The behavior of the wake behind a heated circular cylinder
NASA Astrophysics Data System (ADS)
Khashehchi, Morteza; Hooman, Kamel; Queensland Geothermal Energy Centre of Excellence (QGECE) Team
2013-11-01
The thermal effects on the characteristics of the wake behind a circular cylinder operating in the mixed convection regime are considered at relatively high Reynolds number using Particle Image Velocimetry. The experiments were conducted in a horizontal wind tunnel with the heated cylinder placed horizontally. With such assumptions, the direction of the thermally induced buoyancy force acting on the fluid surrounding the heated cylinder would be perpendicular to the flow direction. Experiments were conducted for three Reynolds numbers 1000, 2000 and 4000, where each of them were run at three different temperatures 25, 50 and 75°C. By adjusting different temperatures in different Reynolds numbers, the corresponding Richardson number (RiD = Gr/Re2) was varied between 0.0 (unheated) and 10, resulting in a change in the heat transfer process from forced convection to mixed convection. With increasing temperature of the heated cylinder, significant modifications of the wake flow pattern and wake vortex shedding process were clearly revealed. In low Richardson number, the size of the wake and the vortex shedding process in the wake was found to be quite similar to that of an unheated cylinder. As the Richardson number increased, the wake vortex shedding process was found to be altered and the relative position of the first detached vortices respect to the second one is changed. It was also found that the shedding frequency of the wake vortex structures and the wake closure length decreased with increasing Richardson number.
Convective heat transfer from circular cylinders located within perforated cylindrical shrouds
NASA Technical Reports Server (NTRS)
Daryabeigi, K.; Ash, R. L.
1986-01-01
The influence of perforated cylindrical shrouds on the convective heat transfer to circular cylinders in transverse flow has been studied experimentally. Geometries studied were similar to those used in industrial platinum resistance thermometers. The influence of Reynolds number, ventilation factor (ratio of the open area to the total surface area of shroud), radius ratio (ratio of shroud's inside radius to bare cylinder's radius), and shroud orientation with respect to flow were studied. The experiments showed that perforated shrouds with ventilation factors in the range 0.1 to 0.4 and radius ratios in the range 1.1 to 2.1 could enhance the convective heat transfer to bare cylinders up to 50%. The maximum enhancement occurred for a radius ratio of 1.4 and ventilation factors between 0.2 and 0.3. It was found that shroud orientation influenced the heat transfer, with maximum heat transfer generally occurring when the shroud's holes were centered on either side of the stagnation line. However, the hole orientation effect is of second order compared to the influence of ventilation factor and radius ratio.
NASA Astrophysics Data System (ADS)
Bouakkaz, R.; Talbi, K.; Khelil, Y.; Salhi, F.; Belghar, N.; Ouazizi, M.
2014-01-01
The heat transfer and air flow around an unconfined heated rotating circular cylinder is investigated numerically for varying rotation rates ( α = 0-6) in the Reynolds number range of 20-200. The numerical calculations are carried out by using a finite volume method based commercial computational fluid dynamics solver FLUENT. The successive changes in the flow pattern are studied as a function of the rotation rate. Suppression of vortex shedding occurs as the rotation rate increases ( α > 2). A second kind of instability appears for higher rotation speed where a series of counter-clockwise vortices is shed in the upper shear layer. The rotation attenuates the secondary instability and increases the critical Reynolds number for the appearance of this instability. Besides, time-averaged (lift and drag coefficients and Nusselt number) results are obtained and compared with the literature data. A good agreement has been obtained for both the local and averaged values.
NASA Astrophysics Data System (ADS)
Mansour, M. A.; El-Hakiem, M. A.; El Kabeir, S. M.
2000-10-01
Steady laminar boundary layer analysis of heat and mass transfer characteristics in magnetohydrodynamic (MHD) flow of a micropolar fluid on a circular cylinder maintained at uniform heat and mass flux has been conducted. The solution of the energy equation inside the boundary layer is obtained as a power series of the distance measured along the surface from the front stagnation point of the cylinder. The results of dimensionless temperature, Nusselt number, wall shear stress, wall couple stress and Sherwood number have been presented graphically for various values of the material parameters. The results indicate that the micropolar fluids display a reduction in drag as well as heat transfer rate when compared with Newtonian fluids.
Effect of a rotor wake on heat transfer from a circular cylinder
NASA Technical Reports Server (NTRS)
Simoneau, R. J.; Morehouse, K. A.; Vanfossen, G. J.; Behning, F. P.
1984-01-01
The effect of a rotor wake on heat transfer to a downstream stator was investigated. The rotor was modeled with a spoked wheel of 24 circular pins 1.59 mm in diameter. One of the stator pins was electrically heated in the midspan region and circumferentially averaged heat transfer coefficients were obtained. The experiment was run in an annular flow wind tunnel using air at ambient temperature and pressure. Reynolds numbers based on stator cylinder diameter ranged from .001 to .00001. Rotor blade passing frequencies ranged from zero to 2500 Hz. Stationary grids were used to vary the rotor inlet turbulence from one to four percent. The rotor-stator spacings were one and two stator pin diameters. In addition to the heat transfer coefficients, turbulence spectra and ensemble averaged wake profiles were measured. At the higher Reynolds numbers, which is the primary range of interest for turbulent heat transfer, the rotor wakes increased Nusselt number from 10 to 45 percent depending on conditions. At lower Reynolds numbers the effect was as much as a factor of two.
Analytical study of heat transfer from circular cylinder in liquid metals
NASA Astrophysics Data System (ADS)
Khan, W. A.; Culham, J. R.; Yovanovich, M. M.
2006-09-01
In this study the influence of a thin hydrodynamic boundary layer on the heat transfer from a single circular cylinder in liquid metals having low Prandtl number (0.004 0.03) is investigated under isothermal and isoflux boundary conditions. Two separate analytical heat transfer models, viscous and inviscid, are developed to clarify the discrepancy between previous results. For both models, integral approach of the boundary layer analysis is employed to derive closed form expressions for the calculation of the average heat transfer coefficients. For an inviscid model, the energy equation is solved using potential flow velocity only whereas for a viscous model, a fourth-order velocity profile is used in the hydrodynamic boundary layer and potential flow velocity is used outside the boundary layer. The third-order temperature profile is used inside the thermal boundary layer for both models. It is shown that the inviscid model gives higher heat transfer coefficients whereas viscous flow model gives heat transfer results in a fairly good agreement with the previous experimental/numerical results.
NASA Astrophysics Data System (ADS)
Mabood, F.; Shateyi, S.; Khan, W. A.
2015-09-01
This paper deals with a theoretical investigation of flow and heat transfer of a Casson fluid from a horizontal circular cylinder in a non-Darcy porous medium under the action of slips and thermal radiation parameters. A model of Casson fluid flow for a circular cylinder has been developed to simulate the transport phenomena. The numerical solution has been obtained for the dimensionless velocity and temperature of the Casson fluid. The effects of various important parameters on the dimensionless velocity, temperature as well as on the skin friction and the dimensionless heat transfer rates are investigated and presented graphically. A comparison with previous published data has been done and we found a good agreement with them.
NASA Astrophysics Data System (ADS)
Nagamatsu, H. T.; Hinckel, J. N.
1984-12-01
External heat-transfer rates were measured on a flat plate in the junction region of a circular cylinder mounted normal to the plate at a location 90 deg from the stagnation point. This configuration simulates the junction of the shroud with gas-turbine vanes. Heat-transfer results are presented for laminar, transition, and turbulent boundary layers for a Mach number of 0.14 with gas temperatures of approximately 750 deg R over a flat plate at room temperature. The measurements were made in air for a unit Reynolds number, Re/cm, range of 11,000 to 58,000. Heat-transfer measurements were conducted in the 70-ft long, 4-in. diameter shock tube. A shock-wave reflection technique was used to produce a flow Mach number of 0.14. Thin-film platinum heat gages were mounted on the flat plate and along the line of the stagnation point of the cylinder to measure the local heat flux in the junction region. The experimental heat-transfer data were correlated with the laminar and turbulent boundary-layer theories for the flat plate. With the cylinder the heat fluxes on the flat plate were greatly increased in the junction region compared to the heat flux for the plate alone.
NASA Astrophysics Data System (ADS)
Harimi, Iman; Saghafian, Mohsen
2012-01-01
Forced convection heat transfer from two and three isothermal circular cylinders in tandem arrangement is studied numerically. In addition, the flow field and the vortex shedding behavior in the wake of the cylinders are investigated. The governing equations consist of continuity, momentum and energy equations are solved for laminar unsteady flow regime. The numerical simulations are performed with a developed finite volume code using the overset grid method. A general orthogonal boundary fitted coordinate system is used for the grid generation. This simulation is performed for the Prandtl numbers of 0.7 and 7 at the Reynolds numbers of 100 and 200. The spacing ratio L/D is set at 2, 3, 4, 5, 7 and 10. In order to analyze the heat transfer from isothermal cylinders, the mean and local Nusselt numbers and isotherm plots are presented and discussed for different values of the problem parameters. In addition, the mean and instantaneous drag and lift coefficients and Strouhal numbers are computed to elucidate the role of the Reynolds number and spacing ratio. Furthermore, two new correlations for the calculation of the mean Nusselt number, in terms of the spacing ratio and the Reynolds and Prandtl numbers, is proposed. In order to validate the solution, the obtained results are compared with available results in the published literature.
NASA Astrophysics Data System (ADS)
Mohd Kasim, Abdul Rahman; Mohammad, Nurul Farahain; Shafie, Sharidan
2012-05-01
Effect of heat generation on free convection boundary layer flow of a viscoelastic fluid past a horizontal circular cylinder with constant surface heat flux has been investigated. The boundary layer equations are an order higher than those for the Newtonian (viscous) fluid and the adherence boundary conditions are insufficient to determine the solution of these equations completely. The governing equations are transformed into dimensionless non-similar equations by using a set of suitable transformations and solved numerically by the finite difference method along with Newton's linearization approximation. Computations are performed numerically by using Keller-box method by augmenting an extra boundary condition at infinity. We have focused our attention on the evaluation of velocity profiles, temperature profiles, shear stress in terms of local skin friction and the rate of heat transfer in terms of local Nusselt number for different values of heat generation parameter, viscoelastic parameter and the Prandlt number and the numerical results have been shown graphically.
NASA Astrophysics Data System (ADS)
Sellappan, Prabu
Wake formation is an important problem in engineering due to its effect on phenomena such as vortex induced vibrations and heat transfer. While prior work has focused on the wake formation due to vortex shedding from stationary, stream-wise, and transversely oscillating cylinders, limited information is available on the effect of rotary oscillations on wake formation. The relationship between wake formation and heat transfer is also not fully understood. Therefore, a series of experiments were conducted to determine the effect of rotationally oscillating cylinders on wake formation and its relationship with heat transfer. Experiments were carried out at Re = 150 and 750 in a water tunnel for oscillation frequencies from 0.67 to 3.5 times the natural shedding frequency and peak-to-peak oscillation amplitudes up to 320°. Experiments were performed at the lower Re using an unheated cylinder. Two sets of experiments were performed at the higher Re, one with the cylinder unheated and the other with the cylinder heated. Digital Particle Image Velocimetry (DPIV) was used to identify and map wake modes (coherent vortical structures in the wake) to various regions of the parameter space. Previously unknown wake modes that are synchronized over two and three times the forcing frequency were also discovered. Experiments were also performed at Re = 750 to measure the heat transfer rate for a large number of cases in the parameter space. Significant heat transfer enhancement was observed under certain forcing conditions and the regions of the parameter space where this occurs was found to correspond to locked-on wake mode regions. Other factors, such as the tangential velocity and the formation length were also found to affect the heat transfer under certain conditions.
Vortex motion behind a circular cylinder
NASA Technical Reports Server (NTRS)
Foeppl, L.
1983-01-01
Vortex motion behind a circular cylinder moving through water is discussed. It is shown that a pair of vortices form behind a moving cylinder and that their centers will move along a predictable curve. This curve represents an equilibrium condition which, however, is subject to perturbation. The stability of the vortex pair is investigated. Movement of the vortex pair away from the cylinder is calculated as an explanation of the resistance of the cylinder. Finally, the principles elaborated are applied to the flow around a flat plate.
NASA Astrophysics Data System (ADS)
Park, Han G.
An experimental investigation is carried out on the processes of heat transfer associated with a heated circular cylinder in crossflow. Two studies are made. First, a study of the transport of heat in the near wake (x/D<5) of a stationary and transversely oscillated cylinder is made at Reynolds number of 610. Second, a study is made of the surface heat transfer from a cylinder which is undergoing forced oscillations in the transverse direction.The studies are made using the technique of Digital Particle Image Velocimetry/Thermometry (DPIV/T) which allows simultaneous measurements of both the velocity and temperature fields of the flow. The temperature is measured by seeding the flow with thermochromic liquid crystal (TLC) particles which change their reflected wavelength as function of temperature. By calibrating reflected wavelength versus temperature using a color multi-CCD camera, the local temperature of the flow may be deduced. The velocity is measured by using the same particles as Lagrangian flow tracers, and local velocity or displacement of the flow may be measured by cross-correlating two sequential images. A limitation of DPIV/T, which is the low level of precision (5% - 20% of the temperature span of TLC particles), may be overcome by a process in which the temperature at a given location is computed by averaging the temperatures of the particles within a specified sampling window. This process increases the precision to 2% - 10%.In the study of the heat transport in the near wake, the velocity and temperature measurements obtained from DPIV/T are decomposed into their mean, coherent, and incoherent components using the triple decomposition. It is found that the heat from the cylinder is transported down the wake mostly by the mean heat flux and is laterally transported out of the wake by the coherent and the incoherent heat fluxes. In examining the direction of the turbulent heat flux vectors, the vectors are found not to be co-linear with the gradient
NASA Technical Reports Server (NTRS)
Nagamatsu, H. T.; Duffy, R. E.
1984-01-01
Low and high pressure shock tubes were designed and constructed for the purpose of obtaining heat transfer data over a temperature range of 390 to 2500 K, pressures of 0.3 to 42 atm, and Mach numbers of 0.15 to 1.5 with and without pressure gradient. A square test section with adjustable top and bottom walls was constructed to produce the favorable and adverse pressure gradient over the flat plate with heat gages. A water cooled gas turbine nozzle cascade which is attached to the high pressure shock tube was obtained to measuse the heat flux over pressure and suction surfaces. Thin-film platinum heat gages with a response time of a few microseconds were developed and used to measure the heat flux for laminar, transition, and turbulent boundary layers. The laminar boundary heat flux on the shock tube wall agreed with Mirel's flat plate theory. Stagnation point heat transfer for circular cylinders at low temperature compared with the theoretical prediction, but for a gas temperature of 922 K the heat fluxes were higher than the predicted values. Preliminary flat plate heat transfer data were measured for laminar, transition, and turbulent boundary layers with and without pressure gradients for free-stream temperatures of 350 to 2575 K and flow Mach numbers of 0.11 to 1.9. The experimental heat flux data were correlated with the laminar and turbulent theories and the agreement was good at low temperatures which was not the case for higher temperatures.
NASA Astrophysics Data System (ADS)
Tham, Leony; Nazar, Roslinda; Pop, Ioan
2015-11-01
The steady laminar mixed convection boundary layer flow from a horizontal circular cylinder in a nanofluid embedded in a porous medium, which is maintained at a constant surface heat flux, has been studied by using the Buongiorno-Darcy nanofluid model for both cases of a heated and cooled cylinder. The resulting system of nonlinear partial differential equations is solved numerically using an implicit finite-difference scheme known as the Keller box method. The solutions for the flow and heat transfer characteristics are evaluated numerically and studied for various values of the governing parameters, namely the Lewis number, Brownian number, mixed convection parameter, buoyancy ratio parameter and thermophoresis parameter. It is also found that the boundary layer separation occurs at the opposing fluid flow, that is when the mixed convection parameter is negative. It is also observed that increasing the mixed convection parameter delays the boundary layer separation and the separation can be completely suppressed for sufficiently large values of the mixed convection parameter. The Brownian and buoyancy ratio parameters appear to affect the fluid flow and heat transfer profiles.
Dynamic polarizability tensor for circular cylinders
NASA Astrophysics Data System (ADS)
Strickland, Diana; Ayón, Arturo; Alù, Andrea
2015-02-01
Based on Mie scattering theory, we derive the complete dynamic polarizability tensor for circular, azimuthally symmetric cylinders excited by an arbitrary field distribution, and provide compact expressions for all of its elements. Our results comprise fully dynamic cylinder polarizabilities, improving existing approximate models that use averaged electric or magnetic current lines to describe the scattering response of moderately thin cylinders. We show that the derived polarizability tensor satisfies reciprocity and passivity relations, and analyze its response under different conditions, varying the excitation angle, material properties, and cylinder radius. Interestingly, magnetoelectric effects are shown to arise at oblique incidence, even in the case of centrosymmetric achiral thin cylinders, associated with a weak form of spatial dispersion. This finding is particularly relevant for the proper modeling of individual cylinders and arrays of them, as in the case of metamaterials. We expect this work to find applications in antenna and metamaterial design, and to improve the physical understanding of the wave interaction and spatial dispersion in artificial materials composed of elongated inclusions such as wire media.
Failure of Non-Circular Composite Cylinders
NASA Technical Reports Server (NTRS)
Hyer, M. W.
2004-01-01
In this study, a progressive failure analysis is used to investigate leakage in internally pressurized non-circular composite cylinders. This type of approach accounts for the localized loss of stiffness when material failure occurs at some location in a structure by degrading the local material elastic properties by a certain factor. The manner in which this degradation of material properties takes place depends on the failure modes, which are determined by the application of a failure criterion. The finite-element code STAGS, which has the capability to perform progressive failure analysis using different degradation schemes and failure criteria, is utilized to analyze laboratory scale, graphite-epoxy, elliptical cylinders with quasi-isotropic, circumferentially-stiff, and axially-stiff material orthotropies. The results are divided into two parts. The first part shows that leakage, which is assumed to develop if there is material failure in every layer at some axial and circumferential location within the cylinder, does not occur without failure of fibers. Moreover before fibers begin to fail, only matrix tensile failures, or matrix cracking, takes place, and at least one layer in all three cylinders studied remain uncracked, preventing the formation of a leakage path. That determination is corroborated by the use of different degradation schemes and various failure criteria. Among the degradation schemes investigated are the degradation of different engineering properties, the use of various degradation factors, the recursive or non-recursive degradation of the engineering properties, and the degradation of material properties using different computational approaches. The failure criteria used in the analysis include the noninteractive maximum stress criterion and the interactive Hashin and Tsai-Wu criteria. The second part of the results shows that leakage occurs due to a combination of matrix tensile and compressive, fiber tensile and compressive, and inplane
Circular cylinder wakes and vortex-induced vibrations
NASA Astrophysics Data System (ADS)
Bearman, P. W.
2011-07-01
This paper presents a selective review of recent research on vortex-induced vibrations of isolated circular cylinders and the flow and vibration of circular cylinders in a tandem arrangement; a common thread being that the topics raised are of particular interest to the author. The influence of Reynolds number on the response of isolated cylinders is presented and recent developments using forced vibration are discussed. The response of a cylinder free to respond in the in-line and transverse directions is contrasted with that of a cylinder responding in only one direction. The interference between two circular cylinders is discussed and prominence given to the case of cylinders in a tandem arrangement. The origin of the time-mean lift force on the downstream cylinder is considered together with the cause of the large amplitude transverse vibration experienced by the cylinder above vortex resonance. This wake-induced vibration is shown to be a form of vortex-induced vibration.
Numerical simulation for flow around two circular cylinders in tandem
NASA Astrophysics Data System (ADS)
Kondo, Norio; Matsukuma, Daisuke
2005-05-01
We use a third-order upwind finite element scheme in order to perform numerical stabilization of solutions of the Navier Stokes equations and present numerical results of flow around two circular cylinders in tandem arrangement by two- and three-dimensional computations. The two circular cylinders are arranged with some spacings between the cylinders. It is well known from experimental data that the flow around two circular cylinders denotes very complicated phenomena with the variation of spacing between two cylinders. In addition, the time-averaged drag coefficients of two circular cylinders suddenly change at a certain spacing between the cylinders. We, therefore, make an investigation of such phenomena at the Reynolds number of 1000 by the use of a numerical approach, and the obtained numerical results are also qualitatively compared with experimental data.
Torsion Tests of Stiffened Circular Cylinders
NASA Technical Reports Server (NTRS)
Moore, R L; Wescoat, C
1944-01-01
The design of curved sheet panels to resist shear involves a consideration of several factors: the buckling resistance of the sheet, the stress at which buckling becomes permanent, and the strength which may be developed beyond the buckling limit by tension-field action. Although some experimental as well as theoretical work has been done on the buckling and tension-field phases of this problem, neither of these types of action appears to be very well understood. The problem is of sufficient importance from the standpoint of aircraft design, it is believed, to warrant further experimental investigation. This report presents the results of the first series of torsion tests of stiffened circular cylinders to be completed in connection with this study at Aluminum Research Laboratories. (author)
Magnetic resonance of slotted circular cylinder resonators
NASA Astrophysics Data System (ADS)
Du, Junjie; Liu, Shiyang; Lin, Zhifang; Chui, S. T.
2008-07-01
By a rigorous full-wave approach, a systemic study is made on the magnetic resonance of slotted circular cylinder resonators (SCCRs) made of a perfect conductor for the lossless case. This is a two-dimensional analog of the split-ring resonator and may serve as an alternative type of essential constituent of electromagnetic metamaterials. It is found that the resonance frequency can be modulated by changing the geometrical parameters and the dielectrics filling in the cavity and the slot. An approximate empirical expression is presented for magnetic resonance frequency of SCCRs from the viewpoint of an L-C circuit system. Finally, it is demonstrated that the SCCR structure can be miniaturized to less than 1/150 resonant wavelength in size with the dielectrics available currently.
NASA Astrophysics Data System (ADS)
Kondo, Norio
2014-07-01
It is well known from a lot of experimental data that fluid forces acting on two tandem circular cylinders are quite different from those acting on a single circular cylinder. Therefore, we first present numerical results for fluid forces acting on two tandem circular cylinders, which are mounted at various spacings in a smooth flow, and second we present numerical results for flow-induced vibrations of the upstream circular cylinder in the tandem arrangement. The two circular cylinders are arranged at close spacing in a flow field. The upstream circular cylinder is elastically placed by damper-spring systems and moves in both the in-line and cross-flow directions. In such models, each circular cylinder is assumed as a rigid body. On the other hand, we do not introduce a turbulent model such as the Large Eddy Simulation (LES) or Reynolds Averaged Navier-Stokes (RANS) models into the numerical scheme to compute the fluid flow. Our numerical procedure to capture the flow-induced vibration phenomena of the upstream circular cylinder is treated as a fluid-structure interaction problem in which the ideas of weak coupling is taken into consideration.
Motion Response of 2 DOF Circular Cylinder in Bundle Arrangment
NASA Astrophysics Data System (ADS)
Hans, Hendik; Nguyen, Vinh Tan
2014-11-01
This study focuses on the motion response of a freely vibrating in streamwise and crossflow circular cylinder in the wake of two leading stationary circular cylinders. Studies on the effects of spatial positioning of the trailing circular cylinder to its amplitude and frequency response are conducted. In order to explain the effects of mass ratio and phase angle on the motion response of the structure, analytical model based on tandem cylinder arrangement are presented. For almost all reduced velocities, the results indicated larger crossflow amplitude of oscillation as the trailing cylinder is aligned to the centerline of one of the leading circular cylinder. Two dominant response frequencies are found on the trailing circular cylinder. Switching between the two response frequencies as the dominant response frequency is found to be strongly related to the natural frequency of the system. Additionally, the mass ratio played a significant role in determining the intermittent domination of the Vortex-Induced Vibrating (VIV) frequency of the structure. For low mass ratio, larger mass ratio is found to increase its amplitude of oscillation.
Fluid forces on two circular cylinders in crossflow
Jendrzejczyk, J.A.; Chen, S.S.
1986-01-01
Fluid excitation forces are measured in a water loop for two circular cylinders arranged in tandem and normal to flow. The Strouhal number and fluctuating drag and lift coefficients for both cylinders are presented for various spacings and incoming flow conditions. The results show the effects of Reynolds number, pitch ratio, and upstream turbulence on the fluid excitation forces.
Fluid forces on two circular cylinders in crossflow
Jendrzejczyk, J.A.; Chen, S.S.
1985-06-01
Fluid excitation forces are measured in a water loop for two circular cylinders arranged in tandem and normal to flow. The Strouhal number and fluctuating drag and lift coefficients for both cylinders are presented for various spacings and incoming flow conditions. Results show the effects of Reynolds number, pitch ratio, and upstream turbulence on the fluid excitation forces.
Wake instability issues: From circular cylinders to stalled airfoils
NASA Astrophysics Data System (ADS)
Meneghini, J. R.; Carmo, B. S.; Tsiloufas, S. P.; Gioria, R. S.; Aranha, J. A. P.
2011-07-01
Some recent results regarding the global dynamical behaviour of the wake of circular cylinders and airfoils with massive separation are reviewed in this paper. In order to investigate the effect of interference, the three-dimensional instability modes are analysed for the flow around two circular cylinders in tandem. In the same way, the flow around a stalled airfoil is investigated in order to provide a better understanding of the three-dimensional characteristics of wakes forming downstream of a lifting body with massive separation. These results are compared with those found for an isolated cylinder. Some fundamental differences among these flows are discussed.
Separation of Creeping Flow past Two Circular Cylinders
NASA Astrophysics Data System (ADS)
Miyazaki, Takeshi; Hasimoto, Hidenori
1980-10-01
The steady two-dimensional Stokes flow past two circular cylinders of equal radii is considered, where the direction of the flow is parallel to the line joining the centers. Separation of the flow from the cylinders occurs if the parameter t{=}(distance between two cylinders)/(diameter of the cylinders) is less than 1.57. If t is less than 1.07 the twin eddies attached to both cylinders coalesce to form two separation lines joining two cylinders. As t decreases, the number of the separation lines increases, and Moffatt vortices are formed at t{=}0 (i.e. in contact). These results are in accordance with the experiments given by Taneda.
Two circular cylinders in cross-flow: A review
NASA Astrophysics Data System (ADS)
Sumner, D.
2010-08-01
Pairs of circular cylinders immersed in a steady cross-flow are encountered in many engineering applications. The cylinders may be arranged in tandem, side-by-side, or staggered configurations. Wake and proximity interference effects, which are determined primarily by the longitudinal and transverse spacing between the cylinders, and also by the Reynolds number, have a strong influence on the flow patterns, aerodynamic forces, vortex shedding, and other parameters. This paper reviews the current understanding of the flow around two “infinite” circular cylinders of equal diameter immersed in a steady cross-flow, with a focus on the near-wake flow patterns, Reynolds number effects, intermediate wake structure and behaviour, and the general trends in the measurements of the aerodynamic force coefficients and Strouhal numbers. A primary focus is on the key experimental and numerical studies that have appeared since the last major review of this subject more than 20 years ago.
Flow Interference between a Circular (Upstream) and a Square Cylinder: Flow Pattern Identification
NASA Astrophysics Data System (ADS)
Mohan, Jayalakshmi; R, Ajith Kumar; Kumar, Nithin S.
2014-11-01
In this paper, flow interference between an upstream circular cylinder and a square cylinder of equal size is studied in tandem arrangement. The main objective of this invesigation is to identify the possible flow patterns at different spacing ratios, L/B where L is the centre-to-centre distance between the cylinders and B is the characteristic dimension of the bodies. All the experiments are conducted in a water channel and the test Reynolds number is 2100 (based on B). L/B is varied from 1.0 to 5.0. The flow visualization experiments are videographed and then analyzed frame-by-frame to capture the finer details of the flow patterns. Flow over single square and circular cylinders is analyzed first. Then, flow interference between two circular cylinders is investigated. Subsequently, flow over a circular-square configuration is investigated. No such studies are reported so far. Different flow patterns are observed for the circular-square configuration. Additionally, the time of persistence of each flow pattern have been recorded over a sufficiently long period of time to see the most dominant flow pattern. The schedule of occurrence of flow patterns have also been studied during this investigation. This study is very much relevant in the context of possible interference effects occuring in engineering structures such as buildings, heat exchanger tubes etc.
Natural convective heat transfer from square cylinder
NASA Astrophysics Data System (ADS)
Novomestský, Marcel; Smatanová, Helena; Kapjor, Andrej
2016-06-01
This article is concerned with natural convective heat transfer from square cylinder mounted on a plane adiabatic base, the cylinders having an exposed cylinder surface according to different horizontal angle. The cylinder receives heat from a radiating heater which results in a buoyant flow. There are many industrial applications, including refrigeration, ventilation and the cooling of electrical components, for which the present study may be applicable
Influence of non-adiabatic wall conditions on the cross-flow around a circular cylinder
Macha, J.M.; Shafa, K.S.
1984-02-01
The drag and heat transfer of a finite length circular cylinder in a cross-flow have been investigated in a wind tunnel at surface-to-freestream temperature ratios from 1.0 to 2.1 for freestream Reynolds numbers of 2.2 x 10/sup 5/ and 4.4 x 10/sup 5/. The measured surface pressures were integrated to determine the effect of cylinder temperature on the drag coefficient, and the average Nusselt number was calculated from the electrical power required to heat the cylinder. For the freestream Reynolds number of 4.4 x 10/sup 5/, the experimental data show that increasing the cylinder temperature caused a reverse-transition from supercritical to subcritical flow. As a result of the increased size of the low-velocity wake region, C /SUB D/ increased by 21 percent and Nu /SUB d/ decreased by 26 percent.
NASA Astrophysics Data System (ADS)
Nishi, Yoshiki; Ueno, Yuta; Nishio, Masachika; Quadrante, Luis Antonio Rodrigues; Kokubun, Kentaroh
2014-05-01
We conducted an experiment in a towing tank to investigate the performance of an energy extraction system using the flow-induced vibration of a circular cylinder. This experiment tested three different cases involving the following arrangements of cylinder(s) of identical diameter: the upstream fixed-downstream movable arrangement (case F); the upstream movable-downstream fixed arrangement (case R); and a movable isolated cylinder (case I). In cases F and R, the separation distance (ratio of the distance between the centers of the two cylinders to their diameters) is fixed at 1.30. Measurement results show that while cases F and I generate vortex-induced vibration (VIV) resonance responses, case R yields wake-induced vibration (WIV) at reduced velocity over 9.0, which is significantly larger than that of the VIV response, leading to the induction of higher electronic power in a generator. Accordingly, primary energy conversion efficiency is higher in the case involving WIV.
Design guide for single circular cylinder in turbulent crossflow. [LMFBR
Mulcahy, T.M.
1982-03-01
A design procedure is proposed for predicting the dynamic structural response of a circular cylinder in turbulent crossflow. The procedure is based on recently obtained data for a stationary, rigid cylinder and on existing information. The procedure is not applicable to conditions where the wake vortex shedding frequency locks into a structural natural frequency. This report is self-contained in that all the information and structural analysis methods employed in the procedure are reviewed and developed. Also, an example is given to illustrate the use of the method for a typical reactor component. The calculated responses are found to be very small.
Fluid dynamic effects of grooves on circular cylinder surface
NASA Astrophysics Data System (ADS)
Kimura, Takeyoshi; Tsutahara, Michihisa
1991-12-01
It is shown that a groove on the surface of a circular cylinder affects movement of the separation point backward and reduces drag even at Reynolds numbers of about a few thousand. Several types of circular-arc cross-section grooves are studied using flow visualizations and numerical simulations. Whether these grooves are effective depends strongly on their positions, and the most effective positions are about 80 deg, measured from the foremost point. When they are effective, cavity flows are developed inside the grooves. This effect corresponds to that of dimples on golf balls and will explain unique characteristics of the drag curve.
Progress on LES of Flow Past a Circular Cylinder
NASA Technical Reports Server (NTRS)
Mittal, R.
1996-01-01
The objective of the present research is to assess the usefulness of large-eddy simulation (LES) methodology for flows in complex geometries. Flow past a circular cylinder has been calculated using a central-difference based solver, and the results have been compared to those obtained by a solver that employs higher-order upwind biased schemes (Beaudan & Moin, 1994). This comparison allows us to assess the suitability of these schemes for LES in complex geometry flows.
Patterns of vortex shedding from an oscillating circular cylinder
NASA Technical Reports Server (NTRS)
Chang, Keun-Shik; Sa, Jong-Youb
1990-01-01
Vortex shedding from an oscillating circular cylinder was numerically investigated at Re = 100 with the Navier-Stokes equations and the new boundary conditions. The detailed shedding patterns are characterized by means of streakline plotting and lift-coefficient curves. A parameter map is presented which distinguishes the synchronized shedding from the asynchronous and the double vortices shedding from the single vortex shedding. The computational result is in good agreement with earlier experimental results.
Transient response of a circular cylinder to an electromagnetic pulse
NASA Astrophysics Data System (ADS)
Ma, J.; Ciric, I. R.
1992-10-01
The transient response of a perfectly conducting circular cylinder to an electromagnetic pulse of a double exponential type has been investigated, and a new analytical expression has been derived for the induced current density on the cylinder surface. The analysis performed in this paper is based on the frequency domain eigenfunction solution of the surface current density and yields an analytical expression which is theoretically valid for both the shadow and illuminated regions and for all the time ranges. Numerical calculations show that results for the entire time range after the instant the initial incident wave front has passed the cylinder axis can easily be obtained from this single analytical expression. For very large time values, only the first few terms in the expression are needed to give a satisfactory accuracy.
Numerical Simulation of Flow Interference Between Two Circular Cylinders
NASA Astrophysics Data System (ADS)
Gao, F.; Mingham, C. G.; Causon, D. M.
2011-09-01
Viscous flow past two circular cylinders in tandem and side-by-side arrangements is investigated numerically. The solution to the Navier-Stokes equations is obtained by means of a cell-centred finite volume method (FVM) based on a structured Cartesian grid with collocated variable arrangement. The pressure-velocity coupling is evaluated by using the SIMPLE algorithm. The 2D Cartesian cut cell mesh is generated on the horizontal plane, which is extended vertically to form the 3D grid. The simulations are based on the Reynolds number of 200, and the gap between the two cylinders are 1.5-3D for side-by-side arrangement and 3-4D for tandem. Instantaneous velocity contours of the flow around the cylinders and time histories of force coefficients are presented.
Vortex shedding from a circular cylinder near a moving ground
NASA Astrophysics Data System (ADS)
Nishino, Takafumi; Roberts, Graham T.; Zhang, Xin
2007-02-01
The flow and force characteristics have been experimentally investigated of a circular cylinder with an aspect ratio of 8.33, with and without end-plates, placed near and parallel to a moving ground, on which substantially no boundary layer developed to interfere with the cylinder. Mean drag and lift measurements, surface oil flow visualization, and particle image velocimetry (PIV) measurements were carried out at two upper-subcritical Reynolds numbers of 0.4 and 1.0×105 (based on the cylinder diameter d) to investigate the mechanisms of the ground effect, i.e., the effect of the gap-to-diameter ratio h /d, where h is the gap between the cylinder and the ground. For the cylinder with end-plates, on which the oil flow patterns were observed to be essentially two-dimensional, the drag rapidly decreased as h /d decreased to less than 0.5 but became constant for h /d of less than 0.35, unlike that usually observed near a fixed ground. This critical drag behavior was found to be directly related to a global change in the near wake structure of the cylinder; as h /d decreased the Kármán-type vortex shedding became intermittent at h /d=0.4, and then totally ceased and instead two nearly parallel shear layers were formed behind the cylinder at h /d=0.3 and below. For the cylinder without end-plates, however, no such critical change in drag was observed as the Kármán-type vortices were not generated in the near wake region at all h /d investigated. Based on the experimental results obtained, further discussions are also given to the essential cause of the cessation of the Kármán vortex shedding in the ground effect.
Passive jet control of flow around a circular cylinder
NASA Astrophysics Data System (ADS)
Chen, Wen-Li; Gao, Dong-Lai; Yuan, Wen-Yong; Li, Hui; Hu, Hui
2015-11-01
In the present study, a passive flow control method, which is featured by passive windward suction combined with leeward jet over a circular cylinder for drag reduction and dynamic wind loading suppression, was experimentally investigated to manipulate unsteady wake vortex shedding from a circular cylinder. Four perforated pipe designs with different numbers of suction/jet holes (i.e., from 2 to 24 suction/jet holes) were used to create flow communicating channels between the windward and leeward stagnation points of a cylindrical test model. The experimental study was performed in a wind tunnel at a Reynolds number of Re = 4.16 × 104 based on the cylinder diameter and oncoming airflow speed. In addition to measuring surface pressure distributions to determine the dynamic wind loads acting on the test model, a digital particle image velocimetry (PIV) system was also used to quantify the wake flow characteristics in order to assess the effectiveness of the passive jet control method with different perforated pipe designs, in comparison with a baseline case without passive jet control. It was found that the passive jet control method is very effective in manipulating the wake vortex shedding process from the circular cylinder. The perforated pipe designs with more suction/jet holes were found to be more effective in reducing drag and suppressing fluctuating amplitude of the dynamic wind loads acting on the test model. With 24 suction/jet holes evenly distributed over the cylindrical test model (i.e., the N13 design of the present study), the passive jet control method was found to be able to achieve up to 33.7 % in drag reduction and 90.6 % in fluctuating wind loading suppression, in comparison with the baseline case. The PIV measurement results revealed clearly that the passive jet control method would cause airflow jets into the cylinder wake and change the shedding modes of the wake vortex structures from the cylindrical test model. Because of the dynamic
Effect of plasma actuator and splitter plate on drag coefficient of a circular cylinder
NASA Astrophysics Data System (ADS)
Akbıyık, Hürrem; Erkan Akansu, Yahya; Yavuz, Hakan; Ertuğrul Bay, Ahmet
2016-03-01
In this paper, an experimental study on flow control around a circular cylinder with splitter plate and plasma actuator is investigated. The study is performed in wind tunnel for Reynolds numbers at 4000 and 8000. The wake region of circular cylinder with a splitter plate is analyzed at different angles between 0 and 180 degrees. In this the study, not only plasma actuators are activated but also splitter plate is placed behind the cylinder. A couple electrodes are mounted on circular cylinder at ±90 degrees. Also, flow visualization is achieved by using smoke wire method. Drag coefficient of the circular cylinder with splitter plate and the plasma actuator are obtained for different angles and compared with the plain circular cylinder. While attack angle is 0 degree, drag coefficient is decreased about 20% by using the splitter plate behind the circular cylinder. However, when the plasma actuators are activated, the improvement of the drag reduction is measured to be 50%.
Scattering matrix of infrared radiation by ice finite circular cylinders.
Xu, Lisheng; Ding, Jilie; Cheng, Andrew Y S
2002-04-20
Scattering matrix characteristics of polydisperse, randomly oriented, small ice crystals modeled by finite circular cylinders with various ratios of the length to diameter (L/D) ratio are calculated by use of the exact T-matrix approach, with emphasis on the thermal infrared spectral region that extends from the atmospheric short-wave IR window to the far-IR wavelengths to as large as 30 microm. The observed ice crystal size distribution and the well-known power-law distribution are considered. The results of the extensive calculations show that the characteristics of scattering matrix elements of small ice circular cylinders depend strongly on wavelengths and refractive indices, particle size distributions, and the L/D ratios. The applicability of the power-law distribution and particle shapes for light scattering calculations for small ice crystals is discussed. The effects of the effective variance of size distribution on light scattering characteristics are addressed. It seems from the behavior of scattering matrix elements of small ice crystals that the combination of 25 and 3.979 microm has some advantages and potential applications for remote sensing of cirrus and other ice clouds. PMID:12003228
Spanwise plumes in wakes behind heated cylinder
NASA Astrophysics Data System (ADS)
Kumar, S. Ajith; Lal, S. Anil; Sameen, A.
2013-11-01
3D wake transition in flow past cylinder is interesting theoretically and industrially. A three dimensional Finite volume computation has been performed on an incompressible flow past heated cylinder to understand the wake behavior behind the cylinder, under the Boussinesq assumption. We study the heat transfer characteristics and the coherent structures behind the cylinder at different Prandtl numbers. In forced convection, the 3D transition occurs above Reynolds number, Re = 180-190 (Re is based on the cylinder diameter). However, the present 3D computational analyses show that in mixed convection, the so called ``mode-E'' instability (3D transition of wake behind the cylinder caused by the heating of the cylinder) happens at a much lower Reynolds number. The co-existence of mushroom like coherent structures called the plumes along with the shed vortices is observed for a range of heating conditions. These plumes originates from the core of the upper vortex rows at a definite span wise wavelengths. The dependence of Prandtl number on the span wise wavenumber of these plumes is also analyzed.
Effect of location in an array on heat transfer to a cylinder in crossflow
NASA Technical Reports Server (NTRS)
Simoneau, R. J.; Vanfossen, G. J., Jr.
1982-01-01
An experiment was conducted to measure the heat transfer from a heated cylinder in crossflow in an array of circular cylinders. All cylinders had a length-to-diameter ratio of 3.0. Both in-line and staggered array patterns were studied. The cylinders were spaced 2.67 diameters apart center-to-center in both the axial and transverse directions to the flow. The row containing the heated cylinder remained in a fixed position in the channel and the relative location of this row within the array was changed by adding up to five upstream rows. The working fluid was nitrogen gas at pressures from 100 to 600 kPa. The Reynolds number ranged based on cylinder diameter and average unobstructed channel velocity was from 5,000 to 125,000. Turbulence intensity: profiles were measured for each case at a point one half space upstream of the row containing the heated cylinder. The basis of comparison for all the heat transfer data was the single row with the heated cylinder. For the in-line cases the addition of a single row of cylinders upstream of the row containing the heated cylinder increased the heat transfer by an average of 50 percent above the base case. Adding up to five more rows caused no increase or decrease in heat transfer. Adding rows in the staggered array cases resulted in average increases in heat transfer of 21, 64, 58, 46, and 46 percent for one to five upstream rows, respectively.
Diffraction of dust acoustic waves by a circular cylinder
Kim, S.-H.; Heinrich, J. R.; Merlino, R. L.
2008-09-15
The diffraction of dust acoustic (DA) waves around a long dielectric rod is observed using video imaging methods. The DA waves are spontaneously excited in a dusty plasma produced in a direct current glow discharge plasma. The rod acquires a negative charge that produces a coaxial dust void around it. The diameter of the void is the effective size of the 'obstacle' encountered by the waves. The wavelength of the DA waves is approximately the size of the void. The observations are considered in relation to the classical problem of the diffraction of sound waves from a circular cylinder, a problem first analyzed by Lord Rayleigh [Theory of Sound, 2nd ed. (MacMillan, London, 1896)].
Circular cylinders with soft porous cover for flow noise reduction
NASA Astrophysics Data System (ADS)
Geyer, Thomas F.; Sarradj, Ennes
2016-03-01
The use of porous materials is one of several approaches to passively control or minimize the generation of flow noise. In order to investigate the possible reduction of noise from struts and other protruding parts (for example components of the landing gear or pantographs), acoustic measurements were taken in a small aeroacoustic wind tunnel on a set of circular cylinders with a soft porous cover. The aim of this study was to identify those materials that result in the best noise reduction, which refers to both tonal noise and broadband noise. The porous covers were characterized by their air flow resistivity, a parameter describing the permeability of an open-porous material. The results show that materials with low air flow resistivities lead to a noticeable flow noise reduction. Thereby, the main effect of the porous cylinder covers is that the spectral peak of the aeolian tone due to vortex shedding appears much narrower, but is not suppressed completely. Based on the measurement results, a basic model for the estimation of the total peak level of the aeolian tone was derived. In addition to the minimization of the vortex shedding noise, a reduction of broadband noise can be observed, especially at higher Reynolds numbers. The noise reduction increases with decreasing air flow resistivity of the porous covers, which means that materials that are highly permeable to air result in the best noise reduction.
Instability and transition of flow past two tandem circular cylinders
NASA Astrophysics Data System (ADS)
Mizushima, Jiro; Suehiro, Norihisa
2005-10-01
The instability and transition of flow past two circular cylinders arranged in tandem are investigated numerically. A steady symmetric flow is realized at small Reynolds numbers, but the flow becomes unstable above a critical Reynolds number and makes a transition to an oscillatory flow. We obtained the symmetric flow numerically and analyze its stability by applying linear stability theory. The nonlinear oscillatory flow arising from the instability is obtained not only by numerical simulation but also by direct numerical calculation of the equilibrium solution, and the bifurcation diagram for the nonlinear equilibrium solution is depicted. We focused our attention on the effect of the gap spacing between the two cylinders on the stability and transition of the flow. The transition of the flow from a steady state to an oscillatory state is clarified to occur due to a supercritical or subcritical Hopf bifurcation depending upon the gap spacing. We found that there is a certain range of the gap spacing where physical quantities such as the drag and lift coefficients and the Strouhal number show an abrupt change when the gap spacing is continuously changed. We identified the origin of the abrupt change as the existence of multiple stable solutions for the flow.
Suppression of vortex-induced vibration of a circular cylinder using suction-based flow control
NASA Astrophysics Data System (ADS)
Chen, Wen-Li; Xin, Da-Bo; Xu, Feng; Li, Hui; Ou, Jin-Ping; Hu, Hui
2013-10-01
In the present study, a flow control method is employed to mitigate vortex-induced vibration (VIV) of a circular cylinder by using a suction flow method. The VIV of a circular cylinder was first reproduced in a wind tunnel by using a spring-mass system. The time evolution of the cylinder oscillation and the time histograms of the surface pressures of 119 taps in four sections of the circular cylinder model were measured during the wind tunnel experiments. Four steady suction flow rates were used to investigate the effectiveness of the suction control method to suppress VIV of the circular cylinder. The vibration responses, the mean and fluctuating pressure coefficients, and the resultant aerodynamic force coefficients of the circular cylinder under the suction flow control are analyzed. The measurement results indicate clearly that the steady suction flow control method exhibits excellent control effectiveness and can distinctly suppress the VIV by dramatically reducing the amplitudes of cylinder vibrations, fluctuating pressure coefficients and lift coefficients of the circular cylinder model. By comparing the test cases with different suction flow rates, it is found that there exists an optimal suction flow rate for the maximum VIV control. The cases with higher suction flow rates do not necessarily behave better than those with lower suction flow rates. With the experimental setting used in the present study, the suction flow control method is found to behave better for VIV suppression when the ratio of the suction flow velocity to the oncoming flow velocity is less than one.
Standing Torsional Waves in Fluid-Saturated Porous Circular Cylinder
NASA Astrophysics Data System (ADS)
Solorza, S.; Sahay, P. N.
2002-12-01
For dynamic measurement of elastic constants of a porous material saturated with viscous fluid when resonance-bar technique is applied, one also observes attenuation of the wave field. The current practice is to interpret it in terms of solid-viscosity by assuming a viscoelastic rheology for porous material. The likely mechanisms of attenuation in a fluid saturated porous material are: 1) motion of the fluid with respect to the solid frame and 2) viscous loss within the pore fluid. Therefore, it is appropriate to assume a poroelastic rheology and link the observed attenuation value to fluid properties and permeability. In the framework of poroelastic theory, the explicit formula linking attenuation to the properties of solid and fluid constituents and permeability are not worked out yet. In order to established such a link one has to workout solutions of appropriate boundary value problems in such a framework. Here, we have carried out the solution of boundary value problem associated with torsional oscillation of a finite poroelastic circular cylinder, casted in the framework of volume-averaged theory of poroelasticity. Analysing this solution by a perturbative approach we are able to develop explicit expressions for resonance frequency and attenuation for this mode of vibration. It shows how the attenuation is controlled by the permeability and the fluid properties, and how the resonance frequency drops over its value for the dry porous frame due to the effect of the fluid-mass.
Dynamics in the turbulent wake of a curved circular cylinder
NASA Astrophysics Data System (ADS)
Gallardo, José P.; Pettersen, Bjørnar; Andersson, Helge I.
2011-12-01
Understanding the physics of turbulent wakes is an essential, yet complex task in the study of turbulent flows. In the present paper we investigate the flow past a curved body of circular cross-section. The inflow velocity is aligned with the curvature of the cylinder and directed towards its convex face. We conduct direct numerical simulations at a Reynolds number of 3900 in order to obtain a fully turbulent wake. The instantaneous vortical structures reveal that the primary vortices are roughly aligned with the curved axis. Despite the presence of isolated splitting events in the frequency of the vortex shedding, there is one single shedding frequency that dominates this process. Velocity time-traces confirm that the shear layers exhibit intermittency, which is manifested as large amplitude fluctuations. The intensity of these instabilities is increased by the secondary flow along the recirculation region, thereby influencing the dynamics of the near wake. Several spots of zero mean velocity reside next to the baseline within the recirculation region, displacing the back-flow region further downstream. It is suggested that this displacement is induced by the secondary flow, in combination with the symmetry boundary condition imposed at the top plane.
Stability of inviscid vortices behind a circular cylinder
NASA Astrophysics Data System (ADS)
Elcrat, Alan; Fornberg, Bengt; Miller, Ken
2005-11-01
In a previous work (JFM 409(2000), 13-27 famillies of vortex patches in equilibrium with flow past a circular cylinder which is uniform at infinity were found using iterations for a nonlinear Poisson equation. These included desingularizations of the Foppl pairs. In this work we study the stability of these vortices with respect to two dimensional perturbations. In order to do this we have formulated a curve perturbation algorithm, based on the ideas of contour dynamics, which sets the normal component of velocity at a point on the boundary of the vortex patch equal to zero. The discretization is solved by a version of Newton's method; the Jacobean is factored using the singular value decomposition and a generalized inverse with the smallest singular value removed is used in the Newton iteration. This is necessary because there is always a small singular value due to the fact that there is always a nearby solution vortex in the familly. The Foppl familly is always neutrally stable with respect to symmetric perturbations in nthe sense that all of the eigenvalues are on the imaginary axis. When non symmetric perturbations are allowed there is exactly one unstable mode. A perturbation in the direction of this eigenvector implies a roll suggestive of Karman vortex shedding.
Large-eddy simulation of flow past a circular cylinder
NASA Technical Reports Server (NTRS)
Mittal, R.
1995-01-01
Some of the most challenging applications of large-eddy simulation are those in complex geometries where spectral methods are of limited use. For such applications more conventional methods such as finite difference or finite element have to be used. However, it has become clear in recent years that dissipative numerical schemes which are routinely used in viscous flow simulations are not good candidates for use in LES of turbulent flows. Except in cases where the flow is extremely well resolved, it has been found that upwind schemes tend to damp out a significant portion of the small scales that can be resolved on the grid. Furthermore, it has been found that even specially designed higher-order upwind schemes that have been used successfully in the direct numerical simulation of turbulent flows produce too much dissipation when used in conjunction with large-eddy simulation. The objective of the current study is to perform a LES of incompressible flow past a circular cylinder at a Reynolds number of 3900 using a solver which employs an energy-conservative second-order central difference scheme for spatial discretization and compare the results obtained with those of Beaudan & Moin (1994) and with the experiments in order to assess the performance of the central scheme for this relatively complex geometry.
Mass transfer from a circular cylinder: Effects of flow unsteadiness and slight nonuniformities
NASA Technical Reports Server (NTRS)
Marziale, M. L.; Mayle, R. E.
1984-01-01
Experiments were performed to determine the effect of periodic variations in the angle of the flow incident to a turbine blade on its leading edge heat load. To model this situation, measurements were made on a circular cylinder oscillating rotationally in a uniform steady flow. A naphthalene mass transfer technique was developed and used in the experiments and heat transfer rates are inferred from the results. The investigation consisted of two parts. In the first, a stationary cylinder was used and the transfer rate was measured for Re = 75,000 to 110,000 and turbulence levels from .34 percent to 4.9 percent. Comparisons with both theory and the results of others demonstrate that the accuracy and repeatability of the developed mass transfer technique is about + or - 2 percent, a large improvement over similar methods. In the second part identical flow conditions were used but the cylinder was oscillated. A Strouhal number range from .0071 to .1406 was covered. Comparisons of the unsteady and steady results indicate that the magnitude of the effect of oscillation is small and dependent on the incident turbulence conditions.
NASA Astrophysics Data System (ADS)
Kitagawa, T.; Ohta, H.
2008-07-01
Three-dimensional fluid computations have been performed to investigate the flows around two circular cylinders in tandem arrangements at a subcritical Reynolds number, Re=2.2×104. The center-to-center space between the cylinders was varied from twice the cylinder diameter to five times that, and the flows and fluid-dynamic forces obtained from the simulations are compared with the experimental results reported in the literature. Special attention is paid to the characteristics of the vortices shed from the upstream cylinder such as the convection, the impingement onto the downstream cylinder and the interaction with the vortices from the downstream cylinder. The effects of the vortices from the upstream cylinder on the fluid-dynamic forces acting on the downstream cylinder are discussed.
Water wave scattering by a nearly circular cylinder submerged beneath an ice-cover
NASA Astrophysics Data System (ADS)
Chakraborty, Rumpa; Mandal, Birendra Nath
2015-03-01
Assuming linear theory, the two-dimensional problem of water wave scattering by a horizontal nearly circular cylinder submerged in infinitely deep water with an ice cover modeled as a thin-elastic plate floating on water, is investigated here. The cross-section of the nearly circular cylinder is taken as r= a( 1+δC( θ)), where a is the radius of the corresponding circular cross-section of the cylinder, δ is a measure of small departure of the cross-section of the cylinder from its circularity and C( θ) is the shape function. Using a simplified perturbation technique the problem is reduced to two independent boundary value problems up to first order in δ. The first one corresponds to water wave scattering by a circular cylinder submerged in water with an ice-cover, while the second problem describes wave radiation by a submerged circular cylinder and involves first order correction to the reflection and transmission coefficients. The corrections are obtained in terms of integrals involving the shape function. Assuming a general Fourier expansion of the shape function, these corrections are evaluated approximately. It is well known that normally incident wave trains experience no reflection by a circular cylinder submerged in infinitely deep water with an ice cover. It is shown here that the reflection coefficient also vanishes up to first order for some particular choice of the shape function representing a nearly circular cylinder. For these cases, full transmission occurs, only change is in its phase which is depicted graphically against the wave number in a number of figures and appropriate conclusions are drawn.
NASA Astrophysics Data System (ADS)
Kang, XiuYing; Su, YanPing
2012-10-01
Cross-flows around two, three and four circular cylinders in tandem, side-by-side, isosceles triangle and square arrangements are simulated using the incompressible lattice Boltzmann method with a second-order accurate curved boundary condition at Reynolds number 200 and the cylinder center-to-center transverse or/and longitudinal spacing 1.5 D, where D is the identical circular cylinder diameter. The wake patterns, pressure and force distributions on the cylinders and mechanism of flow dynamics are investigated and compared among the four cases. The results also show that flows around the three or four cylinders significantly differ from those of the two cylinders in the tandem and side-by-side arrangements although there are some common features among the four cases due to their similarity of structures, which are interesting, complex and useful for practical applications. This study provides a useful database to validate the simplicity, accuracy and robustness of the Lattice Boltzmann method.
Velocity Measurements of Turbulent Wake Flow Over a Circular Cylinder
NASA Astrophysics Data System (ADS)
Shih, Chang-Lung; Chen, Wei-Cheng; Chang, Keh-Chin; Wang, Muh-Rong
2016-06-01
There are two general concerns in the velocity measurements of turbulence. One is the temporal characteristics which governs the turbulent mixing process. Turbulence is rotational and is characterized by high levels of fluctuating vorticity. In order to obtain the information of vorticity dynamics, the spatial characteristics is the other concern. These varying needs can be satisfied by using a variety of diagnostic techniques such as invasive physical probes and non-invasive optical instruments. Probe techniques for the turbulent measurements are inherently simple and less expensive than optical methods. However, the presence of a physical probe may alter the flow field, and velocity measurements usually become questionable when probing recirculation zones. The non-invasive optical methods are mostly made of the foreign particles (or seeding) instead of the fluid flow and are, thus, of indirect method. The difference between the velocities of fluid and foreign particles is always an issue to be discussed particularly in the measurements of complicated turbulent flows. Velocity measurements of the turbulent wake flow over a circular cylinder will be made by using two invasive instruments, namely, a cross-type hot-wire anemometry (HWA) and a split-fiber hot-film anemometry (HFA), and a non-invasive optical instrument, namely, particle image velocimetry (PIV) in this study. Comparison results show that all three employed diagnostic techniques yield similar measurements in the mean velocity while somewhat deviated results in the root-mean-squared velocity, particularly for the PIV measurements. It is demonstrated that HFA possesses more capability than HWA in the flow measurements of wake flow. Wake width is determined in terms of either the flatness factor or shear-induced vorticity. It is demonstrated that flow data obtained with the three employed diagnostic techniques are capable of yielding accurate determination of wake width.
NASA Astrophysics Data System (ADS)
Abdul Rehman, Nidhil Mohamed; Shukla, Ratnesh
2015-11-01
Introduction of a slip in the tangential surface velocity suppresses vorticity production in a typical bluff body flow while simultaneously enhancing vorticity convection downstream and into the wake region. As a result the flow characteristics are altered significantly and the hydrodynamic loads are reduced considerably. In this work we investigate the effect of the hydrodynamic slip on the convective heat transfer from the surface of a heated isothermal circular cylinder placed in the uniform cross flow of a viscous incompressible fluid through numerical simulations. We find that for fixed Reynolds and Prandtl numbers an increase in the Knudsen number or equivalently the hydrodynamic slip length results in a substantial augmentation of the heat transfer coefficient. We establish the dependence of the Nusselt number on the Knudsen, Reynolds and Prandtl numbers over a wide range of these parameters. We find that for given Reynolds and Prandtl numbers the Nusselt number undergoes a sharp transition between the low and high asymptotic limits that correspond to zero (no-slip) and infinite (shear-free perfect slip) Knudsen numbers. We establish that the high asymptotic limit corresponding to the shear-free perfect slip cylinder boundary scales as Nu ~ Re 0 . 5 Pr 0 . 5 .
Vortex-induced vibration of two circular cylinders at low Reynolds number
NASA Astrophysics Data System (ADS)
Prasanth, T. K.; Mittal, Sanjay
2009-05-01
Vortex-induced vibration of a pair of equal-sized circular cylinders in tandem and staggered arrangements in laminar flow regime is investigated. A stabilized finite element method is utilized to carry out the computations in two dimensions. Both cylinders are free to oscillate in transverse as well as in-line directions. The Reynolds number, based on the free-stream speed, U, and the diameter, D, of the cylinders is 100. To encourage high amplitude of oscillation the structural damping is set to zero and cylinders of low nondimensional mass are considered (m=10). The computations are carried out for various values of reduced speed of the oscillator (2⩽U⩽15). The cylinders are separated by 5.5D in the streamwise direction. They are separated by 0.7D in the cross-flow direction to study the effect of stagger. The downstream cylinder lies in the wake of the upstream one and experiences an unsteady inflow. The upstream cylinder in both tandem and staggered arrangement responds qualitatively similarly to a single cylinder. Compared to an isolated cylinder, a small increase in transverse oscillation amplitude of the upstream cylinder is observed due to the presence of the downstream cylinder. In both arrangements, the downstream cylinder shows very large amplitude transverse oscillations comparable to that of a single cylinder at higher Re. In the staggered arrangement, very large streamwise oscillations of the downstream cylinder are observed. Compared to an isolated cylinder, the synchronization range for the two-cylinder arrangement is larger. The downstream cylinder in the staggered arrangement undergoes two types of motion: an orbital motion at most of the U studied, and figure-of-eight motion for a small range of U. In the tandem arrangement, only the figure-of-eight motion is observed. The stagger in the arrangement of the two cylinders is found to have a significant effect on the flow.
Poiseuille flow-induced vibrations of two tandem circular cylinders with different mass ratios
NASA Astrophysics Data System (ADS)
Jiang, Ren-Jie; Lin, Jian-Zhong
2016-06-01
Flow-induced vibrations of two tandem circular cylinders with different mass ratios confined between two parallel walls are numerically studied via a lattice Boltzmann method. With fixed Reynolds number Re = 100 and blockage ratio β = 1/4, the effects of mass ratio m* = [0.0625, 16] and streamwise separation between two cylinders S/D = [1.125, 10] on the cylinder motions and vortex wake modes are investigated. A variety of distinct cylinder motion regimes involving the symmetric periodic vibration, biased quasi-periodic vibration, beating vibration, and steady regimes, with the corresponding wake structures, e.g., two rows of alternately rotating vortices, a single row of same-sign vortices, and steady wake, are observed. For each current case, the cylinder motion type is exclusive and in the binary oscillation regime, both cylinders always vibrate at a common primary frequency. The lighter cylinder usually oscillates at a larger amplitude than the heavier one, while the heavier cylinder undergoes larger lift force than the lighter one. The lift force and cylinder displacement always behave as an out-of-phase state. In the gap-interference region, large-amplitude oscillations could be produced extensively and in the wake-interference region, the cylinder motions and fluid flows are mainly dependent on the upstream cylinder. When the separation is large enough, both cylinders behave as two isolated ones. The mechanisms for the excitations of cylinder vibrations have also been analysed.
The three-dimensional flow past a rapidly rotating circular cylinder
NASA Technical Reports Server (NTRS)
Denier, James P.; Duck, Peter W.
1993-01-01
The high Reynolds number (Re) flow past a rapidly rotating circular cylinder is investigated. The rotation rate of the cylinder is allowed to vary (slightly) along the axis of the cylinder, thereby provoking three-dimensional flow disturbances, which are shown to involve relatively massive (O(Re)) velocity perturbations to the flow away from the cylinder surface. Additionally, three integral conditions, analogous to the single condition determined in two dimensions by Batchelor, are derived, based on the condition of periodicity in the azimuthal direction.
Wave run-up on a coaxial perforated circular cylinder
NASA Astrophysics Data System (ADS)
Zhu, Da-Tong
2011-06-01
This paper describes a plane regular wave interaction with a combined cylinder which consists of a solid inner column and a coaxial perforated outer cylinder. The outer perforated surface is a thin porous cylinder with an annular gap between it and the inner cylinder. The non-linear boundary condition at the perforated wall is a prime focus in the study; energy dissipation at the perforated wall occurs through the resistance to the fluid across the perforated wall. Explicit analytical formulae are presented to calculate the wave run-up on the outer and inner surfaces of the perforated cylinder and the surface of the inner column. The theoretical results of the wave run-up are compared with previous experimental data. Numerical results have also been obtained: when the ratio of the annular gap between the two cylinders to incident wavelength ( b- a)/ L≤0.1, the wave run-up on the inner surface of the perforated cylinder and the surface of inner column can partially or completely exceed the incident wave height.
Flow-induced oscillation of two circular cylinders in tandem arrangement at low Re
NASA Astrophysics Data System (ADS)
Prasanth, T. K.; Mittal, S.
2009-08-01
Results are presented for flow-induced vibrations of a pair of equal-sized circular cylinders of low nondimensional mass (m=10) in a tandem arrangement. The cylinders are free to oscillate both in streamwise and transverse directions. The Reynolds number, based on the free-stream speed and the diameter of the cylinders, D is 100 and the centre-to-centre distance between the cylinders is 5.5D. The computations are carried out for reduced velocities in the range 2≤U≤15. The structural damping is set to zero for enabling maximum amplitudes of oscillation. A stabilized finite element method is utilized to carry out the computations in two dimensions. Even though the response of the upstream cylinder is found to be qualitatively similar to that of an isolated cylinder, the presence of a downstream cylinder is found to have significant effect on the behaviour of the upstream cylinder. The downstream cylinder undergoes very large amplitude of oscillations in both transverse and streamwise directions. The maximum amplitude of transverse response of the downstream cylinder is quite similar to that of a single cylinder at higher Re beyond the laminar regime. Lock-in and hysteresis are observed for both upstream and downstream cylinders. The downstream cylinder undergoes large amplitude oscillations even beyond the lock-in state. The phase between transverse oscillations and lift force suffers a 180 jump for both the cylinders almost in the middle of the synchronization regime. The phase between the transverse response of the two cylinders is also studied. Complex flow patterns are observed in the wake of the freely vibrating cylinders. Based on the phase difference and the flow patterns, the entire flow range is divided into five sub-regions.
Heat transfer measurements for Stirling machine cylinders
NASA Technical Reports Server (NTRS)
Kornhauser, Alan A.; Kafka, B. C.; Finkbeiner, D. L.; Cantelmi, F. C.
1994-01-01
The primary purpose of this study was to measure the effects of inflow-produced heat turbulence on heat transfer in Stirling machine cylinders. A secondary purpose was to provide new experimental information on heat transfer in gas springs without inflow. The apparatus for the experiment consisted of a varying-volume piston-cylinder space connected to a fixed volume space by an orifice. The orifice size could be varied to adjust the level of inflow-produced turbulence, or the orifice plate could be removed completely so as to merge the two spaces into a single gas spring space. Speed, cycle mean pressure, overall volume ratio, and varying volume space clearance ratio could also be adjusted. Volume, pressure in both spaces, and local heat flux at two locations were measured. The pressure and volume measurements were used to calculate area averaged heat flux, heat transfer hysteresis loss, and other heat transfer-related effects. Experiments in the one space arrangement extended the range of previous gas spring tests to lower volume ratio and higher nondimensional speed. The tests corroborated previous results and showed that analytic models for heat transfer and loss based on volume ratio approaching 1 were valid for volume ratios ranging from 1 to 2, a range covering most gas springs in Stirling machines. Data from experiments in the two space arrangement were first analyzed based on lumping the two spaces together and examining total loss and averaged heat transfer as a function of overall nondimensional parameter. Heat transfer and loss were found to be significantly increased by inflow-produced turbulence. These increases could be modeled by appropriate adjustment of empirical coefficients in an existing semi-analytic model. An attempt was made to use an inverse, parameter optimization procedure to find the heat transfer in each of the two spaces. This procedure was successful in retrieving this information from simulated pressure-volume data with artificially
The transient response of finite open circular cylinders
NASA Astrophysics Data System (ADS)
Eftimiu, C.; Huddleston, P. L.
1984-04-01
An eigenmode expansion formulation of the singularity expansion method based on the electric field integral equation is developed for the transient response of conducting finite open cylinders. The eigenvalues and eigenfunctions of the impedance operator are calculated by the Galerkin method using entire domain expansion functions. The transient surface current density and backscattered far field in response to an incident electromagnetic pulse are calculated for cylinders of various aspect ratios.
Slow motion of a circular cylinder in a plane Poiseuille flow in a microchannel
NASA Astrophysics Data System (ADS)
Jeong, Jae-Tack; Jang, Chul-Soo
2014-12-01
The slow motion of a circular cylinder in a plane Poiseuille flow in a microchannel is analyzed for a wide range of cylinder radii and positions across the channel. The cylinder translates parallel to the channel walls and rotates about its axis. The Stokes approximation is used and the problem is solved analytically using the Papkovich-Fadle eigenfunction expansion and the least-squares method. The stream function and the pressure distribution of the flow field are obtained as results. The force and moment exerted on the cylinder, and the pressure change far from the cylinder, are calculated and shown as functions of the size and location of the cylinder. The results confirm some reciprocal relations exactly. In particular, the translational and rotational velocities of the drifting cylinder in the existing Poiseuille flow are determined. The induced pressure change, when the cylinder drifts in the Poiseuille flow, is also calculated. Some typical streamline patterns, depending on the size and location of the cylinder, are shown and discussed. When the cylinder translates and/or rotates in the channel blocked at infinity, a series of Moffatt eddies appears far from the cylinder in the channel, as expected.
Flow-induced vibrations of two tandem circular cylinders in a parallel-wall channel
NASA Astrophysics Data System (ADS)
Jiang, Ren-Jie; Lin, Jian-Zhong; Ku, Xiao-Ke
2014-10-01
Flow-induced vibrations of one and two tandem circular cylinders in the flow around cylinders in a parallel-wall channel are numerically studied by the lattice Boltzmann method. Within a range of Reynolds number Re = [1, 160], the effects of streamwise separation between two cylinders S/D = [1.25, 3], mass ratio M = [0.05, 5], and blockage ratio β = [1/2, 1/8] on the motions of cylinders and fluids are investigated, respectively. For the case of an isolated cylinder, as the mass ratio is 1, no large-amplitude oscillation is observed, and as the mass ratio is 0.1, the cylinder motion translates from the steady regime to the biased periodic vibration with a large oscillation amplitude gradually as Reynolds number is increased from 1 to 160. For the case of two cylinders in tandem, two steady regimes and a variety of distinct oscillation regimes with the corresponding flow structures are observed. The critical mass ratio of the two tandem cylinders in the strong coupling regime is about an order of magnitude larger than that of an isolated cylinder. For blockage ratio is more than 1/5, the vibration type of the cylinders is exclusive, while for blockage ratio is less than 1/6, the cylinder oscillation state is bistable. The mechanisms of the observed phenomena are also discussed.
Forces on surface-piercing vertical circular cylinder groups on flooding staircase
NASA Astrophysics Data System (ADS)
Jiang, Li-jie; Shao, Wei-yun; Zhu, David Z.; Sun, Zhi-lin
2014-04-01
Flooding into underground spaces has become a common threat and caused significant damages and casualties in the past decades. To improve the understanding of people walking through the flooding staircase, a 1:2-scale physical model of a staircase with rest platform was assembled. An instrument was developed to measure the hydrodynamic forces acting on individual vertical circular cylinders, as well as cylinder groups arranged side-by-side, in tandem and staggered cylinder arrays on the flooding staircase. The results show that the horizontal hydrodynamic force on a cylinder increases rapidly with the increasing of the inundated depth on the entrance of the staircase. With a side-by-side tight cylinder array, the force on the central cylinder is always larger than an isolated one. The force on the downstream cylinder in tandem cylinder array is always smaller. However, the drag coefficients of both cases are much larger than the corresponding ones in a horizontal bed channel. For the case of staggered cylinder array, the force on the downstream cylinder varies with the change of the transverse spacing and the longitudinal distance between cylinders.
Streamwise forced oscillations of circular and square cylinders
NASA Astrophysics Data System (ADS)
Tudball-Smith, Daniel; Leontini, Justin S.; Sheridan, John; Jacono, David Lo
2012-11-01
The modification of a cylinder wake by streamwise oscillation of the cylinder at the vortex shedding frequency of the unperturbed cylinder is reported. Recent numerical simulations [J. S. Leontini, D. Lo Jacono, and M. C. Thompson, "A numerical study of an inline oscillating cylinder in a free stream," J. Fluid Mech. 688, 551-568 (2011), 10.1017/jfm.2011.403] showed that this forcing results in the primary frequency decreasing proportionally to the square of the forcing amplitude, before locking to a subharmonic at higher amplitudes. The experimental results presented here show that this behavior continues at higher Reynolds numbers, although the flow is three-dimensional. In addition, it is shown that this behavior persists when the body is a square cross section, and when the frequency of forcing is detuned from the unperturbed cylinder shedding frequency. The similarity of the results across Reynolds number, geometry, and frequency suggests that the physical mechanism is applicable to periodic forcing of the classic von Kármán vortex street, regardless of the details of the body which forms the street.
Vortex-induced vibration of a circular cylinder of finite length
NASA Astrophysics Data System (ADS)
Zhao, Ming; Cheng, Liang
2014-01-01
Vortex-induced vibration (VIV) of a rigid circular cylinder of finite length subject to uniform steady flow is investigated numerically. The study is focused on the effect of the free end on the response of the cylinder. The vibration of the cylinder is confined only in the cross-flow direction. Three-dimensional Navier-Stokes equations are solved by the Petrov-Galerkin finite element method and the equation of the motion is solved for the cylinder displacement. Simulations are conducted for a constant mass ratio of 2, a constant Reynolds number of 300 and cylinder length to diameter ratios of L/D = 1, 2, 5 10, and 20. It is found that the vortex shedding in the wake of a fixed cylinder is suppressed if the cylinder length is less than 2 cylinder diameters. However, if the cylinder is allowed to vibrate, VIV happens at L/D = 1 and 2 and the response amplitudes at these two cylinder lengths are comparable with that of a 2D-cylinder. The vortices that are shed from a short cylinder of L/D = 1 and 2 are found to be generated from the free-end of the cylinder and convected toward the top end of the cylinder by the upwash velocity. They are found to be nearly perpendicular to the cylinder span. The wake flow in a vibrating cylinder with L/D greater than 5 includes the vortex shedding flow at the top part of the cylinder and the end-induced vortex shedding near the free-end of the cylinder. The phase difference between the sectional lift coefficient and the vibration displacement near the free-end of the cylinder changes from 0° to 180° at higher reduced velocity than that near the top end. Strong variation of the flow along the cylinder span occurs at reduced velocities where the lift coefficient near the free-end and that near the top end are in anti-phase with each other.
A wind tunnel investigation of circular and straked cylinders in transonic cross flow
NASA Technical Reports Server (NTRS)
Macha, J.
1976-01-01
Pressure distributions around circular and circular/strake cylinders were measured in a wind tunnel at Mach numbers from 0.6 to 1.2 with Reynolds number independently variable from 10,000 to 100,000. The local pressures are integrated over the cylinder surface to determine the variation of drag coefficient with both Mach number and Reynolds number. Effects of tunnel blockage are evaluated by comparing results from circular cylinders of various diameters at common Mach and Reynolds number conditions. Compressibility effects are concluded to be responsible for a flight reduction of the drag coefficient near Mach 0.7. Drag increases with strake height, presumably approaching a maximum drag corresponding to a flat plate configuration.
Flow structure, momentum and heat transport in a two-tandem-cylinder wake
NASA Astrophysics Data System (ADS)
Zhou, Y.; Yiu, M. W.
2006-02-01
Flow structure, momentum and heat transport in the wake of two tandem circular cylinders have been experimentally investigated. Measurements were conducted at x/d = 10, 20 and 30 (d is the cylinder diameter) at a Reynolds number of 7000 using a three-wire (one cross-wire plus a cold wire) probe, in conjunction with a cross-wire. The upstream cylinder was slightly heated. The flow behind two tandem cylinders is conventionally divided into three regimes based on whether the shear layers separated from the upstream cylinder overshoot or reattach on the downstream cylinder before forming a vortex street, or form vortices between the cylinders. The present investigation uncovers two remarkably different flow structures in the reattachment regime, depending on whether the shear layers from the upstream cylinder reattach on the downstream or upstream side of the downstream cylinder. As such, four cylinder centre-to-centre spacing ratios, i.e. L/d = 1.3, 2.5, 4.0 and 6.0, were examined, each representing one distinct flow structure. The phase-averaged sectional streamlines and vorticity contours display a single vortex street, irrespective of different regimes. However, the detailed flow structure, in particular, the vortex strength, and its downstream development depend upon L/d. The cross-stream distributions of the Reynolds stresses and heat fluxes at a given x/d vary from one to another. Such variation is also evident in the coherent contributions to the Reynolds stresses and heat fluxes. The results are connected to different initial conditions for the four flow structures. The momentum and heat transport characteristics are summarized for each flow structure.
Investigation of drag reduction through a flapping mechanism on circular cylinder
NASA Astrophysics Data System (ADS)
Asif, Md. Asafuddoula; Gupta, Avijit Das; Rana, M. D. Juwel; Ahmed, Dewan Hasan
2016-07-01
During flapping wing, a bird develops sufficient lift force as well as counteracts drag and increases its speed through different orientations of feathers on the flapping wings. Differently oriented feathers play a significant role in drag reduction during flying of a bird. With an objective to investigate the effect of installation of such flapping mechanism as a mean of drag reduction in case of flow over circular cylinder, this concept has been implemented through installation of continuous and mini flaps, made of MS sheet metal, where flaps are oriented at different angles as like feathers of flapping wings. The experiments are carried out in a subsonic wind tunnel. After validation and comparison with conventional result of drag analysis of a single cylinder, effects of flapping with Reynolds number variation, implementation of different orientations of mini flaps and variation of different interspacing distance between mini flaps are studied to find the most effective angle of attack of drag reduction on the body of circular cylinder. This research show that, installation of continuous flap reduces value of drag co-efficient, CD up to 66%, where as mini flaps are found more effective by reducing it up to 73%. Mini flaps of L/s=6.25, all angled at 30O, at the 30O angular position on the body of circular cylinder has been found the most effective angle of attack for drag reduction in case of flow over circular cylinder.
Effect of mass ratio on fluid induced motions of a circular cylinder with strips
NASA Astrophysics Data System (ADS)
Vinod, Ashwin; Banerjee, Arindam
2014-11-01
The objective of the current experimental work is to investigate the effects of mass ratio on Fluid Induced Motions, such as vortex induced vibration (VIV) and galloping, of elastically mounted circular cylinders attached with strips to their outer surface. Although the effect of mass ratio on VIV of a smooth circular cylinder is well documented in literature, however, their effects on circular cylinders with strips, capable of inciting galloping oscillations haven't been investigated and could have potential applications in the domain of vibration based energy harvesters. In the current work, three different mass ratios were tested, out of which, one falls below the critical mass in vortex induced vibration of a circular cylinder. The strips used for the experiments included sandpaper strips of prescribed roughness and smooth strips with no roughness, both of which served as surface protrusion based mechanisms of altering the flow around the cylinder. Interesting variations were observed in the amplitude, frequency response and the power spectrum, depending on the mass ratio of the oscillating system tested. The authors acknowledge support of the Office of Naval Research (Grant # ONR-000141210495 - Dr. Ron Joslin).
Flow Interference between a Square (Upstream) and a Circular Cylinder: Flow Pattern Identification
NASA Astrophysics Data System (ADS)
Kumar, Nithin S.; R, Ajith Kumar; Mohan, Jayalakshmi
2014-11-01
In this paper, flow interference between an upstream square cylinder and a circular cylinder of equal size is studied in tandem arrangement. The main objective of this invesigation is to identify the possible flow patterns at different spacing ratios, L/B where L is the centre-to-centre distance between the cylinders and B is the characteristic dimension of the bodies. All the experiments are conducted in a water channel and the test Reynolds number is 2100 (based on B). L/B is varied from 1.0 to 5.0. The flow visualization experiments are videographed and then analyzed frame-by-frame to capture the finer details of the flow patterns. Flow over single square and circular cylinders is analyzed first. Then, flow interference between two square cylinders is investigated. Subsequently, flow over a square-circular configuration is investigated. No such systematic studies are reported so far. Different flow patterns are observed for the square-circular configuration. Additionally, the time of persistence of each flow pattern have been recorded over a sufficiently long period of time to see the most dominant flow pattern. The schedule of occurrence of flow patterns have also been studied during this investigation. This study bears considerable practical relevance in the context of possible interference effects occurring in engineering structures such as buildings, bridges etc.
NASA Astrophysics Data System (ADS)
Das, Pramode K.; Mathew, Sam; Shaiju, A. J.; Patnaik, B. S. V.
2016-02-01
The control of vortex shedding behind a circular cylinder is a precursor to a wide range of external shear flow problems in engineering, in particular the flow-induced vibrations. In the present study, numerical simulation of an energetically efficient active flow control strategy is proposed, for the control of wake vortices behind a circular cylinder at a low Reynolds number of 100. The fluid is assumed to be incompressible and Newtonian with negligible variation in properties. Reflectionally symmetric controllers are designed such that, they are located on a small sector of the cylinder over which, tangential sliding mode control is imparted. In the field of modern controls, proportional (P), integral (I) and differential (D) control strategies and their numerous combinations are extremely popular in industrial practice. To impart suitable control actuation, the vertically varying lift force on the circular cylinder, is synthesised for the construction of an error term. Four different types of controllers considered in the present study are, P, I, PI and PID. These controllers are evaluated for their energetic efficiency and performance. A linear quadratic optimal control problem is formulated, to minimise the cost functional. By performing detailed simulations, it was observed that, the system is energetically efficient, even when the twin eddies are still persisting behind the circular cylinder. To assess the adaptability of the controllers, the actuators were switched on and off to study their dynamic response.
Pressure Distribution at Subsonic Speeds over the Forepart of Two Blunt Circular Cylinders
NASA Technical Reports Server (NTRS)
Lockwood, V. E.
1975-01-01
A wind tunnel investigation was made at subsonic speeds to determine the pressure distribution over the forward part of a circular cylinder. The cylinder was equipped with interchangeable faces, one having a flat face and one having a dome shaped face. The investigation was made over angle of attack range from -1 deg to 26 deg and a Mach number range from 0.30 to 0.89. Pressure coefficients are presented in tabular form and plotted data are presented for some selected angles of attack about the surface of the cylinder.
NASA Astrophysics Data System (ADS)
Carmo, Bruno S.; Assi, Gustavo R. S.; Meneghini, Julio R.
2013-08-01
In this work, we considered the flow around two circular cylinders of equal diameter placed in tandem with respect to the incident uniform flow. The upstream cylinder was fixed and the downstream cylinder was completely free to move in the cross-stream direction, with no spring or damper attached to it. The centre-to-centre distance between the cylinders was four diameters, and the Reynolds number was varied from 100 to 645. We performed two- and three-dimensional simulations of this flow using a Spectral/hp element method to discretise the flow equations, coupled to a simple Newmark integration routine that solves the equation of the dynamics of the cylinder. The differences of the behaviours observed in the two- and three-dimensional simulations are highlighted and the data is analysed under the light of previously published experimental results obtained for higher Reynolds numbers.
Re-examination of laminar flow over twin circular cylinders in tandem arrangement
NASA Astrophysics Data System (ADS)
Liu, Ming-Ming; Lu, Lin; Teng, Bin; Zhao, Ming; Tang, Guo-Qiang
2014-04-01
Viscous fluid flow past two identical circular cylinders in a tandem arrangement is numerically investigated at a typical Reynolds number of 200. By considering a large span of spacing ratio (0.1 ⩽ G/D ⩽ 6.0) with a fine interval of 0.1 or less, the dependences on the spacing ratio of the drag force, lift force, lift fluctuation frequency, torque on the cylinder pair and phase difference between the lift fluctuations of the two cylinders are investigated in detail, where D is the diameter of the cylinder and G the surface-to-surface distance between the cylinders. The phase difference between the lift fluctuations of the two cylinders is addressed based on correlation analysis together with the phase diagram, which has received scarce attention before. The phase difference provides further understanding to the dependence of the wake evolutions behind the twin circular cylinders. The numerical investigations show that diverse regimes can be identified according to the dependence of the hydrodynamics on the spacing ratio. The hydrodynamic discontinuities at G/D = 0.9, which have previously been ignored, are reported in this work. The physical correlations between the hydrodynamic discontinuities and the wake patterns are presented.
NASA Astrophysics Data System (ADS)
Hosono, Hiroyuki
1995-11-01
Transient response from a cylinder with longitudinal slots is more complicated than that from a perfect cylinder because the electromagnetic waves are reflected from various parts of the slotted cylinder: exterior surfaces, interior surfaces, and edges. We gave the numerical analysis for E-polarized and H-polarized cases by combining the modified point matching method (MPMM) with the fast inversion of Laplace transform method (FILT). Numerical results for the inner field are presented and discussed. The physical meaning of the transient waveform is discussed in detail. Also, the precision of the analysis is checked carefully.
Improvement of finite element meshes - Heat transfer in an infinite cylinder
NASA Technical Reports Server (NTRS)
Kittur, Madan G.; Huston, Ronald L.; Oswald, Fred B.
1989-01-01
An extension of a structural finite element mesh improvement technique to heat conduction analysis is presented. The mesh improvement concept was originally presented by Prager in studying tapered, axially loaded bars. It was further shown that an improved mesh can be obtained by minimizing the trace of the stiffnes matrix. These procedures are extended and applied to the analysis of heat conduction in an infinitely long hollow circular cylinder.
Improvement in finite element meshes: Heat transfer in an infinite cylinder
NASA Technical Reports Server (NTRS)
Kittur, Madan G.; Huston, Ronald L.; Oswald, Fred B.
1988-01-01
An extension of a structural finite element mesh improvement technique to heat conduction analysis is presented. The mesh improvement concept was originally presented by Prager in studying tapered, axially loaded bars. It was further shown that an improved mesh can be obtained by minimizing the trace of the stiffness matrix. These procedures are extended and applied to the analysis of heat conduction in an infinitely long hollow circular cylinder.
Experimental study of noise emitted by circular cylinders with large roughness
NASA Astrophysics Data System (ADS)
Alomar, Antoni; Angland, David; Zhang, Xin; Molin, Nicolas
2014-12-01
The aerodynamic noise generated by high Reynolds number flow around a bluff body with large surface roughness was investigated. This is a relevant problem in many applications, in particular aircraft landing gear noise. A circular cylinder in cross-flow and a zero-pressure-gradient turbulent boundary layer with various types of roughness was tested in a series of wind tunnel experiments. It has been shown that distributed roughness covering a circular cylinder affects the spectra over the entire frequency range. Roughness noise is dominant at high frequencies, and the peak frequency is well described by Howe's roughness noise model when scaled with the maximum outer velocity. There are differences between hemispherical and cylindrical roughness elements for both the circular cylinder and the zero-pressure-gradient turbulent boundary layer cases, indicating a dependence on roughness shape, not described by the considered roughness noise models. Cylindrical roughness generates higher noise levels at the highest frequencies, especially for the zero-pressure-gradient turbulent boundary layer case. Cable-type roughness aligned with the mean flow does not generate roughness noise, and its spectrum has been found to collapse with the smooth cylinder at medium and high frequencies. At low and medium frequencies the noise spectra have the same features as the smooth cylinder, but with higher shedding peak levels and fall-off levels, despite the decrease in spanwise correlation length. Roughness induces early separation, and thus a shift of the spectra to lower frequencies.
Proper orthogonal decomposition analysis of vortex shedding behind a rotating circular cylinder
NASA Astrophysics Data System (ADS)
Sham Dol, Sharul
2016-03-01
Turbulence studies were made in the wake of a rotating circular cylinder in a uniform free stream with the objective of describing the patterns of the vortex shedding up to suppression of the periodic vortex street at high velocity ratios, λ. The results obtained in the present study establish that shedding of Kármán vortices in a rotating circular cylinder-generated wake is modified by rotation of the cylinder. Alternate vortex shedding is highly visible when λ < 2.0 although the strength of the separated shear layers differ due to the rotation of the cylinder. The spectral density in the wakes indicate significant changes at λ = 2.0. The results indicate that the rotation of the cylinder causes significant disruption in the structure of the flow. Alternate vortex shedding is weak, distorted and close to being suppressed at λ = 2.0. It is clear that flow asymmetries will weaken vortex shedding, and when the asymmetries are significant enough, total suppression of a periodic street occurs. Particular attention was paid to the decomposition of the flow using Proper Orthogonal Decomposition (POD). By analyzing this decomposition with the help of Particle Image Velocimetry (PIV )data, it was found that large scales contribute to the coherent motion. Vorticity structures in the modes become increasingly irregular with downstream distance, suggesting turbulent interactions are occurring at the more downstream locations, especially when the cylinder rotates.
RANS-VOF solver for solitary wave run-up on a circular cylinder
NASA Astrophysics Data System (ADS)
Cao, Hong-jian; Wan, De-cheng
2015-04-01
Simulation of solitary wave run-up on a vertical circular cylinder is carried out in a viscous numerical wave tank developed based on the open source codes OpenFOAM. An incompressible two-phase flow solver naoe-FOAM-SJTU is used to solve the Reynolds-Averaged Navier-Stokes (RANS) equations with the SST k- ω turbulence model. The PISO algorithm is utilized for the pressure-velocity coupling. The air-water interface is captured via Volume of Fluid (VOF) technique. The present numerical model is validated by simulating the solitary wave run-up and reflected against a vertical wall, and solitary wave run-up on a vertical circular cylinder. Comparisons between numerical results and available experimental data show satisfactory agreement. Furthermore, simulations are carried out to study the solitary wave run-up on the cylinder with different incident wave height H and different cylinder radius a. The relationships of the wave run-up height with the incident wave height H, cylinder radius a are analyzed. The evolutions of the scattering free surface and vortex shedding are also presented to give a better understanding of the process of nonlinear wave-cylinder interaction.
The flow around circular cylinders partially coated with porous media
NASA Astrophysics Data System (ADS)
Ruck, Bodo; Klausmann, Katharina; Wacker, Tobias
2012-05-01
There are indications that the flow resistance of bodies can be reduced by a porous coating or porous sheath. A few numerical investigations exists in this field, however, experimental evidence is lacking. In order to investigate this phenomenon, the drag resistance of cylinders with porous coating has been investigated qualitatively and quantitatively in wind tunnel experiments. The Reynolds number was systematically varied in the range from 104 to 1.3*105. The results show that the boundary layer over the porous surface is turbulent right from the beginning and thickens faster because of the possible vertical momentum exchange at the interface. The region of flow detachment is widened resulting in a broader area with almost vanishing low flow velocities. All in all, the measurements show that a full porous coating of the cylinders increase the flow resistance. However, the measurements show that a partial coating only on the leeward side can decrease the flow resistance of the body. This effect seems due to the fact that the recirculating velocity and the underpressure in the wake is reduced significantly through a leeward porous coating. Thus, combining a smooth non-permeable windward side with a porous-coated leeward side can lead to a reduction of the body's flow resistance. These findings can be applied advantageously in many technical areas, such as energy saving of moving bodies (cars/trains/planes) or in reducing fluid loads on submersed bodies.
Experimental study on the wake behind tapered circular cylinders
NASA Astrophysics Data System (ADS)
Visscher, Jan; Pettersen, Bjørnar; Andersson, Helge I.
2011-11-01
The flow around tapered cylinders can act as basic models for numerous bluff body flows with a spanwise variation of either the body shape or the inflow conditions. The well-known vortex street is influenced by strong three-dimensional effects from the spanwise variation of the shedding frequency, namely oblique vortex shedding and vortex dislocations. Stereo-PIV was chosen to study these phenomena, since it allows analyzing planes with the full three-component, instantaneous velocity fields and local, time-dependent variations in the same setting. Hence, detailed aspects of the vortex dislocation phenomenon are presented. Single vortex dislocation events are presented through the local variation of the three measured velocity components u, v and w. Longer time-series reveal both period and location of these dislocation events, as well as quantity and sizes of the cells of constant shedding velocity in between them. The influence of the Reynolds number and the cylinder aspect ratio on the vortex cells could be shown. The analysis of the vortex shedding behavior shows good agreement with previously published results. At the same time, the applied PIV technique provides more spatial information than point-based measurements and offers insight into a Reynolds number range that is currently out of reach of Direct Numerical Simulations.
Influence of a pulsating flow on the transfer of heat from cylinders and finned tubes
NASA Astrophysics Data System (ADS)
Perwaiz, J.; Base, T. E.
The effect of pulsations in the flow on forced convective heat transfer coefficients around a circular cylinder and a finned tube is studied. Convection measurement experiments were performed to determine the rate of heat transfer (average Nusselt numbers) from a circular cylinder and a finned tube in a pulsating crossflow. The experiments were performed using the unsteady flow inducer wind tunnel, which had facility for generating time-dependent flow. The forced convective heat transfer in steady crossflows was checked for both the circular cylinder and the finned tube to validate the experimental techniques and apparatus. The findings indicate the dependence of heat transfer on the dimensionless frequency of the crossflow. Specifically, at higher mean flows there is considerable discrepancy between the Nusselt number for steady flows and the Nusselt number for unsteady flows with the same mean flow value. The effects on the variation in the heat transfer must be carefully taken into account in the design and analysis of thermal systems exposed to pulsating flows.
Scattering by cavity-backed antennas on a circular cylinder
NASA Technical Reports Server (NTRS)
Kempel, Leo C.; Volakis, John L.
1994-01-01
Conformal arrays are popular antennas for aircraft, spacecraft, and land vehicle platforms due to their inherent low weight and drag properties. However, to date there has been a dearth of rigorous analytical or numerical solutions to aid the designer. In fact, it has been common practice to use limited measurements and planar approximations in designing such non-planar antennas. The finite element-boundary integral method is extended to scattering by cavity-backed structures in an infinite, metallic cylinder. In particular, the formulation specifics such as weight functions, dyadic Green's function, implementation details and particular difficulties inherent to cylindrical structures are discussed. Special care is taken to ensure that the resulting computer program has low memory demand and minimal computational requirements. Scattering results are presented and validated as much as possible.
Enhancing Vortex Induced Vibration of a Circular Cylinder by Using Roughness Strips
NASA Astrophysics Data System (ADS)
Vinod, Ashwin; Banerjee, Arindam
2012-11-01
The current experimental work focuses on studying the effects of surface roughness on vortex induced vibration (VIV) of an elastically mounted circular cylinder which is free to vibrate in a direction transverse to the flow. Our objective is to identify configurations which lead to high amplitudes of vibrations and a greater range of synchronization that can be successfully used for energy harvesting. Different configurations such as smooth cylinders, cylinder with zero roughness strips, and prescribed roughness (using sand paper) were used. Experiments were also conducted with the zero roughness strips at different angles around the cylinder to verify the effect of the position of the strip. All results were also found to be dependent on the spring stiffness. Variations were observed in the amplitude and frequency response profiles for the different cases investigated. The authors acknowledge support of the Office of Naval Research (Grant # ONR-N000141210495, Program Manager: Ronald Joslin).
NASA Astrophysics Data System (ADS)
Ishimatsu, Takuto; Morishita, Etsuo; Okunuki, Takeo; Koyama, Hisao
Flows over two circular cylinders in tandem, side-by-side, and staggered arrangements were analyzed using the overset grid method, which is capable of handling a variety of sizes and arrangements. The Reynolds number was 100 based on the cylinder diameter. The present computation code was validated by comparison with benchmark solutions for flow around a single cylinder. Wind-tunnel experiments were conducted for the side-by-side cylinder flow for comparison with numerical simulations. Calculation showed two critical spacings in the tandem arrangement where the aerodynamic forces and Strouhal number change discontinuously. Three critical spacings and four distinct flow patterns were found numerically in the side-by-side arrangement. Similar critical spacings were found in the staggered arrangement calculation and formed critical lines. Furthermore, a pocket region was found for a staggered arrangement surrounded by the critical line.
NASA Technical Reports Server (NTRS)
Stallings, R. L., Jr.; Lamb, M.; Howell, D. T.
1973-01-01
Drag measurements were obtained with circular cylinders attached to a flat-plate surface with their longitudinal axes perpendicular to the plate surface. When more than one cylinder was tested, they were alined in a spanwise row perpendicular to the free-stream velocity vector. The drag measurements were obtained through a range of Mach numbers from 2.3 to 4.6, cylinder heights ranging from approximately 0.4 to 3 times the undisturbed laminar boundary-layer thickness, and cylinder height-to-diameter ratios of 1.0 and approximately 2. Included in the paper is a complete presentation in figure form of the experimental results and a discussion of the more significant findings. An attempt is made to select the most appropriate parameters for correlating the experimental results and, where possible, these results are compared with theoretical calculations.
NASA Astrophysics Data System (ADS)
Lu, Lin; Qin, Jian-Min; Teng, Bin; Li, Yu-Cheng
2011-03-01
This article describes a strategy of active flow control for lift force reduction of circular cylinder subjected to uniform flow at low Reynolds numbers. The flow control is realized by rotationally oscillating the circular cylinder about its axis with ω(t )=-λCL(t), where ω(t ) is the dimensionless angular speed of rotation cylinder, λ is the control parameter and CL(t) is the feedback signal of lift coefficient. The study focuses on seeking optimum λ for the low Reynolds numbers of 60, 80, 100, 150, and 200. The effectiveness of the proposed flow control in suppressing lift force is examined comprehensively by a numerical model based on the finite element solution of two-dimensional Navier-Stokes equations. The dependence of lift reduction on the control parameter λ is investigated. The threshold of λ, denoted by λc, is identified for the Reynolds numbers considered in this work. The numerical results show that the present active rotary oscillation of circular cylinder is able to reduce the amplitude of lift force significantly as long as λ ≤λc, at least 50% for the laminar flow regime. Meanwhile, the present active flow control does not result in the undesirable increase in the drag force. The Strouhal number is observed to decrease slightly with the increase of λ. As for a specific Reynolds number, the larger λ gives rise to the larger amount of lift reduction. The lift reduction reaches the maximum at λ =λc. The mechanism behind the present lift reduction method is revealed by comparing the flow patterns and pressure distributions near the active rotationally oscillating circular cylinder and the stationary circular cylinder. It is found that the critical value λc generally increases with Reynolds number. Two types of lift shift are observed in the numerical results for the cases with λ >λc. The first is characterized by the regular fluctuation of lift coefficient but with nonzero mean value, while the second is associated with the
Wake Modes and Heat Transfer from Rotationally Oscillating Cylinder
NASA Astrophysics Data System (ADS)
Sellappan, Prabu; Pottebaum, Tait
2012-11-01
Wake formation is an important problem in engineering due to its effect on phenomena such as vortex induced vibrations and heat transfer. While prior work has focused on the wake formation due to vortex shedding from stationary and oscillating cylinders, limited information is available on the relationship between wake modes and heat transfer from rotationally oscillating cylinders. Experiments were carried out at Re=150 and 750, using an electrically heated cylinder, in a water tunnel for oscillation frequencies from 0.67 to 3.5 times the natural shedding frequency and peak-to-peak oscillation amplitudes up to 320. DPIV was used to identify and map wake modes to various regions of the parameter space. Temperature data from a thermocouple embedded in the cylinder was used to calculate heat transfer rates. Correlation between heat transfer enhancement and certain wake mode regions were observed in the parameter space. The relationship between wake formation and heat transfer enhancement will be described.
Flow-induced vibration of a circular cylinder subjected to wake interference at low Reynolds number
NASA Astrophysics Data System (ADS)
Carmo, B. S.; Sherwin, S. J.; Bearman, P. W.; Willden, R. H. J.
2011-05-01
Two- and three-dimensional numerical simulations of the flow around two circular cylinders in tandem arrangements are performed. The upstream cylinder is fixed and the downstream cylinder is free to oscillate in the transverse direction, in response to the fluid loads. The Reynolds number is kept constant at 150 for the two-dimensional simulations and at 300 for the three-dimensional simulations, and the reduced velocity is varied by changing the structural stiffness. The in-line centre-to-centre distance is varied from 1.5 to 8.0 diameters, and the results are compared to that of a single isolated flexible cylinder with the same structural characteristics, m*=2.0 and ζ=0.007. The calculations show that significant changes occur in the dynamic behaviour of the cylinders, when comparing the flow around the tandem arrangements to that around an isolated cylinder: for the tandem arrangements, the lock-in boundaries are wider, the maximum displacement amplitudes are greater and the amplitudes of vibration for high reduced velocities, outside the lock-in, are very significant. The main responsible for these changes appears to be the oscillatory flow in the gap between the cylinders.
Experimental investigation of flow-induced vibration interference between two circular cylinders
NASA Astrophysics Data System (ADS)
Assi, G. R. S.; Meneghini, J. R.; Aranha, J. A. P.; Bearman, P. W.; Casaprima, E.
2006-08-01
This paper presents experimental results concerning flow-induced oscillations of circular cylinders arranged in tandem. New measurements on the dynamic response oscillations of an isolated cylinder and flow interference of two cylinders are shown. Preliminary flow visualization employing a PIV system is also shown. The models are mounted on an elastic base fitted with flexor blades and instrumented with strain gauges. The base is fixed on the test-section of a water channel facility. The flexor blades possess a low-damping characteristic (ζ≃0.008 0.0109) and they are free to oscillate only in the cross-flow direction. The Reynolds number of the experiments is from 3000 to 13000, and reduced velocities, based on natural frequency in still water, vary up to 12. The interference phenomenon on VIV is investigated by conducting experiments in which the upstream cylinder is maintained fixed and the downstream one is mounted on the elastic base. The results for an isolated cylinder are in accordance with other measurements found in the literature for m≃2 and 8. For the tandem arrangement and m≃2, the trailing cylinder oscillation presents what previous researchers have termed interference galloping behaviour for a centre-to-centre gap spacing ranging from 2D to 5.6D. These initial results validate the experimental set-up and lead the way for future work, including tandem, staggered and side-by-side arrangements with the two cylinders free to move.
An Experiment in Heat Conduction Using Hollow Cylinders
ERIC Educational Resources Information Center
Ortuno, M.; Marquez, A.; Gallego, S.; Neipp, C.; Belendez, A.
2011-01-01
An experimental apparatus was designed and built to allow students to carry out heat conduction experiments in hollow cylinders made of different materials, as well as to determine the thermal conductivity of these materials. The evolution of the temperature difference between the inner and outer walls of the cylinder as a function of time is…
Simulation of Planar Shear Flow Passing Two Equal-Sized Circular Cylinders in Tandem Arrangement
NASA Astrophysics Data System (ADS)
Fallah, Keivan; Fardad, Abas Ali; Fattahi, Ehsan; Zadeh, Nima Sedaghati
2011-12-01
Two dimensional laminar shear flow pass two equal-sized circular cylinders in tandem arrangement are investigated numerically. Lattice Boltzman method via single-relaxation-time (SRT) collision model is applied to simulate the flow field. Simulations are performed for Reynolds number (Re = 200) while the nondimensional shear rate (K) and gap spacing range as 0≤K≤0.2 and 0.5≤g*≤6. Results show that all these parameters have significant effects on flow pattern. Quantitative information about the flow variables such as drag and lift coefficients and vorticity distributions on the cylinders is highlighted.
Hysteretic mode exchange in the wake of two circular cylinders in tandem
NASA Astrophysics Data System (ADS)
Tasaka, Yuji; Kon, Seiji; Schouveiler, Lionel; Le Gal, Patrice
2006-08-01
Our experimental study is devoted to the analysis of the flow past two tandem circular cylinders near the vortex shedding threshold. A recent bidimensional numerical analysis of this flow [Mizushima and Suehiro, Phys. Fluids 17, 104107 (2005)] has predicted that the bifurcation diagram should become complex in the vicinity of the instability threshold. Subcritical and saddle node bifurcations that lead to hysteretic exchanges between two different modes of vortex shedding were detected for particular distances of separation of the cylinders. We present here visualizations and velocity measurements of this flow in a water channel that prove the robustness of the complexity of the bifurcation diagram in real flows.
a Numerical Simulation of Vortex Shedding from AN Oscillating Circular Cylinder
NASA Astrophysics Data System (ADS)
Guilmineau, E.; Queutey, P.
2002-08-01
Vortex shedding from an oscillating circular cylinder is studied by numerical solutions of the two-dimensional unsteady Navier-Stokes equations. A physically consistent method is used for the reconstruction of velocity fluxes which arise from discrete equations for the mass and momentum balances. This method ensures a second-order accuracy. Two phenomena are investigated and, in both cases, the cylinder oscillation is forced. The first is the flow induced by the harmonic in-line oscillation of cylinder in water at rest. The Reynolds number is equal to 100 and the Keulegan-Carpenter number is equal to 5. A comparison of phase-averaged velocity vectors between measurements and predictions is presented. Applying the widely used model of Morison to the computed in-line force history, the drag and the inertia coefficients are calculated and compared for different grid levels. Using these to reproduce the force functions, deviations from those originally computed are revealed. The second problem is an investigation of a transversely oscillating cylinder in a uniform flow at fixed Reynolds number equal to 185. The cylinder oscillation frequency ranges between 0.80 and 1.20 of the natural vortex-shedding frequency, and the oscillation amplitude is 20% of the cylinder diameter. As the frequency of excitation of the cylinder increases relative to the inherent vortex formation frequency, the initially formed concentration of vorticity moves closer to the cylinder until a limiting position is reached. At this point, the vorticity concentration abruptly switches to the opposite side of the cylinder. This process induces distinct changes of the topology of the corresponding streamline patterns.
Measurement of convective heat transfer to solid cylinders inside ventilated shrouds
NASA Technical Reports Server (NTRS)
Daryabeigi, K.; Germain, E. F.; Ash, R. L.
1984-01-01
The influence of ventilated cylindrical shrouds on the convective heat transfer to circular cylinders has been studied experimentally. Geometries studied were similar to those used in commercially available platinum resistance thermometers. Experiments showed that thermal response (convection) was enhanced when the shroud ventilation factor was approximately 20 percent (80 percent solid), and that maximum enhancement occurred when the ventilation holes were located symmetrically on either side of the stagnation lines.
NASA Technical Reports Server (NTRS)
Krzywoblocki, M. Z. V.
1974-01-01
The application of the elements of quantum (wave) mechanics to some special problems in the field of macroscopic fluid dynamics is discussed. Emphasis is placed on the flow of a viscous, incompressible fluid around a circular cylinder. The following subjects are considered: (1) the flow of a nonviscous fluid around a circular cylinder, (2) the restrictions imposed the stream function by the number of dimensions of space, and (3) the flow past three dimensional bodies in a viscous fluid, particularly past a circular cylinder in the symmetrical case.
Numerical study of turbulent flow separation over a wall mounted circular cylinder
NASA Astrophysics Data System (ADS)
Yu, Taejong; You, Donghyun
2015-11-01
Flow over a wall-mounted circular cylinder with a finite span and a free end is numerically studied at a range of Reynolds numbers. Separated flow behind a wall-mounted cylinder is characterized by dominant vortical structures developed around and behind the cylinder: i.e., Karman vortices and tip-shedding vortices. The formation and interaction among the vortices are found to be distinct depending on the aspect ratio of the span length to the diameter of the cylinder as well as the Reynolds number. It is also found that drag and lift forces on the cylinder show different dominance of Karman vortices and tip vortices for different span-to-diameter ratios. A detailed analysis of the mean and fluctuating velocity, pressure fields, and spectral characteristics of separated flow is presented for laminar-to-transitional flows over cylinders with different aspect ratios. Supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning Grant NRF-2014R1A2A1A11049599.
Diffusion model for Knudsen-type compressor composed of periodic arrays of circular cylinders
NASA Astrophysics Data System (ADS)
Taguchi, Satoshi
2010-10-01
A rarefied gas flow in a long porous channel having a periodic structure that is consisting of alternately arranged porous media and gaps, the former of which contains a periodic array of parallel circular cylinders, is considered for the case in which the channel is infinitely wide. The cylinder arrays have a periodic temperature distribution with the same period as the structure. Under the assumption that the length of each cylinder array and that of each gap are much larger than the period of the cylinders in the array, a fluid-dynamic system describing the overall behavior of the gas in the channel is derived from the kinetic system composed of the Bhatnagar-Gross-Krook equation and the diffuse reflection boundary condition. The derived system is composed of a diffusion model for each cylinder array, whose isothermal version has been reported previously [S. Taguchi and P. Charrier, Phys. Fluids 20, 067103 (2008)], a set of fluid-dynamic equations for each gap, and the macroscopic connection conditions at each junction between an array and a gap. Then, the fluid-dynamic system is applied to a long channel consisting of many cylinder arrays and gaps. Some numerical results demonstrating the pumping effect of the flow are presented.
Yagyu, Sumio; Fujishima, Ichiro; Corey, J.; Isshiki, Naotsugu
1996-12-31
This paper describes a method for analysis and optimization of multi-cylinder regenerative machines. The authors have devised this method in a project at KUBOTA to develop an improved gas engine-driven heat pump using both shaft power and exhaust heat sources. Based on combinations of included Stirling cycles, this analytical approach allows use of well-established and validated Stirling simulation models to optimize partial systems. The technique further provides a method of integrating such optimal partial-system Stirling cycles into a complex combination system. It is shown that this remains an optimum solution for the three-cylinder heat-assisted heat pump case. Results from hardware tests of the main Stirling heat pump cycle (2-cylinders) are given and compared with analytical expectations using Sage simulation code. This is extended to validate Sage modeling of 3-cylinder machines.
Heat-transfer processes in air-cooled engine cylinders
NASA Technical Reports Server (NTRS)
Pinkel, Benjamin
1938-01-01
From a consideration of heat-transfer theory, semi-empirical expressions are set up for the transfer of heat from the combustion gases to the cylinder of an air-cooled engine and from the cylinder to the cooling air. Simple equations for the average head and barrel temperatures as functions of the important engine and cooling variables are obtained from these expressions. The expressions involve a few empirical constants, which may be readily determined from engine tests. Numerical values for these constants were obtained from single-cylinder engine tests for cylinders of the Pratt & Whitney 1535 and 1340-h engines. The equations provide a means of calculating the effect of the various engine and cooling variables on the cylinder temperatures and also of correlating the results of engine cooling tests. An example is given of the application of the equations to the correlation of cooling-test data obtained in flight.
Heat storage capability of a rolling cylinder using Glauber's salt
NASA Technical Reports Server (NTRS)
Herrick, C. S.; Zarnoch, K. P.
1980-01-01
The rolling cylinder phase change heat storage concept was developed to the point where a prototype design is completed and a cost analysis is prepared. A series of experimental and analytical tasks are defined to establish the thermal, mechanical, and materials behavior of rolling cylinder devices. These tasks include: analyses of internal and external heat transfer; performance and lifetime testing of the phase change materials; corrosion evaluation; development of a mathematical model; and design of a prototype and associated test equipment.
NASA Astrophysics Data System (ADS)
Korkischko, I.; Meneghini, J. R.
2010-05-01
The effect of varying the geometric parameters of helical strakes on vortex-induced vibration (VIV) is investigated in this paper. The degree of oscillation attenuation or even suppression is analysed for isolated circular cylinder cases. How a cylinder fitted with strakes behaves when immersed in the wake of another cylinder in tandem arrangement is also investigated and these results are compared to those with a single straked cylinder. The experimental tests are conducted at a circulating water channel facility and the cylindrical models are mounted on a low-damping air bearing elastic base with one degree-of-freedom, restricted to oscillate in the transverse direction to the channel flow. Three strake pitches (p) and heights (h) are tested: p=5, 10, 15d, and h=0.1, 0.2, 0.25d. The mass ratio is 1.8 for all models. The Reynolds number range is from 1000 to 10 000, and the reduced velocity varies up to 21. The cases with h=0.1d strakes reduce the amplitude response when compared to the isolated plain cylinder, however the oscillation still persists. On the other hand, the cases with h=0.2, 0.25d strakes almost completely suppress VIV. Spanwise vorticity fields, obtained through stereoscopic digital particle image velocimetry (SDPIV), show an alternating vortex wake for the p=10d and h=0.1d straked cylinder. The p=10d and h=0.2d cylinder wake has separated shear layers with constant width and no roll-up close to the body. The strakes do not increase the magnitude of the out-of-plane velocity compared to the isolated plain cylinder. However, they deflect the flow in the out-of-plane direction in a controlled way, which can prevent the vortex shedding correlation along the span. In order to investigate the wake interference effect on the strake efficiency, an experimental arrangement with two cylinders in tandem is employed. The centre-to-centre distance for the tandem arrangement varies from 2 to 6. When the downstream p=10d and h=0.2d cylinder is immersed in the
NASA Technical Reports Server (NTRS)
Tang, C. C. H.
1981-01-01
In response to the inconsistency seen in Geogevic (1973) with respect to the solution for solar radiation pressure in the case of a circular cylinder, a succinct derivation of the correct solution is presented. Numerical comparisons of the two sets of results confirm that the new formulation yields physically reasonable results for both general and special cases. A detailed graphic representation of the mathematical model used is included.
NASA Technical Reports Server (NTRS)
Mccomb, Harvey G , Jr
1954-01-01
Equations are derived for the stress distributions caused by three types of loading on infinitely long circular, semimonocoque cylinders with flexible rings. The results are given as formula for the stringer loads and shear flows in the shell due to each type of loading. For each loading case these formulas can be used to construct tables of influence coefficients giving stringer loads and shear flows in the neighborhood of the load due to a unit magnitude of the load. (author)
Wave multiple scattering by a finite number of unclosed circular cylinders
NASA Technical Reports Server (NTRS)
Veliyev, E. I.; Veremey, V. V.
1984-01-01
The boundary value problem of plane H-polarized electromagnetic wave multiple scattering by a finite number of unclosed circular cylinders is solved. The solution is obtained by two different methods: the method of successive scattering and the method of partial matrix inversion for simultaneous dual equations. The advantages of the successive scattering method are shown. Computer calculations of the suface currents and the total cross section are presented for the structure of two screens.
Bending Tests of Circular Cylinders of Corrugated Aluminum-alloy Sheet
NASA Technical Reports Server (NTRS)
Buckwalter, John C; Reed, Warren D; Niles, Alfred S
1937-01-01
Bending tests were made of two circular cylinders of corrugated aluminum-alloy sheet. In each test failure occurred by bending of the corrugations in a plane normal to the skin. It was found, after analysis of the effect of short end bays, that the computed stress on the extreme fiber of a corrugated cylinder is in excess of that for a flat panel of the same basic pattern and panel length tested as a pin-ended column. It is concluded that this increased strength was due to the effects of curvature of the pitch line. It is also concluded from the tests that light bulkheads closely spaced strengthen corrugated cylinders very materially.
NASA Technical Reports Server (NTRS)
Nemeth, Michael P.
2014-01-01
Nonlinear and bifurcation buckling equations for elastic, stiffened, geometrically perfect, right-circular cylindrical, anisotropic shells subjected to combined loads are presented that are based on Sanders' shell theory. Based on these equations, a three-parameter approximate Rayleigh-Ritz solution and a classical solution to the buckling problem are presented for cylinders with simply supported edges. Extensive comparisons of results obtained from these solutions with published results are also presented for a wide range of cylinder constructions. These comparisons include laminated-composite cylinders with a wide variety of shell-wall orthotropies and anisotropies. Numerous results are also given that show the discrepancies between the results obtained by using Donnell's equations and variants of Sanders' equations. For some cases, nondimensional parameters are identified and "master" curves are presented that facilitate the concise representation of results.
Oscillating flow about circular cylinders at low keulegan-carpenter numbers
NASA Astrophysics Data System (ADS)
Yuen, N. Q. S.
1985-09-01
The in-line force and the resulting drag and inertia coefficients for smooth and rough circular cylinders immersed in a sinusoidally oscillating flow at low Keulegan-Carpenter numbers (K) have been determine experimentally and compared with those obtained theoretically by Stokes and Wang. In addition, flow visualization experiments were carried out with oscillating cylinders in a water table and the stability of the flow was investigated. The results have shown that for very low values of K, the flow about the cylinder is laminar, attached, and stable and the drag coefficient is nearly identical to that predicted theoretically. At a critical K, the flow becomes unstable to Taylor-Gortler vortices and the drag coefficient jumps to a higher value. Subsequently, the flow separates, becomes turbulent and results in a minimum drag coefficient. The subsequent increases in drag are attributed to vortex shedding. The inertia coefficient agrees with that obtained theoretically in the range where the flow is laminar.
Streamwise Oscillations of Freely Vibrating Circular Cylinder in the Vicinity of a Stationary Wall
NASA Astrophysics Data System (ADS)
Jaiman, Rajeev; Tham, Daniel; Zhong, Li; Gurugubelli, Pardha
2015-11-01
We present a numerical study on vortex-induced vibration (VIV) of a freely vibrating two degree-of-freedom circular cylinder in close proximity to a stationary plane wall. Fully implicit combined field scheme based on Petrov-Galerkin formulation has been employed to analyze the nonlinear effects of wall proximity on the vibrational amplitudes and hydrodynamic forces. Two-dimensional simulations are performed as function of decreasing gap to cylinder diameter ratio e / D ∈ [ 0 . 5 , 10 ] for reduced velocities U* ∈ [ 2 , 10 ] at ReD = 100 and ReL = 2900 , where ReD and ReL denote the Reynolds numbers based on the cylinder diameter and the upstream distance, respectively. We investigate the origin of enhanced streamwise oscillation of freely vibrating near-wall cylinder as compared to the isolated cylinder counterpart. For that purpose, detailed analysis of the amplitudes, frequency characteristics and the phase relations has been performed for the isolated and near-wall configurations. Initial and lower branches in the amplitude response are found from the gap ratios of 0.75 to 10, similar in nature to the isolated cylinder laminar VIV. For near-wall cases, phase relation between drag force and streamwise displacement varies from close to 0° to 180°. Effects of mass-ratio, thickness of wall boundary layer and cylinder depth from the top surface are further investigated. Finally, we introduce new correlations for characterizing peak amplitudes and forces as a function of the gap ratio for a cylinder vibrating in the vicinity of a stationary plane wall.
Power loss minimizing blowing and suction profiles for drag reduction on a circular cylinder
NASA Astrophysics Data System (ADS)
Giri, Pritam; Shukla, Ratnesh
2015-11-01
Active and passive flow control strategies that facilitate drag reduction at low energetic costs are of considerable fundamental and practical relevance. Here, we investigate the efficacy of a zero net mass transpiration blowing and suction flow control strategy based on intake and expulsion of fluid from the boundary of a circular cylinder placed in a uniform cross flow of a viscous incompressible fluid. We find this control strategy to be most effective when the blowing and suction profile is such that the fluid intake and expulsion occur over upstream and downstream portions of the circular cylinder, respectively. With increasingly strong intake and expulsion, the vorticity production at the cylinder surface diminishes significantly and the unsteady vortex shedding is suppressed entirely. We find that for sufficiently strong blowing and suction strengths the net power consumption attains a minimum for a significantly reduced net drag force. At a Reynolds number of 1000 the drag is reduced by a factor of over 15 from its base value for a stationary cylinder with zero mass transpiration. We show that a self-propelling state with zero drag force is achieved for a configuration that corresponds to an irrotational flow with vanishing tangential but finite normal surface velocity.
Separation of sheet flow on the surface of a circular cylinder
NASA Astrophysics Data System (ADS)
Isshiki, Hiroshi; Yoon, Bum-Sang; Yum, Deuk-Joon
2009-08-01
The shape of a spout of a pot is very important for the liquid to flow smoothly from the pot. This is known as the "teapot effect." Separation of flow must take place at the tip of the spout. Separation of sheet flow on the surface of a circular cylinder may provide an explanation as to why pot spouts have such a unique shape. As can be easily observed by a simple experiment, separation of sheet flow from the surface of a circular cylinder is a very interesting phenomenon beyond intuition. In the nonviscous case, the flow released at the top of the surface may proceed completely around the surface and come back to the flow start point without separation. In the present paper, effects of gravity and viscosity on sheet flow are theoretically explained and the theory is verified by experiments. The results of the theoretical model proposed in the present study were very similar to the experimental measurements. In the present study, the effects of viscosity on sheet flow on a circular cylinder, the location of flow separation, and other associated responses were investigated.
UF{sub 6} pressure excursions during cylinder heating
Brown, P.G.
1991-12-31
As liquid UF{sub 6} inside a cylinder changes from a liquid to a solid, it forms a porous solid which occupies approximately the same volume as that of the liquid before cooling. Simultaneously as the liquid cools, UF{sub 6} vapor in the cylinder ullage above the liquid desublimes on the upper region of the inner cylinder wall. This solid is a dense, glass-like material which can accumulate to a significant thickness. The thickness of the solid coating on the upper cylinder wall and directly behind the cylinder valve area will vary depending on the conditions during the cooling stage. The amount of time lapsed between UF{sub 6} solidification and UF{sub 6} liquefaction can also affect the UF{sub 6} coating. This is due to the daily ambient heat cycle causing the coating to sublime from the cylinder wall to cooler areas, thus decreasing the thickness. Structural weakening of the dense UF{sub 6} layer also occurs due to cylinder transport vibration and thermal expansion. During cylinder heating, the UF{sub 6} nearest the cylinder wall will liquefy first. As the solid coating behind the cylinder valve begins to liquefy, it results in increased pressure depending upon the available volume for expansion. At the Paducah Gaseous Diffusion Plant (PGDP) during the liquefaction of the UF{sub 6} in cylinders in the UF{sub 6} feed and sampling autoclaves, this pressure increase has resulted in the activation of the systems rupture discs which are rated at 100 pounds per square inch differential.
Shock interference studies on a circular cylinder at Mach 16
NASA Technical Reports Server (NTRS)
Prabhu, Ramadas K.; Thareja, Rajiv R.; Stewart, James R.
1990-01-01
This paper presents the results of a computational study on the shock interference problems on a cylindrical body typical of an engine inlet cowl leading edge at a nominal Mach number of 16. The two-dimensional Navier-Stokes equations are solved assuming the flow to be in chemical and thermal equilibrium and using a finite element method. The algorithm employs a cell-centered fully implicit upwind scheme. Adaptively generated unstructured meshes of triangles and quadrilaterals are employed. Under certain conditions the finite element code resulted in oscillatory solutions for shock interference at Mach 16. Some of the causes of the unsteady behavior are identified, and to the extent possible, such situations are avoided in the present application. Two shock interference conditions involving a Type IV (supersonic jet) and a Type III (attaching shear layer) are solved. The results are compared with available experimental data and reasonable agreement is observed. A semi-empirical method is also used to estimate the maximum surface heat flux and static pressure.
NASA Astrophysics Data System (ADS)
Yokoi, Yoshifumi
2016-06-01
In order to investigate the generating mechanism of the Karman vortex, the flow visualization experiment of the around of a circular cylinder with splitter plate was performed. Six kinds of circular cylinders with splitter plate were prepared. The main flow velocity was set as 0.04 m.s-1 (corresponding Reynolds number is 560), the oscillating amplitude ratio and the oscillation frequency ratio were varied about each circular cylinder with splitter plate, and the visualization experiment was performed. The dye oozing streak method was used as the technique of visualization. As a result, ten kinds of typical flow patterns of the oscillating circular cylinder with splitter plate were obtained. It was a simultaneous vortex shedding type lock-in in most cases of carrying out a lock-in. In order to discharge vortices alternately, it was found that the information on the mutual vortex flow of a wake is required.
Vortex-induced vibrations of a neutrally buoyant circular cylinder near a plane wall
NASA Astrophysics Data System (ADS)
Wang, X. K.; Hao, Z.; Tan, S. K.
2013-05-01
This paper presents an experimental study of the motions, drag force and vortex shedding patterns of an elastically mounted circular cylinder, which is held at various heights above a plane wall and is subject to vortex-induced vibration (VIV) in the transverse direction. The cylinder is neutrally buoyant with a mass ratio m=1.0 and has a low damping ratio ζ=0.0173. Effects of the gap ratio (S/D) ranged from 0.05 to 2.5 and the free-stream velocity (U) ranged from 0.15 to 0.65m/s (corresponding to 3000≤Re≤13 000, and 1.53≤U≤6.62) are examined. The flow around the cylinder has been measured using particle image velocimetry (PIV), in conjunction with direct measurements of the dynamic drag force on the cylinder using a piezoelectric load cell. Results of the vibrating cylinder under unbounded (or free-standing) condition, as well as those of a near-wall stationary cylinder at the same gap ratios, are also provided. For the free-standing cylinder, the transition from the initial branch to the upper branch is characterized by a switch of vortex pattern from the classical 2S mode to the newly-discovered 2PO mode by Morse and Williamson (2009). The nearby wall not only affects the amplitude and frequency of vibration, but also leads to non-linearities in the cylinder response as evidenced by the presence of super-harmonics in the drag force spectrum. In contrast to the case of a stationary cylinder that vortex shedding is suppressed below a critical gap ratio (S/D≈0.3), the elastically mounted cylinder always vibrates even at the smallest gap ratio S/D=0.05. Due to the proximity of the plane wall, the vortices shed from the vibrating cylinder that would otherwise be in a double-sided vortex street pattern (either 2S or 2PO mode) under free-standing condition are arranged into a single-sided pattern.
Secondary instability in the wake of the flow around two circular cylinders in tandem arrangements
NASA Astrophysics Data System (ADS)
Carmo, Bruno; Meneghini, Julio; Sherwin, Spencer
2008-11-01
The stability of three-dimensional perturbations about two-dimensional time-periodic vortex wakes of the flow around two identical circular cylinders in tandem arrangements is investigated. The centre-to-centre separation is varied from 1.5 to 5 cylinder diameters. Direct linear stability analysis is employed to determine the shape, wavelength and onset of unstable three-dimensional perturbations. In addition the non-linear character of the bifurcations is identified through three-dimensional direct numerical simulations performed in the vicinity of the critical points. It is found that, for configurations with large cylinder separations, the first stages of the wake transition are similar to those observed in the flow around an isolated cylinder, although the onset of the secondary instability occurs at a lower Reynolds number. In contrast, for small separations the transition route is significantly different, resembling that of the flow in a periodically driven cavity. For these configurations the onset of the first instability arises at a higher Reynolds number than in the case of an isolated cylinder.
NASA Astrophysics Data System (ADS)
Higuchi, Hiroshi; Sawada, Hideo; Kato, Hiroyuki
The flow over cylinders of varying fineness ratio (length to diameter) aligned with the free stream was examined using a magnetic suspension and balance system in order to avoid model support interference. The drag coefficient variation of a right circular cylinder was obtained for a wide range of fineness ratios. Particle image velocimetry (PIV) was used to examine the flow field, particularly the behaviour of the leading-edge separation shear layer and its effect on the wake. Reynolds numbers based on the cylinder diameter ranged from 5105, while the major portion of the experiment was conducted at ReD=1.0×105. For moderately large fineness ratio, the shear layer reattaches with subsequent growth of the boundary layer, whereas over shorter cylinders, the shear layer remains detached. Differences in the wake recirculation region and the immediate wake patterns are clarified in terms of both the mean velocity and turbulent flow fields, including longitudinal vortical structures in the cross-flow plane of the wake. The minimum drag corresponded to the fineness ratio for which the separated shear layer reattached at the trailing edge of the cylinder. The base pressure was obtained with a telemetry technique. Pressure fields and aerodynamic force fluctuations are also discussed.
NASA Technical Reports Server (NTRS)
Rais-Rohani, Masoud
2001-01-01
This report describes the preliminary results of an investigation on component reliability analysis and reliability-based design optimization of thin-walled circular composite cylinders with average diameter and average length of 15 inches. Structural reliability is based on axial buckling strength of the cylinder. Both Monte Carlo simulation and First Order Reliability Method are considered for reliability analysis with the latter incorporated into the reliability-based structural optimization problem. To improve the efficiency of reliability sensitivity analysis and design optimization solution, the buckling strength of the cylinder is estimated using a second-order response surface model. The sensitivity of the reliability index with respect to the mean and standard deviation of each random variable is calculated and compared. The reliability index is found to be extremely sensitive to the applied load and elastic modulus of the material in the fiber direction. The cylinder diameter was found to have the third highest impact on the reliability index. Also the uncertainty in the applied load, captured by examining different values for its coefficient of variation, is found to have a large influence on cylinder reliability. The optimization problem for minimum weight is solved subject to a design constraint on element reliability index. The methodology, solution procedure and optimization results are included in this report.
Effects of an upstream tetrahedron on the circular cylinder-flat plate juncture flow
NASA Astrophysics Data System (ADS)
Huang, R. F.; Hsu, C. M.; Chen, C.
2015-07-01
A technique of installing a tetrahedron at the upstream corner of the circular cylinder-flat plate juncture is developed to control the characteristic horseshoe vortices appearing in the natural juncture flow. The Reynolds numbers based on the cylinder diameter are within the range of 500-2900. The flow patterns and time-averaged velocity fields in the vertical symmetry plane and a horizontal plane near the flat plate of the natural and tetrahedron-controlled juncture flows are examined by using the laser-assisted particle flow visualization method and particle image velocimetry in a towing water tank. The flow approaching the circular cylinder-flat plate juncture can induce a characteristic horseshoe vortical flow consisting of a single vortex, dual vortex, or triple vortex. These horseshoe vortices appearing in the natural case may be changed to a characteristic mode of vortical flow, reverse flow, or forward flow when a tetrahedron is installed at the upstream corner of the juncture. The appearance of the vortical flow, reverse flow, or forward flow mode depends on the geometric parameters of normalized axial length, expansion angle, and tilt angle as well as the flow parameter of the Reynolds number. The vortical flow mode appears at small axial length of tetrahedron. The forward flow mode appears at the large axial length of tetrahedron. When the forward flow mode appears, the boundary-layer upstream of the circular cylinder does not separate. Therefore, the horseshoe vortices induced in the natural juncture flow disappear. The data bank consists of the design parameters of axial length, tilt angle, and expansion angle of the tetrahedron, which is provided as a figure.
NASA Astrophysics Data System (ADS)
Lam, K. M.; Liu, P.; Hu, J. C.
2010-07-01
This paper attempts to study the roles of lateral cylinder oscillations and a uniform cross-flow in the vortex formation and wake modes of an oscillating circular cylinder. A circular cylinder is given lateral oscillations of varying amplitudes (between 0.28 and 1.42 cylinder-diameters) in a slow uniform flow stream (Reynolds number=284) to produce the 2S, 2P and P+S wake modes. Detailed flow information is obtained with time-resolved particle-image velocimetry and the phase-locked averaging techniques. In the 2S and 2P mode, the flow speeds relative to the cylinder movement are less than the uniform flow velocity and it is found that initial formation of a vortex is caused by shear-layer separation of the uniform flow on the cylinder. Subsequent development of the shear-layer vortices is affected by the lateral cylinder movement. At small cylinder oscillation amplitudes, vortices are shed in synchronization with the cylinder movement, resulting in the 2S mode. The 2P mode occurs at larger cylinder oscillation amplitudes at which each shear-layer vortex is found to undergo intense stretching and eventual bifurcation into two separate vortices. The P+S mode occurs when the cylinder moving speeds are, for most of the time, higher than the speed of the uniform flow. These situations are found at fast and large-amplitude cylinder oscillations in which the flow relative to the cylinder movement takes over the uniform flow in governing the initial vortex formation. The formation stages of vortices from the cylinder are found to bear close resemblance to those of a vortex street pattern of a cylinder oscillating in an otherwise quiescent fluid at Keulegan-Carpenter numbers around 16. Vortices in the inclined vortex street pattern so formed are then convected downstream by the uniform flow as the vortex pairs in the 2P mode.
Li, Qiuxiang; Chai, Zhenhua; Shi, Baochang; Liang, Hong
2014-10-01
In this paper, we present a numerical study on the deformation and breakup behavior of liquid droplet past a solid circular cylinder by using an improved interparticle-potential lattice Boltzmann method. The effects of the eccentric ratio β, viscosity ratio λ between the droplet and the surrounding fluid, surface wettability, and Bond number (Bo) on the dynamic behavior of the liquid droplet are considered. The parameter β represents the degree that the solid cylinder deviates from the center line, and Bo is the ratio between the inertial force and capillary force. Numerical results show that there are two typical patterns, i.e., breakup and no breakup, which are greatly influenced by the aforementioned parameters. When β increases to a critical value βc, the droplet can pass the circular cylinder without a breakup, otherwise, the breakup phenomenon occurs. The critical eccentric ratio βc increases significantly with increasing Bo for case with λ>1, while for the case with λ<1, the viscosity effects on the βc is not obvious when Bo is large. For the breakup case, the amount of deposited liquid on the tip of the circular cylinder is almost unaffected by β. In addition, the results also show that the viscosity ratio and wettability affect the deformation and breakup process of the droplet. For case with λ<1, the viscosity ratio plays a minor role in the thickness variations of the deposited liquid, which decreases to a nonzero constant eventually; while for λ>1, the increase of the viscosity ratio significantly accelerates the decrease of the deposited liquid, and finally no fluid deposits on the cylinder. In term of the wettability, there occurs continuous gas phase trapped by the wetting droplet, but this does not happen for nonwetting droplet. Besides, for λ<1, the time required to pass the cylinder (tp) decreases monotonically with decreasing contact angle, while a nonmonotonic decrease appears for λ>1. It is also found that tp decreases
Control of flow around a circular cylinder by bleed near the separation points
NASA Astrophysics Data System (ADS)
Shi, Xu-Dong; Feng, Li-Hao
2015-12-01
The flow around a circular cylinder under bleed control is experimentally investigated in a water tunnel. The bleed jets are issued from the narrow slots directed from the front stagnation point to the positions near the upper and lower separation points. The Reynolds numbers based on the cylinder diameter are Re = 400, 780, and 1470, while the widths of the bleed slot are selected as w/D = 0.05, 0.1, and 0.2. The bleed jet interacts with the boundary layer, postponing the separation point to be near the downstream edge of the slot. It further modifies the wake shear layer, which moves away from the centerline. Thus, the recirculation bubble downstream of the circular cylinder is enlarged and the near wake width are increased, resulting in an increased vortex formation length and a decreased vortex shedding frequency. Such changes of the flow field increase with the bleed width. The vortex dynamics is also analyzed, showing that the wake pattern could be modified by the bleed control. The wake vortex is converted into a bistable mode at w/D = 0.1 and 0.2, Re = 780 and 1470, where the symmetric and asymmetric modes are both observed, while all the control cases at Re = 400 still show the asymmetric mode.
Energetically efficient Proportional-Integral control of flow past a circular cylinder
NASA Astrophysics Data System (ADS)
Kesavadas, Pramode; Anand, Vijay; Patnaik, B. S. V.; Shaiju, A. J.
2015-11-01
In this numerical study, we present an energetically efficient Proportional (P) and Integral (I) control strategy for the cessation of vortex shedding behind a circular cylinder. Reflectionally symmetric controllers are designed such that, they are located on a small sector of the cylinder over which, tangential sliding mode control is imparted. Energetically efficient optimal parameters for the P, I and PI controls have been numerically assessed. An estimation of the time-averaged kinetic energy of different flow regimes using Proper Orthogonal Decomposition (POD) is also carried out. These values are obtained with and without the optimal controllers. The Navier-Stokes equations along with an evolution equation for the PI controller, is numerically solved using finite volume method. The optimization procedure is formulated as a standard Linear Quadratic (LQ) problem and the time-averaged kinetic energy is obtained by summation of POD eigenvalues. The energetic efficiency for the, I controller was observed to be superior compared to the other two classes of controllers. By performing detailed fluid flow simulations, it was observed that, the system is energetically efficient, even when the twin eddies are still persisting behind the circular cylinder. The first author wishes to acknowledge the Ministry of Human Resource Development, Govt. of India.
NASA Astrophysics Data System (ADS)
Gu, F.; Wang, J. S.; Qiao, X. Q.; Huang, Z.
2012-01-01
Previous studies on the flow around a circular cylinder with fixed splitter plates have shown that the drag and lift can be reduced, and the primary vortex shedding can be suppressed obviously. In this study, a wind tunnel experiment on the flow around a circular cylinder with diameter D (40 mm) attached with ten splitter plates freely rotatable around the cylinder axis has been carried out with different ratios of length to cylinder diameter (L/D) from 0.5 to 6.0, in a range of Reynolds number from 3×104 to 6×104. The influences of the attachment of these rotatable splitter plates on the pressure distribution, fluctuating drag and lift forces and vortex shedding behavior were investigated. It is found that the splitter plates rotate to an off-axis equilibrium angle δ (on either side of the wake with equal probability) rather than align themselves with free stream due to the integrated effect of the pressure difference along the sides of the splitter plates. The plate length L/D is crucial in determining the equilibrium angle δ. Longer splitter plate causes smaller angle; δ remains zero, i.e., parallel to the flow direction, for L/D≥4. The mean pressures in the wake near the cylinder are higher than that of a bare cylinder. Further, the mean drag coefficients and the root-mean-square fluctuating lift coefficients, which are also largely determined by δ, are less than those of the corresponding bare cylinder, with a reduction up to about 30% and 90%, respectively. However, freely rotatable splitter plate develops a mean lift force towards the side the plate has deflected. In addition, the Strouhal number of fluctuating forces and correlation analysis are presented. The visualized flow structures show that the freely rotatable splitter plates elongate the vortex formation region, and the communication between the two shear layers on either side of the body is inhibited. For comparison, experiments of attaching fixed splitter plates with the same size were
On the power required to control the circular cylinder wake by rotary oscillations
NASA Astrophysics Data System (ADS)
Bergmann, Michel; Cordier, Laurent; Brancher, Jean-Pierre
2006-08-01
In this Brief Communication, we determine an approximate relation that gives the mean time power required to control the wake flow downstream from a circular cylinder. The control law is the sinusoidal tangential velocity imposed on whole or part of the cylinder surface. The mean control power thus depends on four parameters: the amplitude and the Strouhal number of forcing, the control angle that defines the controlled upstream part of the cylinder, and the Reynolds number. This relation indicates that the control power grows like the square of the forcing amplitude, like the square root of the forcing Strouhal number, linearly with the control angle and varies like the inverse of the square root of the Reynolds number. We show that the values obtained with this approximate relation are in very good agreement with the corresponding values given numerically. Finally, the energetic efficiency of the control is discussed. We claimed that the most energetically efficient control law corresponds a priori to low forcing amplitudes applied to a restricted upstream part of the cylinder for relatively high values of the Reynolds number.
A numerical study of shock wave diffraction by a circular cylinder
NASA Technical Reports Server (NTRS)
Yang, J.-Y.; Liu, Y.; Lomax, H.
1986-01-01
The nonstationary shock wave diffraction patterns generated by a blast wave impinging on a circular cylinder are numerically simulated using a second-order hybrid upwind method for solving the two-dimensional inviscid compressible Euler equations of gasdynamics. The complete diffraction patterns, including the transition from regular to Mach reflection, trajectory of the Mach triple point and the complex shock-on-shock interaction at the wake region resulting from the Mach shocks collision behind the cylinder are reported in detail. Pressure-time history and various contour plots are also included. Comparison between the work of Bryson and Gross (1961) which included both experimental schlieren pictures and theoretical calculations using Whitham's ray-shock theory and results of the present finite difference computation indicate good agreement in every aspect except for some nonideal gas and viscous effects which are not accounted for by the Euler equations.
Reynolds and froude number effect on the flow past an interface-piercing circular cylinder
NASA Astrophysics Data System (ADS)
Koo, Bonguk; Yang, Jianming; Yeon, Seong Mo; Stern, Frederick
2014-09-01
The two-phase turbulent flow past an interface-piercing circular cylinder is studied using a high-fidelity orthogonal curvilinear grid solver with a Lagrangian dynamic subgrid-scale model for large-eddy simulation and a coupled level set and volume of fluid method for air-water interface tracking. The simulations cover the sub-critical and critical and post critical regimes of the Reynolds and sub and super-critical Froude numbers in order to investigate the effect of both dimensionless parameters on the flow. Significant changes in flow features near the air-water interface were observed as the Reynolds number was increased from the sub-critical to the critical regime. The interface makes the separation point near the interface much delayed for all Reynolds numbers. The separation region at intermediate depths is remarkably reduced for the critical Reynolds number regime. The deep flow resembles the single-phase turbulent flow past a circular cylinder, but includes the effect of the free-surface and the limited span length for sub-critical Reynolds numbers. At different Froude numbers, the air-water interface exhibits significantly changed structures, including breaking bow waves with splashes and bubbles at high Froude numbers. Instantaneous and mean flow features such as interface structures, vortex shedding, Reynolds stresses, and vorticity transport are also analyzed. The results are compared with reference experimental data available in the literature. The deep flow is also compared with the single-phase turbulent flow past a circular cylinder in the similar ranges of Reynolds numbers. Discussion is provided concerning the limitations of the current simulations and available experimental data along with future research
Modelling of fully separated flow past a circular cylinder: Problems and best practice
NASA Astrophysics Data System (ADS)
Kojouharova, J.; Weisweiler, H.
2015-10-01
This paper gives a draft overview of the elaborated strategy for a reliable simulation of a subcritical incompressible viscous flow past a circular cylinder by the means of the commercial Software ANSYS CFX. It is motivated by its relevance to serve as a general flow prototype past a bluff body, which is an issue of considerable engineering interest, and is focused on the computational specifics of the topic. The flow separation is investigated by the means available in the ANSYS CFX Reynolds Averaged Navier-Stokes Simulations (RANS) method as the Shear Stress Transport model is employed.
Computation of flow around a circular cylinder in a supercritical regime
NASA Technical Reports Server (NTRS)
Ishii, K.; Kuwahara, K.; Kawamura, T.; Ogawa, S.; Chyu, W. J.
1985-01-01
Compressible flows around a circular cylinder in a supercritical regime at Mach number 0.3 have been calculated by using the Beam-Warming-Steger scheme based on the full Navier-Stokes equations with improved accuracy. The flow patterns are visualized extensively to observe the characteristics in this regime. The computations show that the flow at certain Reynolds numbers in a supercritical regime becomes rather steady and irregular with small drag coefficients. This may correspond to the experimental observations that the Strouhal number can not be measured clearly at a certain Reynolds number range in the supercritical regime.
Three-dimensional stability analysis of the periodic flow around a circular cylinder
NASA Astrophysics Data System (ADS)
Noack, Bernd R.; König, Michael; Eckelmann, Helmut
1993-06-01
The onset of three-dimensionality in the von Kármán vortex street behind a circular cylinder is investigated by carrying out the first global, nonparallel, three-dimensional stability analysis of the periodic flow. This flow is found to become unstable at a Reynolds number of 170 by a critical, three-dimensional Floquet mode with a spanwise wavelength of 1.8 diam. The spatial structure of this mode indicates that the onset of three-dimensionality is due to a near-wake instability and not caused by a stagnation-line or a boundary-layer instability.
An experimental investigation of jet plume simulation with solid circular cylinders
NASA Technical Reports Server (NTRS)
Reubush, D. E.
1974-01-01
An investigation has been conducted in the Langley 16-foot transonic tunnel to determine the effectiveness of utilizing solid circular cylinders to simulate the jet exhaust plume for a series of four isolated circular arc afterbodies with little or no flow separation. This investigation was conducted at Mach numbers from 0.40 to 1.30 at 0 deg angle of attack. Plume simulators with simulator diameter to nozzle exit diameter ratios of 0.82, 0.88, 0.98, and 1.00 were investigated with one of the four configurations while the 0.82 and 1.00 simulators were investigated with the other three. Reynolds number based on maximum model diameter varied from approximately 1.50 to 2.14 million.
NASA Astrophysics Data System (ADS)
Cohen, Raymond; Iaccarino, Gianluca
2005-11-01
Previously published exprimental data of the flow around two circular cylinders arranged in tandem have shown that for small spacings between the cylinders, the shear layer from the upstream cylinder reattaches to the downstream cylinder, hence creating a recirculation region in between the two cylinders. The experimental data was obtained at Re=65,000 and it was found that beyond a critical spacing (L/D ˜ 4.0), the upstream shear layer ceases to attach to the downstream cylinder, resulting in a dramatic change in the flow mechanisms. Previous numerical studies using two-dimensional RANS and URANS were unsatisfactory at predicting the length of the recirculation region of the upstream cylinder and consequently badly predicted the hydrodynamic forces between the two cylinders. In this study, Large Eddy Simulation with a dynamic Smagorinsky subgrid-scale model was used to investigate the flow around two circular cylinders arranged in tandem. Results from high Reynolds numbers simulations will be presented and practical considerations in using LES in such a flow configuration will be discussed.
NASA Technical Reports Server (NTRS)
Wang, Chi R.
1988-01-01
Boundary layer flow and turbulence transport analyses to study the influence of the free-stream turbulence on the surface heat transfer rate and the skin friction around the stagnation point of a circular cylinder in a turbulent flow are presented. The analyses are formulated with the turbulent boundary layer equations, the Reynolds stress transport equations and the k - epsilon two-equation turbulence modeling. The analyses are used to calculate the time-averaged turbulence double correlations, the mean flow properties, the surface heat transfer rate and the skin friction with an isotropic turbulence in the freestream. The analytical results are described and compared with the existing experimental measurements. Depending on the free-stream turbulence properties, the turbulence kinetic energy can increase or decrease as the flow moves toward the surface. However, the turbulence kinetic energy induces large Reynolds normal stresses at the boundary layer edge. The Reynolds normal stresses change the boundary layer profiles of the time-averaged double correlations of the velocity and temperature fluctuations, the surface heat transfer rate and the skin friction. The free-stream turbulence dissipation rate can affect the stagnation-point heat transfer rate but the influence of the free-stream temperature fluctuation on the heat transfer rate is insignificant.
Mechanism of tonal noise generation from circular cylinder with spiral fin
NASA Astrophysics Data System (ADS)
Yamashita, Ryo; Hayashi, Hidechito; Okumura, Tetsuya; Hamakawa, Hiromitsu
2014-12-01
The pitch of the spiral finned tube influences seriously to the acoustic resonance in the heat exchanger. In this research, the flow characteristics in relating to the aeolian tone from the finned cylinder are studied by the numerical simulation. It is observed that the tonal noise generated from the finned tube at two pitch spaces. The ratio of the fin pitch to the cylinder diameter is changed at 0.11 and 0.27. The tone level increases and the frequency decreases with the pitch shorter. The separation flow from the cylinder generates the span-wise vortices, Karman vortices, and the separation flow from the fin generates the stream-wise vortices. When the fin pitch ratio is small, the stream-wise vortices line up to span-wise and become weak rapidly. Only the Karman vortices are remained and integrate in span. So the Karman vortex became large. This causes the low frequency and the large aeolian tone.
Control of vortex shedding on a circular cylinder using self-adaptive hairy-flaps
NASA Astrophysics Data System (ADS)
Kunze, Sebastian; Brücker, Christoph
2012-01-01
Experiments on separation control using flexible self-adaptive hairy-flaps are presented herein. The wake-flow behind a circular cylinder is investigated without and with flexible hairy-flaps at the aft-part of the cylinder. Flow dynamics and hair motion were measured by particle image velocimetry and image processing in a range of Reynolds number 5000
Heat Transfer to Longitudinal Laminar Flow Between Cylinders
NASA Technical Reports Server (NTRS)
Sparrow, Ephraim M.; Loeffler, Albert L. Jr.; Hubbard, H. A.
1960-01-01
Consideration is given to the fully developed heat transfer characteristics for longitudinal laminar flow between cylinders arranged in an equilateral triangular array. The analysis is carried out for the condition of uniform heat transfer per unit length. Solutions are obtained for the temperature distribution, and from these, Nusselt numbers are derived for a wide range of spacing-to-diameter ratios. It is found that as the spacing ratio increases, so also does the wall-to-bulk temperature difference for a fixed heat transfer per unit length. Corresponding to a uniform surface temperature around the circumference of a cylinder, the circumferential variation of the local heat flux is computed. For spacing ratios of 1.5 - 2.0 and greater, uniform peripheral wall temperature and uniform peripheral heat flux are simultaneously achieved. A simplified analysis which neglects circumferential variations is also carried out, and the results are compared with those from the more exact formulation.
Heat transfer from cylinders having closely spaced fins
NASA Technical Reports Server (NTRS)
Biermann, Arnold E
1937-01-01
The heat-transfer coefficients have been determined for five steel cylinders having fins 1.22 inches wide and the spacing between the fins ranging from 0.022 to 0.131 inch. The cylinders were tested with and without baffles in a wind tunnel; they were also tested enclosed in jackets with the cooling air supplied by a blower. A maximum heat transfer was reached at a fin space of about 0.45 inch for the cylinders tested with each of the three methods of cooling investigated. The rise in temperature of the air passing between the fins and the change in flow pattern were found to be important factors limiting the heat transfer that may be obtained by decreasing the fin space. The use of baffles for directing the air around the cylinders with closely spaced fins proved very effective in increasing the over-all heat-transfer coefficient, provided that the spacing was not appreciably less than that for maximum heat transfer.
Control of the near wake behind a circular cylinder using superhydrophobic surfaces
NASA Astrophysics Data System (ADS)
Kim, Nayoung; Kim, Hyunseok; Park, Hyungmin
2014-11-01
In the present study, the effect of superhydrophobic (SHPo) surface on turbulent wake behind a circular cylinder is studied. Using 2D particle image velocimetry, velocity fields are measured in a water tunnel at ReD = 0 . 7 - 2 . 5 ×104 . For SHPo surfaces, spray-coating of hydrophobic nanoparticles and roughened Teflon (with a sandpaper) are applied. The griding direction of a Teflon surface is varied as streamwise and spanwise ones, respectively, to see the effect of slip direction as well. It is found that the surface slip increases the turbulence in the flows above the circular cylinder and along the separating shear layers, which result in the delay of flow separation and early vortex roll-up in the wake. As a result, the recirculation bubble in the wake is reduced by up to 50%, and the wake survey estimates the drag reduction of about 10%. On the other hand, the spanwise slip is found to be more effective than streamwise one in flow control, supporting the suggested mechanism. Finally, the SHPo surfaces are applied locally by varying its installation angle and SHPo surface applied around the separation point was most effective, indicating that the surface slip directly controls the flow separation. Supported by the NRF Programs (NRF-2012M2A8A4055647, NRF-2013R1A1A1008373) of Korean government.
Flow around circular cylinder oscillating at low Keulegan-Carpenter number
Sunahara, Shunji; Kinoshita, Takeshi
1994-12-31
This paper shows experimental results of hydrodynamic forces acting on a vertical circular cylinder oscillating sinusoidally at low frequencies in the still water and results of the flow visualization, to examine the flow around a circular cylinder, particularly the lift forces at low Keulegan-Carpenter number Kc. The instability of streaked flow of which section is mushroom shape is observed by flow visualization, and the flows are asymmetrical in some cases. The asymmetrical streaked flow may have a close relationship to the lift force at low Kc, Kc {le} 4 or 5. Asymmetrical mushroom vortex ring is visible for Kc {le} 1. The mushroom vortex ring is symmetrical, or the streaks of the rings arrange themselves alternately for 1 {le} Kc {le} 1.5. A clear ring of mushroom vortices is not formed due to diffusion of dye sheets, though a flow streaked with mushroom vortices is visible for 1.5 {le} Kc {le} 2.5 and for Kc {ge} 2.5 the flow is almost turbulent.
The velocity and vorticity fields of the turbulent near wake of a circular cylinder
NASA Technical Reports Server (NTRS)
Wallace, James; Ong, Lawrence; Moin, Parviz
1995-01-01
The purpose of this research is to provide a detailed experimental database of velocity and vorticity statistics in the very near wake (x/d less than 10) of a circular cylinder at Reynolds number of 3900. This study has determined that estimations of the streamwise velocity component in flow fields with large nonzero cross-stream components are not accurate. Similarly, X-wire measurements of the u and v velocity components in flows containing large w are also subject to the errors due to binormal cooling. Using the look-up table (LUT) technique, and by calibrating the X-wire probe used here to include the range of expected angles of attack (+/- 40 deg), accurate X-wire measurements of instantaneous u and v velocity components in the very near wake region of a circular cylinder has been accomplished. The approximate two-dimensionality of the present flow field was verified with four-wire probe measurements, and to some extent the spanwise correlation measurements with the multisensor rake. Hence, binormal cooling errors in the present X-wire measurements are small.
NASA Astrophysics Data System (ADS)
Morton, Chris; Saeedi, Mohammad; Martinuzzi, Robert
2015-11-01
The flow development over a cantilevered circular cylinder of aspect ratio 4 at Re = 300 has been investigated numerically by employing a laminar flow solution to the Navier-Stokes equations. The results show that two distinct wake modulation frequencies are detectable downstream of the cylinder, differing from higher Reynolds number turbulent flow cases where only one dominant frequency is present. In particular, there is a low frequency modulation with a well-defined narrow-band peak (fm) , and a high frequency contribution from the shedding of vortices (fv) . The fluctuating loading on the cylinder in the streamwise direction is tightly coupled with the low frequency modulation, while the transverse direction forces show only a weak correlation with the vortex shedding frequency. Coherent flow structures have been analyzed using proper orthogonal decomposition (POD) to provide insight into the nature of vortex formation and associated coupling with the detected low frequency modulation. The temporal coefficients obtained from the POD analysis have been used to construct a low order model for the investigation of the overall flow development. While the high frequency component is known to be related to the formation and shedding of vortices, the low frequency component is shown to be associated with a modulation in upwash and downwash intensity.
Details of the computed flowfield over a circular cylinder at Reynolds number 1200
NASA Technical Reports Server (NTRS)
Rumsey, C. L.
1987-01-01
The application of an upwind-biased implicit approximate factorization Navier-Stokes algorithm to the unsteady impulsive start-up flow over a circular cylinder at Reynolds number 1200 is described. The complete form of the compressible Navier-Stokes equations is used, and the algorithm is second-order accurate in both space and time. The development with time of the shape and size of the separated vortical flow region is computed, as well as the time-variation of several boundary layer parameters and profile shapes. Computations, in general, show excellent agreement with experiment, although the present method predicts a more rapid onset of reversed flow on the cylinder than evidenced in experiment. The changes that the vortical region behind the cylinder undergoes as the symmetric flow transitions to periodic vortex shedding are discussed. The flow becomes periodic with a Strouhal frequency of 0.222, which compares well with the experimental value of approximately 0.21. The effect of grid density on the development of the unsteady flow is also shown.
Axial flow over a blunt circular cylinder with and without shear layer reattachment
NASA Astrophysics Data System (ADS)
Higuchi, H.; van Langen, P.; Sawada, H.; Tinney, C. E.
2006-08-01
Flow over a circular cylinder with its axis aligned with the free stream was investigated experimentally. Both upstream and downstream faces of the cylinder are sharply truncated. The fineness ratio (length to diameter ratio) was varied and the behavior of the leading-edge separating shear layer and its effect on the wake were studied in water using both flow visualization and PIV techniques. For the moderately large fineness ratio, the shear layer reattaches with subsequent boundary layer growth, whereas over a shorter cylinder the shear layer remains detached. This causes differences in the wake recirculation region and the immediate wake patterns. The shear layer structure was analyzed using the proper orthogonal decomposition (POD). The model in the water channel was sting-mounted and in some cases the effect of model support was detected in the wake measurements. To avoid such disturbance from the model support, an experiment was initiated in air using a magnetic model support and balance system. The drag variation with fineness ratio is presented and discussed in light of the flowfield measurements.
Three-dimensional numerical simulation of a vortex ring impinging on a circular cylinder
NASA Astrophysics Data System (ADS)
Ren, Heng; Zhang, Genxuan; Guan, Hongshan
2015-04-01
A vortex ring impinging on a three-dimensional circular cylinder is studied using large eddy simulation for a Reynolds number \\operatorname{Re}=4× {{10}4} based on the initial translational speed and diameter of the vortex ring. We have investigated the evolution of vortical structures and identified three typical evolution phases. When the primary vortex approaches the cylinder closely, a secondary vortex is generated and its segment parts move inward to the primary vortex ring. Then two large-scale loop-like vortices are formed, which evolve in opposite directions. Thirdly, the two loop-like vortices collide with each other, forming complicated small-scale vortical structures. Moreover, a series of hairpin vortices are generated due to the deformation and stretching of the tertiary vortex. The trajectories of the primary and secondary vortices and the relevant speeds of evolution are discussed. The total kinetic energy and enstrophy are investigated with the purpose of revealing the properties that are relevant to the three evolution phases. The boundary vorticity flux is further studied with the aim of analyzing the generation of vorticity and the connection with the pressure gradient on the cylinder surface.
Heat-Flux Sensor For Hot Engine Cylinders
NASA Technical Reports Server (NTRS)
Kim, Walter S.; Barrows, Richard F.; Smith, Floyd A.; Koch, John
1989-01-01
Heat-flux sensor includes buried wire thermocouple and thin-film surface thermocouple, made of platinum and platinum with 13 percent rhodium. Sensor intended for use in ceramic-insulated, low-heat-rejection diesel engine at temperatures of about 1,000 K. Thermocouple junction resists environment in cylinder of advanced high-temperature diesel engine created by depositing overlapping films of Pt and 0.87 Pt/0.13 Rh on iron plug. Plug also contains internal thermocouple.
Asymmetric turbulent boundary layers along long thin circular cylinders at low-Re
NASA Astrophysics Data System (ADS)
Jordan, Stephen A.
2015-09-01
Notable deviations of the asymmetric turbulent boundary layer (TBL) statistics from their axisymmetric counterpart along long thin circular cylinders are vitally important to the naval and oceanographic jurisdictions. Although the available experimental evidence backs their concern, the realm of parametric variability (both geometric and kinematic) is extremely limited to draw solid conclusions. We know that only small misalignments which quantify less than one degree of incidence between the freestream and the straight cylinder axis can substantially alter the boundary layer thicknesses, mean axial velocity, and Reynolds stresses. But the statistical database is plainly inadequate to justify modifying the design tools that were founded solely for axisymmetric flow conditions. Herein, we begin rectifying this drawback by numerical means. The investigation centers on low turbulent Reynolds numbers (500 ≤ Rea ≤ 2500) and small angles-of-incidence (0° < α < 9°) to validate and complement the lions-share of the present database (Rea = aUo/ν, where a, Uo, and ν are the cylinder radius, freestream velocity, and kinematic viscosity, respectively). In particular, we numerically resolved the statistical responses of the TBL, mean axial velocity, Reynolds stresses, and skin friction under angles-of-incidence up to the earliest signs of Strouhal-type shedding. Clearly, the first prominent response was the thinning and thickening of the TBL along the respective windward and leeward sides to only a minor misalignment. Tilting the straight cylinder to slightly higher yaw angles transformed the TBL to a transitional boundary layer along the windward side for all simulated Reynolds numbers. For yaw angles α > 2°, all turbulent statistics of the asymmetric boundary layer were measurably dissimilar to those of the axisymmetric state.
Vortex induced vibrations of a rotating circular cylinder at low Reynolds number
NASA Astrophysics Data System (ADS)
Zhao, Ming; Cheng, Liang; Lu, Lin
2014-07-01
Vortex-induced vibration (VIV) of a rotating circular cylinder at a low Reynolds number of 150 and a low mass ratio of 2 is studied numerically. Simulations are conducted at three rotation rates of α = 0, 0.5, and 1 and reduced velocities in the range of 1-13 with an interval of 0.2. The numerical results show that the rotation of the cylinder increases the response amplitude and widens the lock-in regime for the one-degree-of-freedom (1-dof) VIV in the cross-flow direction. The two-degree-of-freedom (2-dof) responses of the cylinder at α = 0.5 and 1 are significantly different from that at α = 0. For the 2-dof VIV, the response amplitude in the inline direction, which is much smaller than that in the cross-flow direction at α = 0, is increased significantly at α = 0.5 and 1. One initial branch is found at α = 0.5 and two initial branches are found at α = 1. In the initial branches, the response frequency locks onto a frequency that is smaller than the natural frequency of the cylinder and the response amplitude increases with the reduced velocity. The vortex shedding is found to be in the P+S mode for reduced velocities near the higher boundary of the initial branches and 2S mode in all other reduced velocity ranges for the 2-dof VIV. Simulations are conducted under both the increasing and decreasing reduced velocity conditions. A hysteresis region is found near the higher boundary of the lower branch for α = 0, 0.5, and 1 in the 1-dof of VIV and for α = 0 in the 2-dof VIV. The hysteresis region occurs near the higher boundary of the initial branches for α = 0.5 and 1 in the 2-dof VIV. By analysing the component of the force coefficient that is in phase with the velocity of the cylinder, it is found that pressure force excites the vibration and the viscous force damps the vibration in both the inline and the cross-flow directions in the 2-dof VIV. The magnitude of the time averaged pressure and viscous force coefficients that are in phase with the
Transient temperature distributions in a cylinder heated by microwaves
Jackson, H.W.; Barmatz, M.; Wagner, P.
1996-12-31
Transient temperature distributions were calculated for a lossy dielectric cylinder coaxially aligned in a cylindrical microwave cavity excited in a single mode. Results were obtained for sample sizes that range from fibers to large cylinders. Realistic values for temperature dependent complex dielectric constants and thermophysical properties of the samples were used. Losses in cavity walls were taken into account as were realistic thermal emissivities at all surfaces. For a fine mesh of points in time, normal mode properties and microwave power absorption profiles were evaluated using analytic expressions. Those expressions correspond to exact solutions of Maxwell`s equations within the framework of a cylindrical shell model. Heating produced by the microwave absorption was included in self-consistent numerical solutions of thermal equations. In this model, both direct microwave heating and radiant heating of the sample (hybrid heating) were studied by including a lossy dielectric tube surrounding the sample. Calculated results are discussed within the context of two parametric studies. One is concerned with relative merits of microwave and hybrid heating of fibers, rods, and larger cylinders. The other is concerned with thermal runaway.
NASA Technical Reports Server (NTRS)
Lamla, Ernst
1942-01-01
The two-dimensional symmetrical potential flow of compressible fluid past a circular cylinder placed in the center line of a straight tunnel is analyzed in second approximation according to the Jansen-Rayleigh method. The departure of the profile from the exact circular shape can be kept to the same magnitude as for the incompressible flow. The velocities in the narrowest section of the tunnel wall and at the profile edge are discussed in detail.
Adaptive individual-cylinder thermal state control using intake air heating for a GDCI engine
Roth, Gregory T.; Sellnau, Mark C.
2016-08-09
A system for a multi-cylinder compression ignition engine includes a plurality of heaters, at least one heater per cylinder, with each heater configured to heat air introduced into a cylinder. Independent control of the heaters is provided on a cylinder-by-cylinder basis. A combustion parameter is determined for combustion in each cylinder of the engine, and control of the heater for that cylinder is based on the value of the combustion parameter for combustion in that cylinder. A method for influencing combustion in a multi-cylinder compression ignition engine, including determining a combustion parameter for combustion taking place in a cylinder of the engine and controlling a heater configured to heat air introduced into that cylinder, is also provided.
Thermal runaway in microwave heated isothermal slabs, cylinders, and spheres
NASA Astrophysics Data System (ADS)
Vriezinga, C. A.
1998-01-01
The absorption of electromagnetic energy within a microwave heated isothermal slab, cylinder, and sphere is analyzed and compared to each other. It is shown that the absorbed heat oscillates as a function of temperature, regardless of the geometry of the irradiated object. It is possible to formulate this behavior in a simple mathematical equation, which proves that the oscillation is basically caused by resonance of the electromagnetic waves within the object. This oscillation, combined with the heat loss, is found to be responsible for thermal runaway phenomenon in isothermal objects. Based on such an observation, a general rule to prevent thermal runaway has been developed.
A numerical study of a viscous flow past a right circular cylinder on a -plane
NASA Astrophysics Data System (ADS)
Matsuura, Tomonori; Yamagata, Toshio
The viscous flow past a right circular cylinder on a -plane is numerically studied. The basic flow, unbounded laterally, is assumed to be uniform. The explored parameter space is Ro
NASA Astrophysics Data System (ADS)
Seyed-Aghazadeh, Banafsheh; Budz, Collin; Modarres-Sadeghi, Yahya
2015-09-01
Vortex-induced vibration (VIV) of a curved circular cylinder (a quarter of a ring, with no extension added to either end) free to oscillate in the crossflow direction was studied experimentally. Both the concave and the convex orientations (with respect to the oncoming flow direction) were considered. As expected, the amplitude of oscillations in both configurations was decreased compared to a vertical cylinder with the same mass ratio. Flow visualizations showed that the vortices were shed in parallel to the curved cylinder, when the cylinder was free to oscillate. The sudden jump in the phase difference between the flow forces and the cylinder displacement observed in the VIV of vertical cylinders was not observed in the curved cylinders. Higher harmonic force components at frequencies twice and three times the frequency of oscillations were observed in flow forces acting on the vertical cylinder, as well as the curved cylinder. Asymmetry in the wake was responsible for the 2nd harmonic force component and the relative velocity of the structure with respect to the oncoming flow was responsible for the 3rd harmonic force component. The lock-in occurred over the same range of reduced velocities for the curved cylinder in the convex orientation as for a vertical cylinder, but it was extended to higher reduced velocities for a curved cylinder in the concave orientation. Higher harmonic force components were found to be responsible for the extended lock-in range in the concave orientation. Within this range, the higher harmonic forces were even larger than the first harmonic force and the structure was being excited mainly by these higher harmonic forces.
The inviscid axisymmetric stability of the supersonic flow along a circular cylinder
NASA Technical Reports Server (NTRS)
Duck, Peter W.
1990-01-01
The supersonic flow past a thin straight circular cylinder is investigated. The associated boundary-layer flow (i.e. the velocity and temperature field) is computed; the asymptotic, far downstream solution is obtained, and compared with the full numerical results. The inviscid, linear, axisymmetric (temporal) stability of this boundary layer is also studied. A so-called 'doubly generalized' inflexion condition is derived, which is a condition for the existence of so-called 'subsonic' neutral modes. The eigenvalue problem (for the complex wavespeed) is computed for two free-stream Mach numbers (2.8 and 3.8), and this reveals that curvature has a profound effect on the stability of the flow. The first unstable inviscid mode is seen to disappear rapidly as curvature is introduced, while the second (and generally the most important) mode suffers a substantially reduced amplification rate.
The inviscid axisymmetric stability of the supersonic flow along a circular cylinder
NASA Technical Reports Server (NTRS)
Duck, Peter W.
1989-01-01
The supersonic flow past a thin straight circular cylinder is investigated. The associated boundary layer flow (i.e., the velocity and temperature field) is computed; the asymptotic, far downstream solution is obtained, and compared with the full numerical results. The inviscid, linear, axisymmetric (temporal) stability of this boundary layer is also studied. A so called doubly generalized inflexion condition is derived, which is a condition for the existence of so called subsonic neutral modes. The eigenvalue problem (for the complex wavespeed) is computed for two freestream Mach numbers (2.8 and 3.8), and this reveals that curvature has a profound effect on the stability of the flow. The first unstable inviscid mode is seen to rapidly disappear as curvature is introduced, while the second (and generally the most important) mode suffers a substantially reduced amplification rate.
A visual investigation of turbulence in stagnation flow about a circular cylinder
NASA Technical Reports Server (NTRS)
Sadeh, W. Z.; Brauer, H. J.
1978-01-01
A visual investigation of turbulence in stagnation flow around a circular cylinder was carried out in order to gain a physical insight into the model advocated by the corticity-amplification theory. Motion pictures were taken from three different viewpoints, and a frame by frame examination of selected movie strips was conducted. Qualitative and quantitative analyses of the flow events focused on tracing the temporal and spatial evolution of a cross-vortex tube outlined by the entrained smoke filaments. The visualization supplied evidence verifying: (1) the selective stretching of cross-vortex tubes which is responsible for the amplification of cross vorticity and, hence, of streamwise turbulence; (2) the streamwise tilting of stretched cross-vortex tubes; (3) the existence of a coherent array of vortices near the stagnation zone; (4) the interaction of the amplified vorticity with the body laminar boundary layer; and, (5) the growth of a turbulent boundary layer.
NASA Technical Reports Server (NTRS)
Murthy, V. S.; Rose, W. C.
1977-01-01
A series of wind-tunnel tests covering a range of Mach numbers and Reynolds numbers in subsonic and transonic flows was conducted on a circular cylinder placed normal to the flow. Form drag coefficients were determined from surface-pressure measurements and displayed as a function of Mach number to show the drag rise phenomenon. Buried wire gages arranged on the model surface were used to measure skin-friction distributions and vortex-shedding frequencies at different flow conditions. It was found that detectable periodic shedding ceases above M = 0.9. The measured skin-friction distributions indicate the positions of mean separation points clearly; these values are documented for the different flow conditions.
Control of flow around a circular cylinder wrapped with a porous layer by magnetohydrodynamic
NASA Astrophysics Data System (ADS)
Bovand, M.; Rashidi, S.; Esfahani, J. A.; Saha, S. C.; Gu, Y. T.; Dehesht, M.
2016-03-01
The present study focuses on the analysis of two-dimensional Magnetohydrodynamic (MHD) flow past a circular cylinder wrapped with a porous layer in different laminar flow regimes. The Darcy-Brinkman-Forchheimer model has been used for simulating flow in porous medium using finite volume based software, Fluent 6.3. In order to analyze the MHD flow, the mean and instantaneous drag and lift coefficients and stream patterns are computed to elucidate the role of Stuart number, N and Darcy number, Da. It is revealed that the magnetic fields are capable to stabilize flow and suppress the vortex shedding of vortices. The N-Re plane shows the curves for separating steady and periodic flow regimes, Ncr and disappearing of vortex, Ndiss. For validate the solution, the obtained CD and St are compared with available results of literature.
Piezoelectric energy harvesting from vortex-induced vibrations of circular cylinder
NASA Astrophysics Data System (ADS)
Mehmood, A.; Abdelkefi, A.; Hajj, M. R.; Nayfeh, A. H.; Akhtar, I.; Nuhait, A. O.
2013-09-01
The concept of harvesting energy from a circular cylinder undergoing vortex-induced vibrations is investigated. The energy is harvested by attaching a piezoelectric transducer to the transverse degree of freedom. Numerical simulations are performed for Reynolds numbers (Re) in the range 96≤Re≤118, which covers the pre-synchronization, synchronization, and post-synchronization regimes. Load resistances (R) in the range 500 Ω≤R≤5 MΩ are considered. The results show that the load resistance has a significant effect on the oscillation amplitude, lift coefficient, voltage output, and harvested power. The results also show that the synchronization region widens when the load resistance increases. It is also found that there is an optimum value of the load resistance for which the harvested power is maximum. This optimum value does not correspond to the case of largest oscillations, which points to the need for a coupled analysis as performed here.
NASA Technical Reports Server (NTRS)
Cho, Y. C.
1983-01-01
Rigorous solutions are presented for sound diffraction in a circular cylinder with axial discontinuities of the wall admittance (or impedance). Analytical expressions are derived for the reflection and the transmission coefficients for duct modes. The results are discussed quantitatively in the limits of small admittance shifts (delta) and of low frequencies (ka). One of the results is the low frequency behavior of the reflection coefficient R(o) sub 00 of the fundamental mode. For the mode of a hardwall duct reflected from the junction with a softwall duct, (R(o) sub oo yields - (1-square root of (ka) square root of (2/i delta)); this result is in contrast to the frequency dependence of the reflection from the open end of a hardwall duct, for which R(o) sub oo yields - 1-(ka) squared/2 .
Numerical studies of flow over a circular cylinder at ReD=3900
NASA Astrophysics Data System (ADS)
Kravchenko, Arthur G.; Moin, Parviz
2000-02-01
Flow over a circular cylinder at Reynolds number 3900 is studied numerically using the technique of large eddy simulation. The computations are carried out with a high-order accurate numerical method based on B-splines and compared with previous upwind-biased and central finite-difference simulations and with the existing experimental data. In the very near wake, all three simulations are in agreement with each other. Farther downstream, the results of the B-spline computations are in better agreement with the hot-wire experiment of Ong and Wallace [Exp. Fluids 20, 441-453 (1996)] than those obtained in the finite-difference simulations. In particular, the power spectra of velocity fluctuations are in excellent agreement with the experimental data. The impact of numerical resolution on the shear layer transition is investigated.
Harvesting energy in the wake of a circular cylinder using piezoelectric materials
NASA Astrophysics Data System (ADS)
Akaydin, Dogus H.; Elvin, Niell; Andreopoulos, Yiannis
2009-11-01
The voltage generated by short, flexible piezoelectric cantilever beams placed inside turbulent wakes of circular cylinders at Reynolds numbers of 10,000 is investigated experimentally and computationally. The coherent vortical structures present in this flow generate a periodic forcing on the beam which when tuned to its resonant frequency produces maximum output voltage. There are two mechanisms which contribute to the driving forcing of the beam. The first mechanism is the impingement of induced flow by the passing vortices on one side of the beam and second is the low pressure core region of the vortices which is present at the opposite side of the beam. The sequence of these two mechanisms combined with the resonating conditions of the beam generated maximum energy output which was also found to vary with the location in the wake. The maximum power output was measured at about two diameters downstream of the cylinder. This power drops off the center line of the wake and decays with downstream distance as (x/D)-3/2. A three-way coupled interaction simulation that takes into account the aerodynamics, structural vibration and electrical response of the piezoelectric generator has been developed.
Computation of Sound Generated by Viscous Flow Over a Circular Cylinder
NASA Technical Reports Server (NTRS)
Cox, Jared S.; Rumsey, Christopher L.; Brentner, Kenneth S.; Younis, Bassam A.
1997-01-01
The Lighthill acoustic analogy approach combined with Reynolds-averaged Navier Stokes is used to predict the sound generated by unsteady viscous flow past a circular cylinder assuming a correlation length of 10 cylinder diameters. The two-dimensional unsteady flow field is computed using two Navier-Stokes codes at a low Mach number over a range of Reynolds numbers from 100 to 5 million. Both laminar flow as well as turbulent flow with a variety of eddy viscosity turbulence models are employed. Mean drag and Strouhal number are examined, and trends similar to experiments are observed. Computing the noise within the Reynolds number regime where transition to turbulence occurs near the separation point is problematic: laminar flow exhibits chaotic behavior and turbulent flow exhibits strong dependence on the turbulence model employed. Comparisons of far-field noise with experiment at a Reynolds number of 90,000, therefore, vary significantly, depending on the turbulence model. At a high Reynolds number outside this regime, three different turbulence models yield self-consistent results.
Rarefied gas flow over an in-line array of circular cylinders
NASA Astrophysics Data System (ADS)
Taguchi, Satoshi; Charrier, Pierre
2008-06-01
A steady rarefied gas flow through periodic porous media kept at a uniform temperature is considered on the basis of the Bhatnagar-Gross-Krook equation and the diffuse reflection condition on the solid boundary. Under the assumption that the period is much smaller than the length scale of variation of the global pressure distribution, a macroscopic fluid model describing the pressure distribution and the mass flux of the gas in the medium is derived by the homogenization previously proposed by Charrier and Dubroca [Multiscale Model. Simul. 2, 124 (2003)]. The effective diffusion coefficient contained in the model is constructed numerically as a function of the Knudsen number, in the case of the medium consisting of an in-line array of circular cylinders, with the help of the numerical analysis of a rarefied gas flow in an infinite expanse of the cylinder array driven by a uniform small pressure gradient. An application of the model to an isothermal flow in a porous slab induced by a pressure difference is presented.
Secondary vortex street in the wake of two tandem circular cylinders at low Reynolds number
NASA Astrophysics Data System (ADS)
Wang, Si-Ying; Tian, Fang-Bao; Jia, Lai-Bing; Lu, Xi-Yun; Yin, Xie-Zhen
2010-03-01
The experiments on two tandem circular cylinders were conducted in a horizontal soap film tunnel for the Reynolds number Re=60 , 80, and 100 and the nondimensional center-to-center spacing Γ ranging in 1˜12 . The flow patterns were recorded by a high-speed camera and the vortex shedding frequency was obtained by a spatiotemporal evolution method. The secondary vortex formation (SVF) mode characterized by the formation of a secondary vortex street in the wake of the downstream cylinder was found at large Γ . Moreover, some typical modes predicted by previous investigations, including the single bluff-body, shear layer reattachment, and synchronization of vortex shedding modes, were also revisited in our experiments. Further, numerical simulations were carried out using a space-time finite-element method and the results confirmed the existence of the SVF mode. The mechanism of SVF mode was analyzed in terms of the numerical results. The dependence of the Strouhal number Sr on Γ was given and the flow characteristics relevant to the critical spacing values and the hysteretic mode transitions were investigated.
Three-dimensional flow around two circular cylinders in tandem arrangement
NASA Astrophysics Data System (ADS)
Deng, Jian; Ren, An-Lu; Zou, Jian-Feng; Shao, Xue-Ming
2006-06-01
The spatial evolutions of vortices and transition to three dimensionality in the wake of two tandem circular cylinders are numerically studied. The virtual body method developed from virtual boundary method is applied to model the no-slip boundary condition of the cylinders. Two different aspects of this problem are considered. Firstly, the spacing ratio L/D is varied from 1.5 to 8 and the Reynolds number is set unchanged at Re=220. It is shown that three dimensionality appears in the wake for L/D⩾4, whereas the flow wake keeps a two-dimensional state for L/D⩽3.5. The critical spacing for the appearance of three-dimensional instability is deduced at the range of 3.5
Numerical investigation of the flow around two circular cylinders in tandem
NASA Astrophysics Data System (ADS)
Carmo, B. S.; Meneghini, J. R.
2006-08-01
The incompressible flow around pairs of circular cylinders in tandem arrangements is investigated in this paper. The spectral element method is employed to carry out two- and three-dimensional simulations of the flow. The centre-to-centre distance (l) of the investigated configurations varies from 1.5 to 8 diameters (D), and results thus obtained are compared to the isolated cylinder case. The simulations are in the Reynolds number (Re) range from 160 to 320, covering the transition in the wake. Our analysis focuses on the small-scale instabilities of vortex shedding, which occurs in the Re range investigated. With the aid of Strouhal data and vorticity contours, we propose mechanisms to explain the interference phenomenon and its interaction with the three-dimensional vortical structures present in the flow field. It is found that, for Re>190, when three-dimensional structures are present in the flow field, two-dimensional simulations are not sufficient to predict the (Re,l) pair of drag inversion.
Open-loop and closed-loop excitation of the wake behind a circular cylinder
NASA Astrophysics Data System (ADS)
Williams, David; Cohen, Kelly; Siegel, Stefan; McLaughlin, Tom
2006-11-01
Both open loop and closed loop control were used to modify the flow around a circular cylinder at Re = 20,000. Independent plasma actuators were installed on the sides of the cylinder at +/- 90^o from the forward stagnation line. The actuators could be excited in-phase or 180^o out of phase with one another. In the case of open-loop forcing, in-phase excitation at twice the von Karman vortex shedding frequency produced large changes in the wake structure, similar to the experiments done by Williams, Mansy & Amato (JFM, 1992.) Negligible changes in wake structure occurred when the out-of-phase actuation was used, although the lock-on phenomenon was observed, suggesting that the wake structure modification resulting from the interaction between the forcing field and near wake is independent of Reynolds number. Closed-loop excitation using a proportional-derivative controller was done using a hot-film probe positioned at x/D=1.5, y/D = 1.5. The amplitude of the wake oscillation was shown to be sensitive to both the gain and phase of the controller. The amplitude of oscillations at a fixed controller gain are enhanced or suppressed relative to the non-forced level, depending on the controller phase. The vortex shedding frequency is changed when the PD controller is in a region of suppression. The expert assistance of SSgt. Mary S. Church is gratefully acknowledged.
Scattering of acoustic evanescent waves by circular cylinders: Partial wave series solution
NASA Astrophysics Data System (ADS)
Marston, Philip L.
2002-05-01
Evanescent acoustical waves occur in a variety of situations such as when sound is incident on a fluid interface beyond the critical angle and when flexural waves on a plate are subsonic with respect to the surrounding fluid. The scattering by circular cylinders at normal incidence was calculated to give insight into the consequences on the scattering of the evanescence of the incident wave. To analyze the scattering, it is necessary to express the incident wave using a modified expansion involving cylindrical functions. For plane evanescent waves, the expansion becomes a double summation with products of modified and ordinary Bessel functions. The resulting modified series is found for the scattering by a fluid cylinder in an unbounded medium. The perfectly soft and rigid cases are also examined. Unlike the case of an ordinary incident wave, the counterpropagating partial waves of the same angular order have unequal magnitudes when the incident wave is evanescent. This is a consequence of the exponential dependence of the incident wave amplitude on the transverse coordinate. The associated exponential dependence of the scattering on the location of a scatterer was previously demonstrated [T. J. Matula and P. L. Marston, J. Acoust. Soc. Am. 93, 1192-1195 (1993)].
NASA Astrophysics Data System (ADS)
Ling, Guo-Ping; Shih, Tsi-Min
1999-01-01
A hybrid finite difference and vortex method (HFDV), based on the domain decomposition method (DDM), is used for calculating the flow around a rotating circular cylinder at Reynolds number Re=1000, 200 and the angular-to-rectilinear speed ratio (0.5, 3.25) respectively. A fully implicit third-order eccentric finite difference scheme is adopted in the finite difference method, and the deduced large broad band sparse matrix equations are solved by a highly efficient modified incomplete LU decomposition conjugate gradient method (MILU-CG). The long-time, fully developed features about the variations of the vortex patterns in the wake, as well as the drag and lift forces on the cylinder, are given. The calculated streamline contours are in good agreement with the experimentally visualized flow pictures. The existence of the critical state is confirmed again, and the single side shed vortex pattern at the critical state is shown for the first time. Also, the optimized lift-to-drag force ratio is obtained near the critical state. Copyright
Gau, C.; Wu, J.M.; Liang, C.Y.
1999-11-01
Experiments are performed to study the flow structure and heat transfer over a heated oscillating cylinder. Both flow visualization using a smoke wire and local heat transfer measurements around the cylinder were made. The excitation frequencies of the cylinder are selected at F{sub e}/F{sub n} = 0, 0.5, 1, 1.5, 2, 2.5, and 3. These include excitations at harmonic, subharmonic, superharmonic, and non harmonic frequencies. Synchronization of vortex shedding with the cylinder excitation occurs not only at F{sub e}/F{sub n} = 1 but also at F{sub e}/F{sub n} = 3, which can greatly enhance the heat transfer. The simultaneous enhancement of heat transfer at the stagnation point, its downstream region, and the wake region of the flow suggests that different modes of instabilities occurring in the shear layer of the near wake are actually initiated and amplified far upstream in the stagnation point, which were suppressed in the accelerated flow region and re-amplified in the decelerated flow region. As long as the dominant mode of the instability is amplified by the excitation of cylinder, enhancement of heat transfer can be obtained. During the experiments, the Reynolds numbers vary from 1,600 to 4,800, the ratios of oscillation amplitude to diameter of the cylinder from 0.064 to 0.016.
Heat transfer to air from a yawed cylinder
NASA Astrophysics Data System (ADS)
Kraabel, J. S.; McKillop, A. A.; Baughn, J. W.
1982-03-01
An experimental study designed to investigate heat transfer to air from a yawed cylinder is described. Measurements were made at Reynolds numbers of 34,000 and 106,000, and yaws varied from cross flow (beta = 0 deg) to 60 deg. The independence principle is found to be valid for heat transfer at the stagnation line and in the laminar boundary layer. Although this principle would not be expected to extend to the wake, the local heat transfer to the wake is not greatly affected by yaw for beta not greater than 40 deg. The heat transfer results can be explained in terms of a secondary vortex located downstream of an initial separation point and followed by a primary eddy. For high yaws and high normal Reynolds numbers, the heat transfer is similar to that which occurs in cross flow approaching critical flow.
NASA Astrophysics Data System (ADS)
Ghazanfarian, Jafar; Saghatchi, Roozbeh; Gorji-Bandpy, Mofid
2015-12-01
This paper studies the two-dimensional (2D) water-entry and exit of a rotating circular cylinder using the Sub-Particle Scale (SPS) turbulence model of a Lagrangian particle-based Smoothed-Particle Hydrodynamics (SPH) method. The full Navier-Stokes (NS) equations along with the continuity have been solved as the governing equations of the problem. The accuracy of the numerical code is verified using the case of water-entry and exit of a nonrotating circular cylinder. The numerical simulations of water-entry and exit of the rotating circular cylinder are performed at Froude numbers of 2, 5, 8, and specific gravities of 0.25, 0.5, 0.75, 1, 1.75, rotating at the dimensionless rates of 0, 0.25, 0.5, 0.75. The effect of governing parameters and vortex shedding behind the cylinder on the trajectory curves, velocity components in the flow field, and the deformation of free surface for both cases have been investigated in detail. It is seen that the rotation has a great effect on the curvature of the trajectory path and velocity components in water-entry and exit cases due to the interaction of imposed lift and drag forces with the inertia force.
Phenomenology of a flow around a circular cylinder at sub-critical and critical Reynolds numbers
NASA Astrophysics Data System (ADS)
Capone, Alessandro; Klein, Christian; Di Felice, Fabio; Miozzi, Massimo
2016-07-01
In this work, the flow around a circular cylinder is investigated at Reynolds numbers ranging from 79 000 up to 238 000 by means of a combined acquisition system based on Temperature Sensitive Paint (TSP) and particle velocimetry. The proposed setup allows simultaneous and time-resolved measurement of absolute temperature and relative skin friction fields onto the cylinder surface and near-wake velocity field. Combination of time-resolved surface measurements and planar near-field velocity data allows the investigation of the profound modifications undergone by the wall shear stress topology and its connections to the near-field structure as the flow regime travels from the sub-critical to the critical regime. Laminar boundary-layer separation, transition, and re-attachment are analyzed in the light of temperature, relative skin friction maps, and Reynolds stress fields bringing about a new perspective on the relationship between boundary layer development and shear layer evolution. The fast-responding TSP employed allows high acquisition frequency and calculation of power spectral density from surface data. Correlation maps of surface and near-wake data provide insight into the relationship between boundary-layer evolution and vortex shedding. We find that as the Reynolds number approaches the critical state, the separation line oscillations feature an increasingly weaker spectrum peak compared to the near-wake velocity spectrum. In the critical regime, separation line oscillations are strongly reduced and the correlation to the local vorticity undergoes an overall decrease giving evidence of modifications in the vortex shedding mechanism.
Heat Transfer Over the Circumference of a Heated Cylinder in Transverse Flow
NASA Technical Reports Server (NTRS)
Schmidt, Ernst; Wenner, Karl
1943-01-01
A method for recording the local heat-transfer coefficients on bodies in flow was developed. The cylinder surface was kept at constant temperature by the condensation of vapor except for a narrow strip which is heated separately to the same temperature by electricity. The heat-transfer coefficient at each point was determined from the electric heat output and the temperature increase. The distribution of the heat transfer along the circumference of cylinders was recorded over a range of Reynolds numbers of from 5000 to 426,000. The pressure distribution was measured at the same time. At Reynolds numbers up to around 100,000 high maximums of the heat transfer occurred in the forward stagnation point at and on the rear side at 180C, while at around 80 the heat-transfer coefficient on both sides of the cylinder behind the forward stagnation point manifested distinct minimums. Two other maximums occurred at around 115 C behind the forward stagnation point between 170,000 and 426,000. At 426,000 the heat transfer at the location of those maximums was almost twice as great as in the forward stagnation point, and the rear half of the cylinder diffused about 60 percent of the entire heat, The tests are compared with the results of other experimental and theoretical investigations.
NASA Technical Reports Server (NTRS)
Ayoub, A.; Karamcheti, K.
1982-01-01
The complicated flow in the tip region of a finite circular cylinder in uniform cross flow has been examined at the Reynolds numbers 85,000, 180,000, and 770,000. Simultaneous measurements of the surface-pressure and wake-velocity fluctuations have revealed the existence of a shedding regime in the tip region that is distinct from the one prevailing on the main body of the cylinder. In particular, this regime can be unstable and intermittent, can have a cellular structure in the wake, or can be subcritical when the main flow is supercritical.
NASA Astrophysics Data System (ADS)
Inoue, Osamu
2006-11-01
Effects of forced rotary oscillation on the generation of the sound from a circular cylinder in a uniform flow are investigated by direct solution of the two-dimensional, unsteady, compressible Navier-Stokes equations. Results show that the effect on the sound generation of rotary oscillation with frequency f is equivalent to that of periodic blowing and suction with frequency 2f; the sound field is determined by the interaction between the monopole generated by rotary oscillation and the dipole generated by vortex shedding from the cylinder. Results also show that, depending on initial conditions, different sound fields as well as flow fields can be generated for same flow parameters.
NASA Astrophysics Data System (ADS)
Kirkil, Gokhan; Constantinescu, George
2015-07-01
The turbulent horseshoe vortex (HV) system and the near-wake flow past a circular cylinder mounted on a flat bed in an open channel are investigated based on the results of eddy-resolving simulations and supporting flow visualizations. Of particular interest are the changes in the mean flow and turbulence statistics within the HV region as the necklace vortices wrap around the cylinder's base and the variation of the mean flow and turbulence statistics in the near wake, in between the channel bed and the free surface. While it is well known that the drag crisis induces important changes in the flow past infinitely long circular cylinders, the changes are less understood and more complex for the case of flow past a surface-mounted cylinder. This is because even at very high cylinder Reynolds numbers, ReD, the flow regime remains subcritical in the vicinity of the bed surface due to the reduction of the incoming flow velocity within the bottom boundary layer. The paper provides a detailed discussion of the changes in the flow physics between cylinder Reynolds numbers at which the flow in the upstream part of the separated shear layers (SSLs) is laminar (ReD = 16 000, subcritical flow regime) and Reynolds numbers at which the transition occurs inside the attached boundary layers away from the bed and the flow within the SSLs is turbulent (ReD = 5 ∗ 105, supercritical flow regime). The changes between the two regimes in the dynamics and level of coherence of the large-scale coherent structures (necklace vortices, vortex tubes shed in the SSLs and roller vortices shed in the wake) and their capacity to induce high-magnitude bed friction velocities in the mean and instantaneous flow fields and to amplify the near-bed turbulence are analyzed. Being able to quantitatively and qualitatively describe these changes is critical to understand Reynolds-number-induced scale effects on sediment erosion mechanisms around cylinders mounted on a loose bed, which is a problem of
Seal whisker-inspired circular cylinders reduce vortex-induced vibrations
NASA Astrophysics Data System (ADS)
Beem, Heather; Triantafyllou, Michael
2012-11-01
Recent work shows that the undulatory, asymmetric geometry of harbor seal whiskers passively reduces vortex-induced vibration (VIV) amplitudes to less than 0.1 times the whisker diameter. This reduction holds in frontal flows, but due to the elliptical cross-section of the whisker, flows that approach from large angles of attack generate significant vibrational response. The present study investigates the possibility of extending the vibration reduction to unidirectional bodies, such that flows from all angles cause reduced VIV. A method for developing a new geometry that incorporates the ``whisker'' features into bodies with uniform, circular cross-section is presented. This geometry and multiple variations on it are fabricated into rigid models. Forces are measured on the models while they undergo imposed oscillations and are towed down a water tank. Contour plots of CL , v show peak VIV amplitudes to decrease as much as 28% from that of a standard cylinder. This result holds promise for applications where vibration reduction is desired, regardless of the angle of oncoming flow.
Turbulence effect on crossflow around a circular cylinder at subcritical Reynolds numbers
NASA Technical Reports Server (NTRS)
Sadeh, W. Z.; Saharon, D. B.
1982-01-01
An investigation of the effect of freestream turbulence on the flow around a smooth circular cylinder at subcritical Reynolds numbers from 5.2 x 10 to the 4th power to 2.09 x 10 to the 5th power was conducted. Measurements show that the interaction of incident turbulence with the initial laminar boundary layer: (1) modifies the characteristics of the mean surface pressure distribution; (2) induces an aft shift in the separation point ranging from 5 to 50 beyond the laminar separation angle of 80 degrees; and, (3) reduces the mean drag coefficient to values between 97 and 46% of its nearly constant laminar counterpart. The extent of these changes depends on the particular Reynolds number background turbulence combination. These results demonstrate that a boundary-layer flow similar to that found in critical, supercritical and/or transcritical flow regimes is induced by turbulence at subcritical Reynolds numbers and, hence, the effect of turbulence is equivalent to an effective increase in the Reynolds number. The change in the nature and properties of the boundary layer in the subcritical regime, consequent upon the penetration of turbulence into it, is in agreement with the model proposed by the vorticity-amplification theory.
An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder
NASA Technical Reports Server (NTRS)
Cantwell, B.; Coles, D.
1983-01-01
Attention is given to an experimental investigation of transport processes in the near wake of a circular cylinder, for a Reynolds number of 140,000, in which an X-array of hot wire probes mounted on a pair of whirling arms was used for flow measurement. Rotation of the arms in a uniform flow applies a wide range of relative flow angles to these X-arrays, making them inherently self-calibrating in pitch. A phase signal synchronized with the vortex-shedding process allowed a sorting of the velocity data into 16 populations, each having essentially constant phase. An ensemble average for each population yielded a sequence of pictures of the instantaneous mean flow field in which the vortices are frozen, as they would be on a photograph. The measurements also yield nonsteady mean data for velocity, intermittency, vorticity, stress, and turbulent energy production, as a function of phase. Emphasis is given in a discussion of study results to the nonsteady mean flow, which emerges as a pattern of centers and saddles in a frame of reference that moves with the eddies. The kinematics of the vortex formation process are described in terms of the formation and evolution of saddle points between vortices in the first few diameters of the near wake.
Acoustic scattering by circular cylinders of various aspect ratios. [pressure gradient microphones
NASA Technical Reports Server (NTRS)
Maciulaitis, A.
1979-01-01
The effects of acoustic scattering on the useful frequency range of pressure gradient microphones were investigated experimentally between ka values of 0.407 and 4.232 using two circular cylindrical models (L/D = 0.5 and 0.25) having a 25 cm outside diameter. Small condenser microphones, attached to preamplifiers by flexible connectors, were installed from inside the cylindrical bodies, and flush mounted on the exterior surface of the cylinders. A 38 cm diameter woofer in a large speaker enclosure was used as the sound source. Surface pressure augmentation and phase differences were computed from measured data for various sound wave incidence angles. Results are graphically compared with theoretical predictions supplied by NASA for ka = 0.407, 2.288, and 4.232. All other results are tabulated in the appendices. With minor exceptions, the experimentally determined pressure augmentations agreed within 0.75 dB with theoretical predictions. The agreement for relative phase angles was within 5 percent without any exceptions. Scattering parameter variations with ka and L/D ratio, as computed from experimental data, are also presented.
Turbulence statistics of flow over scoured cohesive sediment bed around circular cylinder
NASA Astrophysics Data System (ADS)
Debnath, K.; Manik, M. K.; Mazumder, B. S.
2012-06-01
The effect of clay content on the mean flow, turbulence intensities, Reynolds shear stress and conditional statistics of the Reynolds shear stress was investigated within and above the equilibrium scour hole around circular cylinder embedded in cohesive sediment bed having clay fractions 0.1 and 0.2. Detailed three dimensional velocity components were measured at three different cross-sections: upstream, sideward and downstream of the pier covering flow regions within and above the scour hole using 3D Micro acoustic Doppler velocimeter (ADV). It is observed that within the scour hole region the sweeping events play a dominant role at both the side and the front of the pier while the ejection events play a dominant role in the outer flow region. At the scour hole surface a thin layer of ejection dominant pocket is seen both at the pier front and the side. This resulted in kolk-boils phenomenon at the interface layer of sweep and ejection dominance which probably instigated the scouring process. In addition, the mean time interval of the turbulent bursting events within and above the scour hole is presented.
NASA Astrophysics Data System (ADS)
Tumkur, Ravi Kumar R.; Domany, Elad; Gendelman, Oleg V.; Masud, Arif; Bergman, Lawrence A.; Vakakis, Alexander F.
2013-07-01
The nonlinear interaction of a laminar flow and a sprung rigid circular cylinder results in vortex-induced vibration (VIV) of the cylinder. Passive suppression of the VIV by attaching an internal nonlinear vibration absorber that acts, in essence, as a nonlinear energy sink (NES) to the cylinder has been observed in finite-element computations involving thousands of degrees of freedom (DOF). A single-DOF self-excited oscillator is developed to approximate the limit-cycle oscillation (LCO) of the cylinder undergoing VIV. This self-excited oscillator models the interaction of the flow and the cylinder. Then, a two-DOF reduced-order model for the system with the internal NES is constructed by coupling the single-DOF NES to the single-DOF self-excited oscillator. Hence, the complicated high-dimensional system of flow-cylinder-NES involving thousands of DOF is reduced to a two-DOF model. The two targeted energy transfer mechanisms responsible for passive VIV suppression that are observed in the finite-element computations are fully reproduced using the two-DOF reduced-order model. This reduction of the dynamics to an easily tractable low-dimensional reduced-order model facilitates the approximate analysis of the underlying dynamics. Moreover, the underlying assumptions of the order reduction, and the parameter ranges of validity of the reduced-order model are formulated and systematically studied.
NASA Astrophysics Data System (ADS)
Tumkur, Ravi Kumar R.; Calderer, Ramon; Masud, Arif; Pearlstein, Arne J.; Bergman, Lawrence A.; Vakakis, Alexander F.
2013-07-01
For a Reynolds number (Re) based on cylinder diameter of 100, and a ratio of cylinder density to fluid density of 10, we investigate the effect of a strongly nonlinear internal attachment on the vortex-induced vibration (VIV) of a rigid circular cylinder restrained by a linear spring, and constrained to move perpendicularly to the mean flow. The variational multiscale residual-based stabilized finite-element method used to compute approximate solutions of the incompressible Navier-Stokes equations about the moving cylinder is coupled to a simple model of a "nonlinear energy sink" (NES), an essentially nonlinear oscillator consisting of a mass, a linear damper, and a strongly nonlinear spring. The NES promotes nearly one-way transfer of energy to itself from the primary structure (the cylinder), resulting in reduction of the amplitude of the limit-cycle oscillation by as much as 75%, depending on the parameters characterizing the NES. Various mechanisms of nonlinear interaction of the NES with the cylinder undergoing VIV are discussed. Although no optimization of the NES is performed in this work, we demonstrate capacity for passive suppression of VIV and compare the performance of the NES to the tuned linear absorber of equal mass.
NASA Astrophysics Data System (ADS)
Sone, Yoshio; Doi, Toshiyuki
2000-10-01
Time-independent behavior of a gas between two coaxial circular cylinders made of the condensed phase of the gas, where the cylinders are rotating around their common axis and evaporation or condensation is taking place, is considered with special attention given to bifurcation of the flow. The problem is studied analytically for small values of the speeds of rotation of the cylinders and the Knudsen number on the basis of the Boltzmann equation, and the solution is obtained explicitly. The bifurcation of flow occurs even in a simple case where the gas is axially symmetric and uniform (or the flow field depends only on the radial coordinate). The comprehensive feature of the bifurcation of flow is clarified with the explicit forms of solutions and the bifurcation diagram.
NASA Astrophysics Data System (ADS)
Ding, H.; Shu, C.; Yeo, K. S.; Xu, D.
2007-01-01
In this paper, the mesh-free least square-based finite difference (MLSFD) method is applied to numerically study the flow field around two circular cylinders arranged in side-by-side and tandem configurations. For each configuration, various geometrical arrangements are considered, in order to reveal the different flow regimes characterized by the gap between the two cylinders. In this work, the flow simulations are carried out in the low Reynolds number range, that is, Re=100 and 200. Instantaneous vorticity contours and streamlines around the two cylinders are used as the visualization aids. Some flow parameters such as Strouhal number, drag and lift coefficients calculated from the solution are provided and quantitatively compared with those provided by other researchers.
Baran, Anthony J
2003-05-20
The scalar optical properties (extinction coefficient, mass extinction coefficient, single-scattering albedo, and asymmetry parameter) of a distribution of randomly oriented ice aggregates are simulated generally to well within 4% accuracy by use of a size-shape distribution of randomly oriented circular ice cylinders at wavelengths in the terrestrial window region. The single-scattering properties of the ice aggregates are calculated over the whole size distribution function by the finite-difference time-domain and improved geometric optics methods. The single-scattering properties of the size-shape distribution of circular ice cylinders are calculated by the T-matrix method supplemented by scattering solutions obtained from complex-angular-momentum theory. Moreover, radiative-transfer studies demonstrate that the maximum error in brightness temperature space when the size-shape distribution of circular ice cylinders is used to represent scattering from ice aggregates is only approximately 0.4 K The methodology presented should find wide applicability in remote sensing of ice cloud and parameterization of cirrus cloud scalar optical properties in climate models. PMID:12777019
Forced Convection Heat Transfer in Circular Pipes
ERIC Educational Resources Information Center
Tosun, Ismail
2007-01-01
One of the pitfalls of engineering education is to lose the physical insight of the problem while tackling the mathematical part. Forced convection heat transfer (the Graetz-Nusselt problem) certainly falls into this category. The equation of energy together with the equation of motion leads to a partial differential equation subject to various…
CFD approach to flow-induced vibrations of tandemly placed circular cylinders
NASA Astrophysics Data System (ADS)
Nishikawa, Naoki; Someya, Satoshi; Okamoto, Koji
2012-03-01
In the present study, we numerically examined the vibration characteristics of two cylinders which were placed tandemly in close vicinity of each other. The center-to-center pitch between the cylinders was four times the diameter of the cylinders. The cylinders were modeled as rigid bodies with two degrees-of-freedom in the simulation. The vibration frequencies of the cylinders were calculated, with the reduced velocity being varied. The vortex formation process was observed with regard to reduced velocity and structural damping. Also, the effects of the reduced velocity of the flow, the eigenfrequency of the cylinder, and the structural damping of the cylinder on the vibration response were discussed. A comparison was made between numerical results and the experimental ones obtained by means of the high-speed particle image velocimetry (Dynamic PIV) measurement.
Interaction theory of hypersonic laminar near-wake flow behind an adiabatic circular cylinder
NASA Astrophysics Data System (ADS)
Hinman, W. Schuyler; Johansen, C. T.
2015-12-01
The separation and shock wave formation on the aft-body of a hypersonic adiabatic circular cylinder were studied numerically using the open source software OpenFOAM. The simulations of laminar flow were performed over a range of Reynolds numbers (8× 10^3 < Re < 8× 10^4 ) at a free-stream Mach number of 5.9. Off-body viscous forces were isolated by controlling the wall boundary condition. It was observed that the off-body viscous forces play a dominant role compared to the boundary layer in displacement of the interaction onset in response to a change in Reynolds number. A modified free-interaction equation and correlation parameter has been presented which accounts for wall curvature effects on the interaction. The free-interaction equation was manipulated to isolate the contribution of the viscous-inviscid interaction to the overall pressure rise and shock formation. Using these equations coupled with high-quality simulation data, the underlying mechanisms resulting in Reynolds number dependence of the lip-shock formation were investigated. A constant value for the interaction parameter representing the part of the pressure rise due to viscous-inviscid interaction has been observed at separation over a wide range of Reynolds numbers. The effect of curvature has been shown to be the primary contributor to the Reynolds number dependence of the free-interaction mechanism at separation. The observations in this work have been discussed here to create a thorough analysis of the Reynolds number-dependent nature of the lip-shock.
Control of flow around a circular cylinder for minimizing energy dissipation
NASA Astrophysics Data System (ADS)
Naito, Hiroshi; Fukagata, Koji
2014-11-01
Control of flow around a circular cylinder is studied numerically aiming at minimization of the energy dissipation. First, we derive a mathematical relationship (i.e., identity) between the energy dissipation in an infinitely large volume and the surface quantities, so that the cost function can be expressed by the surface quantities only. Subsequently a control law to minimize the energy dissipation is derived by using the suboptimal control procedure [J. Fluid Mech. 401, 123 (1999), 10.1017/S002211209900659X]. The performance of the present suboptimal control law is evaluated by a parametric study by varying the value of the arbitrary parameter contained. Two Reynolds numbers, Re =100 and 1000, are investigated by two-dimensional simulations. Although no improvement is obtained at Re =100 , the present suboptimal control shows better results at Re =1000 than the suboptimal controls previously proposed. With the present suboptimal control, the dissipation and the drag are reduced by 58% and 44% as compared to the uncontrolled case, respectively. The suction around the front stagnation point and the blowing in the rear half are found to be weakened as compared to those in the previous suboptimal control targeting at pressure drag reduction. A predetermined control based on the control input profile obtained by the suboptimal control is also performed. The energy dissipation and the drag are found to be reduced as much as those in the present suboptimal control. It is also found that the present suboptimal and predetermined controls have better energy efficiencies than the suboptimal control previously proposed. Investigation at different control amplitudes reveals an advantage of the present control at higher amplitude. Toward its practical implementation, a localized version of the predetermined control is also examined, and it is found to work as effectively as the continuous case. Finally, the present predetermined control is confirmed to work well in a three
Flow control around a circular cylinder using pulsed dielectric barrier discharge surface plasma
Jukes, Timothy N.; Choi, Kwing-So
2009-08-15
Dielectric barrier discharge (DBD) plasma actuators have been used to control the flow around a circular cylinder at Re=15 000, where the near-wake structure was studied using time-resolved particle image velocimetry with simultaneous measurements of the dynamic lift and drag forces. It was shown that the vortex shedding was suppressed when the surface plasma placed near the natural separation point was activated in a pulsed mode at nondimensional frequency, f{sub p}{sup +}, above 0.6 with a force coefficient, C{sub p}, greater than 0.05%. Plasma actuator performance on flow control was summarized by mapping the changes in drag and lift fluctuations as a function of the forcing frequency and the force coefficient. They showed that more than 70% reduction in lift fluctuations was obtained with up to 32% drag reduction at f{sub p}{sup +}=2.0 and C{sub p}=0.32%. Here, narrowing of the wake was observed as the plasma promoted shear-layer roll-ups at the forcing frequency. This, however, did not affect the shear layer on the opposite side of the wake. At nondimensional forcing frequencies less than 0.6, the vortex shedding locked onto a multiple of the plasma frequency to amplify the wake oscillations. This caused more than 85% increase in lift fluctuations with 8% drag increase at f{sub p}{sup +}=0.2 and C{sub p}=0.01%. The efficiency of flow control using DBD plasma was found to be 1%-2% for drag reduction while around 6% for drag increase.
NASA Astrophysics Data System (ADS)
Zhao, Ming; Yan, Guirong
2013-08-01
Two-degree-of-freedom Vortex-Induced Vibration (VIV) of two rigidly coupled circular cylinders of different diameters at a low Reynolds number of 250 is investigated numerically. While the diameter ratio and the mass ratio are kept constant, the study is focused on the effect of the position angle of the small cylinder on the lock-in regime of the VIV. Simulations are carried out for position angles α of the small cylinder ranging from 0° to 180° with an interval of 22.5° and the reduced velocities ranging from 1 to 15 with an increment of 1. In order to find the effect of the gap between the two cylinders on the vibration, two gap-to-diameter ratios (0 and 0.2) are considered. It is found that compared with a single cylinder case, the lock-in regime of the reduced velocity is widened significantly when the position angle of the small cylinder is α = 0°, 22.5°, 90°, or 112.5°. Pulsed beating phenomenon characterized by regular vibration with occasional high-amplitude disturbances at regular or irregular intervals is observed at G = 0 and α = 90°. At α = 135°, more than one lock-in regimes are observed in the computed range of reduced velocity for both gaps (G = 0 and 0.2). Setting a small gap (gap-to-diameter ratio of 0.2) between the two cylinders mitigates the vibration by narrowing the lock-in regime and reducing the vibration amplitude.
NASA Astrophysics Data System (ADS)
Jordan, Stephen A.
2016-05-01
Long thin circular cylinders commonly serve as towed sonar tracking devices, where the radius-of-curvature along the longitudinal axis is quite low [ρr = O(10-4)]. Because no understanding presently exists about the direct impact of longitudinal curvature on the turbulent statistics, the long cylinder is simply viewed as a chain of straight segments at various (increasing then decreasing) small inclinations to the freestream direction. Realistically, even our statistical evidence along straight thin cylinders at low incidence angles is inadequate to build solid evidence towards forming reliable empirical models. In the present study, we address these shortcomings by executing Large-Eddy Simulations (LESs) of straight and longitudinally curved thin cylinders at low to moderate turbulent radius-based Reynolds numbers (500 ≤ Rea ≤ 3500) and small angles-of-incidence (α = 0° → 9°). Coupled with the previous experimental measurements and numerical results, the new expanded database (311 ≤ Rea ≤ 56 500) delivered sufficient means to propose power-law expressions for the longitudinal evolution of the skin friction, normal drag, and turbulent boundary layer (TBL) length scales. Surprisingly, the LES computations of the curved cylinders at analogous geometric and kinematic conditions as the straight cylinder showed similar character in terms of the longitudinal skin friction. Beyond incidence 1°-3° (upper end corresponds to the highest simulated Rea), the skin friction was directly proportional to the yaw angle and monotonically shifted downward with higher Rea. Conversely, the flow structure, normal drag, TBL length scales, Reynolds stresses, and the separation state of the transverse shear layers towards regular vortex shedding for the curved cylinder were highly dissimilar than the straight one at equivalent incidence angles.
NASA Astrophysics Data System (ADS)
Huera-Huarte, F. J.; Bearman, P. W.
2011-02-01
Results showing the dynamic response of a tandem arrangement of two vertical high aspect ratio (length over diameter) and low mass ratio (mass over mass of displaced fluid) flexible cylinders vibrating at low mode number are presented in this paper. Two circular cylinder models were aligned with the flow, so the downstream or trailing cylinder was immersed in the wake of the leading one. Centre-to-centre distances from 2 to 4 diameters were studied. The models were very similar in design, with external diameters of 16 mm and a total length of 1.5 m. Reynolds numbers up to 12 000 were achieved with reduced velocities, based on the fundamental natural frequency of the downstream cylinder in still water, up to 16. The trailing model had a mass ratio of 1.8 with a combined mass-damping parameter of 0.049, whilst the corresponding figures for the leading cylinder were 1.45 and 0.043, respectively. The dynamic response of the trailing model has been analysed by studying cross-flow and in-line amplitudes, dominant frequencies and modal amplitudes. The dynamic response of the leading one is analysed by means of its cross-flow amplitudes and dominant frequencies and it is also related to the motion of the trailing cylinder by studying the synchronisation between their instantaneous cross-flow motions. Planar digital particle image velocimetry (DPIV) was used to visualise the wake. Different response regimes have been identified based on the type of oscillations exhibited by the cylinders: vortex-induced (VIV), wake-induced (WIV) or combinations of both.
Heat Transfer from a Horizontal Cylinder Rotating in Oil
NASA Technical Reports Server (NTRS)
Seban, R. A.; Johnson, H. A.
1959-01-01
Measurements of the heat transfer from a horizontal cylinder rotating about its axis have been made with oil as the surrounding fluid to provide an addition to the heat-transfer results for this system heretofore available only for air. The results embrace a Prandtl number range from about 130 to 660, with Reynolds numbers up to 3 x 10(exp 4), and show an increasing dependence of free-convection heat transfer on rotation as the Prandtl number is increased by reducing the oil temperature. Some correlation of this effect, which agrees with the prior results for air, has been achieved. At higher rotative speeds the flow becomes turbulent, the free- convection effect vanishes, and the results with oil can be correlated generally with those for air and with mass-transfer results for even higher Prandtl numbers. For this system, however, the analogy calculations which have successfully related the heat transfer to the friction for pipe flows at high Prandtl numbers fail.
NASA Astrophysics Data System (ADS)
Machynia, Adam
Analytic solutions to the static and stationary boundary value field problems relative to an arbitrary configuration of parallel cylinders are obtained by using translational addition theorems for scalar Laplacian polar functions, to express the field due to one cylinder in terms of the polar coordinates of the other cylinders such that the boundary conditions can be imposed at all the cylinder surfaces. The constants of integration in the field expressions of all the cylinders are obtained from a truncated infinite matrix equation. Translational addition theorems are available for scalar cylindrical and spherical wave functions but such theorems are not directly available for the general solution of the Laplace equation in polar coordinates. The purpose of deriving these addition theorems and applying them to field problems involving systems of cylinders is to obtain exact analytic solutions with controllable accuracies, thereby, yielding benchmark solutions to validate other approximate numerical methods.
NASA Astrophysics Data System (ADS)
Sun, Tiezhi; Ganesh, Harish; Ceccio, Steven
2015-11-01
At sufficiently low cavitation number, the wake vortices behind bluff objects will cavitate. The presence of developed cavitation can alter the underlying vortical flow. In this study, cavitation dynamics in the wake of a circular cylinder is examined in order to determine the relationship between the void fraction in the cavity wake and the resulting modification to the flow compared to the non-cavitating flow. Cavitation in the wake of a cylinder is investigated using high-speed video cameras and cinematographic X-ray densitometry. Using synchronized top and side views from high-speed video cameras, the morphology and extent of the cavities forming on the wake of the circular cylinder is studied for a range of cavitation numbers, at a Reynolds number of 1x10-5, which lies at the transition region between sub-critical to critical regime of wake transitions. The time resolved and mean X-ray densitometry based void fraction of the spanwise and plan view averaged flow field will be related to the vortex dynamics in an attempt to understand the role of vapor production in the observed dynamics.
NASA Astrophysics Data System (ADS)
Isaev, S. A.; Sudakov, A. G.; Zhukova, Yu. V.; Usachovd, A. E.
2014-07-01
An analysis of the physical processes in unsteady fl ow past a circular cylinder surrounded by a sheath with ports for bleeding of the medium has been made by a factorized fi nite-volume method on the basis of numerical solution of Navier-Stokes equations closed with the Menter sheer-stress-transfer model. It has been shown that such arrangement of a circular cylinder ensures stabilization of the wake of the cylinder, and also the reduction in its drag and cessation of the action of an alternating transverse force at Reynolds numbers higher than 105.
Natural convection heat transfer on two horizontal cylinders in liquid sodium
Hata, K.; Shiotsu, M.; Takeuchi, Y.
1995-09-01
Natural convection heat transfer on two horizontal 7.6 mm diameter test cylinders assembled with the ratio of the distance between each cylinder axis to the cylinder diameter, S/D, of 2 in liquid sodium was studied experimentally and theoretically. The heat transfer coefficients on the cylinder surface due to the same heat inputs ranging from 1.0 X 10{sup 7} to 1.0 x 10{sup 9} W/m{sup 3} were obtained experimentally for various setting angeles, {gamma}, between vertical direction and the plane including both of these cylinder axis over the range of zero to 90{degrees}. Theoretical equations for laminar natural convection heat transfer from the two horizontal cylinders were numerically solved for the same conditions as the experimental ones considering the temperature dependence of thermophysical properties concerned. The average Nusselt numbers, Nu, values on the Nu versus modified Rayleigh number, R{sub f}, graph. The experimental values of Nu for the upper cylinder are about 20% lower than those for the lower cylinder at {gamma} = 0{degrees} for the range of R{sub f} tested here. The value of Nu for the upper cylinder becomes higher and approaches that for the lower cylinder with the increase in {gamma} over range of 0 to 90{degrees}. The values of Nu for the lower cylinder at each {gamma} are almost in agreement with those for a single cylinder. The theoretical values of Nu on two cylinders except those for R{sub f}<4 at {gamma} = 0{degrees} are in agreement with the experimental data at each {gamma} with the deviations less than 15%. Correlations for Nu on the upper and lower cylinders were obtained as functions of S/D and {gamma} based n the theoretical solutions for the S/D ranged over 1.5 to 4.0.
NASA Astrophysics Data System (ADS)
Singha, Sintu; Nagarajan, Kaushik Kumar; Sinhamahapatra, K. P.
2016-05-01
Incompressible flows at low Reynolds numbers over two identical side-by-side circular cylinders have been investigated numerically using unstructured finite volume method. The gap between the cylinders (g) and Reynolds number (Re) considered in the study lies respectively in the range of 0.2 ≤ g/D ≤ 4.0 (D being the diameter of the cylinder) and 20 ≤ Re ≤ 160. Low Reynolds number steady flows are given considerable importance. Two types of wakes are observed in the steady flow regime; the first type is characterized by attached vortices as in the case of an isolated cylinder and the other type is identified by detached standing vortices in the downstream. Reynolds number at which flow turns unsteady is quantified for each gap width. Five different types of wake patterns are observed in the unsteady flow regime: single bluff body wake, deflected wake, flip-flopping wake, in-phase synchronized, and anti-phase synchronized wakes. Present simulations of the evolution of single bluff-body wake demonstrate presence of vortices in the gap side too. The very long time simulations show that below a limiting Re depending on the gap, there is a transition of fully developed initial anti-phase flow to the in-phase flow at a later time. The limiting Reynolds number for this phase bifurcation phenomenon is evaluated in the (Re, g/D) space. A properly calibrated reduced order model based stability analysis is carried out to investigate the phase transition.
NASA Astrophysics Data System (ADS)
Gunnoo, Hans; Abcha, Nizar; Ezersky, Alexander
2016-02-01
The influence of harmonic surface wave on non-regular Karman Vortex Street is investigated. In our experiments, Karman Street arises behind a vertical circular cylinder in a water flow and harmonic surface waves propagating upstream. It is found that surface waves can modify regimes of shedding in Karman Street: frequency lock-in and synchronization of vortex shedding can arise. Intensive surface waves can excite symmetric vortex street instead of chess-like street, and completely suppress shedding behind the cylinder. It is shown experimentally that such effects occur if frequency of harmonic surface wave is approximately twice higher than the frequency of vortex shedding. Region of frequency lock-in is found on the plane amplitude-frequency of surface wave.
NASA Technical Reports Server (NTRS)
Vatsa, Veer N.; Singer, Bart A.
2003-01-01
We evaluate the applicability of a production computational fluid dynamics code for conducting detached eddy simulation for unsteady flows. A second-order accurate Navier-Stokes code developed at NASA Langley Research Center, known as TLNS3D, is used for these simulations. We focus our attention on high Reynolds number flow (Re = 5 x 10(sup 4) - 1.4 x 10(sup 5)) past a circular cylinder to simulate flows with large-scale separations. We consider two types of flow situations: one in which the flow at the separation point is laminar, and the other in which the flow is already turbulent when it detaches from the surface of the cylinder. Solutions are presented for two- and three-dimensional calculations using both the unsteady Reynolds-averaged Navier-Stokes paradigm and the detached eddy simulation treatment. All calculations use the standard Spalart-Allmaras turbulence model as the base model.
Pepper, D.W.; Douglass, R.W.; Heinrich, J.C.
1996-12-31
The first two sections as listed in the title contain 7 papers. The third section on thermal analysis contains 18 papers arranged into the following topical areas: Thermal treatment and municipal wastes; Thermal hydraulics in hazardous and nuclear waste processing and disposal; and Waste processing. Heat transfer in fire and combustion systems contains 17 papers arranged into the following topical sections: Soot/radiation; Combustion systems; Multiphase combustion; and Flames and fires. Most papers have been processed separately for inclusion on the data base.
NASA Astrophysics Data System (ADS)
Kim, Nayoung; Kim, Hyunseok; Park, Hyungmin
2015-08-01
The present study investigates the effect that rough hydrophobic (or superhydrophobic) surfaces have on the flow separation and subsequent vortex structures in a turbulent wake behind a circular cylinder. The velocity fields were measured using two-dimensional particle image velocimetry in a water tunnel with Reynolds numbers of 0.7-2.3 × 104. The spray-coating of hydrophobic nanoparticles and roughened Teflon was used to produce the rough hydrophobic surfaces, and sandpapers with two different grit sizes were used to sand the Teflon into streamwise and spanwise directions, respectively, in order to examine the effect of the slip direction. The rough hydrophobic surface was found to enhance the turbulence in the flows above the circular cylinder and along the separating shear layers, resulting in a delay of the flow separation and early vortex roll-up in the wake. As a result, the size of the recirculation bubble in the wake was reduced by up to 40%, while the drag reduction of less than 10% is estimated from a wake survey. However, these effects are reversed as the Reynolds number increases. The surface texture normal to the flow direction (spanwise slip) was found to be more effective than that aligned to the flow (streamwise slip), supporting the suggested mechanism. In addition, the superhydrophobic surface is locally applied by varying the installation angle and that applied around the separation point is most effective, indicating that the rough hydrophobic surface directly affects the boundary layer at flow separation. In order to control the flow around a circular cylinder using rough hydrophobic surfaces, it is suggested to have a smaller roughness width, which can stably retain air pockets. In addition, a higher gas fraction and a more uniform distribution of the roughness size are helpful to enhance the performance such as the separation delay and drag reduction.
NASA Astrophysics Data System (ADS)
Alam, Muntasir; Kamruzzaman, Ahsan, Faraz; Hasan, Mohammad Nasim
2016-07-01
A numerical study of mixed convection heat transfer phenomena in a square cavity containing a heat conducting rotating cylinder has been investigated. A discrete isoflux heater is placed at the bottom wall of the enclosure while the top wall is kept adiabatic. Left and right sidewalls of the enclosure are assumed to be maintained at constant low temperature. A two-dimensional solution for steady laminar mixed convection flow is obtained by using the finite element scheme based on the Galerkin method of weighted residuals for different rotating speeds of the cylinder varying over the range of 0-1000 keeping the Rayleigh number fixed at 5×104 and the Prandtl number at 0.7. The effects of rotating speeds of the cylinder, its radius and conductivity ratio of the rotating cylinder and working fluid on the streamlines, isotherms, local Nusselt number, average Nusselt number and other heat transfer and fluid flow phenomena are investigated. The results indicate that the flow field, temperature distribution and heat transfer rate are dependent on rotating speeds and cylinder size. However, it has been observed that the effect of conductivity ratio is not so prominent.
Chen, S.S.
1981-05-01
A mathematical model is presented for a group of circular cylinders subject to crossflow. The fluid-force coefficients in the model are determined from available experimental data. It is found that there are three dynamic instability mechanisms: galloping controlled by fluid damping, flutter controlled by fluidelastic force, and coupled galloping-flutter instability controlled by both fluid damping and fluidelastic force. Closed-form solutions of the critical flow velocity for galloping and flutter are obtained based on constrained modes. Experimental data are found to be in good agreement with the analytical results.
Hau-Riege, S
2005-04-12
We have developed an algorithm that extends the possible size-parameter range for the calculation of plane-wave light scattering from infinite homogeneous circular cylinders using a Mie-type analysis. Our algorithm is based on the calculation of the ratios of Bessel functions instead of calculating the Bessel functions or their logarithmic derivatives directly. We have found that this algorithm agrees with existing methods (when those methods converge). We have also found that our algorithm converges in cases of very large size parameters, in which case other algorithms often do not.
A simple model of axisymmetric turbulent boundary layers along long thin circular cylinders
NASA Astrophysics Data System (ADS)
Jordan, Stephen A.
2014-08-01
Useful empirical and semi-empirical models of the turbulent boundary layer (TBL) and skin friction evolution along planar geometries are not applicable for axisymmetric thin cylinder flows. Their dissimilarity is readily detectable once the TBL thickness exceeds the cylinder radius (a). Although several recent empirically based axisymmetric models recognize this fact, their acceptable fidelity is either restrictive or deficient for general applicability. Herein, we correct this deficit by building a simple model for the specific canonical class of axisymmetric turbulent flows along long thin cylinders with a zero streamwise pressure gradient. Streamwise growth of the TBL thickness (δ/a), integral scales [displacement (δ*/a) and momentum thicknesses (θ/a)] and skin friction coefficient (Cf) can be estimated along the cylinder length via the respective axial mean velocity profile in wall units. This profile is given by Spalding's formula with algebraic expressions for the two input parameters (κ, κβ) that cover all turbulent Reynolds numbers. The necessary database for empirically tuning Spalding's parameters entails both experimental measurements and new numerical computations. Our present-day understanding of the axisymmetric TBL is replicated by the simple model where δ/a, δ*/a, and θ/a grow slower than the planar-type flow with Cf comparatively elevating once δ/a > O(1). These differences manifest themselves in the radial impact imposed by the thin cylinder transverse curvature. Interestingly, the axial-based Reynolds numbers Rea ≈ 7500 and a+ ≈ 350 at δ/a ≈ 21 mark earliest signs of a homogeneous streamwise state (constant Cf) near the cylinder wall. Owning a simple model of axisymmetric turbulent flows along thin cylinders eliminates expensive and timely experiments and/or computations. Its practicality targets both the Naval and oceanographic communities.
Microwave heating and joining of ceramic cylinders: A mathematical model
NASA Technical Reports Server (NTRS)
Booty, Michael R.; Kriegsmann, Gregory A.
1994-01-01
A thin cylindrical ceramic sample is placed in a single mode microwave applicator in such a way that the electric field strength is allowed to vary along its axis. The sample can either be a single rod or two rods butted together. We present a simple mathematical model which describes the microwave heating process. It is built on the assumption that the Biot number of the material is small, and that the electric field is known and uniform throughout the cylinder's cross-section. The model takes the form of a nonlinear parabolic equation of reaction-diffusion type, with a spatially varying reaction term that corresponds to the spatial variation of the electromagnetic field strength in the waveguide. The equation is analyzed and a solution is found which develops a hot spot near the center of the cylindrical sample and which then propagates outwards until it stabilizes. The propagation and stabilization phenomenon concentrates the microwave energy in a localized region about the center where elevated temperatures may be desirable.
NASA Technical Reports Server (NTRS)
Schey, Oscar W; Rollin, Vern G
1936-01-01
This report presents the results of an investigation to determine the effect of baffles on the temperature distribution and the heat-transfer coefficient of finned cylinders. The tests were conducted in a 30-inch wind tunnel on electrically heated cylinders with fins of 0.25 and 0.31 inch pitch. The results of these tests showed that the use of integral baffles gave a reduction of 31.9 percent in the rear wall temperatures and an increase of 54.2 percent in the heat transfer coefficient as compared with a cylinder without baffles.
NASA Technical Reports Server (NTRS)
Jaunky, N.; Ambur, D. R.; Knight, N. F., Jr.
1998-01-01
A design strategy for optimal design of composite grid-stiffened cylinders subjected to global and local buckling constraints and strength constraints was developed using a discrete optimizer based on a genetic algorithm. An improved smeared stiffener theory was used for the global analysis. Local buckling of skin segments were assessed using a Rayleigh-Ritz method that accounts for material anisotropy. The local buckling of stiffener segments were also assessed. Constraints on the axial membrane strain in the skin and stiffener segments were imposed to include strength criteria in the grid-stiffened cylinder design. Design variables used in this study were the axial and transverse stiffener spacings, stiffener height and thickness, skin laminate stacking sequence and stiffening configuration, where stiffening configuration is a design variable that indicates the combination of axial, transverse and diagonal stiffener in the grid-stiffened cylinder. The design optimization process was adapted to identify the best suited stiffening configurations and stiffener spacings for grid-stiffened composite cylinder with the length and radius of the cylinder, the design in-plane loads and material properties as inputs. The effect of having axial membrane strain constraints in the skin and stiffener segments in the optimization process is also studied for selected stiffening configurations.
NASA Technical Reports Server (NTRS)
Jaunky, Navin; Knight, Norman F., Jr.; Ambur, Damodar R.
1998-01-01
A design strategy for optimal design of composite grid-stiffened cylinders subjected to global and local buckling constraints and, strength constraints is developed using a discrete optimizer based on a genetic algorithm. An improved smeared stiffener theory is used for the global analysis. Local buckling of skin segments are assessed using a Rayleigh-Ritz method that accounts for material anisotropy. The local buckling of stiffener segments are also assessed. Constraints on the axial membrane strain in the skin and stiffener segments are imposed to include strength criteria in the grid-stiffened cylinder design. Design variables used in this study are the axial and transverse stiffener spacings, stiffener height and thickness, skin laminate stacking sequence, and stiffening configuration, where herein stiffening configuration is a design variable that indicates the combination of axial, transverse, and diagonal stiffener in the grid-stiffened cylinder. The design optimization process is adapted to identify the best suited stiffening configurations and stiffener spacings for grid-stiffened composite cylinder with the length and radius of the cylinder, the design in-plane loads, and material properties as inputs. The effect of having axial membrane strain constraints in the skin and stiffener segments in the optimization process is also studied for selected stiffening configuration.
Suppression of vortex shedding for flow around a circular cylinder using optimal control
NASA Astrophysics Data System (ADS)
Homescu, C.; Navon, I. M.; Li, Z.
2002-01-01
Adjoint formulation is employed for the optimal control of flow around a rotating cylinder, governed by the unsteady Navier-Stokes equations. The main objective consists of suppressing Karman vortex shedding in the wake of the cylinder by controlling the angular velocity of the rotating body, which can be constant in time or time-dependent. Since the numerical control problem is ill-posed, regularization is employed. An empirical logarithmic law relating the regularization coefficient to the Reynolds number was derived for 60Re140. Optimal values of the angular velocity of the cylinder are obtained for Reynolds numbers ranging from Re=60 to Re=1000. The results obtained by the computational optimal control method agree with previously obtained experimental and numerical observations. A significant reduction of the amplitude of the variation of the drag coefficient is obtained for the optimized values of the rotation rate. Copyright
Effect of surface expansion on transient heat transfer from a cylinder in cross flow
Youssef, F.A.
1996-12-31
Use is made of a certain transformation that fixes the integration domain with time in order to numerically solve the problem of forced convection beat transfer from an impulsively started translating, rotating and expanding circular cylinder. A previously derived stability condition for the expanding cylinder surface is also used. This condition assists in using the classical explicit forward in time-centered space scheme to solve the vorticity and the energy equation with a reasonable time step. The Fast Fourier Transform is used to solve the Poisson equation for the stream function. The time development of the temperature field is obtained and discussed. The progress of the local Nusselt number over the circular cylinder surface with time is explored. The effects of different parameters related to the flow field, surface expansion and rotation are investigated.
NASA Technical Reports Server (NTRS)
Van Fossen, G. J.; Simoneau, R. J.; Olsen, W. A.; Shaw, R. J.
1984-01-01
Local heat transfer coefficients were obtained on irregular cylindrical shapes which typify the accretion of ice on circular cylinders in cross flow. The shapes were 2, 5, and 15 min accumulations of glaze ice and 15 min accumulation of rime ice. These icing shapes were averaged axially to obtain a nominal shape of constant cross section for the heat transfer tests. Heat transfer coefficients were also measured around the cylinder with no ice accretion. The models were run in a 15.2 x 68.6 cm (6 x 27 in.) wind tunnel at several velocities. The models were also run with a turbulence producing grid which gave about 3.5 percent turbulence. The effect of roughness was also simulated with sand grains glued to the surface. Results are presented as Nusselt number versus angle from the stagnation line for the smooth and rough models for both high and low levels of free stream turbulence. Roughness of the surface in the region prior to flow separation plays a major role in determining the heat transfer distribution. Free stream turbulence does not affect the distribution of heat transfer in this region but raises the level by a nearly uniform amount. For the rime shape, roughness had a larger effect in the near wedge shaped region past the initial separation point.
NASA Astrophysics Data System (ADS)
Baumert, Brandon Max; Muller, Susan J.
1997-03-01
Flow visualization of two highly elastic, nonshear-thinning polyisobutylene/polybutene fluids in the gap between concentric cylinders was performed over a range of shear rates and choices of relative cylinder rotations. The observed secondary flows are discussed in terms of destabilizing elastic and centrifugal forces. In the more viscous, more elastic fluid, instabilities are found to be independent of the choice of rotating cylinder and due entirely to elasticity. At the lowest shear rates examined, the first detectable secondary flows are steady counter-rotating vortices forming after a shearing time more than five orders of magnitude greater than the characteristic relaxation time of the fluid. At somewhat higher shear rates, a much more rapidly appearing oscillatory flow is observed to evolve into the steady vortex structure. In the less elastic fluid, the structure first detectable at the lowest shear rates is again steady vortices regardless of the choice of driving cylinder. At all shear rates examined, only elastic stationary vortices are observed in the absence of centrifugal destabilization (outer cylinder rotating). Secondary flows are significantly stronger in the presence of the centrifugal destabilization due to a rotating inner cylinder. Interaction of elasticity and centrifugal forces is found to generate a number of axially translating vortex structures, many of which are described here for the first time. At a shear rate more than five times the critical, another family of instability is observed which closely resembles a purely elastic instability observed by Baumert and Muller (1995). These experimental results are expected to provide a challenging test of numerical simulations of these viscoelastic flows.
Baumert, B.M.; Muller, S.J.
1997-03-01
Flow visualization of two highly elastic, nonshear-thinning polyisobutylene/polybutene fluids in the gap between concentric cylinders was performed over a range of shear rates and choices of relative cylinder rotations. The observed secondary flows are discussed in terms of destabilizing elastic and centrifugal forces. In the more viscous, more elastic fluid, instabilities are found to be independent of the choice of rotating cylinder and due entirely to elasticity. At the lowest shear rates examined, the first detectable secondary flows are steady counter-rotating vortices forming after a shearing time more than five orders of magnitude greater than the characteristic relaxation time of the fluid. At somewhat higher shear rates, a much more rapidly appearing oscillatory flow is observed to evolve into the steady vortex structure. In the less elastic fluid, the structure first detectable at the lowest shear rates is again steady vortices regardless of the choice of driving cylinder. At all shear rates examined, only elastic stationary vortices are observed in the absence of centrifugal destabilization (outer cylinder rotating). Secondary flows are significantly stronger in the presence of the centrifugal destabilization due to a rotating inner cylinder. Interaction of elasticity and centrifugal forces is found to generate a number of axially translating vortex structures, many of which are described here for the first time. At a shear rate more than five times the critical, another family of instability is observed which closely resembles a purely elastic instability observed by Baumert and Muller (1995). These experimental results are expected to provide a challenging test of numerical simulations of these viscoelastic flows. {copyright} {ital 1997 American Institute of Physics.}
Triplett, C.E.
1996-12-01
This thesis presents the results of an experimental investigation of natural convection heat transfer in a staggered array of heated cylinders, oriented horizontally within a rectangular enclosure. The main purpose of this research was to extend the knowledge of heat transfer within enclosed bundles of spent nuclear fuel rods sealed within a shipping or storage container. This research extends Canaan`s investigation of an aligned array of heated cylinders that thermally simulated a boiling water reactor (BWR) spent fuel assembly sealed within a shipping or storage cask. The results are presented in terms of piecewise Nusselt-Rayleigh number correlations of the form Nu = C(Ra){sup n}, where C and n are constants. Correlations are presented both for individual rods within the array and for the array as a whole. The correlations are based only on the convective component of the heat transfer. The radiative component was calculated with a finite-element code that used measured surface temperatures, rod array geometry, and measured surface emissivities as inputs. The correlation results are compared to Canaan`s aligned array results and to other studies of natural convection in horizontal tube arrays.
NASA Technical Reports Server (NTRS)
Vanfossen, G. J.; Simoneau, R. J.; Olsen, W. A.; Shaw, R. J.
1984-01-01
Local heat transfer coefficients were obtained on irregular cylindrical shapes which typify the accretion of ice on circular cylinders in cross flow. The ice shapes were grown on a 5.1 cm (2.0 in.) diameter cylinder in the NASA Lewis Icing Research Tunnel. The shapes were 2, 5, and 15 min accumulations of glaze ice and 15 min accumulation of rime ice. Heat transfer coefficients were also measured around the cylinder with no ice accretion. These icing shapes were averaged axially to obtain a nominal shape of constant cross section for the heat transfer tests. Heat transfer coefficients around the perimeter of each shape were measured with electrically heated copper strips embedded in the surface of the model which was cast from polyurethane foam. Each strip contained a thermocouple to measure the local surface temperature. The models were run in a 15.2 x 68.6 cm (6 x 27 in.) wind tunnel at several velocities. Background turbulence in the wind tunnel was less than 0.5 percent. The models were also run with a turbulence producing grid which gave about 3.5 percent turbulence at the model location with the model removed. The effect of roughness was also simulated with sand grains glued to the surface. Results are presented as Nusselt number versus angle from the stagnation line for the smooth and rough models for both high and low levels of free stream turblence. Roughness of the surface in the region prior to flow separation plays a major role in determining the heat transfer distribution.
NASA Astrophysics Data System (ADS)
Khan, Mohammed; Khan, Arham Amin; Hasan, Mohammad Nasim
2016-07-01
This article reports a numerical investigation of mixed convection heat transfer phenomena around an active rotating heated cylinder placed inside a trapezoidal enclosure. The cavity is configured such that top and bottom walls remain thermally insulated while the remaining two sidewalls experience a constant cold temperature. The heated cylinder is located at the centre of the trapezoidal enclosure and undergoes counter clockwise rotation. The numerical solution of various governing equations (i.e. continuity, momentum and energy equations) for the present problem is obtained by using Galerkin finite element method. The present study focused on the influence of the variation of inertia effect of the rotating cylinder as manifested by the parameter, Reynolds number (Re) for various Grashof number (Gr) ranging from 103 to 105 while keeping the Richardson number constant as 1, which essentially represents the case of pure mixed convection. An envision of flow field and thermal field has been made by studying the streamlines, isotherms respectively while for the study of heat transfer characteristics, local and average Nusselt number over the heated cylinder has been considered. The result indicates that both the side wall inclination angle as well as the inertia effect of the rotating cylinder has greater impact on heat transfer characteristics compared to the case of motionless heated cylinder placed in a square cavity.
A skin friction model for axisymmetric turbulent boundary layers along long thin circular cylinders
NASA Astrophysics Data System (ADS)
Jordan, Stephen A.
2013-07-01
Only a few engineering design models are presently available that adequately depict the axisymmetric skin friction (Cf) maturity along long thin turbulent cylinders. This deficit rests essentially on the experimental and numerical difficulties of measuring (or computing) the spatial evolution of the thin cylinder turbulence. Consequently, the present axisymmetric Cf models have questionable accuracy. Herein, we attempt to formulate a more robust Cf model that owns acceptable error. The formulation is founded on triple integration of the governing equation system that represents a thin cylinder turbulent boundary layer (TBL) at statistical steady-state in appropriate dimensionless units. The final model requires only the radius-based Reynolds number (Rea) and transverse curvature (δ/a) as input parameters. We tuned the accompanying coefficients empirically via an expanded statistical database (over 60 data points) that house new Cf values from large-eddy simulations (LES). The LES computations employed a turbulence inflow generation procedure that permits spatial resolution of the TBL at low-high Reynolds numbers and transverse curvatures. Compared to the new skin friction database, the Cf model revealed averaged predictive errors under 5% with a 3.5% standard deviation. Apart from owning higher values than the flat plate TBL, the most distinguishing characteristic of the axisymmetric skin friction is its rising levels when the boundary layer thickness exceeds the cylinder radius. All Cf levels diminish with increasing Reynolds number. These unique features differentiate the axisymmetric TBL along thin cylinders as a separate canonical flow when compared to the turbulent wall shear-layers of channels, pipes, and planar-type geometries.
NASA Astrophysics Data System (ADS)
Barnes, F. H.
2000-12-01
Measurements are presented which show that, at a Reynolds number of 60, the Strouhal number for the shedding of vortices from a rotating cylinder is only weakly dependent on the value of α, the ratio of the cylinder's peripheral speed to its translational speed, up to the α value at which shedding is suppressed. This finding agrees with the theoretical results of Kang et al (1999 Phys. Fluids 11 3312), and strongly disagrees with those of Hu et al (1996 Phys. Fluids 8 1972). In addition, measurements were made to determine the α value at which shedding is suppressed for Reynolds numbers between 50 and 65. The results indicate a flow more stable than that predicted by both Hu et al and Kang et al.
Vibrations of a circular cylinder submerged in a fluid with a non-homogeneous upper boundary
NASA Astrophysics Data System (ADS)
Sturova, I. V.
2014-05-01
Results of solving a linear problem on steady vibrations of a horizontal cylinder submerged in a fluid, whose upper boundary is partially closed by a solid lid, whereas the rest of the surface is free, are presented. Multipole and eigenfunction expansion methods are used. Reciprocity relations are derived. Added-mass and damping coefficients and the wave amplitudes on the free surface of the fluid are calculated.
The Flow Field Downstream of a Dynamic Low Aspect Ratio Circular Cylinder: A Parametric Study
NASA Astrophysics Data System (ADS)
Gildersleeve, Samantha; Dan, Clingman; Amitay, Michael
2015-11-01
Flow past a static, low aspect ratio cylinder (pin) has shown the formation of vortical structures, namely the horseshoe and arch-type vortex. These vortical structures may have substantial effects in controlling flow separation over airfoils. In the present experiments, the flow field associated with a low aspect ratio cylinder as it interacts with a laminar boundary layer under static and dynamic conditions was investigated through a parametric study over a flat plate. As a result of the pin being actuated in the wall-normal direction, the structures formed in the wake of the pin were seen to be a strong function of actuation amplitude, driving frequency, and aspect ratio of the cylinder. The study was conducted at a Reynolds number of 1875, based on the local boundary layer thickness, with a free stream velocity of 10 m/s. SPIV data were collected for two aspect ratios of 0.75 and 1.125, actuation amplitudes of 6.7% and 16.7%, and driving frequencies of 175 Hz and 350 Hz. Results indicate that the presence and interactions between vortical structures are altered in comparison to the static case and suggest increased large-scale mixing when the pin is driven at the shedding frequency (350 Hz). Supported by the Boeing Company.
Linear stability of radially-heated circular Couette flow with simulated radial gravity
NASA Astrophysics Data System (ADS)
Tagg, Randy; Weidman, Patrick D.
2007-05-01
The stability of circular Couette flow between vertical concentric cylinders in the presence of a radial temperature gradient is considered with an effective “radial gravity.” In addition to terrestrial buoyancy - ρg e z we include the term - ρg m f(r)e r where g m f(r) is the effective gravitational acceleration directed radially inward across the gap. Physically, this body force arises in experiments using ferrofluid in the annular gap of a Taylor Couette cell whose inner cylinder surrounds a vertical stack of equally spaced disk magnets. The radial dependence f(r) of this force is proportional to the modified Bessel function K 1(κr), where 2π/κ is the spatial period of the magnetic stack and r is the radial coordinate. Linear stability calculations made to compare with conditions reported by Ali and Weidman (J. Fluid Mech., 220, 1990) show strong destabilization effects, measured by the onset Rayleigh number R, when the inner wall is warmer, and strong stabilization effects when the outer wall is warmer, with increasing values of the dimensionless radial gravity γ = g m /g. Further calculations presented for the geometry and fluid properties of a terrestrial laboratory experiment reveal a hitherto unappreciated structure of the stability problem for differentially-heated cylinders: multiple wavenumber minima exist in the marginal stability curves. Transitions in global minima among these curves give rise to a competition between differing instabilities of the same spiral mode number, but widely separated axial wavenumbers.
One- versus two-degree-of-freedom vortex-induced vibrations of a circular cylinder at Re=3900
NASA Astrophysics Data System (ADS)
Gsell, Simon; Bourguet, Rémi; Braza, Marianna
2015-11-01
The response of an elastically-mounted circular cylinder, immersed in a current and free to move either in the streamwise or cross-flow direction, or in both directions, is predicted by means of direct numerical simulation. The Reynolds number based on the inflow velocity and the cylinder diameter is kept equal to 3900. Each configuration is studied over a range of the reduced velocity (inverse of the oscillator natural frequency) encompassing the entire region of lock-in, i.e. where body motion and flow unsteadiness are synchronized. The impact of an additional degree of freedom on the body response and fluid loading is analyzed. Particular attention is paid to the synchronization between the streamwise and cross-flow oscillations, their frequency ratio and phase difference, and to the frequency content of the fluid forces, including the occurrence of large higher harmonic contributions. The reciprocal influence of flow patterns and body motion is investigated on the basis of three-dimensional visualizations of the wake; the formation and modulation of the shear layer vortices is explored in this context.
NASA Technical Reports Server (NTRS)
Chen, Yen-Ming; Ou, Yuh-Roung; Pearlstein, Arne J.
1991-01-01
The temporal development of two-dimensional viscous incompressible flow generated by a circular cylinder started impulsively into steady rotatory and rectilinear motion is studied by integration of a velocity/vorticity formulation of the governing equations, using an explicit finite-difference/pseudo-spectral technique and an implementation of the Biot-Savart law. Results are presented for a Reynolds number of 200 (based on the cylinder diameter 2a and the magnitude U of the rectilinear velocity) for several values of the angular/rectilinear speed ratio alpha = (omega x a)/U (where omega is the angular speed) up to 3.25. Several aspects of the kinematics and dynamics of the flow not considered earlier are discussed. For higher values of alpha, the results indicate that for Re = 200, vortex shedding does indeed occur for alpha = 3.25. The shedding process is; however, very different from that which gives rise to the usual Karman vortex street for alpha = 0. In particular, consecutive vortices shed by the body can be shed from the same side and be of the same sense, in contrast to the nonrotating case, in which mirror-image vortices of opposite sense are shed alternately on opposite sides of the body. The implications of the results are discussed in relation to the possibility of suppressing vortex shedding by open or closed-loop control of the rotation rate.
NASA Astrophysics Data System (ADS)
Mandal, A. C.; Waechter, R. T.
1994-01-01
Waechter and Philip (1985) obtained the asymptotic expansion of the mean infiltration rate for large s from a buried circular cylinder using a scattering analog. Here s(= αl/2) is defined as the ratio of the characteristic length l of the water supply surface (in fact, its radius) to the sorptive length 2α-1 of the soil and a satisfies the relationship K(ψ) = K(0) eαψ, where K is the hydraulic conductivity, and ψ is the moisture potential. This exact solution cannot be used directly to obtain the separate contributions to the mean infiltration rate from the top and the bottom halves of the cylinder; our analysis is based on a new class of special functions derived from the modified Bessel equation with a forcing term. In this paper, we obtain the separate asymptotics for the two halves for large s to make a comparison with the results of the trench problem (Waechter and Mandal, 1993). The asymptotic expansions for top and bottom halves are (2/π)(0.69553s-2/3) and (2/π)(1+0.30066s-2/3), respectively, whereas for a semicircular trench, the mean infiltration rate is given by (2/π)(1+0.30066s-2/3).
NASA Astrophysics Data System (ADS)
Malamataris, Nikolaos; Liakos, Anastasios
2015-11-01
The exact value of the Reynolds number regarding the inception of separation in the flow around a circular cylinder is still a matter of research. This work connects the inception of separation with the calculation of a positive pressure gradient around the circumference of the cylinder. The hypothesis is that inception of separation occurs when the pressure gradient becomes positive around the circumference. From the most cited laboratory experiments that have dealt with that subject of inception of separation only Thom has measured the pressure gradient there at very low Reynolds numbers (up to Re=3.5). For this reason, the experimental conditions of his tunnel are simulated in a new numerical experiment. The full Navier Stokes equations in both two and three dimensions are solved with a home made code that utilizes Galerkin finite elements. In the two dimensional numerical experiment, inception of separation is observed at Re=4.3, which is the lowest Reynolds number where inception has been reported computationally. Currently, the three dimensional experiment is under way, in order to compare if there are effects of three dimensional theory of separation in the conditions of Thom's experiments.
NASA Astrophysics Data System (ADS)
D'herde, Eric J.
Flow over a fixed circular cylinder is a fundamental fluid mechanics problem that involves a simple geometry; yet, as the Reynolds number is incremented, increasingly complex flow patterns emerge. Most notably, when the Reynolds number exceeds a value of about 46, a Benard-von Karman vortex street pattern appears. It is associated with a characteristic natural vortex shedding frequency. The objectives of this study are to numerically investigate the effects of an incoming free-stream velocity pulsation with a mean Reynolds number of 100 on the dynamic forces acting on a fixed circular cylinder, on the flow regimes behind the cylinder, and on heat transfer between the cylinder and surrounding fluid. Sinusoidal free-stream pulsations with velocity amplitude Av values of 25%, 50% and 75% that of the mean free-stream velocity, and selected frequencies in the range of one fourth the natural shedding frequency fs to five times fs were considered. Of particular interest, is the interaction between forced pulsating frequencies and the natural vortex shedding frequency. At frequencies close to the natural frequency, and to twice the natural frequency, sudden reductions in the mean value of the drag coefficient are observed, as the imposed frequency increases. These sudden reductions are accompanied by complex changes in flow regimes and vortex shedding patterns. The complexity of flow regimes as a function of the imposed pulsation variables was compiled into a frequency-amplitude map. This original map enables one to correlate changes in flow regimes to both dynamic forces and heat transfer characteristics. No net mean drag reduction was observed in the range of dimensionless amplitudes and frequencies considered, at a Reynolds number of 100. Local heat transfer enhancements of up to 86% were achieved for a specific frequency-amplitude pair. A particular finding is the appearance, for a narrow range of frequencies, of a non-zero mean lift coefficient, despite the overall
Flow of Supercritical Hydrogen in a Uniformly Heated Circular Tube
NASA Technical Reports Server (NTRS)
Youn, B.; Mills, A. F.
1993-01-01
Turbulent flow of supercritical hydrogen through a uniformly heated circular tube has been investigated using numerical methods, for the range of 4 x 10(exp 5) less than Re less than 3 x 10(exp 6), 5 less than or equal to q(sub W) less than or equal to 10 MW/sq m, 30 less than or equal to T(sub in) less than or equal to 90 K, and 5 less than or equal to P(sub in) less than or equal to 15 MPa. The purpose is to validate a turbulence model and calculation method for the design of active cooling systems of hydrogen-fueled hypersonic aircraft, where the hydrogen fuel a used as coolant. The PHOENICS software package was used for the computations, which required special provision for evaluation of the thermophysical properties of the supercritical hydrogen, and a low Reynolds number form of the k-epsilon turbulence model. Pressure drop and heat transfer data were compared with experiment and existing correlations and good agreement was demonstrated. For the pressure range considered here a "thermal spike" was observed and shown to be due to the secondary peak in specific heat, rather than the primary peak.
NASA Technical Reports Server (NTRS)
Lockwood, Vernard E.; McKinney, Linwood W.
1960-01-01
A two-dimensional lifting circular cylinder has been tested over a Mach number range from 0.011 to 0.32 and a Reynolds number range from 135,000 to 1,580,000 to determine the force and pressure distribution characteristics. Two flaps having chords of 0.37 and 6 percent of the cylinder diameter, respectively, and attached normal to the surface were used to generate lift. A third configuration which had 6-percent flaps 1800 apart was also investigated. All flaps were tested through a range of angular positions. The investigation also included tests of a plain cylinder without flaps. The lift coefficient showed a wide variation with Reynolds number for the 6-percent flap mounted on the bottom surface at the 50-percent-diameter station, varying from a low of about 0.2 at a Reynolds number of 165,000 to a high of 1.54 at a Reynolds number of 350,000 and then decreasing almost linearly to a value of 1.0 at a Reynolds number of 1,580,000. The pressure distribution showed that the loss of lift with Reynolds number above the critical was the result of the separation point moving forward on the upper surface. Pressure distributions on a plain cylinder also showed similar trends with respect to the separation point. The variation of drag coefficient with Reynolds number was in direct contrast to the lift coefficient with the minimum drag coefficient of 0.6 occurring at a Reynolds number of 360,000. At this point the lift-drag ratios were a maximum at a value of 2.54. Tests of a flap with a chord of 0.0037 diameter gave a lift coefficient of 0.85 at a Reynolds number of 520,000 with the same lift-drag ratio as the larger flap but the position of the flap for maximum lift was considerably farther forward than on the larger flap. Tests of two 6-percent flaps spaced 180 deg apart showed a change in the sign of the lift developed for angular positions of the flap greater than 132 deg at subcriti- cal Reynolds numbers. These results may find use in application to air- craft using
A finite element-boundary integral method for cavities in a circular cylinder
NASA Technical Reports Server (NTRS)
Kempel, Leo C.; Volakis, John L.
1992-01-01
Conformal antenna arrays offer many cost and weight advantages over conventional antenna systems. However, due to a lack of rigorous mathematical models for conformal antenna arrays, antenna designers resort to measurement and planar antenna concepts for designing non-planar conformal antennas. Recently, we have found the finite element-boundary integral method to be very successful in modeling large planar arrays of arbitrary composition in a metallic plane. We extend this formulation to conformal arrays on large metallic cylinders. In this report, we develop the mathematical formulation. In particular, we discuss the shape functions, the resulting finite elements and the boundary integral equations, and the solution of the conformal finite element-boundary integral system. Some validation results are presented and we further show how this formulation can be applied with minimal computational and memory resources.
Radiation and scattering by cavity-backed antennas on a circular cylinder
NASA Technical Reports Server (NTRS)
Kempel, Leo C.; Volakis, John L.
1993-01-01
Conformal arrays are popular antennas for aircraft and missile platforms due to their inherent low weight and drag properties. However, to date there has been a dearth of rigorous analytical or numerical solutions to aid the designer. In fact, it has been common practice to use limited measurements and planar approximations in designing such non-planar antennas. The finite element-boundary integral method is extended to scattering and radiation by cavity-backed structures in an infinite, metallic cylinder. In particular, the formulation specifics such as weight functions, dyadic Green's function, implementation details, and particular difficulties inherent to cylindrical structures are discussed. Special care is taken to ensure that the resulting computer program has low memory demand and minimal computational requirements. Both scattering and radiation parameters are computed and validated as much as possible.
NASA Astrophysics Data System (ADS)
Gao, Shaoyan; Li, Pengbo; Li, Fuli
2013-03-01
The plasmon resonance-induced near electric field focusing and enhancement of three-layered silver nano-cylinder has been studied by quasi-static electricity. A field enhancement factor of more than 102 times can be obtained in the middle dielectric wall between the inner silver wire and outer tube around the resonance wavelengths of 400-500 nm. Because of the anti-symmetric coupling between the bonding tube plasmon and the wire plasmon, the incident electric field could be fine focused between the two metallic surfaces by decreasing the middle wall thickness. As a result of the curvature-dependent surface charge concentration, thinner dielectric wall with small diameter provides stronger local field enhancement. It provides the potential applications of plamonic nano-structures for high-density and high-contrast optical data storage under the diffraction limit.
A finite element-boundary integral method for conformal antenna arrays on a circular cylinder
NASA Technical Reports Server (NTRS)
Kempel, Leo C.; Volakis, John L.; Woo, Alex C.; Yu, C. Long
1992-01-01
Conformal antenna arrays offer many cost and weight advantages over conventional antenna systems. In the past, antenna designers have had to resort to expensive measurements in order to develop a conformal array design. This is due to the lack of rigorous mathematical models for conformal antenna arrays, and as a result the design of conformal arrays is primarily based on planar antenna design concepts. Recently, we have found the finite element-boundary integral method to be very successful in modeling large planar arrays of arbitrary composition in a metallic plane. Herewith we shall extend this formulation for conformal arrays on large metallic cylinders. In this we develop the mathematical formulation. In particular we discuss the finite element equations, the shape elements, and the boundary integral evaluation, and it is shown how this formulation can be applied with minimal computation and memory requirements. The implementation shall be discussed in a later report.
A finite element-boundary integral method for conformal antenna arrays on a circular cylinder
NASA Technical Reports Server (NTRS)
Kempel, Leo C.; Volakis, John L.
1992-01-01
Conformal antenna arrays offer many cost and weight advantages over conventional antenna systems. In the past, antenna designers have had to resort to expensive measurements in order to develop a conformal array design. This was due to the lack of rigorous mathematical models for conformal antenna arrays. As a result, the design of conformal arrays was primarily based on planar antenna design concepts. Recently, we have found the finite element-boundary integral method to be very successful in modeling large planar arrays of arbitrary composition in a metallic plane. We are extending this formulation to conformal arrays on large metallic cylinders. In doing so, we will develop a mathematical formulation. In particular, we discuss the finite element equations, the shape elements, and the boundary integral evaluation. It is shown how this formulation can be applied with minimal computation and memory requirements.
NASA Astrophysics Data System (ADS)
Xia, Yong; Lu, De-Tang; Liu, Yang; Xu, You-Sheng
2009-03-01
The multiple-relaxation-time lattice Boltzmann method (MRT-LBM) is implemented to numerically simulate the cross flow over a longitudinal vibrating circular cylinder. This research is carried out on a three-dimensional (3D) finite cantilevered cylinder to investigate the effect of forced vibration on the wake characteristics and the 3D effect of a cantilevered cylinder. To meet the accuracy of this method, the present calculation is carried out at a low Reynolds number Re = 100, as well as to make the vibration obvious, we make the vibration strong enough. The calculation results indicate that the vibration has significant influence on the wake characteristics. When the vibrating is big enough, our early works show that the 2D vortex shedding would be locked up by vibration. Contrarily, this phenomenon would not appear in the present 3D case because of the end effect of the cantilevered cylinder.
NASA Astrophysics Data System (ADS)
Waka, R.; Yoshino, F.; Hayashi, T.
1985-06-01
An experiment was carried out to understand effects of the slot shape at the cylinder-side-wall juncture and the angular location of a blowing slot on the spanwise distributions of various characteristic values near the side-wall of a circular cylinder with tangential blowing. The range of the side-wall effects and the characteristic values near the side-wall are much influenced by the slot shape and the location of the slot. When the slot shaped like a knife edge, termed 'Edge', is used, the range of the side-wall effects becomes narrower as the angular location of the blowing slot is farther downstream.
Yousefi, T.; Paknezhad, M.; Ashjaee, M.; Yazdani, S.
2009-09-15
Steady state two-dimensional natural convection heat transfer from the vertical array of five horizontal isothermal elliptic cylinders with vertical major axis which confined between two adiabatic walls has been studied experimentally. Experiments were carried out using a Mach-Zehnder interferometer. The Rayleigh number based on cylinder major axis was in the range 10{sup 3}{<=}Ra{<=}2.5 x 10{sup 3}, and dimensionless wall spacing 1.5{<=} t/b{<=}9 and infinity. The effect of wall spacing and Rayleigh number on the heat transfer from the individual cylinder and the array were investigated. Experiments are performed for ratio wall spacing to major diameter t/b = 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 7, 8, 9 and infinity. A correlation based on the experimental data for the average Nusselt number of the array as a function of Ra and t/b is presented in the aforementioned ranges. A relation has been derived for optimum wall spacing at which the Nusselt number of the array attains its maximum value. At optimum wall spacing, approximately 10% increase in the heat transfer from the confined array of elliptic cylinders has been observed as compared to the unconfined case. Also, a heat transfer correlation has been proposed for a single elliptic cylinder with vertical major axis and has been compared with earlier works. (author)
Effect of finite length on forced convection heat transfer from cylinders
NASA Astrophysics Data System (ADS)
Quarmby, A.; Al-Fakhri, A. A. M.
1980-04-01
Forced convection heat transfer from single cylinders of finite length is investigated experimentally with particular reference to the effect of aspect (length/diameter) ratio of the cylinder. It is found that for aspect ratios greater than 4 there is little further effect as aspect ratio increases to infinity. The disagreement between the correlations proposed by Zukauskas (1972) and Morgan (1975) is considered and resolved in favor of the Zukauskas correlation. A correlation is proposed for heat transfer from cylinders of low aspect ratio which in the limit agrees with the correlation for large aspect ratios and with the generally accepted correlation for turbulent heat transfer from isothermal flat plates for small aspect ratios.
Transient thermal stresses due to periodically moving line heat source of composite hollow cylinder
Chen, L.S.; Chu, H.S. )
1990-01-01
The transient thermal stress distribution of a finite composite hollow cylinder, which is heated by a periodically moving line source on its inner boundary and cooled convectively on the outer surface, is analyzed in this paper. The heat sources are assumed to be axisymmetric, moving along the axis of the hollow cylinder with constant velocity. To solve the temperature distribution of the hollow cylinder, the Laplace transform and eigenfunction expansion methods are used. The associated thermal stress distributions are then obtained by solving the thermoelastic displacement function and the Love function. Finally, a numerical scheme, the Fourier series technique, is utilized to calculate the inverse transform. The numerical results of the temperature and thermal stress distribution are presented, which demonstrate the effects of thermal conductivity ratio, shear modulus ratio, Biot number, and period of the moving heat source. 13 refs.
NASA Astrophysics Data System (ADS)
Premnath, Kannan N.; Pattison, Martin J.; Banerjee, Sanjoy
2013-10-01
Lattice Boltzmann method (LBM) is a kinetic based numerical scheme for the simulation of fluid flow. While the approach has attracted considerable attention during the last two decades, there is a need for systematic investigation of its applicability for complex canonical turbulent flow problems of engineering interest, where the nature of the numerical properties of the underlying scheme plays an important role for their accurate solution. In this paper, we discuss and evaluate a LBM based on a multiblock approach for efficient large eddy simulation of three-dimensional external flow past a circular cylinder in the transitional regime characterized by the presence of multiple scales. For enhanced numerical stability at higher Reynolds numbers, a multiple relaxation time formulation is considered. The effect of subgrid scales is represented by means of a Smagorinsky eddy-viscosity model, where the model coefficient is computed locally by means of a dynamic procedure, providing better representation of flow physics with reduced empiricism. Simulations are performed for a Reynolds number of 3900 based on the free stream velocity and cylinder diameter for which prior data is available for comparison. The presence of laminar boundary layer which separates into a pair of shear layers that evolve into turbulent wakes impose particular challenge for numerical methods for this condition. The relatively low numerical dissipation introduced by the inherently parallel and second-order accurate LBM is an important computational asset in this regard. Computations using five different grid levels, where the various blocks are suitably aligned to resolve multiscale flow features show that the structure of the recirculation region is well reproduced and the statistics of the mean flow and turbulent fluctuations are in satisfactory agreement with prior data.
NASA Astrophysics Data System (ADS)
Wang, Chenglei; Tang, Hui; Yu, Simon C. M.; Duan, Fei
2016-05-01
This paper studies the control of two-dimensional vortex-induced vibrations (VIVs) of a single circular cylinder at a Reynolds number of 100 using a novel windward-suction-leeward-blowing (WSLB) concept. A lattice Boltzmann method based numerical framework is adopted for this study. Both open-loop and closed-loop controls are implemented. In the open-loop control, three types of actuation arrangements, including the pure suction on the windward side of the cylinder, the pure blowing on the leeward side, and the general WSLB on both sides, are implemented and compared. It is found that the general WSLB is the most effective, whereas the pure suction is the least effective. In the closed-loop control, the proportional (P), integral (I), and proportional-integral (PI) control schemes are applied to adjust the WSLB velocities according to the flow information obtained from a sensor. The effects of four key control parameters including the proportional gain constant, the integral gain constant, the length of data history used for the feedback, and the location of the sensor are investigated. It is found that the use of only P control fails to completely suppress the VIV, the use of only I control can achieve the complete suppression, and the PI control performs the best in terms of both the control effectiveness and efficiency. In the PI control, there exists an optimal length of data history for the feedback, at which the VIV control is the most efficient. There also exist the minimum required WSLB velocities for the VIV suppression, independent of the control schemes. Moreover, it is found that the VIV control is independent of the sensor location.
NASA Technical Reports Server (NTRS)
Yonushonis, T. M.; Wiczynski, P. D.; Myers, M. R.; Anderson, D. D.; McDonald, A. C.; Weber, H. G.; Richardson, D. E.; Stafford, R. J.; Naylor, M. G.
1999-01-01
In-cylinder components and tribological system concepts were designed, fabricated and tested at conditions anticipated for a 55% thermal efficiency heavy duty diesel engine for the year 2000 and beyond. A Cummins L10 single cylinder research engine was used to evaluate a spherical joint piston and connecting rod with 19.3 MPa (2800 psi) peak cylinder pressure capability, a thermal fatigue resistant insulated cylinder head, radial combustion seal cylinder liners, a highly compliant steel top compression ring, a variable geometry turbocharger, and a microwave heated particulate trap. Components successfully demonstrated in the final test included spherical joint connecting rod with a fiber reinforced piston, high conformability steel top rings with wear resistant coatings, ceramic exhaust ports with strategic oil cooling and radial combustion seal cylinder liner with cooling jacket transfer fins. A Cummins 6B diesel was used to develop the analytical methods, materials, manufacturing technology and engine components for lighter weight diesel engines without sacrificing performance or durability. A 6B diesel engine was built and tested to calibrate analytical models for the aluminum cylinder head and aluminum block.
Numerical investigation of flow and scour around a vertical circular cylinder
Baykal, C.; Sumer, B. M.; Fuhrman, D. R.; Jacobsen, N. G.; Fredsøe, J.
2015-01-01
Flow and scour around a vertical cylinder exposed to current are investigated by using a three-dimensional numerical model based on incompressible Reynolds-averaged Navier–Stokes equations. The model incorporates (i) k-ω turbulence closure, (ii) vortex-shedding processes, (iii) sediment transport (both bed and suspended load), as well as (iv) bed morphology. The influence of vortex shedding and suspended load on the scour are specifically investigated. For the selected geometry and flow conditions, it is found that the equilibrium scour depth is decreased by 50% when the suspended sediment transport is not accounted for. Alternatively, the effects of vortex shedding are found to be limited to the very early stage of the scour process. Flow features such as the horseshoe vortex, as well as lee-wake vortices, including their vertical frequency variation, are discussed. Large-scale counter-rotating streamwise phase-averaged vortices in the lee wake are likewise demonstrated via numerical flow visualization. These features are linked to scour around a vertical pile in a steady current. PMID:25512595
Numerical investigation of flow and scour around a vertical circular cylinder.
Baykal, C; Sumer, B M; Fuhrman, D R; Jacobsen, N G; Fredsøe, J
2015-01-28
Flow and scour around a vertical cylinder exposed to current are investigated by using a three-dimensional numerical model based on incompressible Reynolds-averaged Navier-Stokes equations. The model incorporates (i) k-ω turbulence closure, (ii) vortex-shedding processes, (iii) sediment transport (both bed and suspended load), as well as (iv) bed morphology. The influence of vortex shedding and suspended load on the scour are specifically investigated. For the selected geometry and flow conditions, it is found that the equilibrium scour depth is decreased by 50% when the suspended sediment transport is not accounted for. Alternatively, the effects of vortex shedding are found to be limited to the very early stage of the scour process. Flow features such as the horseshoe vortex, as well as lee-wake vortices, including their vertical frequency variation, are discussed. Large-scale counter-rotating streamwise phase-averaged vortices in the lee wake are likewise demonstrated via numerical flow visualization. These features are linked to scour around a vertical pile in a steady current. PMID:25512595
NASA Astrophysics Data System (ADS)
Zhao, Ming
2013-05-01
Two-degree-of-freedom (2dof) vortex-induced vibration (VIV) of a circular cylinder in oscillatory flow is investigated numerically. The direction of the oscillatory flow is perpendicular to the spanwise direction of the circular cylinder. Simulations are carried out for the Keulegan-Carpenter (KC) numbers of 10, 20 and 40 and the Reynolds numbers ranging from 308 to 9240. The ratio of the Reynolds number to the reduced velocity is 308. At KC=10, the amplitude of the primary frequency component is much larger than those of other frequency components. Most vibrations for KC=20 and 40 have multiple frequencies. The primary frequency of the response in the cross-flow direction decreases with the increasing reduced velocity, except when the reduced velocity is very small. Because the calculated primary frequencies of the response in the cross-flow direction are multiple of the oscillatory flow frequency in most of the calculated cases, the responses are classified into single-frequency mode, double-frequency mode, triple frequency mode, etc. If the reduced velocity is in the range where the VIV is transiting from one mode to another, the vibration is very irregular.For each KC number the range of the reduced velocity can be divided into a cross-flow-in-phase regime (low Vr), where the response and the hydrodynamic force in the cross-flow direction synchronize, and a cross-flow-anti-phase regime (high Vr), where the response and the hydrodynamic force in the cross-flow direction are in anti-phase with each other. The boundary values of Vr between the cross-flow-in-phase and the cross-flow-anti-phase regimes are 7, 9 and 11 for KC=10, 20 and 40, respectively. For KC=20, another cross-flow-anti-phase regime is found between 15≤Vr≤19. Similarly the in-line-in-phase and the in-line-anti-phase regimes are also identified for the response in the in-line direction. It is found that the boundary value of Vr between the in-line-in-phase and the in-line-anti-phase regimes is
NASA Astrophysics Data System (ADS)
Heidary Bigvand, Kaveh
Three-dimensional electromagnetic (EM) wave scattering by an infinitely long perfectly conducting circular cylinder clad partially with layers of lossy material of finite height is studied. The scattering problem is solved via two distinct mathematical formulations. Modal and hybrid formulations are founded, respectively, on the modal theory of electromagnetics and geometrical optics (GO) in conjunction with the moment method. Both formulations lead to solutions for EM fields inside the material layers which are subsequently used to compute other parameters of interest. The modal technique is based on formulating EM fields inside each material coating in terms of a transverse magnetic (to cylinder axis) and a transverse electric potential function. Each potential function is expressed in terms of a superposition of elementary wave functions with unknown coefficients (mode amplitudes). The equivalence principle is applied to replace each material coating with induced polarization (electric) and/or magnetization (magnetic) current densities. Material-scattered fields, which denote EM fields radiated by induced current sources in the presence of the conducting core, are formulated in terms of unknown mode amplitudes. Three dimensional problems, encountered in formulation of the material-scattered fields, are solved by utilizing Fourier transformations with respect to the cylinder axis. At the outer surface of the outermost layer the sum of generator (EM fields in the absence of the coating) and material-scattered fields are set equal to total EM fields. Employing an appropriate inner product and relevant testing functions one reduces these equations to a set of systems of linear algebraic equations, which are solved for mode amplitudes. The hybrid technique applies the equivalence principle in combination with a dyadic Green's function to cast the electromagnetic problem into that of an integral equation for interior EM fields. Green's function derivation is
NASA Astrophysics Data System (ADS)
Hussam, Wisam K.; Thompson, Mark C.; Sheard, Gregory J.
2012-02-01
The transient response of optimal linear perturbations of liquid metal flow under a strong axial magnetic field in an electrically insulated rectangular duct is considered. The focus is on the subcritical regime, below the onset of von Kármán vortex shedding, to determine the role of optimal disturbances in developing wake instabilities. In this configuration, the flow is quasi-two-dimensional and can be solved over a two-dimensional domain. Parameter ranges considered include Reynolds numbers 50 le textit {Re}lesssim 2100, modified Hartmann numbers 50 le {textit {Ha}^star }lesssim 500, and blockage ratios 0.1 ⩽ β ⩽ 0.4. In some instances, the optimal disturbances are found to generate energy growth of greater than four orders of magnitude. Variation in the wake recirculation length in the steady flow regime is determined as a function of Reynolds number, Hartman number, and blockage ratio, and a universal expression is proposed. For all β, the energy amplification of the disturbances is found to decrease significantly with increasing Hartmann number and the peak growth shifts towards smaller times. The optimal initial disturbances are consistently located in the vicinity of the boundary layer separation from the cylinder, and the structure of these disturbances is consistent for all Hartmann numbers and blockage ratios considered in this study. The time evolution of the optimal perturbations is presented, and is shown to correspond to sinuous oscillations of the shear layer downstream of the wake recirculation. The critical Reynolds number for the onset of growth at different Hartmann numbers and blockage ratios is determined. It is found that it increases rapidly with increasing Hartmann number and blockage ratio. For all β, the peak energy amplification grows exponentially with textit {Re} at low and high Hartmann numbers. Direct numerical simulation in which the inflow is perturbed by a random white noise confirms the predictions arising from the
NASA Astrophysics Data System (ADS)
Zhao, Ming
2013-12-01
Flow induced vibration of two rigidly coupled identical circular cylinders in tandem and side-by-side arrangements at a low Reynolds number of 150 is studied numerically. The two cylinders vibrate in the cross-flow direction and have the same displacement. The Navier-Stokes equations are solved by the finite element method and the equation of motion of the cylinders is solved by the fourth-order Runge-Kutta algorithm. Simulations are conducted for a constant mass ratio of 2 and the gap ratios (defined as the ratio of the centre-to-centre distance between the two cylinders L to the cylinder diameter D) of 1.5, 2, 4, and 6. The reduced velocities range from 0.5 to 15 with an increment of 0.5 for the tandem arrangement and from 0.5 to 30 with an increment of 0.5 for the side-by-side arrangement. It is found that the gap between the two cylinders has significant effect on the response. For a tandem arrangement, the lock-in regime of the reduced velocity is narrower than that of a single cylinder for L/D = 1.5 and 2 and wider than later for L/D = 4 and 6. If the two cylinders are allowed to vibrate in the cross-flow direction, the vortex shedding from the upstream cylinder occurs at L/D as small as 2. The most interesting phenomenon found in the side-by-side arrangement is the combination of vortex-induced vibration (VIV) and galloping at L/D = 1.5 and 2. For L/D = 1.5 and 2, the response is dominated by VIV as Vr<15 and by galloping as Vr>15. At reduced velocities close to 15, the response is a combination of VIV and galloping.
NASA Astrophysics Data System (ADS)
Martin, James E.; Ribaudo, Troy
2013-04-01
Arrays of circular pores in silicon can exhibit a phononic bandgap when the lattice constant is smaller than the phonon scattering length, and so have become of interest for use as thermoelectric materials, due to the large reduction in thermal conductivity that this bandgap can cause. The reduction in electrical conductivity is expected to be less, because the lattice constant of these arrays is engineered to be much larger than the electron scattering length. As a result, electron transport through the effective medium is well described by the diffusion equation, and the Seebeck coefficient is expected to increase. In this paper, we develop an expression for the purely diffusive thermal (or electrical) conductivity of a composite comprised of square or hexagonal arrays of parallel circular or elliptic cylinders of one material in a continuum of a second material. The transport parallel to the cylinders is straightforward, so we consider the transport in the two principal directions normal to the cylinders, using a self-consistent local field calculation based on the point dipole approximation. There are two limiting cases: large negative contrast (e.g., pores in a conductor) and large positive contrast (conducting pillars in air). In the large negative contrast case, the transport is only slightly affected parallel to the major axis of the elliptic cylinders but can be significantly affected parallel to the minor axis, even in the limit of zero volume fraction of pores. The positive contrast case is just the opposite: the transport is only slightly affected parallel to the minor axis of the pillars but can be significantly affected parallel to the major axis, even in the limit of zero volume fraction of pillars. The analytical results are compared to extensive FEA calculations obtained using Comsol™ and the agreement is generally very good, provided the cylinders are sufficiently small compared to the lattice constant.
Shlapakovski, A. S.; Krasnitskiy, M. Yu.
2008-01-15
The electrodynamics of a circular waveguide with a dielectric rod surrounded by a magnetized plasma layer is considered. A general dispersion relation for azimuthally asymmetric perturbations is derived, and its solutions describing slow waves-specifically, electromagnetic and plasma modes, as well as (and primarily) hybrid waves that combine the properties of both mode types-are investigated numerically. For the fundamental waveguide mode of the system-the HE{sub 11} mode-the parameters of the plasma layer are determined at which the mode cannot be subject to Cherenkov interaction with a relativistic electron beam at a given frequency. For both waveguide and plasma modes, the radial profiles of the longitudinal components of the electric field and Poynting vector, the fractions of RF power carried within the dielectric and plasma regions and vacuum gap, and the coupling impedance are calculated as functions of the parameters of the plasma layer. The evolution of the field structure during the formation of asymmetric hybrid waves is traced. The results of calculating the dispersion and coupling impedance are analyzed as applied to an antenna-amplifier-a relativistic traveling-wave tube operating on the HE{sub 11} mode of the dielectric rod: specifically, the implementability of the concept in the presence of a plasma at the rod surface is estimated, and the possible role of azimuthally asymmetric and symmetric plasma modes is examined.
Numerical Solution of the Flow of a Perfect Gas Over A Circular Cylinder at Infinite Mach Number
NASA Technical Reports Server (NTRS)
Hamaker, Frank M.
1959-01-01
A solution for the two-dimensional flow of an inviscid perfect gas over a circular cylinder at infinite Mach number is obtained by numerical methods of analysis. Nonisentropic conditions of curved shock waves and vorticity are included in the solution. The analysis is divided into two distinct regions, the subsonic region which is analyzed by the relaxation method of Southwell and the supersonic region which was treated by the method of characteristics. Both these methods of analysis are inapplicable on the sonic line which is therefore considered separately. The shapes of the sonic line and the shock wave are obtained by iteration techniques. The striking result of the solution is the strong curvature of the sonic line and of the other lines of constant Mach number. Because of this the influence of the supersonic flow on the sonic line is negligible. On comparison with Newtonian flow methods, it is found that the approximate methods show a larger variation of surface pressure than is given by the present solution.
NASA Astrophysics Data System (ADS)
Fernholz, H. H.; Vagt, J.-D.
1981-10-01
Turbulence measurements, including the six components of the Reynolds-stress tensor, have been made along three generators of a circular cylinder with an elliptical nose cone. The pressure distribution was axisymmetric upstream and asymmetric downstream. The streamwise adverse pressure gradient led to almost zero skin friction in the direction of the limiting streamline, and the circumferential pressure gradient led to skew angles up to 30 deg in the vicinity of the wall. It is shown that the normal stresses and the shear stress component behave qualitatively much like those in a two-dimensional adverse pressure-gradient boundary layer. Mean velocity profiles obey the linear and logarithmic law of the wall known from two-dimensional boundary layers both along a line of symmetry and in the three-dimensional boundary layer. Finally, it has been found that the skew angle of the Reynolds shear stress vector leads the skew angle of the resultant velocity gradient, both having the opposite sign of the skew angle of the mean velocity vector, except close to the wall.
NASA Astrophysics Data System (ADS)
Tutar, M.; Holdø, A. E.
2001-04-01
The numerical simulation of transitional flow around a two-dimensional stationary circular cylinder is presented using two groups of turbulence models in a sub-critical flow regime. In the first group, enhanced two-equation turbulence models based on the eddy viscosity concept are used. They include the non-linear k- model with extended models, such as renormalization group (RNG) and the anisotropic model. In the second group, flow simulation is carried out using the large eddy simulation (LES) method, which is based on a standard sub-grid scale (SGS) model with a near-wall approach. This near-wall model, without using the law of wall, is achieved in a finite element code. The numerical results extracted from these simulations are compared with each other and with the experimental data in order to determine the relative performance of these turbulence models and to find the best model for the flow of interest. Although most of the LES simulations have been previously carried out using finite volume methods, results from using the present model show that the finite element method (FEM) can also be used with confidence. Copyright
Heat Transfer from Finned Metal Cylinders in an Air Stream
NASA Technical Reports Server (NTRS)
Biermann, Arnold, E; Pinkel, Benjamin
1935-01-01
This report presents the results of tests made to supply design information for the construction of metal fins for the cooling of heated cylindrical surfaces by an air stream. A method is given for determining fin dimensions for a maximum heat transfer with the expenditure of a given amount of material for a variety of conditions of air flow and metals.
NASA Astrophysics Data System (ADS)
Kaya, Ahmet
2011-04-01
The problem of steady laminar magnetohydrodynamic (MHD) mixed convection heat transfer about a vertical slender hollow cylinder is studied numerically, under the effect of wall conduction. A uniform magnetic field is applied perpendicular to the cylinder. The non-similar solutions using the Keller box method are obtained. The wall conduction parameter, the magnetic parameter and the Richardson number are the main parameters. For various values of these parameters the local skin friction and local heat transfer parameters are determined. The validity of the methodology is checked by comparing the results with those available in the open literature and a fairly good agreement is observed. Finally, it is determined that the local skin friction and the local heat transfer coefficients increase with an increase the magnetic parameter Mn and buoyancy parameter Ri and decrease with conjugate heat transfer parameter p.
Heat transfer from cylinders in subsonic slip flows
NASA Technical Reports Server (NTRS)
Nagabushana, K. A.; Stainback, P. C.
1992-01-01
The heat transfer in heated wires was measured using a constant temperature anemometer over a Mach number range from 0.05 to 0.4 and pressures from 0.5 to 8.0 atmospheres. The total temperature ranged from 80 to 120 F and the wire diameters were 0.00015, 0.00032, and 0.00050 inch. The heat transfer data is presented in the form of a corrected Nusselt number. Based on suggested criteria, much of the data was obtained in the slip flow regime. Therefore, the data is compared with data having comparable flow conditions. The possible application of the heat transfer data to hot wire anemometry is discussed. To this end, the sensitivity of the wires to velocity, density, and total temperature is computed and compared using two different types of correlations.
NASA Astrophysics Data System (ADS)
Yayla, Sedat; Beyin, Seyfettin; Oztekin, Alparslan
2012-11-01
Transient 3-D dimensional turbulent flow simulations are conducted to examine flow and heat transfer characteristics in inline and staggered slotted semi-cylinders placed in a rectangular cross sectioned fin tube heat exchanger. Both Reynolds averaged Navier's equation and Large Eddy simulations model are employed to conduct simulations using Fluent-ANSYS. Predictions of transient simulations are compared against the results of the PIV flow visualization observations at Reynolds number 1500 and 4000. Measured and predicted velocity and the vorticity field in the wake of cylinders agree well with each other at both Reynolds number. The effect of the angle between the slotted semi cylinders and the flow direction is investigated for various values of Reynolds number in both laminar and turbulent flow regimes. Transient nature of the three dimensional flow structures with flow separation, reattachment and vortices are characterized. The effects of the flow structure on the heat transfer characteristics are determined by calculating the heat transfer coefficient along the surface of the semi cylinders.
Development of a UF{sub 6} cylinder transient heat transfer/stress analysis model
Williams, W.R.
1991-12-31
A heat transfer/stress analysis model is being developed to simulate the heating to a point of rupture of a cylinder containing UF{sub 6} when it is exposed to a fire. The assumptions underlying the heat transfer portion of the model, which has been the focus of work to date, will be discussed. A key aspect of this model is a lumped parameter approach to modeling heat transfer. Preliminary results and future efforts to develop an integrated thermal/stress model will be outlined.
Vortex-induced heating to a cone-cylinder body at Mach 6
NASA Technical Reports Server (NTRS)
Hefner, J. N.
1974-01-01
Presented data on vortex-induced heating in a cone-cylinder body at Mach 6 show that the most severe heating need not occur as a result of the interaction of the primary vortices with the lee surface, even though this interaction produces a large, well-defined featherline oil smear. It is pointed out that the severity of vortex-induced heating is extremely sensitive to Reynolds number and geometry and that there exists a 'threshold Reynolds number' below which vortex-induced heating decreases abruptly.
Stability analysis of Rayleigh-Bénard convection in a cylinder with internal heat generation.
Wang, Bo-Fu; Zhou, Lin; Wan, Zhen-Hua; Ma, Dong-Jun; Sun, De-Jun
2016-07-01
The flow instabilities of Rayleigh-Bénard convection in a cylinder with effect of uniform internal heat source are investigated numerically. The instabilities of the static state and of axisymmetric flows are investigated by linear stability analysis. The convection threshold depends on the strength of internal heat source q and the aspect ratio of the cylinder Γ. The stability of axisymmetric flows is strongly affected by these two parameters, as well as the Prandtl number Pr. Depending on the value of q, three regimes are identified: weak internal heating, moderate internal heating, and strong internal heating regime. In a weak internal heating regime, the instability characteristics are similar to Rayleigh-Bénard convection. In a moderate internal heating regime, intense interaction of buoyancy instability and hydrodynamic instability result in complex instability curves. When q is large enough, the internal heating effect overwhelms the boundary heating effect. Specifically, the influence of Pr on instability is studied at a moderate internal heat strength q=6.4. An extremely multivalued stability curve is observed. At most five critical Rayleigh numbers can be determined for the axisymmetry-breaking instability at a certain Prandtl number. An axisymmetric unsteady instability mode is observed as well. By nonlinear simulation, the oscillatory flow patterns are obtained, and the axisymmetry-breaking bifurcation of the unsteady toroidal flow is studied. PMID:27575218
Stability analysis of Rayleigh-Bénard convection in a cylinder with internal heat generation
NASA Astrophysics Data System (ADS)
Wang, Bo-Fu; Zhou, Lin; Wan, Zhen-Hua; Ma, Dong-Jun; Sun, De-Jun
2016-07-01
The flow instabilities of Rayleigh-Bénard convection in a cylinder with effect of uniform internal heat source are investigated numerically. The instabilities of the static state and of axisymmetric flows are investigated by linear stability analysis. The convection threshold depends on the strength of internal heat source q and the aspect ratio of the cylinder Γ . The stability of axisymmetric flows is strongly affected by these two parameters, as well as the Prandtl number Pr. Depending on the value of q , three regimes are identified: weak internal heating, moderate internal heating, and strong internal heating regime. In a weak internal heating regime, the instability characteristics are similar to Rayleigh-Bénard convection. In a moderate internal heating regime, intense interaction of buoyancy instability and hydrodynamic instability result in complex instability curves. When q is large enough, the internal heating effect overwhelms the boundary heating effect. Specifically, the influence of Pr on instability is studied at a moderate internal heat strength q =6.4 . An extremely multivalued stability curve is observed. At most five critical Rayleigh numbers can be determined for the axisymmetry-breaking instability at a certain Prandtl number. An axisymmetric unsteady instability mode is observed as well. By nonlinear simulation, the oscillatory flow patterns are obtained, and the axisymmetry-breaking bifurcation of the unsteady toroidal flow is studied.
NASA Astrophysics Data System (ADS)
Yu, Jiu-Yang; Lin, Wei; Zheng, Xiao-Tao
2014-06-01
Two-dimensional numerical simulation is performed to understand the effect of flow pulsation on the flow and heat transfer from a heated square cylinder at Re = 100. Numerical calculations are carried out by using a finite volume method based on the pressure-implicit with splitting of operators algorithm in a collocated grid. The effects of flow pulsation amplitude (0.2 ≤ A ≤ 0.8) and frequency (0 ≤ f p ≤ 20 Hz) on the detailed kinematics of flow (streamlines, vorticity patterns), the macroscopic parameters (drag coefficient, vortex shedding frequency) and heat transfer enhancement are presented in detail. The Strouhal number of vortices shedding, drag coefficient for non-pulsating flow are compared with the previously published data, and good agreement is found. The lock-on phenomenon is observed for a square cylinder in the present flow pulsation. When the pulsating frequency is within the lock-on regime, time averaged drag coefficient and heat transfer from the square cylinder is substantially augmented, and when the pulsating frequency in about the natural vortex shedding frequency, the heat transfer is also substantially enhanced. In addition, the influence of the pulsating amplitude on the time averaged drag coefficient, heat transfer enhancement and lock-on occurrence is discussed in detail.
Heat transfer in thin, compact heat exchangers with circular, rectangular, or pin-fin flow passages
NASA Technical Reports Server (NTRS)
Olson, D. A.
1992-01-01
Heat transfer and pressure drop have been measured of three thin, compact heat exchangers in helium gas at 3.5 MPa and higher, with Reynolds numbers of 450 to 36,000. The flow geometries for the three heat exchanger specimens were: circular tube, rectangular channel, and staggered pin fin with tapered pins. The specimens were heated radiatively at heat fluxes up to 77 W/sq cm. Correlations were developed for the isothermal friction factor as a function of Reynolds number, and for the Nusselt number as a function of Reynolds number and the ratio of wall temperature to fluid temperature. The specimen with the pin fin internal geometry had significantly better heat transfer than the other specimens, but it also had higher pressure drop. For certain conditions of helium flow and heating, the temperature more than doubled from the inlet to the outlet of the specimens, producing large changes in gas velocity, density, viscosity, and thermal conductivity. These changes in properties did not affect the correlations for friction factor and Nusselt number in turbulent flow.
NASA Technical Reports Server (NTRS)
Lockwood, Vernard E.
1961-01-01
A wind-tunnel investigation has been made to determine the ground effect on the aerodynamic characteristics of a lifting circular cylinder using tangential blowing from surface slots to generate high lift coefficients. The tests were made on a semispan model having a length 4 times the cylinder diameter and an end plate of 2.5 diameters. The tests were made at low speeds at a Reynolds number of approximately 290,000, over a range of momentum coefficients from 0.14 to 4.60, and over a range of groundboard heights from 1.5 to 10 cylinder diameters. The investigation showed an earlier stall angle and a large loss of lift coefficient as the groundboard was brought close to the cylinder when large lift coefficients were being generated. For example, at a momentum coefficient of 4.60 the maximum lift coefficient was reduced from a value of 20.3 at a groundboard height of 10 cylinder diameters to a value of 8.7 at a groundboard height of 1.5 cylinder diameters. In contrast to this there was little effect on the lift characteristics of changes in groundboard height when lift coefficients of about 4.5 were being generated. At a height of 1.5 cylinder diameters the drag coefficients generally increased rapidly when the slot position angle for maximum lift was exceeded. Slightly below the slot position angle for maximum lift, the groundboard had a beneficial effect, that is, the drag for a given lift was less near the groundboard than away from the groundboard. The variation of maximum circulation lift coefficient (maximum lift coefficient minus momentum coefficient) obtained in this investigation is in general agreement with a theory developed for a jet-flap wing which assumes that the loss in circulation is the result of blockage of the main stream beneath the wing.
Fracture analysis of the heat-affected zone in the NESC-1 spinning cylinder experiment
Keeney, J.A.
1999-02-01
This paper presents updated analyses of the cylinder specimen being used in the international Network for Evaluating Steel Components (NESC) large-scale spinning-cylinder project (NESC-1). The NESC was organized as an international forum to exchange information on procedures for structural integrity assessment, to collaborate on specific projects, and to promote the harmonization of international standards. The objective of the NESC-1 project is to focus on a complete procedure for assessing the structural integrity of aged reactor pressure vessels. A clad cylinder containing through-clad and subclad cracks will be tested under pressurized-thermal shock conditions at AEA Technology, Risley, U.K. Three-dimensional finite-element analyses were carried out to determine the effects of including the cladding heat-affected zone (HAZ) in the models. The cylinder was modeled with inner-surface through-clad cracks having a depth of 74 mm and aspect ratios of 2:1 and 6:1. The cylinder specimen was subjected to centrifugal loading followed by a thermal shock and analyzed with a thermoelastic-plastic material model. The peak K{sub 1} values occurred at the clad/HAZ interface for the 6:1 crack and at the HAZ/base interface for the 2:1 crack. The analytical results indicate that cleavage initiation is likely to be achieved for the 6:1 crack, but questionable for the 2:1 crack.
The effect of water subcooling on film boiling heat transfer from vertical cylinders
Greene, G.A.; Irvine, T.F. Jr.
1994-03-01
The effect of subcooling on the film boiling heat transfer of water from vertical copper cylinders has been investigated experimentally using a transient quench technique. A lumped parameter model was utilized since the Blot numbers were always less than 0.05. The amount of subcooling varied from 0 K to 70 K and the initial cylinder wall temperatures were of the order of 1100 K. Heat transfer coefficient were measured at the midpoint of the cylinders and were obtained over quench times in which they were verified to be constant. Subcooling had a significant effect on both the film boiling heat transfer coefficient and the minimum film boiling temperature. As the subcooling varied from 0 K to 70 K, the h transfer coefficient increased by a factor of five. As the subcooling varied from 0 K to 60 K, the minimum film boiling temperature increased from approximately 600 K to 1000 K. An attempt to correlate the heat transfer coefficient data with a method recently proposed by Sakurai et al. was only successful at subcooled temperature differences less than 10 K. A modified correlation is presented using the Sakurai et al. parameters which better represents the data over the complete subcooling range.
Steady State Temperature Profile in a Cylinder Heated by Microwaves
NASA Technical Reports Server (NTRS)
Jackson, H. W.; Barmatz, M.; Wagner, P.
1995-01-01
A new theory has been developed to calculate the steady state temperature profile in a cylindrical sample positioned along the entire axis of a cylindrical microwave cavity. Temperature profiles where computed for- alumina rods of various radii contained in a cavity excite in one of the TM(sub OnO) modes with n = 1, 2 or 3. Calculations where also performed with a concentric outer cylindrical tube surrounding the rod to investigate hybrid heating. The parameters studies of the sample center and surface temperature where performed as a function of the total power transmitted into the cavity. Also, the total hemispherical emissivity was varied at boundaries of the rod, surrounding tube, and cavity walls. The result are discussed in the context of controlling the average rod temperature and the temperature distribution in the rod during microwave processing.
Furman, M.A.
2007-05-29
By combining the method of images with calculus of complex variables, we provide a simple expression for the electric field of a two-dimensional (2D) static elliptical charge distribution inside a perfectly conducting cylinder. The charge distribution need not be concentric with the cylinder.
NASA Technical Reports Server (NTRS)
1943-01-01
This is the fourth of a series of reports covering an investigation of the general instability problem by the California Institute of Technology. The first five reports of this series cover investigations of the general instability problem under the loading conditions of pure bending and were prepared under the sponsorship of the Civil Aeronautics Administration. The succeeding reports of this series cover the work done on other loading conditions under the sponsorship of the National Advisory Committee for Aeronautics. This report is to deal primarily with the continuation of tests of sheet-covered specimens and studies of the buckling phenomena of unstiffened circular cylinders.
Nonlinear radiative heat transfer to stagnation-point flow of Sisko fluid past a stretching cylinder
NASA Astrophysics Data System (ADS)
Khan, Masood; Malik, Rabia; Hussain, M.
2016-05-01
In the present paper, we endeavor to perform a numerical analysis in connection with the nonlinear radiative stagnation-point flow and heat transfer to Sisko fluid past a stretching cylinder in the presence of convective boundary conditions. The influence of thermal radiation using nonlinear Rosseland approximation is explored. The numerical solutions of transformed governing equations are calculated through forth order Runge-Kutta method using shooting technique. With the help of graphs and tables, the influence of non-dimensional parameters on velocity and temperature along with the local skin friction and Nusselt number is discussed. The results reveal that the temperature increases however, heat transfer from the surface of cylinder decreases with the increasing values of thermal radiation and temperature ratio parameters. Moreover, the authenticity of numerical solutions is validated by finding their good agreement with the HAM solutions.
Circular Dichroism Method for Heat Capacity Determination of Proteins
ERIC Educational Resources Information Center
Jones, Cecil L.; Bailey, Chris; Bheemarti, Kiran Kumar
2006-01-01
Circular dichroism spectroscopy was used to measure the thermal unfolding of bovine pancreatic ribonuclease A (RNase A) with various concentrations of guanidine hydrochloride (GuHCl). A red shift in transition midpoint temperatures, T[subscript m], occurred with increasing concentration of the strong protein denaturant. van Hoff enthalpy changes,…
NASA Astrophysics Data System (ADS)
Huera-Huarte, F. J.; Gharib, M.
2011-07-01
The dynamic response of two flexible cylinders in tandem arrangement partially immersed in a uniform flow is analysed. The centre-to-centre separations, larger than 4 and up to 8 diameters, were chosen to fall in the regime in which two separate wakes exist behind each one of the models. For the cases presented here, it has been confirmed that the main excitation mechanism is wake-induced vibration (WIV). The rear cylinder shows large amplitudes of response, at reduced velocities over the expected ones at lock-in when a cylinder is undergoing VIV being isolated. This type of response has been also observed by other researchers in experiments with flexibly mounted cylinders in the wake of stationary ones, we also provide data here, for cases with the front cylinder being stationary.
NASA Technical Reports Server (NTRS)
Barlow, William H
1946-01-01
Tests have been made at high speeds to determine the drag of models, simulating propeller shanks, in the form of a circular cylinder and three airfoils, the NACA 16-025, the NACA 16-040, and the NACA 16-040 with the rear 25 percent chord cut off. All the models had a maximum thickness of 4 1/2 inches to conform with average propeller-shank dimensions and a span of 20 1/4 inches. For the tests the models were supported perpendicular to the lower surface of the wing of an XP-51 airplane. A wake-survey rake mounted below the wing directly behind the models was used to determine profile drag of Mach numbers of 0.3 to 0.8 over a small range of angle of attack. The drag of the cylinder was also determined from pressure-distribution and force measurements.
NASA Astrophysics Data System (ADS)
Guan, Ning; Liu, Zhi-Gang; Zhang, Cheng-Wu
2012-07-01
Heat transfer of de-ionized water over in-line and staggered micro-cylinder-groups have been numerically investigated with Reynolds number varying in the range from 25 to 150. A 3-D incompressible numerical model is employed to investigate the vortex distributions and the influences of the vortices on heat transfer characteristics at low Re numbers in micro-cylinder-groups with different geometrical parameters, including micro-cylinder diameters (100, 250 and 500 μm), ratios of pitch to micro-cylinder diameter (1.5, 2 and 2.5) and ratios of micro-cylinder height to diameter (0.5, 1, 1.5 and 2). The vortex distributions, the temperature fields, and the relationships among them are investigated by solving the numerical model with the finite volume method. It is found that the vortex number become more with the increase of pitch ratio and the change of flow rate distribution affects the heat transfer characteristics apparently. Meanwhile, the local heat transfer coefficients nearby the locations of vortices greatly increase due to the boundary layer separation, which further enhance the heat transfer in micro-cylinder-groups. The new correlations which to Nusselt number of de-ionized water over micro-cylinders with Re number varying from 25 to 150 have been proposed considering the differential pressure resistance and the buoyancy effect basing on numerical calculations in this paper.
NASA Astrophysics Data System (ADS)
Carmo, B. S.; Meneghini, J. R.; Sherwin, S. J.
2010-05-01
The possible states in the flow around two identical circular cylinders in tandem arrangements are investigated for configurations in the vicinity of the drag inversion separation. By means of numerical simulations, the hysteresis in the transition between the shedding regimes is studied and the relationship between (three-dimensional) secondary instabilities and shedding regime determination is addressed. The differences observed in the behavior of two- and three-dimensional flows are analyzed, and the regions of bistable flow are delimited. Very good agreement is found between the proposed scenario and results available in the literature.
Pressure drop and heat transfer characteristics of circular and oblong low aspect ratio pin fins
NASA Astrophysics Data System (ADS)
Arora, S. C.; Messeh, W. A.
1985-09-01
The pressure drop and heat transfer characteristics of circular and oblong pin fins of height-to-diameter ratio of unity used to augment internal cooling of gas turbine airfoils are presented. Data were obtained for an array of 10 rows of staggered pin fins in a 25:1 aspect ratio channel, with both pins and channel endwalls forming the heat transfer surface. Results show that the array average friction factor increases with increasing blockage caused by different arrangement of pin fin geometries in the channel. The local heat transfer coefficient increases up to the 3rd row of pin fins and decreases thereafter. Oblong pin fins with gamma=90 deg (major axis parallel to the direction of flow) result in higher heat transfer rates and lower friction factor than the circular pin fins. For other orientations, oblong pin fins do not offer any advantage over circular pin fins for Re or = 20,000 (typical of small gas turbine engines).
Browns Ferry waste heat greenhouse. Progress report. Circular Z-117
Burns, E.R.; Carter, J.; Pile, R.S.; Roetheli, J.C.
1980-08-01
A 25,000-ft/sup 2/ experimental greenhouse at Browns Ferry Nuclear Plant was divided into three sections to compare two heat exchange systems using waste heat in condenser cooling water (CCW) with a conventionally heated zone. A 125-hp pump at each of the three power plant units provides a 3000 gal/min pumping capacity for the CCW which is pumped about 2000 ft through a 12-in. pipe to the greenhouse. Construction was completed in November 1978; initial engineering tests were not conducted on system performance until January 1979; and the first tomato crop was planted January 10, 1979. Harvest was completed in July 1979; and cucumbers, chrysanthemums, poinsettias, and gloxinias were grown during the following summer and fall. Low winter greenhouse temperatures reduced the yield and quality of tomatoes in the two waste heat sections which averaged 13.0 lbs/plant. The conventionally heated zone produced 15.4 lbs/plant. In January and February, temperatures of the CCW were sometimes as low as 52/sup 0/F, or 18/sup 0/F below the predicted 70/sup 0/F which was the minimum simulated CCW temperature used to develop the pilot greenhouse heating system at Muscle Shoals. The two heat exchange systems using CCW performed near design expectations - keeping the greenhouse air temperature within 10/sup 0/ to 12/sup 0/F of the incoming water temperature. Summer and fall production of cucumbers and ornamental crops was successful in all three sections, which were conventionally cooled. Production budgets indicated a greater potential for ornamental production than vegetable production in waste heat greenhouses. Economic studies showed that heat exchange systems using waste heat from CCW will require higher capital investment and greater electrical consumption than a conventionally heated greenhouse. However, depending upon the costs charged for CCW, the waste heat systems may show potential economic advantages as a result of reduced heating costs.
The effects of Prandtl number on flow over a vertical heated cylinder
NASA Astrophysics Data System (ADS)
Sameen, Abdulvahab; S, Ajithkumar; S, Anillal
2015-11-01
Flow over a two dimensional heated cylinder is analyzed numerically using a hybrid finite element-finite volume method. We assume the flow direction to be opposite to the direction of gravity. It is fundamental in fluid dynamics that the von Karman vortex street appears in the wake of the cylinder above the Reynolds number of approximately 47. On heating the cylinder surface, the Strouhal number (St), which is the non dimensional representation of the vortex shedding frequency, increases. The gradual increase in St is followed by a sudden drop at a particular value of Richardson number (Ri), defined as the relative dominance of the buoyancy force to the inertia force reported as a sudden breakdown of the Karman vortex. Our simulations show that upon further increase in Ri, recirculation bubble reappears. The present numerical work discusses the physical reasons behind this phenomenon and the effects of Prandtl number (defined as the ratio of viscous diffusion to the moment um diffusion) on Richardson number at which break down occurs.
Felker, B.; Calderon, M.O.; Chargin, A.K.; Coffield, F.E.; Gallagher, N.C. Jr.; Lang, D.D.; Pedrotti, L.R.; Rubert, R.R.; Stallard, B.W.; Sweeney, D.W.
1983-11-18
Extensive use of electron cyclotron resonant heating (ECRH) in the Tandem Mirror Experiment-Upgrade (TMX-U) requires continuous development of components to improve efficiency, increase reliability, and deliver power to new locations with respect to the plasma. We have used rectangular waveguide components on the experiment and have developed, tested, and installed circular waveguide components. We replaced the rectangular with the circular components because of the greater transmission efficiency and power-handling capability of the circular ones. Design, fabrication, and testing of all components are complete for all systems. In this paper we describe the design criteria for the system.
NASA Astrophysics Data System (ADS)
Amiri Delouei, A.; Nazari, M.; Kayhani, M. H.; Succi, S.
2014-05-01
In this study, the immersed boundary-thermal lattice Boltzmann method has been used to simulate non-Newtonian fluid flow over a heated circular cylinder. The direct-forcing algorithm has been employed to couple the off-lattice obstacles and on-lattice fluid nodes. To investigate the effect of boundary sharpness, two different diffuse interface schemes are considered to interpolate the velocity and temperature between the boundary and computational grid points. The lattice Boltzmann equation with split-forcing term is applied to consider the effects of the discrete lattice and the body force to the momentum flux, simultaneously. A method for calculating the Nusselt number based on diffuse interface schemes is developed. The rheological and thermal properties of non-Newtonian fluids are investigated under the different power-law indices and Reynolds numbers. The effect of numerical parameters on the accuracy of the proposed method has been investigated in detail. Results show that the rheological and thermal properties of non-Newtonian fluids in the presence of a heated immersed body can be suitably captured using the immersed boundary thermal lattice Boltzmann method.
Qasim, Muhammad; Khan, Zafar Hayat; Khan, Waqar Ahmad; Ali Shah, Inayat
2014-01-01
This study investigates the magnetohydrodynamic (MHD) flow of ferrofluid along a stretching cylinder. The velocity slip and prescribed surface heat flux boundary conditions are employed on the cylinder surface. Water as conventional base fluid containing nanoparticles of magnetite (Fe3O4) is used. Comparison between magnetic (Fe3O4) and non-magnetic (Al2O3) nanoparticles is also made. The governing non-linear partial differential equations are reduced to non-linear ordinary differential equations and then solved numerically using shooting method. Present results are compared with the available data in the limiting cases. The present results are found to be in an excellent agreement. It is observed that with an increase in the magnetic field strength, the percent difference in the heat transfer rate of magnetic nanoparticles with Al2O3 decreases. Surface shear stress and the heat transfer rate at the surface increase as the curvature parameter increases, i.e curvature helps to enhance the heat transfer. PMID:24465388
Qasim, Muhammad; Khan, Zafar Hayat; Khan, Waqar Ahmad; Ali Shah, Inayat
2014-01-01
This study investigates the magnetohydrodynamic (MHD) flow of ferrofluid along a stretching cylinder. The velocity slip and prescribed surface heat flux boundary conditions are employed on the cylinder surface. Water as conventional base fluid containing nanoparticles of magnetite (Fe3O4) is used. Comparison between magnetic (Fe3O4) and non-magnetic (Al2O3) nanoparticles is also made. The governing non-linear partial differential equations are reduced to non-linear ordinary differential equations and then solved numerically using shooting method. Present results are compared with the available data in the limiting cases. The present results are found to be in an excellent agreement. It is observed that with an increase in the magnetic field strength, the percent difference in the heat transfer rate of magnetic nanoparticles with Al2O3 decreases. Surface shear stress and the heat transfer rate at the surface increase as the curvature parameter increases, i.e curvature helps to enhance the heat transfer. PMID:24465388
NASA Astrophysics Data System (ADS)
Guo, Xiao-Hui; Lin, Jian-Zhong; Nie, De-Ming
2009-08-01
We present a study on the vortex structures and behavior of a flow past two rotating circular cylinders arranged side-by-side at a range of absolute rotational speeds (|α| <= 2) for two different gap spacings g* = 1.5 and 0.7 at Reynolds numbers Re = 160 and 200. The results show that the flow becomes stabilized and finally steady beyond the critical rotational speed as | α | increases, regardless of the variation in Re and g*. The value of critical rotational speed increases with increasing Re. The wake patterns change in the unsteady regimes for g* = 1.5 and 0.7. With increasing |α|, the time-averaged drag coefficient bar CD decreases and the lift coefficient bar CL increases, respectively. bar CD at Re = 160 and g* = 0.7 decreases rapidly, resulting in the smallest value at the same |α| for 1 <= |α| <= 2. bar CD augments with increasing g* at the same |α|. For g* = 1.5, bar CD has a little disparity between the cases of Re = 160 and 200. For the flow past two still cylinders, bar CL is inversely proportional to g* of two cylinders for a fixed |α|, and is not dependent on Re.
NASA Astrophysics Data System (ADS)
Mabood, Fazle; Lorenzini, Giulio; Pochai, Napporat; Ibrahim, Sheikh Muhammad
2016-07-01
A numerical treatment for axisymmetric flow and heat transfer due to a stretching cylinder under the influence of a uniform magnetic field and prescribed surface heat flux is presented. Numerical results are obtained for dimensionless velocity, temperature, skin friction coefficient and Nusselt number for several values of the suction/injection, magnetic and curvature parameters as well as the Prandtl number. The present study reveals that the controlling parameters have strong effects on the physical quantities of interest. It is seen that the magnetic field enhances the dimensionless temperature inside the thermal boundary layer, whereas it reduces the dimensionless velocity inside the hydrodynamic boundary layer. Heat transfer rate reduces, while the skin friction coefficient increases with magnetic field.
NASA Astrophysics Data System (ADS)
Chatterjee, Dipankar; Mondal, Bittagopal
2013-07-01
A two-dimensional numerical study is carried out to understand the influence of cross buoyancy on the vortex shedding processes behind two equal isothermal square cylinders placed in a tandem arrangement at low Reynolds numbers. The spacing between the cylinders is fixed with five widths of the cylinder dimension. The flow is considered in an unbounded medium, however, fictitious confining boundaries are chosen to make the problem computationally feasible. Numerical calculations are performed by using a finite volume method based on the PISO algorithm in a collocated grid system. The range of Reynolds number is chosen to be 50-150. The flow is unsteady laminar and two-dimensional in this Reynolds number range. The mixed convection effect is studied for Richardson number range of 0-2 and the Prandtl number is chosen constant as 0.71. The effect of superimposed thermal buoyancy on flow and isotherm patterns are presented and discussed. The global flow and heat transfer quantities such as overall drag and lift coefficients, local and surface average Nusselt numbers and Strouhal number are calculated and discussed for various Reynolds and Richardson numbers.
Heat Dissipation from a Finned Cylinder at Different Fin-Plane/Air-stream Angles
NASA Technical Reports Server (NTRS)
Schey, Oscar W; Biermann, Arnold E
1932-01-01
This report gives the results of an experimental determination of the temperature distribution in and the heat dissipation from a cylindrical finned surface for various fin-plane/air-stream angles. A steel cylinder 4.5 inches in diameter having slightly tapered fins of 0.30-inch pitch and 0.6 -inch width was equipped with an electrical heating unit furnishing 13 to 248 B.T.U. per hour per square inch of inside wall area. Air at speeds form 30 to 150 miles per hour was directed at seven different angles from 0 degrees to 90 degrees with respect to the fin planes. The tests show the best angle for cooling at all air speeds to be about 45 degrees. With the same temperature for the two conditions and with an air speed of 76 miles per hour, the heat input to the cylinder can be increased 50 percent at 45 degrees fin-plane/air-stream angle over that at 0 degrees.
Wang, Chao; Si, Xinhui; Shen, Yanan; Zheng, Liancun; Lin, Ping
2015-01-01
Since the vessels in the biological tissues are characterized by low seepage Reynolds numbers and contracting or expanding walls, more attention is paid on the viscous flow outside the porous pipe with small expansion or contraction. This paper presents a numerical solution of the flow and heat transfer outside an expanding or contracting porous cylinder. The coupled nonlinear similarity equations are solved by Bvp4c, which is a collocation method with MATLAB. The effects of the different physical parameters, namely the permeability Reynolds number,the expansion ratio and the Prandtl number, on the velocity and temperature distribution are obtained and the results are shown graphically. PMID:26406014
A new hydrodynamic prediction of the peak heat flux from horizontal cylinders in low speed upflow
NASA Technical Reports Server (NTRS)
Ungar, E. K.; Eichhorn, R.
1988-01-01
Flow-boiling data have been obtained for horizontal cylinders in saturated acetone, isopropanol, and water, yielding heat flux vs. wall superheat boiling curves for the organic liquids. A region of low speed upflow is identified in which long cylindrical bubbles break off from the wake with regular frequency. The Strouhal number of bubble breakoff is a function only of the Froude number in any liquid, and the effective wake thickness in all liquids is a function of the density ratio and the Froude number. A low speed flow boiling burnout prediction procedure is presented which yields accurate results in widely dissimilar liquids.
NASA Technical Reports Server (NTRS)
Rosenberg, G. S.; Schoeberle, D. F.; Valentin, R. A.
1969-01-01
Analysis and solution are presented for transient thermal stresses in a free heat-generating flat plate and a free, hollow-generating cylinder as a result of sudden environmental changes. The technique used and graphical results obtained are of interest to the heat transfer industry.
MHD mixed convection flow through a diverging channel with heated circular obstacle
NASA Astrophysics Data System (ADS)
Alam, Md. S.; Shaha, J.; Khan, M. A. H.; Nasrin, R.
2016-07-01
A numerical study of steady MHD mixed convection heat transfer and fluid flow through a diverging channel with heated circular obstacle is carried out in this paper. The circular obstacle placed at the centre of the channel is hot with temperature Th. The top and bottom walls are non-adiabatic. The basic nonlinear governing partial differential equations are transformed into dimensionless ordinary differential equations using similarity transformations. These equations have been solved numerically for different values of the governing parameters, namely Reynolds number (Re), Hartmann number (Ha), Richardson number (Ri) and Prandtl number (Pr) using finite element method. The streamlines, isotherms, average Nusselt number and average temperature of the fluid for various relevant dimensionless parameters are displayed graphically. The study revealed that the flow and thermal fields in the diverging channel depend significantly on the heated body. In addition, it is observed that the magnetic field acts to increase the rate of heat transfer within the channel.
Pressure losses and heat transfer in non-circular channels with hydraulically smooth walls
NASA Technical Reports Server (NTRS)
Malak, J.
1982-01-01
The influence of channel geometry on pressure losses and heat transfer in noncircular channels with hydraulically smooth walls was studied. As a basic assumption for the description of this influence, integral geometrical criteria, selected according to experimental experience, were introduced. Using these geometrical criteria, a large set of experimental data for pressure losses and heat transfer in circular and annular channels with longitudinal fins was evaluated. In this way it as empirically proved that the criteria described channel geometry fairly well.
NASA Astrophysics Data System (ADS)
Bai, Xiao-Dong; Zhang, Wei; Guo, An-Xin; Wang, Yong
2016-04-01
A global stability analysis is performed for the flip-flopping wake pattern behind two side-by-side cylinders with emphasis on the unstable vorticity field. The combination of direct numerical simulation with the state-of-art lattice Boltzmann method and dynamic mode decomposition is used to analyse such wake pattern for the first time. The vorticity mode of the secondary instability is extracted from the flow. Such mode is found to be symmetrical with respect to the geometric axis of symmetry. Furthermore, a new scenario is found for the high order harmonics that there is a pair of two tertiary modes as a result of nonlinear interaction between the mode related to the secondary instability and the global mode of the in-phase synchronized vortex shedding base flow. Besides, the reason for the Fourier spectra of the lift on the two cylinders being the same is also illustrated for this case.
NASA Technical Reports Server (NTRS)
Kempel, Leo C.
1994-01-01
The Finite Element-Boundary Integral (FE-BI) technique was used to analyze the scattering and radiation properties of cavity-backed patch antennas recessed in a metallic groundplane. A program, CAVITY3D, was written and found to yield accurate results for large arrays without the usual high memory and computational demand associated with competing formulations. Recently, the FE-BI approach was extended to cavity-backed antennas recessed in an infinite, metallic circular cylinder. EXCALIBUR is a computer program written in the Radiation Laboratory of the University of Michigan which implements this formulation. This user manual gives a brief introduction to EXCALIBUR and some hints as to its proper use. As with all computational electromagnetics programs (especially finite element programs), skilled use and best performance are only obtained through experience. However, several important aspects of the program such as portability, geometry generation, interpretation of results, and custom modification are addressed.
C. AVILES-RAMOS; C. RUDY
2000-11-01
The transient exact solution of heat conduction in a two-domain composite cylinder is developed using the separation of variables technique. The inner cylinder is isotropic and the outer cylindrical layer is orthotropic. Temperature solutions are obtained for boundary conditions of the first and second kinds at the outer surface of the orthotropic layer. These solutions are applied to heat flow calorimeters modeling assuming that there is heat generation due to nuclear reactions in the inner cylinder. Heat flow calorimeter simulations are carried out assuming that the inner cylinder is filled with plutonium oxide powder. The first objective in these simulations is to predict the onset of thermal equilibrium of the calorimeter with its environment. Two types of boundary conditions at the outer surface of the orthotropic layer are used to predict thermal equilibrium. The procedure developed to carry out these simulations can be used as a guideline for the design of calorimeters. Another important application of these solutions is on the estimation of thermophysical properties of orthotropic cylinders. The thermal conductivities in the vertical, radial and circumferential directions of the orthotropic outer layer can be estimated using this exact solution and experimental data. Simultaneous estimation of the volumetric heat capacity and thermal conductivities is also possible. Furthermore, this solution has potential applications to the solution of the inverse heat conduction problem in this cylindrical geometry. An interesting feature of the construction of this solution is that two different sets of eigenfunctions need to be considered in the eigenfunction expansion. These eigenfunctions sets depend on the relative values of the thermal diffusivity of the inner cylinder and the thermal diffusivity in the vertical direction of the outer cylindrical layer.
Numerical Study of Flow Past a Circular Cylinder Using RANS, Hybrid RANS/LES and PANS Formulations
NASA Technical Reports Server (NTRS)
Elmiligui, Alaa A.; Abdol-Hamid, Khaled S.; Massey, Steven J.; Pao, S. Paul
2004-01-01
Two multiscale type turbulence models are implemented in the PAB3D solver. The models are based on modifying the Reynolds Averaged Navier-Stokes (RANS) equations. The first scheme is a hybrid RANS/LES model utilizing the two-equation (k(sub epsilon)) model with a RANS/LES transition function dependent on grid spacing and the computed turbulence length scale. The second scheme is a modified version of the partially averaged Navier-Stokes (PANS) model, where the unresolved kinetic energy parameter (f(sub k)) is allowed to vary as a function of grid spacing and the turbulence length scale. Solutions from these models are compared to RANS results and experimental data for a stationary and rotating cylinder. The parameter f(sub k) varies between zero and one and has the characteristic to be equal to one in the viscous sub layer, and when the RANS turbulent viscosity becomes smaller than the LES viscosity. The formulation, usage methodology, and validation example are presented to demonstrate the enhancement of PAB3D's time-accurate and turbulence modeling capabilities. The models are compared to RANS results and experimental data for turbulent separated flows (TS) and laminar separated flows (LS) around stationary and rotating cylinders. For a stationary cylinder, the TS case is accurately simulated using the general two-equation k(sub epsilon) turbulence model (eddy-viscosity model). PAB3D accurately predicts the drag coefficient (CD), lift coefficient (CL) and the Strouhal number (St). The LS case was a challenge for the RANS computation with an eddy-viscosity turbulence model. The RANS/LES and PANS performed well and showed marked improvements over the RANS solution. The modified PANS model was the most accurate. For the rotating cylinder, the spin ratio varied from zero to one, and the PANS results were in good agreement with published experimental data. RANS/LES and PANS capture both temporal and spatial fluctuations and produce large-scale structures that do not
NASA Astrophysics Data System (ADS)
Guilmineau, E.; Queutey, P.
2004-05-01
In this paper, we present some numerical results from a study of the dynamics and fluid forcing on an elastically mounted rigid cylinder with low mass-damping, constrained to oscillate transversely to a free stream. The vortex shedding around the cylinder is investigated numerically by the incompressible two-dimensional Reynolds-Averaged Navier-Stokes (RANS) equations. These equations are written in a primitive formulation in which the Cartesian velocity components and pressure share the same location at the center of the control volume. The numerical method uses a consistent physical reconstruction for the mass and momentum fluxes: the so-called consistent physical interpolation (CPI) approach in a conservative discretization using finite volumes on structured grids. The turbulence modeling is carried out by the SST K-ω model of Menter (AIAA 24th Fluid Dynamics Conference, Orlando, FL, USA). The numerical results are compared with the 1996 experimental results of Khalak and Williamson (J. Fluids Struct. 10 (1996) 455). The Reynolds number is in the range 900-15 000, the reduced velocity is including between 1.0 and 17.0. The mass ratio is 2.4 and the mass-damping is 0.013. Several initial conditions are used. According the initial condition used, the simulations predict correctly the maximum amplitude. On the other hand, the numerical results do not match the upper branch found experimentally. However, these results are encouraging, because no simulations have yet predicted such a high amplitude of vibration.
NASA Astrophysics Data System (ADS)
Astarita, Tommaso; Castrillo, Giusy; Cafiero, Gioacchino
2015-11-01
Several solutions have been proposed over the last decades to increase the heat transfer rate of impinging jets. In all cases the heat transfer enhancement is obtained by exciting/altering the structure and organization of large scale turbulence, which is widely recognized to be the main agent in heat and mass transfer mechanism of impinging jets. Tampering with the large coherent turbulent structures is the key to achieve a significant heat transfer enhancement. In a recent work we demonstrated the effectiveness of fractal turbulence in this sense. Its effect is such that the heat transfer rate increases up to 63% in the stagnation region with respect to the well-known circular jet under the same power input. However, a systematic analysis of the effect of the singular geometric parameters of the fractal grid (such thickness ratio and length ratio) onto the spatial distribution of the Nusselt number has not been proposed yet. In this work we propose the analysis of the heat transfer enhancement produced by a class of turbulence promoters located in correspondence of the nozzle exit section of a circular jet. The upward shift of the turbulence intensity profile due to the blockage effect induced by the growing shear layer is discussed in terms of heat transfer enhancement.
NASA Astrophysics Data System (ADS)
Niu, Jiajia; Zheng, Liancun; Zhang, Xinxin
2014-03-01
In this work we endeavor to obtain the analytical solutions for the unsteady MHD mixed convection of an electrically conducting viscous fluid over a vertical accelerating/decelerating cylinder. Unlike typical studies, the temperature-dependent fluid properties, variable fluid viscosity and the thermal conductivity are studied in highly coupled velocity and temperature fields. The locally similar and nonlinear coupled parabolic partial differential equations (PDEs) with exponential growth/decay boundary condition are solved by homotopy analysis method (HAM). The analytical results are compared with numerical solutions in an excellent agreement. The combined effects of pertinent physical parameters, such as the unsteadiness parameter, the temperature-dependent viscosity parameter, the temperature-dependent thermal conductivity parameter, the magnetic parameter and the mixed convection parameter on the flow and heat transfer characteristics are analyzed and discussed.
Mixed convection boundary layer flow over a horizontal elliptic cylinder with constant heat flux
NASA Astrophysics Data System (ADS)
Javed, Tariq; Ahmad, Hussain; Ghaffari, Abuzar
2015-12-01
Mixed convection boundary layer flow of a viscous fluid over a horizontal elliptic cylinder with a constant heat flux is investigated numerically. The governing partial differential equations are transformed to non-dimensional form and then are solved by an efficient implicit finite different scheme known as Keller-box method. The solutions are expressed in the form of skin friction and Nusselt number, which are plotted against the eccentric angle. The effect of pertinent parameters such as mixed convection parameter, aspect ratio (ratio of lengths of minor axis to major axis), and Prandtl number on skin friction and Nusselt number are illustrated through graphs for both blunt and slender orientations. The increase in the value of mixed convection parameter results in increase in skin friction coefficient and Nusselt number for blunt as well as slender orientations.
NASA Technical Reports Server (NTRS)
Reshotko, Eli; Beckwith, Ivan E
1958-01-01
The equations are presented for the development of the compressible laminar boundary layer over a yawed infinite cylinder. For compressible flow with a pressure gradient the chordwise and spanwise flows are not independent. Using the Stewartson transformation and a linear viscosity-temperature relation yields a set of three simultaneous ordinary differential equations in a form yielding similar solutions. These equations are solved for stagnation-line flow for surface temperatures from zero to twice the free-stream stagnation temperature and for a wide range of yaw angle and free-stream Mach number. The results indicate that the effect of yaw on the heat-transfer coefficient at the stagnation line depends markedly on the free-stream Mach number. An unusual result of the solutions is that for large yaw angles and stream Mach numbers the chordwise velocity within the boundary layer exceeds the local external chordwise velocity, even for a highly cooled wall.
NASA Astrophysics Data System (ADS)
Kroeger, C. A.; Larson, H. J.
1992-03-01
Analysis and concept design work completed in Phase 1 have identified a low heat rejection engine configuration with the potential to meet the Heavy Duty Transport Technology program specific fuel consumption goal of 152 g/kW-hr. The proposed engine configuration incorporates low heat rejection, in-cylinder components designed for operation at 24 MPa peak cylinder pressure. Water cooling is eliminated by selective oil cooling of the components. A high temperature lubricant will be required due to increased in-cylinder operating temperatures. A two-stage turbocharger air system with intercooling and aftercooling was selected to meet engine boost and BMEP requirements. A turbocompound turbine stage is incorporated for exhaust energy recovery. The concept engine cost was estimated to be 43 percent higher compared to a Caterpillar 3176 engine. The higher initial engine cost is predicted to be offset by reduced operating costs due the lower fuel consumption.
NASA Technical Reports Server (NTRS)
Kroeger, C. A.; Larson, H. J.
1992-01-01
Analysis and concept design work completed in Phase 1 have identified a low heat rejection engine configuration with the potential to meet the Heavy Duty Transport Technology program specific fuel consumption goal of 152 g/kW-hr. The proposed engine configuration incorporates low heat rejection, in-cylinder components designed for operation at 24 MPa peak cylinder pressure. Water cooling is eliminated by selective oil cooling of the components. A high temperature lubricant will be required due to increased in-cylinder operating temperatures. A two-stage turbocharger air system with intercooling and aftercooling was selected to meet engine boost and BMEP requirements. A turbocompound turbine stage is incorporated for exhaust energy recovery. The concept engine cost was estimated to be 43 percent higher compared to a Caterpillar 3176 engine. The higher initial engine cost is predicted to be offset by reduced operating costs due the lower fuel consumption.
The optimum fin spacing of circular tube bank fin heat exchanger with vortex generators
NASA Astrophysics Data System (ADS)
Hu, Wanling; Su, Mei; Wang, Liangcheng; Zhang, Qiang; Chang, Limin; Liu, Song; Wang, Liangbi
2013-09-01
In real application, once the pattern of fin is determined, fin spacing of tube bank fin heat exchanger can be adjusted in a small region, and air flow velocity in the front of the heat exchanger is not all the same. Therefore, the effects of fin spacing on heat transfer performance of such heat exchanger are needed. This paper numerically studied the optimal fin spacing regarding the different front flow velocities of a circular tube bank fin heat exchanger with vortex generators. To screen the optimal fin spacing, an appropriate evaluation criterion JF was used. The results show that when front velocity is 1.75 m/s, the optimal fin spacing is 2.25 mm, when front velocity is 2.5 m/s, the optimal fin spacing is 2 mm, and when front velocity is higher than 2.5 m/s, the optimal fin spacing is 1.75 mm.
NASA Astrophysics Data System (ADS)
Baluev, V. V.; Rzaev, A. I.
1992-08-01
Experimental results on the average heat transfer from a cylinder in a liquid-penetrated granular bed are presented and the dependence of the heat transfer rate on the particle size in the bed is found.
Harsini, I.; Ashjaee, M.
2010-09-15
The effect of a vertical adiabatic wall on the natural convection heat transfer from vertical array of attached cylinders, which can be considered as wavy surface, was investigated experimentally and numerically. The experiments were carried out using Mach-Zehnder interferometer and the commercial FLUENT code was used for numerical study. This paper focuses on the effect of wall-wavy surface spacing and Rayleigh number variation on the local and average free convection heat transfer coefficients from the each cylinder and the wavy surface. Rayleigh number ranges from 2400 to 10,000 and from 300,000 to 1,250,000 based on cylinder diameter and wavy surface height respectively. The local and average Nusselt numbers were determined for the different Rayleigh numbers, and the ratio of wall- wavy surface spacing to cylinder diameter 0.75, 1, 1.5, 2, 3, 4, 5, and {infinity}. Results are indicated with a single correlation which gives the average Nusselt number as a function of the ratio of the wall-wavy surface spacing to cylinder diameter and the Rayleigh numbers. There is an optimum distance between the wall and wavy surface in which the Nusselt number attain its maximum value. This optimum distance depends on the Rayleigh number. (author)
NASA Astrophysics Data System (ADS)
Sulochana, C.; Sandeep, N.
2016-03-01
In this study we analyzed the stagnation point flow and heat transfer behavior of Cu-water nanofluid towards horizontal and exponentially permeable stretching/shrinking cylinders in presence of suction/injection, heat source and shape of nanoparticles. The governing boundary layer equations are transformed to nonlinear ordinary differential equations using similarity transformation which are then solved numerically using bvp4c Matlab package. The influence of non-dimensional governing parameters on the flow field and heat transfer characteristics are discussed and presented through graphs and tables. The study indicates that the solutions for the horizontal and exponential cylinders are non-unique and shape of nanoparticles also influences the rate of heat transfer. Comparisons of the present results with existed studies are presented. Present study has an excellent agreement with the existed studies under some special conditions.
NASA Technical Reports Server (NTRS)
Weinstein, I.
1973-01-01
Heat-transfer and pressure distributions were measured over the surfaces of three hemisphere-cylinder models tested at a nominal Mach number of 7 in the Langley 8-foot high-temperature structures tunnel which uses methane-air products of combustion as a test medium. The results showed that the heat-transfer and pressure distributions over the surface of the models were in good agreement with experimental data obtained in air and also with theoretical predictions.
NASA Astrophysics Data System (ADS)
Yu, H.; Li, X.; Hu, S.; Li, Z.; Chen, A.
2016-03-01
Radiation heat loss is an important type of heat loss in thermal systems. In this work, a numerical study of the transient response of two circular radiation heat shields inserted between two parallel and circular surfaces of emissivities ɛ1 and ɛ2 is presented. The same dimensions have been assumed for the two main radiating surfaces and the two radiation shields. The radiation shields are assumed to have different emissivities on their top (ɛ3 and ɛ5) and bottom ( ɛ4 and ɛ6) surfaces, and both are assumed to be different but linear functions of temperature. A specific configuration is investigated in detail to highlight the transient temperature and heat transfer characteristics of the system. Some new results for the transient temperature and heat transfer characteristics of the system such as the effect of shield location, shield emissivities, the temperature dependence of shield emissivities, system dimensions, temperatures of the hot and cold surfaces and emissivities of the hot and cold surfaces are presented for future references. It has been observed that increasing the temperature of the first radiation shield by changing a parameter such as surface emissivity or distance between the radiation shield or the temperature of the hot surface, will not necessarily decrease the temperature of the second radiation shield.
On the effect of fractal generated turbulence on the heat transfer of circular impinging jets
NASA Astrophysics Data System (ADS)
Astarita, Tommaso; Cafiero, Gioacchino; Discetti, Stefano
2013-11-01
The intense local heat transfer achieved by circular impinging jets is exploited in countless industrial applications (cooling of turbine blades, paper drying, tempering of glass and metals, etc). The heat transfer rate depends mainly on the Reynolds number, the nozzle-to-plate distance and the upstream turbulence. It is possible to enhance the heat transfer by exciting/altering the large scale structures embedded within the jet. In this work turbulent energy is injected by using a fractal grid at the nozzle exit. Fractal grids can generate more intense turbulence with respect to regular grids with the same blockage ratio by enhancing the jet turbulence over different scales. Consequently, they are expected to improve the convective heat transfer. The results outline that a significant improvement is achieved (for small nozzle-to-plate distances up to 100% at the stagnation point and more than 10% on the integral heat transfer over a circular area of 3 nozzle diameters) under the same power input.
Fatigue Performance of Fluidized Bed Heat Treated 319 Alloy Diesel Cylinder Heads
NASA Astrophysics Data System (ADS)
Chaudhury, Sujoy K.; Apelian, Diran; Meyer, Philippe; Massinon, Denis; Morichon, Julien
2015-07-01
Effects of various heat treatment tempers on fatigue performance of 319 alloy diesel cylinder heads were investigated. Castings were heat treated to T5, T6, and T7 tempers. Castings were solution heat treated and quenched using fluidized beds and aged using both conventional air convective furnace and fluidized bed for T6 and T7 tempers; while they were aged after casting for T5 temper using conventional furnace. Fatigue tests were performed at 373 K (100 °C) and stress ratio equal to -1. Results show that heat treatment has significant effect on the fatigue behavior of 319 alloy. The fatigue strength of T6 tempered 319 alloy is greater than T5 and T7 treatments. Weibull analysis shows that the Weibull modulus and characteristic fatigue life of castings treated (using conventional forced air circulation electrical resistance furnace) to T6 and T7 tempers are greater than T5 temper. This implies that castings treated to T6 and T7 tempers have greater reliability vis-à-vis T5 temper. Fractographic analyses reveal three distinct regions. These are: (I) crack initiation region from the surface, (II) crack propagation region, and (III) catastrophic or monotonic failure region. The relative size of the crack propagation region in T6 and T7 treated samples is greater than T5 treated samples. In general, the monotonic failure region shows typical dimple morphology, which implies significant plastic deformation prior to failure. Dimples on the fractured surface of T5 treated alloy are relatively more faceted than those treated to T6 and T7 tempers. This implies that the 319 alloy treated to T6 and T7 tempers underwent higher degree of plasticity prior to failure than that in the T5 condition.
NASA Technical Reports Server (NTRS)
Budair, M.; Ayoub, A.; Karamcheti, K.
1981-01-01
Results of hot wire measurements made in the near wake at a Reynolds number of 9955 are reported. The measurements include the mean velocity profiles, root mean square values of the velocity fluctuations, frequency spectra, and velocity cross correlations. The mean velocity profiles were used to determine the wake width, whose variation in the downstream and spanwise directions was examined. It is observed that close to the cylinder, the wake is narrower toward the free end than it is away from it, while further downstream the wake is wider toward the tip than it is away from it. It is found that the flow over the span can be characterized by four regions: a tip region where vortex shedding occurs at a lower frequency than that prevalent for away from the tip; an intermediate region adjacent to the first one where a frequency component of a nonshedding character is present; a third region characterized by a gradually increasing shedding frequency with increasing distance from the tip; and a two dimensional region where the shedding frequency is constant.
Microstructure and Mechanical Properties of Heat-Treated B319 Alloy Diesel Cylinder Heads
NASA Astrophysics Data System (ADS)
Chaudhury, S. K.; Apelian, D.; Meyer, P.; Massinon, D.; Morichon, J.
2015-07-01
Microstructure and mechanical properties of B319 alloy diesel cylinder heads were investigated in this study. Cylinder heads were heat treated to T5, T6, and T7 tempers using fluidized bed technology. Three different fluidized beds were used, each to solutionize, quench, and age the castings. For comparative purposes, castings were also aged using conventional forced-air circulation electric-resistance furnace. Effects of processing parameters such as temperature, time, and heating rate on microstructural evolution and mechanical properties namely tensile properties and hardness of B319 alloy castings were studied. The number density and size range of precipitates were measured. Results show that the T5 temper has no effect on eutectic phases such as Si- and Fe-rich intermetallic, and Al2Cu. On contrary, both T6 and T7 tempers result in spherodization of the eutectic Si and partial dissolution of the Al2Cu phase. Prolonged solution heat treatment for 8 hours in fluidized bed results in limited dissolution of the secondary eutectic Al2Cu phase. Aging (T6, T7, and T5) results in precipitation of Al5Cu2Mg8Si6 and Al2Cu phases in B319 alloy. The number density of precipitates in T6 temper is greater than in T7 and T5 tempers. The number density of precipitates is also affected by the duration of solution heat treatment. In general, long solution heat treatment (8 hours) results in greater precipitate density than short solution treatment (2 hours). The distribution of precipitates is inhomogeneous and varied across the dendritic structure. In general, precipitation rate of Al5Cu2Mg8Si6 phase is greater near the periphery of the dendrite as compared to the center. This is because Al5Cu2Mg8Si6 nucleates on Si particle, grain boundaries, and triple junction between recrystallized Al grains and Si particles. Similarly, heterogeneous sites such as grain boundaries and Al/Si interface also act as nucleating sites for the precipitation of Al2Cu phase. In general, the
LES of fluid and heat flow over a wall-bounded short cylinder at different inflow conditions
NASA Astrophysics Data System (ADS)
Borello, D.; Hanjalić, K.
2011-12-01
We report on LES studies of flow patterns, vortical structures and heat transfer in flows over a short single cylinder of diameter D placed in a plane channel of height h = 0.4D in which the bottom wall is heated. The Reynolds number of 6150, based on D, corresponds to the water experiments reported by Sahin et al. (2008). For the basic computational domain of 24×14×0.4D three different inflow conditions have been considered: a non-turbulent flow with a uniform initial velocity developing along the channel (NT), a fully developed channel flows (FD) (generated a priori) and periodic conditions (PC). The latter boundary conditions have also been considered for two shorter domain lengths of 6D and 3D corresponding to a cylinder in a compact matrix. For the long domain, despite the length of the channel of 9.5 D before (and after) the cylinder, the inlet conditions show strong effects on the formation and evolution of the multiple vortex systems both in front and behind the cylinder, influencing significantly also friction and heat transfer. Simulations show some agreement with experimental data though the comparison is impaired by the uncertainty in the experimental inflow conditions. For the shortest cylinder spacing the wake never closes and the flow shows enhanced unsteadiness and turbulence level. Interestingly, the comparison for the same short domain (3Dx3D) using the mean temperature at the inflow to this domain as a reference shows the lowest average base-wall Nusselt number in the PC 3D case that corresponds to compact heat exchangers.
NASA Astrophysics Data System (ADS)
Martínez-Suástegui, Lorenzo; Salcedo, Erick; Cajas, Juan; Treviño, César
2015-11-01
Transient mixed convection in a laminar cross-flow from two isothermal cylinders in tandem arrangement confined inside a vertical channel is studied numerically using the vorticity-stream function formulation of the unsteady two-dimensional Navier-Stokes and energy equations. Numerical experiments are performed for a Reynolds number based on cylinder diameter of Re = 200, Prandtl number of Pr = 7, blockage ratio of D/H = 0.2, a pitch-to-diameter ratio of L/D = 2, and several values of buoyancy strength or Richardson number Ri = Gr/Re2. The results reported herein demonstrate how the wall confinement, interference effects and opposing buoyancy affect the flow structure and heat transfer characteristics of the cylinder array. This research was supported by the Consejo Nacional de Ciencia y Tecnología (CONACYT), Grant number 167474 and by the Secretaría de Investigación y Posgrado del IPN, Grant number SIP 20141309.
NASA Technical Reports Server (NTRS)
Reid, Elliott G
1924-01-01
Tests were made in the no. 1 wind tunnel at Langley Memorial Aeronautical Laboratory to determine the air forces acting on rotating cylinders with axes perpendicular to the direction of motion. One cylinder had a circular cross-section, the other that of a greek cross.
NASA Astrophysics Data System (ADS)
di Liberto, Francesco; Pastore, Raffaele; Peruggi, Fulvio
2011-05-01
When some entropy is transferred, by means of a reversible engine, from a hot heat source to a colder one, the maximum efficiency occurs, i.e. the maximum available work is obtained. Similarly, a reversible heat pumps transfer entropy from a cold heat source to a hotter one with the minimum expense of energy. In contrast, if we are faced with non-reversible devices, there is some lost work for heat engines, and some extra work for heat pumps. These quantities are both related to entropy production. The lost work, i.e. ? , is also called 'degraded energy' or 'energy unavailable to do work'. The extra work, i.e. ? , is the excess of work performed on the system in the irreversible process with respect to the reversible one (or the excess of heat given to the hotter source in the irreversible process). Both quantities are analysed in detail and are evaluated for a complex process, i.e. the stepwise circular cycle, which is similar to the stepwise Carnot cycle. The stepwise circular cycle is a cycle performed by means of N small weights, dw, which are first added and then removed from the piston of the vessel containing the gas or vice versa. The work performed by the gas can be found as the increase of the potential energy of the dw's. Each single dw is identified and its increase, i.e. its increase in potential energy, evaluated. In such a way it is found how the energy output of the cycle is distributed among the dw's. The size of the dw's affects entropy production and therefore the lost and extra work. The distribution of increases depends on the chosen removal process.
Hayat, T; Hussain, Zakir; Alsaedi, A; Farooq, M
2016-01-01
This article examines the effects of homogeneous-heterogeneous reactions and Newtonian heating in magnetohydrodynamic (MHD) flow of Powell-Eyring fluid by a stretching cylinder. The nonlinear partial differential equations of momentum, energy and concentration are reduced to the nonlinear ordinary differential equations. Convergent solutions of momentum, energy and reaction equations are developed by using homotopy analysis method (HAM). This method is very efficient for development of series solutions of highly nonlinear differential equations. It does not depend on any small or large parameter like the other methods i. e., perturbation method, δ-perturbation expansion method etc. We get more accurate result as we increase the order of approximations. Effects of different parameters on the velocity, temperature and concentration distributions are sketched and discussed. Comparison of present study with the previous published work is also made in the limiting sense. Numerical values of skin friction coefficient and Nusselt number are also computed and analyzed. It is noticed that the flow accelerates for large values of Powell-Eyring fluid parameter. Further temperature profile decreases and concentration profile increases when Powell-Eyring fluid parameter enhances. Concentration distribution is decreasing function of homogeneous reaction parameter while opposite influence of heterogeneous reaction parameter appears. PMID:27280883
High temperature tribology for piston ring and cylinder liner in advanced low heat rejection engines
Kamo, L.S.; Kleyman, A.S.; Bryzik, W.; Mekari, M.
1996-12-31
High temperature tribology research efforts being pursued at Adiabatics are directed in the area of post treatment densified plasma sprayed coatings. Previous work has yielded good results for laboratory bench tests using no liquid lubrication. The process infiltrates a thermal sprayed coating layer with Chrome Oxide and Phosphate Glass compounds which serve to enhance the mechanical bond of a thermal sprayed layer, while improving its internal integrity, and sealing off open porosity. It has been applied to over 150 different wear combinations. Of these tests, Iron Oxide based coatings versus Molybdenum alloy materials provide the best results. Testing in a modified Low Heat Rejection (LHR) single cylinder diesel engine proved this wear combination superior to the state of the art materials available today. These data show improvement over past research efforts directed at developing solid lubricants, but they do not achieve goals set for operation in future advanced military LHR diesel powerplants. Through involvement with the support of the US Army Tank Automotive Research Development and Engineering Center (TARDEC) the authors have predetermined a goal of attaining bench test friction coefficients of {mu}{sub f} < 0.10, and material wear rates {le}1.0 mg/hr, at a temperature of 540 C. The research efforts discussed in this paper, focus on optimizing material friction and wear combinations and their interaction with liquid lubricants to generate boundary lubrication effects noted in previous studies and their correlation to advanced diesel engine design.
Hayat, T.; Hussain, Zakir; Alsaedi, A.; Farooq, M.
2016-01-01
This article examines the effects of homogeneous-heterogeneous reactions and Newtonian heating in magnetohydrodynamic (MHD) flow of Powell-Eyring fluid by a stretching cylinder. The nonlinear partial differential equations of momentum, energy and concentration are reduced to the nonlinear ordinary differential equations. Convergent solutions of momentum, energy and reaction equations are developed by using homotopy analysis method (HAM). This method is very efficient for development of series solutions of highly nonlinear differential equations. It does not depend on any small or large parameter like the other methods i. e., perturbation method, δ—perturbation expansion method etc. We get more accurate result as we increase the order of approximations. Effects of different parameters on the velocity, temperature and concentration distributions are sketched and discussed. Comparison of present study with the previous published work is also made in the limiting sense. Numerical values of skin friction coefficient and Nusselt number are also computed and analyzed. It is noticed that the flow accelerates for large values of Powell-Eyring fluid parameter. Further temperature profile decreases and concentration profile increases when Powell-Eyring fluid parameter enhances. Concentration distribution is decreasing function of homogeneous reaction parameter while opposite influence of heterogeneous reaction parameter appears. PMID:27280883
Heating Rate Distributions at Mach 10 on a Circular Body Earth-to-Orbit Transport Vehicle
NASA Technical Reports Server (NTRS)
Wells, William L.; MacConochie, Ian O.; Helms, Vernon T., III; Raney, David
1985-01-01
Among the concepts being considered for future Earth-to-orbit transport vehicles are fully reusable single-stage systems which take off vertically and land horizontally. Because these vehicles carry their own propellant internally, they are much larger than the present Space Shuttle Orbiter. One such single-stage vehicle under study is the circular body configuration which has the advantages of simple structural design and large volume-to-weight ratio. As part of an overall evaluation of this configuration, a series of heat transfer and surface flow tests were conducted. The phase-change paint and oil-flow tests were performed in the Langley 31-Inch Mach-10 Tunnel at angles of attack from 20 through 40 degrees in 5-degree increments. Heat-transfer coefficient data are presented for all angles of attack and detailed oil-flow photographs are shown for windward and leeward surfaces at 25 and 40 degrees angle of attack. In many ways, heating was similar to that previously determined for the Shuttle Orbiter so that, in a cursory sense, existing thermal protection systems would appear to be adequate for the proposed circular-body configurations.
NASA Astrophysics Data System (ADS)
Sarafraz, M. M.; Peyghambarzadeh, S. M.; Alavifazel, S. A.
2012-10-01
Experimental studies on enhancing the pool boiling heat transfer coefficient of binary dilute mixtures of water/glycerol, water/MEG (Mono-ethylene glycol) and water/DEG (di-ethylene glycol) have been carried out. Some particular endothermic chemical reactions related to ammonium salts were used to enhance the pool boiling heat transfer coefficient, simultaneously with occurrence of pool boiling heat transfer. Accordingly, 100 g of Ammonium nitrate, ammonium perborate and Ammonium sulfate were selected to dissolve into mixtures. High and extreme solution enthalpies of each of these ammonium salt powders are employed to reduce the surface temperature around the horizontal cylinder locally. Results demonstrated that presence of ammonium salts into the mixtures deteriorates the surface temperature of cylinder and as the result, higher pool boiling heat transfer coefficient is reported for tested solutions. Results are also reported and compared for different ammonium salts to find the influence of inducing different enthalpies of solution on pool boiling heat transfer coefficient. Obtained results also indicated that presence of endothermic reaction besides the pool boiling heat transfer enhances the heat transfer coefficients in comparison with nucleate pool boiling phenomenon solely.
Torsion of Noncircular Composite Cylinders
NASA Technical Reports Server (NTRS)
Rouse, Marshall; Hyer, Michael W.; Haynie, Waddy T.
2005-01-01
The paper presents a brief overview of the predicted deformation and failure characteristics of noncircular composite cylinders subjected to torsion. Using a numerical analysis, elliptical cylinders with a minor-to-major diameter ratio of 0.7 are considered. Counterpart circular cylinders with the same circumference as the elliptical cylinders are included for comparison. The cylinders are constructed of a medium-modulus graphite-epoxy material in a quasi-isotropic lay-up. Imperfections generated from the buckling mode shapes are included in the initial cross-sectional geometry of the cylinders. Deformations until first fiber failure, as predicted using the maximum stress failure criterion and a material degradation scheme, are presented. For increasing levels of torsion, the deformations of the elliptical cylinders, in the form of wrinkling of the cylinder wall, occur primarily in the flatter regions of the cross section. By comparison the wrinkling deformations of the circular cylinders are more uniformly distributed around the circumference. Differences in the initial failure and damage progression and the overall torque vs. twist relationship between the elliptical and circular cylinders are presented. Despite differences in the response as the cylinders are being loaded, at first fiber failure the torque and twist for the elliptical and circular cylinders nearly coincide.
NASA Astrophysics Data System (ADS)
Chen, Wen-Li; Li, Hui; Hu, Hui
2014-04-01
An experimental investigation was conducted to assess the effectiveness of a suction flow control method for vortex-induced vibration (VIV) suppression. The flow control method uses a limited number of isolated suction holes to manipulate the vortex shedding in the wake behind a circular cylinder in order to reduce the unsteadiness of the dynamic wind loads acting on the cylinder. The experimental study was performed at Re ≈ 3.0 × 104, i.e., in the typical Reynolds number range of VIV for the cables of cable-stayed bridges. In addition to measuring the surface pressure distributions to determine the resultant dynamic wind loads acting on the test model, a digital particle image velocimetry system was used to conduct detailed flow field measurements to reveal the changes in the shedding process of the unsteady wake vortex structures from the test model with and without the suction flow control. The effects of important controlling parameters (i.e., the azimuthal locations of the suction holes in respect to the oncoming airflow, the spanwise spacing between the suction holes, and the suction flow rate through the suction holes) on the wake flow characteristics, the surface pressure distributions, and the resultant dynamic wind loads were assessed quantitatively. While a higher suction flow rate and smaller spanwise spacing between the suction holes were beneficial to the effectiveness of the suction flow control, the azimuthal locations of the suction holes were found to be very critical for reducing the fluctuating amplitudes of the dynamic wind loads acting on the test model using the suction flow control method. With the suction holes located at the proper azimuthal locations on the test model (i.e., at the azimuthal angle of θ = 90° and 270° for the present study), the characteristics of the wake flow behind the test model were found to change significantly along the entire span of the test model, even though only a limited number of the isolated suction
NASA Technical Reports Server (NTRS)
Herr, R. W.
1978-01-01
The effects of tilt and structural asymmetry on the vibration characteristics of partly liquid-filled thin-wall cylinders were experimentally studied. It was found that tilting the longitudinal axis of a partly filled axisymmetric cylinder from the vertical could markedly reduce its resonant frequencies and change significantly the shape of the circumferential modes. For the minimum frequency modes, vibratory motion occurred only on that side of the cylinder where the liquid was deepest. An empirical equation was derived that gives the equivalent liquid depth of an untilted cylinder having the same minimum resonant frequency as a tilted, partly filled cylinder. Circumferential mode shapes of an untilted asymmetric cylinder were similar to those of the tilted, partly filled axisymmetric cylinder. Vibratory motion in the minimum frequency modes occurred in most instances only on the side of minimum thickness. Correlation between test data and results from a reformulated NASTRAN hydroelastic analysis was excellent.
Effect of swirl flow on heat transfer characteristics in a circular pipe
NASA Astrophysics Data System (ADS)
Siddique, Hossain; Hoque, Md. Shafkat Bin; Ali, Mohammad
2016-07-01
Swirl flow is of great stature in heat transfer enhancement and in numerous engineering applications. In the present numerical study, the swirl flow of water in a circular pipe is considered. Here the Reynolds Number is kept within 2000. The pipe contains stationary blades to produce the swirl flow. The blades are considered heat resistant. The three-dimensional Navier-Stokes equations for incompressible Newtonian fluid flow are used. The code is corroborated by comparing the simulation results with the established Hagen-Poiseuille law. The comparison is quite satisfactory and thus the code is used for present investigation. In this study, the heat transfer performance of the swirl flow is evaluated. Two cases are considered on the outer surface of the pipe: (i) Constant heat flux and (ii) Constant temperature. This investigation reveals that the swirl flow increases the mean outlet temperature in both cases. The effects of the vane angle, pipe length and diameter on heat transfer characteristics are also evaluated.
Zhang, Yu-Cun; Fu, Xian-Bin; Liu, Bin; Qi, Yan-De; Zhou, Shan
2013-01-01
In order to grasp the changes of the forging's temperature field during heat treatment, a temperature field detection method based on infrared spectra for large cylinder forgings is proposed in the present paper. On the basis of heat transfer a temperature field model of large barrel forgings was established by the method of separating variables. Using infrared spectroscopy the large forgings temperature measurement system was built based on the three-level interference filter. The temperature field detection of forging was realized in its heat treatment by combining the temperature data and the forgings temperature field detection model. Finally, this method is feasible according to the simulation experiment. The heating forging temperature detection method can provide the theoretical basis for the correct implementation of the heat treatment process. PMID:23586224
Sengupta, S.; Sherif, S.A.; Wong, K.V.
1995-12-31
This paper reports on results of an experimental investigation where the emphasis was placed on obtaining empirical correlations for the frost thickness-time history and the heat transfer coefficient-time history for a cylinder in humid air cross flow. The facility employed for the investigation consisted of a low velocity wind tunnel comprised of a rectangular test section, a transition section and a honeycomb placed at the tunnel entrance. An external refrigerator was used to cool an antifreeze solution having a mixture of 90% methanol and 10% ethylene glycol. Measured parameters included, among other things, the heat transfer coefficient as well as the frost thickness.
Transient heat transfer in viscous rarefied gas between concentric cylinders. Effect of curvature
NASA Astrophysics Data System (ADS)
Gospodinov, P.; Roussinov, V.; Dankov, D.
2015-10-01
The thermoacoustic waves arising in cylindrical or planar Couette rarefied gas flow between rotating cylinders is studied in the cases of suddenly cylinder (active) wall velocity direction turn on. An unlimited increase in the radius of the inner cylinder flow can be interpreted as Couette flow between the two flat plates. Based on the developed in previous publications Navier-Stockes-Fourier (NSF) model and Direct Simulation Monte Carlo (DSMC) method and their numerical solutions, are considered transient processes in the gas phase. Macroscopic flow characteristics (velocity, density, temperature) are received. The cylindrical flow cases for fixed velocity and temperature of the both walls are considered. The curvature effects over the wave's distribution and attenuation are studied numerically.
Compressibility and Heating Effects on Pressure Loss and Cooling of a Baffled Cylinder Barrel
NASA Technical Reports Server (NTRS)
Goldstein, Arthur W; Ellerbrock, Herman H , Jr
1944-01-01
Theoretical investigations have shown that, because air is compressible, the pressure-drop requirements for cooling an air-cooled engine will be much greater at high altitudes and high speeds than at sea level and low speeds. Tests were conducted by the NACA to obtain some experimental confirmation of the effect of air compressibility on cooling and pressure loss of a baffled cylinder barrel and to evaluate various methods of analysis. The results reported in the present paper are regarded as preliminary to tests on single-cylinder and multicylinder engines. Tests were conducted over a wide range of air flows and density altitudes.
NASA Astrophysics Data System (ADS)
Malik, M. Y.; Bibi, M.; Khan, Farzana; Salahuddin, T.
2016-03-01
In this article, Williamson fluid flow and heat transfer over a stretching cylinder is discussed. The thermal conductivity is assumed to be vary linearly with temperature. Heat generation/absorption effects are also taken into account. Modeled partial differential equations are converted into ordinary differential form by using appropriate transformations. Shooting method in conjunction with Runge-Kutta-Fehlberg method is used to find the solution of the problem. Moreover, the effects of different flow parameters γ, λ, ɛ, β and Pr on velocity and temperature profiles are shown graphically. Local Nusselt number and skin friction coefficient are shown in tabular and graphical form.
NASA Astrophysics Data System (ADS)
Kalteh, M.; Ghorbani, S.; Khademinejad, T.
2016-05-01
An axisymmetric magnetohydrodynamic (MHD) boundary layer flow and heat transfer of a fluid over a slender cylinder are investigated numerically. The effects of viscous dissipation, thermal radiation, and surface transverse curvature are taken into account in the simulations. For this purpose, the governing partial differential equations are transformed to ordinary differential equations by using appropriate similarity transformations. The resultant ordinary differential equations along with appropriate boundary conditions are solved by the fourth-order Runge-Kutta method combined with the shooting technique. The effects of various parameters on the velocity and temperature profiles, local skin friction coefficient, and Nusselt number are analyzed.
NASA Astrophysics Data System (ADS)
Bharatish, A.; Narasimha Murthy, H. N.; Anand, B.; Madhusoodana, C. D.; Praveena, G. S.; Krishna, M.
2013-12-01
Circularity of drilled hole at the entry and exit, heat affected zone and taper are important attributes which influence the quality of a drilled hole in laser drilling. This paper examines the effect of laser parameters on the quality of drilled holes in Alumina ceramics which are widely used in microelectronic devices, based on orthogonal array experimentation and response surface methodology. Both entrance and exit circularities were significantly influenced by hole diameter and laser power. Heat affected zone was influenced by frequency. Taper was also significantly influenced by laser power. Response surface model predicted nominal entrance circularity at 2.5 kHz, 240 W, 2.5 mm/s, 1 mm hole, exit circularity and taper at 7.5 kHz, 240 W, 4.5 mm/s, and 1 mm hole. The model predicted lowest heat affected zone at 7.5 kHz, 240 W, 2.5 mm/s, and 1 mm. Multiobjective optimization achieved using both response surface model and gray relational analysis indicated that all the four quality parameters are optimized at 7.5 kHz, 240 W, 3.85 mm/s and 1 mm.
Richard Catanach; Larry Hill; Herbert Harry; Ernest Aragon; Don Murk
1999-10-01
The purpose of the cylinder testis two-fold: (1) to characterize the metal-pushing ability of an explosive relative to that of other explosives as evaluated by the E{sub 19} cylinder energy and the G{sub 19} Gurney energy and (2) to help establish the explosive product equation-of-state (historically, the Jones-Wilkins-Lee (JWL) equation). This specification details the material requirements and procedures necessary to assemble and fire a typical Los Alamos National Laboratory (LANL) cylinder test. Strict adherence to the cylinder. material properties, machining tolerances, material heat-treatment and etching processes, and high explosive machining tolerances is essential for test-to-test consistency and to maximize radial wall expansions. Assembly and setup of the cylinder test require precise attention to detail, especially when placing intricate pin wires on the cylinder wall. The cylinder test is typically fired outdoors and at ambient temperature.
Ammerman, C.N.; You, S.M.; Hong, Y.S.
1995-12-31
A recently developed photographic method is used to quantify vapor volumetric flow rate above a boiling wire. The volumetric flow rate is combined with additional analyses to determine the overall contributions to the total heat flux from four nucleate boiling heat transfer mechanisms (latent heat, natural convection, Marangoni flow, and micro-convection). This technique is used to quantify the boiling heat transfer mechanisms versus heat flux for a 510-{micro}m wire immersed in saturated water and in water with a small amount of liquid soap added. These data are compared with similar data taken for a 75-{micro}m wire boiling in saturated FC-72. For all cases, latent heat is the dominant heat transfer mechanism in the fully developed nucleate boiling regime. In addition, the latent heat component is significantly increased by the addition of small amounts of soap (surfactant).
LES and Hybrid LES/RANS Study of Flow and Heat Transfer around a Wall-Bounded Short Cylinder
NASA Astrophysics Data System (ADS)
Borello, D.; Delibra, G.; Hanjalić, K.; Rispoli, F.
The flow in plate-fin-and-tube heat exchangers is featured by interesting dynamics of vortical structures, which, due to close proximity of bounding walls that suppress instabilities, differs significantly from the better-known patterns around long cylinders. Typically, several distinct vortex systems can be identified both in front and behind the pin. Their signature on the pin and end-walls reflects directly in the local heat transfer. The Reynolds numbers is usually moderate and the incoming flow is non-turbulent, transiting to turbulence on or just behind the first or few subsequent pin/tube rows. Upstream from the first pin a sequence of several horseshoe vortices attached to the boundingwall is created, while the unsteady wake contains also multiple vortical systems which control the entrainment of fresh fluid and its mixing with the hot fluid that was in contact with the heated surfaces [1]. The conventional CFD using standard turbulence models, as practiced by heat exchangers industries, falls short in capturing the subtle details of the complex vortex systems. A fine-grid LES can provide accurate solutions, but for more complex configurations and higher Re numbers a hybrid RANS/LES using a coarser grid seems a more rational option, provided it can capture all important flow and vortical features.
NASA Astrophysics Data System (ADS)
Barletta, A.; Storesletten, L.
2013-04-01
The onset of thermal convection in a vertical porous cylinder is studied by considering the heating from below and the cooling from above as caused by external forced convection processes. These processes are parametrised through a finite Biot number, and hence through third-kind, or Robin, temperature conditions imposed on the lower and upper boundaries of the cylinder. Both the horizontal plane boundaries and the cylindrical sidewall are assumed to be impermeable; the sidewall is modelled as a thermally insulated boundary. The linear stability analysis is carried out by studying separable normal modes, and the principle of exchange of stabilities is proved. It is shown that the Biot number does not affect the ordering of the instability modes that, when the radius-to-height aspect ratio increases, are displayed in sequence at the onset of convection. On the other hand, the Biot number plays a central role in determining the transition aspect ratios from one mode to its follower. In the limit of a vanishingly small Biot number, just the first (non-axisymmetric) mode is displayed at the onset of convection, for every value of the aspect ratio.
Mixed convection flow of viscoelastic fluid by a stretching cylinder with heat transfer.
Hayat, Tasawar; Anwar, Muhammad Shoaib; Farooq, Muhammad; Alsaedi, Ahmad
2015-01-01
Flow of viscoelastic fluid due to an impermeable stretching cylinder is discussed. Effects of mixed convection and variable thermal conductivity are present. Thermal conductivity is taken temperature dependent. Nonlinear partial differential system is reduced into the nonlinear ordinary differential system. Resulting nonlinear system is computed for the convergent series solutions. Numerical values of skin friction coefficient and Nusselt number are computed and discussed. The results obtained with the current method are in agreement with previous studies using other methods as well as theoretical ideas. Physical interpretation reflecting the contribution of influential parameters in the present flow is presented. It is hoped that present study serves as a stimulus for modeling further stretching flows especially in polymeric and paper production processes. PMID:25775032
Mixed Convection Flow of Viscoelastic Fluid by a Stretching Cylinder with Heat Transfer
Hayat, Tasawar; Anwar, Muhammad Shoaib; Farooq, Muhammad; Alsaedi, Ahmad
2015-01-01
Flow of viscoelastic fluid due to an impermeable stretching cylinder is discussed. Effects of mixed convection and variable thermal conductivity are present. Thermal conductivity is taken temperature dependent. Nonlinear partial differential system is reduced into the nonlinear ordinary differential system. Resulting nonlinear system is computed for the convergent series solutions. Numerical values of skin friction coefficient and Nusselt number are computed and discussed. The results obtained with the current method are in agreement with previous studies using other methods as well as theoretical ideas. Physical interpretation reflecting the contribution of influential parameters in the present flow is presented. It is hoped that present study serves as a stimulus for modeling further stretching flows especially in polymeric and paper production processes. PMID:25775032
Pool boiling heat transfer of water/ γ-alumina micro-fluids around the horizontal cylinder
NASA Astrophysics Data System (ADS)
Nikkhah, V.; Hormozi, F.
2016-04-01
A set of experiments was performed to quantify the pool boiling heat transfer coefficient of water/ γ-alumina micro-fluids at mass concentration ranged from 0.1 to 0.4 % of micro-particles with mean size of 1-2 μm. To stabilize the prepared micro-fluid, pH control, stirring and adding the SDS as a surfactant were carried out. Also, thermal conductivity of micro-fluids are measured using KD2 decagon pro. Results showed that micro-fluids have relatively higher thermal conductivity rather than the base fluids. According to the results, there are two distinguishable heat transfer regions namely natural convection and nucleate boiling regions. Influence of some operating parameters such as heat flux, mass concentration of micro-particles and surface fouling resistance on the pool boiling heat transfer coefficient were experimentally studied and briefly discussed. Results demonstrated a significant deterioration of heat transfer coefficient of micro-fluids in comparison with the base fluid over the extended time (1000 min of operation) in nucleate boiling region, while in natural convection region, enhancement of heat transfer coefficient is registered. According to the results, heat transfer coefficient is strongly controlled by/ γ-alumina concentration due to the deposition of micro-particles on the heating section. Rectilinear changes of scale formation with time in term of fouling resistance were clearly seen at regions, where natural convection is a dominant heat transfer mechanism and also for higher heat fluxes at nucleate boiling heat transfer region.
Felker, B.; Calderon, M.O.; Chargin, A.K.; Coffield, F.E.; Lang, D.D.; Rubert, R.R.; Pedrotti, L.R.; Stallard, B.W.; Gallagher, N.C. Jr.; Sweeney, D.W.
1983-11-18
The electron-cyclotron-resonant heating (ECRH) systems of rectangular waveguides on Tandem Mirror Experiment-Upgrade (TMX-U) operated with a overall efficiency of 50%, each system using a 28-GHz, 200-kW pulsed gyrotron. We designed and built four circular-waveguide systems with greater efficiency and greater power-handling capabilities to replace the rectangular waveguides. Two of these circular systems, at the 5-kG second-harmonic heating locations, have a total transmission efficiency of >90%. The two systems at the 10-kG fundamental heating locations have a total transmission efficiency of 80%. The difference in efficiency is due to the additional components required to launch the microwaves in the desired orientation and polarization with respect to magnetic-field lines at the 10-kG points. These systems handle the total power available from each gyrotron but do not have the arcing limitation problem of the rectangular waveguide. Each system requires several complex components. The overall physical layout and the design considerations for the rectangular and circular waveguide components are described here.
NASA Technical Reports Server (NTRS)
Eckert, E R; Livingood, John N B
1953-01-01
The solution of heat-transfer problems has become vital for many aeronautical applications. The shapes of objects to be cooled can often be approximated by cylinders of various cross sections with flow normal to the axis as, for instance heat transfer on gas-turbine blades and on air foils heated for deicing purposes. A laminar region always exists near the stagnation point of such objects. A method previously presented by E. R. G. Eckert permits the calculation of local heat transfer around the periphery of cylinders of arbitrary cross section in the laminar region for flow of a fluid with constant property values with an accuracy sufficient for engineering purposes. The method is based on exact solutions of the boundary-layer equations for incompressible wedge-type flow and on the postulate that at any point on the cylinder the boundary-layer growth is the same as that on a wedge with comparable flow conditions. This method is extended herein to take into account the influence of large temperature differences between the cylinder wall and the flow as well as the influence of transpiration cooling when the same medium as the outside flow is used as coolant.
NASA Technical Reports Server (NTRS)
Powell, W. B.
1973-01-01
A methodology is described for the analysis of a transient temperature measurement made in a flat or curved plate subjected to convective heat transfer, such that the surface heat flux, the hot-gas temperture, and the gas heat transfer coefficient can be determined. It is shown that if the transient temperature measurement is made at a particular point located nearly midway in the thickness of the plate there is an important simplification in the data analysis process, in that the factor relating the surface heat flux to the measured rate of rise of temperature becomes invariant for a Fourier Number above 0.60 and for all values of the Biot Number. Parameters are derived, tabulated, and plotted which enable straightforward determination of the surface heat flux, the hot-gas temperature, of the plate, the rate of rise of temperature, the plate thickness and curvature, and the mean thermal properties of the plate material at the test temperature.
NASA Astrophysics Data System (ADS)
Can, M.; Etemog✓lu, A. B.; Avci, A.
Impinging air jets are widely used in industry, for heating, cooling, drying, etc, because of the high heat transfer rates which is developed in the impingement region. To provide data for designers of industrial equipment, a large multi-nozzle rig was used to measure average heat transfer coefficients under arrays of both slot nozzles and circular holes. The aim of the present paper is to develop the relationship between heat transfer coefficient, air mass flow and fan power which is required for the optimum design of nozzle systems. The optimum free area was obtained directly from experimental results. The theory of optimum free area was analysed and good agreement was found between theoretical and experimental results. It was also possible to optimise the variables, to achieve minimum capital and running costs.
NASA Technical Reports Server (NTRS)
Seiff, Alvin; Whiting, Ellis E.
1961-01-01
A method by which known bow-wave profiles may be analyzed to give the flow fields around blunt-nosed cylinders in axial hypersonic flow is presented. In the method, the assumption is made that the pressure distribution curve in a transverse plane is similar to that given by blast- wave theory. Numerical analysis based on the one-dimensional energy and continuity equations then leads to distributions of all the flow variables in the cross section, for either a perfect gas or a real gas. The entire flow field need not be solved. Attention can be confined to any desired station. The critical question is the validity of the above assumption. It is tested for the case of a hemisphere cylinder in flight at 20,000 ft/sec. The flow is analyzed for three stations along the cylindrical afterbody, and found to compare very closely with the results of an exact (inviscid) solution. The assumed form of the pressure distribution occurs at stations as close as 1.2 diameters to the body nose. However, it is suggested that the assumption may not apply this far forward in general, particularly when bodies of nonsmooth contour are considered.
NASA Astrophysics Data System (ADS)
Rockwood, Matthew; Green, Melissa
2015-11-01
The locations of Lagrangian saddle points found as the intersections of positive and negative-time Lagrangian coherent structures (LCS) can be used to determine the location and behavior of von Karman vortices shed in the wake of bluff bodies. Correlating the Lagrangian saddle point locations to physical quantities measurable in real-time is critical to the development of a novel input for closed-loop flow control. As a first step towards finding this correlation, the velocity fluctuations in the vicinity of the Lagrangian saddle point are correlated to the fluctuating static pressure at multiple locations on the cylinder surface to determine the lag time between the two quantities at these locations. This offers insight into the specific location and time of past events on the cylinder that influenced the flow field in the vicinity of the Lagrangian saddle point. This work was supported by the Air Force Office of Scientific Research under AFOSR Award No. FA9550-14-1-0210.
Thermal stresses due to a uniform heat flow past a circular hole with a radial edge crack
Edmonds, G.F.
1987-01-01
The problem solved here is that of finding the stresses in an isotropic, linear, thermoelastic solid when a uniform heat flow is disturbed by the presence of an insulated circular hole with a radial edge crack. By superimposing a Mellin-transform solution of the equations of thermoelasticity on a Michell series solution the author reduces the problem to a pair of singular integral equations which are then solved numerically. The stress-intensity factors and crack-formation energies, quantities of interest to workers in fracture mechanics, are then calculated.
NASA Technical Reports Server (NTRS)
Povolny, John H.; Bogdan, Louis J.
1947-01-01
An investigation was conducted to determine the coolant-flow distribu tion, the cylinder temperatures, and the heat rejections of the V-165 0-7 engine . The tests were run a t several power levels varying from minimum fuel consumption to war emergency power and at each power l evel the coolant flows corresponded to the extremes of those likely t o be encountered in typical airplane installations, A mixture of 30-p ercent ethylene glycol and 70-percent water was used as the coolant. The temperature of each cylinder was measured between the exhaust val ves, between the intake valves, in the center of the head, on the exh aust-valve guide, at the top of the barrel on the exhaust side, and o n each exhaust spark-plug gasket. For an increase in engine power fro m 628 to approximately 1700 brake horsepower the average temperature for the cylinder heads between the exhaust valves increased from 437 deg to 517 deg F, the engine coolant heat rejection increased from 12 ,600 to 22,700 Btu. per minute, the oil heat rejection increased from 1030 to 4600 Btu per minute, and the aftercooler-coolant heat reject ion increased from 450 to 3500 Btu -per minute.
Brown, D.M.; Kakac, S.; Li, Weigong
1993-11-01
This work focuses on a numerical and experimental analysis of unsteady forced convection in hydrodynamically developed and thermally developing laminar air flow in a circular duct, subjected to a periodic variation of the inlet temperature. The experiments were conducted over a wide range of Reynolds number (281.2 {le} Re {le} 1,024.3) and inlet frequency (0.01 {le} {beta} {le} 0.20 Hz) of the periodic heat input. In the numerical study, the non-uniform inlet temperature amplitude profile derived from the experiments, was included in the numerical model. A fully explicit, second-order accurate finite difference scheme was developed and used for the solution of the unsteady energy equation. Numerical results are obtained with the fully developed parabolic velocity profile under the boundary condition of the first kind, which was verified by the experiments. Temperature variations along the centerline of the circular duct are observed to be thermal oscillations with the same frequency as the inlet periodic heat input and amplitudes that decayed exponentially with distance along the duct. Thermal response along the wall exhibits negligible amplitude variation with changes in Reynolds number and inlet frequency. The variation in the periods and amplitudes of the thermal oscillations are observed to be a function of spatial system variables only. Satisfactory agreement between the numerical and experimental results are obtained.
NASA Astrophysics Data System (ADS)
Salman, Sami D.; Kadhum, Abdul Amir H.; Takriff, Mohd S.; Bakar Mohamad, Abu
2013-12-01
Swirl/vortex flow generator is an important form of passive augmentation techniques. Twisted-tape is one of the most important members of this form which is used extensively in different type heat exchangers. This paper reports the effect of twisted tape inserts on heat transfer and friction factor characteristics in circular tube under constant heat flux and laminar flow conditions using CFD simulation. Plain twisted tape inserts with twist ratios (y = 2.93, 3.91) and baffled twisted tape inserts with twist ratio (y = 2.93) have been used for the simulation using Fluent version 6.3.26. The results obtained by simulation matched with the literature correlations for plain tube with the discrepancy of less than ± 8% for Nusselt number and ± 6.25% for friction factor. The results have also revealed that the heat transfer in term of the Nusselt number enhanced with increases of Reynolds number, decreases of twist ratio and baffle insert. Among the various twist ratios, the twisted tape with twist ratio of y=2.93 and baffle is offered a maximum heat transfer enhancement.
Heat transfer in turbulent decaying swirl flow in a circular pipe
NASA Astrophysics Data System (ADS)
Algifri, A. H.; Bhardwaj, R. K.; Rao, Y. V. N.
1988-08-01
Heat transfer coefficients for air are measured along a heated pipe for decaying swirl flow, generated by radial blade cascade. The results are compared with an expression proposed for predicting the heat transfer coefficients in swirling flow. The theoretical predictions are in good agreement with the experimental data, with average and maximum deviations of 7 and 11 percent, respectively. The application of the theoretical approach to the experimental results obtained by other investigators for heat transfer in a decaying swirl flow generated by short-twisted tapes and tangential slots at inlet also give rise to encouraging agreement.
Dong, Chuanfei
2014-02-15
Minor ion (such as He{sup 2+}) heating via nonresonant interaction with spectra of linearly and circularly polarized Alfvén waves (LPAWs and CPAWs hereafter) is studied. The obtained analytic solutions are in good agreement with the simulation results, indicating that newborn ions are heated by low-frequency Alfvén waves with finite amplitude in low-beta plasmas such as the solar corona. The analytic solutions also reproduce the preferential heating of heavy ions in the solar wind. In the presence of parallel propagating Alfvén waves, turbulence-induced particle motion is clearly observed in the wave (magnetic field) polarized directions. After the waves diminish, the newborn ions are heated, which is caused by the phase difference (randomization) between ions due to their different parallel thermal motions. The heating is dominant in the direction perpendicular to the ambient magnetic field. The perpendicular heating, η=(T{sub i⊥}{sup R}−T{sub i0⊥}{sup R})/T{sub i0⊥}{sup R} (where T{sub i0⊥}{sup R} and T{sub i⊥}{sup R} are the perpendicular temperature of species i before and after genuine heating, respectively), in the spectrum of CPAWs is a factor of two stronger than that of LPAWs. Moreover, we also study the effect of field-aligned differential flow speed of species i relative to H{sup +}, δv{sub ip}=(v{sub i}−v{sub p})·B/|B| (where v{sub i} and v{sub p} denote vector velocities of the H{sup +} and species i, respectively), on the perpendicular heating. It reveals that large drift speed, v{sub d}=δv{sub ip}, has an effect on reducing the efficiency of perpendicular heating, which is consistent with observations.
NASA Technical Reports Server (NTRS)
Wells, William L.
1990-01-01
Experimental heat transfer distributions and surface streamline directions are presented for a cylinder in the near wake of the Aeroassist Flight Experiment forebody configuration. Tests were conducted in air at a nominal free stream Mach number of 10, with post shock Reynolds numbers based on model base height of 6,450 to 50,770, and angles of attack of 5, 0, -5, and -10 degrees. Heat transfer data were obtained with thin film resistance gage and surface streamline directions by the oil flow technique. Comparisons between measured values and predicted values were made by using a Navier-Stokes computer code.
Cimino, R; Baglin, V; Schäfers, F
2015-12-31
We propose a new method for handling the high synchrotron radiation (SR) induced heat load of future circular hadron colliders (like FCC-hh). FCC-hh are dominated by the production of SR, which causes a significant heat load on the accelerator walls. Removal of such a heat load in the cold part of the machine, as done in the Large Hadron Collider, will require more than 100 MW of electrical power and a major cooling system. We studied a totally different approach, identifying an accelerator beam screen whose illuminated surface is able to forward reflect most of the photons impinging onto it. Such a reflecting beam screen will transport a significant part of this heat load outside the cold dipoles. Then, in room temperature sections, it could be more efficiently dissipated. Here we will analyze the proposed solution and address its full compatibility with all other aspects an accelerator beam screen must fulfill to keep under control beam instabilities as caused by electron cloud formation, impedance, dynamic vacuum issues, etc. If experimentally fully validated, a highly reflecting beam screen surface will provide a viable and solid solution to be eligible as a baseline design in FCC-hh projects to come, rendering them more cost effective and sustainable. PMID:26764998
NASA Astrophysics Data System (ADS)
Cimino, R.; Baglin, V.; Schäfers, F.
2015-12-01
We propose a new method for handling the high synchrotron radiation (SR) induced heat load of future circular hadron colliders (like FCC-hh). FCC-hh are dominated by the production of SR, which causes a significant heat load on the accelerator walls. Removal of such a heat load in the cold part of the machine, as done in the Large Hadron Collider, will require more than 100 MW of electrical power and a major cooling system. We studied a totally different approach, identifying an accelerator beam screen whose illuminated surface is able to forward reflect most of the photons impinging onto it. Such a reflecting beam screen will transport a significant part of this heat load outside the cold dipoles. Then, in room temperature sections, it could be more efficiently dissipated. Here we will analyze the proposed solution and address its full compatibility with all other aspects an accelerator beam screen must fulfill to keep under control beam instabilities as caused by electron cloud formation, impedance, dynamic vacuum issues, etc. If experimentally fully validated, a highly reflecting beam screen surface will provide a viable and solid solution to be eligible as a baseline design in FCC-hh projects to come, rendering them more cost effective and sustainable.
Bae, Yoon-Yeong; Kim, Hwan-Yeol; Kang, Deog-Ji
2010-11-15
An experiment of heat transfer to CO{sub 2}, which flows upward and downward in a circular tube with an inner diameter of 6.32 mm, was carried out with mass flux of 285-1200 kg/m{sup 2} s and heat flux of 30-170 kW/m{sup 2} at pressures of 7.75 and 8.12 MPa, respectively. The corresponding Reynolds number at the tube test section inlet ranges from 1.8 x 10{sup 4} to 3.8 x 10{sup 5}. The tube inner diameter corresponds to the equivalent hydraulic diameter of the fuel assembly sub-channel, which is being studied at KAERI. Among the tested correlations, the Bishop correlation predicted the experimental data most accurately, but only 66.9% of normal heat transfer data were predicted within {+-}30% error range. The Watts and Chou correlation, which is claimed to be valid for both the normal and deteriorated heat transfer regime, showed unsatisfactory performance. A significant decrease in Nusselt number was observed in the range of 10{sup -6}
Electron heating in radiation-pressure-driven proton acceleration with a circularly polarized laser
NASA Astrophysics Data System (ADS)
Paradkar, B. S.; Krishnagopal, S.
2016-02-01
Dynamics of electron heating in the radiation-pressure-driven acceleration through self-induced transparency (SIT) is investigated with the help of particle-in-cell simulations. The SIT is achieved through laser filamentation which is seeded by the transverse density modulations due to the Rayleigh-Taylor-like instability. We observe stronger SIT induced electron heating for the longer duration laser pulses leading to deterioration of accelerated ion beam quality (mainly energy spread). Such heating can be controlled to obtain a quasimonoenergetic beam by cascaded foils targets where a second foil behind the main accelerating foil acts as a laser reflector to suppress the SIT.
NASA Technical Reports Server (NTRS)
Hunt, R. L.
1974-01-01
The aerodynamic heating and loading distributions within large cavities exposed by surface openings to hypersonic flow were determined in the 8-foot high-temperature structures tunnel. Cone and cone-cylinder-flare models with cavities having regular and irregular surface-opening shapes were aerothermally tested at various angles of attack up to 30 deg. Tests were conducted at a Mach number of 6.7, a total temperature of 1800 K, a dynamic pressure of 80 kPa, and a stream unit Reynolds number of 6,000,000 per meter. The results showed that the heating rates at internal reattachment were generally lower but of the same order as the corresponding external heating rates; however, other internal heating rates were an order of magnitude lower. The internal flow showed characteristics of being funneled into jets or being dispersed dependent upon the internal surface contour.
NASA Technical Reports Server (NTRS)
Povolny, John H.; Bogdan, Louis J.; Chelko, Louis J.
1947-01-01
An investigation has been conducted on a V-1650-7 engine to determine the cylinder temperatures and the coolant and oil heat rejections over a range of coolant flows (50 to 200 gal/min) and oil inlet temperatures (160 to 2150 F) for two values of coolant outlet temperature (250 deg and 275 F) at each of four power conditions ranging from approximately 1100 to 2000 brake horsepower. Data were obtained for several values of block-outlet pressure at each of the two coolant outlet temperatures. A mixture of 30 percent by volume of ethylene glycol and 70-percent water was used as the coolant. The effect of varying coolant flow, coolant outlet temperature, and coolant outlet pressure over the ranges investigated on cylinder-head temperatures was small (0 deg to 25 F) whereas the effect of increasing the engine power condition from ll00 to 2000 brake horsepower was large (maximum head-temperature increase, 110 F).
Khudik, V.; Yi, S. A.; Siemon, C.; Shvets, G.
2012-12-21
A kinetic model of the monoenergetic acceleration of a target foil irradiated by the circularly polarized laser pulse is developed. The target moves without thermal heating with constant acceleration which is provided by chirping the frequency of the laser pulse and correspondingly increasing its intensity. In the accelerated reference frame, bulk plasma in the target is neutral and its parameters are stationary: cold ions are immobile while nonrelativistic electrons bounce back and forth inside the potential well formed by ponderomotive and electrostatic potentials. It is shown that a positive charge left behind of the moving target in the ion tail and a negative charge in front of the target in the electron sheath form a capacitor whose constant electric field accelerates the ions of the target. The charge separation is maintained by the radiation pressure pushing electrons forward. The scalings of the target thickness and electromagnetic radiation with the electron temperature are found.
Buckling of laminated composite cylinders - A review
NASA Technical Reports Server (NTRS)
Tennyson, R. C.
1975-01-01
A brief review of the available static buckling theory for both geometrically 'perfect' and 'imperfect' anisotropic composite circular cylinders is presented for various loading configurations. For comparison purposes, relevant experimental data are discussed, including recent combined loading test results and recommendations are made concerning the design of composite cylinders.
NASA Astrophysics Data System (ADS)
Rehman, Khalil Ur; Malik, M. Y.; Salahuddin, T.; Naseer, M.
2016-07-01
Present work is made to study the effects of double stratified medium on the mixed convection boundary layer flow of Eyring-Powell fluid induced by an inclined stretching cylinder. Flow analysis is conceded in the presence of heat generation/absorption. Temperature and concentration are supposed to be higher than ambient fluid across the surface of cylinder. The arising flow conducting system of partial differential equations is primarily transformed into coupled non-linear ordinary differential equations with the aid of suitable transformations. Numerical solutions of resulting intricate non-linear boundary value problem are computed successfully by utilizing fifth order Runge-Kutta algorithm with shooting technique. The effect logs of physical flow controlling parameters on velocity, temperature and concentration profiles are examined graphically. Further, numerical findings are obtained for two distinct cases namely, zero (plate) and non-zero (cylinder) values of curvature parameter and the behaviour are presented through graphs for skin-friction coefficient, Nusselt number and Sherwood number. The current analysis is validated by developing comparison with previously published work, which sets a benchmark of quality of numerical approach.
NASA Astrophysics Data System (ADS)
Malik, M. Y.; Hussain, Arif; Salahuddin, T.; Awais, M.; Bilal, S.; Khan, Farzana
2016-04-01
In present analysis boundary layer flow of Sisko fluid over stretching cylinder is analyzed. Combined effects of variable thermal conductivity and viscous dissipation are assumed in heat transfer. The modeled boundary layer partial differential equations are transfigured into ordinary differential equations by using suitable transformations. These nonlinear ordinary differential equations are solved numerically by Runge-Kutta-Fehlberg method. The accuracy of computed results is certified by comparing with existing literature. To interpret the effects of flow parameters on velocity and temperature profiles graphs are developed. The influence of all physical parameters on skin friction coefficient and local Nusselt number are discussed via tabular and graphical form.
Axial cylinder internal combustion engine
Gonzalez, C.
1992-03-10
This patent describes improvement in a barrel type internal combustion engine including an engine block having axial-positioned cylinders with reciprocating pistons arranged in a circular pattern: a drive shaft concentrically positioned within the cylinder block having an offset portion extending outside the cylinder block; a wobble spider rotatably journaled to the offset portion; connecting rods for each cylinder connecting each piston to the wobble spider. The improvement comprising: a first sleeve bearing means supporting the drive shaft in the engine block in a cantilevered manner for radial loads; a second sleeve bearing means rotatably supporting the wobble spider on the offset portion of the drive shaft for radial loads; a first roller bearing means positioned between the offset portion of the drive shaft and the wobble spider carrying thrust loadings only; a second roller bearing means carrying thrust loads only reacting to the first roller bearing located on the opposite end of the driveshaft between the shaft and the engine block.
NASA Technical Reports Server (NTRS)
Lundin, Bruce T; Povolny, John H; Chelko, Louis J
1949-01-01
Data obtained from an extensive investigation of the cooling characteristics of four multicylinder, liquid-cooled engines have been analyzed and a correlation of both the cylinder-head temperatures and the coolant heat rejections with the primary engine and coolant variables was obtained. The method of correlation was previously developed by the NACA from an analysis of the cooling processes involved in a liquid-cooled-engine cylinder and is based on the theory of nonboiling, forced-convection heat transfer. The data correlated included engine power outputs from 275 to 1860 brake horsepower; coolant flows from 50 to 320 gallons per minute; coolants varying in composition from 100 percent water to 97 percent ethylene glycol and 3 percent water; and ranges of engine speed, manifold pressure, carburetor-air temperature, fuel-air ratio, exhaust-gas pressure, ignition timing, and coolant temperature. The effect on engine cooling of scale formation on the coolant passages of the engine and of boiling of the coolant under various operating conditions is also discussed.
Davarnejad, Reza; Barati, Sara; Kooshki, Maryam
2013-12-01
The CFD simulation of heat transfer characteristics of a nanofluid in a circular tube under constant heat flux was considered using Fluent software (version 6.3.26) in the laminar flow. Al2O3 nanoparticles in water with concentrations of 0.5%, 1.0%, 1.5%, 2% and 2.5% were used in this simulation. All of the thermo-physical properties of nanofluids were assumed to be temperature independent. Two particle sizes with average size of 20 and 50 nm were used in this research. It was concluded that heat transfer coefficient increased by increasing the Reynolds number and the concentration of nanoparticles. The maximum convective heat transfer coefficient was observed at the highest concentration of nano-particles in water (2.5%). Furthermore, the two nanofluids showed higher heat transfer than the base fluid (water) although the nanofluid with particles size of 20 nm had the highest heat transfer coefficient. PMID:23687629
Furlong, C.G.
1986-08-19
This patent describes an internal combustion engine, means defining a cylinder closed at one end and having an axis, means defining an inlet passage through the cylinder defining means and communicating with the cylinder through the closed end, and a poppet inlet valve including a stem and head having a valve axis and disposed in the passage for reciprocation on the valve axis to control communication of the inlet passage with the cylinder. The inlet passage is characterized by: a throat of generally circular cross-section opening into the cylinder and adapted to be closed by the inlet valve, an entrance portion spaced from the throat and offset from the valve axis, and means defining a fluid flow path extending from the entrance portion toward and around opposite sides of the valve axis and below the valve head when open to the throat. The fluid flow path defines means having a top wall including first and second ramp portions and a shelf portion spaced from and opposite the throat, the ramp portions sloping downwardly and merging with the shelf portion on generally opposite sides of the valve axis. The ramp portions lie at steep angles to the shelf portion and one of the ramp portions having a substantially steeper angle than the other to slow and direct downwardly fluid flow passing the one of the sides of the valve axis below the one steeper ramp relative to the higher speed and less downward direction of flow passing the other of the sides of the valve axis, whereby preferential entry of swirl developing flow into the shelf area from below the ramp of lower slope is encouraged.
Flow-induced vibration of circular cylindrical structures
Chen, S.S.
1985-06-01
This report summarizes the flow-induced vibration of circular cylinders in quiescent fluid, axial flow, and crossflow, and applications of the analytical methods and experimental data in design evaluation of various system components consisting of circular cylinders. 219 figs., 30 tabs. (JDB)
NASA Technical Reports Server (NTRS)
Rosu, Grigore; Goguen, Joseph; Norvig, Peter (Technical Monitor)
2001-01-01
Circular coinduction is a technique for behavioral reasoning that extends cobasis coinduction to specifications with circularities. Because behavioral satisfaction is not recursively enumerable, no algorithm can work for every behavioral statement. However. algorithms using circular coinduction can prove every practical behavioral result that we know. This paper proves the correctness of circular coinduction and some consequences.
Light-intensity modulator withstands high heat fluxes
NASA Technical Reports Server (NTRS)
Maples, H. G.; Strass, H. K.
1966-01-01
Mechanism modulates and controls the intensity of luminous radiation in light beams associated with high-intensity heat flux. This modulator incorporates two fluid-cooled, externally grooved, contracting metal cylinders which when rotated about their longitudinal axes present a circular aperture of varying size depending on the degree of rotation.
Gawande, Vipin B.; Dhoble, A. S.; Zodpe, D. B.
2014-01-01
CFD analysis of 2-dimensional artificially roughened solar air heater duct with additional circular vortex generator, inserted in inlet section is carried out. Circular transverse ribs on the absorber plate are placed as usual. The analysis is done to investigate the effect of inserting additional vortex generator on the heat transfer and flow friction characteristics inside the solar air heater duct. This investigation covers relative roughness pitch in the range of 10 ≤ P/e ≤ 25 and relevant Reynolds numbers in the range of 3800 ≤ Re ≤ 18000. Relative roughness height (e/D) is kept constant as 0.03 for analysis. The turbulence created due to additional circular vortex generator increases the heat transfer rate and at the same time there is also increase in friction factor values. For combined arrangement of ribs and vortex generator, maximum Nusselt number is found to be 2.05 times that of the smooth duct. The enhancement in Nusselt number with ribs and additional vortex generator is found to be 1.06 times that of duct using ribs alone. The maximum increase in friction factor with ribs and circular vortex generator is found to be 2.91 times that of the smooth duct. Friction factor in a combined arrangement is 1.114 times that in a duct with ribs alone on the absorber plate. The augmentation in Thermal Enhancement Factor (TEF) with vortex generator in inlet section is found to be 1.06 times more than with circular ribs alone on the absorber plate. PMID:25254251
Gawande, Vipin B; Dhoble, A S; Zodpe, D B
2014-01-01
CFD analysis of 2-dimensional artificially roughened solar air heater duct with additional circular vortex generator, inserted in inlet section is carried out. Circular transverse ribs on the absorber plate are placed as usual. The analysis is done to investigate the effect of inserting additional vortex generator on the heat transfer and flow friction characteristics inside the solar air heater duct. This investigation covers relative roughness pitch in the range of 10 ≤ P/e ≤ 25 and relevant Reynolds numbers in the range of 3800 ≤ Re ≤ 18000. Relative roughness height (e/D) is kept constant as 0.03 for analysis. The turbulence created due to additional circular vortex generator increases the heat transfer rate and at the same time there is also increase in friction factor values. For combined arrangement of ribs and vortex generator, maximum Nusselt number is found to be 2.05 times that of the smooth duct. The enhancement in Nusselt number with ribs and additional vortex generator is found to be 1.06 times that of duct using ribs alone. The maximum increase in friction factor with ribs and circular vortex generator is found to be 2.91 times that of the smooth duct. Friction factor in a combined arrangement is 1.114 times that in a duct with ribs alone on the absorber plate. The augmentation in Thermal Enhancement Factor (TEF) with vortex generator in inlet section is found to be 1.06 times more than with circular ribs alone on the absorber plate. PMID:25254251
Development of process to control residual stress distribution of butt weld joint of cylinder
Nayama, Michisuke; Sakamoto, Naruo; Akitomo, Norio; Toyoda, Masao
1995-12-31
The authors develop new process to control residual stress distribution of butt weld joint of cylinder. This process, which is heating circularly at both side of butt weld joint and letting cool, can reduce tensile residual stress on inner surface near weld joint by operation from only outside of cylinder and its required temperature rise of this process is lower than ordinary PWHT (Post Weld Heat Treatment) process. This paper describes the procedure and conditions of the process named ``both side heating`` by authors. The appropriate range of process conditions to get sufficient effect is confirmed by FEM stress history analysis and experiment in this paper. Experiments show that the inner residual stress near weld is reduced to compression from over yield stress at as weld condition in austenitic stainless steel pipe to pipe joints, pipe to elbow joints and pipe to valve joint after application of the process.
Heat Transfer Enhancement in Separated and Vortex Flows
Richard J. Goldstein
2004-05-27
This document summarizes the research performance done at the Heat Transfer Laboratory of the University of Minnesota on heat transfer and energy separation in separated and vortex flow supported by DOE in the period September 1, 1998--August 31, 2003. Unsteady and complicated flow structures in separated or vortex flows are the main reason for a poor understanding of heat transfer under such conditions. The research from the University of Minnesota focused on the following important aspects of understanding such flows: (1) Heat/mass transfer from a circular cylinder; (2) study of energy separation and heat transfer in free jet flows and shear layers; and (3) study of energy separation on the surface and in the wake of a cylinder in crossflow. The current study used three different experimental setups to accomplish these goals. A wind tunnel and a liquid tunnel using water and mixtures of ethylene glycol and water, is used for the study of prandtl number effect with uniform heat flux from the circular cylinder. A high velocity air jet is used to study energy separation in free jets. A high speed wind tunnel, same as used for the first part, is utilized for energy separation effects on the surface and in the wake of the circular cylinder. The final outcome of this study is a substantial advancement in this research area.
NASA Technical Reports Server (NTRS)
Garland, Benjamine J.; Chauvin, Leo T.
1957-01-01
Measurements of aerodynamic heat transfer have been made along the hemisphere and cylinder of a hemisphere-cylinder rocket-propelled model in free flight up to a Mach number of 3.88. The test Reynolds number based on free-stream condition and diameter of model covered a range from 2.69 x l0(exp 6) to 11.70 x 10(exp 6). Laminar, transitional, and turbulent heat-transfer coefficients were obtained. The laminar data along the body agreed with laminar theory for blunt bodies whereas the turbulent data along the cylinder were consistently lower than that predicted by the turbulent theory for a flat plate. Measurements of heat transfer at the stagnation point were, in general, lower than the theory for stagnation-point heat transfer. When the Reynolds number to the junction of the hemisphere-cylinder was greater than 6 x l0(exp 6), the transitional Reynolds number varied from 0.8 x l0(exp 6) to 3.0 x 10(exp 6); however, than 6 x l(exp 6) when the Reynolds number to the junction was less, than the transitional Reynolds number varied from 7.0 x l0(exp 6) to 24.7 x 10(exp 6).
NASA Astrophysics Data System (ADS)
Naderipour, S.; Yousefi, T.; Ashjaee, M.; Naylor, D.
2016-08-01
An experimental study using Mach-Zehnder interferometer has been carried out to investigate the heat transfer from an isothermal horizontal circular cylinder, which is exposed to an air slot jet at different angles of jet impingement. A square edged nozzle is mounted parallel with the cylinder axis and jet flow impinges on the side of the cylinder at angles Θ = 0°, 30°, 60° and 90°. The Reynolds number varied from 240 to 1900 while the Grashof number and slot- to cylinder-spacing is kept constant at Gr = 22,300 and H/w = 7 respectively. The Richardson number varied from 0.006 to 0.4. The flow field is greatly influenced by the slot exit velocity and the buoyancy force due to density change. The local Nusselt number around the cylinder has been calculated using the infinite fringe interferograms at 10° intervals. Average Nusselt number shows that heat transfer is decreased when the angle of jet impingement is increased .
NASA Astrophysics Data System (ADS)
Naderipour, S.; Yousefi, T.; Ashjaee, M.; Naylor, D.
2015-08-01
An experimental study using Mach-Zehnder interferometer has been carried out to investigate the heat transfer from an isothermal horizontal circular cylinder, which is exposed to an air slot jet at different angles of jet impingement. A square edged nozzle is mounted parallel with the cylinder axis and jet flow impinges on the side of the cylinder at angles Θ = 0°, 30°, 60° and 90°. The Reynolds number varied from 240 to 1900 while the Grashof number and slot- to cylinder-spacing is kept constant at Gr = 22,300 and H/w = 7 respectively. The Richardson number varied from 0.006 to 0.4. The flow field is greatly influenced by the slot exit velocity and the buoyancy force due to density change. The local Nusselt number around the cylinder has been calculated using the infinite fringe interferograms at 10° intervals. Average Nusselt number shows that heat transfer is decreased when the angle of jet impingement is increased .
Transient scattering by resistive cylinders
NASA Astrophysics Data System (ADS)
Damaskos, N. J.; Brown, R. T.; Jameson, J. R.; Uslenghi, P. L. E.
1985-01-01
The two-dimensional scattering of an electromagnetic pulse normally incident on a collection of infinitely long cylinders of arbitrary shape is considered. For E-polarization an electric field integral equation is derived that is applicable to solid cylinders and/or thin sheets, resistive and/or perfectly conducting. The contribution of the self-cell at later times is carefully analyzed. The expression obtained represents a generalization of previously known results. For an incident Gaussian pulse, numerical results are presented for surface currents and far-fields, for perfectly conducting and resistive circular cylinders and strips. A fast Fourier transform (FFT) algorithm is implemented to obtain the backscattering radar cross section, which is in good agreement with results obtained from either exact continuous wave (CW) solutions or the method of moments.
49 CFR 178.39 - Specification 3BN seamless nickel cylinders.
Code of Federal Regulations, 2010 CFR
2010-10-01
... for hot-drawn cylinders must be marked with the heat number. (d) Manufacture. Cylinders must be... = inside diameter in inches. (g) Heat treatment. The completed cylinders must be uniformly and properly heat-treated prior to tests. (h) Openings in cylinders and connections (valves, fuse plugs, etc.)...
NASA Technical Reports Server (NTRS)
Eckert, E R G; Livingood, J N B
1955-01-01
An approximate method for the development of flow and thermal boundary layers in the laminar region on cylinders with arbitrary cross section and transpiration-cooled walls is obtained by the use of Karman's integrated momentum equation and an analogous heat-flow equation. Incompressible flow with constant property values throughout the boundary layer is assumed. The velocity and temperature profiles within the boundary layer are approximated by expressions composed of trigonometric functions. Shape parameters for these profiles and functions necessary for the solution of the boundary-layer equations are presented as graphs so that the calculation for any specific case is reduced to the solution of two first-order differential equations. This method is applied to determine local heat-transfer coefficients and surface temperatures in the laminar flow region of the transpiration-cooled turbine blades for a given coolant flow rate, or to calculate the coolant flow distribution which is necessary in order to keep the blade temperature uniform along the surface.
NASA Technical Reports Server (NTRS)
Kandula, M.; Haddad, G. F.; Chen, R.-H.
2006-01-01
Three-dimensional Navier-Stokes computational fluid dynamics (CFD) analysis has been performed in an effort to determine thermal boundary layer correction factors for circular convective heat flux gauges (such as Schmidt-Boelter and plug type)mounted flush in a flat plate subjected to a stepwise surface temperature discontinuity. Turbulent flow solutions with temperature-dependent properties are obtained for a free stream Reynolds number of 1E6, and freestream Mach numbers of 2 and 4. The effect of gauge diameter and the plate surface temperature have been investigated. The 3-D CFD results for the heat flux correction factors are compared to quasi-21) results deduced from constant property integral solutions and also 2-D CFD analysis with both constant and variable properties. The role of three-dimensionality and of property variations on the heat flux correction factors has been demonstrated.
NASA Astrophysics Data System (ADS)
Harasgama, S. P.; Morris, W. D.
1987-05-01
This paper reports on the influence of Coriolis induced secondary flow and centripetal buoyancy on the heat transfer within typical turbine rotor blade cooling passages. The experimental results indicate that for through flow Reynolds numbers up to 30,000 increasing rotational speed tends to increase the mean levels of heat transfer relative to the stationary case when the flow is radially outward. This trend is reversed when the flow is radially inward. Increasing centripetal buoyancy for radially outward flow tends to decrease the mean level of heat transfer and in some cases these levels fall below that of the equivalent stationary values. When the flow is radially inwards, increasing centripetal buoyancy generally results in an increase in mean heat transfer, and in this case increasing buoyancy tends to increase the leading (suction) side heat transfer whilst reducing it on the trailing (pressure) side. Original correlations proposed by Morris et al for leading side heat transfer in a circular duct are shown to hold for triangular and square ducts when the hydraulic diameter concept is used.
Tam, L.M.; Ghajar, A.J.
1996-12-31
The local heat transfer characteristics for ethylene glycol water mixtures flowing in a horizontal circular straight tube with a bell-mouth inlet have been determined experimentally over a flow Reynolds number range of 1,500 to 27,000. A wall-boundary heating condition of uniform heat flux was imposed. The variation of local heat transfer coefficient with length in the transition and turbulent flow regimes is very unusual. For the bell-mouth inlet, the boundary layer along the tube wall is at first laminar and then changes through a transition region to the turbulent condition causing a dip in the Nu-x/D curve. The length of the dip in the transition region is much longer than that in the turbulent region. For the experiments the length of the dip in the transition region varied from x/D = 100 to 175 in comparison to an x/D < 25 for the turbulent region. The presence of the dip in the transition region causes a significant influence on both the local and the average heat transfer coefficients. This is particularly important for heat transfer calculations in short tubes with a bell-mouth inlet.
NASA Technical Reports Server (NTRS)
Ross, H. D.; Schiller, D. N.; Disimile, P.; Sirignano, W. A.
1989-01-01
The temperature and velocity fields have been investigated for a single-phase gas system and a two-layer gas-and-liquid system enclosed in a circular cylinder being heated suddenly and nonuniformly from above. The transient response of the gas, liquid, and container walls was modelled numerically in normal and reduced gravity (10 to the -5 g). Verification of the model was accomplished via flow visualization experiments in 10 cm high by 10 cm diameter plexiglass cylinders.
Conklin, Jim; Szybist, James P
2010-01-01
A concept is presented here that adds two additional strokes to the four-stroke Otto or Diesel cycle that has the potential to increase fuel efficiency of the basic cycle. The engine cycle can be thought of as a 4 stroke Otto or Diesel cycle followed by a 2-stroke heat recovery steam cycle. Early exhaust valve closing during the exhaust stroke coupled with water injection are employed to add an additional power stroke at the end of the conventional four-stroke Otto or Diesel cycle. An ideal thermodynamics model of the exhaust gas compression, water injection at top center, and expansion was used to investigate this modification that effectively recovers waste heat from both the engine coolant and combustion exhaust gas. Thus, this concept recovers energy from two waste heat sources of current engine designs and converts heat normally discarded to useable power and work. This concept has the potential of a substantial increase in fuel efficiency over existing conventional internal combustion engines, and under appropriate injected water conditions, increase the fuel efficiency without incurring a decrease in power density. By changing the exhaust valve closing angle during the exhaust stroke, the ideal amount of exhaust can be recompressed for the amount of water injected, thereby minimizing the work input and maximizing the mean effective pressure of the steam expansion stroke (MEPsteam). The value of this exhaust valve closing for maximum MEPsteam depends on the limiting conditions of either one bar or the dew point temperature of the expansion gas/moisture mixture when the exhaust valve opens to discard the spent gas mixture in the sixth stroke. The range of MEPsteam calculated for the geometry of a conventional gasoline spark-ignited internal combustion engine and for plausible water injection parameters is from 0.75 to 2.5 bars. Typical combustion mean effective pressures (MEPcombustion) of naturally aspirated gasoline engines are up to 10 bar, thus this
Boyd, R. D.
1981-04-01
This experimental study deals with the measurement of the heat transfer across a horizontal annulus which is formed by an inner hexagonal cylinder and an outer concentric circular cylinder. The geometry simulates, in two dimensions, a liquid metal fast breeder reactor radioactive fuel subassembly inside a shipping container. This geometry is also similar to a radioactive fuel pin inside a horizontal reactor subassembly. The objective of the experiments is to measure the local and mean heat transfer at the surface of the inner hexagonal cylinder.
Salman, Sami D.; Kadhum, Abdul Amir H.; Takriff, Mohd S.; Mohamad, Abu Bakar
2013-01-01
Numerical investigation of the heat transfer and friction factor characteristics of a circular fitted with V-cut twisted tape (VCT) insert with twist ratio (y = 2.93) and different cut depths (w = 0.5, 1, and 1.5 cm) were studied for laminar flow using CFD package (FLUENT-6.3.26). The data obtained from plain tube were verified with the literature correlation to ensure the validation of simulation results. Classical twisted tape (CTT) with different twist ratios (y = 2.93, 3.91, 4.89) were also studied for comparison. The results show that the enhancement of heat transfer rate induced by the classical and V-cut twisted tape inserts increases with the Reynolds number and decreases with twist ratio. The results also revealed that the V-cut twisted tape with twist ratio y = 2.93 and cut depth w = 0.5 cm offered higher heat transfer rate with significant increases in friction factor than other tapes. In addition the results of V-cut twist tape compared with experimental and simulated data of right-left helical tape inserts (RLT), it is found that the V-cut twist tape offered better thermal contact between the surface and the fluid which ultimately leads to a high heat transfer coefficient. Consequently, 107% of maximum heat transfer was obtained by using this configuration. PMID:24078795
Blower Cooling of Finned Cylinders
NASA Technical Reports Server (NTRS)
Schey, Oscar W; Ellerbrock, Herman H , Jr
1937-01-01
Several electrically heated finned steel cylinders enclosed in jackets were cooled by air from a blower. The effect of the air conditions and fin dimensions on the average surface heat-transfer coefficient q and the power required to force the air around the cylinders were determined. Tests were conducted at air velocities between the fins from 10 to 130 miles per hour and at specific weights of the air varying from 0.046 to 0.074 pound per cubic foot. The fin dimensions of the cylinders covered a range in pitches from 0.057 to 0.25 inch average fin thicknesses from 0.035 to 0.04 inch, and fin widths from 0.67 to 1.22 inches.
Uniform distortion of a heated turbulent wake
NASA Technical Reports Server (NTRS)
Kawall, J. G.; Keffer, J. F.
1978-01-01
Digital sampling and processing techniques are used to assess the effect of a uniform and constant strain rate on a slightly heated cylinder-generated wake which had undergone a prestrain development distance of 115 cylinder diameters. The wake is generated by a circular heating element (6.6-mm-diam cylinder) mounted horizontally in the center of a low-speed open return wind tunnel. The strain field is produced by a distortion duct oriented in such a way as to accentuate any periodic interface structure which might be present in the undistorted wake. Interface statistics are presented for both the undistorted (near) wake and the uniformly strained wake, and conditional (point) averages of the streamwise velocity and passive temperature fields of the strained wake. The results suggest that the interface thickness is fairly uniform along the back but decreases along the front with distance from the wake center.
Heat Transfer Enhancement for Finned-tube Heat Exchangers with Winglets
O'Brien, James Edward; Sohal, Manohar Singh
2000-11-01
This paper presents the results of an experimental study of forced convection heat transfer in a narrow rectangular duct fitted with a circular tube and/or a delta-winglet pair. The duct was designed to simulate a single passage in a fin-tube heat exchanger. Heat transfer measurements were obtained using a transient technique in which a heated airflow is suddenly introduced to the test section. High-resolution local fin-surface temperature distributions were obtained at several times after initiation of the transient using an imaging infrared camera. Corresponding local fin-surface heat transfer coefficient distributions were then calculated from a locally applied one-dimensional semi-infinite inverse heat conduction model. Heat transfer results were obtained over an airflow rate ranging from 1.51 x 10-3 to 14.0 x 10-3 kg/s. These flow rates correspond to a duct-height Reynolds number range of 670 – 6300 with a duct height of 1.106 cm and a duct width-toheight ratio, W/H, of 11.25. The test cylinder was sized such that the diameter-to-duct height ratio, D/H is 5. Results presented in this paper reveal visual and quantitative details of local fin-surface heat transfer distributions in the vicinity of a circular tube, a delta-winglet pair, and a combination of a circular tube and a delta-winglet pair. Comparisons of local and average heat transfer distributions for the circular tube with and without winglets are provided. Overall mean finsurface Nusselt-number results indicate a significant level of heat transfer enhancement associated with the deployment of the winglets with the circular cylinder. At the lowest Reynolds numbers (which correspond to the laminar operating conditions of existing geothermal air-cooled condensers), the enhancement level is nearly a factor of two. At higher Reynolds numbers, the enhancement level is close to 50%.
49 CFR 178.56 - Specification 4AA480 welded steel cylinders.
Code of Federal Regulations, 2010 CFR
2010-10-01
... cylinders must be marked with the heat number. (d) Manufacture. Cylinders must be manufactured using... less than 0.100 inch. (g) Heat treatment. Each cylinder must be uniformly and properly heat treated prior to tests. Any suitable heat treatment in excess of 1100 °F is authorized except that...
Pressure fluctuations on the surface of a cylinder in uniform flow
NASA Technical Reports Server (NTRS)
Ayoub, A.; Karamcheti, K.
1976-01-01
The problem of determining the pressure fluctuations induced on the surface of a cylinder by the fluctuating wake behind it is formulated. A formal solution relating the unsteady surface pressure field to the velocity field in the wake is derived and used to obtain general results independent of cylinder shape and Reynolds number. The case of the circular cylinder is then examined in detail.
NASA Astrophysics Data System (ADS)
Ohira, Katsuhide; Ota, Atsuhito; Mukai, Yasuaki; Hosono, Takumi
2012-07-01
Cryogenic slush fluids, such as slush hydrogen and slush nitrogen, are two-phase, single-component fluids containing solid particles in a liquid. Since their density and refrigerant capacity are greater than those of liquid-state fluids alone, there are high expectations for use of slush fluids as functionally thermal fluids in various applications, such as fuels for spacecraft engines, clean energy fuels to improve the efficiency of transportation and storage, and as refrigerants for high-temperature superconducting equipment. In this research, a three-dimensional numerical simulation code (SLUSH-3D), including the gravity effect based on the thermal non-equilibrium, two-fluid model, was constructed to clarify the flow and heat-transfer characteristics of cryogenic slush fluids in a horizontal circular pipe. The calculated results of slush nitrogen flow performed using the numerical code were compared with the authors' experimental results obtained using the PIV method. As a result of these comparisons, the numerical code was verified, making it possible to analyze the flow and heat-transfer characteristics of slush nitrogen with sufficient accuracy. The numerical results obtained for the flow and heat-transfer characteristics of slush nitrogen and slush hydrogen clarified the effects of the pipe inlet velocity, solid fraction, solid particle size, and heat flux on the flow pattern, solid-fraction distribution, turbulence energy, pressure drop, and heat-transfer coefficient. Furthermore, it became clear that the difference of the flow and heat-transfer characteristics between slush nitrogen and slush hydrogen were caused to a large extent by their thermo-physical properties, such as the solid-liquid density ratio, liquid viscosity, and latent heat of fusion.
A new cylinder cooling system using oil
Harashina, Kenichi; Murata, Katsuhiro; Satoh, Hiroshi; Shimizu, Yasuo; Hamamura, Masahiro
1995-12-31
The design of engine cylinders must satisfy two conflicting requirements, good cooling performance and ease of manufacture. A cooling system was designed to permit the circulation of engine lubricating oil as a coolant at high speed through grooves provided on the external periphery of the cylinder liner. Testing in an actual operating engine confirmed that this cooling system design not only provides better heat transfer and higher cooling performance but also simplifies the manufacturing of the cylinder since external cooling fins are not required. In this paper, the authors will discuss the cylinder cooling effect of the new cylinder cooling system, referring mainly to the test results of a single-cylinder motorcycle engine with lubricating oil from the crankcase used as the coolant.
NASA Astrophysics Data System (ADS)
Limaye, M. D.; Vedula, R. P.; Prabhu, S. V.
2013-03-01
Experiments are carried out for a circular orifice and a nozzle for the same contraction ratio to explore the heat transfer characteristics. The pressure ratios covered in this study are 2.36, 3.04, 3.72, 4.4 and 5.08 for jet to plate distances ( z/d) of 2, 4, 6 and 8. The presence of vena contracta and absence of the stagnation bubble in the orifice flow are confirmed from the surface pressure distributions. It is found that higher Nusselt number for the orifice than the nozzle are due to different shock structures and shear layer dynamics. Peak Nusselt number is found as high as 84 % than that for the nozzle. In the wall jet region, the heat transfer rates for the orifice and nozzle are almost of the same order, thus producing steeper temperature gradients under similar operating conditions. The average heat transfer rates are almost 25 % higher for the orifice than that of the nozzle. The recovery factors are in general higher in case of orifice than the nozzle. However, this has not resulted in decreasing the heat transfer rates due to shear layer dynamics.
NASA Astrophysics Data System (ADS)
Hussain, Alamin; Fsadni, Andrew M.
2016-03-01
Due to their ease of manufacture, high heat transfer efficiency and compact design, helically coiled heat exchangers are increasingly being adopted in a number of industries. The higher heat transfer efficiency over straight pipes is due to the secondary flow that develops as a result of the centrifugal force. In spite of the widespread use of helically coiled heat exchangers, and the presence of bubbly two-phase flow in a number of systems, very few studies have investigated the resultant flow characteristics. This paper will therefore present the results of CFD simulations for the two-phase bubbly flow in helically coiled heat exchangers as a function of the volumetric void fraction and the tube cross-section design. The CFD results are compared to the scarce flow visualisation experimental results available in the open literature.
Lattice Boltzmann simulation of a fluid flow around a triangular unit of three isothermal cylinders
NASA Astrophysics Data System (ADS)
Alinejad, J.
2016-01-01
The lattice Boltzmann method is employed to simulate heat transfer in the flow past three arrangements of elliptical and circular cylinders under an isothermal boundary condition. The lattice Boltzmann equations and the Bhatnagar-Gross-Krook model are used to simulate two-dimensional forced convection at 30 ≤ Re ≤ 100 and Pr = 0.71. Pressure distributions, isotherms, and streamlines are obtained. Vortex shedding maps are observed in detail for several cases. The present results are in good agreement with available experimental and numerical data.
Corey, John A.
1985-01-01
A multi-cylinder hot gas engine having an equal angle, V-shaped engine block in which two banks of parallel, equal length, equally sized cylinders are formed together with annular regenerator/cooler units surrounding each cylinder, and wherein the pistons are connected to a single crankshaft. The hot gas engine further includes an annular heater head disposed around a central circular combustor volume having a new balanced-flow hot-working-fluid manifold assembly that provides optimum balanced flow of the working fluid through the heater head working fluid passageways which are connected between each of the cylinders and their respective associated annular regenerator units. This balanced flow provides even heater head temperatures and, therefore, maximum average working fluid temperature for best operating efficiency with the use of a single crankshaft V-shaped engine block.
Hydroelastic wave diffraction by a vertical cylinder.
Brocklehurst, Paul; Korobkin, Alexander; Părău, Emilian I
2011-07-28
A linear three-dimensional problem of hydroelastic wave diffraction by a bottom-mounted circular cylinder is analysed. The fluid is of finite depth and is covered by an ice sheet, which is clamped to the cylinder surface. The ice stretches from the cylinder to infinity in all lateral directions. The hydroelastic behaviour of the ice sheet is described by linear elastic plate theory, and the fluid flow by a potential flow model. The two-dimensional incident wave is regular and has small amplitude. An analytical solution of the coupled problem of hydroelasticity is found by using a Weber transform. We determine the ice deflection and the vertical and horizontal forces acting on the cylinder and analyse the strain in the ice sheet caused by the incident wave. PMID:21690136
NASA Astrophysics Data System (ADS)
Newton, Isaac; Henry, Richard Conn
2000-07-01
An extraordinarily simple and transparent derivation of the formula for the acceleration that occurs in uniform circular motion is presented, and is advocated for use in high school and college freshman physics textbooks.
Heat kernels on cone of AdS2 and k-wound circular Wilson loop in AdS5 × S5 superstring
NASA Astrophysics Data System (ADS)
Bergamin, R.; Tseytlin, A. A.
2016-04-01
We compute the one-loop world-sheet correction to partition function of {{AdS}}5× {{{S}}}5 superstring that should be representing k-fundamental circular Wilson loop in planar limit. The 2d metric of the minimal surface ending on k-wound circle at the boundary is that of a cone of AdS2 with deficit 2π (1-k). We compute the determinants of 2d fluctuation operators by first constructing heat kernels of scalar and spinor Laplacians on the cone using the Sommerfeld formula. The final expression for the k-dependent part of the one-loop correction has simple integral representation but is different from earlier results.
Williams, C.W.; Rubert, R.R.; Coffield, F.E.; Felker, B.; Stallard, B.W.; Taska, J.
1983-12-01
Development of high-power components for electron cyclotron resonant heating (ECRH) applications requires extensive testing. In this paper we describe the high-power testing of various circular waveguide components designed for application on the Tandem Mirror Experiment-Upgrade (TMX-U). These include a 2.5-in. vacuum valve, polarizing reflectors, directional couplers, mode converters, and flexible waveguides. All of these components were tested to 200 kW power level with 40-ms pulses. Cold tests were used to determine field distribution. The techniques used in these tests are illustrated. The new high-power test facility at Lawrence Livermore National Laboratory (LLNL) is described and test procedures are discussed. We discuss the following test results: efficiency at high power of mode converters, comparison of high power vs low power for waveguide components, and full power tests of the waveguide system. We also explain the reasons behind selection of these systems for use on TMX-U.
Telescopic Deformation of Stepped Circular Tube Subjected to Axial Crushing
NASA Astrophysics Data System (ADS)
Chen, Dai-Heng; Tanaka, Daishi; Ozaki, Shingo
In this paper, telescopic deformations of stepped circular tubes are studied by axial compression with finite element method. It is found that three-stepped circular tubes can be considered as a combination of two two-stepped circular tubes, from which the compression load for a three-stepped cylinder can be predicted in approximation from the loads for the two-stepped cylinders. However, the predicted values by this technique are higher than those of the three-step cylinder, because the restraint of the vertical wall in the two-stepped cylinders is larger than that in the three-stepped cylinder. The mechanism of the telescopic deformation of stepped circular tube is mainly composed of bending, rotating, and stretching of the tube wall. However, another mechanism has appeared when the radius difference of the small and the big cylinders is small enough. As far as geometric parameters concerned, the average load of a two-step cylinder goes up as the radius difference ΔR decreases and as the cylinder height H or the thickness t increase. And, the initial load grows with the increase of fillet radius. Further, the average of compressive load is also investigated.
Salman, Sami D; Kadhum, Abdul Amir H; Takriff, Mohd S; Mohamad, Abu Bakar
2014-01-01
Numerical investigation has been carried out on heat transfer and friction factor characteristics of copper-water nanofluid flow in a constant heat-fluxed tube with the existence of new configuration of vortex generator using Computational Fluid Dynamics (CFD) simulation. Two types of swirl flow generator: Classical twisted tape (CTT) and Parabolic-cut twisted tape (PCT) with a different twist ratio (y = 2.93, 3.91 and 4.89) and different cut depth (w = 0.5, 1.0 and 1.5 cm) with 2% and 4% volume concentration of CuO nanofluid were used for simulation. The effect of different parameters such as flow Reynolds number, twist ratio, cut depth and nanofluid were considered. The results show that the enhancement of heat transfer rate and the friction factor induced by the Classical (CTT) and Parabolic-cut (PCT) inserts increases with twist ratio and cut depth decreases. The results also revealed that the heat transfer enhancement increases with an increase in the volume fraction of the CuO nanoparticle. Furthermore, the twisted tape with twist ratio (y = 2.93) and cut depth w = 0.5 cm offered 10% enhancement of the average Nusselt number with significant increases in friction factor than those of Classical twisted tape. PMID:24605055
Salman, Sami D.; Kadhum, Abdul Amir H.; Takriff, Mohd S.; Mohamad, Abu Bakar
2014-01-01
Numerical investigation has been carried out on heat transfer and friction factor characteristics of copper-water nanofluid flow in a constant heat-fluxed tube with the existence of new configuration of vortex generator using Computational Fluid Dynamics (CFD) simulation. Two types of swirl flow generator: Classical twisted tape (CTT) and Parabolic-cut twisted tape (PCT) with a different twist ratio (y = 2.93, 3.91 and 4.89) and different cut depth (w = 0.5, 1.0 and 1.5 cm) with 2% and 4% volume concentration of CuO nanofluid were used for simulation. The effect of different parameters such as flow Reynolds number, twist ratio, cut depth and nanofluid were considered. The results show that the enhancement of heat transfer rate and the friction factor induced by the Classical (CTT) and Parabolic-cut (PCT) inserts increases with twist ratio and cut depth decreases. The results also revealed that the heat transfer enhancement increases with an increase in the volume fraction of the CuO nanoparticle. Furthermore, the twisted tape with twist ratio (y = 2.93) and cut depth w = 0.5 cm offered 10% enhancement of the average Nusselt number with significant increases in friction factor than those of Classical twisted tape. PMID:24605055
Sunnarborg, Duane A.
2000-01-01
A quick release engine cylinder allows optical access to an essentially unaltered combustion chamber, is suitable for use with actual combustion processes, and is amenable to rapid and repeated disassembly and cleaning. A cylinder member, adapted to constrain a piston to a defined path through the cylinder member, sealingly engages a cylinder head to provide a production-like combustion chamber. A support member mounts with the cylinder member. The support-to-cylinder mounting allows two relationships therebetween. In the first mounting relationship, the support engages the cylinder member and restrains the cylinder against the head. In the second mounting relationship, the cylinder member can pass through the support member, moving away from the head and providing access to the piston-top and head.
49 CFR 178.38 - Specification 3B seamless steel cylinders.
Code of Federal Regulations, 2010 CFR
2010-10-01
... the heat number. (d) Manufacture. Cylinders must be manufactured using equipment and processes... = inside diameter in inches. (g) Heat treatment. The completed cylinders must be uniformly and properly heat-treated prior to tests. (h) Openings in cylinders and connections (valves, fuse plugs, etc.)...
Steady flows around two cylinders at low Reynolds numbers
NASA Astrophysics Data System (ADS)
Tatsuno, Masakazu
1989-06-01
Steady flow patterns around two circular cylinders are experimentally studied at Reynolds numbers lower than unity. The cylinders are towed at a uniform speed in a tank filled with glycerin, and the dependence of the streamline patterns on the ratio of the radii of the two cylinders, their mutual spacing, and the angle between the line joining the centers and the direction of the flow are studied. When the two cylinders are in tandem arrangements, the process of changes of the first twin eddies in the gap is in accordance with the theoretical results of Miyazaki and Hasimoto. When the two cylinders are in staggered arrangement, the flow separation occurs both at small values of gaps and at large ratio of the radii of the two cylinders.
NASA Astrophysics Data System (ADS)
Baqaie Saryazdi, A.; Talebi, F.; Armaghani, T.; Pop, I.
2016-04-01
In this paper, the problem of developing forced convection flow of a nanofluid in a constant-wall-temperature circular tube filled with a porous medium is considered. The flow is steady and Brinkman-Forchheimer-extended Darcy equation model is employed. The thermal-equilibrium model is assumed between nanofluid and solid phase. It is also assumed that nanoparticles are distributed non-uniformly inside the pipe, hence the particles volume fraction equation is also coupled with the governing equations. A numerical study has been performed using the Finite-Volume method to analyze heat transfer coefficient of Al2O3 -water nanofluid. The effects of nanoparticles volume fraction and porosity on fluid flow and heat transfer of nanofluids are studied. The results show that the Nusselt number is increased with increasing particles volume fraction. Moreover, the wall shear stresses are increased. Finally, the effect of porosity on particle volume fraction distribution is studied and discussed in detail. We are confident that the reported results are new and original.
NASA Technical Reports Server (NTRS)
Crawford, Davis H; Mccauley, William D
1957-01-01
A program to investigate the aerodynamic heat transfer of a nonisothermal hemisphere-cylinder has been conducted in the Langley 11-inch hypersonic tunnel at a Mach number of 6.8 and a Reynolds number from approximately 0.14 x 10(6) to 1.06 x 10(6) based on diameter and free-stream conditions. The experimental heat-transfer coefficients were slightly less over the whole body than those predicted by the theory of Stine and Wanlass (NACA technical note 3344) for an isothermal surface. For stations within 45 degrees of the stagnation point the heat-transfer coefficients could be correlated by a single relation between local Stanton number and local Reynolds number. Pitot pressure profiles taken at a Mach number of 6.8 on a hemisphere-cylinder have verified that the local Mach number or velocity outside the boundary layer required in the theories may be computed from the surface pressures by using isentropic flow relations and conditions immediately behind a normal shock. The experimental pressure distribution at Mach number of 6.8 is closely predicted by the modified Newtonian theory.
NASA Astrophysics Data System (ADS)
Daichin, K. V.; Lee, Sang Joon
The flow fields behind elliptic cylinders adjacent to a free surface were investigated experimentally in a circulating water channel. A range of cylinder aspect ratios (AR=2, 3, 4) were considered, while the cross-sectional area of the elliptical cylinder was kept constant. The main objective of this study was to investigate the effect of cylinder aspect ratio and a free surface on the flow structure in the near-wake behind elliptic cylinders. For each elliptic cylinder, the flow structure was analyzed for various values of the submergence depth of the cylinder beneath the free surface. The flow fields were measured using a single-frame double-exposure PIV (Particle Image Velocimetry) system. For each experimental condition, 350 instantaneous velocity fields were obtained and ensemble-averaged to obtain the mean velocity field and spatial distribution of the mean vorticity statistics. The results show that near-wake can be classified into three typical flow patterns: formation of a Coanda flow, generation of substantial jet-like flow, and attachment of this jet flow to the free surface. The general flow structure observed behind the elliptic cylinders resembles the structure previously reported for a circular cylinder submerged near a free surface. However, the wake width and the angle of downward deflection of the shear layer developed from the lower surface of the elliptic cylinder differ from those observed for a circular cylinder. These trends are enhanced as cylinder aspect ratio is increased. In addition, the free surface distortion is also discussed in the paper.
Numerical simulation of flows around two unyawed and yawed wavy cylinders in tandem arrangement
NASA Astrophysics Data System (ADS)
Lam, K.; Lin, Y. F.; Zou, L.; Liu, Y.
2012-01-01
The turbulent flows around two fixed unyawed and yawed wavy cylinders in tandem arrangement at a subcritical Reynolds number of 3900 were studied using three-dimensional large eddy simulation. A range of spacing (L) between the cylinders from 1.5Dm to 5.5Dm with yaw angles of α=0°, 30° were investigated so as to identify the effects of cylinder spacing ratio and yaw angle as well as the coupling effects of the two wavy cylinders in tandem. The instantaneous near wake flow patterns around the cylinders were captured. Flows around circular cylinders with the same configurations were also obtained for comparison. The effects of the vortex shedding from the upstream cylinder on the fluid-dynamic forces acting on the downstream one were examined. Results show that vortex shedding behind the upstream wavy cylinder occurs at a further downstream position compared with that of the circular upstream cylinder. This leads to the weakening of the effect of bodies' vibration of the cylinders as well as an evident reduction of drag. With a yaw angle of 30°, the vortex formation lengths behind both the upstream and downstream cylinders decrease, typically for the wavy cylinders configuration. However, the effects of drag reduction and the control of bodies' vibration still exist except for the spacing ratio of L/Dm=3.5, which is in the critical spacing ratio regime for two wavy cylinders in tandem.
NASA Astrophysics Data System (ADS)
Poon, Eric; Ooi, Andrew; Pan, Wei; Liu, Yun; Ye, Yufei; Xue, Yuan; Barlis, Peter; Moore, Stephen
2013-11-01
Pulsatile flow past two circular cylinder rings in tandem inside a circular pipe is carried out numerically at resting blood flow rate (around 200mL/min) to study the effect of stent-malapposition (distance between cylinders surface and the circular pipe wall) on the hemodynamics impact inside a coronary artery. The corresponding Reynolds number based on pipe diameter for this blood flow rate is Re = 600. Stent-malappostion is chosen to be 0.25-1 diameter from the circular pipe wall and the two circular cylinders are 36 diameters apart. At 0.25 diameter stent-malapposition, the flow between the cylinders and the wall slows down significantly as the boundary layers from the cylinder and the wall meet. At 0.5 diameter stent-malapposition, the flow between the leading cylinder and the wall increases substantially, leading to unsteady vortices rolling away from the wall and a dramatic increase in wall shear stress. However, the vortices behind the trailing cylinder are stable even though the two cylinders in tandem are 36 diameters apart as flow pusatility affects the velocity recovery behind the leading cylinder. At 1 diameter stent-malapposition, the vortices behind the leading cylinder become stable again.
Curing A Large Composite Cylinder Without An Autoclave
NASA Technical Reports Server (NTRS)
Frazer, Robert E.
1992-01-01
Proposed technique provides application of heat and pressure to cure fiber-wound composite cylinder too large to fit in autoclave. Tube wound around cylinder applies pressure. Blanket distributes pressure. Pressure expels gas bubbles from material. Heat applied by conventional methods.
NASA Astrophysics Data System (ADS)
Yang, PeiPei; Wen, Zhi; Dou, RuiFeng; Liu, Xunliang
2016-08-01
Flow and heat transfer through a 2D random porous medium are studied by using the lattice Boltzmann method (LBM). For the random porous medium, the influence of disordered cylinder arrangement on permeability and Nusselt number are investigated. Results indicate that the permeability and Nusselt number for different cylinder locations are unequal even with the same number and size of cylinders. New correlations for the permeability and coefficient b‧Den of the Forchheimer equation are proposed for random porous medium composed of Gaussian distributed circular cylinders. Furthermore, a general set of heat transfer correlations is proposed and compared with existing experimental data and empirical correlations. Our results show that the Nu number increases with the increase of the porosity, hence heat transfer is found to be accurate considering the effect of porosity.
Measurements of the Flowfield Interaction Between Tandem Cylinders
NASA Technical Reports Server (NTRS)
Neuhart, Dan H.; Jenkins, Luther N.; Choudhari, Meelan M.; Khorrami, Mehdi R.
2009-01-01
This paper presents the most recent measurements from an ongoing investigation of the unsteady wake interference between a pair of circular cylinders in tandem. The purpose of this investigation is to help build an in-depth experimental database for this canonical flow configuration that embodies the effects of component interaction in landing gear noise. This new set of measurements augments the previous database at the primary Reynolds number (based on tunnel speed and cylinder diameter) of 1.66 105 in four important respects. First, better circumferential resolution of surface pressure fluctuations is obtained via cylinder "clocking". Second, higher resolution particle image velocimetry measurements of the shear layer separating from the cylinders are achieved. Third, the effects of simultaneous boundary layer trips along both the front and rear cylinders, versus front cylinder alone in the previous measurements, are studied. Lastly, on-surface and off-surface characteristics of unsteady flow near the "critical" cylinder spacing, wherein the flow switches intermittently between two states that are characteristic of lower and higher spacings, are examined. This critical spacing occurs in the middle of a relatively sudden change in the drag of either cylinder and is characterized by a loud intermittent noise and a flow behavior that randomly transitions between shear layer attachment to the rear cylinder and constant shedding and rollup in front of it. Analysis of this bistable flow state reveals much larger spanwise correlation lengths of surface pressure fluctuations than those at larger and smaller values of the cylinder spacing.
Measurement of the flow past a cactus-inspired cylinder
NASA Astrophysics Data System (ADS)
Oweis, Ghanem F.; El-Makdah, Adnan M.
2012-11-01
Desert cacti are tall cylindrical plants characterized by longitudinal u- or v-shaped grooves that run parallel to the plant axis, covering its surface area. We study the wake flow modifications resulting from the introduction of cactus-inspired surface grooves to a circular cylinder. Particle image velocimetry PIV is implemented in a wind tunnel to visualize and quantify the wake flow from a cactus cylinder in cross wind and an equivalent circular cylinder at Re O(1E5). The cactus wake exhibits superior behavior over its circular counterpart as seen from the mean and turbulent velocity profiles. The surface flow within the grooves is also probed to elucidate the origins of the wake alterations. Lastly, we use simple statistical analysis based only on the wake velocity fields, under the assumption of periodicity of the shedding, to recover the time varying flow from the randomly acquired PIV snapshots.
Sukumar, M.; Rizo, J.; Wall, M.; Dreyfus, L. A.; Kupersztoch, Y. M.; Gierasch, L. M.
1995-01-01
The heat-stable enterotoxin b (STb) is secreted by enterotoxigenic Escherichia coli that cause secretory diarrhea in animals and humans. It is a 48-amino acid peptide containing two disulfide bridges, between residues 10 and 48 and 21 and 36, which are crucial for its biological activity. Here, we report the solution structure of STb determined by two- and three-dimensional NMR methods. Approximate interproton distances derived from NOE data were used to construct structures of STb using distance-geometry and simulated annealing procedures. The NMR-derived structure shows that STb is helical between residues 10 and 22 and residues 38 and 44. The helical structure in the region 10-22 is amphipathic and exposes several polar residues to the solvent, some of which have been shown to be important in determining the toxicity of STb. The hydrophobic residues on the opposite face of this helix make contacts with the hydrophobic residues of the C-terminal helix. The loop region between residues 21 and 36 has another cluster of hydrophobic residues and exposes Arg 29 and Asp 30, which have been shown to be important for intestinal secretory activity. CD studies show that reduction of disulfide bridges results in a dramatic loss of structure, which correlates with loss of function. Reduced STb adopts a predominantly random-coil conformation. Chromatographic measurements of concentrations of native, fully reduced, and single-disulfide species in equilibrium mixtures of STb in redox buffers indicate that the formation of the two disulfide bonds in STb is only moderately cooperative. Similar measurements in the presence of 8 M urea suggest that the native secondary structure significantly stabilizes the disulfide bonds. PMID:8528070
Coupled Thermo-Mechanical Analyses of Dynamically Loaded Rubber Cylinders
NASA Technical Reports Server (NTRS)
Johnson, Arthur R.; Chen, Tzi-Kang
2000-01-01
A procedure that models coupled thermo-mechanical deformations of viscoelastic rubber cylinders by employing the ABAQUS finite element code is described. Computational simulations of hysteretic heating are presented for several tall and short rubber cylinders both with and without a steel disk at their centers. The cylinders are compressed axially and are then cyclically loaded about the compressed state. The non-uniform hysteretic heating of the rubber cylinders containing a steel disk is presented. The analyses performed suggest that the coupling procedure should be considered for further development as a design tool for rubber degradation studies.
Multiple Cylinder Free-Piston Stirling Machinery
NASA Astrophysics Data System (ADS)
Berchowitz, David M.; Kwon, Yong-Rak
In order to improve the specific power of piston-cylinder type machinery, there is a point in capacity or power where an advantage accrues with increasing number of piston-cylinder assemblies. In the case of Stirling machinery where primary energy is transferred across the casing wall of the machine, this consideration is even more important. This is due primarily to the difference in scaling of basic power and the required heat transfer. Heat transfer is found to be progressively limited as the size of the machine increases. Multiple cylinder machines tend to preserve the surface area to volume ratio at more favorable levels. In addition, the spring effect of the working gas in the so-called alpha configuration is often sufficient to provide a high frequency resonance point that improves the specific power. There are a number of possible multiple cylinder configurations. The simplest is an opposed pair of piston-displacer machines (beta configuration). A three-cylinder machine requires stepped pistons to obtain proper volume phase relationships. Four to six cylinder configurations are also possible. A small demonstrator inline four cylinder alpha machine has been built to demonstrate both cooling operation and power generation. Data from this machine verifies theoretical expectations and is used to extrapolate the performance of future machines. Vibration levels are discussed and it is argued that some multiple cylinder machines have no linear component to the casing vibration but may have a nutating couple. Example applications are discussed ranging from general purpose coolers, computer cooling, exhaust heat power extraction and some high power engines.
NASA Technical Reports Server (NTRS)
Syed, Hasnain H.; Volakis, John L.
1991-01-01
Rigorous uniform geometrical theory of diffraction (UGTD) diffraction coefficients are presented for a coated convex cylinder simulated with generalized impedance boundary conditions. In particular, ray solutions are obtained which remain valid in the transition region and reduce uniformly to those in the deep lit and shadow regions. These involve new transition functions in place of the usual Fock-type integrals, characteristic to the impedance cylinder. A uniform asymptotic solution is also presented for observations in the close vicinity of the cylinder. As usual, the diffraction coefficients for the convex cylinder are obtained via a generalization of the corresponding ones for the circular cylinder.
Acoustic resonances in cylinder bundles oscillating in a compressibile fluid
Lin, W.H.; Raptis, A.C.
1984-12-01
This paper deals with an analytical study on acoustic resonances of elastic oscillations of a group of parallel, circular, thin cylinders in an unbounded volume of barotropic, compressible, inviscid fluid. The perturbed motion of the fluid is assumed due entirely to the flexural oscillations of the cylinders. The motion of the fluid disturbances is first formulated in a three-dimensional wave form and then casted into a two-dimensional Helmholtz equation for the harmonic motion in time and in axial space. The acoustic motion in the fluid and the elastic motion in the cylinders are solved simultaneously. Acoustic resonances were approximately determined from the secular (eigenvalue) equation by the method of successive iteration with the use of digital computers for a given set of the fluid properties and the cylinders' geometry and properties. Effects of the flexural wavenumber and the configuration of and the spacing between the cylinders on the acoustic resonances were thoroughly investigated.
Stabilization of flow past a cylinder with rounded corners
NASA Astrophysics Data System (ADS)
Zhang, Wei; Samtaney, Ravi
2015-11-01
We present results of global linear stability analysis for flow past a cylinder in the low Reynolds number regime Re = 50 - 110 . The four corners of the square cylinder are rounded with a radius of curvature R+ = R / D in which R is the rounding radius and D is the cylinder diameter. Analysis is carried out for R+ = 0 . 00 (square cylinder with sharp corners) to R+ = 0 . 50 (circular cylinder) to investigate its effect on the stability characteristics of the flow. The results reveal that the flow may be stabilized by the rounding of the corners for Re <= 100 , up to the minimum point beyond which further rounding has a destabilizing effect on the flow. The stabilization is less effective as the Reynolds number increases and for Re = 110 the square (resp. circular) cylinder has the least (resp. most) unstable growth rate. As R+ increases, the peak of the perturbation kinetic energy growth shifts closer to the cylinder and rapidly damps in the downstream region. The perturbation kinetic energy budget is examined and with the largest contribution due to the transfer of energy from the shear of the base flow. Supported by the KAUST Office of Competitive Research Funds under Award No. URF/1/1394-01.The IBM Blue Gene/P Shaheen at KAUST was utilized for the simulations.
Alderson, J.H.
1991-12-31
Cylinders containing depleted uranium hexafluoride (UF{sub 6}) in storage at the Department of Energy (DOE) gaseous diffusion plants, managed by Martin Marietta Energy Systems, Inc., are being evaluated to determine their expected storage life. Cylinders evaluated recently have been in storage service for 30 to 40 years. In the present environment, the remaining life for these storage cylinders is estimated to be 30 years or greater. The group of cylinders involved in recent tests will continue to be monitored on a periodic basis, and other storage cylinders will be observed as on a statistical sample population. The program has been extended to all types of large capacity UF{sub 6} cylinders.
Surface modifications of pistons and cylinder liners
Suzuki, Y. )
1988-01-01
With higher brake mean effective pressure (BMEP) of a diesel engine, pistons and cylinder liners suffer from increasing mechanical and thermal loading which causes several problems on these engine parts. The main critical problems are thermally induced cracking on the piston head and scuffing on the cylinder bore. Hard anodizing the piston head is described. It is currently the most effective countermeasure against heat cracking. Another promising method, to reinforce the piston head by means of SiC-whiskers, is also reported. A new process for improving the surface lubrication of the cylinder liner was developed. The bore has numerous finely distributed micropits which act as good oil reservoir. This improves the antiscuffing property of the cylinder liner.
Delamination of Composite Cylinders
NASA Astrophysics Data System (ADS)
Davies, Peter; Carlsson, Leif A.
The delamination resistance of filament wound glass/epoxy cylinders has been characterized for a range of winding angles and fracture mode ratios using beam fracture specimens. The results reveal that the delamination fracture resistance increases with increasing winding angle and mode II (shear) fraction (GΠ/G). It was also found that interlaced fiber bundles in the filament wound cylinder wall acted as effective crack arresters in mode I loading. To examine the sensitivity of delamina-tion damage on the strength of the cylinders, external pressure tests were performed on filament-wound glass/epoxy composite cylinders with artificial defects and impact damage. The results revealed that the cylinder strength was insensitive to the presence of single delaminations but impact damage caused reductions in failure pressure. The insensitivity of the failure pressure to a single delamination is attributed to the absence of buckling of the delaminated sublaminates before the cylinder wall collapsed. The impacted cylinders contained multiple delaminations, which caused local reduction in the compressive load capability and reduction in failure pressure. The response of glass/epoxy cylinders was compared to impacted carbon reinforced cylinders. Carbon/epoxy is more sensitive to damage but retains higher implosion resistance while carbon/PEEK shows the opposite trend.
Integral equation for a strip coil antenna located on a dielectric cylinder
NASA Astrophysics Data System (ADS)
Dementyev, A. N.; Klyuev, D. S.; Shatrov, S. A.
2016-01-01
The problem about the distribution of the surface current density in a narrow circular strip antenna as an infinitely thin perfectly conducting ribbon folded in a circle and positioned on the surface of a dielectric cylinder is reduced to a one-dimensional integral equation (IE). A method for solving the obtained IE is proposed. Complex distributions of the azimuthal component of the surface current density over the circular conductor are presented for different values of the dielectric permittivity of the cylinder.
Numerical investigations of turbulent flow past a rectangular cylinder with active flow control
NASA Astrophysics Data System (ADS)
Luong, Sanh B.
The objective of the present research was to investigate the effects of rotating circular cylinders to control high intensity wind load. This research used computational fluid dynamics (CFD) to simulate high Reynolds number gust-like wind load condition for a transient duration of 12 seconds across a three-dimensional rectangular cylinder with dimension of 240x15x7 meters and aspect ratio (Breadth/Height) of 2.3. An array of 20 circular cylinders was positioned along the leading edges of the rectangular bridge cylinder. The research analyzed turbulent flow characteristics across the top and bottom deck surfaces and the development of wake region during two cases: 1) stationary cylinders and 2) rotated cylinders at 400 RPM or velocity ratio of lambda = 1.33. The Strouhal number flow characteristics of 0.08 and 0.17 for aspect ratio of 2 to 3 analyzed in this study were found to be in agreements with published literature.
NASA Astrophysics Data System (ADS)
Han, J. C.; Mayle, R. E.
Topics presented include an experimental study of convective heat transfer in radially rotating rectangular ducts, an experimental study of heat transfer in a spanwise rotating channel turbulated with 45 deg. criss-cross ribs, local heat transfer on a flat surface roughened with broken ribs, and turbulent heat transfer and friction in a square channel with discrete rib turbulators. Also presented are simulating transitional flow and heat transfer over the flat plate and circular cylinder using a k-epsilon turbulence model, velocity and temperature profiles for stagnation film cooling, film cooling effectiveness in high turbulence flow, and local convection heat transfer on a plane wall in the vicinity of strong streamwise accelerations.
49 CFR 178.36 - Specification 3A and 3AX seamless steel cylinders.
Code of Federal Regulations, 2010 CFR
2010-10-01
... that plates and billets for hot-drawn cylinders must be marked with the heat number. (d) Manufacture... diameter in inches. (g) Heat treatment. The completed cylinder must be uniformly and properly heat-treated... ensure complete expansion. Any internal pressure applied after heat-treatment and previous to...
Keyes, B.L.P.
1992-06-01
The piston ring-cylinder liner area of the internal combustion engine must withstand very-high-temperature gradients, highly-corrosive environments, and constant friction. Improving the efficiency in the engine requires ring and cylinder liner materials that can survive this abusive environment and lubricants that resist decomposition at elevated temperatures. Wear and friction tests have been done on many material combinations in environments similar to actual use to find the right materials for the situation. This report covers tribology information produced from 1986 through July 1991 by Battelle columbus Laboratories, Caterpillar Inc., and Cummins Engine Company, Inc. for the Ceramic Technology Project (CTP). All data in this report were taken from the project's semiannual and bimonthly progress reports and cover base materials, coatings, and lubricants. The data, including test rig descriptions and material characterizations, are stored in the CTP database and are available to all project participants on request. Objective of this report is to make available the test results from these studies, but not to draw conclusions from these data.
A biharmonic relaxation method for calculating thermal stress in cooled irregular cylinders
NASA Technical Reports Server (NTRS)
Holms, Arthur G
1952-01-01
A numerical method was developed for calculating thermal stresses in irregular cylinders cooled by one or more internal passages. The use of relaxation methods and elementary methods of finite differences was found to give approximations to the correct values when compared with previously known solutions for concentric circular cylinders possessing symmetrical and asymmetrical temperature distributions.
Counter-extrapolation method for conjugate interfaces in computational heat and mass transfer.
Le, Guigao; Oulaid, Othmane; Zhang, Junfeng
2015-03-01
In this paper a conjugate interface method is developed by performing extrapolations along the normal direction. Compared to other existing conjugate models, our method has several technical advantages, including the simple and straightforward algorithm, accurate representation of the interface geometry, applicability to any interface-lattice relative orientation, and availability of the normal gradient. The model is validated by simulating the steady and unsteady convection-diffusion system with a flat interface and the steady diffusion system with a circular interface, and good agreement is observed when comparing the lattice Boltzmann results with respective analytical solutions. A more general system with unsteady convection-diffusion process and a curved interface, i.e., the cooling process of a hot cylinder in a cold flow, is also simulated as an example to illustrate the practical usefulness of our model, and the effects of the cylinder heat capacity and thermal diffusivity on the cooling process are examined. Results show that the cylinder with a larger heat capacity can release more heat energy into the fluid and the cylinder temperature cools down slower, while the enhanced heat conduction inside the cylinder can facilitate the cooling process of the system. Although these findings appear obvious from physical principles, the confirming results demonstrates the application potential of our method in more complex systems. In addition, the basic idea and algorithm of the counter-extrapolation procedure presented here can be readily extended to other lattice Boltzmann models and even other computational technologies for heat and mass transfer systems. PMID:25871245
Classification of the stratified fluid flows regimes around a square cylinder
NASA Astrophysics Data System (ADS)
Gushchin, V. A.; Matyushin, P. V.
2015-10-01
The 2D density stratified (in vertical direction) viscous fluid flows around a square cylinder with diameter d (moving in horizontal direction with the velocity U) have been simulated on the basis of the Navier-Stokes equations in the Boussinesq approximation. For solving of the Navier-Stokes equations the Splitting on physical factors Method for Incompressible Fluid flows (SMIF) with hybrid explicit finite difference scheme (second-order accuracy in space, minimum scheme viscosity and dispersion, monotonous) has been used. The numerical method SMIF has been successfully applied for solving of the different problems: 2D and 3D separated homogeneous and stratified fluid flows around a sphere and a circular cylinder; the flows with free surface including regimes with broken surface wave; the air, heat and mass transfer in the clean rooms. At the present paper the original refined classification of 2D stratified viscous fluid flow regimes around a square cylinder at Re ≤ 200 has been obtained and the interesting fluid flows with two hanging vortices in the wake and with two wavy hanging sheets of density (connected with two hanging vortices) have been investigated in details at Fr = 0.1, Re = 50, where Re = U.d/ν is the Reynolds number, Fr = U/(N.d) is the internal Froude number, ν is the kinematical viscosity coefficient, N is the buoyancy frequency.
ERIC Educational Resources Information Center
Johnson, Erica
2006-01-01
Hoping to develop in her students an understanding of mathematics as a way of thinking more than a way of doing, the author of this article describes how her students worked on a spatial reasoning problem stemming from an iteratively constructed sequence of cylinders. She presents an activity of making cylinders out of paper models, and for every…
48 CFR 52.247-66 - Returnable Cylinders.
Code of Federal Regulations, 2014 CFR
2014-10-01
... higher than 40 psia and having a circular cross section excluding a portable tank, multitank car tank, cargo tank or tank car. (b) Returnable cylinders shall remain the Contractor's property but shall be... within the loan period shall be charged a daily rental beginning with the first day after the loan...
48 CFR 52.247-66 - Returnable Cylinders.
Code of Federal Regulations, 2011 CFR
2011-10-01
... higher than 40 psia and having a circular cross section excluding a portable tank, multitank car tank, cargo tank or tank car. (b) Returnable cylinders shall remain the Contractor's property but shall be... within the loan period shall be charged a daily rental beginning with the first day after the loan...
48 CFR 52.247-66 - Returnable Cylinders.
Code of Federal Regulations, 2010 CFR
2010-10-01
... higher than 40 psia and having a circular cross section excluding a portable tank, multitank car tank, cargo tank or tank car. (b) Returnable cylinders shall remain the Contractor's property but shall be... within the loan period shall be charged a daily rental beginning with the first day after the loan...
48 CFR 52.247-66 - Returnable Cylinders.
Code of Federal Regulations, 2012 CFR
2012-10-01
... higher than 40 psia and having a circular cross section excluding a portable tank, multitank car tank, cargo tank or tank car. (b) Returnable cylinders shall remain the Contractor's property but shall be... within the loan period shall be charged a daily rental beginning with the first day after the loan...
48 CFR 52.247-66 - Returnable Cylinders.
Code of Federal Regulations, 2013 CFR
2013-10-01
... higher than 40 psia and having a circular cross section excluding a portable tank, multitank car tank, cargo tank or tank car. (b) Returnable cylinders shall remain the Contractor's property but shall be... within the loan period shall be charged a daily rental beginning with the first day after the loan...
On 3D instability of wake behind a cylinder
NASA Astrophysics Data System (ADS)
Uruba, Václav
2016-06-01
The canonical case of cross-flow behind prismatic circular cylinder is analyzed from the point of view of 3D instabilities appearance. Various flow conditions defined by various Reynolds number values are considered. All cases in question exhibit significant 3D features in close wake playing significant role in physical mechanisms of force generation.
Cylinder valve packing nut studies
Blue, S.C.
1991-12-31
The design, manufacture, and use of cylinder valve packing nuts have been studied to improve their resistance to failure from stress corrosion cracking. Stress frozen photoelastic models have been analyzed to measure the stress concentrations at observed points of failure. The load effects induced by assembly torque and thermal expansion of stem packing were observed by strain gaging nuts. The effects of finishing operations and heat treatment were studied by the strain gage hole boring and X-ray methods. Modifications of manufacturing and operation practices are reducing the frequency of stress corrosion failures.
Aggarwal, A. K.; Sharma, Richa; Sharma, Sanjeev
2013-01-01
Safety analysis has been done for thick-walled circular cylinder under internal and external pressure using transition theory which is based on the concept of generalized principal Lebesgue strain measure. Results have been analyzed theoretically and discussed numerically. From the analysis, it can be concluded that circular cylinder made of functionally graded material is on the safer side of the design as compared to homogeneous cylinder with internal and external pressure, which leads to the idea of “stress saving” that minimizes the possibility of fracture of cylinder. PMID:24089605
Numerical procedure to determine geometric view factors for surfaces occluded by cylinders
NASA Technical Reports Server (NTRS)
Sawyer, P. L.
1978-01-01
A numerical procedure was developed to determine geometric view factors between connected infinite strips occluded by any number of infinite circular cylinders. The procedure requires a two-dimensional cross-sectional model of the configuration of interest. The two-dimensional model consists of a convex polygon enclosing any number of circles. Each side of the polygon represents one strip, and each circle represents a circular cylinder. A description and listing of a computer program based on this procedure are included in this report. The program calculates geometric view factors between individual strips and between individual strips and the collection of occluding cylinders.
Omnidirectional, circularly polarized, cylindrical microstrip antenna
NASA Technical Reports Server (NTRS)
Stanton, Philip H. (Inventor)
1985-01-01
A microstrip cylindrical antenna comprised of two concentric subelements on a ground cylinder, a vertically polarized (E-field parallel to the axis of the antenna cylinder) subelement on the inside and a horizontally polarized (E-field perpendicular to the axis) subelement on the outside. The vertical subelement is a wraparound microstrip radiator. A Y-shaped microstrip patch configuration is used for the horizontally polarized radiator that is wrapped 1.5 times to provide radiating edges on opposite sides of the cylindrical antenna for improved azimuthal pattern uniformity. When these subelements are so fed that their far fields are equal in amplitude and phased 90.degree. from each other, a circularly polarized EM wave results. By stacking a plurality of like antenna elements on the ground cylinder, a linear phased array antenna is provided that can be beam steered to the desired elevation angle.
Tandem Cylinder Noise Predictions
NASA Technical Reports Server (NTRS)
Lockhard, David P.; Khorrami, Mehdi R.; CHoudhari, Meelan M.; Hutcheson, Florence V.; Brooks, Thomas F.; Stead, Daniel J.
2007-01-01
In an effort to better understand landing-gear noise sources, we have been examining a simplified configuration that still maintains some of the salient features of landing-gear flow fields. In particular, tandem cylinders have been studied because they model a variety of component level interactions. The present effort is directed at the case of two identical cylinders spatially separated in the streamwise direction by 3.7 diameters. Experimental measurements from the Basic Aerodynamic Research Tunnel (BART) and Quiet Flow Facility (QFF) at NASA Langley Research Center (LaRC) have provided steady surface pressures, detailed off-surface measurements of the flow field using Particle Image Velocimetry (PIV), hot-wire measurements in the wake of the rear cylinder, unsteady surface pressure data, and the radiated noise. The experiments were conducted at a Reynolds number of 166 105 based on the cylinder diameter. A trip was used on the upstream cylinder to insure a fully turbulent shedding process and simulate the effects of a high Reynolds number flow. The parallel computational effort uses the three-dimensional Navier-Stokes solver CFL3D with a hybrid, zonal turbulence model that turns off the turbulence production term everywhere except in a narrow ring surrounding solid surfaces. The current calculations further explore the influence of the grid resolution and spanwise extent on the flow and associated radiated noise. Extensive comparisons with the experimental data are used to assess the ability of the computations to simulate the details of the flow. The results show that the pressure fluctuations on the upstream cylinder, caused by vortex shedding, are smaller than those generated on the downstream cylinder by wake interaction. Consequently, the downstream cylinder dominates the noise radiation, producing an overall directivity pattern that is similar to that of an isolated cylinder. Only calculations based on the full length of the model span were able to
Fiber Tracking Cylinder Nesting
Stredde, H.; /Fermilab
1999-03-30
The fiber tracker consists of 8 concentric carbon fiber cylinders of varying diameters, from 399mm to 1032.2mm and two different lengths. 1.66 and 2.52 meters. Each completed cylinder is covered over the entire o.d. with scintillating fiber ribbons with a connector on each ribbon. These ribbons are axial (parallel to the beam line) at one end and stereo (at 3 deg. to the beam line) at the other. The ribbon connectors have dowel pins which are used to match with the connectors on the wave guide ribbons. These dowel pins are also used during the nesting operation, locating and positioning measurements. The nesting operation is the insertion of one cylinder into another, aligning them with one another and fastening them together into a homogeneous assembly. For ease of assembly. the nesting operation is accomplished working from largest diameter to smallest. Although the completed assembly of all 8 cylinders glued and bolted together is very stiff. individual cylinders are relatively flexible. Therefore. during this operation, No.8 must be supported in a manner which maintains its integrity and yet allows the insertion of No.7. This is accomplished by essentially building a set of dummy end plates which replicate a No.9 cylinder. These end plates are mounted on a wheeled cart that becomes the nesting cart. Provisions for a protective cover fastened to these rings has been made and will be incorporated in finished product. These covers can be easily removed for access to No.8 and/or the connection of No.8 to No.9. Another wheeled cart, transfer cart, is used to push a completed cylinder into the cylinder(s) already mounted in the nesting cart.
Flow around a helically twisted elliptic cylinder
NASA Astrophysics Data System (ADS)
Kim, Woojin; Lee, Jungil; Choi, Haecheon
2016-05-01
In the present study, we conduct unsteady three-dimensional simulations of flows around a helically twisted elliptic (HTE) cylinder at the Reynolds numbers of 100 and 3900, based on the free-stream velocity and square root of the product of the lengths of its major and minor axes. A parametric study is conducted for Re = 100 by varying the aspect ratio (AR) of the elliptic cross section and the helical spanwise wavelength (λ). Depending on the values of AR and λ, the flow in the wake contains the characteristic wavelengths of λ, 2λ, 6λ, or even longer than 60λ, showing a wide diversity of flows in the wake due to the shape change. The drag on the optimal (i.e., having lowest drag) HTE cylinder (AR = 1.3 and λ = 3.5d) is lower by 18% than that of the circular cylinder, and its lift fluctuations are zero owing to complete suppression of vortex shedding in the wake. This optimal HTE configuration reduces the drag by 23% for Re = 3900 where the wake is turbulent, showing that the HTE cylinder reduces the mean drag and lift fluctuations for both laminar and turbulent flows.
Cylinder Flow Control Using Plasma Actuators
NASA Astrophysics Data System (ADS)
Kozlov, Alexey; Thomas, Flint
2007-11-01
In this study the results of flow control experiments utilizing single dielectric barrier discharge plasma actuators to control flow separation and unsteady vortex shedding from a circular cylinder in cross-flow are reported. Two optimized quartz dielectric plasma actuators mounted on the cylinder surface utilizing an improved saw-tooth waveform high-voltage generator allowed flow control at Reynolds number approaching supercritical. Using either steady or unsteady actuation, it is demonstrated that the plasma-induced surface blowing gives rise to a local Coanda effect that promotes the maintenance of flow attachment. PIV based flow fields and wake velocity profiles obtained with hot-wire anemometry show large reductions in vortex shedding, wake width and turbulence intensity.
Curran, Scott; Prikhodko, Vitaly Y; Wagner, Robert M; Parks, II, James E; Cho, Kukwon; Sluder, Scott; Kokjohn, Sage; Reitz, Rolf
2010-01-01
In-cylinder fuel blending of gasoline/diesel fuel is investigated on a multi-cylinder light-duty diesel engine as a potential strategy to control in-cylinder fuel reactivity for improved efficiency and lowest possible emissions. This approach was developed and demonstrated at the University of Wisconsin through modeling and single-cylinder engine experiments. The objective of this study is to better understand the potential and challenges of this method on a multi-cylinder engine. More specifically, the effect of cylinder-to-cylinder imbalances, heat rejection, and in-cylinder charge motion as well as the potential limitations imposed by real-world turbo-machinery were investigated on a 1.9-liter four-cylinder engine. This investigation focused on one engine condition, 2300 rpm, 4.2 bar brake mean effective pressure (BMEP). Gasoline was introduced with a port-fuel-injection system. Parameter sweeps included gasoline-to-diesel fuel ratio, intake air mixture temperature, in-cylinder swirl number, and diesel start-of-injection phasing. In addition, engine parameters were trimmed for each cylinder to balance the combustion process for maximum efficiency and lowest emissions. An important observation was the strong influence of intake charge temperature on cylinder pressure rise rate. Experiments were able to show increased thermal efficiency along with dramatic decreases in oxides of nitrogen (NOX) and particulate matter (PM). However, indicated thermal efficiency for the multi-cylinder experiments were less than expected based on modeling and single-cylinder results. The lower indicated thermal efficiency is believed to be due increased heat transfer as compared to the model predictions and suggest a need for improved cylinder-to-cylinder control and increased heat transfer control.
Transient thermal stress problem for a circumferentially cracked hollow cylinder
NASA Technical Reports Server (NTRS)
Nied, H. F.; Erdogan, F.
1983-01-01
The paper is concerned with the transient thermal stress problem for a long hollow circular cylinder containing an internal axisymmetric circumferential edge crack that is suddenly cooled from inside. It is assumed that the transient thermal stress problem is quasi-static, i.e., the inertial effects are negligible. Also, all thermoelastic coupling effects and the possible temperature dependence of the thermoelastic constants are neglected. The problem is considered in two parts. The first part is the evaluation of transient thermal stresses in an uncracked cylinder; the second part is the isothermal perturbation problem for the cracked cylinder in which the crack surface tractions, equal and opposite to the thermal stresses obtained from the first problem, are the only external loads. The superposition of the two solutions gives results for the cracked cylinder.
Flow-induced oscillations of tandem tethered cylinders in a channel flow
NASA Astrophysics Data System (ADS)
Nave, Gary; Michael, Tyler; Vlachos, Pavlos; Stremler, Mark
2014-11-01
In single degree-of-freedom (DOF) flow-induced oscillation studies of tandem rigid cylinders, the system most often consists of a front fixed cylinder and a trailing cylinder that is constrained to move perpendicular to the flow. We have conducted experiments in a water channel to investigate the behavior of a single DOF system of cylinders in which the trailing cylinder is constrained to move in a circular arc about the leading cylinder. We will discuss the dynamic response of the trailing cylinder for Reynolds numbers ranging from 10,000 to 20,000 and for inter-cylinder spacings from 3D to 5D, where D is the diameter of the cylinders. The experiments show a multi-frequency response that cannot be classified as a simple harmonic oscillator, as is assumed in typical tandem cylinder models. We compare our results with existing work on transversely constrained cylinders to determine the effect of tethering the cylinders. Work made possible by funding from the Virginia Commonwealth Research Commercialization Fund.
Self-sustained oscillations between two tandem cylinders at Reynolds number 1,000
NASA Astrophysics Data System (ADS)
Kuo, C. H.; Chein, S. M.; Hsieh, H. J.
2008-04-01
This study focuses on the self-sustained oscillatory flow characteristics between two tandem circular cylinders of equal diameter placed in a uniform inflow. The Reynolds number ( Re D ), based on the cylinder diameter, was around 1,000 and all experiments were performed in a recirculating water channel. The streamwise distance between two tandem cylinders ranged within 1.5 ≤ X c/ D ≤ 7.0. Here X c denotes the center-to-center distance between two tandem cylinders. For all experiments studied herein, quantitative velocity measurements were performed using hot-film anemometer and the LDV system. The laser sheet technique was employed for qualitative flow visualization. The wavelet transform was applied to elucidate the temporal variation and phase difference between two spectral components of the velocity signals detected in the flow field. The remarkable finding was that when two tandem circular cylinders were spaced at a distance within 4.5 ≤ X c/ D ≤ 5.5, two symmetrical unstable shear layers with a certain wavelength were observed to impinge onto the downstream cylinder. The responding frequency ( f u ), measured between these two cylinders, was much higher than the natural shedding frequency behind a single isolated cylinder at the same Re D . This responding frequency decreased as the distance X c/ D increased. Not until X c/ D ≥ 6.0, did it recover to the natural shedding frequency behind a single isolated cylinder. Between two tandem cylinders, the Strouhal numbers ( St c = f u X c/Uc) maintained a nearly constant value of 3, indicating the self-sustained oscillating flow characteristics with a wavelength X c/3. Here U c is the convection speed of the unstable shear layers between two tandem cylinders. At Re D = 1,000, the self-sustained oscillating characteristics between two tandem circular cylinders were proven to exhibit a sustained flow pattern, not just a sporadic phenomenon.
NASA Astrophysics Data System (ADS)
Aamir, Muhammad; Liao, Qiang; Hong, Wang; Xun, Zhu; Song, Sihong; Sajid, Muhammad
2016-05-01
High heat transfer performance of spray cooling on structured surface might be an additional measure to increase the safety of an installation against any threat caused by rapid increase in the temperature. The purpose of present experimental study is to explore heat transfer performance of structured surface under different spray conditions and surface temperatures. Two cylindrical stainless steel samples were used, one with pyramid pins structured surface and other with smooth surface. Surface heat flux of 3.60, 3.46, 3.93 and 4.91 MW/m2 are estimated for sample initial average temperature of 600, 700, 800 and 900 °C, respectively for an inlet pressure of 1.0 MPa. A maximum cooling rate of 507 °C/s was estimated for an inlet pressure of 0.7 MPa at 900 °C for structured surface while for smooth surface maximum cooling rate of 356 °C/s was attained at 1.0 MPa for 700 °C. Structured surface performed better to exchange heat during spray cooling at initial sample temperature of 900 °C with a relative increase in surface heat flux by factor of 1.9, 1.56, 1.66 and 1.74 relative to smooth surface, for inlet pressure of 0.4, 0.7, 1.0 and 1.3 MPa, respectively. For smooth surface, a decreasing trend in estimated heat flux is observed, when initial sample temperature was increased from 600 to 900 °C. Temperature-based function specification method was utilized to estimate surface heat flux and surface temperature. Limited published work is available about the application of structured surface spray cooling techniques for safety of stainless steel structures at very high temperature scenario such as nuclear safety vessel and liquid natural gas storage tanks.
49 CFR 178.60 - Specification 8AL steel cylinders with porous fillings for acetylene.
Code of Federal Regulations, 2010 CFR
2010-10-01
... except that plates and billets for hot-drawn cylinders must be marked with heat number. (d) Manufacture...) Heat treatment is not required after welding or brazing weldable low carbon parts to attachments... brazed to the top or bottom of cylinders and properly heat treated, provided such subsequent welding...
49 CFR 178.59 - Specification 8 steel cylinders with porous fillings for acetylene.
Code of Federal Regulations, 2010 CFR
2010-10-01
... the heat number. (d) Manufacture. Cylinders must be manufactured using equipment and processes... cylinders over 18 inches long must be protected by footrings. (f) Heat treatment. Body and heads formed by drawing or pressing must be uniformly and properly heat treated prior to tests. (g) Openings. Openings...
49 CFR 178.50 - Specification 4B welded or brazed steel cylinders.
Code of Federal Regulations, 2010 CFR
2010-10-01
... plates and billets for hotdrawn cylinders must be marked with the heat number. (d) Manufacture. Cylinders... material on one side of seam and applying heat until this material shows uniformly along the seam of the... whichever is the greater; D = outside diameter in inches; d = inside diameter in inches. (g) Heat...
49 CFR 178.51 - Specification 4BA welded or brazed steel cylinders.
Code of Federal Regulations, 2010 CFR
2010-10-01
... hotdrawn cylinders must be marked with the heat number. (d) Manufacture. Cylinders must be manufactured... material on one side of seam and applying heat until this material shows uniformly along the seam of the... efficiency factor which must be applied in the girth weld area and heat affected zones which zone must...
NASA Astrophysics Data System (ADS)
Krisch, J. P.; Glass, E. N.
2014-10-01
A set of cylindrical solutions to Einstein's field equations for power law densities is described. The solutions have a Bessel function contribution to the metric. For matter cylinders regular on axis, the first two solutions are the constant density Gott-Hiscock string and a cylinder with a metric Airy function. All members of this family have the Vilenkin limit to their mass per length. Some examples of Bessel shells and Bessel motion are given.
Development of plasma spray coated cylinder liners
Tricard, M.; Hagan, J.; Redington, P.; Subramanian, K.; Haselkorn, M.
1996-09-01
Improved fuel economy and reduction of emissions can be achieved by insulation of the combustion chamber components to reduce heat rejection. However, such insulation will also increase the operating temperature of the piston ring/cylinder liner interface from approximately 150 C to over 300 C. Since existing ring/liner materials cannot withstand these higher operating temperatures alternatives are needed for this critical tribological interface. This paper describes the development of a cost effective ID grinding technique for machining the bores of plasma sprayed diesel engine cylinder liners.
Vortex-induced vibration of a harbor-vibrissa-shaped cylinder: Experimental measurements.
NASA Astrophysics Data System (ADS)
Liu, Yingzheng; Wang, Shaofei
2015-11-01
Influence of the unique surface variation of the harbor seal vibrissa on its vortex-induced vibration was extensively investigated in a low-speed wind tunnel. Toward this end, a scaled-up model of the harbor-vibrissa-shaped cylinder was employed for measurement, while a circular cylinder sharing the same hydraulic diameter, mass ratio and nature frequency was used as baseline case. Two configurations with and without the approaching Karman-vortex street were respectively tested for both cylinders at various free stream flow speeds. Here, the Karman-vortex street was generated by placing a circular cylinder far up stream. A laser displacement sensor having a high time-spatial resolution was used to capture the cross-stream displacement of the cylinders. The fluctuating pressure distribution on the surface and the wake flow pattern were captured by microphone array and the planar Particle Image Velocimetry, respectively. National Natural Science Foundation of China (grant nos. 51176108, and 11372189).
Dalvit, Diego A1; Rodriguez, Alejandro W; Munday, J N; Joannopoulos, J D
2008-01-01
Using accurate numerical methods for finite-size nonplanar objects, we demonstrate a stable mechanical suspension of a silica cylinder within a metallic cylinder separated by ethanol, via a repulsive Casimir force between the silica and the metal. We investigate cylinders with both circular and square cross sections, and show that the latter exhibit a stable orientation as well as a stable position, employing a new method to accurately compute Casimir torques for finite objects. Furthermore, the stable orientation of the square cylinder is shown to undergo an unusual 45 transition as a function of the separation lengthscale, and this transition is explained as a consequence of material dispersion.
Growth behavior of surface cracks in the circumferential plane of solid and hollow cylinders
NASA Technical Reports Server (NTRS)
Forman, R. G.; Shivakumar, V.
1986-01-01
Experiments were conducted to study the growth behavior of surface fatigue cracks in the circumferential plane of solid and hollow cylinders. In the solid cylinders, the fatigue cracks were found to have a circular arc crack front with specific upper and lower limits to the arc radius. In the hollow cylinders, the fatigue cracks were found to agree accurately with the shape of a transformed semiellipse. A modification to the usual nondimensionalization expression used for surface flaws in flat plates was found to give correct trends for the hollow cylinder problem.
Acoustic waves generated by a laser point source in an isotropic cylinder
NASA Astrophysics Data System (ADS)
Pan, Yongdong; Rossignol, Clément; Audoin, Bertrand
2004-08-01
The acoustic field of a homogeneous and isotropic cylinder generated by a laser point source in either ablation or thermoelastic regime is obtained theoretically. A three-dimensional Fourier transform is used to calculate the acoustic displacement at the cylinder surface. Experimental waveforms were measured and analyzed for both regimes. Theoretical normal displacements under either regime are calculated and compared to the experimental signals for aluminum cylinders. Very good agreements are observed in the arrival time, shape, and relative amplitude (i) of the cylindrical Rayleigh waves with different round trips, and (ii) of the various longitudinal and transverse bulk waves propagating through the cylinder or reflected at the free circular surface.
Conjugate heat transfer with the entropic lattice Boltzmann method
NASA Astrophysics Data System (ADS)
Pareschi, G.; Frapolli, N.; Chikatamarla, S. S.; Karlin, I. V.
2016-07-01
A conjugate heat-transfer model is presented based on the two-population entropic lattice Boltzmann method. The present approach relies on the extension of Grad's boundary conditions to the two-population model for thermal flows, as well as on the appropriate exact conjugate heat-transfer condition imposed at the fluid-solid interface. The simplicity and efficiency of the lattice Boltzmann method (LBM), and in particular of the entropic multirelaxation LBM, are retained in the present approach, thus enabling simulations of turbulent high Reynolds number flows and complex wall boundaries. The model is validated by means of two-dimensional parametric studies of various setups, including pure solid conduction, conjugate heat transfer with a backward-facing step flow, and conjugate heat transfer with the flow past a circular heated cylinder. Further validations are performed in three dimensions for the case of a turbulent flow around a heated mounted cube.
Conjugate heat transfer with the entropic lattice Boltzmann method.
Pareschi, G; Frapolli, N; Chikatamarla, S S; Karlin, I V
2016-07-01
A conjugate heat-transfer model is presented based on the two-population entropic lattice Boltzmann method. The present approach relies on the extension of Grad's boundary conditions to the two-population model for thermal flows, as well as on the appropriate exact conjugate heat-transfer condition imposed at the fluid-solid interface. The simplicity and efficiency of the lattice Boltzmann method (LBM), and in particular of the entropic multirelaxation LBM, are retained in the present approach, thus enabling simulations of turbulent high Reynolds number flows and complex wall boundaries. The model is validated by means of two-dimensional parametric studies of various setups, including pure solid conduction, conjugate heat transfer with a backward-facing step flow, and conjugate heat transfer with the flow past a circular heated cylinder. Further validations are performed in three dimensions for the case of a turbulent flow around a heated mounted cube. PMID:27575234
Nanowire heating by optical electromagnetic irradiation.
Roder, Paden B; Pauzauskie, Peter J; Davis, E James
2012-11-20
The dissipative absorption of electromagnetic energy by 1D nanoscale structures at optical frequencies is applicable to several important phenomena, including biomedical photothermal theranostics, nanoscale photovoltaic materials, atmospheric aerosols, and integrated photonic devices. Closed-form analytical calculations are presented for the temperature rise within infinite circular cylinders with nanometer-scale diameters (nanowires) that are irradiated at right angles by a continuous-wave laser source polarized along the nanowire's axis. Solutions for the heat source are compared to both numerical finite-difference time domain (FDTD) simulations and well-known Mie scattering cross sections for infinite cylinders. The analysis predicts that the maximum temperature increase is affected not only by the cylinder's composition and porosity but also by morphology-dependent resonances (MDRs) that lead to significant spikes in the local temperature at particular diameters. Furthermore, silicon nanowires with high thermal conductivities are observed to exhibit extremely uniform internal temperatures during electromagnetic heating to 1 part in 10(6), including cases where there are substantial fluctuations of the internal electric-field source term that generates the Joule heating. For a highly absorbing material such as carbon, much higher temperatures are predicted, the internal temperature distribution is nonuniform, and MDRs are not encountered. PMID:23061375
Effects of rarefaction in microflows between coaxial cylinders.
Taheri, Peyman; Struchtrup, Henning
2009-12-01
Microscale gas flows between two rotating coaxial circular cylinders of infinite length with different temperatures are investigated. Navier-Stokes-Fourier (NSF) and regularized 13-moment (R13) equations in their linear form are used to independently analyze velocity and temperature fields in shear-driven rotary flows, i.e., cylindrical Couette flows. Knudsen boundary layers, which present non-Newtonian stress and non-Fourier heat flow, are predicted as the dominant rarefaction effects in the linear theory. We show that the R13 system yields more accurate results for this boundary value problem by predicting the Knudsen boundary layers, which are not accessible for NSF equations. Furthermore, a set of second-order boundary conditions for velocity slip and temperature jump are derived for the NSF system. It is shown that the proposed boundary conditions effectively improve the classical hydrodynamics. The accuracy of NSF and R13 equations is discussed based on their comparison with available direct simulation Monte Carlo data. PMID:20365277
Torque on a sphere inside a rotating cylinder.
NASA Technical Reports Server (NTRS)
Mena, B.; Levinson, E.; Caswell, B.
1972-01-01
A circular cylinder of finite dimensions is made to rotate around a sphere fixed in the center of the cylinder. The couple on the sphere is measured over a wide range of rotational speeds for both Newtonian and non-Newtonian fluids. For the Newtonian liquids a comparison of the experimental results is made with Collins' (1955) expansion of the couple as a series in even powers of the angular Reynolds number. For non-Newtonian liquids the apparatus proves to be extremely useful for an accurate determination of the zero shear rate viscosity using only a small amount of fluid.
Analysis of a porous and flexible cylinder in waves
NASA Astrophysics Data System (ADS)
Su, Wei; Zhan, Jie-min; Huang, Hua
2015-06-01
The hydrodynamic response of a porous flexible circular-cylinder in regular waves was analytically studied. To simplify the problem, the cover and the bottom of the cylinder were ignored. Small amplitude water wave theory and structural responses were assumed. The velocity potentials were solved using the Fourier-Bessel series expansion method and the least squares approximation method. The convergence of the series was numerically tested to determine the number of terms in the series expansion. Two types of installations were considered for deformation, hydrodynamic forces, structural flexibility, drafts, and porosity. The present study represented a preliminary step in the study of the fish cage.
NASA Technical Reports Server (NTRS)
Dunn, Louis G
1947-01-01
Results are presented of an experimental investigation of the general instability of reinforced thin-walled metal cylinders subjected to pure bending and pure torsion over a range of geometrical quantities and structural sectional characteristics. Based on the experimental results and an existing theory of unstiffened metal cylinders, parameters were evolved which make possible an estimate of the stress at which general instability will occur for any given stiffened metal structure of circular cross section. (author)
NASA Astrophysics Data System (ADS)
Kopiev, V. F.; Belyaev, I. V.; Zaytsev, M. Yu.; Kazansky, P. N.; Kopiev, V. A.; Moralev, I. A.
2015-03-01
The effect of high-frequency dielectric barrier discharge plasma actuators on the noise of a flow around a circular cylinder is experimentally studied. It is shown that the plasma actuators are able to reduce the vortex noise of a cylinder within the range of velocities typical for aeroacoustic applications.
NASA Technical Reports Server (NTRS)
Tsinganos, K. C.
1979-01-01
The aerodynamic lift exerted on a long circular cylinder immersed in a convective flow pattern in an ideal fluid is calculated to establish the equilibrium position of the cylinder. The calculations establish the surprising result that the cylinder is pushed out the upwellings and the downdrafts of the convective cell, into a location midway between them. The implications for the intense magnetic flux tubes in the convection beneath the surface of the sun are considered.
Reordering transitions during annealing of block copolymer cylinder phases
Majewski, Pawel W.; Yager, Kevin G.
2015-10-06
While equilibrium block-copolymer morphologies are dictated by energy-minimization effects, the semi-ordered states observed experimentally often depend on the details of ordering pathways and kinetics. In this study, we explore reordering transitions in thin films of block-copolymer cylinder-forming polystyrene-block-poly(methyl methacrylate). We observe several transient states as films order towards horizontally-aligned cylinders. In particular, there is an early-stage reorganization from randomly-packed cylinders into hexagonally-packed vertically-aligned cylinders; followed by a reorientation transition from vertical to horizontal cylinder states. These transitions are thermally activated. The growth of horizontal grains within an otherwise vertical morphology proceeds anisotropically, resulting in anisotropic grains in the final horizontal state. The size, shape, and anisotropy of grains are influenced by ordering history; for instance, faster heating rates reduce grain anisotropy. These results help elucidate aspects of pathway-dependent ordering in block-copolymer thin films.
Special functions arising in the study of semi-linear equations in circular domains
NASA Astrophysics Data System (ADS)
Varlamov, Vladimir
2007-05-01
Rayleigh functions are defined by the formulawhere are zeros of the Bessel function J[nu](x) and n=1,2,3,..., is the number of the zero. These functions appear in the classical problems of vibrating circular membranes, heat conduction in cylinders and diffraction through circular apertures. In the present paper it is shown that a new family of special functions, convolutions of Rayleigh functions with respect to the Bessel index,arises in constructing solutions of semi-linear evolution equations in circular domains (see also [V. Varlamov, Convolution of Rayleigh functions with respect to the Bessel index, J. Math. Anal. Appl. 306 (2005) 413-424]). As an example of its application a forced Cahn-Hilliard equation is considered in a unit disc with homogeneous boundary and initial conditions. Construction of its global-in-time solutions involves the use of R1(m) and R2(m). A general representation of Rl(m) is deduced and on the basis of that a particular result for R2(m) is obtained convenient for computing its asymptotics as m-->[infinity]. The latter issue is important for establishing a function space to which a solution of the corresponding problem belongs.
Correlation between heat transfer and fluctuating pressure in the separated region of a bluff body
NASA Astrophysics Data System (ADS)
Igarashi, T.
The paper presents results of a series of experimental studies on heat transfer in the separated region of bluff bodies of various shapes, including a flat plate normal to an airstream, an inclined flat plate, a circular cylinder, and a triangular cylinder. Special attention is given to the correlation between the heat transfer and the rms value of the fluctuating pressure; a new correlation was developed instead of the traditional relation between the average Nusselt number and the Reynolds number. In the new equation, the average heat transfer on the rear face of bluff bodies is correlated with the fluctuating pressure coefficient Cp sub r prime where the constant C ranges from 0.38 and 0.48, depending on the behavior of the shear layer variations for separated regions of bluff bodies.
Regimes of flow induced vibration for tandem, tethered cylinders
NASA Astrophysics Data System (ADS)
Nave, Gary; Stremler, Mark
2015-11-01
In the wake of a bluff body, there are a number of dynamic response regimes that exist for a trailing bluff body depending on spacing, structural restoring forces, and the mass-damping parameter m* ζ . For tandem cylinders with low values of m* ζ , two such regimes of motion are Gap Flow Switching and Wake Induced Vibration. In this study, we consider the dynamics of a single degree-of-freedom rigid cylinder in the wake of another in these regimes for a variety of center-to-center cylinder spacings (3-5 diameters) and Reynolds numbers (4,000-11,000). The system consists of a trailing cylinder constrained to a circular arc around a fixed leading cylinder, which, for small angle displacements, bears a close resemblance to the transversely oscillating cylinders found more commonly in existing literature. From experiments on this system, we compare and contrast the dynamic response within these two regimes. Our results show sustained oscillations in the absence of a structural restoring force in all cases, providing experimental support for the wake stiffness assumption, which is based on the mean lift toward the center line of flow.
Poiseuille flow-induced vibrations of two cylinders in tandem
NASA Astrophysics Data System (ADS)
Lin, Jianzhong; Jiang, Renjie; Chen, Zhongli; Ku, Xiaoke
2013-07-01
Laminar flows past two tandem cylinders which are free to move transversely in a parallel-wall channel were studied numerically by the lattice Boltzmann method. With fixed Reynolds number Re=100, blockage ratio β=1/4 and structural damping ξ=0, the effect of streamwise separation between two cylinders at a range of S/D=[1.1, 10] on the motions of cylinders and fluids was studied for both mass ratios of m(*)=1 and m(*)=0.1. A variety of distinct vibration regimes involving periodic, quasi-periodic and non-periodic vibrations with corresponding flow patterns were observed. A detailed analysis of the vibration amplitudes, vibration frequencies and relative equilibrium positions for both mass ratios demonstrated that as S/D increases, the interaction of the two cylinders first enhances and then reduces. In the strong coupling regime, both cylinders oscillate periodically around the centerline of the channel with large vibration amplitudes and high vibration frequencies. By comparing with the case of an isolated cylinder, a further study indicated that the gap flow plays an important role in such a dynamic system, and the vortex cores formation behind the front cylinder causes the interaction of the cylinders decouple rapidly. Based on the present observations, such a dynamic model system can be considered as a novel type of vortex-induced vibrations (VIV) and is expected to find applications in fluid mixing and heat transfer.
Effect of free surface on near-wake flow of elliptic cylinders with different aspect ratios
NASA Astrophysics Data System (ADS)
Lee, Sang Joon; Daichin, -
2003-04-01
The flow fields behind elliptic cylinders with different aspect ratios adjacent to a free surface were investigated experimentally in a circulating water channel. The elliptic cylinders tested in this study have same cross section area. For each elliptic cylinder, the experiments were carried out under different conditions by varying the submergence depth of the cylinder beneath the free surface. The flow fields were measured using a single-frame double-exposure PIV system. For each experimental condition, 350 instantaneous velocity fields were captured and ensemble-averaged to obtain the mean flow field information and spatial distribution of turbulent statistics. The near-wakes can be basically classified into three typical patterns, which are formation of Coanda effect, generation of substantial jet-like flow, and attachment of jet flow to the free surface. The general flow structures behind the elliptic cylinder are similar to previous results for a circular submerged near to a free surface. However, the wake width and the angle of downward deflection of the shear layer developed from the lower surface of the elliptic cylinder are smaller than those for the circular cylinder. These trends are enhance with increasing of the cylinder aspect ratios.
Characterization of Circular RNAs.
Zhang, Yang; Yang, Li; Chen, Ling-Ling
2016-01-01
Accumulated lines of evidence reveal that a large number of circular RNAs are produced in transcriptomes from fruit fly to mouse and human. Unlike linear RNAs shaped with 5' cap and 3' tail, circular RNAs are characterized by covalently closed loop structures without open terminals, thus requiring specific treatments for their identification and validation. Here, we describe a detailed pipeline for the characterization of circular RNAs. It has been successfully applied to the study of circular intronic RNAs derived from intron lariats (ciRNAs) and circular RNAs produced from back spliced exons (circRNAs) in human. PMID:26721494
The elasticity problem for a thick-walled cylinder containing a circumferential crack
NASA Technical Reports Server (NTRS)
Nied, H. F.; Erdogan, F.
1983-01-01
The elasticity problem for a long hollow circular cylinder containing an axisymmetric circumferential crack subjected to general nonaxisymmetric external loads is considered. The problem is formulated in terms of a system of singular integral equations with the Fourier coefficients of the derivative of the crack surface displacement as density functions. The stress intensity factors and the crack opening displacement are calculated for a cylinder under uniform tension, bending by end couples, and self-equilibrating residual stresses.
The elasticity problem for a thick-walled cylinder containing a circumferential crack
NASA Technical Reports Server (NTRS)
Nied, H. F.; Erdogan, F.
1982-01-01
The elasticity problem for a long hollow circular cylinder containing an axisymmetric circumferential crack subjected to general nonaxisymmetric external loads is considered. The problem is formulated in terms of a system of singular integral equations with the Fourier coefficients of the derivative of the crack surface displacement as density functions. The stress intensity factors and the crack opening displacement are calculated for a cylinder under uniform tension, bending by end couples, and self-equilibrating residual stresses.
Flow boiling heat transfer of R134a, R236fa and R245fa in a horizontal 1.030 mm circular channel
Ong, Chin L.; Thome, John R.
2009-04-15
This research focuses on acquiring accurate flow boiling heat transfer data and flow pattern visualization for three refrigerants, R134a, R236fa and R245fa in a 1.030 mm channel. We investigate trends in the data, and their possible mechanisms, for mass fluxes from 200 to 1600 kg/m{sup 2}s, heat fluxes from 2.3 kW/m{sup 2} to 250 kW/m{sup 2} at T{sub sat} = 31 C and {delta}T{sub sub} from 2 to 9 K. The local saturated flow boiling heat transfer coefficients display a heat flux and a mass flux dependency but no residual subcooling influence. The changes in heat transfer trends correspond well with flow regime transitions. These were segregated into the isolated bubble (IB) regime, the coalescing bubble (CB) regime, and the annular (A) regime for the three fluids. The importance of nucleate boiling and forced convection in these small channels is still relatively unclear and requires further research. (author)
Vortex-induced vibration of four cylinders in an in-line square configuration
NASA Astrophysics Data System (ADS)
Zhao, Ming; Kaja, Kalyani; Xiang, Yang; Cheng, Liang
2016-02-01
This paper presents a numerical study of vortex-induced vibration of four rigidly connected and four separately mounted circular cylinders in an inline square configuration at a Reynolds number of 150, a low mass ratio of 2.5, and a range of spacing ratio L from 1.5 to 4, where the spacing ratio is defined as the centre-to-centre distance of two adjacent cylinders normalized by the cylinder diameter. For the rigidly connected cylinder array, the maximum and minimum response amplitudes occur at L = 1.5 and L = 2.0, respectively, for the range of spacing ratio covered in this study and the maximum response amplitude at L = 1.5 is accompanied by a wide lock-in range. The large response amplitude at a small spacing ratio L = 1.5 is because the cylinder array responds to the flow as a single cylinder with an overall size that is much larger than the diameter of the single cylinder while the small response amplitude observed at L = 2.0 is attributed to the strong interaction of the vortices through the gap between the top and bottom rows of the cylinder and also in the wake of the cylinder array. For spacing ratio L ≥ 2.5, the lock-in regime of four rigidly connected cylinders is similar to that of a single cylinder and the response amplitudes in the lock-in regime are slightly higher than that of a single cylinder. The energy transfer analysis between fluid flow and individual cylinders in the array shows that the hydrodynamic forces on individual cylinders either excite or damp the vibration, depending on the reduced velocity. An interesting flow feature observed at L = 2, 2.5, and 3 is the biased vortex street in the wake of four rigidly connected cylinders. The biased vortex street leads to a shift of the mean position of the cylinder array with the largest mean position shift being observed at L = 3. Four response modes are identified for four separately mounted cylinders. These are the in-phase mode, the anti-phase mode, the correlated out-of-phase mode, and the
NASA Astrophysics Data System (ADS)
Guan, Ning; Luan, Tao; Liu, Zhi-Gang; Zhang, Cheng-Wu; Jiang, Guilin
2016-03-01
The impacts of heat flux ( q = 10, 15, 20 W/cm2), cylinder diameter ( D = 300, 600, 3000 μm), aspect ratio AR ( H/D = 1, 2, 4) and block ratio BR ( W/D = 2, 4, 16) on vortex distribution and mixed convection of liquid flow across single micro-cylinder and micro-cylinder-groups (3 × 3 cylinders) were numerically investigated. The separation angles, recirculation lengths ( Lv) and Nusselt numbers were calculated with Reynolds number ranging from 10 to 60. For the single micro-cylinder, the separation angle and the value of Lv/D both became large with the increase of heat flux, and the profiles of Lv/D versus z/H were asymmetrical, which is different from the cylinders with dimensions of millimeter-level. The discrepancies of Lv/D on the same plane of micro-cylinders with different AR in the region near end-walls were larger than those near the symmetry wall. For the 3 × 3 micro-cylinder-groups, the value of Lv/D was related to the location along the axial direction, while the separation angle became small along the flowing direction. The mixed heat transfer in rectangular channel with micro-cylinders could be enhanced by changing the dimensions of the cylinders and the channel.
Anaesthesia gas supply: gas cylinders.
Srivastava, Uma
2013-09-01
Invention of oxygen cylinder was one of the most important developments in the field of medical practice. Oxygen and other gases were compressed and stored at high pressure in seamless containers constructed from hand-forged steel in1880. Materials technology has continued to evolve and now medical gas cylinders are generally made of steel alloys or aluminum. The filling pressure as well as capacity has increased considerably while at the same time the weight of cylinders has reduced. Today oxygen cylinder of equivalent size holds a third more oxygen but weighs about 20 kg less. The cylinders are of varying sizes and are color coded. They are tested at regular intervals by the manufacturer using hydraulic, impact, and tensile tests. The top end of the cylinder is fitted with a valve with a variety of number and markings stamped on it. Common valve types include: Pin index valve, bull nose, hand wheel and integral valve. The type of valve varies with cylinder size. Small cylinders have a pin index valve while large have a bull nose type. Safety features in the cylinder are: Color coding, pin index, pressure relief device, Bodok seal, and label attached etc., Safety rules and guidelines must be followed during storage, installation and use of cylinders to ensure safety of patients, hospital personnel and the environment. PMID:24249883
Anaesthesia Gas Supply: Gas Cylinders
Srivastava, Uma
2013-01-01
Invention of oxygen cylinder was one of the most important developments in the field of medical practice. Oxygen and other gases were compressed and stored at high pressure in seamless containers constructed from hand-forged steel in1880. Materials technology has continued to evolve and now medical gas cylinders are generally made of steel alloys or aluminum. The filling pressure as well as capacity has increased considerably while at the same time the weight of cylinders has reduced. Today oxygen cylinder of equivalent size holds a third more oxygen but weighs about 20 kg less. The cylinders are of varying sizes and are color coded. They are tested at regular intervals by the manufacturer using hydraulic, impact, and tensile tests. The top end of the cylinder is fitted with a valve with a variety of number and markings stamped on it. Common valve types include: Pin index valve, bull nose, hand wheel and integral valve. The type of valve varies with cylinder size. Small cylinders have a pin index valve while large have a bull nose type. Safety features in the cylinder are: Color coding, pin index, pressure relief device, Bodok seal, and label attached etc., Safety rules and guidelines must be followed during storage, installation and use of cylinders to ensure safety of patients, hospital personnel and the environment. PMID:24249883
Physics of unsteady cylinder-induced transitional shock wave boundary layer interactions
NASA Astrophysics Data System (ADS)
Murphree, Zachary Ryan
The mean flowfield and time-dependent characteristics of a Mach 5 cylinder-induced transitional shock-wave/boundary-layer interaction have been studied experimentally. The interactions were generated with a right circular cylinder mounted on a flat plate. The Reynolds number based on distance from the leading edge of the plate to the cylinder leading edge ranged from 4.5 x 106 to 6.1 x 106, and the incoming boundary-layer was transitional. The objectives of the study were to: (i) provide a detailed description of the mean flow structure of the interaction, and (ii) characterize the unsteadiness of the interaction based on fluctuating pressure measurements. Mean wall-pressure measurements coupled with planar laser scattering and surface visualization showed that the transitional interaction exhibits characteristics that are essentially a "composite" of an upstream laminar interaction and a downstream turbulent interaction. In the upstream region there is a laminar separation bubble that is characterized by a weak separation shock, a pressure plateau, and low relative mass/heat flux. The separated boundary-layer reattaches downstream of this bubble, about 4 diameters upstream of the cylinder. This reattached flow is characterized by high relative mass/heat flux, an increase in pressure and a rapidly thickening boundary-layer. The flow then separates again in a manner very similar to a low Reynolds number turbulent interaction. Statistical analysis of the pressure histories suggest that the entire interaction stretches and contracts in concert. Power spectral densities of the pressure fluctuations showed unsteadiness throughout the interaction with energy content in one of two frequency bands: one with a sharp peak from 1-2 kHz and the other with a broader peak at 7-10 kHz. The lower frequency is attributed to the interaction motion, whereas the higher frequency is found underneath the reattached boundary-layer. Cross-correlations and coherence functions in the
NASA Technical Reports Server (NTRS)
Back, L. H.; Massier, P. F.; Roschke, E. J.
1972-01-01
Heat transfer and pressure measurements obtained in the separation, reattachment, and redevelopment regions along a tube and nozzle located downstream of an abrupt channel expansion are presented for a very high enthalpy flow of argon. The ionization energy fraction extended up to 0.6 at the tube inlet just downstream of the arc heater. Reattachment resulted from the growth of an instability in the vortex sheet-like shear layer between the central jet that discharged into the tube and the reverse flow along the wall at the lower Reynolds numbers, as indicated by water flow visualization studies which were found to dynamically model the high-temperature gas flow. A reasonably good prediction of the heat transfer in the reattachment region where the highest heat transfer occurred and in the redevelopment region downstream can be made by using existing laminar boundary layer theory for a partially ionized gas. In the experiments as much as 90 per cent of the inlet energy was lost by heat transfer to the tube and the nozzle wall.
NASA Technical Reports Server (NTRS)
Jones, G. S.; Horvath, T. J.; Stainback, P. C.; Beasley, W. D.; Mcghee, R. J.
1987-01-01
The NASA Langley Low Turbulence Pressure Tunnel has been used to conduct an experimental study of the flow around a series of circular cylinders; the models used consisted of a baseline, smooth cylinder together with a cylinder that could be reconfigured with six different arrangements of two types of surface irregularity. Mean lift and drag forces were measured on all seven model configurations, and correlations were made between unsteady pressure in the wake region and fluctuating lift forces, in order to identify coherent structures.