Science.gov

Sample records for heating effects network

  1. The simplicity of fractal-like flow networks for effective heat and mass transport

    SciTech Connect

    Pence, Deborah

    2010-05-15

    A variety of applications using disk-shaped fractal-like flow networks and the status of one and two-dimensional predictive models for these applications are summarized. Applications discussed include single-phase and two-phase heat sinks and heat exchangers, two-phase flow separators, desorbers, and passive micromixers. Advantages of using these fractal-like flow networks versus parallel-flow networks include lower pressure drop, lower maximum wall temperature, inlet plenum symmetry, alternate flow paths, and pressure recovery at the bifurcation. The compact nature of microscale fractal-like branching heat exchangers makes them ideal for modularity. Differences between fractal-like and constructal approaches applied to disk-shaped heat sink designs are highlighted, and the importance of including geometric constraints, including fabrication constraints, in flow network design optimization is discussed. Finally, a simple pencil and paper procedure for designing single-phase heat sinks with fractal-like flow networks based solely on geometric constraints is outlined. Benefit-to-cost ratios resulting from geometric-based designs are compared with those from flow networks determined using multivariable optimization. Results from the two network designs are within 11%. (author)

  2. Numerical Investigation of the effect of adiabatic section location on thermal performance of a heat pipe network with the application in thermal energy storage systems

    NASA Astrophysics Data System (ADS)

    Mahdavi, Mahboobe; Tiari, Saeed; Qiu, Songgang

    2015-11-01

    Latent heat thermal energy storage systems benefits from high energy density and isothermal storing process. However, the low thermal conductivity of the phase change material leads to prolong the melting or solidification time. Using a passive device such as heat pipes is required to enhance the heat transfer and to improve the efficiency of the system. In the present work, the performance of a heat pipe network specifically designed for a thermal energy storage system is studied numerically. The network includes a primary heat pipe, which transfers heat received from solar receiver to the heat engine. The excess heat is simultaneously delivered to charge the phase change material via secondary heat pipes. The primary heat pipe composed of a disk shape evaporator, an adiabatic section and a disk shape condenser. The adiabatic section can be either located at the center or positioned outward to the surrounding of the container. Here, the effect of adiabatic section position on thermal performance of the system is investigated. It was concluded that displacing the adiabatic section outwards dramatically increases the average temperatures of the condensers and reduces the thermal resistance of heat pipes.

  3. Heat flux distribution and rectification of complex networks

    NASA Astrophysics Data System (ADS)

    Liu, Zonghua; Wu, Xiang; Yang, Huijie; Gupte, Neelima; Li, Baowen

    2010-02-01

    It was recently found that the heterogeneity of complex networks can enhance transport properties such as epidemic spreading, electric energy transfer, etc. A trivial deduction would be that the presence of hubs in complex networks can also accelerate the heat transfer although no concrete research has been done so far. In the present study, we have studied this problem and have found a surprising answer: the heterogeneity does not favor but prevents the heat transfer. We present a model to study heat conduction in complex networks and find that the network topology greatly affects the heat flux. The heat conduction decreases with the increase of heterogeneity of the network caused by both degree distribution and the clustering coefficient. Its underlying mechanism can be understood by using random matrix theory. Moreover, we also study the rectification effect and find that it is related to the degree difference of the network, and the distance between the source and the sink. These findings may have potential applications in real networks, such as nanotube/nanowire networks and biological networks.

  4. Physical explosion analysis in heat exchanger network design

    NASA Astrophysics Data System (ADS)

    Pasha, M.; Zaini, D.; Shariff, A. M.

    2016-06-01

    The failure of shell and tube heat exchangers is being extensively experienced by the chemical process industries. This failure can create a loss of production for long time duration. Moreover, loss of containment through heat exchanger could potentially lead to a credible event such as fire, explosion and toxic release. There is a need to analyse the possible worst case effect originated from the loss of containment of the heat exchanger at the early design stage. Physical explosion analysis during the heat exchanger network design is presented in this work. Baker and Prugh explosion models are deployed for assessing the explosion effect. Microsoft Excel integrated with process design simulator through object linking and embedded (OLE) automation for this analysis. Aspen HYSYS V (8.0) used as a simulation platform in this work. A typical heat exchanger network of steam reforming and shift conversion process was presented as a case study. It is investigated from this analysis that overpressure generated from the physical explosion of each heat exchanger can be estimated in a more precise manner by using Prugh model. The present work could potentially assist the design engineer to identify the critical heat exchanger in the network at the preliminary design stage.

  5. Operation and performance of a 350 kW (100 RT) single-effect/double-lift absorption chiller in a district heating network

    SciTech Connect

    Schweigler, C.J.; Preissner, M.; Demmel, S.; Hellmann, H.M.; Ziegler, F.F.

    1998-10-01

    The efficiency of combined heat, power, and cold production in total energy systems could be improved significantly if absorption chillers were available that could be driven with limited mass flows of low-temperature hot water. In the case of district heat-driven air conditioning, for example, currently available standard absorption chillers are often not applied because they cannot provide the low hot water return temperature and the specific cooling capacity per unit hot water mass flow that are required by many district heating networks. Above all, a drastic increase in the size of the machine (total heat exchanger area) due to low driving temperature differences if of concern in low-temperature applications. A new type of multistage lithium bromide/water absorption chiller has been developed for the summertime operating conditions of district heating networks. It provides large cooling of the district heating water (some 30 K) and large cooling capacity per unit hot water mass flow. Two pilot plants of this novel absorption chiller were designed within the framework of a joint project sponsored by the German Federal Ministry of Education, Science, Research and Technology (BMBF), a consortium of 15 district heating utilities, and two manufacturers. The plants have been operated since summer 1996 in the district heating networks of Berlin and Duesseldorf. This paper describes the concept, installation, and control strategy of the two pilot plants, and it surveys the performance and operating experience of the plants under varying practical conditions.

  6. Global optimization algorithm for heat exchanger networks

    SciTech Connect

    Quesada, I.; Grossmann, I.E. )

    1993-03-01

    This paper deals with the global optimization of heat exchanger networks with fixed topology. It is shown that if linear area cost functions are assumed, as well as arithmetic mean driving force temperature differences in networks with isothermal mixing, the corresponding nonlinear programming (NLP) optimization problem involves linear constraints and a sum of linear fractional functions in the objective which are nonconvex. A rigorous algorithm is proposed that is based on a convex NLP underestimator that involves linear and nonlinear estimators for fractional and bilinear terms which provide a tight lower bound to the global optimum. This NLP problem is used within a spatial branch and bound method for which branching rules are given. Basic properties of the proposed method are presented, and its application is illustrated with several example problems. The results show that the proposed method only requires few nodes in the branch and bound search.

  7. Heat diffusion: thermodynamic depth complexity of networks.

    PubMed

    Escolano, Francisco; Hancock, Edwin R; Lozano, Miguel A

    2012-03-01

    In this paper we use the Birkhoff-von Neumann decomposition of the diffusion kernel to compute a polytopal measure of graph complexity. We decompose the diffusion kernel into a series of weighted Birkhoff combinations and compute the entropy associated with the weighting proportions (polytopal complexity). The maximum entropy Birkhoff combination can be expressed in terms of matrix permanents. This allows us to introduce a phase-transition principle that links our definition of polytopal complexity to the heat flowing through the network at a given diffusion time. The result is an efficiently computed complexity measure, which we refer to as flow complexity. Moreover, the flow complexity measure allows us to analyze graphs and networks in terms of the thermodynamic depth. We compare our method with three alternative methods described in the literature (Estrada's heterogeneity index, the Laplacian energy, and the von Neumann entropy). Our study is based on 217 protein-protein interaction (PPI) networks including histidine kinases from several species of bacteria. We find a correlation between structural complexity and phylogeny (more evolved species have statistically more complex PPIs). Although our methods outperform the alternatives, we find similarities with Estrada's heterogeneity index in terms of network size independence and predictive power. PMID:22587160

  8. Heat diffusion: Thermodynamic depth complexity of networks

    NASA Astrophysics Data System (ADS)

    Escolano, Francisco; Hancock, Edwin R.; Lozano, Miguel A.

    2012-03-01

    In this paper we use the Birkhoff-von Neumann decomposition of the diffusion kernel to compute a polytopal measure of graph complexity. We decompose the diffusion kernel into a series of weighted Birkhoff combinations and compute the entropy associated with the weighting proportions (polytopal complexity). The maximum entropy Birkhoff combination can be expressed in terms of matrix permanents. This allows us to introduce a phase-transition principle that links our definition of polytopal complexity to the heat flowing through the network at a given diffusion time. The result is an efficiently computed complexity measure, which we refer to as flow complexity. Moreover, the flow complexity measure allows us to analyze graphs and networks in terms of the thermodynamic depth. We compare our method with three alternative methods described in the literature (Estrada's heterogeneity index, the Laplacian energy, and the von Neumann entropy). Our study is based on 217 protein-protein interaction (PPI) networks including histidine kinases from several species of bacteria. We find a correlation between structural complexity and phylogeny (more evolved species have statistically more complex PPIs). Although our methods outperform the alternatives, we find similarities with Estrada's heterogeneity index in terms of network size independence and predictive power.

  9. The effect of heat fluxes on ammonia emission from swine waste lagoon based on neural network analyses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding factors that affect ammonia emissions from swine waste lagoons or any animal waste receptacles is a necessary first step in deploying potential remediation options. In this study, we examined the various meteorological factors (i.e., air temperatures, solar radiation, and heat fluxes)...

  10. Neural network analysis on the effect of heat fluxes on greenhouse gas emissions from anaerobic swine waste treatment lagoon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, we examined the various meteorological factors (i.e., air temperatures, solar radiation, and heat fluxes) that potentially affect greenhouse gas (GHG) emissions from swine waste lagoon. GHG concentrations (methane, carbon dioxide, and nitrous oxide) were monitored using a photoacous...

  11. Weather network computer to control deck-heating system

    SciTech Connect

    Roe, A.

    1997-04-07

    A ground-source heating system for bridge deicing is briefly described in this article. The deck heating system will be controlled by the Oklahoma state weather network. Warm ground air will be pumped from more than 100 boreholes at least 200 feet deep. The heat transfer fluid, possibly propylene glycol, will be circulated through a sealed tube system in the bridge deck. Costs are estimated at $200,000 for the heating system and $840,000 for the total redecking project.

  12. The NSF-RCN Urban Heat Island Network

    NASA Astrophysics Data System (ADS)

    Twine, T. E.; Snyder, P. K.; Hamilton, P.; Shepherd, M.; Stone, B., Jr.

    2015-12-01

    In much of the world cities are warming at twice the rate of outlying rural areas. The frequency of urban heat waves is projected to increase with climate change through the 21st century. Addressing the economic, environmental, and human costs of urban heat islands requires a better understanding of their behavior from many disciplinary perspectives. The goal of this four-year Urban Heat Island Network is to (1) bring together scientists studying the causes and impacts of urban warming, (2) advance multidisciplinary understanding of urban heat islands, (3) examine how they can be ameliorated through engineering and design practices, and (4) share these new insights with a wide array of stakeholders responsible for managing urban warming to reduce their health, economic, and environmental impacts. The NSF-RCN Urban Heat Island Network involves atmospheric scientists, engineers, architects, landscape designers, urban planners, public health experts, and education and outreach experts, who will share knowledge, evaluate research directions, and communicate knowledge and research recommendations to the larger research community as well as stakeholders engaged in developing strategies to adapt to and mitigate urban warming. The first Urban Climate Institute was held in Saint Paul, MN in July 2013 and focused on the characteristics of urban heat islands. Scientists engaged with local practitioners to improve communication pathways surrounding issues of understanding, adapting to, and mitigating urban warming. The second Urban Climate Institute was held in Atlanta, Georgia in July 2014 and focused on urban warming and public health. The third Urban Climate Institute was held in Athens, GA in July 2015 and focused on urban warming and the role of the built environment. Scientists and practitioners discussed strategies for mitigation and adaptation. Evaluation experts at the Science Museum of Minnesota have extensively evaluated the Institutes to inform other research

  13. Super-Joule heating in graphene and silver nanowire network

    SciTech Connect

    Maize, Kerry; Das, Suprem R.; Sadeque, Sajia; Mohammed, Amr M. S.; Shakouri, Ali E-mail: alam@purdue.edu; Janes, David B.; Alam, Muhammad A. E-mail: alam@purdue.edu

    2015-04-06

    Transistors, sensors, and transparent conductors based on randomly assembled nanowire networks rely on multi-component percolation for unique and distinctive applications in flexible electronics, biochemical sensing, and solar cells. While conduction models for 1-D and 1-D/2-D networks have been developed, typically assuming linear electronic transport and self-heating, the model has not been validated by direct high-resolution characterization of coupled electronic pathways and thermal response. In this letter, we show the occurrence of nonlinear “super-Joule” self-heating at the transport bottlenecks in networks of silver nanowires and silver nanowire/single layer graphene hybrid using high resolution thermoreflectance (TR) imaging. TR images at the microscopic self-heating hotspots within nanowire network and nanowire/graphene hybrid network devices with submicron spatial resolution are used to infer electrical current pathways. The results encourage a fundamental reevaluation of transport models for network-based percolating conductors.

  14. Super-Joule heating in graphene and silver nanowire network

    NASA Astrophysics Data System (ADS)

    Maize, Kerry; Das, Suprem R.; Sadeque, Sajia; Mohammed, Amr M. S.; Shakouri, Ali; Janes, David B.; Alam, Muhammad A.

    2015-04-01

    Transistors, sensors, and transparent conductors based on randomly assembled nanowire networks rely on multi-component percolation for unique and distinctive applications in flexible electronics, biochemical sensing, and solar cells. While conduction models for 1-D and 1-D/2-D networks have been developed, typically assuming linear electronic transport and self-heating, the model has not been validated by direct high-resolution characterization of coupled electronic pathways and thermal response. In this letter, we show the occurrence of nonlinear "super-Joule" self-heating at the transport bottlenecks in networks of silver nanowires and silver nanowire/single layer graphene hybrid using high resolution thermoreflectance (TR) imaging. TR images at the microscopic self-heating hotspots within nanowire network and nanowire/graphene hybrid network devices with submicron spatial resolution are used to infer electrical current pathways. The results encourage a fundamental reevaluation of transport models for network-based percolating conductors.

  15. Teaching Heat Exchanger Network Synthesis Using Interactive Microcomputer Graphics.

    ERIC Educational Resources Information Center

    Dixon, Anthony G.

    1987-01-01

    Describes the Heat Exchanger Network Synthesis (HENS) program used at Worcester Polytechnic Institute (Massachusetts) as an aid to teaching the energy integration step in process design. Focuses on the benefits of the computer graphics used in the program to increase the speed of generating and changing networks. (TW)

  16. Network Coronal Bright Points: Coronal Heating Concentrations Found in the Solar Magnetic Network

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.; Moore, R. L.; Porter, J. G.; Hathaway, D.

    1997-01-01

    We examine the magnetic origins of coronal heating in quiet regions by combining SOHO/EIT Fe XII coronal images and Kitt Peak magnetograms. Spatial filtering of the coronal images shows a network of enhanced structures on the scale of the magnetic network in quiet regions. Superposition of the filtered coronal images on maps of the magnetic network extracted from the magnetograms shows that the coronal network does indeed trace and stem from the magnetic network. Network coronal bright points, the brightest features in the network lanes, are found to have a highly significant (8 sigma above random chance) coincidence with polarity dividing lines (neutral lines) in the network, and are often at the feet of enhanced coronal structures that stem from the network and reach out over the cell interiors. These results indicate that, similar to the close linkage of neutral-line core fields with coronal heating in active regions, low-lying core fields encasing neutral lines in the magnetic network often drive noticeable coronal heating both within themselves (the network coronal bright points) and on more extended fields lines rooted around them. This behavior favors the possibility that active core fields in the network are the main drivers of the heating of the bulk of the quiet corona, on scales much larger than the network lanes and cells.

  17. Network Coronal Bright Points: Coronal Heating Concentrations Found in the Solar Magnetic Network

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.; Moore, R. L.; Porter, J. G.; Hathaway, D. H.

    1998-01-01

    We examine the magnetic origins of coronal heating in quiet regions by combining SOHO/EIT Fe xii coronal images and Kitt Peak magnetograms. Spatial filtering of the coronal images shows a network of enhanced structures on the scale of the magnetic network in quiet regions. Superposition of the filtered coronal images on maps of the magnetic network extracted from the magnetograms shows that the coronal network does indeed trace and stem from the magnetic network. Network coronal bright points, the brightest features in the network lanes, are found to have a highly significant coincidence with polarity dividing lines (neutral lines) in the network and are often at the feet of enhanced coronal structures that stem from the network and reach out over the cell interiors. These results indicate that, similar to the close linkage of neutral-line core fields with coronal heating in active regions (shown in previous work), low-lying core fields encasing neutral lines in the magnetic network often drive noticeable coronal heating both within themselves (the network coronal bright points) and on more extended field lines rooted around them. This behavior favors the possibility that active core fields in the network are the main drivers of the heating of the bulk of the quiet corona, on scales much larger than the network lanes and cells.

  18. Back propagation neural network based control for the heating system of a polysilicon reduction furnace

    NASA Astrophysics Data System (ADS)

    Cheng, Yuhua; Chen, Kai; Bai, Libing; Dai, Meizhi

    2013-12-01

    In this paper, the Back Propagation (BP) neural network based control strategy is proposed for the heating system of a polysilicon reduction furnace. It is applied to obtain the control signal Id, which is used to adjust the heating power through operations of the silicon core temperature, furnace temperature, silicon core voltage, and resistance of the current control cycle. With the control signal Id the polycrystalline silicon can be heated from room temperature to the required temperature smoothly and steadily. The proposed BP network applied in this paper can obtain the accurate control signal Id and achieve the precise control purpose. This paper presents the principle of the BP network and demonstrates the effectiveness of the BP network in the heating system of a polysilicon reduction furnace by combining the simulation analysis with experimental results.

  19. A performance data network for solar process heat systems

    SciTech Connect

    Barker, G.; Hale, M.J.

    1996-03-01

    A solar process heat (SPH) data network has been developed to access remote-site performance data from operational solar heat systems. Each SPH system in the data network is outfitted with monitoring equipment and a datalogger. The datalogger is accessed via modem from the data network computer at the National Renewable Energy Laboratory (NREL). The dataloggers collect both ten-minute and hourly data and download it to the data network every 24-hours for archiving, processing, and plotting. The system data collected includes energy delivered (fluid temperatures and flow rates) and site meteorological conditions, such as solar insolation and ambient temperature. The SPH performance data network was created for collecting performance data from SPH systems that are serving in industrial applications or from systems using technologies that show promise for industrial applications. The network will be used to identify areas of SPH technology needing further development, to correlate computer models with actual performance, and to improve the credibility of SPH technology. The SPH data network also provides a centralized bank of user-friendly performance data that will give prospective SPH users an indication of how actual systems perform. There are currently three systems being monitored and archived under the SPH data network: two are parabolic trough systems and the third is a flat-plate system. The two trough systems both heat water for prisons; the hot water is used for personal hygiene, kitchen operations, and laundry. The flat plate system heats water for meat processing at a slaughter house. We plan to connect another parabolic trough system to the network during the first months of 1996. We continue to look for good examples of systems using other types of collector technologies and systems serving new applications (such as absorption chilling) to include in the SPH performance data network.

  20. Heat equation on a network using the Fokas method

    NASA Astrophysics Data System (ADS)

    Sheils, N. E.; Smith, D. A.

    2015-08-01

    The problem of heat conduction on networks of multiply connected rods is solved by providing an explicit solution of the one-dimensional heat equation in each domain. The size and connectivity of the rods is known, but neither temperature nor heat flux are prescribed at the interface. Instead, the physical assumptions of continuity at the interfaces are the only conditions imposed. This work generalizes that of Deconinck et al (Proc. R. Soc. A 470 22) for heat conduction on a series of one-dimensional rods connected end-to-end to the case of general configurations.

  1. The effect of heat on skin permeability

    PubMed Central

    Park, Jung-Hwan; Lee, Jeong-Woo; Kim, Yeu-Chun; Prausnitz, Mark R.

    2008-01-01

    Although the effects of long exposure (≫ 1 s) to moderate temperatures (≤ 100 °C) have been well characterized, recent studies suggest that shorter exposure (< 1 s) to higher temperatures (> 100 °C) can dramatically increase skin permeability. Previous studies suggest that by keeping exposures short, thermal damage can be localized to the stratum corneum without damaging deeper tissue. Initial clinical trials have progressed to Phase II (see http://clinicaltrials.gov), which indicates the procedure can be safe. Because the effect of heating under these conditions has received little systematic or mechanistic study, we heated full-thickness skin, epidermis and stratum corneum samples from human and porcine cadavers to temperatures ranging from 100°C to 315°C for times ranging from 100 ms to 5 s. Tissue samples were analyzed using skin permeability measurements, differential scanning calorimetry, thermomechanical analysis, thermal gravimetric analysis, brightfield and confocal microscopy, and histology. Skin permeability was shown to be a very strong function of temperature and a less strong function of the duration of heating. At optimal conditions used in this study, transdermal delivery of calcein was increased up to 760-fold by rapidly heating the skin at high temperature. More specifically, skin permeability was increased (I) by a few fold after heating to approximately 100°C – 150°C, (II) by one to two orders of magnitude after heating to approximately 150°C – 250°C and (III) by three orders of magnitude after heating above 300°C. These permeability changes were attributed to (I) disordering of stratum corneum lipid structure, (II) disruption of stratum corneum keratin network structure and (III) decomposition and vaporization of keratin to create micron-scale holes in the stratum corneum, respectively. We conclude that heating the skin with short, high temperature pulses can increase skin permeability by orders of magnitude due to structural

  2. Two-Dimensional Heat Transfer in a Heterogeneous Fracture Network

    NASA Astrophysics Data System (ADS)

    Gisladottir, V. R.; Roubinet, D.; Tartakovsky, D. M.

    2015-12-01

    Geothermal energy harvesting requires extraction and injection of geothermal fluid. Doing so in an optimal way requires a quantitative understanding of site-specific heat transfer between geothermal fluid and the ambient rock. We develop a heat transfer particle-tracking approach to model that interaction. Fracture-network models of heat transfer in fractured rock explicitly account for the presence of individual fractures, ambient rock matrix, and fracture-matrix interfaces. Computational domains of such models span the meter scale, whereas fracture apertures are on the millimeter scale. The computations needed to model these multi-scale phenomenon can be prohibitively expensive, even for methods using nonuniform meshes. Our approach appreciably decreases the computational costs. Current particle-tracking methods usually assume both infinite matrix and one-dimensional (1D) heat transfer in the matrix blocks. They rely on 1D analytical solutions for heat transfer in a single fracture, which can lead to large predictive errors. Our two-dimensional (2D) heat transfer simulation algorithm is mesh-free and takes into account both longitudinal and transversal heat conduction in the matrix. It uses a probabilistic model to transfer particle to the appropriate neighboring fracture unless it returns to the fracture of origin or remains in the matrix. We use this approach to look at the impact of a fracture-network topology (e.g. the importance of smaller scale fractures), as well as the matrix block distribution on the heat transport in heterogeneous fractured rocks.

  3. Coronal Heating and the Magnetic Flux Content of the Network

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.; Moore, R. L.; Porter, J. G.; Hathaway, D. H.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Previously, from analysis of SOHO coronal images in combination with Kitt Peak magnetograms, we found that the quiet corona is the sum of two components: the large-scale corona and the coronal network. The large-scale corona consists of all coronal-temperature (T approximately 10(exp 6) K) structures larger than supergranules (greater than approximately 30,000 kilometers). The coronal network (1) consists of all coronal-temperature structures smaller than supergranules, (2) is rooted in and loosely traces the photospheric magnetic network, (3) has its brightest features seated on polarity dividing lines (neutral lines) in the network magnetic flux, and (4) produces only about 5% of the total coronal emission in quiet regions. The heating of the coronal network is apparently magnetic in origin. Here, from analysis of EIT coronal images of quiet regions in combination with magnetograms of the same quiet regions from SOHO/MDI and from Kitt Peak, we examine the other 95% of the quiet corona and its relation to the underlying magnetic network. We find: (1) Dividing the large-scale corona into its bright and dim halves divides the area into bright "continents" and dark "oceans" having spans of 2-4 supergranules. (2) These patterns are also present in the photospheric magnetograms: the network is stronger under the bright half and weaker under the dim half. (3) The radiation from the large-scale corona increases roughly as the cube root of the magnetic flux content of the underlying magnetic network. In contrast, the coronal radiation from an active region increases roughly linearly with the magnetic flux content of the active region. We assume, as is widely held, that nearly all of the large-scale corona is magnetically rooted in the network. Our results suggest that either the coronal heating in quiet regions has a large non-magnetic component, or, if the heating is predominantly produced via the magnetic field, the mechanism is significantly different than in active

  4. Can Aerosol Offset Urban Heat Island Effect?

    NASA Astrophysics Data System (ADS)

    Jin, M. S.; Shepherd, J. M.

    2009-12-01

    The Urban Heat Island effect (UHI) refers to urban skin or air temperature exceeding the temperatures in surrounding non-urban regions. In a warming climate, the UHI may intensify extreme heat waves and consequently cause significant health and energy problems. Aerosols reduce surface insolation via the direct effect, namely, scattering and absorbing sunlight in the atmosphere. Combining the National Aeronautics and Space Administration (NASA) AERONET (AErosol RObotic NETwork) observations over large cities together with Weather Research and Forecasting Model (WRF) simulations, we find that the aerosol direct reduction of surface insolation range from 40-100 Wm-2, depending on seasonality and aerosol loads. As a result, surface skin temperature can be reduced by 1-2C while 2-m surface air temperature by 0.5-1C. This study suggests that the aerosol direct effect is a competing mechanism for the urban heat island effect (UHI). More importantly, both aerosol and urban land cover effects must be adequately represented in meteorological and climate modeling systems in order to properly characterize urban surface energy budgets and UHI.

  5. Latent Heat and Sensible Heat Fluxes Simulation in Maize Using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Safa, B.

    2015-12-01

    Latent Heat (LE) and Sensible Heat (H) flux are two major components of the energy balance at the earth's surface which play important roles in the water cycle and global warming. There are various methods for their estimation or measurement. Eddy covariance is a direct and accurate technique for their measurement. Some limitations lead to prevention of the extensive use of the eddy covariance technique. Therefore, simulation approaches can be utilized for their estimation. ANNs are the information processing systems, which can inspect the empirical data and investigate the relations (hidden rules) among them, and then make the network structure. In this study, multi-layer perceptron neural network trained by the steepest descent Back-Propagation (BP) algorithm was tested to simulate LE and H flux above two maize sites (rain-fed & irrigated) near Mead, Nebraska. Network training and testing was fulfilled using hourly data of including year, local time of day (DTime), leaf area index (LAI), soil water content (SWC) in 10 and 25 cm depths, soil temperature (Ts) in 10 cm depth, air temperature (Ta), vapor pressure deficit (VPD), wind speed (WS), irrigation and precipitation (P), net radiation (Rn), and the fraction of incoming Photosynthetically Active Radiation (PAR) absorbed by the canopy (fPAR), which were selected from days of year (DOY) 169 to 222 for 2001, 2003, 2005, 2007, and 2009. The results showed high correlation between actual and estimated data; the R² values for LE flux in irrigated and rain-fed sites were 0.9576, and 0.9642; and for H flux 0.8001, and 0.8478, respectively. Furthermore, the RMSE values ranged from 0.0580 to 0.0721 W/m² for LE flux and from 0.0824 to 0.0863 W/m² for H flux. In addition, the sensitivity of the fluxes with respect to each input was analyzed over the growth stages. Thus, the most powerful effects among the inputs for LE flux were identified net radiation, leaf area index, vapor pressure deficit, wind speed, and for H

  6. The NSF-RCN Urban Heat Island Network

    NASA Astrophysics Data System (ADS)

    Twine, T. E.; Snyder, P. K.; Hamilton, P.; Shepherd, M.; Stone, B., Jr.

    2014-12-01

    In much of the world cities are warming at twice the rate of outlying rural areas. The frequency of urban heat waves is projected to increase with climate change through the 21stcentury. Addressing the economic, environmental, and human costs of urban heat islands requires a better understanding of their behavior from many disciplinary perspectives. The goal of this four-year Urban Heat Island Network is to (1) bring together scientists studying the causes and impacts of urban warming, (2) advance multidisciplinary understanding of urban heat islands, (3) examine how they can be ameliorated through engineering and design practices, and (4) share these new insights with a wide array of stakeholders responsible for managing urban warming to reduce their health, economic, and environmental impacts. The Urban Heat Island Network involves atmospheric scientists, engineers, architects, landscape designers, urban planners, public health experts, and education and outreach experts, who will share knowledge, evaluate research directions, and communicate knowledge and research recommendations to the larger research community as well as stakeholders engaged in developing strategies to adapt to and mitigate urban warming. The first Urban Climate Institute was held in Saint Paul, Minnesota in July 2013 and focused on the characteristics of urban heat islands. Scientists engaged with local practitioners to improve communication pathways surrounding issues of understanding, adapting to, and mitigating urban warming. The second Urban Climate Institute was held in Atlanta, Georgia in July 2014 and focused on urban warming and public health. Scientists discussed the state of the science on urban modeling, heat adaptation, air pollution, and infectious disease. Practitioners informed participants on emergency response methods and protocols related to heat and other extreme weather events. Evaluation experts at the Science Museum of Minnesota have extensively evaluated both Institutes

  7. Coronal Heating and the Magnetic Flux Content of the Network

    NASA Astrophysics Data System (ADS)

    Moore, R. L.; Falconer, D. A.; Porter, J. G.; Hathaway, D. H.

    2003-05-01

    We investigate the heating of the quiet corona by measuring the increase of coronal luminosity with the amount of magnetic flux in the underlying network at solar minimum when there were no active regions on the face of the Sun. The coronal luminosity is measured from Fe IX/X-Fe XII pairs of coronal images from SOHO/EIT. The network magnetic flux content is measured from SOHO/MDI magnetograms. We find that the luminosity of the corona in our quiet regions increases roughly in proportion to the square root of the magnetic flux content of the network and roughly in proportion to the length of the perimeter of the network magnetic flux clumps. From (1) this result, (2) other observations of many fine-scale explosive events at the edges of network flux clumps, and (3) a demonstration that it is energetically feasible for the heating of the corona in quiet regions to be driven by explosions of granule-sized sheared-core magnetic bipoles embedded in the edges of network flux clumps, we infer that in quiet regions that are not influenced by active regions the corona is mainly heated by such magnetic activity in the edges of the network flux clumps. Our observational results together with our feasibility analysis allow us to predict that (1) at the edges of the network flux clumps there are many transient sheared-core bipoles of the size and lifetime of granules and having transverse field strengths > 100 G, (2) 30 of these bipoles are present per supergranule, and (3) most spicules are produced by explosions of these bipoles. This work was supported by NASA's Office of Space Science through its Solar and Heliospheric Physics Supporting Research and Technology Program and its Sun-Earth Connection Guest Investigator Program.

  8. Incorporation of Condensation Heat Transfer in a Flow Network Code

    NASA Technical Reports Server (NTRS)

    Anthony, Miranda; Majumdar, Alok; McConnaughey, Paul K. (Technical Monitor)

    2001-01-01

    In this paper we have investigated the condensation of water vapor in a short tube. A numerical model of condensation heat transfer was incorporated in a flow network code. The flow network code that we have used in this paper is Generalized Fluid System Simulation Program (GFSSP). GFSSP is a finite volume based flow network code. Four different condensation models were presented in the paper. Soliman's correlation has been found to be the most stable in low flow rates which is of particular interest in this application. Another highlight of this investigation is conjugate or coupled heat transfer between solid or fluid. This work was done in support of NASA's International Space Station program.

  9. Experimental Study of Heat Transport in Fractured Network

    NASA Astrophysics Data System (ADS)

    Pastore, Nicola; Cherubini, Claudia; Giasi, Concetta I.; Allegretti, Nicoletta M.; Redondo, Jose M.; Tarquis, Ana Maria

    2015-04-01

    Fractured rocks play an important role in transport of natural resources or contaminants transport through subsurface systems. In recent years, interest has grown in investigating heat transport by means of tracer tests, driven by the important current development of geothermal applications. In literature different methods are available for predicting thermal breakthrough in fractured reservoirs based on the information coming from tracer tests. Geothermal energy is one of the largest sources of renewable energies that are extracted from the earth. The growing interest in this new energy source has stimulated attempts to develop methods and technologies for extracting energy also from ground resource at low temperature. An example is the exploitation of low enthalpy geothermal energy that can be obtained at any place with the aid of ground-source heat pump system from the soil, rock and groundwater. In such geothermal systems the fluid movement and thermal behavior in the fractured porous media is very important and critical. Existing theory of fluid flow and heat transport through porous media is of limited usefulness when applied to fractured rocks. Many field and laboratory tracer tests in fractured media show that fracture -matrix exchange is more significant for heat than mass tracers, thus thermal breakthrough curves (BTCs) are strongly controlled by matrix thermal diffusivity. In this study the behaviour of heat transport in a fractured network at bench scale has been investigated. Heat tracer tests on an artificially created fractured rock sample have been carried out. The observed thermal BTCs obtained with six thermocouple probes located at different locations in the fractured medium have been modeled with the Explicit Network Model (ENM) based an adaptation of Tang's solution for solute transport in a semi-infinite single fracture embedded in a porous matrix. The ENM model is able to represent the behavior of observed heat transport except where the

  10. Inverse Identification of Temperature-Dependent Volumetric Heat Capacity by Neural Networks

    NASA Astrophysics Data System (ADS)

    Czél, Balázs; Woodbury, Keith A.; Gróf, Gyula

    2013-02-01

    An artificial neural network (NN)-based solution of the inverse heat conduction problem of identifying the temperature-dependent volumetric heat capacity function of a solid material is presented in this paper. The inverse problem was defined according to the evaluation of the BICOND thermophysical property measurement method. The volumetric heat capacity versus temperature function is to be determined using the measured transient temperature history of a single sensor. In this study, noiseless and noisy artificial measurements were generated by the numerical solution of the corresponding direct heat conduction problem. The inverse problem was solved by back-propagation and radial basis function type neural networks applying the whole history mapping approach. The numerical tests included the comparison of two different data representations of the network inputs (i.e., temperature vs. time and time vs. temperature) and accuracy analysis of the two network types with noiseless and noisy inputs. Based on the results presented, it can be stated that feed-forward NNs are powerful tools in a non-iterative solution of function estimation inverse heat conduction problems and they are likely to be very effective in evaluation of real measured temperature histories to determine the volumetric heat capacity as an arbitrary function of temperature.

  11. Numerical Modeling of Conjugate Heat Transfer in Fluid Network

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok

    2004-01-01

    Fluid network modeling with conjugate heat transfer has many applications in Aerospace engineering. In modeling unsteady flow with heat transfer, it is important to know the variation of wall temperature in time and space to calculate heat transfer between solid to fluid. Since wall temperature is a function of flow, a coupled analysis of temperature of solid and fluid is necessary. In cryogenic applications, modeling of conjugate heat transfer is of great importance to correctly predict boil-off rate in propellant tanks and chill down of transfer lines. In TFAWS 2003, the present author delivered a paper to describe a general-purpose computer program, GFSSP (Generalized Fluid System Simulation Program). GFSSP calculates flow distribution in complex flow circuit for compressible/incompressible, with or without heat transfer or phase change in all real fluids or mixtures. The flow circuit constitutes of fluid nodes and branches. The mass, energy and specie conservation equations are solved at the nodes where as momentum conservation equations are solved at the branches. The proposed paper describes the extension of GFSSP to model conjugate heat transfer. The network also includes solid nodes and conductors in addition to fluid nodes and branches. The energy conservation equations for solid nodes solves to determine the temperatures of the solid nodes simultaneously with all conservation equations governing fluid flow. The numerical scheme accounts for conduction, convection and radiation heat transfer. The paper will also describe the applications of the code to predict chill down of cryogenic transfer line and boil-off rate of cryogenic propellant storage tank.

  12. Effective Augmentation of Complex Networks

    NASA Astrophysics Data System (ADS)

    Wang, Jinjian; Yu, Xinghuo; Stone, Lewi

    2016-05-01

    Networks science plays an enormous role in many aspects of modern society from distributing electrical power across nations to spreading information and social networking amongst global populations. While modern networks constantly change in size, few studies have sought methods for the difficult task of optimising this growth. Here we study theoretical requirements for augmenting networks by adding source or sink nodes, without requiring additional driver-nodes to accommodate the change i.e., conserving structural controllability. Our “effective augmentation” algorithm takes advantage of clusters intrinsic to the network topology, and permits rapidly and efficient augmentation of a large number of nodes in one time-step. “Effective augmentation” is shown to work successfully on a wide range of model and real networks. The method has numerous applications (e.g. study of biological, social, power and technological networks) and potentially of significant practical and economic value.

  13. Effective Augmentation of Complex Networks.

    PubMed

    Wang, Jinjian; Yu, Xinghuo; Stone, Lewi

    2016-01-01

    Networks science plays an enormous role in many aspects of modern society from distributing electrical power across nations to spreading information and social networking amongst global populations. While modern networks constantly change in size, few studies have sought methods for the difficult task of optimising this growth. Here we study theoretical requirements for augmenting networks by adding source or sink nodes, without requiring additional driver-nodes to accommodate the change i.e., conserving structural controllability. Our "effective augmentation" algorithm takes advantage of clusters intrinsic to the network topology, and permits rapidly and efficient augmentation of a large number of nodes in one time-step. "Effective augmentation" is shown to work successfully on a wide range of model and real networks. The method has numerous applications (e.g. study of biological, social, power and technological networks) and potentially of significant practical and economic value. PMID:27165120

  14. Effective Augmentation of Complex Networks

    PubMed Central

    Wang, Jinjian; Yu, Xinghuo; Stone, Lewi

    2016-01-01

    Networks science plays an enormous role in many aspects of modern society from distributing electrical power across nations to spreading information and social networking amongst global populations. While modern networks constantly change in size, few studies have sought methods for the difficult task of optimising this growth. Here we study theoretical requirements for augmenting networks by adding source or sink nodes, without requiring additional driver-nodes to accommodate the change i.e., conserving structural controllability. Our “effective augmentation” algorithm takes advantage of clusters intrinsic to the network topology, and permits rapidly and efficient augmentation of a large number of nodes in one time-step. “Effective augmentation” is shown to work successfully on a wide range of model and real networks. The method has numerous applications (e.g. study of biological, social, power and technological networks) and potentially of significant practical and economic value. PMID:27165120

  15. Coronal Heating and the Magnetic Flux Content of the Network

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.; Moore, R. L.; Porter, J. G.; Hathaway, D. H.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Previously, from analysis of SOHO/EIT coronal images in combination with Kitt Peak magnetograms (Falconer et al 1998, ApJ, 501, 386-396), we found that the quiet corona is the sum of two components: the e-scale corona and the coronal network. The large-scale corona consists of all coronal-temperature (T approx. 10(exp 6) K) structures larger than supergranules (>approx.30,000 km). The coronal network (1) consists of all coronal-temperature structures smaller than supergranules, (2) is rooted in and loosely traces the photospheric magnetic network, (3) has its brightest features seated on polarity dividing fines (neutral lines) in the network magnetic flux, and (4) produces only about 5% of the total coronal emission in quiet regions. The heating of the coronal network is apparently magnetic in origin. Here, from analysis of EIT coronal images of quiet regions in combination with magnetograms of the same quiet regions from SOHO/MDI and from Kitt Peak, we examine the other 95% of the quiet corona and its relation to the underlying magnetic network. We find: (1) Dividing the large-scale corona into its bright and dim halves divides the area into bright "continents" and dark "oceans" having spans of 2-4 supergranules. (2) These patterns are also present in the photospheric magnetograms: the network is stronger under the bright half and weaker under the dim half. (3) The radiation from the large-scale corona increases roughly as the cube root of the magnetic flux content of the underlying magnetic network. In contrast, Fisher et A (1998, ApJ, 508, 985-998) found that the coronal radiation from an active region increases roughly linearly with the magnetic flux content of the active region. We assume, as is widely held, that nearly all of the large-scale corona is magnetically rooted in the network. Our results, together with the result of Fisher et al (1999), suggest that either the coronal heating in quiet regions has a large non-magnetic component, or, if the heating

  16. Quantization Effects on Complex Networks.

    PubMed

    Wang, Ying; Wang, Lin; Yang, Wen; Wang, Xiaofan

    2016-01-01

    Weights of edges in many complex networks we constructed are quantized values of the real weights. To what extent does the quantization affect the properties of a network? In this work, quantization effects on network properties are investigated based on the spectrum of the corresponding Laplacian. In contrast to the intuition that larger quantization level always implies a better approximation of the quantized network to the original one, we find a ubiquitous periodic jumping phenomenon with peak-value decreasing in a power-law relationship in all the real-world weighted networks that we investigated. We supply theoretical analysis on the critical quantization level and the power laws. PMID:27226049

  17. Quantization Effects on Complex Networks

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Wang, Lin; Yang, Wen; Wang, Xiaofan

    2016-05-01

    Weights of edges in many complex networks we constructed are quantized values of the real weights. To what extent does the quantization affect the properties of a network? In this work, quantization effects on network properties are investigated based on the spectrum of the corresponding Laplacian. In contrast to the intuition that larger quantization level always implies a better approximation of the quantized network to the original one, we find a ubiquitous periodic jumping phenomenon with peak-value decreasing in a power-law relationship in all the real-world weighted networks that we investigated. We supply theoretical analysis on the critical quantization level and the power laws.

  18. Quantization Effects on Complex Networks

    PubMed Central

    Wang, Ying; Wang, Lin; Yang, Wen; Wang, Xiaofan

    2016-01-01

    Weights of edges in many complex networks we constructed are quantized values of the real weights. To what extent does the quantization affect the properties of a network? In this work, quantization effects on network properties are investigated based on the spectrum of the corresponding Laplacian. In contrast to the intuition that larger quantization level always implies a better approximation of the quantized network to the original one, we find a ubiquitous periodic jumping phenomenon with peak-value decreasing in a power-law relationship in all the real-world weighted networks that we investigated. We supply theoretical analysis on the critical quantization level and the power laws. PMID:27226049

  19. The analysis of thermal network of district heating system from investor point of view

    NASA Astrophysics Data System (ADS)

    Takács, Ján; Rácz, Lukáš

    2016-06-01

    The hydraulics of a thermal network of a district heating system is a very important issue, to which not enough attention is often paid. In this paper the authors want to point out some of the important aspects of the design and operation of thermal networks in district heating systems. The design boundary conditions of a heat distribution network and the requirements on active pressure - circulation pump - influencing the operation costs of the centralized district heating system as a whole, are analyzed in detail. The heat generators and the heat exchange stations are designed according to the design heat loads after thermal insulation, and modern boiler units are installed in the heating plant.

  20. Possibility of using adsorption refrigeration unit in district heating network

    NASA Astrophysics Data System (ADS)

    Grzebielec, Andrzej; Rusowicz, Artur; Jaworski, Maciej; Laskowski, Rafał

    2015-09-01

    Adsorption refrigeration systems are able to work with heat sources of temperature starting with 50 °C. The aim of the article is to determine whether in terms of technical and economic issues adsorption refrigeration equipment can work as elements that produce cold using hot water from the district heating network. For this purpose, examined was the work of the adsorption air conditioning equipment cooperating with drycooler, and the opportunities offered by the district heating network in Warsaw during the summer. It turns out that the efficiency of the adsorption device from the economic perspective is not sufficient for production of cold even during the transitional period. The main problem is not the low temperature of the water supply, but the large difference between the coefficients of performance, COPs, of adsorption device and a traditional compressor air conditioning unit. When outside air temperature is 25 °C, the COP of the compressor type reaches a value of 4.49, whereas that of the adsorption device in the same conditions is 0.14. The ratio of the COPs is 32. At the same time ratio between the price of 1 kWh of electric power and 1 kWh of heat is only 2.85. Adsorption refrigeration equipment to be able to compete with compressor devices, should feature COPads efficiency to be greater than 1.52. At such a low driving temperature and even changing the drycooler into the evaporative cooler it is not currently possible to achieve.

  1. Distributed Sensible Heat Flux Measurements for Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Huwald, H.; Brauchli, T.; Lehning, M.; Higgins, C. W.

    2015-12-01

    The sensible heat flux component of the surface energy balance is typically computed using eddy covariance or two point profile measurements while alternative approaches such as the flux variance method based on convective scaling has been much less explored and applied. Flux variance (FV) certainly has a few limitations and constraints but may be an interesting and competitive method in low-cost and power limited wireless sensor networks (WSN) with the advantage of providing spatio-temporal sensible heat flux over the domain of the network. In a first step, parameters such as sampling frequency, sensor response time, and averaging interval are investigated. Then we explore the applicability and the potential of the FV method for use in WSN in a field experiment. Low-cost sensor systems are tested and compared against reference instruments (3D sonic anemometers) to evaluate the performance and limitations of the sensors as well as the method with respect to the standard calculations. Comparison experiments were carried out at several sites to gauge the flux measurements over different surface types (gravel, grass, water) from the low-cost systems. This study should also serve as an example of spatially distributed sensible heat flux measurements.

  2. Optimizing and controlling the operation of heat-exchanger networks

    SciTech Connect

    Aguilera, N.; Marchetti, J.L.

    1998-05-01

    A procedure was developed for on-line optimization and control systems of heat-exchanger networks, which features a two-level control structure, one for a constant configuration control system and the other for a supervisor on-line optimizer. The coordination between levels is achieved by adjusting the formulation of the optimization problem to meet requirements of the adopted control system. The general goal is always to work without losing stream temperature targets while keeping the highest energy integration. The operation constraints used for heat-exchanger and utility units emphasize the computation of heat-exchanger duties rather than intermediate stream temperatures. This simplifies the modeling task and provides clear links with the limits of the manipulated variables. The optimal condition is determined using LP or NLP, depending on the final problem formulation. Degrees of freedom for optimization and equation constraints for considering simple and multiple bypasses are rigorously discussed. An example used shows how the optimization problem can be adjusted to a specific network design, its expected operating space, and the control configuration. Dynamic simulations also show benefits and limitations of this procedure.

  3. Heat-Passing Framework for Robust Interpretation of Data in Networks

    PubMed Central

    Fang, Yi; Sun, Mengtian; Ramani, Karthik

    2015-01-01

    Researchers are regularly interested in interpreting the multipartite structure of data entities according to their functional relationships. Data is often heterogeneous with intricately hidden inner structure. With limited prior knowledge, researchers are likely to confront the problem of transforming this data into knowledge. We develop a new framework, called heat-passing, which exploits intrinsic similarity relationships within noisy and incomplete raw data, and constructs a meaningful map of the data. The proposed framework is able to rank, cluster, and visualize the data all at once. The novelty of this framework is derived from an analogy between the process of data interpretation and that of heat transfer, in which all data points contribute simultaneously and globally to reveal intrinsic similarities between regions of data, meaningful coordinates for embedding the data, and exemplar data points that lie at optimal positions for heat transfer. We demonstrate the effectiveness of the heat-passing framework for robustly partitioning the complex networks, analyzing the globin family of proteins and determining conformational states of macromolecules in the presence of high levels of noise. The results indicate that the methodology is able to reveal functionally consistent relationships in a robust fashion with no reference to prior knowledge. The heat-passing framework is very general and has the potential for applications to a broad range of research fields, for example, biological networks, social networks and semantic analysis of documents. PMID:25668316

  4. Exploring systems affected by the heat shock response in Plasmodium falciparum via protein association networks

    PubMed Central

    Lilburn, Timothy G.; Cai, Hong; Gu, Jianying; Zhou, Zhan; Wang, Yufeng

    2015-01-01

    The heat shock response is a general mechanism by which organisms deal with physical insults such as sudden changes in temperature, osmotic and oxidative stresses, and exposure to toxic substances. Plasmodium falciparum is exposed to drastic temperature changes as a part of its life cycle and maintains an extensive repertoire of heat shock response-related proteins. As these proteins serve to maintain the parasite in the face of anti-malarial drugs as well, better understanding of the heat shock-related systems in the malaria parasite will lead to therapeutic approaches that frustrate these systems, leading to more effective use of anti-malarials. Here we use protein association networks to broaden our understanding of the systems impacted by and/or implicated in the heat shock response. PMID:25539848

  5. Heat sink effects in VPPA welding

    NASA Technical Reports Server (NTRS)

    Steranka, Paul O., Jr.

    1990-01-01

    The development of a model for prediction of heat sink effects associated with the Variable Polarity Plasma Arc (VPPA) Welding Process is discussed. The long term goal of this modeling is to provide means for assessing potential heat sink effects and, eventually, to provide indications as to changes in the welding process that could be used to compensate for these effects and maintain the desired weld quality. In addition to the development of a theoretical model, a brief experimental investigation was conducted to demonstrate heat sink effects and to provide an indication of the accuracy of the model.

  6. Effect of the Heat Pipe Adiabatic Region.

    PubMed

    Brahim, Taoufik; Jemni, Abdelmajid

    2014-04-01

    The main motivation of conducting this work is to present a rigorous analysis and investigation of the potential effect of the heat pipe adiabatic region on the flow and heat transfer performance of a heat pipe under varying evaporator and condenser conditions. A two-dimensional steady-state model for a cylindrical heat pipe coupling, for both regions, is presented, where the flow of the fluid in the porous structure is described by Darcy-Brinkman-Forchheimer model which accounts for the boundary and inertial effects. The model is solved numerically by using the finite volumes method, and a fortran code was developed to solve the system of equations obtained. The results show that a phase change can occur in the adiabatic region due to temperature gradient created in the porous structure as the heat input increases and the heat pipe boundary conditions change. A recirculation zone may be created at the condenser end section. The effect of the heat transfer rate on the vapor radial velocities and the performance of the heat pipe are discussed. PMID:24895467

  7. Thermally effective, electrically isolating heat intercept connections

    SciTech Connect

    Niemann, R.C.; Gonczy, J.D.; Nicol, T.H.

    1995-06-01

    Electrical and electronic equipment often require thermally effective beat intercept connections that provide electrical isolation. Such connections can be developed by clamping, with a thermal-interference fit, an electrically insulating cylindrical tube between a central disk and an outer ring. Heat flows radially through the disk-tube-ring assembly. Thermal effectiveness, i.e., {Delta}T for a given heat flux, and electrical isolation are controlled by tube geometry and material and by connection-assembly details. Connections of this type are being developed as cryogenic heat intercepts for electrical current leads that employ high-temperature superconductors. We discuss the design considerations and details of a beat intercept connection that transfers a 45-w thermal load at 60 K with a {Delta}T of {approx} 10 K while providing 7.5 kV electrical isolation. Prototype heat intercept connections have been evaluated for their thermal and electrical performance, and the results are presented.

  8. The Small Heat Shock Protein Hsp27 Affects Assembly Dynamics and Structure of Keratin Intermediate Filament Networks

    PubMed Central

    Kayser, Jona; Haslbeck, Martin; Dempfle, Lisa; Krause, Maike; Grashoff, Carsten; Buchner, Johannes; Herrmann, Harald; Bausch, Andreas R.

    2013-01-01

    The mechanical properties of living cells are essential for many processes. They are defined by the cytoskeleton, a composite network of protein fibers. Thus, the precise control of its architecture is of paramount importance. Our knowledge about the molecular and physical mechanisms defining the network structure remains scarce, especially for the intermediate filament cytoskeleton. Here, we investigate the effect of small heat shock proteins on the keratin 8/18 intermediate filament cytoskeleton using a well-controlled model system of reconstituted keratin networks. We demonstrate that Hsp27 severely alters the structure of such networks by changing their assembly dynamics. Furthermore, the C-terminal tail domain of keratin 8 is shown to be essential for this effect. Combining results from fluorescence and electron microscopy with data from analytical ultracentrifugation reveals the crucial role of kinetic trapping in keratin network formation. PMID:24138853

  9. The effectiveness of a heated air curtain

    NASA Astrophysics Data System (ADS)

    Frank, Daria

    2014-11-01

    Air curtains are high-velocity plane turbulent jets which are installed in the doorway in order to reduce the heat and the mass exchange between two environments. The air curtain effectiveness E is defined as the fraction of the exchange flow prevented by the air curtain compared to the open-door situation. In the present study, we investigate the effects of an opposing buoyancy force on the air curtain effectiveness. Such an opposing buoyancy force arises for example if a downwards blowing air curtain is heated. We conducted small-scale experiments using water as the working fluid with density differences created by salt and sugar. The effectiveness of a downwards blowing air curtain was measured for situations in which the initial density of the air curtain was less than both the indoor and the outdoor fluid density, which corresponds to the case of a heated air curtain. We compare the effectiveness of the heated air curtain to the case of the neutrally buoyant air curtain. It is found that the effectiveness starts to decrease if the air curtain is heated beyond a critical temperature. Furthermore, we propose a theoretical model to describe the dynamics of the buoyant air curtain. Numerical results obtained from solving this model corroborate our experimental findings.

  10. Characterizing the Urban Heat Island with a Dense Sensor Network

    NASA Astrophysics Data System (ADS)

    Snyder, P. K.; Twine, T. E.; Smoliak, B. V.; Mykleby, P.; Hertel, W. F.

    2014-12-01

    Urban heat islands (UHIs) occur when urban and suburban areas experience temperatures that are elevated relative to their rural surroundings because of differences in the fraction of gray and green infrastructure. Traditional methods of characterizing UHIs rely on the comparison of near-surface air temperature measurements between few sites in an urban area with those in a nearby rural area. This methodology assumes (1) that the UHI can be characterized by the difference in air temperature from a small number of points, and (2) that these few points represent the urban and rural signatures of the region. While this methodology makes it possible to compare the UHI of cities around the globe, it ignores the rich information that could be gained from measurements across the urban to rural transect. This transect could traverse elevations, water bodies, vegetation fraction, and other land surface properties. We deployed a network of ~200 temperature sensors across the Twin Cities Metropolitan Area (TCMA) beginning in July 2011 and continuing to the present. Our network covers a 5000-km2 area encompassing the cities of Minneapolis and Saint Paul as well as suburban and rural areas within the seven-county region. The TCMA includes ~3.4 million people, nearly 900 lakes, and two major interstate highways and a beltway system. We employed a cokriging method to interpolate sensor measurements onto a continuous grid using satellite-based impervious surface fraction data. Our results show consistent warm anomalies, when compared with a background rural temperature, over the two downtown cores and along major highways and dense suburban areas. Anomalies switch between positive and negative values (i.e., warmer or cooler than the rural, respectively) depending on season over large lakes. The warm season (May - October) average TCMA UHI (all urban areas - all rural areas) peaks at night at 1.5 °C, while the cold season (November - April) UHI is ~1 °C and is less variable over

  11. Simulated evolution of fractures and fracture networks subject to thermal cooling: A coupled discrete element and heat conduction model

    SciTech Connect

    Huang, Hai; Plummer, Mitchell; Podgorney, Robert

    2013-02-01

    Advancement of EGS requires improved prediction of fracture development and growth during reservoir stimulation and long-term operation. This, in turn, requires better understanding of the dynamics of the strongly coupled thermo-hydro-mechanical (THM) processes within fractured rocks. We have developed a physically based rock deformation and fracture propagation simulator by using a quasi-static discrete element model (DEM) to model mechanical rock deformation and fracture propagation induced by thermal stress and fluid pressure changes. We also developed a network model to simulate fluid flow and heat transport in both fractures and porous rock. In this paper, we describe results of simulations in which the DEM model and network flow & heat transport model are coupled together to provide realistic simulation of the changes of apertures and permeability of fractures and fracture networks induced by thermal cooling and fluid pressure changes within fractures. Various processes, such as Stokes flow in low velocity pores, convection-dominated heat transport in fractures, heat exchange between fluid-filled fractures and solid rock, heat conduction through low-permeability matrices and associated mechanical deformations are all incorporated into the coupled model. The effects of confining stresses, developing thermal stress and injection pressure on the permeability evolution of fracture and fracture networks are systematically investigated. Results are summarized in terms of implications for the development and evolution of fracture distribution during hydrofracturing and thermal stimulation for EGS.

  12. Experimental investigation of heat transfer and effectiveness in corrugated plate heat exchangers having different chevron angles

    NASA Astrophysics Data System (ADS)

    Kılıç, Bayram; İpek, Osman

    2016-06-01

    In this study, heat transfer rate and effectiveness of corrugated plate heat exchangers having different chevron angles were investigated experimentally. Chevron angles of plate heat exchangers are β = 30° and β = 60°. For this purpose, experimentally heating system used plate heat exchanger was designed and constructed. Thermodynamic analysis of corrugated plate heat exchangers having different chevron angles were carried out. The heat transfer rate and effectiveness values are calculated. The experimental results are shown that heat transfer rate and effectiveness values for β = 60° is higher than that of the other. Obtained experimental results were graphically presented.

  13. Large-Scale Coronal Heating from "Cool" Activity in the Solar Magnetic Network

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.; Moore, R. L.; Porter, J. G.; Hathaway, D. H.

    1999-01-01

    In Fe XII images from SOHO/EIT, the quiet solar corona shows structure on scales ranging from sub-supergranular (i.e., bright points and coronal network) to multi-supergranular (large-scale corona). In Falconer et al 1998 (Ap.J., 501, 386) we suppressed the large-scale background and found that the network-scale features are predominantly rooted in the magnetic network lanes at the boundaries of the supergranules. Taken together, the coronal network emission and bright point emission are only about 5% of the entire quiet solar coronal Fe XII emission. Here we investigate the relationship between the large-scale corona and the network as seen in three different EIT filters (He II, Fe IX-X, and Fe XII). Using the median-brightness contour, we divide the large-scale Fe XII corona into dim and bright halves, and find that the bright-half/dim half brightness ratio is about 1.5. We also find that the bright half relative to the dim half has 10 times greater total bright point Fe XII emission, 3 times greater Fe XII network emission, 2 times greater Fe IX-X network emission, 1.3 times greater He II network emission, and has 1.5 times more magnetic flux. Also, the cooler network (He II) radiates an order of magnitude more energy than the hotter coronal network (Fe IX-X, and Fe XII). From these results we infer that: 1) The heating of the network and the heating of the large-scale corona each increase roughly linearly with the underlying magnetic flux. 2) The production of network coronal bright points and heating of the coronal network each increase nonlinearly with the magnetic flux. 3) The heating of the large-scale corona is driven by widespread cooler network activity rather than by the exceptional network activity that produces the network coronal bright points and the coronal network. 4) The large-scale corona is heated by a nonthermal process since the driver of its heating is cooler than it is. This work was funded by the Solar Physics Branch of NASA's office of

  14. The effective latent heat of aqueous nanofluids

    NASA Astrophysics Data System (ADS)

    Lee, Soochan; Taylor, Robert A.; Dai, Lenore; Prasher, Ravi; Phelan, Patrick E.

    2015-06-01

    Nanoparticle suspensions, popularly termed ‘nanofluids’, have been extensively investigated for their thermal and radiative properties (Eastman et al 1996 Mater. Res. Soc. Proc. 457; Keblinski et al 2005 Mater. Today 8 36-44 Barber et al 2011 Nanoscale Res. Lett. 6 1-13 Thomas and Sobhan 2011 Nanoscale Res. Lett. 6 1-21 Taylor et al 2011 Nanoscale Res. Lett. 6 1-11 Fang et al 2013 Nano Lett. 13 1736-42 Otanicar et al 2010 J. Renew. Sustainable Energy 2 03310201-13 Prasher et al 2006 ASME J. Heat Transfer 128 588-95 Shin and Banerjee 2011 ASME J. Heat Transfer 133 1-4 Taylor and Phelan 2009 Int. J. Heat Mass Transfer 52 5339-48 Ameen et al 2010 Int. J. Thermophys. 31 1131-44 Lee et al 2014 Appl. Phys. Lett. 104 1-4). Such work has generated great controversy, although it is (arguably) generally accepted today that the presence of nanoparticles rarely leads to useful enhancements in either thermal conductivity or convective heat transfer. On the other hand, there are still examples of unanticipated enhancements to some properties, such as the specific heat of molten salt-based nanofluids reported by Shin and Banerjee (2011 ASME J. Heat Transfer 133 1-4) and the critical heat flux mentioned by Taylor and Phelan (2009 Int. J. Heat Mass Transfer 52 5339-48). Another largely overlooked example is the reported effect of nanoparticles on the effective latent heat of vaporization (hfg) of aqueous nanofluids, as reported by Ameen et al (2010 Int. J. Thermophys. 31 1131-44). Through molecular dynamics (MD) modeling supplemented with limited experimental data they found that hfg increases with increasing nanoparticle concentration, for Pt nanoparticles (MD) and Al2O3 nanoparticles (experiments). Here, we extend those exploratory experiments in an effort to determine if hfg of aqueous nanofluids can be manipulated, i.e., increased or decreased by the addition of graphite or silver nanoparticles. Our results to date indicate that, yes, hfg can be substantially impacted, by

  15. Thermocapillary effects on the heat transfer effectiveness of a heated, curved meniscus

    SciTech Connect

    Pratt, D.M.; Hallinan, K.P.; Chang, W.S.

    1997-07-01

    An investigation of thermocapillary effects on a heated meniscus formed by a volatile liquid in a vertical capillary tube has been conducted. This investigation is primarily experimental although analysis is presented to gain insights into the experimental results. The work was motivated by the importance of the evaporation process from porous or grooved media that are integral to the operation of capillary-driven heat transport devices such as heat pipes and capillary-driven loops. The research addressed the heat transfer characteristics of a capillary pore system. It was shown that the heat transfer effectiveness of the evaporating meniscus was reduced due to interfacial thermocapillary stresses. The effect of thermocapillary stresses on the heat transfer characteristics on single capillary pore heat transfer devices is shown to be a function of the non-dimensional thermocapillary stress (Marangoni number). This was demonstrated for different capillary pore sizes and working fluid conditions. Results include data for inside diameters of 0.5, 1, and 2 mm and liquid subcoolings of 18, 10, and 0 C. For large pores, it was shown that the heat transfer is controlled by convection.

  16. Field effect memory alloy heat engine

    SciTech Connect

    Johnson, A.D.; Kirkpatrick, P.F.

    1981-08-04

    A heat engine employing a memory alloy and a force field such as gravity for converting heat energy into mechanical work is disclosed. Field effect elements are mounted on the distal ends of flexible spokes which in turn are mounted about a hub to form a rotating wheel. The memory alloy is in the form of a helix disposed about the circumference of the wheel and interconnecting the ends of adjacent spoke pairs. Heat is transferred to segments of the memory alloy on one side of the wheel so that the segments deform toward their memory shape and deflect the associated spokes toward each other. Heat is transferred away from the memory alloy segments on the opposite side so that the segments deform toward their trained shape and permit the spokes to flex apart. The concentration of field effect elements on the first side of the wheel is greater than the concentration on the other side so that the resultant force created by a remote field acts as a torque for rotating the wheel.

  17. Network effects, cascades and CCP interoperability

    NASA Astrophysics Data System (ADS)

    Feng, Xiaobing; Hu, Haibo; Pritsker, Matthew

    2014-03-01

    To control counterparty risk, financial regulations such as the Dodd Frank Act are increasingly requiring standardized derivatives trades to be cleared by central counterparties (CCPs). It is anticipated that in the near-term future, CCPs across the world will be linked through interoperability agreements that facilitate risk-sharing but also serve as a conduit for transmitting shocks. This paper theoretically studies a network with CCPs that are linked through interoperability arrangements, and studies the properties of the network that contribute to cascading failures. The magnitude of the cascading is theoretically related to the strength of network linkages, the size of the network, the logistic mapping coefficient, a stochastic effect and CCP's defense lines. Simulations indicate that larger network effects increase systemic risk from cascading failures. The size of the network N raises the threshold value of shock sizes that are required to generate cascades. Hence, the larger the network, the more robust it will be.

  18. Heat Entrapment Effects Within Liquid Acquisition Devices

    NASA Technical Reports Server (NTRS)

    Duval, W. M. B.; Chato, D. J.; Doherty, M. P.

    2010-01-01

    We introduce a model problem to address heat entrapment effects or the local accumulation of thermal energy within liquid acquisition devices. We show that the parametric space consists of six parameters, namely the Rayleigh and Prandtl numbers, the aspect ratio, and heat flux ratios for the bottom, side, and top boundaries of the enclosure. For the range of Ra considered 1 to 10(sup 9), beyond Ra on the order of 10(sup 5), convective instability is the dominant mode of convection in comparison to natural convection. The flow field transitions to asymmetric modes at Ra on the order of 10(sup 7). Direct numerical simulation of a large geometric length scale prototype for Ra on the order of 10(sup 9) shows that the flow field evolves from small wavelength instability which gives rise to nonlinear growth of thermals, propagation of the instability occurs via growth of secondary and tertiary modes, and a travelling wave mode occurs prior to asymmetry. The effect of a large aspect ratio is to increase the number of modes in the vertical direction. Due to the slow diffusion of heat in the prototype, asymptotic states are not readily attained, we show that dynamical similarity can be used for a model which allows the attainment of asymptotic states and that transition to a chaotic state occurs for Ra on the order of 10(sup 9) via a broadband power spectrum. These dynamical events show that for the baseline condition in which heat is absorbed from background laboratory environment, higher heat flux is absorbed at the top and bottom boundaries of the enclosure than a nominal value of 34.9 ergs per square centimeter -second.

  19. Brain mediators of the effects of noxious heat on pain

    PubMed Central

    Atlas, Lauren Y.; Lindquist, Martin A.; Bolger, Niall; Wager, Tor D.

    2014-01-01

    Recent human neuroimaging studies have investigated the neural correlates of either noxious stimulus intensity or reported pain. While useful, analyzing brain relationships with stimulus intensity and behavior separately does not address how sensation and pain are linked in the central nervous system. In this paper, we used multi-level mediation analysis to identify brain mediators of pain—regions whose trial-by-trial responses to heat explained variability in the relationship between noxious stimulus intensity (across four levels) and pain. This approach has the potential to identify multiple circuits with complementary roles in pain genesis. Brain mediators of noxious heat effects on pain included targets of ascending nociceptive pathways (anterior cingulate, insula, SII, and medial thalamus) and also prefrontal and subcortical regions not associated with nociceptive pathways per se. Cluster analysis revealed that mediators were grouped into several distinct functional networks, including: a) somatosensory, paralimbic, and striatal-cerebellar networks that increased with stimulus intensity; and b) two networks co-localized with ‘default mode’ regions in which stimulus intensity-related decreases mediated increased pain. We also identified ‘thermosensory’ regions that responded to increasing noxious heat but did not predict pain reports. Finally, several regions did not respond to noxious input, but their activity predicted pain; these included ventromedial prefrontal cortex, dorsolateral prefrontal cortex, cerebellar regions, and supplementary motor cortices. These regions likely underlie both nociceptive and non-nociceptive processes that contribute to pain, such as attention and decision-making processes. Overall, these results elucidate how multiple distinct brain systems jointly contribute to the central generation of pain. PMID:24845572

  20. Predicting the heating value of MSW with a feed forward neural network

    SciTech Connect

    Dong Changqing; Jin Baosheng; Li Daji

    2003-07-01

    The influence of the heating value of municipal solid waste (MSW) is very important on the combustion efficiency of MSW incinerators. The heating value of MSW is determined by the elementary chemical composition of its various components. Commonly, calorimetric measurement and empirical methods are available for this determination. In this analysis, the relationship between the physical composition and the low heating value (LHV) was studied. A feed forward neural network (FFNN) can be very helpful in predicting the heating value of MSW from its physical composition. The results of this analysis show that the prediction of LHV of MSW with FFNN is much better than conventional models.

  1. Characteristics of Effective Networking Environments.

    ERIC Educational Resources Information Center

    Kaye, Judith C.

    This document chronicles a project called Model Nets, which studies the characteristics of computer networks that have a positive impact on K-12 learning. Los Alamos National Laboratory undertook the study so that their recommendations could help federal agencies wisely fund networking projects in an era when the national imperative has driven…

  2. Triple-shape effect in polymer-based composites by cleverly matching geometry of active component with heating method.

    PubMed

    Razzaq, M Y; Behl, M; Kratz, K; Lendlein, A

    2013-10-11

    A triple-shape effect is created for a segmented device consisting of an active component encapsulated in a highly flexible polymer network. Segments with the same composition but different interface areas can be recovered independently either at specific field strengths (Hsw ) during inductive heating, at a specific time during environmentally heating, or at different airflow during inductive heating at constant H. Herein the type of heating method regulates the sequence order. PMID:23893389

  3. Neurophysiological effects of exercise in the heat.

    PubMed

    Roelands, B; De Pauw, K; Meeusen, R

    2015-06-01

    Fatigue during prolonged exercise is a multifactorial phenomenon. The complex interplay between factors originating from both the periphery and the brain will determine the onset of fatigue. In recent years, electrophysiological and imaging tools have been fine-tuned, allowing for an improved understanding of what happens in the brain. In the first part of the review, we present literature that studied the changes in electrocortical activity during and after exercise in normal and high ambient temperature. In general, exercise in a thermo-neutral environment or at light to moderate intensity increases the activity in the β frequency range, while exercising at high intensity or in the heat reduces β activity. In the second part, we review literature that manipulated brain neurotransmission, through either pharmacological or nutritional means, during exercise in the heat. The dominant outcomes were that manipulations changing brain dopamine concentration have the potential to delay fatigue, while the manipulation of serotonin had no effect and noradrenaline reuptake inhibition was detrimental for performance in the heat. Research on the effects of neurotransmitter manipulations on brain activity during or after exercise is scarce. The combination of brain imaging techniques with electrophysiological measures presents one of the major future challenges in exercise physiology/neurophysiology. PMID:25943657

  4. Effect of frictional heating on brake materials

    NASA Technical Reports Server (NTRS)

    Ho, T.-L.; Peterson, M. B.; Ling, F. F.

    1974-01-01

    An exploratory study of the properties of aircraft brake materials was made to determine ways of improving friction and wear behavior while minimizing surface temperatures. It is found that frictional variation at high temperature involves material softening and metal transfer, formation of oxides, and surface melting. The choice of proper materials to combat these effects is discussed. Minimum surface temperatures are found to result from use of materials with large density-specific heat and density-specific heat-conductivity factors, use of a higher load-lower friction system, and maximization of the contact area. Some useful trade-off criteria for the size of brake disks against weight considerations are suggested. Additional information on material behavior and peak braking temperatures was gathered from an inspection of used brake pads and rotor disks.

  5. Effects of anisotropic heat conduction on solidification

    NASA Technical Reports Server (NTRS)

    Weaver, J. A.; Viskanta, R.

    1989-01-01

    Two-dimensional solidification influenced by anisotropic heat conduction has been considered. The interfacial energy balance was derived to account for the heat transfer in one direction (x or y) depending on the temperature gradient in both the x and y directions. A parametric study was made to determine the effects of the Stefan number, aspect ratio, initial superheat, and thermal conductivity ratios on the solidification rate. Because of the imposed boundary conditions, the interface became skewed and sometimes was not a straight line between the interface position at the upper and lower adiabatic walls (spatially nonlinear along the height). This skewness depends on the thermal conductivity ratio k(yy)/k(yx). The nonlinearity of the interface is influenced by the solidification rate, aspect ratio, and k(yy/k(yx).

  6. Electric heating effects in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Yin, Y.; Shiyanovskii, S. V.; Lavrentovich, O. D.

    2006-07-01

    Electric heating effects in the nematic liquid crystal change the liquid crystal physical properties and dynamics. We propose a model to quantitatively describe the heating effects caused by dielectric dispersion and ionic conductivity in the nematic liquid crystals upon the application of an ac electric field. The temperature increase of the liquid crystal cell is related to the properties of the liquid crystal such as the imaginary part of the dielectric permittivity, thermal properties of the bounding plates, and the surrounding medium as well as frequency and amplitude of the electric field. To study the temperature dynamics experimentally, we use a small thermocouple inserted directly into the nematic bulk; we assure that the thermocouple does not alter the thermal behavior of the system by comparing the results to those obtained by a noncontact birefringent probing technique recently proposed by Wen and Wu [Appl. Phys. Lett. 86, 231104 (2005)]. We determine how the temperature dynamics and the stationary value of the temperature increase depend on the parameters of the materials and the applied field. We used different surrounding media, from extremely good heat conductors such as aluminum cooling device to extremely poor conductor, Styrofoam; these two provide two limiting cases as compared to typical conditions of nematic cell exploitation in a laboratory or in commercial devices. The experiments confirm the theoretical predictions, namely, that the temperature rise is controlled not only by the heat transfer coefficient of the surrounding medium (as in the previous model) but also by the thickness and the thermal conductivity coefficient of the bounding plates enclosing the nematic layer. The temperature increase strongly depends on the director orientation and can change nonmonotonously with the frequency of the applied field.

  7. Effects of heater and heating methods on pool boiling

    SciTech Connect

    Lu, S.M.; Lee, D.J. )

    1989-10-01

    In a pool boiling from an electrically-heated wire, there are three modes of boiling: nucleate, film, and coexisting nucleate and film boiling. These are shown. In this work, the effects of the physical properties of heating wires on steady-state pool boiling have been investigated analytically. The cases of constant voltage heating and constant current heating have been solved.

  8. Derivation of effectiveness-NTU method for heat exchangers with heat leak

    SciTech Connect

    William M. Soyars

    2001-11-01

    A powerful and useful method for heat exchanger analysis is the effectiveness-NTU method. The equations for this technique presented in textbooks, however, are limited to the case where all of the heat transfer occurs between the two fluid streams. In an application of interest to us, cryogenic heat exchangers, we wish to consider a heat leak term. Thus, we have derived equations for the {var_epsilon}-NTU method with heat leak involved. The cases to be studied include evaporators, condensers, and counter-flow, with heat leak both in and out.

  9. Effects of simulated heat waves on ApoE-/- mice.

    PubMed

    Wang, Chunling; Zhang, Shuyu; Tian, Ying; Wang, Baojian; Shen, Shuanghe

    2014-02-01

    The effects of simulated heat waves on body weight, body temperature, and biomarkers of cardiac function in ApoE-/- mice were investigated. Heat waves were simulated in a meteorological environment simulation chamber according to data from a heat wave that occurred in July 2001 in Nanjing, China. Eighteen ApoE-/- mice were divided into control group, heat wave group, and heat wave BH4 group. Mice in the heat wave and BH4 groups were exposed to simulated heat waves in the simulation chamber. Mice in BH4 group were treated with gastric lavage with BH4 2 h prior to heat wave exposure. Results showed that the heat waves did not significantly affect body weight or ET-1 levels. However, mice in the heat wave group had significantly higher rectal temperature and NO level and lower SOD activity compared with mice in the control group (p < 0.01), indicating that heat wave had negative effects on cardiac function in ApoE-/- mice. Gastric lavage with BH4 prior to heat wave exposure significantly reduced heat wave-induced increases in rectal temperature and decreases in SOD activity. Additionally, pretreatment with BH4 further increased NO level in plasma. Collectively, these beneficial effects demonstrate that BH4 may potentially mitigate the risk of coronary heart disease in mice under heat wave exposure. These results may be useful when studying the effects of heat waves on humans. PMID:24477215

  10. Effective Teacher Professionalization in Networks?

    ERIC Educational Resources Information Center

    Hofman, Roelande H.; Dijkstra, Bernadette J.

    2010-01-01

    Teacher professionalization has been focused too strongly on external experts and a one-size-fits-all set of solutions that often fail to distinguish between the needs of different teachers. This article describes a research into teacher networks that might be more successful vehicles for professional development of teachers. The results show that…

  11. Scaling Effect In Trade Network

    NASA Astrophysics Data System (ADS)

    Konar, M.; Lin, X.; Rushforth, R.; Ruddell, B. L.; Reimer, J.

    2015-12-01

    Scaling is an important issue in the physical sciences. Economic trade is increasingly of interest to the scientific community due to the natural resources (e.g. water, carbon, nutrients, etc.) embodied in traded commodities. Trade refers to the spatial and temporal redistribution of commodities, and is typically measured annually between countries. However, commodity exchange networks occur at many different scales, though data availability at finer temporal and spatial resolution is rare. Exchange networks may prove an important adaptation measure to cope with future climate and economic shocks. As such, it is essential to understand how commodity exchange networks scale, so that we can understand opportunities and roadblocks to the spatial and temporal redistribution of goods and services. To this end, we present an empirical analysis of trade systems across three spatial scales: global, sub-national in the United States, and county-scale in the United States. We compare and contrast the network properties, the self-sufficiency ratio, and performance of the gravity model of trade for these three exchange systems.

  12. New shape memory effects in semicrystalline polymeric networks

    NASA Astrophysics Data System (ADS)

    Chung, Taekwoong

    Shape memory polymers (SMPs) have attracted much research interest as a type of smart material that possesses the capacity to undergo rapid changes of their shape and size under a specific or tailored environment. Herein, we prepared semicrystalline polymers-based networks such as poly (cyclooctene) (PCO), poly (e-caprolactone) (PCL) and poly (ethylene glycol) (PEG) networks in order to explore their shape memory effects and thermomechanical properties as well as the possibilities for their applications. Interestingly, besides so-called one-shape memory effect that can be manipulated and fixed to a temporary shape under specific conditions of temperature and stress, and subsequently relax to the original shape on heating, the semicrystalline polymer networks exhibit a reversible two-way shape memory effect, revealing crystallization-induced elongation on cooling and melting-induced contraction on heating. These thermally induced reversible two-way shape memory effects were systematically explored with respect to the crosslinking density of networks and the applied stress. In order to develop a shape memory network with temperature sensing capability, we incorporated appropriately tailored chromogenic cyano-OPVs into cross-linked PCO via guest-diffusion to create phase-separated blends in which the dye's emission properties are dominated by excimer fluorescence. Heatng to the temperature above melting temperature and cooling below the crystallization temperature of PCO led to reversible optical changes through dissolution or agregation of the dye molecules. These optical changes happened in conjuction with shape changes of PCO networks. For an application of shape memory network in bone tissue engineering, we fabricated novel shape memory nanocomposite scaffolds base on PCL and nano-hydroxyapatite (nano-HAP) using thiol-ene photopolymerization and salt leaching technique. The shape memory property, morphologies and biomineralization of the scaffolds were

  13. The application of complex network time series analysis in turbulent heated jets

    SciTech Connect

    Charakopoulos, A. K.; Karakasidis, T. E. Liakopoulos, A.; Papanicolaou, P. N.

    2014-06-15

    In the present study, we applied the methodology of the complex network-based time series analysis to experimental temperature time series from a vertical turbulent heated jet. More specifically, we approach the hydrodynamic problem of discriminating time series corresponding to various regions relative to the jet axis, i.e., time series corresponding to regions that are close to the jet axis from time series originating at regions with a different dynamical regime based on the constructed network properties. Applying the transformation phase space method (k nearest neighbors) and also the visibility algorithm, we transformed time series into networks and evaluated the topological properties of the networks such as degree distribution, average path length, diameter, modularity, and clustering coefficient. The results show that the complex network approach allows distinguishing, identifying, and exploring in detail various dynamical regions of the jet flow, and associate it to the corresponding physical behavior. In addition, in order to reject the hypothesis that the studied networks originate from a stochastic process, we generated random network and we compared their statistical properties with that originating from the experimental data. As far as the efficiency of the two methods for network construction is concerned, we conclude that both methodologies lead to network properties that present almost the same qualitative behavior and allow us to reveal the underlying system dynamics.

  14. The application of complex network time series analysis in turbulent heated jets

    NASA Astrophysics Data System (ADS)

    Charakopoulos, A. K.; Karakasidis, T. E.; Papanicolaou, P. N.; Liakopoulos, A.

    2014-06-01

    In the present study, we applied the methodology of the complex network-based time series analysis to experimental temperature time series from a vertical turbulent heated jet. More specifically, we approach the hydrodynamic problem of discriminating time series corresponding to various regions relative to the jet axis, i.e., time series corresponding to regions that are close to the jet axis from time series originating at regions with a different dynamical regime based on the constructed network properties. Applying the transformation phase space method (k nearest neighbors) and also the visibility algorithm, we transformed time series into networks and evaluated the topological properties of the networks such as degree distribution, average path length, diameter, modularity, and clustering coefficient. The results show that the complex network approach allows distinguishing, identifying, and exploring in detail various dynamical regions of the jet flow, and associate it to the corresponding physical behavior. In addition, in order to reject the hypothesis that the studied networks originate from a stochastic process, we generated random network and we compared their statistical properties with that originating from the experimental data. As far as the efficiency of the two methods for network construction is concerned, we conclude that both methodologies lead to network properties that present almost the same qualitative behavior and allow us to reveal the underlying system dynamics.

  15. An Inquiry into the Effect of Heating on Ascorbic Acid

    ERIC Educational Resources Information Center

    Yip, Din Yan

    2009-01-01

    Investigations that study the effect of heating on ascorbic acid are commonly performed in schools, but the conclusions obtained are quite variable and controversial. Some results indicate that heating may destroy vitamin C, but others suggest that heating may have no effect. This article reports an attempt to resolve this confusion through a…

  16. Effect of acute heat stress on plant nutrient metabolism proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abrupt heating decreased the levels (per unit total root protein) of all but one of the nutrient metabolism proteins examined, and for most of the proteins, effects were greater for severe vs. moderate heat stress. For many of the nutrient metabolism proteins, initial effects of heat (1 d) were r...

  17. Solar Coronal Heating and the Magnetic Flux Content of the Network

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.; Moore, R. L.; Porter, J. G.; Hathaway, D. H.

    2003-01-01

    We investigate the heating of the quiet corona by measuring the increase of coronal luminosity with the amount of magnetic flux in the underlying network at solar minimum when there were no active regions on the face of the Sun. The coronal luminosity is measured from Fe IX/X-Fe XII pairs of coronal images from SOHO/EIT. The network magnetic flux content is measured from SOHO/MDI magnetograms. We find that the luminosity of the corona in our quiet regions increases roughly in proportion to the square root of the magnetic flux content of the network and roughly in proportion to the length of the perimeter of the network magnetic flux clumps. From (1) this result, (2) other observations of many fine-scale explosive events at the edges of network flux clumps, and (3) a demonstration that it is energetically feasible for the heating of the corona in quiet regions to be driven by explosions of granule-sized sheared-core magnetic bipoles embedded in the edges of network flux clumps, we infer that in quiet regions that are not influenced by active regions the corona is mainly heated by such magnetic activity in the edges of the network flux clumps. Our observational results together with our feasibility analysis allow us to predict that (1) at the edges of the network flux clumps there are many transient sheared-core bipoles of the size and lifetime of granules and having transverse field strengths > approx. 100 G, (2) approx. 30 of these bipoles are present per supergranule, and (3) most spicules are produced by explosions of these bipoles.

  18. Solar Coronal Heating and the Magnetic Flux Content of the Network

    NASA Astrophysics Data System (ADS)

    Falconer, D. A.; Moore, R. L.; Porter, J. G.; Hathaway, D. H.

    2003-08-01

    We investigate the heating of the quiet corona by measuring the increase of coronal luminosity with the amount of magnetic flux in the underlying network at solar minimum when there were no active regions on the face of the Sun. The coronal luminosity is measured from Fe IX/X-Fe XII pairs of coronal images from SOHO/EIT, under the assumption that practically all of the coronal luminosity in our quiet regions comes from plasma in the temperature range 0.9×106K<=T<=1.3×106 K. The network magnetic flux content is measured from SOHO/MDI magnetograms. We find that the luminosity of the corona in our quiet regions increases roughly in proportion to the square root of the magnetic flux content of the network and roughly in proportion to the length of the perimeter of the network magnetic flux clumps. From (1) this result, (2) other observations of many fine-scale explosive events at the edges of network flux clumps, and (3) a demonstration that it is energetically feasible for the heating of the corona in quiet regions to be driven by explosions of granule-sized sheared-core magnetic bipoles embedded in the edges of network flux clumps, we infer that in quiet regions that are not influenced by active regions the corona is mainly heated by such magnetic activity in the edges of the network flux clumps. Our observational results together with our feasibility analysis allow us to predict that (1) at the edges of the network flux clumps there are many transient sheared-core bipoles of the size and lifetime of granules and having transverse field strengths greater than ~100 G, (2) ~30 of these bipoles are present per supergranule, and (3) most spicules are produced by explosions of these bipoles.

  19. Solar Coronal Heating and the Magnetic Flux Content of the Network

    NASA Technical Reports Server (NTRS)

    Moore, R. L.; Falconer, D. A.; Porter, J. G.; Hathaway, D. H.

    2003-01-01

    We investigate the heating of the quiet corona by measuring the increase of coronal luminosity with the amount of magnetic flux in the underlying network at solar minimum when there were no active regions on the face of the Sun. The coronal luminosity is measured from Fe IX/X-Fe XII pairs of coronal images from SOHO/EIT. The network magnetic flux content is measured from SOHO/MDI magnetograms. We find that the luminosity of the corona in our quiet regions increases roughly in proportion to the square root of the magnetic flux content of the network and roughly in proportion to the length of the perimeter of the network magnetic flux clumps. From (1) this result, (2) other observations of many fine-scale explosive events at the edges of network flux clumps, and (3) a demonstration that it is energetically feasible for the heating of the corona in quiet regions to be driven by explosions of granule-sized sheared-core magnetic bipoles embedded in the edges of network flux clumps, we infer that in quiet regions that are not influenced by active regions the corona is mainly heated by such magnetic activity in the edges of the network flux clumps. Our observational results together with our feasibility analysis allow us to predict that (1) at the edges of the network flux clumps there are many transient sheared-core bipoles of the size and lifetime of granules and having transverse field strengths greater than approximately - 100 G, (2) approximately 30 of these bipoles are present per supergranule, and (3) most spicules are produced by explosions of these bipoles.

  20. Effects of heat recovery for district heating on waste incineration health impact: a simulation study in Northern Italy.

    PubMed

    Cordioli, Michele; Vincenzi, Simone; De Leo, Giulio A

    2013-02-01

    The construction of waste incinerators in populated areas always causes substantial public concern. Since the heat from waste combustion can be recovered to power district heating networks and allows for the switch-off of domestic boilers in urbanized areas, predictive models for health assessment should also take into account the potential benefits of abating an important source of diffuse emission. In this work, we simulated the dispersion of atmospheric pollutants from a waste incinerator under construction in Parma (Italy) into different environmental compartments and estimated the potential health effect of both criteria- (PM(10)) and micro-pollutants (PCDD/F, PAH, Cd, Hg). We analyzed two emission scenarios, one considering only the new incinerator, and the other accounting for the potential decrease in pollutant concentrations due to the activation of a district heating network. We estimated the effect of uncertainty in parameter estimation on health risk through Monte Carlo simulations. In addition, we analyzed the robustness of health risk to alternative assumptions on: a) the geographical origins of the potentially contaminated food, and b) the dietary habits of the exposed population. Our analysis showed that under the specific set of assumptions and emission scenarios explored in the present work: (i) the proposed waste incinerator plant appears to cause negligible harm to the resident population; (ii) despite the net increase in PM(10) mass balance, ground-level concentration of fine particulate matter may be curbed by the activation of an extensive district heating system powered through waste combustion heat recovery and the concurrent switch-off of domestic/industrial heating boilers. In addition, our study showed that the health risk caused by waste incineration emissions is sensitive to assumptions about the typical diet of the resident population, and the geographical origins of food production. PMID:23280295

  1. Modeling terahertz heating effects on water.

    PubMed

    Kristensen, Torben T L; Withayachumnankul, Withawat; Jepsen, Peter U; Abbott, Derek

    2010-03-01

    We apply Kirchhoff's heat equation to model the influence of a CW terahertz beam on a sample of water, which is assumed to be static. We develop a generalized model, which easily can be applied to other liquids and solids by changing the material constants. If the terahertz light source is focused down to a spot with a diameter of 0.5 mm, we find that the steady-state temperature increase per milliwatt of transmitted power is 1.8?C/mW. A quantum cascade laser can produce a CW beam in the order of several milliwatts and this motivates the need to estimate the effect of beam power on the sample temperature. For THz time domain systems, we indicate how to use our model as a worst-case approximation based on the beam average power. It turns out that THz pulses created from photoconductive antennas give a negligible increase in temperature. As biotissue contains a high water content, this leads to a discussion of worst-case predictions for THz heating of the human body in order to motivate future detailed study. An open source Matlab implementation of our model is freely available for use at www.eleceng.adelaide.edu.au/thz. PMID:20389486

  2. Effects of macromolecular crowding on genetic networks.

    PubMed

    Morelli, Marco J; Allen, Rosalind J; Wolde, Pieter Rein ten

    2011-12-21

    The intracellular environment is crowded with proteins, DNA, and other macromolecules. Under physiological conditions, macromolecular crowding can alter both molecular diffusion and the equilibria of bimolecular reactions and therefore is likely to have a significant effect on the function of biochemical networks. We propose a simple way to model the effects of macromolecular crowding on biochemical networks via an appropriate scaling of bimolecular association and dissociation rates. We use this approach, in combination with kinetic Monte Carlo simulations, to analyze the effects of crowding on a constitutively expressed gene, a repressed gene, and a model for the bacteriophage λ genetic switch, in the presence and absence of nonspecific binding of transcription factors to genomic DNA. Our results show that the effects of crowding are mainly caused by the shift of association-dissociation equilibria rather than the slowing down of protein diffusion, and that macromolecular crowding can have relevant and counterintuitive effects on biochemical network performance. PMID:22208186

  3. Effects of Macromolecular Crowding on Genetic Networks

    PubMed Central

    Morelli, Marco J.; Allen, Rosalind J.; Rein ten Wolde, Pieter

    2011-01-01

    The intracellular environment is crowded with proteins, DNA, and other macromolecules. Under physiological conditions, macromolecular crowding can alter both molecular diffusion and the equilibria of bimolecular reactions and therefore is likely to have a significant effect on the function of biochemical networks. We propose a simple way to model the effects of macromolecular crowding on biochemical networks via an appropriate scaling of bimolecular association and dissociation rates. We use this approach, in combination with kinetic Monte Carlo simulations, to analyze the effects of crowding on a constitutively expressed gene, a repressed gene, and a model for the bacteriophage λ genetic switch, in the presence and absence of nonspecific binding of transcription factors to genomic DNA. Our results show that the effects of crowding are mainly caused by the shift of association-dissociation equilibria rather than the slowing down of protein diffusion, and that macromolecular crowding can have relevant and counterintuitive effects on biochemical network performance. PMID:22208186

  4. Performance prediction between horizontal and vertical source heat pump systems for greenhouse heating with the use of artificial neural networks

    NASA Astrophysics Data System (ADS)

    Benli, Hüseyin

    2016-08-01

    This paper presents the suitability of artificial neural networks (ANNs) to predict the performance and comparison between a horizontal and a vertical ground source heat pump system. Performance forecasting is the precondition for the optimal control and energy saving operation of heat pump systems. In this study, performance parameters such as air temperature entering condenser fan-coil unit, air temperature leaving condenser fan-coil unit, and ground temperatures (2 and 60 m) obtained experimental studies are input data; coefficient of performance of system (COPsys) is in output layer. The back propagation learning algorithm with three different variants such as Levenberg-Marguardt, Pola-Ribiere conjugate gradient, and scaled conjugate gradient, and also tangent sigmoid transfer function were used in the network so that the best approach can be found. The results showed that LM with three neurons in the hidden layer is the most suitable algorithm with maximum correlation coefficients R2 of 0.999, minimum root mean square RMS value and low coefficient variance COV. The reported results confirmed that the use of ANN for performance prediction of COPsys,H-V is acceptable in these studies.

  5. Performance prediction between horizontal and vertical source heat pump systems for greenhouse heating with the use of artificial neural networks

    NASA Astrophysics Data System (ADS)

    Benli, Hüseyin

    2015-11-01

    This paper presents the suitability of artificial neural networks (ANNs) to predict the performance and comparison between a horizontal and a vertical ground source heat pump system. Performance forecasting is the precondition for the optimal control and energy saving operation of heat pump systems. In this study, performance parameters such as air temperature entering condenser fan-coil unit, air temperature leaving condenser fan-coil unit, and ground temperatures (2 and 60 m) obtained experimental studies are input data; coefficient of performance of system (COPsys) is in output layer. The back propagation learning algorithm with three different variants such as Levenberg-Marguardt, Pola-Ribiere conjugate gradient, and scaled conjugate gradient, and also tangent sigmoid transfer function were used in the network so that the best approach can be found. The results showed that LM with three neurons in the hidden layer is the most suitable algorithm with maximum correlation coefficients R2 of 0.999, minimum root mean square RMS value and low coefficient variance COV. The reported results confirmed that the use of ANN for performance prediction of COPsys,H-V is acceptable in these studies.

  6. Heating value prediction for combustible fraction of municipal solid waste in Semarang using backpropagation neural network

    NASA Astrophysics Data System (ADS)

    Khuriati, Ainie; Setiabudi, Wahyu; Nur, Muhammad; Istadi, Istadi

    2015-12-01

    Backpropgation neural network was trained to predict of combustible fraction heating value of MSW from the physical composition. Waste-to-Energy (WtE) is a viable option for municipal solid waste (MSW) management. The influence of the heating value of municipal solid waste (MSW) is very important on the implementation of WtE systems. As MSW is heterogeneous material, direct heating value measurements are often not feasible. In this study an empirical model was developed to describe the heating value of the combustible fraction of municipal solid waste as a function of its physical composition of MSW using backpropagation neural network. Sampling process was carried out at Jatibarang landfill. The weight of each sorting sample taken from each discharged MSW vehicle load is 100 kg. The MSW physical components were grouped into paper wastes, absorbent hygiene product waste, styrofoam waste, HD plastic waste, plastic waste, rubber waste, textile waste, wood waste, yard wastes, kitchen waste, coco waste, and miscellaneous combustible waste. Network was trained by 24 datasets with 1200, 769, and 210 epochs. The results of this analysis showed that the correlation from the physical composition is better than multiple regression method .

  7. Evidence of Universal Temperature Scaling in Self-Heated Percolating Networks.

    PubMed

    Das, Suprem R; Mohammed, Amr M S; Maize, Kerry; Sadeque, Sajia; Shakouri, Ali; Janes, David B; Alam, Muhammad A

    2016-05-11

    During routine operation, electrically percolating nanocomposites are subjected to high voltages, leading to spatially heterogeneous current distribution. The heterogeneity implies localized self-heating that may (self-consistently) reroute the percolation pathways and even irreversibly damage the material. In the absence of experiments that can spatially resolve the current distribution and a nonlinear percolation model suitable to interpret them, one relies on empirical rules and safety factors to engineer these materials. In this paper, we use ultrahigh resolution thermo-reflectance imaging, coupled with a new imaging processing technique, to map the spatial distribution ΔT(x, y; I) and histogram f(ΔT) of temperature rise due to self-heating in two types of 2D networks (percolating and copercolating). Remarkably, we find that the self-heating can be described by a simple two-parameter Weibull distribution, even under voltages high enough to reconfigure the percolation pathways. Given the generality of the phenomenological argument supporting the distribution, other percolating networks are likely to show similar stress distribution in response to sufficiently large stimuli. Furthermore, the spatial evolution of the self-heating of network was investigated by analyzing the spatial distribution and spatial correlation, respectively. An estimation of degree of hotspot clustering reveals a mechanism analogous to crystallization physics. The results should encourage nonlinear generalization of percolation models necessary for predictive engineering of nanocomposite materials. PMID:27070737

  8. Effect of Heat Rejection Conditions on Cryocooler Operational Stability

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.; Johnson, D. L.

    1997-01-01

    It is well known that cryocooler thermal efficiency is a strong function of heat rejection temperature, roughly following the dependency described by carnot. An equally important and generally overlooked implication of cryocooler heat-rejection thermodynamics is the effect of the heat rejection temparature control mode on cyrocooler performance and operational stability.

  9. Multitrophic diversity effects of network degradation.

    PubMed

    Nichols, Elizabeth; Peres, Carlos A; Hawes, Joseph E; Naeem, Shahid

    2016-07-01

    Predicting the functional consequences of biodiversity loss in realistic, multitrophic communities remains a challenge. No existing biodiversity-ecosystem function study to date has simultaneously incorporated information on species traits, network topology, and extinction across multiple trophic levels, while all three factors are independently understood as critical drivers of post-extinction network structure and function. We fill this gap by comparing the functional consequences of simulated species loss both within (monotrophic) and across (bitrophic) trophic levels, in an ecological interaction network estimated from spatially explicit field data on tropical fecal detritus producer and consumers (mammals and dung beetles). We simulated trait-ordered beetle and mammal extinction separately (monotrophic extinction) and the coextinction of beetles following mammal loss (bitrophic extinction), according to network structure. We also compared the diversity effects of bitrophic extinction models using a standard monotrophic function (the daily production or consumption of fecal detritus) and a unique bitrophic functional metric (the proportion of daily detritus production that is consumed). We found similar mono- and bitrophic diversity effects, regardless of which species traits were used to drive extinctions, yet divergent predictions when different measures of function were used. The inclusion of information on network structure had little apparent effect on the qualitative relationship between diversity and function. These results contribute to our growing understanding of the functional consequences of biodiversity from real systems and underscore the importance of species traits and realistic functional metrics to assessments of the ecosystem impacts of network degradation through species loss. PMID:27547324

  10. Lowering heat losses in heating systems by using effective forms of heat insulation

    SciTech Connect

    Krasheninnikov, A.N.

    1983-02-01

    The reduction of heat losses in power systems is necessary if fuel economy is to be achieved. The use of thermal insulation to reduce heat losses in power plant equipment is discussed. The types of thermal insulation considered in this study include reinforced foam concrete, bituminous perlite, mineral wool, and cellular plastics. The insulating properties of each of these materials are discussed.

  11. Heat sink effects on weld bead: VPPA process

    NASA Technical Reports Server (NTRS)

    Steranka, Paul O., Jr.

    1990-01-01

    An investigation into the heat sink effects due to weldment irregularities and fixtures used in the variable polarity plasma arc (VPPA) process was conducted. A basic two-dimensional model was created to represent the net heat sink effect of surplus material using Duhamel's theorem to superpose the effects of an infinite number of line heat sinks of variable strength. Parameters were identified that influence the importance of heat sink effects. A characteristic length, proportional to the thermal diffusivity of the weldment material divided by the weld torch travel rate, correlated with heat sinking observations. Four tests were performed on 2219-T87 aluminum plates to which blocks of excess material were mounted in order to demonstrate heat sink effects. Although the basic model overpredicted these effects, it correctly indicated the trends shown in the experimental study and is judged worth further refinement.

  12. Heat sink effects on weld bead: VPPA process

    NASA Technical Reports Server (NTRS)

    Steranka, Paul O., Jr.

    1989-01-01

    An investigation into the heat sink effects due to weldment irregularities and fixtures used in the variable polarity plasma arc (VPPA) process was conducted. A basic two-dimensional model was created to represent the net heat sink effect of surplus material using Duhamel's theorem to superpose the effects of an infinite number of line heat sinks of variable strength. Parameters were identified that influence the importance of heat sink effects. A characteristic length, proportional to the thermal diffusivity of the weldment material divided by the weld torch travel rate, correlated with heat sinking observations. Four tests were performed on 2219-T87 aluminum plates to which blocks of excess material were mounted in order to demonstrate heat sink effects. Although the basic model overpredicted these effects, it correctly indicated the trends shown in the experimental study and is judged worth further refinement.

  13. Simulation and optimization of a pulsating heat pipe using artificial neural network and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Jokar, Ali; Godarzi, Ali Abbasi; Saber, Mohammad; Shafii, Mohammad Behshad

    2016-01-01

    In this paper, a novel approach has been presented to simulate and optimize the pulsating heat pipes (PHPs). The used pulsating heat pipe setup was designed and constructed for this study. Due to the lack of a general mathematical model for exact analysis of the PHPs, a method has been applied for simulation and optimization using the natural algorithms. In this way, the simulator consists of a kind of multilayer perceptron neural network, which is trained by experimental results obtained from our PHP setup. The results show that the complex behavior of PHPs can be successfully described by the non-linear structure of this simulator. The input variables of the neural network are input heat flux to evaporator (q″), filling ratio (FR) and inclined angle (IA) and its output is thermal resistance of PHP. Finally, based upon the simulation results and considering the heat pipe's operating constraints, the optimum operating point of the system is obtained by using genetic algorithm (GA). The experimental results show that the optimum FR (38.25 %), input heat flux to evaporator (39.93 W) and IA (55°) that obtained from GA are acceptable.

  14. Effect of the heating surface enhancement on the heat transfer coefficient for a vertical minichannel

    NASA Astrophysics Data System (ADS)

    Piasecka, Magdalena; Strąk, Kinga

    2016-03-01

    The aim of the paper is to estimate effect of the heating surface enhancement on FC-72 flow boiling heat transfer for a vertical minichannel 1.7 mm deep, 24 mm wide and 360 mm long. Two types of enhanced heating surfaces were used: one with minicavities distributed unevenly, and the other with capillary metal fibrous structure. It was to measure temperature field on the plain side of the heating surface by means of the infrared thermography and to observe the two-phase flow patterns on the enhanced foil side. The paper analyses mainly the impact of the microstructured heating surface on the heat transfer coefficient. The results are presented as heat transfer coefficient dependences on the distance along the minichannel length. The data obtained using two types of enhanced heating surfaces in experiments was compared with the data when smooth foil as the heating surface was used. The highest local values of heat transfer coefficient were obtained using enhanced foil with minicavities - in comparison to other cases. Local values of heat transfer coefficient received for capillary fibrous structure were the lowest, even compared with data obtained for smooth foil. Probably this porous structure caused local flow disturbances.

  15. Artificial Neural Networks-Based Software for Measuring Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters.

    PubMed

    Liu, Zhijian; Liu, Kejun; Li, Hao; Zhang, Xinyu; Jin, Guangya; Cheng, Kewei

    2015-01-01

    Measurements of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, conventional measurement requires expensive detection devices and undergoes a series of complicated procedures. To simplify the measurement and reduce the cost, software based on artificial neural networks for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters was developed. Using multilayer feed-forward neural networks with back-propagation algorithm, we developed and tested our program on the basis of 915 measured samples of water-in-glass evacuated tube solar water heaters. This artificial neural networks-based software program automatically obtained accurate heat collection rate and heat loss coefficient using simply "portable test instruments" acquired parameters, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, angle between tubes and ground and final temperature. Our results show that this software (on both personal computer and Android platforms) is efficient and convenient to predict the heat collection rate and heat loss coefficient due to it slow root mean square errors in prediction. The software now can be downloaded from http://t.cn/RLPKF08. PMID:26624613

  16. Artificial Neural Networks-Based Software for Measuring Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters

    PubMed Central

    Liu, Zhijian; Liu, Kejun; Li, Hao; Zhang, Xinyu; Jin, Guangya; Cheng, Kewei

    2015-01-01

    Measurements of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, conventional measurement requires expensive detection devices and undergoes a series of complicated procedures. To simplify the measurement and reduce the cost, software based on artificial neural networks for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters was developed. Using multilayer feed-forward neural networks with back-propagation algorithm, we developed and tested our program on the basis of 915measuredsamples of water-in-glass evacuated tube solar water heaters. This artificial neural networks-based software program automatically obtained accurate heat collection rateand heat loss coefficient using simply "portable test instruments" acquired parameters, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, angle between tubes and ground and final temperature. Our results show that this software (on both personal computer and Android platforms) is efficient and convenient to predict the heat collection rate and heat loss coefficient due to it slow root mean square errors in prediction. The software now can be downloaded from http://t.cn/RLPKF08. PMID:26624613

  17. Effects of heat treatment on carbon fibers

    NASA Technical Reports Server (NTRS)

    Brown, D. Kyle; Phillips, Wayne M.

    1990-01-01

    Commercially produced carbon fibers were heat treated to graphitization temperatures. The fibers were characterized for mechanical and physical properties, including density, D0002 spacing, strength, and modulus in both the 'as received' and heat treated conditions. Mechanical property changes were correlated with the physical property changes in the fibers.

  18. Heat Damaged Forages: Effects on Forage Quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Traditionally, heat damage in forages has been associated with alterations in forage protein quality as a result of Maillard reactions, and most producers and nutritionists are familiar with this concept. However, this is not necessarily the most important negative consequence of spontaneous heating...

  19. a Conceptual Model of Integrating Sensor Network and Radiative Heat Transfer Equation for Ethylene Furnace

    NASA Astrophysics Data System (ADS)

    Abas, Z. Abal; Salleh, S.; Basari, A. S. Hassan; Ibrahim, Nuzulha Khilwani

    2010-11-01

    A conceptual model of integrating the sensor network and the radiative heat transfer equation is developed and presented in this paper. The idea is to present possible deployment of sensor networks in the Ethylene furnace so that valuable input in the form of boundary value can be generated in order to produce intensity distribution and heat flux distribution. Once the location of sensor deployment has been recommended, the mesh at the physical space between the furnace wall and the reactor tube is constructed. The paper concentrates only at 2D model with only 1 U-bend reactor tube in the ethylene furnace as an initial phase of constructing a complete simulation in real furnace design.

  20. Pore-network study of bubble growth in porous media driven by heat transfer

    SciTech Connect

    Satik, C.; Yortsos, Y.C.

    1996-05-01

    We present experimental and theoretical investigations of vapor phase growth in pore-network models of porous media. Visualization experiments of boiling of ethyl alcohol in horizontal etched-glass micromodels were conducted. The vapor phase was observed to grow into a disordered pattern following a sequence of pressurization and pore-filling steps. At sufficiently small cluster sizes, growth occurred `one pore at a time,` leading to invasion percolation patterns. Single-bubble (cluster) growth was next simulated with a pore-network simulator that includes heat transfer (convection and conduction), and capillary and viscous forces, although not gravity. A boundary in the parameter space was delineated that separates patterns of growth dictated solely by capillarity (invasion percolation) from other patterns. The region of validity of invasion percolation was found to decrease as the supersaturation (heat flux), the capillary number, the thermal diffusivity, and the vapor cluster size increase. Implications to continuum models are discussed. 33 refs., 9 figs.

  1. High effectiveness contour matching contact heat exchanger

    NASA Astrophysics Data System (ADS)

    Blakely, Robert L.; Roebelen, George J., Jr.; Davenport, Arthur K.

    1988-08-01

    There is a need in the art for a heat exchanger design having a flexible core providing contour matching capabilities, which compensates for manufacturing tolerance and distortion buildups, and which accordingly furnishes a relatively uniform thermal contact conductance between the core and external heat sources under essentially all operating conditions. The core of the heat exchanger comprises a top plate and a bottom plate, each having alternate rows of pins attached. Each of the pins fits into corresponding tight-fitting recesses in the opposite plate.

  2. High effectiveness contour matching contact heat exchanger

    NASA Technical Reports Server (NTRS)

    Blakely, Robert L. (Inventor); Roebelen, George J., Jr. (Inventor); Davenport, Arthur K. (Inventor)

    1988-01-01

    There is a need in the art for a heat exchanger design having a flexible core providing contour matching capabilities, which compensates for manufacturing tolerance and distortion buildups, and which accordingly furnishes a relatively uniform thermal contact conductance between the core and external heat sources under essentially all operating conditions. The core of the heat exchanger comprises a top plate and a bottom plate, each having alternate rows of pins attached. Each of the pins fits into corresponding tight-fitting recesses in the opposite plate.

  3. The developing heat transfer and fluid flow in micro-channel heat sink with viscous heating effect

    NASA Astrophysics Data System (ADS)

    Lelea, Dorin; Cioabla, Adrian Eugen

    2011-07-01

    The numerical modeling of the conjugate heat transfer and fluid flow through the micro-heat sink was presented in the paper, considering the viscous dissipation effect. Three different fluids with temperature dependent fluid viscosity are considered: water, dielectric fluid HFE-7600 and isopropanol. The square shape of the cross-section is considered with D h = 50 μm with a channel length L = 50 mm. As most of the reported researches dealt with fully developed fluid flow and constant fluid properties in this paper the thermal and hydro-dynamic developing laminar fluid flow is analyzed. Two different heat transfer conditions are considered: heating and cooling at various Br. The influence of the viscous heating on local Nu and Po is analyzed. It was shown that for a given geometry the local Po and Nu numbers are strongly affected by the viscous heating. Moreover the Po number attains the fully developed value as the external heating is equal with the internal viscous heating.

  4. Gen Purpose 1-D Finite Element Network Fluid Flow Heat Transfer System Simulator

    Energy Science and Technology Software Center (ESTSC)

    1993-08-02

    SAFSIM (System Analysis Flow Simulator) is a FORTRAN computer program to simulate the integrated performance of systems involving fluid mechanics, heat transfer, and reactor dynamics. SAFSIM provides sufficient versatility to allow the engineering simulation of almost any system, from a backyard sprinkler system to a clustered nuclear reactor propulsion system. In addition to versatility, speed and robustness are primary SAFSIM development goals. SAFSIM contains three basic physics modules: (1) a one-dimensional finite element fluid mechanicsmore » module with multiple flow network capability; (2) a one-dimensional finite element structure heat transfer module with multiple convection and radiation exchange capability; and (3) a point reactor dynamics module with reactivity feedback and decay heat capability. SAFSIM can be used for compressible and incompressible, single-phase, multicomponent flow systems.« less

  5. Effects Of Heat Sinks On VPPA Welds

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur C.; Steranka, Paul O., Jr.

    1991-01-01

    Report describes theoretical and experimental study of absorption of heat by metal blocks in contact with metal plate while plate subjected to variable-polarity plasma-arc (VPPA) welding. Purpose of study to contribute to development of comprehensive mathematical model of temperature in weld region. Also relevant to welding of thin sheets of metal to thick blocks of metal, heat treatment of metals, and hotspots in engines.

  6. Numerical simulation of hyperbolic heat conduction with convection boundary conditions and pulse heating effects

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Tamma, Kumar K.; Railkar, Sudhir B.

    1989-01-01

    The paper describes the numerical simulation of hyperbolic heat conduction with convection boundary conditions. The effects of a step heat loading, a sudden pulse heat loading, and an internal heat source are considered in conjunction with convection boundary conditions. Two methods of solution are presened for predicting the transient behavior of the propagating thermal disturbances. In the first method, MacCormack's predictor-corrector method is employed for integrating the hyperbolic system of equations. Next, the transfinite element method, which employs specially tailored elements, is used for accurately representing the transient response of the propagating thermal wave fronts. The agreement between the results of various numerical test cases validate the representative behavior of the thermal wave fronts. Both methods represent hyperbolic heat conduction behavior by effectively modeling the sharp discontinuities of the propagating thermal disturbances.

  7. A Classroom Demonstration for Teaching Network Effects

    ERIC Educational Resources Information Center

    Sawler, James

    2007-01-01

    The introduction of the concept of network effects is useful at the principles level to facilitate discussions of the determinants of monopoly, the need for standards in high-tech industries, and the general complexity of real-world competition. The author describes a demonstration and an extension that help students understand how consumers make…

  8. Mathematical study of probe arrangement and nanoparticle injection effects on heat transfer during cryosurgery.

    PubMed

    Mirkhalili, Seyyed Mostafa; Ramazani S A, Ahmad; Nazemidashtarjandi, Saeed

    2015-11-01

    Blood vessels, especially large vessels have a greater thermal effect on freezing tissue during cryosurgery. Vascular networks act as heat sources in tissue, and cause failure in cryosurgery and reappearance of cancer. The aim of this study is to numerically simulate the effect of probe location and multiprobe on heat transfer distribution. Furthermore, the effect of nanoparticles injection is studied. It is shown that the small probes location near large blood vessels could help to reduce the necessary time for tissue freezing. Nanoparticles injection shows that the thermal effect of blood vessel in tissue is improved. Using Au, Ag and diamond nanoparticles have the most growth of ice ball during cryosurgery. However, polytetrafluoroethylene (PTFE) nanoparticle can be used to protect normal tissue around tumor cell due to its influence on reducing heat transfer in tissue. Introduction of Au, Ag and diamond nanoparticles combined with multicryoprobe in this model causes reduction of tissue average temperature about 50% compared to the one probe. PMID:26406880

  9. Heat Waves in the United States: Mortality Risk during Heat Waves and Effect Modification by Heat Wave Characteristics in 43 U.S. Communities

    PubMed Central

    Anderson, G. Brooke; Bell, Michelle L.

    2011-01-01

    Background Devastating health effects from recent heat waves, and projected increases in frequency, duration, and severity of heat waves from climate change, highlight the importance of understanding health consequences of heat waves. Objectives We analyzed mortality risk for heat waves in 43 U.S. cities (1987–2005) and investigated how effects relate to heat waves’ intensity, duration, or timing in season. Methods Heat waves were defined as ≥ 2 days with temperature ≥ 95th percentile for the community for 1 May through 30 September. Heat waves were characterized by their intensity, duration, and timing in season. Within each community, we estimated mortality risk during each heat wave compared with non-heat wave days, controlling for potential confounders. We combined individual heat wave effect estimates using Bayesian hierarchical modeling to generate overall effects at the community, regional, and national levels. We estimated how heat wave mortality effects were modified by heat wave characteristics (intensity, duration, timing in season). Results Nationally, mortality increased 3.74% [95% posterior interval (PI), 2.29–5.22%] during heat waves compared with non-heat wave days. Heat wave mortality risk increased 2.49% for every 1°F increase in heat wave intensity and 0.38% for every 1-day increase in heat wave duration. Mortality increased 5.04% (95% PI, 3.06–7.06%) during the first heat wave of the summer versus 2.65% (95% PI, 1.14–4.18%) during later heat waves, compared with non-heat wave days. Heat wave mortality impacts and effect modification by heat wave characteristics were more pronounced in the Northeast and Midwest compared with the South. Conclusions We found higher mortality risk from heat waves that were more intense or longer, or those occurring earlier in summer. These findings have implications for decision makers and researchers estimating health effects from climate change. PMID:21084239

  10. The measurement of surface heat flux using the Peltier effect

    SciTech Connect

    Shewen, E.C. ); Hollands, K.G.T., Raithby, G.D. )

    1989-08-01

    Calorimetric methods for measuring surface heat flux use Joulean heating to keep the surface isothermal. This limits them to measuring the heat flux of surfaces that are hotter than their surroundings. Presented in this paper is a method whereby reversible Peltier effect heat transfer is used to maintain this isothermality, making it suitable for surfaces that are either hotter or colder than the surroundings. The paper outlines the theory for the method and describes physical models that have been constructed, calibrated, and tested. The tested physical models were found capable of measuring heat fluxes with an absolute accuracy of 1 percent over a wide range of temperature (5-50C) and heat flux (15-500 W/m{sup 2}), while maintaining isothermality to within 0.03 K. A drawback of the method is that it appears to be suited only for measuring the heat flux from thick metallic plates.

  11. Effect of heating method on stress-rupture life

    NASA Technical Reports Server (NTRS)

    Bizon, P. T.; Calfo, F. D.

    1977-01-01

    The effect of radiant(furnace), resistance(electric current), burner(hot gas stream), and a combination of resistance and burner heating on intermediate time (100 to 300 hr) stress-rupture life and reduction of area was evaluated. All heating methods were studied using the nickel-based alloy Udimet 700 while all but burner heating were evaluated with the cobalt-based alloy Mar-M 509. Limited test results of eight other superalloys were also included in this study. Resistance heated specimens had about 20 to 30 percent of the stress-rupture life of radiant heated specimens. The limited burner heating data showed about a 50 percent life reduction as compared to the radiant heated tests. A metallurgical examination gave no explanation for these reductions.

  12. Effect of Microwave Heating on Phytosterol Oxidation.

    PubMed

    Leal-Castañeda, Everth Jimena; Inchingolo, Raffaella; Cardenia, Vladimiro; Hernandez-Becerra, Josafat Alberto; Romani, Santina; Rodriguez-Estrada, María Teresa; Galindo, Hugo Sergio García

    2015-06-10

    The oxidative stability of phytosterols during microwave heating was evaluated. Two different model systems (a solid film made with a phytosterol mixture (PSF) and a liquid mixture of phytosterols and triolein (1:100, PS + TAG (triacylglycerol))) were heated for 1.5, 3, 6, 12, 20, and 30 min at 1000 W. PS degraded faster when they were microwaved alone than in the presence of TAG, following a first-order kinetic model. Up to 6 min, no phytosterol oxidation products (POPs) were generated in both systems. At 12 min of heating, the POP content reached a higher level in PSF (90.96 μg/mg of phytosterols) than in PS + TAG (22.66 μg/mg of phytosterols), but after 30 min of treatment, the opposite trend was observed. 7-Keto derivates were the most abundant POPs in both systems. The extent of phytosterol degradation depends on both the heating time and the surrounding medium, which can impact the quality and safety of the food product destined to microwave heating/cooking. PMID:25973984

  13. Effects of heat stress on baroreflex function in humans

    NASA Technical Reports Server (NTRS)

    Crandall, Craig G.; Cui, Jian; Wilson, Thad E.

    2003-01-01

    INTRODUCTION: Heat stress significantly reduces orthostatic tolerance in humans. The mechanism(s) causing this response remain unknown. The purpose of this review article is to present data pertaining to the hypothesis that reduced orthostatic tolerance in heat stressed individuals is a result of heat stress induced alterations in baroflex function. METHODS: In both normothermic and heat stressed conditions baroreflex responsiveness was assessed via pharmacological and non-pharmacological methods. In addition, the effects of heat stress on post-synaptic vasoconstrictor responsiveness were assessed. RESULTS: Generally, whole body heating did not alter baroreflex sensitivity defined as the gain of the linear portion of the baroreflex curve around the operating point. However, whole body heating shifted the baroreflex curve to the prevailing (i.e. elevated) heart rate and muscle sympathetic nerve activity. Finally, the heat stress impaired vasoconstrictor responses to exogenous administration of adrenergic agonists. CONCLUSION: Current data do not support the hypothesis that reduced orthostatic tolerance associated with heat stress in humans is due to impaired baroreflex responsiveness. This phenomenon may be partially due to the effects of heat stress on reducing vasoconstrictor responsiveness.

  14. Neural network based supervisory & closed loop controls for NOx emission reductions and heat rate improvement

    SciTech Connect

    Radl, B.J.; Corfman, D.; Kish, B.

    1995-12-31

    This paper discusses the operational experience gained from installing a neural network based supervisor setpoint control system for selected combustion parameters at Penn Power`s New Castle station. The primary goal of the program is to reduce NOx emissions while maintaining or improving heat rate. The program was jointly funded by Ohio Edison, U.S. Department of Energy (DOE) and Pegasus Technologies Corp. The target power station, Penn Power`s New Castle Unit 5, is a 1950`s vintage Babcock & Wilcox wall fired furnace with gross generation capacity of 150 MW. Before installation of the neural network system (NeuSIGHT), NOx averaged 0.75 to 0.80 lbs/mbtu at full load conditions. Previous testing reduced this from 1.0 lbs/mbtu under normal operating conditions. To meet the new Pennsylvania DER limits, which set an absolute tonnage limit on NOx, and operate for a full year, a further NOx reduction of 20% was required. The control system setup interfaced a Unix workstation to a Bailey Controls N90 DCS. The neural network and data collection/processing system resided on the workstation. New setpoints were determined by the neural network periodically. These setpoints were constrained within existing control system limits. The objective was to model the multi-dimensional and non-linear problem of NOx formation in the furnace with a neural network. Once modeled the neural network performed many {open_quote}what if{close_quote} simulations to optimize setpoints for the current operating conditions. To keep up with changes in operating conditions the neural network was set to continually learn from the most recent set of measurements. Conditioning algorithms for the input data and output setpoints were developed to handle the inherently {open_quote}noisy{close_quote} input data and to provide stable output recommendations. Test results and parameters used for combustion optimization are summarized in this paper.

  15. Heat transfer in porous duct: Effect of horizontal outer wall heating

    NASA Astrophysics Data System (ADS)

    Khaleed, H. M. T.; Al-Rashed, Abdullah A. A. A.; Athani, Abdulgaphur

    2016-06-01

    Heat transfer in porous medium is one of the important areas of research for last few decades. The current work is considered to investigate the effect of top and bottom wall heating of a square duct that contains porous medium between its inner and outer boundaries. The other six surfaces of duct are cooled to isothermal temperature Tc. The resulting momentum and energy equations that govern the heat and fluid flow behavior in porous medium are solved with the help of finite element method. It is observed that the heat transfer and fluid flow behavior of horizontal wall heating is quite different from other cases being reported in literature. It is found that the fluid flows in multiple circulation cells around corners of the duct giving a unique flow pattern. The isotherms tend to concentrate on lower and upper section of duct with huge middle area of cavity having least thermal energy.

  16. Particle shape effect on heat transfer performance in an oscillating heat pipe

    PubMed Central

    2011-01-01

    The effect of alumina nanoparticles on the heat transfer performance of an oscillating heat pipe (OHP) was investigated experimentally. A binary mixture of ethylene glycol (EG) and deionized water (50/50 by volume) was used as the base fluid for the OHP. Four types of nanoparticles with shapes of platelet, blade, cylinder, and brick were studied, respectively. Experimental results show that the alumina nanoparticles added in the OHP significantly affect the heat transfer performance and it depends on the particle shape and volume fraction. When the OHP was charged with EG and cylinder-like alumina nanoparticles, the OHP can achieve the best heat transfer performance among four types of particles investigated herein. In addition, even though previous research found that these alumina nanofluids were not beneficial in laminar or turbulent flow mode, they can enhance the heat transfer performance of an OHP. PMID:21711830

  17. Effect of Heat Acclimation on Sweat Minerals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purpose: This study examined the impact of 10-days of exercise-heat acclimation on sweat mineral concentrations. Methods: Eight male subjects walked on a treadmill at 1.56 m/sec, 4% grade for 100 continuous minutes or until rectal temperature reached 39.5°C on 10 consecutive days in an environmenta...

  18. Effect of Heat Exchanger Material and Fouling on Thermoelectric Exhaust Heat Recovery

    SciTech Connect

    Love, Norman; Szybist, James P; Sluder, Scott

    2011-01-01

    This study is conducted in an effort to better understand and improve the performance of thermoelectric heat recovery systems for automotive use. For this purpose an experimental investigation of thermoelectrics in contact with clean and fouled heat exchangers of different materials is performed. The thermoelectric devices are tested on a bench-scale thermoelectric heat recovery apparatus that simulates automotive exhaust. The thermoelectric apparatus consists of a series of thermoelectric generators contacting a hot-side and a cold-side heat exchanger. The thermoelectric devices are tested with two different hot-side heat exchanger materials, stainless steel and aluminum, and at a range of simulated exhaust gas flowrates (40 to 150 slpm), exhaust gas temperatures (240 C and 280 C), and coolant-side temperatures (40 C and 80 C). It is observed that for higher exhaust gas flowrates, thermoelectric power output increases while overall system efficiency decreases. Degradation of the effectiveness of the EGR-type heat exchangers over a period of driving is also simulated by exposing the heat exchangers to diesel engine exhaust under thermophoretic conditions to form a deposit layer. For the fouled EGR-type heat exchangers, power output and system efficiency is observed to be significantly lower for all conditions tested. The study found, however, that heat exchanger material is the dominant factor in the ability of the system to convert heat to electricity with thermoelectric generators. This finding is thought to be unique to the heat exchangers used for this study, and not a universal trend for all system configurations.

  19. Mode-selected heat flow through a one-dimensional waveguide network

    SciTech Connect

    Riha, Christian Miechowski, Philipp; Buchholz, Sven S.; Chiatti, Olivio; Fischer, Saskia F.; Wieck, Andreas D.; Reuter, Dirk

    2015-02-23

    Cross-correlated measurements of thermal noise are performed to determine the electron temperature in nanopatterned channels of a GaAs/AlGaAs heterostructure at 4.2 K. Two-dimensional (2D) electron reservoirs are connected via an extended one-dimensional (1D) electron waveguide network. Hot electrons are produced using a current I{sub h} in a source 2D reservoir, are transmitted through the ballistic 1D waveguide, and relax in a drain 2D reservoir. We find that the electron temperature increase, ΔT{sub e}, in the drain is proportional to the square of the heating current I{sub h}, as expected from Joule's law. No temperature increase is observed in the drain when the 1D waveguide does not transmit electrons. Therefore, we conclude that electron-phonon interaction is negligible for heat transport between 2D reservoirs at temperatures below 4.2 K. Furthermore, mode control of the 1D electron waveguide by application of a top-gate voltage reveals that ΔT{sub e} is not proportional to the number of populated subbands N, as previously observed in single 1D conductors. This can be explained with the splitting of the heat flow in the 1D waveguide network.

  20. Research on heat sensing effect along meridian of Chinese medicine

    NASA Astrophysics Data System (ADS)

    Xu, Yun-xiang; Li, Li-jun; Chen, Gui-zhen

    2012-03-01

    Photonics is a science which research light quantum as the carrier for energy and information. Photonic technology in the meridian and acupoints research has shown the unique advantages, by which the microcosmic material basis and macroscopic phenomena research can be integrated to interpret the occurrence of propagated sensation along meridian and its underling mechanism. This paper focuses on the investigation on heat sensing action along the meridian by photonic technology. The four items of heat sensing action were discussed, i.e. thermo-effects, heat sensing capability, laser induced heat effect, underling mechanism on heat sensing effect along the meridian. The authors point out that photonic technology, e.g. photonic imaging, and infrared spectrum analysis, biological photons detection and laser Doppler application, can achieve purpose of in vivo, dynamic, and multiple comparable studies. Thereby the effect of heat sensing along meridian can be detected and illustrated by the use of natural science. Heat information can be investigated to analyze the relationship between zang-fu organs, meridians, and the functional characteristics of the meridian. Hence, the effect of heat sensing along the meridian is the break point of the research of photonics in the meridian which is beneficial to further study the meridian optics.

  1. Research on heat sensing effect along meridian of Chinese medicine

    NASA Astrophysics Data System (ADS)

    Xu, Yun-xiang; Li, Li-jun; Chen, Gui-zhen

    2011-11-01

    Photonics is a science which research light quantum as the carrier for energy and information. Photonic technology in the meridian and acupoints research has shown the unique advantages, by which the microcosmic material basis and macroscopic phenomena research can be integrated to interpret the occurrence of propagated sensation along meridian and its underling mechanism. This paper focuses on the investigation on heat sensing action along the meridian by photonic technology. The four items of heat sensing action were discussed, i.e. thermo-effects, heat sensing capability, laser induced heat effect, underling mechanism on heat sensing effect along the meridian. The authors point out that photonic technology, e.g. photonic imaging, and infrared spectrum analysis, biological photons detection and laser Doppler application, can achieve purpose of in vivo, dynamic, and multiple comparable studies. Thereby the effect of heat sensing along meridian can be detected and illustrated by the use of natural science. Heat information can be investigated to analyze the relationship between zang-fu organs, meridians, and the functional characteristics of the meridian. Hence, the effect of heat sensing along the meridian is the break point of the research of photonics in the meridian which is beneficial to further study the meridian optics.

  2. Perceived heat stress and health effects on construction workers

    PubMed Central

    Dutta, Priya; Rajiva, Ajit; Andhare, Dileep; Azhar, Gulrez Shah; Tiwari, Abhiyant; Sheffield, Perry

    2015-01-01

    Introduction: Increasing heat waves-particularly in urban areas where construction is most prevalent, highlight a need for heat exposure assessment of construction workers. This study aims to characterize the effects of heat on construction workers from a site in Gandhinagar. Materials and Methods: This study involved a mixed methods approach consisting of a cross sectional survey with anthropometric measurements (n = 219) and four focus groups with construction workers, as well as environmental measurements of heat stress exposure at a construction site. Survey data was collected in two seasons i.e., summer and winter months, and heat illness and symptoms were compared between the two time periods. Thematic coding of focus group data was used to identify vulnerability factors and coping mechanisms of the workers. Heat stress, recorded using a wet bulb globe temperature monitor, was compared to international safety standards. Results: The survey findings suggest that heat-related symptoms increased in summer; 59% of all reports in summer were positive for symptoms (from Mild to Severe) as compared to 41% in winter. Focus groups revealed four dominant themes: (1) Non-occupational stressors compound work stressors; (2) workers were particularly attuned to the impact of heat on their health; (3) workers were aware of heat-related preventive measures; and (4) few resources were currently available to protect workers from heat stress. Working conditions often exceed international heat stress safety thresholds. Female workers and new employees might be at increased risk of illness or injury. Conclusion: This study suggests significant health impacts on construction workers from heat stress exposure in the workplace, showed that heat stress levels were higher than those prescribed by international standards and highlights the need for revision of work practices, increased protective measures, and possible development of indigenous work safety standards for heat exposure

  3. Equilibrium & Nonequilibrium Fluctuation Effects in Biopolymer Networks

    NASA Astrophysics Data System (ADS)

    Kachan, Devin Michael

    speculate that cells take advantage of this equilibrium effect by tuning near the transition point, where small changes in free cross-linker density will affect large structural rearrangements between free filament networks and networks of bundles. Cells are naturally found far from equilibrium, where the active influx of energy from ATP consumption controls the dynamics. Motor proteins actively generate forces within biopolymer networks, and one may ask how these differ from the random stresses characteristic of equilibrium fluctuations. Besides the trivial observation that the magnitude is independent of temperature, I find that the processive nature of the motors creates a temporally correlated, or colored, noise spectrum. I model the network with a nonlinear scalar elastic theory in the presence of active driving, and study the long distance and large scale properties of the system with renormalization group techniques. I find that there is a new critical point associated with diverging correlation time, and that the colored noise produces novel frequency dependence in the renormalized transport coefficients. Finally, I study marginally elastic solids which have vanishing shear modulus due to the presence of soft modes, modes with zero deformation cost. Although network coordination is a useful metric for determining the mechanical response of random spring networks in mechanical equilibrium, it is insufficient for describing networks under external stress. In particular, under-constrained networks which are fluid-like at zero load will dynamically stiffen at a critical strain, as observed in numerical simulations and experimentally in many biopolymer networks. Drawing upon analogies to the stress induced unjamming of emulsions, I develop a kinetic theory to explain the rigidity transition in spring and filament networks. Describing the dynamic evolution of non-affine deformation via a simple mechanistic picture, I recover the emergent nonlinear strain

  4. A neural network to retrieve the mesoscale instantaneous latent heat flux over oceans from SSM/I observations

    NASA Technical Reports Server (NTRS)

    Bourras, D.; Eymard, L.; Liu, W. T.

    2000-01-01

    The turbulent latent and sensible heat fluxes are necessary to study heat budget of the upper ocean or initialize ocean general circulation models. In order to retrieve the latent heat flux from satellite observations authors mostly use a bulk approximation of the flux whose parameters are derived from different instrument. In this paper, an approach based on artificial neural networks is proposed and compared to the bulk method on a global data set and 3 local data sets.

  5. Effect of combined heat and radiation on microbial destruction

    NASA Technical Reports Server (NTRS)

    Fisher, D. A.; Pflug, I. J.

    1977-01-01

    A series of experiments at several levels of relative humidity and radiation dose rates was carried out using spores of Bacillus subtilis var. niger to evaluate the effect of heat alone, radiation alone, and a combination of heat and radiation. Combined heat and radiation treatment of microorganisms yields a destruction rate greater than the additive rates of the independent agents. The synergistic mechanism shows a proportional dependency on radiation dose rate, an Arrhenius dependence on temperature, and a dependency on relative humidity. Maximum synergism occurs under conditions where heat and radiation individually destroy microorganisms at approximately equal rates. Larger synergistic advantage is possible at low relative humidities rather than at high relative humidities.

  6. Effect of Heated Perimeter on Forced Convection Heat Transfer of he i at a Supercritical Pressure

    NASA Astrophysics Data System (ADS)

    Doi, D.; Shiotsu, M.; Shirai, Y.; Hama, K.

    2008-03-01

    The forced convection heat transfer coefficients were measured on two pairs of test plates all 6.0 mm in width and located face to face on inner walls of a rectangular duct. Each pair having length of 20 mm and 80 mm, respectively, was connected in series electrically. The rectangular duct was 420 mm in length and 5 mm×6 mm in inner cross section. The experiments were performed for inlet temperatures from 2.2 to 6.5 K, flow velocities from 0.1 to 5.6 m/s, and at a supercritical pressure of 2.8 atm. Comparison of the obtained Nusselt numbers with the former results with a single test plate showed the clear effect of a heated perimeter. Non-dimensional heat transfer equation including the effect of heated perimeter is presented.

  7. Efficiency analysis of organic Rankine cycle with internal heat exchanger using neural network

    NASA Astrophysics Data System (ADS)

    Yılmaz, Fatih; Selbaş, Reşat; Şahin, Arzu Şencan

    2016-02-01

    In this study, artificial neural network (ANN) has been used for efficiency analysis of the organic Rankine cycle with internal heat exchanger (IHEORC) using refrigerants R410a, R407c which do not damage to ozone layer. It is well known that the evaporator temperature, condenser temperature, subcooling temperature and superheating temperature affect the thermal efficiency of IHEORC. In this study, thermal efficiency is estimated depending on the above temperatures. The results of ANN are compared with actual results. The coefficient of determination values obtained when the test set were used to the networks were 0.99946 and 0.999943 for the R410a and R407c respectively which is very satisfactory.

  8. A mathematics for medicine: The Network Effect

    PubMed Central

    West, Bruce J.

    2014-01-01

    The theory of medicine and its complement systems biology are intended to explain the workings of the large number of mutually interdependent complex physiologic networks in the human body and to apply that understanding to maintaining the functions for which nature designed them. Therefore, when what had originally been made as a simplifying assumption or a working hypothesis becomes foundational to understanding the operation of physiologic networks it is in the best interests of science to replace or at least update that assumption. The replacement process requires, among other things, an evaluation of how the new hypothesis affects modern day understanding of medical science. This paper identifies linear dynamics and Normal statistics as being such arcane assumptions and explores some implications of their retirement. Specifically we explore replacing Normal with fractal statistics and examine how the latter are related to non-linear dynamics and chaos theory. The observed ubiquity of inverse power laws in physiology entails the need for a new calculus, one that describes the dynamics of fractional phenomena and captures the fractal properties of the statistics of physiological time series. We identify these properties as a necessary consequence of the complexity resulting from the network dynamics and refer to them collectively as The Network Effect. PMID:25538622

  9. A Comprehensive Flow, Heat and Mass Transport Uncertainty Quantification in Discrete Fracture Network Systems

    NASA Astrophysics Data System (ADS)

    Ezzedine, S. M.

    2010-12-01

    Fractures and fracture networks are the principle pathways for migration of water, heat and mass in enhanced geothermal systems, oil and gas reservoirs, CO2 leakage from saline aquifers, and radioactive and toxic industrial wastes from underground storage repositories. A major issue to overcome when characterizing a fractured reservoir is that of data limitation due to accessibility and affordability. Moreover, the ability to map discontinuities in the rock with available geological and geophysical tools tends to decrease particularly as the scale of the discontinuity goes down. Geological characterization data include measurements of fracture density, orientation, extent, and aperture, and are based on analysis of outcrops, borehole optical and acoustic televiewer logs, aerial photographs, and core samples among others. All of these measurements are taken at the field scale through a very sparse limited number of deep boreholes. These types of data are often reduced to probability distributions function for predictive modeling and simulation in a stochastic framework such as stochastic discrete fracture network. Stochastic discrete fracture network models enable, through Monte Carlo realizations and simulations, for probabilistic assessment of flow and transport phenomena that are not adequately captured using continuum models. Despite the fundamental uncertainties inherited within the probabilistic reduction of the sparse data collected, very little work has been conducted on quantifying uncertainty on the reduced probabilistic distribution functions. In the current study, using nested Monte Carlo simulations, we present the impact of parameter uncertainties of the distribution functions that characterize discrete fracture networks on the flow, heat and mass transport. Numerical results of first, second and third moments, normalized to a base case scenario, are presented and compared to theoretical results extended from percolation theory.

  10. Study on Improving Partial Load by Connecting Geo-thermal Heat Pump System to Fuel Cell Network

    NASA Astrophysics Data System (ADS)

    Obara, Shinya; Kudo, Kazuhiko

    Hydrogen piping, the electric power line, and exhaust heat recovery piping of the distributed fuel cells are connected with network, and operational planning is carried out. Reduction of the efficiency in partial load is improved by operation of the geo-thermal heat pump linked to the fuel cell network. The energy demand pattern of the individual houses in Sapporo was introduced. And the analysis method aiming at minimization of the fuel rate by the genetic algorithm was described. The fuel cell network system of an analysis example assumed connecting the fuel cell co-generation of five houses. When geo-thermal heat pump was introduced into fuel cell network system stated in this paper, fuel consumption was reduced 6% rather than the conventional method

  11. Effect of Heat Treatment on Properties of Glass Nanocomposite Sealants.

    PubMed

    Lee, Dong Bok; Ha, Su-Jeong; Jang, Dong-Hoon; Park, Sung; Bae, Joongmyeon; Lee, Jae Chun

    2015-01-01

    The objective of this study was to investigate the effect of heat treatments on the viscosities and electrical conductivities of glass sealants to be used in solid oxide fuel cells. Glass-based sealants, both with and without an alumina nanopowder added as a nanofiller, were heat treated at temperatures ranging from 750 degrees C to 770 degrees C for periods of up to 240 h. The effects of heat treatments on the viscosities, electrical conductivities and phase transformations of the sealants were investigated. The results showed that alumina nanopowder added to the glass increased both high-temperature electrical conductivities and the viscosities of the sintered glass nanocomposite sealants. However, lengthy heat treatments decreased the electrical conductivities of the glass nanocomposite sealants. This decrease in the conductivities of the heat-treated glass nanocomposites was attributed to the crystallization of glass phase, owing to the dissolution of the alumina nanofiller in the sealing glass. PMID:26328386

  12. Effect of flow twisting on hydraulic resistance and heat exchange

    NASA Astrophysics Data System (ADS)

    Suslov, V. Ya.; Makarov, N. A.

    1989-02-01

    On the basis of dimensional analysis through a differentiated approach to the dimensions of length we have obtained formulas for the effect of flow twisting in a circular tube on the hydraulic resistance and exchange of heat.

  13. Effects of deception in social networks

    PubMed Central

    Iñiguez, Gerardo; Govezensky, Tzipe; Dunbar, Robin; Kaski, Kimmo; Barrio, Rafael A.

    2014-01-01

    Honesty plays a crucial role in any situation where organisms exchange information or resources. Dishonesty can thus be expected to have damaging effects on social coherence if agents cannot trust the information or goods they receive. However, a distinction is often drawn between prosocial lies (‘white’ lies) and antisocial lying (i.e. deception for personal gain), with the former being considered much less destructive than the latter. We use an agent-based model to show that antisocial lying causes social networks to become increasingly fragmented. Antisocial dishonesty thus places strong constraints on the size and cohesion of social communities, providing a major hurdle that organisms have to overcome (e.g. by evolving counter-deception strategies) in order to evolve large, socially cohesive communities. In contrast, white lies can prove to be beneficial in smoothing the flow of interactions and facilitating a larger, more integrated network. Our results demonstrate that these group-level effects can arise as emergent properties of interactions at the dyadic level. The balance between prosocial and antisocial lies may set constraints on the structure of social networks, and hence the shape of society as a whole. PMID:25056625

  14. Numerical analysis of heat input effects in thermography

    SciTech Connect

    Tossell, D.A.

    1987-06-01

    A numerical model, suited for use on microcomputers, has been developed to examine the effect of heat input function on surface temperature contrast for passive thermographic NDE. Single and double step input functions have been compared, and the effects of varying pulse length and power, defect condition, defect depth to diameter ratio, and maximum allowed front face temperature rise examined. Results indicate that a two-step heat input function enhances the generated surface temperature contrast by up to 10% over the single pulse and compares well with that generated by contact heating.

  15. Quantification of palaeoclimatic effects on heat flow in the Paris basin

    NASA Astrophysics Data System (ADS)

    Dentzer, Jacques; Lopez, Simon; Violette, Sophie; Bruel, Dominique

    2015-04-01

    Deep geothermal resources of the Paris basin have been harnessed for more than 40 years with nearly 40 operating plants supplying heat to district networks in the Parisian suburbs. The target of all these operations is the deep "Dogger" aquifer. Though these areas are densely exploited, no thermal breakthrough has been observed yet, except for a few isolated cases. As new geothermal projects are currently scheduled, heat transfers and thermal anomalies are now quantified considering the whole sedimentary pile. At this scale, thermal profiles are particularly relevant to discriminate different possible causes for the observed temperature and heat flow anomalies. Based on 10 thermal profiles in the centre of the Paris basin, a mean heat flow profile is reassessed. For each geological formation, a mean thermal gradient is estimated and heat flow is calculated with an averaged formation thermal conductivity. A simple 1D conductive numerical model is then set up with 19 sedimentary layers and a bedrock layer. Palaeoclimatic effects are quantified by testing different published temperature scenarios. These scenarios cover time scales ranging from 65 ky to 5 My. Although the uncertainty on heat flow derived from thermal profiles is around +/- 15 mW/m2, the model reproduces satisfactorily the main heat flow anomaly present in the upper part of the basin, with heat flow decreasing from 85 mW/m2 at 1200 m depth to less than 60 mW/m2 at the surface. Consequently, climatic variations over a long period of time (5 My scenario) seem enough to reproduce this anomaly correctly, which was previously attributed to convective effects. Yet, smaller scale heat flow fluctuations match aquifer levels exactly and are probably related to (relatively) short time convective water transfers at the basin scale.

  16. Sliding bubble dynamics and the effects on surface heat transfer

    NASA Astrophysics Data System (ADS)

    Donnelly, B.; Robinson, A. J.; Delauré, Y. M. C.; Murray, D. B.

    2012-11-01

    An investigation into the effects of a single sliding air bubble on heat transfer from a submerged, inclined surface has been undertaken. Existing literature has shown that both vapour and gas bubbles can increase heat transfer rates from adjacent heated surfaces. However, the mechanisms involved are complex and dynamic and in some cases poorly understood. The present study utilises high speed, high resolution, infrared thermography and video photography to measure two dimensional surface heat transfer and three dimensional bubble position and shape. This provides a unique insight into the complex interactions at the heated surface. Bubbles of volume 0.05, 0.1, 0.2 and 0.4 ml were released onto a surface inclined at 30 degrees to horizontal. Results confirmed that sliding bubbles can enhance heat transfer rates up to a factor of 9 and further insight was gained about the mechanisms behind this phenomenon. The enhancement effects were observed over large areas and persisted for a long duration with the bubble exhibiting complex shape and path oscillations. It is believed that the periodic wake structure present behind the sliding bubble affects the bubble motion and is responsible for the heat transfer effects observed. The nature of this wake is proposed to be that of a chain of horseshoe vortices.

  17. Heat sink effects in variable polarity plasma arc welding

    NASA Technical Reports Server (NTRS)

    Abdelmessih, Amanie N.

    1991-01-01

    The Space Shuttle External Tank is fabricated by the variable polarity plasma arc (VPPA) welding process. In VPPA welding, a noble gas, usually argon, is directed through an arc to emerge from the torch as a hot plasma jet. This jet is surrounded by a shielding gas, usually helium, to protect the weld from contamination with air. The high velocity, hot plasma jet completely penetrates the workpiece (resembling a line heat source) when operated in the 'keyhole' mode. The metal melts on touching the side of the jet, as the torch travels in the perpendicular direction to the direction of the jet, and melted metal moves around the plasma jet in the keyhole forming a puddle which solidifies behind the jet. Heat sink effects are observed when there are irregularities in the workpiece configuration, especially, if these irregularities are close to the weld bead. These heat sinks affect the geometry of the weld bead, i.e., in extreme cases they could cause defects such as incomplete fusion. Also, different fixtures seem to have varying heat sink effects. The objective of this research is to study the effect of irregularities in workpiece configuration and fixture differences (heat sink effects) on the weld bead geometry with the ultimate objective to compensate for the heat sink effects and achieve a perfect weld. Experiments were performed on different workpiece geometries and compared to approximate models.

  18. Added effect of heat wave on mortality in Seoul, Korea

    NASA Astrophysics Data System (ADS)

    Lee, Won Kyung; Lee, Hye Ah; Lim, Youn Hee; Park, Hyesook

    2016-05-01

    A heat wave could increase mortality owing to high temperature. However, little is known about the added (duration) effect of heat wave from the prolonged period of high temperature on mortality and different effect sizes depending on the definition of heat waves and models. A distributed lag non-linear model with a quasi-Poisson distribution was used to evaluate the added effect of heat wave on mortality after adjusting for long-term and intra-seasonal trends and apparent temperature. We evaluated the cumulative relative risk of the added wave effect on mortality on lag days 0-30. The models were constructed using nine definitions of heat wave and two relationships (cubic spline and linear threshold model) between temperature and mortality to leave out the high temperature effect. Further, we performed sensitivity analysis to evaluate the changes in the effect of heat wave on mortality according to the different degrees of freedom for time trend and cubic spline of temperature. We found that heat wave had the added effect from the prolonged period of high temperature on mortality and it was considerable in the aspect of cumulative risk because of the lagged influence. When heat wave was defined with a threshold of 98th percentile temperature and ≥2, 3, and 4 consecutive days, mortality increased by 14.8 % (7.5-22.6, 95 % confidence interval (CI)), 18.1 % (10.8-26.0, 95 % CI), 18.1 % (10.7-25.9, 95 % CI), respectively, in cubic spline model. When it came to the definitions of 90th and 95th percentile, the risk increase in mortality declined to 3.7-5.8 % and 8.6-11.3 %, respectively. This effect was robust to the flexibility of the model for temperature and time trend, while the definitions of a heat wave were critical in estimating its relationship with mortality. This finding could help deepen our understanding and quantifying of the relationship between heat wave and mortality and select an appropriate definition of heat wave and temperature model in the future

  19. Added effect of heat wave on mortality in Seoul, Korea.

    PubMed

    Lee, Won Kyung; Lee, Hye Ah; Lim, Youn Hee; Park, Hyesook

    2016-05-01

    A heat wave could increase mortality owing to high temperature. However, little is known about the added (duration) effect of heat wave from the prolonged period of high temperature on mortality and different effect sizes depending on the definition of heat waves and models. A distributed lag non-linear model with a quasi-Poisson distribution was used to evaluate the added effect of heat wave on mortality after adjusting for long-term and intra-seasonal trends and apparent temperature. We evaluated the cumulative relative risk of the added wave effect on mortality on lag days 0-30. The models were constructed using nine definitions of heat wave and two relationships (cubic spline and linear threshold model) between temperature and mortality to leave out the high temperature effect. Further, we performed sensitivity analysis to evaluate the changes in the effect of heat wave on mortality according to the different degrees of freedom for time trend and cubic spline of temperature. We found that heat wave had the added effect from the prolonged period of high temperature on mortality and it was considerable in the aspect of cumulative risk because of the lagged influence. When heat wave was defined with a threshold of 98th percentile temperature and ≥2, 3, and 4 consecutive days, mortality increased by 14.8 % (7.5-22.6, 95 % confidence interval (CI)), 18.1 % (10.8-26.0, 95 % CI), 18.1 % (10.7-25.9, 95 % CI), respectively, in cubic spline model. When it came to the definitions of 90th and 95th percentile, the risk increase in mortality declined to 3.7-5.8 % and 8.6-11.3 %, respectively. This effect was robust to the flexibility of the model for temperature and time trend, while the definitions of a heat wave were critical in estimating its relationship with mortality. This finding could help deepen our understanding and quantifying of the relationship between heat wave and mortality and select an appropriate definition of heat wave and temperature model in the future

  20. Network effects of deep brain stimulation.

    PubMed

    Alhourani, Ahmad; McDowell, Michael M; Randazzo, Michael J; Wozny, Thomas A; Kondylis, Efstathios D; Lipski, Witold J; Beck, Sarah; Karp, Jordan F; Ghuman, Avniel S; Richardson, R Mark

    2015-10-01

    The ability to differentially alter specific brain functions via deep brain stimulation (DBS) represents a monumental advance in clinical neuroscience, as well as within medicine as a whole. Despite the efficacy of DBS in the treatment of movement disorders, for which it is often the gold-standard therapy when medical management becomes inadequate, the mechanisms through which DBS in various brain targets produces therapeutic effects is still not well understood. This limited knowledge is a barrier to improving efficacy and reducing side effects in clinical brain stimulation. A field of study related to assessing the network effects of DBS is gradually emerging that promises to reveal aspects of the underlying pathophysiology of various brain disorders and their response to DBS that will be critical to advancing the field. This review summarizes the nascent literature related to network effects of DBS measured by cerebral blood flow and metabolic imaging, functional imaging, and electrophysiology (scalp and intracranial electroencephalography and magnetoencephalography) in order to establish a framework for future studies. PMID:26269552

  1. Effects of gas bubble production on heat transfer from a volumetrically heated liquid pool

    NASA Astrophysics Data System (ADS)

    Bull, Geoffrey R.

    Aqueous solutions of uranium salts may provide a new supply chain to fill potential shortfalls in the availability of the most common radiopharmaceuticals currently in use worldwide, including Tc99m which is a decay product of Mo99. The fissioning of the uranium in these solutions creates Mo99 but also generates large amounts of hydrogen and oxygen from the radiolysis of the water. When the dissolved gases reach a critical concentration, bubbles will form in the solution. Bubbles in the solution affect both the fission power and the heat transfer out of the solution. As a result, for safety and production calculations, the effects of the bubbles on heat transfer must be understood. A high aspect ratio tank was constructed to simulate a section of an annulus with heat exchangers on the inner and outer steel walls to provide cooling. Temperature measurements via thermocouples inside the tank and along the outside of the steel walls allowed the calculation of overall and local heat transfer coefficients. Different air injection manifolds allowed the exploration of various bubble characteristics and patterns on heat transfer from the pool. The manifold type did not appear to have significant impact on the bubble size distributions in water. However, air injected into solutions of magnesium sulfate resulted in smaller bubble sizes and larger void fractions than those in water at the same injection rates. One dimensional calculations provide heat transfer coefficient values as functions of the superficial gas velocity in the pool.

  2. Postoperative ventilatory and circulatory effects of heating after aortocoronary bypass surgery. Postoperative external heat supply.

    PubMed

    Joachimsson, P O; Nyström, S O; Tydén, H

    1987-08-01

    The effects of postoperative external heat supply on shivering, oxygen uptake, carbon dioxide production, ventilatory requirements and haemodynamic variables were studied postoperatively after aortocoronary bypass surgery in 24 men with stable angina pectoris. After hypothermic cardiopulmonary bypass (CPB) at 25 degrees C, the patients were rewarmed to a nasopharyngeal temperature of at least 38 degrees C, resulting in a rectal temperature of about 34 degrees C before termination of CPB. Twelve patients, forming the control group, were given no other external heat supply. In another group (n = 12), the "radiant heat supply group", additional external heat was provided postoperatively, the main source of which was a thermal ceiling supplemented with heated, humidified respiratory gases. In this latter group the postoperative rewarming was accomplished earlier and was converted into a mainly passive process. Shivering, oxygen uptake, CO2 production and ventilation volumes were significantly reduced compared with the control group. Cardiac index and stroke index were higher and systemic oxygen extraction was lower in the radiant heat supply group. Postoperative hypertension and vasoconstriction were greatly decreased, suggesting that residual hypothermia is an important cause of the postoperative vasoconstriction. PMID:3115049

  3. RESTful M2M Gateway for Remote Wireless Monitoring for District Central Heating Networks

    PubMed Central

    Cheng, Bo; Wei, Zesan

    2014-01-01

    In recent years, the increased interest in energy conservation and environmental protection, combined with the development of modern communication and computer technology, has resulted in the replacement of distributed heating by central heating in urban areas. This paper proposes a Representational State Transfer (REST) Machine-to-Machine (M2M) gateway for wireless remote monitoring for a district central heating network. In particular, we focus on the resource-oriented RESTful M2M gateway architecture, and present an uniform devices abstraction approach based on Open Service Gateway Initiative (OSGi) technology, and implement the resource mapping mechanism between resource address mapping mechanism between RESTful resources and the physical sensor devices, and present the buffer queue combined with polling method to implement the data scheduling and Quality of Service (QoS) guarantee, and also give the RESTful M2M gateway open service Application Programming Interface (API) set. The performance has been measured and analyzed. Finally, the conclusions and future work are presented. PMID:25436650

  4. RESTful M2M gateway for remote wireless monitoring for district central heating networks.

    PubMed

    Cheng, Bo; Wei, Zesan

    2014-01-01

    In recent years, the increased interest in energy conservation and environmental protection, combined with the development of modern communication and computer technology, has resulted in the replacement of distributed heating by central heating in urban areas. This paper proposes a Representational State Transfer (REST) Machine-to-Machine (M2M) gateway for wireless remote monitoring for a district central heating network. In particular, we focus on the resource-oriented RESTful M2M gateway architecture, and present an uniform devices abstraction approach based on Open Service Gateway Initiative (OSGi) technology, and implement the resource mapping mechanism between resource address mapping mechanism between RESTful resources and the physical sensor devices, and present the buffer queue combined with polling method to implement the data scheduling and Quality of Service (QoS) guarantee, and also give the RESTful M2M gateway open service Application Programming Interface (API) set. The performance has been measured and analyzed. Finally, the conclusions and future work are presented. PMID:25436650

  5. Current heating induced spin Seebeck effect

    SciTech Connect

    Schreier, Michael Roschewsky, Niklas; Dobler, Erich; Meyer, Sibylle; Huebl, Hans; Goennenwein, Sebastian T. B.; Gross, Rudolf

    2013-12-09

    A measurement technique for the spin Seebeck effect is presented, wherein the normal metal layer used for its detection is exploited simultaneously as a resistive heater and thermometer. We show how the various contributions to the measured total signal can be disentangled, allowing to extract the voltage signal solely caused by the spin Seebeck effect. To this end, we performed measurements as a function of the external magnetic field strength and its orientation. We find that the effect scales linearly with the induced rise in temperature, as expected for the spin Seebeck effect.

  6. Effects of aqueous humor hydrodynamics on human eye heat transfer under external heat sources.

    PubMed

    Tiang, Kor L; Ooi, Ean H

    2016-08-01

    The majority of the eye models developed in the late 90s and early 00s considers only heat conduction inside the eye. This assumption is not entirely correct, since the anterior and posterior chambers are filled aqueous humor (AH) that is constantly in motion due to thermally-induced buoyancy. In this paper, a three-dimensional model of the human eye is developed to investigate the effects AH hydrodynamics have on the human eye temperature under exposure to external heat sources. If the effects of AH flow are negligible, then future models can be developed without taking them into account, thus simplifying the modeling process. Two types of external thermal loads are considered; volumetric and surface irradiation. Results showed that heat convection due to AH flow contributes to nearly 95% of the total heat flow inside the anterior chamber. Moreover, the circulation inside the anterior chamber can cause an upward shift of the location of hotspot. This can have significant consequences to our understanding of heat-induced cataractogenesis. PMID:27340100

  7. Pressure and heat flux effects on the heat transfer characteristics of liquid methane

    NASA Astrophysics Data System (ADS)

    Garcia, Chance P.

    The heat transfer effects on liquid methane are investigated with the use of a carbo-thermal rig at the Center for Space Exploration Technology Research (cSETR) located at the University of Texas at El Paso (UTEP). The cSETR carbo-thermal rig design approach is presented along with the design of a methane condensing mobile unit (MCMU) to supply the laboratory and rig with liquid methane. The proposed research will generate useful insight in to heat transfer coefficient behavior, non-dimensional correlations, different flow conditions, varied inlet conditions, and varied heat flux for a subscale test article applicable to a regenerative cooled rocket engine cooling channel. The data found will also improve the knowledge base for liquid methane and non-toxic propulsion. Planned test parameters are from 1.03 to 2.07 MPa (150 to 300 psi) supply tank pressure, and 3.9 to 19 MW/m2 (2.39 to 11.6 Btu/in2-s). Presented are transient and steady state heat transfer response results depicting transient and steady state heat transfer effects tested at turbulent Reynolds numbers (15000 to 360000).

  8. Heating effects in a chain of quantum dots.

    SciTech Connect

    Glatz, A.; Beloborodov, I. S.; Chtchelkatchev, N. M.; Vinokur, V. M.; Materials Science Division; California State Univ. at Northridge; Russian Academy of Science

    2010-08-13

    We study heating effects in a chain of weakly coupled grains due to electron-hole pair creation. The main mechanism for the latter at low temperatures is due to inelastic electron cotunneling processes in the array. We develop a quantitative kinetic theory for these systems and calculate the array temperature profile as a function of grain parameters, bias voltage or current, and time and show that for nanoscale size grains the heating effects are pronounced and easily measurable in experiments. In the low- and high-voltage limits we solve the stationary heat-flux equation analytically. We demonstrate the overheating hysteresis in the large-current or voltage regimes. In addition we consider the influence of a substrate on the system which acts as a heat sink. We show that nanodot chains can be used as highly sensitive thermometers over a broad range of temperatures.

  9. Heat capacity of water: A signature of nuclear quantum effects

    NASA Astrophysics Data System (ADS)

    Vega, C.; Conde, M. M.; McBride, C.; Abascal, J. L. F.; Noya, E. G.; Ramirez, R.; Sesé, L. M.

    2010-01-01

    In this note we present results for the heat capacity at constant pressure for the TIP4PQ/2005 model, as obtained from path-integral simulations. The model does a rather good job of describing both the heat capacity of ice Ih and of liquid water. Classical simulations using the TIP4P/2005, TIP3P, TIP4P, TIP4P-Ew, simple point charge/extended, and TIP5P models are unable to reproduce the heat capacity of water. Given that classical simulations do not satisfy the third law of thermodynamics, one would expect such a failure at low temperatures. However, it seems that for water, nuclear quantum effects influence the heat capacities all the way up to room temperature. The failure of classical simulations to reproduce Cp points to the necessity of incorporating nuclear quantum effects to describe this property accurately.

  10. The Effect of Network Parameters on Pi-Sigma Neural Network for Temperature Forecasting

    NASA Astrophysics Data System (ADS)

    Husaini, Noor Aida; Ghazali, Rozaida; Nawi, Nazri Mohd; Ismail, Lokman Hakim

    In this paper, we present the effect of network parameters to forecast temperature of a suburban area in Batu Pahat, Johor. The common ways of predicting the temperature using Neural Network has been applied for most meteorological parameters. However, researchers frequently neglected the network parameters which might affect the Neural Network's performance. Therefore, this study tends to explore the effect of network parameters by using Pi Sigma Neural Network (PSNN) with backpropagation algorithm. The network's performance is evaluated using the historical dataset of temperature in Batu Pahat for one step-ahead and benchmarked against Multilayer Perceptron (MLP) for comparison. We found out that, network parameters have significantly affected the performance of PSNN for temperature forecasting. Towards the end of this paper, we concluded the best forecasting model to predict the temperature based on the comparison of our study.

  11. Methods to Estimate Acclimatization to Urban Heat Island Effects on Heat- and Cold-Related Mortality

    PubMed Central

    Milojevic, Ai; Armstrong, Ben G.; Gasparrini, Antonio; Bohnenstengel, Sylvia I.; Barratt, Benjamin; Wilkinson, Paul

    2016-01-01

    Background: Investigators have examined whether heat mortality risk is increased in neighborhoods subject to the urban heat island (UHI) effect but have not identified degrees of difference in susceptibility to heat and cold between cool and hot areas, which we call acclimatization to the UHI. Objectives: We developed methods to examine and quantify the degree of acclimatization to heat- and cold-related mortality in relation to UHI anomalies and applied these methods to London, UK. Methods: Case–crossover analyses were undertaken on 1993–2006 mortality data from London UHI decile groups defined by anomalies from the London average of modeled air temperature at a 1-km grid resolution. We estimated how UHI anomalies modified excess mortality on cold and hot days for London overall and displaced a fixed-shape temperature-mortality function (“shifted spline” model). We also compared the observed associations with those expected under no or full acclimatization to the UHI. Results: The relative risk of death on hot versus normal days differed very little across UHI decile groups. A 1°C UHI anomaly multiplied the risk of heat death by 1.004 (95% CI: 0.950, 1.061) (interaction rate ratio) compared with the expected value of 1.070 (1.057, 1.082) if there were no acclimatization. The corresponding UHI interaction for cold was 1.020 (0.979, 1.063) versus 1.030 (1.026, 1.034) (actual versus expected under no acclimatization, respectively). Fitted splines for heat shifted little across UHI decile groups, again suggesting acclimatization. For cold, the splines shifted somewhat in the direction of no acclimatization, but did not exclude acclimatization. Conclusions: We have proposed two analytical methods for estimating the degree of acclimatization to the heat- and cold-related mortality burdens associated with UHIs. The results for London suggest relatively complete acclimatization to the UHI effect on summer heat–related mortality, but less clear evidence for

  12. The effects of water on heat-styling damage.

    PubMed

    Christian, Paul; Winsey, Nigel; Whatmough, Marie; Cornwell, Paul A

    2011-01-01

    Heated styling appliances, such as straightening irons, have grown in popularity in recent years, as have hair products such as heat-protection sprays. In this study we investigate whether the water in a heat-protection spray can affect the level of damage caused by heat styling. Tryptophan damage from heat styling was measured using fluorescence spectroscopy, and structural damage was investigated using light microscopy and single-fiber tensile testing. Hair samples were heat treated with straightening irons, following treatment with either a water-based, "wet," heat-protection spray or an ethanol-based, "dry," spray. Results showed that, as expected, tryptophan damage was reduced by repeated applications of both the "wet" and "dry" heat-protection sprays. However, no differences were seen between the "wet" versus the "dry" product. Light microscopy studies showed greater structural damage to hair treated with water and the "wet" spray. Tensile tests confirmed that there was greater damage to hair treated with the "wet" spray. Decreases in Young's modulus were greater in the presence of the "wet" spray. The results of this study suggest that the type of damage caused by heat treatments is different in wet versus dry hair. In dry hair, thermal treatments cause chemical damage and some structural damage. However, in wet hair, thermal treatments cause the same chemical damage, but considerably more structural damage, which causes significant changes in the physical properties of the hair. It is likely that the rapid evaporation of water from the hair is the main causal factor. Our experiments suggest that the effectiveness of commercial heat-protection sprays can be improved by the removal of water and by the use of volatile ingredients, such as ethanol, as base solvents. PMID:21443842

  13. [A cold/heat property classification strategy based on bio-effects of herbal medicines].

    PubMed

    Jiang, Miao; Lv, Ai-Ping

    2014-06-01

    The property theory of Chinese herbal medicine (CHM) is regarded as the core and basic of Chinese medical theory, however, the underlying mechanism of the properties in CHMs remains unclear, which impedes a barrier for the modernization of Chinese herbal medicine. The properties of CHM are often categorized into cold and heat according to the theory of Chinese medicine, which are essential to guide the clinical application of CHMs. There is an urgent demand to build a cold/heat property classification model to facilitate the property theory of Chinese herbal medicine, as well as to clarify the controversial properties of some herbs. Based on previous studies on the cold/heat properties of CHM, in this paper, we described a novel strategy on building a cold/heat property classification model based on herbal bio-effect. The interdisciplinary cooperation of systems biology, pharmacological network, and pattern recognition technique might lighten the study on cold/heat property theory, provide a scientific model for determination the cold/heat property of herbal medicines, and a new strategy for expanding the Chinese herbal medicine resources as well. PMID:25272861

  14. An analysis of heat effects in different subpopulations of Bangladesh.

    PubMed

    Burkart, Katrin; Breitner, Susanne; Schneider, Alexandra; Khan, Md Mobarak Hossain; Krämer, Alexander; Endlicher, Wilfried

    2014-03-01

    A substantial number of epidemiological studies have demonstrated an association between atmospheric conditions and human all-cause as well as cause-specific mortality. However, most research has been performed in industrialised countries, whereas little is known about the atmosphere-mortality relationship in developing countries. Especially with regard to modifications from non-atmospheric conditions and intra-population differences, there is a substantial research deficit. Within the scope of this study, we aimed to investigate the effects of heat in a multi-stratified manner, distinguishing by the cause of death, age, gender, location and socio-economic status. We examined 22,840 death counts using semi-parametric Poisson regression models, adjusting for a multitude of potential confounders. Although Bangladesh is dominated by an increase of mortality with decreasing (equivalent) temperatures over a wide range of values, the findings demonstrated the existence of partly strong heat effects at the upper end of the temperature distribution. Moreover, the study demonstrated that the strength of these heat effects varied considerably over the investigated subgroups. The adverse effects of heat were particularly pronounced for males and the elderly above 65 years. Moreover, we found increased adverse effects of heat for urban areas and for areas with a high socio-economic status. The increase in, and acceleration of, urbanisation in Bangladesh, as well as the rapid aging of the population and the increase in non-communicable diseases, suggest that the relevance of heat-related mortality might increase further. Considering rising global temperatures, the adverse effects of heat might be further aggravated. PMID:23689928

  15. Topological effects of network structure on long-term social network dynamics in a wild mammal

    PubMed Central

    Ilany, Amiyaal; Booms, Andrew S.; Holekamp, Kay E.

    2015-01-01

    Social structure influences ecological processes such as dispersal and invasion, and affects survival and reproductive success. Recent studies have used static snapshots of social networks, thus neglecting their temporal dynamics, and focused primarily on a limited number of variables that might be affecting social structure. Here, instead we modelled effects of multiple predictors of social network dynamics in the spotted hyena, using observational data collected during 20 years of continuous field research in Kenya. We tested the hypothesis that the current state of the social network affects its long-term dynamics. We employed stochastic agent-based models that allowed us to estimate the contribution of multiple factors to network changes. After controlling for environmental and individual effects, we found that network density and individual centrality affected network dynamics, but that social bond transitivity consistently had the strongest effects. Our results emphasise the significance of structural properties of networks in shaping social dynamics. PMID:25975663

  16. Topological effects of network structure on long-term social network dynamics in a wild mammal.

    PubMed

    Ilany, Amiyaal; Booms, Andrew S; Holekamp, Kay E

    2015-07-01

    Social structure influences ecological processes such as dispersal and invasion, and affects survival and reproductive success. Recent studies have used static snapshots of social networks, thus neglecting their temporal dynamics, and focused primarily on a limited number of variables that might be affecting social structure. Here, instead we modelled effects of multiple predictors of social network dynamics in the spotted hyena, using observational data collected during 20 years of continuous field research in Kenya. We tested the hypothesis that the current state of the social network affects its long-term dynamics. We employed stochastic agent-based models that allowed us to estimate the contribution of multiple factors to network changes. After controlling for environmental and individual effects, we found that network density and individual centrality affected network dynamics, but that social bond transitivity consistently had the strongest effects. Our results emphasise the significance of structural properties of networks in shaping social dynamics. PMID:25975663

  17. Effects of condensation in clothing on heat transfer.

    PubMed

    Lotens, W A; van de Linde, F J; Havenith, G

    1995-06-01

    A condensation theory is presented that enables the calculation of the rate of vapour transfer with its associated effects on temperature and total heat transfer inside a clothing ensemble consisting of underclothing, enclosed air, and outer garment. The model is experimentally tested by three experiments: (1) impermeable garments worn by subjects with and without plastic wrap around the skin, blocking sweat evaporation underneath the clothing; (2) comparison of heat loss in impermeable and semi-permeable garments and the associated discomfort and strain; (3) subjects working in impermeable garments in cool and warm environments at two work rates, until tolerance. The measured heat exchange and temperatures are calculated with satisfying accuracy by the model (mean error = 11, SD = 10 Wm-2 for heat flows and 0.3 and 0.9 degree C for temperatures, respectively). A numerical analysis shows that for total heat loss the major determinants are vapour permeability of the outer garment, skin vapour concentration and air temperature. In the cold the condensation mechanism may completely compensate for the lack of permeability of the clothing as far as heat dissipation is concerned, but in the heat impermeable clothing is more stressful. PMID:7758442

  18. Minnesota Project: district heating and cooling through power plant retrofit and distribution network. Final report. Phase 1. [Minnesota Project

    SciTech Connect

    1980-01-01

    Appendices are presented for the Minnesota Project: District Heating and Cooling Through Power Plant Retrofit and Distribution Network. These are: SYNTHA results (SYNTHA II is a proprietary program of the SYNTHA Corporation); Market Survey Questionnaire: Environmental Review Procedures; Public Service Commission Regulation of District Heating; Energy Use Normalization Procedures; Power Plant Description; Letters of Commitment; Bond Opinion and Issuance; and Marvin Koeplin Letter, Chairman of Public Service Commission, Moorehead, Minnesota.

  19. A neural network controller for hydronic heating systems of solar buildings.

    PubMed

    Argiriou, Athanassios A; Bellas-Velidis, Ioannis; Kummert, Michaël; André, Philippe

    2004-04-01

    An artificial neural network (ANN)-based controller for hydronic heating plants of buildings is presented. The controller has forecasting capabilities: it includes a meteorological module, forecasting the ambient temperature and solar irradiance, an indoor temperature predictor module, a supply temperature predictor module and an optimizing module for the water supply temperature. All ANN modules are based on the Feed Forward Back Propagation (FFBP) model. The operation of the controller has been tested experimentally, on a real-scale office building during real operating conditions. The operation results were compared to those of a conventional controller. The performance was also assessed via numerical simulation. The detailed thermal simulation tool for solar systems and buildings TRNSYS was used. Both experimental and numerical results showed that the expected percentage of energy savings with respect to a conventional controller is of about 15% under North European weather conditions. PMID:15037359

  20. Effects of polarization-charge shielding in microwave heating

    SciTech Connect

    Lin, M. S.; Lin, S. M.; Chiang, W. Y.; Barnett, L. R.; Chu, K. R.

    2015-08-15

    Heating of dielectric objects by radio frequency (RF) and microwaves has long been a method widely employed in scientific research and industrial applications. However, RF and microwave heating are often susceptible to an excessive temperature spread due to uneven energy deposition. The current study elucidates an important physical reason for this difficulty and proposes an effective remedy. Non-spherical samples are placed in an anechoic chamber, where it is irradiated by a traveling microwave wave with 99% intensity uniformity. Polarization charges induced on the samples tend to partially cancel the incident electric field and hence reduce the heating rate. The polarization-charge shielded heating rate is shown to be highly dependent on the sample's shape and its orientation relative to the wave electric field. For samples with a relatively high permittivity, the resultant uneven heating can become a major cause for the excessive temperature spread. It is also demonstrated that a circularly polarized wave, with its rapidly rotating electric field, can effectively even out the heating rate and hence the temperature spread.

  1. Effect of boiling surface vibration on heat transfer

    NASA Astrophysics Data System (ADS)

    Alangar, Sathyabhama

    2016-03-01

    Experimental investigation of effect of forced vertical surface vibration on nucleate pool boiling heat transfer of saturated water at atmospheric pressure is presented in this paper. Vertical vibration was induced externally to the circular copper test surface on which boiling took place, using a vibration exciter. Frequency was varied in the range 0-25 Hz and amplitude of vibration was varied in the range 0-5 mm. Boiling takes place at much lower superheats for the same heat flux, slope of boiling curve decreases remarkably, when the surface is given external excitation. High frequency and high amplitude oscillations lead to more intensive heat transfer. There are some combinations of frequency and vibration amplitude, which cause up to two times increase in heat transfer coefficients.

  2. Thermal evolution of Mercury: Effects of volcanic heat-piping

    NASA Astrophysics Data System (ADS)

    Multhaup, K.

    2009-09-01

    A 1D thermal evolution model of Mercury is presented. It accounts for stagnant lid convection, mantle differentiation and inner core growth. Early MESSENGER results indicate that—contrary to prior conclusions drawn from Mariner 10 imagery—volcanism has indeed played a significant role in Mercury's past. To study the effects of mantle heat bypassing the stagnant lid by means of volcanic heat-piping, contrasting end-member models are considered. Results show how break-down of mantle convection and onset of inner core growth are influenced by the mode of heat removal. Structural models of present day Mercury are presented. Their dependence on the core sulphur contents predominates that on the choice of mantle heat removal. However, the latter clearly controls the timing of thermal history events.

  3. Effect of combined heat and radiation on microbial destruction.

    PubMed Central

    Fisher, D A; Pflug, I J

    1977-01-01

    A series of experiments at several levels of relative humidity and radiation dose rates was carried out using spores of Bacillus subtilis var. niger to evaluate the effect of heat alone, radiation alone, and a combination of heat and radiation. Combined heat and radiation treatment of microorganisms yields a destruction rate greater than the additive rates of the independence agents. The synergistic mechanism shows a proportional dependency on radiation dose rate an Arrhenius dependency on temperature, and a dependency on relative humidity. Maximum synergism occurs under conditions where heat and radiation individually destroy microorganisms at approximately equal rates. Larger synergistic advantage is possible at low relative humidities rather than at high relative humidities. PMID:406843

  4. The effect of asymmetric heating on flow stability and heat transfer for flow in a vertical tube

    SciTech Connect

    Tappan, C.H.

    1987-11-01

    This study presents experimental results of combined free and forced convection heat transfer in a vertical tube with a circumferentially nonuniform constant wall heat flux. The effect of an asymmetric wall heat flux on flow stability and on the rate of heat transfer for water flowing downward in a vertical tube was investigated. Experimental results were used to develop two stability maps which identify various flow regimes, corresponding to different thermal and hydraulic conditions. Heat transfer coefficients were also determined. Experimental results in the present investigation were compared to those with uniform heating in horizontal and vertical tube flow situations discussed in the literature. 23 refs., 12 figs., 1 tab.

  5. Influence of a network structure on the network effect in the communication service market

    NASA Astrophysics Data System (ADS)

    Uchida, Makoto; Shirayama, Susumu

    2008-09-01

    In this study, we analyze the network effect in a model of a personal communication market, by using a multi-agent based simulation approach. We introduce into the simulation model complex network structures as the interaction patterns of agents. With complex network models, we investigate the dynamics of a market in which two providers are competing. We also examine the structure of networks that affect the complex behavior of the market. By a series of simulations, we show that the structural properties of complex networks, such as the clustering coefficient and degree correlation, have a major influence on the dynamics of the market. We find that the network effect is increased if the interaction pattern of agents is characterized by a high clustering coefficient, or a positive degree correlation. We also discuss a suitable model of the interaction pattern for reproducing market dynamics in the real world, by performing simulations using real data of a social network.

  6. Effects of dynamical heat fluxes on model climate sensitivity

    NASA Technical Reports Server (NTRS)

    Wang, W.-C.; Molnar, G.; Mitchell, T. P.; Stone, P. H.

    1984-01-01

    A coupled high and low latitude radiative-dynamical model of the annual mean northern hemisphere has been constructed in order to study the interactions of the vertical and meridional heat fluxes and their feedback effect on model climate sensitivity. The model's climate sensitivity to solar constant changes and CO2 increases is investigated, and the effect of feedback in the dynamical fluxes on model climate sensitivity is examined. Nonlinear interactions between heat fluxes and other feedbacks such as radiation-temperature, ice albedo, and humidity are also discussed.

  7. Summary of HEAT 1 Aeroacoustics Installation Effects

    NASA Technical Reports Server (NTRS)

    Smith, Brian E.; Zuniga, Fanny A.; Soderman, Paul T.

    1999-01-01

    A critical part of the NASA High-Speed Research (HSR) program is the demonstration of satisfactory suppression of the jet noise present at low airspeeds. One scheme for reducing jet exhaust noise generated by a future High-Speed Civil Transport (HSCT) is the use of a mixer/ ejector system which would entrain large quantities of ambient air into the exhaust flow from the powerplant in order to cool and slow the jet exhaust before it leaves the tailpipe. Of the variety of factors which can affect the noise suppression characteristics of the mixer/ejector system, the influence of the wing flow field and high-lift devices is not well understood. The effectiveness of the noise suppression device must be evaluated in the presence of the wing/high-lift system before definitive assessments can be made concerning HSCT noise. Of nearly equal importance is the evaluation of the performance of the high-lift system(s) in the presence of realistic propulsion units which feature high ambient flow entrainment rates and jet thrust coefficients. These noise suppressors must provide the required acoustic attenuation while not overly degrading the thrust efficiency of the propulsion system or the lift enhancement of the high-lift devices on the wing. The overall objective of the NASA High-lift Engine Aeroacoustics Technology program is to demonstrate satisfactory interaction between the jet noise suppressor and the high-lift system at airspeeds and angles of attack consistent with takeoff, climb, approach, and landing. In support of this program, an isolated aeroacoustic test of a 13.5%-scale, candidate mixer/ejector nozzle was performed in the Ames' Research Center 40- by 80-Foot Wind Tunnel. The purpose of the test was to measure the baseline aeroacoustic performance characteristics of this nozzle in isolation from the aerodynamic flowfield induced by an HSCT airframe. The test documented the acoustic signature of the nozzles with treated and hardwall ejector surfaces and with

  8. A neural network combined with a three-dimensional finite element method applied to optimize eddy current and temperature distributions of traveling wave induction heating system

    NASA Astrophysics Data System (ADS)

    Wang, Youhua; Wang, Junhua; Ho, S. L.; Pang, Lingling; Fu, W. N.

    2011-04-01

    In this paper, neural networks with a finite element method (FEM) were introduced to predict eddy current distributions on the continuously moving thin conducting strips in traveling wave induction heating (TWIH) equipments. A method that combines a neural network with a finite element method (FEM) is proposed to optimize eddy current distributions of TWIH heater. The trained network used for tested examples shows quite good accuracy of the prediction. The results have then been used with reference to a double-side TWIH in order to analyze the distributions of the magnetic field and eddy current intensity, which accelerates the iterative solution process for the nonlinear coupled electromagnetic matters. The FEM computation of temperature converged conspicuously faster using the prediction results as initial values than using the zero values, and the number of iterations is reduced dramatically. Simulation results demonstrate the effectiveness and characteristics of the proposed method.

  9. High Reynolds Number and Turbulence Effects on Turbine Heat Transfer

    NASA Technical Reports Server (NTRS)

    Yeh, Frederick C.; Hippensteele, Steven A.; vanFossen, G. James; Poinsatte, Philip E.; Ameri, Ali

    1994-01-01

    Experimental data on pressure distribution and heat transfer on a turbine airfoil were obtained over a range of Reynolds numbers from 0.75 to 7.0 x 10(exp 6) and a range of turbulence intensities from 1.8 to about 15%. The purpose of this study was to obtain fundamental heat transfer and pressure distribution data over a wide range of high Reynolds numbers and to extend the heat transfer data base to include the range or Reynolds numbers encountered in the Space Shuttle main engine turbopump turbines. The results of this study indicated that Reynolds number and turbulence intensity have a large effect on both the transition from laminar to turbulent flow and the resulting heat transfer. For a given turbulence intensity, heat transfer for all Reynolds numbers at the leading edge can generally be correlated with the Frossling number developed for lower Reynolds numbers. For a given turbulence intensity, heat transfer for the airfoil surfaces downstream of the leading edge can be approximately correlated with a dimensionless parameter. Comparisons of the experimental results were also made with a numerical solution from a two-dimensional Navier-Stokes code.

  10. Study on Fuel Cell Network System Considering Reduction in Fuel Cell Capacity Using Load Leveling and Heat Release Loss

    NASA Astrophysics Data System (ADS)

    Obara, Shin'ya; Kudo, Kazuhiko

    Reduction in fuel cell capacity linked to a fuel cell network system is considered. When the power demand of the whole network is small, some of the electric power generated by the fuel cell is supplied to a water electrolysis device, and hydrogen and oxygen gases are generated. Both gases are compressed with each compressor and they are stored in cylinders. When the electric demand of the whole network is large, both gases are supplied to the network, and fuel cells are operated by these hydrogen and oxygen gases. Furthermore, an optimization plan is made to minimize the quantity of heat release of the hot water piping that connects each building. Such an energy network is analyzed assuming connection of individual houses, a hospital, a hotel, a convenience store, an office building, and a factory. Consequently, compared with the conventional system, a reduction of 46% of fuel cell capacity is expected.

  11. The effect of heat sinks in GTA microwelding

    SciTech Connect

    Knorovsky, G.A.; Burchett, S.N.

    1989-01-01

    When miniature devices containing glass-to-metal seals are closure welded it is accepted practice to incorporate thermal heat sinks into the fixturing. This is intended to assure that the heat from gas tungsten arc (GTA) welding will not cause thermal stress-induced cracking of the seals and loss of hermeticity. The design of these heat sinks has never been systematically studied; instead only ''engineering horse sense'' has been applied. This practice has been successful in the past; however, the component being GTA welded have become smaller and more complex (i.e., more pins) and glass cracking problems are being encountered. The technology of producing glass seal-containing lids (called ''headers'') has benefited from finite element analyses in deciding how to optimally dimension pin-to-glass seal diameter ratios and glass-to-metal thickness ratios in order to minimize thermal stresses locked in during manufacture. It appeared likely that an analysts of the stresses generated by welding would also be beneficial. Recently, computer speed and code capabilities have increased to the point where finite element analysis of a close simulation of real hardware can be made, including the effect of external heat sinks. The work reported here involves an analysis (with some supporting experimental data) of a miniature thermal battery which encountered glass cracking problems. In the course of the analysis various heat sink practices were examined. Among other findings, through-thickness thermal gradients in a header with a heat sink were found to equal in-plane thermal gradients in a header without any heat sinking at the glass seal positions. Also noted were significant variations due to relatively minor changes in the weld preparation geometry. A summary of good practice for heat sinking will be presented. 4 refs., 6 figs., 2 tabs.

  12. Accelerating networks: Effects of preferential connections

    NASA Astrophysics Data System (ADS)

    Jeon, Y.-P.; McCoy, B. J.

    2007-12-01

    Networks are commonly observed structures in complex systems with interacting and interdependent parts that self-organize. For nonlinearly growing networks, when the total number of connections increases faster than the total number of nodes, the network is said to accelerate. We propose a systematic model for the dynamics of growing networks represented by distribution kinetics equations. We define the nodal-linkage distribution, construct a population dynamics equation based on the association-dissociation process, and perform the moment calculations to describe the dynamics of such networks. For nondirectional networks with finite numbers of nodes and connections, the moments are the total number of nodes, the total number of connections, and the degree (the average number of connections per node), represented by the average moment. Size independent rate coefficients yield an exponential network describing the network without preferential attachment, and size dependent rate coefficients produce a power law network with preferential attachment. The model quantitatively describes accelerating network growth data for a supercomputer (Earth Simulator), for regulatory gene networks, and for the Internet.

  13. Modeling of heat transfer effects in ferroelectric domain switching

    NASA Astrophysics Data System (ADS)

    Kim, Sang J.

    1999-06-01

    In this paper we study on the effects of heat generated from a moving domain boundary during polarization reversals in ferroelectrics. According to the one-dimensional model of ferroelectrics proposed by Kim (1999), there are two heat sources associated with a moving domain boundary: one is from dissipation mechanism on the domain boundary and the other from the entropy difference between two variants across the domain boundary. In order to investigate the effects of heat generation and transfer during polarization reversals we utilize the finite difference algorithm shown in Kim and Abeyaratne (1995). The results of calculation show that it is possible for the specimen temperature to reach as high temperatures as observed in experiments.

  14. Comparative physiology and transcriptional networks underlying the heat shock response in Populus trichocarpa, Arabidopsis thaliana and Glycine max

    SciTech Connect

    Weston, David; Wullschleger, Stan D; Yang, Xiaohan; Karve, Abhijit A; Gunter, Lee E; Jawdy, Sara; Allen, Sara M

    2011-01-01

    The heat shock response continues to be layered with additional complexity as interactions and crosstalk among heat shock proteins (HSPs), the reactive oxygen network and hormonal signalling are discovered. However, comparative analyses exploring variation in each of these processes among species remain relatively unexplored. In controlled environment experiments, photosynthetic response curves were conducted from 22 to 42 C and indicated that temperature optimum of light-saturated photosynthesis was greater for Glycine max relative to Arabidopsis thaliana or Populus trichocarpa. Transcript profiles were taken at defined states along the temperature response curves, and inferred pathway analysis revealed species-specific variation in the abiotic stress and the minor carbohydrate raffinose/galactinol pathways. A weighted gene co-expression network approach was used to group individual genes into network modules linking biochemical measures of the antioxidant system to leaf-level photosynthesis among P. trichocarpa, G. max and A. thaliana. Network-enabled results revealed an expansion in the G. max HSP17 protein family and divergence in the regulation of the antioxidant and heat shock modules relative to P. trichocarpa and A. thaliana. These results indicate that although the heat shock response is highly conserved, there is considerable species-specific variation in its regulation.

  15. Experience gained from the use of polyurethane foam-insulated pipelines at OAO Moscow Heating-Network Company

    NASA Astrophysics Data System (ADS)

    Kashinskii, V. I.; Lipovskikh, V. M.; Rotmistrov, Ya. G.

    2007-07-01

    Results from 10 years of experience using polyurethane foam-insulated pipelines at OAO Moscow Heating-Network Co. are presented. It is shown that the failure rate of such pipelines is considerably lower than that of pipelines laid in conduits.

  16. Release behavior of non-network proteins and its relationship to the structure of heat-induced soy protein gels.

    PubMed

    Wu, Chao; Hua, Yufei; Chen, Yeming; Kong, Xiangzhen; Zhang, Caimeng

    2015-04-29

    Heat-induced soy protein gels were prepared by heating protein solutions at 12%, 15% ,or 18% for 0.5, 1.0, or 2.0 h. The release of non-network proteins from gel slices was conducted in 10 mM pH 7.0 sodium phosphate buffer. SDS-PAGE and diagonal electrophoresis demonstrated that the released proteins consisted of undenatured AB subunits and denatured proteins including monomers of A polypeptides, disulfide bond linked dimers, trimers, and polymers of A polypeptides, and an unidentified 15 kDa protein. SEC-HPLC analysis of non-network proteins revealed three major protein peaks, with molecular weights of approximately 253.9, 44.8, and 9.7 kDa. The experimental data showed that the time-dependent release of the three fractions from soy protein gels fit Fick's second law. An increasing protein concentration or heating time resulted in a decrease in diffusion coefficients of non-network proteins. A power law expression was used to describe the relationship between non-network protein diffusion coefficient and molecular weight, for which the exponent (α) shifted to higher value with an increase in protein concentration or heating time, indicating that a more compact gel structure was formed. PMID:25842998

  17. Estimating seasonal crop ET using calendar and heat unit based crop coefficients in the Texas High Plains Evapotranspiration Network

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Texas High Plains Evapotranspiration (TXHPET) network utilizes a heat unit-based approach (growing degree day concept) in the timing of various crop growth stages along with crop coefficients for computation of crop water use with the newly standardized ASCE/EWRI reference evapotranspiration (E...

  18. Effects of Solar Photovoltaic Panels on Roof Heat Transfer

    NASA Technical Reports Server (NTRS)

    Dominguez, A.; Klessl, J.; Samady, M.; Luvall, J. C.

    2010-01-01

    Building Heating, Ventilation and Air Conditioning (HVAC) is a major contributor to urban energy use. In single story buildings with large surface area such as warehouses most of the heat enters through the roof. A rooftop modification that has not been examined experimentally is solar photovoltaic (PV) arrays. In California alone, several GW in residential and commercial rooftop PV are approved or in the planning stages. With the PV solar conversion efficiency ranging from 5-20% and a typical installed PV solar reflectance of 16-27%, 53-79% of the solar energy heats the panel. Most of this heat is then either transferred to the atmosphere or the building underneath. Consequently solar PV has indirect effects on roof heat transfer. The effect of rooftop PV systems on the building roof and indoor energy balance as well as their economic impacts on building HVAC costs have not been investigated. Roof calculator models currently do not account for rooftop modifications such as PV arrays. In this study, we report extensive measurements of a building containing a flush mount and a tilted solar PV array as well as exposed reference roof. Exterior air and surface temperature, wind speed, and solar radiation were measured and thermal infrared (TIR) images of the interior ceiling were taken. We found that in daytime the ceiling surface temperature under the PV arrays was significantly cooler than under the exposed roof. The maximum difference of 2.5 C was observed at around 1800h, close to typical time of peak energy demand. Conversely at night, the ceiling temperature under the PV arrays was warmer, especially for the array mounted flat onto the roof. A one dimensional conductive heat flux model was used to calculate the temperature profile through the roof. The heat flux into the bottom layer was used as an estimate of the heat flux into the building. The mean daytime heat flux (1200-2000 PST) under the exposed roof in the model was 14.0 Watts per square meter larger than

  19. Route Planning and Estimate of Heat Loss of Hot Water Transportation Piping for Fuel Cell Local Energy Network

    NASA Astrophysics Data System (ADS)

    Obara, Shinya; Kudo, Kazuhiko

    The method of supplying the electric power and heat energy for the energy demand of buildings by Centralized system type and distributed system type of fuel cell network is studied. The hot-water piping route planning program of fuel cell network was developed by using genetic algorithm based on the view of TSP ( Traveling salesman problem) . In this program, the piping route planning which minimizes the quantity of heat loss in hot-water piping can be performed. The residential section model of Sapporo city of 74 buildings was analyzed, and the quantity of heat loss from the hot-water piping of both systems was estimated. Consequently, the ratio of the quantity of heat loss of a distributed system to a centralized system was about 50% in the full year average. This program is introduced into the route planning of hot- Water piping system of the fuel cell network, and plan to reduce the quantity of heat loss in a distributed system will be made.

  20. Causes, effects and molecular mechanisms of testicular heat stress.

    PubMed

    Durairajanayagam, Damayanthi; Agarwal, Ashok; Ong, Chloe

    2015-01-01

    The process of spermatogenesis is temperature-dependent and occurs optimally at temperatures slightly lower than that of the body. Adequate thermoregulation is imperative to maintain testicular temperatures at levels lower than that of the body core. Raised testicular temperature has a detrimental effect on mammalian spermatogenesis and the resultant spermatozoa. Therefore, thermoregulatory failure leading to heat stress can compromise sperm quality and increase the risk of infertility. In this paper, several different types of external and internal factors that may contribute towards testicular heat stress are reviewed. The effects of heat stress on the process of spermatogenesis, the resultant epididymal spermatozoa and on germ cells, and the consequent changes in the testis are elaborated upon. We also discuss the molecular response of germ cells to heat exposure and the possible mechanisms involved in heat-induced germ cell damage, including apoptosis, DNA damage and autophagy. Further, the intrinsic and extrinsic pathways that are involved in the intricate mechanism of germ cell apoptosis are explained. Ultimately, these complex mechanisms of apoptosis lead to germ cell death. PMID:25456164

  1. Effect of Cyclic Aeroconvective Heating on Flexible Thermal Insulations

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius A.; Zambrano, Brian; Kowalski, Tom; Rasky, Daniel J. (Technical Monitor)

    1995-01-01

    This paper describes the effect of cyclic aeroconvective heating on the thermal performance of ceramic flexible insulations considered for potential use as thermal protection systems or thermal insulations for future hypersonic vehicles such as the Reusable Launch Vehicles (RLV's) and other applications where structures require thermal protection from severe heating. The thermal response of these materials after exposure to cyclic aeroconvective heating from a plasma arc is described. The thermal insulations evaluated were Composite Flexible Blanket Insulations composed of an outer layer of aluminoborosilicate fabric and alumina insulation. The insulations were evaluated with and without a high emissivity coating. These insulations were exposed to the plasma arc stream for nine minutes reaching surface temperatures of 1150 C and a heat flux of 10.5 W/sq cm. Insulations were exposed three, six, or nine times in order to demonstrate reusability and to determine the effect oi coatings on the surface durability of these insulations. Test results demonstrated the capability of these insulations to protect either composite or metallic structures from high heating environments. It is shown that high emittance coatings reduce backface temperatures. The durability of these insulations when impacted at low velocities was also demonstrated. The interaction of the coatings with the ceramic fibers was characterized. An analytical thermal model was utilized to correlate experimental thermal test results with calculated values.

  2. Effects of Freestream Turbulence on Turbine Blade Heat Transfer

    NASA Technical Reports Server (NTRS)

    Boyle, Robert J.; Giel, Paul W.; Ames, Forrest E.

    2004-01-01

    Experiments have shown that moderate turbulence levels can nearly double turbine blade stagnation region heat transfer. Data have also shown that heat transfer is strongly affected by the scale of turbulence as well as its level. In addition to the stagnation region, turbulence is often seen to increase pressure surface heat transfer. This is especially evident at low to moderate Reynolds numbers. Vane and rotor stagnation region, and vane pressure surface heat transfer augmentation is often seen in a pre-transition environment. Accurate predictions of transition and relaminarization are critical to accurately predicting blade surface heat transfer. An approach is described which incorporates the effects of both turbulence level and scale into a CFD analysis. The model is derived from experimental data for cylindrical and elliptical leadng edges. Results using this model are compared to experimental data for both vane and rotor geometries. The comparisons are made to illustrate that using a model which includes the effects of turbulence length scale improves agreement with data, and to illustrate where improvements in the modeling are needed.

  3. Heat damaged forages: effects on forage energy content

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Traditionally, educational materials describing the effects of heat damage within baled hays have focused on reduced bioavailability of crude protein as a result of Maillard reactions. These reactions are not simple, but actually occur in complex, multi-step pathways. Typically, the initial step inv...

  4. Effective disinfection of rough rice using infrared radiation heating

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to investigate the effect of infrared (IR) heating and tempering treatments on disinfection of Aspergillus flavus in freshly harvested rough rice and storage rice. Rice samples with initial moisture contents (IMCs) of 14.1 to 27.0% (wet basis) were infected with A. fl...

  5. Reparable, high-density microelectronic module provides effective heat sink

    NASA Technical Reports Server (NTRS)

    Carlson, K. J.; Maytone, F. F.

    1967-01-01

    Reparable modular system is used for packaging microelectronic flat packs and miniature discrete components. This three-dimensional compartmented structure incorporates etched phosphor bronze sheets and frames with etched wire conductors. It provides an effective heat sink for electric power dissipation in the absence of convective cooling means.

  6. Pathway-Dependent Effectiveness of Network Algorithms for Gene Prioritization

    PubMed Central

    Shim, Jung Eun; Hwang, Sohyun; Lee, Insuk

    2015-01-01

    A network-based approach has proven useful for the identification of novel genes associated with complex phenotypes, including human diseases. Because network-based gene prioritization algorithms are based on propagating information of known phenotype-associated genes through networks, the pathway structure of each phenotype might significantly affect the effectiveness of algorithms. We systematically compared two popular network algorithms with distinct mechanisms – direct neighborhood which propagates information to only direct network neighbors, and network diffusion which diffuses information throughout the entire network – in prioritization of genes for worm and human phenotypes. Previous studies reported that network diffusion generally outperforms direct neighborhood for human diseases. Although prioritization power is generally measured for all ranked genes, only the top candidates are significant for subsequent functional analysis. We found that high prioritizing power of a network algorithm for all genes cannot guarantee successful prioritization of top ranked candidates for a given phenotype. Indeed, the majority of the phenotypes that were more efficiently prioritized by network diffusion showed higher prioritizing power for top candidates by direct neighborhood. We also found that connectivity among pathway genes for each phenotype largely determines which network algorithm is more effective, suggesting that the network algorithm used for each phenotype should be chosen with consideration of pathway gene connectivity. PMID:26091506

  7. Effect of Heat and Heat Acclimatization on Cycling Time Trial Performance and Pacing

    PubMed Central

    RACINAIS, SEBASTIEN; PÉRIARD, JULIEN D.; KARLSEN, ANDERS; NYBO, LARS

    2015-01-01

    ABSTRACT Purpose This study aimed to determine the effects of heat acclimatization on performance and pacing during outdoor cycling time trials (TT, 43.4 km) in the heat. Methods Nine cyclists performed three TT in hot ambient conditions (TTH, approximately 37°C) on the first (TTH-1), sixth (TTH-2), and 14th (TTH-3) days of training in the heat. Data were compared with the average of two TT in cool condition (approximately 8°C) performed before and after heat acclimatization (TTC). Results TTH-1 (77 ± 6 min) was slower (P = 0.001) than TTH-2 (69 ± 5 min), and both were slower (P < 0.01) than TTC and TTH-3 (66 ± 3 and 66 ± 4 min, respectively), without differences between TTC and TTH-3 (P > 0.05). The cyclists initiated the first 20% of all TT at a similar power output, irrespective of climate and acclimatization status; however, during TTH-1, they subsequently had a marked decrease in power output, which was partly attenuated after 6 d of acclimatization and was further reduced after 14 d. HR was higher during the first 20% of TTH-1 than that in the other TT (P < 0.05), but there were no differences between conditions from 30% onward. Final rectal temperature was similar in all TTH (40.2°C ± 0.4°C, P = 1.000) and higher than that in TTC (38.5°C ± 0.6°C, P < 0.001). Conclusions After 2 wk of acclimatization, trained cyclists are capable of completing a prolonged TT in a similar time in the heat compared with cool conditions, whereas in the unacclimatized state, they experienced a marked decrease in power output during the TTH. PMID:24977692

  8. Assembly effect of groups in online social networks

    NASA Astrophysics Data System (ADS)

    Fan, W.; Yeung, K. H.; Wong, K. Y.

    2013-03-01

    Due to the popularity and growth of online social networks, security in these networks becomes a critical problem. Previous works have proved that a virus can spread effectively in social networks. In this paper, groups in social networks are studied. We notice that groups on social network services sites can assemble people with similar characteristics, which may promote virus propagation in these networks. After our analysis, it is found that the use of groups can shorten the distance among users, and hence it would cause faster virus spread. We propose a virus propagation model and simulate it in a group network to show the assembly effect of groups. Our result shows that even with only one random attack, a virus can still spread rapidly, and the direct contact among group members is the reason for fast spreading.

  9. Photothermal Effect and Heat Dissipation in a Micromechanical Resonator

    NASA Astrophysics Data System (ADS)

    Kim, Dae Hwan; Lee, Eun Joong; Cho, Myung Rae; Kim, Chul Sung; Park, Yun Daniel; Kouh, Taejoon

    2012-07-01

    We describe the photothermal effect in an aluminium-silicon nitride doubly-clamped beam with an optical deflection scheme. Incident optical power results in the temperature rise in the composite beam and the shift in the resonance frequency due to thermal stress. The observed dynamic response is consistent with the detailed beam equation as well as the thermal conduction model. The pressure-dependent dynamics of the beam allows the investigation of convective heat dissipation due to the surrounding gas molecules as well as determination of heat transfer coefficient. The photothermally coupled operation presented here opens up the prospects for miniaturized pressure-sensing elements.

  10. Heat transfer effects during cold dense gas dispersion

    NASA Astrophysics Data System (ADS)

    Andreiev, G.; Neff, D. E.; Meroney, R. N.

    1983-11-01

    Wind tunnel concentration data were obtained for continuous area releases of isothermal, cold N2, cold CO2 and cold CH4 clouds. Wind tunnel results were compared to field test results and to a computer model simulation. Heat transfer and humidity effects on model concentration distributions were significant for methane plumes when surface Richardson numbers, Ri, were large (i.e., low wind speed and high boiloff rates conditions). At field scales heat transfer and humidity still play a role in the dispersion of methane spill cases, but plume dilution and lift off are not as exaggerated as for the model cases.

  11. Network-scale effect on synchronizability of fully coupled network with connection delay.

    PubMed

    Zheng, Y G; Wang, Z H

    2016-04-01

    Network-scale effect on synchronizability of fully coupled network with connection delay is investigated in this paper. The master stability function, which governs the stability of synchronization manifold, is first obtained by separating the synchronization manifold direction from other transverse directions. Then, by introducing a new time variable in the master stability function, it is shown the effect of connection delay can be weakened with the increase of network scale, and thus, in contrast to the situation without connection delay, large network scale is more positive to the synchronizability of fully coupled network with connection delay. Those findings are confirmed by the studies on two specific networks with nodes of typical nonlinear dynamical systems. PMID:27131482

  12. Enhancing Extreme Heat Health-Related Intervention and Preparedness Activities Using Remote Sensing Analysis of Daily Surface Temperature, Surface Observation Networks and Ecmwf Reanalysis

    NASA Astrophysics Data System (ADS)

    Garcia, R. L.; Booth, J.; Hondula, D.; Ross, K. W.; Stuyvesant, A.; Alm, G.; Baghel, E.

    2015-12-01

    Extreme heat causes more human fatalities in the United States than any other natural disaster, elevating the concern of heat-related mortality. Maricopa County Arizona is known for its high heat index and its sprawling metropolitan complex which makes this region a perfect candidate for human health research. Individuals at higher risk are unequally spatially distributed, leaving the poor, homeless, non-native English speakers, elderly, and the socially isolated vulnerable to heat events. The Arizona Department of Health Services, Arizona State University and NASA DEVELOP LaRC are working to establish a more effective method of placing hydration and cooling centers in addition to enhancing the heat warning system to aid those with the highest exposure. Using NASA's Earth Observation Systems from Aqua and Terra satellites, the daily spatial variability within the UHI was quantified over the summer heat seasons from 2005 - 2014, effectively establishing a remotely sensed surface temperature climatology for the county. A series of One-way Analysis of Variance revealed significant differences between daily surface temperature averages of the top 30% of census tracts within the study period. Furthermore, synoptic upper tropospheric circulation patterns were classified to relate surface weather types and heat index. The surface weather observation networks were also reviewed for analyzing the veracity of the other methods. The results provide detailed information regarding nuances within the UHI effect and will allow pertinent recommendations regarding the health department's adaptive capacity. They also hold essential components for future policy decision-making regarding appropriate locations for cooling centers and efficient warning systems.

  13. Effects of passive heat stress on human somatosensory processing.

    PubMed

    Nakata, Hiroki; Oshiro, Misaki; Namba, Mari; Shibasaki, Manabu

    2015-12-01

    Herein, we investigated the effects of passive heat stress on human somatosensory processing recorded by somatosensory-evoked potentials (SEPs). Fifteen healthy subjects received a median nerve stimulation at the left wrist under two thermal conditions: Heat Stress and normothermic Time Control. The latencies and amplitudes of P14, N20, P25, N35, P45, and N60 at C4' and P14, N18, P22, and N30 at Fz were evaluated. Under the Heat Stress condition, SEPs were recorded at normothermic baseline (1st), early in heat stress (2nd), when esophageal temperature had increased by ~1.0°C (3rd) and ~2.0°C (4th), and after heat stress (5th). In the Time Control condition, SEPs were measured at the same time intervals as those in the Heat Stress condition. The peak latencies and amplitudes of SEPs did not change early in heat stress. However, the latencies of P14, N20, and N60 at C4' and P14, N18, and P22 at Fz were significantly shorter in the 4th session than in the 1st session. Furthermore, the peak amplitudes of P25 and N60 at C4', and P22 and N30 at Fz decreased with increases in body temperature. On the other hand, under the Time Control condition, no significant differences were observed in the amplitudes or latencies of any component of SEPs. These results suggested that the conduction velocity of the ascending somatosensory input was accelerated by increases in body temperature, and hyperthermia impaired the neural activity of cortical somatosensory processing. PMID:26468258

  14. Comparative-effectiveness research in distributed health data networks.

    PubMed

    Toh, S; Platt, R; Steiner, J F; Brown, J S

    2011-12-01

    Comparative-effectiveness research (CER) can be conducted within a distributed health data network. Such networks allow secure access to separate data sets from different data partners and overcome many practical obstacles related to patient privacy, data security, and proprietary concerns. A scalable network architecture supports a wide range of CER activities and meets the data infrastructure needs envisioned by the Federal Coordinating Council for Comparative Effectiveness Research. PMID:22030567

  15. Synergistic Effects of Toxic Elements on Heat Shock Proteins

    PubMed Central

    Mahmood, Khalid; Mahmood, Qaisar; Irshad, Muhammad; Hussain, Jamshaid

    2014-01-01

    Heat shock proteins show remarkable variations in their expression levels under a variety of toxic conditions. A research span expanded over five decades has revealed their molecular characterization, gene regulation, expression patterns, vast similarity in diverse groups, and broad range of functional capabilities. Their functions include protection and tolerance against cytotoxic conditions through their molecular chaperoning activity, maintaining cytoskeleton stability, and assisting in cell signaling. However, their role as biomarkers for monitoring the environmental risk assessment is controversial due to a number of conflicting, validating, and nonvalidating reports. The current knowledge regarding the interpretation of HSPs expression levels has been discussed in the present review. The candidature of heat shock proteins as biomarkers of toxicity is thus far unreliable due to synergistic effects of toxicants and other environmental factors. The adoption of heat shock proteins as “suit of biomarkers in a set of organisms” requires further investigation. PMID:25136596

  16. Effects of wake passing on stagnation region heat transfer

    NASA Astrophysics Data System (ADS)

    O'Brien, J. E.

    In the present experimental study, an annular-flow wind tunnel fitted with a spoked-wheel wake generator was used to ascertain both time-averaged and time-resolved effects of wake passing in a cylinder stagnation region; the cylindrical spokes generated wakes simulating those of a turbine inlet guide vanes. The time-averaged heat transfer results obtained indicate an asymmetric heat-transfer coefficient distribution about the stagnation line, with higher heat-transfer coefficients on the side corresponding to the suction side of the turbine blade. Spectra of the hot-film records indicate that vortex-shedding is a major contributor to the unsteady buffeting of the test-cylinder boundary layer at circumferential stations located at both + and -60 deg from the stagnation line, despite making only a minor contribution to the stagnation line itself.

  17. Effect of re-heating on the hot electron temperature

    SciTech Connect

    Estabrook, K.; Rosen, M.

    1980-06-17

    Resonant absorption is the direct conversion of the transverse laser light to longitudinal electron plasma waves (epw) at the critical density (10/sup 21/ (1.06 ..mu..m/lambda/sub 0/)/sup 2/ cm/sup -3/). The oscillating longitudinal electric field of the epw heats the electrons by accelerating them down the density gradient to a temperature of approximately 21T/sub e//sup 0/ /sup 25/ ((I(W/cm/sup 2/)/10/sup 16/)(lambda/sub 0//1.06 ..mu..m)/sup 2/)/sup 0/ /sup 4/. This section extends the previous work by studying the effects of magnetic fields and collisions (albedo) which return the heated electrons for further heating. A magnetic field increases their temperature and collisions do not.

  18. Scale effects in the latent heat of melting in nanopores.

    PubMed

    Shin, J-H; Parlange, J-Y; Deinert, M R

    2013-07-28

    The curvature of a liquid vapor interface has long been known to change the equilibrium vapor pressure. It has also been shown that a capillary structure will affect the temperature at which both freezing and vaporization of a substance will occur. However, describing interfacial effects on the latent heat of a phase change has proven more difficult. Here, we present a classical thermodynamic model for how the latent heat of melting changes as the size of the particles undergoing the transition decreases. The scale dependence for the surface tension is taken into consideration using a Tolman length correction. The resulting model is tested by fitting to published experimental data for the latent heat of melting for benzene, heptane, naphthalene, and water contained in nano-porous glass. In all cases the model fits the data with a R(2) ≥ 0.94. PMID:23901997

  19. Entropic Heat Effects in Aluminum Electrolysis Cells with Inert Anodes

    NASA Astrophysics Data System (ADS)

    Solheim, Asbjørn

    2016-04-01

    While the overall energy requirement for the aluminum electrolysis is well known and can be calculated from readily available thermodynamic data, the distribution of the different types of energy to the anode, the cathode, and the electrolyte is not straightforward. The present attempt is based on the application of activity data including partial entropies on the electrode reactions in a cell operating with inert anodes. The calculations indicate that the cell reaction implies a relatively strong cooling of the anode, a moderate heating of the cathode, and a moderate cooling of the electrolyte. The mass- and heat transfer coefficients at the anode in a cell with inert anodes were estimated. The electrolyte at the anode will be higher in aluminum fluoride, lower in alumina, and colder than the bulk of the electrolyte. The cooling and heating effects are only marginally different from the situation prevailing in traditional aluminum electrolysis cells with carbon anodes.

  20. Experimental study of surfactant effects on pool boiling heat transfer

    SciTech Connect

    Ying Liang Tzan; Yu Min Yang )

    1990-02-01

    In the first part of this work, nucleate boiling of aqueous solutions of sodium lauryl sulfate (SLS) over relatively wide ranges of concentration and heat flux was carried out in a pool boiling apparatus. The experimental results show that a small amount of surface active additive makes the nucleate boiling heat transfer coefficient h considerably higher, and that there is an optimum additive concentration for higher heat fluxes. Beyond this optimum point, further increase in additive concentration makes h lower. In the second part of this work, nucleate boiling heat transfer rate for n-propanol-water binary mixtures with various amounts of sodium lauryl sulfate were measured in the same pool boiling apparatus. The importance of the mass diffusion effect, which is caused by preferential evaporation of the more volatile component at the vapor-liquid interface on the boiling of the binary mixture, has been confirmed. However, it is shown that the effect exerted by the addition of a surfactant dominates over the mass diffusion effect in dilute binary mixtures.

  1. Analysis of hot streak effects on turbine rotor heat load

    SciTech Connect

    Shang, T.; Epstein, A.H.

    1997-07-01

    The influence of inlet hot streak temperature distortion on turbine blade heat load was explored on a transonic axial flow turbine stage test article using a three-dimensional, multiblade row unsteady Euler code. The turbine geometry was the same as that used for a recently reported testing of hot streak influence. Emphasis was placed on elucidating the physical and mechanisms by which hot streaks affect turbine durability. It was found that temperature distortion significantly increases both blade surface heat load nonuniformity and total blade heat load by as much as 10--30% (mainly in the pressure surface), and that the severity of this influence is a strong function of turbine geometry and flow conditions. Three physical mechanisms were identified that drive the heat load nonuniformity: buoyancy, wake convection (the Kerrebrock-Mikolajczak effect), and rotor-stator interactions. The latter can generate significant nonuniformity of the time-averaged relative frame rotor inlet temperature distribution. Dependence of these effects on turbine design variables was investigated to shed light on the design space, which minimizes the adverse effects of hot streaks.

  2. Effects of dynamic heat fluxes on model climate sensitivity Meridional sensible and latent heat fluxes

    NASA Technical Reports Server (NTRS)

    Gutowski, W. J., Jr.; Wang, W.-C.; Stone, P. H.

    1985-01-01

    The high- and low-latitude radiative-dynamic (HLRD) climatic model of Wang et al. (1984) was used to study the effect of meridional heat (MH) fluxes on climate changes caused by increases of CO2 abundance and solar constant variations. However, the empirical MH parameterization of the HLRD model was replaced by physically based parameterization, which gives separate meridional sensible and latent heat fluxes and provides a complete representation of the dependence of the flux on the mean temperature field. Both parameterization methods yielded about the same changes in global mean surface temperature and ice line, and both produced only small changes in meridional temperature gradient, although the latter were even smaller with the physically based parameterizations. At any latitude, the hemispheric mean surface temperature, rather than MH fluxes, dominates the surface temperature changes.

  3. Effect of heat treatment on stainless steel orthodontic wires.

    PubMed

    Cuoghi, Osmar Aparecido; Kasbergen, Geraldo Francisco; Santos, Paulo Henrique dos; Mendonça, Marcos Rogério de; Tondelli, Pedro Marcelo

    2011-01-01

    This study evaluated the effect of heat treatment on CrNi stainless steel orthodontic archwires. Half of forty archwires of each thickness - 0.014" (0.35 mm), 0.016" (0.40 mm), 0.018" (0.45 mm) and 0.020" (0.50 mm) (totalling 160 archwires) - were subjected to heat treatment while the remainder were not. All of the archwires had their individual thickness measured in the anterior and posterior regions using AutoCad 2000 software before and after compressive and tensile strength testing. The data was statistically analysed utilising multivariance ANOVA at a 5% significance level. All archwires without heat treatment that were subjected to tensile strength testing presented with anterior opening, which was more accentuated in the 0.020" archwires. In the posterior region, the opening produced by the tensile force was more accentuated in the archwires without heat treatment. There was greater stability in the thermally treated archwires, especially those subjected to tensile strength testing, which indicates that the heat treatment of orthodontic archwires establishes a favourable and indispensable condition to preserve the intercanine width. PMID:21359492

  4. A simple and effective heat induced antigen retrieval method

    PubMed Central

    K.R., Vinod; Jones, Denny; Udupa, Venkatesha

    2016-01-01

    In this paper, we describe an additional step to the standard method of heat induced antigen retrieval to improve the detection of antibody staining of formalin fixed paraffin embedded tissue sections. Direct heating of tissues in buffer is an efficient epitope retrieval method but often results in the damage or loss of tissues. In this modified method, before keeping in buffer for heating, we overlapped the tissue on the slide with a plain slide by clipping one end using a normal paperclip, keeping a minimum gap between the slides. Tissues heated in this way in buffer had following advantages over normal heat treatment for epitope retrieval. • Tissues were intact even at high temperatures which improved the quality of staining by preventing fold, damage or detachment of tissues from the slides. • The method is very safe and economical compared to the methods using microwave or pressure cooker. • This simple method also appears to be very effective and less time consuming compared to the existing methods. PMID:27158596

  5. Spectral Effects on Fast Wave Core Heating and Current Drive

    SciTech Connect

    C.K. Phillips, R.E. Bell, L.A. Berry, P.T. Bonoli, R.W. Harvey, J.C. Hosea, E.F. Jaeger, B.P. LeBlanc, P.M. Ryan, G. Taylor, E.J. Valeo, J.R. Wilson, J.C. Wright, H. Yuh, and the NSTX Team

    2009-05-11

    Recent results obtained with high harmonic fast wave (HHFW) heating and current drive (CD) on NSTX strongly support the hypothesis that the onset of perpendicular fast wave propagation right at or very near the launcher is a primary cause for a reduction in core heating efficiency at long wavelengths that is also observed in ICRF heating experiments in numerous tokamaks. A dramatic increase in core heating efficiency was first achieved in NSTX L-mode helium majority plasmas when the onset for perpendicular wave propagation was moved away from the antenna and nearby vessel structures. Efficient core heating in deuterium majority L mode and H mode discharges, in which the edge density is typically higher than in comparable helium majority plasmas, was then accomplished by reducing the edge density in front of the launcher with lithium conditioning and avoiding operational points prone to instabilities. These results indicate that careful tailoring of the edge density profiles in ITER should be considered to limit rf power losses to the antenna and plasma facing materials. Finally, in plasmas with reduced rf power losses in the edge regions, the first direct measurements of high harmonic fast wave current drive were obtained with the motional Stark effect (MSE) diagnostic. The location and radial dependence of HHFW CD measured by MSE are in reasonable agreement with predictions from both full wave and ray tracing simulations.

  6. Spectral effects on fast wave core heating and current drive

    SciTech Connect

    Phillips, Cynthia; Bell, R. E.; Berry, Lee; Jaeger, Erwin Frederick; Ryan, Philip Michael; Wilgen, John B

    2009-01-01

    Recent results obtained with high harmonic fast wave (HHFW) heating and current drive (CD) on NSTX strongly support the hypothesis that the onset of perpendicular fast wave propagation right at or very near the launcher is a primary cause for a reduction in core heating efficiency at long wavelengths that is also observed in ICRF heating experiments in numerous tokamaks. A dramatic increase in core heating efficiency was first achieved in NSTX L-mode helium majority plasmas when the onset for perpendicular wave propagation was moved away from the antenna and nearby vessel structures. Efficient core heating in deuterium majority L-mode and H-mode discharges, in which the edge density is typically higher than in comparable helium majority plasmas, was then accomplished by reducing the edge density in front of the launcher with lithium conditioning and avoiding operational points prone to instabilities. These results indicate that careful tailoring of the edge density profiles in ITER should be considered to limit radio frequency (rf) power losses to the antenna and plasma facing materials. Finally, in plasmas with reduced rf power losses in the edge regions, the first direct measurements of HHFW CD were obtained with the motional Stark effect (MSE) diagnostic. The location and radial dependence of HHFW CD measured by MSE are in reasonable agreement with predictions from both full wave and ray tracing simulations.

  7. Pressure Gradient Effects on Hypersonic Cavity Flow Heating

    NASA Technical Reports Server (NTRS)

    Everhart, Joel L.; Alter, Stephen J.; Merski, N. Ronald; Wood, William A.; Prabhu, Ramdas K.

    2007-01-01

    The effect of a pressure gradient on the local heating disturbance of rectangular cavities tested at hypersonic freestream conditions has been globally assessed using the two-color phosphor thermography method. These experiments were conducted in the Langley 31-Inch Mach 10 Tunnel and were initiated in support of the Space Shuttle Return-To-Flight Program. Two blunted-nose test surface geometries were developed, including an expansion plate test surface with nearly constant negative pressure gradient and a flat plate surface with nearly zero pressure gradient. The test surface designs and flow characterizations were performed using two-dimensional laminar computational methods, while the experimental boundary layer state conditions were inferred using the measured heating distributions. Three-dimensional computational predictions of the entire model geometry were used as a check on the design process. Both open-flow and closed-flow cavities were tested on each test surface. The cavity design parameters and the test condition matrix were established using the computational predictions. Preliminary conclusions based on an analysis of only the cavity centerline data indicate that the presence of the pressure gradient did not alter the open cavity heating for laminar-entry/laminar-exit flows, but did raise the average floor heating for closed cavities. The results of these risk-reduction studies will be used to formulate a heating assessment of potential damage scenarios occurring during future Space Shuttle flights.

  8. Pressure Gradient Effects on Hypersonic Cavity Flow Heating

    NASA Technical Reports Server (NTRS)

    Everhart, Joel L.; Alter, Stephen J.; Merski, N. Ronald; Wood, William A.; Prabhu, Ramadas K.

    2006-01-01

    The effect of a pressure gradient on the local heating disturbance of rectangular cavities tested at hypersonic freestream conditions has been globally assessed using the two-color phosphor thermography method. These experiments were conducted in the Langley 31-Inch Mach 10 Tunnel and were initiated in support of the Space Shuttle Return-To-Flight Program. Two blunted-nose test surface geometries were developed, including an expansion plate test surface with nearly constant negative pressure gradient and a flat plate surface with nearly zero pressure gradient. The test surface designs and flow characterizations were performed using two-dimensional laminar computational methods, while the experimental boundary layer state conditions were inferred using the measured heating distributions. Three-dimensional computational predictions of the entire model geometry were used as a check on the design process. Both open-flow and closed-flow cavities were tested on each test surface. The cavity design parameters and the test condition matrix were established using the computational predictions. Preliminary conclusions based on an analysis of only the cavity centerline data indicate that the presence of the pressure gradient did not alter the open cavity heating for laminar-entry/laminar-exit flows, but did raise the average floor heating for closed cavities. The results of these risk-reduction studies will be used to formulate a heating assessment of potential damage scenarios occurring during future Space Shuttle flights.

  9. Effective Heat therapy Controlling Heat Deposition of Microbubbles in the Ultrasound Field

    NASA Astrophysics Data System (ADS)

    Kaneko, Yukio; Iida, Naoyuki; Matsumoto, Yoichiro

    2007-05-01

    It is required that the tumor site is coagulated less invasively and more efficiently, and HIFU treatment combined with microbubbles is investigated here. Microbubbles have a potential to enhance the heating effect in the ultrasound field. In this study, the relationship between the thermal effect and the behavior of microbubbles is analyzed. The temperature rise at the focal region was measured by a thermocouple, and the bubble behavior was simultaneously observed with a high-speed camera. The ultrasound frequency was 2.2 MHz and the intensity was 1000 - 5000 W/cm2. This time Levovist®, one of the contrast agents, was used as microbubbles, and the initial void fraction (the ratio of total gas volume to liquid) around the focal region was 0, 10-5, 10-4, 10-3 and 10-2%. The temperature rise became larger as the intensity of ultrasound and the void fraction increased. Comparing the data of the thermocouple with the photographs taken by the camera, the temperature rise became large as the bubbles were violently generated. When the ratio of heat energy to input acoustic energy for first 1 second irradiation is considered, the ratio mainly depends on the initial void fraction, and it becomes larger as the void fraction increases. On the other hand, when the ratio for 30 seconds is considered, it becomes smaller as the intensity of ultrasound increases. It is indicated that this is because resonance size of bubbles decrease during HIFU irradiation, for example, the microbubbles may break up or dissolve in water, or the bubbles grow too larger by the effect of rectified diffusion or coalescence. It is very important to consider the relationship between the thermal effect and the behavior of bubbles in the ultrasound field in order to control the heating effect of microbubbles and realize microbubble-enhanced HIFU treatment.

  10. Effective disinfection of rough rice using infrared radiation heating.

    PubMed

    Wang, Bei; Khir, Ragab; Pan, Zhongli; El-Mashad, Hamed; Atungulu, Griffiths G; Ma, Haile; McHugh, Tara H; Qu, Wenjuan; Wu, Bengang

    2014-09-01

    The objective of this study was to investigate the effect of infrared (IR) heating and tempering treatments on disinfection of Aspergillus flavus in freshly harvested rough rice and storage rice. Rice samples with initial moisture contents (IMCs) of 14.1 to 27.0% (wet basis) were infected with A. flavus spores before the tests. The infected samples were heated by IR radiation to 60°C in less than 1 min, and then samples were tempered at 60°C for 5, 10, 20, 30, 60, or 120 min. High heating rates and corresponding high levels of moisture removal were achieved using IR heating. The highest total moisture removal was 5.3% for the fresh rice with an IMC of 27.0% after IR heating and then 120 min of tempering. IR heating followed by tempering for 120 min resulted in 2.5- and 8.3-log reductions of A. flavus spores in rough rice with the lowest and highest IMCs, respectively. To study the effect on disinfection of rewetting dried storage rice, the surface of the dry rice was rewetted to achieve IMCs of 14.7 to 19.4% (wet basis). The rewetting process for the dry rice had a significant effect on disinfection. IR heating followed by tempering for 60 min resulted in 7.2-log reductions in A. flavus on rewetted rough rice. The log-linear plus tail model was applied to estimate the tempering time needed to achieve a 5-log reduction of A. flavus in rice of different IMCs. At least 30 and 20 min of tempering were needed for fresh rice and rewetted rice, respectively, with the highest IMCs. The recommended conditions of simultaneous disinfection and drying for fresh rice was IR heating to 60°C followed by tempering for 120 min and natural cooling, resulting in a final MC of 16.5 to 22.0%, depending on the IMC. For the rewetted dry rice with an IMC of 19.4%, the recommended condition for disinfection and drying involved only 20 min of tempering. The final MC of the sample was 13.8%, which is a safe MC for storage rice. PMID:25198845

  11. Network cloning unfolds the effect of clustering on dynamical processes

    NASA Astrophysics Data System (ADS)

    Faqeeh, Ali; Melnik, Sergey; Gleeson, James P.

    2015-05-01

    We introduce network L -cloning, a technique for creating ensembles of random networks from any given real-world or artificial network. Each member of the ensemble is an L -cloned network constructed from L copies of the original network. The degree distribution of an L -cloned network and, more importantly, the degree-degree correlation between and beyond nearest neighbors are identical to those of the original network. The density of triangles in an L -cloned network, and hence its clustering coefficient, is reduced by a factor of L compared to those of the original network. Furthermore, the density of loops of any fixed length approaches zero for sufficiently large values of L . Other variants of L -cloning allow us to keep intact the short loops of certain lengths. As an application, we employ these network cloning methods to investigate the effect of short loops on dynamical processes running on networks and to inspect the accuracy of corresponding tree-based theories. We demonstrate that dynamics on L -cloned networks (with sufficiently large L ) are accurately described by the so-called adjacency tree-based theories, examples of which include the message passing technique, some pair approximation methods, and the belief propagation algorithm used respectively to study bond percolation, SI epidemics, and the Ising model.

  12. Effects of substrate network topologies on competition dynamics

    NASA Astrophysics Data System (ADS)

    Lee, Sang Hoon; Jeong, Hawoong

    2006-08-01

    We study a competition dynamics, based on the minority game, endowed with various substrate network structures. We observe the effects of the network topologies by investigating the volatility of the system and the structure of follower networks. The topology of substrate structures significantly influences the system efficiency represented by the volatility and such substrate networks are shown to amplify the herding effect and cause inefficiency in most cases. The follower networks emerging from the leadership structure show a power-law incoming degree distribution. This study shows the emergence of scale-free structures of leadership in the minority game and the effects of the interaction among players on the networked version of the game.

  13. Enhancing Classroom Effectiveness through Social Networking Tools

    ERIC Educational Resources Information Center

    Kurthakoti, Raghu; Boostrom, Robert E., Jr.; Summey, John H.; Campbell, David A.

    2013-01-01

    To determine the usefulness of social networking Web sites such as Ning.com as a communication tool in marketing courses, a study was designed with special concern for social network use in comparison to Blackboard. Students from multiple marketing courses were surveyed. Assessments of Ning.com and Blackboard were performed both to understand how…

  14. Adverse effects of prohibiting narrow provider networks.

    PubMed

    Howard, David H

    2014-08-14

    Many insurers participating in the new insurance exchanges are controlling costs by offering plans with narrow provider networks. Proposed regulations would promote network adequacy, but a pro-provider stance may not be inherently pro-consumer or even pro-patient. PMID:25119604

  15. Revealing effective classifiers through network comparison

    NASA Astrophysics Data System (ADS)

    Gallos, Lazaros K.; Fefferman, Nina H.

    2014-11-01

    The ability to compare complex systems can provide new insight into the fundamental nature of the processes captured, in ways that are otherwise inaccessible to observation. Here, we introduce the n-tangle method to directly compare two networks for structural similarity, based on the distribution of edge density in network subgraphs. We demonstrate that this method can efficiently introduce comparative analysis into network science and opens the road for many new applications. For example, we show how the construction of a “phylogenetic tree” across animal taxa according to their social structure can reveal commonalities in the behavioral ecology of the populations, or how students create similar networks according to the University size. Our method can be expanded to study many additional properties, such as network classification, changes during time evolution, convergence of growth models, and detection of structural changes during damage.

  16. Self-Heating Effects In Polysilicon Source Gated Transistors

    PubMed Central

    Sporea, R. A.; Burridge, T.; Silva, S. R. P.

    2015-01-01

    Source-gated transistors (SGTs) are thin-film devices which rely on a potential barrier at the source to achieve high gain, tolerance to fabrication variability, and low series voltage drop, relevant to a multitude of energy-efficient, large-area, cost effective applications. The current through the reverse-biased source barrier has a potentially high positive temperature coefficient, which may lead to undesirable thermal runaway effects and even device failure through self-heating. Using numerical simulations we show that, even in highly thermally-confined scenarios and at high current levels, self-heating is insufficient to compromise device integrity. Performance is minimally affected through a modest increase in output conductance, which may limit the maximum attainable gain. Measurements on polysilicon devices confirm the simulated results, with even smaller penalties in performance, largely due to improved heat dissipation through metal contacts. We conclude that SGTs can be reliably used for high gain, power efficient analog and digital circuits without significant performance impact due to self-heating. This further demonstrates the robustness of SGTs. PMID:26351099

  17. Effects of heat treatment parameters on liquid whole egg proteins.

    PubMed

    Uysal, Reyhan Selin; Boyacı, İsmail Hakkı; Soykut, Esra Acar; Ertaş, Nusret

    2017-02-01

    The aim of this study was to analyse the effect of heat treatment parameters on liquid whole egg (LWE) proteins by using ultraviolet-visible (UV-VIS) spectroscopy and capillary electrophoresis (CE). Heat treatment (at 60-68°C for 1-5min) was applied to LWE. Treated LWE was centrifuged and supernatant was taken for measurement of UV-VIS spectroscopy and CE. The change in UV absorbance showed loss of protein solubility depending on heat treatments parameters. Electropherograms of samples demonstrated the effect of treatment parameters on composition of LWE proteins. It was found that conalbumin and lysozyme were influenced by the treatment, while ovalbumin and ovomucoid were not affected. CE combined with principal component analysis (PCA) was used for classification of samples untreated or treated and treated at different treatment parameters. The results of the study revealed that the extent of heat treatment in LWE samples could be determined with PCA of the CE measurements. PMID:27596410

  18. Self-Heating Effects In Polysilicon Source Gated Transistors.

    PubMed

    Sporea, R A; Burridge, T; Silva, S R P

    2015-01-01

    Source-gated transistors (SGTs) are thin-film devices which rely on a potential barrier at the source to achieve high gain, tolerance to fabrication variability, and low series voltage drop, relevant to a multitude of energy-efficient, large-area, cost effective applications. The current through the reverse-biased source barrier has a potentially high positive temperature coefficient, which may lead to undesirable thermal runaway effects and even device failure through self-heating. Using numerical simulations we show that, even in highly thermally-confined scenarios and at high current levels, self-heating is insufficient to compromise device integrity. Performance is minimally affected through a modest increase in output conductance, which may limit the maximum attainable gain. Measurements on polysilicon devices confirm the simulated results, with even smaller penalties in performance, largely due to improved heat dissipation through metal contacts. We conclude that SGTs can be reliably used for high gain, power efficient analog and digital circuits without significant performance impact due to self-heating. This further demonstrates the robustness of SGTs. PMID:26351099

  19. Self-Heating Effects In Polysilicon Source Gated Transistors

    NASA Astrophysics Data System (ADS)

    Sporea, R. A.; Burridge, T.; Silva, S. R. P.

    2015-09-01

    Source-gated transistors (SGTs) are thin-film devices which rely on a potential barrier at the source to achieve high gain, tolerance to fabrication variability, and low series voltage drop, relevant to a multitude of energy-efficient, large-area, cost effective applications. The current through the reverse-biased source barrier has a potentially high positive temperature coefficient, which may lead to undesirable thermal runaway effects and even device failure through self-heating. Using numerical simulations we show that, even in highly thermally-confined scenarios and at high current levels, self-heating is insufficient to compromise device integrity. Performance is minimally affected through a modest increase in output conductance, which may limit the maximum attainable gain. Measurements on polysilicon devices confirm the simulated results, with even smaller penalties in performance, largely due to improved heat dissipation through metal contacts. We conclude that SGTs can be reliably used for high gain, power efficient analog and digital circuits without significant performance impact due to self-heating. This further demonstrates the robustness of SGTs.

  20. Prediction of Relaminarization Effects on Turbine Blade Heat Transfer

    NASA Technical Reports Server (NTRS)

    Boyle, R. J.; Giel, P. W.

    2001-01-01

    An approach to predicting turbine blade heat transfer when turbulent flow relaminarizes due to strong favorable pressure gradients is described. Relaminarization is more likely to occur on the pressure side of a rotor blade. While stators also have strong favorable pressure gradients, the pressure surface is less likely to become turbulent at low to moderate Reynolds numbers. Accounting for the effects of relaminarization for blade heat transfer can substantially reduce the predicted rotor surface heat transfer. This in turn can lead to reduced rotor cooling requirements. Two-dimensional midspan Navier-Stokes analyses were done for each of eighteen test cases using eleven different turbulence models. Results showed that including relaminarization effects generally improved the agreement with experimental data. The results of this work indicate that relatively small changes in rotor shape can be utilized to extend the likelihood of relaminarization to high Reynolds numbers. Predictions showing how rotor blade heat transfer at a high Reynolds number can be reduced through relaminarization are given.

  1. The Effect of Social Network Diagrams on a Virtual Network of Practice: A Korean Case

    ERIC Educational Resources Information Center

    Jo, Il-Hyun

    2009-01-01

    This study investigates the effect of the presentation of social network diagrams on virtual team members' interaction behavior via e-mail. E-mail transaction data from 22 software developers in a Korean IT company was analyzed and depicted as diagrams by social network analysis (SNA), and presented to the members as an intervention. Results…

  2. Geographical effect on small-world network synchronization

    NASA Astrophysics Data System (ADS)

    Yin, Chuan-Yang; Wang, Bing-Hong; Wang, Wen-Xu; Chen, Guan-Rong

    2008-02-01

    We investigate the geographical effect on the synchronization of small-world oscillator networks. We construct small-world geographical networks by randomly adding links to one- and two-dimensional regular lattices, and we find that the synchronizability is a nonmonotonic function of both the coupling strength and the geographical distance of randomly added shortcuts. Our findings demonstrate that the geographical effect plays an important role in network synchronization, which may shed some light on the study of collective dynamics of complex networks.

  3. Effects of Heat Shock on Amino Acid Metabolism of Cowpea Cells 1

    PubMed Central

    Mayer, Randall R.; Cherry, Joe H.; Rhodes, David

    1990-01-01

    differential effects of heat stress on metabolic rates lead to flux and pool size redistributions throughout the entire network of amino acid metabolism. PMID:16667781

  4. Gene Networks in the Wild: Identifying Transcriptional Modules that Mediate Coral Resistance to Experimental Heat Stress

    PubMed Central

    Rose, Noah H.; Seneca, Francois O.; Palumbi, Stephen R.

    2016-01-01

    Organisms respond to environmental variation partly through changes in gene expression, which underlie both homeostatic and acclimatory responses to environmental stress. In some cases, so many genes change in expression in response to different influences that understanding expression patterns for all these individual genes becomes difficult. To reduce this problem, we use a systems genetics approach to show that variation in the expression of thousands of genes of reef-building corals can be explained as variation in the expression of a small number of coexpressed “modules.” Modules were often enriched for specific cellular functions and varied predictably among individuals, experimental treatments, and physiological state. We describe two transcriptional modules for which expression levels immediately after heat stress predict bleaching a day later. One of these early “bleaching modules” is enriched for sequence-specific DNA-binding proteins, particularly E26 transformation-specific (ETS)-family transcription factors. The other module is enriched for extracellular matrix proteins. These classes of bleaching response genes are clear in the modular gene expression analysis we conduct but are much more difficult to discern in single gene analyses. Furthermore, the ETS-family module shows repeated differences in expression among coral colonies grown in the same common garden environment, suggesting a heritable genetic or epigenetic basis for these expression polymorphisms. This finding suggests that these corals harbor high levels of gene-network variation, which could facilitate rapid evolution in the face of environmental change. PMID:26710855

  5. α-Crystallin-Type Heat Shock Proteins: Socializing Minichaperones in the Context of a Multichaperone Network

    PubMed Central

    Narberhaus, Franz

    2002-01-01

    α-Crystallins were originally recognized as proteins contributing to the transparency of the mammalian eye lens. Subsequently, they have been found in many, but not all, members of the Archaea, Bacteria, and Eucarya. Most members of the diverse α-crystallin family have four common structural and functional features: (i) a small monomeric molecular mass between 12 and 43 kDa; (ii) the formation of large oligomeric complexes; (iii) the presence of a moderately conserved central region, the so-called α-crystallin domain; and (iv) molecular chaperone activity. Since α-crystallins are induced by a temperature upshift in many organisms, they are often referred to as small heat shock proteins (sHsps) or, more accurately, α-Hsps. α-Crystallins are integrated into a highly flexible and synergistic multichaperone network evolved to secure protein quality control in the cell. Their chaperone activity is limited to the binding of unfolding intermediates in order to protect them from irreversible aggregation. Productive release and refolding of captured proteins into the native state requires close cooperation with other cellular chaperones. In addition, α-Hsps seem to play an important role in membrane stabilization. The review compiles information on the abundance, sequence conservation, regulation, structure, and function of α-Hsps with an emphasis on the microbial members of this chaperone family. PMID:11875128

  6. Gene Networks in the Wild: Identifying Transcriptional Modules that Mediate Coral Resistance to Experimental Heat Stress.

    PubMed

    Rose, Noah H; Seneca, Francois O; Palumbi, Stephen R

    2016-01-01

    Organisms respond to environmental variation partly through changes in gene expression, which underlie both homeostatic and acclimatory responses to environmental stress. In some cases, so many genes change in expression in response to different influences that understanding expression patterns for all these individual genes becomes difficult. To reduce this problem, we use a systems genetics approach to show that variation in the expression of thousands of genes of reef-building corals can be explained as variation in the expression of a small number of coexpressed "modules." Modules were often enriched for specific cellular functions and varied predictably among individuals, experimental treatments, and physiological state. We describe two transcriptional modules for which expression levels immediately after heat stress predict bleaching a day later. One of these early "bleaching modules" is enriched for sequence-specific DNA-binding proteins, particularly E26 transformation-specific (ETS)-family transcription factors. The other module is enriched for extracellular matrix proteins. These classes of bleaching response genes are clear in the modular gene expression analysis we conduct but are much more difficult to discern in single gene analyses. Furthermore, the ETS-family module shows repeated differences in expression among coral colonies grown in the same common garden environment, suggesting a heritable genetic or epigenetic basis for these expression polymorphisms. This finding suggests that these corals harbor high levels of gene-network variation, which could facilitate rapid evolution in the face of environmental change. PMID:26710855

  7. Effects of welding heat input on microstructure and hardness in heat-affected zone of HQ130 steel

    NASA Astrophysics Data System (ADS)

    Sun, J. S.; Wu, C. S.; Sun, J. S.

    2001-01-01

    There are two parts of the heat input in gas-metal arc welding (GMAW): one is the arc heat flux and the other is the heat content of filler metal droplets. This paper introduces a new mode of arc heat flux density distribution on the deformed GMAW weldpool surface. A numerical model of fluid flow and temperature field in GMAW is established according to the new mode of arc heat flux distribution. By using a numerical simulation technique, the effects of welding heat input on microstructure and hardness in HAZ of HQ130 steel are studied. The dimensions of Austenitic grains and hardness in different locations in HAZ of HQ130 steel are calculated under different welding heat inputs. Experiments show that the calculated results of welding thermal cycle and microstructure and hardness in HAZ of HQ130 steel are in agreement with measured ones.

  8. A numerical analysis of the effects of conjugate heat transfer, vapor compressibility, and viscous dissipation in heat pipes

    NASA Technical Reports Server (NTRS)

    Faghri, Amir; Chen, Ming-Ming

    1989-01-01

    The effects of conjugate heat transfer, vapor compressibility, and viscous dissipation in heat pipes are discussed. The accuracy of the partially parabolic versus the elliptic presentation of the governing equations is also examined. The results show that the axial wall conduction has a tendency to make the temperature distribution more uniform for heat pipes with large ratios of pipe wall to effective liquid-wick thermal conductivity. The compressible and incompressible models show very close agreement for the total pressure drop, while the local pressure variations along the heat pipe are quite different for these two models when the radial Reynolds number at the interface is high.

  9. Dynamical effects of vegetation on the 2003 summer heat waves

    NASA Astrophysics Data System (ADS)

    Stéfanon, M.

    2012-04-01

    Dynamical effects of vegetation on the 2003 summer heat waves Marc Stéfanon(1), Philippe Drobinski(1), Fabio D'Andrea(1), Nathalie de Noblet(2) (1) IPSL/LMD, France; (2) IPSL/LSCE, France The land surface model (LSM) in regional climate models (RCMs) plays a key role in energy and water exchanges between land and atmosphere. The vegetation can affect these exchanges through physical, biophysical and bio-geophysical mechanisms. It participates to evapo-transpiration process which determines the partitioning of net radiation between sensible and latent heat flux, through water evaporation from soil throughout the entire root system. For seasonal timescale leaf cover change induced leaf-area index (LAI) and albedo changes, impacting the Earth's radiative balance. In addition, atmospheric chemistry and carbon concentration has a direct effect on plant stomatal structure, the main exchange interface with the atmosphere. Therefore the surface energy balance is intimately linked to the carbon cycle and vegetation conditions and an accurate representation of the Earth's surface is required to improve the performance of RCMs. It is even more crucial for extreme events as heat waves and droughts which display highly nonlinear behaviour. If triggering of heat waves is determined by the large scale, local coupled processes over land can amplify or inhibit heat trough several feedback mechanism. One set of two simulation has been conducted with WRF, using different LSMs. They aim to study drought and vegetation effect on the dynamical and hydrological processes controlling the occurrence and life cycle of heat waves In the MORCE plateform, the dynamical global vegetation model (DGVM) ORCHIDEE is implemented in the atmospheric module WRF. ORCHIDEE is based on three different modules. The first module, called SECHIBA, describes the fast processes such as exchanges of energy and water between the atmosphere and the biosphere, and the soil water budget. The phenology and carbon

  10. Effective centrality and explosive synchronization in complex networks.

    PubMed

    Navas, A; Villacorta-Atienza, J A; Leyva, I; Almendral, J A; Sendiña-Nadal, I; Boccaletti, S

    2015-12-01

    Synchronization of networked oscillators is known to depend fundamentally on the interplay between the dynamics of the graph's units and the microscopic arrangement of the network's structure. We here propose an effective network whose topological properties reflect the interplay between the topology and dynamics of the original network. On that basis, we are able to introduce the effective centrality, a measure that quantifies the role and importance of each network's node in the synchronization process. In particular, in the context of explosive synchronization, we use such a measure to assess the propensity of a graph to sustain an irreversible transition to synchronization. We furthermore discuss a strategy to induce the explosive behavior in a generic network, by acting only upon a fraction of its nodes. PMID:26764757

  11. Effective centrality and explosive synchronization in complex networks

    NASA Astrophysics Data System (ADS)

    Navas, A.; Villacorta-Atienza, J. A.; Leyva, I.; Almendral, J. A.; Sendiña-Nadal, I.; Boccaletti, S.

    2015-12-01

    Synchronization of networked oscillators is known to depend fundamentally on the interplay between the dynamics of the graph's units and the microscopic arrangement of the network's structure. We here propose an effective network whose topological properties reflect the interplay between the topology and dynamics of the original network. On that basis, we are able to introduce the effective centrality, a measure that quantifies the role and importance of each network's node in the synchronization process. In particular, in the context of explosive synchronization, we use such a measure to assess the propensity of a graph to sustain an irreversible transition to synchronization. We furthermore discuss a strategy to induce the explosive behavior in a generic network, by acting only upon a fraction of its nodes.

  12. Effect of heat processing on selected grain amaranth physicochemical properties

    PubMed Central

    Muyonga, John H; Andabati, Brian; Ssepuuya, Geoffrey

    2014-01-01

    Grain amaranth is a pseudocereal with unique agricultural, nutritional, and functional properties. This study was undertaken to determine the effect of different heat-processing methods on physicochemical and nutraceutical properties in two main grain amaranth species, of Amaranthus hypochondriacus L. and Amaranthus cruentus L. Grains were prepared by roasting and popping, milled and analyzed for changes in in vitro protein digestibility, gruel viscosity, pasting characteristics, antioxidant activity, flavonoids, and total phenolics. In vitro protein digestibility was determined using the pepsin-pancreatin enzyme system. Viscosity and pasting characteristics of samples were determined using a Brookfield Viscometer and a Rapid Visco Analyzer, respectively. The grain methanol extracts were analysed for phenolics using spectrophotometry while antioxidant activity was determined using the DPPH (2,2-diphenyl-1-picrylhydrazyl) method. Heat treatment led to a reduction in protein digestibility, the effect being higher in popped than in roasted samples. Viscosities for roasted grain amaranth gruels were significantly higher than those obtained from raw and popped grain amaranth gruels. The results for pasting properties were consistent with the results for viscosity. In both A. hypochondriacus L. and A. cruentus L., the order of the viscosity values was roasted>raw>popped. The viscosities were also generally lower for A. cruentus L. compared to A. hypochondriacus L. Raw samples for both A. hypochondriacus L. and A. cruentus L. did not significantly differ in total phenolic content (TPC), total flavonoid content (TFC), and total antioxidant activity values. Thermal processing led to an increase in TFC and antioxidant activity. However, TPC of heat-processed samples remained unchanged. From the results, it can be concluded that heat treatment enhances antioxidant activity of grain amaranth and causes rheological changes dependent on the nature of heat treatment. PMID

  13. The effect of heat stress on skeletal muscle contractile properties.

    PubMed

    Locke, Marius; Celotti, Carlo

    2014-07-01

    An elevated heat-shock protein (HSP) content protects cells and tissues, including skeletal muscles, from certain stressors. We determined if heat stress and the elevated HSP content that results is correlated with protection of contractile characteristics of isolated fast and slow skeletal muscles when contracting at elevated temperatures. To elevate muscle HSP content, one hindlimb of Sprague-Dawley rats (21-28 days old, 70-90 g) was subjected to a 15 min 42 °C heat-stress. Twenty-four hours later, both extensor digitorum longus (EDL) and soleus muscles were removed, mounted in either 20 °C or 42 °C Krebs-Ringer solution, and electrically stimulated. Controls consisted of the same muscles from the contra-lateral (non-stressed) hindlimbs as well as muscles from other (unstressed) animals. Isolated muscles were twitched and brought to tetanus every 5 min for 30 min. As expected, HSP content was elevated in muscles from the heat-stressed limbs when compared with controls. Regardless of prior treatment, both EDL and soleus twitch tensions were lower at 42 °C when compared with 20 °C. In addition, when incubated at 42 °C, both muscles showed a drop in twitch tension between 5 and 30 min. For tetanic tension, both muscles also showed an increase in tension between 5 and 30 min when stimulated at 20 °C regardless of treatment but when stimulated at 42 °C no change was observed. No protective effect of an elevated HSP content was observed for either muscle. In conclusion, although heat stress caused an elevation in HSP content, no protective effects were conferred to isolated contracting muscles. PMID:24264930

  14. Heating Effects in Overmoded Corrugated Waveguide for ITER

    NASA Astrophysics Data System (ADS)

    Anderson, J. P.; Doane, J. L.; Grunloh, H. L.; Callis, R. W.; Ikeda, R.; Oda, Y.; Takahashi, K.; Sakamoto, K.

    2016-01-01

    The latest testing of International Thermonuclear Experimental Reactor (ITER)-class electron cyclotron heating (ECH) transmission line components at the Japan Atomic Energy Agency (JAEA) has revealed regions of significant heating. Temperature measurements taken along sections of the waveguide wall during a 350 kW, 500-s gyrotron pulse are higher than previously recorded, up to nearly 70 °C above room temperature in some cases. One difference between these results and previous measurements is that the heating occurs in areas far away from miter bends (>1 m), further than higher-order-mode decay lengths. The estimated ohmic losses are large enough that they may be potentially damaging at ITER power levels. The explanation is traced back to misalignment of upstream components created by heating effects under high-power conditions. These misalignments cause mode conversions from the desired HE11 mode to low-order LP11 modes. As the combination of modes propagate forward in the transmission line, the field interactions lead to localized hot spots along the waveguide wall. The heating could have implications for the design of ECH components as well as the layout of transmission lines at ITER. Furthermore, the effects are discovered to be dependent on polarization since the LP11 even mode has higher loss than the LP11 odd mode. This discovery leads to a novel way of estimating mode purity in the waveguide. By applying the method to the current data set, the estimated HE11 content in the waveguide is 93 % upstream from the misalignment and 85 % downstream.

  15. Effective Protocols for Mobile Communications and Networking

    SciTech Connect

    Espinoza, J.; Sholander, P.; Van Leeuwen, B,

    1998-12-01

    This report examines methods of mobile communications with an emphasis on mobile computing and wireless communications. Many of the advances in communications involve the use of Internet Protocol (IP), Asynchronous Transfer Mode (ATM), and ad hoc network protocols. However, many of the advances in these protocols have been focused on wired communications. Recently much focus has been directed at advancing communication technology in the area of mobile wireless networks. This report discusses various protocols used in mobile communications and proposes a number of extensions to existing protocols. A detailed discussion is also included on desirable protocol characteristics and evaluation criteria. In addition, the report includes a discussion on several network simulation tools that maybe used to evaluate network protocols.

  16. Effects of nonlocal heat transport on laser implosion

    SciTech Connect

    Mima, K.; Honda, M.; Miyamoto, S.; Kato, S.

    1996-05-01

    A numerical simulation code describing the spherically symmetric implosion hydrodynamics has been developed to investigate the nonlocal heat transport effects on stable high velocity implosion and fast ignition. In the implosion simulation code HIMICO, the Fokker Planck equation for electron transport is solved to describe the nonlocal effects. For high ablation pressure implosion with a pressure higher than 200 Mbar, the isentrope is found higher by a factor 2 in the nonlocal transport model than in the Spitzer Harm model. As for the fast ignition simulation, the neutron yield for the high density compression with 10 KJ laser increases to be 20 times by injecting an additional heating pulse of 10 KJ with 1 psec. {copyright} {ital 1996 American Institute of Physics.}

  17. Effect of mechanical surface and heat treatments on erosion resistance

    NASA Technical Reports Server (NTRS)

    Salik, J.; Buckley, D. H.

    1981-01-01

    The effect of erosion by glass beads and crushed glass and by heat treatments on the erosional resistance of 6061 aluminum alloy and 1045 steel were studied. The aluminum alloy's erosion resistance was found to be insensitive to mechanical surface treatment applied before testing, and was determined to depend on the properties of the work-hardened surface layer; this was also demonstrated for aluminum alloy single crystals. The aluminum alloy heat treatments included annealing, solution, and precipitation. Solution was found to increase erosion resistance but precipitation had the opposite effect. Hardness showed no correlation with erosion resistance for either aluminum alloy steel. The steel tests showed that crushed glass provides an order of magnitude more erosion than glass beads.

  18. Effect of Heat Leak and Finite Thermal Capacity on the Optimal Configuration of a Two-Heat-Reservoir Heat Engine for Another Linear Heat Transfer Law

    NASA Astrophysics Data System (ADS)

    Zheng, Tong; Chen, Lingen; Sun, Fengrui; Wu, Chih

    2003-12-01

    Based on a model of a two-heat-reservoir heat engine with a finite high-temperature source and bypass heat leak, the optimal configuration of the cycle is found for the fixed cycle period with another linear heat transfer law . The finite thermal capacity source without heat leak makes the configuration of the cycle to a class of generalized Carnot cycle. The configuration of the cycle with heat leak and finite thermal capacity source is different from others.

  19. Effects of slitted fins on the heat transfer and pressure drop characteristics of a compact heat exchanger

    SciTech Connect

    Kim, C.H.; Yun, J.Y.

    1996-12-31

    A compact heat exchanger which consists of air-cooled aluminum fins and copper tubes circulating refrigerant has been used in a cooling system for a long time. There are two key parameters to be seriously considered for a design of the heat exchanger and its performance improvement. These are the heat transfer rate and pressure drop coefficient which varies with the change of the tube size, its arrangement and the fin configuration. In here, a numerical study was carried to understand the effect of the fin configuration on the heat transfer and pressure drop of the heat exchanger. The diameter and the arrangement of tubes were fixed but three different types of the fin configuration were used to see its effect on the heat transfer capacity and the static pressure drop. The calculation results were compared with that of a flat plate fin. From the comparison, it was found that the slitted fins have higher pressure drop; however, they have higher heat transfer rate. It means that the simpler of the fin configuration, the lower pressure drop and heat transfer coefficients are obtained. It is mainly due to the discretisation of the thermal boundary layer on the fin surface to maximize the heat transfer to air. The slitted sides of fins act like obstacles in the airflow path. From the experimental result, it was found that the same trend in the variation of the heat transfer rate and the pressure drop with the change of the fin configuration was obtained.

  20. Effects of a Ground Source Heat Pump in Discontinuous Permafrost

    NASA Astrophysics Data System (ADS)

    Peterson, R.; Garber-Slaght, R.; Daanen, R. P.

    2015-12-01

    A ground source heat pump (GSHP) was installed in a discontinuous permafrost region of Fairbanks Alaska in 2013 with the primary aim of determining the effect of different ground cover options on the long-term subterranean temperature regime. Three different surface treatments were applied to separate loops of the GSHP; grass, sand, and gravel, and temperature monitoring was established at several depths above and below the heat sink loops. The GSHP has been actively utilized to supplement the heat in a hydronic heating system of a neighboring 5000 ft2 research facility. The ground immediately surrounding the GSHP was not permafrost when initially installed. Numerical modeling simulations were used to predict the long-term ground temperature regime surrounding the GSHP loops, and results indicate that permafrost would begin to form after the first year. A pseudo-steady state temperature regime would establish in approximately 8 years with a yearly fluctuation of -14°C to -2°C. Simulations also indicate that permafrost could be prevented with a 15 W/m recharge during the summer, such as from a solar thermal system. The ground surface treatments have negligible effect on the ground temperature below 1 meter and therefore have no long-term effect on the active region the GSHP. Data collected from thermistors in the two years since installation indicate that permafrost has not yet been established, although the ground is now becoming seasonally frozen due to the GSHP energy removal. Yearly average temperatures are declining, and extrapolation indicates that permafrost will establish in future years. The GSHP coefficient of performance (COP) was initially 3.6 and is declining with the decreasing ground temperatures. Economic modeling indicates that the system may become uneconomical in future years, although volatile energy costs have a substantial effect of the prediction.

  1. Saturation Effects in the VLF Scattering off Strongly Heated Ionosphere

    NASA Astrophysics Data System (ADS)

    Lehtinen, N. G.; Bell, T. F.; Inan, U. S.

    2011-12-01

    The HAARP ionospheric HF heating facility modifies the conductivity of the lower ionosphere, creating a perturbation in the propagation of VLF transmitter-generated waves. The changes in the VLF amplitude may be detected by ground-based receivers and satellites with VLF instruments. In order to quantify these effects, we introduce a novel computational technique which combines the Stanford FWM (full-wave method) with the method of moments (MoM) to calculate the scattering on localized strong perturbations in stratified media. The Born approximation, which was previously used for similar calculations [Lehtinen et al., 2010], neglects the scattered field inside the perturbation region and therefore becomes invalid when the scattered field is of the order of the incident field, which happens when the perturbation is strong (i.e., the relative change of the conductivity is ~1). On the contrary, the use of MoM allows us to calculate the effects of the total field and thus may be applied to situations with any level of perturbation. This technique is applied to the VLF scattering off ionospheric disturbances created by HF heating. We show how the field measured on the ground and at a satellite deviates from that calculated previously in the Born approximation by demonstrating saturation effects for strong heating.

  2. Protective effects of ectoine on heat-stressed Daphnia magna.

    PubMed

    Adam, Bownik; Zofia, Stępniewska; Tadeusz, Skowroński

    2014-12-01

    Ectoine (ECT) is an amino acid produced and accumulated by halophilic bacteria in stressful conditions in order to prevent the loss of water from the cell. There is a lack of knowledge on the effects of ECT in heat-stressed aquatic animals. The purpose of our study was to determine the influence of ECT on Daphnia magna subjected to heat stress with two temperature gradients: 1 and 0.1 °C/min in the range of 23-42 °C. Time to immobilisation, survival during recovery, swimming performance, heart rate, thoracic limb movement and the levels of heat shock protein 70 kDa 1A (HSP70 1A), catalase (CAT) and nitric oxide species (NOx) were determined in ECT-exposed and unexposed daphnids; we showed protective effects of ECT on Daphnia magna subjected to heat stress. Time to immobilisation of daphnids exposed to ECT was longer when compared to the unexposed animals. Also, survival rate during the recovery of daphnids previously treated with ECT was higher. ECT significantly attenuated a rapid increase of mean swimming velocity which was elevated in the unexposed daphnids. Moreover, we observed elevation of thoracic limb movement and modulation of heart rate in ECT-exposed animals. HSP70 1A and CAT levels were reduced in the presence of ECT. On the other hand, NOx level was slightly elevated in both ECT-treated and unexposed daphnids, however slightly higher NOx level was found in ECT-treated animals. We conclude that the exposure to ectoine has thermoprotective effects on Daphnia magna, however their mechanisms are not associated with the induction of HSP70 1A. PMID:25223383

  3. The contribution of geology and groundwater studies to city-scale ground heat network strategies: A case study from Cardiff, UK

    NASA Astrophysics Data System (ADS)

    Boon, David; Farr, Gareth; Patton, Ashley; Kendall, Rhian; James, Laura; Abesser, Corinna; Busby, Jonathan; Schofield, David; White, Debbie; Gooddy, Daren; James, David; Williams, Bernie; Tucker, David; Knowles, Steve; Harcombe, Gareth

    2016-04-01

    The development of integrated heat network strategies involving exploitation of the shallow subsurface requires knowledge of ground conditions at the feasibility stage, and throughout the life of the system. We describe an approach to the assessment of ground constraints and energy opportunities in data-rich urban areas. Geological and hydrogeological investigations have formed a core component of the strategy development for sustainable thermal use of the subsurface in Cardiff, UK. We present findings from a 12 month project titled 'Ground Heat Network at a City Scale', which was co-funded by NERC/BGS and the UK Government through the InnovateUK Energy Catalyst grant in 2015-16. The project examined the technical feasibility of extracting low grade waste heat from a shallow gravel aquifer using a cluster of open loop ground source heat pumps. Heat demand mapping was carried out separately. The ground condition assessment approach involved the following steps: (1) city-wide baseline groundwater temperature mapping in 2014 with seasonal monitoring for at least 12 months prior to heat pump installation (Patton et al 2015); (2) desk top and field-based investigation of the aquifer system to determine groundwater levels, likely flow directions, sustainable pumping yields, water chemistry, and boundary conditions; (3) creation of a 3D geological framework model with physical property testing and model attribution; (4) use steps 1-3 to develop conceptual ground models and production of maps and GIS data layers to support scenario planning, and initial heat network concept designs; (5) heat flow modelling in FEFLOW software to analyse sustainability and predict potential thermal breakthrough in higher risk areas; (6) installation of a shallow open loop GSHP research observatory with real-time monitoring of groundwater bodies to provide data for heat flow model validation and feedback for system control. In conclusion, early ground condition modelling and subsurface

  4. Power to Detect Intervention Effects on Ensembles of Social Networks

    ERIC Educational Resources Information Center

    Sweet, Tracy M.; Junker, Brian W.

    2016-01-01

    The hierarchical network model (HNM) is a framework introduced by Sweet, Thomas, and Junker for modeling interventions and other covariate effects on ensembles of social networks, such as what would be found in randomized controlled trials in education research. In this article, we develop calculations for the power to detect an intervention…

  5. Effect of hospital referral networks on patient readmissions.

    PubMed

    Mascia, Daniele; Angeli, Federica; Di Vincenzo, Fausto

    2015-05-01

    Previous studies have shown that referral networks encompass important mechanisms of coordination and integration among hospitals, which enhance numerous organizational-level benefits, such as productivity, efficiency, and quality of care. The present study advances previous research by demonstrating how hospital referral networks influence patient readmissions. Data include 360,697 hospitalization events within a regional community of hospitals in the Italian National Health Service. Multilevel hierarchical regression analysis tests the impacts of referral networks' structural characteristics on patient hospital readmissions. The results demonstrate that organizational centrality in the overall referral network and ego-network density have opposing effects on the likelihood of readmission events within hospitals; greater centrality is negatively associated with readmissions, whereas greater ego-network density increases the likelihood of readmission events. Our findings support the (re)organization of healthcare systems and provide important indications for policymakers and practitioners. PMID:25795994

  6. EFFECTS OF HEAT AND BROMOCHLOROACETIC ACID ON MALE REPRODUCTION IN HEAT SHOCK FACTOR-1 GENE KNOCKOUT MICE

    EPA Science Inventory

    Effects of heat and bromochloroacetic acid on male reproduction in heat shock factor-1 gene knockout mice.
    Luft JC1, IJ Benjamin2, JB Garges1 and DJ Dix1. 1Reproductive Toxicology Division, USEPA, RTP, NC, 27711 and 2Dept of Internal Medicine, Univ.of Texas Southwestern Med C...

  7. Effect of plants on sunspace passive solar heating

    SciTech Connect

    Best, E.D.; McFarland, R.D.

    1985-01-01

    The effect of plants on sunspace thermal performance is investigated, based on experiments done in Los Alamos using two test rooms with attached sunspaces, which were essentially identical except for the presence of plants in one. Performance is related to plant transpiration, evaporation from the soil, condensation on the glazing and the absorbtance of solar energy by the lightweight leaves. Performance effects have been quantified by measurements of auxiliary heat consumption in the test rooms and analyzed by means of energy balance calculations. A method for estimating the transpiration rate is presented.

  8. Joule Heating Effects on Electrokinetic Flow Instabilities in Ferrofluids

    NASA Astrophysics Data System (ADS)

    Brumme, Christian; Shaw, Ryan; Zhou, Yilong; Prabhakaran, Rama; Xuan, Xiangchun

    We have demonstrated in our earlier work that the application of a tangential electric field can draw fluid instabilities at the interface of a ferrofluid/water co-flow. These electrokinetic flow instabilities are produced primarily by the mismatch of electric conductivities of the two fluids. We demonstrate in this talk that the Joule heating induced fluid temperature rises and gradients can significantly suppress the electrokinetic flow instabilities. We also develop a two-dimensional depth-averaged numerical model to predict the fluid temperature, flow and concentration fields in the two-fluid system with the goal to understand the Joule heating effects on electric field-driven ferrofluid flow instabilities. This work was supported by the Honors and Creative Inquiry programs at Clemson University.

  9. A heating window effect imaging experiment and its analysis

    NASA Astrophysics Data System (ADS)

    Peng, Zhiyong; Wang, Xiangjun; Lu, Jin

    2013-09-01

    In high speed flight, the aero-optical effect greatly affects infrared imaging system. An experiment investigating heating window radiance was conducted based the fluid computational simulation results. The paper gave the facilities needed and the procedures for experiment performance. The experiment data was analyzed by means of target signature evaluation principle, target contrast, SNR, gray level correlation index and gradient correlation index was computed from 4-bars infrared image. The results showed that the image region of interest was greatly affected by the heating window radiation. And some pre-processing skills should be introduced before implementing the target recognition and tracking algorithms. It is meaningful for validating performance of infrared imaging system with non-cooling window and to development methods of suppressing the hot dome radiation to reduce the image degradation.

  10. Length Scale and Gravity Effects on Microgravity Boiling Heat Transfer

    NASA Technical Reports Server (NTRS)

    Kim, Jungho; McQuillen, John; Balombin, Joe

    2002-01-01

    Boiling is a complex phenomenon where hydrodynamics, heat transfer, mass transfer, and interfacial phenomena are tightly interwoven. An understanding of boiling and critical heat flux in microgravity environments is of importance to space based hardware and processes such as heat exchange, cryogenic fuel storage and transportation, electronic cooling, and material processing due to the large amounts of heat that can be removed with relatively little increase in temperature. Although research in this area has been performed in the past four decades, the mechanisms by which heat is removed from surfaces in microgravity are still unclear. In earth gravity, buoyancy is an important parameter that affects boiling heat transfer through the rate at which bubbles are removed from the surface. A simple model describing the bubble departure size based on a quasistatic force balance between buoyancy and surface tension is given by the Fritz [I] relation: Bo(exp 1/2) = 0.0208 theta where Bo is the ratio between buoyancy and surface tension forces. For small, rapidly growing bubbles, inertia associated with the induced liquid motion can also cause bubble departure. In microgravity, the magnitude of effects related to natural convection and buoyancy are small and physical mechanisms normally masked by natural convection in earth gravity such as Marangoni convection can substantially influence the boiling and vapor bubble dynamics. CHF (critical heat transfer) is also substantially affected by microgravity. In 1 g environments, Bo has been used as a correlating parameter for CHF. Zuber's CHF model for an infinite horizontal surface assumes that vapor columns formed by the merger of bubbles become unstable due to a Helmholtz instability blocking the supply of liquid to the surface. The jets are spaced lambda(sub D) apart, where lambda(sub D) = 2pi square root of 3[(sigma)/(g(rho(sub l) - rho(sub v)](exp 1/2) = 2pi square root of 3 L Bo(exp -1/2) = square root of 3 lambda(sub c

  11. Leading edge film cooling effects on turbine blade heat transfer

    NASA Technical Reports Server (NTRS)

    Garg, Vijay K.; Gaugler, Raymond E.

    1995-01-01

    An existing three dimensional Navier-Stokes code, modified to include film cooling considerations, has been used to study the effect of spanwise pitch of shower-head holes and coolant to mainstream mass flow ratio on the adiabatic effectiveness and heat transfer coefficient on a film-cooled turbine vane. The mainstream is akin to that under real engine conditions with stagnation temperature = 1900 K and stagnation pressure = 3 MPa. It is found that with the coolant to mainstream mass flow ratio fixed, reducing P, the spanwise pitch for shower-head holes, from 7.5 d to 3.0 d, where d is the hole diameter, increases the average effectiveness considerably over the blade surface. However, when P/d= 7.5, increasing the coolant mass flow increases the effectiveness on the pressure surface but reduces it on the suction surface due to coolant jet lift-off. For P/d = 4.5 or 3.0, such an anomaly does not occur within the range of coolant to mainstream mass flow ratios analyzed. In all cases, adiabatic effectiveness and heat transfer coefficient are highly three-dimensional.

  12. Effect of Heat on the Sterilization of Artificially Contaminated Water.

    PubMed

    Groh; MacPherson; Groves

    1996-03-01

    Background: The objective of the study was to evaluate indirect methods commonly used in the field to decontaminate water as follows: boiling for 5-10 minutes and heating until "too hot to touch." Water perceived to be "too hot to touch" is defined as water in which a subject is unable to bear having the right index finger fully immersed for 5 seconds. Methods: Five flasks of water at 25 degreesC, 50 degreesC, 60 degreesC, 70 degreesC, and 100 degreesC were inoculated with 1.82 3 106 Escherichia coli bacteria. At the time of inoculation, and at 1 minute, 5 minutes, and 10 minutes, samples were withdrawn from each flask. The samples were plated and incubated for 18 to 24 hours. The numbers of colonies were then counted. Finally, subjects attempted to immerse, fully, their right index fingers into water at 50 degreesC, 55 degreesC, 60 degreesC, and 65 degreesC for 5 seconds. Subjects were normal, healthy individuals who worked at a microbiology laboratory. The main outcome measures were the number of colonies and the subjects' intolerance to heat. Results: Results showed that water at 50 degreesC has no effect on the number of bacteria, whereas water maintained at 60 degreesC for 5 minutes and at 70 degreesC and 100 degreesC for any time period effectively kills E. coli bacteria. The majority of subjects found 60 degreesC or cooler to be "too hot to touch." Conclusions: For travelers or campers, water is safe to drink if heated to boiling, but heating water until it is "too hot to touch" is inadequate for safe drinking purposes. PMID:9815415

  13. Effect of resiniferatoxin on the noxious heat threshold temperature in the rat: a novel heat allodynia model sensitive to analgesics

    PubMed Central

    Almási, Róbert; Pethö, Gábor; Bölcskei, Kata; Szolcsányi, János

    2003-01-01

    An increasing-temperature hot plate (ITHP) was introduced to measure the noxious heat threshold (45.3±0.3°C) of unrestrained rats, which was reproducible upon repeated determinations at intervals of 5 or 30 min or 1 day. Morphine, diclofenac and paracetamol caused an elevation of the noxious heat threshold following i.p. pretreatment, the minimum effective doses being 3, 10 and 200 mg kg−1, respectively. Unilateral intraplantar injection of the VR1 receptor agonist resiniferatoxin (RTX, 0.048 nmol) induced a profound drop of heat threshold to the innocuous range with a maximal effect (8–10°C drop) 5 min after RTX administration. This heat allodynia was inhibited by pretreatment with morphine, diclofenac and paracetamol, the minimum effective doses being 1, 1 and 100 mg kg−1 i.p., respectively. The long-term sensory desensitizing effect of RTX was examined by bilateral intraplantar injection (0.048 nmol per paw) which produced, after an initial threshold drop, an elevation (up to 2.9±0.5°C) of heat threshold lasting for 5 days. The VR1 receptor antagonist iodo-resiniferatoxin (I-RTX, 0.05 nmol intraplantarly) inhibited by 51% the heat threshold-lowering effect of intraplantar RTX but not α,β-methylene-ATP (0.3 μmol per paw). I-RTX (0.1 or 1 nmol per paw) failed to alter the heat threshold either acutely (5–60 min) or on the long-term (5 days). The heat threshold of VR1 receptor knockout mice was not different from that of wild-type animals (45.6±0.5 vs 45.2±0.4°C). In conclusion, the RTX-induced drop of heat threshold measured by the ITHP is a novel heat allodynia model exhibiting a high sensitivity to analgesics. PMID:12746222

  14. On effectiveness of routing algorithms for satellite communication networks

    NASA Astrophysics Data System (ADS)

    Yu, Wei; Wei, Sixiao; Xu, Guobin; Chen, Genshe; Pham, Khanh; Blasch, Erik P.; Lu, Chao

    2013-05-01

    For worldwide, a satellite communication network is an integral component of the global networking infrastructure. In this paper, we focus on developing effective routing techniques that consider both user preferences and network dynamic conditions. In particular, we develop a weighted-based route selection scheme for the core satellite communication network. Unlike the shortest path routing scheme, our scheme chooses the route from multiple matched entries based on the assigned weights that reflect the dynamic condition of networks. We also discuss how to derive the optimal weights for route assignment. To further meet user's preference, we implement the multiple path routing scheme to achieve the high rate of data transmission and the preemption based routing scheme to guarantee the data transmission for high priority users. Through extensive simulation studies, our data validates the effectiveness of our proposed routing schemes.

  15. Effects of fin pattern on the air-side heat transfer coefficient in plate finned-tube heat exchangers

    SciTech Connect

    Beecher, D.T.; Fagan, T.J.

    1987-06-01

    The effects of air velocity, heat exchanger geometry, and fin patternation on air-side heat transfer in plate finned tube heat exchangers were investigated experimentally using a single-fin passage model. The geometric parameters considered included tube diameter, transverse tube spacing, longitudinal tube spacing, number of tube rows, and fin spacing. The effects of fin pattern depth and number of fin patterns per longitudinal tube row were investigated for a pattern consisting of corrugations of triangular cross-section transverse to the direction of airflow. The heat transfer data were correlated in terms of the dimensionless heat transfer coefficient (Nusselt number) based on the arithmetic mean temperature difference, Nu/sub a/, and the Graetz number, Gz, a dimensionless measure of the level of flow development.

  16. Effects of fin pattern on the air side heat transfer coefficient in plate finned tube heat exchangers

    SciTech Connect

    Beecher, D.T.; Fagan, T.J.

    1987-06-01

    The effects of air velocity, heat exchanger geometry and fin pattern on air side heat transfer in plate finned tube heat exchangers were investigated experimentally using a single fin passage model. The geometric parameters considered included tube diameter, transverse tube spacing, longitudinal tube spacing, number of tube rows and fin spacing. The effects of fin pattern depth and number of fin patterns per longitudinal tube row were investigated for a pattern consisting of corrugations of triangular cross section transverse to the direction of air flow. The heat transfer data were correlated in terms of the dimensionless heat transfer coefficient (Nussult number) based on the arithmetic mean temperature difference Nu/sub a/ and the Graetz number Gz, a dimensionless measure of the level of flow development.

  17. The footprint of urban heat island effect in China.

    PubMed

    Zhou, Decheng; Zhao, Shuqing; Zhang, Liangxia; Sun, Ge; Liu, Yongqiang

    2015-01-01

    Urban heat island (UHI) is one major anthropogenic modification to the Earth system that transcends its physical boundary. Using MODIS data from 2003 to 2012, we showed that the UHI effect decayed exponentially toward rural areas for majority of the 32 Chinese cities. We found an obvious urban/rural temperature "cliff", and estimated that the footprint of UHI effect (FP, including urban area) was 2.3 and 3.9 times of urban size for the day and night, respectively, with large spatiotemporal heterogeneities. We further revealed that ignoring the FP may underestimate the UHI intensity in most cases and even alter the direction of UHI estimates for few cities. Our results provide new insights to the characteristics of UHI effect and emphasize the necessity of considering city- and time-specific FP when assessing the urbanization effects on local climate. PMID:26060039

  18. The footprint of urban heat island effect in China

    NASA Astrophysics Data System (ADS)

    Zhou, Decheng; Zhao, Shuqing; Zhang, Liangxia; Sun, Ge; Liu, Yongqiang

    2015-06-01

    Urban heat island (UHI) is one major anthropogenic modification to the Earth system that transcends its physical boundary. Using MODIS data from 2003 to 2012, we showed that the UHI effect decayed exponentially toward rural areas for majority of the 32 Chinese cities. We found an obvious urban/rural temperature “cliff”, and estimated that the footprint of UHI effect (FP, including urban area) was 2.3 and 3.9 times of urban size for the day and night, respectively, with large spatiotemporal heterogeneities. We further revealed that ignoring the FP may underestimate the UHI intensity in most cases and even alter the direction of UHI estimates for few cities. Our results provide new insights to the characteristics of UHI effect and emphasize the necessity of considering city- and time-specific FP when assessing the urbanization effects on local climate.

  19. The footprint of urban heat island effect in China

    PubMed Central

    Zhou, Decheng; Zhao, Shuqing; Zhang, Liangxia; Sun, Ge; Liu, Yongqiang

    2015-01-01

    Urban heat island (UHI) is one major anthropogenic modification to the Earth system that transcends its physical boundary. Using MODIS data from 2003 to 2012, we showed that the UHI effect decayed exponentially toward rural areas for majority of the 32 Chinese cities. We found an obvious urban/rural temperature “cliff”, and estimated that the footprint of UHI effect (FP, including urban area) was 2.3 and 3.9 times of urban size for the day and night, respectively, with large spatiotemporal heterogeneities. We further revealed that ignoring the FP may underestimate the UHI intensity in most cases and even alter the direction of UHI estimates for few cities. Our results provide new insights to the characteristics of UHI effect and emphasize the necessity of considering city- and time-specific FP when assessing the urbanization effects on local climate. PMID:26060039

  20. Optimal artificial neural network architecture selection for performance prediction of compact heat exchanger with the EBaLM-OTR technique

    SciTech Connect

    Dumidu Wijayasekara; Milos Manic; Piyush Sabharwall; Vivek Utgikar

    2011-07-01

    Artificial Neural Networks (ANN) have been used in the past to predict the performance of printed circuit heat exchangers (PCHE) with satisfactory accuracy. Typically published literature has focused on optimizing ANN using a training dataset to train the network and a testing dataset to evaluate it. Although this may produce outputs that agree with experimental results, there is a risk of over-training or overlearning the network rather than generalizing it, which should be the ultimate goal. An over-trained network is able to produce good results with the training dataset but fails when new datasets with subtle changes are introduced. In this paper we present EBaLM-OTR (error back propagation and Levenberg-Marquardt algorithms for over training resilience) technique, which is based on a previously discussed method of selecting neural network architecture that uses a separate validation set to evaluate different network architectures based on mean square error (MSE), and standard deviation of MSE. The method uses k-fold cross validation. Therefore in order to select the optimal architecture for the problem, the dataset is divided into three parts which are used to train, validate and test each network architecture. Then each architecture is evaluated according to their generalization capability and capability to conform to original data. The method proved to be a comprehensive tool in identifying the weaknesses and advantages of different network architectures. The method also highlighted the fact that the architecture with the lowest training error is not always the most generalized and therefore not the optimal. Using the method the testing error achieved was in the order of magnitude of within 10{sup -5} - 10{sup -3}. It was also show that the absolute error achieved by EBaLM-OTR was an order of magnitude better than the lowest error achieved by EBaLM-THP.

  1. The effect of heat waves on dairy cow mortality.

    PubMed

    Vitali, A; Felici, A; Esposito, S; Bernabucci, U; Bertocchi, L; Maresca, C; Nardone, A; Lacetera, N

    2015-07-01

    This study investigated the mortality of dairy cows during heat waves. Mortality data (46,610 cases) referred to dairy cows older than 24mo that died on a farm from all causes from May 1 to September 30 during a 6-yr period (2002-2007). Weather data were obtained from 12 weather stations located in different areas of Italy. Heat waves were defined for each weather station as a period of at least 3 consecutive days, from May 1 to September 30 (2002-2007), when the daily maximum temperature exceeded the 90th percentile of the reference distribution (1971-2000). Summer days were classified as days in heat wave (HW) or not in heat wave (nHW). Days in HW were numbered to evaluate the relationship between mortality and length of the wave. Finally, the first 3 nHW days after the end of a heat wave were also considered to account for potential prolonged effects. The mortality risk was evaluated using a case-crossover design. A conditional logistic regression model was used to calculate odds ratio and 95% confidence interval for mortality recorded in HW compared with that recorded in nHW days pooled and stratified by duration of exposure, age of cows, and month of occurrence. Dairy cows mortality was greater during HW compared with nHW days. Furthermore, compared with nHW days, the risk of mortality continued to be higher during the 3 d after the end of HW. Mortality increased with the length of the HW. Considering deaths stratified by age, cows up to 28mo were not affected by HW, whereas all the other age categories of older cows (29-60, 61-96, and >96mo) showed a greater mortality when exposed to HW. The risk of death during HW was higher in early summer months. In particular, the highest risk of mortality was observed during June HW. Present results strongly support the implementation of adaptation strategies which may limit heat stress-related impairment of animal welfare and economic losses in dairy cow farm during HW. PMID:25958287

  2. Effect of surface heating on the drag crisis of sphere

    NASA Astrophysics Data System (ADS)

    Muto, Masaya; Watanabe, Hiroaki; Tsubokura, Makoto

    2012-11-01

    The characteristics of flow past a heated sphere are investigated at around critical Reynolds number in conditions using three-dimensional numerical simulation in which temperature dependence of fluid properties such as density and viscosity is exactly considered. Boussinesq approximation is no longer applicable due to large temperature difference adopted in this study. And the order of the buoyancy effect becomes relatively small compared to inertia effect in present Reynolds number region. The result shows that drag coefficient of the heated sphere in drag crisis region becomes larger than that of the unheated case and it increases up to the coefficient found in subcritical region. This is because the temperature difference between the sphere and ambient fluid strongly affects the flow separation points, resulting in small recovery of the pressure in the wake and reduction of the temporal fluctuation of the lift force acting on the sphere. These effects are considered to attribute to the temperature dependence of fluid properties in the vicinity of the sphere and effect on the transient of the boundary surface.

  3. Effect of mechanical surface and heat treatments on erosion resistance

    NASA Technical Reports Server (NTRS)

    Salik, J.; Buckley, D. H.

    1980-01-01

    The effects of mechanical surface treatments as well as heat treatments on the erosion resistance of 6061 aluminum alloy and 1045 steel were studied. Mechanical surface treatments were found to have little or no effect on the erosion resistance. This is due to the formation by particle impact of a work hardened surface layer regardless of the initial surface condition. The erosion resistance of Al single crystals is found to be independent of orientation. This is due to destruction of the surface microstructure and formation of a polycrystalline surface layer by the impact of erodant particles as observed by X-ray diffraction. While upon solution treatment of annealed 6061 aluminum the increase in hardness is accompanied by an increase in erosion resistance, precipitation treatment which causes a further increase in hardness results in slightly lower erosion resistance. Using two types of erodant particles, glass beads and crushed glass, the erosion rate is found to be strongly dependent on erodant particle shape, being an order of magnitude higher for erosion with crushed glass as compared to glass beads. While for erosion with glass beads heat treatment of 1045 steel had a profound effect on its erosion resistance, little or no such effect was observed for erosion with crushed glass.

  4. Microwave heating effect on rheology and microstructure of white sauces.

    PubMed

    Guardeño, Luis M; Sanz, Teresa; Fiszman, Susana M; Quiles, Amparo; Hernando, Isabel

    2011-10-01

    The microstructure and rheological properties of white sauces formulated with different starches were analyzed after being microwave-heated for different times. Significant differences (P < 0.05) in rheological parameters analyzed-storage modulus (G'), loss modulus (G″), and loss tangent (tanδ)-were obtained for sauces made with different starches. Microwave reheating did not affect G' and G″ values until water evaporation became significant. In addition, tanδ values did not change significantly (P < 0.05) even during long reheating times showing that sauce viscoelastic properties did not change after microwave irradiation. However, microstructure assessed by confocal laser scanning microscopy showed changes in fat globule and protein. These microstructural changes did not seem to have a significant effect on rheological measurements since starch and ι-carrageenan are mainly responsible for the viscoelastic behavior of the sauces. Practical Application:  The development of products appropriate to microwave heating is constantly rising in food industry. It is necessary to understand the behavior of the ingredients and the final product to microwave heating in order to choose those ingredients which will develop the best performance. Starches are common ingredients in industrial sauces, and rheological and microstructural techniques have shown their usefulness in characterization of starch-based systems. PMID:21913921

  5. Effect of heat shielding on convective and evaporative heat losses and on radiant heat transfer in the premature infant

    SciTech Connect

    Baumgart, S.; Engle, W.D.; Fox, W.W.; Polin, R.A.

    1981-12-01

    Ten premature infants nursed on servocontrolled radiant warmer beds were studied in three environments designed to alter one or more factors affecting heat transfer (convection, evaporation, and radiation). In the control environment, infants were nursed supine on an open warmer bed. The second environment (walled chamber) was designed to reduce convection and evaporation by placing plastic walls circumferentially around the bed. In the third environment convection and evaporation were minimized by covering infants with a plastic blanket. Air turbulence, insensible water loss, and radiant warmer power were measured in each environment. There was a significant reduction in mean air velocity in the walled chamber and under the plastic blanket when compared to the control environment. A parallel decrease in insensible water loss occurred. In contrast, radiant power demand was the same for control and walled environments, but decreased significantly when infants were covered by the plastic blanket. This study suggests that convection is an important factor influencing evaporation in neonates nursed under radiant warmers. The thin plastic blanket was the most effective shield, significantly reducing radiant power demand.

  6. Effectiveness of exercise-heat acclimation for preventing heat illness in the workplace.

    PubMed

    Yamazaki, Fumio

    2013-09-01

    The incidence of heat-related illness in the workplace is linked to whether or not workers have acclimated to a hot environment. Heat acclimation improves endurance work performance in the heat and thermal comfort at a given work rate. These improvements are achieved by increased sweating and skin blood flow responses, better fluid balance and cardiovascular stability. As a practical means of acclimatizing the body to heat stress, daily aerobic exercise training is recommended since thermoregulatory capacity and blood volume increase with physical fitness. In workers wearing personal protective suits in hot environments, however, little psychophysiological benefit is received from short-term exercise training and/or heat acclimation because of the ineffectiveness of sweating for heat dissipation and the aggravation of thermal discomfort with the accumulation of sweat within the suit. For a manual laborer who works under uncompensable heat stress, better management of the work rate, the work environment and health is required. PMID:24077586

  7. Effect of correlations on controllability transition in network control

    NASA Astrophysics Data System (ADS)

    Nie, Sen; Wang, Xu-Wen; Wang, Bing-Hong; Jiang, Luo-Luo

    2016-04-01

    The network control problem has recently attracted an increasing amount of attention, owing to concerns including the avoidance of cascading failures of power-grids and the management of ecological networks. It has been proven that numerical control can be achieved if the number of control inputs exceeds a certain transition point. In the present study, we investigate the effect of degree correlation on the numerical controllability in networks whose topological structures are reconstructed from both real and modeling systems, and we find that the transition point of the number of control inputs depends strongly on the degree correlation in both undirected and directed networks with moderately sparse links. More interestingly, the effect of the degree correlation on the transition point cannot be observed in dense networks for numerical controllability, which contrasts with the corresponding result for structural controllability. In particular, for directed random networks and scale-free networks, the influence of the degree correlation is determined by the types of correlations. Our approach provides an understanding of control problems in complex sparse networks.

  8. Effect of correlations on controllability transition in network control

    PubMed Central

    Nie, Sen; Wang, Xu-Wen; Wang, Bing-Hong; Jiang, Luo-Luo

    2016-01-01

    The network control problem has recently attracted an increasing amount of attention, owing to concerns including the avoidance of cascading failures of power-grids and the management of ecological networks. It has been proven that numerical control can be achieved if the number of control inputs exceeds a certain transition point. In the present study, we investigate the effect of degree correlation on the numerical controllability in networks whose topological structures are reconstructed from both real and modeling systems, and we find that the transition point of the number of control inputs depends strongly on the degree correlation in both undirected and directed networks with moderately sparse links. More interestingly, the effect of the degree correlation on the transition point cannot be observed in dense networks for numerical controllability, which contrasts with the corresponding result for structural controllability. In particular, for directed random networks and scale-free networks, the influence of the degree correlation is determined by the types of correlations. Our approach provides an understanding of control problems in complex sparse networks. PMID:27063294

  9. The African Field Epidemiology Network-Networking for effective field epidemiology capacity building and service delivery

    PubMed Central

    Gitta, Sheba Nakacubo; Mukanga, David; Babirye, Rebecca; Dahlke, Melissa; Tshimanga, Mufuta; Nsubuga, Peter

    2011-01-01

    Networks are a catalyst for promoting common goals and objectives of their membership. Public Health networks in Africa are crucial, because of the severe resource limitations that nations face in dealing with priority public health problems. For a long time, networks have existed on the continent and globally, but many of these are disease-specific with a narrow scope. The African Field Epidemiology Network (AFENET) is a public health network established in 2005 as a non-profit networking alliance of Field Epidemiology and Laboratory Training Programs (FELTPs) and Field Epidemiology Training Programs (FETPs) in Africa. AFENET is dedicated to helping ministries of health in Africa build strong, effective and sustainable programs and capacity to improve public health systems by partnering with global public health experts. The Network's goal is to strengthen field epidemiology and public health laboratory capacity to contribute effectively to addressing epidemics and other major public health problems in Africa. AFENET currently networks 12 FELTPs and FETPs in sub-Saharan Africa with operations in 20 countries. AFENET has a unique tripartite working relationship with government technocrats from human health and animal sectors, academicians from partner universities, and development partners, presenting the Network with a distinct vantage point. Through the Network, African nations are making strides in strengthening their health systems. Members are able to: leverage resources to support field epidemiology and public health laboratory training and service delivery notably in the area of outbreak investigation and response as well as disease surveillance; by-pass government bureaucracies that often hinder and frustrate development partners; and consolidate efforts of different partners channelled through the FELTPs by networking graduates through alumni associations and calling on them to offer technical support in various public health capacities as the need arises

  10. Urban effects on extreme heat in a mid-sized North American city

    NASA Astrophysics Data System (ADS)

    Schatz, J.; Kucharik, C. J.

    2013-12-01

    As climate change drives global temperatures higher, heat waves are projected to increase in frequency, intensity, and duration, particularly in cities where the urban heat island effect can further raise local temperatures. Cities contain 50% of the global population and 80% of the North American population, and these percentages are projected to reach 70% globally and 87% in North America by 2030. This creates a need to understand the nature of heat events not just globally but also within cities where local climate variation can be substantial. That local variation could prove highly consequential for heat adaptation in cities, making it important to understand the dynamics of extreme heat within urban landscapes. Our study addresses this need by characterizing 400m-resolution variation in air temperature and heat index during a historically hot year in Madison, Wisconsin. Madison is a mid-sized temperate city with a metropolitan area population of 568,593. It is surrounded by several large lakes and a complex rural landscape of agriculture, forests, wetlands, and grasslands. In 2012, Madison experienced its hottest year and third hottest summer on record, with the Madison airport reporting 39 days exceeding 90°F compared to an average of 9 days. In March 2012, we installed 135 Onset HOBO ProV2 T/RH sensors across the Madison area to record air temperature and relative humidity at 15 minute intervals. The data from this network provides a unique opportunity to study small-scale spatial variation in the magnitude and duration of hot conditions that are projected to become more common in the future. Our sensors recorded substantial variation in the magnitude and duration of high temperatures and heat indices during the summer of 2012. For temperature, the densest parts of the city experienced >200 hours ≥90°F compared to <100 hours in many rural areas. Temperatures ≥100°F occurred up to 22 hours in some parts of the city versus 0 hours in much of the rural

  11. Heat Stress Effects on Growing-Finishing Swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding the factors that create heat stress, the response of the animals while under heat stress, and the signs of heat-stressed swine are essential to making rational decisions for the selection, design, and management of their environments. Heat stressors include combinations of environment...

  12. Electrically heated tube investigation of cooling channel geometry effects

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.

    1995-01-01

    The results of an experimental investigation on the combined effects of cooling channel aspect ratio and curvature for rocket engines are presented. Symmetrically heated tubes with average heat fluxes up to 1.7 MW/m(exp 2) were used. The coolant was gaseous nitrogen at an inlet temperature of 280 K (500 R) and inlet pressures up to 1.0 x 10(exp 7) N/m(exp 2) (1500 psia). Two different tube geometries were tested: a straight, circular cross-section tube, and an aspect-ratio 10 cross-section tube with a 45 deg bend. The circular tube results are compared to classical models from the literature as validation of the system. The curvature effect data from the curved aspect-ratio 10 tube compare favorably to the empirical equations available in the literature for low aspect ratio tubes. This latter results suggest that thermal stratification of the coolant due to diminished curvature effect mixing may not be an issue for high aspect-ratio cooling channels.

  13. Inertial effects on heat transfer in superhydrophobic microchannels

    NASA Astrophysics Data System (ADS)

    Cowley, Adam; Maynes, Daniel; Crockett, Julie; Iverson, Brian; BYU Fluids Team

    2015-11-01

    This work numerically studies the effects of inertia on thermal transport in superhydrophbic microchannels. An infinite parallel plate channel comprised of structured superhydrophbic walls is considered. The structure of the superhydrophobic surfaces consists of square pillars organized in a square array aligned with the flow direction. Laminar, fully developed flow is explored. The flow is assumed to be non-wetting and have an idealized flat meniscus. A shear-free, adiabatic boundary condition is used at the liquid/gas interface, while a no-slip, constant heat flux condition is used at the liquid/solid interface. A wide range of Peclet numbers, relative channel spacing distances, and relative pillar sizes are considered. Results are presented in terms of Poiseuille number, Nusselt number, hydrodynamic slip length, and temperature jump length. Interestingly, the thermal transport is varied only slightly by inertial effects for a wide range of parameters explored and compares well with other analytical and numerical work that assumed Stokes flow. It is only for very small relative channel spacing and large Peclet number that inertial effects exert significant influence. Overall, the heat transfer is reduced for the superhydrophbic channels in comparison to classic smooth walled channels. This research was supported by the National Science Foundation (NSF) - United States (Grant No. CBET-1235881).

  14. Nonequilibrium ionization effects in asymmetrically heated loops. [in solar corona

    NASA Technical Reports Server (NTRS)

    Spadaro, D.; Antiochos, Spiro K.; Mariska, J. T.

    1991-01-01

    The effects of nonequilibrium ionization on magnetic loop models with a steady siphon flow that is driven by a nonuniform heating rate are investigated. The model developed by Mariska (1988) to explain the observed redshifts of transition region emission lines is examined, and the number densities of the ions of carbon and oxygen along the loop are computed, with and without the approximation of ionization equilibrium. Considerable deviations from equilibrium were found. In order to determine the consequences of these nonequilibrium effects on the characteristics of the EUV emission from the loop plasma, the profiles and wavelength positions of all the important emission lines due to carbon and oxygen were calculated. The calculations are in broad agreement with Mariska's conclusions, although they show a significant diminution of the Doppler shifts, as well as modifications to the line widths. It is concluded that the inclusion of nonequilibrium effects make it more difficult to reproduce the observed characteristics of the solar transition region by means of the asymmetric-heating models.

  15. Monitoring the Surface Heat Island (shi) Effects of Industrial Enterprises

    NASA Astrophysics Data System (ADS)

    Şekertekin, A.; Kutoglu, Ş. H.; Kaya, S.; Marangoz, A. M.

    2016-06-01

    The aim of this study is to present the effects of industrial enterprises on Land Surface Temperature (LST) and to retrieve Surface Heat Island (SHI) maps of these regions. SHI is one of the types of Urban Heat Island (UHI) and as the urban areas grow in a city, UHI effect becomes bigger. The city centre of Zonguldak was chosen as study area and Landsat 5 satellite data were used as materials. Zonguldak has important industrial enterprises like thermal power plants and iron and steel plant. ERDEMIR is the biggest iron and steel plant in Turkey and it is one of the biggest ones in Europe, as well. There are three operating thermal power plants in the region namely CATES, ZETES1 and ZETES2. In order to investigate these industrial regions, Landsat 5 satellite data were processed using mono-window algorithm to retrieve LST and they were acquired on 11.09.1987, 18.09.2007 and 29.09.2011, respectively. The obtained results revealed that from 1987 to 2011, spatial and temporal variability in LST in industrial enterprises became higher than the surroundings. Besides, the sizes of SHIs in 2011 are bigger than the ones in 1987. For the countries and governments, having industrial enterprises is crucial for the development and it is also important to present the community better conditions in life. Thus, decision makers should consider mitigating the effects of these regions on LST.

  16. Generation of mirage effect by heated carbon nanotube thin film

    NASA Astrophysics Data System (ADS)

    Tong, L. H.; Lim, C. W.; Li, Y. C.; Zhang, Chuanzeng; Quoc Bui, Tinh

    2014-06-01

    Mirage effect, a common phenomenon in nature, is a naturally occurring optical phenomenon in which lights are bent due to the gradient variation of refraction in the temperature gradient medium. The theoretical analysis of mirage effect generated by heated carbon nanotube thin film is presented both for gas and liquid. Excellent agreement is demonstrated through comparing the theoretical prediction with published experimental results. It is concluded from the theoretical prediction and experimental observation that the mirage effect is more likely to happen in liquid. The phase of deflected optical beam is also discussed and the method for measurement of thermal diffusivity of medium is theoretically verified. Furthermore, a method for measuring the refractive index of gas by detecting optical beam deflection is also presented in this paper.

  17. Generation of mirage effect by heated carbon nanotube thin film

    SciTech Connect

    Tong, L. H.; Lim, C. W.; Li, Y. C.; Zhang, Chuanzeng; Quoc Bui, Tinh

    2014-06-28

    Mirage effect, a common phenomenon in nature, is a naturally occurring optical phenomenon in which lights are bent due to the gradient variation of refraction in the temperature gradient medium. The theoretical analysis of mirage effect generated by heated carbon nanotube thin film is presented both for gas and liquid. Excellent agreement is demonstrated through comparing the theoretical prediction with published experimental results. It is concluded from the theoretical prediction and experimental observation that the mirage effect is more likely to happen in liquid. The phase of deflected optical beam is also discussed and the method for measurement of thermal diffusivity of medium is theoretically verified. Furthermore, a method for measuring the refractive index of gas by detecting optical beam deflection is also presented in this paper.

  18. Effect of thymol in heating and recovery media on the isothermal and non-isothermal heat resistance of Bacillus spores.

    PubMed

    Esteban, Maria-Dolores; Conesa, Raquel; Huertas, Juan-Pablo; Palop, Alfredo

    2015-06-01

    Members of the genus Bacillus include important food-borne pathogen and spoilage microorganisms for food industry. Essential oils are natural products extracted from herbs and spices, which can be used as natural preservatives in many foods because of their antibacterial, antifungal, antioxidant and anti-carcinogenic properties. The aim of this research was to explore the effect of the addition of different concentrations of thymol to the heating and recovery media on the thermal resistance of spores of Bacillus cereus, Bacillus licheniformis and Bacillus subtilis at different temperatures. While the heat resistance was hardly reduced when thymol was present in the heating medium, the effect in the recovery medium was greater, reducing the D100 °C values down to one third for B. subtilis and B. cereus when 0.5 mM thymol was added. This effect was dose dependent and was also observed at other heating temperatures. PMID:25790989

  19. Calculating effective resistances on underlying networks of association schemes

    NASA Astrophysics Data System (ADS)

    Jafarizadeh, M. A.; Sufiani, R.; Jafarizadeh, S.

    2008-07-01

    Recently, in the work of Jafarizadeh et al. [J. Phys, A: Math. Theor. 40, 4949 (2007); e-print arXiv:0705.2480], calculation of effective resistances on distance-regular networks was investigated, where in the first paper, the calculation was based on stratification and Stieltjes functions associated with the network, whereas in the latter one a recursive formula for effective resistances was given based on the Christoffel-Darboux identity. In this paper, evaluation of effective resistances on more general networks that are underlying networks of association schemes is considered, where by using the algebraic combinatoric structures of association schemes such as stratification and Bose-Mesner algebras, an explicit formula for effective resistances on these networks is given in terms of the parameters of the corresponding association schemes. Moreover, we show that for particular underlying networks of association schemes with diameter d such that the adjacency matrix A possesses d +1 distinct eigenvalues, all of the other adjacency matrices Ai, i ≠0, 1 can be written as polynomials of A, i.e., Ai=Pi(A), where Pi is not necessarily of degree i. Then, we use this property for these particular networks and assume that all of the conductances except for one of them, say, c ≡c1=1, are zero to give a procedure for evfor a galuating effective resistances on these networks. The preference of this procedure is that one can evaluate effective resistances by using the structure of their Bose-Mesner algebra without any need to know the spectrum of the adjacency matrices.

  20. Using Effective Subnetworks to Predict Selected Properties of Gene Networks

    PubMed Central

    Gunaratne, Gemunu H.; Gunaratne, Preethi H.; Seemann, Lars; Török, Andrei

    2010-01-01

    Background Difficulties associated with implementing gene therapy are caused by the complexity of the underlying regulatory networks. The forms of interactions between the hundreds of genes, proteins, and metabolites in these networks are not known very accurately. An alternative approach is to limit consideration to genes on the network. Steady state measurements of these influence networks can be obtained from DNA microarray experiments. However, since they contain a large number of nodes, the computation of influence networks requires a prohibitively large set of microarray experiments. Furthermore, error estimates of the network make verifiable predictions impossible. Methodology/Principal Findings Here, we propose an alternative approach. Rather than attempting to derive an accurate model of the network, we ask what questions can be addressed using lower dimensional, highly simplified models. More importantly, is it possible to use such robust features in applications? We first identify a small group of genes that can be used to affect changes in other nodes of the network. The reduced effective empirical subnetwork (EES) can be computed using steady state measurements on a small number of genetically perturbed systems. We show that the EES can be used to make predictions on expression profiles of other mutants, and to compute how to implement pre-specified changes in the steady state of the underlying biological process. These assertions are verified in a synthetic influence network. We also use previously published experimental data to compute the EES associated with an oxygen deprivation network of E.coli, and use it to predict gene expression levels on a double mutant. The predictions are significantly different from the experimental results for less than of genes. Conclusions/Significance The constraints imposed by gene expression levels of mutants can be used to address a selected set of questions about a gene network. PMID:20949025

  1. Effects of respirators under heat/work conditions

    SciTech Connect

    James, R.; Dukes-Dobos, F.; Smith, R.

    1984-06-01

    Physiological responses and perceived strain of five unacclimatized male subjects were studied. The subjects were exposed to heat during an exercise task and were evaluated while wearing half and full facepiece, cartridge-type, air-purifying respirators, and without a respirator. The exercise consisted of walking on a treadmill for a period of 1 hour in a controlled environmental chamber at each of two different energy expenditure levels (200 and 400 kcal/hr)(approx. = 58 and 116 Watts) and two different heat exposures (air temperatures of 25/sup 0/C and 43.3./sup 0/C). The results indicated that wearing a full facepiece respirator imposed significant physiological strain added to that caused by the heat and workloads used in the study. Five of the six physiological measures show this increased physiological strain: (1) heart rate; (2) minute ventilation; (3) oxygen consumption; (4) energy expenditure; and (5) oral temperature. There was no detectable effect on sweat rate. Although subjective ratings indicated more discomfort with increasing physiological strain, the observed correlations between such measures were low (T/sub b/ < .60). The net consequence of the significant effects indicates that workers' tolerance to moderate or high levels of work under hot conditions while wearing a respirator is reduced. The reduction is more pronounced when wearing a full mask than when wearing a half mask. Changes in respirator design which minimize respiratory dead space are suggested to alleviate this problem. Otherwise, prevention of excessive physiological strain from respirator use when working at moderate or higher levels at hot job sites could necessitate more rest breaks or limiting work time under such conditions.

  2. Social networks and trade of services: modelling interregional flows with spatial and network autocorrelation effects

    NASA Astrophysics Data System (ADS)

    de la Mata, Tamara; Llano, Carlos

    2013-07-01

    Recent literature on border effect has fostered research on informal barriers to trade and the role played by network dependencies. In relation to social networks, it has been shown that intensity of trade in goods is positively correlated with migration flows between pairs of countries/regions. In this article, we investigate whether such a relation also holds for interregional trade of services. We also consider whether interregional trade flows in services linked with tourism exhibit spatial and/or social network dependence. Conventional empirical gravity models assume the magnitude of bilateral flows between regions is independent of flows to/from regions located nearby in space, or flows to/from regions related through social/cultural/ethic network connections. With this aim, we provide estimates from a set of gravity models showing evidence of statistically significant spatial and network (demographic) dependence in the bilateral flows of the trade of services considered. The analysis has been applied to the Spanish intra- and interregional monetary flows of services from the accommodation, restaurants and travel agencies for the period 2000-2009, using alternative datasets for the migration stocks and definitions of network effects.

  3. Effect of nanofluid on the heat transport capability in an oscillating heat pipe

    NASA Astrophysics Data System (ADS)

    Ma, H. B.; Wilson, C.; Borgmeyer, B.; Park, K.; Yu, Q.; Choi, S. U. S.; Tirumala, Murli

    2006-04-01

    By combining nanofluids with thermally excited oscillating motion in an oscillating heat pipe (OHP), we developed an ultrahigh-performance cooling device, called the nanofluid oscillating heat pipe. Experimental results show that when the OHP is charged with nanofluid, heat transport capability significantly increases. For example, at the input power of 80.0W, diamond nanofluid can reduce the temperature difference between the evaporator and the condenser from 40.9to24.3°C. This study will accelerate the development of a highly efficient cooling device for ultrahigh-heat-flux electronic systems.

  4. Nanoparticle heating: nanoscale to bulk effects of electromagnetically heated iron oxide and gold for biomedical applications

    NASA Astrophysics Data System (ADS)

    Qin, Zhenpeng; Etheridge, Michael; Bischof, John C.

    2011-03-01

    Biomedical applications of nanoparticle heating range in scale from molecular activation (i.e. molecular beacons, protein denaturation, lipid melting and drug release), cellular heating (i.e. nanophotolysis and membrane permeability control and rupture) to whole tumor heating (deep and superficial). This work will present a review on the heating of two classes of biologically compatible metallic nanoparticles: iron oxide and gold with particular focus on spatial and temporal scales of the heating event. The size range of nanoparticles under discussion will focus predominantly in the 10 - 200 nm diameter size range. Mechanisms of heating range from Néelian and Brownian relaxation due to magnetic susceptibility at 100s of kHz, optical absorption due to VIS and NIR lasers and "Joule" heating at higher frequency RF (13.56 MHz). The heat generation of individual nanoparticles and the thermal responses at nano-, micro-, and macroscales are presented. This review will also discuss how to estimate a specific absorption rate (SAR, W/g) based on individual nanoparticles heating in bulk samples. Experimental setups are designed to measure the SAR and the results are compared with theoretical predictions.

  5. Spatial effects in real networks: Measures, null models, and applications

    NASA Astrophysics Data System (ADS)

    Ruzzenenti, Franco; Picciolo, Francesco; Basosi, Riccardo; Garlaschelli, Diego

    2012-12-01

    Spatially embedded networks are shaped by a combination of purely topological (space-independent) and space-dependent formation rules. While it is quite easy to artificially generate networks where the relative importance of these two factors can be varied arbitrarily, it is much more difficult to disentangle these two architectural effects in real networks. Here we propose a solution to this problem, by introducing global and local measures of spatial effects that, through a comparison with adequate null models, effectively filter out the spurious contribution of nonspatial constraints. Our filtering allows us to consistently compare different embedded networks or different historical snapshots of the same network. As a challenging application we analyze the World Trade Web, whose topology is known to depend on geographic distances but is also strongly determined by nonspatial constraints (degree sequence or gross domestic product). Remarkably, we are able to detect weak but significant spatial effects both locally and globally in the network, showing that our method succeeds in retrieving spatial information even when nonspatial factors dominate. We finally relate our results to the economic literature on gravity models and trade globalization.

  6. Heat acclimation improves intermittent sprinting in the heat but additional pre-cooling offers no further ergogenic effect.

    PubMed

    Castle, Paul; Mackenzie, Richard W; Maxwell, Neil; Webborn, Anthony D J; Watt, Peter W

    2011-08-01

    The aim of this study was to determine the effect of 10 days of heat acclimation with and without pre-cooling on intermittent sprint exercise performance in the heat. Eight males completed three intermittent cycling sprint protocols before and after 10 days of heat acclimation. Before acclimation, one sprint protocol was conducted in control conditions (21.8 ± 2.2°C, 42.8 ± 6.7% relative humidity) and two sprint protocols in hot, humid conditions (33.3 ± 0.6°C, 52.2 ± 6.8% relative humidity) in a randomized order. One hot, humid condition was preceded by 20 min of thigh pre-cooling with ice packs (-16.2 ± 4.5°C). After heat acclimation, the two hot, humid sprint protocols were repeated. Before heat acclimation, peak power output declined in the heat (P < 0.05) but pre-cooling prevented this. Ten days of heat acclimation reduced resting rectal temperature from 37.8 ± 0.3°C to 37.4 ± 0.3°C (P < 0.01). When acclimated, peak power output increased by ∼2% (P < 0.05, main effect) and no reductions in individual sprint peak power output were observed. Additional pre-cooling offered no further ergogenic effect. Unacclimated athletes competing in the heat should pre-cool to prevent reductions in peak power output, but heat acclimate for an increased peak power output. PMID:21777052

  7. Raman amplification in plasma: Wavebreaking and heating effects

    SciTech Connect

    Farmer, J. P.; Ersfeld, B.; Jaroszynski, D. A.

    2010-11-15

    A three-wave model has been developed to investigate the influence of wavebreaking and thermal effects on the Raman amplification in plasma. This has been benchmarked against a particle-in-cell code with positive results. A new regime, the 'thermal chirp' regime, has been identified and illustrated. Here the shift in plasma resonance due to heating of the plasma by a monochromatic pump allows a probe pulse to be amplified and compressed without significant pump depletion. In regimes where damping dominates, it is found that inverse bremsstrahlung dominates at high densities, and improved growth rates may be achieved by preheating the plasma. At low densities or high pump intensities, wavebreaking acts to limit amplification. The inclusion of thermal effects can dramatically reduce the peak attainable intensity because of the reduced wavebreaking limit at finite temperatures.

  8. Casimir effect and radiative heat transfer between Chern Insulators

    NASA Astrophysics Data System (ADS)

    Rodriguez Lopez, Pablo; Grushin, Adolfo; Tse, Wang-Kong; Dalvit, Diego

    2015-03-01

    Chern Insulators are a class of two-dimensional topological materials. Their electronic properties are different from conventional materials, and lead to interesting new physics as quantum Hall effect in absence of an external magnetic field. Here we will review some of their special properties and, in particular, we will discuss the radiative heat transfer and the Casimir effect between two planar Chern Insulators sheets. Finally, we will see how to control the intensity and sign of this Casimir force and the requirements to observe a repulsive Casimir force in the lab with those materials. The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA Grant Agreement No. 302005.

  9. Positive effects of vegetation: urban heat island and green roofs.

    PubMed

    Susca, T; Gaffin, S R; Dell'osso, G R

    2011-01-01

    This paper attempts to evaluate the positive effects of vegetation with a multi-scale approach: an urban and a building scale. Monitoring the urban heat island in four areas of New York City, we have found an average of 2 °C difference of temperatures between the most and the least vegetated areas, ascribable to the substitution of vegetation with man-made building materials. At micro-scale, we have assessed the effect of surface albedo on climate through the use of a climatological model. Then, using the CO(2) equivalents as indicators of the impact on climate, we have compared the surface albedo, and the construction, replacement and use phase of a black, a white and a green roof. By our analyses, we found that both the white and the green roofs are less impactive than the black one; with the thermal resistance, the biological activity of plants and the surface albedo playing a crucial role. PMID:21481997

  10. The Effects of Chronic Exercise on Attentional Networks

    PubMed Central

    Pérez, Laura; Padilla, Concepción; Parmentier, Fabrice B. R.; Andrés, Pilar

    2014-01-01

    The aim of this study was to test the hypothesis that chronic physical exercise improves attentional control in young healthy participants. To do this, we compared the performance of physically active and passive participants in the Attentional Network Task, which allows for the assessment of the executive, orienting and alerting networks. The results showed a selective positive effect of exercise on the executive network. These results extend the evidence gathered in children, older adults and certain clinical populations suggesting that exercise can also improve attentional control in healthy young adults. PMID:25010057

  11. Gravity effects on information filtering and network evolving.

    PubMed

    Liu, Jin-Hu; Zhang, Zi-Ke; Chen, Lingjiao; Liu, Chuang; Yang, Chengcheng; Wang, Xueqi

    2014-01-01

    In this paper, based on the gravity principle of classical physics, we propose a tunable gravity-based model, which considers tag usage pattern to weigh both the mass and distance of network nodes. We then apply this model in solving the problems of information filtering and network evolving. Experimental results on two real-world data sets, Del.icio.us and MovieLens, show that it can not only enhance the algorithmic performance, but can also better characterize the properties of real networks. This work may shed some light on the in-depth understanding of the effect of gravity model. PMID:24622162

  12. Gravity Effects on Information Filtering and Network Evolving

    PubMed Central

    Liu, Jin-Hu; Zhang, Zi-Ke; Chen, Lingjiao; Liu, Chuang; Yang, Chengcheng; Wang, Xueqi

    2014-01-01

    In this paper, based on the gravity principle of classical physics, we propose a tunable gravity-based model, which considers tag usage pattern to weigh both the mass and distance of network nodes. We then apply this model in solving the problems of information filtering and network evolving. Experimental results on two real-world data sets, Del.icio.us and MovieLens, show that it can not only enhance the algorithmic performance, but can also better characterize the properties of real networks. This work may shed some light on the in-depth understanding of the effect of gravity model. PMID:24622162

  13. Contrasting effects of midazolam on induction of heat shock protein 27 by vasopressin and heat in aortic smooth muscle cells.

    PubMed

    Tanabe, K; Kozawa, O; Niwa, M; Yamomoto, T; Matsuno, H; Ito, H; Kato, K; Dohi, S; Uematsu, T

    2001-01-01

    We previously showed that vasopressin stimulates the induction of heat shock protein (HSP) 27, a low molecular-weight HSP, through protein kinase C activation in aortic smooth muscle A10 cells. In the present study, we examined the effects of midazolam, an intravenous anesthetic, on the HSP27 induction stimulated by vasopressin, heat, or sodium arsenite (arsenite) in A10 cells. Midazolam inhibited the accumulation of HSP27 induced by vasopressin or 12-O-tetradecanoylphorbol 13-acetate (TPA), a direct activator of protein kinase C. Midazolam also reduced the vasopressin-induced level of the mRNA for HSP27. In contrast, midazolam enhanced the HSP27-accumulation induced by heat or arsenite. Midazolam also enhanced the heat-increased level of the mRNA for HSP27. However, midazolam had no effect on the dissociation of the aggregated form of HSP27 following stimulation by vasopressin, heat, or arsenite. These results suggest that midazolam suppresses vasopressin-stimulated HSP27 induction in vascular smooth muscle cells, and that this inhibitory effect is exerted at a point downstream from protein kinase C. In contrast, midazolam enhanced heat- or arsenite-stimulated HSP27 induction. Thus, midazolam has dual effects on the HSP27 induction stimulated by various stresses in vascular smooth muscle cells. PMID:11746514

  14. Does the Heat Island Effect Affect Lake Chabot

    NASA Astrophysics Data System (ADS)

    Singh, K. A.; Mock, Y.; Pun, C.

    2014-12-01

    Lake Chabot is a backup water supply source and it is important to know if the water is healthy because California is experiencing a drought. To check the quality of the water we used a submersible, waterproof thermometer to measure the temperature of the water at different depths. We hypothesized that the heat-island effect would cause the runoff from the surrounding developed areas to be warmer. This is because paving roads causes areas to become impermeable and absorb heat. Water runs off these impermeable surfaces, absorbing heat from the ground and enters larger bodies of water via stream. To locate streams we used a topography map. We located close lines followed by lines that were farther apart and then once again followed by close lines. This indicates that there is a concave area between two high points, allowing water to possibly flow through. We found that areas where the water came from highly populated areas were warmer. The increase in temperature was shown throughout all depths of the water at each site that was measured. The temperature throughout the lake was in between 19°C and 25°C. This warm temperature makes it hard for gases to mix. The lower the dissolved oxygen level, the less desirable it is for a variety of organisms to survive. Higher temperatures also increase bacterial growth and can causes water to be unhealthy. This indicates that the water at Lake Chabot is not suitable for human consumption and should not be considered a suitable backup water source for our area.

  15. A Network Model for the Effective Thermal Conductivity of Rigid Fibrous Refractory Insulations

    NASA Technical Reports Server (NTRS)

    Marschall, Jochen; Cooper, D. M. (Technical Monitor)

    1995-01-01

    A procedure is described for computing the effective thermal conductivity of a rigid fibrous refractory insulation. The insulation is modeled as a 3-dimensional Cartesian network of thermal conductance. The values and volume distributions of the conductance are assigned to reflect the physical properties of the insulation, its constituent fibers, and any permeating gas. The effective thermal conductivity is computed by considering the simultaneous energy transport by solid conduction, gas conduction and radiation through a cubic volume of model insulation; thus the coupling between heat transfer modes is retained (within the simplifications inherent to the model), rather than suppressed by treating these heat transfer modes as independent. The model takes into account insulation composition, density and fiber anisotropy, as well as the geometric and material properties of the constituent fibers. A relatively good agreement, between calculated and experimentally derived thermal conductivity values, is obtained for a variety of rigid fibrous insulations.

  16. EFFECT OF HEATING RATE ON EVAPORATIVE HEAT LOSS IN THE MICROWAVE-EXPOSED MOUSE

    EPA Science Inventory

    Male CBA/J mice were administered heat loads of 0-28 J. per g at specific absorption rates (SARs) of either 47 or 93 W. per kg by exposure to 2,450-MHz microwave radiation at an ambient temperature of 30 C while evaporative heat loss (EHL) was continuously monitored with dew-poin...

  17. Effect of heating rate on evaporative heat loss in the microwave-exposed mouse

    SciTech Connect

    Gordon, C.J.

    1982-08-01

    Mice were exposed to microwave radiation at 2.450 MHz at varying intensities and heat loads to determine if the animals thermoregulate or temperature regulate in conditions of varying heat load. The mice were exposed to whole-body doses of microwave radiation and power not reflected back was regarded as absorbed by the mouse. Incident powers of three to six watts were used, resulting in specific absorption rates of 47.4-93.4 W/kg. Deep body temperatures and the evaporated heat loss were monitored, and results demonstrated that mice thermoregulate, i.e., dissipate heat loads through evaporative heat loss at a rate which is modeled numerically. It is concluded that a significant portion of the microwave energy is deposited internally.

  18. Effect of infrared transparency on the heat transfer through windows: a clarification of the greenhouse effect.

    PubMed

    Silverstein, S D

    1976-07-16

    The various radiative, convective, and conductive components of the net heat transfer are calculated and illustrated for various infrared transparencies of covers such as would be used in architectural, greenhouse, or solar collector windows. It is shown that in the limiting cases of infrared opacity and infrared transparency the relative contributions of the three modes of heat transfer are altered, but all contribute significantly. The radiation shielding arguments pertain to the analogous green-house effect in the atmosphere. PMID:17796153

  19. Time-Dependent DIII-D Heat Transport Simulations Using Neural-Network Models

    NASA Astrophysics Data System (ADS)

    Penna, J. M.; Smith, S. P.; Meneghini, O.; Luna, C. J.

    2014-10-01

    The neural network transport model BRAINFUSE has been developed to produce transport fluxes based on local parameters. The BRAIN-FUSE model has been integrated into the transport modeling framework ONETWO in order to develop time dependent solutions and has been validated by artificially varying the input neutral beam power and comparing the output to DIII-D scans. These efforts have led to the development of a time-dependent workflow within the OMFIT integrated modeling framework. The new work flow can evolve the electron and ion temperatures as a function of time dependent sources and equilibria. The effects of different engineering parameters can be explored and optimized in support of DIII-D operations. The efficiency of this workflow enables planning plasma operations of next-day experiments, as will be required for ITER. Work supported in part by the National Undergraduate Fellowship Program in Plasma Physics and Fusion Energy Sciences and the US Department of Energy under DE-FG02-94ER54235 & DE-FC02-04ER54698.

  20. Effect of reactor heat transfer limitations on CO preferential oxidation

    NASA Astrophysics Data System (ADS)

    Ouyang, X.; Besser, R. S.

    Our recent studies of CO preferential oxidation (PrOx) identified systematic differences between the characteristic curves of CO conversion for a microchannel reactor with thin-film wall catalyst and conventional mini packed-bed lab reactors (m-PBR's). Strong evidence has suggested that the reverse water-gas-shift (r-WGS) side reaction activated by temperature gradients in m-PBR's is the source of these differences. In the present work, a quasi-3D tubular non-isothermal reactor model based on the finite difference method was constructed to quantitatively study the effect of heat transport resistance on PrOx reaction behavior. First, the kinetic expressions for the three principal reactions involved were formed based on the combination of experimental data and literature reports and their parameters were evaluated with a non-linear regression method. Based on the resulting kinetic model and an energy balance derived for PrOx, the finite difference method was then adopted for the quasi-3D model. This model was then used to simulate both the microreactor and m-PBR's and to gain insights into their different conversion behavior. Simulation showed that the temperature gradients in m-PBR's favor the reverse water-gas-shift (r-WGS) reaction, thus causing a much narrower range of permissible operating temperature compared to the microreactor. Accordingly, the extremely efficient heat removal of the microchannel/thin-film catalyst system eliminates temperature gradients and efficiently prevents the onset of the r-WGS reaction.

  1. Bead temperature effects on FCAW heat-affected zone hardness

    SciTech Connect

    Kiefer, J.H.

    1995-11-01

    Hardness limits for welding procedure qualification are often imposed to lessen the chances of delayed hydrogen cracking during production fabrication. Temper bead techniques have been used by fabricators during these qualifications to improve their chances of success. This practice involves using the heat of additional weld beads to soften the heat-affected zone (HAZ) hardness in the base metal next to the weld where the hardness is the greatest. The technique works under controlled conditions, but the consistency for field use was questionable. This report describes an investigate of the effect of welding parameters, base metal chemical composition, and weld bead placement on HAZ softening. An empirical formula developed from base plate chemical composition, weld cooling time, and temper bead placement can be used to estimate the amount of HAZ tempering. Combined with an appropriate hardness prediction formula, it can help find the welding procedure needed to achieve a desired maximum HAZ hardness, or predict the HAZ hardness of existing welds. Based on the results of the study, bead temperature is not recommended for HAZ hardness control on large scale fabrications.

  2. Effect of attachment strategies on bipartite networks

    NASA Astrophysics Data System (ADS)

    Ganguly, Niloy; Saha, Sudipta; Maiti, Abyayananda; Agarwal, Sanket; Peruani, Fernando; Mukherjee, Animesh

    2013-06-01

    Bipartite systems show remarkable variations in their topological asymptotic properties, e.g., in their degree distribution. Such variations depend on the underlying growth dynamics. A scenario of particular importance is when the two partitions of the bipartite structure do not grow at an equal rate. Here, we focus on the case where one of the partitions can be assumed to be fixed while the other partition grows in time as observed in the codon-gene or alphabet-word network. We show that subtle changes in growth dynamics, particularly in the attachment kernel, can lead to drastic changes of the emergent topological properties. We present a detail analysis of various growth strategies, including sequential and parallel addition of nodes, as well as with and without replacement attachment kernels. Analytical results have been compared with stochastic simulations as well as with real systems showing in all cases an excellent agreement.

  3. The effects of orbital and climatic variations on Martian surface heat flow

    NASA Technical Reports Server (NTRS)

    Mellon, Michael T.; Jakosky, Bruce M.

    1992-01-01

    We have examined the effects of climate changes, induced by orbital oscillations, on Martian surface heat flow. It was found that the climatological component of the surface heat flow can be larger than the expected internal geothermal heat flow. We suggest that measurements of surface heat flow be targeted for equatorial and south polar regions to avoid climatic effects and that care be taken in interpreting measurements in mid-latitude and north polar regions.

  4. Community Size Effects on Epidemic Spreading in Multiplex Social Networks

    PubMed Central

    Liu, Ting; Li, Ping; Chen, Yan; Zhang, Jie

    2016-01-01

    The dynamical process of epidemic spreading has drawn much attention of the complex network community. In the network paradigm, diseases spread from one person to another through the social ties amongst the population. There are a variety of factors that govern the processes of disease spreading on the networks. A common but not negligible factor is people’s reaction to the outbreak of epidemics. Such reaction can be related information dissemination or self-protection. In this work, we explore the interactions between disease spreading and population response in terms of information diffusion and individuals’ alertness. We model the system by mapping multiplex networks into two-layer networks and incorporating individuals’ risk awareness, on the assumption that their response to the disease spreading depends on the size of the community they belong to. By comparing the final incidence of diseases in multiplex networks, we find that there is considerable mitigation of diseases spreading for full phase of spreading speed when individuals’ protection responses are introduced. Interestingly, the degree of community overlap between the two layers is found to be critical factor that affects the final incidence. We also analyze the consequences of the epidemic incidence in communities with different sizes and the impacts of community overlap between two layers. Specifically, as the diseases information makes individuals alert and take measures to prevent the diseases, the effective protection is more striking in small community. These phenomena can be explained by the multiplexity of the networked system and the competition between two spreading processes. PMID:27007112

  5. Maximizing the Effective Lifetime of Mobile Ad Hoc Networks

    NASA Astrophysics Data System (ADS)

    Hossain, M. Julius; Dewan, M. Ali Akber; Chae, Oksam

    This paper presents a new routing approach to extend the effective lifetime of mobile ad hoc networks (MANET) considering both residual battery energy of the participating nodes and routing cost. As the nodes in ad hoc networks are limited in power, a power failure occurs if a node has insufficient remaining energy to send, receive or forward a message. So, it is important to minimize the energy expenditure as well as to balance the remaining battery power among the nodes. Cost effective routing algorithms attempt to minimize the total power needed to transmit a packet which causes a large number of nodes to loose energy quickly and die. On the other hand, lifetime prediction based routing algorithms try to balance the remaining energies among the nodes in the networks and ignore the transmission cost. These approaches extend the lifetime of first few individual nodes. But as nodes spend more energy for packet transfer, power failures occurs, within short interval resulting more number of total dead node earlier. This reduces the effective lifetime of the network, as at this stage successful communication is not possible due to the lack of forwarding node. The proposed method keeps the transmission power in modest range and at the same time tries to reduce the variance of the residual energy of the nodes more effectively to obtain the highest useful lifetime of the networks in the long run. Nonetheless, movement of nodes frequently creates network topology changes via link breaks and link creation and thus effects on the stability of the network. So, the pattern of the node movement is also incorporated in our route selection procedure.

  6. Film cooling effectiveness and heat transfer with injection through holes

    NASA Technical Reports Server (NTRS)

    Eriksen, V. L.

    1971-01-01

    An experimental investigation of the local film cooling effectiveness and heat transfer downstream of injection of air through discrete holes into a turbulent boundary layer of air on a flat plate is reported. Secondary air is injected through a single hole normal to the main flow and through both a single hole and a row of holes spaced at three diameter intervals with an injection angle of 35 deg to the main flow. Two values of the mainstream Reynolds number are used; the blowing rate is varied from 0.1 to 2.0. Photographs of a carbon dioxide-water fog injected into the main flow at an angle of 90 deg are also presented to show interaction between the jet and mainstream.

  7. Effect of flow maldistribution and axial conduction on compact microchannel heat exchanger

    NASA Astrophysics Data System (ADS)

    Baek, Seungwhan; Lee, Cheonkyu; Jeong, Sangkwon

    2014-03-01

    When a compact microchannel heat exchanger is operated at cryogenic environments, it has potential problems of axial conduction and flow maldistribution. To analyze these detrimental effects, the heat exchanger model that includes both axial conduction and flow maldistribution effect is developed in consideration of the microchannel heat exchanger geometry. A dimensionless axial conduction parameter (λ) is used to describe the axial conduction effect, and the coefficient of variation (CoV) is introduced to quantify the flow maldistribution condition. The effectiveness of heat exchanger is calculated according to the various values of the axial conduction parameter and the CoV. The analysis results show that the heat exchanger effectiveness is insensitive when λ is less than 0.005, and effectiveness is degraded with the large value of CoV. Three microchannel heat exchangers are fabricated with printed circuit heat exchanger (PCHE) technology for validation purpose of the heat exchanger model. The first heat exchanger is a conventional heat exchanger, the second heat exchanger has the modified cross section to eliminate axial conduction effect, and the third heat exchanger has the modified cross section and the cross link in parallel channel to mitigate flow maldistribution effect. These heat exchangers are tested in cryogenic single-phase, and two-phase environments. The third heat exchanger shows the ideal thermal characteristic, while the other two heat exchangers experience some performance degradation due to axial conduction or flow maldistribution. The impact of axial conduction and flow maldistribution effects are verified by the simulation results and compared with the experimental results.

  8. Synergistic effect of repulsive inhibition in synchronization of excitatory networks

    NASA Astrophysics Data System (ADS)

    Belykh, Igor; Reimbayev, Reimbay; Zhao, Kun

    2015-06-01

    We show that the addition of pairwise repulsive inhibition to excitatory networks of bursting neurons induces synchrony, in contrast to one's expectations. Through stability analysis, we reveal the mechanism underlying this purely synergistic phenomenon and demonstrate that it originates from the transition between different types of bursting, caused by excitatory-inhibitory synaptic coupling. This effect is generic and observed in different models of bursting neurons and fast synaptic interactions. We also find a universal scaling law for the synchronization stability condition for large networks in terms of the number of excitatory and inhibitory inputs each neuron receives, regardless of the network size and topology. This general law is in sharp contrast with linearly coupled networks with positive (attractive) and negative (repulsive) coupling where the placement and structure of negative connections heavily affect synchronization.

  9. Constraints on Solar Coronal Heating from the FIP Effect

    NASA Astrophysics Data System (ADS)

    Laming, J. M.

    2012-12-01

    The solar composition is now known to vary with location on the sun. The solar corona was first observed in 1963 to exhibit what has now become known as the "FIP Effect". Elements with First Ionization Potential (FIP) less than about 10 eV are enhanced in their abundance relative to hydrogen by a factor of 3-4, relative to values in the solar photosphere. These low FIP elements include Fe, Si, Mg. Modern observations indicate that similar abundance anomalies apply in the corona and slow speed solar wind. High FIP elements are relatively less affected, although He and possibly Ne exhibit abundance depletions from their photospheric values. These fractionations are best explained within the context of a model where Alfvén waves propagating in the chromosphere interact with chromospheric ions (i.e. the low FIP elements), but not neutrals, through the ponderomotive force. Alfvén waves may originate either in the low chromosphere, as upward propagating sound waves mode convert at the layer where sound and Alfvén speeds are equal, or in the corona, as a byproduct of coronal heating by e.g. nanoflares or resonant absorption. In the former case resonance with an overlying coronal loop is not guaranteed, but in the latter case, it should be expected. Alfvén waves in resonance, or close to resonance with an overlying coronal loop produce a subtly different fractionation pattern to that found in the nonresonant case, and it is closer to that observed in several important respects, particularly the depletion of He. We therefore suggest that the ponderomotive model of the FIP Effect is more consistent with models of coronal heating such as nanoflares or Alfvén resonance, and permit ourselves some further speculation on the nature of such energy release.

  10. Effects of local and global network connectivity on synergistic epidemics

    NASA Astrophysics Data System (ADS)

    Broder-Rodgers, David; Pérez-Reche, Francisco J.; Taraskin, Sergei N.

    2015-12-01

    Epidemics in networks can be affected by cooperation in transmission of infection and also connectivity between nodes. An interplay between these two properties and their influence on epidemic spread are addressed in the paper. A particular type of cooperative effects (called synergy effects) is considered, where the transmission rate between a pair of nodes depends on the number of infected neighbors. The connectivity effects are studied by constructing networks of different topology, starting with lattices with only local connectivity and then with networks that have both local and global connectivity obtained by random bond-rewiring to nodes within a certain distance. The susceptible-infected-removed epidemics were found to exhibit several interesting effects: (i) for epidemics with strong constructive synergy spreading in networks with high local connectivity, the bond rewiring has a negative role in epidemic spread, i.e., it reduces invasion probability; (ii) in contrast, for epidemics with destructive or weak constructive synergy spreading on networks of arbitrary local connectivity, rewiring helps epidemics to spread; (iii) and, finally, rewiring always enhances the spread of epidemics, independent of synergy, if the local connectivity is low.

  11. Effect on the flow and heat transfer characteristics for sinusoidal pulsating laminar flow in a heated square cylinder

    NASA Astrophysics Data System (ADS)

    Yu, Jiu-Yang; Lin, Wei; Zheng, Xiao-Tao

    2014-06-01

    Two-dimensional numerical simulation is performed to understand the effect of flow pulsation on the flow and heat transfer from a heated square cylinder at Re = 100. Numerical calculations are carried out by using a finite volume method based on the pressure-implicit with splitting of operators algorithm in a collocated grid. The effects of flow pulsation amplitude (0.2 ≤ A ≤ 0.8) and frequency (0 ≤ f p ≤ 20 Hz) on the detailed kinematics of flow (streamlines, vorticity patterns), the macroscopic parameters (drag coefficient, vortex shedding frequency) and heat transfer enhancement are presented in detail. The Strouhal number of vortices shedding, drag coefficient for non-pulsating flow are compared with the previously published data, and good agreement is found. The lock-on phenomenon is observed for a square cylinder in the present flow pulsation. When the pulsating frequency is within the lock-on regime, time averaged drag coefficient and heat transfer from the square cylinder is substantially augmented, and when the pulsating frequency in about the natural vortex shedding frequency, the heat transfer is also substantially enhanced. In addition, the influence of the pulsating amplitude on the time averaged drag coefficient, heat transfer enhancement and lock-on occurrence is discussed in detail.

  12. HEAT INPUT AND POST WELD HEAT TREATMENT EFFECTS ON REDUCED-ACTIVATION FERRITIC/MARTENSITIC STEEL FRICTION STIR WELDS

    SciTech Connect

    Tang, Wei; Chen, Gaoqiang; Chen, Jian; Yu, Xinghua; Frederick, David Alan; Feng, Zhili

    2015-01-01

    Reduced-activation ferritic/martensitic (RAFM) steels are an important class of structural materials for fusion reactor internals developed in recent years because of their improved irradiation resistance. However, they can suffer from welding induced property degradations. In this paper, a solid phase joining technology friction stir welding (FSW) was adopted to join a RAFM steel Eurofer 97 and different FSW parameters/heat input were chosen to produce welds. FSW response parameters, joint microstructures and microhardness were investigated to reveal relationships among welding heat input, weld structure characterization and mechanical properties. In general, FSW heat input results in high hardness inside the stir zone mostly due to a martensitic transformation. It is possible to produce friction stir welds similar to but not with exactly the same base metal hardness when using low power input because of other hardening mechanisms. Further, post weld heat treatment (PWHT) is a very effective way to reduce FSW stir zone hardness values.

  13. Cost effective campaigning in social networks

    NASA Astrophysics Data System (ADS)

    Kotnis, Bhushan; Kuri, Joy

    2016-05-01

    Campaigners are increasingly using online social networking platforms for promoting products, ideas and information. A popular method of promoting a product or even an idea is incentivizing individuals to evangelize the idea vigorously by providing them with referral rewards in the form of discounts, cash backs, or social recognition. Due to budget constraints on scarce resources such as money and manpower, it may not be possible to provide incentives for the entire population, and hence incentives need to be allocated judiciously to appropriate individuals for ensuring the highest possible outreach size. We aim to do the same by formulating and solving an optimization problem using percolation theory. In particular, we compute the set of individuals that are provided incentives for minimizing the expected cost while ensuring a given outreach size. We also solve the problem of computing the set of individuals to be incentivized for maximizing the outreach size for given cost budget. The optimization problem turns out to be non trivial; it involves quantities that need to be computed by numerically solving a fixed point equation. Our primary contribution is, that for a fairly general cost structure, we show that the optimization problems can be solved by solving a simple linear program. We believe that our approach of using percolation theory to formulate an optimization problem is the first of its kind.

  14. The combined effects of longitudinal heat conduction, flow nonuniformity and temperature nonuniformity in crossflow plate-fin heat exchangers

    SciTech Connect

    Ranganayakulu, C. ); Seetharamu, K.N. . School of Mechanical Engineering)

    1999-07-01

    An analysis of a crossflow plate-fin compact heat exchanger, accounting for the combined effects of two-dimensional longitudinal heat conduction through the exchanger wall and nonuniform inlet fluid flow and temperature distribution is carried out using a finite element method. A mathematical equation is developed to generate different types of fluid flow/temperature maldistribution models considering the possible deviations in fluid flow. Using these models, the exchanger effectiveness and its deterioration due to the combined effects of longitudinal heat conduction, flow nonuniformity and temperature nonuniformity are calculated for various design and operating conditions of the exchanger. It was found that the performance variations are quite significant in some typical applications.

  15. Metabolic Network Prediction of Drug Side Effects.

    PubMed

    Shaked, Itay; Oberhardt, Matthew A; Atias, Nir; Sharan, Roded; Ruppin, Eytan

    2016-03-23

    Drug side effects levy a massive cost on society through drug failures, morbidity, and mortality cases every year, and their early detection is critically important. Here, we describe the array of model-based phenotype predictors (AMPP), an approach that leverages medical informatics resources and a human genome-scale metabolic model (GSMM) to predict drug side effects. AMPP is substantially predictive (AUC > 0.7) for >70 drug side effects, including very serious ones such as interstitial nephritis and extrapyramidal disorders. We evaluate AMPP's predictive signal through cross-validation, comparison across multiple versions of a side effects database, and co-occurrence analysis of drug side effect associations in scientific abstracts (hypergeometric p value = 2.2e-40). AMPP outperforms a previous biochemical structure-based method in predicting metabolically based side effects (aggregate AUC = 0.65 versus 0.59). Importantly, AMPP enables the identification of key metabolic reactions and biomarkers that are predictive of specific side effects. Taken together, this work lays a foundation for future detection of metabolically grounded side effects during early stages of drug development. PMID:27135366

  16. Neural networks analysis of free laminar convection heat transfer in a partitioned enclosure

    NASA Astrophysics Data System (ADS)

    Mahmoud, Mohamed A.; Ben-Nakhi, Abdullatif E.

    2007-10-01

    The feasibility of using neural networks (NNs) to predict the complete thermal and flow variables throughout a complicated domain, due to free convection, is demonstrated. Attention is focused on steady, laminar, two-dimensional, natural convective flow within a partitioned cavity. The objective is to use NN (trained on a database generated by a CFD analysis of the problem of a partitioned enclosure) to predict new cases; thus saving effort and computation time. Three types of NN are evaluated, namely General Regression NNs, Polynomial NNs, and a versatile design of Backpropagation neural networks. An important aspect of the study was optimizing network architecture in order to achieve best performance. For each of the three different NN architectures evaluated, parametric studies were performed to determine network parameters that best predict the flow variables. A CFD simulation software was used to generate a database that covered the range of Rayleigh number Ra = 10 4-5 × 10 6. The software was used to calculate the temperature, the pressure, and the horizontal and vertical components of flow speed. The results of the CFD were used for training and testing the neural networks (NN). The robustness of the trained NNs was tested by applying them to a "production" data set (1500 patterns for Ra = 8 × 10 4 and 1500 patterns for Ra = 3 × 10 6), which the networks have never been "seen" before. The results of applying the technique on the "production" data set show excellent prediction when the NNs are properly designed. The success of the NN in accurately predicting free convection in partitioned enclosures should help reduce analysis-time and effort. Neural networks could potentially help solve some cases in which CFD fails to solve because of numerical instability.

  17. Convergent neuromodulation onto a network neuron can have divergent effects at the network level.

    PubMed

    Kintos, Nickolas; Nusbaum, Michael P; Nadim, Farzan

    2016-04-01

    Different neuromodulators often target the same ion channel. When such modulators act on different neuron types, this convergent action can enable a rhythmic network to produce distinct outputs. Less clear are the functional consequences when two neuromodulators influence the same ion channel in the same neuron. We examine the consequences of this seeming redundancy using a mathematical model of the crab gastric mill (chewing) network. This network is activated in vitro by the projection neuron MCN1, which elicits a half-center bursting oscillation between the reciprocally-inhibitory neurons LG and Int1. We focus on two neuropeptides which modulate this network, including a MCN1 neurotransmitter and the hormone crustacean cardioactive peptide (CCAP). Both activate the same voltage-gated current (I MI ) in the LG neuron. However, I MI-MCN1 , resulting from MCN1 released neuropeptide, has phasic dynamics in its maximal conductance due to LG presynaptic inhibition of MCN1, while I MI-CCAP retains the same maximal conductance in both phases of the gastric mill rhythm. Separation of time scales allows us to produce a 2D model from which phase plane analysis shows that, as in the biological system, I MI-MCN1 and I MI-CCAP primarily influence the durations of opposing phases of this rhythm. Furthermore, I MI-MCN1 influences the rhythmic output in a manner similar to the Int1-to-LG synapse, whereas I MI-CCAP has an influence similar to the LG-to-Int1 synapse. These results show that distinct neuromodulators which target the same voltage-gated ion channel in the same network neuron can nevertheless produce distinct effects at the network level, providing divergent neuromodulator actions on network activity. PMID:26798029

  18. Effect of dry heating with ionic gums on physicochemical properties of starch.

    PubMed

    Sun, Qingjie; Si, Fumei; Xiong, Liu; Chu, Lijun

    2013-02-15

    Corn starch, potato starch, pea starch were impregnated with ionic gums (sodium alginate, CMC, and xanthan, 1% based on starch solids) and heat-treated in a dry state for 0, 2, or 4 h at 130°C. Effects of the dry heating on paste viscosity (RVA), microstructure and thermal properties were examined. Dry heat treatment with ionic gums reduced the pasting temperature of the three starches. Heating with xanthan increased the paste viscosity of corn and potato starch. With heat treatment, the paste viscosity of all the starch-sodium alginate mixtures decreased. Heating with CMC increased the paste viscosity of potato starch, but decreased that of corn and pea starch. After dry-heating, To, Tp and Tc of potato starch with ionic gums decreased significantly. SEM of potato starch with CMC showed that the gel structure got compacter after drying-heating. Heat treatment obviously improved the functional properties of the three starches. PMID:23194543

  19. Analysis of buoyancy effect on fully developed laminar heat transfer in a rotating tube

    NASA Technical Reports Server (NTRS)

    Siegel, R.

    1985-01-01

    Laminar heat transfer is analyzed in a tube rotating about an axis perpendicular to the tube axis. The solution applies for flow that is either radially outward from the axis of rotation, or radially inward toward the axis of rotation. The conditions are fully developed, and there is uniform heat addition at the tube wall. The analysis is performed by expanding velocities and temperature in power series using the Taylor number as a perturbation parameter. Coriolis and buoyancy forces caused by tube rotation are included, and the solution is calculated through second-order terms. The secondary flow induced by the Coriolis terms always tends to increase the heat transfer coefficient; this effect can dominate for small wall heating. For radial inflow, buoyancy also tends to improve heat transfer. For radial outflow, however, buoyancy tends to reduce heat transfer; for large wall heating this effect can dominate, and there is a net reduction in heat transfer coefficient.

  20. Effect of heating rate on highly heat-resistant spore-forming microorganisms.

    PubMed

    Gómez-Jódar, Isabel; Ros-Chumillas, María; Palop, Alfredo

    2016-03-01

    Highly heat-resistant spore-forming Bacillus cause nonsterility problems in canned food and reduce the shelf life of many processed foods. The aim of this research was to evaluate the thermal inactivation of Bacillus sporothermodurans IIC65, Bacillus subtilis IC9, and Geobacillus stearothermophilus T26 under isothermal and nonisothermal conditions. The data obtained showed that B. sporothermodurans and B. subtilis were more heat resistant than G. stearothermophilus. The survival curves of B. sporothermodurans and B. subtilis showed shoulders, while the survival curves of G. stearothermophilus showed tails. Under nonisothermal treatment, at heating rates of 1 and 20 ℃/min, time needed to completely inactivate G. stearothermophilus was shorter than that required for B. sporothermodurans and B. subtilis. In complex heat treatments (heating-holding-cooling), the survival curves of B. sporothermodurans and B. subtilis showed the same activation shoulders than those obtained under isothermal treatments and the activation shoulders were again absent in the case of G. stearothermophilus. Predictions fitted quite well the data obtained for B. sporothermodurans. In contrast, the data for B. subtilis showed half a log cycle more survival than expected and in the case of G. stearothermophilus, the survival curve obtained showed much higher inactivation than expected. PMID:25852134

  1. Towards effective flow simulations in realistic discrete fracture networks

    NASA Astrophysics Data System (ADS)

    Berrone, Stefano; Pieraccini, Sandra; Scialò, Stefano

    2016-04-01

    We focus on the simulation of underground flow in fractured media, modeled by means of Discrete Fracture Networks. Focusing on a new recent numerical approach proposed by the authors for tackling the problem avoiding mesh generation problems, we further improve the new family of methods making a step further towards effective simulations of large, multi-scale, heterogeneous networks. Namely, we tackle the imposition of Dirichlet boundary conditions in weak form, in such a way that geometrical complexity of the DFN is not an issue; we effectively solve DFN problems with fracture transmissivities spanning many orders of magnitude and approaching zero; furthermore, we address several numerical issues for improving the numerical solution also in quite challenging networks.

  2. A novel heat shock protein alpha 8 (Hspa8) molecular network mediating responses to stress- and ethanol-related behaviors.

    PubMed

    Urquhart, Kyle R; Zhao, Yinghong; Baker, Jessica A; Lu, Ye; Yan, Lei; Cook, Melloni N; Jones, Byron C; Hamre, Kristin M; Lu, Lu

    2016-04-01

    Genetic differences mediate individual differences in susceptibility and responses to stress and ethanol, although, the specific molecular pathways that control these responses are not fully understood. Heat shock protein alpha 8 (Hspa8) is a molecular chaperone and member of the heat shock protein family that plays an integral role in the stress response and that has been implicated as an ethanol-responsive gene. Therefore, we assessed its role in mediating responses to stress and ethanol across varying genetic backgrounds. The hippocampus is an important mediator of these responses, and thus, was examined in the BXD family of mice in this study. We conducted bioinformatic analyses to dissect genetic factors modulating Hspa8 expression, identify downstream targets of Hspa8, and examined its role. Hspa8 is trans-regulated by a gene or genes on chromosome 14 and is part of a molecular network that regulates stress- and ethanol-related behaviors. To determine additional components of this network, we identified direct or indirect targets of Hspa8 and show that these genes, as predicted, participate in processes such as protein folding and organic substance metabolic processes. Two phenotypes that map to the Hspa8 locus are anxiety-related and numerous other anxiety- and/or ethanol-related behaviors significantly correlate with Hspa8 expression. To more directly assay this relationship, we examined differences in gene expression following exposure to stress or alcohol and showed treatment-related differential expression of Hspa8 and a subset of the members of its network. Our findings suggest that Hspa8 plays a vital role in genetic differences in responses to stress and ethanol and their interactions. PMID:26780340

  3. Resistor-network anomalies in the heat transport of random harmonic chains

    NASA Astrophysics Data System (ADS)

    Weinberg, Isaac; de Leeuw, Yaron; Kottos, Tsampikos; Cohen, Doron

    2016-06-01

    We consider thermal transport in low-dimensional disordered harmonic networks of coupled masses. Utilizing known results regarding Anderson localization, we derive the actual dependence of the thermal conductance G on the length L of the sample. This is required by nanotechnology implementations because for such networks Fourier's law G ∝1 /Lα with α =1 is violated. In particular we consider "glassy" disorder in the coupling constants and find an anomaly which is related by duality to the Lifshitz-tail regime in the standard Anderson model.

  4. Effects of Heat Generation on Nuclear Waste Disposal in Salt

    NASA Astrophysics Data System (ADS)

    Clayton, D. J.

    2008-12-01

    Disposal of nuclear waste in salt is an established technology, as evidenced by the successful operations of the Waste Isolation Pilot Plant (WIPP) since 1999. The WIPP is located in bedded salt in southeastern New Mexico and is a deep underground facility for transuranic (TRU) nuclear waste disposal. There are many advantages for placing radioactive wastes in a geologic bedded-salt environment. One desirable mechanical characteristic of salt is that it flows plastically with time ("creeps"). The rate of salt creep is a strong function of temperature and stress differences. Higher temperatures and deviatoric stresses increase the creep rate. As the salt creeps, induced fractures may be closed and eventually healed, which then effectively seals the waste in place. With a backfill of crushed salt emplaced around the waste, the salt creep can cause the crushed salt to reconsolidate and heal to a state similar to intact salt, serving as an efficient seal. Experiments in the WIPP were conducted to investigate the effects of heat generation on the important phenomena and processes in and around the repository (Munson et al. 1987; 1990; 1992a; 1992b). Brine migration towards the heaters was induced from the thermal gradient, while salt creep rates showed an exponential dependence on temperature. The project "Backfill and Material Behavior in Underground Salt Repositories, Phase II" (BAMBUS II) studied the crushed salt backfill and material behavior with heat generation at the Asse mine located near Remlingen, Germany (Bechthold et al. 2004). Increased salt creep rates and significant reconsolidation of the crushed salt were observed at the termination of the experiment. Using the data provided from both projects, exploratory modeling of the thermal-mechanical response of salt has been conducted with varying thermal loading and waste spacing. Increased thermal loading and decreased waste spacing drive the system to higher temperatures, while both factors are desired to

  5. Towards understanding of heat effects in metallic glasses on the basis of macroscopic shear elasticity.

    PubMed

    Mitrofanov, Y P; Wang, D P; Makarov, A S; Wang, W H; Khonik, V A

    2016-01-01

    It is shown that all heat effects taking place upon annealing of a metallic glass within the glassy and supercooled liquid states, i.e. heat release below the glass transition temperature and heat absorption above it, as well as crystallization-induced heat release, are related to the macroscopic shear elasticity. The underlying physical reason can be understood as relaxation in the system of interstitialcy-type "defects" (elastic dipoles) frozen-in from the melt upon glass production. PMID:26975587

  6. Towards understanding of heat effects in metallic glasses on the basis of macroscopic shear elasticity

    NASA Astrophysics Data System (ADS)

    Mitrofanov, Y. P.; Wang, D. P.; Makarov, A. S.; Wang, W. H.; Khonik, V. A.

    2016-03-01

    It is shown that all heat effects taking place upon annealing of a metallic glass within the glassy and supercooled liquid states, i.e. heat release below the glass transition temperature and heat absorption above it, as well as crystallization-induced heat release, are related to the macroscopic shear elasticity. The underlying physical reason can be understood as relaxation in the system of interstitialcy-type ”defects” (elastic dipoles) frozen-in from the melt upon glass production.

  7. The Effects of Heat Treatment and Microstructure Variations on Disk Superalloy Properties at High Temperature

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Gayda, John; Telesman, Jack; Garg, Anita

    2008-01-01

    The effects of heat treatment and resulting microstructure variations on high temperature mechanical properties were assessed for a powder metallurgy disk superalloy LSHR. Blanks were consistently supersolvus solution heat treated and quenched at two cooling rates, than aged at varying temperatures and times. Tensile, creep, and dwell fatigue crack growth tests were then performed at 704 C. Gamma' precipitate microstructures were quantified. Relationships between heat treatment-microstructure, heat treatment-mechanical properties, and microstructure-mechanical properties were assessed.

  8. Stochastic effects in a thermochemical system with Newtonian heat exchange

    NASA Astrophysics Data System (ADS)

    Nowakowski, B.; Lemarchand, A.

    2001-12-01

    We develop a mesoscopic description of stochastic effects in the Newtonian heat exchange between a diluted gas system and a thermostat. We explicitly study the homogeneous Semenov model involving a thermochemical reaction and neglecting consumption of reactants. The master equation includes a transition rate for the thermal transfer process, which is derived on the basis of the statistics for inelastic collisions between gas particles and walls of the thermostat. The main assumption is that the perturbation of the Maxwellian particle velocity distribution can be neglected. The transition function for the thermal process admits a continuous spectrum of temperature changes, and consequently, the master equation has a complicated integro-differential form. We perform Monte Carlo simulations based on this equation to study the stochastic effects in the Semenov system in the explosive regime. The dispersion of ignition times is calculated as a function of system size. For sufficiently small systems, the probability distribution of temperature displays transient bimodality during the ignition period. The results of the stochastic description are successfully compared with those of direct simulations of microscopic particle dynamics.

  9. Scalable 3D bicontinuous fluid networks: polymer heat exchangers toward artificial organs.

    PubMed

    Roper, Christopher S; Schubert, Randall C; Maloney, Kevin J; Page, David; Ro, Christopher J; Yang, Sophia S; Jacobsen, Alan J

    2015-04-17

    A scalable method for fabricating architected materials well-suited for heat and mass exchange is presented. These materials exhibit unprecedented combinations of small hydraulic diameters (13.0-0.09 mm) and large hydraulic-diameter-to-thickness ratios (5.0-30,100). This process expands the range of material architectures achievable starting from photopolymer waveguide lattices or additive manufacturing. PMID:25753365

  10. Network reliability: The effect of local network structure on diffusive processes

    NASA Astrophysics Data System (ADS)

    Youssef, Mina; Khorramzadeh, Yasamin; Eubank, Stephen

    2013-11-01

    This paper reintroduces the network reliability polynomial, introduced by Moore and Shannon [Moore and Shannon, J. Franklin Inst.JFINAB0016-003210.1016/0016-0032(56)90559-2 262, 191 (1956)], for studying the effect of network structure on the spread of diseases. We exhibit a representation of the polynomial that is well suited for estimation by distributed simulation. We describe a collection of graphs derived from Erdős-Rényi and scale-free-like random graphs in which we have manipulated assortativity-by-degree and the number of triangles. We evaluate the network reliability for all of these graphs under a reliability rule that is related to the expected size of a connected component. Through these extensive simulations, we show that for positively or neutrally assortative graphs, swapping edges to increase the number of triangles does not increase the network reliability. Also, positively assortative graphs are more reliable than neutral or disassortative graphs with the same number of edges. Moreover, we show the combined effect of both assortativity-by-degree and the presence of triangles on the critical point and the size of the smallest subgraph that is reliable.

  11. Network reliability: the effect of local network structure on diffusive processes.

    PubMed

    Youssef, Mina; Khorramzadeh, Yasamin; Eubank, Stephen

    2013-11-01

    This paper reintroduces the network reliability polynomial, introduced by Moore and Shannon [Moore and Shannon, J. Franklin Inst. 262, 191 (1956)], for studying the effect of network structure on the spread of diseases. We exhibit a representation of the polynomial that is well suited for estimation by distributed simulation. We describe a collection of graphs derived from Erdős-Rényi and scale-free-like random graphs in which we have manipulated assortativity-by-degree and the number of triangles. We evaluate the network reliability for all of these graphs under a reliability rule that is related to the expected size of a connected component. Through these extensive simulations, we show that for positively or neutrally assortative graphs, swapping edges to increase the number of triangles does not increase the network reliability. Also, positively assortative graphs are more reliable than neutral or disassortative graphs with the same number of edges. Moreover, we show the combined effect of both assortativity-by-degree and the presence of triangles on the critical point and the size of the smallest subgraph that is reliable. PMID:24329321

  12. Network Reliability: The effect of local network structure on diffusive processes

    PubMed Central

    Youssef, Mina; Khorramzadeh, Yasamin; Eubank, Stephen

    2014-01-01

    This paper re-introduces the network reliability polynomial – introduced by Moore and Shannon in 1956 – for studying the effect of network structure on the spread of diseases. We exhibit a representation of the polynomial that is well-suited for estimation by distributed simulation. We describe a collection of graphs derived from Erdős-Rényi and scale-free-like random graphs in which we have manipulated assortativity-by-degree and the number of triangles. We evaluate the network reliability for all these graphs under a reliability rule that is related to the expected size of a connected component. Through these extensive simulations, we show that for positively or neutrally assortative graphs, swapping edges to increase the number of triangles does not increase the network reliability. Also, positively assortative graphs are more reliable than neutral or disassortative graphs with the same number of edges. Moreover, we show the combined effect of both assortativity-by-degree and the presence of triangles on the critical point and the size of the smallest subgraph that is reliable. PMID:24329321

  13. Shallow Groundwater Temperatures and the Urban Heat Island Effect: the First U.K City-wide Geothermal Map to Support Development of Ground Source Heating Systems Strategy

    NASA Astrophysics Data System (ADS)

    Patton, Ashley M.; Farr, Gareth J.; Boon, David P.; James, David R.; Williams, Bernard; Newell, Andrew J.

    2015-04-01

    The first UK city-wide heat map is described based on measurements of groundwater from a shallow superficial aquifer in the coastal city of Cardiff, Wales, UK. The UK Government has a target of reducing greenhouse gas emissions by 80% by 2050 (Climate Change Act 2008) and low carbon technologies are key to achieving this. To support the use of ground source heating we characterised the shallow heat potential of an urban aquifer to produce a baseline dataset which is intended to be used as a tool to inform developers and to underpin planning and regulation. We exploited an existing network of 168 groundwater monitoring boreholes across the city, recording the water temperature in each borehole at 1m depth intervals up to a depth of 20m. We recorded groundwater temperatures during the coldest part of 2014, and repeat profiling of the boreholes in different seasons has added a fourth dimension to our results and allowed us to characterise the maximum depth of seasonal temperature fluctuation. The temperature profiles were used to create a 3D model of heat potential within the aquifer using GOCAD® and the average borehole temperatures were contoured using Surfer® 10 to generate a 2D thermal resource map to support future assessment of urban Ground Source Heat Pumps prospectively. The average groundwater temperature in Cardiff was found to be above the average for England and Wales (11.3°C) with 90% of boreholes in excess of this figure by up to 4°C. The subsurface temperature profiles were also found to be higher than forecast by the predicted geothermal gradient for the area. Potential sources for heat include: conduction from buildings, basements and sub-surface infrastructure; insulation effects of the urban area and of the geology, and convection from leaking sewers. Other factors include recharge inhibition by drains, localised confinement and rock-water interaction in specific geology. It is likely to be a combination of multiple factors which we are hoping

  14. Effect of junction temperature on heat dissipation of high power light emitting diodes

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Suk; Han, Bongtae

    2016-03-01

    The effect of junction temperature on heat dissipation of high power light emitting diodes (LEDs) is investigated. The theoretical aspect of junction temperature dependency of two major parameters—the forward voltage and the radiant flux—on heat dissipation is reviewed. Actual measurements of the heat dissipation over a wide range of junction temperatures are followed to quantify the effect of the parameters using commercially available LEDs. The results show that (1) the effect of the junction temperature dependency on heat dissipation is governed largely by the LED power efficiency and (2) each parameter contributes to the total heat dissipation in an opposite way so that the absolute changes of the heat dissipation are not significant over a wide range of junction temperature. An empirical model of heat dissipation is proposed for applications in practice.

  15. Children's Agricultural Safety Network: Evaluating Organizational Effectiveness and Impacts.

    PubMed

    Cramer, Mary E; Wendl, Mary J

    2015-01-01

    Coalitions that are effectively organized and led are more likely to achieve their intended program outcomes and impacts, as well as achieve sustainability. External evaluation of the coalition's governance and leadership can help identify strengths and areas for improvement. This article describes the evaluation of the Children's Agricultural Safety Network (CASN)-a national coalition, or network of 45 organizational members. The conceptual framework, Internal Coalition Outcomes Hierarchy, guided the evaluation. We used a mixed-methods approach to answer study's primary objectives from the perspective of CASN members and leaders for (a) organizational effectiveness, (b) network impact, and (c) member benefits. We collected quantitative data using a survey and the Internal Coalition Effectiveness (ICE) instrument. Focused interviews were conducted by phone to gather rich data on examples. Combined findings showed that both members and leaders rated the CASN effective in all construct areas that define successful coalitions. Members feel as invested in CASN success as do leaders. The major impact of CASN has been as a national leader and clearinghouse for childhood safety issues, and the most frequently cited example of impact was the national tractor safety campaign. Members identified the benefits of CASN membership as networking, resource sharing, and opportunities to enhance their knowledge, skills, and practices in the area. Members also valued the national attention that CASN was able to bring to the important issues in childhood agricultural safety. Suggestions for improvement were to focus on more research to improve best practices and strengthen dissemination and implementation science. PMID:25906269

  16. CNODES: the Canadian Network for Observational Drug Effect Studies.

    PubMed

    Suissa, Samy; Henry, David; Caetano, Patricia; Dormuth, Colin R; Ernst, Pierre; Hemmelgarn, Brenda; Lelorier, Jacques; Levy, Adrian; Martens, Patricia J; Paterson, J Michael; Platt, Robert W; Sketris, Ingrid; Teare, Gary

    2012-01-01

    Although administrative health care databases have long been used to evaluate adverse drug effects, responses to drug safety signals have been slow and uncoordinated. We describe the establishment of the Canadian Network for Observational Drug Effect Studies (CNODES), a collaborating centre of the Drug Safety and Effectiveness Network (DSEN). CNODES is a distributed network of investigators and linked databases in British Columbia, Alberta, Saskatchewan, Manitoba, Ontario, Quebec and Nova Scotia. Principles of operation are as follows: (1) research questions are prioritized by the coordinating office of DSEN; (2) the linked data stay within the provinces; (3) for each question, a study team formulates a detailed protocol enabling consistent analyses in each province; (4) analyses are "blind" to results obtained elsewhere; (5) protocol deviations are permitted for technical reasons only; (6) analyses using multivariable methods are lodged centrally with a methods team, which is responsible for combining the results to provide a summary estimate of effect. These procedures are designed to achieve high internal validity of risk estimates and to eliminate the possibility of selective reporting of analyses or outcomes. The value of a coordinated multi-provincial approach is illustrated by projects studying acute renal injury with high-potency statins, community-acquired pneumonia with proton pump inhibitors, and hyperglycemic emergencies with antipsychotic drugs. CNODES is an academically based distributed network of Canadian researchers and data centres with a commitment to rapid and sophisticated analysis of emerging drug safety signals in study populations totalling over 40 million. PMID:23687528

  17. Effects of Temperature Gradients and Heat Fluxes on High-Temperature Oxidation

    SciTech Connect

    Holcomb, G.R.

    2008-04-01

    The effects of a temperature gradient and heat flux on point defect diffusion in protective oxide scales were examined. Irreversible thermodynamics were used to expand Fick’s first law of diffusion to include a heat-flux term—a Soret effect. Oxidation kinetics were developed for the oxidation of cobalt and of nickel doped with chromium. Research is described to verify the effects of a heat flux by oxidizing pure cobalt in a temperature gradient at 900 °C, and comparing the kinetics to isothermal oxidation. No evidence of a heat flux effect was found.

  18. The effect of music-induced mood on attentional networks.

    PubMed

    Jiang, Jun; Scolaro, Ashley J; Bailey, Kira; Chen, Antao

    2011-06-01

    Attention network theory suggests that there are three separate neural networks that execute the discrete functions of alerting, orienting, and executive attention. Previous research on the influence of mood on attention has shown subtle and inconsistent results. The attention network theory may aid in clarifying the influence of mood on attention. The present study investigated the influence of mood on attentional networks in a normal population. Participants performed the Attention Network Test (ANT), which provides functional measures of alerting, orienting, and executive attention. Positive or negative mood was induced by listening to music with a positive or negative valence, respectively; neutral mood was induced by reading a collection of basic facts about China. The results revealed that negative mood led to a significantly higher alerting efficiency relative to other moods, while there were no significant mood effects on orienting or executive attention efficiency. According to the algorithm underlying the ANT, the higher alerting efficiency in the negative mood condition can be attributed to relatively greater benefits of cueing effects. The findings are discussed in the context of the noradrenergic system and of evolutionary significance. Specifically, the increase in the alerting function during negative mood states may be due to the modulation effect of negative mood on the noradrenergic system, and/or to the survival benefit resulting from an increase in automatic vigilance towards negative information. The current results suggest that as the influence of negative mood on attention appears to specifically consist in an enhanced alerting function, it may not be found in studies where the three attentional networks are not dissociated. PMID:22044234

  19. Magnetoresistance effect of heat generation in a single-molecular spin-valve

    NASA Astrophysics Data System (ADS)

    Jiang, Feng; Yan, Yonghong; Wang, Shikuan; Yan, Yijing

    2016-02-01

    Based on non-equilibrium Green's functions' theory and small polaron transformation's technology, we study the heat generation by current through a single-molecular spin-valve. Numerical results indicate that the variation of spin polarization degree can change heat generation effectively, the spin-valve effect happens not only in electrical current but also in heat generation when Coulomb repulsion in quantum dot is smaller than phonon frequency and interestingly, when Coulomb repulsion is larger than phonon frequency, the inverse spin-valve effect appears by sweeping gate voltage and is enlarged with bias increasing. The inverse spin-valve effect will induce the unique heat magnetoresistance effect, which can be modulated from heat-resistance to heat-gain by gate voltage easily.

  20. Effect of radiation heat transfer on thermal diffusivity measurements

    NASA Astrophysics Data System (ADS)

    Araki, N.

    1990-03-01

    Experimental data on thermal conductivity and thermal diffusivity of a semitransparent material generally include an error due to the radiation heat transfer. This error varies in accordance with the experimental conditions such as the temperature level of the sample and the measuring method. In this paper, research on the influence of radiation heat transfer on thermal diffusivity are reviewed, and as an example, the method to correct the radiation component in the apparent thermal diffusivity measured by the stepwise heating technique is presented. The transient heat transfer by simultaneous thermal conduction and radiation in a semitransparent material is analyzed when the front surface is subjected to stepwise heating. The apparent thermal diffusivity, which includes the radiation component, is calculated for various parameters.

  1. Heat and storage effects on the flavour of peanuts.

    PubMed

    el-Kayati, S M; Fadel, H H; Abdel Mageed, M; Farghal, S A

    1998-12-01

    Two peanut varieties, Giza 4 and Giza 5 were subjected to different heat treatments such as drying in solar drier at air speed 0.5 and 2 m/sec with average temperature 45 and 60 degrees C and heating in oven at 120 and 150 degrees C. The sensory evaluation of the two varieties showed insignificant differences among varieties and heating processes. A correlation between the sensory and instrumental data was found. The high sensory scores of samples heated at 150 degrees C were attributed to the presence of high concentration of pyrazines which were thought to contribute to flavour and aroma of fresh roasted peanut. A comparative study between the main chemical classes retained in peanut samples after storage for 3 months at room temperature showed that the aldehydes derived lipids increased significantly in the solar dried samples. The antioxidative components produced via Maillard reaction resulted in oxidative stability of the samples heated in oven. PMID:9881373

  2. Heating surface material’s effect on subcooled flow boiling heat transfer of R134a

    SciTech Connect

    Ling Zou; Barclay G. Jones

    2012-11-01

    In this study, subcooled flow boiling of R134a on copper (Cu) and stainless steel (SS) heating surfaces was experimentally investigated from both macroscopic and microscopic points of view. By utilizing a high-speed digital camera, bubble growth rate, bubble departure size, and nucleation site density, were able to be observed and analyzed from the microscopic point of view. Macroscopic characteristics of the subcooled flow boiling, such as heat transfer coefficient, were able to be measured as well. Experimental results showed that there are no obvious difference between the copper and the stainless surface with respect to bubble dynamics, such as contact angle, growth rate and departure size. On the contrary, the results clearly showed a trend that the copper surface had a better performance than the stainless steel surface in terms of heat transfer coefficient. It was also observed that wall heat fluxes on both surfaces were found highly correlated with nucleation site density, as bubble hydrodynamics are similar on these two surfaces. The difference between these two surfaces was concluded as results of different surface thermal conductivities.

  3. Monitoring the urban heat island of Bucharest (Romania) through a network of automatic meteorological sensors - first results

    NASA Astrophysics Data System (ADS)

    Cheval, Sorin; Lucaschi, Bogdan; Ioja, Cristian; Dumitrescu, Alexandru; Manea, Ancuta; Radulescu, Adrian; Dumitrache, Catalin; Tudorache, George; Vanau, Gabriel; Onose, Diana

    2015-04-01

    Extreme warm temperatures and heat waves represent one of the major climate hazards which impact the city of Bucharest (Romania), favoured by the climate background and by the urban characteristics. Previous studies based either on sparse ground sensors or satellite remote sensing indicate that the average differences between the monthly temperature of the built area and the neighbouring rural buffers of Bucharest can reach 3-4°C, but instantaneous values are certainly higher. Since the city shelters about 2 million residents, as well as the major administrative and economic facilities of the country, the hazard management should receive a vivid attention. The meteorological monitoring of the city is currently performed in a systematic manner by the National Meteorological Administration (NMA) through 3 ground-based stations following the standards of the World Meteorological Organization, and through radar and satellite remote sensing. In 2014, NMA set up 7 automatic sensors in specific urban conditions, while the University of Bucharest deployed 30 mobile sensors in a joint effort for enhancing the accuracy of the urban heat island monitoring. Both sensor devices are designed for continuous monitoring (24/7). This presentation focuses on the technical characteristics of the recently implemented network (1), and brings to the public the first results of the monitoring (2), including the implementation experience, the observed benefits and plans for development and applications. The data obtained are compared with the existing data sets from meteorological stations and satellite products, and they are currently integrated in a common database, providing valuable information about the Bucharest's urban heat island. The results have been obtained within the project UCLIMESA (Urban Heat Island Monitoring under Present and Future Climate), ongoing between 2013 and 2015 in the framework of the Programme for Research-Development-Innovation for Space Technology and

  4. EFFECT OF HORIZONTALLY INHOMOGENEOUS HEATING ON FLOW AND MAGNETIC FIELD IN THE CHROMOSPHERE OF THE SUN

    SciTech Connect

    Song, P.; Vasyliūnas, V. M.

    2014-12-01

    The solar chromosphere is heated by damped Alfvén waves propagating upward from the photosphere at a rate that depends on magnetic field strength, producing enhanced heating at low altitudes in the extended weak-field regions (where the additional heating accounts for the radiative losses) between the boundaries of the chromospheric network as well as enhanced heating per particle at higher altitudes in strong magnetic field regions of the network. The resulting inhomogeneous radiation and temperature distribution produces bulk flows, which in turn affect the configuration of the magnetic field. The basic flow pattern is circulation on the spatial scale of a supergranule, with upward flow in the strong-field region; this is a mirror image in the upper chromosphere of photospheric/subphotospheric convection widely associated with the formation of the strong network field. There are significant differences between the neutral and the ionized components of the weakly ionized medium: neutral flow streamlines can form closed cells, whereas plasma is largely constrained to flow along the magnetic field. Stresses associated with this differential flow may explain why the canopy/funnel structures of the network magnetic field have a greater horizontal extent and are relatively more homogeneous at high altitudes than is expected from simple current-free models.

  5. Effect of Horizontally Inhomogeneous Heating on Flow and Magnetic Field in the Chromosphere of the Sun

    NASA Astrophysics Data System (ADS)

    Song, P.; Vasyliūnas, V. M.

    2014-12-01

    The solar chromosphere is heated by damped Alfvén waves propagating upward from the photosphere at a rate that depends on magnetic field strength, producing enhanced heating at low altitudes in the extended weak-field regions (where the additional heating accounts for the radiative losses) between the boundaries of the chromospheric network as well as enhanced heating per particle at higher altitudes in strong magnetic field regions of the network. The resulting inhomogeneous radiation and temperature distribution produces bulk flows, which in turn affect the configuration of the magnetic field. The basic flow pattern is circulation on the spatial scale of a supergranule, with upward flow in the strong-field region; this is a mirror image in the upper chromosphere of photospheric/subphotospheric convection widely associated with the formation of the strong network field. There are significant differences between the neutral and the ionized components of the weakly ionized medium: neutral flow streamlines can form closed cells, whereas plasma is largely constrained to flow along the magnetic field. Stresses associated with this differential flow may explain why the canopy/funnel structures of the network magnetic field have a greater horizontal extent and are relatively more homogeneous at high altitudes than is expected from simple current-free models.

  6. Modular effects on epidemic dynamics in small-world networks

    NASA Astrophysics Data System (ADS)

    Zhao, H.; Gao, Z. Y.

    2007-08-01

    Many real-world networks are characterized by modular structure. In this letter, modular effects on epidemic spreading of susceptible-infected-refractory-susceptible (SIRS) model in small-world networks are investigated. Simulation results show that, together with the disorder of the inter-module connections and mean degree of the system the modular structure may affect the synchronization behavior in propagation. More importantly, it is found that the interplay between mean degree and modular structure may lead to a nonmonotone variation of the synchronization behavior in the system.

  7. Co-Authorship and Bibliographic Coupling Network Effects on Citations

    PubMed Central

    Biscaro, Claudio; Giupponi, Carlo

    2014-01-01

    This paper analyzes the effects of the co-authorship and bibliographic coupling networks on the citations received by scientific articles. It expands prior research that limited its focus on the position of co-authors and incorporates the effects of the use of knowledge sources within articles: references. By creating a network on the basis of shared references, we propose a way to understand whether an article bridges among extant strands of literature and infer the size of its research community and its embeddedness. Thus, we map onto the article – our unit of analysis – the metrics of authors' position in the co-authorship network and of the use of knowledge on which the scientific article is grounded. Specifically, we adopt centrality measures – degree, betweenneess, and closeness centrality – in the co-authorship network and degree, betweenness centrality and clustering coefficient in the bibliographic coupling and show their influence on the citations received in first two years after the year of publication. Findings show that authors' degree positively impacts citations. Also closeness centrality has a positive effect manifested only when the giant component is relevant. Author's betweenness centrality has instead a negative effect that persists until the giant component - largest component of the network in which all nodes can be linked by a path - is relevant. Moreover, articles that draw on fragmented strands of literature tend to be cited more, whereas the size of the scientific research community and the embeddedness of the article in a cohesive cluster of literature have no effect. PMID:24911416

  8. Responding to the Effects of Extreme Heat: Baltimore City's Code Red Program.

    PubMed

    Martin, Jennifer L

    2016-01-01

    Heat response plans are becoming increasingly more common as US cities prepare for heat waves and other effects of climate change. Standard elements of heat response plans exist, but plans vary depending on geographic location and distribution of vulnerable populations. Because heat events vary over time and affect populations differently based on vulnerability, it is difficult to compare heat response plans and evaluate responses to heat events. This article provides an overview of the Baltimore City heat response plan, the Code Red program, and discusses the city's response to the 2012 Ohio Valley/Mid Atlantic Derecho, a complex heat event. Challenges with and strategies for evaluating the program are reviewed and shared. PMID:27081886

  9. Effect of heating system using a geothermal heat pump on the production performance and housing environment of broiler chickens.

    PubMed

    Choi, H C; Salim, H M; Akter, N; Na, J C; Kang, H K; Kim, M J; Kim, D W; Bang, H T; Chae, H S; Suh, O S

    2012-02-01

    A geothermal heat pump (GHP) is a potential heat source for the economic heating of broiler houses with optimum production performance. An investigation was conducted to evaluate the effect of a heating system using a GHP on production performance and housing environment of broiler chickens. A comparative analysis was also performed between the GHP system and a conventional heating system that used diesel for fuel. In total, 34,000 one-day-old straight run broiler chicks were assigned to 2 broiler houses with 5 replicates in each (3,400 birds/replicate pen) for 35 d. Oxygen(,) CO(2), and NH(3) concentrations in the broiler house, energy consumption and cost of heating, and production performance of broilers were evaluated. Results showed that the final BW gain significantly (P < 0.05) increased when chicks were reared in the GHP broiler house compared with that of chicks reared in the conventional broiler house (1.73 vs. 1.62 kg/bird). The heating system did not affect the mortality of chicks during the first 4 wk of the experimental period, but the mortality markedly increased in the conventional broiler house during the last wk of the experiment. Oxygen content in the broiler house during the experimental period was not affected by the heating system, but the CO(2) and NH(3) contents significantly increased (P < 0.05) in the conventional broiler house compared with those in the GHP house. Fuel consumption was significantly reduced (P < 0.05) and electricity consumption significantly increased (P < 0.05) in the GHP house compared with the consumption in the conventional house during the experiment. The total energy cost of heating the GHP house was significantly lower (P < 0.05) compared with that of the conventional house. It is concluded that a GHP system could increase the production performance of broiler chicks due to increased inside air quality of the broiler house. The GHP system had lower CO(2) and NH(3) emissions with lower energy cost than the

  10. Isotopic mass and alpha heating effects in TFTR DT plasmas

    SciTech Connect

    Budny, R.V.; Bell, M.G.; Mansfield, D.K.

    1994-09-01

    Sets of similar TFTR discharges with varying amounts of D and T are compared. The T content is altered by varying the mix of D and T NBI at approximately constant total NBI power. The total plasma current, toroidal field, central Z{sub eff}, and wall conditions are very similar in each set. The electron density profiles are approximately similar. The sets contain pairs of discharges with D-only and DT-NBI. Several sets also contain discharges with T-only NBI. The discharges are analyzed using the TRANSP plasma analysis code. Good agreement with measured parameters is achieved. Profiles are computed for the isotopic mass of the hydrogenic thermal species A, and for the hydrogenic thermal plus beam species A{sub tot}. Their volume averages increase approximately linearly as the fraction of T-NBI power increases, and they are slightly peaked for DT and T-only NBI discharges. The total energy and the total energy confinement time increase approximately linearly with A{sub tot} up to 30%. The beam fraction of the total energy at 0.5 sec of NBI remains relatively constant, {approx} 40--50% as A{sub tot} varies. The thermal ion fraction increases slightly, and the electron fraction decreases. The isotopic and alpha heating effects contribute in roughly equal amounts to the increase in central T{sub e}.

  11. Heat Transfer Effects on Laminar Velocity Profiles in Pipe Flow

    NASA Astrophysics Data System (ADS)

    Powell, Robert; Jenkins, Thomas

    1998-11-01

    Heat Transfer Effects on Laminar Velocity Profiles in Pipe Flow. Robert L. Powell, Thomas P. Jenkins Department of Chemical Engineering & Materials Science University of California, Davis, CA 95616 Using laser Doppler velocimetry, we have measured the axial velocity profiles for steady, pressure driven, laminar flow of water in a circular tube. The flow was established in a one inch diameter seamless glass tube. The entry length prior to the measuring section was over one hundred diameters. Reynolds numbers in the range 500-2000 were used. Under conditions where the temperature difference between the fluid and the surroundings differed by as little as 0.2C, we found significant asymmetries in the velocity profiles. This asymmetry was most pronounced in the vertical plane. Varying the temperature difference moved the velocity maximum either above or below the centerline depending upon whether the fluid was warmer or cooler than the room. These results compare well to existing calculations. Using the available theory and our experiments it is possible to identify parameter ranges where non-ideal conditions(not parabolic velocity profiles) will be found. Supported by the EMSP Program of DOE.

  12. Control of epidemics on complex networks: Effectiveness of delayed isolation

    NASA Astrophysics Data System (ADS)

    Pereira, Tiago; Young, Lai-Sang

    2015-08-01

    We study isolation as a means to control epidemic outbreaks in complex networks, focusing on the consequences of delays in isolating infected nodes. Our analysis uncovers a tipping point: if infected nodes are isolated before a critical day dc, the disease is effectively controlled, whereas for longer delays the number of infected nodes climbs steeply. We show that dc can be estimated explicitly in terms of network properties and disease parameters, connecting lowered values of dc explicitly to heterogeneity in degree distribution. Our results reveal also that initial delays in the implementation of isolation protocols can have catastrophic consequences in heterogeneous networks. As our study is carried out in a general framework, it has the potential to offer insight and suggest proactive strategies for containing outbreaks of a range of serious infectious diseases.

  13. On effectiveness of network sensor-based defense framework

    NASA Astrophysics Data System (ADS)

    Zhang, Difan; Zhang, Hanlin; Ge, Linqiang; Yu, Wei; Lu, Chao; Chen, Genshe; Pham, Khanh

    2012-06-01

    Cyber attacks are increasing in frequency, impact, and complexity, which demonstrate extensive network vulnerabilities with the potential for serious damage. Defending against cyber attacks calls for the distributed collaborative monitoring, detection, and mitigation. To this end, we develop a network sensor-based defense framework, with the aim of handling network security awareness, mitigation, and prediction. We implement the prototypical system and show its effectiveness on detecting known attacks, such as port-scanning and distributed denial-of-service (DDoS). Based on this framework, we also implement the statistical-based detection and sequential testing-based detection techniques and compare their respective detection performance. The future implementation of defensive algorithms can be provisioned in our proposed framework for combating cyber attacks.

  14. Control of epidemics on complex networks: Effectiveness of delayed isolation.

    PubMed

    Pereira, Tiago; Young, Lai-Sang

    2015-08-01

    We study isolation as a means to control epidemic outbreaks in complex networks, focusing on the consequences of delays in isolating infected nodes. Our analysis uncovers a tipping point: if infected nodes are isolated before a critical day dc, the disease is effectively controlled, whereas for longer delays the number of infected nodes climbs steeply. We show that dc can be estimated explicitly in terms of network properties and disease parameters, connecting lowered values of dc explicitly to heterogeneity in degree distribution. Our results reveal also that initial delays in the implementation of isolation protocols can have catastrophic consequences in heterogeneous networks. As our study is carried out in a general framework, it has the potential to offer insight and suggest proactive strategies for containing outbreaks of a range of serious infectious diseases. PMID:26382469

  15. Coloured noise effects on deformation parameters of permanent GPS networks

    NASA Astrophysics Data System (ADS)

    Razeghi, S. M.; Amiri-Simkooei, A. R.; Sharifi, M. A.

    2016-03-01

    Deformation analysis in general and strain analysis in particular using permanent GPS networks require proper analysis of time-series in which all functional effects are taken into consideration and all stochastic effects are captured using an appropriate noise model. This contribution addresses both issues when considering the strain parameters of a GPS network. Estimates of spatial correlation, time correlated noise, and multivariate power spectrum for daily position time-series of the Southern California Integrated GPS Network (SCIGN) stations collected between 1996 and 2011 are obtained. Significant signals with periods of 13.63 d and those related to the GPS draconitic year are identified in these time-series. We aim to assess the effect of a realistic noise model of the series on the uncertainties of the strain parameters including displacements, normal and shear strains, and rotations. For the SCIGN network considered, the following results are highlighted. Contrary to the common belief, the uncertainties of the displacements parameters become smaller when taking a realistic noise model into account. This however was not the case when assessing the noise characteristics of the normal and shear strain, and rotation parameters. The uncertainties increase nearly by a factor of two, in agreement to what is expected. Some of the significant deformation parameters of the white noise model become less significant in case of the realistic noise model.

  16. Guide to effective solar heating and cooling practice

    SciTech Connect

    Powell, P.C.; Fostel, H.F.; Cody, E.P.

    1981-10-01

    A detaled and systematic inventory of technical experiences at residential and commercial solar demonstration sites across the nation is provided, and design approaches are described which have been shown to dramatically improve system performance. A review has been made of nearly one hundred sites which have been instrumented and feeding data continuously into the National Solar Data Network. It is found that the success of individual systems in meeting or exceeding their design targets depends on effectively controlled design, installation, operation and maintenance. However, numerous reported problems have also been due to poor communication between the various parties involved, and additionally due to failure to identify problems as the develop. Overall, such factors appear to have contributed greatly to the general underperformance seen at the sites. It is found that solar systems must be designed to operate efficiently during periods of minimum as well as peak loads. Solar coth the conversion, distribution, and end use of ethanol are all amenable to control or mitigation through andstone (Kfh), and the Hell Creek formation (Khc). Anomaly No. 31 is over an area underlain by Recent alluvium (Qal).

  17. Disruption of the three cytoskeletal networks in mammalian cells does not affect transcription, translation, or protein translocation changes induced by heat shock.

    PubMed Central

    Welch, W J; Feramisco, J R

    1985-01-01

    Mammalian cells show a complex series of transcriptional and translational switching events in response to heat shock treatment which ultimately lead to the production and accumulation of a small number of proteins, the so-called heat shock (or stress) proteins. We investigated the heat shock response in both qualitative and quantitative ways in cells that were pretreated with drugs that specifically disrupt one or more of the three major cytoskeletal networks. (These drugs alone, cytochalasin E and colcemid, do not result in induction of the heat shock response.) Our results indicated that disruption of the actin microfilaments, the vimentin-containing intermediate filaments, or the microtubules in living cells does not hinder the ability of the cell to undergo an apparently normal heat shock response. Even when all three networks were simultaneously disrupted (resulting in a loose, baglike appearance of the cells), the cells still underwent a complete heat shock response as assayed by the appearance of the heat shock proteins. In addition, the major induced 72-kilodalton heat shock protein was efficiently translocated from the cytoplasm into its proper location in the nucleus and nucleolus irrespective of the condition of the three cytoskeletal elements. Images PMID:4040602

  18. Effective Utilization of Commercial Wireless Networking Technology in Planetary Environments

    NASA Technical Reports Server (NTRS)

    Caulev, Michael (Technical Monitor); Phillip, DeLeon; Horan, Stephen; Borah, Deva; Lyman, Ray

    2005-01-01

    The purpose of this research is to investigate the use of commercial, off-the-shelf wireless networking technology in planetary exploration applications involving rovers and sensor webs. The three objectives of this research project are to: 1) simulate the radio frequency environment of proposed landing sites on Mars using actual topographic data, 2) analyze the performance of current wireless networking standards in the simulated radio frequency environment, and 3) propose modifications to the standards for more efficient utilization. In this annual report, we present our results for the second year of research. During this year, the effort has focussed on the second objective of analyzing the performance of the IEEE 802.11a and IEEE 802.1lb wireless networking standards in the simulated radio frequency environment of Mars. The approach builds upon our previous results which deterministically modelled the RF environment at selected sites on Mars using high-resolution topographical data. These results provide critical information regarding antenna coverage patterns, maximum link distances, effects of surface clutter, and multipath effects. Using these previous results, the physical layer of these wireless networking standards has now been simulated and analyzed in the Martian environment. We are looking to extending these results to the and medium access layer next. Our results give us critical information regarding the performance (data rates, packet error rates, link distances, etc.) of IEEE 802.1 la/b wireless networks. This information enables a critical examination of how these wireless networks may be utilized in future Mars missions and how they may be possibly modified for more optimal usage.

  19. Effect of heat acclimation on sitting orthostatic tolerance in the heat after 48 and 96 hour bed rest in men

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Matter, M., Jr.

    1995-01-01

    The purpose of this pilot study was to investigate sitting orthostatic tolerance and determine potentially adverse signs and symptoms that would incapacitate subjects in a hot environment (Gemini reentry cabin temperature profile) after 48 hr and 96 hr of horizontal bed rest (BR), which simulated microgravity deconditioning. Six college men (23-29 yr) were allocated into two groups: heat acclimated (three subjects: No. 1- control, No. 2- 48 hr BR, and No. 3- 96 hr BR) and nonheat acclimated (three subjects: No. 4- control, No. 5- 48 hr BR, and No. 6- 96 hr BR). After BR they sat in an ambient temperature of 57 C (135 F) for 30 min which then was decreased to 49 C (120 F) for up to 480 min. Tolerance time in the heat with seated orthostatic stress was 480 min (subject No. 1) and 180 min (subject No. 4) in the two ambulatory men, but was reduced to 22-150 min in the four bed-rested men irrespective of their heat acclimation status. Although heat acclimation appeared to enhance tolerance and attenuate accompanying physiological responses, as well as ameliorate the frequency and intensity of adverse signs and symptoms at termination of exposure, tolerance was reduced in the bed-rest deconditioned subjects regardless of their acclimation level. Thus, these few collective findings do not indicate an unequivocal positive effect of acute heat acclimation on sitting orthostatic tolerance in acute bed-rest deconditioned subjects.

  20. Effect of heat treatment on stiffness and damping of Sic/Ti-15-3

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.; Lerch, Bradley A.

    1992-01-01

    The effect of heat treatment on material properties of Sic/Ti-15-3 was measured by vibration tests. Heat treatment changes the microstructure, which stiffens the matrix and reduces its damping capacity. Test results illustrate how the changes in matrix material affect the stiffness and damping properties of the composite. Damping was found to be more sensitive than stiffness to microstructural changes in the matrix. Effects of heat treatment temperature and exposure time are presented.

  1. Effects of an externally imposed electric field on subcooled boiling critical heat flux

    SciTech Connect

    Masson, V.; Carrica, P.M.

    1995-07-01

    The effects of an externally imposed electric field on critical heat flux in subcooled pool boiling have been experimentally studied. The test section was a 0.3 mm diameter platinum wire electrically heated. A coaxial cage with high voltage provided the outer electrode forming a cylindrical symmetric electric field around the heater. It was observed that the effect of the electric field on critical heat flux decreases as subcooling increases.

  2. Effect of heat treatment on precipitation on V-5Cr-5Ti heat BL63

    SciTech Connect

    Gelles, D.S.; Li, H.

    1996-04-01

    The microstructures of V-5Cr-5Ti heat BL63 are compared following heat treatments at 1125{degrees}C for 1 h and 1125{degrees}C for 1 h followed by 890{degrees}C for 24 h. Following the 890{degrees}C treatment, precipitate density was increased due to the presence of a moderate density of highly elongated particles. Microchemical analysis showed that these particles often contained both Ti and V, some particles showed minor amounts of Si, S, and P, but it was also possible to show that these precipitates were enriched in O rather than C or N. Following the 1125{degrees}C heat treatment, only Si was found as a minor impurity in large particles, but S could be identified at grain boundaries, which were coated with a fine distribution of precipitates. The embrittlement observed is ascribed to a combination of interstitial solid solution hardening and grain boundary embrittlement, with interstitial hardening likely the dominant factor.

  3. The effects of Sao Paulo urban heat island on lightning activity: Decadal analysis (1999-2009)

    NASA Astrophysics Data System (ADS)

    Bourscheidt, Vandoir; Pinto, Osmar; Naccarato, Kleber P.

    2016-05-01

    Eleven years of lightning data from the Brazilian Integrated National Lightning Detection Network were used to analyze the effects of the urban heat island (UHI) of Sao Paulo on lightning activity, extending the investigation of previous works. Cloud-to-ground lightning data were analyzed in both spatial and temporal perspectives, using different approaches: flash density, flash rate, thunderstorm hours (TH), and the cell initiation technique (CIT), which aims to identify the onset of thunderstorms. Land surface temperature (LST) from MODIS (Moderate Resolution Imaging Spectroradiometer) was used to analyze the UHI evolution over the years. MODIS data were validated using ground stations, distributed within the urban area. Different time intervals (seasonal and intraday) were used in an attempt to separate local convective systems from synoptic-scale events. The results indicate significant effects of the UHI (using LST) on THs and CIT. The CIT showed a nearly ring pattern, especially during the afternoon (14:00-18:00 LT) of summer months, reinforcing temperature contrast as a condition for storm initiation. The results also suggest an amplification of the UHI effects on thunderstorm activity by local factors (sea and country breeze, synoptic events, and terrain). Higher flash rates were also observed throughout the urban region, which influences the lightning density. Temporal analysis indicates that minimum temperature and lightning activity increase in wintertime. In summary, the results agree with previous studies about the UHI and indicate its importance on lightning occurrence, especially by increasing the temperature contrast and the instability in these regions.

  4. ADHEREND THERMAL EFFECTS DURING BONDING WITH INDUCTIVELY HEATED FILMS

    EPA Science Inventory

    The thermal performance of an inductively heated film sandwiched between two identical adherends is investigated. Models for infinite conductivity finite thickness adherends, finite conductivity semi-infinite thickness adherends, and finite conductivity finite thickness adherends...

  5. Effect on Non-Uniform Heat Generation on Thermionic Reactions

    SciTech Connect

    Schock, Alfred

    2012-01-19

    The penalty resulting from non-uniform heat generation in a thermionic reactor is examined. Operation at sub-optimum cesium pressure is shown to reduce this penalty, but at the risk of a condition analogous to burnout. For high pressure diodes, a simple empirical correlation between current, voltage and heat flux is developed and used to analyze the performance penalty associated with two different heat flux profiles, for series-and parallel-connected converters. The results demonstrate that series-connected converters require much finer power flattening than parallel converters. For example, a ±10% variation in heat generation across a series array can result in a 25 to 50% power penalty.

  6. Heat treatment effect on the electronic and magnetic structures of nanographene sheets investigated through electron spectroscopy and conductance measurements.

    PubMed

    Takashiro, Jun-ichi; Kudo, Yasuhiko; Kaneko, Satoshi; Takai, Kazuyuki; Ishii, Takafumi; Kyotani, Takashi; Enoki, Toshiaki; Kiguchi, Manabu

    2014-04-28

    The heat treatment effect on the electronic and magnetic structures of a disordered network of nanographene sheets has been investigated by in situ measurements of X-ray photoemission spectroscopy, near-edge X-ray absorption fine structure (NEXAFS), and electrical conductance, together with temperature-programmed desorption measurements. Oxygen-containing functional groups bonded to nanographene edges in the pristine sample are almost completely decomposed under heat treatment up to 1300-1500 K, resulting in the formation of edges primarily terminated by hydrogen. The removal of the oxygen-containing groups enhances the conductance owing to the decrease in the electron transport barriers between nanographene sheets. Heat treatment above 1500 K removes also the hydrogen atoms from the edges, promoting the successive fusion of nanographene sheets at the expense of edges. The decrease in the π* peak width in NEXAFS indicates the progress of the fusion reaction, that is, the extension of the π-conjugation, which agrees with the increase in the orbital susceptibility previously reported. The fusion leads to the formation of local π/sp(2) bridges between nanographene sheets and brings about an insulator-to-metal transition at 1500-1600 K, at which the bridge network becomes infinite. As for the magnetism, the intensity of the edge state peak in NEXAFS, which corresponds to the number of the spin-polarized edge states, decreases above 1500 K, though the effective edge-state spin density per edge state starts decreasing at approximately 200 K lower than the temperature of the edge state peak change. This disagreement indicates the development of antiferromagnetic short range ordering as a precursor of a spin glass state near the insulator-metal transition, at which the random network of inter-nanographene-sheet exchange interactions strengthened with the formation of the π/sp(2) bridges becomes infinite. PMID:24618730

  7. Heat Diffusion in Gases, Including Effects of Chemical Reaction

    NASA Technical Reports Server (NTRS)

    Hansen, C. Frederick

    1960-01-01

    The diffusion of heat through gases is treated where the coefficients of thermal conductivity and diffusivity are functions of temperature. The diffusivity is taken proportional to the integral of thermal conductivity, where the gas is ideal, and is considered constant over the temperature interval in which a chemical reaction occurs. The heat diffusion equation is then solved numerically for a semi-infinite gas medium with constant initial and boundary conditions. These solutions are in a dimensionless form applicable to gases in general, and they are used, along with measured shock velocity and heat flux through a shock reflecting surface, to evaluate the integral of thermal conductivity for air up to 5000 degrees Kelvin. This integral has the properties of a heat flux potential and replaces temperature as the dependent variable for problems of heat diffusion in media with variable coefficients. Examples are given in which the heat flux at the stagnation region of blunt hypersonic bodies is expressed in terms of this potential.

  8. Heat Shock Partially Dissociates the Overlapping Modules of the Yeast Protein-Protein Interaction Network: A Systems Level Model of Adaptation

    PubMed Central

    Mihalik, Ágoston; Csermely, Peter

    2011-01-01

    Network analysis became a powerful tool giving new insights to the understanding of cellular behavior. Heat shock, the archetype of stress responses, is a well-characterized and simple model of cellular dynamics. S. cerevisiae is an appropriate model organism, since both its protein-protein interaction network (interactome) and stress response at the gene expression level have been well characterized. However, the analysis of the reorganization of the yeast interactome during stress has not been investigated yet. We calculated the changes of the interaction-weights of the yeast interactome from the changes of mRNA expression levels upon heat shock. The major finding of our study is that heat shock induced a significant decrease in both the overlaps and connections of yeast interactome modules. In agreement with this the weighted diameter of the yeast interactome had a 4.9-fold increase in heat shock. Several key proteins of the heat shock response became centers of heat shock-induced local communities, as well as bridges providing a residual connection of modules after heat shock. The observed changes resemble to a ‘stratus-cumulus’ type transition of the interactome structure, since the unstressed yeast interactome had a globally connected organization, similar to that of stratus clouds, whereas the heat shocked interactome had a multifocal organization, similar to that of cumulus clouds. Our results showed that heat shock induces a partial disintegration of the global organization of the yeast interactome. This change may be rather general occurring in many types of stresses. Moreover, other complex systems, such as single proteins, social networks and ecosystems may also decrease their inter-modular links, thus develop more compact modules, and display a partial disintegration of their global structure in the initial phase of crisis. Thus, our work may provide a model of a general, system-level adaptation mechanism to environmental changes. PMID:22022244

  9. The effect of passive heating and head cooling on perception, cardiovascular function and cognitive performance in the heat.

    PubMed

    Simmons, Shona E; Saxby, Brian K; McGlone, Francis P; Jones, David A

    2008-09-01

    The present study examined the effects of raising both skin temperature and core temperature, separately and in combination, on perceptions of heat-related fatigue (alertness, contentment, calmness and thermal comfort), cardiovascular function and on objective measures of cognitive performance (reaction time and accuracy). Ten (six males) subjects had cognitive performance assessed in three conditions; at low skin and low core temperature (LL), at high skin and low core temperature (HL) and at high skin and high core temperatures (HH). In one trial, subjects had their head and neck cooled (HC); the other trial was a control (CON). Raising skin temperature increased heart rate and decreased perception of thermal comfort (P < 0.05), whereas raising both skin and core temperature decreased perception of heat-related fatigue (P < 0.05) and increased cardiovascular strain (P < 0.05) resulting in decrements in cognitive performance shown by faster reaction times (P < 0.05) and a loss of accuracy (P < 0.05). At high skin and core temperatures, cooling the head and neck improved feelings of heat-related fatigue (P < 0.05) and cardiovascular strain (P < 0.05), but had no effect on cognitive performance. In conclusion, the results of this study suggest that feelings of heat-related fatigue and cardiovascular strain can be attributed to a combination of elevated skin and core body temperature, whereas decrements in cognitive performance can be attributed to an elevated core temperature. PMID:18214520

  10. Investigations on the heating effect of PE-LD induced by high-intensity focused ultrasound.

    PubMed

    Oehm, Lukas; Bach, Sascha; Majschak, Jens-Peter

    2016-08-01

    High-intensity focused ultrasound is widely applied in tissue treatment as well as for heating of solid polymer materials. Previous studies investigating the heating effect in polymer materials utilized sound transmission through water or other fluids at low HIFU power. In this study, the ultrasonic transducer possesses a solid sound conductor made of aluminum and a high HIFU power of above 100W was applied to heat solid PE-LD samples. Temperature measurements were performed by calibrated non-invasive infrared thermal imaging. A strong heating effect with heating above melting temperature and evaporation temperature within less than 1s of irradiation was observed. Furthermore, the acoustic coupling defined by the force applied by the ultrasonic applicator to the polymer material was found to be fundamental to induce the heating effect. This investigation reveals HIFU for new applications in the field of polymer processing. PMID:27208613

  11. Networks.

    ERIC Educational Resources Information Center

    Maughan, George R.; Petitto, Karen R.; McLaughlin, Don

    2001-01-01

    Describes the connectivity features and options of modern campus communication and information system networks, including signal transmission (wire-based and wireless), signal switching, convergence of networks, and network assessment variables, to enable campus leaders to make sound future-oriented decisions. (EV)

  12. Urban Heat Island Growth Modeling Using Artificial Neural Networks and Support Vector Regression: A case study of Tehran, Iran

    NASA Astrophysics Data System (ADS)

    Sherafati, Sh. A.; Saradjian, M. R.; Niazmardi, S.

    2013-09-01

    Numerous investigations on Urban Heat Island (UHI) show that land cover change is the main factor of increasing Land Surface Temperature (LST) in urban areas. Therefore, to achieve a model which is able to simulate UHI growth, urban expansion should be concerned first. Considerable researches on urban expansion modeling have been done based on cellular automata. Accordingly the objective of this paper is to implement CA method for trend detection of Tehran UHI spatiotemporal growth based on urban sprawl parameters (such as Distance to nearest road, Digital Elevation Model (DEM), Slope and Aspect ratios). It should be mentioned that UHI growth modeling may have more complexities in comparison with urban expansion, since the amount of each pixel's temperature should be investigated instead of its state (urban and non-urban areas). The most challenging part of CA model is the definition of Transfer Rules. Here, two methods have used to find appropriate transfer Rules which are Artificial Neural Networks (ANN) and Support Vector Regression (SVR). The reason of choosing these approaches is that artificial neural networks and support vector regression have significant abilities to handle the complications of such a spatial analysis in comparison with other methods like Genetic or Swarm intelligence. In this paper, UHI change trend has discussed between 1984 and 2007. For this purpose, urban sprawl parameters in 1984 have calculated and added to the retrieved LST of this year. In order to achieve LST, Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) night-time images have exploited. The reason of implementing night-time images is that UHI phenomenon is more obvious during night hours. After that multilayer feed-forward neural networks and support vector regression have used separately to find the relationship between this data and the retrieved LST in 2007. Since the transfer rules might not be the same in different regions, the satellite image of the city has

  13. Heating-Rate-Triggered Carbon-Nanotube-based 3-Dimensional Conducting Networks for a Highly Sensitive Noncontact Sensing Device

    NASA Astrophysics Data System (ADS)

    Tai, Yanlong; Lubineau, Gilles

    2016-01-01

    Recently, flexible and transparent conductive films (TCFs) are drawing more attention for their central role in future applications of flexible electronics. Here, we report the controllable fabrication of TCFs for moisture-sensing applications based on heating-rate-triggered, 3-dimensional porous conducting networks through drop casting lithography of single-walled carbon nanotube (SWCNT)/poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS) ink. How ink formula and baking conditions influence the self-assembled microstructure of the TCFs is discussed. The sensor presents high-performance properties, including a reasonable sheet resistance (2.1 kohm/sq), a high visible-range transmittance (>69%, PET = 90%), and good stability when subjected to cyclic loading (>1000 cycles, better than indium tin oxide film) during processing, when formulation parameters are well optimized (weight ratio of SWCNT to PEDOT:PSS: 1:0.5, SWCNT concentration: 0.3 mg/ml, and heating rate: 36 °C/minute). Moreover, the benefits of these kinds of TCFs were verified through a fully transparent, highly sensitive, rapid response, noncontact moisture-sensing device (5 × 5 sensing pixels).

  14. Artificial Neural Networks: a viable tool to design heat load smoothing strategies for the ITER Toroidal Field coils

    NASA Astrophysics Data System (ADS)

    Froio, A.; Bonifetto, R.; Carli, S.; Quartararo, A.; Savoldi, L.; Zanino, R.

    2015-12-01

    In superconducting tokamaks, cryoplants provide the helium needed to cool the superconducting magnet systems. The evaluation of the heat load from the magnets to the cryoplant is fundamental for the design of the latter and the assessment of suitable strategies to smooth the heat load pulses induced by the pulsed plasma scenarios is crucial for the operation. Here, a simplified thermal-hydraulic model of an ITER Toroidal Field (TF) magnet, based on Artificial Neural Networks (ANNs), is developed and inserted into a detailed model of the ITER TF winding and casing cooling circuits based on the state-of-the-art 4C code, which also includes active controls. The low computational effort requested by such a model allows performing a fast parametric study, to identify the best smoothing strategy during standard plasma operation. The ANNs are trained using 4C simulations, and the predictive capabilities of the simplified model are assessed against 4C simulations, both with and without active smoothing, in terms of accuracy and computational time.

  15. Heating-Rate-Triggered Carbon-Nanotube-based 3-Dimensional Conducting Networks for a Highly Sensitive Noncontact Sensing Device

    PubMed Central

    Tai, Yanlong; Lubineau, Gilles

    2016-01-01

    Recently, flexible and transparent conductive films (TCFs) are drawing more attention for their central role in future applications of flexible electronics. Here, we report the controllable fabrication of TCFs for moisture-sensing applications based on heating-rate-triggered, 3-dimensional porous conducting networks through drop casting lithography of single-walled carbon nanotube (SWCNT)/poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS) ink. How ink formula and baking conditions influence the self-assembled microstructure of the TCFs is discussed. The sensor presents high-performance properties, including a reasonable sheet resistance (2.1 kohm/sq), a high visible-range transmittance (>69%, PET = 90%), and good stability when subjected to cyclic loading (>1000 cycles, better than indium tin oxide film) during processing, when formulation parameters are well optimized (weight ratio of SWCNT to PEDOT:PSS: 1:0.5, SWCNT concentration: 0.3 mg/ml, and heating rate: 36 °C/minute). Moreover, the benefits of these kinds of TCFs were verified through a fully transparent, highly sensitive, rapid response, noncontact moisture-sensing device (5 × 5 sensing pixels). PMID:26818091

  16. Leveraging knowledge from physiological data: on-body heat stress risk prediction with sensor networks.

    PubMed

    Gaura, Elena; Kemp, John; Brusey, James

    2013-12-01

    The paper demonstrates that wearable sensor systems, coupled with real-time on-body processing and actuation, can enhance safety for wearers of heavy protective equipment who are subjected to harsh thermal environments by reducing risk of Uncompensable Heat Stress (UHS). The work focuses on Explosive Ordnance Disposal operatives and shows that predictions of UHS risk can be performed in real-time with sufficient accuracy for real-world use. Furthermore, it is shown that the required sensory input for such algorithms can be obtained with wearable, non-intrusive sensors. Two algorithms, one based on Bayesian nets and another on decision trees, are presented for determining the heat stress risk, considering the mean skin temperature prediction as a proxy. The algorithms are trained on empirical data and have accuracies of 92.1±2.9% and 94.4±2.1%, respectively when tested using leave-one-subject-out cross-validation. In applications such as Explosive Ordnance Disposal operative monitoring, such prediction algorithms can enable autonomous actuation of cooling systems and haptic alerts to minimize casualties. PMID:24473550

  17. Whisker-reinforced heat-cured dental resin composites: effects of filler level and heat-cure temperature and time.

    PubMed

    Xu, H H

    2000-06-01

    Currently available dental resin composites are inadequate for use in large stress-bearing crown and multiple-unit restorations. The aim of this study was to reinforce heat-cured composites with ceramic whiskers. It was hypothesized that whiskers substantially strengthen heat-cured composites. It was further hypothesized that whisker filler level and heat-cure temperature and time significantly influence composite properties. Silica particles were fused onto the whiskers to facilitate silanization and to roughen the whiskers for improved retention in the matrix. The whisker filler mass fraction was varied from 0% to 79%, the heat-cure temperature from 80 degrees C to 180 degrees C, and cure time from 10 min to 24 hrs. Flexural strength, work-of-fracture, and fracture toughness of the composites were measured, and specimen fracture surfaces were examined with scanning electron microscopy. Filler level had a significant effect on composite properties. The whisker composite with 70% filler level had a flexural strength in MPa (mean +/- SD; n = 6) of 248 +/- 23, significantly higher than 120 +/- 16 of an inlay/onlay composite control and 123 +/- 21 of a prosthetic composite control (Tukey's multiple comparison test; family confidence coefficient = 0.95). Heat-cure time also played a significant role. At 120 degrees C, the strength of composite cured for 10 min was 178 +/- 17, lower than 236 +/- 14 of composite cured for 3 hrs. The strength of whisker composite did not degrade after water-aging for 100 d. In conclusion, heat-cured composites were substantially reinforced with whiskers. The reinforcement mechanisms appeared to be whiskers bridging and resisting cracks. The strength and fracture toughness of whisker composite were nearly twice those of currently available inlay/onlay and prosthetic composites. PMID:10890718

  18. The effect of direct heating and cooling of heat regulation centers on body temperature

    NASA Technical Reports Server (NTRS)

    Barbour, H. G.

    1978-01-01

    Experiments were done on 28 rabbits in which puncture instruments were left in the brain for 1-2 days until the calori-puncture hyperthermia had passed and the body temperature was again normal. The instrument remaining in the brain was then used as a galvanic electrode and a second fever was produced, this time due to the electrical stimulus. It was concluded that heat is a centrally acting antipyretic and that cold is a centrally acting stimulus which produces hyperpyrexia cold-induced fever.

  19. Effect of the magnetic field direction on forced convection heat transfer enhancements in ferrofluids

    NASA Astrophysics Data System (ADS)

    Cherief, Wahid; Avenas, Yvan; Ferrouillat, Sébastien; Kedous-Lebouc, Afef; Jossic, Laurent; Berard, Jean; Petit, Mickael

    2015-07-01

    Applying a magnetic field on a ferrofluid flow induces a large increase of the convective heat transfer coefficient. In this paper, the thermal-hydraulic behaviors of two commercial ferrofluids are compared. The variations of both the pressure drop and the heat transfer coefficient due to the magnetic field are measured in the following conditions: square duct, laminar flow and uniform wall heat flux. The square section with two insulated walls allows for the characterization of the effect of the magnetic field direction. The experimental results show that the heat transfer is better enhanced when the magnetic field is perpendicular to the heat flux. In the best case, the local heat transfer coefficient increase is about 75%. On the contrary, another experimental setup shows no enhancement of thermal conductivity when the magnetic field is perpendicular to the heat flux. Contribution to the topical issue "Electrical Engineering Symposium (SGE 2014) - Elected submissions", edited by Adel Razek

  20. Gravity and Heater Size Effects on Pool Boiling Heat Transfer

    NASA Technical Reports Server (NTRS)

    Kim, Jungho; Raj, Rishi

    2014-01-01

    The current work is based on observations of boiling heat transfer over a continuous range of gravity levels between 0g to 1.8g and varying heater sizes with a fluorinert as the test liquid (FC-72/n-perfluorohexane). Variable gravity pool boiling heat transfer measurements over a wide range of gravity levels were made during parabolic flight campaigns as well as onboard the International Space Station. For large heaters and-or higher gravity conditions, buoyancy dominated boiling and heat transfer results were heater size independent. The power law coefficient for gravity in the heat transfer equation was found to be a function of wall temperature under these conditions. Under low gravity conditions and-or for smaller heaters, surface tension forces dominated and heat transfer results were heater size dependent. A pool boiling regime map differentiating buoyancy and surface tension dominated regimes was developed along with a unified framework that allowed for scaling of pool boiling over a wide range of gravity levels and heater sizes. The scaling laws developed in this study are expected to allow performance quantification of phase change based technologies under variable gravity environments eventually leading to their implementation in space based applications.

  1. Environmental microbiology as related to planetary quarantine. [synergetic effect of heat and radiation

    NASA Technical Reports Server (NTRS)

    Pflug, I. J.

    1973-01-01

    The mechanistic basis of the synergetic effect of combined heat and radiation on microbial destruction was analyzed and results show that radiation intensity, temperature, and relative humidity are the determining factors. Dry heat resistance evaluation for selected bacterial spore crops indicates that different strains of Bacillus stearothermophilus demonstrate marked differences in resistance. Preliminary work to determine the effects of storage time, suspending medium, storage temperature and spore crop cleaning procedures on dry heat survival characteristics of Bacillus subtilis var. Niger, and dry heat resistance of natural microflora in soil particles is also reported.

  2. Multiplex networks in metropolitan areas: generic features and local effects.

    PubMed

    Strano, Emanuele; Shai, Saray; Dobson, Simon; Barthelemy, Marc

    2015-10-01

    Most large cities are spanned by more than one transportation system. These different modes of transport have usually been studied separately: it is however important to understand the impact on urban systems of coupling different modes and we report in this paper an empirical analysis of the coupling between the street network and the subway for the two large metropolitan areas of London and New York. We observe a similar behaviour for network quantities related to quickest paths suggesting the existence of generic mechanisms operating beyond the local peculiarities of the specific cities studied. An analysis of the betweenness centrality distribution shows that the introduction of underground networks operate as a decentralizing force creating congestion in places located at the end of underground lines. Also, we find that increasing the speed of subways is not always beneficial and may lead to unwanted uneven spatial distributions of accessibility. In fact, for London—but not for New York—there is an optimal subway speed in terms of global congestion. These results show that it is crucial to consider the full, multimodal, multilayer network aspects of transportation systems in order to understand the behaviour of cities and to avoid possible negative side-effects of urban planning decisions. PMID:26400198

  3. Effect of heat treatment temperature on nitinol wire

    NASA Astrophysics Data System (ADS)

    Cai, S.; Schaffer, J. E.; Daymond, M. R.; Yu, C.; Ren, Y.

    2014-08-01

    In-situ synchrotron X-ray diffraction has been used to study the influence of the heat treatment temperature on the subsequent micromechanical behavior of nitinol wire. It was found that increase in the heat treatment temperature rotated the austenite texture from the {332}B2 fiber towards the {111}B2 fiber, and the texture of the Stress-Induced Martensite phase changed from the ( 1 ¯ 40)B19' to the ( 1 ¯ 20)B19' fiber accordingly. Heat treatment at a low temperature reduces the internal residual strains in the austenite during super-elastic deformation and therefore improves the materials fatigue performance. The development of internal residual strains in austenite is controlled by transformation induced plasticity and the reversal martensite to austenite transformation.

  4. Effect of heat treatment temperature on nitinol wire

    SciTech Connect

    Cai, S.; Schaffer, J. E.; Daymond, M. R.; Yu, C.; Ren, Y.

    2014-08-18

    In-situ synchrotron X-ray diffraction has been used to study the influence of the heat treatment temperature on the subsequent micromechanical behavior of nitinol wire. It was found that increase in the heat treatment temperature rotated the austenite texture from the (332){sub B2} fiber towards the (111){sub B2} fiber, and the texture of the Stress-Induced Martensite phase changed from the (1{sup ¯}40){sub B19'} to the (1{sup ¯}20){sub B19'} fiber accordingly. Heat treatment at a low temperature reduces the internal residual strains in the austenite during super-elastic deformation and therefore improves the materials fatigue performance. The development of internal residual strains in austenite is controlled by transformation induced plasticity and the reversal martensite to austenite transformation.

  5. HEATING OF THE MAGNETIZED SOLAR CHROMOSPHERE BY PARTIAL IONIZATION EFFECTS

    SciTech Connect

    Khomenko, E.; Collados, M.

    2012-03-10

    In this paper, we study the heating of the magnetized solar chromosphere induced by the large fraction of neutral atoms present in this layer. The presence of neutrals, together with the decrease with height of the collisional coupling, leads to deviations from the classical magnetohydrodynamic behavior of the chromospheric plasma. A relative net motion appears between the neutral and ionized components, usually referred to as ambipolar diffusion. The dissipation of currents in the chromosphere is enhanced by orders of magnitude due to the action of ambipolar diffusion, as compared with the standard ohmic diffusion. We propose that a significant amount of magnetic energy can be released to the chromosphere just by existing force-free 10-40 G magnetic fields there. As a consequence, we conclude that ambipolar diffusion is an important process that should be included in chromospheric heating models, as it has the potential to rapidly heat the chromosphere. We perform analytical estimations and numerical simulations to prove this idea.

  6. Heat-treatment effects in neutron transmutation doped epitaxial silicon

    SciTech Connect

    Cleland, J.W.

    1983-01-01

    Chemical vapor deposition (CVD) of silicon from a gaseous silicon compound onto a heated silicon substrate may be used to deposit an epitaxial SI layer and to obtain an electrical p-n junction. The dopant concentration in the epi-Si layer is a function of the gaseous dopant ion content, flow rate, temperature gradient, and any migration of impurities (autodoping) from the heated substrate. This technical note describes some results of carrier concentration, mobility, and resistivity measurements on small (0.5 cm/sup 2/) epi-Si samples using the van der Pauw (vdP) technique.

  7. SEAC4RS Aerosol Radiative Effects and Heating Rates

    NASA Astrophysics Data System (ADS)

    Cochrane, S.; Schmidt, S.; Redemann, J.; Hair, J. W.; Ferrare, R. A.; Segal-Rosenhaimer, M.; LeBlanc, S. E.

    2015-12-01

    We will present (a) aerosol optical properties, (b) aerosol radiative forcing, (c) aerosol and gas absorption and heating rates, and (d) spectral surface albedo for cases from August 19th and 26th of the SEAC4RS mission. This analysis is based on irradiance data from the Solar Spectral Flux Radiometer (SSFR), spectral aerosol optical depth from the Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR), and extinction profiles from the DIAL/High Spectral Resolution Lidar (HSRL). We derive spectrally resolved values of single scattering albedo, asymmetry parameter, and surface albedo from the data, and determine profiles of absorption and heating rate segregated by absorber (aerosol and gas).

  8. EFFECT OF AIRFLOW AND HEAT INPUT RATES ON DUCT EFFICIENCY.

    SciTech Connect

    ANDREWS,J.W.

    2003-05-28

    Reducing the airflow and heat input rates of a furnace that is connected to a duct system in thermal contact with unconditioned spaces can significantly reduce thermal distribution efficiency. This is a straightforward theoretical calculation based on the increased residence time of the air in the duct at the lower flow rate, which results in greater conduction losses. Experimental tests in an instrumented residential-size duct system have confirmed this prediction. Results are compared with the heat-loss algorithm in ASHRAE Standid 152P. The paper concludes with a discussion of possible remedies for this loss of efficiency in existing systems and optional design strategies in new construction.

  9. Enhanced Giant Magnetoimpedance Effect in Rapid Heat-Treated Fe-Based Amorphous Ribbons

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Dong, Juan; Feng, Er-Xi; Luo, Cai-Qin; Liu, Qing-Fang; Wang, Jian-Bo

    2013-03-01

    An enhanced giant magnetoimpedance (GMI) effect of Fe-based amorphous ribbons is obtained by rapid heat treatment. The structural investigations on the ribbon reveal the presence of two phases, i.e. a fine grained Fe3Si phase and a residual amorphous phase on rapid heat treatment. The soft magnetic property is improved by rapid heat treatment; the crystal size and grain size of Fe3Si decrease. The maximum magnetoimpedance ratio obtained in the present study is 81% at 10 MHz, and the optimized heat-treated rate is 200°C/min. Separated GMI curves are observed after the simultaneous rapid heat treatment and magnetic field annealing. This suggests that tailoring of the nanocrystalline microstructures induced by optimum rapid heat treatment conditions can result in an excellent GMI effect.

  10. High effectiveness liquid droplet/gas heat exchanger for space power applications

    NASA Technical Reports Server (NTRS)

    Bruckner, A. P.; Mattick, A. T.

    1983-01-01

    A high-effectiveness liquid droplet/gas heat exchanger (LDHX) concept for thermal management in space is described. Heat is transferred by direct contact between fine droplets (approximately 100-300 microns in diameter) of a suitable low vapor pressure liquid and an inert working gas. Complete separation of the droplet and gas media in the zero-g environment is accomplished by configuring the LDHX as a vortex chamber.The large heat transfer area presented by the small droplets permits heat exchanger effectiveness of 0.9-0.95 in a compact, lightweight geometry which avoids many of the limitations of conventional plate and fin or tube and shell heat exchangers, such as their tendency toward single point failure. The application of the LDHX in a high temperature Brayton cycle is discussed to illustrate the performance and operational characteristics of this new heat exchanger concept.

  11. High effectiveness liquid droplet/gas heat exchanger for space power applications

    NASA Technical Reports Server (NTRS)

    Bruckner, A. P.; Mattick, A. T.

    1983-01-01

    A high-effectiveness liquid droplet/gas heat exchanger (LDHX) concept for thermal management in space is described. Heat is transferred by direct contact between fine droplets (approx. 100 to 300 micron diameter) of a suitable low vapor pressure liquid and an inert working gas. Complete separation of the droplet and gas media in the zero-g environment is accomplished by configuring the LDHX as a vortex chamber. The large heat transfer area presented by the small droplets permits heat exchanger effectiveness of 0.9 to 0.95 in a compact, lightweight geometry which avoids many of the limitations of conventional plate and fin or tube and shell heat exchangers, such as their tendency toward single point failure. The application of the LDHX in a high temperature Bryaton cycle is discussed to illustrate the performance and operational characteristics of this heat exchanger concept.

  12. Effect of homogenization heat treatment on the microstructure and heat-affected zone microfissuring in welded cast alloy 718

    SciTech Connect

    Xiao Huang; Richards, N.L.; Chaturvedi, M.C.

    1996-03-01

    The effect of homogenization temperature on microfissuring in the heat-affected zones of electron-beam welded cast INCONEL 718 has been studied. The material was homogenized at various temperatures in the range of 1,037 C and 1,163 C and air-cooled. The homogenized material was then electron-beam welded by the bead-on-plate welding technique. The microstructures and microfissuring in the heat-affected zone (HAZ) were evaluated by analytical scanning electron microscopy (SEM). The grain boundary segregation of various elements was evaluated by secondary ion mass spectroscopy (SIMS). It was observed that the total crack length (TCL) of microfissures first decreases with homogenization temperature and then increases, with a minimum occurring in the specimen heat treated at 1,163 C. This trend coincides with the variation in segregation of B at grain boundaries with homogenization temperature and has been explained by equilibrium and nonequilibrium segregation of B to grain boundaries during the homogenization heat treatment. No other element was observed to segregate at the grain boundaries. The variation in volume fraction of phases like {delta}-Ni{sub 3}Nb, MC carbide, and Laves phases does not follow the same trend as that observed for TCL and B segregation at the grain boundaries. Therefore, microfissuring in HAZ of welded cast INCONEL 718 is attributed to the segregation of B at the grain boundaries.

  13. Effect of homogenization heat treatment on the microstructure and heat- affected zone microfissuring in welded cast alloy 718

    NASA Astrophysics Data System (ADS)

    Huang, Xiao; Chaturvedi, M. C.; Richards, N. L.

    1996-03-01

    The effect of homogenization temperature on microfissuring in the heat-affected zones of electronwelded cast INCONEL 718 has been studied. The material was homogenized at various temperatures in the range of 1037 ° to 1163 ° and air-cooled. The homogenized material was then electron-beam welded by the bead-on-plate welding technique. The microstructures and microfissuring in the heat-affected zone (HAZ) were evaluated by analytical scanning electron microscopy (SEM). The grain boundary segregation of various elements was evaluated by secondary ion mass spectroscopy (SIMS). It was observed that the total crack length (TCL) of microfissures first decreases with homogenization temperature and then increases, with a minimum occurring in the specimen heat treated at 1163 °. This trend coincides with the variation in segregation of B at grain boundaries with homogenization temperature and has been explained by equilibrium and nonequilibrium segregation of B to grain boundaries during the homogenization heat treatment. No other element was observed to segregate at the grain boundaries. The variation in volume fraction of phases like δ-Ni3Nb, MC carbide, and Laves phases does not follow the same trend as that observed for TCL and B segregation at the grain boundaries. Therefore, microfissuring in HAZ of welded cast INCONEL 718 is attributed to the segregation of B at the grain boundaries.

  14. Effects of ventilation behaviour on indoor heat load based on test reference years

    NASA Astrophysics Data System (ADS)

    Rosenfelder, Madeleine; Koppe, Christina; Pfafferott, Jens; Matzarakis, Andreas

    2016-02-01

    Since 2003, most European countries established heat health warning systems to alert the population to heat load. Heat health warning systems are based on predicted meteorological conditions outdoors. But the majority of the European population spends a substantial amount of time indoors, and indoor thermal conditions can differ substantially from outdoor conditions. The German Meteorological Service (Deutscher Wetterdienst, DWD) extended the existing heat health warning system (HHWS) with a thermal building simulation model to consider heat load indoors. In this study, the thermal building simulation model is used to simulate a standardized building representing a modern nursing home, because elderly and sick people are most sensitive to heat stress. Different types of natural ventilation were simulated. Based on current and future test reference years, changes in the future heat load indoors were analyzed. Results show differences between the various ventilation options and the possibility to minimize the thermal heat stress during summer by using an appropriate ventilation method. Nighttime ventilation for indoor thermal comfort is most important. A fully opened window at nighttime and the 2-h ventilation in the morning and evening are more sufficient to avoid heat stress than a tilted window at nighttime and the 1-h ventilation in the morning and the evening. Especially the ventilation in the morning seems to be effective to keep the heat load indoors low. Comparing the results for the current and the future test reference years, an increase of heat stress on all ventilation types can be recognized.

  15. Effect of crystallization heat treatment on the microstructure of niobium-doped fluorapatite glass-ceramics

    PubMed Central

    Denry, I.; Holloway, J.A.; Gupta, P.K.

    2012-01-01

    Our goal was to study the effect of heat treatment temperature and heating rate on the microstructure and crystalline phases and assess the domain of existence of sub-micrometer fluorapatite crystals in niobium-doped fluorapatite glass-ceramics for biomedical applications. Glass-ceramic specimens were prepared by casting and heat treatment between 700 and 1200°C using a fast or a slow heating rate. The microstructure was characterized by atomic force microscopy and scanning electron microscopy. Crystalline phases were analyzed by x-ray diffraction. AFM of the as-cast glass revealed that amorphous phase separation occurred in this system. XRD confirmed the presence of fluorapatite in all specimens, together with forsterite and enstatite at higher temperatures. Both heating rate and heat treatment temperature strongly influenced microstructure and crystallinity. A dual microstructure with sub-micrometer fluorapatite crystals and polygonal forsterite crystals was obtained when slow heating rates and crystallization temperatures between 950 and 1100°C were used. Needle-shaped fluorapatite crystals appeared after heat treatment above 1100°C. Fast heating rates led to an increase in crystal size. Heat treatment temperatures should remain below 1100°C, together with slow heating rates, to prevent crystal dissolution, and preserve a dual microstructure of finely dispersed sub-micrometer crystals without growth of needle-shaped crystals. PMID:22454333

  16. Leverage Between the Buffering Effect and the Bystander Effect in Social Networking.

    PubMed

    Chiu, Yu-Ping; Chang, Shu-Chen

    2015-08-01

    This study examined encouraged and inhibited social feedback behaviors based on the theories of the buffering effect and the bystander effect. A system program was used to collect personal data and social feedback from a Facebook data set to test the research model. The results revealed that the buffering effect induced a positive relationship between social network size and feedback gained from friends when people's social network size was under a certain cognitive constraint. For people with a social network size that exceeds this cognitive constraint, the bystander effect may occur, in which having more friends may inhibit social feedback. In this study, two social psychological theories were applied to explain social feedback behavior on Facebook, and it was determined that social network size and social feedback exhibited no consistent linear relationship. PMID:26196410

  17. 76 FR 23812 - Reliability and Continuity of Communications Networks, Including Broadband Technologies; Effects...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-28

    ... Documents in Rulemaking Proceedings, 63 FR 24121 (1998). Electronic Filers: Comments may be filed... on Broadband Communications Networks of Damage or Failure of Network Equipment or Severe Overload...: Effects on Broadband Communications Networks of Damage or Failure of Network Equipment or Severe...

  18. The critical role of aerodynamic heating effects in the design of hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Wieting, Allan R.

    1989-01-01

    Hypersonic vehicles operate in a hostile aerothermal environment, which has a significant impact on their aerothermostructural performance. Significant coupling occurs between the aerodynamic flow field, structural heat transfer, and structural response, creating a multidisciplinary interaction. The critical role of aerodynamic heating effects in the design of hypersonic vehicles is identified with an example of high localized heating on an engine-cowl leading edge. Recent advances is integrated fluid-thermal-structural finite-element analyses are presented.

  19. Seasonality of the urban heat island effect: patterns and drivers

    NASA Astrophysics Data System (ADS)

    Schatz, J.; Kucharik, C. J.

    2014-12-01

    We conducted a rigorous analysis of the drivers of seasonality in the urban heat island (UHI) effect. Many studies report annual cycles in UHI intensity and have attributed those patterns to various hypotheses, including seasonal trends in wind and clouds, prevalence of anti-cyclonic conditions, soil moisture, and day length. But to our knowledge, those hypotheses have never been tested, leaving a substantial gap in our basic understanding of the urban climate. We tested these and other hypotheses using two years of continuous temperature measurements from an array of 150 sensors in and around Madison, Wisconsin USA, an urban area of 407,000 surrounded by lakes and a rural landscape of agriculture, forests, wetlands, and grasslands. This is one of the best replicated urban climate arrays ever deployed, which allowed us to characterize the UHI in rich spatial and temporal detail and rigorously assess the biophysical and synoptic drivers of its seasonal variation. UHI intensities were typically highest in summer and lowest in winter. Seasonal trends in wind speed and cloud cover generally tracked annual trends in UHI intensity, with the clearer, calmer conditions conducive to stronger UHIs more common in summer. This is consistent with the hypothesis that seasonal trends in wind, clouds, and anti-cyclonic conditions drive UHI seasonality. However, clear, calm summer nights still had higher UHI intensities than clear, calm winter nights, indicating that some background factor shifted baseline UHI intensities throughout the year. We found that regional vegetation and snow cover conditions set distinct seasonal baselines for UHI intensity, with nighttime intensities averaging 4°C in summer and 1°C in winter. Synoptic and biophysical factors that vary on shorter time scales (e.g. wind, clouds, soil moisture, relative humidity) modified daily UHI intensity around those baselines by 1-3°C but were not the primary drivers of UHI seasonality, contrary to the most common

  20. EFFECT OF HEATING RATE ON THE THERMODYNAMIC PROPERTIES OF PULVERIZED COAL

    SciTech Connect

    Ramanathan Sampath

    2000-01-01

    This final technical report describes work performed under DOE Grant No. DE-FG22-96PC96224 during the period September 24, 1996 to September 23, 1999 which covers the entire performance period of the project. During this period, modification, alignment, and calibration of the measurement system, measurement of devolatilization time-scales for single coal particles subjected to a range of heating rates and temperature data at these time-scales, and analysis of the temperature data to understand the effect of heating rates on coal thermal properties were carried out. A new thermodynamic model was developed to predict the heat transfer behavior for single coal particles using one approach based on the analogy for thermal property of polymers. Results of this model suggest that bituminous coal particles behave like polymers during rapid heating on the order of 10{sup 4}-10{sup 5} K/s. At these heating rates during the early stages of heating, the vibrational part of the heat capacity of the coal molecules appears to be still frozen but during the transition from heat-up to devolatilization, the heat capacity appears to attain a sudden jump in its value as in the case of polymers. There are a few data available in the coal literature for low heating rate experiments (10{sup 2}-10{sup 3} K/s) conducted by UTRC, our industrial partner, in this project. These data were obtained for a longer heating duration on the order of several seconds as opposed to the 10 milliseconds heating time of the single particle experiments discussed above. The polymer analogy model was modified to include longer heating time on the order of several seconds to test these data. However, the model failed to predict these low heating rate data. It should be noted that UTRC's work showed reasonably good agreement with Merrick model heat capacity predictions at these low heating rates, but at higher heating rates UTRC observed that coal thermal response was heat flux dependent. It is concluded that

  1. Mach number effect on jet impingement heat transfer.

    PubMed

    Brevet, P; Dorignac, E; Vullierme, J J

    2001-05-01

    An experimental investigation of heat transfer from a single round free jet, impinging normally on a flat plate is described. Flow at the exit plane of the jet is fully developed and the total temperature of the jet is equal to the ambient temperature. Infrared measurements lead to the characterization of the local and averaged heat transfer coefficients and Nusselt numbers over the impingement plate. The adiabatic wall temperature is introduced as the reference temperature for heat transfer coefficient calculation. Various nozzle diameters from 3 mm to 15 mm are used to make the injection Mach number M vary whereas the Reynolds number Re is kept constant. Thus the Mach number influence on jet impingement heat transfer can be directly evaluated. Experiments have been carried out for 4 nozzle diameters, for 3 different nozzle-to-target distances, with Reynolds number ranging from 7200 to 71,500 and Mach number from 0.02 to 0.69. A correlation is obtained from the data for the average Nusselt number. PMID:11460655

  2. Effects of Hospital Workers’ Friendship Networks on Job Stress

    PubMed Central

    Shin, Sung Yae; Lee, Sang Gyu

    2016-01-01

    Background This study attempted to identify the sources of job stress according to job position and investigate how friendship networks affect job stress. Methods Questionnaires based on The Health Professions Stress Inventory (HPSI) developed by Wolfgang experienced by healthcare providers were collected from 420 nurses, doctors and radiological technologists in two general hospitals in Korea by a multistage cluster sampling method. Multiple regression analysis was used to examine the effects of friendship networks on job stress after controlling for other factors. Results The severity of job stress differed according to level of job demands (p = .006); radiologic technologists experienced the least stress (45.4), nurses experienced moderate stress (52.4), and doctors experienced the most stress (53.6). Those with long-term friendships characterized by strong connections reported lower levels of stress than did those with weak ties to friends among nurses (1.3, p < .05) and radiological technologists (11.4, p < .01). The degree of cohesion among friends had a positive impact on the level of job stress experienced by nurses (8.2, p < .001) and radiological technologists (14.6, p < .1). Doctors who participated in workplace alumni meetings scored higher than those who did not. However, those who participated in alumni meetings outside the workplace showed the opposite tendency, scoring 9.4 (p < .05) lower than those who did not. The resources from their friendship network include both information and instrumental support. As most radiological technologists were male, their instrumental support positively affected their job stress (9.2, p < .05). Life information support was the primary positive contributor to control of nurses’ (4.1, p < .05), radiological technologists’ (8.0, p < .05) job stress. Conclusion The strength and density of such friendship networks were related to job stress. Life information support from their friendship network was the primary

  3. High Reynolds number and turbulence effects on aerodynamics and heat transfer in a turbine cascade

    NASA Technical Reports Server (NTRS)

    Yeh, Frederick C.; Hippensteele, Steven A.; Vanfossen, G. James; Poinsatte, Philip E.; Ameri, Ali

    1993-01-01

    Experimental data on pressure distribution and heat transfer on a turbine airfoil were obtained over a range of Reynolds numbers from 0.75 to 7.5 x 10 exp 6 and a range of turbulence intensities from 1.8 to about 15 percent. The purpose of this study was to obtain fundamental heat transfer and pressure distribution data over a wide range of high Reynolds numbers and to extend the heat transfer data base to include the range of Reynolds numbers encountered in the Space Shuttle main engine (SSME) turbopump turbines. Specifically, the study aimed to determine (1) the effect of Reynolds number on heat transfer, (2) the effect of upstream turbulence on heat transfer and pressure distribution, and (3) the relationship between heat transfer at high Reynolds numbers and the current data base. The results of this study indicated that Reynolds number and turbulence intensity have a large effect on both the transition from laminar to turbulent flow and the resulting heat transfer. For a given turbulence intensity, heat transfer for all Reynolds numbers at the leading edge can be correlated with the Frossling number developed for lower Reynolds numbers. For a given turbulence intensity, heat transfer for the airfoil surfaces downstream of the leading edge can be approximately correlated with a dimensionless parameter. Comparison of the experimental results were also made with a numerical solution from a two-dimensional Navier-Stokes code.

  4. Effect of ultrahigh-temperature continuous ohmic heating treatment on fresh orange juice.

    PubMed

    Leizerson, Shirly; Shimoni, Eyal

    2005-05-01

    The scope of this study is the effect of ohmic heating thermal treatment on liquid fruit juice made of oranges. Effects of ohmic heating on the quality of orange juice were examined and compared to those of heat pasteurization at 90 degrees C for 50 s. Orange juice was treated at temperatures of 90, 120, and 150 degrees C for 1.13, 0.85, and 0.68 s in an ohmic heating system. Microbial counts showed complete inactivation of bacteria, yeast, and mold during ohmic and conventional treatments. The ohmic heating treatment reduced pectin esterase activity by 98%. The reduction in vitamin C was 15%. Ohmic-heated orange juice maintained higher amounts of the five representative flavor compounds than did heat-pasteurized juice. Sensory evaluation tests showed no difference between fresh and ohmic-heated orange juice. Thus, high-temperature ohmic-heating treatment can be effectively used to pasteurize fresh orange juice with minimal sensory deterioration. PMID:15853396

  5. The dilemma of hyperbolic heat conduction and its settlement by incorporating spatially nonlocal effect at nanoscale

    NASA Astrophysics Data System (ADS)

    Yu, Y. Jun; Li, Chen-Lin; Xue, Zhang-Na; Tian, Xiao-Geng

    2016-01-01

    To model transiently thermal responses of numerous thermal shock issues at nano-scale, Fourier heat conduction law is commonly extended by introducing time rate of heat flux, and comes to hyperbolic heat conduction (HHC). However, solution to HHC under Dirichlet boundary condition depicts abnormal phenomena, e.g. heat conducts from the cold to the hot, and there are two temperatures at one location. In this paper, HHC model is further perfected with the aids of spatially nonlocal effect, and the exceeding temperature as well as the discontinuity at the wave front are avoided. The effect of nonlocal parameter on temperature response is discussed. From the analysis, the importance of size effect for nano-scale heat conduction is emphasized, indicating that spatial and temporal extensions should be simultaneously made to nano-scale heat conduction. Beyond that, it is found that heat flux boundary conditions should be directly given, instead of Neumann boundary condition, which does not make sense any longer for non-classical heat conductive models. And finally, it is observed that accurate solution to such problems may be obtained using Laplace transform method, especially for the time-dependent boundary conditions, e.g. heat flux boundary condition.

  6. Effect of foam on temperature prediction and heat recovery potential from biological wastewater treatment.

    PubMed

    Corbala-Robles, L; Volcke, E I P; Samijn, A; Ronsse, F; Pieters, J G

    2016-05-15

    Heat is an important resource in wastewater treatment plants (WWTPs) which can be recovered. A prerequisite to determine the theoretical heat recovery potential is an accurate heat balance model for temperature prediction. The insulating effect of foam present on the basin surface and its influence on temperature prediction were assessed in this study. Experiments were carried out to characterize the foam layer and its insulating properties. A refined dynamic temperature prediction model, taking into account the effect of foam, was set up. Simulation studies for a WWTP treating highly concentrated (manure) wastewater revealed that the foam layer had a significant effect on temperature prediction (3.8 ± 0.7 K over the year) and thus on the theoretical heat recovery potential (30% reduction when foam is not considered). Seasonal effects on the individual heat losses and heat gains were assessed. Additionally, the effects of the critical basin temperature above which heat is recovered, foam thickness, surface evaporation rate reduction and the non-absorbed solar radiation on the theoretical heat recovery potential were evaluated. PMID:27017195

  7. The shape memory effect in crosslinked polymers: effects of polymer chemistry and network architecture

    NASA Astrophysics Data System (ADS)

    Davidson, Jacob D.; Li, Yali; Goulbourne, N. C.

    2013-04-01

    The thermal shape memory effect in polymeric materials refers to the ability of a sample to retain a deformed shape when cooled below Tg, and then recover its initial shape when subsequently heated. Although these properties are thought to be related to temperature-dependent changes in network structure and polymer chain mobility, a consistent picture of the molecular mechanisms which determine shape memory behavior does not exist. This, along with large differences in the shape memory cycling response for different materials, has made model development and specific property optimization difficult. In this work we use coarse-grained molecular dynamics (MD) simulations of the thermal shape memory effect to inform micro-macro relationships and systematically identify the salient features leading to desirable shape behavior. We consider a simulation test set including chains with increasing levels of the microscopic restrictions on chain motion (the freely-jointed, freely-rotating, and rotational isomeric state chain models), each simulated with both the NPT and NVT ensembles. It is found that the NPT ensemble with attractive interactions between monomers enabled is the most appropriate for simulating the temperature-dependent mechanical behavior of a polymer using coarse-grained MD. Of the different models, the freely-jointed chain system shows the most desirable shape memory characteristics; this behavior is attributed to the ability of the particles in this system to pack closely together in an energetically favorable configuration. A comparison with experimental data demonstrates that the coarse-grained simulations display all of the relevant trends in mechanical behavior during constant strain shape memory cycling. We conclude that atomistic detail is not needed to represent a shape memory polymer, and that multi-scale modeling techniques may build on the mechanisms embodied in the simple coarse-grained model.

  8. Effect of thermal manipulation during embryogenesis on liver heat shock protein expression in chronic heat stressed colored broiler chickens.

    PubMed

    Vinoth, A; Thirunalasundari, T; Tharian, Jenny Anne; Shanmugam, M; Rajkumar, U

    2015-10-01

    Thermal manipulation during embryogenesis has been shown to improve thermo tolerance in broilers. Heat shock proteins are a family of proteins produced in response to variety of stress and protect cells from damage. The aim of this study was to evaluate the effect of thermal manipulation (TM) during embryogenesis on HSP gene and protein expression in the embryos and in chronic heat stressed 42nd day old chicks. On 15th day of incubation, fertile eggs from two breeds-Naked neck (NN) and Punjab Broiler-2 (PB-2) were randomly divided in to two groups, namely Control (C) eggs were incubated under standard incubation conditions and Thermal Conditioning (TC) eggs were exposed to higher incubation temperature (40.5°C) for 3h on 15th, 16th and 17th day of incubation. The chicks so obtained from each group were further subdivided and reared from 15th-42nd day as normal (N; 25±1°C, 70% RH) and heat exposed (HE; 35±1°C, 50% RH) resulting in four treatment groups (CN, CHE, TCN and TCHE). Embryos of two groups (C and TC) on 17th day and birds from four treatment groups on 42nd day were sacrificed. Liver was collected for analysis of gene expression by real-time PCR and protein expression by Western blot of Heat Shock Proteins (HSP 90 alpha, HSP 90 beta, HSP 70, HSP 60, HSP 27 and ubiquitin). The plasma collected on 42nd day was analyzed for biochemical parameters. Thermal challenging of embryos of both the breeds caused significant (P≤0.05) increase in all the HSPs gene and protein expression. The TCHE chicks had significantly (P≤0.05) lower HSPs gene and protein expressions and oxidative stress compared to CHE groups in both NN and PB-2. Based on these findings it can be concluded that TM during incubation provides adaptation to broiler chicks during chronic heat stress. PMID:26590469

  9. Modifying Effect of Heat Waves on the Relationship between Temperature and Mortality.

    PubMed

    Lee, Won Kyung; Lee, Hye Ah; Park, Hyesook

    2016-05-01

    Studies conducted to evaluate temporal trends of heat-related mortality have not considered the effects of heat waves; although it is known they can affect mortality and act as a modifying factor. After adjusting for long-term trends and seasonality, the effects of temperature on non-accidental deaths in Seoul and Busan (inland and coastal cities, respectively) were analyzed using a generalized additive model of Poisson distribution. We evaluated temporal trends of heat-related mortalities in four periods (1991-1995, 1996-2000, 2001-2005, and 2006-2012). The effects of temperature on mortality were evaluated according to the occurrence of a heat wave and results were compared in the two cities. The effect of temperature on mortality was the greatest in 1991-1995 in Seoul; no significant change was observed in Busan. When we stratified the study period by heat wave status, the risk increase in mortality was 15.9% per 1℃ during years with a heat wave in Seoul, which was much higher than 0.31% increase observed during years without a heat wave. On the other hand, Busan showed a linear relationship between temperature and mortality and no significant difference between years with or without a heat wave. Variations in the relationship between temperature and mortality could be misunderstood if heat waves are not considered. Furthermore, heterogeneity was found in the modifying effect of heat waves on heat-related mortality in inland and coastal cities. The findings of this study help understand relations between temperature and mortality. PMID:27134490

  10. Modifying Effect of Heat Waves on the Relationship between Temperature and Mortality

    PubMed Central

    2016-01-01

    Studies conducted to evaluate temporal trends of heat-related mortality have not considered the effects of heat waves; although it is known they can affect mortality and act as a modifying factor. After adjusting for long-term trends and seasonality, the effects of temperature on non-accidental deaths in Seoul and Busan (inland and coastal cities, respectively) were analyzed using a generalized additive model of Poisson distribution. We evaluated temporal trends of heat-related mortalities in four periods (1991-1995, 1996-2000, 2001-2005, and 2006-2012). The effects of temperature on mortality were evaluated according to the occurrence of a heat wave and results were compared in the two cities. The effect of temperature on mortality was the greatest in 1991-1995 in Seoul; no significant change was observed in Busan. When we stratified the study period by heat wave status, the risk increase in mortality was 15.9% per 1℃ during years with a heat wave in Seoul, which was much higher than 0.31% increase observed during years without a heat wave. On the other hand, Busan showed a linear relationship between temperature and mortality and no significant difference between years with or without a heat wave. Variations in the relationship between temperature and mortality could be misunderstood if heat waves are not considered. Furthermore, heterogeneity was found in the modifying effect of heat waves on heat-related mortality in inland and coastal cities. The findings of this study help understand relations between temperature and mortality. PMID:27134490

  11. Effect of short-term exercise-heat acclimation on ventilatory and cerebral blood flow responses to passive heating at rest in humans.

    PubMed

    Fujii, Naoto; Tsuji, Bun; Honda, Yasushi; Kondo, Narihiko; Nishiyasu, Takeshi

    2015-09-01

    Hyperthermia induces hyperventilation and cerebral hypoperfusion in resting humans. We tested the hypothesis that short-term exercise-heat acclimation would alleviate those effects. Twenty healthy male subjects were divided into two groups that performed exercise training in the heat (TR-HEAT, n = 10) or cold (TR-COLD, n = 10). Before and after the training, the subjects in both groups participated in passive-heat tests at rest. Training was performed at 37°C (TR-HEAT) or 10°C (TR-COLD) and entailed four 20-min bouts of cycling at 50% peak oxygen uptake separated by 10-min recoveries daily for 6 consecutive days. After TR-HEAT, esophageal temperature was lowered when measured before and during passive heating, as was the esophageal temperature threshold for cutaneous active vasodilation, whereas plasma volume was increased (all P < 0.05). These traditional indices of successful heat acclimation were not all induced by TR-COLD (all P > 0.05). TR-HEAT had no significant effect on passive heating-induced increases in minute ventilation, even when evaluated as the esophageal temperature threshold for increases in minute ventilation and the slope relating minute ventilation to esophageal temperature (all P > 0.05). By contrast, TR-HEAT attenuated the passive heating-induced reduction in the cerebral vascular conductance index (middle cerebral artery mean blood velocity/mean arterial pressure) (all P < 0.05). TR-COLD did not attenuate the increase in minute ventilation or the decrease in the cerebral vascular conductance index observed during passive heating (all P > 0.05). These data suggest that in resting heated humans, short-term heat acclimation achieved through moderate-intensity exercise training (i.e., 50% peak oxygen uptake) in the heat does not influence hyperthermia-induced hyperventilation, but it does potentially attenuate cerebral hypoperfusion. PMID:26159763

  12. Experimental and Numerical Studies of the Effects of Water Sprinkling on Urban Pavement on Heat Island Mitigation

    NASA Astrophysics Data System (ADS)

    Yoshioka, M.; Tosaka, H.; Nakagawa, K.

    2007-12-01

    One of the main causes of 'heat island phenomeno' is thought to be the artificial covers of the ground surface with asphalt or concrete which reduce greatly inherent cooling effect of water evaporation from soil surface. In this study, as a candidate method of mitigating the heat island the effects of the 'water sprinkling' on the pavements are discussed from field experiments and numerical studies. Three field experiments of water sprinkling on the asphalt/concrete pavements were performed in hot summer days in 2004-2006. For detecting the change in temperatures, the authors developed and used a 3-D measurements system which consists of two vertical planes with 6m high and 16m wide, and has network arrays of 102 thermistors distributed spatially in the planes. The temperatures measured in and around the water sprinkled area indicated that the ground surface temperature decreased 5 to 15 degrees uniformly in the water sprinkled area compared with those in the un-sprinkled area, while the relative decrease of atmospheric temperature was approximately up to 1 degree. The subsurface temperature at a depth of 14cm under the pavement decreased significantly and kept lower than that at the same depth in un-sprinkled area over the next morning. A numerical model was developed and applied to interpret the experimental results. It deals with the heat balance of radiation, sensible/latent heat transfer at the ground surface and heat conduction through the artificial and natural soil layer under ground. temperature and vapor conditions changes at and near ground surface were modeled by using the bulk formula.Good agreements between the calculated time-temperature profiles and the experimental ones were obtained by assuming adequate physical parameters and meteorological conditions. The model could be improved in order to evaluate the changes of temperature and vapor contents in atmosphere near the ground surface caused by aerodynamic turbulent diffusion.

  13. Field-effect Flow Control in Polymer Microchannel Networks

    NASA Technical Reports Server (NTRS)

    Sniadecki, Nathan; Lee, Cheng S.; Beamesderfer, Mike; DeVoe, Don L.

    2003-01-01

    A new Bio-MEMS electroosmotic flow (EOF) modulator for plastic microchannel networks has been developed. The EOF modulator uses field-effect flow control (FEFC) to adjust the zeta potential at the Parylene C microchannel wall. By setting a differential EOF pumping rate in two of the three microchannels at a T-intersection with EOF modulators, the induced pressure at the intersection generated pumping in the third, field-free microchannel. The EOF modulators are able to change the magnitude and direction of the pressure pumping by inducing either a negative or positive pressure at the intersection. The flow velocity is tracked by neutralized fluorescent microbeads in the microchannels. The proof-of-concept of the EOF modulator described here may be applied to complex plastic ,microchannel networks where individual microchannel flow rates are addressable by localized induced-pressure pumping.

  14. Spanish Network on Effects of Wildfires on Soils. The view after 5 years of networking

    NASA Astrophysics Data System (ADS)

    Jordán, Antonio; Mataix-Solera, Jorge; Cerdà, Artemi

    2013-04-01

    1. WHAT IS FUEGORED? The Spanish Thematic Network "Effects of Wildfires on Soils" (FUEGORED, http://grupo.us.es/fuegored) has been working for over 5 years at becoming a point of reference for the study of fire-affected soils and restoration strategies. FUEGORED started in 2007, originally scheduled to run three years, as a result of the interest of Spanish researchers for developing better strategies and scientific interchange of ideas, people and collaboration between research groups. The first steps towards the establishment of a working group were a series of fieldtrips through Spain (2003), USA (2004) and Portugal (2005), where discussions about problems and research strategies arised. In its early years the network was supported by the former Ministry of Science and Innovation. This is a project to review scientific knowledge developed to date and discuss and propose future developments in scientific research about the effects of wildfires on soils. The objectives of the network are to promote and disseminate scientific research findings, provide technical and management information, and facilitate transference of knowledge between scientists, forest managers, students and society. 2. WHO IS IN THE NETWORK? The research group consists of the leading names of Spanish science in the topic and young talents, which are currently developing the most innovative research lines. Currently, the network is formed by 245 members, researchers from over 30 Spanish universities and research centers to provide the experience of decades of scientific and technical work in areas affected by forest fires and outstanding foreign researchers from Europe, Australia and America, including countries such as Australia, Italy, Lithuania, Portugal, UK, USA and others. Forest managers and technicians from various institutions are also present. 3. MAIN ACHIEVEMENTS Four international congresses have been promoted by the network in Valencia, 2008, Seville, 2009, Santiago de Compostela

  15. MHD Stagnation-Point Flow and Heat Transfer with Effects of Viscous Dissipation, Joule Heating and Partial Velocity Slip

    PubMed Central

    Mat Yasin, Mohd Hafizi; Ishak, Anuar; Pop, Ioan

    2015-01-01

    The steady two-dimensional stagnation-point flow and heat transfer past a permeable stretching/shrinking sheet with effects of viscous dissipation, Joule heating and partial velocity slip in the presence of a magnetic field is investigated. The partial differential equations are reduced to nonlinear ordinary differential equations by using a similarity transformation, before being solved numerically by shooting technique. Results indicate that the skin friction coefficient and the local Nusselt number increase as magnetic parameter increases. It is found that for the stretching sheet the solution is unique while for the shrinking sheet there exist nonunique solutions (dual solutions) in certain range of parameters. The stability analysis shows that the upper branch solution is stable while the lower branch solution is unstable. PMID:26647651

  16. MHD Stagnation-Point Flow and Heat Transfer with Effects of Viscous Dissipation, Joule Heating and Partial Velocity Slip.

    PubMed

    Yasin, Mohd Hafizi Mat; Ishak, Anuar; Pop, Ioan

    2015-01-01

    The steady two-dimensional stagnation-point flow and heat transfer past a permeable stretching/shrinking sheet with effects of viscous dissipation, Joule heating and partial velocity slip in the presence of a magnetic field is investigated. The partial differential equations are reduced to nonlinear ordinary differential equations by using a similarity transformation, before being solved numerically by shooting technique. Results indicate that the skin friction coefficient and the local Nusselt number increase as magnetic parameter increases. It is found that for the stretching sheet the solution is unique while for the shrinking sheet there exist nonunique solutions (dual solutions) in certain range of parameters. The stability analysis shows that the upper branch solution is stable while the lower branch solution is unstable. PMID:26647651

  17. Effect of heat treatment on stiffness and damping of SiC/Ti-15-3

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.; Lerch, Bradley A.

    1992-01-01

    The effect of heat treatment on material properties of SiC/Ti-15-3 was measured by vibration tests. Heat treatment changes the microstructure, which was found to stiffen the matrix and reduce its damping capacity. Test results indicate how these changes in the matrix affect the corresponding properties of the composite. Measurements show that heat treatment affects damping properties of the composite to a greater extent than stiffness properties. The extent of change in mechanical properties is shown to depend on heat treatment temperature and exposure time.

  18. Towards understanding of heat effects in metallic glasses on the basis of macroscopic shear elasticity

    PubMed Central

    Mitrofanov, Y. P.; Wang, D. P.; Makarov, A. S.; Wang, W. H.; Khonik, V. A.

    2016-01-01

    It is shown that all heat effects taking place upon annealing of a metallic glass within the glassy and supercooled liquid states, i.e. heat release below the glass transition temperature and heat absorption above it, as well as crystallization-induced heat release, are related to the macroscopic shear elasticity. The underlying physical reason can be understood as relaxation in the system of interstitialcy-type ”defects” (elastic dipoles) frozen-in from the melt upon glass production. PMID:26975587

  19. Effects of sea spray evaporation and dissipative heating on intensity and structure of tropical cyclone

    NASA Astrophysics Data System (ADS)

    Cheng, Xiaoping; Fei, Jianfang; Huang, Xiaogang; Zheng, Jing

    2012-07-01

    To examine effects of sea spray evaporation and dissipative heating on structure and intensity of a real tropical cyclone, the sea spray flux parameterization scheme was incorporated into the fifth-generation Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model (MM5). Sensitivity tests were performed with varying the spray source function intensities and with and without dissipation heating. The numerical results indicate that sea spray evaporation increases the interfacial sensible heat flux, which is increased by 16% for the moderate spray and 47% for the heavy spray, but has little effect on the interfacial latent heat flux. The net effect of sea spray evaporation is to decrease the total sensible heat flux and to increase the total latent heat flux. The total enthalpy flux is increased by 1% and 12% with moderate and strong spray amounts, respectively. Consistent with these results, the intensity of the tropical cyclone is increased by 5% and 16% in maximum 10-m wind speed, respectively, due to sea spray evaporation. Sea spray evaporation and dissipative heating modify the tropical cyclone structure in important but complex ways. The effect of sea spray on the near-surface temperature and moisture depends on the spray amounts and its location within the tropical cyclone. Within the high-wind region of a tropical cyclone, the lower atmosphere becomes cooler and moister due to the evaporation of sea spray. However, the dissipative heating offsets the cooling due to sea spray evaporation, which makes the lower atmosphere warmer.

  20. Effect of Conceptual Change Oriented Instruction on Students' Understanding of Heat and Temperature Concepts

    ERIC Educational Resources Information Center

    Baser, Mustafa

    2006-01-01

    This study explores the effectiveness of conceptual change oriented instruction and standard science instruction and contribution of logical thinking ability on seventh grade students' understanding of heat and temperature concepts. Misconceptions related to heat and temperature concepts were determined by related literature on this subject.…

  1. Effects of forced wall vibration on the onset of flow instability and critical heat flux in uniformly-heated microchannels

    NASA Astrophysics Data System (ADS)

    Stromberger, Jorg Hermann

    Numerous experimental and theoretical investigations on two-phase flow instability and burnout in heated microchannels have been reported in the literature. However none of these investigations deals with the possible effects of wall vibrations on such flow boiling processes within microchannels. Fluid-structure interaction in ultra high power density systems cooled by high velocity single phase forced convection in microchannels may result in vibration amplitudes that are a significant fraction of the diameter of the channel. Such vibrations may significantly impact vapor bubble dynamics at the wall and, hence, the limiting heat fluxes corresponding to the onset of flow instability and/or burnout. The primary purpose of this research was to experimentally quantify the effect of forced wall vibration on the onset of flow instability (OFI) and the critical heat flux (CHF) in uniformly-heated annular microchannels. The secondary interest of this investigation was to compare the experimental data collected in the single-phase regime to commonly used single-phase forced convection correlations. Experimental data acquired in the flow boiling regime were to be utilized to confirm the validity of common flow boiling correlations for microchannel flow. The influence of forced wall vibration on subcooled single-phase forced convection and flow boiling was examined. The Georgia Tech Microchannel Test Facility (GTMTF) was modified to allow such experiments to be conducted at controlled values of transverse wall vibration amplitudes and accelerations for a range of frequencies. The channel demand curves were obtained for various inner and outer surface heat fluxes. Experiments were conducted for broad ranges of transverse wall vibration amplitudes over a range of frequencies. The experiments conducted in this investigation provide designers of high power density systems cooled by forced convection in microchannels with the appropriate data and correlations to confidently

  2. Simulation of SAR in the Human Body to Determine Effects of RF Heating

    NASA Astrophysics Data System (ADS)

    Michiyama, Tetsuyuki; Nikawa, Yoshio

    The body area network (BAN) has attracted attention because of its potential for high-grade wireless communication technology and its safety and high durability. Also, human area transmission of a BAN propagating at an ultra-wide band (UWB) has been demonstrated recently. When considering the efficiency of electromagnetic (EM) propagation inside the human body for BAN and hyperthermia treatment using RF, it is important to determine the mechanism of EM dissipation in the human body. A body heating system for hyperthermia must deposit EM energy deep inside the body. Also, it is important that the EM field generated by the implant system is sufficiently strong. In this study, the specific absorption rate (SAR) distribution is simulated using an EM simulator to consider the biological transmission mechanism and its effects. To utilize the EM field distribution using an implant system for hyperthermia treatment, the SAR distribution inside the human body is simulated. As a result, the SAR distribution is concentrated on the surface of human tissue, the muscle-bolus interface, the pancreas, the stomach, the spleen and the regions around bones. It can also be concentrated in bone marrow and cartilage. From these results, the appropriate location for the implant system is revealed on the basis of the current distribution and differences in the wave impedance of interfacing tissues. The possibility of accurate data transmission and suitable treatment planning is confirmed.

  3. Effect of adiabatic square ribs on natural convection in an asymmetrically heated channel

    NASA Astrophysics Data System (ADS)

    Abidi-Saad, Aissa; Kadja, Mahfoud; Popa, Catalin; Polidori, Guillaume

    2016-06-01

    A 2-D numerical simulation is carried out to investigate the effect of two adiabatic square ribs on laminar flow and heat transfer in an asymmetrically heated channel. The two ribs are symmetrically located on each wall, exactly above the heating zone. The computational procedure is made by solving the unsteady bi-dimensional continuity, momentum and energy equations with the finite volume method. The investigations focused more specifically on the influence of ribs sizes on the flow structure and heat transfer enhancement. The results showed that the variation of ribs sizes significantly alters the heat transfer and fluid flow distribution along the channel, especially in the vicinity of protrusions. Also, the results show that streamlines, isotherms, and the number, sizes and formation of vortex structures inside the channel strongly depend on the size of protrusions. The changes in heat transfer parameters have also been presented.

  4. Heat stress effects on livestock: molecular, cellular and metabolic aspects, a review.

    PubMed

    Belhadj Slimen, I; Najar, T; Ghram, A; Abdrrabba, M

    2016-06-01

    Elevated ambient temperatures affect animal production and welfare. Animal's reduced production performances during heat stress were traditionally thought to result from the decreased feed intake. However, it has recently been shown that heat stress disturbs the steady state concentrations of free radicals, resulting in both cellular and mitochondrial oxidative damage. Indeed, heat stress reorganizes the use of the body resources including fat, protein and energy. Heat stress reduces the metabolic rates and alters post-absorptive metabolism, regardless of the decreased feed intake. Consequently, growth, production, reproduction and health are not priorities any more in the metabolism of heat-stressed animals. The drastic effects of heat stress depend on its duration and severity. This review clearly describes about biochemical, cellular and metabolic changes that occur during thermal stress in farm animals. PMID:26250521

  5. Effect of Variable Emittance Coatings on the Operation of a Miniature Loop Heat Pipe

    NASA Astrophysics Data System (ADS)

    Douglas, Donya M.; Ku, Jentung; Ottenstein, Laura; Swanson, Theodore; Hess, Steve; Darrin, Ann

    2005-02-01

    As the size of spacecraft shrink to accommodate small and more efficient instruments, smaller launch vehicles, and constellation missions, all subsystems must also be made smaller. Under NASA NRA 03-OSS-02, Space Technology-8 (ST 8), NASA Goddard Space Flight Center and Jet Propulsion Laboratory jointly conducted a Concept Definition study to develop a miniature loop heat pipe (loop heat pipe) thermal management system design suitable for future small spacecraft. The proposed loop heat pipe thermal management system consists of a miniature loop heat pipe (LHP) and deployable radiators that are coated with variable emittance coatings (VECs). As part of the Phase A study and proof of the design concept, variable emittance coatings were integrated with a breadboard miniature loop heat pipe. The entire system was tested under vacuum at various temperature extremes and power loads. This paper summarizes the results of this testing and shows the effect of the VEC on the operation of a miniature loop heat pipe.

  6. Seebeck effect influence on joule heat evolution in electrically conductive silicate materials

    NASA Astrophysics Data System (ADS)

    Fiala, Lukáš; Medved, Igor; Maděra, Jiří; Černý, Robert

    2016-07-01

    In general, silicate building materials are non-conductive matters that are not able to evolve heat when they are subjected to an external voltage. However, the electrical conductivity can be increased by addition of electrically conductive admixtures in appropriate amount which leads to generation of conductive paths in materials matrix. Such enhanced materials can evolve Joule heat and are utilizable as a core of self-heating or snow-melting systems. In this paper, Joule heat evolution together with Seebeck effect in electrically conductive silicate materials was taken into consideration and the model based on heat equation with included influence of DC electric field was proposed. Besides, a modeling example of heating element was carried out on FEM basis and time development of temperature in chosen surface points was expressed in order to declare ability of such system to be applicable.

  7. Heat release effects on the instability of parallel shear layers

    SciTech Connect

    Hegde, U.

    1994-01-01

    The influence of time-dependent heat addition on the linear instablity of shear layers is of considerable interest in understanding the dynamic behavior of reacting flows and combustion-turbulence interactions. The approach is based upon the Bernoulli enthalpy aeroacoustics theory, which utilizes the specific enthalpy and specific entropy as the primary thermodynamic variables. In addition, velocity oscillations are split into Helmoholtz decomposition theorem.

  8. Effects of secondary flow on heat transfer in rotating passages

    NASA Astrophysics Data System (ADS)

    Moore, Joan G.; Moore, John

    1990-02-01

    Secondary flow in rotating cooling passages of jet engine turbine rotors is considered. A Navier-Stokes calculation procedure for turbulent flow is used to compute flow development in a radially outward flow channel, round a sharp 180 degree bend, and in the radially inward flow channel downstream. Areas of high and low heat transfer are explained by secondary flow development and quantitative results show regions of design interest.

  9. Effective method for the heat inactivation of Blastomyces dermatitidis.

    PubMed

    Brown, Elizabeth M; McTaggart, Lisa R; Low, Donald E; Richardson, Susan E

    2014-10-01

    Manipulation of Blastomyces dermatitidis requires the use of containment level 3 (CL3) practices. However, access to CL3 laboratories is limited and working conditions are restrictive. We describe the validation of a "heat-killing" method to inactivate B. dermatitidis, thus allowing cellular material to be removed from the CL3 laboratory for subsequent DNA isolation that is suitable for genetic applications. PMID:25049039

  10. Effects of physical conditioning on heat tolerance in chemical-defense gear. Master's thesis

    SciTech Connect

    Nauss, M.M.

    1986-06-01

    Today the threat of chemical warfare is real. The only effective defense is the use of chemical defense gear and gas masks. Since they render chemical-warfare gases and liquids impermeable to penetration, they also prohibit sweat evaporation in conditions of thermal stress and thus, contribute to heat illness development. Historically, it has been the hot, humid tropics where United Nation's peacekeeping forces have been called, thus the use of chemical-defense gear in these regions is a realistic possibility and heat illness could affect the outcome of any mission carried out there. The human body only operates within a narrow range of core temparatures, and heat illness is the result of a breakdown in homeostasis. Many factors influence heat tolerance, thus maintaining core temperature within a safe range. Adequate hydration, acclimitization to heat, low body weight, young age, low alcohol intake, and physical fitness all contribute to heat tolerance. This proposal attempts to look specifically at the effect of physical conditioning on heat tolerance in chemical-defense gear as a possible solution to the heat-stress problem noted in this gear. Trainee graduates attending technical training schools at Lackland AFB, Texas, will be tested for maximum oxygen uptake (VO/2max) and heat tolerance time (HTT) in chemical defense gear on bicycle ergometers at Brooks AFB, Texas. Half of these subjects will be physically conditioned for 12 weeks.

  11. Effects of heat treatment on the mechanical properties of kenaf fiber

    NASA Astrophysics Data System (ADS)

    Carada, Paulo Teodoro D. L.; Fujii, Toru; Okubo, Kazuya

    2016-05-01

    Natural fibers are utilized in various ways. One specific application of it, is in the field natural fiber composite (NFC). Considerable amount of researches are conducted in this field due to rising concerns in the harmful effects of synthetic materials to the environment. Additionally, these researches are done in order to overcome the drawbacks which limit the wide use of natural fiber. A way to improve NFC is to look into the reinforcing component (natural fiber). Treatments, which are classified as mechanical or chemical in nature, can be done in order to improve the performance of the natural fiber. The aim of this study is to assess the effects of heat treatment in the mechanical properties of kenaf fiber. In addition, the response of mechanical properties after exposure to high moisture environment of heat-treated kenaf fibers was observed. Heat treatment was done for one hour with the following heating temperatures: 140, 160, 180, and 200 °C. X-ray diffraction analysis was done to calculate the crystallinity index of kenaf fibers after heat treatment. The results showed that increase in tensile strength can be attained when kenaf fibers are heat treated at 140 °C. However, the tensile modulus showed inconsistency with respect to heat treatment temperature. The computed crystallinity index of the fiber matched the tensile strength observed in non-treated and heat-treated kenaf fibers. The results obtained in this study can be used for applications where heat treatment on kenaf fibers is needed.

  12. Heat stress management program improving worker health and operational effectiveness: a case study.

    PubMed

    Huss, Rosalyn G; Skelton, Scott B; Alvis, Kimberly L; Shane, Leigh A

    2013-03-01

    Heat stress monitoring is a vital component of an effective health and safety program when employees work in exceptionally warm environments. Workers at hazardous waste sites often wear personal protective equipment (PPE), which increases the body heat stress load. No specific Occupational Safety and Health Administration (OSHA) regulations address heat stress; however, OSHA does provide several guidance documents to assist employers in addressing this serious workplace health hazard. This article describes a heat stress and surveillance plan implemented at a hazardous waste site as part of the overall health and safety program. The PPE requirement for work at this site, coupled with extreme environmental temperatures, made heat stress a significant concern. Occupational health nurses and industrial hygienists developed a monitoring program for heat stress designed to prevent the occurrence of significant heat-related illness in site workers. The program included worker education on the signs of heat-related illness and continuous physiologic monitoring to detect early signs of heat-related health problems. Biological monitoring data were collected before workers entered the exclusion zone and on exiting the zone following decontamination. Sixty-six site workers were monitored throughout site remediation. More than 1,700 biological monitoring data points were recorded. Outcomes included improved worker health and safety, and increased operational effectiveness. PMID:23429639

  13. Effect of microfouling on heat-transfer efficiency

    SciTech Connect

    Little, B.; Berger, L.R.

    1980-01-01

    Field experiments, performed at Keahole Point, Hawaii and in the Gulf of Mexico, were designed to determine the relationship between decreased heat transfer efficiency and the accumulation of corrosion and/or biofouling films on heat exchanger surfaces. The sample tubes were maintained under conditions simulating those of an Ocean Thermal Energy Conversion (OTEC) system and data from the two sites have been compared. Seawater flowed through 2.54 (internal diameter) metal tubes at approximately 1.8m sec/sup -1/. Four types of tubes were used: 5052 Aluminum (A1), Grade 2 titanium (Ti), 90-10 copper-nickel (Cu-Ni) and Allegheny-Ludlum 6X stainless ssteel (SS). All surfaces were colonized by microorganisms, though colonization of the Cu-Ni surface was initially retarded. Total film weight was greatest for the Al and Cu-Ni surfaces which were characterized by corrosion as well as microbial fouling. The total organic carbon: total nitrogen ratios of the fouling films from Ti, Al, SS and Cu-Ni, 4.2, 4.0, 4.8 and 7.9 respectively, remained constant throughout the experiment. The degradation of heat transfer efficiency due to the formation of fouling layers on Ti and SS is neither linear nor a simple exponential function. A microfouling model is proposed for corrosion-resistant surfaces that is consistent with field observations.

  14. Networking.

    ERIC Educational Resources Information Center

    Duvall, Betty

    Networking is an information giving and receiving system, a support system, and a means whereby women can get ahead in careers--either in new jobs or in current positions. Networking information can create many opportunities: women can talk about how other women handle situations and tasks, and previously established contacts can be used in…

  15. A Neural Network Model of Ventriloquism Effect and Aftereffect

    PubMed Central

    Magosso, Elisa; Cuppini, Cristiano; Ursino, Mauro

    2012-01-01

    Presenting simultaneous but spatially discrepant visual and auditory stimuli induces a perceptual translocation of the sound towards the visual input, the ventriloquism effect. General explanation is that vision tends to dominate over audition because of its higher spatial reliability. The underlying neural mechanisms remain unclear. We address this question via a biologically inspired neural network. The model contains two layers of unimodal visual and auditory neurons, with visual neurons having higher spatial resolution than auditory ones. Neurons within each layer communicate via lateral intra-layer synapses; neurons across layers are connected via inter-layer connections. The network accounts for the ventriloquism effect, ascribing it to a positive feedback between the visual and auditory neurons, triggered by residual auditory activity at the position of the visual stimulus. Main results are: i) the less localized stimulus is strongly biased toward the most localized stimulus and not vice versa; ii) amount of the ventriloquism effect changes with visual-auditory spatial disparity; iii) ventriloquism is a robust behavior of the network with respect to parameter value changes. Moreover, the model implements Hebbian rules for potentiation and depression of lateral synapses, to explain ventriloquism aftereffect (that is, the enduring sound shift after exposure to spatially disparate audio-visual stimuli). By adaptively changing the weights of lateral synapses during cross-modal stimulation, the model produces post-adaptive shifts of auditory localization that agree with in-vivo observations. The model demonstrates that two unimodal layers reciprocally interconnected may explain ventriloquism effect and aftereffect, even without the presence of any convergent multimodal area. The proposed study may provide advancement in understanding neural architecture and mechanisms at the basis of visual-auditory integration in the spatial realm. PMID:22880007

  16. The impact of temperature on mortality in a subtropical city: effects of cold, heat, and heat waves in São Paulo, Brazil.

    PubMed

    Son, Ji-Young; Gouveia, Nelson; Bravo, Mercedes A; de Freitas, Clarice Umbelino; Bell, Michelle L

    2016-01-01

    Understanding how weather impacts health is critical, especially under a changing climate; however, relatively few studies have investigated subtropical regions. We examined how mortality in São Paulo, Brazil, is affected by cold, heat, and heat waves over 14.5 years (1996-2010). We used over-dispersed generalized linear modeling to estimate heat- and cold-related mortality, and Bayesian hierarchical modeling to estimate overall effects and modification by heat wave characteristics (intensity, duration, and timing in season). Stratified analyses were performed by cause of death and individual characteristics (sex, age, education, marital status, and place of death). Cold effects on mortality appeared higher than heat effects in this subtropical city with moderate climatic conditions. Heat was associated with respiratory mortality and cold with cardiovascular mortality. Risk of total mortality was 6.1% (95% confidence interval 4.7, 7.6%) higher at the 99th percentile of temperature than the 90th percentile (heat effect) and 8.6% (6.2, 11.1%) higher at the 1st compared to the 10th percentile (cold effect). Risks were higher for females and those with no education for heat effect, and males for cold effect. Older persons, widows, and non-hospital deaths had higher mortality risks for heat and cold. Mortality during heat waves was higher than on non-heat wave days for total, cardiovascular, and respiratory mortality. Our findings indicate that mortality in São Paulo is associated with both cold and heat and that some subpopulations are more vulnerable. PMID:25972308

  17. The impact of temperature on mortality in a subtropical city: effects of cold, heat, and heat waves in São Paulo, Brazil

    NASA Astrophysics Data System (ADS)

    Son, Ji-Young; Gouveia, Nelson; Bravo, Mercedes A.; de Freitas, Clarice Umbelino; Bell, Michelle L.

    2016-01-01

    Understanding how weather impacts health is critical, especially under a changing climate; however, relatively few studies have investigated subtropical regions. We examined how mortality in São Paulo, Brazil, is affected by cold, heat, and heat waves over 14.5 years (1996-2010). We used over-dispersed generalized linear modeling to estimate heat- and cold-related mortality, and Bayesian hierarchical modeling to estimate overall effects and modification by heat wave characteristics (intensity, duration, and timing in season). Stratified analyses were performed by cause of death and individual characteristics (sex, age, education, marital status, and place of death). Cold effects on mortality appeared higher than heat effects in this subtropical city with moderate climatic conditions. Heat was associated with respiratory mortality and cold with cardiovascular mortality. Risk of total mortality was 6.1 % (95 % confidence interval 4.7, 7.6 %) higher at the 99th percentile of temperature than the 90th percentile (heat effect) and 8.6 % (6.2, 11.1 %) higher at the 1st compared to the 10th percentile (cold effect). Risks were higher for females and those with no education for heat effect, and males for cold effect. Older persons, widows, and non-hospital deaths had higher mortality risks for heat and cold. Mortality during heat waves was higher than on non-heat wave days for total, cardiovascular, and respiratory mortality. Our findings indicate that mortality in São Paulo is associated with both cold and heat and that some subpopulations are more vulnerable.

  18. Effective transmissivity of two-dimensional fracture networks

    SciTech Connect

    Zimmerman, R.W.; Bodvarsson, G.S.

    1995-04-01

    Many of the sites that have been proposed as potential locations of underground radioactive waste repositories contain fractured rocks. For example, both the saturated and unsaturated zone at Yucca Mountain, Nevada, contains many hydrogeologic units that are extensively fractured. When modeling the hydrological behavior of these sites, for either the purpose of site characterization of performance assessment, computational grid-blocks are often used that contain large number of fractures. In order to treat these as equivalent continua, it is necessary to develop a procedure for relating the hydraulic properties of the individual fractures and he topology of the fracture network to the overall scale permeability. One aspect of this problem is that of determining the in situ hydraulic properties of the individual fractures. Another aspect is to reconstruct the three-dimensional geometry of the fracture network based on borehole or outcrop measurements. The final stage in the problem is that of taking a network of known geometry and determining it effective scale conductivity. The purpose of this paper is to describe a simple procedure for solving this latter problem,a nd to demonstrate it use in cases of both saturated and unsaturated flow. The TOUGH simulator was used.

  19. Specially tailored transfinite-element formulations for hyperbolic heat conduction involving non-Fourier effects

    NASA Technical Reports Server (NTRS)

    Tamma, Kumar K.; Railkar, Sudhir B.

    1989-01-01

    The phenomenon of hyperbolic heat conduction in contrast to the classical (parabolic) form of Fourier heat conduction involves thermal energy transport that propagates only at finite speeds, as opposed to an infinite speed of thermal energy transport. To accommodate the finite speed of thermal wave propagation, a more precise form of heat flux law is involved, thereby modifying the heat flux originally postulated in the classical theory of heat conduction. As a consequence, for hyperbolic heat conduction problems, the thermal energy propagates with very sharp discontinuities at the wave front. Accurate solutions are found for a class of one-dimensional hyperbolic heat conduction problems involving non-Fourier effects that can be used effectively for representative benchmark tests and for validating alternate schemes. Modeling/analysis formulations via specially tailored hybrid computations are provided for accurately modeling the sharp discontinuities of the propagating thermal wave front. Comparative numerical test models are presented for various hyperbolic heat conduction models involving non-Fourier effects to demonstrate the present formulations.

  20. A numerical study of the effects of heat diffusion through the base of the mixed layer

    NASA Technical Reports Server (NTRS)

    Posmentier, E. S.

    1980-01-01

    In the present paper, a simple numerical model is used to study the warming of the mixed layer during the early summer. It is shown that the springtime temperature increase in the layer below the mixed layer (for example, in the cold pool on a continental shelf) has a maximum value which occurs for a limiting value of the surface heat flux. This is a result of the positive feedback at large Richardson numbers between stability and vertical diffusion of heat. The springtime temperature increase in the mixed layer increases nonlinearly with surface heat flux, because of the same positive feedback. The effects of interseasonal fluctuations of the surface heat flux on the spring and summer mixed layer and deeper temperature increases can be as great as the effect of interseasonal fluctuations of the average heat flux.

  1. Effect of heat and ultrasonic waves on the survival of two strains of Bacillus subtilis.

    PubMed

    Garcia, M L; Burgos, J; Sanz, B; Ordoñez, J A

    1989-12-01

    The combined effect of ultrasonic (20 KHz, 150 W) and heat treatment on the survival of two strains of Bacillus subtilis in three suspending media (distilled water, glycerol and milk) has been studied. When spores suspended in water or milk were subjected to ultrasonic waves before heat treatments a little or no decrease of the heat resistance was observed. However, both sporicidal agents applied simultaneously (thermo-ultrasonication) decreased by 63% (B. subtilis, var. niger-40) and 74% (B. subtilis ATCC 6051) the decimal reduction times for the heat treatment when the spores were suspended in glycerol and by 79% and 40%, respectively when suspended in milk. The thermo-ultrasonication of spores in water markedly reduced the heat resistance of them (between 99.9% and 70%) in the range 70-95 degrees C but the effect of the thermo-ultrasonication significantly diminished as the temperature of the treatment was approached to the boiling point of the water. PMID:2515184

  2. Assessment of Self-Heating Susceptibility of Indian Coal Seams - A Neural Network Approach

    NASA Astrophysics Data System (ADS)

    Panigrahi, D. C.; Ray, S. K.

    2014-12-01

    The paper addresses an electro-chemical method called wet oxidation potential technique for determining the susceptibility of coal to spontaneous combustion. Altogether 78 coal samples collected from thirteen different mining companies spreading over most of the Indian Coalfields have been used for this experimental investigation and 936 experiments have been carried out by varying different experimental conditions to standardize this method for wider application. Thus for a particular sample 12 experiments of wet oxidation potential method were carried out. The results of wet oxidation potential (WOP) method have been correlated with the intrinsic properties of coal by carrying out proximate, ultimate and petrographic analyses of the coal samples. Correlation studies have been carried out with Design Expert 7.0.0 software. Further, artificial neural network (ANN) analysis was performed to ensure best combination of experimental conditions to be used for obtaining optimum results in this method. All the above mentioned analysis clearly spelt out that the experimental conditions should be 0.2 N KMnO4 solution with 1 N KOH at 45°C to achieve optimum results for finding out the susceptibility of coal to spontaneous combustion. The results have been validated with Crossing Point Temperature (CPT) data which is widely used in Indian mining scenario. W pracy omówiono możliwości wykorzystania metody elektro-chemicznej zwanej metodą określania potencjału utleniającego w procesie mokrym do określania skłonności węgla do samozapłonu. Dla potrzeb eksperymentu zebrano 78 próbek węgla z trzynastu kopalni w obrębie Indyjskiego Zagłębia Węglowego. Przeprowadzono 936 eksperymentów, w różnych warunkach prowadzenia procesu aby zapewnić standaryzację metody w celu jej szerszego zastosowania. Dla każdej próbki przeprowadzono 12 eksperymentów metodą badania potencjału utleniającego w procesie mokrym. Wyniki skorelowano z własnościami danego węgla przez

  3. An Effective Mobile Sensor Control Method for Sparse Sensor Networks

    PubMed Central

    Treeprapin, Kriengsak; Kanzaki, Akimitsu; Hara, Takahiro; Nishio, Shojiro

    2009-01-01

    In this paper, we propose an effective mobile sensor control method, named DATFM (Data Acquisition and Transmission with Fixed and Mobile node) for sparse sensor networks. DATFM uses two types of sensor nodes, fixed node and mobile node. The data acquired by nodes are accumulated on a fixed node before being transferred to the sink node. In addition, DATFM transfers the accumulated data efficiently by constructing a communication route of multiple mobile nodes between fixed nodes. We also conduct simulation experiments to evaluate the performance of DATFM. PMID:22389602

  4. Net benefits: assessing the effectiveness of clinical networks in Australia through qualitative methods

    PubMed Central

    2012-01-01

    Background In the 21st century, government and industry are supplementing hierarchical, bureaucratic forms of organization with network forms, compatible with principles of devolved governance and decentralization of services. Clinical networks are employed as a key health policy approach to engage clinicians in improving patient care in Australia. With significant investment in such networks in Australia and internationally, it is important to assess their effectiveness and sustainability as implementation mechanisms. Methods In two purposively selected, musculoskeletal clinical networks, members and stakeholders were interviewed to ascertain their perceptions regarding key factors relating to network effectiveness and sustainability. We adopted a three-level approach to evaluating network effectiveness: at the community, network, and member levels, across the network lifecycle. Results Both networks studied are advisory networks displaying characteristics of the ‘enclave’ type of non-hierarchical network. They are hybrids of the mandated and natural network forms. In the short term, at member level, both networks were striving to create connectivity and collaboration of members. Over the short to medium term, at network level, both networks applied multi-disciplinary engagement in successfully developing models of care as key outputs, and disseminating information to stakeholders. In the long term, at both community and network levels, stakeholders would measure effectiveness by the broader statewide influence of the network in changing and improving practice. At community level, in the long term, stakeholders acknowledged both networks had raised the profile, and provided a ‘voice’ for musculoskeletal conditions, evidencing some progress with implementation of the network mission while pursuing additional implementation strategies. Conclusions This research sheds light on stakeholders’ perceptions of assessing clinical network effectiveness at

  5. Developing Evidence to Inform Decisions about Effectiveness (DeCIDE) Network

    Cancer.gov

    The Developing Evidence to Inform Decisions about Effectiveness Network is a network of research centers that the Agency for Healthcare Research and Quality created to conduct practical studies about health care items and services.

  6. Combined solar and internal load effects on selection of heat reclaim-economizer HVAC systems

    SciTech Connect

    Sauer, H.J. Jr.; Howell, R.H.; Wang, Z. . Dept. of Mechanical Engineering)

    1990-05-01

    The concern for energy conservation has led to the development and use of heat recovery systems which reclaim the building internal heat before it is discarded in the exhaust air. On the other hand, economizer cycles have been widely used for many years in a variety of types of HVAC systems. Economizer cycles are widely accepted as a means to reduce operating time for chilling equipment when cool outside air is available. It has been suggested that heat reclaim systems should not be used in conjunction with an HVAC system which incorporates an economizer cycle because the economizer operation would result in heat being exhausted which might have been recovered. Others suggest that the economizer cycle can be used economically in a heat recovery system if properly controlled to maintain an overall building heat balance. This study looks at potential energy savings of such combined systems with particular emphasis on the effects of the solar load (amount of glass) and the internal load level (lights, people, appliances, etc.). For systems without thermal storage, annual energy savings of up to 60 percent are predicted with the use of heat reclaim systems in conjunction with economizers when the heat reclaim has priority. These results demonstrate the necessity of complete engineering evaluations if proper selection and operation of combined heat recovery and economizer cycles are to be obtained. This paper includes the basic methodology for making such evaluations.

  7. Detection of Thermal Radiation, Sensing of Heat Flux, and Recovery of Waste Heat by the Transverse Thermoelectric Effect

    NASA Astrophysics Data System (ADS)

    Kanno, Tsutomu; Takahashi, Kouhei; Sakai, Akihiro; Tamaki, Hiromasa; Kusada, Hideo; Yamada, Yuka

    2014-06-01

    The transverse thermoelectric effect is unique in that an output voltage can be extracted in the direction perpendicular to the input temperature gradient. This paper describes how this transverse feature can be exploited to realize simple and promising configurations of thermoelectric devices. For detection of thermal radiation, two-dimensional imaging has been demonstrated by a fabricated sensor array of tilt-oriented Ca x CoO2 epitaxial thin film. We have also developed a serpentine heat flux sensor made of multilayered Bi/Cu, and Bi0.5Sb1.5Te3/Ni tubular thermoelectric devices for power generation. The fabrication processes and test results are presented.

  8. On the effect of fractal geometric parameters on the heat transfer features of circular impinging jets

    NASA Astrophysics Data System (ADS)

    Astarita, Tommaso; Castrillo, Giusy; Cafiero, Gioacchino

    2015-11-01

    Several solutions have been proposed over the last decades to increase the heat transfer rate of impinging jets. In all cases the heat transfer enhancement is obtained by exciting/altering the structure and organization of large scale turbulence, which is widely recognized to be the main agent in heat and mass transfer mechanism of impinging jets. Tampering with the large coherent turbulent structures is the key to achieve a significant heat transfer enhancement. In a recent work we demonstrated the effectiveness of fractal turbulence in this sense. Its effect is such that the heat transfer rate increases up to 63% in the stagnation region with respect to the well-known circular jet under the same power input. However, a systematic analysis of the effect of the singular geometric parameters of the fractal grid (such thickness ratio and length ratio) onto the spatial distribution of the Nusselt number has not been proposed yet. In this work we propose the analysis of the heat transfer enhancement produced by a class of turbulence promoters located in correspondence of the nozzle exit section of a circular jet. The upward shift of the turbulence intensity profile due to the blockage effect induced by the growing shear layer is discussed in terms of heat transfer enhancement.

  9. Quantification of the heat wave effect on cause-specific mortality in Essen, Germany.

    PubMed

    Hertel, Sabine; Le Tertre, Alain; Jöckel, Karl-Heinz; Hoffmann, Barbara

    2009-01-01

    The impact of high temperatures on mortality is well known, but not all deaths that occur during heat waves can be explained by this effect. We evaluated whether an additional mechanism caused by periods of sustained heat without nightly cooling influenced mortality during the European heat wave in 2003 and whether this mechanism is different for varying causes of death. We obtained daily counts of total and cause-specific mortality for Essen, Germany, for the years 2000-2006. We used time-series regression methods to separate a possible additional effect of sustained heat from the temperature effect and included air pollution, influenza epidemics, long-term and seasonal trends, days of week and bank holidays as covariates. The maximum daily relative risk of all-cause mortality during the heat wave was 1.28 (95% CI 1.06-1.53). The maximum relative risks of cardiovascular and neoplastic mortality were 1.25 (95% CI 0.95-1.65) and 1.35 (95% CI 1.00-1.82), respectively. The effect on respiratory mortality was delayed; the maximum relative risk was 1.66 (95% CI 1.19-2.23) 6 days after the heat wave. We found that periods with sustained heat especially affected respiratory mortality, whereas for cardiovascular and neoplastic mortality no distinct influence could be shown. PMID:19517255

  10. Effective continuum approximation for modeling fluid and heat flow in fractured porous tuff: Nevada Nuclear Waste Storage Investigations Project

    SciTech Connect

    Pruess, K.; Wang, J.S.Y.; Tsang, Y.W.

    1988-05-01

    Fluid and heat flow in fractured porous media can be of great complexity, and a quantitative description requires the development of simplified mathematical and numerical methods. This report presents a detailed formulation, and partial evaluation, of an ``effective continuum approximation`` for non-isothermal multi-phase flow, which had been introduced previously only in a heuristic fashion. The key concept on which the effective continuum approach must rely is (approximate) local thermodynamic equilibrium between fractures and rock matrix. The applicability of this approximation is discussed and studied by means of numerical simulations for emplacement of high-level waste packages in partially saturated fractured tuff. The simulations demonstrate that the validity of the effective continuum approximation cannot be ascertained in general terms. The approximation will break down for rapid transients in flow systems with low matrix permeability and/or large fracture spacing, so that its applicability needs to be carefully evaluated for the specific processes and conditions under study. The effective continuum approximation has been applied for a preliminary study of fluid and heat flow near a high-level nuclear waste repository on a regional scale, employing a highly simplified strtatigraphic description. It was found that substantial gas phase convection was taking place, with convection velocities being sensitive to permeability, porosity, and tortuosity of the fracture network. 18 refs., 27 figs., 7 tabs.

  11. Effects of anomalous transport on lower hybrid electron heating

    SciTech Connect

    McCoy, M.G.; Harvey, R.W.

    1981-02-01

    The transport of electron energy out of tokamaks is known to be far greater than that calculated using classical and neoclassical theory. However, low levels of non-axisymmetric magnetic field turbulence can couple the fast transport of electrons parallel to the magnetic field lines to radial transport, thus providing a plausible explanation for observed energy confinement. These models further predict that the electron loss rate is proportional to v/sub parallel bars/. This has subsequently been found to be consistent with data for runaway electrons in PLT, at energies up to 1 MeV. Recently it has been pointed out by Chan, Chiu and Ohkawa that anomalous transport processes should be taken into account in attempting to determine steady state electron distribution functions for cases involving RF electron tail heating, particularly in view of the v/sub parallel bars/ dependence of the loss rate. In this work these physical processes are modeled through a 2-D nonlinear program which describes the evolution of the electron distribution function in velocity magnitude; (v) and plasma radius (r), and which studies the efficiency of tail electron heating.

  12. Heat-treatment effect on impact properties of reduced-activation steels*1

    NASA Astrophysics Data System (ADS)

    Klueh, R. L.; Maziasz, P. J.; Alexander, D. J.

    1991-03-01

    The effect of heat treatment on the impact behavior of eight experimental heats of reduced-activation ferritic steels was investigated. Steels with 2 {1}/{4}, 5, 9, and 12 wt% Cr and containing tungsten, vanadium, and tantalum were examined. Impact properties of steels with 2 {1}/{4} wt% Cr depended on microstructure, which was affected by cooling rate after austenitization. By heat-treating the 2 {1}/{4} wt% Cr steels to change the microstructure from a bainitic structure containing ferrite to one without ferrite, the ductile-brittle transition temperatures were reduced substantially. The cooling rate had essentially no effect on the high-chromium martensitic steels.

  13. The use of NOAA AVHRR data for assessment of the urban heat island effect

    NASA Technical Reports Server (NTRS)

    Gallo, K. P.; Mcnab, A. L.; Karl, T. R.; Brown, J. F.; Hood, J. J.; Tarpley, J. D.

    1993-01-01

    The objective of the study was to evaluate the use of a satellite-derived vegetation index and surface temperature estimates for the assessment of the difference in urban and rural air temperature due to the urban heat island effect. The difference in the ND (normalized difference) index between urban and rural regions appears to be an indicator of the difference in surface properties (evaporation and heat storage capacity) between the two environments that are responsible for the urban heat island effect. The use of the approach proposed here may provide a globally consistent method for assessing this phenomenon.

  14. Influences of elevated heating effect by the Himalaya on the changes in Asian summer monsoon

    NASA Astrophysics Data System (ADS)

    He, Bian

    2016-02-01

    Based on a series of topographical and thermal sensitivity experiments, the physical processes on the changes of Asian summer monsoon caused by the Himalaya elevated heating were investigated. Six different Himalaya-Iranian Plateau mountain heights were used: 0, 20, 40, 60, 80, and 100 % in the first group (called HIM). The no sensible heating experiments (called HIM_NS) were also performed with the same six mountain heights, but the surface sensible heating was not allowed to heat the atmosphere. The results indicate that the elevated heating effect of the Himalaya gradually intensified when the Himalaya uplifts. The establishment of SASM over the South Asian land which is characterized by the strong precipitation over south slope of the Tibetan Plateau and the huge warm anticyclone in the upper troposphere are in proportion to the elevated heating effect of the Himalaya. Further analysis suggests that the surface heat fluxes over the Himalaya keep almost unchanged during the uplifting, but the lifted condensation level reduces gradually over the regions where the mountain uplifts. The condensation moisturing increases correspondingly and leads to the increase of latent heating in the upper troposphere. Therefore, the positive feedback between the moist convection over the south slope of the Himalaya and monsoon circulation over Indian subcontinent forms and the successive precipitation over the South Asian land is maintained.

  15. Effects of chronic peripheral olfactory loss on functional brain networks.

    PubMed

    Kollndorfer, K; Jakab, A; Mueller, C A; Trattnig, S; Schöpf, V

    2015-12-01

    The effects of sensory loss on central processing in various sensory systems have already been described. The olfactory system holds the special ability to be activated by a sensorimotor act, without the presentation of an odor. In this study, we investigated brain changes related to chronic peripheral smell loss. We included 11 anosmic patients (eight female, three male; mean age, 43.5 years) with smell loss after an infection of the upper respiratory tract (mean disease duration, 4.64 years) and 14 healthy controls (seven female, seven male; mean age, 30.1 years) in a functional magnetic resonance imaging experiment with a sniffing paradigm. Data were analyzed using group-independent component analysis and functional connectivity analysis. Our results revealed a spatially intact olfactory network in patients, whereas major aberrations due to peripheral loss were observed in functional connectivity through a variety of distributed brain areas. This is the first study to show the re-organization caused by the lack of peripheral input. The results of this study indicate that anosmic patients hold the ability to activate an olfaction-related functional network through the sensorimotor component of odor-perception (sniffing). The areas involved were not different from those that emerged in healthy controls. However, functional connectivity appears to be different between the two groups, with a decrease in functional connectivity in the brain in patients with chronic peripheral sensory loss. We can further conclude that the loss of the sense of smell may induce far-reaching effects in the whole brain, which lead to compensatory mechanisms from other sensory systems due to the close interconnectivity of the olfactory system with other functional networks. PMID:26415766

  16. Effect of body mass and melanism on heat balance in Liolaemus lizards of the goetschi clade.

    PubMed

    Moreno Azócar, Débora Lina; Bonino, Marcelo Fabián; Perotti, María Gabriela; Schulte, James A; Abdala, Cristian Simón; Cruz, Félix Benjamín

    2016-04-15

    The body temperature of ectotherms depends on the environmental temperatures and behavioral adjustments, but morphology may also have an effect. For example, in colder environments, animals tend to be larger and to show higher thermal inertia, as proposed by Bergmann's rule and the heat balance hypothesis (HBH). Additionally, dark coloration increases solar radiation absorption and should accelerate heat gain (thermal melanism hypothesis, TMH). We tested Bergmann's rule, the HBH and the TMH within the ITALIC! Liolaemus goetschilizard clade, which shows variability in body size and melanic coloration. We measured heating and cooling rates of live and euthanized animals, and tested how morphology and color affect these rates. Live organisms show less variable and faster heating rates compared with cooling rates, suggesting behavioral and/or physiological adjustments. Our results support Bergmann's rule and the HBH, as larger species show slower heating and cooling rates. However, we did not find a clear pattern to support the TMH. The influence of dorsal melanism on heating by radiation was masked by the body size effect in live animals, and results from euthanized individuals also showed no clear effects of melanism on heating rates. Comparison among three groups of live individuals with different degrees of melanism did not clarify the influence of melanism on heating rates. However, when euthanized animals from the same three groups were compared, we observed that darker euthanized animals actually heat faster than lighter ones, favoring the TMH. Although unresolved aspects remain, body size and coloration influenced heat exchange, suggesting complex thermoregulatory strategies in these lizards, probably regulated through physiology and behavior, which may allow these small lizards to inhabit harsh weather environments. PMID:26896550

  17. Effects of Autumn and Spring Heat Waves on Seed Germination of High Mountain Plants

    PubMed Central

    Orsenigo, Simone; Abeli, Thomas; Rossi, Graziano; Bonasoni, Paolo; Pasquaretta, Cristian; Gandini, Maurizia; Mondoni, Andrea

    2015-01-01

    Alpine plants are considered to be particularly vulnerable to climate change and related extreme episodes, such as heat waves. Despite growing interest in the impact of heat waves on alpine plants, knowledge about their effects on regeneration is still fragmentary. Recruitment from seeds will be crucial for the successful migration and survival of these species and will play a key role in their future adaptation to climate change. In this study, we assessed the impacts of heat waves on the seed germination of 53 high mountain plants from the Northern Apennines (Italy). The seeds were exposed to laboratory simulations of three seasonal temperature treatments, derived from real data recorded at a meteorological station near the species growing site, which included two heat wave episodes that occurred both in spring 2003 and in autumn 2011. Moreover, to consider the effect of increasing drought conditions related to heat waves, seed germination was also investigated under four different water potentials. In the absence of heat waves, seed germination mainly occurred in spring, after seeds had experienced autumn and winter seasons. However, heat waves resulted in a significant increase of spring germination in c. 30% of the species and elicited autumn germination in 50%. When heat waves were coupled with drought, seed germination decreased in all species, but did not stop completely. Our results suggest that in the future, heat waves will affect the germination phenology of alpine plants, especially conditionally dormant and strictly cold-adapted chorotypes, by shifting the emergence time from spring to autumn and by increasing the proportion of emerged seedlings. The detrimental effects of heat waves on recruitment success is less likely to be due to the inhibition of seed germination per se, but rather due to seedling survival in seasons, and temperature and water conditions that they are not used to experiencing. Changes in the proportion and timing of emergence

  18. Effect of Transcranial Magnetic Stimulation on Neuronal Networks

    NASA Astrophysics Data System (ADS)

    Unsal, Ahmet; Hadimani, Ravi; Jiles, David

    2013-03-01

    The human brain contains around 100 billion nerve cells controlling our day to day activities. Consequently, brain disorders often result in impairments such as paralysis, loss of coordination and seizure. It has been said that 1 in 5 Americans suffer some diagnosable mental disorder. There is an urgent need to understand the disorders, prevent them and if possible, develop permanent cure for them. As a result, a significant amount of research activities is being directed towards brain research. Transcranial Magnetic Stimulation (TMS) is a promising tool for diagnosing and treating brain disorders. It is a non-invasive treatment method that produces a current flow in the brain which excites the neurons. Even though TMS has been verified to have advantageous effects on various brain related disorders, there have not been enough studies on the impact of TMS on cells. In this study, we are investigating the electrophysiological effects of TMS on one dimensional neuronal culture grown in a circular pathway. Electrical currents are produced on the neuronal networks depending on the directionality of the applied field. This aids in understanding how neuronal networks react under TMS treatment.

  19. Field-theoretic approach to fluctuation effects in neural networks

    SciTech Connect

    Buice, Michael A.; Cowan, Jack D.

    2007-05-15

    A well-defined stochastic theory for neural activity, which permits the calculation of arbitrary statistical moments and equations governing them, is a potentially valuable tool for theoretical neuroscience. We produce such a theory by analyzing the dynamics of neural activity using field theoretic methods for nonequilibrium statistical processes. Assuming that neural network activity is Markovian, we construct the effective spike model, which describes both neural fluctuations and response. This analysis leads to a systematic expansion of corrections to mean field theory, which for the effective spike model is a simple version of the Wilson-Cowan equation. We argue that neural activity governed by this model exhibits a dynamical phase transition which is in the universality class of directed percolation. More general models (which may incorporate refractoriness) can exhibit other universality classes, such as dynamic isotropic percolation. Because of the extremely high connectivity in typical networks, it is expected that higher-order terms in the systematic expansion are small for experimentally accessible measurements, and thus, consistent with measurements in neocortical slice preparations, we expect mean field exponents for the transition. We provide a quantitative criterion for the relative magnitude of each term in the systematic expansion, analogous to the Ginsburg criterion. Experimental identification of dynamic universality classes in vivo is an outstanding and important question for neuroscience.

  20. An effective method for computing the noise in biochemical networks

    NASA Astrophysics Data System (ADS)

    Zhang, Jiajun; Nie, Qing; He, Miao; Zhou, Tianshou

    2013-02-01

    We present a simple yet effective method, which is based on power series expansion, for computing exact binomial moments that can be in turn used to compute steady-state probability distributions as well as the noise in linear or nonlinear biochemical reaction networks. When the method is applied to representative reaction networks such as the ON-OFF models of gene expression, gene models of promoter progression, gene auto-regulatory models, and common signaling motifs, the exact formulae for computing the intensities of noise in the species of interest or steady-state distributions are analytically given. Interestingly, we find that positive (negative) feedback does not enlarge (reduce) noise as claimed in previous works but has a counter-intuitive effect and that the multi-OFF (or ON) mechanism always attenuates the noise in contrast to the common ON-OFF mechanism and can modulate the noise to the lowest level independently of the mRNA mean. Except for its power in deriving analytical expressions for distributions and noise, our method is programmable and has apparent advantages in reducing computational cost.

  1. Effect of aerodynamic heating on infrared guided missiles

    NASA Astrophysics Data System (ADS)

    Milthorpe, J. F.; Lynn, P. J. P.

    Many guided weapons, particularly air-to-air missiles, employ infra-red homing devices to locate targets. Infra-red (IR) seekers receive the electromagnetic radiation from hot emitters, such as aircraft, using wavelengths that are typically between 3 mm and 14 mm. For a target to be detected, there must be a significant contrast, either in strength or in wavelength, between the heat emitted by the target and the background, which is usually the sky. While early IR missiles detected the hot exhaust of the engine, modern weapons can detect the radiation from lower temperature parts of the aircraft such as the skin, which enables the weapon to attack an aircraft from in front.

  2. Effect of Heat on Space-Time Correlations in Jets

    NASA Technical Reports Server (NTRS)

    Bridges, James

    2006-01-01

    Measurements of space-time correlations of velocity, acquired in jets from acoustic Mach number 0.5 to 1.5 and static temperature ratios up to 2.7 are presented and analyzed. Previous reports of these experiments concentrated on the experimental technique and on validating the data. In the present paper the dataset is analyzed to address the question of how space-time correlations of velocity are different in cold and hot jets. The analysis shows that turbulent kinetic energy intensities, lengthscales, and timescales are impacted by the addition of heat, but by relatively small amounts. This contradicts the models and assumptions of recent aeroacoustic theory trying to predict the noise of hot jets. Once the change in jet potential core length has been factored out, most one- and two-point statistics collapse for all hot and cold jets.

  3. Effective-medium model of wire metamaterials in the problems of radiative heat transfer

    SciTech Connect

    Mirmoosa, M. S. Nefedov, I. S. Simovski, C. R.; Rüting, F.

    2014-06-21

    In the present work, we check the applicability of the effective medium model (EMM) to the problems of radiative heat transfer (RHT) through so-called wire metamaterials (WMMs)—composites comprising parallel arrays of metal nanowires. It is explained why this problem is so important for the development of prospective thermophotovoltaic (TPV) systems. Previous studies of the applicability of EMM for WMMs were targeted by the imaging applications of WMMs. The analogous study referring to the transfer of radiative heat is a separate problem that deserves extended investigations. We show that WMMs with practically realizable design parameters transmit the radiative heat as effectively homogeneous media. Existing EMM is an adequate tool for qualitative prediction of the magnitude of transferred radiative heat and of its effective frequency band.

  4. Effect of water on the heat capacity of polymerized aluminosilicate glasses and melts

    NASA Astrophysics Data System (ADS)

    Bouhifd, M. Ali; Whittington, Alan; Roux, Jacques; Richet, Pascal

    2006-02-01

    The effect of water on heat capacity has been determined for four series of hydrated synthetic aluminosilicate glasses and supercooled liquids close to albite, phonolite, trachyte, and leucogranite compositions. Heat capacities were measured at atmospheric pressure by differential scanning calorimetry for water contents between 0 and 4.9 wt % from 300 K to about 100 K above the glass transition temperature ( Tg). The partial molar heat capacity of water in polymerized aluminosilicate glasses, which can be considered as independent of composition, is =-122.319+341.631×10-3T+63.4426×105/T2 (J/mol K). In liquids containing at least 1 wt % H 2O, the partial molar heat capacity of water is about 85 J/mol K. From speciation data, the effects of water as hydroxyl groups and as molecular water have tentatively been estimated, with partial molar heat capacities of 153 ± 18 and 41 ± 14 J/mol K, respectively. In all cases, water strongly increases the configurational heat capacity at Tg and exerts a marked depressing effect on Tg, in close agreement with the results of viscosity experiments on the same series of glasses. Consistent with the Adam and Gibbs theory of relaxation processes, the departure of the viscosity of hydrous melts from Arrhenian variations correlates with the magnitude of configurational heat capacities.

  5. Effect of alkali and heat treatments for bioactivity of TiO2 nanotubes

    NASA Astrophysics Data System (ADS)

    Kim, Seo young; Kim, Yu kyoung; Park, Il song; Jin, Guang chun; Bae, Tae sung; Lee, Min ho

    2014-12-01

    In this study, for improving the bioactivity of titanium used as an implant material, alkali and heat treatments were carried out after formation of the nanotubes via anodization. Nanotubes with uniform length, diameter, and thickness were formed by anodization. The alkali and heat-treated TiO2 nanotubes were covered with the complex network structure, and the Na compound was generated on the surface of the specimens. In addition, after 5 and 10 days of immersion in the SBF, the crystallized OCP and HAp phase was significantly increased on the surface of the alkali-treated TiO2 nanotubes (PNA) and alkali and heat-treated TiO2 nanotubes (PNAH) groups. Cell proliferation was decreased due to the formation of amorphous sodium titanate (Na2TiO3) layer on the surface of the PNA group. However, anatase and crystalline sodium titanate were formed on the surface of the PNAH group after heat treatment at 550 °C, and cell proliferation was improved. Thus, PNA group had higher HAp forming ability in the simulated body fluid. Additional heat treatment affected on enhancement of the bioactivity and the attachment of osteoblasts for PNA group.

  6. Heating effect on physical and electrochemical properties of nanofibrous polyacrylonitrile separator for lithium batteries.

    PubMed

    Woo, Jang Chang; Youk, Ji Ho; Kim, Dul-Sun; Ahn, Jou-Hyeon

    2014-12-01

    Nanofibrous polyacrylonitrile (PAN) membranes as nonwoven separators were prepared by electrospinning followed by a thermal treatment to improve their physical properties. The effect of the thermal treatment on the physical and electrochemical properties of the PAN separators was investigated. With increasing heating time, the PAN nanofiber separators became denser with decreasing size of fully interconnected pores. The tensile strength and modulus of the nanofibrous PAN separators varied with the heating temperature and heating time. The maximum tensile strength and modulus were obtained at a heating temperature and heating time of 170 degrees C and 5 h, respectively. The cell assembled with the PAN separator prepared at 170 degrees C for 5 h exhibited high capacity retention and stable cycle performance, even at higher discharge current densities. PMID:25971042

  7. Radial effects in heating and thermal stability of a sub-ignited tokamak

    SciTech Connect

    Fuchs, V.; Shoucri, M.M.; Thibaudeau, G.; Harten, L.; Bers, A.

    1982-02-01

    The existence of thermally stable sub-ignited equilibria of a tokamak reactor, sustained in operation by a feedback-controlled supplementary heating source, is demonstrated. The establishment of stability depends on a number of radially non-uniform, nonlinear processes whose effect is analyzed. One-dimensional (radial) stability analyses of model transport equations, together with numerical results from a 1-D transport code, are used in studying the heating of DT-plasmas in the thermonuclear regime. Plasma core supplementary heating is found to be a thermally more stable process than bulk heating. In the presence of impurity line radiation, however, core-heated temperature profiles may collapse, contracting inward from the limiter, the result of an instability caused by the increasing nature of the radiative cooling rate, with decreasing temperature. Conditions are established for the realization of a sub-ignited high-Q, toroidal reactor plasma with appreciable output power (approx. = 2000 MW thermal).

  8. Evaluation of the plan for surveillance and controlling of the effects of heat waves in Madrid

    NASA Astrophysics Data System (ADS)

    Culqui, Dante R.; Diaz, Julio; Simón, Fernando; Tobías, Aurelio; Linares, Cristina

    2014-10-01

    This paper presents evaluation of a plan for surveillance of and controlling the effects of heat-related mortality (PSCEHW), implemented in Madrid in 2004 through a time series analysis conducted with ARIMA modeling. From the public health point of view, prevention plans should be implemented as adaptive measures to heat waves. In 2003, the impact attributable to the heat wave was an increase in mortality per °C of 22.39 %. All heat waves since 2003 have been of lower intensity, and yet, in 2005 there was a heat wave of lower intensity that had a greater impact, i.e. an increase in mortality per °C of 45.71 %. With the methodology used here, we cannot say whether implementation of PSCEHW has resulted in a decrease of mortality attributable to high temperatures in the city of Madrid.

  9. Decoupling electrocaloric effect from Joule heating in a solid state cooling device

    NASA Astrophysics Data System (ADS)

    Quintero, M.; Ghivelder, L.; Gomez-Marlasca, F.; Parisi, F.

    2011-12-01

    We report a heat dynamics analysis of the electrocaloric effect (ECE) in commercial multilayer capacitors based on BaTiO3 dielectric, a promising candidate for applications as a solid state cooling device. Direct measurements of the time evolution of the sample's temperature changes under different applied voltages allow us to decouple the contributions from Joule heating and from the ECE. Heat balance equations were used to model the thermal coupling between different parts of the system. Fingerprints of Joule heating and the ECE could be resolved at different time scales. We argue that Joule heating and the thermal coupling of the device to the environment must be carefully taken in to account in future developments of refrigeration technologies employing the ECE.

  10. [Urban heat island effect based on urban heat island source and sink indices in Shenyang, Northeast China].

    PubMed

    Li, Li-Guang; Xu, Shen-Lai; Wang, Hong-Bo; Zhao, Zi-Qi; Cai, Fu; Wu, Jin-Wen; Chen, Peng-Shi; Zhang, Yu-Shu

    2013-12-01

    Based on the remote images in 2001 and 2010, the source and sink areas of urban heat island (UHI) in Shenyang City, Northeast China were determined by GIS technique. The effect of urban regional landscape pattern on UHI effect was assessed with land surface temperature (LST), area rate index (CI) of the source and sink areas and intensity index (LI) of heat island. The results indicated that the land use type changed significantly from 2001 to 2010, which significantly changed the source and sink areas of UHI, especially in the second and third circle regions. The source and sink areas were 94.3% and 5.7% in the first circle region, 64.0% and 36.0% in the third circle region in 2001, while they were 93.4% and 6.6%, 70.2% and 29.8% in 2010, respectively. It suggested that the land use pattern extended by a round shape in Shenyang led to the corresponding UHI pattern. The LST in the study area tended to decrease from the first circle region to the third. The UHI intensity was characterized with a single center in 2001 and with several centers in 2010, and the grade of UHI intensity was in a decreasing trend from 2001 to 2010. The absolute value of CI increased from the first circle region to the third, and the L1 was close to 1, suggesting the change in land use pattern had no significant influence on UHI in Shenyang. PMID:24697063

  11. Acute effects of heat on neuropsychological changes and physiological responses under noise condition.

    PubMed

    Bhattacharya, S K; Tripathi, S R; Pradhan, C K; Kashyap, S K

    1990-09-01

    To examine the effects of heat and noise individually and jointly on certain physiological responses and cognitive and neuromotor based functions, 12 male participants were tested under 6 experimental conditions which resulted by combining 3 levels of heat (25 degrees, 30 degrees and 35 degrees C) and 2 levels of white noise (70 and 100 dB). The experiment was carried out in a controlled climatic chamber following two 6 x 6 latin square designs. The results indicated elevations in heart rate, oxygen uptake and body temperature due to the independent effect of heat or the combined effects of heat and noise. The independent action of noise was found to be depressive on the first two responses. On the neuropsychological effects, the heat adversely affected the speed in card sorting (by design configuration) and digit symbol tests, and also the accuracy and error rate in the reasoning ability test. The noise caused performance improvements in critical flicker frequency (simultaneous) and in error rates in card sorting (by design configuration). The combined effects of heat and noise indicated higher error rates in card sorting (by face value), decreased accuracy in reasoning ability and improvements in performance in accuracy scores and error rates in digit symbol test. PMID:2279778

  12. Microcosms metacommunities in river network: niche effects and biodiversity

    NASA Astrophysics Data System (ADS)

    Giometto, A.; Carrara, F.; Altermatt, F.; Rinaldo, A.

    2012-04-01

    Many highly diverse landscapes exhibit hierarchical spatial structures that are shaped by geomorphological processes. Riverine ecosystems, among the most diverse habitats on Earth, represent an outstanding example of such mechanisms. In these landscapes, in which connectivity directly influences metacommunity processes, habitat capacity contributes to control biodiversity at several levels. A previous study has already highlighted the effect of connectivity on species distribution at local and regional scales, but habitat capacity was kept uniform. We studied the interaction of connectivity and habitat capacity in an aquatic microcosm experiment, in which microbial communities were grown in 36-well culture plates connected by dispersal. Dispersal occurred by periodic transfer of culture medium among connected local communities, following river network topology. The effect of habitat capacity in these landscapes was investigated by comparing three different spatial configurations of local community volumes: 1. Power law distributed volumes, according to drainage area. 2. Spatial random permutation of the volumes in the above configuration. 3. Equal distribution of volumes (preserving the total volume with respect to the above configurations). The net effect of habitat capacity on community composition was isolated in a control treatment in which communities were kept isolated for the whole duration of the experiment. In all treatments we observed that varying volumes induced niche effects: some protozoan species preferentially occupied larger nodes (systematically in isolation). Nevertheless, there is evidence that position along the network played a significant role in shaping biodiversity patterns. Size distribution measurements for each community were taken with a CASY cell counter, and species abundances data on log scale precision were collected by direct microscope observation.

  13. The effect of capacity redundancy disparity on the robustness of interconnected networks

    NASA Astrophysics Data System (ADS)

    Xia, Yongxiang; Zhang, Wenping; Zhang, Xuejun

    2016-04-01

    Cascading failures in interconnected networks have received more and more attention. In previous works, the basic assumption is that networks share the same capacity redundancy. However, this setting cannot capture the real case very well. Hence, in this paper, we analyze the effect of capacity redundancy disparity on the robustness of interconnected networks. In isolated networks, it is well known that the complex network's robustness can be improved by increasing its capacity redundancy. In interconnected networks where two networks share the same capacity redundancy, the similar result holds. Yet this result is not necessarily true in interconnected networks where two networks are different in capacity redundancy. We find that when the capacity redundancy of one network is fixed, the robustness of the whole system may not follow another network's capacity redundancy. More specifically, when the fixed network's capacity redundancy is very small or very large, the robustness of the whole system increases as another network's capacity redundancy increases. But there exists a certain range within which the increase of one network's capacity redundancy results in the robustness decline of the whole system. This counterintuitive feature appears under different coupling patterns such as assortative, disassortative, or random coupling. This result advances our understanding of the robustness of interconnected networks.

  14. An effective network reduction approach to find the dynamical repertoire of discrete dynamic networks

    NASA Astrophysics Data System (ADS)

    Zañudo, Jorge G. T.; Albert, Réka

    2013-06-01

    Discrete dynamic models are a powerful tool for the understanding and modeling of large biological networks. Although a lot of progress has been made in developing analysis tools for these models, there is still a need to find approaches that can directly relate the network structure to its dynamics. Of special interest is identifying the stable patterns of activity, i.e., the attractors of the system. This is a problem for large networks, because the state space of the system increases exponentially with network size. In this work, we present a novel network reduction approach that is based on finding network motifs that stabilize in a fixed state. Notably, we use a topological criterion to identify these motifs. Specifically, we find certain types of strongly connected components in a suitably expanded representation of the network. To test our method, we apply it to a dynamic network model for a type of cytotoxic T cell cancer and to an ensemble of random Boolean networks of size up to 200. Our results show that our method goes beyond reducing the network and in most cases can actually predict the dynamical repertoire of the nodes (fixed states or oscillations) in the attractors of the system.

  15. Effects of several factors on the heat-shock-induced thermotolerance of Listeria monocytogenes.

    PubMed Central

    Pagán, R; Condón, S; Sala, F J

    1997-01-01

    The influence of the temperature at which Listeria monocytogenes had been grown (4 or 37 degrees C) on the response to heat shocks of different durations at different temperatures was investigated. For cells grown at 4 degrees C, the effect of storage, prior to and after heat shock, on the induced thermotolerance was also studied. Death kinetics of heat-shocked cells is also discussed. For L. monocytogenes grown at 37 degrees C, the greatest response to heat shock was a fourfold increase in thermotolerance. For L. monocytogenes grown at 4 degrees C, the greatest response to heat shock was a sevenfold increase in thermotolerance. The only survival curves of cells to have shoulders were those for cells that had been heat shocked. A 3% concentration of sodium chloride added to the recovery medium made these shoulders disappear and decreased decimal reduction times. The percentage of cells for which thermotolerance increased after a heat shock was smaller the milder the heat shock and the longer the prior storage. PMID:9251209

  16. The effect of the magnetic field on heat transfer in a slotted channel

    SciTech Connect

    Evtushenko, I.; Kirillov, I.; Sidorenkov, S.

    1994-12-31

    The results of numerical and experimental studies of the liquid metal heat transfer in the slotted channel with transverse magnetic field are presented. Theoretical predictions were prepared by both Efremov Institute and Argonne National Laboratory. The heat transfer test was conducted at ALEX facility jointly between ANL and Efremov Institute. The test section consisted of the two slotted geometry (b/a=10) parts - with and without {open_quotes}anchor links{close_quotes}. The Hartmann numbers (M) up to 1050 and Interaction parameters (N) up to 2000, based on the half-width of the short wall (7 mm) were achieved. The heat flux to the top wall was up to 9 x 10{sup 4} W/m{sup 2}. The test results showed the improvement of heat transfer in the straight channel at low and moderate N. The Nusselt number at small N (around 120) was up to 3 times higher than in the turbulent flow at the same Peclet number. Qualitative correlations between the heat transfer results and velocity fluctuation data show that the generation of large velocity fluctuation in the side layer of the heated wall is the main reason for the heat transfer improvement, high average velocity in the side layer is of the less effect on the heat transfer. At high N the velocity fluctuations are suppressed and consequently the Nusselt number at high N is smaller than at the corresponding turbulent flow.

  17. Effect of flue gas recirculation on heat transfer in a supercritical circulating fluidized bed combustor

    NASA Astrophysics Data System (ADS)

    Błaszczuk, Artur

    2015-09-01

    This paper focuses on assessment of the effect of flue gas recirculation (FGR) on heat transfer behavior in 1296t/h supercritical coal-fired circulating fluidized bed (CFB) combustor. The performance test in supercritical CFB combustor with capacity 966 MWth was performed with the low level of flue gas recirculation rate 6.9% into furnace chamber, for 80% unit load at the bed pressure of 7.7 kPa and the ratio of secondary air to the primary air SA/PA = 0.33. Heat transfer behavior in a supercritical CFB furnace between the active heat transfer surfaces (membrane wall and superheater) and bed material has been analyzed for Geldart B particle with Sauter mean diameters of 0.219 and 0.246 mm. Bed material used in the heat transfer experiments had particle density of 2700 kg/m3. A mechanistic heat transfer model based on cluster renewal approach was used in this work. A heat transfer analysis of CFB combustion system with detailed consideration of bed-to-wall heat transfer coefficient distributions along furnace height is investigated. Heat transfer data for FGR test were compared with the data obtained for representative conditions without recycled flue gases back to the furnace through star-up burners.

  18. A mathematical model to predict the effect of heat recovery on the wastewater temperature in sewers.

    PubMed

    Dürrenmatt, David J; Wanner, Oskar

    2014-01-01

    Raw wastewater contains considerable amounts of energy that can be recovered by means of a heat pump and a heat exchanger installed in the sewer. The technique is well established, and there are approximately 50 facilities in Switzerland, many of which have been successfully using this technique for years. The planning of new facilities requires predictions of the effect of heat recovery on the wastewater temperature in the sewer because altered wastewater temperatures may cause problems for the biological processes used in wastewater treatment plants and receiving waters. A mathematical model is presented that calculates the discharge in a sewer conduit and the spatial profiles and dynamics of the temperature in the wastewater, sewer headspace, pipe, and surrounding soil. The model was implemented in the simulation program TEMPEST and was used to evaluate measured time series of discharge and temperatures. It was found that the model adequately reproduces the measured data and that the temperature and thermal conductivity of the soil and the distance between the sewer pipe and undisturbed soil are the most sensitive model parameters. The temporary storage of heat in the pipe wall and the exchange of heat between wastewater and the pipe wall are the most important processes for heat transfer. The model can be used as a tool to determine the optimal site for heat recovery and the maximal amount of extractable heat. PMID:24216228

  19. Study on modeling of resist heating effect correction in EB mask writer EBM-9000

    NASA Astrophysics Data System (ADS)

    Nomura, Haruyuki; Kamikubo, Takashi; Suganuma, Mizuna; Kato, Yasuo; Yashima, Jun; Nakayamada, Noriaki; Anze, Hirohito; Ogasawara, Munehiro

    2015-07-01

    Resist heating effect which is caused in electron beam lithography by rise in substrate temperature of a few tens or hundreds of degrees changes resist sensitivity and leads to degradation of local critical dimension uniformity (LCDU). Increasing writing pass count and reducing dose per pass is one way to avoid the resist heating effect, but it worsens writing throughput. As an alternative way, NuFlare Technology is developing a heating effect correction system which corrects CD deviation induced by resist heating effect and mitigates LCDU degradation even in high dose per pass conditions. Our developing correction model is based on a dose modulation method. Therefore, a kind of conversion equation to modify the dose corresponding to CD change by temperature rise is necessary. For this purpose, a CD variation model depending on local pattern density was introduced and its validity was confirmed by experiments and temperature simulations. And then the dose modulation rate which is a parameter to be used in the heating effect correction system was defined as ideally irrelevant to the local pattern density, and the actual values were also determined with the experimental results for several resist types. The accuracy of the heating effect correction was also discussed. Even when deviations depending on the pattern density slightly remains in the dose modulation rates (i.e., not ideal in actual), the estimated residual errors in the correction are sufficiently small and acceptable for practical 2 pass writing with the constant dose modulation rates. In these results, it is demonstrated that the CD variation model is effective for the heating effect correction system.

  20. The effect of external heat transfer on thermal explosion in a spherical vessel with natural convection.

    PubMed

    Campbell, A N

    2015-07-14

    When any exothermic reaction proceeds in an unstirred vessel, natural convection may develop. This flow can significantly alter the heat transfer from the reacting fluid to the environment and hence alter the balance between heat generation and heat loss, which determines whether or not the system will explode. Previous studies of the effects of natural convection on thermal explosion have considered reactors where the temperature of the wall of the reactor is held constant. This implies that there is infinitely fast heat transfer between the wall of the vessel and the surrounding environment. In reality, there will be heat transfer resistances associated with conduction through the wall of the reactor and from the wall to the environment. The existence of these additional heat transfer resistances may alter the rate of heat transfer from the hot region of the reactor to the environment and hence the stability of the reaction. This work presents an initial numerical study of thermal explosion in a spherical reactor under the influence of natural convection and external heat transfer, which neglects the effects of consumption of reactant. Simulations were performed to examine the changing behaviour of the system as the intensity of convection and the importance of external heat transfer were varied. It was shown that the temporal development of the maximum temperature in the reactor was qualitatively similar as the Rayleigh and Biot numbers were varied. Importantly, the maximum temperature in a stable system was shown to vary with Biot number. This has important consequences for the definitions used for thermal explosion in systems with significant reactant consumption. Additionally, regions of parameter space where explosions occurred were identified. It was shown that reducing the Biot number increases the likelihood of explosion and reduces the stabilising effect of natural convection. Finally, the results of the simulations were shown to compare favourably with

  1. Testing of a scanning adiabatic calorimeter with Joule effect heating of the sample

    NASA Astrophysics Data System (ADS)

    Barreiro-Rodríguez, G.; Yáñez-Limón, J. M.; Contreras-Servin, C. A.; Herrera-Gomez, A.

    2008-01-01

    We evaluated a scanning adiabatic resistive calorimeter (SARC) developed to measure the specific enthalpy of viscous and gel-type materials. The sample is heated employing the Joule effect. The cell is constituted by a cylindrical jacket and two pistons, and the sample is contained inside the jacket between the two pistons. The upper piston can slide to allow for thermal expansion and to keep the pressure constant. The pistons also function as electrodes for the sample. While the sample is heated through the Joule effect, the electrodes and the jacket are independently heated to the same temperature of the sample using automatic control. This minimizes the heat transport between the sample and its surroundings. The energy to the sample is supplied by applying to the electrodes an ac voltage in the kilohertz range, establishing a current in the sample and inducing electric dissipation. This energy can be measured with enough exactitude to determine the heat capacity. This apparatus also allows for the quantification of the thermal conductivity by reproducing the evolution of the temperature as heat is introduced only to one of the pistons. To this end, the system was modeled using finite element calculations. This dual capability proved to be very valuable for correction in the determination of the specific enthalpy. The performance of the SARC was evaluated by comparing the heat capacity results to those obtained by differential scanning calorimetry measurements using a commercial apparatus. The analyzed samples were zeolite, bauxite, hematite, bentonite, rice flour, corn flour, and potato starch.

  2. Lattice Boltzmann modeling of boiling heat transfer: The boiling curve and the effects of wettability

    SciTech Connect

    Li, Q.; Kang, Q. J.; Francois, M. M.; He, Y. L.; Luo, K. H.

    2015-03-03

    A hybrid thermal lattice Boltzmann (LB) model is presented to simulate thermal multiphase flows with phase change based on an improved pseudopotential LB approach (Li et al., 2013). The present model does not suffer from the spurious term caused by the forcing-term effect, which was encountered in some previous thermal LB models for liquid–vapor phase change. Using the model, the liquid–vapor boiling process is simulated. The boiling curve together with the three boiling stages (nucleate boiling, transition boiling, and film boiling) is numerically reproduced in the LB community for the first time. The numerical results show that the basic features and the fundamental characteristics of boiling heat transfer are well captured, such as the severe fluctuation of transient heat flux in the transition boiling and the feature that the maximum heat transfer coefficient lies at a lower wall superheat than that of the maximum heat flux. Moreover, the effects of the heating surface wettability on boiling heat transfer are investigated. It is found that an increase in contact angle promotes the onset of boiling but reduces the critical heat flux, and makes the boiling process enter into the film boiling regime at a lower wall superheat, which is consistent with the findings from experimental studies.

  3. Lattice Boltzmann modeling of boiling heat transfer: The boiling curve and the effects of wettability

    DOE PAGESBeta

    Li, Q.; Kang, Q. J.; Francois, M. M.; He, Y. L.; Luo, K. H.

    2015-03-03

    A hybrid thermal lattice Boltzmann (LB) model is presented to simulate thermal multiphase flows with phase change based on an improved pseudopotential LB approach (Li et al., 2013). The present model does not suffer from the spurious term caused by the forcing-term effect, which was encountered in some previous thermal LB models for liquid–vapor phase change. Using the model, the liquid–vapor boiling process is simulated. The boiling curve together with the three boiling stages (nucleate boiling, transition boiling, and film boiling) is numerically reproduced in the LB community for the first time. The numerical results show that the basic featuresmore » and the fundamental characteristics of boiling heat transfer are well captured, such as the severe fluctuation of transient heat flux in the transition boiling and the feature that the maximum heat transfer coefficient lies at a lower wall superheat than that of the maximum heat flux. Moreover, the effects of the heating surface wettability on boiling heat transfer are investigated. It is found that an increase in contact angle promotes the onset of boiling but reduces the critical heat flux, and makes the boiling process enter into the film boiling regime at a lower wall superheat, which is consistent with the findings from experimental studies.« less

  4. Testing of a scanning adiabatic calorimeter with Joule effect heating of the sample.

    PubMed

    Barreiro-Rodríguez, G; Yáñez-Limón, J M; Contreras-Servin, C A; Herrera-Gomez, A

    2008-01-01

    We evaluated a scanning adiabatic resistive calorimeter (SARC) developed to measure the specific enthalpy of viscous and gel-type materials. The sample is heated employing the Joule effect. The cell is constituted by a cylindrical jacket and two pistons, and the sample is contained inside the jacket between the two pistons. The upper piston can slide to allow for thermal expansion and to keep the pressure constant. The pistons also function as electrodes for the sample. While the sample is heated through the Joule effect, the electrodes and the jacket are independently heated to the same temperature of the sample using automatic control. This minimizes the heat transport between the sample and its surroundings. The energy to the sample is supplied by applying to the electrodes an ac voltage in the kilohertz range, establishing a current in the sample and inducing electric dissipation. This energy can be measured with enough exactitude to determine the heat capacity. This apparatus also allows for the quantification of the thermal conductivity by reproducing the evolution of the temperature as heat is introduced only to one of the pistons. To this end, the system was modeled using finite element calculations. This dual capability proved to be very valuable for correction in the determination of the specific enthalpy. The performance of the SARC was evaluated by comparing the heat capacity results to those obtained by differential scanning calorimetry measurements using a commercial apparatus. The analyzed samples were zeolite, bauxite, hematite, bentonite, rice flour, corn flour, and potato starch. PMID:18248058

  5. Effectiveness and Fin Efficiency of Plate-fin and Tube Heat Exchangers

    NASA Astrophysics Data System (ADS)

    Seshimo, Yu

    This paper presents a method for the determination of effectiveness on plate-fin and tube heat exchangers as a function of the parameters, viz. the thermal capacity ratio, the number of transfer unit and the flow arrangement. The analytical model of the heat exchanger which is adopted that of a multi-pass crossflow heat exchanger with one fluid mixed and another unmixed. For three kinds of flow arrangements of plate-fin and tube heat exchangers, equations on the effectiveness were obtained and the experimental verification of these equations was also performed. In addition, this paper is concerned with method which obtains the fin efficiency of the plate-fin and tube heat exchangers. It is usual practice to evaluate the fin efficiency by assuming that the uniform heat transfer and other suppositions. In this paper, a more realistic determination of fin efficiency is reported, which take into account the heat transfer distribution over the fin surface. It was confirmed that the results of fin efficiency by usual manner were almost equal to that of the realistic estimation in this study.

  6. The Effect of Teachers' Social Networks on Teaching Practices and Class Composition

    ERIC Educational Resources Information Center

    Kim, Chong Min

    2011-01-01

    Central to this dissertation was an examination of the role teachers' social networks play in schools as living organizations through three studies. The first study investigated the impact of teachers' social networks on teaching practices. Recent evidence suggests that teachers' social networks have a significant effect on teachers' norms,…

  7. Criteria of Effectiveness for Network Delivery of Citizens Information through Libraries. Final Report.

    ERIC Educational Resources Information Center

    Chen, Ching-chih; Hernon, Peter

    This two-part publication reports on a study of consumer information delivery by library and non-library networks, which involved an extensive literature review, a telephone survey of 620 library networks, the development of an assessment model for the effectiveness of network information delivery, the development of an in-depth guide for…

  8. How To Design and Deliver an Effective Job Development and Placement Program. Neighborhood Networks.

    ERIC Educational Resources Information Center

    Department of Housing and Urban Development, Washington, DC. Office of Multifamily Housing.

    This second of four publications in the Neighborhood Networks Employment Series focuses on how Neighborhood Networks centers can deliver effective job development and placement programs for residents who are on public assistance, are unemployed, or are underemployed. This guide explains how Neighborhood Networks centers can develop relationships…

  9. Evaluation of viewing-angle effect on determination of local heat transfer coefficients on a curved surface using transient and heated-coating liquid-crystal methods

    NASA Astrophysics Data System (ADS)

    Chan, T. L.

    This paper presents the effect of viewing-angle variations on the accuracy of transient and heated-coating liquid-crystal methods for determining the local heat transfer coefficients on a curved surface. A developed liquid-crystal calibration technique using a true-color image processing system has been used to alleviate the effect of viewing angle on oblique/curved surfaces. The accuracy of heat transfer coefficients improved significantly with careful correction of the viewing-angle effect on the surface geometry. It is crucial to ensure the implementation of the suggested calibration technique to be used in wideband thermochromic liquid-crystal applications on the non-orthogonal surface.

  10. Pseudovertical Temperature Profiles and the Urban Heat Island Measured by a Temperature Datalogger Network in Phoenix, Arizona

    SciTech Connect

    Fast, Jerome D.; Torcolini, Joel C.; Redman, Randy

    2005-01-01

    As part an air quality field campaign conducted in Phoenix during the summer of 2001, a network of temperature dataloggers and surface meteorological stations were deployed across the metropolitan area for a 61-day period. The majority of the dataloggers were deployed along two intersecting lines across the city to quantify characteristics of the urban heat island (UHI). To obtain pseudo-vertical temperature profiles, some of the instrumentation was also deployed along a mountain slope that rose to 480 m above the valley floor. The instrumentation along the mountain slope provided a reasonable approximation of the vertical temperature profile of the free atmosphere over the valley center during the night and a few hours after sunrise. Mean differences of 0.63 and 0.92o K and standard deviations of 1.33 and 1.45o K were obtained when compared with the in situ radiosonde and remote radio acoustic sounding system measurements, respectively. The vertical temperature gradients associated with temperature inversions within 200 m of the surface during the morning were also close to those obtained from the radiosondes. The average UHI during the measurement period was between 2.5 and 3.5oC; however, there was significant day-to-day variability and it was as large as 10oC during one evening. The peak UHI usually occurred around midnight; however, a strong UHI was frequently observed 2-3 hours after sunrise that coincided with the persistence of strong temperature inversions obtained from the radiosonde and the pseudo-vertical temperature profiles. The nocturnal horizontal temperature gradient was somewhat different than reported for other large cities and the UHI did not decrease with increasing wind speeds until the wind speeds exceeded 7 m s-1.

  11. How effective delays shape oscillatory dynamics in neuronal networks

    NASA Astrophysics Data System (ADS)

    Roxin, Alex; Montbrió, Ernest

    2011-02-01

    Synaptic, dendritic and single-cell kinetics generate significant time delays that shape the dynamics of large networks of spiking neurons. Previous work has shown that such effective delays can be taken into account with a rate model through the addition of an explicit, fixed delay (Roxin et al. (2005,2006) [29,30]). Here we extend this work to account for arbitrary symmetric patterns of synaptic connectivity and generic nonlinear transfer functions. Specifically, we conduct a weakly nonlinear analysis of the dynamical states arising via primary instabilities of the asynchronous state. In this way we determine analytically how the nature and stability of these states depend on the choice of transfer function and connectivity. We arrive at two general observations of physiological relevance that could not be explained in previous work. These are: 1 - fast oscillations are always supercritical for realistic transfer functions and 2 - traveling waves are preferred over standing waves given plausible patterns of local connectivity. We finally demonstrate that these results show good agreement with those obtained performing numerical simulations of a network of Hodgkin-Huxley neurons.

  12. Effectively identifying user profiles in network and host metrics

    NASA Astrophysics Data System (ADS)

    Murphy, John P.; Berk, Vincent H.; Gregorio-de Souza, Ian

    2010-04-01

    This work presents a collection of methods that is used to effectively identify users of computers systems based on their particular usage of the software and the network. Not only are we able to identify individual computer users by their behavioral patterns, we are also able to detect significant deviations in their typical computer usage over time, or compared to a group of their peers. For instance, most people have a small, and relatively unique selection of regularly visited websites, certain email services, daily work hours, and typical preferred applications for mandated tasks. We argue that these habitual patterns are sufficiently specific to identify fully anonymized network users. We demonstrate that with only a modest data collection capability, profiles of individual computer users can be constructed so as to uniquely identify a profiled user from among their peers. As time progresses and habits or circumstances change, the methods presented update each profile so that changes in user behavior can be reliably detected over both abrupt and gradual time frames, without losing the ability to identify the profiled user. The primary benefit of our methodology allows one to efficiently detect deviant behaviors, such as subverted user accounts, or organizational policy violations. Thanks to the relative robustness, these techniques can be used in scenarios with very diverse data collection capabilities, and data privacy requirements. In addition to behavioral change detection, the generated profiles can also be compared against pre-defined examples of known adversarial patterns.

  13. Moderating effects of music on resting state networks.

    PubMed

    Kay, Benjamin P; Meng, Xiangxiang; Difrancesco, Mark W; Holland, Scott K; Szaflarski, Jerzy P

    2012-04-01

    Resting state networks (RSNs) are spontaneous, synchronous, low-frequency oscillations observed in the brains of subjects who are awake but at rest. A particular RSN called the default mode network (DMN) has been shown to exhibit changes associated with neurological disorders such as temporal lobe epilepsy or Alzheimer's disease. Previous studies have also found that differing experimental conditions such as eyes-open versus eyes-closed can produce measurable changes in the DMN. These condition-associated changes have the potential of confounding the measurements of changes in RSNs related to or caused by disease state(s). In this study, we use fMRI measurements of resting-state connectivity paired with EEG measurements of alpha rhythm and employ independent component analysis, undirected graphs of partial spectral coherence, and spatiotemporal regression to investigate the effect of music-listening on RSNs and the DMN in particular. We observed similar patterns of DMN connectivity in subjects who were listening to music compared with those who were not, with a trend toward a more introspective pattern of resting-state connectivity during music-listening. We conclude that music-listening is a valid condition under which the DMN can be studied. PMID:22365746

  14. Effect of Amphiphiles on the Rheology of Triglyceride Networks

    NASA Astrophysics Data System (ADS)

    Seth, Jyoti

    2014-11-01

    Networks of aggregated crystallites form the structural backbone of many products from the food, cosmetic and pharmaceutical industries. Such materials are generally formulated by cooling a saturated solution to yield the desired solid fraction. Crystal nucleation and growth followed by aggregation leads to formation of a space percolating fractal-network. It is understood that microstructural hierarchy and particle-particle interactions determine material behavior during processing, storage and use. In this talk, rheology of suspensions of triglycerides (TAG, like tristearin) will be explored. TAGs exhibit a rich assortment of polymorphs and form suspensions that are evidently sensitive to surface modifying additives like surfactants and polymers. Here, a theoretical framework will be presented for suspensions containing TAG crystals interacting via pairwise potentials. The work builds on existing models of fractal aggregates to understand microstructure and its correlation with material rheology. Effect of amphiphilic additives is derived through variation of particle-particle interactions. Theoretical predictions for storage modulus will be compared against experimental observations and data from the literature and micro structural predictions against microscopy. Such a theory may serve as a step towards predicting short and long-term behavior of aggregated suspensions formulated via crystallization.

  15. Register Closing Effects on Forced Air Heating System Performance

    SciTech Connect

    Walker, Iain S.

    2003-11-01

    Closing registers in forced air heating systems and leaving some rooms in a house unconditioned has been suggested as a method of quickly saving energy for California consumers. This study combined laboratory measurements of the changes in duct leakage as registers are closed together with modeling techniques to estimate the changes in energy use attributed to closing registers. The results of this study showed that register closing led to increased energy use for a typical California house over a wide combination of climate, duct leakage and number of closed registers. The reduction in building thermal loads due to conditioning only a part of the house was offset by increased duct system losses; mostly due to increased duct leakage. Therefore, the register closing technique is not recommended as a viable energy saving strategy for California houses with ducts located outside conditioned space. The energy penalty associated with the register closing technique was found to be minimized if registers furthest from the air handler are closed first because this tends to only affect the pressures and air leakage for the closed off branch. Closing registers nearer the air handler tends to increase the pressures and air leakage for the whole system. Closing too many registers (more than 60%) is not recommended because the added flow resistance severely restricts the air flow though the system leading to safety concerns. For example, furnaces may operate on the high-limit switch and cooling systems may suffer from frozen coils.

  16. Effects of atmospheric structure on radiative heating for Jupiter entry probe

    NASA Technical Reports Server (NTRS)

    Sutton, K.; Jones, J. J.; Powell, R. W.

    1978-01-01

    New estimates of the radiative heat load to a Jupiter entry probe have been obtained for revised models of Jupiter's atmosphere based on the latest data from Pioneer 10 and 11 missions and earth-based experiments. The new estimates of the radiative heat load are compared with results obtained for the previous atmospheric models. The changes in Jupiter's atmospheric models cause a substantial reduction in the radiative heat load for the atmosphere denoted as 'cool', but only moderate reductions for the atmospheres denoted as 'nominal' and 'warm'. Results are also presented showing the effects of inertial entry angle for off-equatorial entries in the revised model atmospheres.

  17. Effect of Index of Refraction on Radiation Characteristics in a Heated Absorbing, Emitting, and Scattering Layer

    NASA Technical Reports Server (NTRS)

    Siegel, R.; Spuckler, C. M.

    1992-01-01

    The effect of the index of refraction on the temperature distribution and radiative heat flux in semitransparent materials, such as some ceramics, is investigated analytically. In the case considered here, a plane layer of a ceramic material is subjected to external radiative heating incident on each of its surfaces; the material emits, absorbs, and isotropically scatters radiation. It is shown that, for radiative equilibrium in a gray layer with diffuse interfaces, the temperature distribution and radiative heat flux for any index of refraction can be obtained in a simple manner from the results for an index of refraction of unity.

  18. The effect of mechanical activation on the heat capacity of powdered tungsten

    NASA Astrophysics Data System (ADS)

    Malkin, A. I.; Kiselev, M. R.; Klyuev, V. A.; Loznetsova, N. N.; Toporov, Yu. P.

    2012-06-01

    We have studied the heat capacity ( C p ) of a mechanically activated tungsten powder. It is established that the mechanical processing leads to an increase in C p of the metal powder at low temperatures and modifies the character of the temperature dependence of this parameter. The dependences of C p and its heating-induced variation on the treatment duration have been determined. It is concluded that the observed effects are related to the accumulation of defects in the metal grain volume during mechanical activation and their annealing in the course of heating.

  19. The effect of rotation on heat transfer in the radial cooling channels of turbine blades

    NASA Astrophysics Data System (ADS)

    Iskakov, K. M.; Trushin, V. A.

    1985-02-01

    The effect of rotation on heat transfer in the channels of moving turbine blades in a loop cooling system is investigated experimentally. The working channels consisted of round tubes with sharp edges and the tubes were fixed to a support. Calculation of the parameters required for correlating the experimental data was conducted according to local air temperature at the entry of the channel. Analysis of the measured and calculated heat transfer parameters showed that the average error in determining heat transfer was 13 percent. The error in calculating the bulk flow rate of air was 8 percent. Formulas for calculating the centrifugal and centripetal air flows are derived.

  20. The Effect of Baffles on the Temperature Distribution and Heat-transfer Coefficients of Finned Cylinders

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Rollin, Vern G

    1936-01-01

    This report presents the results of an investigation to determine the effect of baffles on the temperature distribution and the heat-transfer coefficient of finned cylinders. The tests were conducted in a 30-inch wind tunnel on electrically heated cylinders with fins of 0.25 and 0.31 inch pitch. The results of these tests showed that the use of integral baffles gave a reduction of 31.9 percent in the rear wall temperatures and an increase of 54.2 percent in the heat transfer coefficient as compared with a cylinder without baffles.