MHD natural convection flow along a vertical wavy surface with heat generation and pressure work
NASA Astrophysics Data System (ADS)
Alim, M. A.; Kabir, K. H.; Andallah, L. S.
2016-07-01
In this paper, the influence of pressure work on MHD natural convection flow of viscous incompressible fluid along a uniformly heated vertical wavy surface with heat generation has been investigated. The governing boundary layer equations are first transformed into a non-dimensional form using suitable set of dimensionless variables. The resulting nonlinear system of partial differential equations are mapped into the domain of a vertical flat plate and then solved numerically employing the implicit finite difference method, known as Keller-box scheme. The numerical results for the velocity profiles, temperature profiles, skin friction coefficient, the rate of heat transfers, the streamlines and the isotherms are shown graphically and skin friction coefficient and rate of heat transfer have been shown in tabular form for different values of the selective set of parameters consisting of pressure work parameter Ge, the magnetic parameter M, Prandtl number Pr, heat generation parameter Q and the amplitude of the wavy surface.
Heat transfer to water from a vertical tube bundle under natural-circulation conditions. [PWR; BWR
Gruszczynski, M.J.; Viskanta, R.
1983-01-01
The natural circulation heat transfer data for longitudinal flow of water outside a vertical rod bundle are needed for developing correlations which can be used in best estimate computer codes to model thermal-hydraulic behavior of nuclear reactor cores under accident or shutdown conditions. The heat transfer coefficient between the fuel rod surface and the coolant is the key parameter required to predict the fuel temperature. Because of the absence of the required heat transfer coefficient data base under natural circulation conditions, experiments have been performed in a natural circulation loop. A seven-tube bundle having a pitch-to-diameter ratio of 1.25 was used as a test heat exchanger. A circulating flow was established in the loop, because of buoyancy differences between its two vertical legs. Steady-state and transient heat transfer measurements have been made over as wide a range of thermal conditions as possible with the system. Steady state heat transfer data were correlated in terms of relevant dimensionless parameters. Empirical correlations for the average Nusselt number, in terms of Reynolds number, Rayleigh number and the ratio of Grashof to Reynolds number are given.
Natural convection heat transfer of nanofluids along a vertical plate embedded in porous medium
2013-01-01
The unsteady natural convection heat transfer of nanofluid along a vertical plate embedded in porous medium is investigated. The Darcy-Forchheimer model is used to formulate the problem. Thermal conductivity and viscosity models based on a wide range of experimental data of nanofluids and incorporating the velocity-slip effect of the nanoparticle with respect to the base fluid, i.e., Brownian diffusion is used. The effective thermal conductivity of nanofluid in porous media is calculated using copper powder as porous media. The nonlinear governing equations are solved using an unconditionally stable implicit finite difference scheme. In this study, six different types of nanofluids have been compared with respect to the heat transfer enhancement, and the effects of particle concentration, particle size, temperature of the plate, and porosity of the medium on the heat transfer enhancement and skin friction coefficient have been studied in detail. It is found that heat transfer rate increases with the increase in particle concentration up to an optimal level, but on the further increase in particle concentration, the heat transfer rate decreases. For a particular value of particle concentration, small-sized particles enhance the heat transfer rates. On the other hand, skin friction coefficients always increase with the increase in particle concentration and decrease in nanoparticle size. PMID:23391481
Natural convection heat transfer of nanofluids along a vertical plate embedded in porous medium
NASA Astrophysics Data System (ADS)
Uddin, Ziya; Harmand, Souad
2013-02-01
The unsteady natural convection heat transfer of nanofluid along a vertical plate embedded in porous medium is investigated. The Darcy-Forchheimer model is used to formulate the problem. Thermal conductivity and viscosity models based on a wide range of experimental data of nanofluids and incorporating the velocity-slip effect of the nanoparticle with respect to the base fluid, i.e., Brownian diffusion is used. The effective thermal conductivity of nanofluid in porous media is calculated using copper powder as porous media. The nonlinear governing equations are solved using an unconditionally stable implicit finite difference scheme. In this study, six different types of nanofluids have been compared with respect to the heat transfer enhancement, and the effects of particle concentration, particle size, temperature of the plate, and porosity of the medium on the heat transfer enhancement and skin friction coefficient have been studied in detail. It is found that heat transfer rate increases with the increase in particle concentration up to an optimal level, but on the further increase in particle concentration, the heat transfer rate decreases. For a particular value of particle concentration, small-sized particles enhance the heat transfer rates. On the other hand, skin friction coefficients always increase with the increase in particle concentration and decrease in nanoparticle size.
NASA Astrophysics Data System (ADS)
Kamajaya, Ketut; Umar, Efrizon; Sudjatmi, K. S.
2012-06-01
This study focused on natural convection heat transfer using a vertical rectangular sub-channel and water as the coolant fluid. To conduct this study has been made pipe heaters are equipped with thermocouples. Each heater is equipped with five thermocouples along the heating pipes. The diameter of each heater is 2.54 cm and 45 cm in length. The distance between the central heating and the pitch is 29.5 cm. Test equipment is equipped with a primary cooling system, a secondary cooling system and a heat exchanger. The purpose of this study is to obtain new empirical correlations equations of the vertical rectangular sub-channel, especially for the natural convection heat transfer within a bundle of vertical cylinders rectangular arrangement sub-channels. The empirical correlation equation can support the thermo-hydraulic analysis of research nuclear reactors that utilize cylindrical fuel rods, and also can be used in designing of baffle-free vertical shell and tube heat exchangers. The results of this study that the empirical correlation equations of natural convection heat transfer coefficients with rectangular arrangement is Nu = 6.3357 (Ra.Dh/x)0.0740.
Natural convection on a vertical plate in a saturated porous medium with internal heat generation
NASA Astrophysics Data System (ADS)
Guedda, M.; Sriti, M.; Achemlal, D.
2014-08-01
The main goal of this paper is to re-exam a class of exact solutions for the two-dimensional free convection boundary layers induced by a heated vertical plate embedded in a saturated porous medium with an exponential decaying heat generation. The temperature distribution of the plate has been assumed to vary as a power of the axial coordinate measured from the leading edge of the plate and subjected to an applied lateral mass flux. The boundary layer equations are solved analytically and numerically using a fifth-order Runge-Kutta scheme coupled with the shooting iteration method. As for the classical problem without internal heat generation, it is proved that multiple (unbounded) solutions arise for any and for any suction/injection parameter. For such solutions, the asymptotic behavior as the similarity variable approaches infinity is determined.
Natural convection flow of Cu-H2O nanofluid along a vertical wavy surface with uniform heat flux
NASA Astrophysics Data System (ADS)
Habiba, Farjana; Molla, Md. Mamun; Khan, M. A. Hakim
2016-07-01
A numerical study on natural convection flow of Cu-Water nanofluid along a vertical wavy surface with uniform heat flux has been carried out. The governing boundary layer equations are transformed into parabolic partial differential equations by applying a suitable set of variables. The resulting nonlinear system of equations are then mapped into a regular rectangular computational domain and solved numerically by using an implicit finite difference method. Numerical results are thoroughly discussed in terms of velocity and temperature distributions, surface temperature distribution, skin friction coefficient and Nusselt number coefficient for selected key parameters such as solid volume fraction of nanofluid (ϕ) and amplitude (α) of surface waviness. In addition, velocity vectors, streamlines and isotherms are plotted to visualize momentum and thermal flow pattern within the boundary layer region.
Mustafa, Meraj; Mushtaq, Ammar; Hayat, Tasawar; Ahmad, Bashir
2014-01-01
The problem of natural convective boundary layer flow of nanofluid past a vertical plate is discussed in the presence of nonlinear radiative heat flux. The effects of magnetic field, Joule heating and viscous dissipation are also taken into consideration. The governing partial differential equations are transformed into a system of coupled nonlinear ordinary differential equations via similarity transformations and then solved numerically using the Runge–Kutta fourth-fifth order method with shooting technique. The results reveal an existence of point of inflection for the temperature distribution for sufficiently large wall to ambient temperature ratio. Temperature and thermal boundary layer thickness increase as Brownian motion and thermophoretic effects intensify. Moreover temperature increases and heat transfer from the plate decreases with an increase in the radiation parameter. PMID:25251242
Mustafa, Meraj; Mushtaq, Ammar; Hayat, Tasawar; Ahmad, Bashir
2014-01-01
The problem of natural convective boundary layer flow of nanofluid past a vertical plate is discussed in the presence of nonlinear radiative heat flux. The effects of magnetic field, Joule heating and viscous dissipation are also taken into consideration. The governing partial differential equations are transformed into a system of coupled nonlinear ordinary differential equations via similarity transformations and then solved numerically using the Runge-Kutta fourth-fifth order method with shooting technique. The results reveal an existence of point of inflection for the temperature distribution for sufficiently large wall to ambient temperature ratio. Temperature and thermal boundary layer thickness increase as Brownian motion and thermophoretic effects intensify. Moreover temperature increases and heat transfer from the plate decreases with an increase in the radiation parameter. PMID:25251242
NASA Astrophysics Data System (ADS)
Furci, H.; Baudouy, B.; Four, A.; Meuris, C.
2016-01-01
Experiments were conducted on a 2-m high two-phase helium natural circulation loop operating at 4.2 K and 1 atm. The same loop was used in two experiments with different heated section internal diameter (10 and 6 mm). The power applied on the heated section wall was controlled in increasing and decreasing sequences, and temperature along the section, mass flow rate and pressure drop evolutions were recorded. The values of critical heat flux (CHF) were found at different positions of the test section, and the post-CHF regime was studied. The predictions of CHF by existing correlations were good in the downstream portion of the section, however CHF anomalies have been observed near the entrance, in the low quality region. In resonance with this, the re-wetting of the surface has distinct hysteresis behavior in each of the two CHF regions. Furthermore, hydraulics effects of crisis, namely on friction, were studied (Part 2). This research is the starting point to future works addressing transients conducing to boiling crisis in helium natural circulation loops.
Vertical integration of thermally activated heat pumps
Chen, F.C.
1985-01-01
Many thermally activated heat pump systems are being developed along technology lines, such as, engine-driven and absorption heat pumps. Their thermal performances are temperature dependent. Based on the temperature-dependent behavior of heat pump cycle performance and the energy cascading idea, the concept of vertically integrating various thermally activated heat pump technologies to maximize resources utilization is explored. Based on a preliminary analysis, it is found that integrating a desiccant dehumidification subsystem to an engine-driven heat pump could improve its cooling performance by 36% and integrating an ejector to it could improve its cooling performance by 20%. The added advantage of an ejector-coupled engine-driven heat pump is its system simplicity which should result in equipment cost savings.
Thermally optimum spacing of vertical, natural convection cooled, parallel plates
NASA Astrophysics Data System (ADS)
Bar-Cohen, A.; Rohsenow, W. M.
Vertical two-dimensional channels formed by parallel plates or fins are a frequently encountered configuration in natural convection cooling in air of electronic equipment. In connection with the complexity of heat dissipation in vertical parallel plate arrays, little theoretical effort is devoted to thermal optimization of the relevant packaging configurations. The present investigation is concerned with the establishment of an analytical structure for analyses of such arrays, giving attention to useful relations for heat distribution patterns. The limiting relations for fully-developed laminar flow, in a symmetric isothermal or isoflux channel as well as in a channel with an insulated wall, are derived by use of a straightforward integral formulation.
Heat transfer in vertically aligned phase change energy storage systems
El-Dessouky, H.T.; Bouhamra, W.S.; Ettouney, H.M.; Akbar, M.
1999-05-01
Convection effects on heat transfer are analyzed in low temperature and vertically aligned phase change energy storage systems. This is performed by detailed temperature measurements in the phase change material (PCM) in eighteen locations forming a grid of six radial and three axial positions. The system constitutes a double pipe configuration, where commercial grade paraffin wax is stored in the annular space between the two pipes and water flows inside the inner pipe. Vertical alignment of the system allowed for reverse of the flow direction of the heat transfer fluid (HTF), which is water. Therefore, the PCM is heated from the bottom for HTF flow from bottom to top and from the top as the HTF flow direction is reversed. For the former case, natural convection affects the melting process. Collected data are used to study variations in the transient temperature distribution at axial and radial positions as well as for the two-dimensional temperature field. The data are used to calculate the PCM heat transfer coefficient and to develop correlations for the melting Fourier number. Results indicate that the PCM heat transfer coefficient is higher for the case of PCM heating from bottom to top. Nusselt number correlations are developed as a function of Rayleigh, Stefan, and Fourier numbers for the HTF flow from bottom to top and as a function of Stefan and Fourier numbers for HTF flow from top to bottom. The enhancement ratio for heat transfer caused by natural convection increases and then levels off as the inlet temperature of the HTF is increased.
NASA Astrophysics Data System (ADS)
Matthews, Scott T.
1991-12-01
The natural convection heat transfer characteristics of a 3 x 3 array of vertically oriented heated protrusions, immersed in a dielectric liquid, were investigated. Aluminum blocks, 24 x 8 x 6 mm, were used to simulate 20 pin dual in-line packages. Surface temperature measurements of the components were made by imbedding copper-constantan thermocouples below the surface of each component face. A constant heat flux was provided to each component using an Inconel foil heating element. Power supplied to each component varied from 0.115 to 2.90 W. The aluminum blocks were mounted on a plexiglass substrate to form a 3 x 3 array of simulated electronic components. The circuit board containing the components was placed in a rectangular, plexiglass enclosure with inner dimensions: L = 203.2 mm H = 152.0 mm W = 82.6 mm, and a wall thickness of 25.4 mm. The upper boundary was maintained at 10 C, while all other exterior surfaces were insulated. The chamber width, measured from the surface of the circuit board to the opposite, inner wall of the enclosure, was varied from 42 to 7 mm by inserting plexiglass spacers into the enclosure. Two dielectric liquids, FC-75 and FC-43, were used as working fluids. Nondimensional data from this study was combined with the data obtained for a horizontal component orientation, to develop an empirical correlation which predicts the Nusselt number as a function of Rayleigh number, Prandtl number, component orientation, and chamber width.
ERIC Educational Resources Information Center
Barnes, George
1991-01-01
Discusses the heat-transfer systems of different animals. Systems include heat conduction into the ground, heat transferred by convection, heat exchange in lizards, fish and polar animals, the carotid rete system, electromagnetic radiation from animals and people, and plant and animal fiber optics. (MDH)
Heat distribution by natural convection
Balcomb, J.D.
1985-01-01
Natural convection can provide adequate heat distribution in many situtations that arise in buildings. This is appropriate, for example, in passive solar buildings where some rooms tend to be more strongly solar heated than others or to reduce the number of heating units required in a building. Natural airflow and heat transport through doorways and other internal building apertures is predictable and can be accounted for in the design. The nature of natural convection is described, and a design chart is presented appropriate to a simple, single-doorway situation. Natural convective loops that can occur in buildings are described and a few design guidelines are presented.
Heat transfer in porous medium embedded with vertical plate: Non-equilibrium approach - Part A
NASA Astrophysics Data System (ADS)
Badruddin, Irfan Anjum; Quadir, G. A.
2016-06-01
Heat transfer in a porous medium embedded with vertical flat plate is investigated by using thermal non-equilibrium model. Darcy model is employed to simulate the flow inside porous medium. It is assumed that the heat transfer takes place by natural convection and radiation. The vertical plate is maintained at isothermal temperature. The governing partial differential equations are converted into non-dimensional form and solved numerically using finite element method. Results are presented in terms of isotherms and streamlines for various parameters such as heat transfer coefficient parameter, thermal conductivity ratio, and radiation parameter
Studies of heat source driven natural convection
NASA Technical Reports Server (NTRS)
Kulacki, F. A.; Nagle, M. E.; Cassen, P.
1974-01-01
Natural convection energy transport in a horizontal layer of internally heated fluid with a zero heat flux lower boundary, and an isothermal upper boundary, has been studied. Quantitative information on the time-mean temperature distribution and the fluctuating component of temperature about the mean temperature in steady turbulent convection are obtained from a small thermocouple inserted into the layer through the upper bounding plate. Data are also presented on the development of temperature at several vertical positions when the layer is subject to both a sudden increase and to a sudden decrease in power input. For changes of power input from zero to a value corresponding to a Rayleigh number much greater than the critical linear stability theory value, a slight hysteresis in temperature profiles near the upper boundary is observed between the heat-up and cool-down modes.
Transient natural convection in heated inclined tubes
NASA Astrophysics Data System (ADS)
McEligot, Donald M.; Denbow, David A.; Murphy, Hugh D.
1990-05-01
To simulate natural convection flow patterns in directionally drilled wellbores, experiments and analyses were conducted for a circular tube with length-to-diameter (L/D) ratio of 36 at angles of 0, 20, and 35 degrees from the vertical. The tube was heated at the bottom and cooled at the top, and the insulation was adjusted so that approximately one- to two-thirds of the power dissipated was transferred through the tube wall to the surroundings. An aqueous solution of polyvinyl alcohol was employed as the working fluid in order to obtain low Rayleigh numbers corresponding to conditions in geothermal wellbores. Results were primarily qualitative but were useful in providing insight into the phenomena occurring. Steady-state temperature distributions were measured for the three orientations and for several heating rates to demonstrate the effects of tube angle and Rayleigh number. Transient measurements of the temperature distribution were obtained during cooling from a higher temperature without a heat source to calibrate the heat losses. With the electrical heat source, temporal data were taken during heating to examine the approach to steady state. Quasi-steady flow conditions were approached rapidly, but the overall time constant of the apparatus was of the order of one-third of a day. Predictions with the three-dimensional TEMPEST code were first tested by comparison with simple conduction analyses. Comparison with actual data showed good agreement of the predicted temperature levels for the maximum inclination, 35 degrees, and slightly poorer agreement for the other limit, a vertical tube. Trends of temperature level and Nusselt number with heating rate or Rayleigh number were reasonable, but the predicted variation of the end Nusselt number versus inclination was in the opposite direction from the experiment.
Transient natural convection in heated inclined tubes
McEligot, D.M. . Oceanic Div.); Denbow, D.A. ); Murphy, H.D. )
1990-05-01
To simulate natural convection flow patterns in directionally drilled wellbores, experiments and analyses were conducted for a circular tube with length-to-diameter (L/D) ratio of 36 at angles of 0{degree}, 20{degree}, and 35{degree} from the vertical. The tube was heated at the bottom and cooled at the top, and the insulation was adjusted so that approximately one- to two-thirds of the power dissipated was transferred through the tube wall to the surroundings. An aqueous solution of polyvinyl alcohol was employed as the working fluid in order to obtain low Rayleigh numbers corresponding to conditions in geothermal wellbores. Results were primarily qualitative but were useful in providing insight into the phenomena occurring. Steady-state temperature distributions were measured for the three orientations and for several heating rates to demonstrate the effects of tube angle and Rayleigh number. transient measurements of the temperature distribution were obtained during cooling from a higher temperature without a heat source to calibrate the heat losses. With the electrical heat source, temporal data were taken during heating to examine the approach to steady state. Quasi-steady flow conditions were approached rapidly, but the overall time constant of the apparatus was of the order of one-third of a day. Predictions with the three-dimensional TEMPEST code were first tested by comparison with simple conduction analyses. Comparison with actual data showed good agreement of the predicted temperature levels for the maximum inclination, 35{degree}, and slightly poorer agreement for the other limit, a vertical tube. Trends of temperature level and Nusselt number with heating rate or Rayleigh number were reasonable, but the predicted variation of the end Nusselt number versus inclination was in the opposite direction from the experiment. 75 refs., 20 figs., 8 tabs.
Natural convection of ferrofluids in partially heated square enclosures
NASA Astrophysics Data System (ADS)
Selimefendigil, Fatih; Öztop, Hakan F.; Al-Salem, Khaled
2014-12-01
In this study, natural convection of ferrofluid in a partially heated square cavity is numerically investigated. The heater is located to the left vertical wall and the right vertical wall is kept at constant temperature lower than that of the heater. Other walls of the square enclosure are assumed to be adiabatic. Finite element method is utilized to solve the governing equations. The influence of the Rayleigh number (104≤Ra≤5×105), heater location (0.25H≤yh≤0.75H), strength of the magnetic dipole (0≤γ≤2), horizontal and vertical location of the magnetic dipole (-2H≤a≤-0.5H, 0.2H≤b≤0.8H) on the fluid flow and heat transfer characteristics are investigated. It is observed that different velocity components within the square cavity are sensitive to the magnetic dipole source strength and its position. The length and size of the recirculation zones adjacent to the heater can be controlled with magnetic dipole strength. Averaged heat transfer increases with decreasing values of horizontal position of the magnetic dipole source. Averaged heat transfer value increases from middle towards both ends of the vertical wall when the vertical location of the dipole source is varied. When the heater location is changed, a symmetrical behavior in the averaged heat transfer plot is observed and the minimum value of the averaged heat transfer is attained when the heater is located at the mid of vertical wall.
NASA Technical Reports Server (NTRS)
Brandon, S.; Derby, J. J.
1992-01-01
In the present investigation of crystalline phase internal radiation and heat conduction during the vertical Bridgman growth of a YAG-like oxide crystal, where transport through the melt is dominated by convection and conduction, heat is also noted to be conducted through ampoule walls via natural convection and enclosure radiation. The results of a quasi-steady-state axisymmetric Galerkin FEM indicate that heat transfer through the system is powerfully affected by the optical absorption coefficient of the crystal. The coupling of internal radiation through the crystal with conduction through the ampoule walls promotes melt/crystal interface shapes that are highly reflected near the ampoule wall.
Convective heat transfer around vertical jet fires: an experimental study.
Kozanoglu, Bulent; Zárate, Luis; Gómez-Mares, Mercedes; Casal, Joaquim
2011-12-15
The convection heat transfer phenomenon in vertical jet fires was experimentally analyzed. In these experiments, turbulent propane flames were generated in subsonic as well as sonic regimes. The experimental data demonstrated that the rate of convection heat transfer increases by increasing the length of the flame. Assuming the solid flame model, the convection heat transfer coefficient was calculated. Two equations in terms of adimensional numbers were developed. It was found out that the Nusselt number attains greater values for higher values of the Rayleigh and Reynolds numbers. On the other hand, the Froude number was analyzed only for the subsonic flames where the Nusselt number grows by this number and the diameter of the orifice. PMID:21962859
Conjugate natural convection flow over a vertical surface with radiation
NASA Astrophysics Data System (ADS)
Siddiqa, Sadia; Hossain, Md. Anwar; Gorla, Rama Subba Reddy
2016-06-01
Numerical study of conjugate natural convection flow over a finite vertical surface with radiation is reported in this article. Rosseland diffusion approximation is used to express the radiative heat flux term. The governing boundary-layer equations are made dimensionless by means of a suitable form of non-similarity transformation. These equations are obtained in three regimes: (1) upstream (when ξ → 0), (2) downstream (when ξ → ∞ ) and (3) entire regime and are solved numerically. The solutions in the upstream and downstream regimes are obtained via shooting method whereas two-point implicit finite difference method is used to get the solutions for the entire regime. It is seen that asymptotic solutions give accurate results when compared with the numerical solution of the entire regime. The results indicate that the flow field and the temperature distributions are greatly influenced by thermal radiation parameter , R_d, surface temperature parameter, θ _w and Prandtl number Pr. It is established from the analysis that recirculation occurs in the flow specifically for R_d=1.5.
Momentum and heat transport scalings in laminar vertical convection.
Shishkina, Olga
2016-05-01
We derive the dependence of the Reynolds number Re and the Nusselt number Nu on the Rayleigh number Ra and the Prandtl number Pr in laminar vertical convection (VC), where a fluid is confined between two differently heated isothermal vertical walls. The boundary layer equations in laminar VC yield two limiting scaling regimes: Nu∼Pr^{1/4}Ra^{1/4}, Re∼Pr^{-1/2}Ra^{1/2} for Pr≪1 and Nu∼Pr^{0}Ra^{1/4}, Re∼Pr^{-1}Ra^{1/2} for Pr≫1. These theoretical results are in excellent agreement with direct numerical simulations for Ra from 10^{5} to 10^{10} and Pr from 10^{-2} to 30. The transition between the regimes takes place for Pr around 10^{-1}. PMID:27300823
Momentum and heat transport scalings in laminar vertical convection
NASA Astrophysics Data System (ADS)
Shishkina, Olga
2016-05-01
We derive the dependence of the Reynolds number Re and the Nusselt number Nu on the Rayleigh number Ra and the Prandtl number Pr in laminar vertical convection (VC), where a fluid is confined between two differently heated isothermal vertical walls. The boundary layer equations in laminar VC yield two limiting scaling regimes: Nu˜Pr1/4Ra1/4 , Re˜Pr-1/2Ra1/2 for Pr≪1 and Nu˜Pr0Ra1/4 , Re˜Pr-1Ra1/2 for Pr≫1 . These theoretical results are in excellent agreement with direct numerical simulations for Ra from 105 to 1010 and Pr from 10-2 to 30. The transition between the regimes takes place for Pr around 10-1.
Flow regimes and heat transfer in vertical narrow annuli
Ulke, A.; Goldberg, I.
1993-11-01
In shell side boiling heat exchangers narrow crevices that are formed between the tubes and the tube support structure provide areas for local thermal-hydraulic conditions which differ significantly from bulk fluid conditions. Understanding of the processes of boiling and dryout in flow restricted crevices can help in designing of tube support geometries to minimize the likelihood of tube support plate and tube corrosion observed in commercial power plant steam generators. This paper describes a one dimensional thermal-hydraulic model of a vertical crevice between a tube and a support plate with cylindrical holes. The annulus formed by the support plate hole and an eccentrically located tube has been represented by vertical strips. The formation, growth and collapse of a steam bubble in each strip has been determined. Based on the bubble history, and flow regimes characterized by ``isolated`` bubbles, ``coalesced`` bubbles and liquid deficient regions have been defined.
Vertical extension of the urban heat island above Moscow
NASA Astrophysics Data System (ADS)
Lokoshchenko, M. A.; Korneva, I. A.; Kochin, A. V.; Dubovetsky, A. Z.; Novitsky, M. A.; Razin, P. Ye.
2016-01-01
The vertical extension of the urban "heat island" (UHI) has been studied on the basis of long-term data of contact air temperature measurements at three places for the example of Moscow. The existence of steady thermal anomaly related to the city in the form of a UHI in the surface layer at any time of the day and also the existence of a cold layer over it at heights higher than 100 m at night were confirmed. The mean daily altitudinal extension of this anomaly is approximately 300 m.
Experimental study on flow boiling heat transfer of LNG in a vertical smooth tube
NASA Astrophysics Data System (ADS)
Chen, Dongsheng; Shi, Yumei
2013-10-01
An experimental apparatus is set up in this work to study the upward flow boiling heat transfer characteristics of LNG (liquefied natural gas) in vertical smooth tubes with inner diameters of 8 mm and 14 mm. The experiments were performed at various inlet pressures from 0.3 to 0.7 MPa. The results were obtained over the mass flux range from 16 to 200 kg m-2 s-1 and heat fluxes ranging from 8.0 to 32 kW m-2. The influences of quality, heat flux and mass flux, tube diameter on the heat transfer characteristic are examined and discussed. The comparisons of the experimental heat transfer coefficients with the predicted values from the existing correlations are analyzed. The correlation by Zou et al. [16] shows the best accuracy with the RMS deviation of 31.7% in comparison with the experimental data.
Changes in ocean vertical heat transport with global warming
NASA Astrophysics Data System (ADS)
Zika, Jan D.; Laliberté, Frédéric; Mudryk, Lawrence R.; Sijp, Willem P.; Nurser, A. J. G.
2015-06-01
Heat transport between the surface and deep ocean strongly influences transient climate change. Mechanisms setting this transport are investigated using coupled climate models and by projecting ocean circulation into the temperature-depth diagram. In this diagram, a "cold cell" cools the deep ocean through the downwelling of Antarctic waters and upwelling of warmer waters and is balanced by warming due to a "warm cell," coincident with the interhemispheric overturning and previously linked to wind and haline forcing. With anthropogenic warming, the cold cell collapses while the warm cell continues to warm the deep ocean. Simulations with increasingly strong warm cells, set by their mean Southern Hemisphere winds, exhibit increasing deep-ocean warming in response to the same anthropogenic forcing. It is argued that the partition between components of the circulation which cool and warm the deep ocean in the preindustrial climate is a key determinant of ocean vertical heat transport with global warming.
Yousefi, T.; Paknezhad, M.; Ashjaee, M.; Yazdani, S.
2009-09-15
Steady state two-dimensional natural convection heat transfer from the vertical array of five horizontal isothermal elliptic cylinders with vertical major axis which confined between two adiabatic walls has been studied experimentally. Experiments were carried out using a Mach-Zehnder interferometer. The Rayleigh number based on cylinder major axis was in the range 10{sup 3}{<=}Ra{<=}2.5 x 10{sup 3}, and dimensionless wall spacing 1.5{<=} t/b{<=}9 and infinity. The effect of wall spacing and Rayleigh number on the heat transfer from the individual cylinder and the array were investigated. Experiments are performed for ratio wall spacing to major diameter t/b = 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 7, 8, 9 and infinity. A correlation based on the experimental data for the average Nusselt number of the array as a function of Ra and t/b is presented in the aforementioned ranges. A relation has been derived for optimum wall spacing at which the Nusselt number of the array attains its maximum value. At optimum wall spacing, approximately 10% increase in the heat transfer from the confined array of elliptic cylinders has been observed as compared to the unconfined case. Also, a heat transfer correlation has been proposed for a single elliptic cylinder with vertical major axis and has been compared with earlier works. (author)
Vortex ring head-on collision with a heated vertical plate
NASA Astrophysics Data System (ADS)
Arévalo, G.; Hernández, R. H.; Nicot, C.; Plaza, F.
2007-08-01
We report experimental results of the normal impact of a vortex ring in air on a vertical heated plate at constant temperature. We address the case in which the natural convection boundary layer is laminar and the vortex ring is stable. Vortex rings are created by pushing air through a circular exit orifice of a cavity, using a piston-cylinder system. The impinging vortex ring perturbs both the thermal and dynamical boundary layers where we measure the total heat flux exchanged by the heated plate and visualize the vortex motion during the impact. This unsteady impingement process is investigated for different vortex sizes and self-induced velocities, characterized by the Reynolds number of the ring. As a result, a localized heat transfer enhancement is originated by the ring impingement, which increases with the Reynolds number.
The effect of asymmetric heating on flow stability and heat transfer for flow in a vertical tube
Tappan, C.H.
1987-11-01
This study presents experimental results of combined free and forced convection heat transfer in a vertical tube with a circumferentially nonuniform constant wall heat flux. The effect of an asymmetric wall heat flux on flow stability and on the rate of heat transfer for water flowing downward in a vertical tube was investigated. Experimental results were used to develop two stability maps which identify various flow regimes, corresponding to different thermal and hydraulic conditions. Heat transfer coefficients were also determined. Experimental results in the present investigation were compared to those with uniform heating in horizontal and vertical tube flow situations discussed in the literature. 23 refs., 12 figs., 1 tab.
NASA Astrophysics Data System (ADS)
Piasecka, Magdalena; Strąk, Kinga
2016-03-01
The aim of the paper is to estimate effect of the heating surface enhancement on FC-72 flow boiling heat transfer for a vertical minichannel 1.7 mm deep, 24 mm wide and 360 mm long. Two types of enhanced heating surfaces were used: one with minicavities distributed unevenly, and the other with capillary metal fibrous structure. It was to measure temperature field on the plain side of the heating surface by means of the infrared thermography and to observe the two-phase flow patterns on the enhanced foil side. The paper analyses mainly the impact of the microstructured heating surface on the heat transfer coefficient. The results are presented as heat transfer coefficient dependences on the distance along the minichannel length. The data obtained using two types of enhanced heating surfaces in experiments was compared with the data when smooth foil as the heating surface was used. The highest local values of heat transfer coefficient were obtained using enhanced foil with minicavities - in comparison to other cases. Local values of heat transfer coefficient received for capillary fibrous structure were the lowest, even compared with data obtained for smooth foil. Probably this porous structure caused local flow disturbances.
Forced convection heat transfer of saturated liquid hydrogen in vertically-mounted heated pipes
NASA Astrophysics Data System (ADS)
Tatsumoto, Hideki; Shirai, Yasuyuki; Shiotsu, Masahiro; Hata, Koichi; Naruo, Yoshihiro; Kobayasi, Hiroaki; Inatani, Yoshifumi
2014-01-01
Heat transfer from the inner side of vertically-mounted heated pipes to forced flow of saturated liquid hydrogen was measured with a quasi-steady increase of a heat generation rate for wide ranges of flow rate and saturated pressure. The tube heaters have lengths L of 100 mm and 167 mm with the diameter D of 4 mm and lengths of 150 mm and 250 mm with the diameter of 6 mm. The heat fluxes at departure from nucleate boiling (DNB) were higher for higher flow velocity, lower pressures and shorter L/D. The effect of L/D on the DNB heat flux was clarified. It is confirmed that our DNB correlation can describe the experimental data.
Augmentation of heat transfer in a bubble agitated vertical rectangular channel
NASA Astrophysics Data System (ADS)
Mitra, Asish; Dutta, Tapas Kumar; Ghosh, Dibyendu Narayan
2012-04-01
This paper presents the results of an experimental study of convective heat transfer between three parallel vertical plates symmetrically spaced with and without bubble agitation to ascertain the degree of augmentation of the heat transfer coefficients due to agitation. The centre plate was electrically heated, while the other side plates were water-cooled forming two successive parallel vertical rectangular channels of dimensions 20 cm × 3.5 cm × 35 cm (length W, gap L, height H) each. At the bottom of the hot and cold plates air spargers were fitted. Water/ethylene glycol (100%) was used to fill the channels. The superficial gas velocity ranged from 0.0016 to 0.01 m/s. Top, bottom and sides of the channels were open to the water/ethylene glycol in the chamber which is the novel aspect of this study. Experimental data have been correlated as under: Natural convective heat transfer: Nu = 0.60 Gr 0.29, r = 0.96, σ = 0.186, 1.17 E6 < Gr < 1.48 E7; Bubble agitated heat transfer: St = 0.11( ReFrPr 2)-0.23, r = 0.82, σ = 0.002, 1.20 E-2 < ( ReFrPr 2) < 1.36 E2.
Turbulent natural convection in vertical parallel-plate channels
NASA Astrophysics Data System (ADS)
Badr, H. M.; Habib, M. A.; Anwar, S.; Ben-Mansour, R.; Said, S. A. M.
2006-11-01
The problem of buoyancy driven turbulent flow in parallel-plate channels is investigated. The investigation is limited to vertical channels of uniform cross-section with different modes of heating. The details of the flow and thermal fields are obtained from the solution of the conservation equations of mass, momentum, and energy in addition to equations of the low Reynolds number turbulence model. The study covers Rayleigh number ranging from 105 to 107 and focuses on the effect of channel geometry on the characteristic of the flow and thermal fields as well as the local and average Nusselt number variation. A Nusselt number correlation has been developed in terms of a modified Rayleigh number and channel aspect ratio for the cases of symmetrically heated isothermal and isoflux conditions.
Heat and mass transfer in a vertical channel under heat-gravitational convection conditions
NASA Astrophysics Data System (ADS)
Petrichenko, Michail; Nemova, Darya; Reich, Elisaveta; Subbotina, Svetlana; Khayrutdinova, Faina
2016-03-01
Heat-gravitational motion of an air flow in a vertical channel with one-sided heating in an area with low Reynolds number is stated in Boussinesq approximation. Hydraulic variables field in a heat-gravitational motion is modeled with the application of ANSYS-FLUENT. It is converted to average velocity and temperature values in a cross section of the channel. The value of an average velocity is determined by rate of heat supply in a barotropic flow with a polytropic coefficient n
Lu, N.; Ge, S.
1996-01-01
By including the constant flow of heat and fluid in the horizontal direction, we develop an analytical solution for the vertical temperature distribution within the semiconfining layer of a typical aquifer system. The solution is an extension of the previous one-dimensional theory by Bredehoeft and Papadopulos [1965]. It provides a quantitative tool for analyzing the uncertainty of the horizontal heat and fluid flow. The analytical results demonstrate that horizontal flow of heat and fluid, if at values much smaller than those of the vertical, has a negligible effect on the vertical temperature distribution but becomes significant when it is comparable to the vertical.
Pulse-Heated Vertical Electron Cyclotron Emission Diagnostic
NASA Astrophysics Data System (ADS)
Voss, Keith Edward
1995-01-01
Determination of plasma parameters in tokamak experiments is of primary importance for learning to control and optimize fusion plasmas. Electron cyclotron emission (ECE) diagnostics play an important role in these experiments and are planned for future test reactors, since they require only simple collecting optics in the harsh reactor environment. A novel diagnostic system, which extracts information about plasma parameters by examining the ECE resulting from a perturbation of the plasma, was examined and applied on the PBX-M tokamak. This diagnostic uses a brief pulse of power from the lower hybrid current drive system to create a population of superthermal electrons. These electrons evolve according to the Fokker-Planck equation, which involves dependences on the magnetic field pitch, ion charge state, background density, and electric field. Coincident with the evolution of the electrons is the evolution of their ECE radiation. The diagnostic exploits the fact that the temporal changes in the radiation are dependent upon those parameters which affect the electrons. The analysis method, which compares measured experimental signal with simulated radiation (as functions of frequency and time) and determines most probable plasma parameter values, was computationally tested for effectiveness and robustness. The method was extended to include determination of parameters of the lower hybrid current drive power deposition. A measurement system, based on a grating polychromator, was assembled, tested, and calibrated, and pulse-heated vertical ECE data were collected from the PBX-M tokamak. A proof-of-principle test of the diagnostic yielded positive results, resulting in information about the lower hybrid current drive deposition location.
Transient natural convection of cold water in a vertical channel
NASA Astrophysics Data System (ADS)
Chiba, Ryoichi
2016-05-01
The two-dimensional differential transform method (DTM) is applied to analyse the transient natural convection of cold water in a vertical channel. The cold water gives rise to a density variation with temperature that may not be linearized. The vertical channel is composed of doubly infinite parallel plates, one of which has a constant prescribed temperature and the other of which is insulated. Considering the temperature-dependent viscosity and thermal conductivity of the water, approximate analytical (series) solutions for the temperature and flow velocity are derived. The transformed functions included in the solutions are obtained through a simple recursive procedure. Numerical computation is performed for the entire range of water temperature conditions around the temperature at the density extremum point, i.e. 4°C. Numerical results illustrate the effects of the temperature-dependent properties on the transient temperature and flow velocity profiles, volumetric flow rate, and skin friction. The DTM is a powerful tool for solving nonlinear transient problems as well as steady problems.
NASA Astrophysics Data System (ADS)
Huber, Markus; Tailleux, Remi; Ferreira, David; Kuhlbrodt, Till; Gregory, Jonathan
2015-04-01
The classic vertical advection-diffusion (VAD) balance is a central concept in studying the ocean heat budget, in particular in simple climate models (SCMs). Here we present a new framework to calibrate the parameters of the VAD equation to the vertical ocean heat balance of two fully-coupled climate models that is traceable to the models' circulation as well as to vertical mixing and diffusion processes. Based on temperature diagnostics, we derive an effective vertical velocity w∗ and turbulent diffusivity kν∗ for each individual physical process. In steady state, we find that the residual vertical velocity and diffusivity change sign in middepth, highlighting the different regional contributions of isopycnal and diapycnal diffusion in balancing the models' residual advection and vertical mixing. We quantify the impacts of the time evolution of the effective quantities under a transient 1% CO2 simulation and make the link to the parameters of currently employed SCMs.
Natural convective heat transfer from square cylinder
NASA Astrophysics Data System (ADS)
Novomestský, Marcel; Smatanová, Helena; Kapjor, Andrej
2016-06-01
This article is concerned with natural convective heat transfer from square cylinder mounted on a plane adiabatic base, the cylinders having an exposed cylinder surface according to different horizontal angle. The cylinder receives heat from a radiating heater which results in a buoyant flow. There are many industrial applications, including refrigeration, ventilation and the cooling of electrical components, for which the present study may be applicable
Residential vertical geothermal heat pump system models: Calibration to data
Thornton, J.W.; McDowell, T.P.; Shonder, J.A.; Hughes, P.J.; Pahud, D.; Hellstroem, G.A.J.
1997-12-31
A detailed component-based simulation model of a geothermal heat pump system has been calibrated to monitored data taken from a family housing unit located at Fort Polk, Louisiana. The simulation model represents the housing unit, geothermal heat pump, ground heat exchanger, thermostat, blower, and ground-loop pump. Each of these component models was tuned to better match the measured data from the site. These tuned models were then interconnected to form the system model. The system model was then exercised in order to demonstrate its capabilities.
Residential Vertical Geothermal Heat Pump System Models: Calibration to Data:
Thornton, Jeff W.; McDowell, T. P.; Shonder, John A; Hughes, Patrick; Pahud, D.; Hellstrom, G.
1997-06-01
A detailed component-based simulation model of a geothermal heat pump system has been calibrated to monitored data taken from a family housing unit located at Fort Polk, Louisiana. The simulation model represents the housing unit, geothermal heat pump, ground heat exchanger, thermostat, blower, and ground-loop pump. Each of these component models was 'tuned' to better match the measured data from the site. These tuned models were then interconnect to form the system model. The system model was then exercised in order to demonatrate its capabilities.
Method and apparatus for determining vertical heat flux of geothermal field
Poppendiek, Heinz F.
1982-01-01
A method and apparatus for determining vertical heat flux of a geothermal field, and mapping the entire field, is based upon an elongated heat-flux transducer (10) comprised of a length of tubing (12) of relatively low thermal conductivity with a thermopile (20) inside for measuring the thermal gradient between the ends of the transducer after it has been positioned in a borehole for a period sufficient for the tube to reach thermal equilibrium. The transducer is thermally coupled to the surrounding earth by a fluid annulus, preferably water or mud. A second transducer comprised of a length of tubing of relatively high thermal conductivity is used for a second thermal gradient measurement. The ratio of the first measurement to the second is then used to determine the earth's thermal conductivity, k.sub..infin., from a precalculated graph, and using the value of thermal conductivity thus determined, then determining the vertical earth temperature gradient, b, from predetermined steady state heat balance equations which relate the undisturbed vertical earth temperature distributions at some distance from the borehole and earth thermal conductivity to the temperature gradients in the transducers and their thermal conductivity. The product of the earth's thermal conductivity, k.sub..infin., and the earth's undisturbed vertical temperature gradient, b, then determines the earth's vertical heat flux. The process can be repeated many times for boreholes of a geothermal field to map vertical heat flux.
NASA Astrophysics Data System (ADS)
Cummins, Patrick F.; Masson, Diane; Saenko, Oleg A.
2016-06-01
The net heat uptake by the ocean in a changing climate involves small imbalances between the advective and diffusive processes that transport heat vertically. Generally, it is necessary to rely on global climate models to study these processes in detail. In the present study, it is shown that a key component of the vertical heat flux, namely that associated with the large-scale mean vertical circulation, can be diagnosed over extra-tropical regions from global observational data sets. This component is estimated based on the vertical velocity obtained from the geostrophic vorticity balance, combined with estimates of absolute geostrophic flow. Results are compared with the output of a non-eddy resolving, coupled atmosphere-ocean general circulation model. Reasonable agreement is found in the latitudinal distribution of the vertical heat flux, as well as in the area-integrated flux below about 250 m depth. The correspondence with the coupled model deteriorates sharply at depths shallower than 250 m due to the omission of equatorial regions from the calculation. The vertical heat flux due to the mean circulation is found to be dominated globally by the downward contribution from the Southern Hemisphere, in particular the Southern Ocean. This is driven by the Ekman vertical velocity which induces an upward transport of seawater that is cold relative to the horizontal average at a given depth. The results indicate that the dominant characteristics of the vertical transport of heat due to the mean circulation can be inferred from simple linear vorticity dynamics over much of the ocean.
O`Brien, J.E.
1991-12-01
Experimental measurements of surface emissivities of three metallic samples have been obtained in support of an experiment aimed at determining natural convection and total heat transfer for a heated vertical cylinder surrounded by an array of cooled vertical tubes. In some cases, the heated stainless steel cylinder was shrouded by a perforated aluminum outer cylinder. The surrounding cooled tubes were also aluminum. In this experiment, heat transfer from the heated tube and the surrounding outer cylinder will occur by a combination of natural convection and radiation. At temperatures near the melting point of aluminum, the radiant contribution is particularly important, accounting for 50% or more of the total heat transfer. Consequently, accurate knowledge of surface emissivities of the heated rods, outer cylinders and surrounding structures is needed in order to predict the system thermal response during the transient. Direct measurements of surface emissivities have been obtained for one stainless steel and two aluminum samples. The measurements were obtained using an infrared pyrometer sensitive to the 8--14 {mu}m wavelength range. A procedure for estimating total hemispherical emissivities based on the measured spectral, normal results is also provided.
NASA Astrophysics Data System (ADS)
Obrien, J. E.
1991-12-01
Experimental measurements of surface emissivities of three metallic samples have been obtained in support of an experiment aimed at determining natural convection and total heat transfer for a heated vertical cylinder surrounded by an array of cooled vertical tubes. In some cases, the heated stainless steel cylinder was shrouded by a perforated aluminum outer cylinder. The surrounding cooled tubes were also aluminum. In this experiment, heat transfer from the heated tube and the surrounding outer cylinder will occur by a combination of natural convection and radiation. At temperatures near the melting point of aluminum, the radiant contribution is particularly important, accounting for 50 percent or more of the total heat transfer. Consequently, accurate knowledge of surface emissivities of the heated rods, outer cylinders and surrounding structures is needed in order to predict the system thermal response during the transient. Direct measurements of surface emissivities have been obtained for one stainless steel and two aluminum samples. The measurements were obtained using an infrared pyrometer sensitive to the 8-14 micron wavelength range. A procedure for estimating total hemispherical emissivities based on the measured spectral, normal results is also provided.
Solar Hot Water Heating by Natural Convection.
ERIC Educational Resources Information Center
Noble, Richard D.
1983-01-01
Presents an undergraduate laboratory experiment in which a solar collector is used to heat water for domestic use. The working fluid is moved by natural convection so no pumps are required. Experimental apparatus is simple in design and operation so that data can be collected quickly and easily. (Author/JN)
Instabilities and pattern evolution in a vertically heated annulus
NASA Astrophysics Data System (ADS)
Wang, BoFu; Guo, ZhiWei; Ma, DongJun; Sun, DeJun
2013-02-01
The convection in an annular container with heated bottom, cooled top and insulated side walls are studied by both linear instability analysis and direct numerical simulation. The onset of convection is investigated by linear stability analysis and corresponding pattern selection mechanisms are discussed. The nonlinear evolution of different flow patterns and the convective heat transfer are simulated. The transition to oscillatory flow is also given by stability analysis where the base flow is a steady three dimensional flow. The stability predictions are in good agreement with the numerical simulations, including both the growth rate and the dimensionless frequency.
NASA Astrophysics Data System (ADS)
Jha, Basant K.; Ajibade, Abiodun O.
2012-04-01
This article investigates the natural convection flow of viscous incompressible fluid in a channel formed by two infinite vertical parallel plates. Fully developed laminar flow is considered in a vertical channel with steady-periodic temperature regime on the boundaries. The effect of internal heating by viscous dissipation is taken into consideration. Separating the velocity and temperature fields into steady and periodic parts, the resulting second order ordinary differential equations are solved to obtain the expressions for velocity, and temperature. The amplitudes and phases of temperature and velocity are also obtained as well as the rate of heat transfer and the skin-friction on the plates. In presence of viscous dissipation, fluids of relatively small Prandtl number has higher temperature than the channel plates and as such, heat is being transferred from the fluid to the plate.
NASA Astrophysics Data System (ADS)
Jha, B. K.; Ajibade, A. O.
2011-12-01
This article investigates the natural convection flow of viscous incompressible fluid in a channel formed by two infinite vertical parallel plates. Fully developed laminar flow is considered in a vertical channel with steady-periodic temperature regime on the boundaries. The effect of internal heating by viscous dissipation is taken into consideration. Separating the velocity and temperature fields into steady and periodic parts, the resulting second order ordinary differential equations are solved to obtain the expressions for velocity, and temperature. The amplitudes and phases of temperature and velocity are also obtained as well as the rate of heat transfer and the skin friction on the plates. In presence of viscous dissipation, fluids of relatively small Prandtl number has higher temperature than the channel plates and as such, heat is being transferred from the fluid to the plate.
NASA Technical Reports Server (NTRS)
Eilts, M. D.; Sundara-Rajan, A.; Evans, R. J.
1987-01-01
An indirect method of estimating the surface heat flux from observations of vertical velocity variance at the lower mid-levels of the convective atmospheric boundary layer is described. Comparison of surface heat flux estimates with those from boundary-layer heating rates is good, and this method seems to be especially suitable for inhomogeneous terrain for which the surface-layer profile method cannot be used.
NASA Astrophysics Data System (ADS)
Bieliński, Henryk; Mikielewicz, Jarosław
2010-10-01
In the present paper it is proposed to consider the computer cooling capacity using the thermosyphon loop. A closed thermosyphon loop consists of combined two heaters and a cooler connected to each other by tubes. The first heater may be a CPU processor located on the motherboard of the personal computer. The second heater may be a chip of a graphic card placed perpendicular to the motherboard of personal computer. The cooler can be placed above the heaters on the computer chassis. The thermosyphon cooling system on the use of computer can be modeled using the rectangular thermosyphon loop with minichannels heated at the bottom horizontal side and the bottom vertical side and cooled at the upper vertical side. The riser and a downcomer connect these parts. A one-dimensional model of two-phase flow and heat transfer in a closed thermosyphon loop is based on mass, momentum, and energy balances in the evaporators, rising tube, condenser and the falling tube. The separate two-phase flow model is used in calculations. A numerical investigation for the analysis of the mass flux rate and heat transfer coefficient in the steady state has been accomplished.
Interaction of radiation and free convection on a heated vertical plate - Experiment and analysis
NASA Astrophysics Data System (ADS)
Webb, B. W.
1990-01-01
An experimental and analytical study has been conducted in order to explore the interaction between laminar free convective and radiative transport from an isolated vertical plate with isoflux heating. The analysis focuses on buoyancy-driven free convection from this vertical plate which is coupled to radiation through the thermal boundary condition. Model predictions are compared with both experimental results and the analysis conducted by Cess (1964), in order to illustrate those areas where the perturbation technique deviated from the present solution.
Pool boiling heat transfer from vertical heater array in liquid nitrogen
Chui, C.J.; Sehmbey, M.S.; Chow, L.C.; Hahn, O.J.
1995-04-01
The heat transfer from an array of discrete sources is expected to differ from the behavior of a single heat source due to the interaction between the flow induced by individual heat sources. This study details the results from experiments conducted to study the pool boiling heat transfer characteristics from a vertical heater array with flush-mounted heat sources. The lower heaters were found to enhance the heat transfer from upper heaters. The bubble pumped convection due to the lower heaters enhanced the preboiling heat transfer coefficient at the upper heater by as much as 700%. The critical heat flux from the upper heaters was also enhanced up to 15%. Correlations are presented for both these effects. 21 refs.
Natural Thermoelectric Heat Pump in Social Wasps
NASA Astrophysics Data System (ADS)
Ishay, Jacob S.; Pertsis, Vitaly; Rave, Eran; Goren, Alon; Bergman, David J.
2003-05-01
Photographs of wasps or hornets, taken with different temperature sensitive infrared cameras, reveal body temperatures that are sometimes significantly lower than the ambient temperature. This suggests that the hornets possess an intrinsic biological heat pump mechanism which can be used to achieve such cooling. Evidence is presented to substantiate this novel suggestion and to argue that the heat pump is most likely implemented by exploiting a thermoelectric effect in the hornet cuticle. Such a natural heat pump can conceivably also serve to cool the active hornet, engaged in daytime activities outside the nest at ambient temperatures exceeding 40 °C, to a body temperature that is low enough to allow its survival in extreme thermal conditions. It might also function as a means of raising the body temperature up to a level that enables the hornet to remain active even when the ambient temperature is as low as 10 °C.
NASA Astrophysics Data System (ADS)
Tsay, Y. L.
This study presents a numerical solution of the unsteady conjugated mixed-convection heat transfer in a vertical plate channel with one wall suddenly subjected to either isoflux or isothermal discrete heat sources. The effects of the dimensionless heat source length H1, the dimensionless spacing between heat sources H2, the dimensionless channel length L, the dimensionless heated-plate thickness Bl, the wall-to-fluid conductivity ratio K and the ratio of Grashof number to Reynolds number Gr/Re on the interface heat flux, Nusselt number and bulk fluid temperature are discussed in detail. Results show that the discrete heating can cause the heat transfer direction conversely from the fluid to the heated plate during the transient period, which is more significant for the cases with larger L and H2. For the system with isoflux discrete heat sources, the time required to reach the steady-state is shorter for larger H2. While the trend is reverse for system with isothermal discrete heat sources. Additionally, a higher ratio of the input energy is axially conducted through the plate wall from heated sections to unheated regions for a larger H2 and Bl or smaller L.
Vertical heat fluxes through the Beaufort Sea Thermohaline staircase
NASA Astrophysics Data System (ADS)
Padman, Laurie; Dillon, Thomas M.
1987-09-01
Microstructure profiles of temperature, conductivity, and velocity shear during the Arctic Internal Wave Experiment (AIWEX) in March-April 1985 in the Beaufort Sea are used to investigate the thermodynamic processes in a diffusive thermohaline staircase. The staircase occurs between depths of about 320 and 430 m, above the core of the relatively warm, salty Atlantic water, where the mean temperature and salinity are increasing with depth. Individual isothermal layers can be tracked for at least several hours, suggesting a horizontal length scale of several hundred meters or more, assuming a typical relative velocity of 0.01 m s-1 at this time. Over the depth range 320-430 m the mean (average over several steps) density ratio
NASA Technical Reports Server (NTRS)
Eckert, E R G; Diaguila, A J
1955-01-01
Report presents the results of an investigation conducted to study free-convection heat transfer in a stationary vertical tube closed at the bottom. The walls of the tube were heated, and heated air in the tube was continuously replaced by fresh cool air at the top. The tube was designed to provide a gravitational field with Grashof numbers of a magnitude comparable with those generated by the centrifugal field in rotating-blade coolant passages (10(8) to 10(13)). Local heat-transfer coefficients in the turbulent-flow range and the temperature field within the fluid were obtained.
Experimental study on condensation heat transfer characteristics of R410A in short vertical tubes
NASA Astrophysics Data System (ADS)
Xu, Wenyun; Jia, Li; Tan, Zetao
2015-06-01
An experimental study on condensation heat transfer of R410A in short vertical tubes (8.02 mm ID and 10.7mm ID) was presented. Experiments were performed in eight short copper tubes length varied from 300mm to 600mm at mass fluxes range of 58-246 kg m-2s-1 and saturation temperature of 38°C. Effects of mass flux, tube length on condensation heat transfer coefficient were investigated. The distribution of temperature, thickness of condensate film and local condensation heat transfer coefficient along the tube were also analyzed. It is indicated that the entrance effect played an important role in condensation heat transfer of vertical tube, and the influence of entrance effect on average condensation heat transfer coefficients will weaken with the length of tube in the experimental condensation. The experimental results were compared with four well known correlations available in literatures, and the Chen correlation shows good agreement with the experimental data but with ±40% deviation. A new modified condensation heat transfer correlation with 12.7% mean deviation was developed to predict the condensation heat transfer coefficients in short vertical tube based on the experimental data.
Schlieren visualization of water natural convection in a vertical ribbed channel
NASA Astrophysics Data System (ADS)
Fossa, M.; Misale, M.; Tanda, G.
2015-11-01
Schlieren techniques are valuable tools for the qualitative and quantitative visualizations of flows in a wide range of scientific and engineering disciplines. A large number of schlieren systems have been developed and documented in the literature; majority of applications involve flows of gases, typically air. In this work, a schlieren technique is applied to visualize the buoyancy-induced flow inside vertical ribbed channels using water as convective fluid. The test section consists of a vertical plate made of two thin sheets of chrome-plated copper with a foil heater sandwiched between them; the external sides of the plate are roughened with transverse, square-cross-sectioned ribs. Two parallel vertical walls, smooth and unheated, form with the heated ribbed plate two adjacent, identical and asymmetrically heated, vertical channels. Results include flow schlieren visualizations with colour-band filters, reconstructions of the local heat transfer coefficient distributions along the ribbed surfaces and comparisons with past experiments performed using air as working fluid.
Natural convection within a vertical finite-length channel in free space
Lin, S.C.; Chang, K.P.; Hung, Y.H. )
1994-04-01
Natural convection within a vertical finite length channel in free space is studied in this article to remove assumptions that need to be made on velocity and temperature profiles at the channel entrance. For small channel aspect ratios and low Rayleigh numbers, significant deviations of the Nusselt number and temperature distributions exist due to the effects of vertical thermal diffusion and free space stratification in the channel. A new correlation was proposed on induced Reynolds number for vertical finite length channel. 8 refs.
Heat-transfer characteristics of climbing film evaporation in a vertical tube
Yang, Luopeng; Chen, Xue; Shen, Shengqiang
2010-09-15
Heat-transfer characteristics of climbing film evaporation were experimentally investigated on a vertical climbing film evaporator heated by tube-outside hot water. The experimental setup was designed for determining the effect of the height of feed water inside a vertical tube and the range of temperature difference on local heat transfer coefficient inside a vertical tube (h{sub i}). In this setup, the height of feed water was successfully controlled and the polypropylene shell effectively impedes the heat loss to the ground. The results indicated that a reduction in the height of feed water contributed to a significant increase in h{sub i} if no dry patches around the wall of the heated tube appeared inside the tube. The height ratio of feed water R{sub h} = 0.3 was proposed as the optimal one as dry patches destroyed the continuous climbing film when R{sub h} is under 0.3. It was found that the minimum temperature difference driving climbing film evaporation is suggested as 5 C due to a sharp reduction in h{sub i} for temperature difference below 5 C. The experiment also showed that h{sub i} increased with an increase in temperature difference, which proved the superiority of climbing film evaporation in utilizing low-grade surplus heating source due to its wide range of driving temperature difference. The experimental results were compared with the previous literature and demonstrated a satisfactory agreement. (author)
Heterogeneous nanofluids: natural convection heat transfer enhancement
2011-01-01
Convective heat transfer using different nanofluid types is investigated. The domain is differentially heated and nanofluids are treated as heterogeneous mixtures with weak solutal diffusivity and possible Soret separation. Owing to the pronounced Soret effect of these materials in combination with a considerable solutal expansion, the resulting solutal buoyancy forces could be significant and interact with the initial thermal convection. A modified formulation taking into account the thermal conductivity, viscosity versus nanofluids type and concentration and the spatial heterogeneous concentration induced by the Soret effect is presented. The obtained results, by solving numerically the full governing equations, are found to be in good agreement with the developed solution based on the scale analysis approach. The resulting convective flows are found to be dependent on the local particle concentration φ and the corresponding solutal to thermal buoyancy ratio N. The induced nanofluid heterogeneity showed a significant heat transfer modification. The heat transfer in natural convection increases with nanoparticle concentration but remains less than the enhancement previously underlined in forced convection case. PMID:21711755
Heterogeneous nanofluids: natural convection heat transfer enhancement.
Oueslati, Fakhreddine Segni; Bennacer, Rachid
2011-01-01
Convective heat transfer using different nanofluid types is investigated. The domain is differentially heated and nanofluids are treated as heterogeneous mixtures with weak solutal diffusivity and possible Soret separation. Owing to the pronounced Soret effect of these materials in combination with a considerable solutal expansion, the resulting solutal buoyancy forces could be significant and interact with the initial thermal convection. A modified formulation taking into account the thermal conductivity, viscosity versus nanofluids type and concentration and the spatial heterogeneous concentration induced by the Soret effect is presented. The obtained results, by solving numerically the full governing equations, are found to be in good agreement with the developed solution based on the scale analysis approach. The resulting convective flows are found to be dependent on the local particle concentration φ and the corresponding solutal to thermal buoyancy ratio N. The induced nanofluid heterogeneity showed a significant heat transfer modification. The heat transfer in natural convection increases with nanoparticle concentration but remains less than the enhancement previously underlined in forced convection case. PMID:21711755
Heterogeneous nanofluids: natural convection heat transfer enhancement
NASA Astrophysics Data System (ADS)
Oueslati, Fakhreddine Segni; Bennacer, Rachid
2011-12-01
Convective heat transfer using different nanofluid types is investigated. The domain is differentially heated and nanofluids are treated as heterogeneous mixtures with weak solutal diffusivity and possible Soret separation. Owing to the pronounced Soret effect of these materials in combination with a considerable solutal expansion, the resulting solutal buoyancy forces could be significant and interact with the initial thermal convection. A modified formulation taking into account the thermal conductivity, viscosity versus nanofluids type and concentration and the spatial heterogeneous concentration induced by the Soret effect is presented. The obtained results, by solving numerically the full governing equations, are found to be in good agreement with the developed solution based on the scale analysis approach. The resulting convective flows are found to be dependent on the local particle concentration φ and the corresponding solutal to thermal buoyancy ratio N. The induced nanofluid heterogeneity showed a significant heat transfer modification. The heat transfer in natural convection increases with nanoparticle concentration but remains less than the enhancement previously underlined in forced convection case.
Dutta, S.; Zhang, X.; Khan, J.A.; Bell, D.
1997-07-01
Experimental heat transfer measurements and analysis for mixed convection in a vertical square channel are presented. The flow direction is changed with respect to the earth's gravity field by selectively opening and closing the flow control valves. Desired flow directions are selected such that buoyancy assists or opposes the bulk flow direction pressure gradient. The heating condition is asymmetric. Most previous experiments used symmetrically heated circular tubes. Present configuration shows significant increase in the Nusselt number in both assisted and opposed flow conditions. In general, opposed flow shows higher heat transfer coefficients. Unlike symmetric heating conditions, Nusselt number ratio is observed to be increasing with increasing Gr/Re or Gr/Re{sup 2} ratios for both assisted and opposed flow conditions.
The Reynolds analogy for the mixed convection over a vertical surface with prescribed heat flux
NASA Astrophysics Data System (ADS)
Magyari, E.; Pop, I.
2009-03-01
The steady mixed convection boundary layer flow over a vertical surface with prescribed heat flux is revisited in this Note. The subset of solutions which can be obtained with the aid of the Reynolds analogy is discussed in a close relationship with the dual solutions reported by Merkin and Mahmood [1] for impermeable, and more recently by Ishak et al. [2], for permeable surfaces.
Plasma break-down and re-build: same functional vertical graphenes from diverse natural precursors.
Seo, Dong Han; Rider, Amanda Evelyn; Han, Zhao Jun; Kumar, Shailesh; Ostrikov, Kostya Ken
2013-10-18
Plasmas, the 4(th) state of matter, uniformly transform natural precursors with different chemical composition in solid, liquid, and gas states into the same functional vertical graphenes in a single-step process within a few minutes. Functional vertical graphenes show reliable biosensing properties, strong binding with proteins, and improved adhesion to substrates. PMID:24002820
Heat transfer effects in vertically emplaced high level nuclear waste container
Moujaes, S.F.; Lei, Y.M.
1994-05-01
Modeling free convection heat transfer in an cylindrical annular enclosure is still an active area of research and an important problem to be addressed in the high level nuclear waste repository. For the vertically emplaced waste container, the air gap which is between the container shell and the rock borehole, have an important role of dissipating heat to surrounding rack. These waste containers are vertically emplaced in the borehole 300 meters below ground, and in a horizontal grid of 30 {times} 8 meters apart. The borehole will be capped after the container emplacement. The expected initial heat generated is between 3--4.74 kW per container depending on the type of waste. The goal of this study is to use a computer simulation model to find the borehole wall, air-gap and the container outer wall temperature distributions.
NASA Astrophysics Data System (ADS)
Nait Alla, Abderrahman; Feddaoui, M'barek; Meftah, Hicham
2015-12-01
The interactive effects of heat and mass transfer in the evaporation of ethylene and propylene glycol flowing as falling films on vertical channel was investigated. The liquid film falls along a left plate which is externally subjected to a uniform heat flux while the right plate is the dry wall and is kept thermally insulated. The model solves the coupled governing equations in both phases together with the boundary and interfacial conditions. The systems of equations obtained by using an implicit finite difference method are solved by Tridiagonal Matrix Algorithm. The influence of the inlet liquid flow, Reynolds number in the gas flow and the wall heat flux on the intensity of heat and mass transfers are examined. A comparison between the results obtained for studied glycols and water in the same conditions is made. The results indicate that water evaporates in more intense way in comparison to glycols and the increase of gas flow rate tends to improve slightly the evaporation.
NASA Astrophysics Data System (ADS)
Kim, Jeong-Hun; Arima, Hirofumi; Ikegami, Yasuyuki
In the present study, the fundamental experiments that investigate characteristics of local heat transfer in forced convective boiling on vertical flat plate with 2-mm channel height are taken to realize plate type compact evaporator for OTEC or STEC. The experiments are performed with ammonia as the working fluid. The experiments are also carried out with the following test conditions; saturated pressure = 0.7, 0.8, 0.9 MPa, mass flux = 7.5, 10, 15 kg/(m2•s), heat flux = 15, 20, 25 kW/m2 and inlet quality = 0.1 ~ 0.4 [-]. The result shows that the wall superheated temperature of forced convective boiling is lower than that of pool boiling. And the heat transfer coefficient increases with an increase in quality and the decrease in the local heat flux and saturated pressure for prescribed experimental conditions. However, local heat transfer coefficients are not affected by mass fluxes in the prescribed experimental conditions. An empirical correlation that can predict the local heat transfer coefficient on vertical flat plate within experimental conditions is also proposed.
Impact of cosmological satellites on the vertical heating of the Milky Way disc
NASA Astrophysics Data System (ADS)
Moetazedian, R.; Just, A.
2016-07-01
We present a high-resolution study of the impact of realistic satellite galaxies, extracted from cosmological simulations of Milky Way haloes including 6 Aquarius suites and Via Lactea II, on the dynamics of the Galactic disc. The initial conditions for the multicomponent Milky Way galaxy were generated using the GALIC code, to ensure a system in dynamical equilibrium state prior to addition of satellites. Candidate subhaloes that came closer than 25 kpc to the centre of the host dark matter haloes with initial mass enclosed within the tidal radius, Mtid ≥ 108 M⊙ = 0.003 Mdisc, were identified, inserted into our high-resolution N-body simulations and evolved for 2 Gyr. We quantified the vertical heating due to such impacts by measuring the disc thickness and squared vertical velocity dispersion σ z2 across the disc. According to our analysis, the strength of heating is strongly dependent on the high-mass end of the subhalo distribution from cosmological simulations. The mean increase of the vertical dispersion is ˜20 km2 s-2 Gyr-1 for R > 4 kpc with a flat radial profile while, excluding Aq-F2 results, the mean heating is < 12 km2 s-2 Gyr-1, corresponding to 28 and 17 per cent of the observed vertical heating rate in the solar neighbourhood. Taking into account the statistical dispersion around the mean, we miss the observed heating rate by more than 3σ. We observed a general flaring of the disc height in the case of all seven simulations in the outer disc.
NASA Astrophysics Data System (ADS)
Kaya, Ahmet
2011-04-01
The problem of steady laminar magnetohydrodynamic (MHD) mixed convection heat transfer about a vertical slender hollow cylinder is studied numerically, under the effect of wall conduction. A uniform magnetic field is applied perpendicular to the cylinder. The non-similar solutions using the Keller box method are obtained. The wall conduction parameter, the magnetic parameter and the Richardson number are the main parameters. For various values of these parameters the local skin friction and local heat transfer parameters are determined. The validity of the methodology is checked by comparing the results with those available in the open literature and a fairly good agreement is observed. Finally, it is determined that the local skin friction and the local heat transfer coefficients increase with an increase the magnetic parameter Mn and buoyancy parameter Ri and decrease with conjugate heat transfer parameter p.
Hussanan, Abid; Zuki Salleh, Mohd; Tahar, Razman Mat; Khan, Ilyas
2014-01-01
In this paper, the heat transfer effect on the unsteady boundary layer flow of a Casson fluid past an infinite oscillating vertical plate with Newtonian heating is investigated. The governing equations are transformed to a systems of linear partial differential equations using appropriate non-dimensional variables. The resulting equations are solved analytically by using the Laplace transform method and the expressions for velocity and temperature are obtained. They satisfy all imposed initial and boundary conditions and reduce to some well-known solutions for Newtonian fluids. Numerical results for velocity, temperature, skin friction and Nusselt number are shown in various graphs and discussed for embedded flow parameters. It is found that velocity decreases as Casson parameters increases and thermal boundary layer thickness increases with increasing Newtonian heating parameter. PMID:25302782
Baojin, Qi; Li, Zhang; Hong, Xu; Yan, Sun
2011-01-15
Visual experiments were employed to investigate heat transfer characteristics of steam on vertical titanium plates with/without surface modifications for different surface energies. Stable dropwise condensation and filmwise condensation were achieved on two surface modification titanium plates, respectively. Dropwise and rivulet filmwise co-existing condensation form of steam was observed on unmodified titanium surfaces. With increase in the surface subcooling, the ratio of area ({eta}) covered by drops decreased and departure diameter of droplets increased, resulting in a decrease in condensation heat transfer coefficient. Condensation heat transfer coefficient decreased sharply with the values of {eta} decreasing when the fraction of the surface area covered by drops was greater than that covered by rivulets. Otherwise, the value of {eta} had little effect on the heat transfer performance. Based on the experimental phenomena observed, the heat flux through the surface was proposed to express as the sum of the heat flux through the dropwise region and rivulet filmwise region. The heat flux through the whole surface was the weighted mean value of the two regions mentioned above. The model presented explains the gradual change of heat transfer coefficient for transition condensation with the ratio of area covered by drops. The simulation results agreed well with the present experimental data when the subcooling temperature is lower than 10 C. (author)
Vertical disc heating in Milky Way-sized galaxies in a cosmological context
NASA Astrophysics Data System (ADS)
Grand, Robert J. J.; Springel, Volker; Gómez, Facundo A.; Marinacci, Federico; Pakmor, Rüdiger; Campbell, David J. R.; Jenkins, Adrian
2016-06-01
Vertically extended, high velocity dispersion stellar distributions appear to be a ubiquitous feature of disc galaxies, and both internal and external mechanisms have been proposed to be the major driver of their formation. However, it is unclear to what extent each mechanism can generate such a distribution, which is likely to depend on the assembly history of the galaxy. To this end, we perform 16 high-resolution cosmological-zoom simulations of Milky Way-sized galaxies using the state-of-the-art cosmological magnetohydrodynamical code AREPO, and analyse the evolution of the vertical kinematics of the stellar disc in connection with various heating mechanisms. We find that the bar is the dominant heating mechanism in most cases, whereas spiral arms, radial migration and adiabatic heating from mid-plane density growth are all subdominant. The strongest source, though less prevalent than bars, originates from external perturbations from satellites/subhaloes of masses log10(M/M⊙) ≳ 10. However, in many simulations the orbits of newborn star particles become cooler with time, such that they dominate the shape of the age-velocity dispersion relation and overall vertical disc structure unless a strong external perturbation takes place.
NASA Astrophysics Data System (ADS)
Jha, B. K.; Sani, I.
2015-02-01
This paper investigates the role of induced magnetic field on a transient natural convection flow of an electrically conducting, incompressible and viscous fluid in a vertical channel formed by two infinite vertical parallel plates. The transient flow formation inside the channel is due to sudden asymmetric heating of channel walls. The time dependent momentum, energy and magnetic induction equations are solved semi-analytically using the Laplace transform technique along with the Riemann-sum approximation method. The solutions obtained are validated by comparisons with the closed form solutions obtained for the steady states which have been derived separately and also by the implicit finite difference method. Graphical results for the temperature, velocity, induced magnetic field, current density, and skin-friction based on the semi-analytical solutions are presented and discussed.
Hatem, N.; Philippe, C.; Mbow, C.; Kabdi, Z.; Najoua, S.; Daguenet, M.
1996-03-01
The authors study numerically the steady state laminar mixed convection around a sphere heated by a nonuniform flux in a Newtonian fluid. The sphere rotates around its vertical axis. The governing transfer equations in this three-dimensional problem are solved by using the method of Cebeci-Keller. Three types of convection are considered: pure rotation, pure natural convection, and mixed convection. The profiles of the coefficients of heat transfer and local friction, as well as the profiles of temperature, will be determined for various distributions of a heat flux. In the case of a two-dimensional problem, the results agree with those in the literature.
NASA Astrophysics Data System (ADS)
Taylor, J.; Woolnough, S.; Inness, P.
2013-12-01
The anomalous global atmospheric circulation associated with the Madden-Julian oscillation (MJO) is examined using composite vertical anomalous diabatic heating structures based on Tropical Rainfall Measuring Mission (TRMM) estimates and reanalysis datasets and integrating a primitive equations model. Variations in the dynamical response from the observational and reanalysis products are investigated in relation to the detailed structure of the vertical structure of heating of the MJO, with specific focus of the role of the westward tilting with altitude in the heating, clearly evident in three reanalysis heating structures but is less well pronounced in the TRMM heating structures. It was found that the atmospheric response to the reanalysis heatings were far more consistent compared to the responses from the TRMM heating estimates. Examination of the moisture flux during the main active phase of the MJO revealed a surplus in moisture convergence ahead of the anomalous heating from each of the reanalysis integrations, which was found to be directly attributed to the vertical tilt in heating structure. In contrast, the response to the TRMM heatings showed no phase shift in moisture convergence in relation to the convective heating and was understood to be a consequence of the weaker representation of vertical tilting in heating structure. It was suggested that the westward tilt in heating could therefore play an important role in promoting convection east of the main heating region. The dynamical response to composite vertical diabatic heating structures associated with the MJO from simulations with Unified Model (UM) HadGEM3 with standard and enhanced (x1.5) entrainment rates are also examined to investigate the relationship between the dynamical response to the heating profile and quality of MJO simulations.
Torrance, K.E.; Catton, I.
1980-01-01
Natural convection in low aspect ratio rectangular enclosures is considered along with three-dimensional convection within rectangular boxes, natural convection flow visualization in irradiated water cooled by air flow over the surface, free convection in vertical slots, the stratification in natural convection in vertical enclosures, the flow structure with natural convection in inclined air-filled enclosures, and natural convection across tilted, rectangular enclosures of small aspect ratio. Attention is given to the effect of wall conduction and radiation on natural convection in a vertical slot with uniform heat generation of the heated wall, a numerical study of thermal insulation enclosure, free convection in a piston-cylinder enclosure with sinusoidal piston motion, natural convection heat transfer between bodies and their spherical enclosure, an experimental study of the steady natural convection in a horizontal annulus with irregular boundaries, three-dimensional natural convection in a porous medium between concentric inclined cylinders, a numerical solution for natural convection in concentric spherical annuli, and heat transfer by natural convection in porous media between two concentric spheres.
Buoyant instabilities in downward flow in a symmetrically heated vertical channel
Evans, G.; Greif, R.
1996-07-01
This study of the downward flow of nitrogen in a tall, partially heated vertical channel (upstream isothermal at T{sub in}*, heated region isothermal at T{sub s}* downstream adiabatic) shows the strong effects of buoyancy even for small temperature differences. Time-dependent oscillations including periodic flow reversals occur along the channel walls. Although the flow and heat transfer are asymmetric, the temperature and axial component of velocity show symmetric reflections at two times that are half a period apart and the lateral component of velocity shows antisymmetric reflections at the two times. There is strong interaction between the downward flow in the central region of the channel and the upward flow along the heated channel walls. At the top of the heated region, the upward buoyant flow turns toward the center of the channel and is incorporated into the downward flow. Along the channel centerline there are nonmonotonic variations of the axial component of velocity and temperature and a large lateral component of velocity that reverses direction periodically. Results are presented for Re = 219.7 and Gr/Re{sup 2} = 1.83, 8.0, and 13.7. The heat transfer and the frequency of the oscillations increases and the flow and temperature fields become more complex as Gr/Re{sup 2} increases. The results have applications to fiber drying, food processing, crystal growth, solar energy collection, cooling of electronic circuits, ventilation, etc.
NASA Astrophysics Data System (ADS)
Huang, Lihao; Li, Gang; Tao, Leren
2016-07-01
Experimental investigation for the flow boiling of water in a vertical rectangular channel was conducted to reveal the boiling heat transfer mechanism and flow patterns map aspects. The onset of nucleate boiling went upward with the increasing of the working fluid mass flow rate or the decreasing of the inlet working fluid temperature. As the vapour quality was increased, the local heat transfer coefficient increased first, then decreased, followed by various flow patterns. The test data from other researchers had a similar pattern transition for the bubble-slug flow and the slug-annular flow. Flow pattern transition model analysis was performed to make the comparison with current test data. The slug-annular and churn-annular transition models showed a close trend with current data except that the vapor phase superficial velocity of flow pattern transition was much higher than that of experimental data.
NASA Astrophysics Data System (ADS)
Chiba, Ryoichi
2016-02-01
The transient natural convection of a viscous fluid in a heated vertical tube is studied using the two-dimensional differential transform method (DTM). A time-dependent Dirichlet boundary condition is imposed for tube wall temperature. The partial differential equations for the velocity and temperature fields within the tube are solved by the DTM while considering temperature-dependent viscosity and thermal conductivity of the fluid. As a result, tractable solutions in double-series form are derived for the temperature and flow velocity. The transformed functions included in the solutions are obtained through a simple recursive procedure. Numerical results illustrate the effects of temperature-dependent properties on transient temperature and flow behaviour, including the Nusselt number and volumetric flow rate. The DTM gives accurate series solutions without any special functions for nonlinear transient heat transfer problems which are advantageous in finding the derivative or integral.
Heat Transfer in MHD Mixed Convection Flow of a Ferrofluid along a Vertical Channel.
Gul, Aaiza; Khan, Ilyas; Shafie, Sharidan; Khalid, Asma; Khan, Arshad
2015-01-01
This study investigated heat transfer in magnetohydrodynamic (MHD) mixed convection flow of ferrofluid along a vertical channel. The channel with non-uniform wall temperatures was taken in a vertical direction with transverse magnetic field. Water with nanoparticles of magnetite (Fe3O4) was selected as a conventional base fluid. In addition, non-magnetic (Al2O3) aluminium oxide nanoparticles were also used. Comparison between magnetic and magnetite nanoparticles were also conducted. Fluid motion was originated due to buoyancy force together with applied pressure gradient. The problem was modelled in terms of partial differential equations with physical boundary conditions. Analytical solutions were obtained for velocity and temperature. Graphical results were plotted and discussed. It was found that temperature and velocity of ferrofluids depend strongly on viscosity and thermal conductivity together with magnetic field. The results of the present study when compared concurred with published work. PMID:26550837
Heat Transfer in MHD Mixed Convection Flow of a Ferrofluid along a Vertical Channel
Gul, Aaiza; Khan, Ilyas; Shafie, Sharidan; Khalid, Asma; Khan, Arshad
2015-01-01
This study investigated heat transfer in magnetohydrodynamic (MHD) mixed convection flow of ferrofluid along a vertical channel. The channel with non-uniform wall temperatures was taken in a vertical direction with transverse magnetic field. Water with nanoparticles of magnetite (Fe3O4) was selected as a conventional base fluid. In addition, non-magnetic (Al2O3) aluminium oxide nanoparticles were also used. Comparison between magnetic and magnetite nanoparticles were also conducted. Fluid motion was originated due to buoyancy force together with applied pressure gradient. The problem was modelled in terms of partial differential equations with physical boundary conditions. Analytical solutions were obtained for velocity and temperature. Graphical results were plotted and discussed. It was found that temperature and velocity of ferrofluids depend strongly on viscosity and thermal conductivity together with magnetic field. The results of the present study when compared concurred with published work. PMID:26550837
Two-phase distribution in the vertical flow line of a domestic wet central heating system
NASA Astrophysics Data System (ADS)
Fsadni, A.-M.; Ge, Y. T.
2013-04-01
The theoretical and experimental aspects of bubble distribution in bubbly two-phase flow are reviewed in the context of the micro bubbles present in a domestic gas fired wet central heating system. The latter systems are mostly operated through the circulation of heated standard tap water through a closed loop circuit which often results in water supersaturated with dissolved air. This leads to micro bubble nucleation at the primary heat exchanger wall, followed by detachment along the flow. Consequently, a bubbly two-phase flow characterises the flow line of such systems. The two-phase distribution across the vertical and horizontal pipes was measured through a consideration of the volumetric void fraction, quantified through photographic techniques. The bubble distribution in the vertical pipe in down flow conditions was measured to be quasi homogenous across the pipe section with a negligible reduction in the void fraction at close proximity to the pipe wall. Such a reduction was more evident at lower bulk fluid velocities.
NASA Astrophysics Data System (ADS)
Whitehead, Jared P.; Wittenberg, Ralf W.
2014-09-01
A rigorous upper bound on the Nusselt number is derived for infinite Prandtl number Rayleigh-Bénard convection for a fluid constrained between no-slip, mixed thermal vertical boundaries. The result suggests that the thermal boundary condition does not affect the qualitative nature of the heat transport. The bound is obtained with the use of a nonlinear, stably stratified background temperature profile in the bulk, notwithstanding the lack of boundary control of the temperature due to the Robin boundary conditions.
Potential vertical movement of large heat-generating waste packages in salt.
Clayton, Daniel James; Martinez, Mario J.; Hardin, Ernest L.
2013-05-01
With renewed interest in disposal of heat-generating waste in bedded or domal salt formations, scoping analyses were conducted to estimate rates of waste package vertical movement. Vertical movement is found to result from thermal expansion, from upward creep or heave of the near-field salt, and from downward buoyant forces on the waste package. A two-pronged analysis approach was used, with thermal-mechanical creep modeling, and coupled thermal-viscous flow modeling. The thermal-mechanical approach used well-studied salt constitutive models, while the thermal-viscous approach represented the salt as a highly viscous fluid. The Sierra suite of coupled simulation codes was used for both approaches. The waste package in all simulations was a right-circular cylinder with the density of steel, in horizontal orientation. A time-decaying heat generation function was used to represent commercial spent fuel with typical burnup and 50-year age. Results from the thermal-mechanical base case showed approximately 27 cm initial uplift of the package, followed by gradual relaxation closely following the calculated temperature history. A similar displacement history was obtained with the package density set equal to that of salt. The slight difference in these runs is attributable to buoyant displacement (sinking) and is on the order of 1 mm in 2,000 years. Without heat generation the displacement stabilizes at a fraction of millimeter after a few hundred years. Results from thermal-viscous model were similar, except that the rate of sinking was constant after cooldown, at approximately 0.15 mm per 1,000 yr. In summary, all calculations showed vertical movement on the order of 1 mm or less in 2,000 yr, including calculations using well-established constitutive models for temperature-dependent salt deformation. Based on this finding, displacement of waste packages in a salt repository is not a significant repository performance issue.
Characterization of heat loads from mitigated and unmitigated vertical displacement events in DIII-D
Hollmann, E. M.; Moyer, R. A.; Commaux, N.; Jernigan, T. J.; Eidietis, N. W.; Humphreys, D. A.; Strait, E. J.; Wesley, J. C.; Lasnier, C. J.; Pitts, R. A.; Sugihara, M.; Watkins, J.
2013-06-15
Experiments have been conducted on the DIII-D tokamak to study the distribution and repeatability of heat loads and vessel currents resulting from vertical displacement events (VDEs). For unmitigated VDEs, the radiated power fraction appears to be of order 50%, with the remaining power dominantly conducted to the vessel walls. Shot-to-shot scatter in heat loads measured at one toroidal location is not large (<±50%), suggesting that toroidal asymmetries in conducted heat loads are not large. Conducted heat loads are clearly observed during the current quench (CQ) of both mitigated and unmitigated disruptions. Significant poloidal asymmetries in heat loads and radiated power are often observed in the experiments but are not yet understood. Energy dissipated resistively in the conducting walls during the CQ appears to be small (<5%). The mitigating effect of neon massive gas injection (MGI) as a function of MGI trigger delay has also been studied. Improved mitigation is observed as the MGI trigger delay is decreased. For sufficiently early MGI mitigation, close to 100% radiated energy and a reduction of roughly a factor 2 in vessel forces is achieved.
Keefer, R.H.; Rider, J.L.; Waldman, L.A.
1993-10-01
A frequent problem in heat exchange equipment is the deposition of particulates entrained in the working fluid onto heat transfer surfaces. These deposits increase the overall heat transfer resistance and can significantly degrade the performance of the heat exchanger. Accurate prediction of the deposition rate is necessary to ensure that the design and specified operating conditions of the heat exchanger adequately address the effects of this deposit layer. Although the deposition process has been studied in considerable detail, much of the work has focused on investigating individual aspects of the deposition process. This paper consolidates this previous research into a mechanistically based analytical prediction model for particulate deposition from a boiling liquid onto vertical heat transfer surfaces. Consistent with the well known Kern-Seaton approach, the model postulates net particulate accumulation to depend on the relative contributions of deposition and reentrainment processes. Mechanisms for deposition include boiling, momentum, and diffusion effects. Reentrainment is presumed to occur via an intermittent erosion process, with the energy for particle removal being supplied by turbulent flow instabilities. The contributions of these individual mechanisms are integrated to obtain a single equation for the deposit thickness versus time. The validity of the resulting model is demonstrated by comparison with data published in the open literature. Model estimates show good agreement with data obtained over a range of thermal-hydraulic conditions in both flow and pool boiling environments. The utility of the model in performing parametric studies (e.g. to determine the effect of flow velocity on net deposition) is also demonstrated. The initial success of the model suggests that it could prove useful in establishing a range of heat exchanger. operating conditions to minimize deposition.
Flow reversal and heat transfer of fully developed mixed convection in vertical channels
NASA Astrophysics Data System (ADS)
Cheng, Chin-Hsiang; Kou, Hong-Sen; Huang, Wen-Hsiung
1990-07-01
The present analysis is concerned with flow reversal phenomena and heat transfer characteristics of the fully developed laminar combined free and forced convection in the heated vertical channels. Three fundamental combinations of thermal boundary conditions on the respective wall surface (namely isoflux-isoflux, isoflux-isothermal, and isothermal-isothermal) are considered separately so as to investigate extensively their distinct influence on the flow pattern. Results of the velocity distribution and temperature distribution as well as the Nusselt number in terms of bulk mean temperature are carried out. Based on the analytical solutions obtained, flow reversal adjacent to the relatively colder wall is found to exist within the channel as Re/Gr is below a threshold value related to the thermal boundary conditions. Parameter zones for the occurrence of reversed flow are presented. Comparisons and verification are made using the existing numerical solutions at locations far downstream of developing flow.
An algorithm to estimate the heating budget from vertical hydrometeor profiles
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Simpson, Joanne; Mccumber, Michael; Adler, Robert; Lang, Stephen
1990-01-01
A simple algorithm to estimate the latent heating of cloud systems from their vertical hydrometeor profiles is proposed. The derivation as well as the validation of the algorithm is based on output generated by a nonhydrostatic cloud model with parameterized microphysical processes. Mature and decaying stages of a GATE squall-type convective system have been tested. The algorithm-derived heating budget is in reasonable agreement with the budget predicted by the cloud model. The input to the proposed algoritm can be obtained from either a rain retrieval technique based on information from multichannel passive microwave signals or a kinematic cloud model based on information from Doppler radar wind fields and radar reflectivity patterns. Such an application would have significant implications for spaceborne remote sensing and the large-scale weather prediction data assimilation problem.
Effect of segmental heating on mixed convection aiding flow in a vertical porous annulus
NASA Astrophysics Data System (ADS)
Salman, Ahmed N. J.; Al-Rashed, Abdullah A. A. A.; Kamangar, Sarfaraz; Khan, T. M. Yunus; Khaleed, H. M. T.
2016-06-01
Mixed convection flow in a vertical porous annulus embedded with fluid saturated porous medium for aiding is investigated. The annulus is imposed by 20%, 35% and 50% heater length at the bottom, mid and top sections of the annulus respectively. Darcy law with thermal non-equilibrium approach is considered. The governing partial differential equations are converted to simple algebraic equations using Finite Element Method (FEM). The effects of Peclet number Pe and conductivity ratio Kr on heat transfer and fluid flow behaviour are examined and it is found that for lower conductivity ratio, the heat transfer rate was higher with the increase in the Peclet number Pe, whereas this trend reversed when thermal conductivity ratio Kr is increased.
An Algorithm to Estimate the Heating Budget from Vertical Hydrometeor Profiles.
NASA Astrophysics Data System (ADS)
Tao, Wei-Kuo; Simpson, Joanne; Lang, Stephen; McCumber, Michael; Adler, Robert; Penc, Richard
1990-12-01
A simple algorithm to estimate the latent heating of cloud systems from their vertical hydrometer profiles is proposed. The derivation as well as the validation of the algorithm is based on output generated by a non-hydrostatic cloud model with parameterized microphysical processes. Mature and decaying stages of a GATE squall-type convective system have been tested. The algorithm-derived heating budget is in reasonable agreement with the budget predicted by the cloud model. The input to the proposed algorithm can be obtained from either a rain retrieval technique based on information from multichannel passive microwave signals or a kinematic cloud model based on information from Doppler radar wind fields and radar reflectivity patterns. Such an application would have significant implications for spaceborne remote sensing and the large-scale weather prediction data assimilation problem.
Heat and mass transfer in two-component film evaporation in a vertical tube
NASA Astrophysics Data System (ADS)
Baumann, W. W.; Thiele, F.
An elaborate physical model is developed for the problem of two-component film evaporation. Special attention is drawn to the accurate modeling of the two-phase multicomponent flow. This includes separate description of each phase, turbulent gas flow, and thermophysical properties depending on temperature and species concentrations. Whereas the basic equations for the film flow can be treated analytically those for the gas flow have to be solved numerically by means of an accurate finite difference method. An efficient overall iteration procedure links the solutions in both phases. The evaporation of benzene-methyl alcohol mixtures in vertical tube flows for various thermal flow conditions is investigated. Results are presented in terms of local temperature, heat and mass fluxes, and Stanton numbers for heat and mass transfer. They indicate a strong influence of the mixture composition.
The vertical structure of cloud radiative heating over the Indian subcontinent during summer monsoon
NASA Astrophysics Data System (ADS)
Johansson, E.; Devasthale, A.; L'Ecuyer, T.; Ekman, A. M. L.; Tjernström, M.
2015-10-01
Clouds forming during the summer monsoon over the Indian subcontinent affect its evolution through their radiative impact as well as the release of latent heat. While the latter is previously studied to some extent, comparatively little is known about the radiative impact of different cloud types and the vertical structure of their radiative heating/cooling effects. Therefore, the main aim of this study is to partly fill this knowledge gap by investigating and documenting the vertical distributions of the different cloud types associated with the Indian monsoon and their radiative heating/cooling using the active radar and lidar sensors onboard CloudSat and CALIPSO. The intraseasonal evolution of clouds from May to October is also investigated to understand pre-to-post monsoon transitioning of their radiative heating/cooling effects. The vertical structure of cloud radiative heating (CRH) follows the northward migration and retreat of the monsoon from May to October. Throughout this time period, stratiform clouds radiatively warm the middle troposphere and cool the upper troposphere by more than ±0.2 K day-1 (after weighing by cloud fraction), with the largest impacts observed in June, July and August. During these months, the fraction of high thin cloud remains high in the tropical tropopause layer (TTL). Deep convective towers cause considerable radiative warming in the middle and upper troposphere, but strongly cool the base and inside of the TTL. This cooling is stronger during active (-1.23 K day-1) monsoon periods compared to break periods (-0.36 K day-1). The contrasting radiative warming effect of high clouds in the TTL is twice as large during active periods than in break periods. These results highlight the increasing importance of CRH with altitude, especially in the TTL. Stratiform (made up of alto- and nimbostratus clouds) and deep convection clouds radiatively cool the surface by approximately -100 and -400 W m-2 respectively while warming the
Effect of rolling motion on critical heat flux for subcooled flow boiling in vertical tube
Hwang, J. S.; Park, I. U.; Park, M. Y.; Park, G. C.
2012-07-01
This paper presents defining characteristics of the critical heat flux (CHF) for the boiling of R-134a in vertical tube operation under rolling motion in marine reactor. It is important to predict CHF of marine reactor having the rolling motion in order to increase the safety of the reactor. Marine Reactor Moving Simulator (MARMS) tests are conducted to measure the critical heat flux using R-134a flowing upward in a uniformly heated vertical tube under rolling motion. MARMS was rotated by motor and mechanical power transmission gear. The CHF tests were performed in a 9.5 mm I.D. test section with heated length of 1 m. Mass fluxes range from 285 to 1300 kg m{sup -2}s{sup -1}, inlet subcooling from 3 to 38 deg. C and outlet pressures from 13 to 24 bar. Amplitudes of rolling range from 15 to 40 degrees and periods from 6 to 12 sec. To convert the test conditions of CHF test using R-134a in water, Katto's fluid-to-fluid modeling was used in present investigation. A CHF correlation is presented which accounts for the effects of pressure, mass flux, inlet subcooling and rolling angle over all conditions tested. Unlike existing transient CHF experiments, CHF ratio of certain mass flux and pressure are different in rolling motion. For the mass fluxes below 500 kg m{sup -2}s{sup -1} at 13, 16 (region of relative low mass flux), CHF ratio was decreased but was increased above that mass flux (region of relative high mass flux). Moreover, CHF tend to enhance in entire mass flux at 24 bar. (authors)
Rutten, Gemma; Ensslin, Andreas; Hemp, Andreas; Fischer, Markus
2015-01-01
In most habitats, vegetation provides the main structure of the environment. This complexity can facilitate biodiversity and ecosystem services. Therefore, measures of vegetation structure can serve as indicators in ecosystem management. However, many structural measures are laborious and require expert knowledge. Here, we used consistent and convenient measures to assess vegetation structure over an exceptionally broad elevation gradient of 866–4550m above sea level at Mount Kilimanjaro, Tanzania. Additionally, we compared (human)-modified habitats, including maize fields, traditionally managed home gardens, grasslands, commercial coffee farms and logged and burned forests with natural habitats along this elevation gradient. We distinguished vertical and horizontal vegetation structure to account for habitat complexity and heterogeneity. Vertical vegetation structure (assessed as number, width and density of vegetation layers, maximum canopy height, leaf area index and vegetation cover) displayed a unimodal elevation pattern, peaking at intermediate elevations in montane forests, whereas horizontal structure (assessed as coefficient of variation of number, width and density of vegetation layers, maximum canopy height, leaf area index and vegetation cover) was lowest at intermediate altitudes. Overall, vertical structure was consistently lower in modified than in natural habitat types, whereas horizontal structure was inconsistently different in modified than in natural habitat types, depending on the specific structural measure and habitat type. Our study shows how vertical and horizontal vegetation structure can be assessed efficiently in various habitat types in tropical mountain regions, and we suggest to apply this as a tool for informing future biodiversity and ecosystem service studies. PMID:26406985
Rutten, Gemma; Ensslin, Andreas; Hemp, Andreas; Fischer, Markus
2015-01-01
In most habitats, vegetation provides the main structure of the environment. This complexity can facilitate biodiversity and ecosystem services. Therefore, measures of vegetation structure can serve as indicators in ecosystem management. However, many structural measures are laborious and require expert knowledge. Here, we used consistent and convenient measures to assess vegetation structure over an exceptionally broad elevation gradient of 866-4550 m above sea level at Mount Kilimanjaro, Tanzania. Additionally, we compared (human)-modified habitats, including maize fields, traditionally managed home gardens, grasslands, commercial coffee farms and logged and burned forests with natural habitats along this elevation gradient. We distinguished vertical and horizontal vegetation structure to account for habitat complexity and heterogeneity. Vertical vegetation structure (assessed as number, width and density of vegetation layers, maximum canopy height, leaf area index and vegetation cover) displayed a unimodal elevation pattern, peaking at intermediate elevations in montane forests, whereas horizontal structure (assessed as coefficient of variation of number, width and density of vegetation layers, maximum canopy height, leaf area index and vegetation cover) was lowest at intermediate altitudes. Overall, vertical structure was consistently lower in modified than in natural habitat types, whereas horizontal structure was inconsistently different in modified than in natural habitat types, depending on the specific structural measure and habitat type. Our study shows how vertical and horizontal vegetation structure can be assessed efficiently in various habitat types in tropical mountain regions, and we suggest to apply this as a tool for informing future biodiversity and ecosystem service studies. PMID:26406985
The vertical structure of cloud radiative heating over the Indian subcontinent during summer monsoon
NASA Astrophysics Data System (ADS)
Johansson, E.; Devasthale, A.; L'Ecuyer, T.; Ekman, A. M. L.; Tjernström, M.
2015-02-01
Every year the monsoonal circulation over the Indian subcontinent gives rise to a variety of cloud types that differ considerably in their ability to heat or cool the atmosphere. These clouds in turn affect monsoon dynamics via their radiative impacts, both at the surface and in the atmosphere. New generation of satellites carrying active radar and lidar sensors are allowing realistic quantification of cloud radiative heating (CRH) by resolving the vertical structure of the atmosphere in an unprecedented detail. Obtaining this information is a first step in closing the knowledge gap in our understanding of the role that different clouds play as regulators of the monsoon and vice versa. Here, we use collocated CloudSat-CALIPSO data sets to understand following aspects of cloud-radiation interactions associated with Indian monsoon circulation. (1) How does the vertical distribution of CRH evolve over the Indian continent throughout monsoon season? (2) What is the absolute contribution of different clouds types to the total CRH? (3) How do active and break periods of monsoon affect the distribution of CRH? And finally, (4) what are the net radiative effects of different cloud types on surface heating? In general, the vertical structure of CRH follows the northward migration and the retreat of monsoon from May to October. It is found that the alto- and nimbostratus clouds intensely warm the middle troposphere and equally strongly cool the upper troposphere. Their warming/cooling consistently exceeds ±0.2 K day-1 (after weighing by vertical cloud fraction) in monthly mean composites throughout the middle and upper troposphere respectively, with largest impact observed in June, July and August. Deep convective towers cause considerable warming in the middle and upper troposphere, but strongly cool the base and inside of the tropical tropopause layer (TTL). Such cooling is stronger during active (-1.23 K day-1) monsoon conditions compared to break periods (-0.36 K day-1
NASA Astrophysics Data System (ADS)
Kudo, Rei; Nishizawa, Tomoaki; Aoyagi, Toshinori
2016-07-01
The SKYLIDAR algorithm was developed to estimate vertical profiles of aerosol optical properties from sky radiometer (SKYNET) and lidar (AD-Net) measurements. The solar heating rate was also estimated from the SKYLIDAR retrievals. The algorithm consists of two retrieval steps: (1) columnar properties are retrieved from the sky radiometer measurements and the vertically mean depolarization ratio obtained from the lidar measurements and (2) vertical profiles are retrieved from the lidar measurements and the results of the first step. The derived parameters are the vertical profiles of the size distribution, refractive index (real and imaginary parts), extinction coefficient, single-scattering albedo, and asymmetry factor. Sensitivity tests were conducted by applying the SKYLIDAR algorithm to the simulated sky radiometer and lidar data for vertical profiles of three different aerosols, continental average, transported dust, and pollution aerosols. The vertical profiles of the size distribution, extinction coefficient, and asymmetry factor were well estimated in all cases. The vertical profiles of the refractive index and single-scattering albedo of transported dust, but not those of transported pollution aerosol, were well estimated. To demonstrate the performance and validity of the SKYLIDAR algorithm, we applied the SKYLIDAR algorithm to the actual measurements at Tsukuba, Japan. The detailed vertical structures of the aerosol optical properties and solar heating rate of transported dust and smoke were investigated. Examination of the relationship between the solar heating rate and the aerosol optical properties showed that the vertical profile of the asymmetry factor played an important role in creating vertical variation in the solar heating rate. We then compared the columnar optical properties retrieved with the SKYLIDAR algorithm to those produced with the more established scheme SKYRAD.PACK, and the surface solar irradiance calculated from the SKYLIDAR
The effect of water subcooling on film boiling heat transfer from vertical cylinders
Greene, G.A.; Irvine, T.F. Jr.
1994-03-01
The effect of subcooling on the film boiling heat transfer of water from vertical copper cylinders has been investigated experimentally using a transient quench technique. A lumped parameter model was utilized since the Blot numbers were always less than 0.05. The amount of subcooling varied from 0 K to 70 K and the initial cylinder wall temperatures were of the order of 1100 K. Heat transfer coefficient were measured at the midpoint of the cylinders and were obtained over quench times in which they were verified to be constant. Subcooling had a significant effect on both the film boiling heat transfer coefficient and the minimum film boiling temperature. As the subcooling varied from 0 K to 70 K, the h transfer coefficient increased by a factor of five. As the subcooling varied from 0 K to 60 K, the minimum film boiling temperature increased from approximately 600 K to 1000 K. An attempt to correlate the heat transfer coefficient data with a method recently proposed by Sakurai et al. was only successful at subcooled temperature differences less than 10 K. A modified correlation is presented using the Sakurai et al. parameters which better represents the data over the complete subcooling range.
On the vertical exchange of heat, mass and momentum over complex, mountainous terrain
NASA Astrophysics Data System (ADS)
Rotach, Mathias; Gohm, Alexander; Lang, Moritz; Leukauf, Daniel; Stiperski, Ivana; Wagner, Johannes
2015-12-01
The role of the atmospheric boundary layer (ABL) in the atmosphere-climate system is the exchange of heat, mass and momentum between 'the earth's surface' and the atmosphere. Traditionally, it is understood that turbulent transport is responsible for this exchange and hence the understanding and physical description of the turbulence structure of the boundary layer is key to assess the effectiveness of earth-atmosphere exchange. This understanding is rooted in the (implicit) assumption of a scale separation or spectral gap between turbulence and mean atmospheric motions, which in turn leads to the assumption of a horizontally homogeneous and flat (HHF) surface as a reference, for which both physical understanding and model parameterizations have successfully been developed over the years. Over mountainous terrain, however, the ABL is generically inhomogeneous due to both thermal (radiative) and dynamic forcing. This inhomogeneity leads to meso-scale and even sub-meso-scale flows such as slope and valley winds or wake effects. It is argued here that these (sub)meso-scale motions can significantly contribute to the vertical structure of the boundary layer and hence vertical exchange of heat and mass between the surface and the atmosphere. If model grid resolution is not high enough the latter will have to be parameterized (in a similar fashion as gravity wave drag parameterizations take into account the momentum transport due to gravity waves in large-scale models). In this contribution we summarize the available evidence of the contribution of (sub)meso-scale motions to vertical exchange in mountainous terrain from observational and numerical modeling studies. In particular, a number of recent simulation studies using idealized topography will be summarized and put into perspective – so as to identify possible limitations and areas of necessary future research.
Joule heating of the ITER TF cold structure: Effects of vertical control coil currents and ELMS
Radovinsky, A.; Pillsbury, R.D. Jr.
1993-11-09
The toroidal field coil and support structures for ITER are maintained at cryogenic temperatures. The time-varying currents in the poloidal field coil system will induce eddy currents in these structures. The associated Joule dissipation will cause local heating and require heat removal which will show up as a load on the cryogenic system. Studies of Joule heating of the ITER TF cold structure (TFCS) due to the currents in the poloidal field coil system are presented. The two regimes considered in this study are the plasma vertical stability control and the Edge Loss Mode (ELM) events. The 3-D, thin-shell, eddy current program, EDDYCUFF was used to analyze the eddy currents and Joule losses in the cold structure. The current versus time scenarios were defined. Four control coil options were studied. All schemes use coils external to the TF cold structure. Analyses of power depositions during the plasma vertical stability control were performed for each of the four options. For each of these options three different recovery times were assumed. The times were 3, 1, and 1/3 seconds. Sets of four sequential ELMs, as well as isolated ELMs have been studied for various sets of active PF coils. The results showed that the lowest average power dissipation in the TF cold structure occurs when a subset of PF2 and PF7 are active, and all the other PF coils are passive. The general conclusion is that to minimize power dissipation in the TF cold structure it is preferable that only coils PF2 and PF7 are active. The other coils (PF3-PF6) should be passive and driven by a condition of constant flux. It is recommended in particular, that coils PF3 and PF5 be allowed to change currents to conserve flux, since they provide the maximum shielding of the TFCS from the fields caused by the active coils.
Heat transfer correlations for low Reynolds number flows of water in vertical annuli
El-Genk, M.S.; Rao, D.V.
1987-01-01
This paper presents heat transfer correlations for both buoyancy assisted and opposed laminar and transition flows of water in vertical annuli for Reynolds numbers ranging from 150 to 10/sup 4/ and Rayleigh numbers up to 10/sup 7/. The correlations are based on more than 800 data points collected for two annuli (diameter ratio of 1.17 and 2.0) with an isoflux inner wall and an adiabatic outer wall. Results demonstrated that the buoyancy assisted flow data could be divided into four regimes based on the values of Reynolds number: Laminar (Re < 800), Combined Laminar (800 < Re > 2100), Laminar/ Transition (2100 < Re < 5000), and Transition ( 5000 < Re 10,000). This data, except for transition flow, was correlated in terms of Gz to account for the effect on the Nusselt number of the axial distance from the bottom of the heated section. For buoyancy opposed flow, however, Richardson number more accurately classified the data. The data for this flow was correlated in three regions: Ri < 0.06, 0.06 < Ri < 0.47, and 0.47 < Ri < 3.0. The heat transfer correlations for both buoyancy assisted and opposed flows were within +-10 percent of the experimental data.
Choi, Eunmi; Kim, Areum; Cui, Yinhua; Chae, Su Jin; Nam, Minwoo; Kwon, Soon Hyeong; Cha, Yong Won; Pyo, Sung Gyu
2015-11-01
Vertical light-emitting diodes (VLEDs) have attracted considerable attention owing to their improved thermal, electrical, and optical performance compared to conventional LEDs. To fabricate VLEDs, a bonding technique is required following laser lift-off. Eutectic bonding techniques are preferred owing to their low-heat mechanism and production safety. However, the conventional resistance heating method for eutectic bonding process, the extremely longer process time becomes a problem such as cost rise, wapage. In this study, the thermal efficiency was measured according to the diameter of the coil in order to optimize the eutectic bonding of the RF induction heating method in order to solve this problem. We confirmed that successful eutectic bonding is possible with less than 30 min processing using Sn-Glass. In addition, Au (20 wt%)/Sn (80 wt%) alloy, a mainly used the eutectic bonding interlayer material for VLEDs, can also be used as an interlayer to provide void-free eutectic bonding in less than 30 min. PMID:26726547
Bae, Y. Y.; Hong, S. D.; Kim, Y. W.
2012-07-01
A number of computational works have been performed so far for the simulation of heat transfer in a supercritical fluid. The simulations, however, faced a lot of difficulties when heat transfer deteriorates due either to buoyancy or by acceleration. When the bulk temperature approaches the pseudo-critical temperature the fluid experiences a severe axial density gradient on top of a severe radial one. Earlier numerical calculations showed, without exception, unrealistic over-predictions, as soon as the bulk temperature exceeded the pseudo-critical temperature. The over-predictions might have been resulted from an inapplicability of widely-used turbulence models. One of the major causes for the difficulties may probably be an assumption of a constant turbulent Prandtl number. Recent research, both numerical and experimental, indicates that the turbulent Prandtl number is never a constant when the gradient of physical properties is significant. This paper describes the applicability of a variable turbulent Prandtl number to the numerical simulation of heat transfer in supercritical fluids flowing in narrow vertical tubes. (authors)
NASA Astrophysics Data System (ADS)
Benli, Hüseyin
2016-08-01
This paper presents the suitability of artificial neural networks (ANNs) to predict the performance and comparison between a horizontal and a vertical ground source heat pump system. Performance forecasting is the precondition for the optimal control and energy saving operation of heat pump systems. In this study, performance parameters such as air temperature entering condenser fan-coil unit, air temperature leaving condenser fan-coil unit, and ground temperatures (2 and 60 m) obtained experimental studies are input data; coefficient of performance of system (COPsys) is in output layer. The back propagation learning algorithm with three different variants such as Levenberg-Marguardt, Pola-Ribiere conjugate gradient, and scaled conjugate gradient, and also tangent sigmoid transfer function were used in the network so that the best approach can be found. The results showed that LM with three neurons in the hidden layer is the most suitable algorithm with maximum correlation coefficients R2 of 0.999, minimum root mean square RMS value and low coefficient variance COV. The reported results confirmed that the use of ANN for performance prediction of COPsys,H-V is acceptable in these studies.
NASA Astrophysics Data System (ADS)
Benli, Hüseyin
2015-11-01
This paper presents the suitability of artificial neural networks (ANNs) to predict the performance and comparison between a horizontal and a vertical ground source heat pump system. Performance forecasting is the precondition for the optimal control and energy saving operation of heat pump systems. In this study, performance parameters such as air temperature entering condenser fan-coil unit, air temperature leaving condenser fan-coil unit, and ground temperatures (2 and 60 m) obtained experimental studies are input data; coefficient of performance of system (COPsys) is in output layer. The back propagation learning algorithm with three different variants such as Levenberg-Marguardt, Pola-Ribiere conjugate gradient, and scaled conjugate gradient, and also tangent sigmoid transfer function were used in the network so that the best approach can be found. The results showed that LM with three neurons in the hidden layer is the most suitable algorithm with maximum correlation coefficients R2 of 0.999, minimum root mean square RMS value and low coefficient variance COV. The reported results confirmed that the use of ANN for performance prediction of COPsys,H-V is acceptable in these studies.
Thermoelectric harvesting of low temperature natural/waste heat
NASA Astrophysics Data System (ADS)
Rowe, David Michael
2012-06-01
Apart from specialized space requirements current development in applications of thermoelectric generation mainly relate to reducing harmful carbon emissions and decreasing costly fuel consumption through the recovery of exhaust heat from fossil fuel powered engines and emissions from industrial utilities. Focus on these applications is to the detriment of the wider exploitations of thermoelectrics with other sources of heat energy, and in particular natural occurring and waste low temperature heat, receiving little, if any, attention. In this presentation thermoelectric generation applications, both potential and real in harvesting low temperature waste/natural heat are reviewed. The use of thermoelectrics to harvest solar energy, ocean thermal energy, geothermal heat and waste heat are discussed and their credibility as future large-scale sources of electrical power assessed.
NASA Astrophysics Data System (ADS)
Miyata, Kazushi; Mori, Hideo; Ohishi, Katsumi; Tanaka, Hirokazu
Experiments were performed on boiling heat transfer and pressure drop of a refrigerant R410A flowing vertically downward in a copper smooth tube of 1.0 mm inside diameter for the development of a high-performance heat exchanger using small diameter tubes for air conditioning systems. Local heat transfer coefficients were measured in a range of mass fluxes from 30 to 200 kg/(m2•s), heat fluxes from 1 to 16 kW/m2 and quality from 0.1 to over 1 at evaporation temperature of 10°C. Pressure drops were measured and flow patterns were observed at mass fluxes from 30 to 200 kg/(m2•s) and quality from 0.1 to 0.9. The characteristics of frictional pressure drop, heat transfer coefficient and dryout qualities were clarified by comparing the measurements with the data for the vertically upward flow previously obtained.
Numerical investigation of the thermal behavior of heated natural composite materials
NASA Astrophysics Data System (ADS)
Qasim, S. M.; Mohammed, F. Abbas; Hashim, R.
2015-11-01
In the present work numerical investigation was carried out for laminar natural convection heat transfer from natural composite material (NCM). Three types of natural materials such as seed dates, egg shells, and feathers are mixed separately with polyester resin. Natural materials are added with different volume fraction (10%, 20%, and 30%) are heated with different heat flux (1078W/m2, 928W/m2, 750W/m2, 608W/m2, and 457W/m2) at (vertical, inclined, and horizontal) position. Continuity and Navier-Stocks equations are solved numerically in three dimensions using ANSYS FLUENT package 12.1 software commercial program. Numerical results showed the temperature distribution was affected for all types at volume fraction 30% and heat flux is 1078 W/m2, for different position. So, shows that the plumes and temperature behavior are affected by the air and the distance from heat source. Numerical results showed acceptable agreement with the experimental previous results.
Scaling of the turbulent natural convection flow in a heated square cavity
NASA Astrophysics Data System (ADS)
Henkes, R. A. W. M.; Hoogendoorn, C. J.
1994-05-01
By numerically solving the Reynolds equations for air and water in a square cavity, with differentially heated vertical walls, at Rayleigh numbers up to 10(exp 20) the scalings of the turbulent natural convection flow are derived. Turbulence is modeled by the standard k-epsilon model and by the low-Reynolds-number k-epsilon models of Chien and of Jones and Launder. Both the scalings with respect to the Rayleigh number (based on the cavity size H) and with respect to the local height (y/H) are considered. The scalings are derived for the inner layer, outer layer, and core region. The Rayleigh number scalings are almost the same as the scalings for the natural convection boundary layer along a hot vertical plate. The scalings found are almost independent of the k-epsilon model used.
NASA Astrophysics Data System (ADS)
Dutreuil, S.; Bopp, L.; Tagliabue, A.
2009-01-01
Artificially enhanced vertical mixing has been suggested as a means by which to fertilize the biological pump with subsurface nutrients and thus increase the oceanic CO2 sink. We use an ocean general circulation and biogeochemistry model (OGCBM) to examine the impact of artificially enhanced vertical mixing on biological productivity and atmospheric CO2, as well as the climatically significant gases nitrous oxide (N2O) and dimethyl sulphide (DMS) during simulations between 2000 and 2020. Overall, we find a large increase in the amount of organic carbon exported from surface waters, but an overall increase in atmospheric CO2 concentrations by 2020. We quantified the individual effect of changes in dissolved inorganic carbon (DIC), alkalinity and biological production on the change in pCO2 at characteristic sites and found the increased vertical supply of carbon rich subsurface water to be primarily responsible for the enhanced CO2 outgassing, although increased alkalinity and, to a lesser degree, biological production can compensate in some regions. While ocean-atmosphere fluxes of DMS do increase slightly, which might reduce radiative forcing, the oceanic N2O source also expands. Our study has implications for understanding how natural variability in vertical mixing in different ocean regions (such as that observed recently in the Southern Ocean) can impact the ocean CO2 sink via changes in DIC, alkalinity and carbon export.
NASA Astrophysics Data System (ADS)
Dutreuil, S.; Bopp, L.; Tagliabue, A.
2009-05-01
Artificially enhanced vertical mixing has been suggested as a means by which to fertilize the biological pump with subsurface nutrients and thus increase the oceanic CO2 sink. We use an ocean general circulation and biogeochemistry model (OGCBM) to examine the impact of artificially enhanced vertical mixing on biological productivity and atmospheric CO2, as well as the climatically significant gases nitrous oxide (N2O) and dimethyl sulphide (DMS) during simulations between 2000 and 2020. Overall, we find a large increase in the amount of organic carbon exported from surface waters, but an overall increase in atmospheric CO2 concentrations by 2020. We quantified the individual effect of changes in dissolved inorganic carbon (DIC), alkalinity and biological production on the change in pCO2 at characteristic sites and found the increased vertical supply of carbon rich subsurface water to be primarily responsible for the enhanced CO2 outgassing, although increased alkalinity and, to a lesser degree, biological production can compensate in some regions. While ocean-atmosphere fluxes of DMS do increase slightly, which might reduce radiative forcing, the oceanic N2O source also expands. Our study has implications for understanding how natural variability in vertical mixing in different ocean regions (such as that observed recently in the Southern Ocean) can impact the ocean CO2 sink via changes in DIC, alkalinity and carbon export.
NASA Astrophysics Data System (ADS)
Ambrosini, Dario; Tanda, Giovanni
2006-01-01
In this work, natural convection heat transfer in vertical channels is experimentally investigated by applying different optical techniques, namely holographic interferometry and schlieren. Both these techniques are based on the temperature dependence of the air refractive index but they detect different optical quantities and their use involves different instrumentation and optical components. Optical methods, non-intrusive in nature, are particularly suitable for the visualization of flow and thermal fields as witnessed by their increasing use in a range of scientific and engineering disciplines; for this reason, the introduction of these experimental tools into a laboratory course can be of high value. Physics and engineering students can get familiarized with optical techniques, grasp the basics of thermal phenomena, usually elusive, which can be more easily understood if they are made visible, and begin to master digital image analysis, a key skill in laboratory activities. A didactic description of holographic interferometry and schlieren is provided and experimental results obtained for vertical, smooth and rib-roughened channels with asymmetrical heating are presented. A comparison between distributions of the local heat transfer coefficient (or its dimensionless counterpart, the Nusselt number) revealed good agreement between the results separately obtained by the two techniques, thus proving their suitability for investigating free convection heat transfer in channels.
NASA Astrophysics Data System (ADS)
Marneni, Narahari; Tippa, Sowmya; Pendyala, Rajashekhar
2015-12-01
Analytical investigation of the unsteady natural convection flow along an infinite vertical plate embedded in a porous medium subjected to a ramped temperature boundary condition has been performed in the presence of magnetic field, thermal radiation, heat generation or absorption, chemical reaction and Dufour effect. The governing equations for momentum, energy and concentration have been solved using the Laplace transform technique. The closed-form exact solutions for the velocity, temperature and concentration fields as well as the skin-friction, Nusselt and Sherwood numbers are obtained without any restrictions. The influence of pertinent parameters on the fluid velocity, temperature, skin-friction and Nusselt number have been discussed in detailed through graphs. The natural convection due to ramped wall temperature (RWT) has also been compared with that of the constant wall temperature (CWT). It is observed that the fluid velocity and temperature profiles are greater in case of CWT than the case of RWT. Also it is noticed that the flow accelerates with increasing values of heat source parameter, permeability parameter and Dufour number while the flow retardation is observed with increasing values of radiation parameter, magnetic field parameter and Schmidt number.
Prandtl Number Dependent Natural Convection with Internal Heat Sources
Kang Hee Lee; Seung Dong Lee; Kune Y. Suh; Joy L. Rempe; Fan-Bill Cheung; Sang B. Kim
2004-06-01
Natural convection plays an important role in determining the thermal load from debris accumulated in the reactor vessel lower head during a severe accident. Recently, attention is being paid to the feasibility of external vessel flooding as a severe accident management strategy and to the phenomena affecting the success path for retaining the molten core material inside the vessel. The heat transfer inside the molten core material can be characterized by the strong buoyancy-induced flows resulting from internal heating due to decay of fission products. The thermo-fluid dynamic characteristics of such flow depend strongly on the thermal boundary conditions. The spatial and temporal variation of heat flux on the pool wall boundaries and the pool superheat are mainly characterized by the natural convection flow inside the molten pool. In general, the natural convection heat transfer phenomena involving the internal heat generation are represented by the modified Rayleigh number (Ra’), which quantifies the internal heat source and hence the strength of the buoyancy force. In this study, tests were conducted in a rectangular section 250 mm high, 500 mm long and 160 mm wide. Twenty-four T-type thermocouples were installed in the test section to measure temperatures. Four T-type thermocouples were used to measure the boundary temperatures. The thermocouples were placed in designated locations after calibration. A direct heating method was adopted in this test to simulate the uniform heat generation. The experiments covered a range of Ra' between 1.5x106 and 7.42x1015 and the Prandtl number (Pr) between 0.7 and 6.5. Tests were conducted with water and air as simulant. The upper and lower boundary conditions were maintained uniform. The results demonstrated feasibility of the direct heating method to simulate uniform volumetric heat generation. Particular attentions were paid to the effect of Pr on natural convection heat transfer within the rectangular pool.
NASA Astrophysics Data System (ADS)
Lin, Wenxian; Armfield, S. W.
2013-12-01
It is of fundamental significance, especially with regard to application, to fully understand the flow behavior of unsteady natural convection boundary layers on a vertical plate heated by a time-dependent heat flux. Such an understanding is currently scarce. In this paper, the scaling analysis by Lin et al. [Phys. Rev. E 79, 066313 (2009), 10.1103/PhysRevE.79.066313] using a simple three-region structure for the unsteady natural convection boundary layer of a homogeneous Newtonian fluid with Pr >1 under isothermal heating was substantially extended for the case when the heating is due to a time-varying sinusoidal heat flux. A series of scalings was developed for the thermal boundary thickness, the plate temperature, the viscous boundary thicknesses, and the maximum vertical velocity within the boundary layer, which are the major parameters representing the flow behavior, in terms of the governing parameters of the flow, i.e., the Rayleigh number Ra, the Prandtl number Pr, and the dimensionless natural frequency fn of the time-varying sinusoidal heat flux, at the start-up stage, at the transition time scale which represents the ending of the start-up stage and the beginning of the transitional stage of the boundary-layer development, and at the quasi-steady stage. These scalings were validated by comparison to 10 full numerical solutions of the governing equations with Ra, Pr, and fn in the ranges 106≤Ra≤109, 3≤Pr≤100, and 0.01≤fn≤0.1 and were shown in general to provide an accurate description of the flow at different development stages, except for high-Pr runs in which a further, although weak, Pr dependence is present, which cannot be accurately predicted by the current scaling analysis using the simple three-region structure, attributed to the non-boundary-layer nature of the velocity field with high-Pr fluids. Some scalings at the transition time scale and at the quasi-steady stage also produce noticeable deviations from the numerical results when
NASA Astrophysics Data System (ADS)
Raju, S. Suresh Kumar; Narahari, M.; Pendyala, Rajashekhar
2014-10-01
In this paper, a numerical solution of the unsteady two-dimensional natural convection along a vertical plate in the presence of Soret and chemical reaction effects is presented. The governing non-dimensional coupled non-linear partial differential equations have been evaluated by using an implicit finite-difference technique of Crank-Nicolson scheme. Numerical predictions for the velocity, concentration, local and average skin-friction and Sherwood number for distinct values of chemical reaction parameter and Soret number are plotted graphically. It is found that the fluid velocity and concentration decreases while increasing chemical reaction parameter whereas an increase in the Soret number increases the fluid velocity and concentration.
Natural substrate lift-off technique for vertical light-emitting diodes
NASA Astrophysics Data System (ADS)
Lee, Chia-Yu; Lan, Yu-Pin; Tu, Po-Min; Hsu, Shih-Chieh; Lin, Chien-Chung; Kuo, Hao-Chung; Chi, Gou-Chung; Chang, Chun-Yen
2014-04-01
Hexagonal inverted pyramid (HIP) structures and the natural substrate lift-off (NSLO) technique were demonstrated on a GaN-based vertical light-emitting diode (VLED). The HIP structures were formed at the interface between GaN and the sapphire substrate by molten KOH wet etching. The threading dislocation density (TDD) estimated by transmission electron microscopy (TEM) was reduced to 1 × 108 cm-2. Raman spectroscopy indicated that the compressive strain from the bottom GaN/sapphire was effectively released through the HIP structure. With the adoption of the HIP structure and NSLO, the light output power and yield performance of leakage current could be further improved.
2012-01-01
Background Canine leishmaniosis (CanL) is a zoonotic disease caused by Leishmania (L.) infantum. It is endemic to several tropical and subtropical countries but also to the Mediterranean region. It is transmitted by phlebotomine sandflies but occasional non-vector transmissions have been reported, including vertical and horizontal transmission. Findings The authors report a case of CanL in a female boxer dog from Dusseldorf, Germany, that had never been in an endemic region. A serum sample from the bitch was tested positive for antibodies against Leishmania (IFAT 1:2,000, ELISA 72). The bitch had whelped three litters, and one puppy from the third litter was also found to be seropositive for Leishmania antibodies (IFAT 1:4,000, ELISA 78). Conclusions Up to now, despite intensive searching, the occurrence of sandflies could not be proved in the bitch's region of origin. Thus, vertical and horizontal transmission are to be discussed as possible ways of infection. This may be the first report of venereal and vertical transmission of L. infantum in naturally infected dogs in Germany. PMID:22463789
Turbulent natural convection between a perforated vertical cylinder and a surrounding array
McEligot, D.M.; Stoots, C.M.; Christenson, W.A.; O'Brien, J.E.; Mecham, D.C.; Lussie, W.G.
1992-01-01
A number of situations can be hypothesized to occur in an advanced or special purpose nuclear reactor such that the core is filled with a gas but there is no forced flow to remove the thermal energy evolved. Experiments were conducted by resistively hearing a vertical circular cylinder of length-to-diameter ratio of about 160 centered inside a concentric perforated tube which was, in turn, surrounded by three larger diameter tubes cooled internally with water flow. The ratio of the test section temperature to the cooling tube temperature was varied up to 2.6; and the Rayleigh number, based on tube diameter and properties evaluated at the cooling tube temperature, ranged from 2.9 x 10{sup 4} to 9.2 x 10{sup 5}. Results indicate that the convective heat transfer parameters for the perforated tube are about fifteen per cent higher than for the smooth bare tube centered in the same position relative to the array. The Nusselt number for convective heat transfer across the annulus between the heated test section and the perforated tube corresponded to parallel laminar flow.
Turbulent natural convection between a perforated vertical cylinder and a surrounding array
McEligot, D.M.; Stoots, C.M.; Christenson, W.A.; O`Brien, J.E.; Mecham, D.C.; Lussie, W.G.
1992-09-01
A number of situations can be hypothesized to occur in an advanced or special purpose nuclear reactor such that the core is filled with a gas but there is no forced flow to remove the thermal energy evolved. Experiments were conducted by resistively hearing a vertical circular cylinder of length-to-diameter ratio of about 160 centered inside a concentric perforated tube which was, in turn, surrounded by three larger diameter tubes cooled internally with water flow. The ratio of the test section temperature to the cooling tube temperature was varied up to 2.6; and the Rayleigh number, based on tube diameter and properties evaluated at the cooling tube temperature, ranged from 2.9 x 10{sup 4} to 9.2 x 10{sup 5}. Results indicate that the convective heat transfer parameters for the perforated tube are about fifteen per cent higher than for the smooth bare tube centered in the same position relative to the array. The Nusselt number for convective heat transfer across the annulus between the heated test section and the perforated tube corresponded to parallel laminar flow.
Unsteady Convection Flow and Heat Transfer over a Vertical Stretching Surface
Cai, Wenli; Su, Ning; Liu, Xiangdong
2014-01-01
This paper investigates the effect of thermal radiation on unsteady convection flow and heat transfer over a vertical permeable stretching surface in porous medium, where the effects of temperature dependent viscosity and thermal conductivity are also considered. By using a similarity transformation, the governing time-dependent boundary layer equations for momentum and thermal energy are first transformed into coupled, non-linear ordinary differential equations with variable coefficients. Numerical solutions to these equations subject to appropriate boundary conditions are obtained by the numerical shooting technique with fourth-fifth order Runge-Kutta scheme. Numerical results show that as viscosity variation parameter increases both the absolute value of the surface friction coefficient and the absolute value of the surface temperature gradient increase whereas the temperature decreases slightly. With the increase of viscosity variation parameter, the velocity decreases near the sheet surface but increases far away from the surface of the sheet in the boundary layer. The increase in permeability parameter leads to the decrease in both the temperature and the absolute value of the surface friction coefficient, and the increase in both the velocity and the absolute value of the surface temperature gradient. PMID:25264737
Unsteady convection flow and heat transfer over a vertical stretching surface.
Cai, Wenli; Su, Ning; Liu, Xiangdong
2014-01-01
This paper investigates the effect of thermal radiation on unsteady convection flow and heat transfer over a vertical permeable stretching surface in porous medium, where the effects of temperature dependent viscosity and thermal conductivity are also considered. By using a similarity transformation, the governing time-dependent boundary layer equations for momentum and thermal energy are first transformed into coupled, non-linear ordinary differential equations with variable coefficients. Numerical solutions to these equations subject to appropriate boundary conditions are obtained by the numerical shooting technique with fourth-fifth order Runge-Kutta scheme. Numerical results show that as viscosity variation parameter increases both the absolute value of the surface friction coefficient and the absolute value of the surface temperature gradient increase whereas the temperature decreases slightly. With the increase of viscosity variation parameter, the velocity decreases near the sheet surface but increases far away from the surface of the sheet in the boundary layer. The increase in permeability parameter leads to the decrease in both the temperature and the absolute value of the surface friction coefficient, and the increase in both the velocity and the absolute value of the surface temperature gradient. PMID:25264737
Vertical characteristics of PM2.5 during the heating season in Tianjin, China.
Wu, Hong; Zhang, Yu-fen; Han, Su-qin; Wu, Jian-hui; Bi, Xiao-hui; Shi, Guo-liang; Wang, Jiao; Yao, Qing; Cai, Zi-ying; Liu, Jing-le; Feng, Yin-chang
2015-08-01
In this study, PM2.5 samples were collected at four heights (10m, 40m, 120m and 220m) at a meteorological tower in the daytime and nighttime during the heating season in Tianjin, China. The vertical variation and diurnal variability of the concentrations of PM2.5 and main chemical compositions were analyzed in clear days and heavy pollution days. Generally, mass concentrations of PM2.5 and the chemical compositions showed a decreasing trend with increasing height, while mass percentages of SO4(2-), NO3(-) and OC showed an increasing trend with increasing height. Concentrations of ion species and carbon compound in PM2.5 samples in the daytime were higher than those collected at night, which was due to intense human activities and suitable meteorological condition in the daytime. The ratios of NO3(-)/SO4(2-) and OC/EC were also considered, and we have observed that their levels on heavy pollution days were higher than those on clear days. In addition, source apportionments were identified quantitatively using the CMB-iteration model. The results indicated that contributions of secondary ion species increased with increasing height, while contributions of other pollutant sources decreased, and contributions of vehicle exhaust were relatively high on clear days. PMID:25863506
NASA Astrophysics Data System (ADS)
Jaluria, Yogesh; Tamm, Gunnar Olavi
2014-11-01
An experimental investigation was conducted to study buoyancy and pressure induced flow of hot gases in vertical shafts to model smoke propagation in elevator and ventilation shafts of high rise building fires. Various configurations were tested with regard to natural and forced ventilation imposed at the upper and lower surfaces of the vertical shaft. The aspect ratio was taken at a typical value of 6. From a lower vent, the inlet conditions for smoke and hot gases were varied in terms of the Reynolds and Grashof numbers. The forced ventilation at the upper or lower boundary was of the same order as the bulk shaft flow. Measurements were taken within the shaft to allow a detailed study of the steady state flow and thermal fields established for various shaft configurations and inlet conditions, from which optimal means for smoke alleviation in high rise building fires may be developed. Results indicated a wall plume as the primary transport mechanism for smoke propagating from the inlet towards the exhaust region. Recirculation and entrainment dominated at high inlet Grashof number flows, while increased inlet Reynolds numbers allowed greater mixing in the shaft. The development and stability of these flow patterns and their effects on the smoke behavior were assessed for several shaft configurations with different inlet conditions. The comparisons indicated that the fastest smoke removal and lowest overall shaft temperatures occur for a configuration with natural ventilation at the top surface and forced ventilation up from the shaft bottom.
NASA Astrophysics Data System (ADS)
Fialko, O.; Kovalchuk, L.
2002-12-01
Ample field observations in areas of known oil and gas deposists reveal an existence of excess temperature anomalies associated with the hydrocarbon-bearing structures. These observations are explained in terms of upward migration of heated fluids. In this case there is a deviation from a linear temperature distribution with depth due to a convective component of the heat flux. We propose a new method based on in situ measurements of the thermal field that allows one to take into account both conductive and convective components of the heat flow. In addition to the usual measurements of temperature, we determine the the curvature of the geothermograms, which characterizes the degree of deviation of the heat transfer from a conductive regime. Correspondingly, in addition to the commonly used geothermal gradient, we introduce new parameters, such as the radius of curvature of the geotherms (R), the coefficient of curvature of the geotherms (K), the Knudsen criterion (Kn), and parameter F. We present analytic expressions for the determination of these parameters, and evaluate these parameters for several natural objects. We demonstrate the usefulness of the proposed method for 1) forecasts of the presence of the deep-seated hydrocarbon deposits; 2) estimates of the abnornally elevated gas content in the deep-seated coal deposits, and determination of zones with high risk of methane bursts; 3) studies of the hydro-geothermal conditions of the geothermal areas; 4) determination and localization of leaks along the buried industrial pipelines. We present examples illustrating the application of our method for the abovementioned tasks.
NASA Astrophysics Data System (ADS)
Senhaji, S.; Feddaoui, M.; Mediouni, T.; Mir, A.
2009-03-01
A numerical study of the evaporation in mixed convection of a pure alcohol liquid film: ethanol and methanol was investigated. It is a turbulent liquid film falling on the internal face of a vertical tube. A laminar flow of dry air enters the vertical tube at constant temperature in the downward direction. The wall of the tube is subjected to a constant and uniform heat flux. The model solves the coupled parabolic governing equations in both phases including turbulent liquid film together with the boundary and interfacial conditions. The systems of equations obtained by using an implicit finite difference method are solved by TDMA method. A Van Driest model is adopted to simulate the turbulent liquid film flow. The influence of the inlet liquid flow, Reynolds number in the gas flow and the wall heat flux on the intensity of heat and mass transfers are examined. A comparison between the results obtained for studied alcohols and water in the same conditions is made.
NASA Astrophysics Data System (ADS)
Kaye, Nigel; Hunt, Gary
2007-11-01
We present a theoretical model for the role of heat source area on the transition from displacement to mixing flow for a naturally ventilated room. We examine the relationship between the existing standard models for natural ventilation of a room with floor and ceiling level vents (Linden et al. 1990 and Gladstone & Woods 2001). We show that the uniform heat distribution model of Gladstone & Woods is the limit of an infinite number of localized heat sources based on the Linden et al. model. We then examine the transition from localized to distributed heat source behaviour as a function of the horizontal extent of the heat source. Our model is based on recent measurements of the plume flow above large area heat sources that suggests the flow rate increases linearly with height. The flow transition is a function of the room vent area scaled on the ceiling height squared and the ratio of the ceiling height to heat source radius. As the heat source radius increases there is a rapid transition from displacement ventilation, driven by localized heat sources, toward mixing ventilation, driven by distributed heat sources. This transition is independent of the floor area of the room implying that for displacement ventilation to be established the heat source(s) need to be small compared to the vertical, as well as horizontal scale of the room.
NASA Astrophysics Data System (ADS)
Sun, Shufeng; Wu, Yuyuan; Zhao, Rongyi
2001-04-01
According to a separated phase flow model for vertical annular two-phase flow in an annular channel, the liquid film thickness, distributions of velocities and temperatures in the liquid layer are predicted in the range of heat fluxes: 6000-12000 W/m 2, mass flux: 500-1100 kg/m2 s. The pressure drop along the flow channel and heat transfer coefficient are also calculated. The liquid film thickness is in the order of micrometers and heat transfer coefficient is 2800-7800 W/m2 K of liquid nitrogen boiling in narrow annular channels. The measured heat transfer coefficient is 29% higher than the calculated values. With the mass flux increasing and the gap of the annular channel decreasing, pressure drop and heat transfer coefficient increase.
Circulation, heat exchange and vertical structure of the Hornsund - the Svalbard Archipelago fiord.
NASA Astrophysics Data System (ADS)
Jakacki, Jaromir; Przyborska, Anna; Kosecki, Szymon; Sundfjord, Arild
2015-04-01
The Hornsund fjord is located in the southwestern part of Spitsbergen- the biggest island of the Svalbard Archipelago. The fjord is influenced by two major currents in this area. The first one is the current carrying the cold and less saline waters around the southern Spitsbergen tip, often called the Sørkapp Current or the South Cape Current. The second is the well-known West Spitsbergen Current (WSC), carrying salty and warm Atlantic Waters through Fram Strait into the Arctic Ocean. From a biological point of view, Hornsund can be treated as a young unstable system or cold system, which suggests that it is under an influence of the South Cape Current. Because of limited measurements in this area, the hydrodynamic model MIKE3D has been implemented for this fjord to diagnose which current has the main influence on Hornsund. The fjord domain was extended into the shelf area. At the lateral boundary of the extended domain, data from the ROMS simulation of the Svalbard area made by the Norwegian Institute of Marine Research (IMR) with resolution of 800 m have been used. Atmospheric data from European Centre for Medium Weather Forecast (ECMWF) were employed as well as from the Global Data Assimilation System (GDAS, 1 and 0.5 degrees) reanalysis that uses metrological data from Polish Polar Station located in Hornsund. Based on 5 years of simulation (2005-2010) seasonal and annual general circulation in the fjord has been described. Estimation of the heat transport between fjord and ocean, and between fjord and atmosphere will permit to establish the heat budget and help to evaluate the influence of the South Cape Current and WSC on the fjord ecosystem development. An influence of the fresh water fluxes and vertical structure of water masses and their transformations will be also discussed. This work was partially performed in the frame of the projects GAME (DEC-2012/04/A/NZ8/00661) and AWAKE2 (Pol-Nor/198675/17/2013)
Natural convection mass transfer on a vertical steel structure submerged in a molten aluminum pool
Cheung, F.B.; Yang, B.C.; Shiah, S.W.; Cho, D.H.; Tan, M.J.
1995-02-01
The process of dissolution mass transport along a vertical steel structure submerged in a large molten aluminum pool is studied theoretically. A mathematical model is developed from the conservation laws and thermodynamic principles, taking full account of the density variation in the dissolution boundary layer due to concentration differences. Also accounted for are the influence of the solubility of the wall material on species transfer and the motion of the solid/liquid interface at the dissolution front. The governing equations are solved by a combined analytical-numerical technique to determine the characteristics of the dissolution boundary layer and the rate of natural convection mass transfer. Based upon the numerical results, a correlation for the average Sherwood number is obtained. It is found that the Sherwood number depends strongly on the saturated concentration of the substrate at the moving dissolution front but is almost independent of the freestream velocity.
Microwave heat treatment of natural ruby and its characterization
NASA Astrophysics Data System (ADS)
Swain, S.; Pradhan, S. K.; Jeevitha, M.; Acharya, P.; Debata, M.; Dash, T.; Nayak, B. B.; Mishra, B. K.
2016-03-01
Natural ruby (in the form of gemstone) collected from Odisha has been heat-treated by microwave (MW). A 3-kW industrial MW furnace with SiC susceptors was used for the heat treatment. The ruby samples showed noticeable improvements (qualitative), may be attributed to account for the improvement in clarity and lustre. Optical absorption in 200-800 nm range and photoluminescence peak at 693 nm (with 400 nm λ ex) clearly show that subtle changes do take place in the ruby after the heat treatment. Further, inorganic compound phases and valence states of elements (impurities) in the ruby were studied by X-ray diffraction, micro-Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The valence states of the main impurities such as Cr, Fe, and Ti, in the untreated and MW heat-treated ruby, as revealed from XPS, have been discussed in depth. The overall results demonstrate for the first time the effect of fast heating like MW on the microstructural properties of the gemstone and various oxidation states of impurity elements in the natural ruby.
Dry-Heat Inactivation Kinetics of Naturally Occurring Spore Populations
Bond, W. W.; Favero, M. S.; Petersen, N. J.; Marshall, J. H.
1970-01-01
Twenty-three soil samples were collected from areas of the United States where major spacecraft assembly and launch facilities are in operation. Soil samples were treated with ethyl alcohol, ultrasonic energy, and gross filtration. The resultant suspensions consisted of viable, naturally occurring bacterial spores and were used to inoculate stainless-steel strips. The strips were suspended in a forced air oven and assays were made at 5-min intervals for the number of viable spores. Most survivor curves were nonlinear. Subsequently, spore crops of heat-sensitive and heat-resistant soil isolates were found to have linear survivor curves at 125 C which were unaffected by the presence or absence of sterile soil particles from the parent sample. When two spore crops, one of which was heat-resistant and the other heat-sensitive, were mixed, the resultant nonlinear curves were unaffected by the presence or absence of sterile parent soil. Therefore, the survivor curves obtained originally with the soils were the result of heterogeneous spore populations rather than of protection afforded by soil particles in our test system. These results question the rationale both of assuming logarithmic death and of using decimal-reduction values obtained with subcultured standard reference spores in the derivation of dry-heat sterilization cycles for items contaminated with naturally occurring spore populations. PMID:5498605
Coupled three-dimensional conduction and natural convection heat transfer
NASA Astrophysics Data System (ADS)
Tolpadi, Anil Kumar
1987-09-01
A numerical and experimental investigation of three-dimensional natural convection heat transfer coupled with conduction was performed. This general problem is of great importance because of its widespread applicability in areas such as compact natural convection heat exchangers, cooling of electronic equipment, and porous media flows. The determination of flow patterns and heat transfer coefficients in such situations is necessary because of its practical use in various industries. A vectorized finite difference code was developed for the Cray-2 supercomputer which has the capability of simulating a wide class of three-dimensional coupled conduction-convection problems. This program numerically solves the transient form of the complete laminar Navier-Stokes equations of motion using the vorticity-vector potential methods. Using this program, numerical solutions were obtained for 3-D natural convection from a horizontal isothermal heat exchanger tube with an attached circular cooling fin array. Experiments were performed to measure three-dimensional temperature fields using Mach-Zehnder interferometry. Software was developed to digitize and process fringe patterns and inversion algorithms used to compute the 3-D temperature field.
Thornton, J.W.; McDowell, T.P.; Hughes, P.J.
1997-09-01
The results of five practical vertical ground heat exchanger sizing programs are compared against a detailed simulation model that has been calibrated to monitored data taken from one military family housing unit at Fort Polk, Louisiana. The calibration of the detailed model to data is described in a companion paper. The assertion that the data/detailed model is a useful benchmark for practical sizing methods is based on this calibration. The results from the comparisons demonstrate the current level of agreement between vertical ground heat exchanger sizing methods in common use. It is recommended that the calibration and comparison exercise be repeated with data sets from additional sites in order to build confidence in the practical sizing methods.
Natural convection flow in porous enclosure with localized heating from below with heat flux
NASA Astrophysics Data System (ADS)
Siddiki, Md. Noor-A.-Alam; Molla, Md. Mamun; Saha, Suvash C.
2016-07-01
Unsteady natural convection flow in a two dimensional fluid saturated porous enclosure with localized heating from below with heat flux, symmetrical cooling from the sides and the insulated top wall has been investigated numerically. The governing equations are the Darcy's law for the porous media and the energy equation for the temperature field has been considered. The non-dimensional Darcy's law in terms of the stream function is solved by finite difference method using the successive over-relaxation (SOR) scheme and the energy equation is solved by Alternative Direction Alternative (ADI) scheme. The uniform heat flux source is located centrally at the bottom wall. The numerical results are presented in terms of the streamlines and isotherms, as well as the local and average rate of heat transfer for the wide range of the Darcy's Rayleigh number and the length of the heat flux source at the bottom wall.
Numerical modeling of a 2K J-T heat exchanger used in Fermilab Vertical Test Stand VTS-1
Gupta, Prabhat Kumar; Rabehl, Roger
2014-07-01
Fermilab Vertical Test Stand-1 (VTS-1) is in operation since 2007 for testing the superconducting RF cavities at 2 K. This test stand has single layer coiled finned tubes heat exchanger before J-T valve. A finite difference based thermal model has been developed in Engineering Equation Solver (EES) to study its thermal performance during filling and refilling to maintain the constant liquid level of test stand. The model is also useful to predict its performance under other various operating conditions and will be useful to design the similar kind of heat exchanger for future needs. Present paper discusses the different operational modes of this heat exchanger and its thermal characteristics under these operational modes. Results of this model have also been compared with the experimental data gathered from the VTS-1 heat exchanger and they are in good agreement with the present model.
NASA Technical Reports Server (NTRS)
Kassemi, Siavash A.
1988-01-01
High Rayleigh number convection in a rectangular cavity with insulated horizontal surfaces and differentially heated vertical walls was analyzed for an arbitrary aspect ratio smaller than or equal to unity. Unlike previous analytical studies, a systematic method of solution based on linearization technique and analytical iteration procedure was developed to obtain approximate closed-form solutions for a wide range of aspect ratios. The predicted velocity and temperature fields are shown to be in excellent agreement with available experimental and numerical data.
Uddin, Mohammed J; Khan, Waqar A; Ismail, Ahmed I
2012-01-01
Steady two dimensional MHD laminar free convective boundary layer flows of an electrically conducting Newtonian nanofluid over a solid stationary vertical plate in a quiescent fluid taking into account the Newtonian heating boundary condition is investigated numerically. A magnetic field can be used to control the motion of an electrically conducting fluid in micro/nano scale systems used for transportation of fluid. The transport equations along with the boundary conditions are first converted into dimensionless form and then using linear group of transformations, the similarity governing equations are developed. The transformed equations are solved numerically using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. The effects of different controlling parameters, namely, Lewis number, Prandtl number, buoyancy ratio, thermophoresis, Brownian motion, magnetic field and Newtonian heating on the flow and heat transfer are investigated. The numerical results for the dimensionless axial velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically and discussed. It is found that the rate of heat and mass transfer increase as Newtonian heating parameter increases. The dimensionless velocity and temperature distributions increase with the increase of Newtonian heating parameter. The results of the reduced heat transfer rate is compared for convective heating boundary condition and found an excellent agreement. PMID:23166688
Uddin, Mohammed J.; Khan, Waqar A.; Ismail, Ahmed I.
2012-01-01
Steady two dimensional MHD laminar free convective boundary layer flows of an electrically conducting Newtonian nanofluid over a solid stationary vertical plate in a quiescent fluid taking into account the Newtonian heating boundary condition is investigated numerically. A magnetic field can be used to control the motion of an electrically conducting fluid in micro/nano scale systems used for transportation of fluid. The transport equations along with the boundary conditions are first converted into dimensionless form and then using linear group of transformations, the similarity governing equations are developed. The transformed equations are solved numerically using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. The effects of different controlling parameters, namely, Lewis number, Prandtl number, buoyancy ratio, thermophoresis, Brownian motion, magnetic field and Newtonian heating on the flow and heat transfer are investigated. The numerical results for the dimensionless axial velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically and discussed. It is found that the rate of heat and mass transfer increase as Newtonian heating parameter increases. The dimensionless velocity and temperature distributions increase with the increase of Newtonian heating parameter. The results of the reduced heat transfer rate is compared for convective heating boundary condition and found an excellent agreement. PMID:23166688
Dual Nature of Heat Flux in Stable Atmospheric Surface Layer
NASA Astrophysics Data System (ADS)
Srivastava, P.; Sharan, M.
2015-12-01
The behavior of heat flux (H) with respect to the stability parameter (ζ) in stable surface layer (SSL) is analyzed with in the framework of Monin-Obukhov similarity (MOS) theory. The analytical expressions of H are obtained as functions of wind speed (U) and wind shear (dU/dz) using the linear similarity functions and accordingly two cases, (i) U = δ (constant) and (ii) dU/dz = δ are considered. The mathematical analysis shows that the magnitude of H increases with ζ till it attains a maximum value at ζ =ζc and then starts decreasing with increasing stability suggesting the dual characteristic of heat flux with stability parameter. The point of maximum heat flux is found to be dependent on the roughness length (z0) as well as the height above the surface. An attempt has been made to analyze the sensitivity of this dual characteristic of H with ζ using the non-linear similarity functions. The analysis shows that the dual nature of H persists in the case of linear as well as non-linear similarity functions. However, the point of extremum appears to be dependent on the nature of the similarity functions. Turbulent data over a tropical site Ranchi (India) is analyzed to validate the observed nature of H with the theoretical nature as predicted by MOS. The analysis of observational data reveals the non-existence of any preferred stability state in SSL as speculated by Wang and Bras (2010, 2011) and supports the conclusions of Malhi 1995, Derbyshire 1999, van de Wiel et al. 2007, Basu et al. 2008, and van de Wiel et al. 2011. Thus, the non-uniqueness of MOS equations does not appear to be a mathematical artifact and it is consistent with the observations as far as the nature of heat flux with respect to stability parameter in SSL is concerned.
Retrieved Vertical Profiles of Latent Heat Release Using TRMM Rainfall Products
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Lang, S.; Olson, W. S.; Meneghini, R.; Yang, S.; Simpson, J.; Kummerow, C.; Smith, E.
2000-01-01
This paper represents the first attempt to use TRMM rainfall information to estimate the four dimensional latent heating structure over the global tropics for February 1998. The mean latent heating profiles over six oceanic regions (TOGA COARE IFA, Central Pacific, S. Pacific Convergence Zone, East Pacific, Indian Ocean and Atlantic Ocean) and three continental regions (S. America, Central Africa and Australia) are estimated and studied. The heating profiles obtained from the results of diagnostic budget studies over a broad range of geographic locations are used to provide comparisons and indirect validation for the heating algorithm estimated heating profiles. Three different latent heating algorithms, the Goddard Convective-Stratiform (CSH) heating, the Goddard Profiling (GPROF) heating, and the Hydrometeor heating (HH) are used and their results are intercompared. The horizontal distribution or patterns of latent heat release from the three different heating retrieval methods are quite similar. They all can identify the areas of major convective activity (i.e., a well defined ITCZ in the Pacific, a distinct SPCZ) in the global tropics. The magnitude of their estimated latent heating release is also not in bad agreement with each other and with those determined from diagnostic budget studies. However, the major difference among these three heating retrieval algorithms is the altitude of the maximum heating level. The CSH algorithm estimated heating profiles only show one maximum heating level, and the level varies between convective activity from various geographic locations. These features are in good agreement with diagnostic budget studies. By contrast, two maximum heating levels were found using the GPROF heating and HH algorithms. The latent heating profiles estimated from all three methods can not show cooling between active convective events. We also examined the impact of different TMI (Multi-channel Passive Microwave Sensor) and PR (Precipitation Radar
NASA Astrophysics Data System (ADS)
Kamran, M.; Narahari, M.; Jaafar, A.
2014-10-01
The effects of heat generation and viscous dissipation on free convective flow past an impulsively started infinite vertical porous plate with Newtonian heating have been investigated. The governing boundary layer equations are solved by using an analytical technique known as Homotopy Analysis Method (HAM). The effects of heat source parameter (Q), suction parameter (s), Eckert number (Ec) and Grashof number (Gr) on the velocity and temperature fields are determined. The study revealed that the fluid temperature increases by increasing heat generation and Eckert number whereas it decreases with increasing suction velocity. The present results are compared with the exact solution results in the absence of viscous dissipation and it is found that the HAM results coincide with the exact solution results.
NASA Astrophysics Data System (ADS)
Thohura, Sharaban; Molla, Md. Mamun; Sarker, M. M. A.
2016-07-01
A study on the natural convection flow of non-Newtonian fluid along a vertical thin cylinder with constant wall temperature using modified power law viscosity model has been done. The basic equations are transformed to non dimensional boundary layer equations and the resulting systems of nonlinear partial differential equations are then solved employing marching order implicit finite difference method. The evolution of the surface shear stress in terms of local skin-friction, the rate of heat transfer in terms of local Nusselt number, velocity and temperature profiles for shear thinning as well as shear-thickening fluid considering the different values of Prandtl number have been focused. For the Newtonian fluids the present numerical results are compared with available published results which show a good agreement indeed. From the results it can be concluded that, at the leading edge, a Newtonian-like solution exists as the shear rate is not large enough to trigger non-Newtonian effects. Non-Newtonian effects can be found when the shear-rate increases beyond a threshold value.
NASA Astrophysics Data System (ADS)
Ahamad, Shaik Imran; Balaji, C.
2016-06-01
This paper reports the results of a combined numerical and experimental study to estimate the heat inputs of three protruding heat sources of the same size placed on a vertically placed PCB board of height 150 mm, depth 250 mm, and thickness 5 mm. First, limited measurements of temperatures were recorded at eight locations along the height of the back of the PCB board for different (and known) values of heat inputs of the protruding heat sources and different velocities. These were followed by three-dimensional calculations of fluid flow and conjugate heat transfer for various heat transfer coefficients on the backside of the PCB board. The difference between the CFD predicted and experimentally measured temperature distributions on the back of the PCB board was minimized using least squares and the best value of heat transfer coefficient was obtained. Using this `data assimilated' CFD model, detailed CFD simulations were done for various values of heat input values and Reynolds numbers (each of these can be different from one another) of the flow. The temperatures at the same eight locations at the back of the PCB board were noted. An artificial neural network was then developed with ten inputs (eight temperatures together with the input velocity and the ambient temperature) to estimate the three outputs (three heat inputs) after carrying out extensive studies on the architecture of the network. This inverse solution was then tested with experiments for validating the ANN approach to solve the inverse conjugate heat transfer problem. Finally, with the ANN estimated heat inputs, CFD simulations were again run to compare the temperature distribution at the back of the PCB board with measurements.
NASA Technical Reports Server (NTRS)
Eckert, E R G; Diaguila, A J
1952-01-01
Local free-convection heat-transfer coefficients and temperature fields in the turbulent flow range were obtained within a vertical, stationary tube closed at the boom, heated along its walls, and having a length-to-diameter ratio of 5. Convective heat-transfer coefficients were correlated by the general relations for free-convection heat transfer. These coefficients, converted to dimensionless Nusselt numbers were 35 percent below known relations for vertical flat plates. Air temperature measurements within the tube indicated a thin boundary layer along the heated wall surface and unstable conditions in the air flow.
Yang, Dong; Pan, Jie; Zhu, Xiaojing; Bi, Qincheng; Chen, Tingkuan; Zhou, Chenn Q.
2011-02-15
Water wall design is a key issue for supercritical Circulating Fluidized Bed (CFB) boiler. On account of the good heat transfer performance, rifled tube is applied in the water wall design of a 600 MW supercritical CFB boiler in China. In order to investigate the heat transfer and frictional characteristics of the rifled tube with vertical upward flow, an in-depth experiment was conducted in the range of pressure from 12 to 30 MPa, mass flux from 230 to 1200 kg/(m{sup 2} s), and inner wall heat flux from 130 to 720 kW/m{sup 2}. The wall temperature distribution and pressure drop in the rifled tube were obtained in the experiment. The normal, enhanced and deteriorated heat transfer characteristics were also captured. In this paper, the effects of pressure, inner wall heat flux and mass flux on heat transfer characteristics are analyzed, the heat transfer mechanism and the frictional resistance performance are discussed, and the corresponding empirical correlations are presented. The experimental results show that the rifled tube can effectively prevent the occurrence of departure from nucleate boiling (DNB) and keep the tube wall temperature in a permissible range under the operating condition of supercritical CFB boiler. (author)
Instabilities of Natural Convection in a Periodically Heated Layer
NASA Astrophysics Data System (ADS)
Hossain, M. Z.; Floryan, Jerzy M.
2013-11-01
Natural convection in a horizontal layer subject to a spatially periodic heating along the lower wall has been investigated. The heating produces sinusoidal temperature variations characterized by the wave number α and the Rayleigh number Rap. The primary response has the form of stationary rolls with axis orthogonal to the heating wave vector. For large α convection is limited to a thin layer adjacent to the lower wall with a uniform conduction above it. Linear stability was used to determine conditions leading to a secondary convection. Two mechanisms of instability have been identified. For α = 0(1), the parametric resonance dominates and leads to the pattern of instability that is locked-in with the pattern of the heating according to the relation δcr = α /2, where δcr denotes the component of the critical disturbance wave vector parallel to the heating wave vector. The second mechanism, Rayleigh-Bénard (RB) mechanism, dominates for large α. Competition between these mechanisms gives rise to non-commensurable states and appearance of soliton lattices, to the formation of distorted transverse rolls, and to the appearance of the wave vector component in the direction perpendicular to the forcing direction.
Theoretical determination of design parameters for an arrayed heat sink with vertical plate fins
NASA Astrophysics Data System (ADS)
Lin, Shiang-Jiun; Chen, Yi-Jin
2016-05-01
This paper employs theoretical approach to determine the adequate design parameters of an arrayed plate-fins heat sink based on maximizing heat flow. According to analyzed results, increasing the dimensions of configurative parameters does not always yield the significant increase in the heat flow. As the fin length and fin space increases until a critical value, the heat flow will significantly reduce the increment or decay, respectively.
NASA Astrophysics Data System (ADS)
Granskog, Mats A.; Pavlov, Alexey K.; Sagan, Sławomir; Kowalczuk, Piotr; Raczkowska, Anna; Stedmon, Colin A.
2015-10-01
The inherent optical properties (IOPs) of Polar Waters (PW) exiting the Arctic Ocean in the East Greenland Current (EGC) and of the inflowing Atlantic waters (AW) in the West Spitsbergen Current (WSC) were studied in late summer when surface freshening due to sea-ice melt was widespread. The absorption and attenuation coefficients in PW were significantly higher than previous observations from the western Arctic. High concentrations of colored dissolved organic matter (CDOM) resulted in 50-60% more heat deposition in the upper meters relative to clearest natural waters. This demonstrates the influence of terrigenous organic material inputs on the optical properties of waters in the Eurasian basin. Sea-ice melt in CDOM-rich PW decreased CDOM absorption, but an increase in scattering nearly compensated for lower absorption, and total attenuation was nearly identical in the sea-ice meltwater layer. This suggests a source of scattering material associated with sea-ice melt, relative to the PW. In the AW, melting sea-ice forms a stratified surface layer with lower absorption and attenuation, than well-mixed AW waters in late summer. It is likely that phytoplankton in the surface layer influenced by sea-ice melt are nutrient limited. The presence of a more transparent surface layer changes the vertical radiant heat absorption profile to greater depths in late summer both in EGC and WSC waters, shifting accumulation of solar heat to greater depths and thus this heat is not directly available for ice melt during periods of stratification.
Casso-Torralba, P.; de Arellano, J. V. -G.; Bosveld, F.; Soler, M.R.; Vermeulen, A.; Werner, C.; Moors, E.
2008-01-01
The diurnal and vertical variability of heat and carbon dioxide (CO2) in the atmospheric surface layer are studied by analyzing measurements from a 213 in tower in Cabauw (Netherlands). Observations of thermodynamic variables and CO2 mixing ratio as well as vertical profiles of the turbulent fluxes are used to retrieve the contribution of the budget terms in the scalar conservation equation. On the basis of the daytime evolution of turbulent fluxes, we calculate the budget terms by assuming that turbulent fluxes follow a linear profile with height. This assumption is carefully tested and the deviation ftom linearity is quantified. The budget calculation allows us to assess the importance of advection of heat and CO2 during day hours for three selected days. It is found that, under nonadvective conditions, the diurnal variability of temperature and CO2 is well reproduced from the flux divergence measurements. Consequently, the vertical transport due to the turbulent flux plays a major role in the daytime evolution of both scalars and the advection is a relatively small contribution. During the analyzed days with a strong contribution of advection of either heat or carbon dioxide, the flux divergence is still an important contribution to the budget. For heat, the quantification of the advection contribution is in close agreement with results from a numerical model. For carbon dioxide, we qualitatively corroborate the results with a Lagrangian transport model. Our estimation of advection is compared with, traditional estimations based on the Net Ecosystem-atmosphere Exchange (NEE). Copyright 2008 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Srinivasacharya, D.; Surender, O.
2015-07-01
In this paper, non-similarity solutions for natural convection heat and mass transfer along a vertical plate with a uniform wall temperature and concentration in a doubly stratified porous medium saturated by a fluid are obtained. The Darcy-Forchheimer-based model is employed to describe the flow in the porous medium. The nonlinear governing equations and their associated boundary conditions are initially cast into dimensionless forms by using pseudo-similarity variables. The resulting system of nonlinear partial differential equations is then solved numerically by using the Keller-box method. The effects of the buoyancy parameter, Forchheimer number, and thermal and solutal stratification parameters on the dimensionless velocity, temperature, concentration, and heat and mass transfer coefficients are studied.
Forte, A.M.; Woodward, R.L.
1997-01-01
Joint inversions of seismic and geodynamic data are carried out in which we simultaneously constrain global-scale seismic heterogeneity in the mantle as well as the amplitude of vertical mantle flow across the 670 km seismic discontinuity. These inversions reveal the existence of a family of three-dimensional (3-D) mantle models that satisfy the data while at the same time yielding predictions of layered mantle flow. The new 3-D mantle models we obtain demonstrate that the buoyancy forces due to the undulations of the 670 km phase-change boundary strongly inhibit the vertical flow between the upper and lower mantle. The strong stabilizing effect of the 670 km topography also has an important impact on the predicted dynamic topography of the Earth's solid surface and on the surface gravity anomalies. The new 3-D models that predict strongly or partially layered mantle flow provide essentially identical fits to the global seismic data as previous models that have, until now, predicted only whole-mantle flow. The convective vertical transport of heat across the mantle predicted on the basis of the new 3-D models shows that the heat flow is a minimum at 1000 km depth. This suggests the presence at this depth of a globally defined horizon across which the pattern of lateral heterogeneity changes rapidly. Copyright 1997 by the American Geophysical Union.
NASA Technical Reports Server (NTRS)
Canuto, V. M.; Howard, A.; Cheng, Y.; Dubovikov, M. S.
1999-01-01
We develop and test a 1-point closure turbulence model with the following features: 1) we include the salinity field and derive the expression for the vertical turbulent diffusivities of momentum K(sub m) , heat K(sub h) and salt K(sub s) as a function of two stability parameters: the Richardson number R(sub i) (stratification vs. shear) and the Turner number R(sub rho) (salinity gradient vs. temperature gradient). 2) to describe turbulent mixing below the mixed layer (ML), all previous models have adopted three adjustable "background diffusivities" for momentum, heat and salt. We propose a model that avoids such adjustable diffusivities. We assume that below the ML, the three diffusivities have the same functional dependence on R( sub i) and R(sub rho) as derived from the turbulence model. However, in order to compute R(sub i) below the ML, we use data of vertical shear due to wave-breaking.measured by Gargett et al. The procedure frees the model from adjustable background diffusivities and indeed we employ the same model throughout the entire vertical extent of the ocean. 3) in the local model, the turbulent diffusivities K(sub m,h,s) are given as analytical functions of R(sub i) and R(sub rho). 5) the model is used in an O-GCM and several results are presented to exhibit the effect of double diffusion processes. 6) the code is available upon request.
NASA Technical Reports Server (NTRS)
Chen, Tsing-Chang; Yen, Ming-Cheng; Pfaendtner, James; Sud, Y. C.
1993-01-01
The diabatic heating structure of the nine-layer Goddard Laboratory for Atmospheres model of the Madden-Julian oscillation (MJO) is illustrated with composite charts made for those times when this low-frequency mode reaches its maximum and minimum amplitudes. These composite charts compare the vertically integrated diabatic heating with potential functions, the vertical distribution of diabatic heating with the east-west mass flux function in the tropics, and the vertical profiles of diabatic heating at the centers of maximum and minimum MJO amplitude. Three interesting features of the model MJO's diabatic heating are revealed: (1) the maximum heating rate of this low-frequency mode is located over the Asian monsoon region and its amplitude is about a half of the maximum value of the seasonal mean heating rate in this region, (2) the vertical diabatic heating rate profile has a maximum at 500 mbar and resembles the seasonal mean total heating profile, and (3) the total diabatic heating is for the most part composed of the latent heat released by cumulus convection.
Singh, Sonam; Bhargava, R.
2014-01-01
This paper presents a numerical study of natural convection within a wavy enclosure heated via corner heating. The considered enclosure is a square enclosure with left wavy side wall. The vertical wavy wall of the enclosure and both of the corner heaters are maintained at constant temperature, Tc and Th, respectively, with Th > Tc while the remaining horizontal, bottom, top and side walls are insulated. A penalty element-free Galerkin approach with reduced gauss integration scheme for penalty terms is used to solve momentum and energy equations over the complex domain with wide range of parameters, namely, Rayleigh number (Ra), Prandtl number (Pr), and range of heaters in the x- and y-direction. Numerical results are represented in terms of isotherms, streamlines, and Nusselt number. It is observed that the rate of heat transfer depends to a great extent on the Rayleigh number, Prandtl number, length of the corner heaters and the shape of the heat transfer surface. The consistent performance of the adopted numerical procedure is verified by comparison of the results obtained through the present meshless technique with those existing in the literature. PMID:24672383
NASA Astrophysics Data System (ADS)
Miyata, Kazushi; Mori, Hideo; Ohishi, Katsumi; Tanaka, Hirokazu
In the present study, experiments were performed to examine characteristics of flow boiling heat transfer and pressure drop of a refrigerant R410A flowing vertically upward in a copper smooth tube with 1.0 mm inside diameter for the development of a high-performance heat exchanger using small diameter tubes for air conditioning systems. Local heat transfer coefficients were measured in a range of mass fluxes from 30 to 200 kg/(m2•s), heat fluxes from 1 to 16 kW/m2 and qualities from 0.1 to over 1 at evaporation temperature of 10°C, and pressure drops were also measured at mass fluxes of 100 and 200 kg/(m2•s) and qualities from 0.1 to 0.9. Three types of flow pattern were observed in the tube: A slug, a slug-annular and an annular flow. Based on the measurements, the characteristics of frictional pressure drop, heat transfer coefficient and dryout qualities were clarified. The measured pressure drop and heat transfer coefficient were compared with correlations.
Aroonrat, Kanit; Wongwises, Somchai
2011-01-15
Differently from most previous studies, the heat transfer and friction characteristics of the pure refrigerant HFC-134a during evaporation inside a vertical corrugated tube are experimentally investigated. The double tube test sections are 0.5 m long with refrigerant flowing in the inner tube and heating water flowing in the annulus. The inner tubes are one smooth tube and two corrugated tubes, which are constructed from smooth copper tube of 8.7 mm inner diameter. The test runs are performed at evaporating temperatures of 10, 15, and 20 C, heat fluxes of 20, 25, and 30 kW/m{sup 2}, and mass fluxes of 200, 300, and 400 kg/m{sup 2} s. The quality of the refrigerant in the test section is calculated using the temperature and pressure obtained from the experiment. The pressure drop across the test section is measured directly by a differential pressure transducer. The effects of heat flux, mass flux, and evaporation temperature on the heat transfer coefficient and two-phase friction factor are also discussed. It is found that the percentage increases of the heat transfer coefficient and the two-phase friction factor of the corrugated tubes compared with those of the smooth tube are approximately 0-10% and 70-140%, respectively. (author)
Triplett, C.E.
1996-12-01
This thesis presents the results of an experimental investigation of natural convection heat transfer in a staggered array of heated cylinders, oriented horizontally within a rectangular enclosure. The main purpose of this research was to extend the knowledge of heat transfer within enclosed bundles of spent nuclear fuel rods sealed within a shipping or storage container. This research extends Canaan`s investigation of an aligned array of heated cylinders that thermally simulated a boiling water reactor (BWR) spent fuel assembly sealed within a shipping or storage cask. The results are presented in terms of piecewise Nusselt-Rayleigh number correlations of the form Nu = C(Ra){sup n}, where C and n are constants. Correlations are presented both for individual rods within the array and for the array as a whole. The correlations are based only on the convective component of the heat transfer. The radiative component was calculated with a finite-element code that used measured surface temperatures, rod array geometry, and measured surface emissivities as inputs. The correlation results are compared to Canaan`s aligned array results and to other studies of natural convection in horizontal tube arrays.
Lee, Il S.; Yu, Yong H.; Son, Hyoung M.; Hwang, Jin S.; Suh, Kune Y.
2006-07-01
An experimental study is performed to investigate the natural convection heat transfer characteristics with subcooled coolant to create engineering database for basic applications in a lead alloy cooled reactor. Tests are performed in the ALTOS (Applied Liquid-metal Thermal Operation Study) apparatus as part of MITHOS (Metal Integrated Thermo Hydrodynamic Operation System). A relationship is determined between the Nusselt number Nu and the Rayleigh number Ra in the liquid metal rectangular pool. Results are compared with correlations and experimental data in the literature. Given the similar Ra condition, the present test results for Nu of the liquid metal pool with top subcooling are found to be similar to those predicted by the existing correlations or experiments. The current test results are utilized to develop natural convection heat transfer correlations applicable to low Prandtl number Pr fluids that are heated from below and cooled by the external coolant above. Results from this study are slated to be used in designing BORIS (Battery Optimized Reactor Integral System), a small lead cooled modular fast reactor for deployment at remote sites cycled with MOBIS (Modular Optimized Brayton Integral System) for electricity generation, tied with NAVIS (Naval Application Vessel Integral System) for ship propulsion, joined with THAIS (Thermochemical Hydrogen Acquisition Integral System) for hydrogen production, and coupled with DORIS (Desalination Optimized Reactor Integral System) for seawater desalination. Tests are performed with Wood's metal (Pb-Bi-Sn-Cd) filling a rectangular pool whose lower surface is heated and upper surface cooled by forced convection of water. The test section is 20 cm long, 11.3 cm high and 15 cm wide. The simulant has a melting temperature of 78 deg. C. The constant temperature and heat flux condition was realized for the bottom heating once the steady state had been met. The test parameters include the heated bottom surface temperature
NASA Technical Reports Server (NTRS)
Chang, C. J.; Brown, R. A.
1983-01-01
The roles of natural convection in the melt and the shape of the melt/solid interface on radial dopant segregation are analyzed for a prototype of vertical Bridgman crystal growth system by finite element methods that solve simultaneously for the velocity field in the melt, the shape of the solidification isotherm, and the temperature distribution in both phases. Results are presented for crystal and melt with thermophysical properties similar to those of gallium-doped germanium in Bridgman configurations with melt below (thermally destabilizing) and above (stabilizing) the crystal. Steady axisymmetric flow are classified according to Rayleigh number as either being nearly the growth velocity, having a weak cellular structure or having large amplitude cellular convention. The flows in the two Bridgman configurations are driven by different temperature gradients and are in opposite directions. Finite element calculations for the transport of a dilute dopant by these flow fields reveal radial segregation levels as large as sixty percent of the mean concentration. Segregation is found most severe at an intermediate value of Rayleigh number above which the dopant distribution along the interface levels as the intensity of the flow increases.
Criaud, Annie, Fouassier, Philippe; Fouillac, Christian; Brach, Michel
1988-01-01
Three geothermal wells tapping the Dogger aquifer were studied in detail for their variations in chemical composition with time or conditions of exploitation. Analytical improvements for the determination of Cl, SO{sub 4}, Ca, Mg, Na and K make it possible to detect variations respectively of 0.15, 0.8, 0.6, 1.8, 1.8 and 1.4 %. Despite the fact that the natural flow may be important in some parts of the basin aquifer, we conclude that this factor is not responsible for the small variations noticed in mineralization within the one year survey period. The results concerning reactive and nonreactive species are best explained if a vertical heterogeneity of the chemistry of the fluid is assumed. A number of calcareous sub-layers, already demonstrated by geological studies, contribute to varying degrees to the production of the hot water. The changes in pumping rates, which are fixed according to external requirements, play a major role in the hydrodynamic and chemical disequilibrium of the wells. The consequences for the geothermal exploitations are emphasized.
A study of natural circulation in the evaporator of a horizontal-tube heat recovery steam generator
NASA Astrophysics Data System (ADS)
Roslyakov, P. V.; Pleshanov, K. A.; Sterkhov, K. V.
2014-07-01
Results obtained from investigations of stable natural circulation in an intricate circulation circuit with a horizontal layout of the tubes of evaporating surface having a negative useful head are presented. The possibility of making a shift from using multiple forced circulation organized by means of a circulation pump to natural circulation in vertical heat recovery steam generator is estimated. Criteria for characterizing the performance reliability and efficiency of a horizontal evaporator with negative useful head are proposed. The influence of various design solutions on circulation robustness is considered. With due regard of the optimal parameters, the most efficient and least costly methods are proposed for achieving more stable circulation in a vertical heat recovery steam generator when a shift is made from multiple forced to natural circulation. A procedure for calculating the circulation parameters and an algorithm for checking evaporator performance reliability are developed, and recommendations for the design of heat recovery steam generator, nonheated parts of natural circulation circuit, and evaporating surface are suggested.
Davidson, J.H.
1998-06-01
This progress report describes the thermodynamic testing and modeling of a thermosyphon heat exchanger used in solar water heating systems. Testing of a four tube-in-shell thermosyphon heat exchanger was performed in two parts. The first portion of the test increased the collector fluid while the storage tank remained isothermal. After the collector fluid temperature was raised to 95 C, the second part of the test allowed the storage tank to gain heat. The test was performed for two collector flow rates. Measured values included collector side forced flow rate, temperature differences across the heat exchanger, vertical temperature distribution in the storage tank, vertical water temperature profile in the heat exchanger, and pressure drop on the thermosyphon side of the heat exchanger. The overall heat transfer coefficient-area product (UA) values obtained confirmed that models which assume UA depends solely on thermosyphon flow rate do not adequately characterize thermosyphon heat exchangers. This is because heat transfer in thermosyphon exchangers occurs in the mixed convection, rather than forced flow, regime. A linear regression equation was developed to better predict UA using the Prandtl, Reynolds, and Grashof numbers and dimensionless parameters based on fluid properties calculated for the average hot and cold leg temperatures. 9 figs.
The effect of thermal dispersion on unsteady MHD convective heat transfer through vertical porous
NASA Astrophysics Data System (ADS)
Mohamadien, Ghada F.
2012-12-01
The influence of thermal dispersion on unsteady two-dimensional laminar flow is presented. A viscous incompressible conducting fluid in the vicinity of a semi infinite vertical porous through a moving plate in the presence of a magnetic fluid is studied. A cod (FORTRAN) was constructed for numerical computations for the velocity and temperature for various values of the affected parameters were carried out.
Natural convection heat transfer within horizontal spent nuclear fuel assemblies
Canaan, R.E.
1995-12-01
Natural convection heat transfer is experimentally investigated in an enclosed horizontal rod bundle, which characterizes a spent nuclear fuel assembly during dry storage and/or transport conditions. The basic test section consists of a square array of sixty-four stainless steel tubular heaters enclosed within a water-cooled rectangular copper heat exchanger. The heaters are supplied with a uniform power generation per unit length while the surrounding enclosure is maintained at a uniform temperature. The test section resides within a vacuum/pressure chamber in order to subject the assembly to a range of pressure statepoints and various backfill gases. The objective of this experimental study is to obtain convection correlations which can be used in order to easily incorporate convective effects into analytical models of horizontal spent fuel systems, and also to investigate the physical nature of natural convection in enclosed horizontal rod bundles in general. The resulting data consist of: (1) measured temperatures within the assembly as a function of power, pressure, and backfill gas; (2) the relative radiative contribution for the range of observed temperatures; (3) correlations of convective Nusselt number and Rayleigh number for the rod bundle as a whole; and (4) correlations of convective Nusselt number as a function of Rayleigh number for individual rods within the array.
NASA Astrophysics Data System (ADS)
Mullally, D. M.; Lowell, R. P.
2012-12-01
We investigate a means of developing a large-scale hydrothermal experiment at the DUSEL site in the Homestake Mine, South Dakota, or elsewhere, by considering boundary layer flow, heat, and chemical transfer near an internally heated vertical borehole or borehole array emplaced in a water-saturated porous medium with homogeneous permeability. We use scale analysis to determine the relationships between vertical fluid velocity u, boundary layer thickness δ and the Rayleigh number Ra for both a single borehole maintained at constant temperature and a linear array of boreholes maintained at constant heat flux. For a single borehole, u ~ (a/y)Ra and δ ~ yRa^-1/2, whereas for the borehole array u ~(a/y) Ra^-1/3 and δ ~ yRa^-1/3, where y is the borehole height and a is the thermal diffusivity. We find that for y = 100 m, optimum initial permeability lies between ~ 10^-10 -10^-12 m^2 and the optimum heat flux is ~ 60 W/m^2. We also use scale analysis to determine the permeability change resulting from thermoelastic stresses generated by heating the rock near the boreholes and find that these stresses do not significantly impact the permeability so long as the initial porosity is ~ 5%, or the initial crack aspect ratios are less than or equal to 10^-2. Finally, we use scale analysis to investigate mineral dissolution within the boundary layer flow adjacent to the boreholes. Using the above velocity scaling and assuming linear reaction kinetics, and a crustal porosity of 5%, thermodynamic equilibrium may be obtained at the top of a 100 m high borehole provided reaction rate constants are in the range of ~ 10^-7 - 10^-8 s-1.
Influence of wick properties in a vertical LHP on remove waste heat from electronic equipment
Smitka, Martin E-mail: patrik.nemec@fstroj.uniza.sk Nemec, Patrik E-mail: patrik.nemec@fstroj.uniza.sk Malcho, Milan E-mail: patrik.nemec@fstroj.uniza.sk
2014-08-06
The loop heat pipe is a vapour-liquid phase-change device that transfers heat from evaporator to condenser. One of the most important parts of the LHP is the porous wick structure. The wick structure provides capillary force to circulate the working fluid. To achieve good thermal performance of LHP, capillary wicks with high permeability and porosity and fine pore radius are expected. The aim of this work is to develop porous wick of sintered nickel powder with different grain sizes. These porous wicks were used in LHP and there were performed a series of measurements to remove waste heat from the insulated gate bipolar transistor (IGBT)
Heat transfer in porous medium embedded with vertical plate: Non-equilibrium approach - Part B
NASA Astrophysics Data System (ADS)
Quadir, G. A.; Badruddin, Irfan Anjum
2016-06-01
This work is continuation of the paper Part A. Due to large number of results, the paper is divided into two section with section-A (Part A) discussing the effect of various parameters such as heat transfer coefficient parameter, thermal conductivity ratio etc. on streamlines and isothermal lines. Section-B highlights the heat transfer characteristics in terms of Nusselt number The Darcy model is employed to simulate the flow inside the medium. It is assumed that the heat transfer takes place by convection and radiation. The governing partial differential equations are converted into non-dimensional form and solved numerically using finite element method.
Influence of wick properties in a vertical LHP on remove waste heat from electronic equipment
NASA Astrophysics Data System (ADS)
Smitka, Martin; Nemec, Patrik; Malcho, Milan
2014-08-01
The loop heat pipe is a vapour-liquid phase-change device that transfers heat from evaporator to condenser. One of the most important parts of the LHP is the porous wick structure. The wick structure provides capillary force to circulate the working fluid. To achieve good thermal performance of LHP, capillary wicks with high permeability and porosity and fine pore radius are expected. The aim of this work is to develop porous wick of sintered nickel powder with different grain sizes. These porous wicks were used in LHP and there were performed a series of measurements to remove waste heat from the insulated gate bipolar transistor (IGBT).
NASA Astrophysics Data System (ADS)
Abedina, Mohammad Zoynal; Islam, Mohammed Moinul; Hanif, Md. Abu; Alam, Md. Jahangir
2016-07-01
A numerical investigation is performed in the turbulent combined-convection boundary layer with aiding flows in air along a heated vertical flat plate at a higher freestream velocity (Reδ0 = 600) by time-developing direct numerical simulation (DNS). At higher freestream velocity, the transition from laminar to turbulent delays for aiding flows and relatively a lower and higher heat transfer rates are observed, respectively, in the laminar and turbulent region compared to that of lower freestream velocity. The wall shear stresses are higher in the laminar region compared to that in the turbulent region, and at higher freestream velocity, the wall shear stress in the transition region shows a higher peak value. The intensity of velocity and temperature fluctuations for aiding flows with higher freestream velocity become appreciably lower than that for lower freestream velocity due to the laminarization of the boundary layer.
NASA Astrophysics Data System (ADS)
Burmistrova, O. A.
2014-05-01
The stability of a free vertical liquid film under the combined action of gravity and thermocapillary forces has been studied. An exact solution of the Navier-Stokes and thermal conductivity equations is obtained for the case of plane steady flow with constant film thickness. It is shown that if the free surfaces of the film are perfectly heat insulated, the liquid flow rate through the cross section of the layer is zero. It is found that to close the model with consideration of the heat exchange with the environment, it is necessary to specify the liquid flow rate and the derivative of the temperature with respect to the longitudinal coordinate or the flow rate and the film thickness. The stability of the solution with constant film thickness at small wave numbers is studied. A solution of the spectral problem for perturbations in the form of damped oscillations is obtained.
Edillo, Frances E; Sarcos, Janet R; Sayson, Stephanie L
2015-12-01
We attempted to determine the vertical transmission of dengue virus (DENV) in Aedes aegypti in selected sites in Cebu City, Philippines. Mosquito sub-adults were collected monthly from households and the field during the wet-dry-wet season from November, 2011 to July, 2012 and were laboratory-reared to adults. Viral RNA extracts in mosquitoes were assayed by hemi-nested RT-PCR. Results showed that 62 (36.26%; n=679) out of 171 mosquito pools (n=2,871) were DENV+. The minimum infection rate (MIR) of DENV ranged from 0 in wet months to 48.22/1,000 mosquitoes in April, 2012 (mid-dry). DENVs were detected in larvae, pupae, and male and female adults, with DENV-4, DENV-3, and DENV-1, in that rank of prevalence. DENV-1 co-infected with either DENV-3 or -4 or with both in April, 2012; DENV-3 and -4 were present in both seasons. More DENV+ mosquitoes were collected from households than in field premises (p<0.001) and in the dry than in the wet season (p<0.05), with significant interaction (p<0.05) between sites and premises but no interaction between sites and seasons (p>0.05). By Generalized Linear Mixed models, the type of premises nested in sites and monthly total rainfall were significant predictors of monthly dengue cases (p<0.05) and not MIR, season, temperature, and relative humidity. Surveillance of DENV prevalence in Ae. aegypti and detecting their natural foci in the dry season provide an early warning signal of dengue outbreak. PMID:26611963
NASA Technical Reports Server (NTRS)
Pfister, Leonhard; Bui, Paul; Herman, Robert; Dean-Day, Jon; Hipskind, R. Stephen (Technical Monitor)
2002-01-01
The third and fourth NASA Convection and Moisture Experiments (CAMEX-3 and CAMEX-4) during the Atlantic hurricane seasons of 1998 and 2001, respectively, have yielded comprehensive multi-aircraft datasets using, both remote and in-situ instrumentation. Among these are high-frequency in-situ measurements of vertical wind, horizontal wind, temperature, and water vapor, made from NASA's DC-8 aircraft in the upper portions of the hurricane (typically above 10 km). Wind and temperature measurements were made at 20 hz by the NASA/Ames Meteorological Measurement System, while water vapor was measured at 1 hz by the NASA/JPL Laser Hygrometer. Fluxes of heat, momentum, and moisture at these levels are important, since modeling studies have shown that ice processes, which are dominant at temperatures below -40C (where the DC-8 flies) are important for hurricane intensification. Also, there are indications from satellite studies that latent heat release at DC-8 levels is significant, perhaps a third of those in the mid-troposphere. Preliminary results show that typical updrafts in the eyewall region are comparable to or higher than previous observations of tropical convection, with several instances of updraft magnitudes of 15 meters per second (the maximum observed was 21 meters per second). They also show significant supersaturations (10-20% or more) in the updrafts, which would enhance the latent heat release at the upper levels of the hurricane. This paper will examine the magnitude and distribution of small and mesoscale vertical fluxes of mass, momentum, moisture, and heat. The goal is to examine the role of these fluxes in the overall budgets of the respective quantities in the upper portions of the hurricane.
Natural convection heat transfer on two horizontal cylinders in liquid sodium
Hata, K.; Shiotsu, M.; Takeuchi, Y.
1995-09-01
Natural convection heat transfer on two horizontal 7.6 mm diameter test cylinders assembled with the ratio of the distance between each cylinder axis to the cylinder diameter, S/D, of 2 in liquid sodium was studied experimentally and theoretically. The heat transfer coefficients on the cylinder surface due to the same heat inputs ranging from 1.0 X 10{sup 7} to 1.0 x 10{sup 9} W/m{sup 3} were obtained experimentally for various setting angeles, {gamma}, between vertical direction and the plane including both of these cylinder axis over the range of zero to 90{degrees}. Theoretical equations for laminar natural convection heat transfer from the two horizontal cylinders were numerically solved for the same conditions as the experimental ones considering the temperature dependence of thermophysical properties concerned. The average Nusselt numbers, Nu, values on the Nu versus modified Rayleigh number, R{sub f}, graph. The experimental values of Nu for the upper cylinder are about 20% lower than those for the lower cylinder at {gamma} = 0{degrees} for the range of R{sub f} tested here. The value of Nu for the upper cylinder becomes higher and approaches that for the lower cylinder with the increase in {gamma} over range of 0 to 90{degrees}. The values of Nu for the lower cylinder at each {gamma} are almost in agreement with those for a single cylinder. The theoretical values of Nu on two cylinders except those for R{sub f}<4 at {gamma} = 0{degrees} are in agreement with the experimental data at each {gamma} with the deviations less than 15%. Correlations for Nu on the upper and lower cylinders were obtained as functions of S/D and {gamma} based n the theoretical solutions for the S/D ranged over 1.5 to 4.0.
Seismometer using a vertical long natural-period rotational pendulum with magnetic levitation
NASA Astrophysics Data System (ADS)
Otake, Yuji; Araya, Akito; Hidano, Kazuo
2005-05-01
We have demonstrated a highly sensitive/wideband vertical-component seismometer using an astatic rotational pendulum to obtain a long natural period. This seismometer employs magnetic levitation for removing any parasitic resonances of a spring to support a weight due to gravity and the thermal dependence of the spring constant. The pendulum has a cylindrical plunger-type permanent magnet that has a weight at one side of its end edge. The plunger magnet is inserted into a uniform magnetic field generated by a window-frame-type permanent magnet, and attached to two crossed-leaf spring hinges as a rotational axis outside of the bore of the magnet. Magnetic forces applied to the plunger magnet counterbalance the gravitational force at the weight. To realize stable operation of the rotational pendulum without any unnecessary movements of the plunger magnet, a tilt of lines of the magnetic force in the bore of the window-frame magnet was compensated by a tilted magnetic-pole surface near to its opening. The field uniformity reached 10-4 owing to this compensation. The thermal dependence of a magnetic field strength of about 10-3/K was also compensated by as much as 9×10-5/K by Ni-Fe metal having a negative permeability coefficient. The metal was attached along the sidewalls of the window-frame magnet. To determine the feedback control parameters for a feedback control seismometer, the natural period of a prototype rotational pendulum was measured. It was more than 8s, and was able to be changed from 5to8s by using an additional magnetic spring, similar to the voice coil actuator of a speaker. This change was in accordance with theoretical calculations, and showed that the pendulum movement did not include a big nonlinearity caused by the tilt of the lines of the magnetic force. No parasitic resonances were found during experiments. A velocity feedback-control circuit and a capacitance position detector to measure the weight position were applied to the rotational
Seismometer using a vertical long natural-period rotational pendulum with magnetic levitation
Otake, Yuji; Araya, Akito; Hidano, Kazuo
2005-05-15
We have demonstrated a highly sensitive/wideband vertical-component seismometer using an astatic rotational pendulum to obtain a long natural period. This seismometer employs magnetic levitation for removing any parasitic resonances of a spring to support a weight due to gravity and the thermal dependence of the spring constant. The pendulum has a cylindrical plunger-type permanent magnet that has a weight at one side of its end edge. The plunger magnet is inserted into a uniform magnetic field generated by a window-frame-type permanent magnet, and attached to two crossed-leaf spring hinges as a rotational axis outside of the bore of the magnet. Magnetic forces applied to the plunger magnet counterbalance the gravitational force at the weight. To realize stable operation of the rotational pendulum without any unnecessary movements of the plunger magnet, a tilt of lines of the magnetic force in the bore of the window-frame magnet was compensated by a tilted magnetic-pole surface near to its opening. The field uniformity reached 10{sup -4} owing to this compensation. The thermal dependence of a magnetic field strength of about 10{sup -3}/K was also compensated by as much as 9x10{sup -5}/K by Ni-Fe metal having a negative permeability coefficient. The metal was attached along the sidewalls of the window-frame magnet. To determine the feedback control parameters for a feedback control seismometer, the natural period of a prototype rotational pendulum was measured. It was more than 8 s, and was able to be changed from 5 to 8 s by using an additional magnetic spring, similar to the voice coil actuator of a speaker. This change was in accordance with theoretical calculations, and showed that the pendulum movement did not include a big nonlinearity caused by the tilt of the lines of the magnetic force. No parasitic resonances were found during experiments. A velocity feedback-control circuit and a capacitance position detector to measure the weight position were applied to
Major and minor element site occupancies in heated natural forsterite
Smyth, J.R.; Taftoe, J.
1982-09-01
Using a new analytical transmission electron microscopic technique known as CHannelling Enhanced X-ray Emission (CHEXE) spectroscopy, the M-site occupancies of Fe, Ni, Mn, and Ca have been determined in a natural forsteritic olivine (Fo/sub 91/) heat treated at different temperatures. The sample was taken as a single olivine grain from a spinel peridotite inclusion in an alkali basalt and contains 0.36 wt% NiO, 0.07 wt% MnO, and 0.09 wt% CaO. In the non-heat-treated sample, 49.6 at % of the Fe, 97 +/- 5 at % of the Mn in the sample occupy the M1 site. In the present study of samples quenched from different temperatures, the fraction of the Ni present at M1 is 87 +/- 5% (6 days at 300/sup 0/C), 83 +/- 5% (48h at 600/sup 0/C), 83 +/- 5% (45h at 900/sup 0/C) and 80 +/- 5% (24h at 1050/sup 0/C). The authors observed a lesser tendency for Ni to order than postulated by previous workers for Ni-rich olivines. For Mn, typically 15% of the atoms occupy M1 in the heat treated samples. No significant deviation from complete ordering into M2 was observed for Ca. The Fe atoms are completely disordered with 50 +/- 1% at each M-site, except for a weak deviation at 300/sup 0/C with 47.1 +/- 1% at M1. The study indicates that exchange of cations between M-sites may begin as low as 300/sup 0/C. This implies that Ni and Mn distribution in natural olivines may be a useful indicator of cooling rate in rapidly cooled rocks.
Study on heat transfer characteristic of ethanol-water mixture condensation on a vertical micro-tube
NASA Astrophysics Data System (ADS)
Chen, Xiping; Wang, Jinshi; Qin, Junchao; Chong, Daotong; Yan, Junjie
2013-07-01
In present experiment, the vapor mixture with different velocities (2mṡs-1, 4mṡs-1) and different ethanol mass fraction (0.5%, 1%, 2%, 5%, 10%, 20%, 50%) flew through vertical micro-tube and condensed on the outer tube surface at pressure 31.16kPa, 47.36kPa. The condensation modes were observed by CCD camera, and the characteristics of the heat transfer coefficients versus the vapor-to-surface temperature differences for different experimental conditions were obtained. The condensation heat transfer coefficients of vapor mixture decrease with the vapor concentration increasing. The maximum peak value of heat transfer coefficients, up to 39 kWṡm-2ṡK1, which was about 3-4 times greater than that of steam, appeared when the ethanol mass fraction was 2%. A heat transfer coefficient correlation including the effects of all the tested parameters is proposed by using the multiple linear least squares method based on the experimental data. The calculated values agreed well with the experimental data and the deviations between them were from -20% to 20%.
Uddin, Md. Jashim; Khan, Waqar A.; Ismail, A. I. Md.
2013-01-01
A two-dimensional steady forced convective flow of a Newtonian fluid past a convectively heated permeable vertically moving plate in the presence of a variable magnetic field and radiation effect has been investigated numerically. The plate moves either in assisting or opposing direction to the free stream. The plate and free stream velocities are considered to be proportional to whilst the magnetic field and mass transfer velocity are taken to be proportional to where is the distance along the plate from the leading edge of the plate. Instead of using existing similarity transformations, we use a linear group of transformations to transform the governing equations into similarity equations with relevant boundary conditions. Numerical solutions of the similarity equations are presented to show the effects of the controlling parameters on the dimensionless velocity, temperature and concentration profiles as well as on the friction factor, rate of heat and mass transfer. It is found that the rate of heat transfer elevates with the mass transfer velocity, convective heat transfer, Prandtl number, velocity ratio and the magnetic field parameters. It is also found that the rate of mass transfer enhances with the mass transfer velocity, velocity ratio, power law index and the Schmidt number, whilst it suppresses with the magnetic field parameter. Our results are compared with the results existing in the open literature. The comparisons are satisfactory. PMID:23741295
Uddin, Md Jashim; Khan, Waqar A; Ismail, A I Md
2013-01-01
A two-dimensional steady forced convective flow of a Newtonian fluid past a convectively heated permeable vertically moving plate in the presence of a variable magnetic field and radiation effect has been investigated numerically. The plate moves either in assisting or opposing direction to the free stream. The plate and free stream velocities are considered to be proportional to x(m) whilst the magnetic field and mass transfer velocity are taken to be proportional to x((m-1)/2) where x is the distance along the plate from the leading edge of the plate. Instead of using existing similarity transformations, we use a linear group of transformations to transform the governing equations into similarity equations with relevant boundary conditions. Numerical solutions of the similarity equations are presented to show the effects of the controlling parameters on the dimensionless velocity, temperature and concentration profiles as well as on the friction factor, rate of heat and mass transfer. It is found that the rate of heat transfer elevates with the mass transfer velocity, convective heat transfer, Prandtl number, velocity ratio and the magnetic field parameters. It is also found that the rate of mass transfer enhances with the mass transfer velocity, velocity ratio, power law index and the Schmidt number, whilst it suppresses with the magnetic field parameter. Our results are compared with the results existing in the open literature. The comparisons are satisfactory. PMID:23741295
NASA Astrophysics Data System (ADS)
Papanastasiou, D. K.; Bartzanas, T.; Panagakis, P.; Zhang, G.; Kittas, C.
2016-03-01
It is well documented that heat-stress burdens sheep welfare and productivity. Peak heat-stress levels are observed when high temperatures prevail, i.e. during heat waves; however, continuous measurements inside livestock buildings are not usually available for long periods so as to study the variation of summer heat-stress levels for several years, especially during extreme hot weather. Α methodology to develop a long time series of summer temperature and relative humidity inside naturally ventilated sheep barns is proposed. The accuracy and the transferability of the developed linear regression models were verified. Temperature Humidity Index (THI) was used to assess sheep's potential heat-stress. Τhe variation of THI inside a barn during heat wave and non-heat wave days was examined, and the results were comparatively assessed. The analysis showed that sheep were exposed to moderate, severe, and extreme severe heat-stress in 10, 21 and 66 % of hours, respectively, during heat wave days, while the corresponding values during non-heat wave days were 14, 33 and 43 %, respectively. The heat load on sheep was much higher during heat wave events than during non-heat wave periods. Additionally, based on the averaged diurnal variation of THI, it was concluded that extreme severe heat-stress conditions were prevailing between 1000 and 2400 hours local time during heat wave days. Cool off night periods were never and extremely rarely detected during heat wave and non-heat wave days, respectively.
NASA Astrophysics Data System (ADS)
El Nakla, Meamer A.
An experimental investigation of inverted annular film boiling heat transfer has been performed for vertical up-flow in a round tube. The working fluid was R-134a and the flow conditions covered a pressure range of 640 to 2390 kPa (water equivalent range: 4000 to 14000 kPa) and a mass flux range of 500 to 4000 kgm-2s-1 (water equivalent range: 700 to 5700 kgm-2s-1 ). The inlet qualities of the tests ranged from -0.75 to -0.03. The hot-patch technique is used to obtain the subcooled film boiling measurements. The parametric trends of the heat transfer coefficient with respect to mass flux, inlet quality, heat flux and pressure are examined and compared to reported parametric trends from the literature. The comparison shows agreement between observed effects of flow parameters with those reported by other researchers. The heat transfer vs. quality curve is divided into four different regions. It is shown that these regions are dependent on pressure, mass flux and local quality. A two-fluid one-dimensional model has been developed to predict the wall temperature of an internally-heated tube during IAFB. The model is derived using basic conservation equations of mass, momentum and energy. To simplify the derivation of the constitutive heat transfer relations, flow between two parallel plates is assumed. The model features shear stress and interfacial relations that make it accurately predicts the parametric effects and heat transfer characteristics of IAFB over a wide range of flow conditions. The model predicts wall temperatures of R-134a-cooled tubes with an average error of -1.21% and an RMS error of 6.37%. This corresponds to average and RMS errors in predicted heat transfer coefficients of 1.33% and 10.07%, respectively. Using water data, the model predicts wall temperatures with an average error of -1.76% and an RMS error of 7.78% which corresponds to average and RMS errors in predicted heat transfer coefficients of 4.16% and 15.06%, respectively.
NASA Astrophysics Data System (ADS)
Mellah, S.; Ben-Cheikh, N.; Ben-Beya, B.; Lili, T.
2015-03-01
In the present study, a finite volume computational procedure and a full multigrid technique are used to investigate laminar natural convection in partially heated cubic enclosures. Effects of heated strip disposition in the enclosure on the heat transfer rate are studied. Results are presented in the form of flow lines, isotherms plots, average Nusselt numbers, and average temperature on the heat source surface. Statistical distributions of temperature and average velocity fields and their root-mean-square values are presented and discussed.
NASA Astrophysics Data System (ADS)
Pappas, Vasileios; Hatzianastassiou, Nikolaos; Matsoukas, Christos; Koras Carracca, Mario; Kinne, Stefan; Vardavas, Ilias
2015-04-01
It is now well-established that aerosols cause an overall cooling effect at the surface and a warming effect within the atmosphere. At the top of the atmosphere (TOA), both positive and negative forcing can be found, depending on a number of other factors, such as surface albedo and relative position of clouds and aerosols. Whilst aerosol surface cooling is important due to its relation with surface temperature and other bio-environmental reasons, atmospheric heating is of special interest as well having significant impacts on atmospheric dynamics, such as formation of clouds and subsequent precipitation. The actual position of aerosols and their altitude relative to clouds is of major importance as certain types of aerosol, such as black carbon (BC) above clouds can have a significant impact on planetary albedo. The vertical distribution of aerosols and clouds has recently drawn the attention of the aerosol community, because partially can account for the differences between simulated aerosol radiative forcing with various models, and therefore decrease the level of our uncertainty regarding aerosol forcing, which is one of our priorities set by IPCC. The vertical profiles of aerosol optical and physical properties have been studied by various research groups around the world, following different methodologies and using various indices in order to present the impact of aerosols on radiation on different altitudes above the surface. However, there is still variability between the published results as to the actual effect of aerosols on shortwave radiation and on heating rate within the atmosphere. This study uses vertical information on aerosols from the Max Planck Aerosol Climatology (MAC-v1) global dataset, which is a combination of model output with quality ground-based measurements, in order to provide useful insight into the vertical profile of atmospheric heating for the Mediterranean region. MAC-v1 and the science behind this aerosol dataset have already
NASA Technical Reports Server (NTRS)
Diaguila, Anthony J; Freche, John C
1951-01-01
Blade-to-coolant heat-transfer data and operating data were obtained with a natural-convection water-cooled turbine over range of turbine speeds and inlet-gas temperatures. The convective coefficients were correlated by the general relation for natural-convection heat transfer. The turbine data were displaced from a theoretical equation for natural convection heat transfer in the turbulent region and from natural-convection data obtained with vertical cylinders and plates; possible disruption of natural convection circulation within the blade coolant passages was thus indicated. Comparison of non dimensional temperature-ratio parameters for the blade leading edge, midchord, and trailing edge indicated that the blade cooling effectiveness is greatest at the midchord and least at the trailing edge.
NASA Astrophysics Data System (ADS)
Yang, Guang; Yu, Weidong; Yuan, Yeli; Zhao, Xia; Wang, Fan; Chen, Gengxin; Liu, Lin; Duan, Yongliang
2015-10-01
Satellite altimetry sea surface height measurements reveal high mesoscale eddy activity in the southeastern tropical Indian Ocean (SETIO). In this study, the characteristics of mesoscale eddies in the SETIO are investigated by analyzing 564 cyclonic eddy (CE) tracks and 695 anticyclonic eddy (AE) tracks identified from a new version of satellite altimetry data with a daily temporal resolution. The mean radius, lifespan, propagation speed, and distance of CEs (AEs) are 149 (153) km, 50 (46) days, 15.3 (16.6) cm s-1, and 651 (648) km, respectively. Some significant differences exist in the eddy statistical characteristics between the new-version daily altimeter data and the former weekly data. Mean vertical structures of anomalous potential temperature, salinity, geostrophic current, as well as heat and salt transports of the composite eddies, are estimated by analyzing Argo profile data matched to altimeter-detected eddies. The composite analysis shows that eddy-induced ocean anomalies are mainly confined in the upper 300 dbar. In the eddy core, CE (AE) could induce a cooling (warming) of 2°C between 60 and 180 dbar and maximum positive (negative) salinity anomalies of 0.1 (-0.3) psu in the upper 50 (110) dbar. The meridional heat transport induced by the composite CE (AE) is southward (northward), whereas the salt transport of CE (AE) is northward (southward). Most of the meridional heat and salt transports are carried in the upper 300 dbar.
Chamkha, A.J.; Khaled, A.R.A.
1999-08-27
Simultaneous heat and mass transfer from different geometries embedded in porous media has many engineering and geophysical applications, such as migration of water in geothermal reservoirs, underground spreading of chemical wastes and other pollutants, thermal insulation, enhanced oil recovery, packed-bed catalytic reactors, cooling of nuclear reactors, grain storage, and evaporative cooling and solidification. This work considers steady, laminar, hydromagnetic simultaneous heat and mass transfer by mixed convection flow over a permeable vertical plate immersed in a uniform porous medium for the cases of power law variations of both the wall temperature and concentration and the wall heat flux and mass flux. Appropriate transformations are employed to transform the governing differential equations to a nonsimilar form. The transformed equations are solved numerically by an accurate, implicit, iterative, finite difference method. The obtained results are validated by favorable comparisons with previously published work on special cases of the problem. A parametric study illustrating the influence of all involved parameters on the local Nusselt and Sherwood numbers is conducted. The results of this parametric study are shown graphically, and the physical aspects of the problem are discussed.
NASA Astrophysics Data System (ADS)
Akitomo, Kazunori
2006-09-01
Numerical experiments with two- and three-dimensional nonhydrostatic models in a rotating frame have been executed to investigate thermobaric deep convection, subsequent baroclinic instability, and their roles in vertical heat transport, using hydrographic data around Maud Rise in the Weddell Sea, Antarctica. Overturning of the water column due to thermobaric convection is apt to occur on the southern and northern flanks of the rise, and induces upward heat transport. The depth of overturning is two times larger on the northern flank (˜1.5 km) than on the southern flank (˜0.7 km). To the contrary, no overturning occurs over the top of the rise in 90 days. Baroclinic instability develops at a density front formed between the overturned and unoverturned regions since a density contrast at the front is enhanced by thermobaricity. Heat transport due to baroclinic instability is similarly upward, and at peak becomes comparable to that due to the overturning. Applicability of the results to the cooling events previously reported is also discussed.
NASA Astrophysics Data System (ADS)
Martínez-Suástegui, Lorenzo; Treviño, César; Cajas, Juan Carlos
2015-06-01
Transient laminar opposing mixed convection in a gravity driven downward flow confined inside a vertical rectangular channel has been investigated, with both walls suddenly subjected to symmetrical isothermal heat sources over a finite portion of the channel walls. The unsteady two-dimensional Navier-Stokes and energy equations have been solved numerically for a wide parametric set. Studies are carried out for Reynolds numbers of 100 and 200 and several values of buoyancy strength or Richardson number. The effect of Reynolds number and opposing buoyancy on the temporal evolution of the overall flow structure, temperature field, and Nusselt number from the heated surfaces is investigated using fixed geometrical parameters and considering heat losses to the channel walls. In this parameter space, for a given Reynolds number and relatively small values of the buoyancy parameter, the transient process leads to a final symmetric or asymmetric steady-state. However, as the value of buoyancy strength increases, the flow and temperature fields become more complex and an oscillatory flow with a fundamental frequency sets in when a critical value of the Richardson number is reached. Numerical predictions show that the critical value of the Richardson number between the two regimes strongly depends on the value of the Reynolds number, and the time scales, natural frequencies, and phase-space portraits of flow oscillation are presented and discussed in detail. Stability of the symmetric response has been analyzed. The results include the effects of Prandtl number and heat losses to the channel walls on the evolution of the final flow and thermal responses.
NASA Astrophysics Data System (ADS)
Jha, B. K.; Aina, B.; Muhammad, S. A.
2015-03-01
This study investigates analytically the hydrodynamic and thermal behaviour of a fully developed natural convection flow in a vertical micro-porous-annulus (MPA) taking into account the velocity slip and temperature jump at the outer surface of inner porous cylinder and inner surface of outer porous cylinder. A closed — form solution is presented for velocity, temperature, volume flow rate, skin friction and rate of heat transfer expressed as a Nusselt number. The influence of each governing parameter on hydrodynamic and thermal behaviour is discussed with the aid of graphs. During the course of investigation, it is found that as suction/injection on the cylinder walls increases, the fluid velocity and temperature is enhanced. In addition, it is observed that wall surface curvature has a significant effect on flow and thermal characteristics.
Natural analogs for enhanced heat recovery from geothermal systems
Nielson, Dennis L.
1996-01-24
well as others that develop methods for the mining of heat past the stage of primary production, will be termed Enhanced Heat Recovery (EHR). Examples of the evolution of natural systems suggest the methods by which deep geothermal systems can be exploited. The key to the exploitation of deep geothermal systems is successful injection of water into rocks above the brittle-ductile transition, producing steam, cooling the rocks and driving the brittle-ductile transition to deeper levels. Under this scenario, injection wells may be more expensive and require more thoughtful planning than production wells.
NASA Astrophysics Data System (ADS)
Makinde, Oluwole Daniel
2012-05-01
The combined effects of thermal radiation absorption and magnetic field on an unsteady chemically reacting convective flow past an impulsively started vertical plate is studied in the presence of a constant wall heat flux. Boundary layer equations are derived and the resulting approximate nonlinear partial differential equations are solved numerically using a semi-discretization finite difference technique. A parametric study of all parameters involved is conducted, and a representative set of numerical results for the velocity, temperature, and concentration profiles as well as the skin-friction parameter and Sherwood number are illustrated graphically to show typical trends of the solutions. Further validation with previous works is carried out and an excellent agreement is achieved.
NASA Astrophysics Data System (ADS)
Kriaa, Wassim; Bejaoui, Salma; Mhiri, Hatem; Le Palec, Georges; Bournot, Philippe
2014-02-01
In this study, we developed a two-dimensional Computational Fluid Dynamics (CFD) model to simulate dynamic structure and heat and mass transfer of a vertical ceramic tiles dryer (EVA 702). The carrier's motion imposed the choice of a dynamic mesh based on two methods: "spring based smoothing" and "local remeshing". The dryer airflow is considered as turbulent ( Re = 1.09 × 105 at the dryer inlet), therefore the Re-Normalization Group model with Enhanced Wall Treatment was used as a turbulence model. The resolution of the governing equation was performed with Fluent 6.3 whose capacities do not allow the direct resolution of drying problems. Thus, a user defined scalar equation was inserted in the CFD code to model moisture content diffusion into tiles. User-defined functions were implemented to define carriers' motion, thermo-physical properties… etc. We adopted also a "two-step" simulation method: in the first step, we follow the heat transfer coefficient evolution (Hc). In the second step, we determine the mass transfer coefficient (Hm) and the features fields of drying air and ceramic tiles. The found results in mixed convection mode (Fr = 5.39 at the dryer inlet) were used to describe dynamic and thermal fields of airflow and heat and mass transfer close to the ceramic tiles. The response of ceramic tiles to heat and mass transfer was studied based on Biot numbers. The evolutions of averages temperature and moisture content of ceramic tiles were analyzed. Lastly, comparison between experimental and numerical results showed a good agreement.
The effects of Prandtl number on flow over a vertical heated cylinder
NASA Astrophysics Data System (ADS)
Sameen, Abdulvahab; S, Ajithkumar; S, Anillal
2015-11-01
Flow over a two dimensional heated cylinder is analyzed numerically using a hybrid finite element-finite volume method. We assume the flow direction to be opposite to the direction of gravity. It is fundamental in fluid dynamics that the von Karman vortex street appears in the wake of the cylinder above the Reynolds number of approximately 47. On heating the cylinder surface, the Strouhal number (St), which is the non dimensional representation of the vortex shedding frequency, increases. The gradual increase in St is followed by a sudden drop at a particular value of Richardson number (Ri), defined as the relative dominance of the buoyancy force to the inertia force reported as a sudden breakdown of the Karman vortex. Our simulations show that upon further increase in Ri, recirculation bubble reappears. The present numerical work discusses the physical reasons behind this phenomenon and the effects of Prandtl number (defined as the ratio of viscous diffusion to the moment um diffusion) on Richardson number at which break down occurs.
NASA Astrophysics Data System (ADS)
Uhlig, Ralf; Frantz, Cathy; Fritsch, Andreas
2016-05-01
External receiver configurations are directly exposed to ambient wind. Therefore, a precise determination of the convective losses is a key factor in the prediction and evaluation of the efficiency of the solar absorbers. Based on several studies, the forced convective losses of external receivers are modeled using correlations for a roughened cylinder in a cross-flow of air. However at high wind velocities, the thermal efficiency measured during the Solar Two experiment was considerably lower than the efficiency predicted by these correlations. A detailed review of the available literature on the convective losses of external receivers has been made. Three CFD models of different level of detail have been developed to analyze the influence of the actual shape of the receiver and tower configuration, of the receiver shape and of the absorber panels on the forced convective heat transfer coefficients. The heat transfer coefficients deduced from the correlations have been compared to the results of the CFD simulations. In a final step the influence of both modeling approaches on the thermal efficiency of an external tubular receiver has been studied in a thermal FE model of the Solar Two receiver.
Blanco Rodríguez, P; Vera Tomé, F; Lozano, J C
2014-01-01
Low-level alpha spectrometry techniques using semiconductor detectors (PIPS) and liquid scintillation (LKB Quantulus 1220™) were used to determine the activity concentration of (238)U, (234)U, (230)Th, (226)Ra, (232)Th, and (210)Pb in soil samples. The soils were collected from an old disused uranium mine located in southwest Spain. The soils were sampled from areas with different levels of influence from the installation and hence had different levels of contamination. The vertical profiles of the soils (down to 40 cm depth) were studied in order to evaluate the vertical distribution of the natural radionuclides. To determine the origin of these natural radionuclides the Enrichment Factor was used. Also, study of the activity ratios between radionuclides belonging to the same radioactive series allowed us to assess the different types of behaviors of the radionuclides involved. The vertical profiles for the radionuclide members of the (238)U series were different at each sampling point, depending on the level of influence of the installation. However, the profiles of each point were similar for the long-lived radionuclides of the (238)U series ((238)U, (234)U, (230)Th, and (226)Ra). Moreover, a major imbalance was observed between (210)Pb and (226)Ra in the surface layer, due to (222)Rn exhalation and the subsequent surface deposition of (210)Pb. PMID:24182407
NASA Technical Reports Server (NTRS)
Canuto, V. M.; Dubovikov, M. S.; Howard, A.; Cheng, Y.
1999-01-01
In papers 1 and 2 we have presented the results of the most updated 1-point closure model for the turbulent vertical diffusivities of momentum, heat and salt, K(sub m,h,s). In this paper, we derive the analytic expressions for K(sub m,h,s) using a new 2-point closure model that has recently been developed and successfully tested against some approx. 80 turbulence statistics for different flows. The new model has no free parameters. The expressions for K(sub m, h. s) are analytical functions of two stability parameters: the Turner number R(sub rho) (salinity gradient/temperature gradient) and the Richardson number R(sub i) (temperature gradient/shear). The turbulent kinetic energy K and its rate of dissipation may be taken local or non-local (K-epsilon model). Contrary to all previous models that to describe turbulent mixing below the mixed layer (ML) have adopted three adjustable "background diffusivities" for momentum. heat and salt, we propose a model that avoids such adjustable diffusivities. We assume that below the ML, K(sub m,h,s) have the same functional dependence on R(sub i) and R(sub rho) derived from the turbulence model. However, in order to compute R(sub i) below the ML, we use data of vertical shear due to wave-breaking measured by Gargett et al. (1981). The procedure frees the model from adjustable background diffusivities and indeed we use the same model throughout the entire vertical extent of the ocean. Using the new K(sub m,h, s), we run an O-GCM and present a variety of results that we compare with Levitus and the KPP model. Since the traditional 1-point (used in papers 1 and 2) and the new 2-point closure models used here represent different modeling philosophies and procedures, testing them in an O-GCM is indispensable. The basic motivation is to show that the new 2-point closure model gives results that are overall superior to the 1-point closure in spite of the fact that the latter rely on several adjustable parameters while the new 2-point
NASA Astrophysics Data System (ADS)
Rudnick, S.; Lewandowski, J.; Nützmann, G.
2015-03-01
Lacustrine groundwater discharge (LGD) can play a major role in water and nutrient balances of lakes. Unfortunately, studies often neglect this input path due to methodological difficulties in the determination. In a previous study we described a method which allows the estimation of LGD and groundwater recharge using hydraulic head data and groundwater net balances based on meteorological data. The aim of this study is to compare these results with discharge rates estimated by inverse modelling of heat transport using temperature profiles measured in lake bed sediments. We were able to show a correlation between the fluxes obtained with the different methods, although the time scales of the methods differ substantially. As a consequence, we conclude that the use of hydraulic head data and meteorologically-based groundwater net balances to estimate LGD is limited to time scales similar to the calibration period.
Martinez-Suastegui, L.; Trevino, C.
2007-10-15
Particle image velocimetry (PIV) measurements were carried out in an experimental investigation of laminar mixed convection in a vertical duct with a square cross-section. The main downward water-flow is driven by gravity while a portion of a lateral side is heated, and buoyancy forces produce non-stationary vortex structures close to the heated region. Various ranges of the Grashof number, Gr are studied in combination with the Reynolds number, Re varying from 300 to 700. The values of the generalized buoyancy parameter or Richardson number, Ri = Gr/Re{sup 2} parallel to the Grashof number are included in the results. The influence of these nondimensional parameters and how they affect the fluid flow structure and vortex sizes and locations are reported. The flow patterns are nonsymmetric, periodic, and exhibit increasing complexity and frequency for increasing buoyancy. For the averaged values of the resulting vortex dimensions, it was found that a better and more congruent representation occurs when employing the Grashof and Reynolds numbers as independent parameters. (author)
NASA Astrophysics Data System (ADS)
Yoshimura, Kenji; Sasaguchi, Kengo; Fukuda, Toshihito; Koyama, Shigeru
A system with a water-embedded-trpe ice storage vessel is widely used because of its simple structure and compactness. However, the water-embedded-type ice storage vessel has a disadvantage, that is, the solidification rate is very small. The use of falling water film seems to be one of promising ways for solving this disadvantage. We have found in a previous study that the use of the falling water film is very effective, especially for high initial water temperatures. In the present study, we eexamined the performance of a faling-water-film-type ice thermal energy storage vessel with pratical size, having vertical heat exchanger plates. The ice making performance coefficient, η, increases with time, and it becomes am aximum value of 2.5, after that, it decreases gradually. In order to make ice efficiently, it is necessary to set a flow rate of refrigerant properly and to adjust a difference between the evaporating temperature of refrigerant and the freezing point of water so that the refrigerant evaporates in the heat exchanger plates overall.
Adjoint optimization of natural convection problems: differentially heated cavity
NASA Astrophysics Data System (ADS)
Saglietti, Clio; Schlatter, Philipp; Monokrousos, Antonios; Henningson, Dan S.
2016-06-01
Optimization of natural convection-driven flows may provide significant improvements to the performance of cooling devices, but a theoretical investigation of such flows has been rarely done. The present paper illustrates an efficient gradient-based optimization method for analyzing such systems. We consider numerically the natural convection-driven flow in a differentially heated cavity with three Prandtl numbers (Pr=0.15{-}7 ) at super-critical conditions. All results and implementations were done with the spectral element code Nek5000. The flow is analyzed using linear direct and adjoint computations about a nonlinear base flow, extracting in particular optimal initial conditions using power iteration and the solution of the full adjoint direct eigenproblem. The cost function for both temperature and velocity is based on the kinetic energy and the concept of entransy, which yields a quadratic functional. Results are presented as a function of Prandtl number, time horizons and weights between kinetic energy and entransy. In particular, it is shown that the maximum transient growth is achieved at time horizons on the order of 5 time units for all cases, whereas for larger time horizons the adjoint mode is recovered as optimal initial condition. For smaller time horizons, the influence of the weights leads either to a concentric temperature distribution or to an initial condition pattern that opposes the mean shear and grows according to the Orr mechanism. For specific cases, it could also been shown that the computation of optimal initial conditions leads to a degenerate problem, with a potential loss of symmetry. In these situations, it turns out that any initial condition lying in a specific span of the eigenfunctions will yield exactly the same transient amplification. As a consequence, the power iteration converges very slowly and fails to extract all possible optimal initial conditions. According to the authors' knowledge, this behavior is illustrated here
Ally, Moonis Raza; Munk, Jeffrey D.; Baxter, Van D.; Gehl, Anthony C.
2015-05-27
Evidence is provided to support the view that greater than two-thirds of energy required to produce domestic hot water may be extracted from the ground which serves as renewable energy resource. The case refers to a 345 m2 research house located in Oak Ridge, Tennessee, 36.01 N 84.26 W in a mixed-humid climate with HDD of 2218 C-days (3993 F-days) and CDD of 723 C-days (1301 F-days). The house is operated under simulated occupancy conditions in which the hot water use protocol is based on the Building America Research Benchmark Definition (Hendron 2008; Hendron and Engebrecht 2010) which captures the water consumption lifestyles of the average family in the United States. The 5.275 (1.5-ton) water-to-water ground source heat pump (WW-GSHP) shared the same vertical bore with a 7.56 KW water-to-air ground source heat pump for space conditioning the same house. Energy and exergy analysis of data collected continuously over a twelve month period provide performance metrics and sources of inherent systemic inefficiencies. Data and analyses are vital to better understand how WW-GSHPs may be further improved to enable the ground to be used as a renewable energy resource.
Ally, Moonis Raza; Munk, Jeffrey D.; Baxter, Van D.; Gehl, Anthony C.
2015-05-27
Evidence is provided to support the view that greater than two-thirds of energy required to produce domestic hot water may be extracted from the ground which serves as renewable energy resource. The case refers to a 345 m2 research house located in Oak Ridge, Tennessee, 36.01 N 84.26 W in a mixed-humid climate with HDD of 2218 C-days (3993 F-days) and CDD of 723 C-days (1301 F-days). The house is operated under simulated occupancy conditions in which the hot water use protocol is based on the Building America Research Benchmark Definition (Hendron 2008; Hendron and Engebrecht 2010) which captures themore » water consumption lifestyles of the average family in the United States. The 5.275 (1.5-ton) water-to-water ground source heat pump (WW-GSHP) shared the same vertical bore with a 7.56 KW water-to-air ground source heat pump for space conditioning the same house. Energy and exergy analysis of data collected continuously over a twelve month period provide performance metrics and sources of inherent systemic inefficiencies. Data and analyses are vital to better understand how WW-GSHPs may be further improved to enable the ground to be used as a renewable energy resource.« less
Keyhani, M; Miller, W A
1999-11-14
Absorption chillers are gaining global acceptance as quality comfort cooling systems. These machines are the central chilling plants and the supply for cotnfort cooling for many large commercial buildings. Virtually all absorption chillers use lithium bromide (LiBr) and water as the absorption fluids. Water is the refrigerant. Research has shown LiBr to he one of the best absorption working fluids because it has a high affinity for water, releases water vapor at relatively low temperatures, and has a boiling point much higher than that of water. The heart of the chiller is the absorber, where a process of simultaneous heat and mass transfer occurs as the refrigerant water vapor is absorbed into a falling film of aqueous LiBr. The more water vapor absorbed into the falling film, the larger the chiller's capacity for supporting comfort cooling. Improving the performance of the absorber leads directly to efficiency gains for the chiller. The design of an absorber is very empirical and requires experimental data. Yet design data and correlations are sparse in the open literature. The experimental data available to date have been derived at LiBr concentrations ranging from 0.30 to 0.60 mass fraction. No literature data are readily available for the design operating conditions of 0.62 and 0.64 mass fraction of LiBr and absorber pressures of 0.7 and 1.0 kPa.
NASA Astrophysics Data System (ADS)
Kurylyk, Barret L.; Hayashi, Masaki; Quinton, William L.; McKenzie, Jeffrey M.; Voss, Clifford I.
2016-02-01
Recent climate change has reduced the spatial extent and thickness of permafrost in many discontinuous permafrost regions. Rapid permafrost thaw is producing distinct landscape changes in the Taiga Plains of the Northwest Territories, Canada. As permafrost bodies underlying forested peat plateaus shrink, the landscape slowly transitions into unforested wetlands. The expansion of wetlands has enhanced the hydrologic connectivity of many watersheds via new surface and near-surface flow paths, and increased streamflow has been observed. Furthermore, the decrease in forested peat plateaus results in a net loss of boreal forest and associated ecosystems. This study investigates fundamental processes that contribute to permafrost thaw by comparing observed and simulated thaw development and landscape transition of a peat plateau-wetland complex in the Northwest Territories, Canada from 1970 to 2012. Measured climate data are first used to drive surface energy balance simulations for the wetland and peat plateau. Near-surface soil temperatures simulated in the surface energy balance model are then applied as the upper boundary condition to a three-dimensional model of subsurface water flow and coupled energy transport with freeze-thaw. Simulation results demonstrate that lateral heat transfer, which is not considered in many permafrost models, can influence permafrost thaw rates. Furthermore, the simulations indicate that landscape evolution arising from permafrost thaw acts as a positive feedback mechanism that increases the energy absorbed at the land surface and produces additional permafrost thaw. The modeling results also demonstrate that flow rates in local groundwater flow systems may be enhanced by the degradation of isolated permafrost bodies.
NASA Astrophysics Data System (ADS)
Read, T. O.; Bour, O.; Selker, J. S.; Le Borgne, T.; Bense, V.; Hochreutener, R.; Lavenant, N.
2013-12-01
In highly heterogeneous media, fracture network connectivity and hydraulic properties can be estimated using methods such as packer- or cross-borehole pumping-tests. Typically, measurements of hydraulic head or vertical flow in such tests are made either at a single location over time, or at a series of depths by installing a number of packers or raising or lowering a probe. We show how this often encountered monitoring problem, with current solutions sacrificing either one of temporal or spatial information, can be addressed using Distributed Temperature Sensing (DTS). Here, we electrically heat the conductive cladding materials of cables deployed in boreholes to determine the vertical flow profile. We present results from heated fiber optic cables deployed in three boreholes in a fractured rock aquifer at the much studied experimental site near Ploemeur, France, allowing detailed comparisons with alternative methods (e.g. Le Borgne et al., 2007). When submerged in water and electrically heated, the cable very rapidly reaches a steady state temperature (less than 60 seconds). The steady state temperature of the heated cable, measured using the DTS method, is then a function of the velocity of the fluid in the borehole. We find that such cables are sensitive to a wide range of fluid velocities, and thus suitable for measuring both ambient and pumped flow profiles at the Ploemeur site. The cables are then used to monitor the flow profiles during all possible configurations of: ambient flow, cross-borehole- (pumping one borehole, and observing in another), and dipole-tests (pumping one borehole, re-injection in another). Such flow data acquired using DTS may then be used for tomographic flow inversions, for instance using the approach developed by Klepikova et al., (submitted). Using the heated fiber optic method, we are able to observe the flow response during such tests in high spatial detail, and are also able to capture temporal flow dynamics occurring at the
NASA Astrophysics Data System (ADS)
Beckermann, C.; Ramadhyani, S.; Viskanta, R.
1987-05-01
A numerical and experimental study is performed to analyze the steady-state natural convection fluid flow and heat transfer in a vertical rectangular enclosure that is partially filled with a vertical layer of a fluid-saturated porous medium. The flow in the porous layer is modeled utilizing the Brinkman-Forchheimer-extended Darcy equations. The numerical model is verified by conducting a number of experiments, with spherical glass beads as the porous medium and water and glycerin as the fluids, in rectangular test cells. The agreement between the flow visualization results and temperature measurements and the numerical model is, in general, good. It is found that the amount of fluid penetrating from the fluid region into the porous layer depends strongly on the Darcy (Da) and Rayleigh (Ra) numbers. For a relatively low product of Ra x Da, the flow takes place primarily in the fluid layer, and heat transfer in the porous layer is by conduction only. On other hand, fluid penetration into a relatively highly permeable porous layer has a significant impact on the natural convection flow patterns in the entire enclosure.
Lance, Blake W.; Smith, Barton L.
2016-06-23
Transient convection has been investigated experimentally for the purpose of providing Computational Fluid Dynamics (CFD) validation benchmark data. A specialized facility for validation benchmark experiments called the Rotatable Buoyancy Tunnel was used to acquire thermal and velocity measurements of flow over a smooth, vertical heated plate. The initial condition was forced convection downward with subsequent transition to mixed convection, ending with natural convection upward after a flow reversal. Data acquisition through the transient was repeated for ensemble-averaged results. With simple flow geometry, validation data were acquired at the benchmark level. All boundary conditions (BCs) were measured and their uncertainties quantified.more » Temperature profiles on all four walls and the inlet were measured, as well as as-built test section geometry. Inlet velocity profiles and turbulence levels were quantified using Particle Image Velocimetry. System Response Quantities (SRQs) were measured for comparison with CFD outputs and include velocity profiles, wall heat flux, and wall shear stress. Extra effort was invested in documenting and preserving the validation data. Details about the experimental facility, instrumentation, experimental procedure, materials, BCs, and SRQs are made available through this paper. As a result, the latter two are available for download and the other details are included in this work.« less
Ocean Turbulence I: One-Point Closure Model Momentum and Heat Vertical Diffusivities
NASA Technical Reports Server (NTRS)
Canuto, V. M.; Howard, A.; Cheng, Y.; Dubovikov, M. S.
1999-01-01
Since the early forties, one-point turbulence closure models have been the canonical tools used to describe turbulent flows in many fields. In geophysics, Mellor and Yamada applied such models using the 1980 state-of-the art. Since then, no improvements were introduced to alleviate two major difficulties: 1) closure of the pressure correlations, which affects the correct determination of the critical Richardson number Ri(sub cr) above which turbulent mixing is no longer possible and 2) the need to express the non-local third-order moments (TOM) in terms of lower order moments rather than via the down-gradient approximation as done thus far, since the latter seriously underestimates the TOMs. Since 1) and 2) are still being dealt with adjustable parameters which weaken the credibility of the models, alternative models, not based on turbulence modeling, have been suggested. The aim of this paper is to show that new information, partly derived from the newest 2-point closure model discussed, can be used to solve these shortcomings. The new one-point closure model, which in its simplest form is algebraic and thus simple to implement, is first shown to reproduce a variety of data. Then, it is used in a Ocean-General Circulation Model (O-GCM) where it reproduces well a large variety of ocean data. While phenomenological models are specifically tuned to ocean turbulence, the present model is not. It is first tested against laboratory data on stably stratified flows and then used in an O-GCM. It is more general, more predictive and more resilient, e.g., it can incorporate phenomena like wave-breaking at the surface, salinity diffusivity, non-locality, etc. One important feature that naturally comes out of the new model is that the predicted Richardson critical value Ri(sub cr) is Ri (sub cr approx. = 1) in agreement with both Large Eddy Simulations (LES) and empirical evidence while all previous models predicted Ri (sub cr approx. = 0.2) which led to a considerable
The importance of vertical transmission of Neospora sp. in naturally infected horses.
Antonello, Ana Maria; Pivoto, Felipe Lamberti; Camillo, Giovana; Braunig, Patricia; Sangioni, Luis Antonio; Pompermayer, Endrigo; Vogel, Fernanda Silveira Flores
2012-07-01
Neospora spp. is a intracellular protozoan phylogenetically closely related to Toxoplasma gondii and Sarcocystis neurona, and it can infect horses leading to the development of reproductive or neurological diseases. We determined the presence of antibodies to Neospora sp. in mares at their parturition time and determine the frequency of vertical transmission in healthy foals to verify the importance of transplacental transmission. The samples were analyzed by indirect immunofluorescence antibody test, showing that seroprevalence in mares is higher than in foals and seropositive mares are likely to transmit the neosporosis to their offspring. This shows that endogenous challenge occurs in horses, and it suggests that this protozoan can be disseminated by means of transplacental transmission in horse species. PMID:22436425
NASA Technical Reports Server (NTRS)
Kirby, Mark S.; Hansman, R. John, Jr.
1988-01-01
The heat transfer behavior of accreting ice surfaces in natural (flight test) and simulated (wind tunnel) cloud icing conditions were studied. Observations of wet and dry ice growth regimes as measured by ultrasonic pulse echo techniques were made. Observed wet and dry ice growth regimes at the stagnation point of a cylinder were compared with those predicted using a quasi steady state heat balance model. A series of heat transfer coefficients were employed by the model to infer the local heat transfer behavior of the actual ice surfaces. The heat transfer in the stagnation region was generally inferred to be higher in wind tunnel icing tests than in natural flight icing conditions.
NASA Astrophysics Data System (ADS)
Borget, V.; Bdéoui, F.; Soufiani, A.; Le Quéré, P.
2001-05-01
Radiation effects on the onset of the transverse instability in a differentially heated vertical cavity containing molecular emitting and absorbing gases in the so-called conduction regime is studied theoretically. Radiative transfer is treated using the full integro-differential formulation. The neutral stability curves are determined using a combined Galerkin-collocation method based on Chebyshev polynomials. A modified correlated-k model and the absorption distribution function model are used in order to take into account the spectral structure of the absorption coefficient for radiating molecules such as H2O and CO2. For transparent media, perfect agreement is found with the available data reported in the literature and, particularly, the principle of exchange of stability is found to hold for Prandtl number values less than 12.46. The study of gray media allows us to examine the basic mechanisms that yield to the onset of transverse instability as traveling waves. For real radiating gases, a parametric study for H2O and CO2 is reported. It is shown that the radiative transfer delays the onset of the transverse instability and this delay increases with temperature and decreases with boundary emissivities, while layer depth effects depend on the level of saturation of the gas active absorption bands. Whatever the gas considered, it is found that neither radiation effect on the basic flow nor the radiative power disturbances can be neglected.
NASA Astrophysics Data System (ADS)
Park, Chang Seok; Lim, Hee Chang
2015-11-01
In general, the heated surface generates a Marangoni flow inside a droplet yielding a coffee stain effect in the end. This study aims to visualize and control the Marangoni flow by using periodic vertical vibration. While the droplet is evaporating, the variation of contact angle and internal volume of droplet was observed by using the combination of a continuous light and a DSLR still camera. Regarding the internal velocity, the PIV(Particle Image Velocimetry) system was applied to visualize the internal Marangoni flow. In order to estimate the temperature gradient inside and surface tension on the droplet, a commercial software Comsol Multiphysics was used. In the result, the internal velocity increases with the increase of the plate temperature and both flow directions of Marangoni and gravitational flow are opposite so that there seems to be a possibility to control the coffee stain effect. In addition, the Marangoni flow was controlled at relatively lower range of frequency 30 ~ 50Hz. Work supported by Korea government Ministry of Trade, Industry and Energy KETEP grant No. 20134030200290, Ministry of Education NRF grant No. NRF2013R1A1A2005347.
NASA Astrophysics Data System (ADS)
Shah, Nehad Ali; Khan, Ilyas
2016-07-01
This paper presents a Caputo-Fabrizio fractional derivatives approach to the thermal analysis of a second grade fluid over an infinite oscillating vertical flat plate. Together with an oscillating boundary motion, the heat transfer is caused by the buoyancy force induced by temperature differences between the plate and the fluid. Closed form solutions of the fluid velocity and temperature are obtained by means of the Laplace transform. The solutions of ordinary second grade and Newtonian fluids corresponding to time derivatives of integer and fractional orders are obtained as particular cases of the present solutions. Numerical computations and graphical illustrations are used in order to study the effects of the Caputo-Fabrizio time-fractional parameter α, the material parameter α _2 , and the Prandtl and Grashof numbers on the velocity field. A comparison for time derivative of integer order versus fractional order is shown graphically for both Newtonian and second grade fluids. It is found that fractional fluids (second grade and Newtonian) have highest velocities. This shows that the fractional parameter enhances the fluid flow.
NASA Astrophysics Data System (ADS)
Barletta, A.; Storesletten, L.
2013-04-01
The onset of thermal convection in a vertical porous cylinder is studied by considering the heating from below and the cooling from above as caused by external forced convection processes. These processes are parametrised through a finite Biot number, and hence through third-kind, or Robin, temperature conditions imposed on the lower and upper boundaries of the cylinder. Both the horizontal plane boundaries and the cylindrical sidewall are assumed to be impermeable; the sidewall is modelled as a thermally insulated boundary. The linear stability analysis is carried out by studying separable normal modes, and the principle of exchange of stabilities is proved. It is shown that the Biot number does not affect the ordering of the instability modes that, when the radius-to-height aspect ratio increases, are displayed in sequence at the onset of convection. On the other hand, the Biot number plays a central role in determining the transition aspect ratios from one mode to its follower. In the limit of a vanishingly small Biot number, just the first (non-axisymmetric) mode is displayed at the onset of convection, for every value of the aspect ratio.
NASA Astrophysics Data System (ADS)
O-Uchi, Masaki; Hirose, Koichi; Saito, Futami
The inside heat transfer coefficient, overall heat transfer coefficient, and heat flow rate at the heating section of the thermosiphon were determined for each heating method. In order to observe the heat transfer mechanism in the evaporator, a thermosiphon unit made of glass was assembled and conducted separately. The results of these experiments with these two units are summarized as follows. (1) Nucleate boiling due to the internal heat transfer mechanism improves the heat transfer characteristics of the thermosiphon unit. Under the specific heating conditions with dropwise condensation, there are two types of heat transfer mechanism occur in the evaporator accompanying nucleate boiling, i. e. latent heat transfer and sensible heat transfer. (2) In the case of latent heat transfer, the inside heat transfer coefficient has an upper limit which can be used as a criterion to determine the type of internal heat transfer mechanism.
Liu, Zhongliang; Zhang, Xinghua; Wang, Hongyan; Meng, Sheng; Cheng, Shuiyuan
2007-07-15
Surface hydrophilicity has a strong influence on frost nucleation according to phase transition theory. To study this effect, a close observation of frost formation and deposition processes on a vertical plate was made under free convection conditions. The formation and shape variation of frost crystals during the initial period are described and the frost thickness variation with time on both hydrophobic and plain copper cold surfaces are presented. The various influencing factors are discussed in depth. The mechanism of surface hydrophilicity influence on frost formation was analyzed theoretically. This revealed that increasing the contact angle can increase the potential barrier and restrain crystal nucleation and growth and thus frost deposition. The experimental results show that the initial water drops formed on a hydrophobic surface are smaller and remain in the liquid state for a longer time compared with ones formed on a plain copper surface. It is also observed that the frost layer deposited on a hydrophobic surface is loose and weak. Though the hydrophobic surface can retard frost formation to a certain extent and causes a looser frost layer, our experimental results show that it does not depress the growth of the frost layer. (author)
NASA Astrophysics Data System (ADS)
Gaudin, Damien; Finizola, Anthony; Beauducel, François; Brothelande, Elodie; Allemand, Pascal; Delacourt, Christophe; Delcher, Eric; Peltier, Aline
2014-05-01
Hydrothermal systems are associated to most of the dormant volcanoes. Heat is transported by steam from the hot magma body in the connected porosity and the fissures of the rock to the surface. If the flux is low enough (<500 W/m²), the steam mainly condensates in the soil close to surface, and a significant proportion of the heat is transported to the surface by conduction, producing a gradient of temperature and a thermal anomaly detectable at the surface. Detecting and monitoring these fluxes is crucial for hazard management, since it reflects the state of the magma body in depth. In order to quantify this flux two methods are considered. First, a vertical profile of temperature is measured by a series of thermocouples, and the conducted flux is estimated thanks to the Fourier law. Secondly, a more recent method uses the thermal infrared imagery to monitor the surface temperature anomaly (STA) between the studied zone and an equivalent zone not affected by the geothermal flux. The heat flux from the soil to the atmosphere is computed as the sum of (1) the radiative flux, (2) the sensible flux and (3) the residual steam flux. These two methods are complementary and have an equivalent uncertainty of approximately 20%, which would allow to track the major changes in the hydrothermal system. However, the surface and sub-surface temperatures are strongly influenced by the climate. For instance, it has been widely demonstrated that the surface temperature dramatically decreases after a rainfall. In order to estimate the reliability of the measurements, a numerical model simulating the evolution of the subsurface temperature in low flux fumarolic zone has been built. In depth, the heat can be transported either by conduction, or by the rising steam, or by condensed water. In surface, both the radiative flux and the sensible flux (convection of the atmosphere) are taken into account. This model allows to estimate the changes of temperature due to a variation of solar
Comparison of natural convection heat exchangers for solar water heating systems
Davidson, J.; Liu, W.
1998-09-15
Thermosyphon heat exchangers are used in indirect solar water heating systems to avoid using a pump to circulate water from the storage tank to the heat exchanger. In this study, the authors consider the effect of heat exchanger design on system performance. They also compare performance of a system with thermosyphon flow to the same system with a 40W pump in the water loop. In the first part of the study, the authors consider the impact of heat exchanger design on the thermal performance of both one- and two-collector solar water heaters. The comparison is based on Solar Rating and Certification Corporation (SRCC) OG300 simulations. The thermosyphon heat exchangers considered are (1) a one-pass, double wall, 0.22 m{sup 2}, four tube-in-shell heat exchanger manufactured by AAA Service and Supply, Inc., (the Quad-Rod); (2) a two-pass, double wall, 0.2 m{sup 2}, tube-in-shell made by Heliodyne, Inc., but not intended for commercial development; (3) a one-pass, single wall, 0.28 m{sup 2}, 31 tube-in-shell heat exchanger from Young Radiator Company, and (4) a one-pass single-wall, 0.61 m{sup 2}, four coil-in-shell heat exchanger made by ThermoDynamics Ltd. The authors compare performance of the systems with thermosyphon heat exchangers to a system with a 40 W pump used with the Quad-Rod heat exchanger. In the second part of the study, the effects of reducing frictional losses through the heat exchanger and/or the pipes connecting the heat exchanger to the storage tank, and increasing heat transfer area are evaluated in terms of OG300 ratings.
Harsini, I.; Ashjaee, M.
2010-09-15
The effect of a vertical adiabatic wall on the natural convection heat transfer from vertical array of attached cylinders, which can be considered as wavy surface, was investigated experimentally and numerically. The experiments were carried out using Mach-Zehnder interferometer and the commercial FLUENT code was used for numerical study. This paper focuses on the effect of wall-wavy surface spacing and Rayleigh number variation on the local and average free convection heat transfer coefficients from the each cylinder and the wavy surface. Rayleigh number ranges from 2400 to 10,000 and from 300,000 to 1,250,000 based on cylinder diameter and wavy surface height respectively. The local and average Nusselt numbers were determined for the different Rayleigh numbers, and the ratio of wall- wavy surface spacing to cylinder diameter 0.75, 1, 1.5, 2, 3, 4, 5, and {infinity}. Results are indicated with a single correlation which gives the average Nusselt number as a function of the ratio of the wall-wavy surface spacing to cylinder diameter and the Rayleigh numbers. There is an optimum distance between the wall and wavy surface in which the Nusselt number attain its maximum value. This optimum distance depends on the Rayleigh number. (author)
Aksenova, A.E.; Chudanov, V.V.; Strizhov, V.F.; Vabishchevich, P.N.
1995-09-01
Unsteady natural convection of a heat-generating fluid with phase transitions in the enclosures of a square section with isothermal rigid walls is investigated numerically for a wide range of dimensionless parameters. The quasisteady state solutions of conjugate heat and mass transfer problem are compared with available experimental results. Correlation relations for heat flux distributions at the domain boundaries depending on Rayleigh and Ostrogradskii numbers are obtained. It is shown that generally heat transfer is governed both by natural circulation and crust formation phenomena. Results of this paper may be used for analysis of experiments with prototypic core materials.
Analysis and measurements of interzonal natural convection heat transfer in buildings
Hill, D.; Kirkpatrick, A.; Burns, P.
1986-08-01
Natural convection heat transfer through doorways can be an important process by which thermal energy is transferred from one zone to another zone of a building. The topic of this paper is interzonal natural convection in a two zone and a three zone multilevel full scale building. Aperture velocity and temperature distributions are measured and the experimental interzonal mass flow rate and heat transfer are determined. A Bernoulli model is derived to predict the neutral heights, velocity profiles, and interzonal heat transfer. The measured and predicted interzonal flow rate and heat transfer are compared and found to be in good agreement.
Numerical computations of natural convection heat transfer in irregular geometries
NASA Astrophysics Data System (ADS)
Glakpe, E. K.
1987-01-01
This report explains the determination of buoyancy driven flow characteristics and heat transfer in enclosures of complex geometrical shapes. Applications of buoyancy driven flows can be found in solar collector devices, energy conservation technologies, cooling of micro-electronic chips, and nuclear reactor spent fuel shipping configurations. The problem is further complicated when three dimensional effects, non-Boussinesq effects, turbulence, and heat transfer by radiation are accounted for in the overall balance of energy transfer. This study developed a capability to model and predict the heat transfer and flow characteristics in shipping cask configurations involving light water and fast reactor fuel assemblies. We explored the complex flow phenomena involved in these configurations to develop numerical prediction capabilities to obtain data for the design and/or thermal analysis of such shipping casks.
A new look at natural convection from isothermal vertical parallel plates
Li, H.H.; Chung, B.T.F.
1996-12-31
Natural convection between isothermal plates is solved numerically by applying the full Navier-Stokes equations. The elliptic formulation allows separating the effect of the Rayleigh number, Ra, and the aspect ratio, L/B. Calculations are made on a wide range of the Rayleigh number and the aspect ratio, and the Nusselt number is provided as a function of both Ra and B/L. The conventional correlations in the literature presenting the Nusselt number in terms of a single parameter, RaB/L, have been found inaccurate. At a small value of RaB/L, multiple values of Nusselt number are obtained for different combinations of Ra and B/L. Previous results are found to be the special cases of the present study. A minimum Rayleigh number is also obtained above which a fully-developed flow is possible. To simulate the natural convective flow, the ambient pressure is given at the exit while the pressure at the entrance is related to the ambient pressure by the Bernoulli equation. Velocities at the entrance and exit are also solved from the Navier-Stokes equations.
NASA Astrophysics Data System (ADS)
Sahebi, S. A. R.; Pourziaei, H.; Feizi, A. R.; Taheri, M. H.; Rostamiyan, Y.; Ganji, D. D.
2015-12-01
In this paper, natural convection of non-Newtonian bio-nanofluids flow between two vertical flat plates is investigated numerically. Sodium Alginate (SA) and Sodium Carboxymethyl Cellulose (SCMC) are considered as the base non-Newtonian fluid, and nanoparticles such as Titania ( TiO2 and Alumina ( Al2O3 were added to them. The effective thermal conductivity and viscosity of nanofluids are calculated through Maxwell-Garnetts (MG) and Brinkman models, respectively. A fourth-order Runge-Kutta numerical method (NUM) and three Weighted Residual Methods (WRMs), Collocation (CM), Galerkin (GM) and Least-Square Method (LSM) and Finite-Element Method (FEM), are used to solve the present problem. The influence of some physical parameters such as nanofluid volume friction on non-dimensional velocity and temperature profiles are discussed. The results show that SCMC- TiO2 has higher velocity and temperature values than other nanofluid structures.
NASA Astrophysics Data System (ADS)
McPhaden, M. J.; Foltz, G. R.
2013-06-01
examine the ocean mixed layer response to intraseasonal atmospheric forcing using moored time series data in the central equatorial Indian Ocean for October 2004 to March 2005, a period coincident with two active phases of the Madden-Julian Oscillation (MJO). Both MJO events were accompanied by a sea surface temperature decrease that was partially the consequence of reduced net surface heat flux. In addition, during the first event in October-November 2004, advection by an enhanced Wyrtki Jet contributed substantial cooling, while during the second event in December 2004 to January 2005, vertical processes, most likely related to entrainment mixing, were pronounced. Heavy rainfall at the mooring location during the first event may have contributed to the formation of a 30-40 m thick barrier layer that limited turbulent vertical transfers between the mixed layer and the thermocline. There was no barrier layer present during the second event, which presumably allowed for much freer vertical turbulent exchanges.
Weaver, J.A.; Viskanta, R. )
1992-01-01
An investigation of natural convection is presented to examine the influence of a horizontal temperature gradient and a concentration gradient occurring from the bottom to the cold wall in a cavity. As the solutal buoyancy force changes from augmenting to opposing the thermal buoyancy force, the fluid motion switches from unicellular to multicellular flow (fluid motion is up the cold wall and down the hot wall for the bottom counterrotating flow cell). Qualitatively, the agreement between predicted streamlines and smoke flow patterns is generally good. In contrast, agreement between measured and predicted temperature and concentration distributions ranges from fair to poor. Part of the discrepancy can be attributed to experimental error. However, there remains considerable discrepancy between data and predictions due to the idealizations of the mathematical model, which examines only first-order physical effects. An unsteady flow, variable thermophysical properties, conjugate effects, species interdiffusion, and radiation were not accounted for in the model. 31 refs.
NASA Astrophysics Data System (ADS)
Vanheyden, L.; Evertz, E.
1980-12-01
Compression type air/water heat pumps were developed for domestic heating systems rated at 20 to 150 kW. The heat pump is driven either by a reciprocating piston or rotary piston engine modified to operate on natural gas. Particular features of natural gas engines as prime movers, such as waste heat recovery and variable speed, are stressed. Two systems suitable for heat pump operation were selected from among five different mass produced car engines and were modified to incorporate reciprocating piston compressor pairs. The refrigerants used are R 12 and R 22. Test rig data transferred to field conditions show that the fuel consumption of conventional boilers can be reduced by 50% and more by the installation of engine driven heat pumps. Pilot heat pumps based on a 1,600 cc reciprocating piston engine were built for heating four two-family houses. Pilot pump operation confirms test rig findings. The service life of rotary piston and reciprocating piston engines was investigated. The tests reveal characteristic curves for reciprocating piston engines and include exhaust composition measurements.
Decay Heat Removal by Natural Circulation of Vacuum Vessel Coolant for ITER
NASA Astrophysics Data System (ADS)
Iseli, M.; Bartels, H.-W.; Poucet, A.
1997-06-01
The decay heat-driven temperature transients of the in-vessel components following a postulated loss of all in-vessel cooling have been calculated. The resulting time-dependent heat load to the vacuum vessel is due to radiation from the backplate and convection of postulated steam between backplate and vacuum vessel. It is shown, that even for a failure of all in-vessel cooling and total loss of power, the ITER design can rely on passive decay heat removal by natural circulation in one of the two existing cooling loops of the vacuum vessel. A mathematical model describes the transient operating conditions and shows that the temperature established by natural circulation does not exceed 200°C at the maximum shut down heat load to the vacuum vessel. Therefore, no additional emergency cooling system is required if the existing heat exchanger is designed for natural circulation and a bypass is used during normal operation to maintain operation temperature.
NASA Astrophysics Data System (ADS)
Hari, Niranjan; Sivasankaran, S.; Bhuvaneswari, M.; Siri, Zailan
2015-12-01
The aim of the present study is to analyze the effects of chemical reaction on MHD mixed convection with the stagnation point flow towards a vertical plate embedded in a porous medium with radiation and internal heat generation. The governing boundary layer equations are transformed into a set of ordinary differential equations using similarity transformations. Then they are solved by shooting technique with Runge-Kutta fourth order iteration. The obtained numerical results are illustrated graphically and the heat and mass transfer rates are given in tabular form. The velocity and temperature profiles overshoot near the plate on increasing the chemical reaction parameter, Richardson number and magnetic field parameter.
Effect of Temperature Shock and Inventory Surprises on Natural Gas and Heating Oil Futures Returns
Hu, John Wei-Shan; Lin, Chien-Yu
2014-01-01
The aim of this paper is to examine the impact of temperature shock on both near-month and far-month natural gas and heating oil futures returns by extending the weather and storage models of the previous study. Several notable findings from the empirical studies are presented. First, the expected temperature shock significantly and positively affects both the near-month and far-month natural gas and heating oil futures returns. Next, significant temperature shock has effect on both the conditional mean and volatility of natural gas and heating oil prices. The results indicate that expected inventory surprises significantly and negatively affects the far-month natural gas futures returns. Moreover, volatility of natural gas futures returns is higher on Thursdays and that of near-month heating oil futures returns is higher on Wednesdays than other days. Finally, it is found that storage announcement for natural gas significantly affects near-month and far-month natural gas futures returns. Furthermore, both natural gas and heating oil futures returns are affected more by the weighted average temperature reported by multiple weather reporting stations than that reported by a single weather reporting station. PMID:25133233
A study of the dry heat resistance of naturally occurring organisms widely dispersed on a surface
NASA Technical Reports Server (NTRS)
Garst, D. M.; Lindell, K. F.
1971-01-01
Although Bacillus subtilis var. niger is the standard test organism for NASA planetary quarantine sterilization studies, it was found that some naturally occurring soil organisms are more heat resistant. The separation of these organisms from soil particles is described. Experiments are discussed which were designed to show that the heat resistance is a natural characteristic of the organisms, rather than a condition induced by the clumping effect of agglomerated particles and organisms.
NASA Astrophysics Data System (ADS)
Pradipta, Rezy
In this thesis, we investigate the potential role played by large-scale anomalous heat sources (e.g. prolonged heat wave events) in generating acoustic-gravity waves (AGWs) that might trigger widespread plasma turbulence in the ionospheric layer. The main hypothesis is that, the thermal gradients associated with the heat wave fronts could act as a source of powerful AGW capable of triggering ionospheric plasma turbulence over extensive areas. In our investigations, first we are going to examine a case study of the summer 2006 North American heat wave event. Our examination of GPS-derived total electron content (TEC) data over the North American sector reveals a quite noticeable increase in the level of daily plasma density fluctuations during the summer 2006 heat wave period. Comparison with the summer 2005 and summer 2007 data further confirms that the observed increase of traveling ionospheric disturbances (TIDs) during the summer 2006 heat wave period was not simply a regular seasonal phenomenon. Furthermore, a series of field experiments had been carried out at the High-frequency Active Auroral Research Program (HAARP) facility in order to physically simulate the process of AGW/TID generation by large-scale thermal gradients in the ionosphere. In these ionospheric HF heating experiments, we create some time-varying artificial thermal gradients at an altitude of 200--300 km above the Earth's surface using vertically-transmitted amplitude-modulated 0-mode HF heater waves. For our experiments, a number of radio diagnostic instruments had been utilized to detect the characteristic signatures of heater-generated AGW/TID. So far, we have been able to obtain several affirmative indications that some artificial AGW/TID are indeed being radiated out from the heated plasma volume during the HAARP-AGW experiments. Based on the experimental evidence, we may conclude that it is certainly quite plausible for large-scale thermal gradients associated with severe heat wave
NASA Astrophysics Data System (ADS)
Huang, W.; Chu, X.; Gardner, C. S.; Barry, I. F.; Smith, J. A.; Fong, W.; Yu, Z.; Chen, C.
2014-12-01
The vertical transport of heat and constituent by gravity waves and tides plays a fundamental role in establishing the thermal and constituent structures of the mesosphere and lower thermosphere (MLT), but has not been thoroughly investigated by observations. In particular, direct measurements of vertical heat flux and metal constituent flux caused by dissipating waves are extremely rare, which demand precise measurements with high spatial and temporal resolutions over a long period. Such requirements are necessary to overcome various uncertainties to reveal the small quantities of the heat and constituent fluxes induced by dissipating waves. So far such direct observations have only been reported for vertical heat and Na fluxes using a Na Doppler lidar at Starfire Optical Range (SOR) in Albuquerque, New Mexico. Furthermore, estimate of eddy heat and constituent fluxes from the turbulent mixing generated by breaking waves is even more challenging due to the even smaller temporal and spatial scales of the eddy. Consequently, the associated coefficients of thermal (kH) and constituent (kzz) diffusion have not been well characterized and remain as large uncertainties in models. We attempt to address these issues with direct measurements by a Na Doppler lidar with exceptional high-resolution measurement capabilities. Since summer 2010, we have been operating a Na Doppler lidar at Boulder, Colorado. The efficiency of the lidar has been greatly improved in summer of 2011 and achieved generally over 1000 counts of Na signal per lidar pulse in winter. In 2013, we made extensive Na lidar observations in 98 nights. These data covering each month of a full year will be used to characterize the seasonal variations of heat and Na fluxes and to be compared with the pioneering observations at SOR. In November 2013, we further upgraded the lidar with two new frequency shifters and a new data acquisition scheme, which are optimized for estimating eddy fluxes and reducing the
Natural-convection heat transfer of a spherical lighting fixture
Ikeda, Takamasa; Fujii, Tetsu
1994-09-01
The surface temperatures of the inner lamp and the outer globe of a spherical lighting fixture, the surfaces of which are painted black, were measured. From the results, the average convective heat-transfer coefficients between the inner lamp and the outer globe and on the outer surface of the globe were obtained. These data are correlated with the aid of existing equations for two concentric spheres and the outer surface of a single sphere. The relationships between the maximum and mean temperatures on the lamp and the globe were also obtained. By the use of these equations, a method for the optimal thermal design of spherical lighting fixtures is proposed.
Lee, Jong K.; Lee, Seung D.; Suh, Kune Y.
2006-07-01
During a severe accident, the reactor core may melt and be relocated to the lower plenum to form a hemispherical pool. If there is no effective cooling mechanism, the core debris may heat up and the molten pool run into natural convection. Natural convection heat transfer was examined in SIGMA RP (Simulant Internal Gravitated Material Apparatus Rectangular Pool). The SIGMA RP apparatus comprises a rectangular test section, heat exchanger, cartridge heaters, cooling jackets, thermocouples and a data acquisition system. The internal heater heating method was used to simulate uniform heat source which is related to the modified Rayleigh number Ra'. The test procedure started with water, the working fluid, filling in the test section. There were two boundary conditions: one dealt with both walls being cooled isothermally, while the other had to with only the upper wall being cooled isothermally. The heat exchanger was utilized to maintain the isothermal boundary condition. Four side walls were surrounded by the insulating material to minimize heat loss. Tests were carried out at 10{sup 11} < Ra' < 10{sup 13}. The SIGMA RP tests with an appropriate cartridge heater arrangement showed excellent uniform heat generation in the pool. The steady state was defined such that the temperature fluctuation stayed within {+-}0.2 K over a time period of 5,000 s. The conductive heat transfer was dominant below the critical Rayleigh number Ra'c, whereas the convective heat transfer picked up above Ra'{sub c}. In the top and bottom boundary cooling condition, the upward Nusselt number Nu{sub up} was greater than the downward Nusselt number Nu{sub dn}. In particular, the discrepancy between Nu{sub up} and Nu{sub dn} widened with Ra'. The Nu{sub up} to Nu{sub dn} ratio was varied from 7.75 to 16.77 given 1.45 x 10{sup 12} < Ra' < 9.59 x 10{sup 13}. On the other hand, Nu{sub up} was increased in absence of downward heat transfer for the case of top cooling. The current rectangular pool
Qu, Ming; Abdelaziz, Omar; Yin, Hongxi
2014-11-01
Conventional natural gas-fired boilers exhaust flue gas direct to the atmosphere at 150 200 C, which, at such temperatures, contains large amount of energy and results in relatively low thermal efficiency ranging from 70% to 80%. Although condensing boilers for recovering the heat in the flue gas have been developed over the past 40 years, their present market share is still less than 25%. The major reason for this relatively slow acceptance is the limited improvement in the thermal efficiency of condensing boilers. In the condensing boiler, the temperature of the hot water return at the range of 50 60 C, which is used to cool the flue gas, is very close to the dew point of the water vapor in the flue gas. Therefore, the latent heat, the majority of the waste heat in the flue gas, which is contained in the water vapor, cannot be recovered. This paper presents a new approach to improve boiler thermal efficiency by integrating absorption heat pumps with natural gas boilers for waste heat recovery (HRAHP). Three configurations of HRAHPs are introduced and discussed. The three configurations are modeled in detail to illustrate the significant thermal efficiency improvement they attain. Further, for conceptual proof and validation, an existing hot water-driven absorption chiller is operated as a heat pump at operating conditions similar to one of the devised configurations. An overall system performance and economic analysis are provided for decision-making and as evidence of the potential benefits. These three configurations of HRAHP provide a pathway to achieving realistic high-efficiency natural gas boilers for applications with process fluid return temperatures higher than or close to the dew point of the water vapor in the flue gas.
Sedahmed, G.H.; Nirdosh, I.
1995-06-01
Many industrial electrochemical processes such as electrowinning of metals, electrochemical pollution control, and electroorganic and electroinorganic syntheses are diffusion-controlled processes whose rates depend on the geometry of the working electrode as well as the prevailing hydrodynamic conditions. Recently much work has been done to develop new electrochemical reactors which are more efficient than the traditional parallel plate electrochemical reactor used in conducting such processes. In line with this, the object of the present work was to study the natural convection mass transfer behavior of a new electrode geometry, namely an array of closely-spaced horizontal tubes. Natural convection mass transfer at a vertical array of closely-spaced horizontal cylinders was studied by an electrochemical technique involving the measurement of the limiting current of the cathodic deposition of copper from acidified copper sulfate solution. Various combinations of solution concentration, cylinder diameter, and number of cylinders per array were used including experiments on single cylinders. The mass transfer coefficient at the array was found to decrease with increasing number of cylinders, pass through a minimum, and then increase with further increase in the number of cylinders per array; the mass transfer coefficient increased with increasing cylinder diameter in the array. Mass transfer data for different arrays were correlated for the range 6.3 {times} 10{sup 9} < ScGr < 3.63 {times} 10{sup 10} by the equation Sh = 0.455(ScGr){sup 0.25} and for the range 6.3 {times} 10{sup 10} < ScGr < 3.63 {times} 10{sup 12} by the equation Sh = 0.0064(ScGr){sup 0.42}. The characteristic length used in the above correlations was obtained by dividing the array area by the perimeter projected onto a horizontal plane. Practical implications of the present results in designing electrochemical reactors with heat transfer facilities are highlighted.
Numerical investigation of natural convection heat transfer in a three-dimensional annular enclosure
NASA Astrophysics Data System (ADS)
Yung, Chain-Nan; de Witt, Kenneth J.; Keith, Theo G., Jr.
Natural convective flow and heat transfer in a three-dimensional annular enclose have been investigated numerically. The analysis uses dimensionless equations of continuity, momentum, and energy in Cartesian coordinates, which are cast into a generalized curvilinear system and solved by using a prediction-correction algorithm. For short horizontal cylinders, the local heat transfer rate is found to decrease sharply near the end walls due to convective velocity suppression; the overall heat transfer rate is less than that predicted by a two-dimensional model. Heat transfer rates are presented as a function of the Rayleigh number and compared with the available experimental data.
Natural/passive solar heating and cooling for poultry sheds
Abd El-Salam, E.M.
1980-12-01
Arid climates, as in Egypt and the Middle-East regions, are characterized by large durinal and seasonal temperature variation coupled with clear skies and ample sunshine duration. Partial stabilization of indoor thermal environment in habitation is of great comfort for human and have large effects on animals or birds productivities. In case of poultry or animal sheds, can have some economical turn over in terms of increased egg or animal productivity and reduction of mortality rates if their indoor thermal environment is favorably controlled. Poultry birds are sensitive to changes of ambient temperatures, humidity and other environmental variables. This investigation describes an unconventional method of maintaining moderate thermal environment within poultry sheds by using the roof for storage of heat and coolness in appropriate seasons. During winter, underground water is circulated through specially designed pipe matrix imbeded in the roof slab and through radiant wall panels.
Natural analogs for enhanced heat recovery from geothermal systems
Nielson, D.L.
1996-12-31
High-temperature hydrothermal systems are physically and chemically zoned with depth. The energy input is from a magmatic zone, intruded by igneous bodies, that may also contribute variable amounts of magmatic fluid to the system. The heat source is directly overlain by a section of rocks, that due to their elevated temperature, respond to stress in a ductile fashion. The ductile zone is, in turn, overlain by a section of rocks that respond to stress in a brittle fashion, where water is able to circulate through fractures (the geothermal reservoir) and will be termed the hydrothermal circulation zone. Ancient and modern high-temperature geothermal systems show a predictable sequence of evolutionary events affecting these stratified zones. Metamorphic core complexes are uplifts, formed in highly extended terrains, that expose fossil brittle-ductile transition zones. Formerly ductile rocks have had brittle fractures superimposed on them, and meteoric hydrothermal systems are associated with the brittle fracturing. Porphyry copper deposits typically evolve from magmatic to meteoric hydrothermal systems. At the Larderello geothermal system, the brittle-ductile transition has been mapped using reflection seismology, and the zone has been penetrated by the San Pompeo 2 well where temperatures >420{degrees}C were encountered. Although neo-granitic dikes have been penetrated by drilling in the Larderello area, the brittle-ductile transition is largely above the inferred plutonic heat source. In the Geysers system, in contrast, the present steam system has been superimposed on young plutonic rocks and the inferred brittle-ductile transition is present at a depth of about 4.7 km within the plutonic rocks. As hydrothermal reservoirs are depleted, or surface facilities are restricted by environmental considerations, interest will turn to the deeper portions of known systems. Japan already has an aggressive program to develop Deep-Seated and Magma-Ambient resources.
Hollmann, E. M.; Moyer, R. A.; Commaux, N.; Shiraki, D.; Eidietis, N. W.; Parks, P. B.; Lasnier, C. J.
2015-10-15
Intentionally triggered upward and downward vertical displacement events (VDEs) leading to disruptions were pre-emptively mitigated with neon massive gas injection (MGI) coming from either above or below the plasma. Global indicators of disruption mitigation effectiveness (conducted heat loads, radiated power, and vessel motion) do not show a clear improvement when mitigating with the gas jet located closer to the VDE impact area. A clear trend of improved mitigation is observed for earlier MGI timing relative to the VDE impact time. The plasma edge magnetic perturbation is seen to lock to a preferential phase during the VDE thermal quench, but this phase is not clearly matched by preliminary attempts to fit to the conducted heat load phase. Clear indications of plasma infra-red (IR) emission are observed both before and during the disruptions. This IR emission can affect calculation of disruption heat loads; here, the time decay of post-disruption IR signals is used to correct for this effect.
Yih, K.A.
1997-03-01
Effect of transpiration velocity on the heat and mass transfer characteristics of mixed convection about a permeable vertical plate embedded in a saturated porous medium under the coupled effects of thermal and mass diffusion is numerically analyzed. The plate is maintained at a uniform temperature and species concentration with constant transpiration velocity. The transformed governing equations are solved by Keller box method. Numerical results for the local Nusselt number and local Sherwood number are presented. In general, it has been found for thermally assisted flow that the local surface heat and mass transfer rates increase owing to suction of fluid. This trend reversed for blowing of fluid. It is apparent that the Lewis number has a pronounced effect on the local Sherwood number than it does on the local Nusselt number. Increasing the Lewis number decreases (increases) the local heat (mass) transfer rate.