatment mechanism and biodegradable characteristics of ZAX1330 Mg alloy.

    PubMed

    Lin, Da-Jun; Hung, Fei-Yi; Lui, Truan-Sheng; Yeh, Ming-Long

    2015-06-01

    Heat treatments are key processes in the development of biodegradable magnesium implants. The aim of this study is to investigate the factors of microstructures and metallurgical segregation on the functionality of biodegradable magnesium alloy. The solid solution heat treatment and strain induced melting activation heat treatment were employed to alter the microstructures of ZAX1330 alloy in this study. Heat treatments caused a significant change on grain size and distribution of secondary phases. The fine-grained microstructure enhanced the mechanical strength, corrosion resistance and achieved the lowest degradation rate in simulated body fluid solution. In coarse-grained microstructure systems, grain growth followed liquid phase formation. The corrosion rate increased due to a larger cathodic region. The status of micro-alloyed calcium (in solid solution or segregated) influenced the microstructural evolution mechanisms, mechanical strength, and degradation properties. A cytotoxicity test and a live/dead assay showed that ZAX1330 had good cytocompatibility, which varied with heat treatment, and no cell toxicity. The results suggest that heat treatment should be controlled precisely in order to improve the cytocompatibility of magnesium alloys for application in orthopedic implants. PMID:25842139

  20. Coarsening Kinetics and Morphological Evolution in a Two-Phase Titanium Alloy During Heat Treatment

    NASA Astrophysics Data System (ADS)

    Xu, Jianwei; Zeng, Weidong; Jia, Zhiqiang; Sun, Xin; Zhao, Yawei

    2016-03-01

    The effects of alpha/beta heat treatment on microstructure evolution of Ti-17 alloy with a lamellar colony structure are established. Heat treatment experiments are conducted at 1103 or 1063 K for times ranging from 10 min to 8 h. The main features of microstructure evolution during heat treatment comprise static globularization and coarsening of primary alpha phase. Such behaviors can be accelerated by higher heat treatment temperature. Furthermore, globularization and coarsening behaviors show a faster rate at higher prestrain. In order to better understand the microstructure evolution of Ti-17 alloy during alpha/beta heat treatment, static globularization and coarsening behaviors are modeled in the theoretical frame of the Johnson-Mehl-Avarmi-Kolmogorov (JMAK) and Lifshitz-Slyozov-Wagner (LSW) theories, respectively. The JMAK and LSW kinetics parameters are derived under different experimental conditions. Agreements between measurements and predictions are found, indicating that the JMAK and LSW theories can be used to predict and trace static globularization and coarsening processes of Ti-17 alloy during alpha/beta heat treatment.

  1. Heat treatment for endocrinological investigations on plasma positive for human immunodeficiency virus (HIV).

    PubMed Central

    Hancock, M R; Knapp, M L; Ghany, H C; Mayne, P D

    1987-01-01

    The effects of heat treatment of serum samples on the hormone analyses used in this laboratory were studied. Total T4, testosterone, progesterone, and growth hormone were not systematically affected by heat treatment over the whole range of analyte concentrations studied; for thyroid stimulating hormone, no effect was noted on serum samples with concentrations of less than 10 mU/l. Significant changes occurred in total T3, cortisol, follicle stimulating hormone, luteinizing hormone, and prolactin. It is suggested that with appropriate preliminary study, heat treated plasma samples may be used in endocrinological investigations without adversely affecting the diagnostic validity of the results. PMID:3108328

  2. UV-Heat Treatments for the Control of Foodborne Microbial Pathogens in Chicken Broth.

    PubMed

    Gouma, M; Gayán, E; Raso, J; Condón, S; Álvarez, I

    2015-01-01

    This investigation established the process criteria for using UV-C light and mild heat (UV-H treatment) to inactivate 5-Log10 cycles (performance criterion) of common foodborne pathogen populations, Escherichia coli, Salmonella Typhimurium, Listeria monocytogenes, and Staphylococcus aureus, when inoculated in chicken broth. To define the target microorganism and the proper UV-H treatment conditions (including UV dose, treatment time, and temperature) that would achieve the stated performance criterion, mathematical equations based on Geeraerd's model were developed for each microorganism. For the sake of comparison, inactivation equations for heat treatments were also performed on the same chicken broth and for the same microorganisms. L. monocytogenes was the most UV-H resistant microorganism at all temperatures, requiring a UV dose between 6.10 J/mL (5.6 min) and 2.26 J/mL (2.09 min) to achieve 5-Log10 reductions. In comparison with UV treatments at room temperatures, the combination of UV and mild heat allowed both the UV dose and treatment time to be reduced by 30% and 63% at 55 °C and 60 °C, respectively. Compared to heat treatments, the UV-H process reduced the heating time for 5-Log10 reductions of all the investigated microorganisms in chicken broth from 20-fold to 2-fold when the operating temperature varied from 53 to 60 °C. PMID:26539493

  3. UV-Heat Treatments for the Control of Foodborne Microbial Pathogens in Chicken Broth

    PubMed Central

    Gouma, M.; Gayán, E.; Raso, J.; Condón, S.; Álvarez, I.

    2015-01-01

    This investigation established the process criteria for using UV-C light and mild heat (UV-H treatment) to inactivate 5-Log10 cycles (performance criterion) of common foodborne pathogen populations, Escherichia coli, Salmonella Typhimurium, Listeria monocytogenes, and Staphylococcus aureus, when inoculated in chicken broth. To define the target microorganism and the proper UV-H treatment conditions (including UV dose, treatment time, and temperature) that would achieve the stated performance criterion, mathematical equations based on Geeraerd's model were developed for each microorganism. For the sake of comparison, inactivation equations for heat treatments were also performed on the same chicken broth and for the same microorganisms. L. monocytogenes was the most UV-H resistant microorganism at all temperatures, requiring a UV dose between 6.10 J/mL (5.6 min) and 2.26 J/mL (2.09 min) to achieve 5-Log10 reductions. In comparison with UV treatments at room temperatures, the combination of UV and mild heat allowed both the UV dose and treatment time to be reduced by 30% and 63% at 55°C and 60°C, respectively. Compared to heat treatments, the UV-H process reduced the heating time for 5-Log10 reductions of all the investigated microorganisms in chicken broth from 20-fold to 2-fold when the operating temperature varied from 53 to 60°C. PMID:26539493

  4. Effects of heat treatment on chitosan nanocomposite film reinforced with nanocrystalline cellulose and tannic acid.

    PubMed

    Rubentheren, V; Ward, Thomas A; Chee, Ching Yern; Nair, Praveena; Salami, Erfan; Fearday, Christopher

    2016-04-20

    This article presents an analysis of the influence of heat treatment on chitosan nanocomposite film. A series of samples comprising: pure chitosan film, chitosan film embedded with nanocrystalline cellulose (NCC), chitosan film crosslinked with tannic acid and chitosan film with a blend of NCC and tannic acid were heat treated using a convection oven. Fourier-transform-infrared spectroscopy (FTIR) and X-ray diffraction test (XRD) shows the changes in chemical interaction of the heat treated films. The heat treated films show significant improvements in moisture absorption. Tensile strength and Young's Modulus were increased up to 7MPa and 259MPa, respectively when the samples were subjected to heat treatment. For the NCC particles, a transmission electron microscope (TEM) was used to inspect the structural properties of cellulose particle in suspension form. PMID:26876845

  5. Induction hardening: Differences to a conventional heat treatment process and optimization of its parameters

    NASA Astrophysics Data System (ADS)

    Vieweg, A.; Ressel, G.; Prevedel, P.; Raninger, P.; Panzenböck, M.; Marsoner, S.; Ebner, R.

    2016-03-01

    The possibility of obtaining similar mechanical properties with faster heating processes than the conventional ones has been of interest for several years. In the present study, investigations were performed in terms of the influences of such fast heat-treatments on the microstructure and mechanical properties of the material. This investigation compares an inductive with a conventional furnace heat treating process of a 50CrMo4 steel, however only the austenitizing treatment was changed and subsequent quenching and tempering was done in the same way. To this end experiments with a middle frequency generator, using different heating rates and austenitizing temperatures, were conducted and followed by oil quenching of the workpieces. The resulting structures were characterized regarding their microstructures and mechanical properties in order to gather a better understanding of the differences between the inductive and the conventional heat treating process. As a main result it was found, that the fast austenitized samples exhibited worse ductility than the conventional treated material.

  6. Method for detecting pollutants. [through chemical reactions and heat treatment

    NASA Technical Reports Server (NTRS)

    Rogowski, R. S.; Richards, R. R.; Conway, E. J. (Inventor)

    1976-01-01

    A method is described for detecting and measuring trace amounts of pollutants of the group consisting of ozone, nitrogen dioxide, and carbon monoxide in a gaseous environment. A sample organic solid material that will undergo a chemical reaction with the test pollutant is exposed to the test environment and thereafter, when heated in the temperature range of 100-200 C., undergoes chemiluminescence that is measured and recorded as a function of concentration of the test pollutant. The chemiluminescence of the solid organic material is specific to the pollutant being tested.

  7. Bacillus cereus endospores exhibit a heterogeneous response to heat treatment and low-temperature storage.

    PubMed

    Cronin, Ultan P; Wilkinson, Martin G

    2008-04-01

    Bacillus cereus endospores were challenged by heat treatments simulating typical domestic/industrial cooking regimes and the resulting effects on germination, viability and sub-lethal heat damage determined using differential plate counting on a rich versus selective medium, flow cytometry (FCM), beta-D-glucuronidase (GUD) activity and OD(600) measurement. Additionally, these techniques were used to investigate the effect on endospores of storage in a non-nutrient medium at 4 degrees C for 1 month. Plate counting revealed that heating generated sub-populations of sub-lethally damaged endospores, with the more severe heat treatments generating larger proportions of sub-lethally damaged endospores. These findings were also reflected in FCM analyses, which detected large amounts of heterogeneity among the populations of heat-treated endospores and uncovered differences in the proportions of membrane-damaged endospores and those displaying esterase activity pre- and post-treatment. Plate count data suggested that both the control and heat-treated endospores lost viability during storage, with FCM data indicating that the proportion of membrane-damaged endospores increased and those displaying the esterase activity decreased. The FCM, GUD and OD(600) data suggested that germination rates decreased with the increasing severity of heat treatment. This study demonstrates that a combination of plate counting and FCM can be used to detect heterogeneity in the response of endospores to insults. PMID:18206765

  8. Fracture toughness of Ti-6Al-4V after welding and postweld heat treatment

    SciTech Connect

    Murthy, K.K.; Sundaresan, S.

    1997-02-01

    The fracture toughness (J{sub IC}) of the fusion zone of Ti-6Al-4V alloy welds was studied in terms of microstructural changes in the as-welded condition and following postweld heat treatment. Gas tungsten arc and electron beam welds were produced in sheet material over a limited range of heat input and subsequently heat treated at 700 C and 900 C. In the as-welded condition, the weld microstructure was a mixture of diffusional and martensitic alpha phases, whose proportion varied wit heat input and cooling rate. The fusion zone exhibited low ductility resulting from the highly acicular microstructure and a large prior-beta grain size. Postweld heat treatment tempered the martensite and coarsened the microstructure, but a beneficial effect on ductility was realized only after treatment at 900 C. Fracture toughness in the as-welded condition was greater than for the base metal and was attributed to the lamellar microstructure of the fusion zone and absence of continuous alpha film along the grain boundaries. Postweld heat treatment at 700 C reduced the fracture toughness considerably and, as in the case of ductility, it was necessary to heat treat at 900 C to produce an improvement.

  9. Effect of heat treatment on the antioxidant activity of extracts from citrus peels.

    PubMed

    Jeong, Seok-Moon; Kim, So-Young; Kim, Dong-Ryul; Jo, Seong-Chun; Nam, K C; Ahn, D U; Lee, Seung-Cheol

    2004-06-01

    The effect of heat treatment on the antioxidant activity of extracts from Citrus unshiu peels was evaluated. Citrus peels (CP) (5 g) were placed in Pyrex Petri dishes (8.0 cm diameter) and heat-treated at 50, 100, or 150 degrees C for 10, 20, 30, 40, 50, and 60 min in an electric muffle furnace. After heat treatment, 70% ethanol extract (EE) and water extract (WE) (0.1 g/10 mL) of CP were prepared, and total phenol contents (TPC), radical scavenging activity (RSA), and reducing power of the extracts were determined. The antioxidant activities of CP extracts increased as heating temperature increased. For example, heat treatment of CP at 150 degrees C for 60 min increased the TPC, RSA, and reducing power of EE from 71.8 to 171.0 microM, from 29.64 to 64.25%, and from 0.45 to 0.82, respectively, compared to non-heat-treated control. In the case of WE from CP heat-treated at the same conditions (150 degrees C for 60 min), the TPC, RSA, and reducing power also increased from 84.4 to 204.9 microM, from 15.81 to 58.26%, and from 0.27 to 0.96, respectively. Several low molecular weight phenolic compounds such as 2,3-diacetyl-1-phenylnaphthalene, ferulic acid, p-hydroxybenzaldoxime, 5-hydroxyvaleric acid, 2,3-diacetyl-1-phenylnaphthalene, and vanillic acid were newly formed in the CP heated at 150 degrees C for 30 min. These results indicated that the antioxidant activity of CP extracts was significantly affected by heating temperature and duration of treatment on CP and that the heating process can be used as a tool for increasing the antioxidant activity of CP. PMID:15161203

  10. Dry heat treatment affects wheat bran surface properties and hydration kinetics.

    PubMed

    Jacobs, Pieter J; Hemdane, Sami; Delcour, Jan A; Courtin, Christophe M

    2016-07-15

    Heat stabilization of wheat bran aims at inactivation of enzymes which may cause rancidity and processability issues. Such treatments may however cause additional unanticipated phenomena which may affect wheat bran technological properties. In this work, the impact of toasting on wheat bran hydration capacity and hydration kinetics was studied. Hydration properties were assessed using the Enslin-Neff and drainage centrifugation water retention capacity methods, thermogravimetric analysis and contact angle goniometry, next to more traditional methods. While equilibrium hydration properties of bran were not affected by the heat treatment, the rate at which the heat treated bran hydrated was, however, very significantly reduced compared to the untreated bran. This phenomenon was found to originate from the formation of a lipid coating during the treatment rendering the bran surface hydrophobic. These insights help to understand and partially account for the modified processability of heat treated bran in food applications. PMID:26948645

  11. Effect of heat treatments on oxidation kinetics in AZ91 and AM60 magnesium alloys

    SciTech Connect

    Barrena, M.I. Gomez de Salazar, J.M.; Matesanz, L.; Soria, A.

    2011-10-15

    The effect of heat treatments on a non protective atmosphere (air) on the morphology and composition of the oxide in AM60 and AZ91 alloys has been evaluated. With the aim of evaluating the loss of alloying elements during heat treatment, a study of these alloys has been carried out using thermogravimetric analysis (TGA). In order to determine the nature of the oxides the reaction products generated were evaluated by scanning electron microscopy and X-ray diffraction. Results show that the nature and morphology of the oxides generated are related to the temperature and the time of the heating conditions applied. - Highlights: {yields} The effect of heat treatments on the oxide growth in Mg-Al alloys has been evaluated. {yields} The nature and morphology of the oxides have been characterized. {yields} These oxides are associated to the time and the temperature conditions.

  12. Effects of heat and high-pressure treatments on the solubility and immunoreactivity of almond proteins.

    PubMed

    Zhang, Yan; Zhang, Jieqiong; Sheng, Wei; Wang, Shuo; Fu, Tong-Jen

    2016-05-15

    The effects of dry and moist heat, autoclave sterilization and high-pressure treatment on the biochemical characteristics and immunological properties of almond proteins were investigated. Changes in the solubility and immunoreactivity of almond proteins extracted from treated almond flour were evaluated using a total protein assay, indirect competitive inhibition enzyme-linked immunosorbent assay (IC-ELISA), and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Almond proteins were stable during dry-heat treatment at temperatures below 250°C. Dry heat at 400°C, boiling, autoclave sterilization and high-pressure treatment in the presence of water at ⩾ 500 MPa greatly reduced the solubility and immunoreactivity of almond proteins. SDS-PAGE revealed that the protein profiles of almond flour samples treated under these conditions also changed significantly. The synergistic effects of heat, pressure and the presence of water contributed to significant changes in solubility and immunoreactivity of almond proteins. PMID:26776044

  13. Menu driven heat treatment control of thin walled bodies

    DOEpatents

    Kothmann, Richard E.; Booth, Jr., Russell R.; Grimm, Noel P.; Batenburg, Abram; Thomas, Vaughn M.

    1992-01-01

    A process for controlling the heating of a thin-walled body according to a predetermined temperature program by means of electrically controllable heaters, comprising: disposing the heaters adjacent one surface of the body such that each heater is in facing relation with a respective zone of the surface; supplying heat-generating power to each heater and monitoring the temperature at each surface zone; and for each zone: deriving (16,18,20), on the basis of the temperature values obtained in the monitoring step, estimated temperature values of the surface at successive time intervals each having a first selected duration; generating (28), on the basis of the estimated temperature values derived in each time interval, representations of the temperature, THSIFUT, which each surface zone will have, based on the level of power presently supplied to each heater, at a future time which is separated from the present time interval by a second selected duration; determining (30) the difference between THSIFUT and the desired temperature, FUTREFTVZL, at the future time which is separated from the present time interval by the second selected duration; providing (52) a representation indicating the power level which sould be supplied to each heater in order to reduce the difference obtained in the determining step; and adjusting the power level supplied to each heater by the supplying step in response to the value of the representation provided in the providing step.

  14. Using stress relaxation tests for evaluating and optimizing postweld heat treatments of alloy 625 welds

    SciTech Connect

    Diehl, M.J.; Messler, N.Y.R.W. Jr.

    1995-04-01

    Alloy 625 (UNS N06625) is a solid-solution-strengthened, nickel based, chromium-molybdenum alloy used for its high strength and excellent corrosion resistance, Stress corrosion cracking (SCC) resistance and, to a lesser extent, strength can be enhanced by precipitation of intergranular carbides by appropriate heat treatment. In welded structures, dissolution of carbides near the fusion line in the heat-affected zone renders denuded regions susceptible to preferential SCC attack that is greatly aggravated by residual stresses. To reduce the propensity for SCC in weldments, manufacturing practice typically includes methods for reducing residual stresses, usually using postweld heat treatments (PWHT). With appropriate heat treatment, grain boundary carbides can be restored and welding-induced residual stresses can be reduced at the same time. A series of heat treatments was performed between 1,050 and 1,800 F (566 and 9826 C) to determine effectiveness in relieving welding-induced stresses. Stress relaxation testing of all-weld-metal specimens was compared to residual stress measurements in full-scale weldments using a hole-drilling strain gauge technique. The much simpler stress relaxation method provided an excellent measure of residual stresses and proved to be an expeditious way to select optimum postweld heat treatments for reducing those welding-induced stresses.

  15. A previously undescribed organic residue sheds light on heat treatment in the Middle Stone Age.

    PubMed

    Schmidt, Patrick; Porraz, Guillaume; Bellot-Gurlet, Ludovic; February, Edmund; Ligouis, Bertrand; Paris, Céline; Texier, Pierre-Jean; Parkington, John E; Miller, Christopher E; Nickel, Klaus G; Conard, Nicholas J

    2015-08-01

    South Africa has in recent years gained increasing importance for our understanding of the evolution of 'modern human behaviour' during the Middle Stone Age (MSA). A key element in the suite of behaviours linked with modern humans is heat treatment of materials such as ochre for ritual purposes and stone prior to tool production. Until now, there has been no direct archaeological evidence for the exact procedure used in the heat treatment of silcrete. Through the analysis of heat-treated artefacts from the Howiesons Poort of Diepkloof Rock Shelter, we identified a hitherto unknown type of organic residue - a tempering-residue - that sheds light on the processes used for heat treatment in the MSA. This black film on the silcrete surface is an organic tar that contains microscopic fragments of charcoal and formed as a residue during the direct contact of the artefacts with hot embers of green wood. Our results suggest that heat treatment of silcrete was conducted directly using an open fire, similar to those likely used for cooking. These findings add to the discussion about the complexity of MSA behaviour and appear to contradict previous studies that had suggested that heat treatment of silcrete was a complex (i.e., requiring a large number of steps for its realization) and resource-consuming procedure. PMID:26073074

  16. IMPACT OF COMPOSITION AND HEAT TREATMENT ON PORE SIZE IN POROUS WALLED HOLLOW GLASS MICROSPHERES

    SciTech Connect

    Raszewski, F; Erich Hansen, E; Ray Schumacher, R; David Peeler, D

    2007-12-04

    The Savannah River National Laboratory (SRNL) developed a new geometric form: hollow glass microspheres (HGMs), with unique porous walls. The new geometric form combines the existing technology of HGMs with basic glass science knowledge in the realm of glass-in-glass phase separation. Conceptually, the development of a HGM with porous walls (referred to as a PWHGM) provides a unique system in which various media or filling agents can be incorporated into the PWHGM (via transport through the porous walls) and ultimately has the capacity to serve as a functional delivery system in various industrial applications. Applications of these types of systems could range from hydrogen storage, molecular sieves, drug and bioactive delivery systems, to environmental, chemical and biological indicators, relevant to Energy, Environmental Processing and Homeland Security fields. As a specific example, previous studies at SRNL have introduced materials capable of hydrogen storage (as well as other materials) into the interior of the PWHGMs. The goal of this project was to determine if the microstructure (i.e., pore size and pore size distribution) of a PWHGM could be altered or tailored by varying composition and/or heat treatment (time and/or temperature) conditions. The ability to tailor the microstructure through composition or heat treatments could provide the opportunity to design the PWHGM system to accommodate different additives or fill agents. To meet this objective, HGMs of various alkali borosilicate compositions were fabricated using a flame forming apparatus installed at the Aiken County Technical Laboratory (ACTL). HGMs were treated under various heat treatment conditions to induce and/or enhance glass in glass phase separation. Heat treatment temperatures ranged from 580 C to 620 C, while heat treatment times were either 8 or 24 hours. Of the two primary variables assessed in this study, heat treatment temperature was determined to be most effective in changing the

  17. 9 CFR 590.548 - Drying, blending, packaging, and heat treatment rooms and facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... treatment rooms and facilities. 590.548 Section 590.548 Animals and Animal Products FOOD SAFETY AND..., blending, packaging, and heat treatment rooms and facilities. (a) General. Processing rooms shall be... rooms shall be well-lighted and have ceilings and walls of a tile surface, enamel paint, or other...

  18. The Effect of Heat Treatments and Coatings on the Outgassing Rate of Stainless Steel Chambers

    SciTech Connect

    Mamum, Md Abdullah A.; Elmustafa, Abdelmageed A,; Stutzman, Marcy L.; Adderley, Philip A.; Poelker, Matthew

    2014-03-01

    The outgassing rates of four nominally identical 304L stainless steel vacuum chambers were measured to determine the effect of chamber coatings and heat treatments. One chamber was coated with titanium nitride (TiN) and one with amorphous silicon (a-Si) immediately following fabrication. One chamber remained uncoated throughout, and the last chamber was first tested without any coating, and then coated with a-Si following a series of heat treatments. The outgassing rate of each chamber was measured at room temperatures between 15 and 30 deg C following bakes at temperatures between 90 and 400 deg C. Measurements for bare steel showed a significant reduction in the outgassing rate by more than a factor of 20 after a 400 deg C heat treatment (3.5 x 10{sup 12} TorrL s{sup -1}cm{sup -2} prior to heat treatment, reduced to 1.7 x 10{ sup -13} TorrL s{sup -1}cm{sup -2} following heat treatment). The chambers that were coated with a-Si showed minimal change in outgassing rates with heat treatment, though an outgassing rate reduced by heat treatments prior to a-Si coating was successfully preserved throughout a series of bakes. The TiN coated chamber exhibited remarkably low outgassing rates, up to four orders of magnitude lower than the uncoated stainless steel. An evaluation of coating composition suggests the presence of elemental titanium which could provide pumping and lead to an artificially low outgassing rate. The outgassing results are discussed in terms of diffusion-limited versus recombination-limited processes.

  19. Automatic optimization of localized heat treatment for Al-Si-Mg alloys

    NASA Astrophysics Data System (ADS)

    Ludwig, A.; Holzmann, T.

    2016-03-01

    Material properties of aluminium alloys can usually be achieved by a heat treatment and quenching procedure. In case that only local strengthening is needed, a local heat treatment and quenching strategy could be an option to the energy intensive, time consuming and costly treatment of the whole part. One of the essential problem using a local strengthening procedure is the lack of knowledge about suitable process parameters. Therefore, a multiple criteria optimization approach with local strengthening as target function was set up, whereby the material constitution was calculated based on the precipitation evolution during local heat treatment and cooling. By automatically varying the exposure time and laser power, a series of process simulations was performed to find adequate process parameters for the sufficient local strengthening of the alloy.

  20. Effects of 35 C Heat Treatments on Photosensitive Grand Rapids Lettuce Seed Germination 1

    PubMed Central

    Carpita, Nicholas C.; Nabors, Murray W.

    1976-01-01

    Grand Rapids lettuce (Lactuca sativa L.) seeds were given 35 C heat treatments to increase photodormancy in a subsequent 20 C dark period. Short heat treatments (1-5 hours) induced a significant germination percentage increase of from 16% to over 50% depending on seed lot. With longer heat treatments dark germination percentage was gradually reduced to zero. If given at the end of 35 C, far red or red followed by far red further increased the amount of dark germination. Thermodormancy also delayed red-stimulated germination by 10 hours or more when red was given following a long 35 C treatment. The presence of Pfr was required during this time since far red light remained effective in reversing at least 50% of the red stimulation for up to 16 hours compared to only 4 hours in nonheat-treated seeds. PMID:16659537

  1. Design and performance of a new induction furnace for heat treatment of superconducting radiofrequency niobium cavities

    SciTech Connect

    Dhakal, Pashupati; Ciovati, Gianluigi; Myneni, Ganapati Rao; Rigby, Wayne; Wallace, John

    2012-06-15

    Superconducting radio frequency (SRF) cavities made of high purity niobium (Nb) are the building blocks of many modern particle accelerators. The fabrication process includes several cycles of chemical and heat treatment at low ({approx}120 Degree-Sign C) and high ({approx}800 Degree-Sign C) temperatures. In this contribution, we describe the design and performance of an ultra-high-vacuum furnace which uses an induction heating system to heat treat SRF cavities. Cavities are heated by radiation from the Nb susceptor. By using an all-niobium hot zone, contamination of the Nb cavity by foreign elements during heat treatment is minimized and allows avoiding subsequent chemical etching. The furnace was operated up to 1400 Degree-Sign C with a maximum pressure of {approx}1 Multiplication-Sign 10{sup -5} Torr and the maximum achievable temperature is estimated to be higher than 2000 Degree-Sign C. Initial results on the performance of a single cell 1.5 GHz cavity made of ingot Nb heat treated at 1200 Degree-Sign C using this new induction furnace and without subsequent chemical etching showed a reduction of the RF losses by a factor of {approx}2 compared to cavities made of fine-grain Nb which underwent standard chemical and heat treatments.

  2. Design and performance of a new induction furnace for heat treatment of superconducting radiofrequency niobium cavities

    SciTech Connect

    Pashupati Dhakal, Gianluigi Ciovati, Wayne Rigby, John Wallace, Ganapati Rao Myneni

    2012-06-01

    Superconducting radio frequency (SRF) cavities made of high purity niobium (Nb) are the building blocks of many modern particle accelerators. The fabrication process includes several cycles of chemical and heat treatment at low ({approx}120 deg C) and high ({approx}800 deg C) temperatures. In this contribution, we describe the design and performance of an ultra-high-vacuum furnace which uses an induction heating system to heat treat SRF cavities. Cavities are heated by radiation from the Nb susceptor. By using an all-niobium hot zone, contamination of the Nb cavity by foreign elements during heat treatment is minimized and allows avoiding subsequent chemical etching. The furnace was operated up to 1400 deg C with a maximum pressure of {approx}1 x 10{sup -5} Torr and the maximum achievable temperature is estimated to be higher than 2000 deg C. Initial results on the performance of a single cell 1.5 GHz cavity made of ingot Nb heat treated at 1200 deg C using this new induction furnace and without subsequent chemical etching showed a reduction of the RF losses by a factor of {approx}2 compared to cavities made of fine-grain Nb which underwent standard chemical and heat treatments.

  3. Improving the efficiency of plasma heat treatment of metals

    NASA Astrophysics Data System (ADS)

    Gabdrakhmanov, Az T.; Israphilov, I. H.; Galiakbarov, A. T.; Samigullin, A. D.; Gabdrakhmanov, Al T.

    2016-01-01

    This paper proposes an effective way of the plasma hardening the surface layer at the expense combined influence of the plasma jet and a cold air flow. After that influence occurs a distinctive by plasma treatment microstructure with increased microhardness (an increase of 35%) and depth. There is proposed an improved design of the vortex tube for receiving the air flow with a temperature of 20 C to - 120C.

  4. Recent advances and current status of the use of heat treatments in postharvest disease management systems: Is it time to turn up the heat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eco-friendly approaches to postharvest disease management in harvested commodities, such as heat treatments and biological control utilizing antagonistic yeasts, is an active research field. The current review focuses on the physiological and molecular aspects of heat treatment on all the major par...

  5. Combined heat transfer and kinetic models to predict cooking loss during heat treatment of beef meat.

    PubMed

    Kondjoyan, Alain; Oillic, Samuel; Portanguen, Stéphane; Gros, Jean-Bernard

    2013-10-01

    A heat transfer model was used to simulate the temperature in 3 dimensions inside the meat. This model was combined with a first-order kinetic models to predict cooking losses. Identification of the parameters of the kinetic models and first validations were performed in a water bath. Afterwards, the performance of the combined model was determined in a fan-assisted oven under different air/steam conditions. Accurate knowledge of the heat transfer coefficient values and consideration of the retraction of the meat pieces are needed for the prediction of meat temperature. This is important since the temperature at the center of the product is often used to determine the cooking time. The combined model was also able to predict cooking losses from meat pieces of different sizes and subjected to different air/steam conditions. It was found that under the studied conditions, most of the water loss comes from the juice expelled by protein denaturation and contraction and not from evaporation. PMID:23747627

  6. Effect of heat-moisture treatment on the structural, physicochemical, and rheological characteristics of arrowroot starch.

    PubMed

    Pepe, Larissa S; Moraes, Jaqueline; Albano, Kivia M; Telis, Vânia R N; Franco, Célia M L

    2016-04-01

    The effect of heat-moisture treatment on structural, physicochemical, and rheological characteristics of arrowroot starch was investigated. Heat-moisture treatment was performed with starch samples conditioned to 28% moisture at 100 ℃ for 2, 4, 8, and 16 h. Structural and physicochemical characterization of native and modified starches, as well as rheological assays with gels of native and 4 h modified starches subjected to acid and sterilization stresses were performed. Arrowroot starch had 23.1% of amylose and a CA-type crystalline pattern that changed over the treatment time to A-type. Modified starches had higher pasting temperature and lower peak viscosity while breakdown viscosity practically disappeared, independently of the treatment time. Gelatinization temperature and crystallinity increased, while enthalpy, swelling power, and solubility decreased with the treatment. Gels from modified starches, independently of the stress conditions, were found to have more stable apparent viscosities and higher G' and G″ than gels from native starch. Heat-moisture treatment caused a reorganization of starch chains that increased molecular interactions. This increase resulted in higher paste stability and strengthened gels that showed higher resistance to shearing and heat, even after acid or sterilization conditions. A treatment time of 4 h was enough to deeply changing the physicochemical properties of starch. PMID:26163566

  7. Effect of homogenization heat treatment on the microstructure and heat-affected zone microfissuring in welded cast alloy 718

    SciTech Connect

    Xiao Huang; Richards, N.L.; Chaturvedi, M.C.

    1996-03-01

    The effect of homogenization temperature on microfissuring in the heat-affected zones of electron-beam welded cast INCONEL 718 has been studied. The material was homogenized at various temperatures in the range of 1,037 C and 1,163 C and air-cooled. The homogenized material was then electron-beam welded by the bead-on-plate welding technique. The microstructures and microfissuring in the heat-affected zone (HAZ) were evaluated by analytical scanning electron microscopy (SEM). The grain boundary segregation of various elements was evaluated by secondary ion mass spectroscopy (SIMS). It was observed that the total crack length (TCL) of microfissures first decreases with homogenization temperature and then increases, with a minimum occurring in the specimen heat treated at 1,163 C. This trend coincides with the variation in segregation of B at grain boundaries with homogenization temperature and has been explained by equilibrium and nonequilibrium segregation of B to grain boundaries during the homogenization heat treatment. No other element was observed to segregate at the grain boundaries. The variation in volume fraction of phases like {delta}-Ni{sub 3}Nb, MC carbide, and Laves phases does not follow the same trend as that observed for TCL and B segregation at the grain boundaries. Therefore, microfissuring in HAZ of welded cast INCONEL 718 is attributed to the segregation of B at the grain boundaries.

  8. Effect of homogenization heat treatment on the microstructure and heat- affected zone microfissuring in welded cast alloy 718

    NASA Astrophysics Data System (ADS)

    Huang, Xiao; Chaturvedi, M. C.; Richards, N. L.

    1996-03-01

    The effect of homogenization temperature on microfissuring in the heat-affected zones of electronwelded cast INCONEL 718 has been studied. The material was homogenized at various temperatures in the range of 1037 ° to 1163 ° and air-cooled. The homogenized material was then electron-beam welded by the bead-on-plate welding technique. The microstructures and microfissuring in the heat-affected zone (HAZ) were evaluated by analytical scanning electron microscopy (SEM). The grain boundary segregation of various elements was evaluated by secondary ion mass spectroscopy (SIMS). It was observed that the total crack length (TCL) of microfissures first decreases with homogenization temperature and then increases, with a minimum occurring in the specimen heat treated at 1163 °. This trend coincides with the variation in segregation of B at grain boundaries with homogenization temperature and has been explained by equilibrium and nonequilibrium segregation of B to grain boundaries during the homogenization heat treatment. No other element was observed to segregate at the grain boundaries. The variation in volume fraction of phases like δ-Ni3Nb, MC carbide, and Laves phases does not follow the same trend as that observed for TCL and B segregation at the grain boundaries. Therefore, microfissuring in HAZ of welded cast INCONEL 718 is attributed to the segregation of B at the grain boundaries.

  9. Effect of heat treatment on caustic stress corrosion cracking behavior of alloy 600

    SciTech Connect

    Sung, J.K.

    1999-12-01

    Constant elongation rate tests (CERT) were conducted to evaluate the effect of heat treatment on intergranular stress corrosion cracking (IGSCC) susceptibility of alloy 600 (UNS NO6600) in 140 C and 50% caustic solution at {minus}900 mV vs saturated calomel electrode (SCE). Results showed: (1) Heat treatment at low temperature for a long time (600 C for 260 h) led to a material that was not susceptible to caustic intergranular (IG) cracking. Increase in heat treatment temperature enhanced IG cracking susceptibility. Caustic IGSCC susceptibility was at maximum near the carbon solubility limit. However, when the heat treatment temperature was higher than the carbon solubility limit, a significant decrease in crack growth rate was observed. (2) Grain boundaries acted as a preferential crack path when grain boundary carbon segregation was likely. Thermodynamic considerations suggested that severe caustic IGSCC susceptibility near the carbon solubility limit could be explained in terms of carbon segregation at the grain boundaries. (3) IGSCC in caustic solution did not seem to be caused by chromium depletion. (4) Although formation of semi-continuous IG carbides and IGSCC resistance seemed to exhibit a similar chronological response with heat treatment, it was unlikely that grain boundary IG carbides played a role in caustic IGSCC susceptibility.

  10. Influence of Heat Treatment on Microstructural and Mechanical Properties of Nodular Cast Iron

    NASA Astrophysics Data System (ADS)

    Kruthiventi, S.; Basavakumar, K. G.; Nambala, S.; Subramanyacharyulu, G.

    2014-04-01

    Spheroidal Graphite Iron (SG Iron) is popularly known as ductile iron or nodular cast iron which is a special case of cast iron having carbon content of more than 3 wt% in volume and graphite is in the form of spherical tiny sized particles. Since the last three decades, the demand for SG Iron has been increasing due to its superior mechanical properties such as high strength and toughness, this nature leads to the usage of SG Iron in numerous industrial applications. From the earlier studies, it has been proved that addition of alloying elements to SG Iron leads to change in properties such as increased tensile strength and hardness. Heat-treatment of alloys is one of the valuable methods to achieve better properties. In the present study, the microstructures and mechanical properties of SG Iron were studied after various heat treatments beyond the limits, and tests were done to measure its mechanical properties like tensile strength, hardness, impact strength. Digital microphotographs, scanning electron microphotographs were analysed before and after the heat treatment. Results indicated great change in mechanical properties after the heat-treatment. From the results it can be concluded that the heat treatment of SG Iron results in changed composition of alloys, which also leads to economical growth of SG Iron.

  11. Effect of heat treatments on the performance of polymer optical fiber sensor.

    PubMed

    Zhong, Nianbing; Zhao, Mingfu; Liao, Qiang; Zhu, Xun; Li, Yishan; Xiong, Zhonggang

    2016-06-13

    Although the numerous advantages of polymer optical fiber (POF) sensors have been applied in different fields, the measurement consistency and sensitivity of POF evanescent wave (EW) sensors are still affected by its thermal stability and water absorption. Therefore, we perform a study to demonstrate the mechanism of the effect of heat treatments on physical and optical properties of POF EW sensors. We investigate the surface morphology, composition, refractive index, geometry, and weight of the fiber-sensing region subjected to water and vacuum heat treatments. We examine the spectral transmission and transmitted light intensity of POF sensors. We present a theoretical investigation of the effect of heat treatments on the sensitivity of POF EW sensors. The performance of the prepared sensor is evaluated using glucose and Chlorella pyrenoidosa analytes. We discovered that the spectral transmission and transmitted light intensity of the fibers shows little effect of vacuum heat treatments. In particular, the sensors, which subject to vacuum heat treatment at 110 °C for 3 h, exhibit temperature-independent measuring consistency and high sensitivity in glucose solutions in the temperature range 15-60 °C and also show high sensitivity in Chlorella pyrenoidosa solutions. PMID:27410357

  12. Recognition and treatment of exertional heat illness at a marathon race.

    PubMed

    Hostler, David; Franco, Vanessa; Martin-Gill, Chris; Roth, Ronald N

    2014-01-01

    Exertional heat illness is rarely encountered by individual EMS providers but can be common in certain settings and events. The notion that significantly altered mental status must accompany elevated core temperature in heat illness may delay recognition and treatment. We report on a series of marathon and half-marathon runners who suffered exertional heat illness during a marathon race in relatively mild conditions. Altered mental status was not uniformly present. All patients were treated in the finish line medical tent and responded well to cooling. More than half were discharged from the medical tent without being transported to the hospital. This case series demonstrates that many runners respond to early identification and treatment of exertional heat illness. Significant preparation is required by the medical providers to handle the rapid influx of patients at the conclusion of the event. PMID:24460521

  13. The effect of heat treatment on the gouging abrasion resistance of alloy white cast irons

    NASA Astrophysics Data System (ADS)

    Are, I. R. S.; Arnold, B. K.

    1995-02-01

    A series of heat treatments was employed to vary the microstructure of four commercially important alloy white cast irons, the wear resistance of which was then assessed by the ASTM jaw-crusher gouging abrasion test. Compared with the as-cast condition, standard austenitizing treatments produced a substantial increase in hardness, a marked decrease in the retained aus-tenite content in the matrix, and, in general, a significant improvement in gouging abrasion resistance. The gouging abrasion resistance tended to decline with increasing austenitizing tem-perature, although the changes in hardness and retained austenite content varied, depending on alloy composition. Subcritical heat treatment at 500 ° following hardening reduced the retained austenite content to values less than 10 pct, and in three of the alloys it caused a significant fall in both hardness and gouging abrasion resistance. The net result of the heat treatments was the development of optimal gouging abrasion resistance at intermediate levels of retained aus-tenite. The differing responses of the alloys to both high-temperature austenitizing treatments and to subcritical heat treatments at 500 ° were related to the effects of the differing carbon and alloying-element concentrations on changes in the M s temperature and secondary carbide precipitation.

  14. Heat-treatment effect on impact properties of reduced-activation steels*1

    NASA Astrophysics Data System (ADS)

    Klueh, R. L.; Maziasz, P. J.; Alexander, D. J.

    1991-03-01

    The effect of heat treatment on the impact behavior of eight experimental heats of reduced-activation ferritic steels was investigated. Steels with 2 {1}/{4}, 5, 9, and 12 wt% Cr and containing tungsten, vanadium, and tantalum were examined. Impact properties of steels with 2 {1}/{4} wt% Cr depended on microstructure, which was affected by cooling rate after austenitization. By heat-treating the 2 {1}/{4} wt% Cr steels to change the microstructure from a bainitic structure containing ferrite to one without ferrite, the ductile-brittle transition temperatures were reduced substantially. The cooling rate had essentially no effect on the high-chromium martensitic steels.

  15. Effects of Heat Treatments on Aluminum Oxide Coatings Deposited on Ni-BASED Alloy

    NASA Astrophysics Data System (ADS)

    Tang, Xiufeng; Luo, Fa; Hseih, Chunhan; Li, Xiangyu

    2015-12-01

    AlxOy films coated on both Ni-based superalloy and silica substrates were prepared by DC reactive magnetron sputtering. Post-deposition annealing was carried out on those as-deposited films. And then 1 h heat treatments were done on the annealed films at constant temperatures ranging from 600-900°C to simulate the high-temperature application. The AlxOy film heated at 600°C exhibited good film property. Bonding strength between the 600°C-heated AlxOy film and the Ni-based substrate was about 11.6 MPa.

  16. Variation of Mechanical Properties of High RRR And Reactor Grade Niobium With Heat Treatments

    SciTech Connect

    Ganapati Myneni; H. Umezawa

    2003-06-01

    Superconducting rf cavities used as accelerating structures in particle accelerators are made from high purity niobium with residual resistance ratios greater than 250. Reactor grade niobium is also used to make wave-guide and/or end group components for these accelerating structures. The major impurities in this type of niobium are interstitially dissolved gases such as hydrogen, nitrogen, and oxygen in addition to carbon. After fabricating the niobium accelerating structures, they are subjected to heat treatments for several hours in vacuum at temperatures of up to 900 C for degassing hydrogen or up to 1400 C for improving the thermal conductivity of niobium considerably. These heat treatments are affecting the mechanical properties of niobium drastically. In this paper the variation of the mechanical properties of high purity and reactor grade niobium with heat treatments in a vacuum of {approx} 10{sup -6} Torr and temperatures from 600 C to 1250 C for periods of 10 to 6 hours are presented.

  17. Improved superconducting properties of melt-textured Nd123 by additional heat treatment

    NASA Astrophysics Data System (ADS)

    Chikumoto, N.; Yoshioka, J.; Murakami, M.

    1997-02-01

    We have investigated the effect of additional heat-treatment on the superconducting transition and the flux pinning properties of NdBaCuO melt-textured in air. After the heat-treatment at high temperatures, >900°C, under low oxygen partial pressure, P(O 2) = 0.001 atm, the superconducting transition became sharper accompanied by an increase of Jc. However, the increase of Jc was very small and the secondary peak effect commonly observed in NdBaCuO melt textured in low P(O 2) could not be observed. Transmission electron microscopic observations and energy dispersive X-ray analyses show that the spatial variation of the Nd/Ba ratio is reduced after high-temperature heat-treatment, which indicates that an improvement in Tc and Jc is attributed to a suppression of Nd substitution on the Ba site.

  18. Effect of Heat Treatment on Silicon Carbide Based Joining Materials for Fusion Energy

    SciTech Connect

    Lewinsohn, Charles A.; Jones, Russell H.; Nozawa, T.; Kotani, M.; Kishimoto, H.; Katoh, Y.; Kohyama, A.

    2001-10-01

    Two general approaches to obtaining silicon carbide-based joint materials were used. The first method relies on reactions between silicon and carbon to form silicon carbide, or to bond silicon carbide powders together. The second method consists of pyrolysing a polycarbosilane polymer to yield an amorphous, covalently bonded material. In order to assess the long-term durability of the joint materials, various heat treatments were performed and the effects on the mechanical properties of the joints were measured. Although the joints derived from the polycarbosilane polymer were not the strongest, the value of strength measured was not affected by heat treatment. On the other hand, the value of the strength of the reaction-based joints was affected by heat treatment, indicating the presence of residual stresses or unreacted material subsequent to processing. Further investigation of reaction-based joining should consist of detailed microscopic studies; however, continued study of joints derived from polymers is also warranted.

  19. Heat stroke during long-term clozapine treatment: should we be concerned about hot weather?

    PubMed

    Hoffmann, Maurício Scopel; Oliveira, Lucas Mendes; Lobato, Maria Inês Rodrigues; Belmonte-de-Abreu, Paulo

    2016-03-01

    Objective To describe the case of a patient with schizophrenia on clozapine treatment who had an episode of heat stroke. Case description During a heat wave in January and February 2014, a patient with schizophrenia who was on treatment with clozapine was initially referred for differential diagnose between systemic infection and neuroleptic malignant syndrome, but was finally diagnosed with heat stroke and treated with control of body temperature and hydration. Comments This report aims to alert clinicians take this condition into consideration among other differential diagnoses, especially nowadays with the rise in global temperatures, and to highlight the need for accurate diagnosis of clinical events during pharmacological intervention, in order to improve treatment decisions and outcomes. PMID:27074342

  20. Hydrogen Degassing Study During the Heat Treatment of 1.3-GHZ SRF Cavities

    SciTech Connect

    Joung, Mijoung; Kim, H. J.; Rowe, A.; Wong, M.

    2013-10-02

    Superconducting radio frequency (SRF) cavities undergo a number of processes as part of its manufacturing procedure in order to optimize their performance. Among these processes is a high temperature hydrogen degas heat treatment used to prevent 'Q' decrease. The heat treatment occurs in the processing sequence after either chemically or mechanically polishing the cavity. This paper summarizes the hydrogen measurements during the heat treatment of a sample of chemically and mechanically polished single-cell and nine-cell 1.3-GHz cavities. The hydrogen measurements are analyzed according the polishing method, the polishing history, the amount of time that the cavity was baked at 800°C, and the temperature ramp rate.

  1. Discontinuous Precipitation in Ni-Base Superalloys During Solution Heat Treatment

    NASA Astrophysics Data System (ADS)

    Welton, D.; D'Souza, N.; Kelleher, J.; Gardner, S.; Dong, Z. H.; West, G. D.; Dong, Hongbiao

    2015-09-01

    Discontinuous precipitation in single-crystal Ni-base superalloys during solution heat treatment has been studied. It is found that discontinuous precipitation occurs at temperatures approaching the solvus, where volume diffusion is dominant. Diffusion of Al ahead of the boundary leads to gamma prime precipitation and is accompanied by a loss in the driving force available for advancement of the grain boundary. The rate of gamma prime precipitation was tracked using in situ neutron diffraction during isothermal hold. Gamma prime precipitation is accompanied by super-saturation of Cr and W within the channels ahead of the interface. The driving force calculated for the initial stages of DP was [10-5 to 10-4] N/[ μm2 of the grain boundary]. The results provide an insight into discontinuous precipitation during solution heat treatment of Ni-base single-crystal alloys and are useful in optimizing the heat treatment process to avoid surface defect formation.

  2. Decrease in the acrylamide content in canned coffee by heat treatment with the addition of cysteine.

    PubMed

    Narita, Yusaku; Inouye, Kuniyo

    2014-12-17

    Acrylamide (AA) is classified as a Group 2A carcinogen according to the International Agency for Research on Cancer. Although coffee contains a small amount of AA, it is a popular beverage worldwide. Approximately 10 billion canned coffees are consumed each year in Japan. In this study, we investigated how to decrease AA contained in canned coffee by modifying the heat treatment used for sterilization during the manufacturing process. The AA content of both types of canned coffee (black and milk) was decreased by approximately 95% by heat treatment with adding cysteine at 121 °C for 6 min. The content was also decreased by heat treatment with dithiothreitol, although that with cystine had no effect. Therefore, it is shown that thiol groups in cysteine and dithiothreitol might play an important role in decreasing the AA content. PMID:25420187

  3. Effect of heat treatment time on microstructure and electrical conductivity in LATP glass ceramics

    SciTech Connect

    Sonigra, Dhiren E-mail: ajit.kulkarni@iitb.ac.in; Soman, Swati E-mail: ajit.kulkarni@iitb.ac.in; Kulkarni, Ajit R. E-mail: ajit.kulkarni@iitb.ac.in

    2014-04-24

    Glass-ceramic is prepared by heat treatment of melt quenched 14Li{sub 2}O−9Al{sub 2}O{sub 3}−38TiO{sub 2}−39P{sub 2}O{sub 5} glass in the vicinity of crystallization temperature. Growth of ceramic phase is controlled by tuning heat treatment time at fixed temperature. Ceramic phase was identified to be LiTi{sub 2}(PO{sub 4}){sub 3} from X Ray Diffraction analysis. Microstructural evolution of this phase with hold time was observed under high resolution Scanning Electron Microscope. DC conductivity is observed to increase by 4-5 orders of magnitude in this glass-ceramic compared to parent glass. However, formation of pores and cracks with very large heat treatment time seem to hinder further increase of conductivity.

  4. Heated-controlled atmosphere postharvest treatments for Macchiademus diplopterus (Hemiptera: Lygaeidae) and Phlyctinus callosus (Coleoptera: Curculionidae).

    PubMed

    Johnson, S A; Neven, L G

    2011-04-01

    Nonchemical, environmentally friendly quarantine treatments are preferred for use in postharvest control of insect pests. Combined high temperature and controlled atmosphere quarantine treatments for phytosanitary fruit pests Macchiademus diplopterus (Distant) (Hemiptera: Lygaeidae) and Phlyctinus callosus (Schoenherr) (Coleoptera: Curculionidae) were investigated to determine the potential of such treatments for quarantine security. Field-collected, aestivating M. diplopterus adults and P. callosus adults were treated using a controlled atmosphere waterbath system. This system simulates the controlled atmosphere temperature treatment system (CATTS) used to control a number of phytosanitary pests in the United States and allows for a rapid assessment of pest response to treatment. Insects were treated under regular air conditions and a controlled atmosphere of 1% oxygen, 15% carbon dioxide in nitrogen, at two ramping heat rates, 12 and 24 degrees C/h. Treatment of both species was more effective under both heating rates when the controlled atmosphere condition was applied. Under these conditions of controlled atmospheres, mortality of P. callosus was greater when the faster heating rate was used, but the opposite was true for M. diplopterus. This could be due to the physiological condition of aestivation contributing to metabolic arrest in response to the stresses being applied during treatment. Results indicate that the potential for the development of CATTS treatments for these phytosanitary pests, particularly P. callosus, is promising. PMID:21510185

  5. Influence of heat treatments on microstructure, mechanical properties, and corrosion resistance of weld alloy 625

    SciTech Connect

    Cortial, F.; Corrieu, J.M.; Vernot-Loier, C.

    1995-05-01

    The effects of heat treatments of the industrial type on the structural, mechanical, and corrosion resistance characteristics of weld alloy 625 have been studied. During the heat treatment, the mean concentration ratios of Nb, Mo, Si, Cr, Ni, and Fe elements between the interdendritic spaces and dendrite cores show little evolution up to 850 C. Beyond that temperature, this ratio approximates 1, and the composition heterogeneity has practically disappeared at 1,000 C. An eight-hour heat treatment at temperatures between 650 C and 750 C results in increased mechanical strength values and reduced ductility and impact strength linked to the precipitation of body-centered tetragonal metastable intermetallic {gamma}{double_prime} Ni{sub 3}Nb phase in the interdendritic spaces. An eight-hour treatment in the temperature range between 750 C and 950 C has catastrophic effects on all mechanical characteristics in relation with the precipitation, in the interdendritic spaces, of the stable orthorhombic intermetallic {delta} Ni{sub 3}(Nb, Mo, Cr, Fe, Ti) phase. At 1,000 C, the ductility and impact strength are restored. However, the higher the beat treatment temperature, the weaker the mechanical strength. Heat treatments have no effect on the pitting resistance of weld alloy 625 in sea water. The comparison of the results of this study on weld alloy 625 with those previously obtained on forged metal 625 shows that heat treatments below 650 C and above 1,000 C are the sole treatments to avoid embrittlement and impairment of the corrosion resistance characteristics of alloy 625.

  6. Effect of Heat Treatment Temperature on the Spectral Properties of Cu-Ni Coating.

    PubMed

    Liu, Xiao-zhen; Shen, Qin-weii; Liu, Xiao-zhou; Chen, Jie; Zhu, Liang-wei; Qi, Jie

    2015-04-01

    Cu-Ni coatings were prepared on the surface of nickel by electrodeposition method, and Cu-Ni coatings were heat-treated in 25-900 °C. Heat-treated Cu-Ni coatings were characterized with scanning electron microscopy (SEM), energy dispersive x-ray analysis (EDAX) and X-ray diffraction (XRD) techniques, respectively. Effects of heat treatment temperature on the spectral properties of Cu-Ni coatings were studied. The surface of Cu-Ni coating is composed of the nodules. The nodules of Cu-Ni coating surface become smaller with the increase in heat treatment temperature in 25-600 °C. The nodules of Cu-Ni coating surface become smaller and the dividing line between the nodules becomes more blurred with the increase in heat treatment temperature in 600-900 °C. The contents of copper in Cu-Ni coating decrease from 82.52 at % to 78.30 at % with the increase in heat treatment temperature in the range of 25-900 °C; the contents of nickel in Cu-Ni coating increase from 17.48 at % to 21.70 at % with the increase in heat treatment temperature in the range of 25-900 °C. The crystal structure of Cu-Ni coating is Cu0:8lNi0.19 cubic crystal structure. The crystal structure of the CuO0.81Ni0.19 becomes more complete with the increase in heat treatment temperature in 25- 300 °C. Part of crystal structure of the Cu0.81AlNi0.19 can turn Cu0.8lNi0.19 cubic crystal structure into Cu3.8Ni cubic crystal structure, and is advantageous to Cu3.8Ni (311) and Cu0.81Ni0.19 (311) growth with the increase in heat treatment temperature in 600-900 °C. PMID:26197608

  7. Effect of heat treatment on the phenolic compounds and antioxidant capacity of citrus peel extract.

    PubMed

    Xu, Guihua; Ye, Xingqian; Chen, Jianchu; Liu, Donghong

    2007-01-24

    This paper reports the effects of heat treatment on huyou (Citrus paradisi Changshanhuyou) peel in terms of phenolic compounds and antioxidant capacity. High-performance liquid chromatography (HPLC) coupled with a photodiode array (PDA) detector was used in this study for the analysis of phenolic acids (divided into four fractions: free, ester, glycoside, and ester-bound) and flavanone glycosides (FGs) in huyou peel (HP) before and after heat treatment. The results showed that after heat treatment, the free fraction of phenolic acids increased, whereas ester, glycoside, and ester-bound fractions decreased and the content of total FGs declined (P < 0.05). Furthermore, the antioxidant activity of methanol extract of HP increased (P < 0.05), which was evaluated by total phenolics contents (TPC) assay, 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) (ABTS*+) method, and ferric reducing antioxidant power (FRAP) assay. The correlation coefficients among TPC, ABTS, FRAP assay, and total cinnamics and benzoics (TCB) in the free fraction were significantly high (P < 0.05), which meant that the increase of total antioxidant capacity (TAC) of HP extract was due at least in part to the increase of TCB in free fraction. In addition, FGs may be destroyed when heated at higher temperature for a long time (for example, 120 degrees C for 90 min or 150 degrees C for 30 min). Therefore, it is suggested that a proper and reasonable heat treatment could be used to enhance the antioxidant capacity of citrus peel. PMID:17227062

  8. Effects of heat treatment on mechanical properties of base metal wrought wire clasps.

    PubMed

    Ikebe, K; Nokubi, T; Yasui, S; Kibi, M; Okuno, Y

    1992-12-01

    The purpose of this study is to determine the effects of heat treatment and soldering on the change of shape and mechanical properties of cobalt-chromium-nickel alloy wrought wire clasps. The change of distance between the tips of the clasp arm was measured and mechanical properties were examined using the bending test. The following results were obtained. 1) By heat treatment at 500-700 degrees C for 10 minutes, bending rigidity and deflection at the proportional limit of the clasp arm increased significantly (p < 0.01), while permanent deformation after the bending test decreased considerably (p < 0.01). Concerning the deformation of clasp arms by heating, the distance between clasp tips increased remarkably above 500 degrees C (p < 0.01). 2) These mechanical properties of clasp arms were improved both by electric resistance soldering with silver solder and by heat treatment at 500 degrees C for 10 minutes after soldering. From these results, it was concluded that electric resistance soldering and adequate heat treatment were very effective to improve the mechanical properties of the clasp arm, especially to increase the deflection at the proportional limit and reduce the permanent deformation. PMID:1364130

  9. Evaluations of bioactivity and mechanical properties of poly (epsilon-caprolactone)/silica nanocomposite following heat treatment.

    PubMed

    Yoo, Jeong Joon; Rhee, Sang-Hoon

    2004-03-01

    A composite material consisting of poly(epsilon-caprolactone) (PCL) and silica was prepared and evaluated as a bioactive bone substitute. The composite was synthesized by the co-condensation of tetraethyl orthosilicate and PCL and end-capped with triethoxysilane (Si-PCL). The as-prepared specimens were subjected to an initial heat treatment of 2 days at 60 degrees C, followed by further heat-treatments at 100 degrees C, 150 degrees C, and 200 degrees C for 24 h. The tensile mechanical properties of the heat-treated specimens were determined, and additional specimens were exposed to a simulated body fluid (SBF) for different periods of time. The SBF exposure led to the deposition of a layer of apatite crystals on the surface of the composites. It was found that increasing the second heat-treatment temperature produced an increase in tensile strength and Young's modulus of the composite but a decrease in the initial rate of apatite formation. These phenomena are explained in terms of the condensation reaction that takes place between the silanol groups in the silica and Si-PCL as the heat-treatment temperature is increased. PMID:14762919

  10. Detailed near-infrared study of the `water'-related transformations in silcrete upon heat treatment

    NASA Astrophysics Data System (ADS)

    Schmidt, Patrick; Lauer, Christoph; Buck, Gerald; Miller, Christopher E.; Nickel, Klaus G.

    2016-08-01

    In archaeology, lithic heat treatment is the process of modifying a rock for stone tool production using fire. Although the earliest known cases of heat treatment come from South Africa and involved silcrete, a microcrystalline pedogenic silica rock, its thermal transformations remain poorly understood. We investigate the `water'-related transformations in silcrete using direct transmission near-infrared spectroscopy. We found that SiOH is noticeably lost between 250 and 450 °C and hydroxyl reacts with H2O, part of which is trapped in the structure of the rocks. This water can only be evaporated through heat-induced fracturing at high temperatures, imposing maximum temperatures for silcrete heat treatment of approximately 500 °C. Between 250 and 450 °C new siloxane bonds are formed according to the reaction 2SiOH → Si-O-Si + H2O, which can be expected to transform the rock's mechanical properties. The tolerance of silcrete for relatively fast ramp rates can be explained by its pore volume and low SiOH content, ensuring good water evaporation. These results shed light on the processes taking place in silcrete during heat treatment and allow for a better understanding of the parameters needed for it.

  11. Enhancement of minority carrier diffusion length in grains of cast Si by hydrogen heat treatments

    NASA Astrophysics Data System (ADS)

    Mimila-Arroyo, J.; Duenas-Santos, F.; del Valle, J. L.

    Minority carrier diffusion length (mcdl) enhancement in the bulk of grains of cast poly-silicon for solar cells has been produced by hydrogen heat treatments. Measurements made by LBIC method, showed an increase of mcdl in the bulk of grains from a mean value of 53 microns to a mean value of 69 microns, before and after the hydrogen heat treatments, respectively, under white light illumination. A mean increase ratio of 33% in the mcdl was obtained in a reproducible way and it was verified that hydrogen was effectively responsible. This result clearly establishes the hydrogen passivating role in this material

  12. Identification of heat treatments for better formability in an aluminum-lithium alloy sheet

    NASA Astrophysics Data System (ADS)

    Bairwa, M. L.; Desai, Sharvari G.; Date, P. P.

    2005-10-01

    Research in the weight of an automobile is a continuous process among auto manufacturers. The “body in white” (BIW, i.e., the body of the car) deserves attention, being a major contributor to the weight of the vehicle. By virtue of a high strength to weight ratio (density smaller than aluminum) and a higher Young’s modulus than aluminum, aluminum-lithium alloy sheet appears to hold promise as an autobody material. Because auto components are required in large numbers and are formed at room temperature, formability under these conditions becomes significant. Aluminum-lithium alloys acquire, because of aging over a short period of time, a good amount of strength and hence dent resistance. In principle, they can be given, through suitable heat treatments, a high formability as well as dent resistance, i.e., an ideal combination of properties. To this end, tensile properties have been determined for a number of heat treatments comprising three different solutionizing temperatures and for three aging times at each of the three aging temperatures. Considerable influence of heat treatment was observed on the mechanical properties (which in turn characterize both formability and dent resistance), such as the strain hardening exponent, average normal anisotropy, yield stress, ultimate tensile stress, and percentage elongation to failure. For each property, the best three heat treatments leading to a high formability were identified. Consequently, heat treatments that imparted the greatest formability for processes such as deep drawing and stretch forming have been identified. The investigations show that the best heat treatment for one property may not be the best for another property, calling for a compromise to obtain the most practicable heat treatment schedule. Results shed light on not only the biaxial formability but also springback behavior that is important in the BIW components. Further, the properties obtained from the heat treatment giving good formability

  13. Influence of heat treatment on mechanical properties of 300M Steel

    NASA Technical Reports Server (NTRS)

    Youngblood, J. L.; Raghavan, M. R.

    1975-01-01

    The plane strain fracture toughness and tensile strength response of 300M Steel to a wide variety of austenitizing and tempering temperatures were investigated. The results make it possible for one to select heat treatments which provide an optimum combination of strength and toughness for a variety of structural applications. In particular, improvements in toughness on the order of 20% were found possible with no loss in tensile properties by increasing the austenitizing temperature from the currently employed 1144 K to 1255 K or higher, and this change in heat treatment therefore appears worthy of general implementation.

  14. Improvement of Mechanical Properties of Spheroidized 1045 Steel by Induction Heat Treatment

    NASA Astrophysics Data System (ADS)

    Kim, Minwook; Shin, Jung-Ho; Choi, Young; Lee, Seok-Jae

    2016-04-01

    The effects of induction heat treatment on the formation of carbide particles and mechanical properties of spheroidized 1045 steel were investigated by means of microstructural analysis and tensile testing. The induction spheroidization accelerated the formation of spherical cementite particles and effectively softened the steel. The volume fraction of cementite was found to be a key factor that affected the mechanical properties of spheroidized steels. Further tests showed that sequential spheroidization by induction and furnace heat treatments enhanced elongation within a short spheroidization time, resulting in better mechanical properties. This was due to the higher volume fraction of spherical cementite particles that had less diffusion time for particle coarsening.

  15. Effect of foam on temperature prediction and heat recovery potential from biological wastewater treatment.

    PubMed

    Corbala-Robles, L; Volcke, E I P; Samijn, A; Ronsse, F; Pieters, J G

    2016-05-15

    Heat is an important resource in wastewater treatment plants (WWTPs) which can be recovered. A prerequisite to determine the theoretical heat recovery potential is an accurate heat balance model for temperature prediction. The insulating effect of foam present on the basin surface and its influence on temperature prediction were assessed in this study. Experiments were carried out to characterize the foam layer and its insulating properties. A refined dynamic temperature prediction model, taking into account the effect of foam, was set up. Simulation studies for a WWTP treating highly concentrated (manure) wastewater revealed that the foam layer had a significant effect on temperature prediction (3.8 ± 0.7 K over the year) and thus on the theoretical heat recovery potential (30% reduction when foam is not considered). Seasonal effects on the individual heat losses and heat gains were assessed. Additionally, the effects of the critical basin temperature above which heat is recovered, foam thickness, surface evaporation rate reduction and the non-absorbed solar radiation on the theoretical heat recovery potential were evaluated. PMID:27017195

  16. Conjugate heat transfer analysis of an ultrasonic molten metal treatment system

    NASA Astrophysics Data System (ADS)

    Zhu, Youli; Bian, Feilong; Wang, Yanli; Zhao, Qian

    2014-09-01

    In piezoceramic ultrasonic devices, the piezoceramic stacks may fail permanently or function improperly if their working temperatures overstep the Curie temperature of the piezoceramic material. While the end of the horn usually serves near the melting point of the molten metal and is enclosed in an airtight chamber, so that it is difficult to experimentally measure the temperature of the transducer and its variation with time, which bring heavy difficulty to the design of the ultrasonic molten metal treatment system. To find a way out, conjugate heat transfer analysis of an ultrasonic molten metal treatment system is performed with coupled fluid and heat transfer finite element method. In modeling of the system, the RNG model and the SIMPLE algorithm are adopted for turbulence and nonlinear coupling between the momentum equation and the energy equation. Forced air cooling as well as natural air cooling is analyzed to compare the difference of temperature evolution. Numerical results show that, after about 350 s of working time, temperatures in the surface of the ceramic stacks in forced air cooling drop about 7 K compared with that in natural cooling. At 240 s, The molten metal surface emits heat radiation with a maximum rate of about 19 036 W/m2, while the heat insulation disc absorbs heat radiation at a maximum rate of about 7922 W/m2, which indicates the effectiveness of heat insulation of the asbestos pad. Transient heat transfer film coefficient and its distribution, which are difficult to be measured experimentally are also obtained through numerical simulation. At 240 s, the heat transfer film coefficient in the surface of the transducer ranges from -17.86 to 20.17 W/(m2 · K). Compared with the trial and error method based on the test, the proposed research provides a more effective way in the design and analysis of the temperature control of the molten metal treatment system.

  17. Dissolution of iron intermetallics in Al-Si alloys through nonequilibrium heat treatment

    SciTech Connect

    Anantha Narayanan, L. |; Samuel, F.H.; Gruzleski, J.E.

    1995-08-01

    Conventional heat treatment techniques in Al-Si alloys to achieve optimum mechanical properties are limited to precipitation strengthening processes due to the presence of second-phase particles and spheroidization of silicon particles. The iron intermetallic compounds present in the microstructure of these alloys are reported to be stable, and they do not dissolve during conventional (equilibrium) heat treatments. The dissolution behavior of iron intermetallics on nonequilibrium heat treatment has been investigated by means of microstructure and mechanical property studies. The dissolution of iron intermetallics improves with increasing solution temperature. The addition of manganese to the alloy hinders the dissolution of iron intermetallics. Nonequilibrium heat treatment increases the strength properties of high iron alloys until a critical solution temperature is exceeded. Above this temperature, a large amount of liquid phase is formed as a result of interdendritic and grain boundary melting. The optimum solution treatment temperature for Al-6Si-3.5Cu-0.3Mg-1Fe alloys is found to be between 515 C and 520 C.

  18. Effect of grinding and heat treatment on the mechanical behavior of zirconia ceramic.

    PubMed

    Ramos, Gabriela Freitas; Pereira, Gabriel Kalil Rocha; Amaral, Marina; Valandro, Luiz Felipe; Bottino, Marco Antonio

    2016-01-01

    The present study investigated the effect of grinding on roughness, flexural strength, and reliability of a zirconia ceramic before and after heat treatment. Seven groups were tested (n = 15): a control group (labeled CG, untreated), and six groups of samples ground with diamond discs, simulating diamond burs, with grits of 200 µm (G80); 160 µm (G120), and 25 µm (G600), either untreated or heat-treated at 1200°C for 2 h (labeled A). Yttria tetragonal zirconia polycrystal discs were manufactured, ground, and submitted to roughness and crystalline phase analyses before the biaxial flexural strength test. There was no correlation between roughness (Ra and Rz) and flexural strength. The reliability of the materials was not affected by grinding or heat treatment, but the characteristic strength was higher after abrasion with diamond discs, irrespective of grit size. The X-ray diffraction data showed that grinding leads to a higher monoclinic (m) phase content, whereas heat treatment produces reverse transformation, leading to a fraction of m-phase in ground samples similar to that observed in the control group. However, after heat treatment, only the G80A samples presented strength similar to that of the control group, while the other groups showed higher strength values. When zirconia pieces must be adjusted for clinical use, a smoother surface can be obtained by employing finer-grit diamond burs. Moreover, when the amount of monoclinic phase is related to the degradation of zirconia, the laboratory heat treatment of ground pieces is indicated for the reverse transformation of zirconia crystals. PMID:26676188

  19. The influence of distal-end heat treatment on deflection of nickel-titanium archwire

    PubMed Central

    da Silva, Marcelo Faria; Pinzan-Vercelino, Célia Regina Maia; Gurgel, Júlio de Araújo

    2016-01-01

    Objective: The aim of this in vitro study was to evaluate the deflection-force behavior of nickel-titanium (NiTi) orthodontic wires adjacent to the portion submitted to heat treatment. Material and Methods: A total of 106 segments of NiTi wires (0.019 x 0.025-in) and heat-activated NiTi wires (0.016 x 0.022-in) from four commercial brands were tested. The segments were obtained from 80 archwires. For the experimental group, the distal portion of each segmented archwire was subjected to heat treatment (n = 40), while the other distal portion of the same archwire was used as a heating-free control group (n = 40). Deflection tests were performed in a temperature-controlled universal testing machine. Unpaired Student's t-tests were applied to determine if there were differences between the experimental and control groups for each commercial brand and size of wire. Statistical significance was set at p < 0.05. Results: There were no statistically significant differences between the tested groups with the same size and brand of wire. Conclusions: Heat treatment applied to the distal ends of rectangular NiTi archwires does not permanently change the elastic properties of the adjacent portions. PMID:27007766

  20. Heat Treatment Effect on Fracture Toughness of F82H Irradiated in HFIR

    SciTech Connect

    Stoller, Roger E; Sokolov, Mikhail A; Tanigawa, Hiroyasu; Hirose, Takanori; Odette, G.R.; Okubo, N.; Jitsukawa, Shiro; Sawai, T.

    2011-01-01

    Irradiation hardening and fracture toughness of reduced-activation ferritic/martensitic steel F82H after irradiation were investigated with a focus on changing the fracture toughness transition temperature as a result of several heat treatments. The specimens were standard F82H-IEA (IEA), F82H-IEA with several heat treatments (Mod1 series) and a heat of F82H (Mod3) containing 0.1 % tantalum. The specimens were irradiated up to 20 dpa at 300oC in the High Flux Isotope Reactor under a collaborative research program between JAEA/US-DOE. The results of hardness tests showed that irradiation hardening of IEA was comparable with that of Mod3. However, the fracture toughness-transition temperature of Mod3 was lower than that of IEA. The transition temperature of Mod1 was also lower than that of the IEA heat. These results suggest that optimization of specifications on the heat treatment condition and modification of the minor alloying elements seem to be effective to reduce the fracture toughness-transition temperature after irradiation.

  1. Water treatment capacity of forward osmosis systems utilizing power plant waste heat

    SciTech Connect

    Zhou, Xingshi; Gingerich, Daniel B.; Mauter, Meagan S.

    2015-06-11

    Forward osmosis (FO) has the potential to improve the energy efficiency of membrane-based water treatment by leveraging waste heat from steam electric power generation as the primary driving force for separation. In this study, we develop a comprehensive FO process model, consisting of membrane separation, heat recovery, and draw solute regeneration (DSR) models. We quantitatively characterize three alternative processes for DSR: distillation, steam stripping, and air stripping. We then construct a mathematical model of the distillation process for DSR that incorporates hydrodynamics, mass and heat transport resistances, and reaction kinetics, and we integrate this into a model for the full FO process. Finally, we utilize this FO process model to derive a first-order approximation of the water production capacity given the rejected heat quantity and quality available at U.S. electric power facilities. We find that the upper bound of FO water treatment capacity using low-grade heat sources at electric power facilities exceeds process water treatment demand for boiler water make-up and flue gas desulfurization wastewater systems.

  2. Water treatment capacity of forward osmosis systems utilizing power plant waste heat

    DOE PAGESBeta

    Zhou, Xingshi; Gingerich, Daniel B.; Mauter, Meagan S.

    2015-06-11

    Forward osmosis (FO) has the potential to improve the energy efficiency of membrane-based water treatment by leveraging waste heat from steam electric power generation as the primary driving force for separation. In this study, we develop a comprehensive FO process model, consisting of membrane separation, heat recovery, and draw solute regeneration (DSR) models. We quantitatively characterize three alternative processes for DSR: distillation, steam stripping, and air stripping. We then construct a mathematical model of the distillation process for DSR that incorporates hydrodynamics, mass and heat transport resistances, and reaction kinetics, and we integrate this into a model for the fullmore » FO process. Finally, we utilize this FO process model to derive a first-order approximation of the water production capacity given the rejected heat quantity and quality available at U.S. electric power facilities. We find that the upper bound of FO water treatment capacity using low-grade heat sources at electric power facilities exceeds process water treatment demand for boiler water make-up and flue gas desulfurization wastewater systems.« less

  3. Effect of alkali and heat treatments for bioactivity of TiO2 nanotubes

    NASA Astrophysics Data System (ADS)

    Kim, Seo young; Kim, Yu kyoung; Park, Il song; Jin, Guang chun; Bae, Tae sung; Lee, Min ho

    2014-12-01

    In this study, for improving the bioactivity of titanium used as an implant material, alkali and heat treatments were carried out after formation of the nanotubes via anodization. Nanotubes with uniform length, diameter, and thickness were formed by anodization. The alkali and heat-treated TiO2 nanotubes were covered with the complex network structure, and the Na compound was generated on the surface of the specimens. In addition, after 5 and 10 days of immersion in the SBF, the crystallized OCP and HAp phase was significantly increased on the surface of the alkali-treated TiO2 nanotubes (PNA) and alkali and heat-treated TiO2 nanotubes (PNAH) groups. Cell proliferation was decreased due to the formation of amorphous sodium titanate (Na2TiO3) layer on the surface of the PNA group. However, anatase and crystalline sodium titanate were formed on the surface of the PNAH group after heat treatment at 550 °C, and cell proliferation was improved. Thus, PNA group had higher HAp forming ability in the simulated body fluid. Additional heat treatment affected on enhancement of the bioactivity and the attachment of osteoblasts for PNA group.

  4. Proteomic profiling of camel and cow milk proteins under heat treatment.

    PubMed

    Felfoul, Imène; Jardin, Julien; Gaucheron, Frédéric; Attia, Hamadi; Ayadi, M A

    2017-02-01

    Cow and camel milk proteins before and after heat treatment at 80°C for 60min were identified using LC/MS and LC-MS/MS following monodimensional electrophoresis. The database used for the identification of camel and cow proteins was set from http://www.uniprot.org/. The obtained results showed that, after heating, camel milk at 80°C for 60min, camel α-lactalbumin (α-la) and peptidoglycan recognition protein (PGRP) were not detected while camel serum albumin (CSA) was significantly diminished. When heating cow milk at 80°C for 60min, α-lactalbumin (α-la) and β-lactoglobulin (β-lg) were not significantly detected. Moreover, 19 protein bands from SDS-PAGE were analyzed and a total of 45 different proteins were identified by LC-MS/MS. Casein fractions were kept intact under a heat treatment of 80°C during 60min of both camel and cow milks. Camel and bovine whey proteins were affected by a heat treatment of 80°C for 60min. PMID:27596405

  5. Effect of chemical heat treatment on the fatigue resistance of titanium alloys

    SciTech Connect

    Matokhnyuk, L.E.; Nochovnaya, N.A.; Voinalovich, A.V.; Yakovleva, T.Y.

    1985-11-01

    In order to improve the wear resistance of titanium alloy articles, chemical heat treatment, in particular, oxidation and nitriding diffusion impregnation of the article is performed. As a result of this treatment there is a marked increase in surface layer hardness. The change in structure and properties of surface layers have a marked effect on material resistance in fatigue failure as well as on sensitivity to stress concentration. This is the subject of the research discussed here.

  6. Investigation of laser heating effect of metallic nanoparticles on cancer treatment

    NASA Astrophysics Data System (ADS)

    Shan, G. S.; Liu, X. M.; Chen, H. J.; Yu, J. S.; Chen, X. D.; Yao, Y.; Qi, L. M.; Chen, Z. J.

    2016-07-01

    Metallic nanoparticles can be applied for hyperthermia therapy of cancer treatment to enhance the efficacy because of their high absorption rate. The absorption of laser energy by metallic nanoparticles is strongly dependent on the concentration, shape, material of nanoparticles and the wavelength of the laser. However, there is no systematic investigation on the heating effect involving different material, concentration and laser wavelength. In this paper, gold nanoparticles (AuNPs), sliver nanoparticles (AgNPs) and sliver nanowires (AgNWs) with different concentrations are heated by 450nm and 532nm wavelength laser to investigate the heating effect. The result shows that the temperature distribution of heated metallic nanoparticles is non-uniform.

  7. The Effect of Solution Heat Treatment on an Advanced Nickel-Base Disk Alloy

    NASA Technical Reports Server (NTRS)

    Gayda, J.; Gabb, T. P.; Kantzos, P. T.

    2004-01-01

    Five heat treat options for an advanced nickel-base disk alloy, LSHR, have been investigated. These included two conventional solution heat treat cycles, subsolvus/oil quench and supersolvus/fan cool, which yield fine grain and coarse grain microstructure disks respectively, as well as three advanced dual microstructure heat treat (DMHT) options. The DMHT options produce disks with a fine grain bore and a coarse grain rim. Based on an overall evaluation of the mechanical property data, it was evident that the three DMHT options achieved a desirable balance of properties in comparison to the conventional solution heat treatments for the LSHR alloy. However, one of the DMHT options, SUB/DMHT, produced the best set of properties, largely based on dwell crack growth data. Further evaluation of the SUB/DMHT option in spin pit experiments on a generic disk shape demonstrated the advantages and reliability of a dual grain structure at the component level.

  8. Fluxless Brazing and Heat Treatment of a Plate-Fin Sandwich Actively Cooled Panel

    NASA Technical Reports Server (NTRS)

    Beuyukian, C. S.

    1978-01-01

    The processes and techniques used to fabricate plate-fin sandwich actively cooled panels are presented. The materials were 6061 aluminum alloy and brazing sheet having clad brazing alloy. The panels consisted of small scale specimens, fatigue specimens, and a large 0.61 m by 1.22 m test panel. All panels were fluxless brazed in retorts in heated platen presses while exerting external pressure to assure intimate contact of details. Distortion and damage normally associated with that heat treatment were minimized by heat treating without fixtures and solution quenching in an organic polymer solution. The test panel is the largest fluxless brazed and heat treated panel of its configuration known to exist.

  9. On post-weld heat treatment cracking in tig welded superalloy ATI 718Plus

    NASA Astrophysics Data System (ADS)

    Asala, G.; Ojo, O. A.

    The susceptibility of heat affected zone (HAZ) to cracking in Tungsten Inert Gas (TIG) welded Allvac 718Plus superalloy during post-weld heat treatment (PWHT) was studied. Contrary to the previously reported case of low heat input electron beam welded Allvac 718Plus, where HAZ cracking occurred during PWHT, the TIG welded alloy is crack-free after PWHT, notwithstanding the presence of similar micro-constituents that caused cracking in the low input weld. Accordingly, the formation of brittle HAZ intergranular micro-constituents may not be a sufficient factor to determine cracking propensity, the extent of heat input during welding may be another major factor that influences HAZ cracking during PWHT of the aerospace superalloy Allvac 718Plus.

  10. Influence of heat treatment on hydrogen ingress into V-4Cr-4Ti alloy

    NASA Astrophysics Data System (ADS)

    Hayakawa, Ryo; Hatano, Yuji; Fukumoto, Ken-ichi; Matsui, Hideki; Watanabe, Kuniaki

    2004-08-01

    Specimens of V-4Cr-4Ti alloy were heated at 1273 K in vacuum, and the influence of this heat treatment on H 2 absorption was examined at temperatures from 523 to 1023 K under the presence of water vapor of 10 -5 Pa. The rate of H 2 absorption was significantly reduced by the heat treatment in the temperature range examined. Such reduction in the absorption rate was ascribed to the surface segregation of Ti and increase in surface oxygen coverage caused by preferential oxidation of segregating Ti by water vapor. Comparison with data reported by other researchers [J. Nucl. Mater. 233-237 (1996) 376; Fusion Technol. 34 (1998) 868; J. Nucl. Mater. 233-237 (1996) 510] indicated the strong barrier effect of Ti oxide against hydrogen ingress.

  11. YIELD STRENGTH PREDICTION FOR RAPID AGE-HARDENING HEAT TREATMENT OF ALUMINUM ALLOYS

    SciTech Connect

    Yin, Hebi; Sabau, Adrian S; Ludtka, Gerard Michael; Skszek, Timothy; Niu, X

    2013-01-01

    A constitutive model has been developed to predict the yield strength aging curves for aluminum casting alloys during non-isothermal age-hardening processes. The model provides the specific relationship between the process variables and yield strength. Several aging heat treatment scenarios have been investigated using the proposed model, including two-step aging recipes. Two-step aging heat treatments involve a low temperature regime to promote nucleation of secondary phases and a second step at higher temperature for the growth of the secondary phases. The predicted results show that yield strength of approximately 300MPa might be obtained in shorter aging time, of approximately 30 minutes. Thus, better mechanical properties can be obtained by optimizing the time-temperature schedules for the precipitation hardening process of heat treatable aluminum alloys.

  12. Changes in acidity of Fe-pillared/delaminated smectites on heat treatment

    SciTech Connect

    Bandosz, T.J.; Cheng, K.

    1997-07-15

    Hydroxy-iron smectites were prepared using solutions with a OH/Fe content of about 1.2 and 2.5. To study thermal stability, the samples were heated in air at temperatures between 473 and 873 K. Changes in surface chemistry imposed by heat treatment were evaluated using potentiometric titration. The pK{sub a} distributions revealed peaks characteristic for iron complexes (Fe{sup III}) deposited on the surface of smectite. Heat treatment resulted in significant changes in the chemistry of the material and creation of new species; however, the sorbents textural properties did not alter significantly. Data obtained from X-ray diffraction and sorption of nitrogen demonstrate that iron species are adsorbed mainly on the external surface of smectite and that the properties of the final products depend upon the OH/Fe ratio of hydroxy-iron solutions used in their preparation.

  13. Thermal treatments of foods: a predictive general-purpose code for heat and mass transfer

    NASA Astrophysics Data System (ADS)

    Barba, Anna Angela

    2005-05-01

    Thermal treatments of foods required accurate processing protocols. In this context, mathematical modeling of heat and mass transfer can play an important role in the control and definition of the process parameters as well as to design processing systems. In this work a code able to simulate heat and mass transfer phenomena within solid bodies has been developed. The code has been written with the ability of describing different geometries and it can account for any kind of different initial/boundary conditions. Transport phenomena within multi-layer bodies can be described, and time/position dependent material parameters can be implemented. Finally, the code has been validated by comparison with a problem for which the analytical solution is known, and by comparison with a differential scanning calorimetry signal that described the heating treatment of a raw potato (Solanum tuberosum).

  14. Implantable polymer/metal thin film structures for the localized treatment of cancer by Joule heating

    NASA Astrophysics Data System (ADS)

    Kan-Dapaah, Kwabena; Rahbar, Nima; Theriault, Christian; Soboyejo, Wole

    2015-04-01

    This paper presents an implantable polymer/metal alloy thin film structure for localized post-operative treatment of breast cancer. A combination of experiments and models is used to study the temperature changes due to Joule heating by patterned metallic thin films embedded in poly-dimethylsiloxane. The heat conduction within the device and the surrounding normal/cancerous breast tissue is modeled with three-dimensional finite element method (FEM). The FEM simulations are used to explore the potential effects of device geometry and Joule heating on the temperature distribution and lesion (thermal dose). The FEM model is validated using a gel model that mimics biological media. The predictions are also compared to prior results from in vitro studies and relevant in vivo studies in the literature. The implications of the results are discussed for the potential application of polymer/metal thin film structures in hyperthermic treatment of cancer.

  15. Electrical energy consumption and heating requirements of municipal wastewater treatment plants

    NASA Astrophysics Data System (ADS)

    Wang, M. H.; Wang, L. K.

    1982-02-01

    Electrical energy consumption models were developed. The unit operations/processes of pumping, screening and comminution,, grit removal, sedimentation, chlorination, gravity thickening, anaerobic digestion, vacuum filtration, incineration, and diffused air flotation are examined. The mathematical models of total heating requirements of biological wastewater treatment plants are also presented.

  16. High pressure and heat treatments effects on pectic substances in guava juice.

    PubMed

    Yen, G C; Lin, H T

    1998-01-01

    Effects of high pressure treatment on changes in pectic substances in guava juice were investigated and compared with those of heat treated samples. The viscosity and turbidity of guava juice pressurized at 6000 atm and 25 degrees C for 10 min increased slightly, whereas the viscosity of juice heated at 95 degrees C for 5 min decreased from 362 to 285 cps while turbidity increased from 0.87 to 1.15 (OD 600 nm). There were no apparent changes in water soluble, oxalate soluble and alkali soluble pectins in the pressurized juice. However, heat treated juice exhibited a decrease in its water and alkali soluble pectins and a slight increase in oxalate soluble pectin. The DEAE-cellulose profiles of pectic substances in guava juice were apparently unchanged after high pressure treatment while they were markedly changed by heat treatment, due to coagulation or degradation. During thermal processing, the degradation of pectin in guava juice caused a decrease in viscosity while the coagulation of pectin resulted in an increase in turbidity and cloud content. High pressure treatment showed no marked changes in pectic substances and cloud content in guava juice and maintained its natural viscous properties. PMID:9598192

  17. Marketing research for EE G Mound Applied Technologies' heat treatment process of high strength materials

    SciTech Connect

    Shackson, R.H.

    1991-10-09

    This report summarizes research conducted by ITI to evaluate the commercialization potential of EG G Mound Applied Technologies' heat treatment process of high strength materials. The remainder of the report describes the nature of demand for maraging steel, extent of demand, competitors, environmental trends, technology life cycle, industry structure, and conclusion. (JL)

  18. 9 CFR 590.548 - Drying, blending, packaging, and heat treatment rooms and facilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Drying, blending, packaging, and heat treatment rooms and facilities. 590.548 Section 590.548 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG PRODUCTS INSPECTION INSPECTION OF EGGS AND EGG PRODUCTS (EGG PRODUCTS INSPECTION ACT)...

  19. 46 CFR 52.05-15 - Heat treatment (modifies PW-10).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... of the ASME Boiler and Pressure Vessel Code (incorporated by reference; see 46 CFR 52.01-1...-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Boilers Fabricated by Welding § 52.05-15 Heat treatment (modifies PW-10). (a) Vessels...

  20. 46 CFR 52.05-15 - Heat treatment (modifies PW-10).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... of the ASME Boiler and Pressure Vessel Code (incorporated by reference; see 46 CFR 52.01-1...-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Boilers Fabricated by Welding § 52.05-15 Heat treatment (modifies PW-10). (a) Vessels...

  1. 46 CFR 52.05-15 - Heat treatment (modifies PW-10).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... of the ASME Boiler and Pressure Vessel Code (incorporated by reference; see 46 CFR 52.01-1...-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Boilers Fabricated by Welding § 52.05-15 Heat treatment (modifies PW-10). (a) Vessels...

  2. 46 CFR 52.05-15 - Heat treatment (modifies PW-10).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... of the ASME Boiler and Pressure Vessel Code (incorporated by reference; see 46 CFR 52.01-1...-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Boilers Fabricated by Welding § 52.05-15 Heat treatment (modifies PW-10). (a) Vessels...

  3. 46 CFR 52.05-15 - Heat treatment (modifies PW-10).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... of the ASME Boiler and Pressure Vessel Code (incorporated by reference; see 46 CFR 52.01-1...-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Boilers Fabricated by Welding § 52.05-15 Heat treatment (modifies PW-10). (a) Vessels...

  4. Grain refinement of 2Mn-0.1C steel by repetitive heat treatment and recrystallization

    NASA Astrophysics Data System (ADS)

    Park, M. H.; Shibata, A.; Tsuji, N.

    2015-08-01

    Grain refinement in metals is well-known as one of the most effective methods to enhance their strength without addition of other elements. In this study, repetitive heat treatment combined with subsequent cold-rolling and recrystallization were investigated to obtain ultrafine-grained ferrite. Ultrafine-grained (UFG) ferritic structure having a mean grain size smaller than 1 μm was fabricated by repetitive heat treatment at 810 °C for 180 s and cold rolling by 90% plus a recrystallization heat treatment at 600 °C. Starting from this UFG ferrite, finegrained dual phase (DP) steel composed of ferrite and martensite phases with grain sizes smaller than 3 pm could be also obtained by intercritical heat treatment at 740 °C for 30 minutes followed by water-quenching. The mechanical properties of the ultrafine-grained ferritic and DP structured specimens were evaluated by tensile test. Results of the tensile test showed that finegrained ferritic and DP structures had higher yield and tensile strength than the coarse-grained ferritic and DP structures of the same steel.

  5. The metallography of heat treatment effects in a nickel-base casting alloy. A preliminary report.

    PubMed

    Goodall, T G; Lewis, A J

    1979-08-01

    A series of standard tensile specimens produced from a nickel-base removable partial denture casting alloy were subjected to heat treatments at three temperatures and three periods at each temperature. The microstructures developed within the castings disclose changes in both the matrix and interdendritic zones. PMID:296698

  6. Effect of Alloying, Heat Treatment and Carbon Content on White Layer Formation in Machining of Steels

    SciTech Connect

    Han, Sangil; Melkote, Shreyes N; Riester, Laura

    2005-01-01

    This paper describes an experimental investigation of the effects of alloying, carbon content, and heat treatment on white layer formation in machining of steels. The investigation is carried out by machining steels that differ in alloying, heat treatment and carbon content, via orthogonal cutting tests performed with low cBN content tools. The depth of white layer and its hardness are measured for every case. Specifically, the thickness and hardness of white layer produced in cutting AISI 1045 and AISI 4340 annealed steels are compared to determine the effect of alloying on white layer formation. The effect of heat treatment on white layer formation and its hardness are investigated by machining annealed and hardened (53 HRC) AISI 4340 steels. The effect of carbon content on white layer formation is investigated by cutting hardened AISI 52100 and AISI 4340 steels of the same hardness (53 HRC). The results of the study show that alloying, heat treatment, and carbon content influence white layer formation and its hardness.

  7. Changes in acoustic emission peaks in precipitation strengthened alloys with heat treatment

    SciTech Connect

    Heiple, C.R.; Carpenter, S.H.

    1983-01-01

    Acoustic emission was measured during tensile deformation in a number of precipitation-strengthened alloys as a function of prior heat treatment. The alloys tested included 7075, 6061, and 2219 aluminum; a modified A-286 stainless steel (JBK-75) and an experimental beryllium-containing stainless steel; and Incoloy 903. A rms voltage peak was observed in all the alloys near the onset of plastic flow, and a second peak was usually observed in 7075, 2219, and Incoloy 903 at plastic strains greater than 1%. Some evidence of a second peak was also observed in 6061 aluminum. Changes with heat treatment in the stress and strain at which the second peak occurred were consistent with the peak arising from the fracture of inclusions. The shifts in the location of the peak were in a direction so as to make the stress on the inclusions at the second peak relatively insensitive to prior heat treatment. The amplitude distributions of acoustic emission signals were also consistent with this interpretation. The strain at which the first acoustic emission peak occurred also varied with heat treatment, but the dependence of peak location on prior aging was different for the various alloys.

  8. Heat treatment temperature influence on ASTM A890 GR 6A super duplex stainless steel microstructure

    SciTech Connect

    Martins, Marcelo; E-mail: marcelo.martins@sulzer.com; Casteletti, Luiz Carlos

    2005-09-15

    Duplex and super duplex stainless steels are ferrous alloys with up to 26% chromium, 8% nickel, 5% molybdenum and 0.3% nitrogen, which are largely used in applications in media containing ions from the halogen family, mainly the chloride ion (Cl{sup -}). The emergence of this material aimed at substituting Copper-Nickel alloys (Cupro-Nickel) that despite presenting good corrosion resistance, has mechanical properties quite inferior to steel properties. The metallurgy of duplex and super duplex stainless steel is complex due to high sensitiveness to sigma phase precipitation that becomes apparent, due to the temperatures they are exposed on cooling from solidification as well as from heat treatment processes. The objective of this study was to verify the influence of heat treating temperatures on the microstructure and hardness of ASTM A890/A890M Gr 6A super duplex stainless steel type. Microstructure control is of extreme importance for castings, as the chemical composition and cooling during solidification inevitably provide conditions for precipitation of sigma phase. Higher hardness in these materials is directly associated to high sigma phase concentration in the microstructure, precipitated in the ferrite/austenite interface. While heat treatment temperature during solution treatment increases, the sigma phase content in the microstructure decreases and consequently, the material hardness diminishes. When the sigma phase was completely dissolved by the heat treatment, the material hardness was influenced only due to ferrite and austenite contents in the microstructure.

  9. Genetic characterization of Listeria monocytogenes isolates from food processing facilities before and after postcook chiller heat treatment.

    PubMed

    Eglezos, Sofroni; Dykes, Gary A; Huang, Bixing; Turner, Mark S; Seale, Richard

    2013-08-01

    Possible selection for and establishment of stress-resistant Listeria monocytogenes variants as a consequence of heating interventions is of concern to the food industry. Lineage analysis and multilocus variable number tandem repeat analysis (MLVA) was performed on 20 L. monocytogenes isolates, of which 15 were obtained before and 5 were obtained after heat treatment of a postcook meat chiller. The ctsR gene (a class III heat shock gene regulator) from 14 isolates was amplified and sequenced because previous work has indicated that spontaneous mutations can occur in this gene during heat treatment. Heat treatment of the meat chiller did not significantly change the relative abundance of the various L. monocytogenes lineages; lineage II strains (less-heat-resistant isolates) dominated both before and after heat treatment. MLVA typing confirmed that some isolates of L. monocytogenes occur both before and after heat treatment of the chiller. No isolate of L. monocytogenes indicated any likely functionally significant mutations in ctsR. This study indicates the absence of any obvious difference in the profiles of L. monocytogenes strains obtained before and after heat treatment of a meat chiller, based on the characteristics examined. Although this finding supports the effectiveness of heat treatment, the limited number of strains used and characteristics examined mean that further study on a larger scale is required before firm conclusions can be drawn. PMID:23905808

  10. Protein extraction from heat-stabilized defatted rice bran. 1. Physical processing and enzyme treatments.

    PubMed

    Tang, Shanhu; Hettiarachchy, Navam S; Shellhammer, Thomas H

    2002-12-01

    Physical processing with or without enzyme treatments on protein extraction from heat-stabilized defatted rice bran (HDRB) was evaluated. Freeze-thaw, sonication, high-speed blending, and high-pressure methods extracted 12%, 15%, 16%, and 11% protein, respectively. Sonication (0-100%, 750 W), followed by amylase and combined amylase and protease treatments, extracted 25.6-33.9% and 54.0-57.8% protein, respectively. Blending followed by amylase and protease treatment extracted 5.0% more protein than the nonblended enzymatic treatments. High-pressure treatments, 0-800 MPa, with water or amylase-protease combinations, extracted 10.5-11.1% or 61.8-66.6% protein, respectively. These results suggest that physical processing in combination with enzyme treatments can be effective in extracting protein from HDRB. PMID:12452673

  11. A study on the re-solution heat treatment of AA 2618 aluminum alloy

    SciTech Connect

    Ozbek, Ibrahim . E-mail: iozbek@sakarya.edu.tr

    2007-03-15

    In the present study, the effects of re-solution treatment of AA2618 aluminum alloy has been investigated. Solution heat treatments of 520-640 deg. C for 14-24 h were applied followed by artificial aging. Characterization studies that were carried out by optical microscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy techniques showed that recrystallisation was not observed by solution treatment at 530 deg. C whereas it did occur as the solution treatment and the duration time were increased above 530 deg. C. Increasing the solution treatment temperature further coarsened both the grains and the precipitates, resulting in significant reduction in hardness. Al{sub 9}FeNi-type intermetallics are not completely dissolved by these solution treatments.

  12. Influence of heat treatment on antioxidant capacity and (poly)phenolic compounds of selected vegetables.

    PubMed

    Juániz, Isabel; Ludwig, Iziar A; Huarte, Estibaliz; Pereira-Caro, Gema; Moreno-Rojas, Jose Manuel; Cid, Concepción; De Peña, María-Paz

    2016-04-15

    The impact of cooking heat treatments (frying in olive oil, frying in sunflower oil and griddled) on the antioxidant capacity and (poly)phenolic compounds of onion, green pepper and cardoon, was evaluated. The main compounds were quercetin and isorhamnetin derivates in onion, quercetin and luteolin derivates in green pepper samples, and chlorogenic acids in cardoon. All heat treatments tended to increase the concentration of phenolic compounds in vegetables suggesting a thermal destruction of cell walls and sub cellular compartments during the cooking process that favor the release of these compounds. This increase, specially that observed for chlorogenic acids, was significantly correlated with an increase in the antioxidant capacity measured by DPPH (r=0.70). Griddled vegetables, because of the higher temperature applied during treatment in comparison with frying processes, showed the highest amounts of phenolic compounds with increments of 57.35%, 25.55% and 203.06% compared to raw onion, pepper and cardoon, respectively. PMID:26616976

  13. Graphene transport properties upon exposure to PMMA processing and heat treatments

    NASA Astrophysics Data System (ADS)

    Gammelgaard, Lene; Caridad, José M.; Cagliani, Alberto; Mackenzie, David M. A.; Petersen, Dirch H.; Booth, Timothy J.; Bøggild, Peter

    2014-12-01

    The evolution of graphene's electrical transport properties due to processing with the polymer polymethyl methacrylate (PMMA) and heat are examined in this study. The use of stencil (shadow mask) lithography enables fabrication of graphene devices without the usage of polymers, chemicals or heat, allowing us to measure the evolution of the electrical transport properties during individual processing steps from the initial as-exfoliated to the PMMA-processed graphene. Heating generally promotes the conformation of graphene to SiO2 and is found to play a major role for the electrical properties of graphene while PMMA residues are found to be surprisingly benign. In accordance with this picture, graphene devices with initially high carrier mobility tend to suffer a decrease in carrier mobility, while in contrast an improvement is observed for low carrier mobility devices. We explain this by noting that flakes conforming poorly to the substrate will have a higher carrier mobility which will however be reduced as heat treatment enhance the conformation. We finally show the electrical properties of graphene to be reversible upon heat treatments in air up to 200 °C.

  14. Heat treatment results in a loss of transgene-encoded activities in several tobacco lines.

    PubMed Central

    Neumann, K; Dröge-Laser, W; Köhne, S; Broer, I

    1997-01-01

    Heat treatment (37 degrees C) of transgenic tobacco (Nicotiana tabacum) plants led to a reversible reduction or complete loss of transgene-encoded activities in about 40% of 10 independent transformants carrying the luciferase-coding region fused to the 355 cauliflower mosaic virus or the soybean small subunit promoter and the nopaline synthase promoter driving the neomycin phosphotransferase gene, whereas the other lines had temperature-tolerant activities. Temperature sensitivity or tolerance of transgene-encoded activities was heritable. In some of the lines, temperature sensitivity of the transgene-encoded activities depended on the stage of development, occurring in either seedlings (40% luciferase and 50% neomycin phosphotransferase) or adult plants (both 40%). The phenomenon did not correlate with copy numbers or the homo- or hemizygous state of the transgenes. In lines harboring a temperature-sensitive luciferase activity, reduction of bioluminescence was observed after 2 to 3 h at 37 degrees C. Activity was regained after 2 h of subsequent cultivation at 25 degrees C. Irrespective of the reaction to the heat treatment, the level of luciferase RNA was slightly increased at 37 degrees C. Only in lines showing temperature sensitivity of transgene-encoded activities was the amount of luciferase and neomycin phosphotransferase strongly reduced. In sterile culture, heat treatment for 15 d did not cause visible damage or changes in plant morphology. In all plants tested a slight induction of the heat-shock response was observed at 37 degrees C. PMID:9390430

  15. Effect of heat treatment on carbon fiber surface properties and fibers/epoxy interfacial adhesion

    NASA Astrophysics Data System (ADS)

    Dai, Zhishuang; Zhang, Baoyan; Shi, Fenghui; Li, Min; Zhang, Zuoguang; Gu, Yizhuo

    2011-08-01

    Carbon fiber surface properties are likely to change during the molding process of carbon fiber reinforced matrix composite, and these changes could affect the infiltration and adhesion between carbon fiber and resin. T300B fiber was heat treated referring to the curing process of high-performance carbon fiber reinforced epoxy matrix composites. By means of X-ray photoelectron spectroscopy (XPS), activated carbon atoms can be detected, which are defined as the carbon atoms conjunction with oxygen and nitrogen. Surface chemistry analysis shows that the content of activated carbon atoms on treated carbon fiber surface, especially those connect with the hydroxyl decreases with the increasing heat treatment temperature. Inverse gas chromatography (IGC) analysis reveals that the dispersive surface energy γSd increases and the polar surface energy γSsp decreases as the heat treatment temperature increases to 200. Contact angle between carbon fiber and epoxy E51 resin, which is studied by dynamic contact angle test (DCAT) increases with the increasing heat treatment temperature, indicating the worse wettability comparing with the untreated fiber. Moreover, micro-droplet test shows that the interfacial shear strength (IFSS) of the treated carbon fiber/epoxy is lower than that of the untreated T300B fiber which is attributed to the decrement of the content of reactive functional groups including hydrogen group and epoxy group.

  16. Functional Properties of Glutinous Rice Flour by Dry-Heat Treatment

    PubMed Central

    Qin, Yang; Liu, Chengzhen; Jiang, Suisui; Cao, Jinmiao; Xiong, Liu; Sun, Qingjie

    2016-01-01

    Glutinous rice flour (GRF) and glutinous rice starch (GRS) were modified by dry-heat treatment and their rheological, thermal properties and freeze-thaw stability were evaluated. Compared with the native GRF and GRS, the water-holding ability of modified GRF and GRS were enhanced. Both the onset and peak temperatures of the modified samples increased while the endothermic enthalpy change decreased significantly (p < 0.05). Meanwhile, dry heating remarkably increased the apparent viscosities of both GRF and GRS. Importantly, compared with GRS samples, the storage modulus (G') and loss modulus (G") values of modified GRF increased more greatly and the tanδ values decreased more remarkably, indicating that the dry-heat treatment showed more impact on the GRF and a higher viscoelasticity compared with GRS. Our results suggest the dry-heat treatment of GRF is a more effective method than that of GRS, which omits the complex and tedious process for purifying GRS, and thereby has more practical applications in the food industry. PMID:27537844

  17. Process Integrated Heat Treatment of a Microalloyed Medium Carbon Steel: Microstructure and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Herbst, Sebastian; Schledorn, Mareike; Maier, Hans Jürgen; Milenin, Andrij; Nürnberger, Florian

    2016-04-01

    Air-water spray cooling was employed during a heat treatment to enhance the mechanical properties of microalloyed medium carbon steel test cylinders (38MnVS6, 88 mm diameter). Using appropriate cooling times and intensities, the test cylinders' surfaces could be quenched and subsequently self-tempered by the residual heat of the core. Simultaneously, it was possible to keep the core regions of the cylinders in the bainitic regime and carry out a quasi-isothermal holding. The resulting microstructures consisted of tempered martensite (near-surface) and bainite with pearlite and ferrite (core). Compared to the standard heat treatment (controlled air cooling), the tensile properties (proof stress and ultimate tensile strength) could be improved for both near-surface and core regions with the adapted spray cooling. A hardness profile with 450 HV10 surface hardness and a hardening depth of more than 11 mm could be realized. In addition, an increase of the impact toughness for the core was achieved, resulting in approximately 25 J charpy impact energy. This is a substantial improvement compared to standard heat treatment procedure and values reported in the literature and can be attributed to the reduced pearlite volume fraction and the increased amount of fine bainite.

  18. Functional Properties of Glutinous Rice Flour by Dry-Heat Treatment.

    PubMed

    Qin, Yang; Liu, Chengzhen; Jiang, Suisui; Cao, Jinmiao; Xiong, Liu; Sun, Qingjie

    2016-01-01

    Glutinous rice flour (GRF) and glutinous rice starch (GRS) were modified by dry-heat treatment and their rheological, thermal properties and freeze-thaw stability were evaluated. Compared with the native GRF and GRS, the water-holding ability of modified GRF and GRS were enhanced. Both the onset and peak temperatures of the modified samples increased while the endothermic enthalpy change decreased significantly (p < 0.05). Meanwhile, dry heating remarkably increased the apparent viscosities of both GRF and GRS. Importantly, compared with GRS samples, the storage modulus (G') and loss modulus (G") values of modified GRF increased more greatly and the tanδ values decreased more remarkably, indicating that the dry-heat treatment showed more impact on the GRF and a higher viscoelasticity compared with GRS. Our results suggest the dry-heat treatment of GRF is a more effective method than that of GRS, which omits the complex and tedious process for purifying GRS, and thereby has more practical applications in the food industry. PMID:27537844

  19. Microbial safety control of compost material with cow dung by heat treatment.

    PubMed

    Gong, Chun-ming

    2007-01-01

    Various kinds of pathogenic bacteria derived from the intestinal tract of animals exist in compost material like cow dung. In order to sterilize the pathogenic bacteria completely in compost material, the cow dung was put into a heat treatment machine in pilot plan, and harmless condition in short time was examined. The results indicated, pathogenic indicator bacteria such as coliform bacteria, fecal coliform, Escherichia coli and salmonella were all 106 cfu/g dw at the beginning, died rapidly when cow dung temperature rose to above 50 degrees C, and not detected at 54-68 degrees C for 6-24 h heat treatment. Coliform bacteria and salmonella in heated cow dung were not detected by re-growth culture and enrichment culture examination. Moreover, it was hardly influenced on the fermentation ability of composting microbe, organic decomposition bacteria. During heat treatment, the mesophile decreased rapidly and the thermophile stabilized or increased, and the most of composting microbe were bacillus in cow dung by fluorescence microscope, this indicated that bacillus was dominator and composting microbe in composting process. PMID:17966859

  20. Effect of post-harvest heat treatment on proteome change of peach fruit during ripening.

    PubMed

    Zhang, Li; Yu, Zhifang; Jiang, Li; Jiang, Juan; Luo, Haibo; Fu, Linran

    2011-06-10

    The extracted proteins from the heat-treated peach fruit (dipped in hot water at 48°C for 10min and then stored at room temperature (20°C-25°C) for up to 6 days) were used for proteomic analysis in order to understand the response of post-harvest peach fruit to heat treatment during ripening stage at proteomic level. After two dimensional gels electrophoresis (2-DE) was conducted, more than 600 protein spots were detected. Among them, 35 differently expressed spots (P<0.05) were selected to be excised and analyzed using MALDI-TOF/TOF, and finally 30 protein spots were confidently identified according to NCBI database. The results demonstrated that among the thirty protein spots expressed particularly induced by heat treatment, 43% were related to stress response, 17% to cell structure, 13% to protein fate, 7% to glycolytic pathway, 3% to ripening and senescence and 17% to unclassified. All of them are involved in the regulation of peach fruit development and ripening. All these indicated that the self-defense capability of peach fruit was improved by heat treatment. The study will enable future detailed investigation of gene expression and function linked with peach fruit ripening. PMID:21550427

  1. Effect of Pre- and Post-weld Heat Treatments on Linear Friction Welded Ti-5553

    NASA Astrophysics Data System (ADS)

    Wanjara, Priti; Dalgaard, Elvi; Gholipour, Javad; Cao, Xinjin; Cuddy, Jonathan; Jonas, John J.

    2014-10-01

    Linear friction welding allows solid-state joining of near-beta ( β) titanium alloy Ti-5553 (Ti-5Al-5V-5Mo-3Cr). In the as-welded condition, the weld zone (WZ) exhibits β grain refinement and marked softening as compared with Ti-5553 in the solution heat treated and aged condition. The softening of the weldment is attributed to the depletion of the strengthening alpha ( α) phase in the WZ and the adjacent thermo-mechanically affected zone (TMAZ). Specifically, in near- β titanium alloys, the strength of the material mainly depends on the shape, size, distribution, and fraction of the primary α and other decomposition products of the β phase. Hence, a combination of pre- and post-weld heat treatments were applied to determine the conditions that allow mitigating the α phase depletion in the WZ and TMAZ of the welds. The mechanical response of the welded samples to the heat treatments was determined by performing microhardness measurements and tensile testing at room temperature with an automated 3D deformation measurement system. It was found that though the joint efficiency in the as-welded condition was high (96 pct), strain localization and failure occurred in the TMAZ. The application of post-weld solution heat treatment with aging was effective in restoring α, increasing the joint efficiency (97 to 99 pct) and inducing strain localization and failure in the parent material region.

  2. SDS-PAGE Analysis of Soluble Proteins in Reconstituted Milk Exposed to Different Heat Treatments

    PubMed Central

    Jovanovic, Snezana; Barac, Miroljub; Macej, Ognjen; Vucic, Tanja; Lacnjevac, Caslav

    2007-01-01

    This paper deals with the investigation of the impact of the heat treatment of reconstituted skim milk conducted at different temperatures, and the adding of demineralized whey on the protein solubility, soluble protein composition and interactions involved between proteins in a chemical complex. Commercial skim milk has been reconstituted and heat treated at 75°C, 85°C and 90°C for 20 minutes. Demineralized whey has been added in concentrations of 0.5%, 1.0 and 2.0%. The soluble protein composition has been determined by the polyacrilamide gel electrophoresis (SDS-PAGE) and by the densitometric analysis. Due to the different changes occurred during treatments at different temperatures, proteins of heat-treated samples containing added demineralized whey have had significantly different solubility. At lower temperatures (75°C and 85°C) the adding of demineralized whey decreased the protein solubility by 5.28%-26.41%, while the addition of demineralized whey performed at 90°C increased the soluble protein content by 5.61%-28.89%. Heat treatments, as well as the addition of demineralized whey, have induced high molecular weight complex formation. β-Lg, α-La and κ-casein are involved in high molecular weight complexes. The disulfide interactions between denatured molecules of these proteins are mostly responsible for the formation of coaggregates. The level of their interactions and the soluble protein composition are determined by the degree of temperature.

  3. Effects of alloy heat treatment on oxidation kinetics and scale morphology for Crofer 22 APU

    NASA Astrophysics Data System (ADS)

    Magdefrau, Neal J.; Chen, Lei; Sun, Ellen Y.; Aindow, Mark

    2013-11-01

    The effect of alloy heat treatment on the oxidation kinetics and oxide scale microstructure of Crofer 22 APU has been studied. Parabolic oxidation rate constants were measured for the as-received alloy and after pre-oxidation heat treatment in argon at 1050 °C for 1 and 4 h. The oxide scale microstructure was investigated using scanning electron microscopy, focused ion beam milling and transmission electron microscopy. It was found that the alloy forms a two-layer scale with a continuous chromia layer and a discontinuous MnCr2O4 overlayer. Two forms of internal oxides were also formed: subscale pockets of spinel and isolated TiOx precipitates in the underlying alloy. The pre-oxidation heat treatment had a profound effect on the grain size and morphology of the Cr2O3 and MnCr2O4 layers in the scale. The heat-treated samples exhibit a 3.5× lower parabolic oxidation rate constant than the as-received Crofer 22 APU. This improvement in oxidation resistance is attributed to the dramatic differences in the morphology of the oxide scale that forms during the earliest stages of oxidation (<5 h). The implications of these findings for oxidation mechanisms and long-term SOFC performance are discussed.

  4. The state of the art on heat treatment quenching technologies in China

    SciTech Connect

    Dai, L.

    1996-12-31

    The progress on heat treatment quenching technologies in the past decade in China has been reviewed in the present paper. The technologies concerned in the R&D and application of quenching media, verification of cooling rate, improving and control of quenching process, and the modelling and simulation of the processes are described. The author points out that although there are a lot of R&D achievements from universities and research institutes, it is necessary to pay attention to quenching technologies for most of heat treating factories and workshops.

  5. Denaturation and Oxidative Stability of Hemp Seed (Cannabis sativa L.) Protein Isolate as Affected by Heat Treatment.

    PubMed

    Raikos, Vassilios; Duthie, Garry; Ranawana, Viren

    2015-09-01

    The present study investigated the impact of heat treatments on the denaturation and oxidative stability of hemp seed protein during simulated gastrointestinal digestion (GID). Heat-denatured hemp protein isolate (HPI) solutions were prepared by heating HPI (2 mg/ml, pH 6.8) to 40, 60, 80 and 100 °C for 10 min. Heat-induced denaturation of the protein isolates was monitored by polyacrylamide gel electrophoresis. Heating HPI at temperatures above 80 °C significantly reduced solubility and led to the formation of large protein aggregates. The isolates were then subjected to in vitro GID and the oxidative stability of the generated peptides was investigated. Heating did not significantly affect the formation of oxidation products during GID. The results suggest that heat treatments should ideally remain below 80 °C if heat stability and solubility of HPI are to be preserved. PMID:26142888

  6. Susceptibility of Lasioderma serricorne (F.)(Coleoptera: Anobiidae) life stages to elevated temperatures used during structural heat treatments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heat treatment of food-processing facilities involves using elevated temperatures (46 to 60°C for 24 h) for management of stored-product insect pests. Heat treatment is a viable alternative in certain circumstances to the fumigant methyl bromide in certain situations, which is being phased out in t...

  7. The effect of mechanical surface and heat treatments on the erosion resistance of 6061 aluminum alloy

    NASA Technical Reports Server (NTRS)

    Salik, J.; Buckley, D.; Brainard, W. A.

    1981-01-01

    The effects of both mechanical surface treatments and heat treatments on the erosion resistance of 6061 aluminum alloy were studied in order to gain a better understanding of material properties which affect erosion behavior. It was found that mechanical surface treatments have little or no effect on the erosion resistance. This is due to the formation by particle impact of a work-hardened surface layer, independent of the initial surface condition. The erosion resistance of aluminum single crystals was found to be independent of orientation, which is due to destruction of the surface microstructure and formation of a polycrystalline surface layer by the particle impact as observed by X-ray diffraction. Although on solution treatment of annealed aluminum 6061 the increase in hardness is accompanied by an increase in erosion resistance, precipitation treatment (which causes a further increase in hardness) results in a slightly lower erosion resistance.

  8. Improved microstructure in Ag/Bi-2223 composite tapes by systematic variation of heat treatment parameters

    NASA Astrophysics Data System (ADS)

    Tang, Y. L.; Miller, D. J.; Baurceanu, R. M.; Maroni, V. A.; Parrella, R. D.

    2002-10-01

    Multifilament-type, silver-sheathed (Bi, Pb)2Sr2Ca2Cu3Ox (Ag/Bi-2223) composite tapes produced by the powder-in-tube (PIT) method were given a first heat treatment that employed either a standard (STD) single oxygen pressure/temperature (pO2/T) set point or a novel variable pO2/T treatment referred to as thermal sliding heat treatment (TSHT). X-ray diffraction, scanning electron microscopy, energy dispersive x-ray spectroscopy and transmission electron microscopy were employed to provide a comparative analysis of the Bi-2223 grain colony microstructure and connectivity, nonsuperconducting second phase (NSP) composition and distribution, and grain boundary character in the STD- and TSHT-type post-first-heat-treatment Ag/Bi-2223 tape specimens. The dominant NSPs in STD and TSHT specimens were (Ca, Sr)2CuO3, (Ca, Sr)14Cu24O41, and amorphous phases that were randomly distributed in the filaments. The number and size of the NSPs in the STD specimens were sufficient to cause substantial misalignment of Bi-2223 grain colonies throughout the filament cores. However, the TSHT specimens (when compared to the STD specimens) expressed an improved microstructure with fewer/smaller NSPs that were localized mainly in the interior regions of the filaments. Also, the Bi-2223 grain colonies in TSHT specimens were more robust and better aligned from the silver-sheath/Bi-2223 interface to the mid-core region of each filament.

  9. In situ heat treatment of a tar sands formation after drive process treatment

    SciTech Connect

    Vinegar, Harold J.; Stanecki, John

    2010-09-21

    A method for treating a tar sands formation includes providing a drive fluid to a hydrocarbon containing layer of the tar sands formation to mobilize at least some hydrocarbons in the layer. At least some first hydrocarbons from the layer are produced. Heat is provided to the layer from one or more heaters located in the formation. At least some second hydrocarbons are produced from the layer of the formation. The second hydrocarbons include at least some hydrocarbons that are upgraded compared to the first hydrocarbons produced by using the drive fluid.

  10. Non-lethal heat treatment of cells results in reduction of tumor initiation and metastatic potential

    SciTech Connect

    Kim, Yoo-Shin; Lee, Tae Hoon; O'Neill, Brian E.

    2015-08-14

    Non-lethal hyperthermia is used clinically as adjuvant treatment to radiation, with mixed results. Denaturation of protein during hyperthermia treatment is expected to synergize with radiation damage to cause cell cycle arrest and apoptosis. Alternatively, hyperthermia is known to cause tissue level changes in blood flow, increasing the oxygenation and radiosensitivity of often hypoxic tumors. In this study, we elucidate a third possibility, that hyperthermia alters cellular adhesion and mechanotransduction, with particular impact on the cancer stem cell population. We demonstrate that cell heating results in a robust but temporary loss of cancer cell aggressiveness and metastatic potential in mouse models. In vitro, this heating results in a temporary loss in cell mobility, adhesion, and proliferation. Our hypothesis is that the loss of cellular adhesion results in suppression of cancer stem cells and loss of tumor virulence and metastatic potential. Our study suggests that the metastatic potential of cancer is particularly reduced by the effects of heat on cellular adhesion and mechanotransduction. If true, this could help explain both the successes and failures of clinical hyperthermia, and suggest ways to target treatments to those who would most benefit. - Highlights: • Non-lethal hyperthermia treatment of cancer cells is shown to cause a reduction in rates of tumor initiation and metastasis. • Dynamic imaging of cells during heat treatment shows temporary changes in cell shape, cell migration, and cell proliferation. • Loss of adhesion may lead to the observed effect, which may disproportionately impact the tumor initiating cell fraction. • Loss or suppression of the tumor initiating cell fraction results in the observed loss of metastatic potential in vivo. • This result may lead to new approaches to synergizing hyperthermia with surgery, radiation, and chemotherapy.

  11. Effects of Heat Treatments on the On-Line Service Life of a Press Die Manufactured by W-Edm

    NASA Astrophysics Data System (ADS)

    Choi, Kye-Kwang; Lee, Yong-Shin

    Effects of heat treatments on the on-line service life of a press die manufactured by W-EDM are studied. In this work, four manufacturing processes for a press die are considered: (1) milling and then grinding, (2) wire-cut electric discharge machining (W-EDM), (3) low temperature heat treatment after W-EDM, and (4) high temperature heat treatment after W-EDM. On-line punching experiments for an automobile part of BL646-chain are performed. The amount of wear of the die and punch, roll-over and burnish depth in the punched chain are measured every 1,000 strokes. Overall productivities are carefully compared. Finally, it is concluded that heat treatment after W-EDM for a press die can enhance its on-line service life. Especially, high temperature heat treatment after W-EDM is very attractive as a fast and cheap manufacturing method for a press die.

  12. The influence of heat treatment on the mechanical properties of Ni-Ti file materials.

    PubMed

    Miyara, Kana; Yahata, Yoshio; Hayashi, Yohsuke; Tsutsumi, Yusuke; Ebihara, Arata; Hanawa, Takao; Suda, Hideaki

    2014-01-01

    The purpose of this study was to investigate the influence of heat treatment on the mechanical properties of Ni-Ti file materials. Ni-Ti wire (1.00 mm ø) was processed into a conical shape with 0.30-mm diameter tip and 0.06 taper. Specimens were heated for 30 min at 300, 400, 450, 500 or 600°C. Non-heated specimens were used as controls. DSC, a cantilever-bending test and cyclic fatigue test were performed. Ms and Af for groups 400 and 450 were higher than those for others (p<0.05). The load/deflection ratios of groups 400, 450 and 500 were lower than that of group 600 (p<0.05). The bending load values at 2.0-mm deflection of groups 400, 450 and 500 were lower than those of group 300 and the control group (p<0.05). The NCFs of groups 400, 450 and 500 exceeded that of group 600(p<0.05). Changes in flexibility with heat treatment could improve the cyclic fatigue properties of Ni-Ti instruments. PMID:24492108

  13. The effect of heat treatment and skimming on precipitate formation in caprine and bovine milks.

    PubMed

    Miloradovic, Zorana N; Kljajevic, Nemanja V; Jovanovic, Snezana T; Vucic, Tanja R; Macej, Ognjen D

    2015-02-01

    Caprine and bovine milks have a similar overall gross composition, but vary considerably in the ratios of their casein components. These differences in colloidal casein micelles could affect directly or indirectly the heat stability of caprine and bovine milks at their natural pH. In the present work, the differences in colloidal stability of caprine and bovine milk have been studied by analysing the effect of heat treatment and skimming on precipitation of proteins. Raw and heated milk samples (70 °C/5 min, 80°C/5 min and 90°C/5 min) were centrifuged at 600, 2000, and 4500  g . The amount of precipitate formed after skimming was measured and the protein composition of both precipitates and supernatants analysed using the SDS-PAGE (sodium dodecyl sulphate polyacrylamide gel electrophoresis) and densitometry. In caprine milk, the heat treatment prior to skimming had a statistically significant effect on protein precipitation. Centrifugal force had a statistically significant effect on amount of precipitate for both milks, but the amount was 2 to 4 times higher for caprine milk. When defatting the milk for electrophoresis, a centrifugal force of 600  g appeared to be the most appropriate, in order to avoid protein loss and a possible error in the interpretation of results. Results of this study could also serve as the basis for further investigations on adjusting the skimming conditions for caprine milk in industrial dairy processing environment. PMID:25406911

  14. Effects of heat treatment on oil-binding ability of rice flour.

    PubMed

    Tabara, Aya; Nakagawa, Mariko; Ushijima, Yuki; Matsunaga, Kotaro; Seguchi, Masaharu

    2015-01-01

    Heat-treated (120 °C for 120 min) rice flour showed high affinity to oil (oil-binding ability). This oil-binding ability could be observed by shaking the heat-treated rice flour (2.0 g), oil (4.0 mL), and water (20 mL) vigorously in a test tube, and the oil bound to the rice flour sank into the water. To examine the time-dependent levels of the oil-binding ability, rice flour was heat-treated at 120 °C for 10, 20, 40, 60, and 120 min, and the precipitated volume of oil/rice flour complex increased with an increase of the heating time. The oil-binding ability of the rice flour was not affected by the treatments with diethyl ether or boiled chloroform/methanol (2:1) solutions, which suggested no relationship to the oil in the rice flour, but was lost upon alkali (0.2% NaOH solution) or pepsin treatment, which suggested its relationship to the rice proteins. PMID:25926032

  15. Resistant starch improvement of rice starches under a combination of acid and heat-moisture treatments.

    PubMed

    Hung, Pham Van; Vien, Ngo Lam; Lan Phi, Nguyen Thi

    2016-01-15

    The effects of a combination of acid and heat-moisture treatment on formation of resistant starch (RS) and characteristics of high-amylose, normal and waxy rice starches were investigated in this study. The degrees of polymerization of the rice starches treated with citric acid, lactic acid or acetic acid were significantly reduced as compared to the native starches. The RS contents of acid and heat-moisture treated rice starches were in a range of 30.1-39.0%, significantly higher than those of native rice starches (6.3-10.2%) and those of heat-moisture treated rice starches (18.5-23.9%). The acid and heat-moisture treatments reduced swelling power and viscosity, but increased solubility of the starches, while the crystalline structure did not change. Among the organic acids used, citric acid had the most impact on starch characteristics and RS formation, followed by lactic acid and acetic acid. The results are useful in production of RS for functional food application. PMID:26258703

  16. Surface analysis of TFTR vacuum vessel samples subjected to the post-weld heat treatment

    SciTech Connect

    Moore, R.L.; Cohen, S.A.; Cecchi, J.L.; Dylla, H.F.

    1980-11-01

    To ensure the dimensional stability of the Tokamak Fusion Test Reactor (TFTR) vacuum vessel, it is necessary to perform a post-weld heat treatment (PWHT). This process consists of heating the vessel segments to approx. 450/sup 0/C for 1.5 h. The large size of the segments precludes a vacuum bake previous to installation. Effects of the PWHT on the vacuum vessel surface were studied using small samples of vessel material which were subjected to a variety of PWHT procedures, including inert gas purges and different oven designs. Changes in topography and near-surface chemistry were investigated with SEM and sputter-Auger electron spectroscopy. These samples were compared with the surface properties of non-baked UHV-quality stainless steel. The primary difference noted between the PWHT samples and the non-baked control was the thickness of the passivation oxide layer. The thickness of this mixed oxide (FeO/Cr/sub 2/O/sub 3//NiO) on the control sample was less than or equal to 100 A. The thickness of the oxide layer on the heat-treated samples ranged between 230 to 350 A, depending on the method of the PWHT. The effect of hydrogen glow discharge cleaning on these thicker oxide layers, and the consequences of such heat treatment procedure relative to oxygen impurity production in fusion devices are discussed.

  17. The response of cobalt-free Udimet 700 type alloy to modified heat treatments

    NASA Technical Reports Server (NTRS)

    Harf, F. H.

    1986-01-01

    A superalloy based on Udimet 700, in which all of the cobalt was replaced by nickel, was prepared from hot isostatically pressed prealloyed powders. This material was given various heat treatments consisting of partial solutioning and aging in a sequence of four different temperatures. Comparisons were made of microstructures and mechanical properties. Best results were obtained by partially solutioning at 1145 deg C and aging through a sequence of 870, 1030, 650 and 760 deg C. This heat treatment also provided significantly improved properties for wrought material of the same composition. The results suggest that cobalt free Udimet 700 should be considered as a substitute for Udimet 700 with the standard 17 percent cobalt content.

  18. The response of cobalt-free Udimet 700 type alloy to modified heat treatments

    NASA Technical Reports Server (NTRS)

    Harf, F. H.

    1985-01-01

    A superalloy based on Udimet 700, in which all of the cobalt was replaced by nickel, was prepared from hot isostatically pressed prealloyed powders. This material was given various heat treatments consisting of partial solutioning and aging in a sequence of four different temperatures. Comparisons were made of microstructures and mechanical properties. Best results were obtained by partially solutioning at 1145 deg C and aging through a sequence of 870, 1030, 650 and 760 deg C. This heat treatment also provided significantly improved properties for wrought material of the same composition. The results suggest that cobalt free Udimet 700 should be considered as a substitute for Udimet 700 with the standard 17 percent cobalt content.

  19. Influence of Heat Treatment Conditions on the Properties of Vanadium Oxide Thin Films for Thermochromic Applications.

    PubMed

    Kim, Donguk; Kwon, Samyoung; Park, Young; Boo, Jin-Hyo; Nam, Sang-Hun; Joo, Yang Tae; Kim, Minha; Lee, Jaehyeong

    2016-05-01

    In present work, the effects of the heat treatment on the structural, optical, and thermochromic properties of vanadium oxide films were investigated. Vanadium dioxide (VO2) thin films were deposited on glass substrate by reactive pulsed DC magnetron sputtering from a vanadium metal target in mixture atmosphere of argon and oxygen gas. Various heat treatment conditions were applied in order to evaluate their influence on the crystal phases formed, surface morphology, and optical properties. The films were characterized by an X-ray diffraction (XRD) in order to investigate the crystal structure and identify the phase change as post-annealing temperature of 500-600 degrees C for 5 minutes. Surface conditions of the obtained VO2(M) films were analyzed by field emission scanning electron microscopy (FE-SEM) and the semiconductor-metal transition (SMT) characteristics of the VO2 films were evaluate by optical spectrophotometry in the UV-VIS-NIR, controlling temperature of the films. PMID:27483853

  20. Effect of the heat treatment conditions on the synthesis of Sr-hexaferrite

    NASA Astrophysics Data System (ADS)

    Martinez Garcia, R.; Bilovol, V.; Socolovsky, L. M.

    2012-08-01

    The effect of heat treatment conditions under oxygen atmosphere on the SrFe12O19 synthesis is analyzed. Effect of partial evacuation of decomposition gases of the organometallic precursor on the phase composition of different samples is studied. An accurate structural analysis of samples obtained between 250 °C and 600 °C is reported. From the structural analysis several secondary phases are identified. The amount of secondary phases can be manipulated through the control of the heat treatment conditions, and therefore, this constitutes a methodology to manipulate the composition and the magnetic properties of the obtained nanopowders. The quantitative determination of phases is performed by structural refinement of X-ray powder patterns, using Rietveld analysis. Magnetic study is done by magnetization vs. applied magnetic field at room temperature.

  1. SO2 gas adsorption by modified kaolin clays: influence of previous heating and time acid treatments.

    PubMed

    Volzone, Cristina; Ortiga, Jose

    2011-10-01

    Modified kaolin clays were used as adsorbents for SO(2) gas adsorptions. The clays were heated up to 900 °C previous to acid treatments with 0.5 N sulfuric acid solutions at boiling temperature during different times up to 1440 min. Equilibrium adsorption at 25 °C and 0.1 MPa was carried out by using a volumetric apparatus. The samples were characterized by chemical analysis, X-ray diffraction and infrared analysis. The heating of the clays followed by acid treatment improved the adsorption capacity of the kaolin clays. The presence of amorphous silica and hydroxyl in the final products improved SO(2) adsorption capacity. Better properties for SO(2) adsorption were found in kaolin rich in not well ordered kaolinite clay mineral. PMID:21696883

  2. The effect of heat treatments on the microstructure and properties of FeAl+Cr

    SciTech Connect

    Munroe, P.R.; Kong, C.H.

    1997-12-31

    Microstructural studies were performed on an alloy of composition Fe{sub 45}Cr{sub 5}Al{sub 50} heat treated at 950 C and oil-quenched and then given isothermal annealing treatments for times up to 200 hours at either 400 C or 500 C. The observed microstructures were correlated with variations in hardness during isothermal annealing. It was deduced that the thermal vacancies retained following the initial heat treatment are removed relatively rapidly from the lattice, which leads to an initial drop in hardness. However, during prolonged annealing, the coarsening of both FeAl{sub 2} particles and a disordered {alpha}(Fe,Cr) phase leads to further softening. It was also deduced that the chromium atoms, which remain in solution, are effective solute strengtheners. The {alpha}(Fe,Cr) phase, which is coherent with the B2 matrix, appears to coarsen by a ledge growth mechanism.

  3. Coalescence of parallel finite length single-walled carbon nanotubes by heat treatment

    NASA Astrophysics Data System (ADS)

    Yang, Xueming; Qiao, Fangwei; Zhu, Xiaoxun; Zhang, Pu; Chen, Dongci; To, Albert C.

    2013-03-01

    Fusion of parallel finite length single-walled carbon nanotubes (SWCNTs) without initially introducing structural defects is investigated by molecular dynamics (MD) simulations. Three different models that impose different constraints are adopted to simulate the heat welding and coalescence of the parallel SWCNTs. It is found that the ultrathin as well as some larger diameter, finite length SWCNTs, for example (8,0) and (10,0) SWCNTs can be coalesced to become a unique single-walled tube solely via high temperature heat treatment. It is observed that the ends of the nanotubes are prone to close at high temperature during the high temperature treatment. In addition, the fusion process and mechanism of parallel SWCNTs with different lengths and radii are discussed.

  4. Improving the bioactivity of NiTi shape memory alloy by heat and alkali treatment

    NASA Astrophysics Data System (ADS)

    Qiang, Wei; Zhen-duo, Cui; Xian-jin, Yang; Jie, Shi

    2008-11-01

    TiO 2 films were formed on an NiTi alloy surface by heat treatment in air at 600 °C. Heat treated NiTi shape memory alloys were subsequently alkali treated with 1 M, 3 M and 5 M NaOH solutions respectively, to improve their bioactivity. Then treated NiTi samples were soaked in 1.5SBF to evaluate their in vitro performance. The results showed that the 3 M NaOH treatment is the most appropriate method. A large amount of apatite formed within 1 day's soaking in 1.5SBF, after 7 day's soaking TiO 2/HA composite layer formed on the NiTi surface. SEM, XRD, FT-IR and TEM results showed that the morphology and microstructure are similar to the human bone apatite.

  5. Effect of heat treatment on the characteristics of sodium-reduced niobium powders

    NASA Astrophysics Data System (ADS)

    Prokhorova, T. Yu.; Orlov, V. M.; Miroshnichenko, M. N.; Kolosov, V. N.

    2008-10-01

    The effect of the heat-treatment conditions on the bulk density, flowability, and electrical properties of the sodium-reduced niobium powders prepared using two versions of reduction is studied. These versions include (i) the supply of liquid sodium on the surface of a melt containing potassium heptafluoniobate K2NbF7 (liquid-phase reduction) and (ii) the supply of solid K2NbF7 on the surface of liquid sodium (heterophase reduction). Heat treatment of a bulk niobium powder in the temperature range 900-1300°C is shown to result in a substantial loss in the specific surface area without increasing the bulk density. To produce a powder with a specific capacitance higher than 90 mCV/g, a bulk density of 1.2 g/cm3, and a good flowability, the initial pelleted heterophase-reduction powder should be sintered at 1200°C.

  6. Effects of erodant particle shape and various heat treatments on erosion resistance of plain carbon steel

    NASA Technical Reports Server (NTRS)

    Salik, J.; Buckley, D. H.

    1981-01-01

    Erosion tests were conducted on 1045 steel samples which had been subjected to different heat treatments. The weight of material removed upon erosion with glass beads and crushed glass was measured. The data show that there is no correlation between hardness and erosion resistance. The erosion rate was strongly dependent on the shape of erodant particles, being an order of magnitude higher for erosion with crushed glass than with glass beads. Heat treatment had a profound effect on the erosion resistance when the erodant particles were glass beads but little or no effect when the particles were crushed glass. It is thus concluded that different mechanisms of material removal are involved with these two erodants. This conclusion is supported by the surface morphology of annealed 1045 steel samples which had been eroded by these two types of erodant particles. SEM micrographs of the eroded surfaces show that for erosion with glass beads it is deformation induced fracture of surface layers.

  7. Dry-heat treatment process for enhancing viral safety of an antihemophilic factor VIII concentrate prepared from human plasma.

    PubMed

    Kim, In Seop; Choi, Yong Woon; Kang, Yong; Sung, Hark Mo; Shin, Jeong Sup

    2008-05-01

    Viral safety is a prerequisite for manufacturing clinical antihemophilic factor VIII concentrates from human plasma. With particular regard to the hepatitis A virus (HAV), a terminal dry-heat treatment (100 degrees for 30 min) process, following lyophilization, was developed to improve the virus safety of a solvent/detergent-treated antihemophilic factor VIII concentrate. The loss of factor VIII activity during dry-heat treatment was of about 5%. No substantial changes were observed in the physical and biochemical characteristics of the dry-heat-treated factor VIII compared with those of the factor VIII before dry-heat treatment. The dry-heat-treated factor VIII was stable for up to 24 months at 4oC. The dry-heat treatment after lyophilization was an effective process for inactivating viruses. The HAV, murine encephalomyocarditis virus (EMCV), and human immunodeficiency virus (HIV) were completely inactivated to below detectable levels within 10 min of the dry-heat treatment. Bovine herpes virus (BHV) and bovine viral diarrhea virus (BVDV) were potentially sensitive to the treatment. However porcine parvovirus (PPV) was slightly resistant to the treatment. The log reduction factors achieved during lyophilization and dry-heat treatment were > or =5.55 for HAV, > or =5.87 for EMCV, > or =5.15 for HIV, 6.13 for BHV, 4.46 for BVDV, and 1.90 for PPV. These results indicate that dry-heat treatment improves the virus safety of factor VIII concentrates, without destroying the activity. Moreover, the treatment represents an effective measure for the inactivation of non-lipid-enveloped viruses, in particular HAV, which is resistant to solvent/detergent treatment. PMID:18633304

  8. Effect of yeast antagonist in combination with heat treatment on postharvest blue mold decay and Rhizopus decay of peaches.

    PubMed

    Zhang, Hongyin; Wang, Lei; Zheng, Xiaodong; Dong, Ying

    2007-04-01

    The potential of using heat treatment alone or in combination with an antagonistic yeast for the control of blue mold decay and Rhizopus decay of peaches caused by Penicillium expansum and Rhizopus stolonifer respectively, and in reducing natural decay development of peach fruits, as well as its effects on postharvest quality of fruit was investigated. In vitro tests, spore germination of pathogens in PDB was greatly controlled by the heat treatment of 37 degrees C for 2 d. In vivo test to control blue mold decay of peaches, heat treatment and antagonist yeast, as stand-alone treatments, were capable of reducing the percentage of infected wounds from 92.5% to 52.5% and 62.5%, respectively, when peach fruits stored at 25 degrees C for 6 d. However, in fruit treated with combination of heat treatment and Cryptococcus laurentii, the percentage of infected wounds of blue mold decay was only 22.5%. The test of using heat treatment alone or in combination with C. laurentii to control Rhizopus decay of peaches gave a similar result. The application of heat treatment and C. laurentii resulted in low average natural decay incidences on peaches after storage at 4 degrees C for 30 days and 20 degrees C for 7 days ranging from 40% to 30%, compared with 20% in the control fruit. The combination of heat treatment and C. laurentii was the most effective treatment, and the percentage of decayed fruits was 20%. Heat treatment in combination with C. laurentii had no significant effect on firmness, TSS, ascorbic acid or titratable acidity compared to control fruit. Thus, the combination of heat treatment and C. laurentii could be an alternative to chemicals for the control of postharvest decay on peach fruits. PMID:17140691

  9. Heat treatment's effects on hydroxyapatite powders in water vapor and air atmosphere

    NASA Astrophysics Data System (ADS)

    Karabulut, A.; Baştan, F. E.; Erdoǧan, G.; Üstel, F.

    2015-03-01

    Hydroxyapatite (HA; Ca10(PO4)6(OH)2) is the main chemical constituent of bone tissue (~70%) as well as HA which is a calcium phosphate based ceramic material forms inorganic tissue of bone and tooth as hard tissues is used in production of prosthesis for synthetic bone, fractured and broken bone restoration, coating of metallic biomaterials and dental applications because of its bio compatibility. It is known that Hydroxyapatite decomposes with high heat energy after heat treatment. Therefore hydroxyapatite powders that heated in water vapor will less decomposed phases and lower amorphous phase content than in air atmosphere. In this study high purity hydroxyapatite powders were heat treated with open atmosphere furnace and water vapor atmosphere with 900, 1000, 1200 °C. Morphology of same powder size used in this process by SEM analyzed. Chemical structures of synthesized coatings have been examined by XRD. The determination of particle size and morphological structure of has been characterized by Particle Sizer, and SEM analysis, respectively. Weight change of sample was recorded by thermogravimetric analysis (TGA) during heating and cooling.

  10. Biochemical and proteomic analysis of 'Dixiland' peach fruit (Prunus persica) upon heat treatment.

    PubMed

    Lara, María V; Borsani, Julia; Budde, Claudio O; Lauxmann, Martin A; Lombardo, Verónica A; Murray, Ricardo; Andreo, Carlos S; Drincovich, María F

    2009-01-01

    Shipping of peaches to distant markets and storage require low temperature; however, cold storage affects fruit quality causing physiological disorders collectively termed 'chilling injury' (CI). In order to ameliorate CI, different strategies have been applied before cold storage; among them heat treatment (HT) has been widely used. In this work, the effect of HT on peach fruit quality as well as on carbon metabolism was evaluated. When fruit were exposed to 39 degrees C for 3 d, ripening was delayed, with softening inhibition and slowing down of ethylene production. Several differences were observed between fruit ripening at ambient temperature versus fruit that had been heat treated. However, the major effects of HT on carbon metabolism and organoleptic characteristics were reversible, since normal fruit ripening was restored after transferring heated peaches to ambient temperature. Positive quality features such as an increment in the fructose content, largely responsible for the sweetness, and reddish coloration were observed. Nevertheless, high amounts of acetaldehyde and low organic acid content were also detected. The differential proteome of heated fruit was characterized, revealing that heat-induced CI tolerance may be acquired by the activation of different molecular mechanisms. Induction of related stress proteins in the heat-exposed fruits such as heat shock proteins, cysteine proteases, and dehydrin, and repression of a polyphenol oxidase provide molecular evidence of candidate proteins that may prevent some of the CI symptoms. This study contributes to a deeper understanding of the cellular events in peach under HT in view of a possible technological use aimed to improve organoleptic and shelf-life features. PMID:19734260

  11. Endotoxin inactivation via steam-heat treatment in dilute simethicone emulsions used in biopharmaceutical processes.

    PubMed

    Britt, Keith A; Galvin, Jeffrey; Gammell, Patrick; Nti-Gyabaah, Joseph; Boras, George; Kolwyck, David; Ramirez, José G; Presente, Esther; Naugle, Gregory

    2014-01-01

    Simethicone emulsion is used to regulate foaming in cell culture operations in biopharmaceutical processes. It is also a potential source of endotoxin contamination. The inactivation of endotoxins in dilute simethicone emulsions was assessed as a function of time at different steam temperatures using a Limulus amebocyte lysate kinetic chromogenic technique. Endotoxin inactivation from steam-heat treatment was fit to a four-parameter double exponential decay model, which indicated that endotoxin inactivation was biphasic, consisting of fast and slow regimes. In the fast regime, temperature-related effects were dominant. Transitioning into the slow regime, the observed temperature dependence diminished, and concentration-related effects became increasingly significant. The change in the Gibbs free energy moving through the transition state indicated that a large energy barrier must be overcome for endotoxin inactivation to occur. The corresponding Arrhenius pre-exponential factor was >10(12) s(-1) suggesting that endotoxins in aqueous solution exist as aggregates. The disorder associated with the endotoxin inactivation reaction pathway was assessed via the change in entropy moving through the transition state. This quantity was positive indicating that endotoxin inactivation may result from hydrolysis of individual endotoxin molecules, which perturbs the conformation of endotoxin aggregates, thereby modulating the biological activity observed. Steam-heat treatment decreased endotoxin levels by 1-2 logarithm (log) reduction (LRV), which may be practically relevant depending on incoming raw material endotoxin levels. Antifoam efficiency and cell culture performance were negligibly impacted following steam-heat treatment. The results from this study show that steam-heat treatment is a viable endotoxin control strategy that can be implemented to support large-scale biopharmaceutical manufacturing. PMID:24623631

  12. Integrated modelling of transitions in mechanical conditions during casting and heat treatment

    NASA Astrophysics Data System (ADS)

    Thorborg, J.; Klinkhammer, J.; Heitzer, M.

    2015-06-01

    The mechanical material behaviour of a cast component changes significantly during casting and heat treatment. The big difference in temperature levels during the different process steps causes different deformation mechanisms to be active. The thermal gradients promote transient stresses that can lead to inelastic deformations, residual stresses and in some cases to defects in the final part. It is a big challenge to make a reasonable transition in the mechanical model, and hence material data, when modelling several different coupled process steps. It is important to use an integrated approach where the transition is included in the full load history of the part. When industrial examples are considered, the sequence of process steps typically also changes the thermal and mechanical boundary conditions significantly e.g. going from being mechanically constrained during casting to being supported point-wise during the heat treatment process. This change includes mapping of results and obtaining equilibrium in a new global system, where the further reaction forces from the supports must be handled with contact conditions to e.g. predict deformations due to gravity during solution heat treatment. The work presented in this paper is focused on modelling the mechanical fields, taking into account the changes in the mechanical material model at different temperature levels, and the transition in mechanical behaviour when the microstructure is changing during the different steps of the heat treatment process. The approach used is based on a unified model where creep effects are considered at high temperature and rate effects are included in general during cooling. Proposals are made to include cooling rate sensitivity, annealing and precipitation hardening via modification of mechanical properties in the different process steps.

  13. Induction heat treatment and technique of bioceramic coatings production on medical titanium alloys

    NASA Astrophysics Data System (ADS)

    Fomin, Aleksandr A.; Rodionov, Igor V.; Fomina, Marina A.; Poshivalova, Elena Y.; Krasnikov, Aleksandr V.; Petrova, Natalia N.; Zakharevich, Andrey M.; Skaptsov, Alexander A.; Gribov, Andrey N.; Atkin, Vsevolod S.

    2015-03-01

    Prospective composite bioceramic titania coatings were obtained on intraosseous implants fabricated from medical titanium alloy VT16 (Ti-2.5Al-5Mo-5V). Consistency changes of morphological characteristics, physico-mechanical properties and biocompatibility of experimental titanium implant coatings obtained by oxidation during induction heat treatment are defined. Technological recommendations for obtaining bioceramic coatings with extremely high strength on titanium items surface are given.

  14. Improvement of Electrochemical Response of Cocaine Sensors Based on DNA Aptamer by Heat Treatment.

    PubMed

    Arimoto, Satoshi; Shimono, Ken; Yasukawa, Tomoyuki; Mizutani, Fumio; Yoshioka, Toshihiko

    2016-01-01

    We report on a biosensor for cocaine based on the conformation change of DNA aptamer by capturing the cocaine molecules. The oxidation current of ferrocene conjugated on the terminal end of aptamer immobilized on an Au electrode increased with increasing cocaine concentration. The sensor response has been improved by a simple heat treatment after immobilization, since the aggregates of DNA aptamer generated during the immobilization step could be dissociated and rearranged on the electrode. PMID:27063722

  15. The effect of heat treatment on the resistivity of polycrystalline silicon films

    NASA Technical Reports Server (NTRS)

    Fripp, A. L., Jr.

    1975-01-01

    The resistivity of doped polycrystalline silicon films has been studied as a function of post deposition heat treatments in an oxidizing atmosphere. It was found that a short oxidation cycle may produce a resistivity increase as large as three orders of magnitude in the polycrystalline films. The extent of change was dependent on the initial resistivity and the films' doping level and was independent of the total oxidation time.

  16. The effects of heat treatment on physical properties and surface roughness of red-bud maple (Acer trautvetteri Medw.) wood.

    PubMed

    Korkut, Derya Sevim; Guller, Bilgin

    2008-05-01

    Heat treatment is often used to improve the dimensional stability of wood. In this study, the effects of heat treatment on physical properties and surface roughness of red-bud maple (Acer trautvetteri Medw.) wood were examined. Samples obtained from Düzce Forest Enterprises, Turkey, were subjected to heat treatment at varying temperatures and durations. The physical properties of heat-treated samples were compared against controls in order to determine their; oven-dry density, air-dry density, and swelling properties. A stylus method was employed to evaluate the surface characteristics of the samples. Roughness measurements, using the stylus method, were made in the direction perpendicular to the fiber. Three main roughness parameters; mean arithmetic deviation of profile (Ra), mean peak-to-valley height (Rz), and maximum roughness (Rmax) obtained from the surface of wood, were used to evaluate the effect of heat treatment on the surface characteristics of the specimens. Significant differences were determined (p>0.05) between surface roughness parameters (Ra, Rz, Rmax) at three different temperatures and three periods of heat treatment. The results showed that the values of density, swelling and surface roughness decreased with increasing temperature treatment and treatment times. Red-bud maple wood could be utilized successfully by applying proper heat treatment techniques without any losses in investigated parameters. This is vital in areas, such as window frames, where working stability and surface smoothness are important factors. PMID:17698357

  17. Effect of Various Heat Treatment Processes on Fatigue Behavior of Tool Steel for Cold Forging Die

    NASA Astrophysics Data System (ADS)

    Jin, S. U.; Kim, S. S.; Lee, Y. S.; Kwon, Y. N.; Lee, J. H.

    Effects of various heat treatment processes, including "Q/T (quenching and tempering)", "Q/CT/T (Quenching, cryogenic treatment and tempering)", "Q/T (quenching and tempering) + Ti-nitriding" and "Q/CT/T (Cryogenic treatment and tempering) + Ti-nitriding", on S-N fatigue behavior of AISI D2 tool steel were investigated. The optical micrographs and Vicker's hardness values at near surface and core area were examined for each specimen. Uniaxial fatigue tests were performed by using an electro-magnetic resonance fatigue testing machine at a frequency of 80 Hz and an R ratio of -1. The overall resistance to fatigue tends to decrease significantly with Ti-nitriding treatment compared to those for the general Q/T and Q/CT/T specimens. The reduced resistance to fatigue with Ti-nitriding is discussed based on the microstructural and fractographic analyses.

  18. Simple Heat Treatment of Zirconia Ceramic Pre-Treated with Silane Primer to Improve Resin Bonding.

    PubMed

    Ha, Jung-Yun; Son, Jun Sik; Kim, Kyo-Han; Kwon, Tae-Yub

    2015-01-01

    Establishing a strong resin bond to dental zirconia ceramic remains difficult. Previous studies have shown that the conventional application of silane does not work well with zirconia. This paper reports that a silane pre-treatment of dental zirconia ceramic combined with subsequent heat treatment has potential as an adhesive cementation protocol for improving zirconia-resin bonding. Among the various concentrations (0.1 to 16 vol%) of experimental γ-methacryloxypropyltrimethoxysilane (γ-MPTS) primers assessed, the 1% solution was found to be the most effective in terms of the shear bond strength of the resin cement to dental zirconia ceramic. A high shear bond strength (approx. 30 MPa) was obtained when zirconia specimens were pre-treated with this primer and then heat-treated in a furnace for 60 min at 150 degrees C. Heat treatment appeared to remove the hydrophilic constituents from the silane film formed on the zirconia ceramic surface and accelerate the condensation reactions between the silanol groups of the hydrolyzed silane molecules at the zirconia/resin interface, finally making a more desirable surface for bonding with resin. This estimation was supported by Fourier transform infrared spectroscopy of the silanes prepared in this study. PMID:26328408

  19. Cu diffusion in Nb3Sn internal tin superconductors during heat treatment

    NASA Astrophysics Data System (ADS)

    Pong, Ian; Oberli, Luc-Rene; Bottura, Luca

    2013-10-01

    Heat treatments and phase formation of Nb3Sn internal tin superconductors are more complicated than bronze route conductors due to the need to convert low melting/low decomposition temperature Sn-rich phases to higher temperature Cu-rich Cu-Sn phases. Conventionally, the Cu-Sn phase development in internal tin wires and hence heat treatment optimization and microstructure control are typically interpreted as a matter of outward Sn diffusion from the Sn core towards the Nb filaments, and Cu diffusion in the opposite direction is simply assumed. In this paper, we present a perspective of Cu diffusion, based on our investigation of phase development. We shall show that the conventional Sn diffusion perspective cannot explain some of our observations, in particular the subelement core phase development. We shall also show that the distribution of Kirkendall pores is opposite to that of the coarse Nb3Sn grains, thus establishing a direct relationship between copper diffusion and coarse Nb3Sn grain formation and distribution. We shall compare wires of different local Cu:Nb area ratio (LAR) and show how Cu diffusion appears to control the Cu-Sn phase formation across the subelement and the final Nb3Sn microstructure (and hence influences the critical current density). Drawing from what we learnt from our observation, we managed to modify a standard heat treatment and obtained up to over 20% improvement in critical current density in some of the wire designs we investigated.

  20. Phase transition ordering-separation: A new approach to heat treatment of alloys

    NASA Astrophysics Data System (ADS)

    Ustinovshchikov, Yu. I.

    2015-09-01

    The problems of the consequence of heat treatment of alloys performed using the concept of an ordering-separation phase transition are considered. Fe50Cr50 and Ni88Al12 alloys and U13 steel are used as examples to show that this transition occurs at a temperature specific for each system, and a change in the sign of the chemical interaction between alloy component atoms changes the direction of diffusion fluxes in alloys into the opposite direction, which changes the type of microstructure. The detection of this phase transition radically changes the generally accepted concepts of heat treatment of alloys. This finding calls for transmission electron microscopy investigations to modify the phase diagrams where this phase transition was detected. It is concluded that quenching of alloys from a so-called solid-solution field, which is usually performed before tempering (aging), is an unnecessary and useless operation, since the final structure of an alloy forms upon tempering (aging) irrespective of the structure existing before this heat treatment.

  1. Effects of Heat Treatment on the Magnetic Properties of Polymer-Bound Iron Particle Cores

    NASA Technical Reports Server (NTRS)

    Namkung, M.; Wincheski, B.; Bryant, R. G.

    1998-01-01

    Spherical iron particles of three different size distributions, 6-10 microns in diameter, 100 mesh and 30-80 mesh, were mixed with 2.0 wt. % of soluble imide and compression molded at 300 C under 131 MPa. Post fabrication heat treatments were performed at 960 C for 6 hours resulting in a significant enhancement of the permeability in low field region for all the specimens except for the one made of 30-80 mesh particles. The rate of core loss of these specimens at a magnetic induction of 5 kG measured up to 1 kHz shows a noticeable increase after heat treatment which, along with the permeability enhancement, can be explained by the coalescence of particles forming a network of conductivity paths in the specimens. The scanning electron micrographs taken for the 6-10 micron particle specimens show no evidence of heat treatment-induced grain growth. The untreated specimens show a very weak f(sup 2) dependence of the core loss which clearly indicates a negligible contribution from the eddy current loss. In particular, an almost perfect linearity was found in the frequency dependence of the core loss of the untreated specimen made of 100 mesh iron particles.

  2. Microstructural Evaluation of KM4 and SR3 Samples Subjected to Various Heat Treatments

    NASA Technical Reports Server (NTRS)

    Ellis, David; Gabb, Timothy; Garg, Anita

    2004-01-01

    The gamma-gamma microstructures of two advanced powder metallurgy disk alloys, KM4 and SR3, were quantified after a series of heat treatments using transmission electron microscopy and image analysis. Relationships between the heat treatments and the resulting gamma distributions were evaluated. Statistical correlations between the gamma distributions and the reported tensile strengths, creep resistances, and dwell crack growth resistances were separately assessed for each alloy. To avoid the effects of grain size related mechanisms, the grain size of the samples used in the correlations for each alloy were limited to narrow ranges of about 1.5 in ASTM grain size number. In both alloys, yield and tensile strength increased with increasing fraction of medium sized gamma. The strength increased as the size of the medium gamma decreased and the size of the fine gamma increased. Time to 0.2 percent creep in SR3 increased with increasing medium gamma volume fraction, and decreasing fine gamma sizes. However, 0.2 percent creep time was not clearly correlated with the gamma microstructures of KM4 specimens, apparently due to effects of stabilization heat treatments which greatly suppress creep resistance. Dwell fatigue crack growth rate decreased with increasing medium gamma volume fraction, indicating more medium gamma is beneficial. The crack growth rate also decreased with decreasing gamma size, indicating finer gamma is better.

  3. The variability of hop latent viroid as induced upon heat treatment.

    PubMed

    Matousek, J; Patzak, J; Orctová, L; Schubert, J; Vrba, L; Steger, G; Riesner, D

    2001-09-01

    We have previously shown that heat treatment of hop plants infected by hop latent viroid (HLVd) reduces viroid levels. Here we investigate whether such heat treatment leads to the accumulation of sequence variability in HLVd. We observed a negligible level of mutated variants in HLVd under standard cultivation conditions. In contrast, the heat treatment of hop led to HLVd degradation and, simultaneously, to a significant increase in sequence variations, as judged from temperature gradient-gel electrophoresis analysis and cDNA library screening by DNA heteroduplex analysis. Thirty-one cDNA clones (9.8%) were identified as deviating forms. Sequencing showed mostly the presence of quadruple and triple mutants, suggesting an accumulation of mutations in HLVd during successive replication cycles. Sixty-nine percent of base changes were localised in the left half and 31% in the right half of the secondary structure proposed for this viroid. No mutations were found in the central part of the upper conserved region. A "hot spot" region was identified in a domain known as a "pathogenicity domain" in the group representative, potato spindle tuber viroid. Most mutations are predicted to destabilise HLVd secondary structure. All mutated cDNAs, however, were infectious and evolved into complex progeny populations containing molecular variants maintained at low levels. PMID:11531412

  4. Effects of Heat Treatment on the Magnetic Properties of Polymer-Bound Iron Particle Cores

    NASA Technical Reports Server (NTRS)

    Namkung, M.; Wincheski, B.; Bryant, R. G.; Buchman, A.

    1998-01-01

    Spherical iron particles of three different size distributions, 6-10 micrometers in diameter, 100 mesh and 30-80 mesh, were mixed with 2.0 wt % of soluble imide and compression molded at 300 C under 131 MPa. Post-fabrication heat treatments were performed at 960 C for 6 h resulting in a significant enhancement of the permeability in low field region for all the specimens except for the one made of 30-80 mesh particles. The rate of core loss of these specimens at a magnetic induction of 5 kG measured up to 1 kHz shows a noticeable. increase after heat treatment which, along with the permeability enhancement, can be explained by the coalescence of particles forming a network of conductivity paths in the specimens. ne scanning electron micrographs taken for the 6-10 micrometer particle specimens show no evidence of heat treatment-induced grain growth. The untreated specimens show a very weak f(sup 2) -dependence of the core loss which clearly indicates a negligible contribution from the eddy current loss. In particular, an almost perfect linearity was found in the frequency dependence of the core loss of the untreated specimen made of 100 mesh iron particles.

  5. Effect of heat treatment on mechanical behavior of electron beam welded sintered molybdenum

    NASA Astrophysics Data System (ADS)

    Morito, Fumio

    1989-05-01

    The effect of heat treatment on the weldability of sintered molybdenum was examined by tensile properties at room temperature. Fracture surfaces were characterized by scanning electron microscopy and scanning Auger electron spectroscopy. In as-welded specimens, tensile strength exhibited a considerable increase by stress relief annealing and a rapid decrease by the annealing before welding. An increase of the annealing temperature before welding served to reduce ductility. Post-weld heat treatment reduced the strength in the specimens which were annealed up to 1173 K before welding. But much improvement in strength was gained by increasing post-weld annealing temperature in the annealed welds before welding. Ductility was also improved considerably with an increase of post-weld annealing temperature. Fracture initiated predominantly at grain boundaries and propagated in a mixed manner in weld metal. Nitrogen and oxygen segregation seemed to promote decohesion of grain boundaries. Carbon segregation and precipitation by heat treatment, especially during post-weld annealing, strengthened the cohesion of grain boundaries and resulted in improving the ductility.

  6. The Effect of Heat Treatment on Mechanical Properties of Thermally Sprayed Sandwich Structure Beams

    NASA Astrophysics Data System (ADS)

    Salavati, Saeid; Coyle, Thomas W.; Mostaghimi, Javad

    2016-01-01

    The application of metallic foam core sandwich structures in engineering components has been of particular interest in recent years because of their unique mechanical and thermal properties. Thermal spraying of the skin on the foam structure has recently been employed as a novel cost-efficient method for fabrication of these structures from refractory materials with complex shapes that could not otherwise be easily fabricated. The mechanical behavior of these structures under flexural loading is important in most applications. Previous studies have suggested that heat treatment of the thermally sprayed sandwich structures could improve the ductility of the skins and so affect the failure mode. In the present study, the mechanical behavior of sandwich beams prepared from arc sprayed alloy 625 skin on 40 ppi nickel foam was characterized under four point bending. The ductility of the arc sprayed alloy 625 coatings was improved after heat treatment at 1100 and 900 °C while the yield point was reduced. Heat treatment of the sandwich beams reduced the danger of catastrophic failure.

  7. Heat treatment of serum samples from stray dogs naturally exposed to Dirofilaria immitis and Dirofilaria repens in Romania.

    PubMed

    Ciucă, L; Genchi, M; Kramer, L; Mangia, C; Miron, L D; Prete, L Del; Maurelli, M P; Cringoli, G; Rinaldi, L

    2016-07-30

    Pre-heating of serum samples has been shown to reverse false negative antigen tests for Dirofilaria immitis infection in dogs. Here the authors report the results of serum sampling in a population of dogs naturally exposed to D. immitis and Dirofilaria repens infection by testing in ELISA before and after heat treatment. Of 194 dogs sampled from four cities in Romania, D. immitis circulating antigens were found in 16 (8.2%) non heated samples and in 52 (26.8%) heated samples. Of the 108 dogs examined by Knott test, 24 dogs (22.2%) were positive for circulating mf. Subsequent PCR identification showed six dogs had D. immitis mf only, 12 dogs, had only D. repens mf, and 5 were positive for both. Fifty% of dogs with circulating D. immitis mf had positive antigen tests before and after heating, while the other 50% reverted to positive only after heat treatment. Sixty% of dogs with mixed D. immitis/D. repens infection were antigen positive before and after heating, while the other 40% converted to positive after heating. Antigen testing for D. immitis in the 12 dogs with only D. repens mf gave conflicting results. Only two dogs (16%) were antigen negative both before and after heat treatment. Six dogs (50%) became antigen positive after heating and four dogs (30%) were antigen positive both before and after heat treatment. Results would suggest that: false negative result for antigen testing can be reverted by heating of the serum sample; dogs infected with D. repens may have also an occult infection with D. immitis; heat treatment of serum from D. repens-infected dogs can reveal an occult infection with D. immitis. PMID:27369579

  8. Structural and Resistivity Changes in YBa2Cu3Oy Ceramics by Heat-Treatment in Air

    NASA Astrophysics Data System (ADS)

    Leng, Song; Narita, Nobutaka; Higashida, Kenji; Mazaki, Hiromasa

    1987-08-01

    Effect of heat-tretment in YBa2Cu3Oy ceramics was investigated using the methods of electrical resistivity, TG, DTA and X-ray diffraction. In the heating process, a mass increase and a resistivity decrease are observed in the sample in the temperature range 630-780 K. Heat-treatment in air at temperatures above 780 K causes the marked increase of resistivity as well as the decrease of oxygen content. The YBa2Cu3Oy compound is decomposed gradually above 1200 K and completely at around 1290 K. The degradation and recovery of structural and transport properties by heat-treatment in air are also reported.

  9. Impact of heat treatment and oxidation of Carbon-carbon composites on microstructure and physical properties

    NASA Astrophysics Data System (ADS)

    Iqbal, Sardar Sarwat

    Carbon-carbon (C/C) composites are notable among engineering materials in aerospace and defense industries possessing excellent specific mechanical, thermal, frictional and wear properties. C/C maintain their properties at temperatures where most of the high end alloys give in, and maintain their dimensional stability at temperatures above 2000 °C. C/C is frequently used in aircraft and automotive industries as brake materials. However, frictional performance is dependent on various parameters: microstructure, fiber type, fiber orientation distribution, fiber/matrix interfacial bond, heat treatment, and oxidation. The present study in dissertation provides an insight into the impact of heat treatment, and oxidation on microstructure, mechanical and thermal properties. The heat treatment (performed at 1800, 2100, 2400 °C in argon) of two-directional (2-D) pitch-fiber with charred resin carbon matrix, and three-directional (3-D) PAN-fiber with CVI carbon matrix influenced microstructure, mechanical and thermal properties. Microstructure characterized by polarized light microscopy (PLM), XRD, and Raman spectroscopy changed with increasing heat treatment temperature. The RL microstructure of 3-D C/C progressively highly organized, whereas ISO microstructure of 2-D C/C's charred resin hardly organized into an ordered structure as evident from Raman spectroscopy and Raman profiling of polished samples. Pitch-fiber organized more than the ISO microstructure of charred resin matrix. On the other, PAN-fiber became more ordered, but was organization was lower than pitch-fiber. Thermal conductivity increased for both (2-D, 3-D C/C) materials in comparison to non-heat treated (NHT) C/Cs. Thermal conductivity of oxidized samples decreased significantly than non-oxidized samples. In-plane thermal conductivity of 3-D C/C was much higher than that of 2-D C/C, and was attributed to the rough laminar (RL) microstructure of carbon matrix and continuous PAN-fiber when compared to

  10. Effects of Various Heat Treatments on the Ballistic Impact Properties of Inconel 718 Investigated

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Lerch, Bradley A.

    2000-01-01

    Uncontained failures of aircraft engine fan blades are serious events that can cause equipment damage and loss of life. Federal Aviation Administration (FAA) certification requires that all engines demonstrate the ability to contain a released fan blade with the engine running at full power. However, increased protection generally comes at the expense of weight. Proper choice of materials is therefore imperative to an optimized design. The process of choosing a good casing material is done primarily through trial and error. This costly procedure could be minimized if there was a better understanding of the relationships among static material properties, impact properties, and failure mechanisms. This work is part of a program being conducted at the NASA Glenn Research Center at Lewis Field to study these relationships. Ballistic impact tests were conducted on flat, square sheets of Inconel 718 that had been subjected to different heat treatments. Two heat treatments and the as-received condition were studied. In addition, results were compared with those from an earlier study involving a fourth heat treatment. The heat treatments were selected on the basis of their effects on the static tensile properties of the material. The impact specimens used in this study were 17.8-cm square panels that were centered and clamped over a 15.2-cm square hole in a 1.27-cm-thick steel plate. Three nominal plate thickness dimensions were studied, 1.0, 1.8, and 2.0 mm. For each thickness, all the specimens were taken from the same sheet of material. The projectile was a Ti-6Al-4V cylinder with a length of 25.4 mm, a diameter of 12.7 mm, and a mass ranging from 14.05 to 14.20 g. The projectiles were accelerated toward the specimens at normal incidence using a gas gun with a 2-m-long, 12.7-mm inner-diameter barrel. The ballistic limit for each heat treatment condition and thickness was determined by conducting a number of impact tests that bracketed as closely as possible the velocity

  11. Large size superelastic SMA bars: heat treatment strategy, mechanical property and seismic application

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Fang, Cheng; Liu, Jia

    2016-07-01

    This paper reports a comprehensive study on the mechanical performance of large size superelastic shape memory alloy (SMA) bars, with the main focus given to their potential applications for seismic-resistant connections. A series of practical issues, including heat treatment, mechanical property assessment, and connection design/evaluation, were discussed aiming to benefit both material and civil engineering communities. The study commenced with a detailed discussion on the heat treatment strategy for SMA bars and the resulting mechanical properties including strength/stiffness, self-centring ability, energy dissipation, and fractural resistance. It was observed that the mechanical performance of the bars were quite sensitive to both annealing temperature and duration, and size effect was also evident, resulting in different appropriate heat treatment procedures for the bars with varying diameters. The optimally heat-treated SMA bars were machined to the bolt form and were then used for two types of practical self-centring connections, namely, connection with all SMA bars and that with combined angles and SMA bars. Through conducting full-scale tests, both connections were shown to have stable and controllable hysteretic responses till 5% loading drift. Up to 3% drift, the self-centring performance was satisfactory for both connection types, but beyond that the presence of the angles could lead to accumulated residual rotation. Importantly, for both connections, the deformation was accommodated by the SMA bolts or angles, whereas no plastic deformation was observed at any other structural members. This confirmed the feasibility of using such connections for highly resilient structures where minimal repair work is required after earthquakes.

  12. Effects of material property and heat treatment on nanomechanical properties of chitosan films.

    PubMed

    Majd, Shervin; Yuan, Youling; Mishra, Sanjay; Haggard, Warren O; Bumgardner, Joel D

    2009-07-01

    The influence of degree of deacetylation (DDA), molecular weight (MW), and heat treatment on nanomechanical properties of three different chitosan coatings was assessed. Chitosans (2.5 wt % in 2% acetic acid) were solution cast and bonded to glass slides, subjected to 40, 70, or 90 degrees C heat treatments for 1 h, and then allowed to air dry. Non-heat treated films were used as controls. The nanomechanical and structural properties were evaluated using quasi-static nanoindentation, X-ray diffraction (XRD), and atomic force microscopy (AFM). Nanoindentation results showed that the coating with the lowest MW and highest DDA (95.6% DDA and MW = 2.43 x 10(6) Da) had higher reduced modulus of elasticity, (E = 4.02 +/- 0.85 GPa) as compared to the other chitosans; 76.1% DDA/MW = 3.20 x 10(6) Da, E = 3.66 +/- 0.68 GPa, and 92.3% DDA/MW = 7.52 x 10(6) Da, E = 3.56 +/- 0.25 GPa; (n = 75, p < 0.05). Crystallinity index, estimated via XRD, ranged from 36.4% +/- 1% to 49.7% +/- 6.5%. AFM revealed the presence of different crystalline morphologies such as needle-like crystals, sheet-like crystals, and small spherulites. The heat treatments applied during solution casting of the chitosan coatings did not affect morphology or nanomechanical properties. In conclusion, nanomechanical properties of chitosan coatings varied with DDA and MW and may be important to cell/tissue interactions. PMID:19072977

  13. Electrophoretic Behavior in Relation to the Structural Integrity of Codfish Parvalbumin upon Heat Treatment.

    PubMed

    de Jongh, Harmen H J; de los Reyes Jimenez, Marta; Baumert, Joseph L; Taylor, Steve L; Koppelman, Stef J

    2015-05-13

    This work evaluates the impact of heat processing of parvalbumin, a major fish allergen, on the consequences for quantitative analysis of this protein embedded in different matrices during heating (either isolated, in an aqueous extract, or in whole fillets) to assess potential health risks. It is shown that oligomerization of parvalbumin does occur, but only upon heat treatment above 80 °C. This coincides with the ability of the isolated protein to refold up to this temperature in a fully reversible way, as demonstrated by circular dichroism analysis. In autoclaved samples a disintegration of the protein structure is observed. The situation becomes different when parvalbumin is embedded in a matrix with other constituents, as in fish extracts or whole fillets. The electrophoretic analysis of parvalbumin (SDS-PAGE and immunoblotting) is largely determined by complexation with other proteins resulting in insoluble materials caused by the partial unfolding of the parvalbumin at elevated temperatures. This effect is more strongly observed for cod fish extract, compared to whole cod fillets, as in the latter situation the integrity of the tissue hampers this interprotein complexation. Moreover, it is shown by ELISA analysis of heat-treated samples that using blotting procedures where disintegration of complexes may be promoted, restoring some of the IgG-binding propensity, may provide false outcomes. It was concluded that antibody binding to parvalbumin is dominated by the potential to form heat-induced complexes with other proteins. The possibly less-soluble or extractable character of these complexes may provide confusing information regarding potential health risks of fish and fish protein-containing food composites when such heat-treated samples are analyzed by immunochemical assays. PMID:25880570

  14. Aerodynamic and heat transfer aspects of tip and casing treatments used for turbine tip leakage control

    NASA Astrophysics Data System (ADS)

    Gumusel, Baris

    Axial flow turbine stages are usually designed with a gap between the tips of the rotating blades and a stationary outer casing. The presence of a strong pressure gradient across this gap drives flow from the pressure side of the blade to the suction side. This leakage flow creates a significant amount of energy loss of working fluid in the turbine stage. In a modern gas turbine engine the outer casing of the high-pressure turbine is also exposed to a combination of high flow temperatures and heat transfer coefficients. The casing is consequently subjected to high levels of convective heat transfer, a situation that is aggravated by flow unsteadiness caused by periodic blade-passing events. An experimental investigation of the aerodynamic and heat transfer effect of tip and casing treatments used in turbine tip leakage control was conducted in a large scale, low speed, rotating research turbine facility. The effects of casing treatments were investigated by measuring the total pressure field at the exit of the rotor using a high frequency response total pressure probe. A smooth wall as a baseline case was also investigated. The test cases presented include results of casing treatments with varying dimensions for tip gap height of t/h=2.5%. The results of the rotor exit total pressure indicate that the casing treatment significantly reduced the leakage mass flow rate and the momentum deficit in the core of the tip vortex. The reductions obtained in the tip vortex size and strength influenced the tip-side passage vortex and other typical core flow characteristics in the passage. Casing treatments with the highest ridge height was the most effective in reducing the total pressure loss in the leakage flow of the test blades. This was observed at a radius near the core of the tip vortex. It appears that casing treatments with the highest ridge height is also the most effective from a global point of view, as shown by the passage averaged pressure coefficient obtained in

  15. Daily heat stress treatment rescues denervation-activated mitochondrial clearance and atrophy in skeletal muscle

    PubMed Central

    Tamura, Yuki; Kitaoka, Yu; Matsunaga, Yutaka; Hoshino, Daisuke; Hatta, Hideo

    2015-01-01

    Traumatic nerve injury or motor neuron disease leads to denervation and severe muscle atrophy. Recent evidence indicates that loss of mitochondria and the related reduction in oxidative capacity could be key mediators of skeletal muscle atrophy. As our previous study showed that heat stress increased the numbers of mitochondria in skeletal muscle, we evaluated whether heat stress treatment could have a beneficial impact on denervation-induced loss of mitochondria and subsequent muscle atrophy. Here, we report that daily heat stress treatment (mice placed in a chamber with a hot environment; 40°C, 30 min day−1, for 7 days) rescues the following parameters: (i) muscle atrophy (decreased gastrocnemius muscle mass); (ii) loss of mitochondrial content (decreased levels of ubiquinol–cytochrome c reductase core protein II, cytochrome c oxidase subunits I and IV and voltage-dependent anion channel protein); and (iii) reduction in oxidative capacity (reduced maximal activities of citrate synthase and 3-hydroxyacyl-CoA dehydrogenase) in denervated muscle (produced by unilateral sciatic nerve transection). In order to gain a better understanding of the above mitochondrial adaptations, we also examined the effects of heat stress on autophagy-dependent mitochondrial clearance (mitophagy). Daily heat stress normalized denervation-activated induction of mitophagy (increased mitochondrial microtubule-associated protein 1A/1B-light chain3-II (LC3-II) with and without blocker of autophagosome clearance). The molecular basis of this observation was explained by the results that heat stress attenuated the denervation-induced increase in key proteins that regulate the following steps: (i) the tagging step of mitochondrial clearance (increased mitochondrial Parkin, ubiquitin-conjugated, P62/sequestosome 1 (P62/SQSTM1)); and (ii) the elongation step of autophagosome formation (increased Atg5–Atg12 conjugate and Atg16L). Overall, our results contribute to the better

  16. Microstructure Evolution During Spray Rolling and Heat Treatment of 2124 Al

    SciTech Connect

    K.M. McHugh; Y. Lin; Y. Zhou; S.B. Johnson; J.P. Delplanque; E.J. Lavernia

    2006-09-01

    Spray rolling is a strip casting technology that combines elements of spray forming and twin-roll casting. It consists of atomizing molten metal with a high velocity inert gas, quenching the resultant droplets in flight, and directing the spray between mill rolls. In-flight convection heat transfer from atomized droplets and conduction heat transfer at the rolls rapidly move an alloy’s latent heat. Hot deformation of the semi-solid material in the rolls results in fully consolidated, rapidly-solidified product. While similar in many ways to twin-roll casting, spray rolling is able to process a broader range of alloys and operates at a higher production rate. A laboratory-scale strip caster has been constructed at INL and used to evaluate the interplay of processing parameters and strip quality while producing strips up to 200 mm wide and 1.6 – 6.4 mm thick. Plans are underway to scale to 600 mm width and demonstrate steady-state operation. As-spray-rolled strip is characterized by a flat, uniformly thick profile with minimal porosity or segregation. This paper examines how processing parameters influence the microstructure transformations that take place during spray rolling and post-deposition heat treatment of 2124 Al.

  17. Abhraka Bhasma treatment ameliorates proliferation of germinal epithelium after heat exposure in rats

    PubMed Central

    Bhatia, Babita S.; Kale, Purushottam G.; Daoo, Jayashree V.; Panchal, Pranali P.

    2012-01-01

    This study was conducted to evaluate the protective effect of Abhraka Bhasma on spermatogenesis in heat-damaged testis. A histological analysis over the sukravaha srotomula (testes) of male albino Wistar rat was carried out in order to examine the potency of the test drug in preventing the organ from heat damage. The current experiment was carried out on 32 healthy adult male albino Wistar rats divided into four groups. Sahastraputi Abhraka Bhasma, subjected to 1000 putas, was used as the test drug. On sacrificing the animals after 30 days, it was observed that control animals (G1) had normal spermatogenesis and drug-induced animals (G2) showed hyperactive tubules. Testicular hyperthermia occurred in few (G3) animals, who were subjected to 43°C for 1 h daily for four consecutive weeks, resulting in degeneration of tubules with inspissated spermatozoa (25%) leading to atrophy of the organ. 3% tubules showed disintegration, 23% were in the recovery stage while 71% tubules exhibited enhanced proliferation of germinal epithelium leading to hypertrophy and hyperplasia. The present study reveals that the test drug can correct heat-induced male infertility and provides us with the possibility of treatment of human heat-induced oligozoospermia and azoospermia. Hence, this ayurvedic maharasa (primary mineral) can be a promising formulation as an anti-impotency fecundity drug. PMID:23661864

  18. Abhraka Bhasma treatment ameliorates proliferation of germinal epithelium after heat exposure in rats.

    PubMed

    Bhatia, Babita S; Kale, Purushottam G; Daoo, Jayashree V; Panchal, Pranali P

    2012-04-01

    This study was conducted to evaluate the protective effect of Abhraka Bhasma on spermatogenesis in heat-damaged testis. A histological analysis over the sukravaha srotomula (testes) of male albino Wistar rat was carried out in order to examine the potency of the test drug in preventing the organ from heat damage. The current experiment was carried out on 32 healthy adult male albino Wistar rats divided into four groups. Sahastraputi Abhraka Bhasma, subjected to 1000 putas, was used as the test drug. On sacrificing the animals after 30 days, it was observed that control animals (G1) had normal spermatogenesis and drug-induced animals (G2) showed hyperactive tubules. Testicular hyperthermia occurred in few (G3) animals, who were subjected to 43°C for 1 h daily for four consecutive weeks, resulting in degeneration of tubules with inspissated spermatozoa (25%) leading to atrophy of the organ. 3% tubules showed disintegration, 23% were in the recovery stage while 71% tubules exhibited enhanced proliferation of germinal epithelium leading to hypertrophy and hyperplasia. The present study reveals that the test drug can correct heat-induced male infertility and provides us with the possibility of treatment of human heat-induced oligozoospermia and azoospermia. Hence, this ayurvedic maharasa (primary mineral) can be a promising formulation as an anti-impotency fecundity drug. PMID:23661864

  19. Intermittent cryogen spray cooling for optimal heat extraction during dermatologic laser treatment

    NASA Astrophysics Data System (ADS)

    Majaron, Boris; Svaasand, Lars O.; Aguilar, Guillermo; Nelson, J. Stuart

    2002-09-01

    Fast heat extraction is critically important to obtain the maximal benefit of cryogen spray cooling (CSC) during laser therapy of shallow skin lesions, such as port wine stain birthmarks. However, a film of liquid cryogen can build up on the skin surface, impairing heat transfer due to the relatively low thermal conductivity and higher temperature of the film as compared to the impinging spray droplets. In an attempt to optimize the cryogen mass flux, while minimally affecting other spray characteristics, we apply a series of 10 ms spurts with variable duty cycles. Heat extraction dynamics during such intermittent cryogen sprays were measured using a custom-made metal-disc detector. The highest cooling rates were observed at moderate duty cycle levels. This confirms the presence, and offers a practical way to eliminate the adverse effect of liquid cryogen build-up on the sprayed surface. On the other hand, lower duty cycles allow a substantial reduction in the average rate of heat extraction, enabling less aggressive and more efficient CSC for treatment of deeper targets, such as hair follicles.

  20. A proposed mechanism of tenderising post-rigor beef using high pressure-heat treatment.

    PubMed

    Sikes, Anita; Tornberg, Eva; Tume, Ron

    2010-03-01

    Tenderness of beef M. Sternomandibularis was tough when cooked from both raw, and when previously heated (60 degrees C, 20 min), whereas a significant improvement in tenderness was achieved when pressure-heat (P-H) treated muscle (200 MPa, 60 degrees C, 20 min) was cooked. In order to determine the mechanism for this improvement, connective tissue, myofibrillar and sarcoplasmic proteins, were separated into three fractions and studied with regard to their solubilisation, denaturation and aggregation, degradation and strengthening of protein structures for the three treatments (raw, heated and H-P treated). Measurements included DSC, SDS-PAGE, surface hydrophobicity, and the appearance, length and width of myofibres (light microscopy). For the connective tissue fraction, heat solubility was determined. It is suggested that the mechanism for this improvement in tenderness is the formation of a strengthened myofibrillar structure that, when sheared by mastication, allows the crack to pass through the meat rather than dissipate into a more visco-elastic structure. In this way a more brittle fracture is achieved and the meat is perceived as more tender. The pre-requisite is that adequate enzymatic activity has occurred. It is suggested that cathepsins are responsible. PMID:20374801

  1. Effect of hydrothermal heat treatment on magnetic properties of copper zinc ferrite rf sputtered films

    NASA Astrophysics Data System (ADS)

    Kaur, Jasmeet; Gadipelly, Thirupathi; Singh, R.

    2016-05-01

    The hydrothermal treatment to the nano-structured films can overcome the destruction of the films. The Cu-Zn Ferrite films were fabricated by RF-sputtering on quartz substrates. Subsequently, the as deposited films were heat treated using hydrothermal process. The X-ray diffraction pattern of the as-deposited and hydrothermal treated films indicate nano-crystalline cubic spinel structure. The amorphous nature of the films is removed after hydrothermal treatment with decreased crystallite size. The field emission scanning electron micrographs showed merged columnar growth for as deposited films, which changes to well define columns after hydrothermal heating. The homogeneous cluster distribution is observed in surface view of the hydrothermal treated films. Hydrothermal treated films show merging of in-plane and out of plane magnetization plots (M(H)) whereas the M(H) plots of as deposited films show angular dependence. The strong angular dependence is observed in the FMR spectra due to the presence of a uniaxial anisotropy in the films. The ferromagnetic interactions decrease in hydrothermal heated films due to the reduced shape anisotropy and crystallite size.

  2. Aesthetic value improvement of the ruby stone using heat treatment and its synergetic surface study

    NASA Astrophysics Data System (ADS)

    Sahoo, Rakesh K.; Mohapatra, Birendra K.; Singh, Saroj K.; Mishra, Barada K.

    2015-02-01

    The surface behavior of the natural ruby stones before and after heat treatment with metal oxide additives like: zinc oxide (ZnO) and lead oxide (PbO) have been studied. The surface appearance of the ruby stones processed with the metal oxides changed whereas the bulk densities of the stones remained within the range of 3.9-4.0 g/cm3. The cracks healing and pores filling by the metal oxides on the surface of the ruby have been examined using scanning electron microscopy. The chemical compositions based on the XPS survey scans are in good agreement with the expected composition. The phase and crystallinity of the ruby stones original and heat-treated were obtained from their X-ray diffraction patterns. The change in peak separation between R1 and R2 - peaks in photoluminescence spectra and the contrary binding energy shift of the Al 2p peaks in the X-ray photoelectron spectra have been explicated. Moreover, in this work we describe the change in surface chemical and physical characteristics of the ruby stone before and after heat treatment.

  3. The aroma of goat milk: seasonal effects and changes through heat treatment.

    PubMed

    Siefarth, Caroline; Buettner, Andrea

    2014-12-10

    Goat milk was characterized and analyzed by human sensory evaluation and gas chromatography/olfactometry (GC/O). Most potent odor-active compounds were determined in (a) raw goat's milk from two different seasons and (b) heated goat's milk after different treatment intensities. A trained panel found sensorial differences between winter and summer milks (seasonal effect) and milks from different farms (farm-specific effect). A total of 54 odor-active compounds with flavor dilution (FD) factors ≥8 were detected of which 42 odorants were identified. 4-Ethyloctanoic acid, 3-methylindole (skatol) and one unknown compound (RI 2715) showed highest intensities in all raw milks. With heat treatment, goat-like, stable-like, and (cooked) milk-like odor characteristics decreased while caramel-like or vanilla-like notes increased. In total, 66 odor-active compounds were detected in heated goat milks (FD ≥ 8). To the best of our knowledge, only 16 of the 42 identified odorants were reported before in raw goat's milk. Additionally, for the first time the presence of 1-benzopyran-2-one (coumarin) could be confirmed in ruminant milk. PMID:25405703

  4. Impact of heat treatment on size, structure, and bioactivity of elemental selenium nanoparticles

    PubMed Central

    Zhang, Jinsong; Taylor, Ethan W; Wan, Xiaochun; Peng, Dungeng

    2012-01-01

    Background Elemental selenium nanoparticles have emerged as a novel selenium source with the advantage of reduced risk of selenium toxicity. The present work investigated whether heat treatment affects the size, structure, and bioactivity of selenium nanoparticles. Methods and results After a one-hour incubation of solution containing 80 nm selenium particles in a 90°C water bath, the nanoparticles aggregated into larger 110 nm particles and nanorods (290 nm × 70 nm), leading to significantly reduced bioavailability and phase II enzyme induction in selenium-deficient mice. When a solution containing 40 nm selenium nanoparticles was treated under the same conditions, the nanoparticles aggregated into larger 72 nm particles but did not transform into nanorods, demonstrating that the thermostability of selenium nanoparticles is size-dependent, smaller selenium nanoparticles being more resistant than larger selenium nanoparticles to transformation into nanorods during heat treatment. Conclusion The present results suggest that temperature and duration of the heat process, as well as the original nanoparticle size, should be carefully selected when a solution containing selenium nanoparticles is added to functional foods. PMID:22359458

  5. Vitamin Content of Breast Milk From HIV-1–Infected Mothers Before and After Flash-Heat Treatment

    PubMed Central

    Israel-Ballard, Kiersten A.; Abrams, Barbara F.; Coutsoudis, Anna; Sibeko, Lindiwe N.; Cheryk, Lynn A.; Chantry, Caroline J.

    2010-01-01

    Background World Health Organization advocates heat treatment of expressed breastmilk (EBM) as one method to reduce postnatal transmission of human immunodeficiency virus (HIV) in developing countries. Flash-heat is a simple heat treatment method shown to inactivate cell-free HIV. Objective To determine the effect of flash-heat on vitamin content of milk. Methods Fresh EBM was collected from 50 HIV+ mothers in Durban, South Africa. Mothers washed their hands and then manually expressed 75–150 mL EBM into sterile jars. Milk was aliquoted to unheated controls or flash-heat (50 mL EBM in a glass jar heated in a 450-mL water jacket in an aluminum pan until water boiled, then EBM removed) simulating field conditions with an open flame. Samples were stored at −70°C and then analyzed for the effect of flash-heat on vitamins [A, ascorbic acid, riboflavin (B2), pyridoxal-5-phosphate (B6), folate, and B12]. Results Vitamin A was not significantly affected by flash-heat and vitamins B12 and C and folate increased significantly. Vitamins B2 and B6 were decreased to 59% (95% confidence interval 44 to 81) and 96% (95% confidence interval 92 to 99), respectively, of that found in unheated milk. Conclusions The percentage remaining after flash-heat suggests that most vitamin concentrations are retained after heating. Flash-heat may be a practical and nutritious infant feeding method for mothers in developing countries. PMID:18614920

  6. Developing a two-step heat treatment for inactivating desiccation-adapted Salmonella spp. in aged chicken litter.

    PubMed

    Chen, Zhao; Wang, Hongye; Jiang, Xiuping

    2015-02-01

    The effectiveness of a two-step heat treatment for eliminating desiccation-adapted Salmonella spp. in aged chicken litter was evaluated. The aged chicken litter with 20, 30, 40, and 50% moisture contents was inoculated with a mixture of four Salmonella serotypes for a 24-h adaptation. Afterwards, the inoculated chicken litter was added into the chicken litter with the adjusted moisture content for a 1-h moist-heat treatment at 65 °C and 100% relative humidity inside a water bath, followed by a dry-heat treatment in a convection oven at 85 °C for 1 h to the desired moisture level (<10-12%). After moist-heat treatment, the populations of Salmonella in aged chicken litter at 20 and 30% moisture contents declined from ≈6.70 log colony-forming units (CFU)/g to 3.31 and 3.00 log CFU/g, respectively. After subsequent 1-h dry-heat treatment, the populations further decreased to 2.97 and 2.57 log CFU/g, respectively. Salmonella cells in chicken litter with 40% and 50% moisture contents were only detectable by enrichment after 40 and 20 min of moist-heat treatment, respectively. Moisture contents in all samples were reduced to <10% after a 1-h dry-heat process. Our results demonstrated that the two-step heat treatment was effective in reducing >5.5 logs of desiccation-adapted Salmonella in aged chicken litter with moisture content at or above 40%. Clearly, the findings from this study may provide the chicken litter processing industry with an effective heat treatment method for producing Salmonella-free chicken litter. PMID:25405539

  7. Effect of Post-Weld Heat Treatment on Creep Rupture Properties of Grade 91 Steel Heavy Section Welds

    SciTech Connect

    Li, Leijun

    2012-11-02

    This project will conduct a systematic metallurgical study on the effect of post-weld heat treatment (PWHT) on the creep rupture properties of P91 heavy section welds. The objective is to develop a technical guide for selecting PWHT parameters, and to predict expected creep-rupture life based on the selection of heat treatment parameters. The project consists of four interdependent tasks: Experimentally and numerically characterize the temperature fields of typical post-weld heat treatment procedures for various weld and joint configurations to be used in Gen IV systems. Characterize the microstructure of various regions, including the weld fusion zone, coarse-grain heat-affected zone, and fine-grain heat affected zone, in the welds that underwent the various welding and PWHT thermal histories. Conduct creep and creep-rupture testing of coupons extracted from actual and physically simulated welds. Establish the relationship among PWHT parameters, thermal histories, microstructure, creep, and creep-rupture properties.

  8. [Research on the temperature field detection method of large cylinder forgings during heat treatment process based on infrared spectra].

    PubMed

    Zhang, Yu-Cun; Fu, Xian-Bin; Liu, Bin; Qi, Yan-De; Zhou, Shan

    2013-01-01

    In order to grasp the changes of the forging's temperature field during heat treatment, a temperature field detection method based on infrared spectra for large cylinder forgings is proposed in the present paper. On the basis of heat transfer a temperature field model of large barrel forgings was established by the method of separating variables. Using infrared spectroscopy the large forgings temperature measurement system was built based on the three-level interference filter. The temperature field detection of forging was realized in its heat treatment by combining the temperature data and the forgings temperature field detection model. Finally, this method is feasible according to the simulation experiment. The heating forging temperature detection method can provide the theoretical basis for the correct implementation of the heat treatment process. PMID:23586224

  9. In situ post-weld heat treatment on martensitic stainless steel turbine runners using a robotic induction heating process to control temperature distribution

    NASA Astrophysics Data System (ADS)

    Boudreault, E.; Hazel, B.; Côté, J.; Godin, S.

    2014-03-01

    A new robotic heat treatment process is developed. Using this solution it is now possible to perform local heat treatment on large steel components. Crack, cavitation and erosion repairs on turbine blades and Pelton buckets are among the applications of this technique. The proof of concept is made on a 13Cr-4Ni stainless steel designated "CA6NM". This alloy is widely used in the power industry for modern system components. Given the very tight temperature tolerance (600 to 630 °C) for post-weld heat treatment on this alloy, 13Cr-4Ni stainless steel is very well suited for demonstrating the possibilities of this process. To achieve heat treatment requirements, an induction heating system is mounted on a compact manipulator named "Scompi". This robot moves a pancake coil in order to control the temperature distribution. A simulator using thermal finite element analysis is first used for path planning. A feedback loop adjusts parameters in function of environmental conditions.

  10. Effects of Ni, Co and heat treatment on the structure and characteristics of VKS6 steel

    SciTech Connect

    Petrakov, A.F.; Belyakov, L.N.; Gulyaev, A.P.; Pokrovskaya, N.G.; Zikeev, V.N.

    1986-05-01

    The authors studied the effects of Ni and Co, heat treatment and heating during the service life on phase transfromations and mechanical properties of 32KhN8M1FK5A (VKS6) steel as well as its characteristics as a construction material, including the effects of erosive environments, in comparison with 30KhGSN2A. The experiments showed that a large amount of residual austentite in 9Ni-4Co steels is undesirable because it impairs the strength characteristics. To lower the amount of residual austentite in 9Ni-4Co steels is possible not only by alloying it with Co but by decreasing the Ni content. Alloying elements Mo, Cr, Ni, and Co, which after high temperature tempering, form a structure and phasecomposition which prevent the formation of intergranular cracks. Auger spectroscopy showed that the high Mo and Cr contents support segregation along phase and grain boundaries.

  11. Application of microwave radiation to biofilm heating during wastewater treatment in trickling filters.

    PubMed

    Zieliński, Marcin; Zielińska, Magdalena; Dębowski, Marcin

    2013-01-01

    The purpose of this study was to demonstrate the potential for improving wastewater treatment by the application of microwave radiation (MW) compared to convective heating (CH) of trickling filters. Microwaves were delivered to the biofilm in a continuous and intermittent way to obtain temperatures of 20, 25, 35 and 40 °C. Although there was no effect of MW on organic removal, the observed yield coefficient was lower during the continuous MW supply compared to the periodic dosage and CH. The presence of organic compounds in the influent and continuous biofilm exposure to MW resulted in ca. 10% higher efficiency and ca. 20% higher rate of nitrification compared to intermittent MW dosage and CH. Independent of the method of reactor heating, the absence of organic carbon in the influent induced a significant increase in ammonium oxidation efficiency at 20-35 °C. Despite the aerobic conditions in trickling filters, nitrogen loss was observed. PMID:23131645

  12. Dual Microstructure Heat Treatment of a Nickel-Base Disk Alloy

    NASA Technical Reports Server (NTRS)

    Gayda, John

    2001-01-01

    Existing Dual Microstructure Heat Treat (DMHT) technology was successfully applied to Alloy 10, a high strength, nickel-base disk alloy, to produce a disk with a fine grain bore and coarse grain rim. Specimens were extracted from the DMHT disk and tested in tension, creep, fatigue, and crack growth using conditions pertinent to disk applications. These data were then compared with data from "traditional" subsolvus and supersolvus heat treatments for Alloy 10. The results showed the DMHT disk to have a high strength, fatigue resistant bore comparable to that of subsolvus Alloy 10. Further, creep resistance of the DMHT rim was comparable to that of supersolvus Alloy 10. Crack growth resistance in the DMHT rim, while better than that for subsolvus, was inferior to that of supersolvus Alloy 10. The slow cool at the end of the DMHT conversion and/or the subsolvus resolution step are thought to be responsible for degrading rim DMHT crack growth resistance.

  13. Vapor transport of zirconium and silicon during heat-treatment of Zircaloy in silica

    SciTech Connect

    Knittel, D.R.; Cubicciotti, D.

    1980-01-01

    When pieces of Zircaloy are heated above 600/sup 0/C in sealed silica capsules, silicon is deposited on the Zircaloy surface as zirconium silicides and zirconium is deposited on the silica in two forms: as an oxide layer in the high temperature region and as a metallic mirror on lower temperature surfaces. Samples of Zircaloy were heated in silica capsules under various conditions and analyzed by scanning electron microscopy. The results indicate that the deposits resulted from vapor transport processes involving volatile zirconium and silicon fluorides. Residual fluoride on Zircaloy surfaces, remaining from acid pickling treatments, was observed by Auger electron spectroscopy and mass spectroscopy in amounts sufficient to cause the transport. The thermodynamics of the vapor transport reactions are in accord with the fluoride mechanism. 4 figures.

  14. Solution heat-treatment of Nb-modified MAR-M247 superalloy

    SciTech Connect

    Soares Azevedo e Silva, Paulo Ricardo; Baldan, Renato; Nunes, Carlos Angelo; Carvalho Coelho, Gilberto; and others

    2013-01-15

    MAR-M247 superalloy has excellent mechanical properties and good oxidation resistance at elevated temperatures. Niobium is an element known as {gamma} Prime phase hardener in nickel-based superalloys, besides promoting homogeneous distribution of MC carbides. This work is inserted in a project that aims to evaluate the total replacement of tantalum by niobium atoms in MAR-M247 superalloy (10.2 Co, 10.2 W, 8.5Cr, 5.6 Al, 1.6 Nb, 1.4 Hf, 1.1 Ti, 0.7 Mo, 0.15 C, 0.06 Zr, 0.015 B, Ni balance-wt.%). Based on microstructural characterizations (SEM and FEG-SEM, both with EDS) of the as-cast material and heat-treated materials as well as utilizing Thermocalc simulations and experiments of differential thermal analysis (DTA), heat-treatment at 1260 Degree-Sign C for 8 h was chosen as an ideal condition for the solution of Nb-modified MAR-M247 superalloy. The hardness of as-cast and ideally solution treated materials was 390 {+-} 14 HV and 415 {+-} 6 HV, respectively. - Highlights: Black-Right-Pointing-Pointer DTA and microstructure of MAR-M247(Nb) showed a good agreement with Thermocalc. Black-Right-Pointing-Pointer An ideal condition for solution heat-treatment of MAR-M247(Nb) is 1260 Degree-Sign C for 8 h. Black-Right-Pointing-Pointer It was an observed evidence of incipient melting in samples heat-treated at 1280 Degree-Sign C.

  15. Effects of Heat Treatment on Microstructural Modification of As-Cast Gamma-TiAl Alloy

    NASA Astrophysics Data System (ADS)

    Ahmadi, Mehdi; Hosseini, Seyed Rahman; Hadavi, Seyed Mohammad Mehdi

    2016-04-01

    Effects of normalizing and annealing treatments on the microstructure of Ti-48Al-2Cr-2Nb (at.%) were investigated. Normalizing processes were done at 1385 ± 5 °C in α-phase domain with the heating rate of 10 °C/min, the average cooling rate of 30 °C/min, and the holding times of 5, 10, 15, 20, and 25 min. The annealing process was done at the same temperature and heating rate, the holding time of 15 min, and the average cooling rate of 2 °C/min. Microstructures, phases, and hardness levels were studied by optical and field emission electron microscopic observations, x-ray diffractometry (XRD), and microhardness testing, respectively. Also, crystallographic texture variations were analyzed by means of texture coefficient and XRD results. Experimental results showed a linear direct relationship between treatment time and grain size, up to 15 min. A linear reversed behavior was observed for longer times. The untreated alloy consisted of γ and α2 phases with a columnar morphology with the length of about 300 μm. A near-lamellar microstructure with equiaxed gamma grains, Widmansttäten, and laminar γ + α2 colonies was obtained by the normalizing process. The maximum reduction of the grain size was about 70%, as achieved by normalizing with the 15 min holding time. A texture-free microstructure was acquired by normalizing treatment in comparison with strong texture of the as-cast and annealed alloys.

  16. Effects of Heat Treatment on Microstructural Modification of As-Cast Gamma-TiAl Alloy

    NASA Astrophysics Data System (ADS)

    Ahmadi, Mehdi; Hosseini, Seyed Rahman; Hadavi, Seyed Mohammad Mehdi

    2016-06-01

    Effects of normalizing and annealing treatments on the microstructure of Ti-48Al-2Cr-2Nb (at.%) were investigated. Normalizing processes were done at 1385 ± 5 °C in α-phase domain with the heating rate of 10 °C/min, the average cooling rate of 30 °C/min, and the holding times of 5, 10, 15, 20, and 25 min. The annealing process was done at the same temperature and heating rate, the holding time of 15 min, and the average cooling rate of 2 °C/min. Microstructures, phases, and hardness levels were studied by optical and field emission electron microscopic observations, x-ray diffractometry (XRD), and microhardness testing, respectively. Also, crystallographic texture variations were analyzed by means of texture coefficient and XRD results. Experimental results showed a linear direct relationship between treatment time and grain size, up to 15 min. A linear reversed behavior was observed for longer times. The untreated alloy consisted of γ and α2 phases with a columnar morphology with the length of about 300 μm. A near-lamellar microstructure with equiaxed gamma grains, Widmansttäten, and laminar γ + α2 colonies was obtained by the normalizing process. The maximum reduction of the grain size was about 70%, as achieved by normalizing with the 15 min holding time. A texture-free microstructure was acquired by normalizing treatment in comparison with strong texture of the as-cast and annealed alloys.

  17. Heat-treatment of colostrum on commercial dairy farms: Effects on colostrum characteristics and calf health and performance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objectives were to describe the effect of heat-treatment, at 60 deg C for 60 minutes, on colostrum bacteria counts and IgG concentration, and describe the effect of feeding heat-treated colostrum on preweaning calf health and performance. The study design was a randomized controlled clinical tri...

  18. 46 CFR 54.25-20 - Low temperature operation-ferritic steels with properties enhanced by heat treatment (modifies...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... section VIII of the ASME Boiler and Pressure Vessel Code (incorporated by reference; see 46 CFR 54.01-1... properties enhanced by heat treatment (modifies UHT-5(c), UHT-6, UHT-23, and UHT-82). 54.25-20 Section 54.25... VESSELS Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-20 Low temperature...

  19. Modified heat treatment for lower temperature improvement of the mechanical properties of two ultrahigh strength low alloy steels

    NASA Astrophysics Data System (ADS)

    Tomita, Yoshiyuki; Okabayashi, Kunio

    1985-01-01

    In the previous papers, a new heat treatment for improving the lower temperature mechanical propertise of the ultrahigh strength low alloy steels was suggested by the authors which produces a mixed structure of 25 vol pct lower bainite and 75 vol pct martensite through isothermal transformation at 593 K for a short time followed by water quenching (after austenitization at 1133 K). In this paper, two commercial Japanese ultrahigh strength steels, 0.40 pct C-Ni-Cr-Mo (AISI 4340 type) and 0.40 pct C-Cr-Mo (AISI 4140 type), have been studied to determine the effect of the modified heat treatment, coupled above new heat treatment with γ ⇆ α' repctitive heat treatment, on the mechanical properties from ambient temperature (287 K) to 123 K. The results obtained for various test temperatures have been compared with those for the new heat treatment reported previously and the conventional 1133 K direct water quenching treatment. The incorporation of intermediate four cyclic γ ⇆ α' repctitive heat treatment steps (after the initial austenitization at 1133 K and oil quenching) into the new heat treatment reported previously, as compared with the conventional 1133 K direct water quenching treatment, significantly improved 0.2 pct proof stress as well as notch toughness of the 0.40 pct C-Ni-Cr-Mo ultrahigh strength steel at similar fracture ductility levels from 287 to 123 K. Also, this heat treatment, as compared with the conventional 1133 K direct water quenching treatment, significantly improved both 0.2 pct proof stress and notch toughness of the 0.40 pct C-Cr-Mo ultrahigh strength steel with increased fracture ductility at 203 K and above. The microstructure consists of mixed areas of ultrafine grained martensite, within which is the refined blocky, highly dislocated structure, and the second phase lower bainite (about 15 vol pct), which appears in acicular form and partitions prior austenite grains. This newly developed heat treatment makes it possible to modify

  20. Influence of Pre-straining and Heat Treatment on the Yield Surface of Precipitation Hardenable Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Lechner, Michael; Johannes, Maren; Kuppert, Andreas; Merklein, Marion

    Precipitation hardenable aluminum alloys are some of the most important lightweight materials. However, their range of applications in comparison to conventional deep drawing steels is limited by the low formability. Therefore, a new and innovative approach to enhance the formability of aluminum alloys in multistage forming operations was invented at the Institute of Manufacturing Technology, called intermediate heat treatment (IHT). Based on a short-term, laser-assisted heat treatment between two forming steps, it is possible to locally adapt the mechanical properties and realize an optimized strength distribution. For the successful application of the technology, the influence of the heat treatment on the mechanical properties has to be analyzed. Concerning the simulation of a multistage forming process, in particular, the yield surface of the material is very important. Within this paper, the influence of a combined pre-straining and a subsequent short-term, laser-assisted heat treatment on the yield surface will be presented.

  1. Effect of combined underwater processing and mild heat pre-treatment on the sensory quality and shelf life of fresh-cut cantaloupe melon.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Treatments included a control (no treatment), making the first longitudinal cut under water, a pre-heat treatment in a water bath at 60C for 60 minutes, and a combination of the underwater cutting treatment and pre-heat treatment. Sensory quality and effect on shelf life was evaluated using descrip...

  2. Influence of Heat Treatment and Veneering on the Storage Modulus and Surface of Zirconia Ceramic

    PubMed Central

    Siavikis, Georgius; Behr, Michael; van der Zel, Jef M; Feilzer, Albert J; Rosentritt, Martin

    2011-01-01

    Objectives: Glass-ceramic veneered zirconia is used for the application as fixed partial dentures. The aim of this investigation was to evaluate whether the heat treatment during veneering, the application of glass-ceramic for veneering or long term storage has an influence on the storage modulus of zirconia. Methods: Zirconia bars (Cercon, DeguDent, G; 0.5x2x20 mm) were fabricated and treated according to veneering conditions. Besides heating regimes between 680°C and 1000°C (liner bake and annealing), sandblasting (Al2O3) or steam cleaning were used. The bars were investigated after 90 days storage in water and acid. For investigating the influence of veneering, the bars were veneered in press- or layer technique. Dynamic mechanical analysis (DMA) in a three-point-bending design was performed to determine the storage modulus between 25°C and 200°C at a frequency of 1.66 Hz. All specimens were loaded on top and bottom (treatment on pressure or tensile stress side). Scanning electron microscopy (SEM) was used for evaluating the superficial changes of the zirconia surface due to treatment. Statistical analysis was performed using Mann Whitney U-test (α=0.05). Results: Sintered zirconia provided a storage modulus E’ of 215 (203/219) GPa and tan δ of 0.04 at 110°C. A 10%-decrease of E’ was found up to 180°C. The superficial appearance changed due to heating regime. Sandblasting reduced E’ to 213 GPa, heating influenced E’ between 205 GPa (liner bake 1) and 222 GPa (dentin bake 1). Steam cleaning, annealing and storage changed E’ between 4 GPa and 22 GPa, depending on the side of loading. After veneering, strong E’-reduction was found down to 84 GPa and 125 GPa. Conclusions: Veneering of zirconia with glass-ceramic in contrast to heat treating during veneering procedure had a strong influence on the modulus. The application of the glass-ceramic caused a stronger decrease of the storage modulus. PMID:21494388

  3. Comparison of the influence of heat treatment and magnetic-pulse treatment on the mechanical characteristics of 65G steel upon instrumental indentation

    NASA Astrophysics Data System (ADS)

    Vorob'ev, R. A.; Dubinskii, V. N.

    2015-11-01

    It has been shown that the magnetic-pulse treatment can exert various effects on the behavior of lattice defects and the microstructure of 65G steel and, consequently, on its mechanical properties depending on the conditions of treatment. The mechanical characteristics of 65G steel obtained by the method of instru-mental indentation after heat treatment and magnetic-pulse treatment are compared.

  4. Evaluation of a recycling process for printed circuit board by physical separation and heat treatment.

    PubMed

    Fujita, Toyohisa; Ono, Hiroyuki; Dodbiba, Gjergj; Yamaguchi, Kunihiko

    2014-07-01

    Printed circuit boards (PCBs) from discarded personal computer (PC) and hard disk drive were crushed by explosion in water or mechanical comminution in order to disintegrate the attached parts. More parts were stripped from PCB of PC, composed of epoxy resin; than from PCB of household appliance, composed of phenol resin. In an attempt to raise the copper grade of PCB by removing other components, a carbonization treatment was investigated. The crushed PCB without surface-mounted parts was carbonized under a nitrogen atmosphere at 873-1073 K. After screening, the char was classified by size into oversized pieces, undersized pieces and powder. The copper foil and glass fiber pieces were liberated and collected in undersized fraction. The copper foil was liberated easily from glass fiber by stamping treatment. As one of the mounted parts, the multi-layered ceramic capacitors (MLCCs), which contain nickel, were carbonized at 873 K. The magnetic separation is carried out at a lower magnetic field strength of 0.1T and then at 0.8 T. In the +0.5mm size fraction the nickel grade in magnetic product was increased from 0.16% to 6.7% and the nickel recovery is 74%. The other useful mounted parts are tantalum capacitors. The tantalum capacitors were collected from mounted parts. The tantalum-sintered bodies were separated from molded resins by heat treatment at 723-773 K in air atmosphere and screening of 0.5mm. Silica was removed and 70% of tantalum grade was obtained after more than 823K heating and separation. Next, the evaluation of Cu recycling in PCB is estimated. Energy consumption of new process increased and the treatment cost becomes 3 times higher comparing the conventional process, while the environmental burden of new process decreased comparing conventional process. The nickel recovery process in fine ground particles increased energy and energy cost comparing those of the conventional process. However, the environmental burden decreased than the conventional

  5. Influence of the Conditions of Electrode Position and Heat Treatment on the Structure and Properties of Metallic Coatings

    NASA Astrophysics Data System (ADS)

    Kovenskiy, I. M.; Kulemina, A. A.

    2016-04-01

    Influence of electrodeposition conditions and heat treatment on the structure and properties of metallic coatings has been considered. It has been that at different values of overvoltage, metals crystallize with a cellular, subgrain or monoblock structure. The final formation of the structure occurs during annealing, in the process of which either polygonization or recrystallization develops in the coatings. Varying the conditions of electrodeposition and heat treatment allows obtaining coatings with functional characteristics for specific operating conditions.

  6. Neutron irradiation embrittlement of molybdenum rhenium alloys and their improvement by heat treatment

    NASA Astrophysics Data System (ADS)

    Hasegawa, Akira; Ueda, Kazukiyo; Satou, Manabu; Abe, Katsunori

    1998-10-01

    Irradiation-induced embrittlement is one of the major problems with molybdenum alloys, which have been considered as one of the candidates for divertor structural materials. The effects of rhenium content, heat-treatment and irradiation condition on mechanical properties and microstructural development of molybdenum rhenium alloys were studied after neutron exposure by FFTF/MOTA up to high fluence (˜1 × 10 27 n/m 2, En>0.1 MeV). Appreciable plastic deformation was observed in a bending test on stress-relieved Mo-5 wt% Re irradiated at high temperatures. Fine, dense precipitates were observed in Mo-41 wt% Re, resulting in large hardening and embrittlement.

  7. Dual Microstructure Heat Treatment of a Nickel-Base Disk Alloy Assessed

    NASA Technical Reports Server (NTRS)

    Gayda, John

    2002-01-01

    Gas turbine engines for future subsonic aircraft will require nickel-base disk alloys that can be used at temperatures in excess of 1300 F. Smaller turbine engines, with higher rotational speeds, also require disk alloys with high strength. To address these challenges, NASA funded a series of disk programs in the 1990's. Under these initiatives, Honeywell and Allison focused their attention on Alloy 10, a high-strength, nickel-base disk alloy developed by Honeywell for application in the small turbine engines used in regional jet aircraft. Since tensile, creep, and fatigue properties are strongly influenced by alloy grain size, the effect of heat treatment on grain size and the attendant properties were studied in detail. It was observed that a fine grain microstructure offered the best tensile and fatigue properties, whereas a coarse grain microstructure offered the best creep resistance at high temperatures. Therefore, a disk with a dual microstructure, consisting of a fine-grained bore and a coarse-grained rim, should have a high potential for optimal performance. Under NASA's Ultra-Safe Propulsion Project and Ultra-Efficient Engine Technology (UEET) Program, a disk program was initiated at the NASA Glenn Research Center to assess the feasibility of using Alloy 10 to produce a dual-microstructure disk. The objectives of this program were twofold. First, existing dual-microstructure heat treatment (DMHT) technology would be applied and refined as necessary for Alloy 10 to yield the desired grain structure in full-scale forgings appropriate for use in regional gas turbine engines. Second, key mechanical properties from the bore and rim of a DMHT Alloy 10 disk would be measured and compared with conventional heat treatments to assess the benefits of DMHT technology. At Wyman Gordon and Honeywell, an active-cooling DMHT process was used to convert four full-scale Alloy 10 disks to a dual-grain microstructure. The resulting microstructures are illustrated in the

  8. Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid

    DOEpatents

    Roes, Augustinus Wilhelmus Maria; Mo, Weijian; Muylle, Michel Serge Marie; Mandema, Remco Hugo; Nair, Vijay

    2009-09-01

    A method for producing alkylated hydrocarbons is disclosed. Formation fluid is produced from a subsurface in situ heat treatment process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. The liquid stream is fractionated to produce at least a second gas stream including hydrocarbons having a carbon number of at least 3. The first gas stream and the second gas stream are introduced into an alkylation unit to produce alkylated hydrocarbons. At least a portion of the olefins in the first gas stream enhance alkylation.

  9. Laser-heat puncturing as highly effective method of post-tuberculous cystalgia treatment

    NASA Astrophysics Data System (ADS)

    Koultchavenia, Ekaterina V.

    1999-07-01

    The tuberculosis of an urine bladder in men develops is authentic less often, and recovery is authentic more often, than in the women. In 39,1 percent of the women with nephrotuberculosis and urocystis and urocystis tuberculosis a specific cystitides is finished in development of post- tuberculous cystalgia. One of starting mechanism of dysuria after the transferred urocystis tuberculosis in the women in menopause is hormonal insufficiency. The method of laser heat puncturing, developed by us, for the treatment this complication is highly effective, does not require additional introduction of medicines, can be executed as in hospitals, and in our-patient.

  10. The structural properties of barium cobalt hexaferrite powder prepared by a simple heat treatment method

    NASA Astrophysics Data System (ADS)

    Chauhan, Chetna; Jotania, Rajshree

    2016-05-01

    The W-type barium hexaferrite was prepared using a simple heat treatment method. The precursor was calcinated at 650°C for 3 hours and then slowly cooled to room temperature in order to obtain barium cobalt hexaferrite powder. The prepared powder was characterised by different experimental techniques like XRD, FTIR and SEM. The X-ray diffractogram of the sample shows W-and M phases. The particle size calculated by Debye Scherrer formula. The FTIR spectra of the sample was taken at room temperature by using KBr pallet method which confirms the formation of hexaferrite phase. The morphological study on the hexaferrite powder was carried out by SEM analysis.

  11. Significant positive magnetoresistance of graphene/carbon composite films prepared by electrospraying and subsequent heat treatment

    NASA Astrophysics Data System (ADS)

    Chen, L. Q.; Liu, X.; Chen, J. T.; Zhang, Z. C.; Li, J. L.; Wang, L. J.; Jiang, W.

    2012-03-01

    Graphene/carbon composite films were prepared by electrospraying a graphene/polyacrylonitrile composite solution on SiO2-coated silicon substrates and subsequent heat treatment. The as-produced graphene/carbon composite films had a porous structure comprising graphene layers. With a magnetic field applied perpendicularly to the sample, an unexpectedly significant positive magnetoresistance attributed to e-e interaction and weak localization has been observed, which constantly increases with the magnetic field in the temperature range of 300-50 K from 0 to 80 kOe.

  12. The Effect of Heat Treatment on the Fatigue Behavior of Alloy 10

    NASA Technical Reports Server (NTRS)

    Gayda, John; Kantzos, Pete; Telesman, Jack

    2003-01-01

    The results of the fatigue evaluation on Alloy 10, run under NASA's Ultrasafe Project, are the subject of this report. Crack growth evaluation will be examined in a separate report. The eight heat treatments studied were designed to evaluate the effect of solution temperature, cooling rate, and stabilization on key mechanical properties of Alloy 10, including fatigue life. Two temperatures were studied, 750 and 1300 F, which represent projected application temperatures for the bore and rim locations in a disk. In addition to fatigue life, the cyclic stress-strain response and failure modes of the fatigue specimens are also reviewed in this report.

  13. Kinetics of phase growth in Nb3Sn formation for heat treatment optimization

    SciTech Connect

    Emanuela Barzi; Sara Mattafirri

    2002-10-25

    The kinetics of growth and superconducting properties of Nb{sub 3}Sn are investigated as a function of the heat treatment (HT) duration and temperature for Internal Tin and Powder-in-Tube strands at 650, 700 and 750 C. For all times and temperatures, the Nb{sub 3}Sn layer thickness is measured, the critical current at 4.2 K is tested as a function of magnetic field, and the upper critical field is evaluated. Results of the layer critical current density are also shown as a function of HT duration and temperature.

  14. Heat treatment optimization of alumina/aluminum metal matrix composites using the Taguchi approach

    SciTech Connect

    Saigal, A.; Leisk, G. )

    1992-03-01

    The paper describes the use of the Taguchi approach for optimizing the heat treatment process of alumina-reinforced Al-6061 metal-matrix composites (MMCs). It is shown that the use of the Taguchi method makes it possible to test a great number of factors simultaneously and to provide a statistical data base that can be used for sensitivity and optimization studies. The results of plotting S/N values versus vol pct, solutionizing time, aging time, and aging temperature showed that the solutionizing time and the aging temperature significantly affect both the yield and the ultimate tensile strength of alumina/Al MMCs. 11 refs.

  15. Manufacture, electromagnetic properties and microstructure of an 18-filament jelly-roll Nb3Al superconducting wire with rapid heating and quenching heat-treatment

    NASA Astrophysics Data System (ADS)

    Pan, X. F.; Feng, Y.; Yan, G.; Cui, L. J.; Chen, C.; Zhang, Y.; Wu, Z. X.; Liu, X. H.; Zhang, P. X.; Bai, Z. M.; Zhao, Y.; Li, L. F.

    2016-01-01

    In this paper, we have reported the manufacture of a novel simple-structured jelly-roll Nb3Al precursor long wire, and its electromagnetic properties and microstructure with different rapid heating and quenching (RHQ) heat-treatments. By comparing three processing methods, it is found that the rolling and drawing (RD) method is more suitable to the fabrication of kilometer-length Nb3Al precursor wire without annealing. Using homemade RHQ equipment, we have successfully carried out RHQ heat-treatment of Nb3Al wire samples with various heating conditions. Based on magnetization and magnetoresistivity measurements, the onset superconducting transition temperature, T c and upper critical field, H c2 (0) of optimal Nb3Al wire reach 17.9 K-18.0 K and 29.7 T, respectively. Through microstructure and composition analysis, the Nb3Al superconductor in the optimal wire displays a typical ‘layer-to-layer’ structure, which comprises alternate crystalline Nb3Al and amorphous Nb layers, and the Nb3Al grains sizes are about 100 nm-300 nm. Furthermore, many small holes are dispersed in the Nb3Al superconductor due to the diffusion reaction from Al to Nb site. The work suggests the simple-structured Nb3Al precursor wire with RHQ heat-treatment is very promising for high-field application.

  16. Phase Transformations and Microstructural Observations During Subcritical Heat Treatments of a High-Chromium Cast Iron

    NASA Astrophysics Data System (ADS)

    Karantzalis, A. E.; Lekatou, A.; Kapoglou, A.; Mavros, H.; Dracopoulos, V.

    2012-06-01

    In this study, Cr white iron of 18.23 wt.% was subjected to a series of subcritical heat treatments. At both temperatures of 350 and 450 °C, no precipitation of secondary carbides was observed, and the overall microstructure resembles to that of the as-cast condition. At 550 °C, hardness values increased slightly compared to the as-cast values. No evidence of secondary carbide formation was observed. At 650 and 750 °C, extensive-to-complete transformation to pearlite-ferrite structures has occurred. Some evidence of secondary carbide precipitation especially for prolonged treatment periods was not adequate to obstruct the hardness decrease due to the dominating effect of pearlitic-ferritic formation. At 850 °C, secondary carbide precipitation and martensite formation lead to high hardness values.

  17. Evaluation of a recycling process for printed circuit board by physical separation and heat treatment

    SciTech Connect

    Fujita, Toyohisa; Ono, Hiroyuki; Dodbiba, Gjergj; Yamaguchi, Kunihiko

    2014-07-15

    Highlights: • The parts mounted on printed circuit board (PCB) were liberated by underwater explosion and mechanical crushing. • The crushed PCB without surface-mounted parts was carbonized under inert atmosphere at 873 K to recover copper. • The multi-layered ceramic capacitors including nickel was carbonized at 873 K to recover nickel by the magnetic separation. • The tantalum powders were recovered from the molded resins by heat treatment at 723 and 823 K in air atmosphere and screening. • Energy and treatment cost of new process increased, however, the environmental burden decreased comparing conventional one. - Abstract: Printed circuit boards (PCBs) from discarded personal computer (PC) and hard disk drive were crushed by explosion in water or mechanical comminution in order to disintegrate the attached parts. More parts were stripped from PCB of PC, composed of epoxy resin; than from PCB of household appliance, composed of phenol resin. In an attempt to raise the copper grade of PCB by removing other components, a carbonization treatment was investigated. The crushed PCB without surface-mounted parts was carbonized under a nitrogen atmosphere at 873–1073 K. After screening, the char was classified by size into oversized pieces, undersized pieces and powder. The copper foil and glass fiber pieces were liberated and collected in undersized fraction. The copper foil was liberated easily from glass fiber by stamping treatment. As one of the mounted parts, the multi-layered ceramic capacitors (MLCCs), which contain nickel, were carbonized at 873 K. The magnetic separation is carried out at a lower magnetic field strength of 0.1 T and then at 0.8 T. In the +0.5 mm size fraction the nickel grade in magnetic product was increased from 0.16% to 6.7% and the nickel recovery is 74%. The other useful mounted parts are tantalum capacitors. The tantalum capacitors were collected from mounted parts. The tantalum-sintered bodies were separated from molded resins

  18. Deposition of nanostructured YSZ coating from spray-dried particles with no heat treatment

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Gao, Yang

    2015-08-01

    Ytrria stabilized zirconia (YSZ) nanoparticle agglomerates were fabricated by a spray dry method and were directly sprayed using atmospheric plasma spraying (APS) with a current of 300 A and 500 A. A commercially supplied nanostructured YSZ powder (sintered) was also sprayed under the same conditions for comparison. A scanning electron microscope (SEM), an optical microscope (OM) and X-ray diffraction (XRD) were utilized to characterize the feedstock powder and coatings. Weibull plots were used to analyze the performance of the nanostructured coatings. The lower 300 A operating current resulted in a higher portion of nanostructure retention at the expense of coating quality. An approximate 10% increase in porosity and a noticeable decrease in grain size (∼104 nm) were obtained by spraying non-heat treated agglomerates with a 500 A current. The thermal conductivity (400-600 °C) was evaluated using the one-dimensional, steady state Fourier's law of heat conduction. Next, lower thermal conductivity (∼1.3 W m-1 K-1 at 600 °C) was identified in coatings engineered at 500 A from agglomerated powder with no heat treatment.

  19. The Effect of Carbides Precipitation on the Sliding Wear Characteristics According to Heat Treatment Conditions

    NASA Astrophysics Data System (ADS)

    Suh, Chang-Min; Choi, Gye-Won; Kim, Kyung-Ryul; Han, Moon-Sik

    This study investigated the effect of carbide precipitation hardening of heat-treated SK5M steel on the sliding wear resistance. The cold rolled carbon steel strip samples (J, G, and S-type) were oil quenched after tempering for optimal durations. The wear resistance was evaluated using a pin-on-disk wear test with an alumina counterface against different samples at various loads and distances with a constant running speed. The size and distribution of the precipitated carbides were observed using an image analyzer at various heat treatments. The heat-treated samples presented more dense carbide distribution in an area fraction and the decreased size of carbides. It is confirmed that the wear rate is minimum at an optimized austenitizing temperature of around 800°C. The specific wear rate indicates that the S-type sample has high wear resistance compared to that of J-Type. This is understood by stable wear behavior of S-type sample containing evenly distributed carbide precipitation.

  20. Heat-shock Treatment-mediated Increase in Transduction by Recombinant Adeno-associated Virus 2 Vectors Is Independent of the Cellular Heat-shock Protein 90*

    PubMed Central

    Zhong, Li; Qing, Keyun; Si, Yue; Chen, Linyuan; Tan, Mengqun; Srivastava, Arun

    2007-01-01

    Recombinant adeno-associated virus 2 (AAV) vectors transduction efficiency varies greatly in different cell types. We have described that a cellular protein, FKBP52, in its phosphorylated form interacts with the D-sequence in the viral inverted terminal repeat, inhibits viral second strand DNA synthesis, and limits transgene expression. Here we investigated the role of cellular heat-shock protein 90 (HSP90) in AAV transduction because FKBP52 forms a complex with HSP90, and because heat-shock treatment augments AAV transduction efficiency. Heat-shock treatment of HeLa cells resulted in tyrosine dephosphorylation of FKBP52, led to stabilization of the FKBP52-HSP90 complex, and resulted in ∼6-fold increase in AAV transduction. However, when HeLa cells were pre-treated with tyrphostin 23, a specific inhibitor of cellular epidermal growth factor receptor tyrosine kinase, which phosphorylates FKBP52 at tyrosine residues, heat-shock treatment resulted in a further 18-fold increase in AAV transduction. HSP90 was shown to be a part of the FKBP52-AAV D-sequence complex, but HSP90 by itself did not bind to the D-sequence. Geldanamycin treatment, which disrupts the HSP90-FKBP52 complex, resulted in >22-fold increase in AAV transduction in heat-shock-treated cells compared with heat shock alone. Deliberate overexpression of the human HSP90 gene resulted in a significant decrease in AAV-mediated transduction in tyrphostin 23-treated cells, whereas down-modulation of HSP90 levels led to a decrease in HSP90-FKBP52-AAV D-sequence complex formation, resulting in a significant increase in AAV transduction following pre-treatment with tyrphostin 23. These studies suggest that the observed increase in AAV transduction efficiency following heat-shock treatment is unlikely to be mediated by HSP90 alone and that increased levels of HSP90, in the absence of heat shock, facilitate binding of FKBP52 to the AAV D-sequence, thereby leading to inhibition of AAV-mediated transgene expression

  1. Effects of heat treatment conditions on the microstructure and impact properties of EUROFER 97 ODS steel

    NASA Astrophysics Data System (ADS)

    Di Martino, S. F.; Faulkner, R. G.; Riddle, N. B.; Monge, M. A.; Munoz, A.

    2011-12-01

    Probably the most important range of materials to consider for the blanket material in the tokamak design for fusion reactors such as ITER and DEMO is the high alloy Fe9Cr oxide dispersion strengthened (ODS) ferritic steels. These steels possess exceptional thermal conductivity and low thermal expansion while being strongly resistant to void swelling. Their main drawback is the high ductile-to-brittle transition temperature (DBTT), particularly in the ODS versions of the material. This paper describes attempts that are being made to reduce this DBTT in as yet unirradiated materials by a novel heat treatment procedure. The principle behind this approach is that low DBTT in the unirradiated materials will lead to relatively low DBTT even in He-containing material that has been irradiated with fusion blanket-type irradiations. New batches of high alloy Fe9Cr ODS (EUROFER) ferritic steel have been produced by a powder metallurgical route, and relatively homogeneous material has been produced by a hot isostatic pressing procedure. Mini-Charpy test specimens were made from materials that had been subjected to a matrix of heat treatments designed to show up variations in solution treatment (ST) temperature, cooling rate from the ST temperature and tempering treatment. The initial DBTT was in the range 150-200 °C. Extremely interesting results have been obtained. DBTT downward shifts of up to 200 °C have been observed by using a high 1300 °C ST temperature and a low cooling rate. The paper goes on to describe the microstructure of this material, and discusses the possible microstructural factors needed to produce these very high DBTT downward shifts. Low dissolved carbon and higher proportions of low-angle grain boundaries seem to provide the key to the understanding of the alloy behaviour.

  2. Effects of heat treatment on shape-setting and non-linearmechanical properties of Nitinol stent

    NASA Astrophysics Data System (ADS)

    Liu, Xiaopeng; Wang, Yinong; Qi, Min; Yang, Dazhi

    2007-07-01

    NiTi shape memory alloy is a temperature sensitive material with non-linear mechanical properties and good biocompatibility, which can be used for medical devices such as stent, catheter guide wire and orthodontic wire. The majority of nitinol stents are of the self-expanding type basing on the superelasticity. Nitinol stents are shape set into the open condition and compressed and inserted into the delivery catheter. Additional the shape-setting treatment can be used as a tool to accurately tune the transformation temperatures and mechanical properties. In this study, different heat treatments have been performed on the Ti-50.7at%Ni alloy wires. And results of shape-setting, austenite transformation finish temperature and non-linear mechanical property of NiTi shape memory alloy at body temperature have been investigated. The experimental results show that the proper shape-setting temperature should be chosen between 450-550 °C. And the shape-setting results were stabilization when the NiTi wires were constrain-treated at 500 and 550°C and ageing time longer than 10 minutes. The austenite finish temperatures increased with ageing time and increased first and then decreased with ageing temperature. The peak values were obtained at 400°C. When the heat treatments was performed at the same temperature, both the upper plateau stresses and lower plateau stresses decreased with the ageing time. Most of treated nitinol wires owned good recovery ability at body temperature and the permanent sets were less than 0.05% when short time ageing treatment was performed at 500°C.

  3. VIABILITY OF CLOSTRIDIUM PERFRINGENS, ESCHERICHIA COLI, AND LISTERIA MONOCYTOGNES SURVIVING MILD HEAT OR AQUEOUS OZONE TREATMENT ON BEEF FOLLOWED BY HEAT, ALKALI, OR SALT STRESS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The threat of pathogen survival following ozone treatment of meat necessitates careful evaluation of the surviving microorganisms for tolerance to subsequent heat, pH, and NaCl stress. Log reductions in CFU/g of 3-strain cocktails of Clostridium perfringens, Escherichia coli O157:H7, and Listeria m...

  4. Combustion testing and heat recovery study: Frank E. Van Lare Wastewater Treatment Plant, Monroe County. Final report

    SciTech Connect

    Chattopadhyay, A.

    1995-01-01

    The report describes the results of combustion testing work, and analysis of heat recovery and use at the Monroe County Frank E. Van Lare wastwater treatment plant (WWTP). The three multiple-hearth furnaces at the plant process an average of 65 dry tons of dewatered sludge per day. The furnaces use about 12.5 million Btus of natural gas per dry ton of sludge incinerated, or about 300 billion Btus per year. Center shaft and rabble arm cooling air is recirculated to the furnaces as pre-heated combustion air. No other heat from the combustion process is recovered for use in the plant. The project had four objectives: to record and analyze sludge management operations data and sludge incinerator combustion data; to ascertain instrumentation and control needs; to calculate heat balances for the incineration system; and to determine the feasibility of full waste-heat recovery and utilization, at the Frank E. Van Lare wastewater treatment plant.

  5. Effect of post heat-treatment of composition-controlled PdFe nanoparticles for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Kang, Yun Sik; Choi, Kwang-Hyun; Ahn, Docheon; Lee, Myeong Jae; Baik, Jaeyoon; Chung, Dong Young; Kim, Mi-Ju; Lee, Stanfield Youngwon; Kim, Minhyoung; Shin, Heejong; Lee, Kug-Seung; Sung, Yung-Eun

    2016-01-01

    Composition-controlled and carbon-supported PdFe nanoparticles (NPs) were prepared via a modified chemical synthesis after heat-treatment at high temperature under a reductive atmosphere. This novel synthesis, which combines the polyol reduction method and hydride method, was used to obtain monodispersed PdFe NPs. In addition, to induce structural modifications, the as-prepared PdFe NPs received heat-treatment under a reductive atmosphere. Structural characterization, including high-resolution powder diffraction (HRPD), X-ray photoelectron spectroscopy (XPS), and X-ray absorption spectroscopy (XAS) analysis, indicated that heat-treated PdFe NPs exhibited a higher degree of alloying and surface Pd atomic composition compared with as-prepared ones. Furthermore, new crystalline phases were detected after heat-treatment. Thanks to the structural alterations, heat-treated PdFe NPs showed ∼3 and ∼18 times higher mass- and area-normalized oxygen reduction reaction (ORR) activities, respectively than commercial Pt/C. Single cell testing with heat-treated PdFe catalysts exhibited a ∼2.5 times higher mass-normalized maximum power density than the reference cell. Surface structure analyses, including cyclic voltammetry (CV), COad oxidation, and XPS, revealed that, after heat-treatment, a downshift of the Pd d-band center occurred, which led to a decrease in the affinity of Pd for oxygen species, resulting in more favorable ORR kinetics.

  6. The synergy of permeable pavements and geothermal heat pumps for stormwater treatment and reuse.

    PubMed

    Tota-Maharaj, K; Scholz, M; Ahmed, T; French, C; Pagaling, E

    2010-12-14

    The use of permeable pavement systems with integrated geothermal heat pumps for the treatment and recycling of urban runoff is novel and timely. This study assesses the efficiency of the combined technology for controlled indoor and uncontrolled outdoor experimental rigs. Water quality parameters such as biochemical oxygen demand, nutrients, total viable heterotrophic bacteria and total coliforms were tested before and after treatment in both rigs. The water borne bacterial community genomic deoxyribonucleic acid (DNA) was analyzed by polymerase chain reaction (PCR) amplification followed by denaturing gradient gel electrophoresis (DGGE) and was further confirmed by DNA sequencing techniques. Despite the relatively high temperatures in the indirectly heated sub-base of the pavement, potentially pathogenic organisms such as Salmonella spp., Escherichia coli, faecal Streptococci and Legionella were not detected. Moreover, mean removal rates of 99% for biochemical oxygen demand, 97% for ammonia-nitrogen and 95% for orthophosphate-phosphates were recorded. This research also supports decision-makers in assessing public health risks based on qualitative molecular microbiological data associated with the recycling of treated urban runoff. PMID:21275249

  7. The Mechanism of η Phase Precipitation in A286 Superalloy During Heat Treatment

    NASA Astrophysics Data System (ADS)

    Seifollahi, M.; Razavi, S. H.; Kheirandish, Sh.; Abbasi, S. M.

    2013-10-01

    In this research, the mechanism of eta (η-Ni3Ti) phase precipitation in iron-nickel-based A286 superalloy was assessed during aging heat treatment in the temperature range between 650 and 900 °C for the times of 1-30 h. Optical microscopy, scanning electron microscopy, differential thermal analysis, and x-ray diffractometry were used to describe the η phase transformation. The results showed that the major precipitates at temperatures below 840 °C were γ' and η. The η phase started to precipitate at the expense of the γ' phase after prolonged aging. The η phase existed in the samples aged at temperature higher than 760 °C with cellular morphology. The η volume fraction increased with increasing heat treatment time. In addition, when the aging temperature was increased from 760 to 820 °C, the η volume fraction increased and then decreased after 840 °C. The η phase morphology also changed from cellular to Widmanstätten-type during aging. The time-temperature-precipitation diagrams of these morphologies are presented. The results indicated the differences in precipitation mechanisms of η phase at 840 and 860 °C.

  8. Grain Refinement of a gamma-TiAl Alloy Through Isothermal Forging and Heat Treatment

    SciTech Connect

    Heshmati-Manesh, S.; Bahmanpour, H.

    2010-03-11

    Effect of initial massive type structure of a gamma-TiAl based alloy on its hot deformed and stabilized microstructure was investigated. A gamma alloy with composition of Ti-47Al-12Nb-0.5Si was subjected to rapid quenching from alpha phase field. The quenched sample was deformed at high temperature. Further post deformation heat treatment was conducted to stabilize the as-deformed structure. It was shown that Nb and Si have important roles in grain refinement of the final product. Presence of niobium in the alloy made the diffusion controlled eutectoid reaction sluggish and assisted the formation of massive type gamma phase (gamma{sub m}) by rapid cooling from alpha phase field. Silicon addition assisted the microstructural refinement by forming hard and finely dispersed titanium silicide particles. These particles act as preferred sites for dynamic recrystallization during hot deformation. Massive gamma phase tends to deform uniformly and decompose to equilibrium phases after final heat treatment and results in a very fine grained microstructure.

  9. Effects of heat treatment and dehydration on properties of cauliflower fiber.

    PubMed

    Femenia, A; Selvendran, R R; Ring, S G; Robertson, J A

    1999-02-01

    The effects of heat treatment and dehydration on fiber structure and hydration properties, using cauliflower floret/curd and stem tissues, have been investigated. No major changes in fiber composition resulted from sample treatments, but the degree of esterification of pectic polysaccharides, approximately 60% in fresh cauliflower, decreased by approximately 12% in samples heated at temperatures >40 degrees C. Enzymic activity was considered to be responsible, through pectin methyl esterase activity. De-esterification was temperature and moisture sensitive. Hydration properties were also affected by processing conditions. The solubility of nonstarch polysaccharides in fresh, freeze-dried, and 40 degrees C dried samples was approximately 6% but increased to 12% in boiled samples and decreased in samples dried at 75 degrees C. Similar behavior occurred for swelling and water retention capacity (WRC), with swelling and WRC highest for boiled samples and lowest for samples dried at 75 degrees C. Hence, a decrease in de-esterification was not directly responsible for changes in hydration properties. The results demonstrate the importance of processing history on functional properties and on the preparation of fiber-rich ingredients for successful incorporation into foods. PMID:10563960

  10. Influence of dimensional factors and heat treatment on permanent deformation of wrought wire clasps.

    PubMed

    Ikebe, K; Nokubi, T; Kibi, M; Ono, T; Okuno, Y

    1992-12-01

    The purpose of this study is to examine the fatigue profiles of wrought wire clasps during the clinical use. Cobalt-chromium-nickel alloy wires were bent into circular beams, which dimensions and fabrication methods were similar to the clinical cases. Deflections of 0.5 mm in a normal direction were applied 10,000 times to the tips of clasp arm and permanent deformations were measured. The following results were obtained. 1) The clasp arms with larger cross sectional diameter, shorter length and smaller radius of curvature showed larger amounts of permanent deformation. 2) The amounts of permanent deformation of the clasp arm remarkably decreased by electric resistance soldering and decreased further more by heat treatment at 500 degrees C for 10 minutes after soldering regardless of the number of deflection. From the results of this study, it was concluded that dimensional factors and heat treatment influenced the permanent deformation of the wrought wire clasps remarkably. Therefore, considering these factors, wrought wire clasps could be designed to reduce permanent deformation. PMID:1364131

  11. Influence of Processing and Heat Treatment on Corrosion Resistance and Properties of High Alloyed Steel Coatings

    NASA Astrophysics Data System (ADS)

    Hill, Horst; Weber, Sebastian; Raab, Ulrich; Theisen, Werner; Wagner, Lothar

    2012-09-01

    Corrosion and abrasive wear are two important aspects to be considered in numerous engineering applications. Looking at steels, high-chromium high-carbon tool steels are proper and cost-efficient materials. They can either be put into service as bulk materials or used as comparatively thin coatings to protect lower alloyed construction or heat treatable steels from wear and corrosion. In this study, two different corrosion resistant tool steels were used for the production of coatings and bulk material. They were processed by thermal spraying and super solidus liquid phase sintering as both processes can generally be applied to produce coatings on low alloyed substrates. Thermally sprayed (high velocity oxygen fuel) coatings were investigated in the as-processed state, which is the most commonly used condition for technical applications, and after a quenching and tempering treatment. In comparison, sintered steels were analyzed in the quenched and tempered condition only. Significant influence of alloy chemistry, processing route, and heat treatment on tribological properties was found. Experimental investigations were supported by computational thermodynamics aiming at an improvement of tribological and corrosive resistance.

  12. Phase separation of cesium from lead borosilicate glass by heat treatment under a reducing atmosphere.

    PubMed

    Xu, Zhanglian; Okada, Takashi; Nishimura, Fumihiro; Yonezawa, Susumu

    2016-11-01

    A phase-separation technique for removing sodium from glass using a heat-treatment method under a reducing atmosphere was previously developed for sodium recovery from waste glass. In this study, this technique was applied to cesium-containing lead borosilicate glass to concentrate the cesium in phase-separated sodium-rich materials for efficient cesium extraction. The theoretical phase-separation temperature of the sodium-rich phase was simulated by thermodynamic equilibrium calculations and was predicted to occur below 700°C for lead borosilicate glass. Experimentally, a simulated lead borosilicate glass was melted at 1000°C and subsequently annealed below 700°C under a CO-containing reducing atmosphere. The phase separation of cesium was found to occur with sodium enrichment on the glass surface that was in contact with the gas phase, promoting cesium extraction from the treated glass using water. The cesium extraction efficiency was affected by the surface area of the treated glass that was in contact with water, and under the examined conditions, the cesium extraction efficiency was up to 66%. Phase separation using reductive heat treatment, combined with a water leaching technique, is suggested to be effective for extracting cesium incorporated in borosilicate glass waste. PMID:27368086

  13. Heat treatment-induced functional and structural aspects of Mus musculus TAp63γ

    NASA Astrophysics Data System (ADS)

    Xu, Ya; Wang, Jing-Zhang; Li, Jun-Song; Huang, Xin-He; Xing, Zhi-Hua; Du, Lin-Fang

    2011-06-01

    TAp63γ plays as an important tumor suppressor gene protecting from cancer development, especially in p53-deficient cancer cells under stresses. Here, we investigated the effects of heat treatment on the functional and structural stabilities of TAp63γ by means of the electrophoretic mobility shift assay, intrinsic tryptophan fluorescence, exogenous ANS fluorescence, and CD spectroscopies. The electrophoretic mobility shift assay result showed that the DNA binding activity of GST-TAp63γ decreased above 55 °C. The intrinsic fluorescence spectra indicated an increase of the hydrophobicity and a decrease of the polarity in the microenvironments around the tyrosine and tryptophan residues. The ANS fluorescence spectra suggested that the hydrophobic pockets in TAp63γ gradually unfolded below 50 °C. The above results indicated that TAp63γ partially unfolded at 55 °C, while the CD result showed that TAp63γ still processed a pronounced secondary structure at the same temperature, suggesting that heat treatment possibly induced the molten globule state of TAp63γ, which was an intermediate state between the native and denatured protein. Taken together, TAp63γ is a relatively unstable protein, but it has higher activity than p53 at about 50 °C. The presented work also implies that TAp63γ may play an important role in stressed microenvironments especially when p53 is deficient.

  14. Microstructure evolution and properties of Al/Al-Mg-Si alloy clad wire during heat treatment

    NASA Astrophysics Data System (ADS)

    Wang, Xiang; Guan, Ren-guo; Zhang, Yang; Su, Ning; Ji, Lian-ze; Li, Yuan-dong; Chen, Ti-jun

    2016-06-01

    In this paper, heat treatment was carried out on Al/Al-Mg-Si alloy clad wire, and microstructure evolution and properties of Al/Al-Mg-Si alloy clad wire during heat treatment were investigated. During solution, contents of Mg and Si in inner matrix increased due to dissolution of primary Mg2Si, and they also increased in outer matrix because Mg and Si diffused across the interface. Tensile strength of the clad wire increased firstly and then decreased, and elongation continuously increased, while conductivity continuously decreased with the increase in solution time. In aging process, Mg2Si precipitated in both inner core and outer layer, and the content and average diameter of the precipitate increased with the increase in aging time. The content of precipitate was higher, and the average diameter was bigger in inner core. Tensile strength of the clad wire increased firstly and then decreased with the increase in aging time, and the elongation continuously decreased, while the conductivity continuously increased. The peak tensile strength of 202 MPa occurred at 8 h, when the corresponding elongation was 20 % and the conductivity reached 56.07 %IACS. Even tensile strength of the prepared clad wire approximately equaled to that of Al-0.5Mg-0.35Si alloy 203 MPa, the conductivity was obviously improved from 54.2 to 56.07 %IACS.

  15. Effect of heat treatment on microstructure and thermal conductivity of carbon/carbon-copper composites

    NASA Astrophysics Data System (ADS)

    Yang, Peng'ao; Yin, Jian; Zhang, Hongbo; Xiong, Xiang

    2016-03-01

    Using 2.5-dimensional carbon fiber fabrics as the reinforcement, porous carbon/carbon(C/C) substrates were firstly fabricated by impregnation/carbonization (I/C) technique with furan resin and then treated at 2000, 2300 and 3000 °C, respectively. Finally, carbon fiber reinforced carbon and copper(C/C-Cu) composites were prepared by infiltrating melt copper alloy into C/C substrates under pressure. The effects of treating temperatures on microstructures and thermal conductivities of the composites were investigated. The results show that heat treatment plays an important role in the microstructure and thermal conductivity of C/C-Cu composites. It is conducive not only to rearrange the carbon crystallite of resin-based carbon in oriented layer structure, but also to improve the content and connectivity of copper alloy. The thermal conductivity increases with the increase in heat treatment temperature in both parallel and perpendicular direction; the thermal conductivity in parallel direction is evidently superior to that in perpendicular direction.

  16. Microstructural inhomogeneity in plasma-sprayed hydroxyapatite coatings and effect of post-heat treatment

    NASA Astrophysics Data System (ADS)

    Lu, Yu-Peng; Xiao, Gui-Yong; Li, Shi-Tong; Sun, Rui-Xue; Li, Mu-Sen

    2006-01-01

    The microstructural inhomogeneity in the plasma-sprayed hydroxyapatite (HA) coatings was characterized by using electron probe microanalyser (EPMA). A simple and artful method was developed to detect the interface characteristics. All the samples for observation were ground and polished along the direction parallel to the coating surfaces. The BSE images directly and clearly showed the inhomogeneity in the as-sprayed coatings with the amorphous regions being bright gray and crystalline regions being dark gray. X-ray diffractometer (XRD) patterns indicated that after immersion in deionized water for 20 days, bone-like apatite and α-Ca 2P 2O 7 precipitated on the polished surfaces of the as-sprayed HA coatings. The post-heat treatment could eliminate the microstructural inhomogeneity in the coatings. Only β-Ca 2P 2O 7 precipitated on the surfaces of the heat-treated HA coatings. The immersed samples were re-polished till tiny substrate was bared to investigate the effect of immersion on interface. It was shown that the immersion decreased the cohesive strength of the as-sprayed coatings. There were more and broader cracks in the splats that came into contact with the substrate and amorphous phase increased toward the coating-substrate interface. Post-heat treatment was proved to reduce the peeling off of coating during re-polishing operation. It was proposed that the distributions of amorphous phase and cracks in as-sprayed coatings are detrimental to coating properties and should be modified through improving the plasma spraying processing.

  17. Efficacy of Traditional Almond Decontamination Treatments and Electron Beam Irradiation against Heat-Resistant Salmonella Strains.

    PubMed

    Cuervo, Mary P; Lucia, Lisa M; Castillo, Alejandro

    2016-03-01

    Two outbreaks of salmonellosis were linked to the consumption of raw almonds from California in 2001 and 2004. As a result, federal regulations were developed, which mandate that all almonds grown in California must be treated with a process that results in a 4-log reduction of Salmonella. Because most of the technologies approved to treat almonds rely on the application of heat to control Salmonella, an evaluation of alternative technologies for inactivating heat-resistant Salmonella Enteritidis PT30 and Salmonella Senftenberg 775W was needed. In this study, almonds were inoculated with Salmonella Enteritidis PT30 and Salmonella Senftenberg 775W and then treated with an electron beam (e-beam) or by blanching or oil roasting. The irradiation D10-values for Salmonella Enteritidis PT30 and Salmonella Senftenberg 775W treated with e-beam were 0.90 and 0.72 kGy, respectively. For heat treatments, thermal D10-values for Salmonella Enteritidis PT30 and Salmonella Senftenberg 775W strains were 15.6 and 12.4 s, respectively, when subjected to blanching at 88°C and 13.2 and 10.9 s, respectively, when roasted in oil at 127 ± 2°C. No significant differences in irradiation and thermal treatment results were observed between Salmonella Enteritidis PT30 and Salmonella Senftenberg 775W (P > 0.05), indicating that e-beam irradiation may be a feasible technology for reducing Salmonella in almonds. However, the sensory changes resulting from irradiating at the doses used in this study must be evaluated before e-beam irradiation can be used as a nonthermal alternative for decontamination of almonds. PMID:26939646

  18. Heat treatment study of the SiC/Ti-15-3 composite system

    NASA Technical Reports Server (NTRS)

    Lerch, Bradley A.; Gabb, Timothy P.; Mackay, Rebecca A.

    1990-01-01

    The oxidation and aging behaviors of a continuous fiber SiC/Ti-15V-3Cr-3Sn-3Al composite (SiC/Ti-15-3) were investigated. The aging characteristic of the composite were compared with those of the unreinforced Ti-15-3 matrix material, which was processed in the same manner as the composite. Various age hardened conditions of both the unreinforced matrix and the composite were evaluated by using optical microscopy, hardness measurements, and room temperature tensile tests (unreinforced matrix only). The Ti-15-3 material formed a thick surface oxide at temperature at or above 550 C when heat treated in air. The in situ composite matrix was softer than the unreinforced matrix for equivalent aging conditions. Both materials hardened to a maximum, then softened during overaging. The temperature at which peak aging occurred was approx. 450 C for both the in situ composite matrix and the unreinforced matrix. The room temperature elastic modulus and ultimate tensile strength of the unreinforced matrix varied as a function of aging treatment and paralleled the hardness behavior. The modulus and tensile strength showed little response to aging up to temperatures of 300 C; however, these properties increased after aging at 550 C. Aging at temperatures above 550 C resulted in a decrease in the modulus and tensile strength. The failure strain was a function of the precipitation state and of the amount of oxidation resulting from the heat treatment. Aging in air at the higher temperatures (greater than 550 C) caused the formation of a thick oxide layer and reduced the ductility. Aging in vacuum at these temperatures resulted in significantly higher ductilities. Long term exposures at 700 C caused the formation of a large grain boundary alpha-phase which reduced the ductility, even though the specimens were heat treated in vacuum.

  19. Influence of heat treatment on microstructure and hot crack susceptibility of laser-drilled turbine blades made from Rene 80

    SciTech Connect

    Osterle, W. Krause, S.; Neidel, A.; Oder, G.; Voelker, J.

    2008-11-15

    Turbine components from conventionally cast nickel-base alloy Rene 80 show different hot cracking susceptibilities depending on their heat treatment conditions leading to slightly different microstructures. Electron probe micro-analysis, focused ion beam technique and analytical transmission electron microscopy were applied to reveal and identify grain boundary precipitates and the {gamma}-{gamma}'-microstructure. The distribution of borides along grain boundaries was evaluated statistically by quantitative metallography. The following features could be correlated with an increase of cracking susceptibility: i) Increasing grain size, ii) increasing fraction of grain boundaries with densely spaced borides, iii) lack of secondary {gamma}'-particles in matrix channels between the coarse cuboidal {gamma}'-precipitates. The latter feature seems to be responsible for linking-up of cracked grain boundary precipitates which occurred as an additional cracking mechanism after one heat treatment, whereas decohesion at the boride-matrix-interface in the heat affected zone of laser-drilled holes was observed for both heat treatments.

  20. Preparation and Heat-Treatment of DWPF Simulants With and Without Co-Precipitated Noble Metals

    SciTech Connect

    Koopman, David C.:Eibling, Russel E

    2005-08-01

    simulants were visually very viscous compared to the traditional SB3 simulant. (4) Heat-treatment reduced the viscosity of the two new simulants with and without coprecipitated noble metals, though they were still more viscous than the traditional SB3. (5) The approach of using a 97 C heat-treatment step to qualitatively simulate tank farm aging may not be optimal. A significant change in the base equivalent molarities of both simulants was observed during heat-treatment. (6) Heat-treatment appeared to make phosphates insoluble in water. The following recommendations came out of the work: (1) Washed slurry should be checked for TIC and base equivalents before calculating the final trim chemical additions of sodium carbonate and sodium hydroxide. (2) Final insoluble trim chemicals should be added to the slurry in the cross-flow filtration unit mixing tank, since significant slurry is lost in the CUF equipment. Adding the chemicals here would keep them in the correct proportion relative to the precipitated insoluble solids. (3) A composite wash and decant sample should be prepared containing proportionally weighted masses of each aqueous stream removed during preparation of a co-precipitated noble metal simulant. This sample should then be checked for noble metal losses. This would reduce the sample load, while still confirming that there was no significant noble metal loss. (4) A study of the impact of heat-treatment on existing simulants should be undertaken. If there is a shift in base equivalents, then SRNL acid stoichiometries may be biased relative to real waste. The study should be extended to several real wastes as well.

  1. Brief heat treatment causes a structural change and enhances cytotoxicity of the Escherichia coli α-hemolysin.

    PubMed

    Aulik, Nicole A; Atapattu, Dhammika N; Czuprynski, Charles J; McCaslin, Darrel R

    2013-02-01

    α-Hemolysin (HLY) is an important virulence factor for uropathogenic Escherichia coli. HLY is a member of the RTX family of exotoxins secreted by a number of Gram-negative bacteria. Recently, it was reported that a related RTX toxin, the Mannheimia haemolytica leukotoxin, exhibits increased cytotoxicity following brief heat treatment. In this article, we show that brief heat treatment (1 min at 100°C) increases cytotoxicity of HLY for human bladder cells, kidney epithelial cells (A498) and neutrophils. Heat treatment also increased hemolysis of human red blood cells (RBCs). Furthermore, heat treatment of previously inactived HLY restored its cytotoxicity. Heat-activated and native HLY both required glycophorin A to lyse RBCs. Native and heat-activated HLY appeared to bind equally well to the surface of A498 cells; although, Western blot analyses demonstrated binding to different proteins on the surface. Confocal microscopy revealed that heat-activated HLY bound more extensively to internal structures of permeabilized A498 cells than did native HLY. Several lines of spectroscopic evidence demonstrate irreversible changes in the structure of heat activated compared to native HLY. We show changes in secondary structure, increased exposure of tryptophan residues to the aqueous environment, an increase in molecular dimension and an increase in hydrophobic surface area. These properties are among the most common characteristics described for the molten globule state, first identified as an intermediate in protein folding. We hypothesize that brief heat treatment of HLY causes a conformational change leading to significant differences in protein-protein interactions that result in increased cytotoxicity for target cells. PMID:22994841

  2. Heat treatment effects on the antimicrobial activity of macrolide and lincosamide antibiotics in milk.

    PubMed

    Zorraquino, M A; Althaus, R L; Roca, M; Molina, M P

    2011-02-01

    Antibiotic residues in milk can cause serious problems for consumers and the dairy industry. Heat treatment of milk may diminish the antimicrobial activity of these antibiotic residues. This study analyzed the effect of milk processing (60 °C for 30 min, 120 °C for 20 min, and 140 °C for 10 s) on the antimicrobial activity of milk samples fortified with three concentrations of three macrolides (erythromycin: 20, 40 and 80 μg/liter; spiramycin: 100, 200, and 400 μg/liter; and tylosin: 500, 1,000, and 2,000 μg/liter) and one lincosamide (lincomycin: 1,000, 2,000, and 4,000 μg/liter). To measure the loss of antimicrobial activity, a bioassay based on the growth inhibition of Micrococcus luteus was done. The data were analyzed using a multiple linear regression model. The results indicate that treatment at 120 °C for 20 min produces inactivation percentages of 93% (erythromycin), 64% (spiramycin), 51% (tylosin), and 5% (lincomycin), while treatment at 140 °C for 10 s results in generally lower percentages (30% erythromycin, 35% spiramycin, 12% tylosin, and 5% lincomycin). The lowest loss or lowest reduction of antimicrobial activity (21% erythromycin and 13% spiramycin) was obtained by treatment at 60 °C for 30 min. PMID:21333154

  3. Transcriptional profiling of apple fruits in response to heat treatment: involvement of a defense response during P. expansum infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heat treatment of harvested fruit has been demonstrated to be an effective and safe approach for managing postharvest decay. In the present study, the effect of a hot water treatment (HT) (45 degrees C for 10 minutes) on the response of apple to blue mold infection was investigated. HT was applied...

  4. Effect of Heat Treatment on the Microstructure and Properties of Deformation-Processed Cu-7Cr In Situ Composites

    NASA Astrophysics Data System (ADS)

    Liu, Keming; Jiang, Zhengyi; Zhou, Haitao; Lu, Deping; Atrens, Andrej; Yang, Yanling

    2015-11-01

    The effect of heat treatment on the microstructure, electrical conductivity, and tensile strength of deformation-processed Cu-7Cr in situ composites produced by thermo-mechanical processing was investigated. The Cr fibers in the Cu-7Cr in situ composite underwent coarsening, break-up, and spheroidization after exposure to elevated temperatures. The conductivity and tensile strength of the in situ composite first increased with increasing isochronal heat treatment temperature, reached a peak value, and decreased at higher temperatures. The isothermal heat treatment temperature was determined to be 625 °C. The Z ( Z is an optimization parameter to evaluate the service performance of deformation-processed Cu-based in situ composites) value of the deformation-processed Cu-7Cr in situ composite, at η = 7 ( η is a cumulative cold deformation strain) after the heat treatment at 625 °C for 1 h, reached the peak value of 3.46 × 107 MPa2 % International Annealed Copper Standard (IACS). The isochronal heat treatment time was determined to be 1 h. The following combination of conductivity and tensile strength of the deformation-processed Cu-7Cr in situ composite with a cumulative cold deformation strain of eight after isochronal aging treatments for 1 h could be attained respectively as (i) 76.0% IACS and 889 MPa; (ii) 76.8% IACS and 876 MPa; or (iii) 77.5% IACS and 779 MPa.

  5. Comparison of the effects of different heat treatment processes on rheological properties of cake and bread wheat flours.

    PubMed

    Bucsella, Blanka; Takács, Ágnes; Vizer, Viktoria; Schwendener, Urs; Tömösközi, Sándor

    2016-01-01

    Dry and hydrothermal heat treatments are efficient for modifying the technological-functional and shelf-life properties of wheat milling products. Dry heat treatment process is commonly used to enhance the volume of cakes. Hydrothermal heat treatment makes wheat flours suitable as thickener agents. In this study, cake and bread wheat flours that differed in baking properties were exposed to dry (100 °C, 12 min) and hydrothermal (95 °C, 5 min, 5-20 l/h water) heat treatments. Rheological differences caused by the treatments were investigated in a diluted slurry and in a dough matrix. Dry heat treatment resulted in enhanced dough stability. This effect was significantly higher in the cake flour than the bread flour. Altered viscosity properties of the bread flour in the slurry matrix were also observed. The characteristics of hydrothermally treated samples showed matrix dependency: their viscosity increases in the slurry and decreases in the dough matrix. These results can support us to produce flour products with specific techno-functional properties. PMID:26213066

  6. Heat treatment of human esophageal tissues: Effect on esophageal cancer detection using oxygenated hemoglobin diffuse reflectance ratio

    NASA Astrophysics Data System (ADS)

    Zhao, Q. L.; Guo, Z. Y.; Si, J. L.; Wei, H. J.; Yang, H. Q.; Wu, G. Y.; Xie, S. S.; Guo, X.; Zhong, H. Q.; Li, L. Q.; Li, X. Y.

    2011-03-01

    The main objective of the present work is to study the influence of heat treatment on the esophageal cancer detection using the diffuse reflectance (DR) spectral intensity ratio R540/R575 of oxygenated hemoglobin (HbO2) absorption bands to distinguish the epithelial tissues of normal human esophagus and moderately differentiated esophageal squamous cell carcinoma (ESCC) at different heat treatment temperature of 20, 37, 42, 50, and 60°C, respectively. The DR spectra for the epithelial tissues of the normal esophagus and ESCC in vitro at different heat-treatment temperature in the wavelength range 400-650 nm were measured with a commercial optical fiber spectrometer. The results indicate that the average DR spectral intensity overall enhancement with concomitant increase of heat-treatment temperature for the epithelial tissues of normal esophagus and ESCC, but the average DR spectral intensity for the normal esophageal epithelial tissues is relatively higher than that for ESCC epithelial tissues at the same heat-treatment temperature. The mean R540/R575 ratios of ESCC epithelial tissues were always lower than that of normal esophageal epithelial tissues at the same temperature, and the mean R540/R575 ratios of the epithelial tissues of the normal esophagus and ESCC were decreasing with the increase of different heat-treatment temperatures. The differences in the mean R540/R575 ratios between the epithelial tissues of normal esophagus and ESCC were 13.33, 13.59, 11.76, and 11.11% at different heat-treatment temperature of 20, 37, 42, and 50°C, respectively. These results also indicate that the DR intensity ratio R540/R575 of the hemoglobin bands is a useful tool for discrimination between the epithelial tissues of normal esophagus and ESCC in the temperature range from room temperature to 50°C, but it was non-effective at 60°C or over 60°C.

  7. Effects of heat-moisture treatment reaction conditions on the physicochemical and structural properties of maize starch: moisture and length of heating.

    PubMed

    Sui, Zhongquan; Yao, Tianming; Zhao, Yue; Ye, Xiaoting; Kong, Xiangli; Ai, Lianzhong

    2015-04-15

    Changes in the properties of normal maize starch (NMS) and waxy maize starch (WMS) after heat-moisture treatment (HMT) under various reaction conditions were investigated. NMS and WMS were adjusted to moisture levels of 20%, 25% and 30% and heated at 100 °C for 2, 4, 8 and 16 h. The results showed that moisture content was the most important factor in determining pasting properties for NMS, whereas the heating length was more important for WMS. Swelling power decreased in NMS but increased in WMS, and while the solubility index decreased for both samples, the changes were largely determined by moisture content. The gelatinisation temperatures of both samples increased with increasing moisture content but remained unchanged with increasing heating length. The Fourier transform infrared (FT-IR) absorbance ratio was affected to different extents by the moisture levels but remained constant with increasing the heating length. The X-ray intensities increased but relative crystallinity decreased to a greater extent with increasing moisture content. This study showed that the levels of moisture content and length of heating had significant impacts on the structural and physicochemical properties of normal and waxy maize starches but to different extents. PMID:25466134

  8. EFFECT OF HEAT TREATMENT ON THERMAL PROPERTIES OF PITCH-BASED AND PAN-BASED CARBON-CARBON COMPOSITES

    SciTech Connect

    Iqbal, Sardar S.; Dinwiddie, Ralph Barton; Porter, Wallace D; Lance, Michael J; Fillip, Peter

    2011-01-01

    Thermal properties of two directional (2D) pitch-based carbon fiber with charred resin and three directional (3D) PAN-based carbon fiber with CVI carbon matrix C/C composite were investigated for non-heat treated (NHT) and heat treated (HT) materials through the thickness (z-direction). Heat treatment was performed at 1800, 2100 and 2400 oC for 1-hr in inert argon atmosphere. Thermal diffusivity, heat capacity and bulk density were measured to calculate thermal conductivity. Thermal diffusivity and conductivity was the highest for 3D C/C heat treated at maximum temperature with non-heat treated one exhibiting the lowest one. Similarly, 2D C/C heat treated at maximum temperature exhibited the highest thermal diffusivity and thermal conductivity. Polarized light microscopy (PLM) images of HTT C/C show a progressive improvement in microstructure when compared to NHT C/C. However, HTT 2D and 3D C/C composites exhibited extensive shrinkage of charred resin and CVI carbon matrix, respectively, from fibers resulting in intra and inter-bundles cracking when compared to NHT one. Raman spectroscopy and XRD results of NHT and HTT C/C indicated increased ordering of structure. A progressive improvement in thermal properties was observed with increased heat treatment temperatures.

  9. Characterization of Machine Variability and Progressive Heat Treatment in Selective Laser Melting of Inconel 718

    NASA Technical Reports Server (NTRS)

    Prater, T.; Tilson, W.; Jones, Z.

    2015-01-01

    The absence of an economy of scale in spaceflight hardware makes additive manufacturing an immensely attractive option for propulsion components. As additive manufacturing techniques are increasingly adopted by government and industry to produce propulsion hardware in human-rated systems, significant development efforts are needed to establish these methods as reliable alternatives to conventional subtractive manufacturing. One of the critical challenges facing powder bed fusion techniques in this application is variability between machines used to perform builds. Even with implementation of robust process controls, it is possible for two machines operating at identical parameters with equivalent base materials to produce specimens with slightly different material properties. The machine variability study presented here evaluates 60 specimens of identical geometry built using the same parameters. 30 samples were produced on machine 1 (M1) and the other 30 samples were built on machine 2 (M2). Each of the 30-sample sets were further subdivided into three subsets (with 10 specimens in each subset) to assess the effect of progressive heat treatment on machine variability. The three categories for post-processing were: stress relief, stress relief followed by hot isostatic press (HIP), and stress relief followed by HIP followed by heat treatment per AMS 5664. Each specimen (a round, smooth tensile) was mechanically tested per ASTM E8. Two formal statistical techniques, hypothesis testing for equivalency of means and one-way analysis of variance (ANOVA), were applied to characterize the impact of machine variability and heat treatment on six material properties: tensile stress, yield stress, modulus of elasticity, fracture elongation, and reduction of area. This work represents the type of development effort that is critical as NASA, academia, and the industrial base work collaboratively to establish a path to certification for additively manufactured parts. For future

  10. Effects of different heat treatments on lysozyme quantity and antimicrobial activity of jenny milk.

    PubMed

    Cosentino, C; Labella, C; Elshafie, H S; Camele, I; Musto, M; Paolino, R; D'Adamo, C; Freschi, P

    2016-07-01

    Thermal treatments are used to improve milk microbial safety, shelf life, and biological activity of some of its components. However, thermal treatments can reduce the nutritional quality of milk, affecting the molecular structure of milk proteins, such as lysozyme, which is a very important milk component due to its antimicrobial effect against gram-positive bacteria. Jenny milk is characterized by high lysozyme content. For this reason, in the last few years, it has been used as an antimicrobial additive in dairy products as an alternative to hen egg white lysozyme, which can cause allergic reactions. This study aimed to investigate the effect of pasteurization and condensation on the concentration and antimicrobial activity of lysozyme in jenny milk. Furthermore, lysozyme quantity and activity were tested in raw and pasteurized milk after condensation at 40 and 20% of the initial volume. Reversed-phase HPLC was performed under fluorescence detection to monitor lysozyme in milk samples. We evaluated the antimicrobial activity of the tested milk against Bacillus megaterium, Bacillus mojavensis, Clavibacter michiganensis, Clostridium tyrobutyricum, Xanthomonas campestris, and Escherichia coli. Condensation and pasteurization did not affect the concentration or antimicrobial activity of lysozyme in jenny milk, except for B. mojaventis, which showed resistance to lysozyme in milk samples subjected to heat treatments. Moreover, lysozyme in jenny milk showed antimicrobial activity similar to synthetic antibiotics versus some gram-positive strains and also versus the gram-negative strain X. campestris. PMID:27157571

  11. A study on DPL model of heat transfer in bi-layer tissues during MFH treatment.

    PubMed

    Kumar, Dinesh; Kumar, P; Rai, K N

    2016-08-01

    In this paper, dual-phase-lag bioheat transfer model subjected to Fourier and non-Fourier boundary conditions for bi-layer tissues has been solved using finite element Legendre wavelet Galerkin method (FELWGM) during magnetic fluid hyperthermia. FELWGM localizes small scale variation of solution and fast switching of functional bases. It has been observed that moderate hyperthermia temperature range (41-46°C) can be better achieved in spherical symmetric coordinate system and treatment method will be independent of the Fourier and non-Fourier boundary conditions used. The effect of phase-lag times has been observed only in tumor region. FCC FePt magnetic nano-particle produces more effective treatment with respect to other magnetic nano-particles. The effect of variability of magnetic heat source parameters (magnetic induction, frequency, diameter of magnetic nano-particles, volume fractional of magnetic nano-particles and ligand layer thickness) has been investigated. The physical property of these parameters has been described in detail during magnetic fluid hyperthermia (MFH) treatment and also discussed the clinical application of MFH in Oncology. PMID:27289539

  12. On the preliminary design of hyperthermia treatments based on infusion and heating of magnetic nanofluids.

    PubMed

    Di Michele, F; Pizzichelli, G; Mazzolai, B; Sinibaldi, E

    2015-04-01

    We study a magnetic-nanoparticle-mediated hyperthermia treatment by considering both the nanofluid infusion and the subsequent thermal activation of the infused nanoparticles. Our study aims at providing a quantitative framework, which is currently missing, for the design of hyperthermia treatments. In more detail, we consider a heterogeneous spherical tumor, and we obtain a simplified analytical expression for the nanoparticles concentration profile during the infusion. We then exploit such an expression in order to compute the steady-state temperature profile achieved through the heating step. Despite the simplifications introduced to enable the analytical derivations, we account for many physically relevant aspects including tissue heterogeneity, poroelasticity, blood perfusion, and nanoparticles absorption onto tissue. Moreover, our approach permits to elucidate the effects on the final temperature profile of the following control parameters: infusion duration and flow rate, nanoparticles concentration in the nanofluid, magnetic field intensity and frequency. We present illustrative numerical results, based on parameters values taken from experimental studies, which are consistent with previous numerical investigations and current hyperthermia approaches. In particular, we obtain optimal working curves which could be effectively used for planning real procedures. While not laying any claims of generality, this work takes a preliminary yet quantitative step toward the design of hyperthermia treatments. PMID:25640871

  13. Evaluation of composites made from blends of cotton burs, cotton stalks, kenaf, flax, and southern pine: Heat treatments to improve physical and mechanical properties and rot resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experiments were conducted on composite board blends of cotton burs (B), cotton stalks (S), kenaf (K), flax, (F), and southern yellow pine (P). The composite boards were subjected to heat treatments and rot resistance testing. Heat treatments consisted of heating fibers either pre- or post-board fab...

  14. Integrated flue gas treatment for simulataneous emission control and heat rate improvement - demonstration project at Ravenswood

    SciTech Connect

    Heaphy, J.; Carbonara, J.; Cressner, A.

    1995-06-01

    Results are presented for electric-utility, residual-oil fired, field demonstration testing of advanced-design, heat-recovery type, flue gas sub-coolers that incorporate sulfite-alkali-based wet scrubbing for efficient removal of volatile and semi-volatile trace elements, sub-micron solid particulate matter, SO{sub 2} and SO{sub 3}. By innovative adaptation of wet collector system operation with methanol injection into the rear boiler cavity to convert flue-gas NO to No{sub 2}, simultaneous removal of NO{sub x} is also achieved. The focus of this integrated flue gas treatment (IFGT) technology development and demonstration-scale, continuous performance testing is an upward-gas-flow, indirectly water-cooled, condensing heat exchanger fitted with acid-proof, teflon-covered tubes and tubesheets and that provides a unique condensing (non-evaporative) wet-scrubbing mode to address air toxics control objectives of new Clean Air Act, Title III. Advantageous trace-metal condensation/nucleation/agglomeration along with substantially enhanced boiler efficiency is accomplished in the IFGT system by use of boiler makeup water as a heat sink in indirectly cooling boiler flue gas to a near-ambient-temperature, low-absolute-humidity, water-saturated state. Moreover, unique, innocuous, stack systems design encountered with conventional high-humidity, wet-scrubber operations. The mechanical design of this advanced flue-gas cooling/scrubbing equipment is based on more than ten years of commercial application of such units is downward-gas-flow design/operation for energy recovery, e.g. in preheating of makeup water, in residual-oil and natural-gas fired boiler operations.

  15. Insulation and Heat Treatment of Bi-2212 Wire for Wind-and-React Coils

    SciTech Connect

    Peter K. F. Hwang

    2007-10-22

    Higher Field Magnets demand higher field materials such as Bi-2212 round superconducting wire. The Bi-2212 wire manufacture process depends on the coil fabrication method and wire insulation material. Considering the wind-and-react method, the coil must unifirmly heated to the melt temperature and uniformly cooled to the solidification temperature. During heat treat cycle for tightly wound coils, the leakage melt from conductor can chemically react with insulation on the conductor and creat short turns in the coils. In this research project, conductor, insulation, and coils are made to systemically study the suitable insulation materials, coil fabrication method, and heat treatment cycles. In this phase I study, 800 meters Bi-2212 wire with 3 different insulation materials have been produced. Best insulation material has been identified after testing six small coils for insulation integrity and critical current at 4.2 K. Four larger coils (2" dia) have been also made with Bi-2212 wrapped with best insulation and with different heattreatment cycle. These coils were tested for Ic in a 6T background field and at 4.2 K. The test result shows that Ic from 4 coils are very close to short samples (1 meter) result. It demonstrates that HTS coils can be made with Bi-2212 wire with best insulation consistently. Better wire insulation, improving coil winding technique, and wire manufacture process can be used for a wide range of high field magnet application including acclerators such as Muon Collider, fusion energy research, NMR spectroscopy, MRI, and other industrial magnets.

  16. The effects of heat treatment and hydrogen on the SCC behavior of superalloy 718

    SciTech Connect

    Wang, C.P.; Yu, G.P.; Huang, J.H.

    1996-10-01

    The effects of heat treatment and cathodically hydrogen charging on susceptibility of nickel-based superalloy 718 to stress corrosion cracking were studied. Two conditions of solution-annealed (SA) and heat-treated (HT) materials were considered. Slow strain rate tensile tests with strain rates of 1 x 10{sup {minus}6} sec{sup {minus}1} were performed in 0.1M NaCl solution at room temperature on tensile specimens. Cathodic charging of hydrogen with the potential ranging from {minus}900 mV{sub SCE} to {minus}1,350 mV{sub SCE} were applied during SSRT tests. Reduction of area and ultimate tensile strength were used to correlate the relative susceptibility to different hydrogen charging conditions. Fractography of alloy 718 was usually transgranular, and there was a transition from dimpled microvoid coalescence to intergranular-like failure (transgranular failure adjacent to grain boundaries) as cathodic potential increased. Identification of grain boundary precipitates were carried out by the EDS technique on SEM and XRD of electrolytically extracted phases. MC carbides coalescence with microcracks acted as a preferred crack initiation and propagation site, and promoted crack tip deformation. The HT alloy 718 suffered more hydrogen damage than SA one because large amount of MC carbides precipitated in HT material.

  17. Pasting properties of heat-moisture treated canna starches using different plasticizers during treatment.

    PubMed

    Juansang, Juraluck; Puttanlek, Chureerat; Rungsardthong, Vilai; Puncha-Arnon, Santhanee; Jiranuntakul, Wittawat; Uttapap, Dudsadee

    2015-05-20

    Different plasticizers (propanol, propylene glycol, glycerol, erythritol, xylitol and sorbitol) were used for plasticizing canna starch during heat-moisture treatment (HMT). Pasting properties of the modified starches were determined and compared with those of native starch and of HMT starch using water as a plasticizer. Canna starch was soaked in 5% (w/w) plasticizer solutions and adjusted to 25% moisture content before heating at 100 °C for 1h. The least change in paste viscosity was found when water was used as a plasticizer. Viscosity of the modified starches decreased as the molecular weight of plasticizers decreased. Plasticizer content in starch granules increased with decreasing molecular weight of the plasticizer, as well as with increased soaking time (from 10 min to 4 and 24h). However, pasting profiles of HMT starches prepared by soaking for 4h were comparable to those soaked for 24h, indicating that there was an effective limit of plasticizers. The plasticizer content in starch granules played a greater role in HMT than the number of hydroxyl groups. PMID:25817654

  18. Heat Shock Protein–Peptide and HSP-Based Immunotherapies for the Treatment of Cancer

    PubMed Central

    Shevtsov, Maxim; Multhoff, Gabriele

    2016-01-01

    Intracellular residing heat shock proteins (HSPs) with a molecular weight of approximately 70 and 90 kDa function as molecular chaperones that assist folding/unfolding and transport of proteins across membranes and prevent protein aggregation after environmental stress. In contrast to normal cells, tumor cells have higher cytosolic heat shock protein 70 and Hsp90 levels, which contribute to tumor cell propagation, metastasis, and protection against apoptosis. In addition to their intracellular chaperoning functions, extracellular localized and membrane-bound HSPs have been found to play key roles in eliciting antitumor immune responses by acting as carriers for tumor-derived immunogenic peptides, as adjuvants for antigen presentation, or as targets for the innate immune system. The interaction of HSP–peptide complexes or peptide-free HSPs with receptors on antigen-presenting cells promotes the maturation of dendritic cells, results in an upregulation of major histocompatibility complex class I and class II molecules, induces secretion of pro- and anti-inflammatory cytokines, chemokines, and immune modulatory nitric oxides, and thus integrates adaptive and innate immune phenomena. Herein, we aim to recapitulate the history and current status of HSP-based immunotherapies and vaccination strategies in the treatment of cancer. PMID:27199993

  19. Effect of heat treatment on microstructure and hardness of Grade 91 steel

    DOE PAGESBeta

    Shrestha, Triratna; Alsagabi, Sultan; Charit, Indrajit; Potirniche, Gabriel; Glazoff, Michael

    2015-01-21

    The modified 9Cr-1Mo steel (Grade 91) is a material of choice in fossil-fuel-fired power plants with increased efficiency, service life, and reduction in emission of greenhouse gases. It is also considered a prospective material for the Next Generation Nuclear Power Plant for application in reactor pressure vessels at temperatures up to 650°C. In this paper, heat treatment of the modified 9Cr-1Mo steel was studied by normalizing and tempering the steel at various temperatures and times, with the ultimate goal of improving its creep resistance and optimizing material hardness. The microstructural evolution of the heat treated steels was correlated with themore » differential scanning calorimetric results. Optical microscopy, scanning and transmission electron microscopy in conjunction with microhardness profiles and calorimetric plots were used to understand the evolution of microstructure including precipitate structures in modified 9Cr-1Mo steel and relate it to the mechanical behavior of the steel. Thermo-CalcTM calculations were used to support experimental work and provide guidance in terms of the precipitate stability and microstructural evolution. Furthermore, the carbon isopleth and temperature dependencies of the volume fraction of different precipitates were constructed. The predicted and experimentally observed results were found to be in good agreement.« less

  20. Effect of heat treatment on microstructure and hardness of Grade 91 steel

    SciTech Connect

    Shrestha, Triratna; Alsagabi, Sultan; Charit, Indrajit; Potirniche, Gabriel; Glazoff, Michael

    2015-01-21

    The modified 9Cr-1Mo steel (Grade 91) is a material of choice in fossil-fuel-fired power plants with increased efficiency, service life, and reduction in emission of greenhouse gases. It is also considered a prospective material for the Next Generation Nuclear Power Plant for application in reactor pressure vessels at temperatures up to 650°C. In this paper, heat treatment of the modified 9Cr-1Mo steel was studied by normalizing and tempering the steel at various temperatures and times, with the ultimate goal of improving its creep resistance and optimizing material hardness. The microstructural evolution of the heat treated steels was correlated with the differential scanning calorimetric results. Optical microscopy, scanning and transmission electron microscopy in conjunction with microhardness profiles and calorimetric plots were used to understand the evolution of microstructure including precipitate structures in modified 9Cr-1Mo steel and relate it to the mechanical behavior of the steel. Thermo-CalcTM calculations were used to support experimental work and provide guidance in terms of the precipitate stability and microstructural evolution. Furthermore, the carbon isopleth and temperature dependencies of the volume fraction of different precipitates were constructed. The predicted and experimentally observed results were found to be in good agreement.

  1. Analysis of Convective Heat Transfer Enhancement by Nanofluids: Single-Phase and Two-Phase Treatments

    NASA Astrophysics Data System (ADS)

    Kakaç, S.; Pramuanjaroenkij, A.

    2016-06-01

    Nanofluids have been investigated regarding their advantages and potentialities for the purpose of increasing convective heat transfer rates inside thermal systems where they are used as working fluids. Researchers in thermophysics have investigated these fluids experimentally and numerically. This review provides extensive theoretical information concerning nanofluids in the single-phase and two-phase treatments. Important published works on nanofluid properties and correlations are summarized and reviewed in detail. Heat transfer enhancement by nanofluids is a challenging problem due to the difficulties inherent in the model of the physical mechanism of interaction between the paricles. Here the interaction between the phases is modeled by several two-phase models, and the results are given in graphical and tabular forms. Despite the advantages of the mixture model, such as imlementation of physical properties and less computational power requirements, some studies showed that the results of the single-phase and two-phase models are very similar. The main difference consists in the effect of the drift velocities of the phases relative to each other.

  2. Analysis Of Post-Wet-Chemistry Heat Treatment Effects On Nb SRF Surface Resistance

    SciTech Connect

    Dhakal, Pashupati; Ciovati, Gianluigi; Kneisel, Peter K.; Myneni, Ganapati Rao

    2014-02-01

    Most of the current research in superconducting radio frequency (SRF) cavities is focused on ways to reduce the construction and operating cost of SRF-based accelerators as well as on the development of new or improved cavity processing techniques. The increase in quality factors is the result of the reduction of the surface resistance of the materials. A recent test on a 1.5 GHz single cell cavity made from ingot niobium of medium purity and heat treated at 1400 deg C in a ultra-high vacuum induction furnace resulted in a residual resistance of ~ 1n{Omega} and a quality factor at 2.0 K increasing with field up to ~ 5×10{sup 10} at a peak magnetic field of 90 mT. In this contribution, we present some results on the investigation of the origin of the extended Q{sub 0}-increase, obtained by multiple HF rinses, oxypolishing and heat treatment of all Nb cavities.

  3. Analysis of Convective Heat Transfer Enhancement by Nanofluids: Single-Phase and Two-Phase Treatments

    NASA Astrophysics Data System (ADS)

    Kakaç, S.; Pramuanjaroenkij, A.

    2016-05-01

    Nanofluids have been investigated regarding their advantages and potentialities for the purpose of increasing convective heat transfer rates inside thermal systems where they are used as working fluids. Researchers in thermophysics have investigated these fluids experimentally and numerically. This review provides extensive theoretical information concerning nanofluids in the single-phase and two-phase treatments. Important published works on nanofluid properties and correlations are summarized and reviewed in detail. Heat transfer enhancement by nanofluids is a challenging problem due to the difficulties inherent in the model of the physical mechanism of interaction between the paricles. Here the interaction between the phases is modeled by several two-phase models, and the results are given in graphical and tabular forms. Despite the advantages of the mixture model, such as imlementation of physical properties and less computational power requirements, some studies showed that the results of the single-phase and two-phase models are very similar. The main difference consists in the effect of the drift velocities of the phases relative to each other.

  4. Deformation mechanisms, defects, heat treatment, and thermal conductivity in large grain niobium

    NASA Astrophysics Data System (ADS)

    Bieler, Thomas R.; Kang, Di; Baars, Derek C.; Chandrasekaran, Saravan; Mapar, Aboozar; Ciovati, Gianluigi; Wright, Neil T.; Pourboghrat, Farhang; Murphy, James E.; Compton, Chris C.; Myneni, Ganapati Rao

    2015-12-01

    The physical and mechanical metallurgy underlying fabrication of large grain cavities for superconducting radio frequency accelerators is summarized, based on research of 1) grain orientations in ingots, 2) a metallurgical assessment of processing a large grain single cell cavity and a tube, 3) assessment of slip behavior of single crystal tensile samples extracted from a high purity ingot slice before and after annealing at 800 °C / 2 h, 4) development of crystal plasticity models based upon the single crystal experiments, and 5) assessment of how thermal conductivity is affected by strain, heat treatment, and exposure to hydrogen. Because of the large grains, the plastic anisotropy of deformation is exaggerated, and heterogeneous strains and localized defects are present to a much greater degree than expected in polycrystalline material, making it highly desirable to computationally anticipate potential forming problems before manufacturing cavities.

  5. Improvement of corrosion resistance of Nisbnd Mo alloy coatings: Effect of heat treatment

    NASA Astrophysics Data System (ADS)

    Mousavi, R.; Bahrololoom, M. E.; Deflorian, F.; Ecco, L.

    2016-02-01

    In this paper, Nisbnd Mo alloy coatings were deposited from bath containing sodium citrate, nickel sulphate, and sodium molybdate. Essentially, this work is divided into two mains parts: (i) the optimization on the coatings deposition parameters and (ii) the effect of the heat treatment. Polarization curves and electrochemical impedance spectroscopy were acquired using potentiostat/galvanostat and a frequency response analyzer, respectively. Morphology and chemical composition of the coatings were investigated by scanning electron microscopy and energy dispersive spectroscopy, respectively. Polarization curves at different condition revealed that electroplating at temperature 40 oC, pH 9 provides a dense coating with high efficiency. Following the optimization of the deposition parameters, the coatings were annealed at 200, 400, and 600 oC for 25 min. The results showed that the coatings obtained at temperature 40 oC, pH 9, and annealing at 600 oC has the highest corrosion resistance and microhardness.

  6. Magnetic properties of doped Mn-Ga alloys made by mechanical milling and heat treatment

    NASA Astrophysics Data System (ADS)

    Brown, Daniel R.; Han, Ke; Siegrist, Theo; Besara, Tiglet; Niu, Rongmei

    2016-05-01

    Mn-Ga alloys have shown hard magnetic properties, even though these alloys contain no rare-earth metals. However, much work is needed before rare-earth magnets can be replaced. We have examined the magnetic properties of bulk alloys made with partial replacement of both the Mn and Ga elements in the Mn0.8Ga0.2 system. Bulk samples of Mn-Ga-Bi, Mn-Ga-Al, Mn-Fe-Ga and Mn-(FeB)-Ga alloys were fabricated and studied using mechanically milling and heat treatments while altering the atomic percentage of the third element between 2.5 and 20 at%. The ternary alloy exhibits all hard magnetic properties at room temperature with large coercivity. Annealed Mn-Ga-X bulk composites exhibit high coercivities up to 16.6 kOe and remanence up to 9.8 emu/g, that is increased by 115% over the binary system.

  7. Formation of helical dislocations in ammonothermal GaN substrate by heat treatment

    NASA Astrophysics Data System (ADS)

    Horibuchi, Kayo; Yamaguchi, Satoshi; Kimoto, Yasuji; Nishikawa, Koichi; Kachi, Tetsu

    2016-03-01

    GaN substrate produced by the basic ammonothermal method and an epitaxial layer on the substrate was evaluated using synchrotron radiation x-ray topography and transmission electron microscopy. We revealed that the threading dislocations present in the GaN substrate are deformed into helical dislocations and the generation of the voids by heat treatment in the substrate for the first observation in the GaN crystal. These phenomena are formed by the interactions between the dislocations and vacancies. The helical dislocation was formed in the substrate region, and not in the epitaxial layer region. Furthermore, the evaluation of the influence of the dislocations on the leakage current of Schottky barrier diodes fabricated on the epitaxial layer is discussed. The dislocations did not affect the leakage current characteristics of the epitaxial layer. Our results suggest that the deformation of dislocations in the GaN substrate does not adversely affect the epitaxial layer.

  8. Crack Formation in Powder Metallurgy Carbon Nanotube (CNT)/Al Composites During Post Heat-Treatment

    NASA Astrophysics Data System (ADS)

    Chen, Biao; Imai, Hisashi; Li, Shufeng; Jia, Lei; Umeda, Junko; Kondoh, Katsuyoshi

    2015-12-01

    After the post heat-treatment (PHT) process of powder metallurgy carbon nanotubes (CNT)/Al composites, micro-cracks were observed in the composites, leading to greatly degraded mechanical properties. To understand and suppress the crack formation, an in situ observation of CNT/Al composites was performed at elevated temperatures. PHT was also applied to various bulk pure Al and CNT/Al composites fabricated under different processes. It was observed that the composites consolidated by hot-extrusion might form micro-cracks, but those consolidated by spark plasma sintering (SPS) showed no crack after PHT. A high-temperature SPS process before hot-extrusion was effective to prevent crack formation. The release of residual stress in severe plastic deformed (SPD) materials was responsible for the cracking phenomena during the PHT process. Furthermore, a good particle bonding was essential and effective to suppress cracks for SPD materials in the PHT process.

  9. Effects of isothermal heat treatment on nanostructured bainite morphology and microstructures in laser cladded coatings

    NASA Astrophysics Data System (ADS)

    Guo, Yanbing; Feng, Kai; Lu, Fenggui; Zhang, Ke; Li, Zhuguo; Hosseini, Seyed Reza Elmi; Wang, Min

    2015-12-01

    Laser cladding and subsequent isothermal heat treatments have been used to fabricate nanostructured bainitic coatings. XRD has been used to determine the kinetics of bainitic transformation process. OM, SEM and TEM have been used to characterize the morphology and microstructures at different stages of transformation. The results showed that at the initial stage of bainitic transformation, the bainite sheaves are short and thin at a relatively low transformation temperature. The fully transformed bainitic microstructure obtained at a relatively high temperature present a textured morphology. The chaotic growth orientations of the sheaves and the island like of the retained austenite have been observed at the low transformation temperature. A simple model has been established to describe the microstructures and the bainite sheaves growth evolutions during the isothermal holding at the different transformed temperatures. The morphology and distribution of the bainite in the coatings were analyzed by using the nucleation and growth rate of bainitic transformation theories, which is consisted with the experiment results.

  10. Effects of heat treatment and magnetoannealing on nanocrystalline Co-ferrite powders

    SciTech Connect

    Wang, Y.C.; Ding, J.; Yin, J.H.; Liu, B.H.; Yi, J.B.; Yu, S.

    2005-12-15

    This work consists of three parts: the effects of heat treatment (slow cooling and quenching), magnetoannealing, and postannealing of samples with induced anisotropy. It has been found that noncomplete inverse spinel structure was the result after annealing at higher temperature and quenching. Our Moessbauer spectroscopy study confirmed noncomplete inverse structure after quenching, while inverse spinel structure was formed after slow cooling. The kinetics of the formation of induced anisotropy during magnetoannealing has been investigated in this study. Reduction of crystalline magnetic anisotropy was observed, as coercivity decreased after magnetoannealing. The change of remanence ratio and coercivity followed the expected equations for ion diffusion. A relative large anisotropy in magnetization was evident. A postannealing resulted in the conversion into the initial isotropic stage. The process could be well described using the equations of ion diffusion.

  11. Pressurized heat treatment of glass-ceramic to control thermal expansion

    DOEpatents

    Kramer, Daniel P.

    1985-01-01

    A method of producing a glass-ceramic having a specified thermal expansion value is disclosed. The method includes the step of pressurizing the parent glass material to a predetermined pressure during heat treatment so that the glass-ceramic produced has a specified thermal expansion value. Preferably, the glass-ceramic material is isostatically pressed. A method for forming a strong glass-ceramic to metal seal is also disclosed in which the glass-ceramic is fabricated to have a thermal expansion value equal to that of the metal. The determination of the thermal expansion value of a parent glass material placed in a high-temperature environment is also used to determine the pressure in the environment.

  12. Deformation mechanisms, defects, heat treatment, and thermal conductivity in large grain niobium

    SciTech Connect

    Bieler, Thomas R. Kang, Di Baars, Derek C.; Chandrasekaran, Saravan; Mapar, Aboozar Wright, Neil T.; Ciovati, Gianluigi Myneni, Ganapati Rao; Pourboghrat, Farhang; Murphy, James E.; Compton, Chris C.

    2015-12-04

    The physical and mechanical metallurgy underlying fabrication of large grain cavities for superconducting radio frequency accelerators is summarized, based on research of 1) grain orientations in ingots, 2) a metallurgical assessment of processing a large grain single cell cavity and a tube, 3) assessment of slip behavior of single crystal tensile samples extracted from a high purity ingot slice before and after annealing at 800 °C / 2 h, 4) development of crystal plasticity models based upon the single crystal experiments, and 5) assessment of how thermal conductivity is affected by strain, heat treatment, and exposure to hydrogen. Because of the large grains, the plastic anisotropy of deformation is exaggerated, and heterogeneous strains and localized defects are present to a much greater degree than expected in polycrystalline material, making it highly desirable to computationally anticipate potential forming problems before manufacturing cavities.

  13. Effect of Heat Treatment on Wear Resistance of Nickel Aluminide Coatings Deposited by HVOF and PTA

    NASA Astrophysics Data System (ADS)

    Benegra, M.; Santana, A. L. B.; Maranho, O.; Pintaude, G.

    2015-08-01

    This study aims to compare the wear resistance of nickel aluminide coatings deposited using plasma transferred arc (PTA) and high-velocity oxygen fuel (HVOF) processes. Wear resistance was measured in rubber wheel abrasion tests. In both deposition processes, the same raw material (nickel aluminide powder) was atomized and deposited on a 316L steel plate substrate. After deposition, specimens were subjected to thermal cycling, aiming solubilization and precipitation. Coatings deposited using PTA developed different microstructures as a result of the incorporation of substrate elements. However, despite the presence of these microstructures, they performed better than coatings processed using HVOF before the heat treatment. After thermal cycling, the superficial hardness after the wear tests for both processes was similar, resulting in similar mass losses.

  14. Effect of deoxidation practice and heat treatment on the hydrogen attack of carbon steels

    NASA Astrophysics Data System (ADS)

    López, Hugo F.

    1987-11-01

    The hydrogen attack (HA) kinetics of an electroslag refined (ESR) and a rare earth metal (REM)-treated steel in the Q. and T. condition were investigated by a highly sensitive dilatometer. Measured activation energies for bubble growth of 108 to 203 kJ/mol and pressure exponents of 0.9 to 1.6 are rationalized in terms of surface or grain boundary self-diffusion of iron as the rate controlling mechanisms depending on the external hydrogen pressure and temperature. Comparisons of the HA susceptibility of these steels with published work show that although the HA resistance of the ESR steel is not influenced by the heat treatment, the REM steel shows a significant decrease in the rate of sample expansion. SEM observations indicate that the improvement in the HA resistance of the REM steel is related to the presence of a very low density of methane bubbles.

  15. Effect of heat treatment on the flexural properties of a titanium matrix composite

    NASA Technical Reports Server (NTRS)

    Warrier, S. G.; Lin, R. Y.

    1992-01-01

    Titanium matrix composites (TMC) reinforced with carbon fibers are widely used in the aerospace industry due to their light weight, high strength and modulus and the retention of their strength and modulus at elevated temperatures. Liquid infiltration, a low cost technique for making TMCs, has been little used due to the extent of the reaction between titanium and carbon during fabrication. Rapid infrared processing (RIP) has been developed as a technique for reducing interfacial reaction during composite fabrication. The strength and modulus of composites produced using RIP were higher than or comparable to those for other composites. This paper examines the effect of heat treatment on the room temperature flexural strength and modulus of TMC produced using RIP. The experiments carried out are described and results are presented. Results showed increased flexural strength of the composites upon aging at temperatures of 800 and 900 degrees C. This increased strength may be due to increased strength of the matrix.

  16. Role of Elemental Sublimation during Solution Heat Treatment of Ni-Based Superalloys

    NASA Astrophysics Data System (ADS)

    D'Souza, N.; Simmonds, S.; West, G. D.; Dong, H. B.

    2013-10-01

    The role of elemental evaporation on the microstructural stability of blade surfaces has been investigated on solutioned and aged samples of Ni-based single-crystal superalloys. Evaporation of Ni and Cr at the casting surface during solution heat treatment leads to the formation of a Ni- and Cr-depleted layer at the surface. Nucleation and growth of γ' phase occur within this layer through subsequent long-range diffusion of Re, Ta, and W between the γ' layer and the substrate. Beyond a critical Ni and Cr loss, incipient melting initiates at the surface and principally γ' and TCP phases are stabilized with de-stabilization of γ phase. Nucleation of TCP phases occurs at grain boundaries arising from cellular recrystallization during the ramp-up cycle. Therefore, on quenching, a range of microstructures are observed at the casting surface.

  17. Soybean Ferritin Forms an Iron-Containing Oligomer in Tofu Even after Heat Treatment.

    PubMed

    Masuda, Taro

    2015-10-14

    Ferritin, a multimeric iron storage protein distributed in almost all living kingdoms, has been highlighted recently as a nutritional iron source in plant-derived foodstuffs, because ferritin iron is suggested to have high bioavailability. In soybean seeds, ferritin contributes largely to the net iron contents. Here, the oligomeric states and iron contents of soybean ferritin during food processing (especially tofu gel formation) were analyzed. Ferritin was purified from tofu gel as an iron-containing oligomer (approximately 1000 Fe atoms per oligomer), which was composed of two types of subunits similar to the native soybean seed ferritin. Circular dichroism spectra also showed no differences in α-helical structure between native soybean ferritin and tofu ferritin. The present data demonstrate that ferritin was stable during the heat treatment (boiling procedure) in food processing, although partial denaturation was observed at temperatures higher than 80 °C. PMID:26390371

  18. Synergistic effect of nisin and heat treatment on the growth of Escherichia coli O157:H7.

    PubMed

    Lee, Jeong-In; Lee, Hu-Jang; Lee, Mun-Han

    2002-02-01

    A combination of nisin and heat treatment was found to inhibit Escherichia coli O157:H7 effectively. After organisms were heated at 50, 52.5, and 55 degrees C for 5, 10, and 15 min, respectively, nisin was incorporated into the plates of E. coli O157:H7 at 0, 25, 50, and 100 IU/ml. The concentration of 100 IU/ml nisin significantly inhibited the growth of E. coli O157:H7 heated at 50 and 52.5 degrees C for 15 min. Nisin treatment at 100 IU/ml for 6 h resulted in the elimination of E. coli O157:H7 heated at 55 degrees C for 10 and 15 min. PMID:11848575

  19. Effects of cavitation-enhanced heating in high-intensity focused ultrasound treatment on shear wave imaging

    NASA Astrophysics Data System (ADS)

    Iwasaki, Ryosuke; Nagaoka, Ryo; Takagi, Ryo; Goto, Kota; Yoshizawa, Shin; Saijo, Yoshifumi; Umemura, Shin-ichiro

    2015-07-01

    High-intensity focused ultrasound (HIFU) therapy is a less invasive method of cancer treatment, in which ultrasound is generated outside the body and focused at the tumor tissue to be thermally coagulated. To enhance the safety, accuracy, and efficiency of HIFU therapy, “multiple-triggered HIFU” has been proposed as a method of cavitation-enhanced heating to shorten treatment time. In this study, we also propose shear wave elastography (SWE) to noninvasively monitor the cavitation-enhanced heating. Results show that the increase in shear wave velocity was observed in the coagulation area, but it was significantly slower when cavitation occurred. This suggests that the cavitation-enhanced heating requires a significantly longer cooling time before the accurate measurement of shear modulus than heating without generating bubbles.

  20. Heat-Treatment of Bovine Colostrum. II: Effects of Heating Duration on Pathogen Viability and Immunoglobulin G

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Batches (30-L) of first-milking bovine colostrums, inoculated with Mycoplasma bovis (10^8 cfu/ml), Listeria monocytogenes (10^6 cfu/ml), Escherichia coli O0157:H7 (10^6 cfu/ml), Salmonella enteritidis (10^6 cfu/ml), and Mycobacterium avium subsp. paratuberculosis (Map; 10^3 cfu/ml), were heat-treate...

  1. Cyclic Deformation Behavior of a Rare-Earth Containing Extruded Magnesium Alloy: Effect of Heat Treatment

    NASA Astrophysics Data System (ADS)

    Mirza, F. A.; Chen, D. L.; Li, D. J.; Zeng, X. Q.

    2015-03-01

    The present study was aimed at evaluating strain-controlled cyclic deformation behavior of a rare-earth (RE) element containing Mg-10Gd-3Y-0.5Zr (GW103K) alloy in different states (as-extruded, peak-aged (T5), and solution-treated and peak-aged (T6)). The addition of RE elements led to an effective grain refinement and weak texture in the as-extruded alloy. While heat treatment resulted in a grain growth modestly in the T5 state and significantly in the T6 state, a high density of nano-sized and bamboo-leaf/plate-shaped β' (Mg7(Gd,Y)) precipitates was observed to distribute uniformly in the α-Mg matrix. The yield strength and ultimate tensile strength, as well as the maximum and minimum peak stresses during cyclic deformation in the T5 and T6 states were significantly higher than those in the as-extruded state. Unlike RE-free extruded Mg alloys, symmetrical hysteresis loops in tension and compression and cyclic stabilization were present in the GW103K alloy in different states. The fatigue life of this alloy in the three conditions, which could be well described by the Coffin-Manson law and Basquin's equation, was equivalent within the experimental scatter and was longer than that of RE-free extruded Mg alloys. This was predominantly attributed to the presence of the relatively weak texture and the suppression of twinning activities stemming from the fine grain sizes and especially RE-containing β' precipitates. Fatigue crack was observed to initiate from the specimen surface in all the three alloy states and the initiation site contained some cleavage-like facets after T6 heat treatment. Crack propagation was characterized mainly by the characteristic fatigue striations.

  2. Heat treatment of peach fruit: modifications in the extracellular compartment and identification of novel extracellular proteins.

    PubMed

    Bustamante, Claudia A; Budde, Claudio O; Borsani, Julia; Lombardo, Verónica A; Lauxmann, Martin A; Andreo, Carlos S; Lara, María V; Drincovich, María F

    2012-11-01

    Ripening of peach (Prunus persica L. Batsch) fruit is accompanied by dramatic cell wall changes that lead to softening. Post-harvest heat treatment is effective in delaying softening and preventing some chilling injury symptoms that this fruit exhibits after storage at low temperatures. In the present work, the levels of twelve transcripts encoding proteins involved in cell wall metabolism, as well as the differential extracellular proteome, were examined after a post-harvest heat treatment (HT; 39 °C for 3 days) of "Dixiland" peach fruit. A typical softening behaviour, in correlation with an increase in 1-aminocyclopropane-1-carboxylic acid oxidase-1 (PpACO1), was observed for peach maintained at 20 °C for 3 days (R3). Six transcripts encoding proteins involved in cell wall metabolism significantly increased in R3 with respect to peach at harvest, while six showed no modification or even decreased. In contrast, after HT, fruit maintained their firmness, exhibiting low PpACO1 level and significant lower levels of the twelve cell wall-modifying genes than in R3. Differential proteomic analysis of apoplastic proteins during softening and after HT revealed a significant decrease of DUF642 proteins after HT; as well as an increase of glyceraldehyde-3-phosphate dehydrogenase (GAPC) after softening. The presence of GAPC in the peach extracellular matrix was further confirmed by in situ immunolocalization and transient expression in tomato fruit. Though further studies are required to establish the function of DUF642 and GAPC in the apoplast, this study contributes to a deeper understanding of the events during peach softening and after HT with a focus on this key compartment. PMID:22902552

  3. The Strain-Hardening Behavior of TZAV-30 Alloy After Various Heat Treatments

    NASA Astrophysics Data System (ADS)

    Liang, S. X.; Yin, L. X.; Zheng, L. Y.; Ma, M. Z.; Liu, R. P.

    2016-02-01

    The Ti-Zr-Al-V series titanium alloys with excellent mechanical properties and low density exhibit tremendous application potential as structural materials in aviation, automotive, and navigation industries. The strain-hardening behavior of Ti-30Zr-5Al-3V (wt.%, TZAV-30) alloy with various heat treatments is investigated in this study. Experimental results show that strain-hardening behavior of the examined alloy depends on the heat treatment process. The average strain-hardening exponent, n, is approximately 0.061 for WA specimen (825 °C/0.5 h/water quenching + 600 °C/4 h/air cooling), 0.068 for FC (850 °C/0.5 h/furnace cooling), 0.121 for AC (850 °C/0.5 h/air cooling), and 0.412 for WQ (850 °C/0.5 h/water quenching). Analysis of strain-hardening rate versus true strain curves indicates that higher n of AC specimen results from the lower degradation rate of strain-hardening rate with strain, and the ultrahigh n of WQ specimen is attributed to the evident increase in strain-hardening rate at the true strain from 0.04 to 0.06. Phase constitution and microstructural analyses reveal that the n of the examined alloy with α + β phases increases with the increase in the relative content of the retained β phase but is independent of average thickness of α plates. The increase in strain-hardening rate in WQ specimen depends on metastable α″ martensite and martensitic transition induced by tensile stress.

  4. Effects of anodizing parameters and heat treatment on nanotopographical features, bioactivity, and cell culture response of additively manufactured porous titanium.

    PubMed

    Amin Yavari, S; Chai, Y C; Böttger, A J; Wauthle, R; Schrooten, J; Weinans, H; Zadpoor, A A

    2015-06-01

    Anodizing could be used for bio-functionalization of the surfaces of titanium alloys. In this study, we use anodizing for creating nanotubes on the surface of porous titanium alloy bone substitutes manufactured using selective laser melting. Different sets of anodizing parameters (voltage: 10 or 20V anodizing time: 30min to 3h) are used for anodizing porous titanium structures that were later heat treated at 500°C. The nanotopographical features are examined using electron microscopy while the bioactivity of anodized surfaces is measured using immersion tests in the simulated body fluid (SBF). Moreover, the effects of anodizing and heat treatment on the performance of one representative anodized porous titanium structures are evaluated using in vitro cell culture assays using human periosteum-derived cells (hPDCs). It has been shown that while anodizing with different anodizing parameters results in very different nanotopographical features, i.e. nanotubes in the range of 20 to 55nm, anodized surfaces have limited apatite-forming ability regardless of the applied anodizing parameters. The results of in vitro cell culture show that both anodizing, and thus generation of regular nanotopographical feature, and heat treatment improve the cell culture response of porous titanium. In particular, cell proliferation measured using metabolic activity and DNA content was improved for anodized and heat treated as well as for anodized but not heat-treated specimens. Heat treatment additionally improved the cell attachment of porous titanium surfaces and upregulated expression of osteogenic markers. Anodized but not heat-treated specimens showed some limited signs of upregulated expression of osteogenic markers. In conclusion, while varying the anodizing parameters creates different nanotube structure, it does not improve apatite-forming ability of porous titanium. However, both anodizing and heat treatment at 500°C improve the cell culture response of porous titanium. PMID

  5. One-Step Quenching and Partitioning Heat Treatment of Medium Carbon Low Alloy Steel

    NASA Astrophysics Data System (ADS)

    Tariq, Fawad; Baloch, Rasheed Ahmed

    2014-05-01

    This paper presents the results of novel one-step quenching and partitioning (Q&P) heat treatment conducted on medium carbon low alloy steel sheet. Samples were austenitised at 1193 K followed by interrupted quenching at 473 K for different partitioning times and finally they were quenched in water. Dilatometry was employed for selection of treatment temperatures. Optical and scanning electron microscopy was carried out to examine the microstructural changes. Volume fraction of retained austenite was measured by x-ray diffraction technique. Resulting microstructures were correlated with the mechanical properties such hardness, tensile strength, elongation, impact absorbed energy, etc. The notch tensile and fracture toughness properties of Q&P steels are still lacking therefore notch tensile strength and plain strain fracture toughness tests were conducted and results are reported here. Results of Q&P treatments were also compared with the properties obtained by conventional Quenching and Tempering (Q&T) and normalizing treatments. Optimum strength-ductility balance of about 2000 MPa tensile strength with 11% elongation was achieved in samples quenched at 473 K and isothermally partitioned for 100 s. Higher ductility of Q&P steel was attributed to the presence of 6.8% film-type interlath retained austenite. Fine-grained martensitic structure with high density of interphase boundaries imparted ultrahigh strength. It was further noted that the impact toughness, notch tensile strength and fracture toughness of 1000 s partitioned samples was higher than 100 s partitioned samples. Possible reasons for high toughness are synergetic effect of recovery of dislocations, partial loss of martensite tetragonality and precipitation of fine transition carbides.

  6. Nanostructured Ti6Al4V alloy fabricated using modified alkali-heat treatment: Characterization and cell adhesion.

    PubMed

    Su, Yingmin; Komasa, Satoshi; Sekino, Tohru; Nishizaki, Hiroshi; Okazaki, Joji

    2016-02-01

    In order to optimize the creation of a nanostructured surface on Ti6Al4V titanium alloy, an alkali treatment was performed using a 10-M NaOH solution at various temperatures (30, 40, 50, and 60°C) so as to determine the optimal temperature. This was combined with subsequent heat treatments (200, 400, 600, and 800°C) in air. The effects of different temperatures for the latter treatments on the nanostructure surface and the initial cell adhesion were evaluated, and the optimal temperature of the alkali solution was found to be 30°C. Further, the nanotopography, surface chemistry, and surface roughness of the nanoporous structure were retained after heat treatments performed at 200, 400, and 600°C, and only the phase structure was altered. The amorphous sodium titanate phase, the content of which increased with increased heat-treatment temperature, may have played a role in promoting cell adhesion on the nanoporous surface. However, heat treatment at 800°C did not enhance the cell-surface attachment. Rather, the nanostructure degraded significantly with the reappearance of Al and V. PMID:26652415

  7. Heat and lime-treatment as effective control methods for E. coli O157:H7 in organic wastes.

    PubMed

    Avery, Lisa M; Williams, A Prysor; Killham, Ken; Jones, David L

    2009-05-01

    Land-application of abattoir wastes is economically appealing and may provide an effective means of closing the nutrient cycling loop. This practise is constrained, however, by legislation which necessitates pre-treatment to remove pathogenic micro-organisms prior to land-spreading. Here we investigated whether heat-treatment or lime addition could eliminate Escherichia coli O157:H7 from three contrasting abattoir wastes. We found that treatment at 60 degrees C for 10 min effectively eradicated the organism while treatment for the same length of time at 50 degrees C led to 2-4 log reductions, but not a complete kill. Temperatures of 72 degrees C induced waste solidification rendering its use impractical. The potential for re-growth in heat-treated and untreated wastes was also investigated. Survival was significantly greater in heat-treated wastes, although the difference was less than half a log unit in magnitude. This effect of heat-treatment on pathogen survival appeared to be ameliorated when wastes were mixed with soil. No viable E. coli O157:H7 cells were recovered from any waste after application of lime (CaO) at a rate of 10 gl(-1), even after enrichment. Our results indicate that pasteurisation-style or liming treatments may provide a suitable alternative method for reducing pathogen loads in abattoir wastes, so that they can be applied to land with minimal biological risk. PMID:19181517

  8. Effect of Shot Peening on Surface Chracteristics of Carbon Steel with Different Heat Treatments

    NASA Astrophysics Data System (ADS)

    Harada, Yasunori; Yakura, Ryota

    2011-01-01

    The shot peening process is one of the surface treatments. The peening effects are characterized by the fact that the surface layer undergoes large plastic deformation due to the collision of shots. This action imparts compressive residual stress on the surface, thus improving the fatigue life of the component. Therefore, this process has been utilized in order to improve the performance of engineering components. Researchers have been found a number of new phenomena in the shot peening process. It is well known that the peening effects are greatly influenced by the processing history or the thermal history of material. The hardness near the surface of the deformed material or heat treated material was often decreased by shot peening. Presently, little is known about the relation between hardness of the shot peened surface and the processing history of materials. In the present study, the effects of shot peening conditions on the surface characteristics of medium carbon steels with different heat treatments were investigated. In the experiment, the shot peening process was performed with an air-type machine using cast steel balls. Air pressure is in the range from 0.4 to 0.8 MPa and coverage is from 200 to 2000%. The workpiece was used the commercial medium carbon steel JIS-S45C. These are annealed at 900° C for 7.2 ks and quenched and tempered from 850° C in oil. Hardness, surface roughness, and compressive residual stress in the peened workpieces were measured. When the tempered workpiece was shot peened, the hardness of the surface was considerably lowered. The hardness distribution shows work softening near the surface. This amount increases with increasing coverage. This is due to the influence of processing heat generated by the plastic deformation during shot peening. The maximum residual stress appears about 840 MPa at about 0.180 mm in depth from the surface. It was found that the difference of the thermal history of the workpiece influences the hardness

  9. Heat treatment of pre-hydrolyzed silane increases adhesion of phosphate monomer-based resin cement to glass ceramic.

    PubMed

    de Carvalho, Rodrigo Furtado; Cotes, Caroline; Kimpara, Estevão Tomomitsu; Leite, Fabíola Pessoa Pereira; Özcan, Mutlu

    2015-01-01

    This study evaluated the influence of different forms of heat treatment on a pre-hydrolyzed silane to improve the adhesion of phosphate monomer-based (MDP) resin cement to glass ceramic. Resin and feldspathic ceramic blocks (n=48, n=6 for bond test, n=2 for microscopy) were randomly divided into 6 groups and subject to surface treatments: G1: Hydrofluoric acid (HF) 9.6% for 20 s + Silane + MDP resin cement (Panavia F); G2: HF 9.6% for 20 s + Silane + Heat Treatment (oven) + Panavia F; G3: Silane + Heat Treatment (oven) + Panavia F; G4: HF 9.6% for 20 s + Silane + Heat Treatment (hot air) + Panavia F; G5: Silane + Heat Treatment (hot air) + Panavia F; G6: Silane + Panavia F. Microtensile bond strength (MTBS) test was performed using a universal testing machine (1 mm/min). After debonding, the substrate and adherent surfaces were analyzed using stereomicroscope and scanning electron microscope (SEM) to categorize the failure types. Data were analyzed statistically using two-way test ANOVA and Tukey's test (=0.05). Heat treatment of the silane containing MDP, with prior etching with HF (G2: 13.15 ± 0.89a; G4: 12.58 ± 1.03a) presented significantly higher bond strength values than the control group (G1: 9.16 ± 0.64b). The groups without prior etching (G3: 10.47 ± 0.70b; G5: 9.47 ± 0.32b) showed statistically similar bond strength values between them and the control group (G1). The silane application without prior etching and heat treatment resulted in the lowest mean bond strength (G6: 8.05 ± 0.37c). SEM analysis showed predominantly adhesive failures and EDS analysis showed common elements of spectra (Si, Na, Al, K, O, C) characterizing the microstructure of the glass-ceramic studied. Heat treatment of the pre-hydrolyzed silane containing MDP in an oven at 100 °C for 2 min or with hot air application at 50 ± 5 ºC for 1 min, was effective in increasing the bond strength values between the ceramic and resin cement containing MDP. PMID:25672383

  10. Microstructure Evolution of Cold-Sprayed Al-Si Alloy Coatings on γ-TiAl During Heat Treatment

    NASA Astrophysics Data System (ADS)

    Wang, Jiqiang; Kong, Lingyan; Li, Tiefan; Xiong, Tianying

    2015-08-01

    This paper investigated the influence of heat treatment on the microstructure of Al-Si alloy coatings on γ-TiAl alloy. The coatings were prepared by cold spraying with Al-12Si and Al-20Si alloy powders as the feedstock, and then the as-sprayed coatings were subjected to heat treatment. The microstructure, chemical composition, and phase transformation of the coatings were studied by SEM, XRD, and EPMA. The diffusing behavior of Al and Si during heat treatment was investigated. The results showed that a silicon-aluminizing coating was formed through the inward diffusion of Al/Si elements into the substrate. The obtained kinetics curve of the formation of silicon-aluminizing coating at 580 °C similarly followed parabolic law.

  11. [Effect of heat treatment on the structure of a Cu-Zn-Al-Ni system dental alloy].

    PubMed

    Guastaldi, A C; Adorno, A T; Beatrice, C R; Mondelli, J; Ishikiriama, A; Lacefield, W

    1990-01-01

    This article characterizes the structural phases present in the copper-based metallic alloy system "Cu-Zn-Al-Ni" developed for dental use, and relates those phases to other properties. The characterization was obtained after casting (using the lost wax process), and after heat treatment. In order to obtain better corrosion resistance by changing the microstructure, the castings were submitted to 30, 45 and 60 minutes of heat treatment at the following temperatures: 750 degrees C, 800 degrees C, and 850 degrees C. The various phases were analyzed using X-ray diffraction and scanning electron microscopy (SEM). The results after heat treatment showed a phase (probably Cu3Al), that could be responsible for the improvement in the alloy's resistance to corrosion as compared to the as-cast structure. PMID:2135444

  12. Methane production and solids destruction in an anaerobic solid waste reactor due to post-reactor caustic and heat treatment.

    PubMed

    Distefano, T D; Ambulkar, A

    2006-01-01

    This study was undertaken to determine the feasibility of caustic and heat treatment of sludge from a dry anaerobic reactor (DAR) with respect to increased methane production and solids destruction. The DAR was operated semi-continuously at 55 degrees C on sized-reduced municipal solid waste at a solids retention time of 15 days. A respirometer was employed to monitor the extent and rate of methane production from anaerobic biodegradation of DAR sludge that was treated with caustic and heat. Results indicate that caustic and heat treatment at 50 degrees C and 175 degrees C increased methane production by 22% and 52%, respectively. Also, volatile solids destruction increased from 46% to 58% and 83%, respectively. Based on these results, economic analysis for a full-scale 10(5) kg/d facility suggests that annual project revenue for 50 degrees C and 175 degrees C treatment is estimated at $21,000 and $445,000, respectively. PMID:16784187

  13. Effects of Carbides on the Microstructural Evolution in Sub-micron Grain 9310 Steel During Isothermal Heat Treatment

    NASA Astrophysics Data System (ADS)

    Kozmel, Thomas; Tin, Sammy

    2015-07-01

    Recent interest in bulk ultra-fine-grained microstructures has given rise for the necessity to quantify their behavior during heat treatment should any subsequent thermal processing of the material be necessary after forming. The present study showed that the microstructure of 9310 steel forgings containing varying fractions of sub-micron grains retained some degree of stability after 4 hours of heat treatment between the temperatures of 522 K and 866 K (249 °C and 593 °C, respectively). The behavior of the microstructure during heat treatment was largely influenced by both the carbide volume fraction and distribution, which affected the level of Zener Drag present. This in effect controlled the type of growth behavior exhibited by the ferrite grains and the ability to retain the fine-grained structure.

  14. Fabrication of TiO2 Crystalline Coatings by Combining Ti-6Al-4V Anodic Oxidation and Heat Treatments.

    PubMed

    Vera, María Laura; Rosenberger, Mario Roberto; Schvezov, Carlos Enrique; Ares, Alicia Esther

    2015-01-01

    The bio- and hemocompatibility of titanium alloys are due to the formation of a TiO2 layer. This natural oxide may have fissures which are detrimental to its properties. Anodic oxidation is used to obtain thicker films. By means of this technique, at low voltages oxidation, amorphous and low roughness coatings are obtained, while, above a certain voltage, crystalline and porous coatings are obtained. According to the literature, the crystalline phases of TiO2, anatase, and rutile would present greater biocompatibility than the amorphous phase. On the other hand, for hemocompatible applications, smooth and homogeneous surfaces are required. One way to obtain crystalline and homogeneous coatings is by heat treatments after anodic oxidation. The aim of this study is to evaluate the influence of heat treatments on the thickness, morphology, and crystalline structure of the TiO2 anodic coatings. The characterization was performed by optical and scanning electron microscopy, X-ray diffraction, and X-ray reflectometry. Coatings with different colors of interference were obtained. There were no significant changes in the surface morphology and roughness after heat treatment of 500°C. Heat treated coatings have different proportions of the crystalline phases, depending on the voltage of anodic oxidation and the temperature of the heat treatment. PMID:25784939

  15. Growth of Novel Ceramic Layers on Metals via Chemical and Heat Treatments for Inducing Various Biological Functions.

    PubMed

    Kokubo, Tadashi; Yamaguchi, Seiji

    2015-01-01

    The present authors' systematic studies on growth of novel ceramic layers on Ti metal and its alloys by chemical and heat treatments for inducing bone-bonding bioactivity and some other biological functions are reviewed. Ti metal formed an apatite on its surface in a simulated body fluid, when heat-treated after exposure to strong acid solutions to form rutile surface layer, or to strong alkali solutions to form sodium titanate surface layer. Both types of Ti metal tightly bonded to the living bone. The alkali and heat treatment was applied to the surface Ti metal of an artificial hip joint and successfully used in the clinic since 2007. The acid and heat treatments was applied to porous Ti metal to induce osteoconductivity as well as osteoinductivity. The resulting product was successfully used in clinical trials for spinal fusion devices. For the Ti-based alloys, the alkali and heat treatment was little modified to form calcium titanate surface layer. Bone-growth promoting Mg, Sr, and Zn ions as well as the antibacterial Ag ion were successfully incorporated into the calcium titanate layer. PMID:26579517

  16. Growth of Novel Ceramic Layers on Metals via Chemical and Heat Treatments for Inducing Various Biological Functions

    PubMed Central

    Kokubo, Tadashi; Yamaguchi, Seiji

    2015-01-01

    The present authors’ systematic studies on growth of novel ceramic layers on Ti metal and its alloys by chemical and heat treatments for inducing bone-bonding bioactivity and some other biological functions are reviewed. Ti metal formed an apatite on its surface in a simulated body fluid, when heat-treated after exposure to strong acid solutions to form rutile surface layer, or to strong alkali solutions to form sodium titanate surface layer. Both types of Ti metal tightly bonded to the living bone. The alkali and heat treatment was applied to the surface Ti metal of an artificial hip joint and successfully used in the clinic since 2007. The acid and heat treatments was applied to porous Ti metal to induce osteoconductivity as well as osteoinductivity. The resulting product was successfully used in clinical trials for spinal fusion devices. For the Ti-based alloys, the alkali and heat treatment was little modified to form calcium titanate surface layer. Bone-growth promoting Mg, Sr, and Zn ions as well as the antibacterial Ag ion were successfully incorporated into the calcium titanate layer. PMID:26579517

  17. Fabrication of TiO2 Crystalline Coatings by Combining Ti-6Al-4V Anodic Oxidation and Heat Treatments

    PubMed Central

    Schvezov, Carlos Enrique; Ares, Alicia Esther

    2015-01-01

    The bio- and hemocompatibility of titanium alloys are due to the formation of a TiO2 layer. This natural oxide may have fissures which are detrimental to its properties. Anodic oxidation is used to obtain thicker films. By means of this technique, at low voltages oxidation, amorphous and low roughness coatings are obtained, while, above a certain voltage, crystalline and porous coatings are obtained. According to the literature, the crystalline phases of TiO2, anatase, and rutile would present greater biocompatibility than the amorphous phase. On the other hand, for hemocompatible applications, smooth and homogeneous surfaces are required. One way to obtain crystalline and homogeneous coatings is by heat treatments after anodic oxidation. The aim of this study is to evaluate the influence of heat treatments on the thickness, morphology, and crystalline structure of the TiO2 anodic coatings. The characterization was performed by optical and scanning electron microscopy, X-ray diffraction, and X-ray reflectometry. Coatings with different colors of interference were obtained. There were no significant changes in the surface morphology and roughness after heat treatment of 500°C. Heat treated coatings have different proportions of the crystalline phases, depending on the voltage of anodic oxidation and the temperature of the heat treatment. PMID:25784939

  18. Surface oxide net charge of a titanium alloy: comparison between effects of treatment with heat or radiofrequency plasma glow discharge.

    PubMed

    MacDonald, Daniel E; Rapuano, Bruce E; Schniepp, Hannes C

    2011-01-01

    In the current study, we have compared the effects of heat and radiofrequency plasma glow discharge (RFGD) treatment of a Ti6Al4V alloy on the physico-chemical properties of the alloy's surface oxide. Titanium alloy (Ti6Al4V) disks were passivated alone, heated to 600 °C, or RFGD plasma treated in pure oxygen. RFGD treatment did not alter the roughness, topography, elemental composition or thickness of the alloy's surface oxide layer. In contrast, heat treatment altered oxide topography by creating a pattern of oxide elevations approximately 50-100 nm in diameter. These nanostructures exhibited a three-fold increase in roughness compared to untreated surfaces when RMS roughness was calculated after applying a spatial high-pass filter with a 200 nm-cutoff wavelength. Heat treatment also produced a surface enrichment in aluminum and vanadium oxides. Both RFGD and heat treatment produced similar increases in oxide wettability. Atomic force microscopy (AFM) measurements of metal surface oxide net charge signified by a long-range force of attraction to or repulsion from a (negatively charged) silicon nitride AFM probe were also obtained for all three experimental groups. Force measurements showed that the RFGD-treated Ti6Al4V samples demonstrated a higher net positive surface charge at pH values below 6 and a higher net negative surface charge at physiological pH (pH values between 7 and 8) compared to control and heat-treated samples. These findings suggest that RFGD treatment of metallic implant materials can be used to study the role of negatively charged surface oxide functional groups in protein bioactivity, osteogenic cell behavior and osseointegration independently of oxide topography. PMID:20880672

  19. Surface Oxide Net Charge of a Titanium Alloy; Comparison Between Effects of Treatment With Heat or Radiofrequency Plasma Glow Discharge

    PubMed Central

    MacDonald, Daniel E.; Rapuano, Bruce E.; Schniepp, Hannes C.

    2010-01-01

    In the current study, we have compared the effects of heat and radiofrequency plasma glow discharge (RFGD) treatment of a Ti6Al4V alloy on the physico-chemical properties of the alloy’s surface oxide. Titanium alloy (Ti6Al4V) disks were passivated alone, heated to 600 °C, or RFGD plasma treated in pure oxygen. RFGD treatment did not alter the roughness, topography, elemental composition or thickness of the alloy’s surface oxide layer. In contrast, heat treatment altered oxide topography by creating a pattern of oxide elevations approximately 50–100 nm in diameter. These nanostructures exhibited a three-fold increase in roughness compared to untreated surfaces when RMS roughness was calculated after applying a spatial high-pass filter with a 200 nm cutoff wavelength. Heat treatment also produced a surface enrichment in aluminum and vanadium oxides. Both RFGD and heat treatment produced similar increases in oxide wettability. Atomic force microscopy (AFM) measurements of metal surface oxide net charge signified by a long range force of attraction to or repulsion from a (negatively charged) silicon nitride AFM probe were also obtained for all three experimental groups. Force measurements showed that the RFGD-treated Ti6Al4V samples demonstrated a higher net positive surface charge at pH values below 6 and a higher net negative surface charge at physiological pH (pH values between 7 and 8) compared to control and heat-treated samples These findings suggest that RFGD treatment of metallic implant materials can be used to study the role of negatively charged surface oxide functional groups in protein bioactivity, osteogenic cell behavior and osseointegration independently of oxide topography. PMID:20880672

  20. Creep properties of PWC-11 base metal and weldments as affected by heat treatment

    NASA Technical Reports Server (NTRS)

    Titran, R. H.; Moore, T. J.; Grobstein, T. L.

    1986-01-01

    In a preliminary study using single specimens for each condition, PWC-11 (a niobium-base alloy with a nominal composition of Nb-1%Zr-0.1%C) was creep tested at 1350 K and 40 MPa. Base metal specimens and specimens with transverse electron beam welds were tested with and without a 1000 hr, 1350 K aging treatment prior to testing. In the annealed condition (1 hr at 1755 K + 2 hr at 1475 K), the base metal exhibited superior creep strength compared to the nonaged condition, reaching 1 percent strain in 3480 hr. A 1000 hr, 1350 K aging treatment prior to creep testing had a severe detrimental effect on creep strength of the base metal and transverse electron beam weldments, reducing the time to attain 1 percent strain by an order of magnitude. Extrapolated temperature compensated creep rates indicate that the present heat of PWC-11 may be four times as creep resistant as similarly tested Nb-1%Zr. The extrapolated stress to achieve 1 percent creep strain in 7 yr at 1350 K is 2.7 MPa for annealed Nb-1%Zr and 12 MPa for annealed and aged PWC-11 base metal with and without a transverse electron beam weld.