Science.gov

Sample records for heavy element targets

  1. Actinide targets for the synthesis of super-heavy elements

    SciTech Connect

    Roberto, J.; Alexander, Charles W.; Boll, Rose Ann; Ezold, Julie G.; Felker, Leslie Kevin; Rykaczewski, Krzysztof Piotr; Hogle, Susan L.

    2015-06-18

    Since 2000, six new super-heavy elements with atomic numbers 113 through 118 have been synthesized in hot fusion reactions of 48Ca beams on actinide targets. These target materials, including 242Pu, 244Pu, 243Am, 245Cm, 248Cm, 249Cf, and 249Bk, are available in very limited quantities and require specialized production and processing facilities resident in only a few research centers worldwide. This report describes the production and chemical processing of heavy actinide materials for super-heavy element research, current availabilities of these materials, and related target fabrication techniques. The impact of actinide materials in super-heavy element discovery is reviewed, and strategies for enhancing the production of rare actinides including 249Bk, 251Cf, and 254Es are described.

  2. Actinide targets for the synthesis of super-heavy elements

    DOE PAGESBeta

    Roberto, J.; Alexander, Charles W.; Boll, Rose Ann; Ezold, Julie G.; Felker, Leslie Kevin; Rykaczewski, Krzysztof Piotr; Hogle, Susan L.

    2015-06-18

    Since 2000, six new super-heavy elements with atomic numbers 113 through 118 have been synthesized in hot fusion reactions of 48Ca beams on actinide targets. These target materials, including 242Pu, 244Pu, 243Am, 245Cm, 248Cm, 249Cf, and 249Bk, are available in very limited quantities and require specialized production and processing facilities resident in only a few research centers worldwide. This report describes the production and chemical processing of heavy actinide materials for super-heavy element research, current availabilities of these materials, and related target fabrication techniques. The impact of actinide materials in super-heavy element discovery is reviewed, and strategies for enhancing themore » production of rare actinides including 249Bk, 251Cf, and 254Es are described.« less

  3. Actinide targets for the synthesis of super-heavy elements

    NASA Astrophysics Data System (ADS)

    Roberto, J. B.; Alexander, C. W.; Boll, R. A.; Burns, J. D.; Ezold, J. G.; Felker, L. K.; Hogle, S. L.; Rykaczewski, K. P.

    2015-12-01

    Since 2000, six new super-heavy elements with atomic numbers 113 through 118 have been synthesized in hot fusion reactions of 48Ca beams on actinide targets. These target materials, including 242Pu, 244Pu, 243Am, 245Cm, 248Cm, 249Cf, and 249Bk, are available in very limited quantities and require specialized production and processing facilities resident in only a few research centers worldwide. This report describes the production and chemical processing of heavy actinide materials for super-heavy element research, current availabilities of these materials, and related target fabrication techniques. The impact of actinide materials in super-heavy element discovery is reviewed, and strategies for enhancing the production of rare actinides including 249Bk, 251Cf, and 254Es are described.

  4. Secondary fusion reactions in the bombardment of light-element targets with low-energy heavy ions

    NASA Astrophysics Data System (ADS)

    Gikal, B. N.; Teterev, Yu. G.; Shchegolev, V. Yu.; Zdorovets, M. V.; Ivanov, I. A.; Koloberdin, M. V.; Aleksandrenko, V. V.

    2014-07-01

    Neutron emission was observed experimentally at the DC-60 cyclotron at the Institute of Nuclear Physics (Astana, Kazakhstan). The neutron yields were measured in the bombardment of light-element (Be, C, Al, Al2O3, and LiF) targets with heavy ions (Ar, Kr, and Xe) with energies below the Coulomb barrier. The angular distributions of neutrons from the targets were also measured. It was found that the observed neutrons were produced in secondary nuclear reactions between the resting target nuclei and recoil nuclei that acquire energy in the process of elastic scattering. The experimental results were compared with calculations based on the abovementioned secondary-reaction mechanism. The calculations allow one to estimate the yields of secondary reactions to within a coefficient of 2.

  5. Transfer reactions with heavy elements

    SciTech Connect

    Hoffman, D.C.

    1986-04-01

    Transfer reactions for several transuranium elements are studied. (/sup 248/Cm, /sup 249/Bk, /sup 249/CF, /sup 254/Es), /sup 16,18/O, /sup 20,22/Ne, and /sup 40,48/Ca projectiles are used. The production of neutron-rich heavy actinides is enhanced by the use of neutron-rich projectiles /sup 18/O and /sup 22/Ne. The maxima of the isotopic distributions occur at only 2 to 3 mass numbers larger for /sup 48/Ca than for /sup 40/Ca reactions with /sup 248/Cm. The cross sections decrease rapidly with the number of nucleons transferred. The use of neutron-rich targets favors the production of neutron-rich isotopes. ''Cold'' heavy targets are produced. Comparisons with simple calculations of the product excitation energies assuming binary transfers indicate that the maxima of the isotopic distributions occur at the lightest product isotope for which the energy exceeds the reaction barrier. The cross sections for transfer of the same nucleon clusters appear to be comparable for a wide variety of systems. 23 refs., 4 figs., 4 tabs.

  6. The Search for Heavy Elements

    ScienceCinema

    None

    2010-01-08

    The 1994 documentary "The Search for Heavy Elements" chronicles the expansion of the periodic table through the creation at Berkeley Lab of elements heavier than uranium. The documentary features a mix of rarely-seen archival footage, historical photos, and interviews with scientists who made history, such as Glenn Seaborg and Albert Ghiorso.

  7. The Search for Heavy Elements

    SciTech Connect

    2008-04-17

    The 1994 documentary "The Search for Heavy Elements" chronicles the expansion of the periodic table through the creation at Berkeley Lab of elements heavier than uranium. The documentary features a mix of rarely-seen archival footage, historical photos, and interviews with scientists who made history, such as Glenn Seaborg and Albert Ghiorso.

  8. Heavy Stars Thrive among Heavy Elements

    NASA Astrophysics Data System (ADS)

    2002-08-01

    VLT Observes Wolf-Rayet Stars in Virgo Cluster Galaxies [1] Summary Do very massive stars form in metal-rich regions of the Universe and in the nuclei of galaxies ? Or does "heavy element poisoning" stop stellar growth at an early stage, before young stars reach the "heavyweight class"? What may at the first glance appear as a question for specialists actually has profound implications for our understanding of the evolution of galaxies, those systems of billions of stars - the main building blocks of the Universe. With an enormous output of electromagnetic radiation and energetic elementary particles, massive stars exert a decisive influence on the surrounding (interstellar) gas and dust clouds . They also eject large amounts of processed elements, thereby participating in the gradual build-up of the many elements we see today. Thus the presence or absence of such stars at the centres of galaxies can significantly change the overall development of those regions and hence, presumably, that of the entire galaxy. A team of European astronomers [2] has now directly observed the presence of so-called Wolf-Rayet stars (born with masses of 60 - 90 times that of the Sun or more) within metal-rich regions in some galaxies in the Virgo cluster, some 50 million light-years away. This is the first unambiguous detection of such massive stellar objects in metal-rich regions . PR Photo 20a/02 : H II regions in the Virgo cluster galaxy NGC 4254 . PR Photo 20b/02 : Multi-object-slit observation of galaxy NGC 4303 . PR Photo 20c/02 : Spectrum of H II region in NGC 4254 with Wolf-Rayet signatures. Production of heavy elements in the Universe Most scientists agree that the Universe in which we live underwent a dramatic event, known as the Big Bang , approximately 15,000 million years ago. During the early moments, elementary particles were formed which after some time united into more complex nuclei and in turn resulted in the production of hydrogen and helium atoms and their isotopes

  9. Heavy Stars Thrive among Heavy Elements

    NASA Astrophysics Data System (ADS)

    2002-08-01

    VLT Observes Wolf-Rayet Stars in Virgo Cluster Galaxies [1] Summary Do very massive stars form in metal-rich regions of the Universe and in the nuclei of galaxies ? Or does "heavy element poisoning" stop stellar growth at an early stage, before young stars reach the "heavyweight class"? What may at the first glance appear as a question for specialists actually has profound implications for our understanding of the evolution of galaxies, those systems of billions of stars - the main building blocks of the Universe. With an enormous output of electromagnetic radiation and energetic elementary particles, massive stars exert a decisive influence on the surrounding (interstellar) gas and dust clouds . They also eject large amounts of processed elements, thereby participating in the gradual build-up of the many elements we see today. Thus the presence or absence of such stars at the centres of galaxies can significantly change the overall development of those regions and hence, presumably, that of the entire galaxy. A team of European astronomers [2] has now directly observed the presence of so-called Wolf-Rayet stars (born with masses of 60 - 90 times that of the Sun or more) within metal-rich regions in some galaxies in the Virgo cluster, some 50 million light-years away. This is the first unambiguous detection of such massive stellar objects in metal-rich regions . PR Photo 20a/02 : H II regions in the Virgo cluster galaxy NGC 4254 . PR Photo 20b/02 : Multi-object-slit observation of galaxy NGC 4303 . PR Photo 20c/02 : Spectrum of H II region in NGC 4254 with Wolf-Rayet signatures. Production of heavy elements in the Universe Most scientists agree that the Universe in which we live underwent a dramatic event, known as the Big Bang , approximately 15,000 million years ago. During the early moments, elementary particles were formed which after some time united into more complex nuclei and in turn resulted in the production of hydrogen and helium atoms and their isotopes

  10. Heavy metal and trace element bioaccumulation in target tissues of four edible fish species from the Danube River (Serbia).

    PubMed

    Subotić, Srđan; Spasić, Slađana; Višnjić-Jeftić, Zeljka; Hegediš, Aleksandar; Krpo-Ćetković, Jasmina; Mićković, Branislav; Skorić, Stefan; Lenhardt, Mirjana

    2013-12-01

    Pikeperch (Sander lucioperca), European catfish (Silurus glanis), burbot (Lota lota), and common carp (Cyprinus carpio) were collected from the Danube River (Belgrade section, Serbia), and samples of liver, muscle, and gills were analyzed for Al, As, B, Ba, Cd, Co, Cr, Cu, Fe, Hg, Li, Mn, Mo, Ni, Pb, Se, Sr, and Zn using inductively coupled plasma optical emission spectrometry (ICP-OES) to highlight the importance of species and tissue selection in monitoring research, contaminant studies, and human health research. The Kruskal-Wallis test revealed significant differences between fish species in regard to metal levels in liver, muscle, and gills. The principal component analysis (PCA) indicated that the studied fish species could be grouped on the basis of the level of analyzed elements in liver and gills. The Mann-Whitney test showed two subsets (one comprising two piscivorous species, pikeperch and catfish, and the other, two polyphagous species, burbot and carp) in regard to Cr and Hg levels in liver (higher levels in piscivorous species), as well as B, Fe, and Hg in gills (B and Fe with higher levels in polyphagous and Hg in piscivorous species), and As in muscle (higher levels in polyphagous species). Carp had distinctly higher levels of Cd, Cu, and Zn in liver in comparison to other three species. None of the elements exceeded the maximum acceptable concentrations (MAC). However, since Hg levels are close to the prescribed MAC levels, the consumption of these fishes can be potentially hazardous for humans. PMID:24054751

  11. Heavy-element fission barriers

    SciTech Connect

    Moeller, Peter; Sierk, Arnold J.; Ichikawa, Takatoshi; Iwamoto, Akira; Bengtsson, Ragnar; Uhrenholt, Henrik; Angstromberg, Sven

    2009-06-15

    We present calculations of fission properties for heavy elements. The calculations are based on the macroscopic-microscopic finite-range liquid-drop model with a 2002 parameter set. For each nucleus we have calculated the potential energy in three different shape parametrizations: (1) for 5 009 325 different shapes in a five-dimensional deformation space given by the three-quadratic-surface parametrization, (2) for 10 850 different shapes in a three-dimensional deformation space spanned by {epsilon}{sub 2}, {epsilon}{sub 4}, and {gamma} in the Nilsson perturbed-spheroid parametrization, supplemented by a densely spaced grid in {epsilon}{sub 2}, {epsilon}{sub 3}, {epsilon}{sub 4}, and {epsilon}{sub 6} for axially symmetric deformations in the neighborhood of the ground state, and (3) an axially symmetric multipole expansion of the shape of the nuclear surface using {beta}{sub 2}, {beta}{sub 3}, {beta}{sub 4}, and {beta}{sub 6} for intermediate deformations. For a fissioning system, it is always possible to define uniquely one saddle or fission threshold on the optimum trajectory between the ground state and separated fission fragments. We present such calculated barrier heights for 1585 nuclei from Z=78 to Z=125. Traditionally, actinide barriers have been characterized in terms of a ''double-humped'' structure. Following this custom we present calculated energies of the first peak, second minimum, and second peak in the barrier for 135 actinide nuclei from Th to Es. However, for some of these nuclei which exhibit a more complex barrier structure, there is no unique way to extract a double-humped structure from the calculations. We give examples of such more complex structures, in particular the structure of the outer barrier region near {sup 232}Th and the occurrence of multiple fission modes. Because our complete results are too extensive to present in a paper of this type, our aim here is limited: (1) to fully present our model and the methods for determining the

  12. Octupole correlations in the heavy elements

    SciTech Connect

    Chasman, R.R.

    1986-01-01

    The effects of octupole correlations on the nuclear structure of the heavy elements are discussed. The cluster model description of the heavy elements is analyzed. The relevance of 2/sup 6/-pole deformation and fast El transitions to an octupole model is considered. 30 refs., 21 figs., 1 tab.

  13. Heavy Metals and Related Trace Elements.

    ERIC Educational Resources Information Center

    Leland, Harry V.; And Others

    1978-01-01

    Presents a literature review of heavy metals and related trace elements in the environment, covering publications of 1976-77. This review includes: (1) trace treatment in natural water and in sediments; and (2) bioaccumulation and toxicity of trace elements. A list of 466 references is presented. (HM)

  14. The Electronic Structure of Heavy Element Complexes

    SciTech Connect

    Bursten, Bruce E.

    2000-07-25

    The area of study is the bonding in heavy element complexes, and the application of more sophisticated electronic structure theories. Progress is recounted in several areas: (a) technological advances and current methodologies - Relativistic effects are extremely important in gaining an understanding of the electronic structure of compounds of the actinides, transactinides, and other heavy elements. Therefore, a major part of the continual benchmarking was the proper inclusion of the appropriate relativistic effects for the properties under study. (b) specific applications - These include organoactinide sandwich complexes, CO activation by actinide atoms, and theoretical studies of molecules of the transactinide elements. Finally, specific directions in proposed research are described.

  15. Recent research on the heavy transuranium elements

    SciTech Connect

    Seaborg, G.T.

    1988-09-01

    This review is devoted to recent research (performed in the 1980s) on the heavy members of the group, defined as the transcurium elements (with a few references to related work on lighter elements). It covers the discovery of the three heaviest elements, the discovery of new isotopes, investigation of interesting decay properties of some previously known isotopes, investigations of some heavy ion reaction mechanisms in this region, and recent investigations of nuclear and chemical properties. It is not exhaustive in its coverage, is necessarily succinct, and inevitably places emphasis on those aspects with which the author is most familiar. 92 refs., 3 figs.

  16. Heavy Elements and Cool Stars

    NASA Astrophysics Data System (ADS)

    Wahlgren, Glenn M.; Carpenter, Kenneth G.; Norris, Ryan P.

    2009-02-01

    We report on progress in the analysis of high-resolution near-IR spectra of α Orionis (M2 Iab) and other cool, luminous stars. Using synthetic spectrum techniques, we search for atomic absorption lines in the stellar spectra and evaluate the available line parameter data for use in our abundance analyses. Our study concentrates on the post iron-group elements copper through zirconium as a means of investigating the slow neutron-capture process of nucleosynthesis in massive stars and the mechanisms that transport recently processed material up into the photospheric region. We discuss problems with the atomic data and model atmospheres that need to be addressed before theoretically derived elemental abundances from pre-supernova nucleosynthesis calculations can be tested by comparison with abundances determined from observations of cool, massive stars.

  17. Heavy Elements and Cool Stars

    NASA Technical Reports Server (NTRS)

    Wahlgren, Glenn M.; Carpenter, Kenneth G.; Norris, Ryan P.

    2008-01-01

    We report on progress in the analysis of high-resolution near-IR spectra of alpha Orionis (M2 Iab) and other cool, luminous stars. Using synthetic spectrum techniques, we search for atomic absorption lines in the stellar spectra and evaluate the available line parameter data for use in our abundance analyses. Our study concentrates on the post iron-group elements copper through zirconium as a means of investigating the slow neutron-capture process of nucleosynthesis in massive stars and the mechanisms that transport recently processed material up into the photospheric region. We discuss problems with the atomic data and model atmospheres that need to be addressed before theoretically derived elemental abundances from pre-supernova nucleosynthesis calculations can be tested by comparison with abundances determined from observations of cool, massive stars.

  18. Disentangling Effects of Nuclear Structure in Heavy Element Formation

    SciTech Connect

    Hinde, D. J.; Thomas, R. G.; Rietz, R. du; Diaz-Torres, A.; Dasgupta, M.; Brown, M. L.; Evers, M.; Gasques, L. R.; Rafiei, R.; Rodriguez, M. D.

    2008-05-23

    Forming the same heavy compound nucleus with different isotopes of the projectile and target elements allows nuclear structure effects in the entrance channel (resulting in static deformation) and in the dinuclear system to be disentangled. Using three isotopes of Ti and W, forming {sup 232}Cm, with measurement spanning the capture barrier energies, alignment of the heavy prolate deformed nucleus is shown to be the main reason for the broadening of the mass distribution of the quasifission fragments as the beam energy is reduced. The complex, consistently evolving mass-angle correlations that are observed carry more information than the integrated mass or angular distributions, and should severely test models of quasifission.

  19. Heavy ions, targets, and research at HHIRF

    SciTech Connect

    Ford, J.L.C.

    1983-01-01

    The Holifield Heavy Ion Research Facility (HHIRF) typifies a new generation of heavy ion accelerators capable of producing high resolution beams with sufficient energy to study nuclear reactions across the periodic table. Exploiting the capabilities of the machine depends on the availability of thin foils at each stage of the experimental process. Rugged carbon foils are needed in the tandem and cyclotron to strip injected ions up to high charge states. Experimental success largely depends on the availability of a suitable target for bombardment which imposes new demands on the target maker. Many experiments use large solid angle gaseous counters with very thin foils as windows. The accelerators, experimental apparatus, and beam characteristics will be described. Target requirements demanded by different types of experiments will be discussed. These requirements have lead to the construction of specialized apparatus such as the supersonic gas jet target and the single crystal goniometer for blocking measurements.

  20. Frontiers of heavy element nuclear and radiochemistry

    SciTech Connect

    Hoffman, D.C.

    1997-10-01

    The production and half-lives of the heaviest chemical elements, now known through Z = 112, are reviewed. Recent experimental evidence for the stabilization of heavy element isotopes due to proximity to deformed nuclear shells at Z = 108 and N = 162 is compared with the theoretical predictions. The possible existence of isotopes of elements 107--110 with half-lives of seconds or longer, and production reactions and experimental techniques for increasing the overall yields of such isotopes in order to study both their nuclear and chemical properties are discussed. The present status of studies of the chemical properties of Rf, Ha, and Sg is briefly summarized and prospects for extending chemical studies beyond Sg are considered.

  1. Heavy element affinities in Apollo 17 samples

    NASA Technical Reports Server (NTRS)

    Allen, R. O., Jr.; Jovanovic, S.; Reed, G. W., Jr.

    1975-01-01

    Pb-204, Bi, Tl, and Zn in samples from the Apollo 17 site exhibit relationships not found in samples from other sites. Pb-204, Tl, and Zn in residues remaining after dilute acid leaching are correlated with one another. Orange soil 74220, which is enriched in Pb-204, Tl, and Zn, is included in these relationships. In addition, the submicron metallic phase generally associated with agglutinate formation is correlated with all three of these elements; this relationship has already been reported for Pb-204 in other samples. Thus, orange soil and agglutinates appear to be involved in concentrating heavy volatile metals. A process other than mixing is required to account for this. As a consequence of the isolation of the landing site by the surrounding massifs, local supply and recycling of volatile trace elements in soils may account for some of the interelement relations.

  2. Leap to explore the region of neutron-rich heavy element isotopes

    SciTech Connect

    Hoffman, D.C.

    1985-10-01

    The research aims of the Large Einsteinium Activation Program (LEAP) are described. This program is a major initiative to exploit currently existing expertise in heavy element research and the potential for producing very heavy actinide target materials such as 285-day /sup 254/Es at the High Flux Isotope Reactor at Oak Ridge National Laboratory. The stated aims of the program are to produce heavy element isotopes, to conduct chemical studies of these isotopes, to study the nuclear properties of such isotopes, and to produce a superheavy element (183 neutrons) by the using a /sup 254/Es target and /sup 48/Ca projectiles. 13 refs., 2 figs., 2 tabs. (DWL)

  3. Optical model analyses of heavy ion fragmentation in hydrogen targets

    NASA Technical Reports Server (NTRS)

    Townsend, Lawrence W.

    1994-01-01

    Quantum-mechanical optical-model methods for calculating cross sections for the fragmentation of high-energy heavy ions by hydrogen targets are presented. The cross sections are calculated with a knockout-ablation collision formalism which has no arbitrary fitting parameters. Predictions of elemental production cross sections from the fragmentation of 1.2A Ge(V(La-139) nuclei and of isotope production cross sections from the fragmentation of 400A MeV(S-32) nuclei are in good agreement with recently reported experimental measurements.

  4. Nucleosynthesis of heavy elements in the r-process

    NASA Astrophysics Data System (ADS)

    Panov, I. V.

    2016-03-01

    The current state of the problem of heavy-element production in the astrophysical r-process is surveyed. The nucleosynthesis process in the neutron-star-merger scenario, within which the problem of free-neutron source is solved, is considered most comprehensively. A model that describes well the observed abundances of heavy elements is examined. Theoretical approaches used in this model to calculate a number of features of short-lived neutron-rich nuclei are described. The contributions of various fission processes to the production of heavy elements are assessed. The possibility of superheavy-element production in the r-process is demonstrated.

  5. Heavy Element Abundances in NGC 5846

    NASA Technical Reports Server (NTRS)

    Jones, Christine

    2000-01-01

    In this paper we analyze the diffuse X-ray coronae surrounding the elliptical galaxy NGC 5846, combining measurements from two observatories, ROSAT and the Advanced Satellite for Cosmology and Astrophysics. We map the gas temperature distribution and find a central cool region within an approximately isothermal gas halo extending to a radius of about 50 kpc and evidence for a temperature decrease at larger radii. With a radially falling temperature profile, the total mass converges to (9.6 +/- 1.0) x 10(exp 12) solar mass at 230 kpc radius. This corresponds to a total mass to blue light ratio of 53 +/- 5 solar mass/solar luminosity. As in other early type galaxies, the gas mass is only a few percent of the total mass. Using the spectroscopic measurements, we also derive radial distributions for the heavy elements silicon and iron and find that the abundances of both decrease with galaxy radius. The mass ratio of Si to Fe lies between the theoretical predictions for element production in SN Ia and SN II, suggesting an important role for SN Ia, as well as SN II, for gas enrichment in ellipticals. Using the 2 SN la yield of Si, we set an upper limit of 0.012 h(sup 2, sub 50) solar neutrino units (SNU) for the SN Ia rate at radii >50 kpc, which is independent of possible uncertainties in the iron L-shell modeling. We compare our observations with the theoretical predictions for the chemical evolution of ellipticals. We conclude that the metal content in stars, if explained by the star formation duration, requires a significant decline in the duration of star formation with galaxy radius, ranging from 1 Gyr at the center to 0.01 Gyr at 100 kpc radius. Alternatively, the decline in metallicity with galaxy radius may be caused by a similar drop with radius in the efficiency of star formation. Based on the Si and Fe measurements presented in this paper, we conclude that the latter scenario is preferred unless a dependence of the SN Ia rate on stellar metallicity is invoked.

  6. Separation of transuranium elements from irradiated targets

    SciTech Connect

    Wham, R.M.; Benker, D.E.; Felker, L.K.; Chattin, F.R.

    1993-12-31

    Aluminum targets containing curium/americium oxide are irradiated to produce the transcurium actinides einsteinium, fermium, berkelium, and californium. Recovery of recycle curium/americium and the transcurium elements involves several chemical processing steps to selectively recover those elements and remove fission products. Chemical processing steps developed at the Radiochemical Engineering Development Center (REDC) include aluminum dejacketing, solvent extraction to remove bulk impurities, solvent extraction to remove plutonium, anion exchange to partition curium and transcurium elements from the rare earths, and a second anion exchange cycle to separate americium/curium from the transcurium elements.

  7. THE HEAVY-ELEMENT MASSES OF EXTRASOLAR GIANT PLANETS, REVEALED

    SciTech Connect

    Miller, Neil; Fortney, Jonathan J.

    2011-08-01

    We investigate a population of transiting planets that receive relatively modest stellar insolation, indicating equilibrium temperatures <1000 K, and for which the heating mechanism that inflates hot Jupiters does not appear to be significantly active. We use structural evolution models to infer the amount of heavy elements within each of these planets. There is a correlation between the stellar metallicity and the mass of heavy elements in its transiting planet(s). It appears that all giant planets possess a minimum of {approx}10-15 Earth masses of heavy elements, with planets around metal-rich stars having larger heavy-element masses. There is also an inverse relationship between the mass of the planet and the metal enrichment (Z{sub pl}/Z{sub star}), which appears to have little dependency on the metallicity of the star. Saturn- and Jupiter-like enrichments above solar composition are a hallmark of all the gas giants in the sample, even planets of several Jupiter masses. These relationships provide an important constraint on planet formation and suggest large amounts of heavy elements within planetary H/He envelopes. We suggest that the observed correlation can soon also be applied to inflated planets, such that the interior heavy-element abundance of these planets could be estimated, yielding better constraints on their interior energy sources. We point to future directions for planetary population synthesis models and suggest future correlations. This appears to be the first evidence that extrasolar giant planets, as a class, are enhanced in heavy elements.

  8. Heavy-element chemistry --Status and perspectives

    NASA Astrophysics Data System (ADS)

    Türler, A.

    In the past ten years, nuclear chemists have made considerable progress in developing fast on-line separation techniques, which allowed to chemically characterize the first four transactinide elements Rf (rutherfordium, Z = 104), Db (dubnium, Z = 105), Sg (seaborgium, Z = 106), and recently also Bh (bohrium, Z = 107). In all cases the isolated nuclides were unambiguously identified by observing genetically linked decay chains. Nuclides with production cross-sections of less than 100 pb and half-lives as short as a few seconds have been chemically isolated. Thus, chemists have discovered or significantly contributed to the characterization of the nuclear-decay properties of a number of transactinide nuclei. New techniques with greatly improved overall efficiencies should allow chemists to extend their studies to even heavier elements such as Hs (hassium, Z = 108) and to the recently discovered superheavy elements with Z = 112 and 114, which can be produced only with picobarn cross-sections.

  9. Heavy flavor production at fixed target photo- and hadroproduction

    SciTech Connect

    Kwan, S.

    1993-11-01

    Recent results on photo- and hadroproduction of heavy flavor particles from fixed target experiments at CERN and Fermilab are presented. These include results on production characteristics, cross-section and pair correlation for both charm and beauty mesons.

  10. "Heavy" elements produced in neutrino-driven winds

    NASA Astrophysics Data System (ADS)

    Arcones, Almudena

    2012-02-01

    We present nucleosynthesis studies based on trajectories of hydrodynamical simulations for core-collapse supernovae and their subsequent neutrino-driven winds. Based on recent hydrodynamical simulations, heavy r-process elements (Z > 56) cannot be synthesized in the neutrino-driven winds because the entropy is too low and ejected matter is proton-rich. We have shown that the lighter heavy elements (e.g., Sr, Y, Zr) are produced in neutron- and proton-rich winds and could explain the abundance observed in some very old halo stars.

  11. Characterization of aerosol transport in a recoil transfer chamber for heavy element chemistry

    NASA Astrophysics Data System (ADS)

    Lopez Morales, Gabriel; Tereshatov, Evgeny; Folden, Charles

    2014-09-01

    Heavy elements (HE) are elements with Z >103 that can be synthesized via target material bombardment by accelerated charged particles. Production and investigation of properties of new elements result in understanding of upper limit of Periodic Table of Elements. Study of chemical behavior of HE is usually based on comparison with their light homologue properties. Such experiments require transportation of elements of interest from a target chamber to a radiochemical laboratory within several seconds. Aerosol transport is a widely known way to transfer non-volatile elements in on-line experiments. This particular project is devoted to design, characterization and optimization of aerosol transport for implementation in future experiments at Cyclotron Institute, Texas A&M University. Different types of aerosol generators and particle parameters such as: size distribution, concentration and charge have been considered. Results showing procedure development will be presented. *Funded by DOE and NSF-REU Program.

  12. Direct-driven target implosion in heavy ion fusion

    NASA Astrophysics Data System (ADS)

    Noguchi, K.; Suzuki, T.; Kurosaki, T.; Barada, D.; Kawata, S.; Ma, Y. Y.; Ogoyski, A. I.

    2016-03-01

    In inertial confinement fusion, the driver beam illumination non-uniformity leads a degradation of fusion energy output. A fuel target alignment error would happen in a fusion reactor; the target alignment error induces heavy ion beam illumination non-uniformity on a target. On the other hand, heavy ion beam accelerator provides a capability to oscillate a beam axis with a high frequency. The wobbling beams may provide a new method to reduce or smooth the beam illumination non-uniformity. First we study the effect of driver irradiation non-uniformity induced by the target alignment error (dz) on the target implosion. We found that dz should be less than about 130 μm for a sufficient fusion energy output. We also optimize the wobbling scheme. The spiral wobbling heavy ion beams would provide a promissing scheme to the uniform beam illumination.

  13. The Chemical Evolution of Heavy Elements in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Shingles, Luke J.; Karakas, Amanda I.; Hirschi, Raphael

    2014-01-01

    We present preliminary results from a chemical evolution model that tracks the composition of heavy elements beyond iron in a globular cluster. The heavy elements can be used as tracers of the nucleosynthetic events that defined the formation and evolution of star clusters in the early Universe. In particular, the chemical evolution model focuses on the hypothesis that rapidly-rotating massive stars produced the heavy elements via the slow neutron-capture process and seeded the proto-cluster while the stars we see today were still forming. We compare our model with heavy element abundances in M4 and M5, and M22. Our results are strongly dependent on the highly uncertain rate of the 17O(α,γ)21Ne reaction, which determines the strength of 16O as a neutron poison. We find that the [Pb/Ba] ratio is too low to match the empirical value, which might suggest that a contribution from AGB stars is required.

  14. Placental transfer of the actinides and related heavy elements

    SciTech Connect

    Sikov, M.R.

    1986-11-01

    A selective literature review dealing with prenatal exposure of animals and humans to actinides and related heavy elements, comparative aspects of placental transfer and fetoplacental distribution are considered. General patterns have been derived from typical quantitative values, and used to compare similarities and dissimilarities, and to examine factors responsible for observed differences. 37 refs., 2 tabs.

  15. Sandwich targets for heavy-ion experiments

    SciTech Connect

    Thomas, G.E.

    1982-01-01

    Techniques for producing sandwich targets such as Gd + Pb are described. Better contact between the materials is sometimes assured by evaporating one material onto the other rather than by rolling the two together. Experimental data using both types of targets will be shown.

  16. Heavy ion beam transport and interaction with ICF targets

    NASA Astrophysics Data System (ADS)

    Velarde, G.; Aragonés, J. M.; Gago, J. A.; Gámez, L.; González, M. C.; Honrubia, J. J.; Martínez-Val, J. M.; Mínguez, E.; Ocaña, J. L.; Otero, R.; Perlado, J. M.; Santolaya, J. M.; Serrano, J. F.; Velarde, P. M.

    1986-01-01

    Numerical simulation codes provide an essential tool for analyzing the very broad range of concepts and variables considered in ICF targets. In this paper, the relevant processes embodied in the NORCLA code, needed to simulate ICF targets driven by heavy ion beams will be presented. Atomic physic models developed at DENIM to improve the atomic data needed for ion beam plasma interaction will be explained. Concerning the stopping power, the average ionization potential following a Thomas-Fermi model has been calculated, and results are compared with full quantum calculations. Finally, a parametric study of multilayered single shell targets driven by heavy ion beams will be shown.

  17. Progress in target physics and design for heavy ion fusion

    NASA Astrophysics Data System (ADS)

    Callahan-Miller, Debra A.; Tabak, Max

    2000-05-01

    Two-dimensional, integrated calculations of a close-coupled version of the distributed radiator, heavy ion target predict gain 130 from 3.3 MJ of beam energy. To achieve these results, the case-to-capsule ratio was decreased by about 25% from the previous heavy ion targets [M. Tabak and D. Callahan-Miller, Phys. Plasmas 5, 1895 (1998)]. These targets are robust to changes in the ion stopping model because changes in the ion stopping model can be accommodated by changes to the target. The capsule is also insensitive to changes in the deuterium-tritium (DT) gas fill in the center of the capsule over the range that is of interest for target fabrication and target injection. Single-mode Rayleigh-Taylor growth rates for this capsule are smaller than those for at least one National Ignition Facility (NIF) [J. A. Paisner et al., Laser Focus World 30, 75 (1994)] design. As a result, stability issues for the heavy ion capsule can be settled on NIF. The close-coupled target also opens up the possibility of a high gain engineering test facility from a 1.5-2 MJ driver; calculations predict that gain 90 is achievable from 1.75 MJ of beam energy. Finally, the choice of hohlraum wall material, which must satisfy constraints from target physics, environment and safety, chamber design, and target fabrication, is discussed.

  18. Formation of super-heavy elements in astrophysical nucleosynthesis

    SciTech Connect

    Zagrebaev, V. I.; Karpov, A. V.; Mishustin, I. N.; Greiner, Walter

    2012-10-20

    The unexplored area of heavy neutron-rich nuclides is extremely important for the understanding of the r process of astrophysical nucleogenesis. For elements with Z>100 only neutron deficient isotopes (located to the left of the stability line) have been synthesized so far. The 'north-east' area of the nuclear map can be reached neither in fusion reactions nor in fragmentation processes. Low energy multi-nucleon transfer reactions are quite promising for the production and study of neutron-rich heavy nuclei including those located at the superheavy (SH) island of stability [1]. The neutron capture process is considered here as an alternative method for the production of SH nuclei. Requirements for the pulsed reactors of the next generation that could be used for the synthesis of long-living neutron rich SH nuclei are formulated. Formation of SH nuclei in supernova explosions is also discussed and the abundance of SH elements in nature is estimated.

  19. The interstellar abundances of tin and four other heavy elements

    NASA Technical Reports Server (NTRS)

    Hobbs, L. M.; Welty, D. E.; Morton, D. C.; Spitzer, L.; York, D. G.

    1993-01-01

    Spectra recorded at 1150-1600 A with an instrumental resolution near 16 km/s were obtained with the Goddard High-Resolution Spectrograph on board the HST. The gaseous interstellar abundances of five heavy elements along the light paths to 23 Ori, 15 Mon, 1 Sco, Pi Sco, and Pi Aqr were determined from the observations. The 1400.450 A line of Sn II was detected and identified toward three stars; at Z = 50, tin is the first element from the fifth row of the periodic table to be identified in the interstellar medium. One spectral line of each of Cu II (Z = 29) and Ga II (Z = 31), three lines of Ge II (Z = 32), and two lines of Kr I (Z = 36) were also detected toward some or all of the five stars. The depletions of these five heavy elements generally decrease monotonically with increasing atomic number toward each of the six stars, and tin is generally undepleted within the observational errors. The depletions of 26 elements from the interstellar gas in an average dense interstellar cloud appear to correlate with the elemental 'nebular' condensation temperatures more closely than with the first ionization potentials.

  20. Heavy Ion Inertial Fusion Energy: Summaries of Program Elements

    SciTech Connect

    Friedman, A; Barnard, J J; Kaganovich, I; Seidl, P A; Briggs, R J; Faltens, A; Kwan, J W; Lee, E P; Logan, B G

    2011-02-28

    The goal of the Heavy Ion Fusion (HIF) Program is to apply high-current accelerator technology to IFE power production. Ion beams of mass {approx}100 amu and kinetic energy {>=} 1 GeV provide efficient energy coupling into matter, and HIF enjoys R&D-supported favorable attributes of: (1) the driver, projected to be robust and efficient; see 'Heavy Ion Accelerator Drivers.'; (2) the targets, which span a continuum from full direct to full indirect drive (and perhaps fast ignition), and have metal exteriors that enable injection at {approx}10 Hz; see 'IFE Target Designs'; (3) the near-classical ion energy deposition in the targets; see 'Beam-Plasma Interactions'; (4) the magnetic final lens, robust against damage; see 'Final Optics-Heavy Ion Beams'; and (5) the fusion chamber, which may use neutronically-thick liquids; see 'Liquid-Wall Chambers.' Most studies of HIF power plants have assumed indirect drive and thick liquid wall protection, but other options are possible.

  1. Recent heavy flavor physics results from fixed target experiments

    SciTech Connect

    Spiegel, L.

    1991-11-01

    Recent results from fixed target experiments in the field of heavy quark flavors, as published or otherwise disseminated in the last year, are reviewed. Emphasis is placed on distilling the main conclusions from these results. 35 refs., 5 figs., 4 tabs.

  2. Heavy-Element Abundances in Solar Energetic Particle Events

    NASA Technical Reports Server (NTRS)

    Reames, Donald V.

    2004-01-01

    We survey the relative abundances of elements with 1 less than or = Z less than or = 82 in solar energetic particle (SEP) events observed at 2 - 10 MeV amu" during nearly 9 years aboard the Wind spacecraft, with special emphasis on enhanced abundances of elements with 2Z greater than or = 34. Abundances of Fe/O again show a bimodal distribution with distinct contributions from impulsive and gradual SEP events as seen in earlier solar cycles. Periods with greatly enhanced abundances of (50 less than or = Z less than or = 56)/O, like those with enhanced He-3/He-4, fall prominently in the Fe-rich population of the impulsive SEP events. In a sample of the 39 largest impulsive events, 25 have measurable enhancements in (50 less than or = Z less than or = 56)/O and (76 less than or = Z less than or = 82)/O, relative to coronal values, ranging from approx. 100 to 10,000. By contrast, in a sample of 45 large gradual events the corresponding enhancements vary from approx. 0.2 to 20. However, the magnitude of the heavy-element enhancements in impulsive events is less striking than their strong correlation with the Fe spectral index and flare size, with the largest enhancements occurring in flares with the steepest Fe spectra, the smallest Fe fluence, and the lowest X-ray intensity, as reported here for the first time Thus it seem that small events with low energy input can produce only steep spectra of the dominant species but accelerate rare heavy elements with great efficiency, probably by selective absorption of resonant waves in the flare plasma. With increased energy input, enhancements diminish, as heavy ions are depleted, and spectra of the dominant species harden.

  3. Heavy-Element Abundances in Solar Energetic Particle Events

    NASA Technical Reports Server (NTRS)

    Reames, D. V.; Ng, C. K.

    2004-01-01

    We survey the relative abundances of elements with 1 < or equal to Z < or equal to 82 in solar energetic particle (SEP) events observed at 2-10 MeV/amu during nearly 9 years aboard the Wind spacecraft, with special emphasis on enhanced abundances of elements with Z > or equal to 34. Abundances of Fe/O again show a bimodal distribution with distinct contributions from impulsive and gradual SEP events as seen in earlier solar cycles. Periods with greatly enhanced abundances of (50 < or equal to Z < or equal to 56)/O, like those with enhanced (3)He/(4)He, fall prominently in the Fe-rich population of the impulsive SEP events. In a sample of the 39 largest impulsive events, 25 have measurable enhancements in (50 < or equal to z < or equal to 56)/O and (76 < or equal to Z < or equal to 82)/O, relative to coronal values, ranging from approx. 100 to 10,000. By contrast, in a sample of 45 large gradual events the corresponding enhancements vary from approx. 0.2 to 20. However, the magnitude of the heavy-element enhancements in impulsive events is less striking than their strong correlation with the Fe spectral index and flare size, with the largest enhancements occurring in flares with the steepest Fe spectra, the smallest Fe fluence, and the lowest X-ray intensity, as reported here for the first time. Thus it seems that small events with low energy input can produce only steep spectra of the dominant species but accelerate rare heavy elements with great efficiency, probably by selective absorption of resonant waves in the flare plasma. With increased energy input, enhancements diminish, as heavy ions are depleted, and spectra of the dominant species harden.

  4. A novel approach to the island of stability of super-heavy elements search

    NASA Astrophysics Data System (ADS)

    Wieloch, A.; Adamczyk, M.; Barbui, M.; Blando, N.; Giuliani, G.; Hagel, K.; Kim, E.-J.; Kowalski, S.; Majka, Z.; Natowitz, J.; Pelczar, K.; Płaneta, R.; Schmidt, K.; Sosin, Z.; Wuenschel, S.; Zelga, K.; Zheng, H.

    2016-05-01

    It is expected that the cross section for super-heavy nuclei production of Z > 118 is dropping into the region of tens of femto barns. This creates a serious limitation for the complete fusion technique that is used so far. Moreover, the available combinations of the neutron to proton ratio of stable projectiles and targets are quite limited and it can be difficult to reach the island of stability of super heavy elements using complete fusion reactions with stable projectiles. In this context, a new experimental investigation of mechanisms other than complete fusion of heavy nuclei and a novel experimental technique are invented for our search of super- and hyper-nuclei. This contribution is focused on that technique.

  5. A Distributed Radiator, Heavy Ion Target with Realistic Ion Beams

    NASA Astrophysics Data System (ADS)

    Callahan, Debra A.; Tabak, Max

    1997-11-01

    Recent efforts in heavy ion target design have centered around the distributed radiator design of Tabak(M. Tabak, Bull. Am. Phys. Soc., Vol 41, No 7, 1996.). The initial distributed radiator target assumed beams with a uniform radial density distribution aimed directly along the z axis. Chamber propagation simulations indicate that the beam distribution is more nearly Gaussian at best focus. In addition, more than two beams will be necessary to carry the required current; this means that the beams must be angled to allow space for the final focusing systems upstream. We will describe our modifications to the distributed radiator target to allow realistic beams and realistic beam angles.

  6. The importance of closed shell structures in the synthesis of super heavy elements

    NASA Astrophysics Data System (ADS)

    Hamilton, J. H.; Hofmann, S.; Oganessian, Y. T.

    2015-02-01

    The importance of shell closures and gaps in the single-particle energies for protons and neutrons on the stability of elements beyond Z = 100 will be described. Following the development of microscopic models with shell corrections, microscopic-macroscopic models predicted large gaps in the single-particle energy levels for protons and neutrons at Z = 102, 108 and N = 152, 162 for the same deformed shapes. Shell gaps for spherical shapes for N = 184 and Z = 114, 120 or 126 were also predicted to form an "Island of Stability" with very long half lives for fission and alpha decay. Cold fusion reactions involving beams of Ca to Zn and targets of stable 208Pb and 209Bi were pioneered at GSI and used to synthesize new elements for Z = 107 to 112 and in Japan a new isotope of 113. Hot fusion reactions between radioactive actinide targets and neutron-rich 48Ca beams were pioneered in JINR leading to the synthesis of new elements with Z = 113 to 118. Data on two neutron separation energies, spontaneous fission half lives and total half lives of super heavy elements showing the importance of reinforcement of the Z = 102, N = 152 and Z = 108, N = 162 single particle level gaps at the same deformation and Z = 114-126, N = 184 shell gaps in the synthesis of super heavy elements 107 to 118 are presented along with the latest results on their synthesis.

  7. Study of heavy-ion induced fission for heavy-element synthesis

    NASA Astrophysics Data System (ADS)

    Nishio, K.; Ikezoe, H.; Hofmann, S.; Heßberger, F. P.; Ackermann, D.; Antalic, S.; Aritomo, Y.; Comas, V. F.; Düllman, Ch. E.; Gorshkov, A.; Graeger, R.; Heinz, S.; Heredia, J. A.; Hirose, K.; Khuyagbaatar, J.; Kindler, B.; Kojouharov, I.; Lommel, B.; Makii, H.; Mann, R.; Mitsuoka, S.; Nagame, Y.; Nishinaka, I.; Ohtsuki, T.; Popeko, A. G.; Saro, S.; Schädel, M.; Türler, A.; Wakabayashi, Y.; Watanabe, Y.; Yakushev, A.; Yeremin, A. V.

    2014-03-01

    Fission fragment mass distributions were measured in heavy-ion induced fissions using 238U target nucleus. The measured mass distributions changed drastically with incident energy. The results are explained by a change of the ratio between fusion and qasifission with nuclear orientation. A calculation based on a fluctuation dissipation model reproduced the mass distributions and their incident energy dependence. Fusion probability was determined in the analysis, and the values were consistent with those determined from the evaporation residue cross sections.

  8. Waveform design for cognitive radar: target detection in heavy clutter

    NASA Astrophysics Data System (ADS)

    Kirk, Benjamin H.; Narayanan, Ram M.; Martone, Anthony F.; Sherbondy, Kelly D.

    2016-05-01

    In many applications of radar systems, detection of targets in environments with heavy clutter and interference can be difficult. It is desired that a radar system should detect targets at a further range as well as be able to detect these targets with very few false positive or negative readings. In a cognitive radar system, there are ways that these negative effects can be mitigated and target detection can be significantly improved. An important metric to focus on for increasing target detectability is the signal-to-clutter ratio (SCR). Cognitive radar offers solutions to issues such as this with the use of a priori knowledge of targets and environments as well as real time adaptations. A feature of cognitive radar that is of interest is the ability to adapt and optimize transmitted waveforms to a given situation. A database is used to hold a priori and dynamic knowledge of the operational environment and targets to be detected, such as clutter characteristics and target radar cross-section (RCS) estimations. Assuming this knowledge is available or can be estimated in real-time, the transmitted waveform can be tailored using methods such as transmission of a spectrum corresponding to the target-to-clutter ratio (TCR). These methods provide significant improvement in distinguishing targets from clutter or interference.

  9. In-beam fission study for Heavy Element Synthesis

    NASA Astrophysics Data System (ADS)

    Nishio, Katsuhisa

    2013-12-01

    Fission fragment mass distributions were measured in heavy-ion induced fissions using 238U target nucleus. The measured mass distributions changed drastically with incident energy. The results are explained by a change of the ratio between fusion and qasifission with nuclear orientation. A calculation based on a fluctuation dissipation model reproduced the mass distributions and their incident energy dependence. Fusion probability was determined in the analysis. Evaporation residue cross sections were calculated with a statistical model in the reactions of 30Si + 238U and 34S + 238U using the obtained fusion probability in the entrance channel. The results agree with the measured cross sections for seaborgium and hassium isotopes.

  10. The Origin and Distribution of Heavy Elements in HCG 62

    NASA Technical Reports Server (NTRS)

    Vrtilek, Jan; Lavoie, Anthony R. (Technical Monitor)

    2000-01-01

    We present recent data on the compact group HCG 62 taken with AXAF CCD Imaging Spectrometer-S (ACIS-S) on Chandra. The sparseness of groups and their relatively simple dynamical history allow the properties of the Intergalatic Medium (IGM) to be more directly related to galaxy evolution than may be possible in clusters, and their lower gas temperatures produce strong lines from a broader range of elements than is the case in hotter clusters. This observation exploits the high X-ray brightness of HCG 62 to determine accurately the abundances of heavy elements as a function of position in the group, to test whether abundance variations are associated with individual galaxies, and to trace the origin of the enrichment.

  11. Uniform fuel target implosion in heavy ion inertial fusion

    NASA Astrophysics Data System (ADS)

    Kawata, S.; Karino, T.; Kondo, S.; Iinuma, T.; Barada, D.; Ma, Y. Y.; Ogoyski, A. I.

    2016-05-01

    For a steady operation of a fusion power plant the target implosion should be robust against the implosion non-uniformities. In this paper the non-uniformity mitigation mechanisms in the heavy ion beam (HIB) illumination are discussed in heavy ion inertial fusion (HIF). A density valley appears in the energy absorber, and the large-scale density valley also works as a radiation energy confinement layer, which contributes to the radiation energy smoothing for the HIB illumination non-uniformity. The large density-gradient scale, which is typically ∼500μm in HIF targets, also contributes to a reduction of the Rayleigh- Taylor instability growth rate. In HIF a wobbling HIBs illumination would also reduce the Rayleigh-Taylor instability growth and to realize a uniform implosion.

  12. Progress in Target Physics and Design for Heavy Ion Fusion

    NASA Astrophysics Data System (ADS)

    Callahan-Miller, Debra

    1999-11-01

    Two-dimensional, integrated calculations of a close-coupled version of the distributed radiator, heavy ion target predict gain 130 from 3.3 MJ of beam energy. To achieve these results, the case-to-capsule ratio was decreased by about 25% from our previous targets.(M. Tabak, D. Callahan-Miller, Phys. Plasmas, 5, 1895 (1998).) The smaller hohlraum results in smaller beam spots than had been previously assumed; this puts renewed emphasis on controlling emittance growth in the accelerator and on space-charge neutralization in the reactor chamber. These targets are robust--changes in ion range and ion stopping model can be accommodated by changes in the target. Single-mode Rayleigh-Taylor growth rates for this capsule are smaller than those for at least one NIF design. As a result, stability issues for the heavy ion capsule can be settled on NIF. The close-coupled target also opens up the possibility of a high gain Engineering Test Facility from a 1.5-2 MJ driver; calculations predict that gain 90 is achievable from 1.75 MJ of beam energy. Gain curves, used for optimizing the system of accelerator, final focus, chamber transport, and target, are in good agreement with the two-dimensional calculations for both the ``conventional'' and close-coupled case-to-capsule ratio. Finally, we will discuss the choice of hohlraum wall material which must satisfy constraints from target physics (high opacity/low heat capacity to minimize the amount of energy in the hohlraum wall), environment and safety (low activation for recycling and waste disposal), chamber design (recovery of the material from the chamber), and target fabrication (need to produce many low cost targets per day).

  13. Neutrino-driven wind simulations and nucleosynthesis of heavy elements

    NASA Astrophysics Data System (ADS)

    Arcones, A.; Thielemann, F.-K.

    2013-01-01

    Neutrino-driven winds, which follow core-collapse supernova explosions, present a fascinating nuclear-astrophysics problem that requires an understanding of advanced astrophysics simulations, the properties of matter and neutrino interactions under extreme conditions, the structure and reactions of exotic nuclei, and comparisons with forefront astronomical observations. The neutrino-driven wind has attracted vast attention over the last 20 years as it was suggested as a candidate for the astrophysics site where half of the heavy elements are produced via the r-process. In this review, we summarize our present understanding of neutrino-driven winds from the dynamical and nucleosynthesis perspectives. Rapid progress has been made during recent years in understanding the wind with improved simulations and better micro physics. The current status of the fields is that hydrodynamical simulations do not reach the extreme conditions necessary for the r-process, and the proton or neutron richness of the wind remains to be investigated in more detail. However, nucleosynthesis studies and observations already point to neutrino-driven winds to explain the origin of lighter heavy elements, such as Sr, Y, Zr.

  14. Optical model calculations of heavy-ion target fragmentation

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Wilson, J. W.; Cucinotta, F. A.; Norbury, J. W.

    1986-01-01

    The fragmentation of target nuclei by relativistic protons and heavy ions is described within the context of a simple abrasion-ablation-final-state interaction model. Abrasion is described by a quantum mechanical formalism utilizing an optical model potential approximation. Nuclear charge distributions of the excited prefragments are calculated by both a hypergeometric distribution and a method based upon the zero-point oscillations of the giant dipole resonance. Excitation energies are estimated from the excess surface energy resulting from the abrasion process and the additional energy deposited by frictional spectator interactions of the abraded nucleons. The ablation probabilities are obtained from the EVA-3 computer program. Isotope production cross sections for the spallation of copper targets by relativistic protons and for the fragmenting of carbon targets by relativistic carbon, neon, and iron projectiles are calculated and compared with available experimental data.

  15. The heavy element yields of neutron capture nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Cameron, A. G. W.

    1982-01-01

    Consideration of the contribution made to the abundances of the heavy element isotopes by the S- and R-processes of nucleosynthesis has led to the determination that the previous assumption concerning the exclusive alignment of isobars to one or the other of these processes is probably in error. If the relatively small odd and even mass number abundance fluctuations characterizing R-process abundances are always the case, as assumed by this study, S-process contributions to the abundances of R-process isobars are substantial, consistent with transient flashing episodes in the S-process neutron production processes. A smooth and monotonically-decreasing curve of the abundance of the S-process yields times the neutron capture cross-section versus mass number is therefore the primary tool for the separation of the abundances due to the two processes.

  16. Bioaccumulation and toxicity of heavy metals and related trace elements

    SciTech Connect

    Murphy, C.B.; Speigel, S.J.

    1983-06-01

    A literature review of bioaccumulation and toxicity of heavy metals is presented. The most common heavy metals studied were Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Ag, Cd, Sn, Hg, and Pb. The studies dealt with heavy metals in the environment, bioconcentration, toxicity, and detoxification of heavy metals. (JMT)

  17. Fusion-fission Study at JAEA for Heavy-element Synthesis

    NASA Astrophysics Data System (ADS)

    Nishio, K.

    Fission fragment mass distributions were measured in the heavy-ion induced fission using 238U target nucleus. The mass distribu- tions changed drastically with incident energy. The results are explained by a change of the ratio between fusion and qasifission with nuclear orientation. A calculation based on a fluctuation dissipation model reproduced the mass distributions and their inci- dent energy dependence. Fusion probability was determined in the analysis. Evaporation residue cross sections were calculated with a statistical model in the reactions of 30Si+238U and 34S+238U using the obtained fusion probability in the entrance channel. The results agree with the measured cross sections of 263,264Sg and 267,268Hs, produced by 30Si+238U and 34S+238U, respectively. It is also suggested that the sub-barrier energies can be used for heavy element synthesis.

  18. Heavy flavor production at fixed target and collider energies

    SciTech Connect

    Berger, E.L.

    1988-10-13

    A review is presented of heavy quark production in /bar p/p, p, and pp interactions at fixed target and collider energies. Calculations of total cross sections are described including contributions through next-to-leading order in QCD perturbation theory. Comparisons with available data on charm and bottom quark production show good agreement for reasonable values of charm and bottom quark masses and other parameters. Open issues in the interpretation of results are summarized. A discussion is presented of signatures, backgrounds, and expected event rates for top quark production. 19 refs., 4 figs.

  19. Heavy element stable isotope ratios: analytical approaches and applications.

    PubMed

    Tanimizu, Masaharu; Sohrin, Yoshiki; Hirata, Takafumi

    2013-03-01

    Continuous developments in inorganic mass spectrometry techniques, including a combination of an inductively coupled plasma ion source and a magnetic sector-based mass spectrometer equipped with a multiple-collector array, have revolutionized the precision of isotope ratio measurements, and applications of inorganic mass spectrometry for biochemistry, geochemistry, and marine chemistry are beginning to appear on the horizon. Series of pioneering studies have revealed that natural stable isotope fractionations of many elements heavier than S (e.g., Fe, Cu, Zn, Sr, Ce, Nd, Mo, Cd, W, Tl, and U) are common on Earth, and it had been widely recognized that most physicochemical reactions or biochemical processes induce mass-dependent isotope fractionation. The variations in isotope ratios of the heavy elements can provide new insights into past and present biochemical and geochemical processes. To achieve this, the analytical community is actively solving problems such as spectral interference, mass discrimination drift, chemical separation and purification, and reduction of the contamination of analytes. This article describes data calibration and standardization protocols to allow interlaboratory comparisons or to maintain traceability of data, and basic principles of isotope fractionation in nature, together with high-selectivity and high-yield chemical separation and purification techniques for stable isotope studies. PMID:23397089

  20. HAIR HEAVY METAL AND ESSENTIAL TRACE ELEMENT CONCENTRATION IN CHILDREN WITH AUTISM SPECTRUM DISORDER.

    PubMed

    Tabatadze, T; Zhorzholiani, L; Kherkheulidze, M; Kandelaki, E; Ivanashvili, T

    2015-11-01

    Our study aims evaluation of level of essential trace elements and heavy metals in the hair samples of children with autistic spectrum disorder (ASD) and identification of changes that are associated with autistic spectrum disorders. Case-control study was conducted at Child Development Center of Iashvili Children's Central Hospital (LD).We studied 60 children aged from 4 to 5 years old. The concentrations of 28 elements among (Ca,Zn, K, Fe, Cu, Se, Mn, Cr, S, Br, Cl, Co, Ag, V, Ni, Rb, Mo, Sr, Ti, Ba, Pb, As, Hg, Cd, Sb, Zr, Sn, Bi) them trace elements and toxic metals) were determined in scalp hair samples of children (n=30) with autistic spectrum disorder (ASD) and from control group of healthy children (n=30) with matched sex and age. Micro-elemental status was detected in the hair, with roentgen-fluorescence spectrometer method (Method MBИ 081/12-4502-000, Apparatus ALVAX- CIP, USA - UKRAIN) .To achieve the similarity of study and control groups, pre and postnatal as well as family and social history were assessed and similar groups were selected. Children with genetic problems, malnourished children, children from families with social problems were excluded from the study. The diagnosis of ASD were performed by pediatrician and psychologist (using M-CHAT and ADOS) according to DSM IV (Diagnostic and Statistical Manual of Mental Disorders from the American Psychiatric association) criteria. The study was statistically analyzed using computer program SPSS 19. Deficiencies of essential trace microelements revealed in both group, but there was significant difference between control and studied groups. The most deficient element was zinc (92% in target and 20% in control), then - manganese (55% and 8%) and selenium (38% and 4%). In case of cooper study revealed excess concentration of this element only in target group in 50% of cases. The contaminations to heavy metals were detected in case of lead (78% and 16), mercury (43% and 10%) and cadmium (38% and 8%). The

  1. A Close-Coupled, Heavy Ion ICF Target

    NASA Astrophysics Data System (ADS)

    Callahan-Miller, Debra A.; Tabak, Max

    1998-11-01

    A ``close-coupled'' version of the distributed radiator, heavy ion ICF target has produced gain > 130 from 3.1 MJ of ion beam energy. To achieve these results, we reduced the hohlraum dimensions by 27% from our previous designs(M. Tabak, D. Callahan-Miller, D. D.-M. Ho, G. B. Zimmerman, Nuc. Fusion, 38, 509 (1998)) (M. Tabak, D. A. Callahan-Miller, Phys. Plasmas, 5, 1895 (1998).) while driving the same capsule. This reduced the beam energy required from 5.9-6.5 MJ to 3.1 MJ. The smaller hohlraum resulted in a smaller beam spot; elliptically shaped beams with effective radius 1.7 mm were used in this design. In addition to describing this target, we will discuss the effect of the close-coupled hohlraum on the Rayleigh-Taylor instability and scaling this design down to 1.5-2 MJ for an ETF (Engineering Test Facility).

  2. Application of alpha spectrometry to the discovery of new elements by heavy-ion-beam bombardment

    SciTech Connect

    Nitschke, J.M.

    1983-05-01

    Starting with polonium in 1898, ..cap alpha..-spectrometry has played a decisive role in the discovery of new, heavy elements. For even-even nuclei, ..cap alpha..-spectra have proved simple to interpret and exhibit systematic trends that allow extrapolation to unknown isotopes. The early discovery of the natural ..cap alpha..-decay series led to the very powerful method of genetically linking the decay of new elements to the well-established ..cap alpha..-emission of daughter and granddaughter nuclei. This technique has been used for all recent discoveries of new elements including Z = 109. Up to mendelevium (Z = 101), thin samples suitable for ..cap alpha..-spectrometry were prepared by chemical methods. With the advent of heavy-ion accelerators new sample preparation methods emerged. These were based on the large momentum transfer associated with heavy-ion reactions, which produced energetic target recoils that, when ejected from the target, could be thermalized in He gas. Subsequent electrical deposition or a He-jet technique yielded samples that were not only thin enough for ..cap alpha..-spectroscopy, but also for ..cap alpha..- and ..beta..-recoil experiments. Many variations of these methods have been developed and are discussed. For the synthesis of element 106 an aerosol-based recoil transport technique was devised. In the most recent experiments, ..cap alpha..-spectrometry has been coupled with the magnetic analysis of the recoils. The time from production to analysis of an isotope has thereby been reduced to 10/sup -6/ s; while it was 10/sup -1/ to 10/sup 0/ s for He-jets and 10/sup 1/ to 10/sup 3/ s for rapid chemical separations. Experiments are now in progress to synthesize super heavy elements (SHE) and to analyze them with these latest techniques. Again, ..cap alpha..-spectrometry will play a major role since the expected signature for the decay of a SHE is a sequence of ..cap alpha..-decays followed by spontaneous fission.

  3. The investigation of heavy element accumulation in some Hydrophilidae (Coleoptera) species.

    PubMed

    Aydoğan, Zeynep; Gürol, Ali; İncekara, Ümit

    2016-04-01

    First of all, this study aimed to find out the measures of some heavy elements (Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Sr, Pb) as heavy element pollution in Erzurum Province, and secondly to observe whether some hydrophilidae (Coleoptera) species can be used as a biomonitor. Insect samples were collected from five different localities of Erzurum in June, July, and August 2014. Heavy element levels in sediment, water, and insect samples were analyzed by energy-dispersive X-ray fluorescence (EDXRF) spectrometer device. According to the results of analysis derived through EDXRF spectrometry, heavy element concentrations display differences between stations and also species. The results pointed out that the insects were contaminated by the sediment and water; therefore, some hydrophilidae species accumulate higher concentration of elements than their environment. Results for levels in water were compared to national water quality guidelines. The values of some heavy elements found at higher concentration than acceptable limits. PMID:26935735

  4. Source abundances of ultra heavy elements derived from UHCRE measurements.

    PubMed

    Domingo, C; Font, J; Baixeras, C; Fernandez, F

    1996-11-01

    A total of 205 tracks have been located, measured, and positively identified as originating from Ultra Heavy (Z > or = 65) cosmic ray ions with energies over 2 GeV/amu in the 10 UHCRE plastic track detector (mainly Lexan polycarbonate) stacks studied by our Group. About 40 values of reduced etch rate S have been obtained along each of these tracks. A method based on determining the gradient of S, together with calibration in accelerators, is used to determine the charge of each ion resulting in one of such tracks to obtain the charge spectrum of the recorded Ultra Heavy ions. The abundance ratio of ions with 87 < or = Z < or = 100 to those with 74 < or = Z < or = 86 as well as that of ions with 81 < or = Z < or = 86 to those with 74 < or = Z < or = 80 are calculated at 0.016 and 0.32, respectively, which agree with the values obtained from measurements in the HEAO-3 and Ariel-6 experiments. The abundance ratio of ions with 70 < or = Z < or = 73 to those with 74 < or = Z < or = 86 is also calculated, but its value (0.074) did not seem to be significant because of our detectors' low registration efficiency in the charge range 70 < or = Z < or = 73. A computer program developed by our Group, based on the Leaky Box cosmic ray propagation model, has been used to determine the source abundances of cosmic ray nuclei with Z > or = 65 inferred from the abundances measured in the UHCRE. It appeared that r-process synthesized elements were overabundant compared to the Solar System abundances, as predicted by other authors. PMID:11540515

  5. Review of even element super-heavy nuclei and search for element 120

    NASA Astrophysics Data System (ADS)

    Hofmann, S.; Heinz, S.; Mann, R.; Maurer, J.; Münzenberg, G.; Antalic, S.; Barth, W.; Burkhard, H. G.; Dahl, L.; Eberhardt, K.; Grzywacz, R.; Hamilton, J. H.; Henderson, R. A.; Kenneally, J. M.; Kindler, B.; Kojouharov, I.; Lang, R.; Lommel, B.; Miernik, K.; Miller, D.; Moody, K. J.; Morita, K.; Nishio, K.; Popeko, A. G.; Roberto, J. B.; Runke, J.; Rykaczewski, K. P.; Saro, S.; Scheidenberger, C.; Schött, H. J.; Shaughnessy, D. A.; Stoyer, M. A.; Thörle-Pospiech, P.; Tinschert, K.; Trautmann, N.; Uusitalo, J.; Yeremin, A. V.

    2016-06-01

    The reaction 54Cr + 248Cm was investigated at the velocity filter SHIP at GSI, Darmstadt, with the intention to study production and decay properties of isotopes of element 120. Three correlated signals were measured, which occurred within a period of 279ms. The heights of the signals correspond with the expectations for a decay sequence starting with an isotope of element 120. However, a complete decay chain cannot be established, since a signal from the implantation of the evaporation residue cannot be identified unambiguously. Measured properties of the event chain are discussed in detail. The result is compared with theoretical predictions. Previously measured decay properties of even element super-heavy nuclei were compiled in order to find arguments for an assignment from the systematics of experimental data. In the course of this review, a few tentatively assigned data could be corrected. New interpretations are given for results which could not be assigned definitely in previous studies. The discussion revealed that the cross-section for production of element 120 could be high enough so that a successful experiment seems possible with presently available techniques. However, a continuation of the experiment at SHIP for a necessary confirmation of the results obtained in a relatively short irradiation of five weeks is not possible at GSI presently. Therefore, we decided to publish the results of the measurement and of the review as they exist now. In the summary and outlook section we also present concepts for the continuation of research in the field of super-heavy nuclei.

  6. Elemental characterization of PM1 in a heavy traffic region

    NASA Astrophysics Data System (ADS)

    Ambade, Balram

    Eight hours samples of airborne aerosols PM1 were collected during summer (August-September) and winter (October-November) form one year 2010- 2011 in a intense traffic area of Rajnandgaon city, India. Inductively coupled plasma mass spectroscopy was employed to measure heavy metals (Hg, Cd, Ni, Pb, As). Water-soluble ions (Na+, NH4 +, K+, Ca2+, Cl-, NO3 -, and SO42-) and carbonaceous mass (elemental and organic carbon) were detected using ion chromatograph and CHN analyzer, respectively. The results indicate that the composition of PM10 on intense traffic area is highly affected by automobile emissions. Based on the chemical information, positive matrix factorization (PMF) was used to identify PM sources. A total of five source types were identified, including soil dust, vehicle emissions, sea salt, industrial emissions and secondary aerosols, and their contributions were estimated using PMF. The crustal enrichment factors (EF) were calculated using Al as a reference for the trace metal species to identify the sources

  7. Seismic monitoring of heavy oil reservoirs: Rock physics and finite element modelling

    NASA Astrophysics Data System (ADS)

    Theune, Ulrich

    In the past decades, remote monitoring of subsurface processes has attracted increasing attention in geophysics. With repeated geophysical surveys one attempts to detect changes in the physical properties in the underground without directly accessing the earth. This technique has been proven to be very valuable for monitoring enhanced oil recovery programs. This thesis presents an modelling approach for the feasibility analysis for monitoring of a thermal enhanced oil recovery technique applied to heavy oil reservoirs in the Western Canadian Sedimentary Basin. In order to produce heavy oil from shallow reservoirs thermal oil recovery techniques such as the Steam Assisted Gravity Drainage (SAGD) are often employed. As these techniques are expensive and technically challenging, early detection of operational problems is without doubt of great value. However, the feasibility of geophysical monitoring depends on many factors such as the changes in the rock physical properties of the target reservoir. In order to access the feasibility of seismic monitoring for heavy oil reservoirs, a fluid-substitutional rock physical study has been carried out to simulate the steam injection. The second modelling approach is based on a modified finite element algorithm to simulate the propagation of elastic waves in the earth, which has been developed independently in the framework of this thesis. The work summarized in this thesis shows a possibility to access the feasibility of seismic monitoring for heavy oil reservoirs through an extensive rock-physical study. Seismic monitoring is a useful tool in reservoir management decision process. However, the work reported here suggests that seismic monitoring of SAGD processes in the heavy oil reservoirs of the Western Canadian Sedimentary Basin is only feasible in shallow, unconsolidated deposits. For deeper, but otherwise geological similar reservoirs, the SAGD does not create a sufficient change in the rock physical properties to be

  8. The Zintl Chemistry of the Heavy Tetrel Elements

    SciTech Connect

    John D. Corbett

    2002-12-31

    Exploration of the alkali metal/alkaline-earth metal/heavy tetrel (Sn or Pb) systems has revealed a vast array of new chemistry and novel structure types. The structures and properties of these new materials have been studied in an attempt to understand the chemistry of these and other related systems. The first phase reported is Rb{sub 4}Pb{sub 9} (K{sub 4}Pb{sub 9} type). The compound contains two different types of Pb{sub 9}{sup 4-} deltahedra, a monocapped square pyramid and a distorted tricapped trigonal prism. Both cluster geometries correspond to a nido assignment even though the tricapped trigonal prism is not the classic Wade's rules nido deltahedron expected for a monocapped square antiprism. Also, a series of compounds that contain square pyramidal Tt{sub 5} polyanions of tin and lead has been obtained in alkaline-earth or rare-earth metal-tetrel systems by direct fusion of the elements to yield Sr{sub 3}Sn{sub 5}, Ba{sub 3}Pb{sub 5}, and La{sub 3}Sn{sub 5}. These phases contain square pyramidal clusters of the tetrel elements that are weakly interlinked into chains via two types of longer intercluster interactions that are mediated by bridging cations and substantially influenced by cation size and the free electron count. Attempts at incorporating another main-group element to form heteroatomic clusters were also successful. In the case of A{sub 5}InPb{sub 8} (A = K, Rb), the compounds contain clusters composed of two Pb{sub 4} tetrahedra that are interbridged by a lone {micro}{sub 6}-In atom. The InPb{sub 8} units are weakly interlinked into sheets in the ab plane by long intercluster Pb-Pb interactions. Using As led to the formation of the compound K{sub 5}As{sub 3}Pb{sub 3} which is made up of As{sub 3}Pb{sub 3}{sup 5-} crown clusters that can be likened to a 6-atom hypho-cluster based on the tricapped trigonal parent as the closo structure. These crowns are connected via intercluster bonds to form infinite chains down the b axis. This work also

  9. Unraveling heavy oil desulfurization chemistry: targeting clean fuels.

    PubMed

    Choudhary, Tushar V; Parrott, Stephen; Johnson, Byron

    2008-03-15

    The sulfur removal chemistry of heavy oils has been unraveled by systematically investigating several heavy oils with an extremely wide range of properties. The heavy oil feed and product properties have been characterized by advanced analytical methods, and these properties have been related to the sulfur conversion data observed in pilot hydrotreating units. These studies coupled with kinetic treatment of the data have revealed that the desulfurization chemistry of heavy oils is essentially controlled by the strongly inhibiting three and larger ring aromatic hydrocarbon content and surprisingly not by the content of the "hard-to-remove" sulfur compounds. Such enhanced understanding of the heavy oil sulfur removal is expected to open new avenues for catalyst/process optimization for heavy oil desulfurization and thereby assist the efficent production of clean transporation fuels. PMID:18409618

  10. Discoveries and names of heavy chemical elements: from curium to copernicium and beyond

    NASA Astrophysics Data System (ADS)

    Sobiczewski, Adam

    2011-01-01

    The present state of the synthesis and studies of the properties of heavy nuclei is shortly presented. Main attention is given to superheavy nuclei, in particular to isotopes of copernicium, the heaviest element the discovery and name of which have been approved by IUPAC, and to isotopes of the recently observed element 117. The rules used in naming newly discovered elements and recent changes in these names or these elements are discussed.

  11. Comment on 'Heavy element production in inhomogeneous big bang nucleosynthesis'

    SciTech Connect

    Rauscher, Thomas

    2007-03-15

    The work of Matsuura et al. [Phys. Rev. D 72, 123505 (2005)] claims that heavy nuclei could have been produced in a combined p- and r-process in very high baryon density regions of an inhomogeneous big bang. However, they do not account for observational constraints and previous studies which show that such high baryon density regions did not significantly contribute to big bang abundances.

  12. Separator for Heavy ELement Spectroscopy - velocity filter SHELS

    NASA Astrophysics Data System (ADS)

    Popeko, A. G.; Yeremin, A. V.; Malyshev, O. N.; Chepigin, V. I.; Isaev, A. V.; Popov, Yu. A.; Svirikhin, A. I.; Haushild, K.; Lopez-Martens, A.; Rezynkina, K.; Dorvaux, O.

    2016-06-01

    The SHELS velocity filter originated upon reconstruction of the VASSILISSA electrostatic separator used for investigations of heavy nuclei produced in complete fusion reactions. The goals of this modernization were to increase the transmission of products of asymmetric reactions and to extend the region of reactions to be investigated up to symmetric combinations. The first tests of the set-up were performed with the beams of accelerated 22Ne, 40Ar, 48Ca, and 50Ti ions.

  13. NO HEAVY-ELEMENT DISPERSION IN THE GLOBULAR CLUSTER M92

    SciTech Connect

    Cohen, Judith G.

    2011-10-20

    Although there have been recent claims that there is a large dispersion in the abundances of the heavy neutron capture elements in the old Galactic globular cluster M92, we show that the measured dispersion for the absolute abundances of four of the rare earth elements within a sample of 12 luminous red giants in M92 ({<=}0.07 dex) does not exceed the relevant sources of uncertainty. As expected from previous studies, the heavy elements show the signature of the r-process. Their abundance ratios are essentially identical to those of M30, another nearby globular cluster of similar metallicity.

  14. LIBS Detection of Heavy Metal Elements in Liquid Solutions by Using Wood Pellet as Sample Matrix

    NASA Astrophysics Data System (ADS)

    Wen, Guanhong; Sun, Duixiong; Su, Maogen; Dong, Chenzhong

    2014-06-01

    Laser-induced breakdown spectroscopy (LIBS) has been applied to the analysis of heavy metals in liquid samples. A new approach was presented to lower the limit of detection (LOD) and minimize the sample matrix effects, in which dried wood pellets absorbed the given amounts of Cr standard solutions and then were baked because they have stronger and rapid absorption properties for liquid samples as well as simple elemental compositions. In this work, we have taken a typical heavy metal Cr element as an example, and investigated the spectral feasibility of Cr solutions and dried wood pellets before and after absorbing Cr solutions at the same experimental conditions. The results were demonstrated to successfully produce a superior analytical response for heavy metal elements by using wood pellet as sample matrix according to the obtained LOD of 0.07 ppm for Cr element in solutions.

  15. Environmental monitoring of trace elements in bark of Scots pine by thick-target PIXE

    NASA Astrophysics Data System (ADS)

    Harju, L.; Saarela, K.-E.; Rajander, J.; Lill, J.-O.; Lindroos, A.; Heselius, S.-J.

    2002-04-01

    Bark samples were taken from Scots pines ( Pinus sylvestris L.) from a polluted area near a metal plant and from a relatively non-polluted site. Thick-target particle-induced X-ray emission (PIXE) was used for the analyses after different types of prepreparation of the samples. The bark samples were analysed directly by radially scanning from inner to outer bark in order to study the variability of elemental concentrations in different layers. Some clear differences were found in the chemical composition of the inner and outer bark. The lowest detection limits for the analyses of heavy metal ions were obtained by combining dry ashing at 550 °C with the PIXE method. More than 100 times higher concentrations were found for the heavy metal ions Fe, Ni, Cu, Zn, Ga, As and Pb in the bark samples from a polluted area in comparison to samples from a non-polluted area. The work demonstrated that external-beam thick-target PIXE is a sensitive and reliable method for quantitative determination of heavy metals in tree bark samples.

  16. Heavy-elements in metal-poor stars: an UV perspective

    NASA Astrophysics Data System (ADS)

    Siqueira-Mello, C.; Barbuy, B.

    2014-11-01

    The site(s) of the r-process(es) is(are) not completely defined, and several models have been proposed. Observed abundances are the best clues to bring some light to this field, especially the study of the extremely metal-poor (EMP) Galactic halo stars. Many elements can be measured using ground-based facilities already available, but the ultraviolet window also presents a rich opportunity in terms of chemical abundances of heavy elements. In fact, for some elements only the UV transitions are strong enough to be useful. Focusing on the project of the Cassegrain U-Band Brazilian Spectrograph (CUBES), we discuss the science case for heavy elements in metal-poor stars, describing the useful lines of trans-Fe elements present in the UV region. Lines in the far UV are also discussed.

  17. Heavy Element Abundances in Planetary Nebulae from Deep Optical Echelle Spectroscopy

    NASA Astrophysics Data System (ADS)

    Mashburn, Amanda; Sterling, Nicholas C.; Dinerstein, Harriet L.; Garofali, Kristen; Jensema, Rachael; Turbyfill, Amanda; Wieser, Hannah-Marie N.; Reed, Evan C.; Redfield, Seth

    2016-01-01

    We present the abundances of neutron(n)-capture elements (atomic number Z > 30) and iron determined from deep optical echelle spectroscopy of 14 Galactic planetary nebulae (PNe). The spectra were obtained with the 2D-coudé spectrograph on the 2.7-m Harlan J. Smith telescope at McDonald Observatory. The abundances of n-capture elements can be enhanced in PNe due to slow n-capture nucleosynthesis in the progenitor asymptotic giant branch (AGB) stars. The high spectral resolution of these data (R = 36,700) allow most n-capture element emission lines to be resolved from other nebular and telluric features. We detect Kr in all of the observed PNe (with multiple ions detected in several objects), while Br, Rb, and Xe were each detected in 4--5 objects. Using the new Kr ionization correction factors (ICFs) of Sterling et al. (2015, ApJS, 218, 25), we find [Kr/O] abundances ranging from 0.05 to 1.1 dex. We utilize approximate ICFs for the other n-capture elements, and find slightly lower enrichments for Br and Rb (-0.1 to 0.7 dex), while Xe is enhanced relative to solar by factors of two to 30. The [Xe/Kr] ratios range from -0.3 to 1.4 dex, indicating a significant range in neutron exposures in PN progenitor stars. Interestingly, the largest [Xe/Kr] ratio is found in the thick-disk PN NGC 6644, which has a lower metallicity than the other observed PNe. We detect iron emission lines in all but one target. Fe can be depleted into dust grains in ionized nebulae, and its abundance thus provides key information regarding dust-to-gas ratios and grain destruction processes. We find that [Fe/O] ranges from -1.3 to -0.7 dex in the observed PNe, a smaller spread of depletion factors than found in recent studies (Delgado-Inglada & Rodriguez 2014, ApJ, 784, 173) though this may be due in part to our smaller sample. These data are part of a larger study of heavy elements in PNe, which will provide more accurate determinations of n-capture element abundances than previous estimates in

  18. NASA-SETI microwave observing project: Targeted Search Element (TSE)

    NASA Technical Reports Server (NTRS)

    Webster, L. D.

    1991-01-01

    The Targeted Search Element (TSE) performs one of two complimentary search strategies of the NASA-SETI Microwave Observing Project (MOP): the targeted search. The principle objective of the targeted search strategy is to scan the microwave window between the frequencies of one and three gigahertz for narrowband microwave emissions eminating from the direction of 773 specifically targeted stars. The scanning process is accomplished at a minimum resolution of one or two Hertz at very high sensitivity. Detectable signals will be of a continuous wave or pulsed form and may also drift in frequency. The TSE will possess extensive radio frequency interference (RFI) mitigation and verification capability as the majority of signals detected by the TSE will be of local origin. Any signal passing through RFI classification and classifiable as an extraterrestrial intelligence (ETI) candidate will be further validated at non-MOP observatories using established protocol. The targeted search will be conducted using the capability provided by the TSE. The TSE provides six Targeted Search Systems (TSS) which independently or cooperatively perform automated collection, analysis, storage, and archive of signal data. Data is collected in 10 megahertz chunks and signal processing is performed at a rate of 160 megabits per second. Signal data is obtained utilizing the largest radio telescopes available for the Targeted Search such as those at Arecibo and Nancay or at the dedicated NASA-SETI facility. This latter facility will allow continuous collection of data. The TSE also provides for TSS utilization planning, logistics, remote operation, and for off-line data analysis and permanent archive of both the Targeted Search and Sky Survey data.

  19. Relations between sulfur and heavy elements in rural atmospheres

    NASA Astrophysics Data System (ADS)

    Navarre, J. L.; Priest, P.; Ronneau, C.

    Sulfur dioxide was used as an indicator of the occurrence of air pollution episodes in a rural area of Belgium. Provided air particulates sampling operations are strictly synchronized with SO 2 immission episodes, correlations appeared between the levels in air of sulfur and the levels of some toxic metals. Comparing the relative proportions of sulfur and metals in air with emission data for combustion sources in Belgium (coal especially) leads to the conclusion that combustion is probably the main source of toxic elements likely to contaminate rural atmospheres. On the other hand, it appears that industrial zone characterization is feasible by comparing the relative proportions of some specific metals in air.

  20. The Heavy Element Abundance in Groups of Galaxies

    NASA Technical Reports Server (NTRS)

    David, Laurence

    2000-01-01

    Over the past few years we have analyzed a sample of clusters observed by the Advanced Spacecraft for Cosmology Astrophysics (ASCA) X-ray satellite. We performed spatially resolved X-ray spectroscopy of a sample of 18 relaxed clusters of galaxies with gas temperatures below 4 keV. The spectral analysis was done using ASCA/SIS (Solid state Imaging Spectrometer) data combined with imaging data from ROSAT/PSPC (German acronym for X-ray satellite/Position Sensitive Proportional Counter) and Einstein/IPC (Imaging Proportional Counter) observations. We derived temperature profiles using single-temperature fits for all of the clusters in the sample, and also corrected for the presence of cold gas in the center of so-called 'cooling flow' clusters. For all of the clusters in the sample we derived Si and Fe abundance profiles. For a few of the clusters we also were able to derive Ne and S abundance profiles. We compared the elemental abundances derived at similar overdensities in all of the clusters in the sample. We also compared element mass-to-light ratios for the entire sample. We concluded that the preferential accretion of low entropy, low abundance gas into the potentials of groups and cold clusters can explain most of the observed trends in metallicity. In addition, we discussed the importance of preheating of the intracluster medium by Type II supernovae on the cluster scaling relations.

  1. Review of target studies for heavy ion fusion

    SciTech Connect

    Lindl, J.D.; Bangerter, R.D.; Mark, J.W.K.; Pan, Y.L.

    1986-10-24

    We present an updated set of gain curves for radiation driven ion beam targets. The improved target performance calculated with nuclear spin polarized fuel will also be discussed. We discuss the conditions required for efficient conversion to x-rays of ion beam energy. These requirements are compared with those obtained for lasers. Recent results on symmetry requirements for direct drive ion beam targets are presented.

  2. Recent Investigations of Heavy Elements (37{<=}Z{<=}92)

    SciTech Connect

    Biemont, E.

    2011-05-11

    The present paper is an update and extension of previous compilations [1, 2] and it describes recent progress regarding the investigation of the radiative properties of the elements and ions (first three ionization stages) of the fifth and sixth rows of the periodic table and of the rare earths (mostly the lanthanides). From a combination of experimental radiative lifetimes obtained with laser spectroscopy and of theoretical branching fractions calculated with a quasirelativistic Hartree-Fock approach taking configuration interaction and core-polarization effects into account, transition probabilities have been deduced for a large number of transitions of astrophysical interest. Some new results are briefly described here. The numerical values are stored in the databases DESIRE and DREAM, which are developped and progressively updated on a web site of Mons University in Belgium.

  3. Distribution of heavy elements in urban and rural surface soils: the Novi Sad city and the surrounding settlements, Serbia.

    PubMed

    Škrbić, Biljana; Đurišić-Mladenović, Nataša

    2013-01-01

    Concentrations of ten heavy elements (Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, and Zn), as well as the pH values, organic matter contents, and electrical conductivities were measured in the surface soil samples collected from 21 sites of urban areas in the city of Novi Sad, the second largest city in Serbia, its suburban settlement and the nearby villages. Range of the heavy element concentrations was from 0.16 mg/kg (for Hg) to 18,994 mg/kg (for Fe). Significantly higher Hg and Mn concentrations were observed in subgroups with rural and market garden samples in comparison to the subgroups with urban and grassland samples, respectively, while the contents of Pb found in the grasslands subgroup were significantly higher than in the subgroup with market garden soils. Only one sample of urban soil exceeded the maximum permissible value for Zn set by the relevant Serbian legislation. According to the Dutch soil quality standard, the Cd and Co concentrations in majority of the examined soils were higher than the target values for unpolluted soil. The content of Hg was above the target value in 52% of the samples, most of them belonging to the subgroup of market garden soils. The results for the Novi Sad city area were compared to the relevant data available for other cities in the Western Balkan Countries. Principal component analysis of data revealed seven outlying samples, while the rest of the analyzed samples were grouped together indicating similar heavy element patterns most probably due to mixed emission sources. PMID:22350352

  4. Marriage of heavy main group elements with π-conjugated materials for optoelectronic applications.

    PubMed

    Parke, Sarah M; Boone, Michael P; Rivard, Eric

    2016-08-01

    This review article summarizes recent progress in the synthesis and optoelectronic properties of conjugated materials containing heavy main group elements from Group 13-16 as integral components. As will be discussed, the introduction of these elements can promote novel phosphorescent behavior and support desirable molecular and polymeric properties such as low optical band gaps and high charge mobilities for photovoltaic and thin film transistor applications. PMID:27344980

  5. Super-Heavy Element and Other Exotic Nuclei Research at LLNL

    NASA Astrophysics Data System (ADS)

    Stoyer, M. A.

    2015-11-01

    The experimental nuclear physics group at LLNL is actively investigating exotic nuclei in a variety of regions of the chart of nuclides - from light nuclei to super-heavy elements. The experimental nuclear physics effort at LLNL is centered on investigating nuclei at the extremes--in particular, extremes of spin, isospin, neutron richness, excitation energy, decay and detectability, mass, and stability. This talk will focus on recent heavy and super-heavy element experiments including nuclear structure investigations of the heaviest nuclei. Other areas of research, including radioactive ion beam experiments, trapping experiments, nuclear decay spectroscopy experiments, and rare decay searches, will be discussed as time permits. Recent experimental results on studies of exotic nuclei by scientists at LLNL will be presented.

  6. Is there a role for fixed target heavy ion physics beyond RHIC startup?

    SciTech Connect

    Sandweiss, J.

    1995-07-15

    The interesting and important physics opportunities provided by AGS and CERN fixed target facilities will be far from exhausted by the time of RHIC turn on. Given the need for the AGS to provide heavy ion beams for injection into RHIC, the cost effectiveness of fixed target experimentation with AGS beams will be high. Examples of the physics are given.

  7. NEW HUBBLE SPACE TELESCOPE OBSERVATIONS OF HEAVY ELEMENTS IN FOUR METAL-POOR STARS

    SciTech Connect

    Roederer, Ian U.; Thompson, Ian B.; Lawler, James E.; Sobeck, Jennifer S.; Beers, Timothy C.; Cowan, John J.; Frebel, Anna; Ivans, Inese I.; Schatz, Hendrik; Sneden, Christopher

    2012-12-15

    Elements heavier than the iron group are found in nearly all halo stars. A substantial number of these elements, key to understanding neutron-capture nucleosynthesis mechanisms, can only be detected in the near-ultraviolet. We report the results of an observing campaign using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope to study the detailed heavy-element abundance patterns in four metal-poor stars. We derive abundances or upper limits from 27 absorption lines of 15 elements produced by neutron-capture reactions, including seven elements (germanium, cadmium, tellurium, lutetium, osmium, platinum, and gold) that can only be detected in the near-ultraviolet. We also examine 202 heavy-element absorption lines in ground-based optical spectra obtained with the Magellan Inamori Kyocera Echelle Spectrograph on the Magellan-Clay Telescope at Las Campanas Observatory and the High Resolution Echelle Spectrometer on the Keck I Telescope on Mauna Kea. We have detected up to 34 elements heavier than zinc. The bulk of the heavy elements in these four stars are produced by r-process nucleosynthesis. These observations affirm earlier results suggesting that the tellurium found in metal-poor halo stars with moderate amounts of r-process material scales with the rare earth and third r-process peak elements. Cadmium often follows the abundances of the neighboring elements palladium and silver. We identify several sources of systematic uncertainty that must be considered when comparing these abundances with theoretical predictions. We also present new isotope shift and hyperfine structure component patterns for Lu II and Pb I lines of astrophysical interest.

  8. Testing Target Components Using a Near-Term Heavy Ion Driver

    NASA Astrophysics Data System (ADS)

    Callahan, D. A.; Tabak, M.; Logan, B. G.

    1996-11-01

    Many aspects of the traditional two radiator heavy ion target( D. D.-M. Ho, this meeting) can be tested using lasers such as Nova or the National Ignition Facility (NIF). Experiments using ion beams can compliment this work giving information on ion range shortening and hydrodyanamic motion of the converter material. Hydrodynamic motion of the converter material has proven to be an important issue in the traditional two radiator heavy ion target. Ion range shortening is an important issue for the new distributed radiator target(M. Tabak, this meeting). We will present 2-d Lasnex calculations which show that ~ 1 kJ of beam energy can heat a small amount of material to temperatures relevant for heavy ion target physics (≈ 250 eV).

  9. Heavy-Ion Fusion Mechanism and Predictions of Super-Heavy Elements Production

    SciTech Connect

    Abe, Yasuhisa; Shen Caiwan; Boilley, David

    2009-08-26

    Fusion process is shown to firstly form largely deformed mono-nucleus and then to undergo diffusion in two-dimensions with the radial and mass-asymmetry degrees of freedom. Examples of prediction of residue cross sections are given for the elements with Z = 117 and 118.

  10. SHELS -- A Separator for Heavy Element Spectroscopy: First Results

    NASA Astrophysics Data System (ADS)

    Popeko, A.; Yeremin, A.; Malyshev, O.; Chepigin, V.; Svirikhin, A.; Isaev, A.; Kuznetsova, A.; Lopez-Martens, A.; Hauschild, K.; Dorvaux, O.; Gal, B.; Mullins, S.; Jones, P.; Ntshangase, S.

    2015-11-01

    Detailed spectroscopic information of excited nuclear states in deformed transfermium nuclei is scarce. Most of the information available today has been obtained from investigations of fine-structure α-decay. Although α-decay gives access to hindrance factors and lifetimes which are strongly correlated to shell/subshell closures and the presence of isomers, only the combined use of γ- and conversion-electron spectroscopy allows the precise determination of excitation energy, spin and parity of nuclear levels. Our accumulated experience with ion-optical calculations allowed us to design the new experimental set-up, from which optimal parameters utilized with existing separators and their associated complex focal-plane detector systems, were determined. The results of first experimental tests of the modernized VASSILISSA separator with the use of accelerated 22Ne ions are presented. The data were obtained from the experimental measurements of the transmission coefficients of the recoil nuclei synthesized in the asymmetric combinations of the incident ion - target nucleus. Ion optical calculations inherent in the project of modernization of the separator are completely confirmed.

  11. Simulation of neutron production in heavy metal targets using Geant4 software

    NASA Astrophysics Data System (ADS)

    Baldin, A. A.; Berlev, A. I.; Kudashkin, I. V.; Mogildea, G.; Mogildea, M.; Paraipan, M.; Tyutyunnikov, S. I.

    2016-03-01

    Inelastic hadronic interactions in heavy targets have been simulated using Geant4 and compared with experimental data for thin and thick lead and uranium targets. Special attention is paid to neutron and fission fragment production. Good agreement in the description of proton-beam interaction with thick targets is demonstrated, which is important for the simulation of experiments aimed at the development of subcritical reactors.

  12. Heavy flavor production in fixed-target experiments

    SciTech Connect

    Appel, J.A.

    1990-09-01

    This presentation is a review of recent measurements on charm production at fixed-target experiments. The measurements are relevant to a number of basic physics issues: tests of perturbative QCD, fragmentation, and basic hadronic structure. We now have high quality, high statistics data from several fixed-target experiments. These include a total of about 30,000 fully reconstructed open charm decays and even more copious J/{Psi}, {Psi}, and {Upsilon} decays. Reconstruction of the full data is now reaching completion and we await final results for systematic physics interpretations. This review of the current situation will be followed by a brief look beyond, toward beauty production at fixed-target experiments.

  13. Calculation of cross sections for binary reactions between heavy ion projectiles and heavy actinide targets

    SciTech Connect

    Hoffman, D.C.; Hoffman, M.M.

    1990-11-01

    The computer program, described in this report, is identified as PWAVED5. It was developed to calculate cross sections for nucleon transfer reactions in low energy heavy ion bombardments. The objective was to calculate cross sections that agree with experimental results for ions of different charge and mass and to develop a predictive capability. It was undertaken because previous heavy ion calculations, for which programs were readily available, appeared to focus primarily on reactions resulting in compound nucleus formation and were not particularly applicable to calculations of binary reaction cross sections at low interaction energies. There are to principal areas in which this computation differs from several other partial wave calculations of heavy-ion reaction cross sections. First, this program is designed specifically to calculate cross sections for nucleon exchange interactions and to exclude interactions that are expected to result in fusion of the two nuclei. A second major difference in this calculation is the use of a statistical distribution to assign the total interaction cross section to individual final mass states.

  14. The X-Target: A novel high gain target with single-sided heavy-ion beam illumination

    NASA Astrophysics Data System (ADS)

    Henestroza, Enrique

    2012-10-01

    A new inertial-fusion target configuration, the X-target, using one-sided heavy ion axial illumination has been explored [1]. It takes advantage of the unique energy deposition properties of heavy ion beams that have a classical, long penetration range. This class of target uses heavy ion beams to compress and ignite deuterium-tritium (DT) fuel that fills the interior of metal cases that have side-view cross sections in the shape of an ``X''. X-targets that incorporate inside the case a propellant (plastic) and a pusher (aluminum) surrounding the DT are capable of assembling fuel areal densities ˜2 g/cm^2 using two MJ-scale annular beams to implode quasi-spherically the target to peak DT densities ˜100 g/cm^3. A 3MJ fast-ignition solid ion beam heats the fuel to thermonuclear temperatures in ˜200 ps to start the burn propagation, obtaining gains of ˜300. The main concern for the X-target is the amount of high-Z atomic mixing at the ignition zone produced by hydro-instabilities, which, if large enough, could cool the fuel during the ignition process and prevent the propagation of the fusion burn. Analytic estimates and implosion calculations using the radiation hydrodynamics code HYDRA in 2D (RZ), at typical Eulerian mesh resolutions of a few microns, have shown that for the relatively low implosion velocities, low stagnation fuel densities, and low quasi-spherical fuel convergence ratios of the X-target, these hydro-instabilities do not have a large effect on the burning process. These preliminary studies need to be extended by further hydrodynamic calculations using finer resolution, complemented with turbulent mix modeling and validated by experiments, to ascertain the stability of the X-target design. We will present the current status of the X-target. [4pt] [1] E. Henestroza and B. G. Logan, Phys. Plasmas 19, 072706 (2012)

  15. A transverse electron target for heavy ion storage rings

    SciTech Connect

    Geyer, Sabrina Meusel, Oliver; Kester, Oliver

    2015-01-09

    Electron-ion interaction processes are of fundamental interest for several research fields like atomic and astrophysics as well as plasma applications. To address this topic, a transverse electron target based on the crossed beam technique was designed and constructed for the application in storage rings. Using a sheet beam of free electrons in crossed beam geometry promises a good energy resolution and gives access to the interaction region for spectroscopy. The produced electron beam has a length of 10 cm in ion beam direction and a width in the transverse plane of 5 mm. Therewith, electron densities of up to 10{sup 9} electrons/cm{sup 3} are reachable in the interaction region. The target allows the adjustment of the electron beam current and energy in the region of several 10 eV to a few keV. Simulations have been performed regarding the energy resolution for electron-ion collisions and its influence on spectroscopic measurements. Also, the effect on ion-beam optics due to the space charge of the electron beam was investigated. Presently the electron target is integrated into a test bench to evaluate its performance for its dedicated installation at the storage rings of the FAIR facility. Therefore, optical diagnostics of the interaction region and charge state analysis with a magnetic spectrometer is used. Subsequently, the target will be installed temporarily at the Frankfurt Low-Energy Storage Ring (FLSR) for further test measurements.

  16. Reliable Electronic Structure Calculations for Heavy Element Chemistry: Molecules Containing Actinides, Lanthanides, and Transition Metals

    SciTech Connect

    Marino, Maria, M.; Ermler, Walter C

    2006-01-27

    It is now possible to calculate many properties including the energetics (total bond dissociation energies or heats of formation) of molecules containing light elements to high accuracy by using correlation-consistent basis sets, coupled cluster theory and including additive corrections for core-valence and relativistic effects and careful treatment of the zero point energy. We propose to develop software for ab initio electronic structure calculations based on molecular orbital theory and density functional theory with the proper treatment of relativistic effects to study complexes of heavy elements in order to assist in understanding and predicting the chemistry of the actinides, lanthanides, and heavy transition metals, molecules critical to DOE missions including environmental management. The proposed work will focus on the development of these electronic structure methods and their implementation in software on advanced massively parallel processor (MPP) computer architectures capable of multi-tens of teraflops to petaflops. The core of the software will be developed within the NWChem and Columbus software suites. We propose to make the software broadly available so that other scientists can use these tools to address the complex environmental problems facing the Department of Energy's nuclear production sites as well as other waste sites in the Nation. Our implementation of relativistic quantum chemical methods for massively parallel computers will enable us to simulate the behavior of heavy-element compounds at the same type of level currently available for light-element compounds. In addition, this work will enable us to provide better methods for benchmarks of the additive energetic schemes currently available for light atom compounds. The theoretical and computational methodology so developed will be an invaluable supplement to current, very expensive experimental studies of the actinides, lanthanides, and radioactive heavy transition metal elements

  17. Heavy metals and rare earth elements source-sink in some Egyptian cigarettes as determined by neutron activation analysis.

    PubMed

    Nada, A; Abdel-Wahab, M; Sroor, A; Abdel-Haleem, A S; Abdel-Sabour, M F

    1999-07-01

    Heavy metals and rare earth elements in two types of cigarettes were studied. The contents of trace elements were determined by using delayed neutron activation analysis. In the present study 11 elements have been detected in popular and fine brand cigarettes marketed in Egypt. Evaluation of these elements with their potential hazards for smokers is briefly discussed. The material balance (source and sink) for each element was determined. Also the ratio of element recovery to the total amount was assessed. PMID:10376325

  18. ON THE VOLATILE ENRICHMENTS AND HEAVY ELEMENT CONTENT IN HD189733b

    SciTech Connect

    Mousis, O.; Petit, J.-M.; Picaud, S.; Lunine, J. I.; Zahnle, K.; Marley, M. S.; Biennier, L.; Mitchell, J. B. A.; Cordier, D.; Georges, R.; Johnson, T. V.; Boudon, V.; Devel, M.; Griffith, C.; Iro, N.

    2011-02-01

    Favored theories of giant planet formation center around two main paradigms, namely the core accretion model and the gravitational instability model. These two formation scenarios support the hypothesis that the giant planet metallicities should be higher or equal to that of the parent star. Meanwhile, spectra of the transiting hot Jupiter HD189733b suggest that carbon and oxygen abundances range from depleted to enriched with respect to the star. Here, using a model describing the formation sequence and composition of planetesimals in the protoplanetary disk, we determine the range of volatile abundances in the envelope of HD189733b that is consistent with the 20-80 M{sub +} of heavy elements estimated to be present in the planet's envelope. We then compare the inferred carbon and oxygen abundances to those retrieved from spectroscopy, and we find a range of supersolar values that directly fit both spectra and internal structure models. In some cases, we find that the apparent contradiction between the subsolar elemental abundances and the mass of heavy elements predicted in HD189733b by internal structure models can be explained by the presence of large amounts of carbon molecules in the form of polycyclic aromatic hydrocarbons and soots in the upper layers of the envelope, as suggested by recent photochemical models. A diagnostic test that would confirm the presence of these compounds in the envelope is the detection of acetylene. Several alternative hypotheses that could also explain the subsolar metallicity of HD189733b are formulated: the possibility of differential settling in its envelope, the presence of a larger core that did not erode with time, a mass of heavy elements lower than the one predicted by interior models, a heavy element budget resulting from the accretion of volatile-poor planetesimals in specific circumstances, or the combination of all these mechanisms.

  19. Effects of heavy-element settling on solar neutrino fluxes and interior structure

    NASA Technical Reports Server (NTRS)

    Proffitt, Charles R.

    1994-01-01

    We consider the effects of gravitational settling of both He and heavier elements on the predicted solar neutrino fluxes and interior sound speed and density profiles. We find that while the structural changes that result from the inclusion of both He and heavy-element settling are only slightly larger than the changes resulting from the inclusion of He settling alone, the additional increases in expected neutrino fluxes are of comparable size. Our preferred model with both He and heavy-element settling has neutrino count rates of 9.0 SNU for Cl-37 detectors and 137 SNU for Ga-71 detectors, as compared to 7.1 and 127 SNU for a comparable model without any diffusive separation, or 8.0 and 132 SNU for a model that includes He settling alone. We suggest that the correction factors by which the predicted neutrino fluxes of solar models calculated without including the effects of diffusion should be multiplied are 1.25 +/- 0.08 for Cl detectors, 1.07 +/- 0.02 for Ga detectors, and 1.28 +/- 0.09 for the B-8 flux (1 sigma errors). Comparison of internal sound speed and density profiles strongly suggests that the additional changes in calculated p-mode oscillation frequencies due to the inclusion of heavy-element settling will be small compared to the changes that result from He settling alone, especially for the higher degree modes. All models with diffusive separation give much better agreement with the observed depth of the convection zone than do nondiffusive models. The model that includes both He and heavy-element settling requires an initial He mass fraction Y = 0.280 and has a surface He abundance of Y = 0.251 at the solar age.

  20. Cosmological quantum chromodynamics, neutron diffusion, and the production of primordial heavy elements

    NASA Technical Reports Server (NTRS)

    Applegate, J. H.; Hogan, Craig J.; Scherrer, R. J.

    1988-01-01

    A simple one-dimensional model is used to describe the evolution of neutron density before and during nucleosynthesis in a high-entropy bubble left over from the cosmic quark-hadron phase transition. It is shown why cosmic nucleosynthesis in such a neutron-rich environment produces a surfeit of elements heavier than lithium. Analytical and numerical techniques are used to estimate the abundances of carbon, nitrogen, and heavier elements up to Ne-22. A high-density neutron-rich region produces enough primordial N-14 to be observed in stellar atmospheres. It shown that very heavy elements may be created in a cosmological r-process; the neutron exposure in the neutron-rich regions is large enough for the Ne-22 to trigger a catastrophic r-process runaway in which the quantity of heavy elements doubles in much less than an expansion time due to fission cycling. A primordial abundance of r-process elements is predicted to appear as an excess of rare earth elements in extremely metal-poor stars.

  1. Dissolved trace elements and heavy metals in the Danjiangkou Reservoir, China

    NASA Astrophysics Data System (ADS)

    Li, Siyue; Xu, Zhifang; Cheng, Xiaoli; Zhang, Quanfa

    2008-09-01

    Concentrations of trace elements and heavy metals (Al, As, Ba, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Sb, Se, Sr, V and Zn) in the Danjiangkou Reservoir, the water source area of the Middle Route of China’s interbasin South to North Water Transfer Project, were analyzed using an Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES) and compared with the national and international standards for drinking water. The results indicated that concentrations of As, Pb, Sb and Se in the Reservoir exceeded the standards and they would pose health risk for residents in the region and the water receiving areas of the interbasin water transfer project. Spatial and temporal variability of the trace elements and heavy metals in the Reservoir implies their mixed sources of natural processing and anthropogenic activities in the upper drainage of the Reservoir. The research results would help develop water resource management and conservation strategy for the interbasin water transfer project.

  2. Altering genomic integrity: heavy metal exposure promotes trans-posable element-mediated damage

    PubMed Central

    Morales, Maria E.; Servant, Geraldine; Ade, Catherine; Roy-Enge, Astrid M.

    2015-01-01

    Maintenance of genomic integrity is critical for cellular homeostasis and survival. The active transposable elements (TEs) composed primarily of three mobile element lineages LINE-1, Alu, and SVA comprise approximately 30% of the mass of the human genome. For the past two decades, studies have shown that TEs significantly contribute to genetic instability and that TE-caused damages are associated with genetic diseases and cancer. Different environmental exposures, including several heavy metals, influence how TEs interact with its host genome increasing their negative impact. This mini-review provides some basic knowledge on TEs, their contribution to disease and an overview of the current knowledge on how heavy metals influence TE-mediated damage. PMID:25774044

  3. Nonlinear ion-acoustic waves in a degenerate plasma with nuclei of heavy elements

    SciTech Connect

    Hossen, M. A. Mamun, A. A.

    2015-10-15

    The ion-acoustic (IA) solitary waves propagating in a fully relativistic degenerate dense plasma (containing relativistic degenerate electron and ion fluids, and immobile nuclei of heavy elements) have been theoretically investigated. The relativistic hydrodynamic model is used to derive the Korteweg-de Vries (K-dV) equation by the reductive perturbation method. The stationary solitary wave solution of this K-dV equation is obtained to characterize the basic features of the IA solitary structures that are found to exist in such a degenerate plasma. It is found that the effects of electron dynamics, relativistic degeneracy of the plasma fluids, stationary nuclei of heavy elements, etc., significantly modify the basic properties of the IA solitary structures. The implications of this results in astrophysical compact objects like white dwarfs are briefly discussed.

  4. On the seismic age and heavy-element abundance of the Sun

    NASA Astrophysics Data System (ADS)

    Houdek, G.; Gough, D. O.

    2011-12-01

    We estimate the main-sequence age and heavy-element abundance of the Sun by means of an asteroseismic calibration of theoretical solar models using only low-degree acoustic modes from the BiSON. The method can therefore be applied also to other solar-type stars, such as those observed by the NASA satellite Kepler and the planned ground-based Danish-led Stellar Observations Network Group (SONG). The age, 4.60 ± 0.04 Gyr, obtained with this new seismic method, is similar to, although somewhat greater than, today's commonly adopted values, and the surface heavy-element abundance by mass, Zs= 0.0142 ± 0.0005, lies between the values quoted recently by Asplund et al. and by Caffau et al. We stress that our best-fitting model is not a seismic model, but a theoretically evolved model of the Sun constructed with 'standard' physics and calibrated against helioseismic data.

  5. Nonlinear ion-acoustic waves in a degenerate plasma with nuclei of heavy elements

    NASA Astrophysics Data System (ADS)

    Hossen, M. A.; Mamun, A. A.

    2015-10-01

    The ion-acoustic (IA) solitary waves propagating in a fully relativistic degenerate dense plasma (containing relativistic degenerate electron and ion fluids, and immobile nuclei of heavy elements) have been theoretically investigated. The relativistic hydrodynamic model is used to derive the Korteweg-de Vries (K-dV) equation by the reductive perturbation method. The stationary solitary wave solution of this K-dV equation is obtained to characterize the basic features of the IA solitary structures that are found to exist in such a degenerate plasma. It is found that the effects of electron dynamics, relativistic degeneracy of the plasma fluids, stationary nuclei of heavy elements, etc., significantly modify the basic properties of the IA solitary structures. The implications of this results in astrophysical compact objects like white dwarfs are briefly discussed.

  6. Simulation studies of acceleration of heavy ions and their elemental compositions; IFSR--755

    SciTech Connect

    Toida, Mieko; Ohsawa, Yukiharu

    1996-07-01

    By using a one-dimensional, electromagnetic particle simulation code with full ion and electron dynamics, we have studied the acceleration of heavy ions by a nonlinear magnetosonic wave in a multi-ion-species plasma. First, we describe the mechanism of heavy ion acceleration by magnetosonic waves. We then investigate this by particle simulations. The simulation plasma contains four ion species: H, He, O, and Fe. The number density of He is taken to be 10% of that of H, and those of O and Fe are much lower. Simulations confirm that, as in a single-ion-species plasma, some of the hydrogens can be accelerated by the longitudinal electric field formed in the wave. Furthermore, they show that magnetosonic waves can accelerate all the particles of all the heavy species (He, O, and Fe) by a different mechanism, i.e., by the transverse electric field. The maximum speeds of the heavy species are about the same, of the order of the wave propagation speed. These are in good agreement with theoretical prediction. These results indicate that, if high-energy ions are produced in the solar corona through these mechanisms, the elemental compositions of these heavy ions can be similar to that of the background plasma, i.e., the corona.

  7. Systematic study of quasifission characteristics and timescales in heavy element formation reactions

    NASA Astrophysics Data System (ADS)

    Hinde, D. J.; Williams, E.; Mohanto, G.; Simenel, C.; Dasgupta, M.; Wakhle, A.; Carter, I. P.; Cook, K. J.; Jeung, D. Y.; Luong, D. H.; Palshetkar, C. S.; Prasad, E.; Rafferty, D. C.; du Rietz, R.; Simpson, E. C.

    2016-05-01

    Superheavy elements can only be created in the laboratory by the fusion of two massive nuclei. Mass-angle distributions give the most direct information on the characteristics and time scales of quasifission, the major competitor to fusion in these reactions. The systematics of 42 mass-angle distributions provide information on the global characteristics of quasifission. Deviations from the systematics reveal the major role played by the nuclear structure of the two colliding nuclei in determining the reaction outcome, and in hindering or favouring heavy element production.

  8. Assessment of essential elements and heavy metals content on Mytilus galloprovincialis from river Tagus estuary.

    PubMed

    Santos, I; Diniz, M S; Carvalho, M L; Santos, J P

    2014-06-01

    Trace elemental content was analysed in edible tissues of Mytilus galloprovincialis collected in five different sampling areas near the mouth of river Tagus estuary in Lisbon. The concentrations of essential elements (S, K, Ca, Fe, Cu, Zn, As, Br and Sr) were determined by energy-dispersive X-ray fluorescence (EDXRF) spectrometry, while toxic elements (Cr, Cd, Hg, Se and Pb) were measured by inductively coupled plasma-atomic emission spectrometry (ICP-AES). The results show that the essential elements K and S are present at the highest concentrations in all the studied samples reaching 2,920 and 4,520 μg g(-1) (fresh weight), respectively. The highest levels of heavy metals found were in two areas close to the city for Pb and Cd, but below the maximum allowed values. PMID:24763710

  9. Radiation transport effects in heavy-ion beam--target interaction studies: Measurement of target opacity and beam conversion efficiency

    SciTech Connect

    Tahir, N. A.; Arnold, R. C.

    1989-07-01

    In this paper detailed simulations are presented of radiation-hydrodynamicresponse of gaseous cylindrical targets irradiated with heavy-ion beams thatwill be produced at the Gesellschaft f/umlt u/r Schwerionenforschung, Darmstadt,using a heavy-ion synchrotron (SIS) (/ital Heavy/ /ital Ion//usion/, AIP Conference Proceedings No. 152 (AIP, NewYork, 1986), p. 23). The purpose of this work is to explore material conditionsfor which the thermal radiation effects can be maximized. This is desirable inorder to study a number of interesting and important effects includingmaximization of conversion efficiency of the ion beam energy to thermalradiation and measurement of the target opacity in the SIS experiments. It isexpected that the SIS beams will produce a specific deposition power of 10 TW/g.The simulations in this paper show that a temperature of the order of 10 eVcould be achieved by the SIS beams using homogeneous, cylindrical Xe targets. Ithas been shown that with the help of these computer simulations one should beable to measure the target opacity in these experiments within a factor of 3.Also these calculations show that in the SIS experiments one should be able tohave a 50% conversion efficiency using a Xe target under optimum conditions. Ithas been found that the radiation effects will be optimized in the SISexperiments if the initial target density is of the order of 10/sup /minus/3/ g/cm/sup 3/.If the initial density is too high (of the order of 10/sup /minus/1/ g/cm/sup 3/ or more),hydrodynamic effects will dominate, while, on the other hand, if the initialdensity is too low (of the order of 10/sup /minus/4/ g/cm/sup 3/ or less), the electronthermal conductivity will take over.

  10. Compound algorithm for restoration of heavy turbulence-degraded image for space target

    NASA Astrophysics Data System (ADS)

    Wang, Liang-liang; Wang, Ru-jie; Li, Ming; Kang, Zi-qian; Xu, Xiao-qin; Gao, Xin

    2012-11-01

    Restoration of atmospheric turbulence degraded image is needed to be solved as soon as possible in the field of astronomical space technology. Owing to the fact that the point spread function of turbulence is unknown, changeable with time, hard to be described by mathematics models, withal, kinds of noises would be brought during the imaging processes (such as sensor noise), the image for space target is edge blurred and heavy noised, which making a single restoration algorithm to reach the requirement of restoration difficult. Focusing the fact that the image for space target which was fetched during observation by ground-based optical telescopes is heavy noisy turbulence degraded, this paper discusses the adjustment and reformation of various algorithm structures as well as the selection of various parameters, after the combination of the nonlinear filter algorithm based on noise spatial characteristics, restoration algorithm of heavy turbulence degrade image for space target based on regularization, and the statistics theory based EM restoration algorithm. In order to test the validity of the algorithm, a series of restoration experiments are performed on the heavy noisy turbulence-degraded images for space target. The experiment results show that the new compound algorithm can achieve noise restriction and detail preservation simultaneously, which is effective and practical. Withal, the definition measures and relative definition measures show that the new compound algorithm is better than the traditional algorithms.

  11. New Hubble Space Telescope Observations of Heavy Elements in Four Metal-Poor Stars

    NASA Astrophysics Data System (ADS)

    Roederer, Ian U.; Lawler, James E.; Sobeck, Jennifer S.; Beers, Timothy C.; Cowan, John J.; Frebel, Anna; Ivans, Inese I.; Schatz, Hendrik; Sneden, Christopher; Thompson, Ian B.

    2012-12-01

    Elements heavier than the iron group are found in nearly all halo stars. A substantial number of these elements, key to understanding neutron-capture nucleosynthesis mechanisms, can only be detected in the near-ultraviolet. We report the results of an observing campaign using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope to study the detailed heavy-element abundance patterns in four metal-poor stars. We derive abundances or upper limits from 27 absorption lines of 15 elements produced by neutron-capture reactions, including seven elements (germanium, cadmium, tellurium, lutetium, osmium, platinum, and gold) that can only be detected in the near-ultraviolet. We also examine 202 heavy-element absorption lines in ground-based optical spectra obtained with the Magellan Inamori Kyocera Echelle Spectrograph on the Magellan-Clay Telescope at Las Campanas Observatory and the High Resolution Echelle Spectrometer on the Keck I Telescope on Mauna Kea. We have detected up to 34 elements heavier than zinc. The bulk of the heavy elements in these four stars are produced by r-process nucleosynthesis. These observations affirm earlier results suggesting that the tellurium found in metal-poor halo stars with moderate amounts of r-process material scales with the rare earth and third r-process peak elements. Cadmium often follows the abundances of the neighboring elements palladium and silver. We identify several sources of systematic uncertainty that must be considered when comparing these abundances with theoretical predictions. We also present new isotope shift and hyperfine structure component patterns for Lu II and Pb I lines of astrophysical interest. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs 8111 and

  12. Recent US target-physics-related research in heavy-ion inertial fusion: target gains and constraints on accelerator design

    SciTech Connect

    Mark, J.W.K.

    1982-03-09

    Inertial-fusion targets were designed for use with heavy-ion accelerators as drivers in fusion energy power plants. In the interest of providing inputs for understanding the trade-offs among accelerator designs, an initial survey was carried out regarding target gain versus parameters of relevance. This was done in two stages, firstly target gain was related to the beam energy, power, focal radius, and ion range. Secondly, a more comprehensive discussion was made by posing target gain constraints on the beam-occupied phase-space volume of the linacs. This latter discussion had included some rather simplified models of accelerator final focus and beam transport in near-vacuum fusion reaction chambers. Some further analyses of the basic assumptions of this summary are also described.

  13. Trace elements and heavy metals in hair of stage III breast cancer patients.

    PubMed

    Benderli Cihan, Yasemin; Sözen, Selim; Oztürk Yıldırım, Sema

    2011-12-01

    This prospective study was designed to compare the hair levels of 36 elements in 52 patients with stage III breast cancer to those of an equal number of healthy individuals. Principal component and cluster analysis were used for source of identification and apportionment of heavy metals and trace elements in these two groups. A higher average level of iron was found in samples from patients while controls had higher levels of calcium. Both patients and controls had elevated levels of tin, magnesium, zinc, and sodium. Almost all element values in cancer patients showed higher dispersion and asymmetry than in healthy controls. Between the two groups, there were statistically significant differences in the concentrations of silver, arsenic, gold, boron, barium, beryllium, calcium, cadmium, cerium, cobalt, cesium, gadolinium, manganese, nickel, lead, antimony, scandium, selenium, and zinc (p < 0.05). Strong positive correlations were found between lead and gold (r = 0.785) in the cancer group and between palladium and cobalt (r = 0.945) in the healthy individuals. Our results show that there are distinct patterns of heavy metals and trace elements in the hair of breast cancer patients in comparison to healthy controls. These results could be of significance in the diagnosis of breast cancer. PMID:21660533

  14. Supernova heavy element nucleosynthesis: Can it tell us about neutrino masses?

    SciTech Connect

    Fuller, George M.

    1997-05-20

    Here we describe a new probe of neutrino properties based on heavy element nucleosynthesis. This technique is in many ways akin to the familiar light element Primordial Nucleosynthesis probe of conditions in the early universe. Our new probe is based on the fact that neutrino masses and vacuum mixings can engender matter-enhanced neutrino flavor transformation in the post core bounce supernova environment. Transformations of the type {nu}{sub {mu}}{sub (r)}<-->{nu}{sub e} in this site will have significant effects on the synthesis of the rapid neutron capture (r-Process) elements and the light p-nuclei. We suggest that an understanding of the origin of these nuclides, combined with the measured abundances of these species, may provide a ''Rosetta Stone'' for neutrino properties. Heavy element nucleosynthesis abundance considerations give either constraints/evidence for neutrino masses and flavor mixings, or strong constraints on the site of origin of r-Process nucleosynthesis. The putative limits on neutrino characteristics are complimentary to those derived from laboratory neutrino oscillation studies and solar and atmospheric neutrino experiments. Preliminary studies show that the existence of r-Process nuclei in the abundances observed in the Galaxy cannot be understood unless neutrinos have small masses (possibly in the cosmologically significant range)

  15. Neutron Production from In-situ Heavy Ice Coated Targets at Vulcan

    NASA Astrophysics Data System (ADS)

    Morrison, John; Krygier, A. G.; Kar, S.; Ahmed, H.; Alejo, A.; Clarke, R.; Fuchs, J.; Green, A.; Jung, D.; Kleinschmidt, A.; Najmudin, Z.; Nakamura, H.; Norreys, P.; Notley, M.; Oliver, M.; Roth, M.; Vassura, L.; Zepf, M.; Borghesi, M.; Freeman, R. R.

    2015-05-01

    Laser based neutron production experiments have been performed utilizing ultra-high intensity laser accelerated ions impinging upon a secondary target. The neutron yield from such experiments may be improved if the accelerated ions were primarily deuterons taking advantage of the d-d cross section. Recent experiments have demonstrated that selective deuteron acceleration from in-situ heavy ice coating of targets can produce ion spectra where deuterons comprise > 99 % of the measured ions. Results will be presented from integrated neutron production experiments from heavy ice targets coated in-situ recently performed on the Vulcan laser at Rutherford Appleton Laboratory. We are grateful for the Staff at RAL and acknowledge funding from the US DoE. AFOSR, European Social Fund, and the Czech Republic.

  16. An Induction Linac Driver For A 0.44 MJ Heavy-Ion Direct Drive Target

    SciTech Connect

    Seidl, P.A.; Lee, E.P.; Bangerter, R.O.; Faltens, A.

    2010-02-08

    The conceptual design of a heavy ion fusion driver system is described, including all major components. Particular issues emerging from this exercise are identified and discussed. The most important conclusion of our study is that due to stringent requirements on ion pulse phase space, we are unable to find a credible accelerator design that meets the requirements of the example target. Either the target design must be modified to accept larger ion ranges and larger focal spot sizes, or we must consider other target options.

  17. Heavy-element abundances from a neutron burst that produces Xe-H

    NASA Technical Reports Server (NTRS)

    Howard, W. M.; Meyer, Bradley S.; Clayton, Donald D.

    1992-01-01

    We examine quantitatively the suggestion that the heavy anomalous isotopes of Xe-HL found in meteoritic diamonds were produced by a short intense neutron burst and then implanted into the diamonds. Using a large nuclear reaction network we establish one (out of many) neutron irradiation hostories that successfully reproduces the heavy isotopes of Xe-HL, and then evaluate what that same history would produce in every heavy element. This has become more relevant following recent measurement of anomalous Ba and Sr in those same diamond samples. Therefore we offer these calculations as a guide to the anomalies to be expected in all elements if this scenario is correct. We also discuss several other aspects of the problem, especially the established contradictions for Ba, the observed Kr pattern, the near normalcy of Xe-129 and some related astrophysical ideas. In particular we argue from p-process theory that the observed deficit of Kr-78 in correlation with Xe-(124-126) excess implicates Type II supernovae as the diamond sources.

  18. [Application of ICP-MS to detection of mineral elements and heavy metals in Cassava's byproducts].

    PubMed

    Tao, Hai-Teng; Zhang, Chun-Jiang; Chen, Xiao-Ming; Lüi, Fei-Jie; Tai, Jian-Xiang; Li, Kai-Mian

    2009-07-01

    Cassava is a main cultivated tropical crop in China, its rich starch roots are often used to produce fuel ethanol in recent years, so it's a kind of hot biomass energy crops. But cassava's byproducts such as leaves, stems and peels are regarded as waste, and are not fully utilized. Cassava's byproducts contain many nutrients, and can be used to process high value food products. The contents of mineral elements and heavy metals in cassava's byproducts were studied by ICP-MS. The results showed that cassava's byproducts contained many elements necessary to human health, the sequence of macroelements was K>Ca>P> Mg>S>Mn>Zn>Na>Fe>B>Cu, particularly, the contents of Fe, Mn, Zn and B ranged from 10 to 800 microg x g(-1) (DW), while the contents of microelements including Mo, Co, Se and Ge ranged from 0.01 to 0.2 microg x g(-1) (DW), which are important to human health. Besides macroelements and microelements, the contents of heavy metals (As, Cr, Pb and Hg) were also important to identify the quality of farm products, and the results showed that cassava's byproducts contained little heavy metals except Pb (2.19 microg x g(-1) (DW) in stalk peels). All the data showed that cassava's byproducts accorded with the national hygiene standards. PMID:19798987

  19. Association between trace element and heavy metal levels in hair and nail with prostate cancer.

    PubMed

    Karimi, Golgis; Shahar, Suzana; Homayouni, Nasim; Rajikan, Roslee; Abu Bakar, Nor Faizah; Othman, Mohd Sham

    2012-01-01

    While associations between trace elements and heavy metals with prostate cancer are still debatable, they have been considered as risk factors for prostate cancer. Thus, this study aimed to detect any links between selected minerals and heavy metals including Se, Zn, Cu, Mn and Fe with prostate cancer. A case control study was carried out among 100 subjects (case n=50, control n=50), matched for age and ethnicity. Trace elements and heavy metals level in hair and nail samples were determined by ICP-MS. Mean selenium levels in hair and nail of the cases were significantly lower as compared to controls. A similar trend was noted for zinc in both hair and nail samples, whereas the mean level of copper was significantly higher in cases than controls. Similar elevation was noted for iron and manganese (p<0.05 for all parameters). Low levels of selenium and zinc and high levels of copper, iron and manganese appear to be associated with the risk of prostate cancer. Further studies to elucidate the causal mechanisms and appropriate chemopreventive measures are needed. PMID:23167323

  20. The elemental composition of the Sun. III. The heavy elements Cu to Th

    NASA Astrophysics Data System (ADS)

    Grevesse, Nicolas; Scott, Pat; Asplund, Martin; Sauval, A. Jacques

    2015-01-01

    We re-evaluate the abundances of the elements in the Sun from copper (Z = 29) to thorium (Z = 90). Our results are mostly based on neutral and singly-ionised lines in the solar spectrum. We use the latest 3D hydrodynamic solar model atmosphere, and in a few cases also correct for departures from local thermodynamic equilibrium (LTE) using non-LTE (NLTE) calculations performed in 1D. In order to minimise statistical and systematic uncertainties, we make stringent line selections, employ the highest-quality observational data and carefully assess oscillator strengths, hyperfine constants and isotopic separations available in the literature, for every line included in our analysis. Our results are typically in good agreement with the abundances in the most pristine meteorites, but there are some interesting exceptions. This analysis constitutes both a full exposition and a slight update of the relevant parts of the preliminary results we presented in Asplund et al. (2009, ARA&A, 47, 481), including full line lists and details of all input data that we have employed. Tables 1-3 are available in electronic form at http://www.aanda.org

  1. Modeling of the distribution of heavy metals and trace elements in argan forest soil and parts of argan tree.

    PubMed

    Mohammed, Faez A E; Bchitou, Rahma; Boulmane, Mohamed; Bouhaouss, Ahmed; Guillaume, Dominique

    2013-01-01

    The transfer of heavy metals and trace elements from argan forest soil into the wood, leaves, almonds, and argan oil was studied. Analyzed metals were: chromium, cadmium, copper, zinc, lead, calcium, phosphorus, potassium, and magnesium. Correlations linking different behaviors of the studied heavy metals and trace elements observed by multidimensional analysis were attributed to partial-spatial variations. Whereas the RV-coefficient of wood, leaf, almond and oil groups was high, the soil group correlated poorly with the other groups. PMID:23472451

  2. Controlled Synthesis of Polyions of Heavy Main-Group Elements in Ionic Liquids.

    PubMed

    Groh, Matthias F; Wolff, Alexander; Grasser, Matthias A; Ruck, Michael

    2016-01-01

    Ionic liquids (ILs) have been proven to be valuable reaction media for the synthesis of inorganic materials among an abundance of other applications in different fields of chemistry. Up to now, the syntheses have remained mostly "black boxes"; and researchers have to resort to trial-and-error in order to establish a new synthetic route to a specific compound. This review comprises decisive reaction parameters and techniques for the directed synthesis of polyions of heavy main-group elements (fourth period and beyond) in ILs. Several families of compounds are presented ranging from polyhalides over carbonyl complexes and selenidostannates to homo and heteropolycations. PMID:27598123

  3. Long-lived heavy mass elements half-lives (A > 125)

    SciTech Connect

    Holden, N.E.

    1985-01-01

    Reported values of half-lives of intermediate mass and heavy elements are evaluated. The evaluation analysis estimates the systematic error the resulting standard deviation. Recommended values are then presented for /sup 128/Te, /sup 130/Te, /sup 129/I, /sup 138/La, /sup 144/Nd, /sup 145/Nd, /sup 146,147,148/Sm, /sup 152/Gd, /sup 154/Dy, /sup 176/Lu, /sup 174/Hf, /sup 180/Ta, /sup 187/Re, /sup 186/Os, /sup 190/Pt, /sup 204,205/Pb, and /sup 230,232/Th. 103 refs., 21 tabs. (WRF)

  4. Status of the low-energy super-heavy element facility at RIKEN

    NASA Astrophysics Data System (ADS)

    Schury, P.; Wada, M.; Ito, Y.; Arai, F.; Kaji, D.; Kimura, S.; Morimoto, K.; Haba, H.; Jeong, S.; Koura, H.; Miyatake, H.; Morita, K.; Reponen, M.; Ozawa, A.; Sonoda, T.; Takamine, A.; Wollnik, H.

    2016-06-01

    In order to investigate nuclei produced via fusion-evaporation reactions, especially super-heavy elements (SHE), we have begun construction of a facility for conversion of fusion-evaporation residues (EVR) to low-energy beams. At the base of this facility is a small cryogenic gas cell utilizing a traveling wave RF-carpet, located directly following the gas-filled recoil ion separator GARIS-II, which will thermalize EVRs to convert them into ion beams amenable to ion trapping. We present here the results of initial studies of this small gas cell.

  5. Evolution of heavy-element abundances in the Galactic halo and disk

    NASA Technical Reports Server (NTRS)

    Mathews, G. J.; Cowan, J. J.; Schramm, D. N.

    1988-01-01

    The constraints on the universal energy density and cosmological constant from cosmochronological ages and the Hubble age are reviewed. Observational evidence for the galactic chemical evolution of the heavy-element chronometers is descirbed in the context of numerical models. The viability of the recently discovered Th/Nd stellar chronometer is discussed, along with the suggestion that high r-process abundances in metal-poor stars may have resulted from a primordial r-process, as may be required by some inhomogeneous cosmologies.

  6. Heavy metals and trace elements in atmospheric fall-out: their relationship with topsoil and wheat element composition.

    PubMed

    Bermudez, Gonzalo M A; Jasan, Raquel; Plá, Rita; Pignata, María L

    2012-04-30

    The objectives of this study were to determine the average concentrations and deposition rates of 28 elements in atmospheric bulk deposition and to elucidate associations among topsoil, bulk deposition and wheat element composition. The fluxes of arsenic (As), copper (Cu), lead (Pb) and zinc (Zn) deposition in Córdoba were higher than in other agro-ecosystems, which reflects both natural (geochemistry and topsoil removal) and anthropogenic sources. High lanthanide, uranium (U) and thorium (Th) concentrations revealed the impact of an open cast uranium mine. The highest enrichment factors (EF) were those of Cu, Pb, Zn and nickel (Ni), with calcium (Ca) being the most prominent in the surroundings of a cement plant. Industries and the transport of airborne urban pollutants were the main anthropogenic sources for Ca, Cu, Ni, Pb, Zn, cadmium (Cd), iron (Fe), manganese (Mn) and antimony (Sb). The concentrations of metals in wheat grain were predicted using the topsoil and atmospheric fall-out composition with R(2)=0.90, with the latter being the best explanatory variable. The present study highlights the potential health hazards of wheat consumption (Environmental Protection Agency) by the assessment of heavy metals in bulk atmospheric deposition. PMID:22390956

  7. Data of heavy elements for light sources in EUV and XUV and for other applications

    SciTech Connect

    Koike, F.; Funaba, H.; Goto, M.; Kato, D.; Kato, T.; Morita, S.; Murakami, I.; Sakaue, H. A.; Sudo, S.; Suzuki, C.; Tanuma, N.; Sasaki, A.; Ding, X. B.

    2013-07-11

    Atomic ionic states and transition properties of elements with atomic numbers Z ranging from 50 to 80 are discussed as these are important to the understanding of plasmas containing such heavy elements. As such, data productions and the current status of theoretical calculations in this field are discussed. Further, recent spectroscopic measurements and respective theoretical analyses for W, Gd, and Nd are provided. The spectra of photoemissions elicited by the transitions between the sub-shell levels in N-sub-shell open atomic ions are of interest for the strong influence received from the interactions between the electronic state configurations with different constituent orbitals. Visible light emissions of W from M1 as well as E2 transitions are introduced and discussed.

  8. Abundances of secondary elements among the ultra heavy cosmic rays: Results from HEAO-3

    NASA Technical Reports Server (NTRS)

    Klarmann, J.; Stone, E. C.; Binns, W. R.; Israel, M. H.; Margolis, S. H.; Waddington, C. J.; Garrard, T. L.; Kertzman, M. P.

    1985-01-01

    Observations of the abundances of elements of charge 62 or Z or = 73 in the cosmic radiation from the HEAO-3 Heavy Nuclei Experiment (HNE) are discussed. These elements, having solar, and presumably source, abundances much less than the heavier Pt and Pb groups, are expected to be largely products of spallation. Thus they are indicators of the conditions prevailing during the propagation of cosmic rays. The abundances have changed from those reported previously due to a different data selection. This results in better charge resolution and in a higher mean energy for the particles. All the particles included were required to have had a cutoff rigidity R sub c 5 GV. This allowed the charge determination to be based solely on the Cherenkov measurement.

  9. A Heavy Ion Inertial Fusion Target with a Large Beam Spot

    NASA Astrophysics Data System (ADS)

    Callahan-Miller, Debra A.; Tabak, Max

    2000-10-01

    Because the achievable beam spot size for a heavy ion accelerator appropriate for heavy ion inertial fusion is uncertain, it is important to have a portfolio of target designs that cover the possible parameter space. While we have demonstrated that very high gains can be achieved with small spots [1], we are now concentrating on targets with larger spots and lower gains. Integrated Lasnex calculations of a target that is a hybrid between the ``end radiator'' [2] and the ``distributed radiator'' [3] predict that gain 60 is achievable from 6.7 MJ of beam energy in a 4.5 mm radius beam spot. Since accelerators are efficient (η ~ 25-35%), gain 60 is still adequate to get the η G > 10 required by the reactor. This ``hybrid'' target increases the beam spot radius by 66% over the distributed radiator target with an energy penalty of only 15%. [1] D. A. Callahan-Miller, M. Tabak, Phys. Plasmas, 7, 2083 (2000). [2] D. D.-M. Ho, J. A. Harte, M. Tabak, Nuc. Fusion, 38, 701 (1998). [3] M. Tabak, D. Callahan-Miller, Phys. Plasmas, 5, 1895 (1998).

  10. Size of lethality target in mouse immature oocytes determined with accelerated heavy ions.

    PubMed

    Straume, T; Dobson, R L; Kwan, T C

    1989-01-01

    Mouse immature oocytes were irradiated in vivo with highly charged, heavy ions from the Bevalac accelerator at the Lawrence Berkeley Laboratory. The particles used were 670-MeV/nucleon Si14+, 570-MeV/nucleon Ar18+, and 450-MeV/nucleon Fe26+. The cross-sectional area of the lethality target in these extremely radiosensitive cells was determined from fluence-response curves and information on energy deposition by delta rays. Results indicate a target cross-section larger than that of the nucleus, one which closely approximates the cross-sectional area of the entire oocyte. For 450-MeV/nucleon Fe26+ particles, the predicted target cross-sectional area is 120 +/- 16 microns2, comparing well with the microscopically determined cross-sectional area of 111 +/- 12 microns2 for these cells. The present results are in agreement with our previous target studies which implicate the oocyte plasma membrane. PMID:2657842

  11. [Determination of Heavy Metal Elements in Diatomite Filter Aid by Inductively Coupled Plasma Mass Spectrometry].

    PubMed

    Nie, Xi-du; Fu, Liang

    2015-11-01

    This study established a method for determining Be, Cr, Ni, As, Cd, Sb, Sn, Tl, Hg and Pb, total 10 heavy metals in diatomite filter aid. The diatomite filter aid was digested by using the mixture acid of HNO₃ + HF+ H₃PO₄ in microwave system, 10 heavy metals elements were determined by inductively coupled plasma mass spectrometry (ICP-MS). The interferences of mass spectrometry caused by the high silicon substrate were optimized, first the equipment parameters and isotopes of test metals were selected to eliminate these interferences, the methane was selected as reactant gas, and the mass spectral interferences were eliminated by dynamic reaction cell (DRC). Li, Sc, Y, In and Bi were selected as the internal standard elements to correct the interferences caused by matrix and the drift of sensitivity. The results show that the detection limits for analyte is in the range of 3.29-15.68 ng · L⁻¹, relative standard deviations (RSD) is less than 4.62%, and the recovery is in the range of 90.71%-107.22%. The current method has some advantages such as, high sensitivity, accurate, and precision, which can be used in diatomite filter aid quality control and safety estimations. PMID:26978934

  12. Prolong Restoration of the Water Quality of River Ganga Effect of Heavy Metals and Radioactive Elements.

    PubMed

    Tare, Vinod; Basu, Subhankar

    2014-04-01

    The genesis of the present research was the belief since ages and the observations made through some studies that the water of river Ganga has unique characteristics, which allows storage of water quality even on prolong storage. Very few systematic studies have been conducted to support the contention that the Ganga water indeed has some special composition that could be attributed to its unique storage capacity. It was postulated that prolong restoration of water quality depends on the ability to arrest microbial activity that is generally responsible for deterioration in water quality on prolong storage. Hence, attempt has been made to identify the parameters that are likely to influence the prolong storage of river water. Along with Ganga river water, other three major rivers, viz. Yamuna, Godavari and Narmada, were selected for comparison. Emphasis was made on estimation of heavy metals, radioactive elements, dissolved carbon and other physicochemical parameters such as temperature, pH, alkalinity, hardness and dissolved organic carbon. Based on the available information regarding the impact of heavy metals, radioactive elements vis-à-vis the chemical composition of water on microorganisms in the aquatic environment, an overall impact score for the waters of the four Indian rivers selected in the study has been assigned. PMID:26563059

  13. Heavy Metals and Biogenic Elements in Aquatic Systems of the Don River Delta

    NASA Astrophysics Data System (ADS)

    Tkachenko, Anna; Tkachenko, Oleg

    2014-05-01

    River deltas are located in the lower parts of the cascade landscape-geochemical systems of the river basins, so their geochemical conditions often characterize the anthropogenic impact on whole river system. The Don River runs through the one of the most agriculturally developed and densely populated area of Russia, and flows into the Azov Sea - the smallest and shallowest sea in the world. These factors determine the geochemical features of aquatic systems of the Don River mouth area and the specificity of the "river-sea" geochemical barrier zone. The paper presents results of the field studies of the geochemical structure of the Don River mouth area, which were conducted in frames of the RFBR project in 2012-2013. Major types of the deltaic water streams and bodies were studied in different hydrological seasons: spring floods, summer, autumn and winter low water periods. About 50 samples of water, suspended matter and 60 samples of bottom sediments have been collected and analyzed for heavy metals (Fe, Mn, Zn, Cu, Ni, Co, Pb, Cr, Cd etc.) and biogenic elements (nitrate, nitrite, ammonium, phosphates, silica, total nitrogen and phosphorus, dissolved oxygen and chlorophyll) content. To assess the toxicity degree and nutrient potential of water, bioassay test conducted by growing daphnia in water samples were held. The study shows that the Don River delta water is characterized by the relatively low values of dissolved heavy metal content. Significantly higher values of heavy metals were determined in the vicinity of settlements only. Metal accumulation in bottom sediments can be associated mainly with the rate of water flow. Higher values were found in sediments of small channels with weak flow velocity and prevailing processes of the suspended matter deposition. The data on the seasonal dynamics of nutrients and spatial variability of their forms have been obtained. The maximum concentration of nitrogen, phosphorus, silicon, and other biogenic elements are

  14. Levels and spatial distribution of airborne chemical elements in a heavy industrial area located in the north of Spain.

    PubMed

    Lage, J; Almeida, S M; Reis, M A; Chaves, P C; Ribeiro, T; Garcia, S; Faria, J P; Fernández, B G; Wolterbeek, H T

    2014-01-01

    The adverse health effects of airborne particles have been subjected to intense investigation in recent years; however, more studies on the chemical characterization of particles from pollution emissions are needed to (1) identify emission sources, (2) better understand the relative toxicity of particles, and (3) pinpoint more targeted emission control strategies and regulations. The main objective of this study was to assess the levels and spatial distribution of airborne chemical elements in a heavy industrial area located in the north of Spain. Instrumental and biomonitoring techniques were integrated and analytical methods for k0 instrumental neutron activation analysis and particle-induced x-ray emission were used to determine element content in aerosol filters and lichens. Results indicated that in general local industry contributed to the emissions of As, Sb, Cu, V, and Ni, which are associated with combustion processes. In addition, the steelwork emitted significant quantities of Fe and Mn and the cement factory was associated with Ca emissions. The spatial distribution of Zn and Al also indicated an important contribution of two industries located outside the studied area. PMID:25072718

  15. Heavy Element Abundances in Giant Stars of the Globular Clusters M4 and M5

    NASA Astrophysics Data System (ADS)

    Yong, David; Karakas, Amanda I.; Lambert, David L.; Chieffi, Alessandro; Limongi, Marco

    2008-12-01

    We present a comprehensive abundance analysis of 27 heavy elements in bright giant stars of the globular clusters M4 and M5 based on high-resolution, high signal-to-noise ratio spectra obtained with the Magellan Clay Telescope. We confirm and expand on previous results for these clusters by showing that (1) all elements heavier than, and including, Si have constant abundances within each cluster, (2) the elements from Ca to Ni have indistinguishable compositions in M4 and M5, (3) Si, Cu, Zn, and all s-process elements are approximately 0.3 dex overabundant in M4 relative to M5, and (4) the r-process elements Sm, Eu, Gd, and Th are slightly overabundant in M5 relative to M4. The cluster-to-cluster abundance differences for Cu and Zn are intriguing, especially in light of their uncertain nucleosynthetic origins. We confirm that stars other than Type Ia supernovae must produce significant amounts of Cu and Zn at or below the clusters' metallicities. If intermediate-mass AGB stars or massive stars are responsible for the Cu and Zn enhancements in M4, the similar [Rb/Zr] ratios and (preliminary) Mg isotope ratios in both clusters may be problematic for either scenario. For the elements from Ba to Hf, we assume that the s- and r-process contributions are scaled versions of the solar s- and r-process abundances. We quantify the relative fractions of s- and r-process material for each cluster and show that they provide an excellent fit to the observed abundances. Based on observations made with the Magellan Clay Telescope at Las Campanas Observatory.

  16. Interactions of heavy nuclei, Kr, Xe and Ho, in light targets

    NASA Technical Reports Server (NTRS)

    Kertzman, M. P.; Klarmann, J.; Newport, B. J.; Stone, E. C.; Waddington, C. J.; Binns, W. R.; Garrard, T. L.; Israel, M. H.

    1985-01-01

    Over the past few years, the HEAO-3 measurements of the abundances of ultra-heavy cosmic ray nuclei (Z 26) at earth have been analyzed. In order to interpret these abundances in terms of a source composition, allowance must be made for the propagation of the nuclei in the interstellar medium. Vital to any calculation of the propagation is a knowlege of the total and partial interaction cross sections for these heavy nuclei on hydrogen. Until recently, data on such reactions have been scarce. However, now that relativistic heavy ion beams are available at the LBL Bevalac, some of the cross sections of interest can be measured at energies close to those of the cosmic ray nuclei being observed. During a recent calibration at the Bevalac of an array similar to the HEAO-C3 UH-nuclei detector, targets of raphite (C), polyethylene (CH2), and aluminum were exposed to five heavy ion beams ranging in charge (Z) from 36 to 92. Total and partial charge changing cross sections for the various beam nuclei on hydrogen can be determined from the measured cross sections on C and CH2, and will be applied to the propagation problem. The cross sections on Al can be used to correct the abundances of UH cosmic rays observed in the HEAO C-3 detector for interactions in the detector itself.

  17. Whole genome resequencing reveals natural target site preferences of transposable elements in Drosophila melanogaster.

    PubMed

    Linheiro, Raquel S; Bergman, Casey M

    2012-01-01

    Transposable elements are mobile DNA sequences that integrate into host genomes using diverse mechanisms with varying degrees of target site specificity. While the target site preferences of some engineered transposable elements are well studied, the natural target preferences of most transposable elements are poorly characterized. Using population genomic resequencing data from 166 strains of Drosophila melanogaster, we identified over 8,000 new insertion sites not present in the reference genome sequence that we used to decode the natural target preferences of 22 families of transposable element in this species. We found that terminal inverted repeat transposon and long terminal repeat retrotransposon families present clade-specific target site duplications and target site sequence motifs. Additionally, we found that the sequence motifs at transposable element target sites are always palindromes that extend beyond the target site duplication. Our results demonstrate the utility of population genomics data for high-throughput inference of transposable element targeting preferences in the wild and establish general rules for terminal inverted repeat transposon and long terminal repeat retrotransposon target site selection in eukaryotic genomes. PMID:22347367

  18. Heavy elements Ba, La, Ce, Nd, and Eu in 56 Galactic bulge red giants

    NASA Astrophysics Data System (ADS)

    Van der Swaelmen, M.; Barbuy, B.; Hill, V.; Zoccali, M.; Minniti, D.; Ortolani, S.; Gómez, A.

    2016-01-01

    Aims: The aim of this work is the study of abundances of the heavy elements Ba, La, Ce, Nd, and Eu in 56 bulge giants (red giant branch and red clump) with metallicities ranging from -1.3 dex to 0.5 dex. Methods: We obtained high-resolution spectra of our giant stars using the FLAMES-UVES spectrograph on the Very Large Telescope. We inspected four bulge fields along the minor axis. Results: We measure the chemical evolution of heavy elements, as a function of metallicity, in the Galactic bulge. Conclusions: The [Ba,La,Ce,Nd/Fe] vs. [Fe/H] ratios decrease with increasing metallicity, in which aspect they differ from disc stars. In our metal-poor bulge stars, La and Ba are enhanced relative to their thick disc counterpart, while in our metal-rich bulge stars La and Ba are underabundant relative to their disc counterpart. Therefore, this contrast between bulge and discs trends indicates that bulge and (solar neighbourhood) thick disc stars could behave differently. An increase in [La,Nd/Eu] with increasing metallicity, for metal-rich stars with [Fe/H] > 0 dex, may indicate that the s-process from AGB stars starts to operate at a metallicity around solar. Finally, [Eu/Fe] follows the [α/ Fe] behaviour, as expected, since these elements are produced by SNe type II. Observations collected at the European Southern Observatory, Paranal, Chile (ESO programmes 71.B-0617A, 73.B0074A, and GTO 71.B-0196)

  19. SRNL Development of Recovery Processes for Mark-18A Heavy Actinide Targets

    SciTech Connect

    Allender, Jeffrey S.; Bridges, Nicholas J.; Loftin, Bradley M.; Dunsmuir, Michael D.

    2015-07-14

    Savannah River National Laboratory (SRNL) and Oak Ridge National Laboratory (ORNL) are developing plans for the recovery of rare and unique isotopes contained within heavy-actinide target assemblies, specifically the Mark-18A. Mark-18A assemblies were irradiated in Savannah River Site (SRS) reactors in the 1970s under extremely high neutron-flux conditions and produced, virtually, the world's supply of plutonium-244, an isotope of key importance to high-precision actinide measurement and other scientific and nonproliferation uses; and curium highly enriched in heavy isotopes (e.g., curium-246 and curium-248). In 2015 and 2016, SRNL is pursuing tasks that would reduce program risk and budget requirements, including further characterization of unprocessed targets; engineering studies for the use of the SRNL Shielded Cells Facility (SCF) for recovery; and development of onsite and offsite shipping methods including a replacement for the heavy (70 ton) cask previously used for onsite transfer of irradiated items at SRS. A status update is provided for the characterization, including modeling using the Monte Carlo N-Particle Transport Code (MCNP); direct non-destructive assay measurements; and cask design.

  20. Transcriptional Targeting in the Airway Using Novel Gene Regulatory Elements

    PubMed Central

    Burnight, Erin R.; Wang, Guoshun; McCray, Paul B.

    2012-01-01

    The delivery of cystic fibrosis transmembrane conductance regulator (CFTR) to airway epithelia is a goal of many gene therapy strategies to treat cystic fibrosis. Because the native regulatory elements of the CFTR are not well characterized, the development of vectors with heterologous promoters of varying strengths and specificity would aid in our selection of optimal reagents for the appropriate expression of the vector-delivered CFTR gene. Here we contrasted the performance of several novel gene-regulatory elements. Based on airway expression analysis, we selected putative regulatory elements from BPIFA1 and WDR65 to investigate. In addition, we selected a human CFTR promoter region (∼ 2 kb upstream of the human CFTR transcription start site) to study. Using feline immunodeficiency virus vectors containing the candidate elements driving firefly luciferase, we transduced murine nasal epithelia in vivo. Luciferase expression persisted for 30 weeks, which was the duration of the experiment. Furthermore, when the nasal epithelium was ablated using the detergent polidocanol, the mice showed a transient loss of luciferase expression that returned 2 weeks after administration, suggesting that our vectors transduced a progenitor cell population. Importantly, the hWDR65 element drove sufficient CFTR expression to correct the anion transport defect in CFTR-null epithelia. These results will guide the development of optimal vectors for sufficient, sustained CFTR expression in airway epithelia. PMID:22447971

  1. Target Designs for an Inertial Fusion Energy Power Plant Driven by Heavy Ions

    SciTech Connect

    Callahan, D A; Tabak, M

    2001-08-23

    We present two indirect drive inertial fusion targets driven by heavy ions beams for fusion energy production. Because there are uncertainties in the ion beam focal spot size and uncertainties in the accelerator cost, we have tried to design targets that cover a large parameter space. One of the designs requires small ion beam focal spots but produces more than adequate gain at low driver energy (gain 130 from 3.3 MJ of beam energy). The other design allows a large beam spot, but requires more driver energy (gain 55 from 6.7 MJ of beam energy). Target physics issues as well as the implications for the accelerator from each design are discussed.

  2. Progress towards a high-gain and robust target design for heavy ion fusion

    NASA Astrophysics Data System (ADS)

    Henestroza, Enrique; Grant Logan, B.

    2012-07-01

    Recently [E. Henestroza et al., Phys. Plasmas 18, 032702 (2011)], a new inertial-fusion target configuration, the X-target, using one-sided axial illumination has been explored. This class of target uses annular and solid-profile heavy ion beams to compress and ignite deuterium-tritium (DT) fuel that fills the interior of metal cases that have side-view cross sections in the shape of an "X." X-targets using all-DT-filled metal cases imploded by three annular ion beams resulted in fuel densities of ˜50 g/cm3 at peak compression, and fusion gains of ˜50, comparable to heavy ion driven hohlraum targets [D. A. Callahan-Miller and M. Tabak, Phys. Plasmas 7, 2083 (2000)]. This paper discusses updated X-target configurations that incorporate inside the case a propellant (plastic) and a pusher (aluminum) surrounding the DT fuel. The updated configurations are capable of assembling higher fuel areal densities ˜2 g/cm2 using two annular beams to implode the target to peak DT densities ˜100 g/cm3, followed by a fast-ignition solid ion beam which heats the high-density fuel to thermonuclear temperatures in ˜200 ps to start the burn propagation, obtaining gains of ˜300. These targets have been modeled using the radiation-hydrodynamics code HYDRA [M. M. Marinak et al., Phys. Plasmas 8, 2275 (2001)] in two- and three- dimensions to study the properties of the implosion as well as the ignition and burn propagation phases. At typical Eulerian mesh resolutions of a few microns, the aluminum-DT interface shows negligible Rayleigh-Taylor (RT) and Richtmyer-Meshkov instability growth; also, the shear flow of the DT fuel as it slides along the metal X-target walls, which drives the RT and Kelvin Helmholtz instabilities, does not have a major effect on the burning rate. An analytic estimate of the RT instability process at the Al-DT interface shows that the aluminum spikes generated during the pusher deceleration phase would not reach the ignition zone in time to affect the burning

  3. Progress towards a high-gain and robust target design for heavy ion fusion

    SciTech Connect

    Henestroza, Enrique; Grant Logan, B.

    2012-07-15

    Recently [E. Henestroza et al., Phys. Plasmas 18, 032702 (2011)], a new inertial-fusion target configuration, the X-target, using one-sided axial illumination has been explored. This class of target uses annular and solid-profile heavy ion beams to compress and ignite deuterium-tritium (DT) fuel that fills the interior of metal cases that have side-view cross sections in the shape of an 'X.' X-targets using all-DT-filled metal cases imploded by three annular ion beams resulted in fuel densities of {approx}50 g/cm{sup 3} at peak compression, and fusion gains of {approx}50, comparable to heavy ion driven hohlraum targets [D. A. Callahan-Miller and M. Tabak, Phys. Plasmas 7, 2083 (2000)]. This paper discusses updated X-target configurations that incorporate inside the case a propellant (plastic) and a pusher (aluminum) surrounding the DT fuel. The updated configurations are capable of assembling higher fuel areal densities {approx}2 g/cm{sup 2} using two annular beams to implode the target to peak DT densities {approx}100 g/cm{sup 3}, followed by a fast-ignition solid ion beam which heats the high-density fuel to thermonuclear temperatures in {approx}200 ps to start the burn propagation, obtaining gains of {approx}300. These targets have been modeled using the radiation-hydrodynamics code HYDRA [M. M. Marinak et al., Phys. Plasmas 8, 2275 (2001)] in two- and three- dimensions to study the properties of the implosion as well as the ignition and burn propagation phases. At typical Eulerian mesh resolutions of a few microns, the aluminum-DT interface shows negligible Rayleigh-Taylor (RT) and Richtmyer-Meshkov instability growth; also, the shear flow of the DT fuel as it slides along the metal X-target walls, which drives the RT and Kelvin Helmholtz instabilities, does not have a major effect on the burning rate. An analytic estimate of the RT instability process at the Al-DT interface shows that the aluminum spikes generated during the pusher deceleration phase would not

  4. Effects of elemental sulphur on heavy metal uptake by plants growing on municipal sewage sludge.

    PubMed

    Dede, Gulgun; Ozdemir, Saim

    2016-01-15

    In this study experiment was carried out to determine the phytoextraction potential of six plant species (Conium maculatum, Brassica oleraceae var. oleraceae, Brassica juncea, Datura stramonium, Pelargonium hortorum and Conyza canadensis) grown in a sewage sludge medium amended with metal uptake promoters. The solubility of Cu, Cd and Pb was significantly increased with the application of elemental S due to decrease of pH. Faecal coliform number was markedly decreased by addition of elemental sulphur. The extraction of Cu, Cr and Pb from sewage sludge by using B. juncea plant was observed as 65%, 65% and 54% respectively that is statistically similar to EDTA as sulphur. The bioaccumulation factors were found higher (>1) in the plants tested for Cu and Pb like B. juncea. Translocation index (TI) calculated values for Cd and Pb were greater than one (>1) in both C. maculatum and B. oleraceae var. oleraceae. The results cleared that the amendment of sludge with elemental sulphur showed potential to solubilize heavy metals in phytoremediation as much as EDTA. PMID:26496839

  5. Possible Way To Describe Breit's Interaction in Solids Composed From Heavy Elements

    SciTech Connect

    Kutepov, A L

    2009-02-24

    The report describes a theoretical procedure which could help evaluate the effect of quantum electrodynamic corrections on the electronic structure of crystals consisting of heavy elements. The procedure uses the effective Breit interaction as correction to traditional Coulomb interaction between electrons in non-relativistic theory. A number of other simplifying assumptions were made since even such a simplified consideration of quantum electrodynamic effects in crystals is a great challenge. These are as follows: (1) Exchange and correlation effects from the nonrelativistic interaction (the Coulomb term) between electrons are described within Density Functional Theory (DFT). (2) The Breit correction is on at the phase which involves the calculation of matrix elements between basis functions which define the single-electron spectrum of a crystal. In order to calculate the contribution from the Breit correction, the total wave function of electrons in the crystal is approximated by one Slater determinant consisting of the single-electron DFT-orbitals. (3) Only local matrix elements (i.e., the part of the two-electron integral for which both coordinate arguments belong to one and the same muffin-tin sphere) are considered.

  6. NF-kB activation and its downstream target genes expression after heavy ions exposure

    NASA Astrophysics Data System (ADS)

    Chishti, Arif Ali; Baumstark-Khan, Christa; Hellweg, Christine; Schmitz, Claudia; Koch, Kristina; Feles, Sebastian

    2016-07-01

    To enable long-term human space flight cellular radiation response to densely ionizing radiation needs to be better understood for developing appropriate countermeasures to mitigate acute effects and late radiation risks for the astronaut. The biological effectiveness of accelerated heavy ions (which constitute the most important radiation type in space) with high linear energy transfer (LET) for effecting DNA damage response pathways as a gateway to cell death or survival is of major concern not only for space missions but also for new regimes of tumor radiotherapy. In the current research study, the contribution of NF-κB in response to space-relevant radiation qualities was determined by a NF-κB reporter cell line (HEK-pNF-κB-d2EGFP/Neo L2). The NF-κB dependent reporter gene expression (d2EGFP) after ionizing radiation (X-rays and heavy ions) exposure was evaluated by flow cytometry. Because of differences in the extent of NF-κB activation after X-irradiation and heavy ions exposure, it was expected that radiation quality (LET) might play an important role in the cellular radiation response. In addition, the biological effectiveness (RBE) of NF-κB activation and reduction of cellular survival was examined for heavy ions having a broad range of LET (˜0.3 - 9674 keV/µm). Furthermore, the effect of LET on NF-κB target gene expression was analyzed by real time reverse transcriptase quantitative PCR (RT-qPCR). In this study it was proven that NF-κB activation and NF-κB dependent gene expression comprises an early step in cellular radiation response. Taken together, this study clearly demonstrates that NF-κB activation and NF-κB-dependent gene expression by heavy ions are highest in the LET range of ˜50-200 keV/μupm. The up-regulated chemokines and cytokines (CXCL1, CXCL2, CXCL10, IL-8 and TNF) might be important for cell-cell communication among hit as well as unhit cells (bystander effect). The results obtained suggest the NF-κB pathway to be a

  7. Lead, platinum and other heavy elements in the primary cosmic radiation: HEAO-3 results

    NASA Technical Reports Server (NTRS)

    Waddington, C. J.; Binns, W. R.; Brewster, N. R.; Fixsen, D. J.; Garrard, T. L.; Israel, M. H.; Klarmann, J.; Newport, B. J.; Stone, E. C.

    1986-01-01

    An observation of the abundances of cosmic-ray lead and platinum-group nuclei using data from the HEAO-3 Heavy Nuclei Experiment (HNE) which consisted of ion chambers mounted on both sides of a plastic Cherenkov counter (Binns et al., 1981) is reported. Further analysis with more stringent selections, inclusion of additional data, and a calibration at the LBL Bevalac, have allowed the determination of the abundance ratio of lead and the platinum group of elements for particles that had a cutoff rigidity R(c) 5 GV. The observed ratio for Pb/Pt is distinctly lower than that predicted by any of the standard models for cosmic ray sources. It is possible that the difference is not an indication that the cosmic ray source composition is greatly different from that of the solar system, but rather that there is less Pb in the solar system and in the r-process than is assumed in the standard models.

  8. [Leaching behavior of heavy metal elements in lead-free solders].

    PubMed

    Zhao, Jie; Meng, Xian-ming; Chen, Chen; Zang, Hua-xun; Ma, Hai-Tao

    2008-08-01

    Leaching behavior of heavy metal elements from Sn-3.5 Ag-0.5 Cu, Sn-3.5 Ag, Sn-0.5 Cu lead-free solders and their joints were investigated in typical acid, alkaline and saline corrosion solutions. It is found that for solder alloys, significant leaching of Sn was observed in NaCl saline solution, about two orders of magnitude higher than that in acid and alkaline solution. However, in the case of solder joints, more leaching of Sn was observed in acid solution from Sn-3.5 Ag/Cu and Sn-0.5 Cu/Cu joints, and in NaOH alkaline solution for Sn-3.5 Ag - 0.5 Cu joint. PMID:18839597

  9. K-edge x-ray fluorescence analysis for actinide and heavy elements solution concentration measurements

    SciTech Connect

    Camp, D.C.

    1984-07-01

    Advantages of using Co-57 as an exciter for K XRFA include: a compact design that requires no x-ray tubes; the exciter-detector assembly locates remote from support electronics; on-line, at-line, or off-line configurations for monitor/measurements; systems that can be run by semi-skilled technicians, once programmed; and operated via remote terminals with results sent to control rooms; heavy element concentrations that are measurable thru industrial pipes; independent of minor changes in solution matrix or source half life with concentration results reported in near-real-time; a dynamic range of measurable concentrations that is greater than 10/sup 4/; measurement times that are reasonable even at 1 gram/liter; and for nuclear safeguards, it provides the <0.5% accuracy required by DOE for the accountability of U, Pu, or both, once the system is calibrated.

  10. An inhomogeneous reference catalogue of identified intervening heavy element systems in spectra of QSOs

    NASA Technical Reports Server (NTRS)

    York, Donald G.; Yanny, Brian; Crotts, Arlin; Carilli, Chris; Garrison, Etoi

    1991-01-01

    Identifications of heavy element line systems, observed in spectra of quasi-stellar objects between 1965 and 1989 inclusive, are collected and tabulated with references. Each system is assigned a quality grade based on the apparent reliability of the data. The highest quality systems are used to characterize the absorbers as a sample. A decrease in C IV line strength with redshift (z), and the corresponding decrease in line density per unit z with z are confirmed. The weakest C IV systems, at high z, are accompanied by relatively stronger Si IV lines, compared to the relative line strengths at low z. The space density of systems with strong lines of first ions is nearly independent of z below z = 3, though it drops at z greater than 3. Preliminary tests for quasar lensing by intervening systems and for clustering of absorbers on large scales are presented.

  11. Interannual heavy element and nutrient concentration trends in the top sediments of Venice Lagoon (Italy).

    PubMed

    Masiol, Mauro; Facca, Chiara; Visin, Flavia; Sfriso, Adriano; Pavoni, Bruno

    2014-12-15

    The elemental composition of surficial sediments of Venice Lagoon (Italy) in 1987, 1993, 1998 and 2003 were investigated. Zn and Cr concentrations resulted in higher than background levels, but only Cd and Hg were higher than legal quality standards (Italian Decree 2010/260 and Water Framework Directive 2000/60/EC). Contaminants with similar spatial distribution are sorted into three groups by means of correlation analysis: (i) As, Co, Cd, Cu, Fe, Pb, Zn; (ii) Ni, Cr; (iii) Hg. Interannual concentrations are compared by applying a factor analysis to the matrix of differences between subsequent samplings. A general decrease of heavy metal levels is observed from 1987 to 1993, whereas particularly high concentrations of Ni and Cr are recorded in 1998 as a consequence of intense clam fishing, subsequently mitigated by better prevention of illegal harvesting. Due to the major role played by anthropogenic sediment resuspension, bathymetric variations are also considered. PMID:25455371

  12. Light and heavy element isotopic compositions of mainstream SiC grains.

    SciTech Connect

    Amari, S.; Clayton, R. N.; Davis, A. M.; Lewis, R. S.; Pellin, M. J.

    1999-02-03

    Although a variety of types of pre-solar SiC grains have been classified by their C, N, and Si isotopic composition, the majority of such grains are so-called mainstream grains and are believed to have come from asymptotic giant branch stars [1]. We have previously reported the Mo isotopic compositions of presolar SiC grains whose C, N, and Si isotopic compositions were not known [2]. Since most presolar SiC grains fall in the mainstream group, we assumed that these grains were mainstream. The excellent match of the Mo isotopic data with expectations for nucleosynthesis in AGB stars was consistent with this identification. In order to better understand the distribution of isotopic compositions in presolar grains, we have begun to measure heavy element isotopic compositions of presolar SiC grains of known C, N and Si isotopic composition.

  13. Models of H II regions - Heavy element opacity, variation of temperature

    NASA Technical Reports Server (NTRS)

    Rubin, R. H.

    1985-01-01

    A detailed set of H II region models that use the same physics and self-consistent input have been computed and are used to examine where in parameter space the effects of heavy element opacity is important. The models are briefly described, and tabular data for the input parameters and resulting properties of the models are presented. It is found that the opacities of C, Ne, O, and to a lesser extent N play a vital role over a large region of parameter space, while S and Ar opacities are negligible. The variation of the average electron temperature T(e) of the models with metal abundance, density, and T(eff) is investigated. It is concluded that by far the most important determinator of T(e) is metal abundance; an almost 7000 K difference is expected over the factor of 10 change from up to down abundances.

  14. HELAC-Onia: An automatic matrix element generator for heavy quarkonium physics

    NASA Astrophysics Data System (ADS)

    Shao, Hua-Sheng

    2013-11-01

    By the virtues of the Dyson-Schwinger equations, we upgrade the published code HELAC to be capable to calculate the heavy quarkonium helicity amplitudes in the framework of NRQCD factorization, which we dub HELAC-Onia. We rewrote the original HELAC to make the new program be able to calculate helicity amplitudes of multi P-wave quarkonium states production at hadron colliders and electron-positron colliders by including new P-wave off-shell currents. Therefore, besides the high efficiencies in computation of multi-leg processes within the Standard Model, HELAC-Onia is also sufficiently numerical stable in dealing with P-wave quarkonia (e.g. h,χ) and P-wave color-octet intermediate states. To the best of our knowledge, it is a first general-purpose automatic quarkonium matrix elements generator based on recursion relations on the market.

  15. Heavy elements in globular clusters: The role of asymptotic giant branch stars

    SciTech Connect

    Straniero, O.; Cristallo, S.; Piersanti, L.

    2014-04-10

    Recent observations of heavy elements in globular clusters reveal intriguing deviations from the standard paradigm of the early galactic nucleosynthesis. If the r-process contamination is a common feature of halo stars, s-process enhancements are found in a few globular clusters only. We show that the combined pollution of asymptotic giant branch (AGB) stars with a mass ranging between 3 to 6 M {sub ☉} may account for most of the features of the s-process overabundance in M4 and M22. In these stars, the s process is a mixture of two very different neutron-capture nucleosynthesis episodes. The first is due to the {sup 13}C(α, n){sup 16}O reaction and takes place during the interpulse periods. The second is due to the {sup 22}Ne(α, n){sup 25}Mg reaction and takes place in the convective zones generated by thermal pulses. The production of the heaviest s elements (from Ba to Pb) requires the first neutron burst, while the second produces large overabundances of light s (Rb, Sr, Y, Zr). The first mainly operates in the less massive AGB stars, while the second dominates in the more massive. From the heavy-s/light-s ratio, we derive that the pollution phase should last for 150 ± 50 Myr, a period short enough compared to the formation timescale of the globular cluster system, but long enough to explain why the s-process pollution is observed in a few cases only. With few exceptions, our theoretical prediction provides a reasonable reproduction of the observed s-process abundances, from Sr to Hf. However, Ce is probably underproduced by our models, while Rb and Pb are overproduced. Possible solutions are discussed.

  16. Laser-induced synthesis and decay of Tritium under exposure of solid targets in heavy water

    NASA Astrophysics Data System (ADS)

    Barmina, E. V.; Timashev, S. F.; Shafeev, G. A.

    2016-03-01

    The processes of laser-assisted synthesis of Tritium nuclei and their laser-induced decay in cold plasma in the vicinity of solid targets (Au, Ti, Se, etc.) immersed into heavy water are experimentally realized at peak laser intensity of 1010-1013 W/cm2. Initial stages of Tritium synthesis and their laser-induced beta-decay are interpreted on the basis of non-elastic interaction of plasma electrons having kinetic energy of 5-10 eV with nuclei of Deuterium and Tritium, respectively.

  17. X-Rays of Heavy Elements for Nanotechnological Applications:. W and Pb Ions

    NASA Astrophysics Data System (ADS)

    Nahar, Sultana N.

    2013-03-01

    Heavy elements can absorb or emit hard X-rays and hence are commonly implemented in various high energy nanotechnological applications. The absorptin or emission occurs mainly through the 1s-2p (Kα) transitions, and the process can be used as the source for production of radiation or electron in the applications. For enhanced productions of electrons and photons in the nanobiomedical applications, investigations have focused on the K-shell ionization of the atom or ion. This is because of the well-known rise in photoionization at the K-shell ionization threshold. However, experimental investigations to find any evidence of this rise has not been successful. We have developed a new method called Resonant Theranostics for biomedical applications, where we show that the energy for the rise is related to 1s-np, particularly to 1s-2p transitions which appear as resonances in the photoionization for heavy elements. The energy for the 1s-2p transitions varies some with the ionic state of the element and gives a narrow band resonant energy for the element. The strength of the process depends on the oscillator strength of the transitions. This report will demonstrate these through illustrations of the resonant energy range and strengths of photoabsorption due to K-alpha transitions using some elements, such as tungsten (W, Z=74) and lead (Pb, Z=82). An X-ray photon can ionize a high-Z element by ejection of a K-shell electron. This will create a hole or vacancy which, through the Auger process, will be filled out by an upper shell electron with emission of a photon. Such process at the resonant energy can lead to Koster-Kronig cascade giving out a number of photons and electrons as the element goes through various ionic states and can be modeled using the oscillator strengths. Such emissions are highly desirable in radiation therapy application. Present illustrations will include electric dipole allowed transitions for nine ionic states, from hydrogen to fluorine like ions

  18. Elements toward novel therapeutic targeting of the adrenergic system.

    PubMed

    Ghanemi, Abdelaziz; Hu, Xintian

    2015-02-01

    Adrenergic receptors belong to the family of the G protein coupled receptors that represent important targets in the modern pharmacotherapies. Studies on different physiological and pathophysiological properties of the adrenergic system have led to novel evidences and theories that suggest novel possible targeting of such system in a variety of pathologies and disorders, even beyond the classical known therapeutic possibilities. Herein, those advances have been illustrated with selected concepts and different examples. Furthermore, we illustrated the applications and the therapeutic implications that such findings and advances might have in the contexts of experimental pharmacology, therapeutics and clinic. We hope that the content of this work will guide researches devoted to the adrenergic aspects that combine neurosciences with pharmacology. PMID:25481798

  19. Microsporidian mitosomes retain elements of the general mitochondrial targeting system

    PubMed Central

    Burri, Lena; Williams, Bryony A. P.; Bursac, Dejan; Lithgow, Trevor; Keeling, Patrick J.

    2006-01-01

    Microsporidia are intracellular parasites that infect a variety of animals, including humans. As highly specialized parasites, they are characterized by a number of unusual adaptations, many of which are manifested as extreme reduction at the molecular, biochemical, and cellular levels. One interesting aspect of reduction is the mitochondrion. Microsporidia were long considered to be amitochondriate, but recently a tiny mitochondrion-derived organelle called the mitosome was detected. The molecular function of this organelle remains poorly understood. The mitosome has no genome, so it must import all its proteins from the cytosol. In other fungi, the mitochondrial protein import machinery consists of a network series of heterooligomeric translocases and peptidases, but in microsporidia, only a few subunits of some of these complexes have been identified to date. Here, we look at targeting sequences of the microsporidian mitosomal import system and show that mitosomes do in some cases still use N-terminal and internal targeting sequences that are recognizable by import systems of mitochondria in yeast. Furthermore, we have examined the function of the inner membrane peptidase processing enzyme and demonstrate that mitosomal substrates of this enzyme are processed to mature proteins in one species with a simplified processing complex, Antonospora locustae. However, in Encephalitozoon cuniculi, the processing complex is lost altogether, and the preprotein substrate functions with the targeting leader still attached. This report provides direct evidence for presequencing processing in mitosomes and also shows how a complex molecular system has continued to degenerate throughout the evolution of microsporidia. PMID:17043242

  20. Heavy-Ion Irradiation of Thulium(III) Oxide Targets Prepared by Polymer-Assisted Deposition

    SciTech Connect

    Garcia, Mitch A.; Ali, Mazhar N.; Chang, Noel N.; Parsons-Moss, Tashi; Ashby, Paul D.; Gates, Jacklyn M.; Stavsetra, Liv; Gregorich, Kenneth E.; Nitsche, Heino

    2008-09-15

    Thulium(III) oxide (Tm{sub 2}O{sub 3}) targets prepared by the polymer-assisted deposition (PAD) method were irradiated by heavy-ion beams to test the method's feasibility for nuclear science applications. Targets were prepared on silicon nitride backings (thickness of 1000 nm, 344 {micro}g/cm{sup 2}) and were irradiated with an {sup 40}Ar beam at laboratory frame energy of {approx}210 MeV (50 particle nA). The root mean squared (RMS) roughness prior to irradiation is 1.1 nm for a {approx}250 nm ({approx}220 {micro}g/cm{sup 2}) Tm{sub 2}O{sub 3} target, and an RMS roughness of 2.0 nm after irradiation was measured by atomic force microscopy (AFM). Scanning electron microscopy of the irradiated target reveals no significant differences in surface homogeneity when compared to imaging prior to irradiation. Target flaking was not observed from monitoring Rutherford scattered particles as a function of time.

  1. Heavy-Rydberg ion-pair formation in collisions of Rydberg atoms with attaching targets

    NASA Astrophysics Data System (ADS)

    Wang, Changhao; Kelley, Michael; Dunning, F. Barry

    2012-06-01

    Collisions between K(np) Rydberg atoms and electron attaching targets can lead to the creation of heavy-Rydberg ion-pair states comprising a weakly-bound positive-negative ion pair orbiting at large internuclear separations. The lifetimes of such states and their correlation with binding energy and the channels available for decay, which can be controlled by varying n, the Rydberg atom velocity, and the target species, are being investigated. The ion-pair states are produced in a small collision cell and allowed to exit to form a beam that passes between a pair of electrodes where their number and binding energy distribution is determined by electric field induced dissociation. Ion-pair production is analyzed with the aid of a Monte Carlo collision code that models both initial Rydberg electron capture and the subsequent evolution of the product ion pair. Research supported by the Robert A Welch Foundation.

  2. A mask for high-intensity heavy-ion beams in the MAYA active target

    NASA Astrophysics Data System (ADS)

    Rodríguez-Tajes, C.; Pancin, J.; Damoy, S.; Roger, T.; Babo, M.; Caamaño, M.; Farget, F.; Grinyer, G. F.; Jacquot, B.; Pérez-Loureiro, D.; Ramos, D.; Suzuki, D.

    2014-12-01

    The use of high-intensity and/or heavy-ion beams in active targets and time-projection chambers is often limited by the strong ionization produced by the beam. Besides the difficulties associated with the saturation of the detector and electronics, beam-related signals may hide the physical events of interest or reduce the detector performance. In addition, space-charge effects may deteriorate the homogeneity of the electric drift field and distort the subsequent reconstruction of particle trajectories. In anticipation of future projects involving such conditions, a dedicated beam mask has been developed and tested in the MAYA active target. Experimental results with a 136Xe beam are presented.

  3. Naturally occurring heavy radioactive elements in the geothermal microcosm of the Los Azufres (Mexico) volcanic complex.

    PubMed

    Abuhani, W A; Dasgupta-Schubert, N; Villaseñor, L M; García Avila, D; Suárez, L; Johnston, C; Borjas, S E; Alexander, S A; Landsberger, S; Suárez, M C

    2015-01-01

    The Los Azufres geothermal complex of central Mexico is characterized by fumaroles and boiling hot-springs. The fumaroles form habitats for extremophilic mosses and ferns. Physico-chemical measurements of two relatively pristine fumarolic microcosms point to their resemblance with the paleo-environment of earth during the Ordovician and Devonian periods. These geothermal habitats were analysed for the distribution of elemental mass fractions in the rhizospheric soil (RS), the native volcanic substrate (VS) and the sediments (S), using the new high-sensitivity technique of polarized x-ray energy dispersive fluorescence spectrometry (PEDXRF) as well as instrumental neutron activation analysis (INAA) for selected elements. This work presents the results for the naturally occurring heavy radioactive elements (NOHRE) Bi, Th and U but principally the latter two. For the RS, the density was found to be the least and the total organic matter content the most. Bi was found to be negligibly present in all substrate types. The average Th and U mass fractions in the RS were higher than in the VS and about equal to their average mass fractions in the S. The VS mass fraction of Th was higher, and of U lower, than the mass fractions in the earth's crust. In fact for the fumaroles of one site, the average RS mass fractions of these elements were higher than the averaged values for S (without considering the statistical dispersion). The immobilization of the NOHRE in the RS is brought about by the bio-geochemical processes specific to these extremophiles. Its effectiveness is such that despite the small masses of these plants, it compares with, or may sometimes exceed, the immobilization of the NOHRE in the S by the abiotic and aggressive chemical action of the hot-springs. These results indicate that the fumarolic plants are able to transform the volcanic substrate to soil and to affect the NOHRE mass fractions even though these elements are not plant nutrients. Mirrored back to

  4. Transient Heavy Element Absorption Systems in Novae: Episodic Mass Ejection from the Secondary Star

    NASA Astrophysics Data System (ADS)

    Williams, Robert; Mason, Elena; Della Valle, Massimo; Ederoclite, Alessandro

    2008-09-01

    A high-resolution spectroscopic survey of post-outburst novae reveals short-lived heavy element absorption systems in a majority of novae near maximum light, having expansion velocities of 400-1000 km s-1 and velocity dispersions between 35 and 350 km s-1. A majority of systems are accelerated outward, and they all progressively weaken and disappear over timescales of weeks. A few of the systems having narrow, deeper absorption reveal a rich spectrum of singly ionized Sc, Ti, V, Cr, Fe, Sr, Y, Zr, and Ba lines. Analysis of the richest such system, in LMC 2005, shows the excitation temperature to be 104 K and elements lighter than Fe to have abundance enhancements over solar values by up to an order of magnitude. The gas causing the absorption systems must be circumbinary and its origin is most likely mass ejection from the secondary star. The absorbing gas exists before the outburst and may represent episodic mass transfer events from the secondary star that initiate the nova outburst(s). If SNe Ia originate in single degenerate binaries, such absorption systems could be detectable before maximum light.

  5. Enhancement of X-ray Energy Deposition via Heavy Element Sensitization in Biological Environments

    NASA Astrophysics Data System (ADS)

    Lim, Sara; Pradhan, Anil; Nahar, Sultana; Barth, Rolf

    2015-05-01

    Energy (dose) deposition by low vs. high energy x-rays (LEX & HEX), approximately E ~ 100 keV and E > 1 MeV respectively, was studied in biological matter sensitized with heavy elements (high-Z or HZ) to improve radiation therapy of cancer. Computations and simulations show that LEX interact favorably with HZ sensitizers by depositing more dose than HEX. LEX photons effectively photoionize deep inner electronic shells and release cell-killing Auger electrons near malignant cells embedded with HZ atoms. HEX photons predominantly Compton scatter with little interaction, even with HZ elements. Monte Carlo simulations show that in comparison to unsensitized tissue, LEX irradiation of HZ-sensitized models resulted in up to a factor of 2 increase in dose deposition relative to HEX. To validate the studies, in vitro experiments were performed using 2 distinct cancer cell types treated with Pt-based sensitizers, then irradiated with a LEX 160 KV x-ray source and a HEX 6 MV LINAC employed in radiation therapy. The experiments support numerical simulations, and demonstrate several factors lower survival of HZ-sensitized cells irradiated with LEX compared with HEX.

  6. Seismic Safety Analysis of Heavy Element Facility at Lawrence Livermore National Laboratory

    SciTech Connect

    O'Connell, W J; Hildum J S

    2001-06-06

    The Heavy Element Facility is a cold war legacy facility at Livermore National Laboratory. The facility's mission has varied over its lifetime, but operations included the preparation of radioactive heavy element tracers used in underground nuclear weapons testing and the conduct of a heavy element research program. It is a one story concrete masonry structure constructed in several phases between 1955 and 1981. In 1993, a seismic re-evaluation of the facility determined that portions of the building did not meet the PC-2 requirements applicable to it. A seismic upgrade evaluation determined it was not practical to upgrade the facility to support continued programmatic operations. It is now maintained in a storage mode awaiting Department of Energy disposition. In this mode the operations are limited to (1) storage of radioactive material from previous operations, (2) clean-up and decontamination of facility work areas and equipment, (3) removal of contaminated systems and enclosures, (4) facility maintenance, (5) removal of radioactive materials from the facility, (6) characterization of the waste generated by these activities, (7) surveillance activities and (8) security. An important part of the facility's storage function is provided by underground storage vaults. These are embedded in a massive reinforced concrete block whose top is at the building interior's floor level. The inventory in these vaults is limited to solid forms of transuranic isotopes and other radioactive isotopes stored with double or triple containment. The vaults may be accessed infrequently for surveillance or on occasion for removal of inventory to other facilities. As part of maintaining this storage function until final disposition, the safety of the underground storage system was reevaluated using guidance in DOE standard DOE-STD-1027-92. An overview is presented here to highlight important considerations in the evaluation of an older safety system. Special effort is directed to

  7. Ceramic Plutonium Target Development for the MASHA Separator for the Synthesis of Element 114

    SciTech Connect

    Shaughnessy, D A; Wilk, P A; Moody, K J; Kenneally, J M; Wild, J F; Stoyer, M A; Stoyer, N J; Patin, J B; Landrum, J H; Lougheed, R W; Oganessian, Y T; Yeremin, A V; Dmitriev, S N; Hartmann, T; Czerwinski, K R

    2005-06-29

    We are currently developing a Pu ceramic target for the MASHA mass separator. MASHA will use a Pu ceramic target capable of tolerating temperatures up to 2000 C. Reaction products will diffuse out of the target into an ion source, and transported through the separator to a position-sensitive focal-plane detector array for mass identification. Experiments on MASHA will allow us to make measurements that will cement our identification of element 114 and provide data for future experiments on chemical properties of the heaviest elements. In this study (Sm,Zr)O{sub 2-x} ceramics are produced and evaluated for studies on the production of Pb (homolog of element 114) by the reaction of Ca on Sm. This work will provide an initial analysis on the feasibility of using a ZrO{sub 2}-PuO{sub 2} as a target for the production of element 114.

  8. Heavy-Element Ejecta in G1.9+0.3

    NASA Astrophysics Data System (ADS)

    Borkowski, Kazimierz J.; Reynolds, S. P.; Green, D.; Hwang, U.; Petre, R.; Krishnamurthy, K.; Willett, R.

    2013-04-01

    G1.9+0.3 is the youngest known Galactic supernova remnant (SNR), with an estimated supernova (SN) explosion date of about 1900, most likely located near the Galactic center. Only the outermost ejecta layers with free-expansion velocities in excess of 18,000 km/s have been shocked so far in this dynamically-young, likely Type Ia SNR. A long (980 ks) Chandra observation in 2011 allowed for spatially-resolved spectroscopy of heavy-element ejecta. We denoised Chandra data with the spatio-spectral method of Krishnamurthy, Raginsky, & Willett, and then used a wavelet-based technique to spatially localize thermal emission produced by intermediate-mass elements (IMEs: Si, S, Ar, and Ca) and by iron. The spatial distribution of both IMEs and Fe is extremely asymmetric and inhomogeneous, with the strongest ejecta emission in the northern limb. Fe K emission is particularly prominent there, and fits with a thermal plane-shock model indicate strongly oversolar Fe abundances. In a localized, outlying region in the northern shell, IMEs are at least 5 times less abundant than Fe (by mass), indicating that undiluted Fe-group elements (including radioactive Ni) with velocities > 18,000 km/s were ejected by this SN. More modest (up to a factor of 2) Fe overabundances with respect to IMEs are present in other locations within the northern limb. There are several thousandths of a solar mass of shocked Fe in G1.9+0.3. In several locations within the remnant, including the (inner) west limb, we also find Si- and S-rich ejecta without any traces of Fe, so high-velocity, presumably undiluted products of O-burning were also ejected by the SN. If the underlying continuum is thermal, with plasma temperatures of 3-4 keV, then it must be produced by lighter elements such as O that comprise the bulk of the shocked gas. We discuss these findings in the context of Type Ia SNe such as SN 2010jn where iron-group elements at such high free-expansion velocities have been recently detected. We also

  9. Secondary neutron-production cross sections from heavy-ioninteractions in composite targets.

    SciTech Connect

    Heilbronn, L.; Iwata, Y.; Iwase,H.; Murakami, T.; Sato, H.; Nakamura, T.; Ronningen, R.M.; Ieki, K.; Gudowska, I.; Sobolevsky, N.

    2005-12-19

    Secondary neutron-production cross-sections have been measured from interactions of 290 MeV/nucleon C and 600 MeV/nucleon Ne in a target composed of simulated Martian regolith and polyethylene, and from 400 MeV/nucleon Ne interactions in wall material from the International Space Station. The data were measured between 5 and 80 deg in the laboratory. We report the double-differential cross sections, angular distributions, and total neutron-production cross sections from all three systems. The spectra from all three systems exhibit behavior previously reported in other heavy-ion, neutron production experiments; namely, a peak at forward angles near the energy corresponding to the beam velocity, with the remaining spectra generated by pre-equilibrium and equilibrium processes. The double differential cross sections are fitted with a moving-source parameterization. Also reported are the data without corrections for neutron flux attenuation in the target and other intervening materials, and for neutron production in non-target materials near the target position. These uncorrected spectra are compared with SHIELD-HIT and PHITS transport model calculations. The transport model calculations reproduce the spectral shapes well, but, on average, underestimate the magnitudes of the cross sections.

  10. Trace elements and heavy metals in the Grand Bay National Estuarine Reserve in the northern Gulf of Mexico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Grand Bay National Estuarine Research Reserve has the highest biotic diversity of habitats and offer a reserve of food resources and commercially significant species. Rapid human civilization has led to accumulation of heavy metals and trace elements in estuaries. The Grand Bay National Estuarin...

  11. DETERMINATION OF THE MINIMUM MASSES OF HEAVY ELEMENTS IN THE ENVELOPES OF JUPITER AND SATURN

    SciTech Connect

    Mousis, Olivier; Lunine, Jonathan I.; Marboeuf, Ulysse; Alibert, Yann; Fletcher, Leigh N.; Orton, Glenn S.; Pauzat, Francoise; Ellinger, Yves

    2009-05-10

    We calculate the minimum mass of heavy elements required in the envelopes of Jupiter and Saturn to match the observed oversolar abundances of volatiles. Because the clathration efficiency remains unknown in the solar nebula, we have considered a set of sequences of ice formation in which the fraction of water available for clathration is varied between 0 and 100%. In all the cases considered, we assume that the water abundance remains homogeneous whatever the heliocentric distance in the nebula and directly derives from a gas phase of solar composition. Planetesimals then form in the feeding zones of Jupiter and Saturn from the agglomeration of clathrates and pure condensates in proportions fixed by the clathration efficiency. A fraction of Kr and Xe may have been sequestrated by the H{sup +} {sub 3} ion in the form of stable XeH{sup +} {sub 3} and KrH{sup +} {sub 3} complexes in the solar nebula gas phase, thus implying the formation of at least partly Xe- and Kr-impoverished planetesimals in the feeding zones of Jupiter and Saturn. These planetesimals were subsequently accreted and vaporized into the hydrogen envelopes of Jupiter and Saturn, thus engendering volatiles enrichments in their atmospheres, with respect to hydrogen. Taking into account both refractory and volatile components, and assuming plausible molecular mixing ratios in the gas phase of the outer solar nebula, we show that it is possible to match the observed enrichments in Jupiter and Saturn, whatever the clathration efficiency. Our calculations predict that the O/H enrichment decreases from {approx} 5.5 to 5.1 times (O/H){sub sun} in the envelope of Jupiter and from 15.2 to 14.1 times (O/H){sub sun} in the envelope of Saturn with the growing clathration efficiency in the solar nebula. As a result, the minimum mass of ices needed to be injected in the envelope of Jupiter decreases from {approx} 20.0 to 18.6 M {sub +}, including a mass of water diminishing from 10.4 to 9.3 M {sub +}. In the same

  12. Bioaccumulation and toxicity of heavy metals and trace elements. [Water pollution

    SciTech Connect

    Murphy, C.B. Jr.; Spiegel, S.J.

    1982-06-01

    A review of the literature dealing with the biological accumulation and toxicity of heavy metals in aquatic ecosystems is presented. The review first examines the sources of heavy metals and the process of ecological concentration of these pollutants. The biological effects of cadmium, copper, and zinc on fish and invertebrates are considered in detail. Methods of detoxification of heavy metals are presented. (KRM)

  13. Periodic Table Target: A Game that Introduces the Biological Significance of Chemical Element Periodicity

    ERIC Educational Resources Information Center

    Sevcik, Richard S.; McGinty, Ragan L.; Schultz, Linda D.; Alexander, Susan V.

    2008-01-01

    Periodic Table Target, a game for middle school or high school students, familiarizes students with the form of the periodic table and the biological significance of different elements. The Periodic Table Target game board is constructed as a class project, and the game is played to reinforce the content. Students are assigned several elements…

  14. Galactic abundance gradients from Cepheids. α and heavy elements in the outer disk

    NASA Astrophysics Data System (ADS)

    Lemasle, B.; François, P.; Genovali, K.; Kovtyukh, V. V.; Bono, G.; Inno, L.; Laney, C. D.; Kaper, L.; Bergemann, M.; Fabrizio, M.; Matsunaga, N.; Pedicelli, S.; Primas, F.; Romaniello, M.

    2013-10-01

    Context. Galactic abundance gradients set strong constraints to chemo-dynamical evolutionary models of the Milky Way. Given the period-luminosity relations that provide accurate distances and the large number of spectral lines, Cepheids are excellent tracers of the present-day abundance gradients. Aims: We want to measure the Galactic abundance gradient of several chemical elements. While the slope of the Cepheid iron gradient did not vary much from the very first studies, the gradients of the other elements are not that well constrained. In this paper we focus on the inner and outer regions of the Galactic thin disk. Methods: We use high-resolution spectra (FEROS, ESPADONS, NARVAL) to measure the abundances of several light (Na, Al), α (Mg, Si, S, Ca), and heavy elements (Y, Zr, La, Ce, Nd, Eu) in a sample of 65 Milky Way Cepheids. Combining these results with accurate distances from period-Wesenheit relations in the near-infrared enables us to determine the abundance gradients in the Milky Way. Results: Our results are in good agreement with previous studies on either Cepheids or other tracers. In particular, we confirm an upward shift of ≈0.2 dex for the Mg abundances, as has recently been reported. We also confirm the existence of a gradient for all the heavy elements studied in the context of a local thermodynamic equilibrium analysis. However, for Y, Nd, and especially La, we find lower abundances for Cepheids in the outer disk than reported in previous studies, leading to steeper gradients. This effect can be explained by the differences in the line lists used by different groups. Conclusions: Our data do not support a flattening of the gradients in the outer disk, in agreement with recent Cepheid studies and chemo-dynamical simulations. This is in contrast to the open cluster observations but remains compatible with a picture where the transition zone between the inner disk and the outer disk would move outward with time. Based on observations obtained

  15. Effects of heavy metal and other elemental additives to activated sludge on growth of Eisenia foetida

    SciTech Connect

    Hartenstein, R.; Neuhauser, E.F.; Narahara, A.

    1981-09-01

    The approximate level at which added concentrations of certain elements would cause an activated sludge to induce a toxic effect upon the growth of Eisenia foetida was determined. During 43 trials on sludge samples obtained throughout 1 year of study, earthworms grew from 3 to 10 mg live wt at hatching to 792 mg +- 18% (mean +- C.V.) in 8 weeks, when sludge was 24/sup 0/C and contained no additives. None of several elements commonly used in microbial growth media enhanced the growth rate of the earthworm. At salt concentrations up to about 6.6% on a dry wt basis, none of six anions tested was in and of itself toxic, while five of 15 cations - Co, Hg, Cu, Ni, and Cd - appeared specifically to inhibit growth rate or cause death. Manganese, Cr, and Pb were innocuous even at the highest levels of application - 22,000, 46,000, and 52,000 mg/kg, respectively. Neither the anionic nor cationic component of certain salts, such as NaCl or NH/sub 4/Cl, could be said to inhibit growth, which occurred only at high concentrations of these salts (about 3.3 and/or 6.6%). Below 7 mmho/cm, toxicity could not be correlated with electrolytic conductance, though higher values may help to explain the nonspecific growth inhibitory effects of salts like NaCl and KCl. Nor could toxicity ever be ascribed to hydrogen ion activity, since sludge pH was not altered even at the highest salt dose. It is concluded that except under very extreme conditions, the levels of heavy metals and salts generally found in activated sludges will not have an adverse affect on the growth of E. foetida.

  16. In vivo XRF measurements of heavy elements: Summary of a workshop

    SciTech Connect

    Wielopolski, L.; Ryon, R.W.

    1995-12-31

    This is a brief summary of the first workshop of {open_quotes}In Vivo XRF Measurements of Heavy Elements,{close_quotes} at the Denver Conference on Applications of X-Ray Analysis. In vivo x-ray fluorescence has been applied to medical applications since the 1960`s, with much of the pioneering work being done in Sweden (1). First measurements were of iodine in the thyroid. Elements from iron ID uranium have now been measured, at natural and elevated levels. Elevated levels occur either unintentionally through occupational or environmental exposure, or intentionally through medical administration. Examples of measurements are cadmium in kidney and liver, platinum in kidneys and tumors, mercury in the wrists and skulls of dentists, lead in various near-surface bones, copper in the eye and iron in skin. Nearly all measurements make use of either silicon or germanium detectors; radioisotopes and less frequently x-ray tubes are used for excitation. One question that those who work in an analytical chemistry laboratory often ask concerns radiation doses. Concern for x-ray safety ordinarily precludes putting living subjects into the x-ray beam. It turns out that radiation exposure due to in vivo x-ray fluorescence is quite low. The effective dose values for measurement of tibia lead concentration using a {sup 109}Cd source (30 minute exposure) ranges from 0.036 uSv for adults to 1.1 uSv for infants (less than one tenth of a single dental x-ray) (2). Lower effective doses were reported when an x-ray machine was Used to measure L x-rays (3). These values are far below proposed limits of negligibility (10 USv) and average annual U.S. natural background radiation (3000 uSv). 17 refs.

  17. The temperature and chronology of heavy-element synthesis in low-mass stars.

    PubMed

    Neyskens, P; Van Eck, S; Jorissen, A; Goriely, S; Siess, L; Plez, B

    2015-01-01

    Roughly half of the heavy elements (atomic mass greater than that of iron) are believed to be synthesized in the late evolutionary stages of stars with masses between 0.8 and 8 solar masses. Deep inside the star, nuclei (mainly iron) capture neutrons and progressively build up (through the slow-neutron-capture process, or s-process) heavier elements that are subsequently brought to the stellar surface by convection. Two neutron sources, activated at distinct temperatures, have been proposed: (13)C and (22)Ne, each releasing one neutron per α-particle ((4)He) captured. To explain the measured stellar abundances, stellar evolution models invoking the (13)C neutron source (which operates at temperatures of about one hundred million kelvin) are favoured. Isotopic ratios in primitive meteorites, however, reflecting nucleosynthesis in the previous generations of stars that contributed material to the Solar System, point to higher temperatures (more than three hundred million kelvin), requiring at least a late activation of (22)Ne (ref. 1). Here we report a determination of the s-process temperature directly in evolved low-mass giant stars, using zirconium and niobium abundances, independently of stellar evolution models. The derived temperature supports (13)C as the s-process neutron source. The radioactive pair (93)Zr-(93)Nb used to estimate the s-process temperature also provides, together with the pair (99)Tc-(99)Ru, chronometric information on the time elapsed since the start of the s-process, which we determine to be one million to three million years. PMID:25567282

  18. Secondary neutron-production cross sections from heavy-ion interactions in composite targets

    SciTech Connect

    Heilbronn, L.; Iwata, Y.; Murakami, T.; Iwase, H.; Sato, H.; Nakamura, T.; Ronningen, R.M.; Ieki, K.; Gudowska, I.; Sobolevsky, N.

    2006-02-15

    Secondary neutron-production cross sections have been measured from interactions of 290 MeV/nucleon C and 600 MeV/nucleon Ne in a target composed of simulated Martian regolith and polyethylene, and from 400 MeV/nucleon Ne interactions in wall material from the International Space Station. The data were measured between 5 deg. and 80 deg. in the laboratory. We report the double-differential cross sections, angular distributions, and total neutron-production cross sections from all three systems. The spectra from all three systems exhibit behavior previously reported in other heavy-ion neutron-production experiments, namely, a peak at forward angles near the energy corresponding to the beam velocity, with the remaining spectra generated by pre-equilibrium and equilibrium processes. The double-differential cross sections are fitted with a moving-source parametrization. Also reported are the data without corrections for neutron flux attenuation in the target and other intervening materials and for neutron production in nontarget materials near the target position. These uncorrected spectra are compared with SHIELD-HIT and PHITS transport model calculations. The transport model calculations reproduce the spectral shapes well but, on average, underestimate the magnitudes of the cross sections.

  19. Recent results on fast electron production induced by energetic heavy ions on thin solid targets

    NASA Astrophysics Data System (ADS)

    Lanzanò, G.; Anzalone, A.; Arena, N.; De Filippo, E.; Geraci, M.; Giustolisi, F.; Pagano, A.; Rothard, H.; Volant, C.

    2003-08-01

    In order to study the emission of energetic electrons induced by the impact of swift heavy ions on thin solid targets, we carried out a series of experiments at the Superconducting Cyclotron of the Catania Laboratori Nazionali del Sud (LNS) in November and December 2001. We bombarded solid thin targets, ranging from carbon to bismuth, with different ion beams at fixed velocity, i.e. ˜23 MeV/nucleon 197Au 36+, 58Ni 14+ and 12C 3+. Absolute velocity spectra were measured in a wide laboratory angular range, from 1.5° to 175°. At forward angles, besides the well-known convoy and binary encounter components with the beam velocity and two times the beam velocity respectively, we observe also a high velocity tail and an intermediate velocity component. At backward laboratory angles, the spectra remain complex, still presenting an energetic tail. These electron velocity spectra strongly depend on the beam and target atomic numbers. We suggest a Fermi-Shuttle (or multiscattering) mechanism and an in-flight-emission of projectile Auger electrons to explain some of the observed features in the velocity spectra.

  20. Blood concentration of essential trace elements and heavy metals in workers exposed to lead and cadmium.

    PubMed

    Wasowicz, W; Gromadzińska, J; Rydzyński, K

    2001-01-01

    The aim of the study was to determine blood concentration of essential trace elements (Se, Zn, Cu) and toxic metals (Pb, Cd), markers of antioxidant (activities of glutathione peroxidase (GPx), superoxidase dismutase and ceruloplasmin) and prooxidant processes (thiobarbituric acid reactive substances (TBARS)) in workers exposed to Pb and Cd. Forty three male workers of the lead-acid batteries department, aged 25-52 years, and twenty two workers, including 15 women, aged 36-51 years, exposed to Cd in the alkaline batteries department were examined. The reference group consisted of 52 healthy inhabitants of the same region. It was found that Se concentration and GPx activity in both erythrocytes and plasma of Cd exposed workers were significantly lower (p < 0.001) than in the reference group. We found an inverse linear correlation between blood Se and Cd concentrations in the workers exposed to Cd (r = -0.449; p < 0.01). Moreover, the activity of erythrocyte and plasma GPx was shown to be significantly lower in the study group of workers (p < 0.001). It was observed that TBARS concentration in plasma was significantly higher (p < 0.05) in the lead exposed workers than in the group without contact with Pb. Our results indicate that exposure to Pb and Cd affects the antioxidant potential of blood in workers exposed to heavy metals. PMID:11764849

  1. Ozz-E3 ubiquitin ligase targets sarcomeric embryonic myosin heavy chain during muscle development.

    PubMed

    Campos, Yvan; Qiu, Xiaohui; Zanoteli, Edmar; Moshiach, Simon; Vergani, Naja; Bongiovanni, Antonella; Harris, A John; d'Azzo, Alessandra

    2010-01-01

    Muscle contractile proteins are expressed as a series of developmental isoforms that are in constant dynamic remodeling during embryogenesis, but how obsolete molecules are recognized and removed is not known. Ozz is a developmentally regulated protein that functions as the adaptor component of a RING-type ubiquitin ligase complex specific to striated muscle. Ozz(-/-) mutants exhibit defects in myofibrillogenesis and myofiber differentiation. Here we show that Ozz targets the rod portion of embryonic myosin heavy chain and preferentially recognizes the sarcomeric rather than the soluble pool of myosin. We present evidence that Ozz binding to the embryonic myosin isoform within sarcomeric thick filaments marks it for ubiquitination and proteolytic degradation, allowing its replacement with neonatal or adult isoforms. This unique function positions Ozz within a system that facilitates sarcomeric myosin remodeling during muscle maturation and regeneration. Our findings identify Ozz-E3 as the ubiquitin ligase complex that interacts with and regulates myosin within its fully assembled cytoskeletal structure. PMID:20352047

  2. Criticality Safety of Low-Enriched Uranium and High-Enriched Uranium Fuel Elements in Heavy Water Lattices

    SciTech Connect

    Pesic, Milan P

    2003-10-15

    The RB reactor was designed as a natural-uranium, heavy water, nonreflected critical assembly in the Vinca Institute of Nuclear Sciences, Belgrade, Yugoslavia, in 1958. From 1962 until 2002, numerous critical experiments were carried out with low-enriched uranium and high-enriched uranium fuel elements of tubular shape, known as the Russian TVR-S fuel assembly type, placed in various heavy water square lattices within the RB cylindrical aluminum tank. Some of these well-documented experiments were selected, described, evaluated, and accepted for inclusion in the 'International Handbook of Evaluated Criticality Safety Benchmark Experiments', contributing to the preservation of a rather small number of heavy water benchmark critical experiments.

  3. Transposable Element Targeting by piRNAs in Laurasiatherians with Distinct Transposable Element Histories.

    PubMed

    Vandewege, Michael W; Platt, Roy N; Ray, David A; Hoffmann, Federico G

    2016-01-01

    PIWI proteins and PIWI-interacting RNAs (piRNAs) are part of a cellular pathway that has evolved to protect genomes against the proliferation of transposable elements (TEs). PIWIs and piRNAs assemble into complexes that are involved in epigenetic and post-transcriptional repression of TEs. Most of our understanding of the mechanisms of piRNA-mediated TE silencing comes from fruit fly and mouse models. However, even in these well-studied animals it is unclear how piRNA responses relate to variable TE expression and whether the strength of the piRNA response affects TE content over time. Here, we assessed the evolutionary interactions between TE and piRNAs in a statistical framework using three nonmodel laurasiatherian mammals as a study system: dog, horse, and a vesper bat. These three species diverged ∼80 million years ago and have distinct genomic TE contents. By comparing species with distinct TE landscapes, we aimed to identify clear relationships among TE content, expression, and piRNAs. We found that the TE subfamilies that are the most transcribed appear to elicit the strongest "ping-pong" response. This was most evident among long interspersed elements, but the relationships between expression and ping-pong pilRNA (piRNA-like) expression were more complex among SINEs. SINE transcripts were equally abundant in the dog and horse yet new SINE insertions were relatively rare in the horse genome, where we identified a stronger piRNA response. Our analyses suggest that the piRNA response can have a strong impact on the TE composition of a genome. However, our results also suggest that the presence of a robust piRNA response is apparently not sufficient to stop TE mobilization and accumulation. PMID:27060702

  4. Transposable Element Targeting by piRNAs in Laurasiatherians with Distinct Transposable Element Histories

    PubMed Central

    Vandewege, Michael W.; Platt, Roy N.; Ray, David A.; Hoffmann, Federico G.

    2016-01-01

    PIWI proteins and PIWI-interacting RNAs (piRNAs) are part of a cellular pathway that has evolved to protect genomes against the proliferation of transposable elements (TEs). PIWIs and piRNAs assemble into complexes that are involved in epigenetic and post-transcriptional repression of TEs. Most of our understanding of the mechanisms of piRNA-mediated TE silencing comes from fruit fly and mouse models. However, even in these well-studied animals it is unclear how piRNA responses relate to variable TE expression and whether the strength of the piRNA response affects TE content over time. Here, we assessed the evolutionary interactions between TE and piRNAs in a statistical framework using three nonmodel laurasiatherian mammals as a study system: dog, horse, and a vesper bat. These three species diverged ∼80 million years ago and have distinct genomic TE contents. By comparing species with distinct TE landscapes, we aimed to identify clear relationships among TE content, expression, and piRNAs. We found that the TE subfamilies that are the most transcribed appear to elicit the strongest “ping-pong” response. This was most evident among long interspersed elements, but the relationships between expression and ping-pong pilRNA (piRNA-like) expression were more complex among SINEs. SINE transcripts were equally abundant in the dog and horse yet new SINE insertions were relatively rare in the horse genome, where we identified a stronger piRNA response. Our analyses suggest that the piRNA response can have a strong impact on the TE composition of a genome. However, our results also suggest that the presence of a robust piRNA response is apparently not sufficient to stop TE mobilization and accumulation. PMID:27060702

  5. Nuclear-breakup mechanisms in the interaction of relativistic projectiles with heavy targets

    SciTech Connect

    Steinberg, E.P.

    1982-01-01

    The breakup of a Au nucleus under bombardment with relativistic p, ..cap alpha.., and /sup 20/Ne has been investigated in an extensive, multi-detector study. The present discussion addresses some of the many aspects of the experimental results. A broad distribution of coincident fragment masses is observed, with the total fragment kinetic energy being higher than expected for a fission mechanism for total fragment mass less than or equal to 120. The formation of light fragments is shown to be inconsistent with a binary breakup mechanism, and a multi-fragment target breakup is suggested. In general, the results indicate a broad spectrum of violence in the collisions, from gentle, leading to the production of heavy spallation products and fission, to essentially explosive, leading to multi-fragment breakup into light mas products. These aspects of the reactions represent a late-stage breakup of the target residues and are positively correlated with the violence of the initial fast stage of the collision as measured by the charged particle multiplicity.

  6. A molecular switch for targeting between endoplasmic reticulum (ER) and mitochondria: conversion of a mitochondria-targeting element into an ER-targeting signal in DAKAP1.

    PubMed

    Ma, Yuliang; Taylor, Susan S

    2008-04-25

    dAKAP1 (AKAP121, S-AKAP84), a dual specificity PKA scaffold protein, exists in several forms designated as a, b, c, and d. Whether dAKAP1 targets to endoplasmic reticulum (ER) or mitochondria depends on the presence of the N-terminal 33 amino acids (N1), and these N-terminal variants are generated by either alternative splicing and/or differential initiation of translation. The mitochondrial targeting motif, which is localized between residues 49 and 63, is comprised of a hydrophobic helix followed by positive charges ( Ma, Y., and Taylor, S. (2002) J. Biol. Chem. 277, 27328-27336 ). dAKAP1 is located on the cytosolic surface of mitochondria outer membrane and both smooth and rough ER membrane. A single residue, Asp(31), within the first 33 residues of dAKAP1b is required for ER targeting. Asp(31), which functions as a separate motif from the mitochondrial targeting signal, converts the mitochondrial-targeting signal into a bipartite ER-targeting signal, without destroying the mitochondria-targeting signal. Therefore dAKAP1 possesses a single targeting element capable of targeting to both mitochondria and ER, with the ER signal overlapping the mitochondria signal. The specificity of ER or mitochondria targeting is determined and switched by the availability of the negatively charged residue, Asp(31). PMID:18287098

  7. Amplification of Distant Estrogen Response Elements Deregulates Target Genes Associated with Tamoxifen Resistance in Breast Cancer

    PubMed Central

    Hsu, Pei-Yin; Hsu, Hang-Kai; Lan, Xun; Juan, Liran; Yan, Pearlly S.; Labanowska, Jadwiga; Heerema, Nyla; Hsiao, Tzu-Hung; Chiu, Yu-Chiao; Chen, Yidong; Liu, Yunlong; Li, Lang; Li, Rong; Thompson, Ian M.; Nephew, Kenneth P.; Sharp, Zelton D.; Kirma, Nameer B.; Jin, Victor X.; Huang, Tim H.-M.

    2013-01-01

    SUMMARY A causal role of gene amplification in tumorigenesis is well-known, while amplification of DNA regulatory elements as an oncogenic driver remains unclear. In this study, we integrated next-generation sequencing approaches to map distant estrogen response elements (DEREs) that remotely control transcription of target genes through chromatin proximity. Two densely mapped DERE regions located on chromosomes 17q23 and 20q13 were frequently amplified in ERα-positive luminal breast cancer. These aberrantly amplified DEREs deregulated target gene expression potentially linked to cancer development and tamoxifen resistance. Progressive accumulation of DERE copies was observed in normal breast progenitor cells chronically exposed to estrogenic chemicals. These findings may extend to other DNA regulatory elements, the amplification of which can profoundly alter target transcriptome during tumorigenesis. PMID:23948299

  8. Heavy mass elements total half-lives for selected long-lived nuclides

    SciTech Connect

    Holden, N.E.

    1985-01-01

    In the past, many compilations and evaluations of half-lives have been made which have uncritically accepted authors' values and uncertainties. They have merely recommended weight-averaged reported results. This evaluation attempts to reanalyze each experiment in the literature including an estimate of the standard deviation utilizing, where possible, an estimate of the systematic error. This paper constitutes a preliminary step in the process of recommending values. The long-lived nuclides of heavy mass elements are of interest in determining geological ages using the Re-Os or the Lu-Hf dating methods, in supplying information on the p-process (proton capture) of nucleo-synthesis, in providing information on lepton number conservation and the rest mass for the electron neutrino from double ..beta.. decay processes and in the case of tantalum because it represents the first long-lived state which is actually an isomer. Experimental data on the half-lives of selected nuclides have been evaluated and recommended values and uncertainties are presented for the following nuclides: /sup 128/Te, /sup 130/Te, /sup 129/I, /sup 138/La, /sup 144,145/Nd, /sup 146,147,148/Sm, /sup 152/Gd, /sup 154/Dy, /sup 176/Lu, /sup 174/Hf, /sup 180/Ta, /sup 187/Re, /sup 186/Os, /sup 190/Pt, /sup 204,205/Pb and /sup 230,232/Th. It is shown that /sup 204/Pb, which was previously thought to be radioactive, is stable. For /sup 205/Pb, the L electron capture x-rays have been revised for the M and higher x-ray yields. The resulting half-life for /sup 205/Pb is 1.9 +- 0.3 x 10/sup 7/ years. /sup 146/Sm with a half-life of 1.03 +- 0.05 x 10/sup 8/ years is the longest-lived extinct natural nuclide. 21 tabs.

  9. Structural analyses of the storage container for heavy element facility, building-251

    SciTech Connect

    Ng, D S

    1999-01-01

    The Heavy Element Facility, Building 251, contains a series of underground storage vaults which are used for long term storage of nuclear materials. A storage rack with shelves is suspended from the top of each storage vault. The stainless steel containers enclosing the nuclear materials are stored on the shelves. A Hazard & Accident assessment analyzed the vulnerability of this storage system to assaults resulting from natural phenomena and accidents within the building. The assessment considered all racks and their containers to be stored underground and secured in their static, long-term configuration. Moving beyond the static, long-term hazard assessment, the structural analyses were performed to evaluate the storage container against a rare, short duration event. An accidental free drop of a container may occur in a combination of two events: a rare, short-duration earthquake concurrent with an operation of raising the storage rack to a maximum height that the crane is capable of. This hypothetical free drop may occur only to the container in the uppermost shelf of the storage rack. The analyses were the structural evaluation of the storage container to determine the material containment integrity of the storage container after the accident. The evaluation was performed simulating a free drop from the storage rack, with a maximum load in the container, striking/an unyielding surface in the worst orientation. The analyses revealed that, in the very unlikely event of a container drop, the integrity of the hermetic seal of the storage container could be compromised due to plastic deformation of the lid and mating flange. Simple engineering and administrative controls can prevent that from occurring.

  10. Bioaccumulation and toxicity of heavy metals and related trace elements. [Review (96 references)

    SciTech Connect

    Murphy, C.B. Jr.

    1981-06-01

    This article reviews the experimental data on heavy metals in the aquatic environment and their biological effects on aquatic ecosystems. Arsenic, cadmium, copper, chromium, lead, mercury, zinc, selenium, and cobalt were discussed. In addition, the concepts of bioconcentration and detoxification of heavy metals were described. (KRM)

  11. Heavy-ion inertial fusion: influence of target gain on accelerator parameters for vacuum-propagation regimes in reaction chambers

    SciTech Connect

    Mark, J.W.K.; Bangerter, R.O.; Barletta, W.A.; Fawley, W.M.; Judd, D.L.

    1982-03-04

    Target physics imposes requirements on the design of inertial fusion drivers. The influence of beam propagation in near vacuum fusion reaction chambers is evaluated for the relation between target gain and the phase-space requirements of heavy-ion accelerators. Initial results suggest that neutralization of the ion beam has a much greater positive effect than the deleterious one of beam stripping provided that the fusion chamber pressure is < 10/sup -3/ torr (of Li vapor or equivalent).

  12. Induction of Non-Targeted Stress Responses in Mammary Tissues by Heavy Ions

    PubMed Central

    Chai, Yunfei; Lam, Roy K. K.; Hamada, Nobuyuki; Kakinuma, Shizuko; Uchihori, Yukio; Yu, Peter K. N.; Hei, Tom K.

    2015-01-01

    Purpose Side effects related to radiation exposures are based primarily on the assumption that the detrimental effects of radiation occur in directly irradiated cells. However, several studies have reported over the years of radiation-induced non-targeted/ abscopal effects in vivo that challenge this paradigm. There is evidence that Cyclooxygenase-2 (COX2) plays an important role in modulating non-targeted effects, including DNA damages in vitro and mutagenesis in vivo. While most reports on radiation-induced non-targeted response utilize x-rays, there is little information available for heavy ions. Methods and Materials Adult female transgenic gpt delta mice were exposed to an equitoxic dose of either carbon or argon particles using the Heavy Ion Medical Accelerator in Chiba (HIMAC) at the National Institute of Radiological Sciences (NIRS) in Japan. The mice were stratified into 4 groups of 5 animals each: Control; animals irradiated under full shielding (Sham-irradiated); animals receiving whole body irradiation (WBIR); and animals receiving partial body irradiation (PBIR) to the lower abdomen with a 1 x 1 cm2 field. The doses used in the carbon ion group (4.5 Gy) and in argon particle group (1.5 Gy) have a relative biological effectiveness equivalent to a 5 Gy dose of x-rays. 24 hours after irradiation, breast tissues in and out of the irradiated field were harvested for analysis. Induction of COX2, 8-hydroxydeoxyguanosine (8-OHdG), phosphorylated histone H2AX (γ-H2AX), and apoptosis-related cysteine protease-3 (Caspase-3) antibodies were examined in the four categories of breast tissues using immunohistochemical techniques. Analysis was performed by measuring the intensity of more than 20 individual microscopic fields and comparing the relative fold difference. Results In the carbon ion group, the relative fold increase in COX2 expression was 1.01 in sham-irradiated group (p > 0.05), 3.07 in PBIR (p < 0.05) and 2.50 in WBIR (p < 0.05), respectively, when

  13. Multi-charged heavy ion acceleration from the ultra-intense short pulse laser system interacting with the metal target

    NASA Astrophysics Data System (ADS)

    Nishiuchi, M.; Sakaki, H.; Maeda, S.; Sagisaka, A.; Pirozhkov, A. S.; Pikuz, T.; Faenov, A.; Ogura, K.; Kanasaki, M.; Matsukawa, K.; Kusumoto, T.; Tao, A.; Fukami, T.; Esirkepov, T.; Koga, J.; Kiriyama, H.; Okada, H.; Shimomura, T.; Tanoue, M.; Nakai, Y.; Fukuda, Y.; Sakai, S.; Tamura, J.; Nishio, K.; Sako, H.; Kando, M.; Yamauchi, T.; Watanabe, Y.; Bulanov, S. V.; Kondo, K.

    2014-02-01

    Experimental demonstration of multi-charged heavy ion acceleration from the interaction between the ultra-intense short pulse laser system and the metal target is presented. Al ions are accelerated up to 12 MeV/u (324 MeV total energy). To our knowledge, this is far the highest energy ever reported for the case of acceleration of the heavy ions produced by the <10 J laser energy of 200 TW class Ti:sapphire laser system. Adding to that, thanks to the extraordinary high intensity laser field of ˜1021 W cm-2, the accelerated ions are almost fully stripped, having high charge to mass ratio (Q/M).

  14. Parametric Study of Heavy Element Distributions in SiC Grains

    NASA Astrophysics Data System (ADS)

    Howard, W. M.; Arnould, M.

    1992-07-01

    Recent determinations of the isotopic composition of a series of heavy elements in small-sized (micron) SiC grains have provided nuclear astrophysics with a wealth of compositional clues as to the astrophysical origin of these grains. In particular, the isotopic compositions of Si, Ca, Ti, Sr, Kr, Xe, Ba, Nd, and Sm (1,2,3,4) have been measured and exhibit significant deviations from their solar system counterparts. Although various astrophysical sources of these anomalous compositions have been proposed, e.g., AGB or Wolf-Rayet stars, no consistent picture has emerged. We t parametrized model in order to investigate in as a broad way as possible the neutron exposures or ranges of such exposures that could replicate the series of measured isotopic compositions without relying on any specific (and highly uncertain) astrophysical scenario. This study is in the same spirit in which one has studied the s-process as well as the r- and p- processes with parametrized models in order to understand the bulk solar system composition. We find that we can reproduce the general trends of the isotopic data for the elements from krypton through samarium with a rather simple neutron exposure history. We also show how one can relax the classical assumption of a two- component mixing curve. We interpret the linear correlations in the three-isotope plots as a mixture of components with slightly different neutron exposures. The neutron captures are calculated by a method described earlier (5,6), where we use the latest compilation of neutron capture rates and of the temperature and density dependent beta-decay rates. For the initial composition we take a solar-like composition (7). We define a standard model by tau = 0.006 mb-1, a neutron exposure timescale of 5x10**6 s and a temperature kT = 30 keV, this implying a neutron density of 5x10**9 cm-3. This model defines a standard set of abundances. A series of computations has been performed with different tau values and initial

  15. Two-loop massive operator matrix elements and unpolarized heavy flavor production at asymptotic values Q≫m

    NASA Astrophysics Data System (ADS)

    Bierenbaum, Isabella; Blümlein, Johannes; Klein, Sebastian

    2007-09-01

    We calculate the O(αs2) massive operator matrix elements for the twist-2 operators, which contribute to the heavy flavor Wilson coefficients in unpolarized deeply inelastic scattering in the region Q≫m. The calculation has been performed using light-cone expansion techniques. We confirm an earlier result obtained in [M. Buza, Y. Matiounine, J. Smith, R. Migneron, W.L. van Neerven, Nucl. Phys. B 472 (1996) 611, arxiv:/hep-ph/9601302]. The calculation is carried out without using the integration-by-parts method and in Mellin space using harmonic sums, which lead to a significant compactification of the analytic results derived previously. The results allow to determine the heavy flavor Wilson coefficients for F(x,Q) to O(αs2) and for F(x,Q) to O(αs3) for all but the power suppressed terms ∝(/Q)k,k⩾1.

  16. Design of a distributed radiator target for inertial fusion driven from two sides with heavy ion beams

    SciTech Connect

    Tabak, M.; Callahan-Miller, D.

    1997-11-10

    We describe the status of a distributed radiator heavy ion target design. In integrated calculations this target ignited and produced 390-430 MJ of yieldwhen driven with 5.8-6.5 MJ of 3-4 GeV Pb ions. The target has cylindrical symmetry with disk endplates. The ions uniformly illuminate these endplates in a 5mm radius spot. We discuss the considerations which led to this design together with some previously unused design features: low density hohlraum walls in approximate pressure balance with internal low-Z fill materials, radiationsymmetry determined by the position of the radiator materials and particle ranges, and early time pressure symmetry possibly influenced by radiation shims. We discuss how this target scales to lower input energy or to lower beam power. Variant designs with more realistic beam focusing strategies are also discussed. We show the tradeoffs required for targets which accept higher particle energies.

  17. Element accumulation in boreal bryophytes, lichens and vascular plants exposed to heavy metal and sulfur deposition in Finland.

    PubMed

    Salemaa, Maija; Derome, John; Helmisaari, Heljä-Sisko; Nieminen, Tiina; Vanha-Majamaa, Ilkka

    2004-05-25

    Macronutrient (N, P, K, Mg, S, Ca), heavy metal (Fe, Zn, Mn, Cu, Ni, Cd, Pb) and Al concentrations in understorey bryophytes, lichens and vascular plant species growing in Scots pine forests at four distances from the Harjavalta Cu-Ni smelter (0.5, 2, 4 and 8 km) were compared to those at two background sites in Finland. The aim was to study the relationship between element accumulation and the distribution of the species along a pollution gradient. Elevated sulfur, nitrogen and heavy metal concentrations were found in all species groups near the pollution source. Macronutrient concentrations tended to decrease in the order: vascular plants>bryophytes>lichens, when all the species groups grew on the same plot. Heavy metal concentrations (except Mn) were the highest in bryophytes, followed by lichens, and were the lowest in vascular plants. In general, vascular plants, being capable of restricting the uptake of toxic elements, grew closer to the smelter than lichens, while bryophytes began to increase in the understorey vegetation at further distances from the smelter. A pioneer moss (Pohlia nutans) was an exception, because it accumulated considerably higher amounts of Cu and Ni than the other species and still survived close to the smelter. The abundance of most of the species decreased with increasing Cu and Ni concentrations in their tissues. Cetraria islandica, instead, showed a positive relationship between the abundance and Cu, Ni and S concentrations of the thallus. It is probable that, in addition to heavy metals, sporadically high SO(2) emissions have also affected the distribution of the plant species. PMID:15081702

  18. Non-Targeted Effects and the Dose Response for Heavy Ion Tumorigenesis

    NASA Technical Reports Server (NTRS)

    Chappell, Lori J.; Cucinotta, Francis A.

    2010-01-01

    There is no human epidemiology data available to estimate the heavy ion cancer risks experienced by astronauts in space. Studies of tumor induction in mice are a necessary step to estimate risks to astronauts. Previous experimental data can be better utilized to model dose response for heavy ion tumorigenesis and plan future low dose studies.

  19. Explosive Nucleosynthesis in Magnetohydrodynamical Jets from Collapsars. II --- Heavy-Element Nucleosynthesis of s, p, r-Processes

    NASA Astrophysics Data System (ADS)

    Ono, M.; Hashimoto, M.; Fujimoto, S.; Kotake, K.; Yamada, S.

    2012-10-01

    We investigate the nucleosynthesis in a massive star of 70 M_{⊙} with solar metallicity in the main sequence stage. The helium core mass after hydrogen burning corresponds to 32 M_{⊙}. Nucleosynthesis calculations have been performed during the stellar evolution and the jetlike supernova explosion of a collapsar model. We focus on the production of elements heavier than iron group nuclei. Nucleosynthesis calculations have been accomplished consistently from hydrostatic to dynamic stages by using large nuclear reaction networks, where the weak s-, p-, and r-processes are taken into account. We confirm that s-elements of 60 < A < 90 are highly overproduced relative to the solar abundances in the hydrostatic nucleosynthesis. During oxygen burning, p-elements of A > 90 are produced via photodisintegrations of seed s-elements. However, the produced p-elements are disintegrated in later stages except for ^{180}Ta. In the explosive nucleosynthesis, elements of 90 < A < 160 are significantly overproduced relative to the solar values owing to the r-process, which is very different from the results of spherical explosion models. Only heavy p-elements (N > 50) are overproduced via the p-process because of the low peak temperatures in the oxygen- and neon-rich layers. Compared with the previous study of r-process nucleosynthesis calculations in the collapsar model of 40 M_{⊙} by Fujimoto et al. [S. Fujimoto, M. Hashimoto, K. Kotake and S. Yamada, Astrophys. J. 656 (2007), 382; S. Fujimoto, N. Nishimura and M. Hashimoto, Astrophys. J. 680 (2008), 1350], our jet model cannot contribute to the third peak of the solar r-elements and intermediate p-elements, which have been much produced because of the distribution of the lowest part of electron fraction in the ejecta. Averaging the overproduction factors over the progenitor masses with the use of Salpeter's IMF, we suggest that the 70 M_{⊙} star could contribute to the solar weak s}-elements of 60 < A < 90 and neutron

  20. Development of a laser optically pumped polarized target for use in heavy-ion physics. [/sup 151/ /sup 153/Eu

    SciTech Connect

    Shivakumar, B.; Beene, J.R.; Bemis, C.E. Jr.; Erb, K.A.; Ford, J.L.C. Jr.; Shapira, D.

    1982-01-01

    Important micro- and macroscopic details of heavy-ion reactions may be explicitly determined when nuclear spin aligned (polarized) targets are used. For deformed nuclei, the orientation of the symmetry axis of the nuclear density distribution is determined by the nuclear spin orientation. Polarized targets would thus allow experiments to be performed as a function of the orientation of the symmetry axis of the nuclear density distribution. A polarized target of /sup 151/ /sup 153/Eu is being developed at Oak Ridge and is based on laser depopulation optical pumping. A spatially defined target is provided by a supersonic gas jet and consists of Eu atoms seeded into an inert carrier gas. Detailed time-dependent optical-pumping calculations predict approx. = 90% nuclear spin polarization in a Eu target with an expected thickness in excess of 10/sup 15/ atoms/cm/sup 2/. We present some of the effects that will be observable in heavy-ion reactions when deformed polarized targets are used.

  1. Heavy element effects in the diagonal Born–Oppenheimer correction within a relativistic spin-free Hamiltonian

    DOE PAGESBeta

    Imafuku, Yuji; Abe, Minori; Schmidt, Michael W.; Hada, Masahiko

    2016-03-22

    Methodologies beyond the Born–Oppenheimer (BO) approximation are nowadays important to explain high precision spectroscopic measurements. Most previous evaluations of the BO correction are, however, focused on light-element molecules and based on a nonrelativistic Hamiltonian, so no information about the BO approximation (BOA) breakdown in heavy-element molecules is available. The present work is the first to investigate the BOA breakdown for the entire periodic table, by considering scalar relativistic effects in the Diagonal BO correction (DBOC). In closed shell atoms, the relativistic EDBOC scales as Z1.25 and the nonrelativistic EDBOC scales as Z1.17, where Z is the atomic number. Hence, wemore » found that EDBOC becomes larger in heavy element atoms and molecules, and the relativistic EDBOC increases faster than nonrelativistic EDBOC. We have further investigated the DBOC effects on properties such as potential energy curves, spectroscopic parameters, and various energetic properties. The DBOC effects for these properties are mostly affected by the lightest atom in the molecule. Furthermore, in X2 or XAt molecule (X = H, Li, Na, K, Rb, and Cs) the effect of DBOC systematically decreases when X becomes heavier but in HX molecules, the effect of DBOC seems relatively similar among all the molecules.« less

  2. Heavy Element Effects in the Diagonal Born-Oppenheimer Correction within a Relativistic Spin-Free Hamiltonian.

    PubMed

    Imafuku, Yuji; Abe, Minori; Schmidt, Michael W; Hada, Masahiko

    2016-04-01

    Methodologies beyond the Born-Oppenheimer (BO) approximation are nowadays important to explain high precision spectroscopic measurements. Most previous evaluations of the BO correction are, however, focused on light-element molecules and based on a nonrelativistic Hamiltonian, so no information about the BO approximation (BOA) breakdown in heavy-element molecules is available. The present work is the first to investigate the BOA breakdown for the entire periodic table, by considering scalar relativistic effects in the Diagonal BO correction (DBOC). In closed shell atoms, the relativistic EDBOC scales as Z(1.25) and the nonrelativistic EDBOC scales as Z(1.17), where Z is the atomic number. Hence, we found that EDBOC becomes larger in heavy element atoms and molecules, and the relativistic EDBOC increases faster than nonrelativistic EDBOC. We have further investigated the DBOC effects on properties such as potential energy curves, spectroscopic parameters, and various energetic properties. The DBOC effects for these properties are mostly affected by the lightest atom in the molecule. Hence, in X2 or XAt molecule (X = H, Li, Na, K, Rb, and Cs) the effect of DBOC systematically decreases when X becomes heavier but in HX molecules, the effect of DBOC seems relatively similar among all the molecules. PMID:27003510

  3. Non-Targeted Effects and the Dose Response for Heavy Ion Tumorigenesis

    NASA Technical Reports Server (NTRS)

    Chappelli, Lori J.; Cucinotta, Francis A.

    2010-01-01

    BACKGROUND: There is no human epidemiology data available to estimate the heavy ion cancer risks experienced by astronauts in space. Studies of tumor induction in mice are a necessary step to estimate risks to astronauts. Previous experimental data can be better utilized to model dose response for heavy ion tumorigenesis and plan future low dose studies. DOSE RESPONSE MODELS: The Harderian Gland data of Alpen et al.[1-3] was re-analyzed [4] using non-linear least square regression. The data set measured the induction of Harderian gland tumors in mice by high-energy protons, helium, neon, iron, niobium and lanthanum with LET s ranging from 0.4 to 950 keV/micron. We were able to strengthen the individual ion models by combining data for all ions into a model that relates both radiation dose and LET for the ion to tumor prevalence. We compared models based on Targeted Effects (TE) to one motivated by Non-targeted Effects (NTE) that included a bystander term that increased tumor induction at low doses non-linearly. When comparing fitted models to the experimental data, we considered the adjusted R2, the Akaike Information Criteria (AIC), and the Bayesian Information Criteria (BIC) to test for Goodness of fit.In the adjusted R2test, the model with the highest R2values provides a better fit to the available data. In the AIC and BIC tests, the model with the smaller values of the summary value provides the better fit. The non-linear NTE models fit the combined data better than the TE models that are linear at low doses. We evaluated the differences in the relative biological effectiveness (RBE) and found the NTE model provides a higher RBE at low dose compared to the TE model. POWER ANALYSIS: The final NTE model estimates were used to simulate example data to consider the design of new experiments to detect NTE at low dose for validation. Power and sample sizes were calculated for a variety of radiation qualities including some not considered in the Harderian Gland data

  4. THE ORIGINS OF LIGHT AND HEAVY R-PROCESS ELEMENTS IDENTIFIED BY CHEMICAL TAGGING OF METAL-POOR STARS

    SciTech Connect

    Tsujimoto, Takuji; Shigeyama, Toshikazu

    2014-11-01

    Growing interests in neutron star (NS) mergers as the origin of r-process elements have sprouted since the discovery of evidence for the ejection of these elements from a short-duration γ-ray burst. The hypothesis of a NS merger origin is reinforced by a theoretical update of nucleosynthesis in NS mergers successful in yielding r-process nuclides with A > 130. On the other hand, whether the origin of light r-process elements are associated with nucleosynthesis in NS merger events remains unclear. We find a signature of nucleosynthesis in NS mergers from peculiar chemical abundances of stars belonging to the Galactic globular cluster M15. This finding combined with the recent nucleosynthesis results implies a potential diversity of nucleosynthesis in NS mergers. Based on these considerations, we are successful in the interpretation of an observed correlation between [light r-process/Eu] and [Eu/Fe] among Galactic halo stars and accordingly narrow down the role of supernova nucleosynthesis in the r-process production site. We conclude that the tight correlation by a large fraction of halo stars is attributable to the fact that core-collapse supernovae produce light r-process elements while heavy r-process elements such as Eu and Ba are produced by NS mergers. On the other hand, stars in the outlier, composed of r-enhanced stars ([Eu/Fe] ≳ +1) such as CS22892-052, were exclusively enriched by matter ejected by a subclass of NS mergers that is inclined to be massive and consist of both light and heavy r-process nuclides.

  5. Trace Elements Reveal a Possible Link Between Jack Hills Detrital Zircons and the Late Heavy Bombardment

    NASA Astrophysics Data System (ADS)

    Bell, E. A.; Harrison, T. M.

    2012-03-01

    The Jack Hills detrital zircons range in age 4.3-3.0 Ga. At ca. 3.9 Ga the record contains a population that appears to have recrystallized during a major thermal event. This may be circumstantial terrestrial evidence for the Late Heavy Bombardment.

  6. Effects of heavy elements in the sludge conveyed by the 2011 tsunami on human health and the recovery of the marine ecosystem

    NASA Astrophysics Data System (ADS)

    Sera, K.; Goto, S.; Takahashi, C.; Saitoh, Y.; Yamauchi, K.

    2014-01-01

    The 2011 tsunami not only caused significant damage, but also drew a large amount of sludge from the bottom of the sea. This may have exerted negative effects on human health. In order to evaluate changes in elemental concentrations in the body before and after the tsunami, we collected long hairs from victims of the disaster. Furthermore, sludge and plant samples were collected from three prefectures. The sludge samples on land were found to be still contaminated with heavy elements. The concentrations of heavy elements in the soils and plants gathered from the same tidelands decreased after one year. In hair analyses, no clear changes have been observed in heavy element concentrations measured before and after the tsunami. However, the concentration of some essential elements, such as Cu, Ca and Mg, showed a decreasing tendency after the tsunami.

  7. Behavior and Distribution of Heavy Metals Including Rare Earth Elements, Thorium, and Uranium in Sludge from Industry Water Treatment Plant and Recovery Method of Metals by Biosurfactants Application

    PubMed Central

    Gao, Lidi; Kano, Naoki; Sato, Yuichi; Li, Chong; Zhang, Shuang; Imaizumi, Hiroshi

    2012-01-01

    In order to investigate the behavior, distribution, and characteristics of heavy metals including rare earth elements (REEs), thorium (Th), and uranium (U) in sludge, the total and fractional concentrations of these elements in sludge collected from an industry water treatment plant were determined and compared with those in natural soil. In addition, the removal/recovery process of heavy metals (Pb, Cr, and Ni) from the polluted sludge was studied with biosurfactant (saponin and sophorolipid) elution by batch and column experiments to evaluate the efficiency of biosurfactant for the removal of heavy metals. Consequently, the following matters have been largely clarified. (1) Heavy metallic elements in sludge have generally larger concentrations and exist as more unstable fraction than those in natural soil. (2) Nonionic saponin including carboxyl group is more efficient than sophorolipid for the removal of heavy metals in polluted sludge. Saponin has selectivity for the mobilization of heavy metals and mainly reacts with heavy metals in F3 (the fraction bound to carbonates) and F5 (the fraction bound to Fe-Mn oxides). (3) The recovery efficiency of heavy metals (Pb, Ni, and Cr) reached about 90–100% using a precipitation method with alkaline solution. PMID:22693485

  8. Lead, platinum, and other heavy elements in the primary cosmic radiation: HEAO-3 results ssc wg032961 cb553097

    NASA Technical Reports Server (NTRS)

    Waddington, C. J.; Binns, W. R.; Brewster, N. R.; Fixsen, D. J.; Garrard, T. L.; Israel, M. H.; Klarmann, J.; Newport, B. J.; Stone, E. C.

    1985-01-01

    An observation of the abundances of cosmic-ray lead and platinum-group nuclei using data from the HEAO-3 Heavy Nuclei Experiment (HNE) which consisted of ion chambers mounted on both sides of a plastic Cerenkov counter is reported. Further analysis with more stringent selections, inclusion of additional data, and a calibration at the LBL Bevalac, have allowed obtaining the abundance ratio of lead and the platinum group of elements for particles that had a cutoff rigidity R sub c 5 GV.

  9. NUMEN Project @ LNS : Heavy ions double charge exchange reactions towards the 0νββ nuclear matrix element determination

    SciTech Connect

    Agodi, C. Calabretta, L.; Calanna, A.; Carbone, D.; Cavallaro, M.; Colonna, M.; Cuttone, G.; Finocchiaro, P.; Pandola, L.; Rifuggiato, D.; Tudisco, S.; Cappuzzello, F.; Greco, V.; Bonanno, D. L.; Bongiovanni, D. G.; Longhitano, F.; Branchina, V.; Foti, A.; Lo Presti, D.; Lanzalone, G.; and others

    2015-10-28

    In the NUMEN Project it is proposed an innovative technique to access the nuclear matrix elements entering in the expression of the life-time of the neutrinoless double beta decay, using relevant cross sections of double charge exchange reactions. A key aspect is the use of MAGNEX large acceptance magnetic spectrometer, for the detection of the ejectiles, and of the INFN Laboratori Nazionali del Sud (LNS) K800 Superconducting Cyclotron (CS), for the acceleration of the required high resolution and low emittance heavy-ion beams.

  10. NUMEN Project @ LNS : Heavy ions double charge exchange reactions towards the 0νββ nuclear matrix element determination

    NASA Astrophysics Data System (ADS)

    Agodi, C.; Cappuzzello, F.; Bonanno, D. L.; Bongiovanni, D. G.; Branchina, V.; Calabretta, L.; Calanna, A.; Carbone, D.; Cavallaro, M.; Colonna, M.; Cuttone, G.; Foti, A.; Finocchiaro, P.; Greco, V.; Lanzalone, G.; Lo Presti, D.; Longhitano, F.; Muoio, A.; Pandola, L.; Rifuggiato, D.; Tudisco, S.

    2015-10-01

    In the NUMEN Project it is proposed an innovative technique to access the nuclear matrix elements entering in the expression of the life-time of the neutrinoless double beta decay, using relevant cross sections of double charge exchange reactions. A key aspect is the use of MAGNEX large acceptance magnetic spectrometer, for the detection of the ejectiles, and of the INFN Laboratori Nazionali del Sud (LNS) K800 Superconducting Cyclotron (CS), for the acceleration of the required high resolution and low emittance heavy-ion beams.

  11. Ab initio approaches for the determination of heavy element energetics: Ionization energies of trivalent lanthanides (Ln = La-Eu)

    SciTech Connect

    Peterson, Charles; Penchoff, Deborah A.; Wilson, Angela K.

    2015-11-21

    An effective approach for the determination of lanthanide energetics, as demonstrated by application to the third ionization energy (in the gas phase) for the first half of the lanthanide series, has been developed. This approach uses a combination of highly correlated and fully relativistic ab initio methods to accurately describe the electronic structure of heavy elements. Both scalar and fully relativistic methods are used to achieve an approach that is both computationally feasible and accurate. The impact of basis set choice and the number of electrons included in the correlation space has also been examined.

  12. [Monitoring of heavy metals and trace elements in the air, fruits and vegetables and soil in the province of Catania (Italy)].

    PubMed

    Ferrante, Margherita; Fiore, Maria; Ledda, Caterina; Cicciù, Francesca; Alonzo, Elena; Fallico, Roberto; Platania, Francesco; Di Mauro, Rosario; Valenti, Lina; Sciacca, Salvatore

    2013-01-01

    Contamination of fruits and vegetables with heavy metals can result from anthropogenic events (car or factory emissions, poor management of sewage and industrial waste) or from natural events (volcanic activity and geological soil matrix). The chemical and toxicological characteristics of heavy metals can have an impact on human health through several mechanisms. Other metals, on the other hand, are essential for maintenance of physiological and biochemical human processes, are protective against many diseases and must be present in the diet because they cannot be synthesized by the human body. The purpose of this study was to assess the presence of heavy metals and trace elements both in fruit and vegetable products widely consumed in the province of Catania (Sicily, Italy) and in various environmental matrices (air, water and land), and to investigate possible sources of contamination. Fruit and vegetable products (tomatoes, lettuce, spinach, eggplants, potatoes, zucchini, grapes, apples and pears) were sampled (n = 60) from the towns of Adrano, Biancavilla and Mazzarrone. These locations were selected for their geomorphology, climate and cultivation characteristics. Levels of lead, cadmium, nickel, copper, zinc, vanadium and selenium in fruit, vegetables, air and water samples were determined using atomic absorption spectrometer with graphite furnace Perkin-Elmer AAnalyst 800 while soil samples were evaluated by the atomic emission spectrometer Optima 2000 DV Perkin-Elmer. The presence of mercury was evaluated by atomic absorption spectrometry with cold vapor technique. Study results revealed widespread contamination of fruit and vegetables and mainly due to use of fertilizers and to volcanic activity. A strategy targeting the entire food chain is essential for ensuring food safety and consumer protection and maintaining contaminants at levels which are not hazardous to health. PMID:23532160

  13. Viral Expression Cassette Elements to Enhance Transgene Target Specificity and Expression in Gene Therapy

    PubMed Central

    Powell, Sara Kathleen; Rivera-Soto, Ricardo; Gray, Steven James

    2015-01-01

    Over the last five years, the number of clinical trials involving AAV (adeno-associated virus) and lentiviral vectors continue to increase by about 150 trials each year. For continued success, AAV and lentiviral expression cassettes need to be designed to meet each disease's specific needs. This review discusses how viral vector expression cassettes can be engineered with elements to enhance target specificity and increase transgene expression. The key differences relating to target specificity between ubiquitous and tissue-specific promoters are discussed, as well as how endogenous miRNAs and their target sequences have been used to restrict transgene expression. Specifically, relevant studies indicating how cis-acting elements such as introns, WPRE, polyadenylation signals, and the CMV enhancer are highlighted to show their utility for enhancing transgene expression in gene therapy applications. All discussion bears in mind that expression cassettes have space constraints. In conclusion, this review can serve as a menu of vector genome design elements and their cost in terms of space to thoughtfully engineer viral vectors for gene therapy. PMID:25636961

  14. Recent advances and future perspectives of nanosized zero- valent iron for extraction of heavy elements from metallurgical sludges

    NASA Astrophysics Data System (ADS)

    Mikhailov, I. Yu; Levina, V. V.; Kolesnikov, E. A.; Chuprunov, K. O.; Gusev, A. A.; Godymchuk, A. Yu; Kuznetsov, D. V.

    2016-01-01

    Advanced oxidation processes with nanosized zero-valent iron have presented great potential in wastewater treatment technology and now experience both increasing popularity and reliable technical improvements. Besides wastewater treatment, there is another promising application for an emerging technology of iron nanoparticles - as Fenton-like catalyst for extraction of valuable elements from poor and secondary raw materials such as metallurgical sludges. In present research, we carried out a set of experiments with emphasis on the physicochemical mechanisms and their relationship to the performance. In particular, we examined complex acidic - hydrogen peroxide leaching of zinc from blast furnace sludge with nanosized zero-valent iron as Fenton-like catalyst. Results of the experiments showed promising potential for subsequent application in extraction of heavy and rare-earth elements.

  15. Sources and Contents of Heavy Metals and Other Trace Elements in Animal Manure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trace elements are natural and added components of livestock and poultry feeds. Appropriate amounts of these trace elements in the diet of livestock and poultry ensures both health and reproduction. Unfortunately, many times trace metals that are added to livestock diets by producers or feed compani...

  16. Sources and contents of heavy metals and other trace elements in animal manure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trace elements take part in various physiological functions including enzyme formation, vitamin formation, metabolism, and electron transport in animals. Thus, trace elements are added to livestock and poultry diets to prevent diseases, improve weight gains and feed conversion, and increase egg prod...

  17. Target site choice of the related transposable elements Tc1 and Tc3 of Caenorhabditis elegans.

    PubMed Central

    van Luenen, H G; Plasterk, R H

    1994-01-01

    We have investigated the target choice of the related transposable elements Tc1 and Tc3 of the nematode C. elegans. The exact locations of 204 independent Tc1 insertions and 166 Tc3 insertions in an 1 kbp region of the genome were determined. There was no phenotypic selection for the insertions. All insertions were into the sequence TA. Both elements have a strong preference for certain positions in the 1 kbp region. Hot sites for integration are not clustered or regularly spaced. The orientation of the integrated transposon has no effect on the distribution pattern. We tested several explanations for the target site preference. If simple structural features of the DNA (e.g. bends) would mark hot sites, we would expect the patterns of the two related transposons Tc1 and Tc3 to be similar; however we found them to be completely different. Furthermore we found that the sequence at the donor site has no effect on the choice of the new insertion site, because the insertion pattern of a transposon that jumps from a transgenic donor site is identical to the insertion pattern of transposons jumping from endogenous genomic donor sites. The most likely explanation for the target choice is therefore that the primary sequence of the target site is recognized by the transposase. However, alignment of the Tc1 and Tc3 integration sites does not reveal a strong consensus sequence for either transposon. PMID:8127662

  18. Hydrogen isotope and light element profiling in solid tritium targets used for neutron production

    NASA Astrophysics Data System (ADS)

    Earwaker, L. G.; England, J. B. A.; Goldie, D. J.

    1987-04-01

    Five targets consisting of titanium tritide layers on copper backings have been investigated using nuclear reaction analysis. As these targets are commonly used to produce monoenergetic neutrons via the T(p, n) 3 He and T(d, n) 4 He reactions, it is important to know of the presence of other elements which may produce neutrons at different energies. The thicknesses of the titanium tritide layers were measured by observing the T(p, n) 3 He threshold yield curve and also the energy spread of the neutrons using a 3He-filled gridded ion chamber. Elastic recoil analysis with a particle identifying system was used to measure the hydrogen, deuterium, tritium and 3He content, and elastic scattering was used to study the carbon and oxygen. Surprisingly high concentrations of both hydrogen and oxygen were found on all targets, including the three which had never been used. Also surprising was the 3He content which was approximately the same for targets of all ages and conditions of use. As expected, the carbon content increased strongly with use, originating no doubt, from vacuum pump oil. Up to 3% deuterium atoms were observed in unused targets with much higher contents being recorded in used targets.

  19. MOLYBDENUM, RUTHENIUM, AND THE HEAVY r-PROCESS ELEMENTS IN MODERATELY METAL-POOR MAIN-SEQUENCE TURNOFF STARS

    SciTech Connect

    Peterson, Ruth C.

    2013-05-01

    The ratios of elemental abundances observed in metal-poor stars of the Galactic halo provide a unique present-day record of the nucleosynthesis products of its earliest stars. While the heaviest elements were synthesized by the r- and s-processes, dominant production mechanisms of light trans-ironic elements were obscure until recently. This work investigates further our 2011 conclusion that the low-entropy regime of a high-entropy wind (HEW) produced molybdenum and ruthenium in two moderately metal-poor turnoff stars that showed extreme overabundances of those elements with respect to iron. Only a few, rare nucleosynthesis events may have been involved. Here we determine abundances for Mo, Ru, and other trans-Fe elements for 28 similar stars by matching spectral calculations to well-exposed near-UV Keck HIRES spectra obtained for beryllium abundances. In each of the 26 turnoff stars with Mo or Ru line detections and no evidence for s-process production (therefore old), we find Mo and Ru to be three to six times overabundant. In contrast, the maximum overabundance is reduced to factors of three and two for the neighboring elements zirconium and palladium. Since the overproduction peaks sharply at Mo and Ru, a low-entropy HEW is confirmed as its origin. The overabundance level of the heavy r-process elements varies significantly, from none to a factor of four, but is uncorrelated with Mo and Ru overabundances. Despite their moderate metallicity, stars in this group trace the products of different nucleosynthetic events: possibly very few events, possibly events whose output depended on environment, metallicity, or time.

  20. Effects of alloying elements on the formation of < c >-component loops in Zr alloy Excel under heavy ion irradiation.

    SciTech Connect

    Idrees, Yasir; Francis, Elisabeth M.; Yao, Zhongwen; Korinek, Andreas; Kirk, Marquis A.; Sattari, Mohammad; Preuss, Michael; Daymond, M. R.

    2015-05-14

    We report here the microstructural changes occurring in the zirconium alloy Excel (Zr-3.5 wt% Sn-0.8Nb-0.8Mo-0.2Fe) during heavy ion irradiation. In situ irradiation experiments were conducted at reactor operating temperatures on two Zr Excel alloy microstructures with different states of alloying elements, with the states achieved by different solution heat treatments. In the first case, the alloying elements were mostly concentrated in the beta (beta) phase, whereas, in the second case, large Zr-3(Mo,Nb,Fe)(4) secondary phase precipitates (SPPs) were grown in the alpha (alpha) phase by long term aging. The heavy ion induced damage and resultant compositional changes were examined using transmission electron microscopy (TEM) in combination with scanning transmission electron microscope (STEM)-energy dispersive x-ray spectroscopy (EDS) mapping. Significant differences were seen in microstructural evolution between the two different microstructures that were irradiated under similar conditions. Nucleation and growth of < c >-component loops and their dependence on the alloying elements are a major focus of the current investigation. It was observed that the < c >-component loops nucleate readily at 100, 300, and 400 degrees C after a threshold incubation dose (TID), which varies with irradiation temperature and the state of alloying elements. It was found that the TID for the formation of < c >-component loops increases with decrease in irradiation temperature. Alloying elements that are present in the form of SPPs increase the TID compared to when they are in the beta phase solid solution. Dose and temperature dependence of loop size and density are presented. Radiation induced redistribution and clustering of alloying elements (Sn, Mo, and Fe) have been observed and related to the formation of < c >-component loops. It has been shown that at the higher temperature tests, irradiation induced dissolution of precipitates occurs whereas irradiation induced

  1. Elemental Abundances of Ultra-Heavy Galactic Cosmic Rays from the SuperTIGER Instrument

    NASA Astrophysics Data System (ADS)

    Murphy, Ryan

    2016-07-01

    The SuperTIGER (Trans-Iron Galactic Element Recorder) experiment was launched on a long-duration balloon flight from Williams Field, Antarctica, on December 8, 2012. The instrument measured the relative elemental abundances of Galactic Cosmic Rays (GCR) for charge (Z) Z>10 with excellent charge resolution, displaying well resolved individual element peaks for 10 ≤ Z ≤ 40. During its record-breaking 55-day flight, SuperTIGER collected ˜4.73 x10^{6} Iron nuclei, ˜8 times as many as detected by its predecessor, TIGER, with charge resolution at iron of 0.17 cu. SuperTIGER measures charge (Z) and energy (E) using a combination of three scintillator and two Cherenkov detectors, and employs a scintillating fiber hodoscope for event trajectory determination. The SuperTIGER data have been analyzed to correct for instrument effects and remove events that underwent nuclear interactions within the instrument. The data include more than 600 events in the charge range 30 < Z ≤ 40. SuperTIGER is the first experiment to resolve elemental abundances of every element in this charge range with high statistics and single-element resolution. The relative abundances of the galactic cosmic ray source have been derived from the measured relative elemental abundances using atmospheric and interstellar propagations. The SuperTIGER measured abundances are generally consistent with previous experimental results from TIGER and ACE-CRIS, with improved statistical precision. The SuperTIGER results confirm the earlier results from TIGER, supporting a model of cosmic-ray origin in OB associations, with preferential acceleration of refractory elements over volatile elements ordered by atomic mass (A). A second SuperTIGER Antarctic flight is planned for December 2017. Details of the instrument, flight, data analysis, and ongoing preparations will be presented.

  2. Fundamental Studies on Donor-acceptor Conjugated Polymers Containing 'Heavy' Group 14 and Group 16 Elements

    NASA Astrophysics Data System (ADS)

    Gibson, Gregory Laird

    One advantage of conjugated polymers as organic materials is that their properties may be readily tuned through covalent modifications. This thesis presents studies on the structure-property relationships resulting from single- and double-atom substitutions on an alternating donor-acceptor conjugated polymer. Specifically, single selenium and tellurium atoms have been incorporated into the acceptor monomer in place of sulfur; silicon and germanium atoms have been substituted in place of carbon at the donor monomer bridge position. The carbon-donor/ tellurium-acceptor polymer was synthesized by a post-polymerization reaction sequence and demonstrated the utility of heavy group 16 atoms to red shift a polymer absorption spectrum. Density functional theory calculations point to a new explanation for this result invoking the lower heavy atom ionization energy and reduced aromaticity of acceptor monomers containing selenium and tellurium compared to sulfur. Absorption and emission experiments demonstrate that both silicon and germanium substitutions in the donor slightly blue shift the polymer absorption spectrum. Polymers containing sulfur in the acceptor are the strongest light absorbers of all polymers studied here. Molecular weight and phenyl end capping studies show that molecular weight appears to affect polymer absorption to the greatest degree in a medium molecular weight regime and that these effects have a significant aggregation component. Solar cell devices containing either the silicon- or germanium-donor/selenium-acceptor polymer display improved red light harvesting or hole mobility relative to their structural analogues. Overall, these results clarify the effects of single atom substitution on donor-acceptor polymers and aid in the future design of polymers containing heavy atoms.

  3. Depth-dependent target strengths of gadoids by the boundary-element method

    NASA Astrophysics Data System (ADS)

    Francis, David T. I.; Foote, Kenneth G.

    2003-12-01

    The depth dependence of fish target strength has mostly eluded experimental investigation because of the need to distinguish it from depth-dependent behavioral effects, which may change the orientation distribution. The boundary-element method (BEM) offers an avenue of approach. Based on detailed morphometric data on 15 gadoid swimbladders, the BEM has been exercised to determine how the orientation dependence of target strength changes with pressure under the assumption that the fish swimbladder remains constant in shape and volume. The backscattering cross section has been computed at a nominal frequency of 38 kHz as a function of orientation for each of three pressures: 1, 11, and 51 atm. Increased variability in target strength and more abundant and stronger resonances are both observed with increasing depth. The respective backscattering cross sections have been averaged with respect to each of four normal distributions of tilt angle, and the corresponding target strengths have been regressed on the logarithm of fish length. The tilt-angle-averaged backscattering cross sections at the highest pressure have also been averaged with respect to frequency over a 2-kHz band for representative conditions of insonification. For all averaging methods, the mean target strength changes only slightly with depth.

  4. Advances in implosion physics, alternative targets design, and neutron effects on heavy ion fusion reactors

    NASA Astrophysics Data System (ADS)

    Velarde, G.; Perlado, J. M.; Alonso, E.; Alonso, M.; Domínguez, E.; Rubiano, J. G.; Gil, J. M.; Gómez del Rio, J.; Lodi, D.; Malerba, L.; Marian, J.; Martel, P.; Martínez-Val, J. M.; Mínguez, E.; Piera, M.; Ogando, F.; Reyes, S.; Salvador, M.; Sanz, J.; Sauvan, P.; Velarde, M.; Velarde, P.

    2001-05-01

    The coupling of a new radiation transport (RT) solver with an existing multimaterial fluid dynamics code (ARWEN) using Adaptive Mesh Refinement named DAFNE, has been completed. In addition, improvements were made to ARWEN in order to work properly with the RT code, and to make it user-friendlier, including new treatment of Equations of State, and graphical tools for visualization. The evaluation of the code has been performed, comparing it with other existing RT codes (including the one used in DAFNE, but in the single-grid version). These comparisons consist in problems with real input parameters (mainly opacities and geometry parameters). Important advances in Atomic Physics, Opacity calculations and NLTE atomic physics calculations, with participation in significant experiments in this area, have been obtained. Early published calculations showed that a DT x fuel with a small tritium initial content ( x<3%) could work in a catalytic regime in Inertial Fusion Targets, at very high burning temperatures (≫100 keV). Otherwise, the cross-section of DT remains much higher than that of DD and no internal breeding of tritium can take place. Improvements in the calculation model allow to properly simulate the effect of inverse Compton scattering which tends to lower Te and to enhance radiation losses, reducing the plasma temperature, Ti. The neutron activation of all natural elements in First Structural Wall (FSW) component of an Inertial Fusion Energy (IFE) reactor for waste management, and the analysis of activation of target debris in NIF-type facilities has been completed. Using an original efficient modeling for pulse activation, the FSW behavior in inertial fusion has been studied. A radiological dose library coupled to the ACAB code is being generated for assessing impact of environmental releases, and atmospheric dispersion analysis from HIF reactors indicate the uncertainty in tritium release parameters. The first recognition of recombination barriers in Si

  5. Interactions of heavy nuclei, Kr, Xe and Ho, in light targets

    NASA Technical Reports Server (NTRS)

    Kertzman, M. P.; Klarmann, J.; Newport, B. J.; Stone, E. C.; Waddington, C. J.; Binns, W. R.; Garrard, T. L.; Israel, M. H.

    1985-01-01

    Over the past few years, the HEAO-3 measurements of the abundance of ultra-heavy cosmic ray nuclei (Z 26) at Earth were analyzed. In order to interpret these abundances in terms of a source composition, allowances must be made for the propagation of the nuclei in the interstellar medium. Vital to any calculation of the propagation is a knowlege of the total and partial interaction cross sections for these heavy nuclei on hydrogen. Until recently, data on such reactions have been scarce. The semi-empirical formalism of Silberberg and Tsao were relied upon to predict the partial cross sections. However, now that relativistic heavy ion beams are available at the LBL Bevalac, some of the cross sections of interest can be measured at energies close to those of the cosmic ray nuclei being observed.

  6. Multi-charged heavy ion acceleration from the ultra-intense short pulse laser system interacting with the metal target.

    PubMed

    Nishiuchi, M; Sakaki, H; Maeda, S; Sagisaka, A; Pirozhkov, A S; Pikuz, T; Faenov, A; Ogura, K; Kanasaki, M; Matsukawa, K; Kusumoto, T; Tao, A; Fukami, T; Esirkepov, T; Koga, J; Kiriyama, H; Okada, H; Shimomura, T; Tanoue, M; Nakai, Y; Fukuda, Y; Sakai, S; Tamura, J; Nishio, K; Sako, H; Kando, M; Yamauchi, T; Watanabe, Y; Bulanov, S V; Kondo, K

    2014-02-01

    Experimental demonstration of multi-charged heavy ion acceleration from the interaction between the ultra-intense short pulse laser system and the metal target is presented. Al ions are accelerated up to 12 MeV/u (324 MeV total energy). To our knowledge, this is far the highest energy ever reported for the case of acceleration of the heavy ions produced by the <10 J laser energy of 200 TW class Ti:sapphire laser system. Adding to that, thanks to the extraordinary high intensity laser field of ∼10(21) W cm(-2), the accelerated ions are almost fully stripped, having high charge to mass ratio (Q/M). PMID:24593609

  7. The SUPERTIGER Instrument: Measurement of Elemental Abundances of Ultra-Heavy Galactic Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Binns, W. R.; Bose, R. G.; Braun, D. L.; Brandt, T. J.; Daniels, W. M.; Dowkontt, P. F.; Fitzsimmons, S. P.; Hahne, D. J.; Hams, T.; Israel, M. H.; Klemic, J.; Labrador, A. W.; Link, J. T.; Mewaldt, R. A.; Mitchell, J. W.; Moore, P.; Murphy, R. P.; Olevitch, M. A.; Rauch, B. F.; Sakai, K.; San Sebastian, F.; Sasaki, M.; Simburger, G. E.; Stone, E. C.; Waddington, C. J.; Ward, J. E.; Wiedenbeck, M. E.

    2014-06-01

    The SuperTIGER (Super Trans-Iron Galactic Element Recorder) instrument was developed to measure the abundances of galactic cosmic-ray elements from 10Ne to 40Zr with individual element resolution and the high statistics needed to test models of cosmic-ray origins. SuperTIGER also makes exploratory measurements of the abundances of elements with 40 < Z <= 60 and measures the energy spectra of the more abundant elements for Z <= 30 from about 0.8 to 10 GeV/nucleon. This instrument is an enlarged and higher resolution version of the earlier TIGER instrument. It was designed to provide the largest geometric acceptance possible and to reach as high an altitude as possible, flying on a standard long-duration 1.11 million m3 balloon. SuperTIGER was launched from Williams Field, McMurdo Station, Antarctica, on 2012 December 8, and made about 2.7 revolutions around the South Pole in 55 days of flight, returning data on over 50 × 106 cosmic-ray nuclei with Z >= 10, including ~1300 with Z > 29 and ~60 with Z > 49. Here, we describe the instrument, the methods of charge identification employed, the SuperTIGER balloon flight, and the instrument performance.

  8. THE SuperTIGER Instrument: Measurement of Elemental Abundances of Ultra-Heavy Galactic Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Binns, W. R.; Bose, R. G.; Braun, D. L.; Brandt, T. J.; Daniels, W. M.; DowKonnt, P. F.; Fitzsimmons, S. P.; Hahne, D. J.; Hams, T.; Israel, M. H.; Klemic, J.; Labrador, A. W.; Link, J. T.; Mewaldt, R. A.; Mitchell, J. W.; Moore, P.; Murphy, R. P.; Olevitch, M. A.; Rauch, B. F.; Sakai, K.; San Sebastian, F.; Sasaki, M.; Simburger, G. E.; Stone, E. C.; Waddington, C. J.; Ward, J. E.; Wiedenbeck, M. E.

    2014-01-01

    The SuperTIGER (Super Trans-Iron Galactic Element Recorder) instrument was developed to measure the abundances of galactic cosmic-ray elements from Ne-10 to Zr-40 with individual element resolution and the high statistics needed to test models of cosmic-ray origins. SuperTIGER also makes exploratory measurements of the abundances of elements with 40 < Z < or = 60 and measures the energy spectra of the more abundant elements for Z < or = 30 from about 0.8 to 10 GeV/nucleon. This instrument is an enlarged and higher resolution version of the earlier TIGER instrument. It was designed to provide the largest geometric acceptance possible and to reach as high an altitude as possible, flying on a standard long-duration 1.11 million cu m balloon. SuperTIGER was launched from Williams Field, McMurdo Station, Antarctica, on 2012 December 8, and made about 2.7 revolutions around the South Pole in 55 days of flight, returning data on over 50 x 10(exp 6) cosmic-ray nuclei with Z > or = 10, including approx.1300 with Z > 29 and approx.60 with Z > 49. Here, we describe the instrument, the methods of charge identification employed, the SuperTIGER balloon flight, and the instrument performance.

  9. The superTIGER instrument: Measurement of elemental abundances of ultra-heavy galactic cosmic rays

    SciTech Connect

    Binns, W. R.; Bose, R. G.; Braun, D. L.; Dowkontt, P. F.; Israel, M. H.; Moore, P.; Murphy, R. P.; Olevitch, M. A.; Rauch, B. F.; Brandt, T. J.; Daniels, W. M.; Fitzsimmons, S. P.; Hahne, D. J.; Hams, T.; Link, J. T.; Mitchell, J. W.; Sakai, K.; and others

    2014-06-10

    The SuperTIGER (Super Trans-Iron Galactic Element Recorder) instrument was developed to measure the abundances of galactic cosmic-ray elements from {sub 10}Ne to {sub 40}Zr with individual element resolution and the high statistics needed to test models of cosmic-ray origins. SuperTIGER also makes exploratory measurements of the abundances of elements with 40 < Z ≤ 60 and measures the energy spectra of the more abundant elements for Z ≤ 30 from about 0.8 to 10 GeV/nucleon. This instrument is an enlarged and higher resolution version of the earlier TIGER instrument. It was designed to provide the largest geometric acceptance possible and to reach as high an altitude as possible, flying on a standard long-duration 1.11 million m{sup 3} balloon. SuperTIGER was launched from Williams Field, McMurdo Station, Antarctica, on 2012 December 8, and made about 2.7 revolutions around the South Pole in 55 days of flight, returning data on over 50 × 10{sup 6} cosmic-ray nuclei with Z ≥ 10, including ∼1300 with Z > 29 and ∼60 with Z > 49. Here, we describe the instrument, the methods of charge identification employed, the SuperTIGER balloon flight, and the instrument performance.

  10. Glann Seaborg's Contributions to Heavy Element Science and the Periodic Table

    SciTech Connect

    Hobart, David E.

    2012-08-17

    In celebrating the centennial anniversary of the birth of Glenn T. Seaborg it is fitting that we recount and pay tribute to his legacy. Many know of the scientific accomplishments of this man who became a legend and anyone who has attended his lectures can attest to how informative, educational, and entertaining he was. He had a beguiling and whimsical sense of humor and used this to drive home his points and share his passion and quest for discovery. The periodic table is a fundamental cornerstone of science and remains a central unifying principal. Seaborg was the architect of the actinide series of elements and their proper placement in the periodic table and co-discoverer of ten transuranium elements - one of which bears his name, element 106, seaborgium. The work and achievements of this Nobel laureate have touched the lives of many and his legacy will continue for generations to come.

  11. Measurement of cross sections for charge pickup by relativistic holmium ions on heavy targets

    SciTech Connect

    Westphal, A.J.; Guiru, J.; Price, P.B. Nuclear Science Division, Lawrence Berkeley Laboratory, Berkeley, California )

    1991-10-01

    We have measured the cross section for nuclear charge pickup by relativistic holmium on several targets of larger atomic number than have been studied previously. We find that although measurements made with most of the targets are consistent with a peripheral geometric scaling, one target, silver, shows an anomalously high cross section.

  12. Combined element magnet production for the relativistic heavy ion collider (RHIC) at BNL

    SciTech Connect

    Mulhall, S.; Foelsche, H.; Ganetis, G.

    1995-05-01

    The production of 432 combined element magnets for RHIC is well underway. These magnets consist of a superconducting corrector, a quadrupole, and a sextupole combined into an integrated cold mass which is inserted into a cryostat. Production experiences as well as test results are reported.

  13. The Abundances of Some Heavy Elements in the Atmosphere of γ Tauri

    NASA Astrophysics Data System (ADS)

    Yushchenko, A. V.; Gopka, V. F.

    Comparison of synthetic spectrum of the γ Tauri photosphere and high quality spectral atlases of this star permit us to identify absorption lines of rubidium, indium, disprosium, erbium, osmium in the observed spectra. The abundances of these elements in the atmosphere of γ Tauri with respect to their abundances in the solar atmosphere were determined by the method of spectrum synthesis.

  14. Lead, platinum, and other heavy elements in the primary cosmic radiation - HEAO 3 results

    NASA Technical Reports Server (NTRS)

    Binns, W. R.; Israel, M. H.; Brewster, N. R.; Fixsen, D. J.; Garrard, T. L.

    1985-01-01

    An observation of the abundances of cosmic-ray lead-group and platinum-group nuclei is reported, using data from the HEAO 3 Heavy Nuclei Experiment. From an analysis of 580 days of exposure, 322 nuclei were selected with reasonable charge resolution, E at least 1.3 GeV/nucleon and Z at least 50. The data show a defined abundance peak in the 'platinum' region (Z from 74 to 80), a small abundance of 'lead' (Z from 81 to 83), and a significant number of 'secondary' nuclei in the range of Z between 62 and 73. Possible explanations are offered for the deduced ratio in space of 0.25 plus or minus 0.09 for 'Pb/Pt' being distinctly lower than that predicted by any of the standard models for cosmic-ray sources and propagation effects.

  15. Conformational toggling controls target site choice for the heteromeric transposase element Tn7.

    PubMed

    Shi, Qiaojuan; Straus, Marco R; Caron, Jeremy J; Wang, Huasheng; Chung, Yu Seon; Guarné, Alba; Peters, Joseph E

    2015-12-15

    The bacterial transposon Tn7 facilitates horizontal transfer by directing transposition into actively replicating DNA with the element-encoded protein TnsE. Structural analysis of the C-terminal domain of wild-type TnsE identified a novel protein fold including a central V-shaped loop that toggles between two distinct conformations. The structure of a robust TnsE gain-of-activity variant has this loop locked in a single conformation, suggesting that conformational flexibility regulates TnsE activity. Structure-based analysis of a series of TnsE mutants relates transposition activity to DNA binding stability. Wild-type TnsE appears to naturally form an unstable complex with a target DNA, whereas mutant combinations required for large changes in transposition frequency and targeting stabilized this interaction. Collectively, our work unveils a unique structural proofreading mechanism where toggling between two conformations regulates target commitment by limiting the stability of target DNA engagement until an appropriate insertion site is identified. PMID:26384427

  16. Multifrequency space time orthogonal projection (MF-STOP): a radar signal processing algorithm for detecting and discriminating targets in heavy clutter

    NASA Astrophysics Data System (ADS)

    Tamrat, Yalew; Hatleberg, Clancy

    2007-04-01

    In this paper, we present a Multi-Frequency Space-Time Orthogonal (MF-STOP) adaptive filtering approach for detection and discrimination of targets based on a two stage orthogonal projection whereby target parameters can be extracted in the presence of heavy clutter and noise. The proposed technique detects targets within heavy clutter tracked by a radar system. After targets are detected, motion information is extracted that can be used to discriminate threats such as reentry vehicles from other targets. Target detection is generated in stage one by a combination of Windowed Short Time Fast Fourier Transform (WSTFFT) processing and Principal Component Analysis (PCA). Target discrimination is done in a second stage via Partial Least Squares (PLS) using a training filter constructed from the stage one detection. The target is discriminated explicitly by metric criteria such as size or precession. These discriminate features do not have to be known a priori.

  17. Reaction dynamics induced by the radioactive ion beam 7Be on medium-mass and heavy targets

    NASA Astrophysics Data System (ADS)

    Mazzocco, M.; Boiano, A.; Boiano, C.; La Commara, M.; Manea, C.; Parascandolo, C.; Pierroutsakou, D.; Stefanini, C.; Strano, E.; Torresi, D.; Acosta, L.; Di Meo, P.; Fernandez-Garcia, J. P.; Glodariu, T.; Grebosz, J.; Guglielmetti, A.; Keeley, N.; Lay, J. A.; Marquinez-Duran, G.; Martel, I.; Mazzocchi, C.; Molini, P.; Nicoletto, M.; Pakou, A.; Parkar, V. V.; Rusek, K.; Sánchez-Benítez, A. M.; Sandoli, M.; Sava, T.; Sgouros, O.; Signorini, C.; Silvestri, R.; Soramel, F.; Soukeras, V.; Stiliaris, E.; Stroe, L.; Toniolo, N.; Zerva, K.

    2015-10-01

    We studied the reaction dynamics induced at Coulomb barrier energies by the weakly-bound Radioactive Ion Beam 7Be (Sα = 1.586 MeV) on medium-mass (58Ni) and heavy (208Pb) targets. The experiments were performed at INFN-LNL (Italy), where a 2-3×105 pps 7Be secondary beam was produced with the RIB in-flight facility EXOTIC. Charged reaction products were detected by means of high-granularity silicon detectors in rather wide angular ranges. The contribution presents an up-to-date status of the data analysis and theoretical interpretation for both systems.

  18. Element mobility during pyrite weathering: implications for acid and heavy metal pollution at mining-impacted sites

    NASA Astrophysics Data System (ADS)

    Lu, Long; Wang, Rucheng; Chen, Fanrong; Xue, Jiyue; Zhang, Peihua; Lu, Jianjun

    2005-11-01

    Based on back scattered electron images and electron micro-probe analysis results, four alteration layers, including a transition layer, a reticulated ferric oxide layer, a nubby ferric oxide layer and a cellular ferric oxide layer, were identified in the naturally weathering products of pyrite. These layers represent a progressive alteration sequence of pyrite under weathering conditions. The cellular ferric oxide layer correlates with the strongest weathering phase and results from the dissolution of nubby ferric oxide by acidic porewater. Leaching coefficient was introduced to better express the response of element mobility to the degree of pyrite weathering. Its variation shows that the mobility of S, Co and Bi is stronger than As, Cu and Zn. Sulfur in pyrite is oxidized to sulfuric acid and sulfate that are basically released into to porewater, and heavy metals Co and Bi are evidently released by acid dissolution. As, Cu and Zn are enriched in ferric oxide by adsorption and by co-precipitation, but they would re-release to the environment via desorption or dissolution when porewater pH becomes low enough. Consequently, Co, Bi, As, Cu and Zn may pose a substantial impact on water quality. Considering that metal mobility and its concentration in mine waste are two important factors influencing heavy metal pollution at mining-impacted sites, Bi and Co are more important pollutants in this case.

  19. Ultrashort pulsed laser tools for testing of semiconductor elements hardness to single event effects, caused by cosmic heavy charged particles

    NASA Astrophysics Data System (ADS)

    Gordienko, Alexandra V.; Mavritskii, Oleg B.; Egorov, Andrey N.; Pechenkin, Alexander A.; Savchenkov, Dmitriy V.

    2015-03-01

    The installations for laser testing of microelectronic elements (first of all - integrated circuits) of devices for space applications for hardness to local radiation effects from heavy charged particles are presented. The possibility of a focused pulsed laser radiation application to the study of local radiation effects, caused by single heavy charged particles, is explained. The fundamentals of an approach to the construction of test sets, based on the picosecond and femtosecond lasers and systems for focusing their radiation, are considered. The main technical requirements for the basic modules of sets for laser testing (laser wavelength and pulse duration and repetition rate, spatial beam parameters and minimal spot size, speed of object movement and so on) are substantiated. All worked out sets have a full-featured software for the operational management of all modules of the laser test facility, including the positioning of the object, to provide feedback from the measurement results of the reaction of the object on the laser excitation. The parameters of developed laser hardware and software systems and their foreign counterparts are compared. Further improvement directions for laser testing tools are briefly outlined. The discussion is also presented of described hardware technical and operational characteristics, allowing to use it for a variety of scientific research studies, requiring selective (with submicron spatial resolution) object excitation by ultrashort laser pulses and recording responses to this effect with the exact timing of the moment of excitation, as well as to perform a variety of high precision technological operations.

  20. Tunable magnetic and magnetocaloric properties in heavy rare-earth based metallic glasses through the substitution of similar elements

    NASA Astrophysics Data System (ADS)

    Zhang, Huiyan; Li, Ran; Zhang, Leilei; Zhang, Tao

    2014-04-01

    The influence of interchangeable substitution of similar heavy rare-earth-elements (HRE), i.e., Gd-Ho, Gd-Er, and Ho-Er, on the magnetic and magnetocaloric properties of HRE55Al27.5Co17.5 metallic glasses was evaluated. The magnetic transition temperature (TC) can be tuned in a wide temperature range from 8 K to 93 K by adjusting the substitutional concentration in the resulting metallic glasses. A roughly linear correlation between peak value of magnetic entropy change (|ΔSMpk|) and TC-2/3 was obtained in the three systems. This kind of substitutional adjustment provides a useful method for designing desirable candidates in metallic glasses with high magnetic entropy change, large magnetic cooling efficiency, and tunable TC for magnetic refrigerant in nitrogen and hydrogen liquefaction temperature ranges.

  1. Heavy metal and trace element concentrations in wheat grains: assessment of potential non-carcinogenic health hazard through their consumption.

    PubMed

    Bermudez, Gonzalo M A; Jasan, Raquel; Plá, Rita; Pignata, María Luisa

    2011-10-15

    Heavy metal and trace element concentrations were examined in wheat grains and straw to elucidate associations between air pollution sources and soil variables. The mean wheat grain concentrations of Cr, Cu, Fe, Mn and Zn surpassed the tolerance limits stated in the international legislation for wheat grain and foodstuffs. When topsoil Ba, Co, Cr and Zn concentrations were higher than the legislation thresholds for agricultural and residential soils, wheat grain concentrations were also increased. In addition, Cr, Cu, Mn, Ni, Pb, and Zn revealed an immobilization effect of a cement plant and the atmospheric deposition input, with Cd in wheat grains being associated with a cement plant and industrial waste incinerator. The health risks arising from wheat grain consumption indicated that the inhabitants of Argentina are experiencing significant non-carcinogenic risks (Hazard Index = 3.311), especially when consuming wheat grains affected by metallurgical or chemical factories, as well as by air transportation from big cities. PMID:21835546

  2. Trace elements and heavy metals in the Grand Bay National Estuarine Reserve in the northern Gulf of Mexico

    PubMed Central

    McComb, Jacqueline Q.; Han, Fengxiang X.; Rogers, Christian; Thomas, Catherine; Arslan, Zikri; Ardeshir, Adeli; Tchounwou, Paul B.

    2015-01-01

    The objectives of this study are to investigate distribution of trace elements and heavy metals in the salt marsh and wetland soil and biogeochemical processes in the Grand Bay National Estuarine Research Reserve of the northern Gulf of Mexico. The results show that Hg, Cd and to some extent, As and Pb have been significantly accumulated in soils. The strongest correlations were found between concentrations of Ni and total organic matter contents. The correlations decreased in the order: Ni > Cr > Sr > Co > Zn, Cd > Cu > Cs. Strong correlations were also observed between total P and concentrations of Ni, Co, Cr, Sr, Zn, Cu, and Cd. This may be related to the P spilling accident in 2005 in the Bangs Lake site. Lead isotopic ratios in soils matched well those of North American coals, indicating the contribution of Pb through atmospheric fallout from coal power plants. PMID:26238403

  3. Trace elements and heavy metals in the Grand Bay National Estuarine Reserve in the northern Gulf of Mexico.

    PubMed

    McComb, Jacqueline Q; Han, Fengxiang X; Rogers, Christian; Thomas, Catherine; Arslan, Zikri; Ardeshir, Adeli; Tchounwou, Paul B

    2015-10-15

    The objectives of this study are to investigate distribution of trace elements and heavy metals in the salt marsh and wetland soil and biogeochemical processes in the Grand Bay National Estuarine Research Reserve of the northern Gulf of Mexico. The results show that Hg, Cd and to some extent, As and Pb have been significantly accumulated in soils. The strongest correlations were found between concentrations of Ni and total organic matter contents. The correlations decreased in the order: Ni>Cr>Sr>Co>Zn, Cd>Cu>Cs. Strong correlations were also observed between total P and concentrations of Ni, Co, Cr, Sr, Zn, Cu, and Cd. This may be related to the P spilling accident in 2005 in the Bangs Lake site. Lead isotopic ratios in soils matched well those of North American coals, indicating the contribution of Pb through atmospheric fallout from coal power plants. PMID:26238403

  4. Micro-distribution of heavy rare earth elements in Round Top Mountain rhyolite deposit (Hudspeth County, Texas, USA) by EPMA mapping

    NASA Astrophysics Data System (ADS)

    Pingitore, N. E., Jr.; Piranian, M.; Amaya, M. A.; Negron, L. M.; Gorski, D.

    2015-12-01

    Round Top Mountain, west Texas, USA, is composed almost entirely of peraluminous rhyolite, with pervasive low-grade enrichment in yttrium and heavy rare earth elements (Y+HREEs). The exposed rhyolite laccolith also contains Li, Be, U, Th, Nb, Ta, Ga, Rb, Cs, Sn, and F. The valuable Y+HREEs are hosted in yttrofluorite, which is soluble in dilute sulfuric acid. Texas Rare Earth Resources, Inc. proposes to surface mine, crush, and heap leach the massive, 109ton deposit. The distribution of Y+HREEs, and that of other trace elements, is remarkably homogeneous at outcrop drill hole scale (Pingitore et al., FM14-V23D-4827: Uniform Distribution of Yttrium…). Here we document that Y+HREE mineralization appears pervasive through the rhyolite at a sub-millimeter scale. We examined 15 thin sections of rhyolite fragments randomly selected from a composite sample produced by mixing several hundred kg of aliquot material recovered from >100 reverse circulation drill holes scattered across much of the mountain. A total of 16 elements (Y, Dy, Yb, F, U, Th, Nb, Sn, Zr, Rb, Ca, Na, K, Fe, Al, Si) plus back scattered electron image were mapped in WDS mode by stage raster across a 2 x 2 mm field at 516 x 516 pixel resolution on a Cameca SX-100 class EPMA. Typical maps revealed 5-10 grains that contained Y + Dy + Yb; most also contained F and Ca, indicating yttrofluorite mineralogy. Most grains were under 10 μm in 2-D size. We view this 5-10 grain figure of merit as a minimum number of target grains since we employed a conservative approach to their identification. This finding suggests that a 1 mm cube of the rhyolite contains 250-500 target grains (assuming that the EPMA sampled to a depth of 5 μm and that sampled grains did not extend below that depth in size). Viewed from a mining processing standpoint, each particle for the anticipated heap leach, with a nominal crush size of ½ to 1 inch (13-26 mm), would contain on the order of 250,000 to 500,000 target microscopic mineral

  5. The {alpha}-induced thick-target {gamma}-ray yield from light elements

    SciTech Connect

    Heaton, R.K. |

    1994-10-01

    The {alpha}-induced thick-target {gamma}-ray yield from light elements has been measured in the energy range 5.6 MeV {le} E{sub {alpha}} {le} 10 MeV. The {gamma}-ray yield for > 2.1 MeV from thick targets of beryllium, boron nitride, sodium fluoride, magnesium, aluminum and silicon were measured using the {alpha}-particle beam from the Lawrence Berkeley Laboratories 88 in. cyclotron. The elemental yields from this experiment were used to construct the {alpha}-induced direct production {gamma}-ray spectrum from materials in the SNO detector, a large volume ultra-low background neutrino detector located in the Creighton mine near Sudbury, Canada. This background source was an order of magnitude lower than predicted by previous calculations. These measurements are in good agreement with theoretical calculations of this spectrum based on a statistical nuclear model of the reaction, with the gross high energy spectrum structure being reproduced to within a factor of two. Detailed comparison of experimental and theoretical excitation population distribution of several residual nuclei indicate the same level of agreement within experimental uncertainties.

  6. Identification of a Sequence Element from p53 That Signals for Mdm2-Targeted Degradation

    PubMed Central

    Gu, Jijie; Chen, Dongli; Rosenblum, Jamie; Rubin, Rachel M.; Yuan, Zhi-Min

    2000-01-01

    The binding of Mdm2 to p53 is required for targeting p53 for degradation. p73, however, binds to Mdm2 but is refractory to Mdm2-mediated degradation, indicating that binding to Mdm2 is not sufficient for degradation. By utilizing the structural homology between p53 and p73, we generated p53-p73 chimeras to determine the sequence element unique to p53 essential for regulation of its stability. We found that replacing an element consisting of amino acids 92 to 112 of p53 with the corresponding region of p73 results in a protein that is not degradable by Mdm2. Removal of amino acids 92 to 112 of p53 by deletion also results in a non-Mdm2-degradable protein. Significantly, the finding that swapping this fragment converts p73 from refractory to sensitive to Mdm2-mediated degradation supports the conclusion that the amino acids 92 to 112 of p53 function as a degradation signal. We propose that the presence of an additional protein recognizes the degradation signal and coordinates with Mdm2 to target p53 for degradation. Our finding opens the possibility of searching for the additional protein, which most likely plays a critical role in the regulation of p53 stability and therefore function. PMID:10648610

  7. Maps showing interpretation, using R-mode factor analysis, of trace-element abundances in heavy-mineral concentrate samples, Delta 1° x 2° Quadrangle, Utah

    USGS Publications Warehouse

    Zimbelman, David R.

    1994-01-01

    A set of heavy-mineral concentrate data for the Delta 1° x 2° quadrangle, Utah Conterminous U.S. Mineral Assessment Program (CUSMAP) project was compiled from results of analyses of samples collected during the National Uranium Resource Evaluation Program (SURE), as well as results obtained from samples collected more recently by the USGS. Data results, sampling methods, and analytical methods are provided in Abrogast and others, 1993; 1990; 1988a; 1988b). A similar report, discussing results obtained from stream-sediment samples, is presented in Zimbelman (1993a). The Delta 1° x 2° quadrangle, Utah (figure 1) contains a variety of hydrothermal mineral deposit types, including porphyry-, vein-, replacement-, and Carlin-type deposits. These deposit types have been worked for commodities including gold, silver, beryllium, uranium, lead, zinc, copper, manganese, and cadmium (Lindsey, 1977; Morris and Mogensen, 1978; Zimbelman and others, 1990; Zimbelman and others, 1988). Heavy-mineral concentrate and stream-sediment samples derived from these hydrothermally altered rocks typically contain many geochemical anomalies (for example, see Zimbelman 1993b, c, d). Element associations characterizing lithology and hydrothermal mineral deposits can be distinguished using R-mode factor analysis. This tool often is useful in reconnaissance-scale surveys where sample anomalies are often weak. and single-element distributions may not help to delineate targets. R-mode factors analysis can help identify geologic trends and areas most likely to contain the mineral deposits. R-mode factor analysis was performed on a data set of results of analyses for 19 elements in 643 samples and produced a six-factor model. These six factors represent the geochemical contributions to the data set provided by lithologic and mineralization processes, The distribution of samples that contain high scores for mineralization-related factors is widespread in the Delta quadrangle. These sample sites

  8. Isotopic tellurium targets for heavy-ion nuclear physics produced by vapor deposition

    SciTech Connect

    Greene, J.P.; Thomas, G.E.

    1988-01-01

    A variety of /sup 122/Te targets were prepared by vapor deposition using resistive heating on various substrates. Substrate preparation proved crucial for the production of superior targets. Experimental runs on the Argonne ATLAS Accelerator showed the targets to be of high purity with little contamination. In addition, we have since prepared self-supporting Tellurium using a gold shadowing technique with Teepol as a release agent. 2 refs.

  9. Comparison of trace element emissions from thermal treatments of heavy metal hyperaccumulators.

    PubMed

    Lu, Shengyong; Du, Yingzhe; Zhong, Daoxu; Zhao, Bing; Li, Xiaodong; Xu, Mengxia; Li, Zhu; Luo, Yongming; Yan, Jianhua; Wu, Longhua

    2012-05-01

    Phytoextraction has become one of the most promising remediation techniques for heavy metal (HM) contaminated soils. However, the technique invariably produces large amounts of HM-enriched hyperaccumulators, which need further safe disposal. In this study, two different thermal treatment methods are investigated as potential options for evaporative separation of HMs from the residues. A horizontal tube furnace and a vertical entrained flow tube furnace were used for testing the disposal of grounded hyperaccumulators. The release characteristics of HMs (Cd, Cu, Pb, and Zn) into flue gas and residues were investigated for thermal treatment of the Cd and Zn hyperaccumulators Sedum plumbizincicola and Sedum alfredii. In a horizontal tube furnace, incineration favors the volatilization of Cu and Cd in contrast to pyrolysis. The percentages of HMs in residues after incineration are lower than those after pyrolysis, especially for Cd, Pb, and Zn. However, in an entrained flow tube furnace, Zn content in flue gas increases with increasing temperature, but Cu and Cd contents are fluctuated. In addition, a higher incineration temperature enhances the Cu content in residues. PMID:22458922

  10. Multiplet splitting for the XPS of heavy elements: Dependence on oxidation state

    NASA Astrophysics Data System (ADS)

    Bagus, Paul S.; Nelin, Connie J.; Al-Salik, Yahya; Ilton, Eugene S.; Idriss, Hicham

    2016-01-01

    Multiplet splittings in X-ray Photo-electron Spectroscopy, XPS, are a means of distinguishing different open shell occupations, or different oxidation states, in a material being studied. Indeed, especially for 3d transition metal complexes, they have provided fingerprints of the metal oxidation state. The present work provides theoretical and experimental evidence that it may also be possible to use multiplets to characterize the oxidation state of heavy metal, lanthanide and actinide, cations in complexes. However, it is important to make a proper choice of the XPS region to study in order to obtain large multiplet splittings. We identify a low binding energy, BE, peak that had been observed for Ce(III) in CeOx as a high spin coupled multiplet. Furthermore, we show that a low BE feature with reasonable intensity is characteristic of other XPS regions and of other metals. This feature arises from a high spin multiplet and serves as a fingerprint to distinguish closed shell from open shell cations. Evidence is presented that it may also be possible to distinguish different open shell occupations.